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Preface

The 2009 RSA conference was held in San Francisco, USA, during April 20-24.
The conference is devoted to security-related topics and, as part of this, hosts
a distinguished track for cryptographic research. Since 2001 the proceedings of
this Cryptographers’ Track (CT-RSA) have been published in the series Lecture
Notes in Computer Science of Springer.

The proceedings of CT-RSA 2009 contain 31 papers selected from 93 sub-
missions, covering a wide variety of cryptographic areas. Each submission was
anonymized for the reviewing process and was assigned to at least three of the 25
Program Committee members. Submissions co-authored by committee members
were assigned to at least five members. After carefully considering more than
15,000 lines (more than 100,000 words) of reviews and online discussions, the
committee selected 31 submissions for acceptance. The program also included an
invited talk by Kenny Paterson entitled “Cryptography and Secure Channels.”

I would like to thank all the authors who submitted papers. I am also indebted
to the Program Committee members and all external reviewers for their volun-
tary work. The committee’s work was tremendously simplified by Shai Halevi’s
submission software and his support. I would also like to thank the CT-RSA
Steering Committee for electing me as Chair, and all the people from the RSA
conference team for their support, especially Bree LaBollita.

January 2009 Marc Fischlin



CT-RSA 2009

RSA Conference 2009, Cryptographers’ Track

Moscone Center, San Francisco, CA, USA
April 20–24, 2009

Program Chair

Marc Fischlin Darmstadt University of Technology, Germany

Program Committee

Michel Abdalla ENS & CNRS, France
Zuzana Beerliova-Trubiniova ETH Zurich, Switzerland
Alex Biryukov University of Luxembourg, Luxembourg
Melissa Chase Microsoft Research, USA
Alex Dent Royal Holloway, UK
Nelly Fazio City University of New York, USA
Juan Garay AT&T Labs - Research, USA
Amir Herzberg Bar-Ilan University, Israel
Dennis Hofheinz CWI, The Netherlands
Nick Howgrave-Graham NTRU Cryptosystems, USA
Stanislaw Jarecki UC Irvine, USA
Marc Joye Thomson, France
Alexander May Bochum University, Germany
Jesper Buus Nielsen University of Aarhus, Denmark
Giuseppe Persiano University of Salerno, Italy
Josef Pieprzyk Macquarie University, Australia
Vincent Rijmen K.U. Leuven, Belgium, and Graz University of

Technology, Austria
Kazue Sako NEC, Japan
Christian Schaffner CWI, The Netherlands
Berry Schoenmakers TU Eindhoven, The Netherlands
Willy Susilo University of Wollongong, Australia
Pim Tuyls Philips, The Netherlands
Jorge Villar UPC Barcelona, Spain
Bogdan Warinschi University of Bristol, UK



VIII Organization

External Reviewers

Divesh Aggarwal
Toshinori Araki
Giuseppe Ateniese
Man Ho Au
Roberto Avanzi
Rikke Bendlin
Johannes Blömer
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Adaptive-ID Secure Revocable Identity-Based
Encryption

Benôıt Libert1 and Damien Vergnaud2,�

1 Université Catholique de Louvain, Microelectronics Laboratory,
Crypto Group Place du Levant, 3 – 1348 Louvain-la-Neuve – Belgium

2 Ecole Normale Supérieure – C.N.R.S. – I.N.R.I.A.
45, Rue d’Ulm – 75230 Paris CEDEX 05 – France

Abstract. Identity-Based Encryption (IBE) offers an interesting alter-
native to PKI-enabled encryption as it eliminates the need for digital
certificates. While revocation has been thoroughly studied in PKIs, few
revocation mechanisms are known in the IBE setting. Until quite re-
cently, the most convenient one was to augment identities with period
numbers at encryption. All non-revoked receivers were thus forced to
obtain a new decryption key at discrete time intervals, which places a
significant burden on the authority. A more efficient method was sug-
gested by Boldyreva, Goyal and Kumar at CCS’08. In their revocable
IBE scheme, key updates have logarithmic (instead of linear in the origi-
nal method) complexity for the trusted authority. Unfortunately, security
could only be proved in the selective-ID setting where adversaries have
to declare which identity will be their prey at the very beginning of the
attack game. In this work, we describe an adaptive-ID secure revocable
IBE scheme and thus solve a problem left open by Boldyreva et al..

Keywords. Identity-based encryption, revocation, provable security.

1 Introduction

Introduced by Shamir [32] and conveniently implemented by Boneh and Franklin
[8], identity-based encryption (IBE) aims to simplify key management by using
human-intelligible identifiers (e.g. email addresses) as public keys, from which
corresponding private keys are derived by a trusted authority called Private
Key Generator (PKG). Despite its many appealing advantages, it makes it diffi-
cult to accurately control users’ decryption capabilities or revoke compromised
identities. While IBE has been extensively studied using pairings (see [13] and
references therein) or other mathematical tools [18,9], little attention has been
paid to the efficient implementation of identity revocation until very recently [4].

� The first author acknowledges the Belgian National Fund for Scientific Research
(F.R.S.-F.N.R.S.) for their financial support and the BCRYPT Interuniversity At-
traction Pole. The second author is supported by the European Commission through
the IST Program under Contract ICT-2007-216646 ECRYPT II and by the French
Agence Nationale de la Recherche through the PACE project.

M. Fischlin (Ed.): CT-RSA 2009, LNCS 5473, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 B. Libert and D. Vergnaud

Related work. In public key infrastructures (PKI), revocation is taken care of
either via certificate revocation lists (CRLs), by appending validity periods to cer-
tificates or using involved combinations of such techniques (e.g. [29,1,30,21,25]).
However, the cumbersome management of certificates is precisely the burden that
identity-based encryption strives to alleviate. Yet, the private key capabilities of
misbehaving/compromised users should be promptly disabled after their detec-
tion. One of the cited reasons for the slow adoption of the IBE technology among
standards is its lack of support for identity revocation. Since only the PKG’s pub-
lic key and the recipient’s identity should be needed to encrypt, there is no way to
notify senders that a specific identity was revoked.

To address this issue, Boneh and Franklin [8] suggested that users can periodi-
cally receive new private keys. Current validity periods are then appended to iden-
tities upon encryption so as to add timeliness to the decryption operation and pro-
vide automatic identity revocation: to revoke a specific user, the PKG simply stops
issuing new keys for his identity. Unfortunately, this solution requires the PKG to
perform linear work in the number of registered receivers and regularly generate
fresh private keys for all users, which does not scale well as their number grows:
each non-revoked user must obtain a new key at each period, which demands to
prove his identity to the PKG and establish a secure channel to fetch the key.

Other solutions were suggested [7,20,27,3] to provide immediate revocation
but they require the cooperation of an online semi-trusted party (called media-
tor) at each decryption, which is not totally satisfactory either since it necessarily
incurs communication between users and the mediator.

Recently, Boldyreva, Goyal and Kumar [4] (BGK) significantly improved the
technique suggested by Boneh and Franklin [8] and reduced the authority’s pe-
riodic workload to be logarithmic (instead of linear) in the number of users
while keeping the scheme efficient for senders and receivers. Their revocable IBE
primitive (or R-IBE for short) uses a binary tree data structure and also builds
on Fuzzy Identity-Based Encryption (FIBE) schemes that were introduced by
Sahai and Waters [31]. Unfortunately, their R-IBE scheme only offers security
guarantees in the relaxed selective-ID model [15,16] wherein adversaries must
choose the target identity ahead of time (even before seeing the system-wide
public key). The reason is that current FIBE systems are only secure in (a natu-
ral analogue of) the selective-ID model. Boldyreva et al. explicitly left open the
problem of avoiding this limitation using their approach.

As noted in [5,6], selective-ID secure schemes can give rise to fully secure
ones, but only under an exponential reduction in the size of the identity space.
Also, while a random-oracle-using [2] transformation was reported [5] to turn
any selective-ID secure IBE scheme into an adaptive-ID secure one, it entails
a degradation factor of qH (i.e., the number of random oracle queries) in the
reduction and additionally fails to provide “real-world” security guarantees [14].
In the standard model, it has even been shown [22] that the strongest flavor of
selective-ID security (i.e., the IND-sID-CCA one that captures chosen-ciphertext
adversaries) does not even imply the weakest form of adaptive-ID security (which
is the one-wayness against chosen-plaintext attacks).
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Our Contribution. We describe an IBE scheme endowed with a similar and
equally efficient revocation mechanism as in the BGK system while reaching
security in the stronger adaptive-ID sense (as originally defined by Boneh and
Franklin [8]), where adversaries choose the target identity in the challenge phase.
We emphasize that, although relatively loose, the reduction is polynomial in
the number of adversarial queries. Our construction uses the same binary tree
structure as [4] and applies the same revocation technique. Instead of FIBE
systems, we utilize a recently considered variant [28] of the Waters IBE [33]. To
obtain a fairly simple security reduction, we use the property that the simulator
is able to compute at least one private key for each identity. This notably brings
out the fact that ordinary (as opposed to fuzzy) IBE systems can supersede
the particular instance of FIBE scheme considered in [4] to achieve revocation.
From an efficiency standpoint, our R-IBE performs essentially as well as the
BGK construction.

Organization. Section 2 first recalls the syntax and the security model of the
R-IBE primitive. Section 3 explains the BGK revocation technique that we also
use. Our scheme and its security analysis and then detailed in section 4.

2 Definitions

Model and Security Definitions. We recall the definition of R-IBE schemes
and their security properties as defined in [4].

Definition 1. An identity-based encryption with efficient revocation, or simply
Revocable IBE (R-IBE) scheme is a 7-tuple (S,SK,KU ,DK, E ,D,R) of efficient
algorithms with associated message spaceM, identity space I and time space T :

– The Setup algorithm S is run by a key authority1. Given a security param-
eter λ and a maximal number of users N , it outputs a master public/secret
key pair (mpk, msk), an initial state st and an empty revocation list RL.

– The stateful Private Key Generation algorithm SK is run by the key au-
thority that takes as input the system master key pair (mpk, msk), an identity
id ∈ I and state st and outputs a private key did and an updated state st.

– The Key Update Generation algorithm KU is used by the key authority.
Given the master public and secret keys (mpk, msk), a key update time t ∈ T ,
a revocation list RL and a state st, it publishes a key update kut.

– The Decryption Key Generation algorithm DK is run by the user. Given
a private key did and a key update kut, it outputs a decryption key did,t to
be used during period t or a special symbol ⊥ indicating that id was revoked.

– The randomized Encryption algorithm E takes as input the master public
key mpk, an identity id ∈ I, an encryption time t ∈ T , and a message
m ∈ M and outputs a ciphertext c. For simplicity and w.l.o.g. we assume
that id and t are efficiently computable from c.

1 We follow [4] and call the trusted authority “key authority” instead of “PKG”.
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– The deterministic Decryption algorithm D takes as input a decryption key
did,t and a ciphertext c, and outputs a message m ∈ M or a special symbol
⊥ indicating that the ciphertext is invalid.

– The stateful Revocation algorithm R takes as input an identity to be revoked
id ∈ I, a revocation time t ∈ T , a revocation list RL and state st, and outputs
an updated revocation list RL.

Correctness requires that, for any outputs (mpk, msk) of S, any m ∈ M, any id ∈
I and t ∈ T , all possible states st and revocation lists RL, if id is not revoked by
time t, then for (did, st)← SK(mpk, msk, id, st), kut ← KU(mpk, msk, t, RL, st),
did,t ← DK(did, kut) we have D(did,t, E(mpk, id, t, m)) = m.

Boldyreva et al. formalized the selective-revocable-ID security property that cap-
tures the usual notion of selective-ID2 security but also takes revocations into
account. In addition to a private key generation oracle SK(.) that outputs pri-
vate keys for identities of her choosing, the adversary is allowed to revoke users
at will using a dedicated oracle R(., .) (taking as input identities id and period
numbers t) and can obtain key update information (which is assumed to be pub-
lic) for any period t via queries KU(t) to another oracle. The following definition
extends the security property expressed in [4] to the adaptive-ID setting.

Definition 2. A R-IBE scheme is revocable-ID secure if any probabilistic poly-
nomial time (PPT) adversary A has negligible advantage in this experiment:

ExptIND-RID-CPA
A (λ)

(mpk, msk, RL, st)← S(λ, n)
(m0, m1, id

�, t�, s)← ASK(·),KU(·),R(·,·)(find, mpk)
d� R← {0, 1}
c� ← E(mpk, id�, t�, md�)
d← ASK(·),KU(·),R(·,·)(guess, s, c�)
return 1 if d = d� and 0 otherwise.

Beyond m0, m1 ∈ M and |m0| = |m1|, the following restrictions are made:

1. KU(·) and R(·, ·) can be queried on time which is greater than or equal to
the time of all previous queries i.e. the adversary is allowed to query only
in non-decreasing order of time. Also, R(·, ·) cannot3 be queried on time t if
KU(·) was queried on t.

2. If SK(·) was queried on identity id� then R(·, ·) must be queried on (id�, t)
for some t ≤ t�.

A’s advantage is AdvIND-RID-CPA
A (λ) =

∣∣Pr[ExptIND-RID-CPA
A (λ) = 1]− 1

2

∣∣.
2 Considered by Canetti, Halevi and Katz [15,16], this relaxed notion forces the ad-

versary to choose the target identity before seeing the master public key.
3 As in [4], we assume that revocations are made effective before that key updates

are published at each time period. Otherwise, A could trivially win the game by
corrupting and revoking id� at period t� but after having queried KU(t�).
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This definition naturally extends to the chosen-ciphertext scenario where the
adversary is further granted access to a decryption oracle D(·) that, on input of
a ciphertext c and a pair (id, t), runs D(did,t, c) to return some m ∈M or ⊥. Of
course, D(·) cannot be queried on the ciphertext c� for the pair (id�, t�).

Bilinear Maps and Hardness Assumptions. We use prime order groups
(G, GT ) endowed with an efficiently computable map e : G×G→ GT such that:

1. e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;
2. e(g, h) �= 1GT whenever g, h �= 1G.

In such bilinear groups, we rely on a variant of the (now classical) Decision
Bilinear Diffie-Hellman (DBDH) problem.

Definition 3. Let (G, GT ) be bilinear groups of prime order p > 2λ and g ∈ G.
The modified Decision Bilinear Diffie-Hellman Problem (mDBDH) is
to distinguish the distributions (ga, gb, gc, e(g, g)bc/a) and (ga, gb, gc, e(g, g)d) for
random values a, b, c, d R← Z∗

p. The advantage of a distinguisher B is

AdvmDBDH
G,GT

(λ) =
∣∣Pr[a, b, c R← Z∗

p : B(ga, gb, gc, e(g, g)bc/a) = 1]

− Pr[a, b, c, d R← Z∗
p : B(ga, gb, gc, e(g, g)d) = 1]

∣∣.
This problem is equivalent (see [17, Lemma 3.1] for a proof) to the original
DBDH problem which is to tell apart e(g, g)abc from random given (ga, gb, gc).

3 The BGK Construction

The idea of the scheme described by Boldyreva, Goyal and Kumar consists in
assigning users to the leaves of a complete binary tree. Upon registration, the
key authority provides them with a set of distinct private keys (all corresponding
to their identity) for each node on the path from their associated leaf to the root
of the tree. During period t, a given user’s decryption key can be obtained by
suitably combining any one of its node private keys with a key update for period
t and associated with the same node of the tree.

At period t, the key authority publishes key updates for a set Y of nodes
that contains no ancestors of revoked users and exactly one ancestor of any non-
revoked one (so that, when no user is revoked, Y contains only the root node
as illustrated on the figure where the nodes of Y are the squares). Then, a user
assigned to leaf v is able to form an effective decryption key for period t if the
set Y contains a node on the path from the root to v. By doing so, every update
of the revocation list RL only requires the key authority to perform logarithmic
work in the overall number of users. The size of users’ private keys also loga-
rithmically depends on the maximal number of users but, when the number of
revoked users is reasonably small (as is likely to be the case in practice since one
can simply re-initialize the whole system otherwise), the revocation method is
much more efficient than the one initially suggested in [8].
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Another attractive feature of this technique is that it can be used for tempo-
rary revocation. When a key is suspected of being compromised, the matching
identity can be temporarily revoked while an investigation is conducted, and
then reinstated if necessary.

u1 u2 u3 u4 u5

No user is revoked

u1 u2 u3 u4 u5

User u3 is revoked

The scheme of Boldyreva et al. builds on the fuzzy identity-based encryption
(FIBE) primitive [31]. In FIBE systems, identities are seen as sets of descriptive
attributes and users’ keys can decrypt ciphertexts for which a certain threshold
(called the “error tolerance”) of attributes match between the ciphertext and the
key. The private key of an identity (i.e., a set of attributes) is generated using a new
polynomial (of degree one less than the error tolerance) whose constant term is
part of the master key of the scheme. The revocable IBE scheme of [4] uses a special
kind of fuzzy IBE where ciphertexts are encrypted using the receiver’s identity
and the period number as “attributes”. The decryption key of the receiver has to
match both attributes to decrypt the ciphertext. For each node on the path from
the root to its assigned leaf, the user is given a key attribute that is generated using
a new polynomial of degree 1 for which the constant term is always the master
secret. The same polynomials are used, for each node, to generate key updates.
To compute a decryption key for period t, each user thus needs to combine two
key attributes associated with the same node of the tree.

To date, existing FIBE schemes are only provably secure in the selective-ID
sense and the construction of [4] has not been extended to the adaptive-ID model.
As we will see, classical pairing-based IBE systems actually allow instantiating
the same underlying revocation mechanism in the adaptive-ID setting.

4 An Adaptive-ID Secure Scheme

4.1 Intuition

We start from the same general idea as Boldyreva et al. but, instead of using
fuzzy identity-based cryptosystems, we build on a recently suggested [28] variant
of Waters’ IBE [33] where, somewhat in the fashion of Gentry’s IBE [24], the
simulator is able to compute a decryption key for any identity in the security
proof. In this variant, the master public key consists of (X = gx, Y, h) ∈ G3 and
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a vector u = (u0, u1, . . . , un) ∈ Gn+1
1 implementing Waters’ “hashing” technique

that maps strings id = i1 . . . in ∈ {0, 1}n onto Fu(id) = u0 ·
∏n

j=1 u
ij

i . To derive
a private key for the identity id, the authority picks r, s R← Z∗

p and sets

did = (d1, d2, d3) =
(
(Y · hr)1/x · Fu(id)s, Xs, r

)
so that e(d1, X) = e(Y, g) · e(h, g)d3 · e(F (id), d2). Ciphertexts are encrypted as

C = (C0, C1, C2, C3) =
(
m · e(Y, g)z, Xz, Fu(id)z , e(g, h)z

)
and decrypted by computing m = C0 · e(C2, d2) · Cd3

3 /e(C1, d1) (the correctness
can be checked by noting that e(d1, X)z = e(Y, g)z · e(h, g)zd3 · e(F (id), d2)z).

We consider a two-level hierarchical extension of the above system where
the second level identity is the period number. The shape of private keys thus
becomes (d1, d2, d3, d4) =

(
(Y ·hr)1/x ·Fu(id)s1 ·Fv(t)s2 , Xs1 , Xs2 , r

)
for some

function Fv(t). Since we only need a polynomial number of time periods, we can
settle for the Boneh-Boyen selective-ID secure identity hashing Fv(id) = vid

0 · v1
[5], for some v0, v1 ∈ G, at level 2 (instead of Waters’ technique).

Then, we also assign users to the leaves of a binary tree T. For each node θ ∈ T,
the key authority splits Y ∈ G into new shares Y1,θ, Y2,θ such that Y = Y1,θ · Y2,θ.
To derive users’ private keys, the key authority computes a triple (d1,θ, d2,θ, d3,θ) =(
(Y1,θ ·hr1,θ )1/x ·Fu(id)s1,θ , Xs1,θ , r1,θ

)
for eachnode θ on the path fromthe root to

the leaf corresponding to the user. Key updates are triples (ku1,θ, ku2,θ, ku3,θ) =(
(Y2,θ · hr2,θ )1/x · Fv(t)s2,θ , Xs2,θ , r2,θ

)
associated with non-revoked nodes θ ∈

T during period t. Users’ decryption keys can be obtained by combining any two
such triples (d1,θ, d2,θ, d3,θ), (ku1,θ, ku2,θ, ku3,θ) for the same node θ. Revocation
is handled as in [4], by having the key authority stop issuing key updates for nodes
outside the set Y.

In the selective-ID sense, the binary tree technique of [4] can be applied to a
2-level extension of the Boneh-Boyen HIBE by sharing the master secret key in
a two-out-of-two fashion, using new shares for each node. Directly extending the
technique to the adaptive-ID setting with Waters’ IBE is not that simple. In the
security reduction of [33], the simulator does not know the master key or the private
key of the target identity. The difficulty that we are faced with is that, at the first
time that a tree node is involved in a private key query or a key update query, the
simulator has to decide which one of the two master key shares it will have to know
for that node. This is problematic when the target identity id� is not known and
has not been assigned a leaf yet: which share should be known actually depends on
whether the considered node lies on the path connecting the target identity to the
root of the tree. To address this issue, we used a variant of the Waters IBE where
the simulator knows at least one valid decryption key for each identity4 and can
answer queries regardless of whether nodes are on the path from id� to the root.
4 After the completion of the paper, we noticed that a 2-level instance of the original

Waters HIBE can be used and allows for shorter ciphertexts. As will be shown in an
updated version of this work, it unfortunately ends up with an equally loose reduction
since the simulator has to guess upfront which private key query (if any) will involve
the target identity.
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4.2 Description

The scheme uses the same binary tree structure as in [4] and we employ similar
notations. Namely, root denotes the root node of the tree T. If v is a leaf node,
we let Path(v) stand for the set of nodes on the path from v to root. Whenever
θ is a non-leaf node, θl and θr respectively denote its left and right children.

In the description hereafter, we use the same node selection algorithm (called
KUNodes) as in [4]. At each time period, this algorithm determines the smallest
subset Y ⊂ T of nodes that contains an ancestor of all leaves corresponding
to non-revoked users. This minimal set precisely contains nodes for which key
updates have to be publicized in such a way that only non-revoked users will be
able to generate the appropriate decryption key for the matching period.

To identify the set Y, KUNodes takes as input the tree T, the revocation list
RL and a period number t. It first marks (in black on the figure) all ancestors
of users that were revoked by time t as revoked nodes. Then, it inserts in Y the
non-revoked children of revoked nodes. Its formal specification is the following:

KUNodes(T, RL, t)
X, Y ← ∅
∀(vi, ti) ∈ RL

if ti ≤ t then add Path(vi) to X
∀θ ∈ X

if θl �∈ X then add θl to Y
if θr �∈ X then add θr to Y

If Y = ∅ then add root to Y
Return Y

As in [4], we assume that the number of time periods tmax is polynomial in
the security parameter λ, so that a degradation of O(1/tmax) in the security
reduction is acceptable.

Setup S(λ, n, N): given security parameters λ, n ∈ N and a maximal number
of users N ∈ N that the scheme must be prepared for, the key authority
defines I = {0, 1}n, T = {1, . . . , tmax} and does the following.
1. Select bilinear groups (G, GT ) of prime order p > 2λ with g R← G∗.
2. Randomly choose x R← Z∗

p, h, Y R← G∗ as well as two random vectors u =
(u0, u1, . . . , un) ∈ G∗n+1 and v = (v0, v1) ∈ G∗2 that define functions
Fu : I → G, Fv : T → G such that, when id = i1 . . . in ∈ I = {0, 1}n,

Fu(id) = u0 ·
n∏

j=1

u
ij

j Fv(t) = vt
0 · v1

3. Set the master key as msk := x and initialize a revocation list RL := ∅
and a state st = T consisting of a binary tree T with N < 2n leaves.

4. Define the master public key to be mpk := (X = gx, Y, h, u, v).
Private Key Generation SK(mpk, msk, id, st): Parse mpk as (X, Y, h, u, v),

msk as x and st as T.
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1. Choose an unassigned leaf v from T and associate it with id ∈ {0, 1}n.
2. For all nodes θ ∈ Path(v) do the following:

a. Retrieve Y1,θ from T if it was defined5. Otherwise, choose it at ran-
dom Y1,θ

R← G, set Y2,θ = Y/Y1,θ and store the pair (Y1,θ, Y2,θ) ∈ G2

at node θ in st = T.
b. Pick s1,θ, r1,θ

R← Z∗
p and set

did,θ = (d1,θ, d2,θ, r1,θ) =
(
(Y1,θ · hr1,θ )1/x · Fu(id)s1,θ , Xs1,θ , r1,θ

)
.

3. Return did = {(θ, did,θ)}θ∈Path(v) and the updated state st = T.

Key Update Generation KU(mpk, msk, t, RL, st): Parse mpk as (X,Y,h,u,v),
msk as x and st as T. For all nodes θ ∈ KUNodes(T, RL, t),
1. Fetch Y2,θ from T if it was previously defined. If not, choose a fresh pair

(Y1,θ, Y2,θ) ∈ G2 such that Y = Y1,θ · Y2,θ and store it in θ.
2. Choose s2,θ, r2,θ

R← Z∗
p and compute

kut,θ = (ku1,θ, ku2,θ, r2,θ) =
(
(Y2,θ · hr2,θ )1/x · Fv(t)s2,θ , Xs2,θ , r2,θ

)
.

Then, return kut = {(θ, kut,θ)}θ∈KUNodes(T,RL,t) and the updated st = T.

Decryption Key Generation DK(mpk, did, kut): Parse did into {(i, did,i)}i∈I

and kut as {(j, kut,j)}j∈J for some sets of nodes I, J ∈ T. If there exists no
pair (i, j) ∈ I× J such that i = j, return ⊥. Otherwise, choose an arbitrary
such pair i = j, parse did,i = (d1,i, d2,i, r1,i), kut,i = (ku1,i, ku2,i, r2,i) and
set the updated decryption key as

did,t =
(
dt,1, dt,2, dt,3, dt,4

)
=
(
d1,i · ku1,i, d2,i, ku2,i, r1,i + r2,i

)
=
(
(Y · hdt,4)1/x · Fu(id)s1,i · Fv(t)s2,i , Xs1,i , Xs2,i , dt,4

)
.

Finally, check that did,t satisfies

e(dt,1, X) = e(Y, g) · e(g, h)dt,4 · e(Fu(id), dt2) · e(Fv(t), dt,3) (1)

and return ⊥ if the above condition fails to hold. Otherwise return did,t.

Encryption E(mpk, id, t, m): to encrypt m ∈ GT for id = i1 . . . in ∈ {0, 1}n
during period t, choose z R← Z∗

p and compute

C =
(
id, t, C0, C1, C2, C3, C4

)
=
(
id, t, m · e(g, Y )z , Xz, Fu(id)z , Fv(t)z , e(g, h)z

)
.

5 To avoid having to store Y1,θ for each node, the authority can derive it from a
pseudo-random function of θ using a shorter seed and re-compute it when necessary.
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Decryption D(mpk, did,t, C): Parse C as
(
id, t, C0, C1, C2, C3, C4

)
and the de-

cryption key did,t as (dt,1, dt,2, dt,3, dt,4). Then, compute and return

m = C0 ·
( e(C1, dt,1)

e(C2, dt,2) · e(C3, dt,3) · Cdt,4
4

)−1
. (2)

Revocation R(mpk, id, t, RL, st): let v be the leaf node associated with id. To
revoke the latter at period t, add (v, t) to RL and return the updated RL.

Correctness. We know that well-formed decryption keys always satisfy rela-
tion (1). If we raise both members of (1) to the power z ∈ Z∗

p (i.e., the encryption
exponent), we see that the quotient of pairings in (2) actually equals e(g, Y )z.

Efficiency. The efficiency of the scheme is comparable to that of the revocable
IBE described in [4]: ciphertexts are only slightly longer (by an extra element
of GT ) and decryption is even slightly faster since it incurs the evaluation of
a product of only 3 pairings (against 4 in [4]). Both schemes feature the same
logarithmic complexity in the number of users in terms of private key size and
space/computational cost for issuing key updates.

4.3 Security

The security proof is based on the one of [28] with the difference that we have
to consider the case where the challenge identity is compromised at some point
but revoked for the period during which the challenge ciphertext is created.

Theorem 1. Let us assume that an IND-RID-CPA adversary A runs in time ζ
and makes at most q private key queries over tmax time periods. Then, there ex-
ists an algorithm B solving the mDBDH problem with advantage AdvmDBDH

B (λ)
and within running time O(ζ)+O(ε−2 ln δ−1) for sufficiently small ε and δ. The
advantage of A is then bounded by

AdvIND-RID-CPA
A (λ) ≤ 4 · tmax · q2 · (n + 1) ·

(
4 ·AdvmDBDH(λ) + δ

)
. (3)

Proof (sketch). The complete proof is deferred to the full version of the paper
due to space limitation but we give its intuition here. We construct a simulator
B that is given a tuple (ga, gb, gc, T ) and uses the adversary A to decide if
T = e(g, g)bc/a. The master public key is prepared as X = ga, h = gb and
Y = Xγ · h−r�

for random γ, r� R← Z∗
p. The vector v = (v0, v1) is chosen so that

Fv(t) = gβ(t−t�) ·Xα for random values α, β R← Z∗
p and where t� R← {1, . . . , tmax}

is chosen at random as a guess for the time period of the challenge phase. Finally,
the (n + 1)-vector u is chosen so as to have Fu(id) = gJ(id) · XK(id) for some
integer-valued functions J, K : {0, 1}n → Z chosen by the simulator according
to Waters’ technique [33].

To be successful, B needs to have J(id�) = 0 in the challenge phase and, by
choosing u such that J(.) is relatively small in absolute value, this will be the
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case with probability O(1/q(n+1)). The simulator also hopes that A will indeed
make her challenge query for period t�, which occurs with probability 1/tmax.
The security proof relies on the fact that, with non-negligible probability, B can
compute a valid decryption key for each identity id ∈ {0, 1}n. If J(id) �= 0, B
can do it using the Boneh-Boyen technique [5] while, in the case J(id) = 0, a
valid key did,t for period t is obtained by choosing s1, s2

R← Z∗
p and setting

(dt,1, dt,2, dt,3, dt,4) =
(
gγ · Fu(id)s1 · Fv(t)s2 , Xs1 , Xs2 , r�

)
, (4)

which has the required shape since (Y · hr�

)1/a = gγ .
In the challenge phase, when A hopefully comes up with a pair (id�, t�) such

that J(id�) = 0 and t� is the expected time period, B flips a coin d� R← {0, 1}
and constructs the ciphertext C� as follows:

C�
1 = gc C�

2 = (gc)K(id�) C�
3 = (gc)α C�

4 = T

C�
0 = md� · e(C�

1 , dt�,1)
e(C�

2 , dt�,2) · e(C�
3 , dt�,3) · C�

4
dt�,4

(5)

where did�,t� = (dt�,1, dt�,2, dt�,3, dt� , 4) is a valid decryption key calculated as
per (4) for the pair (id�, t�). If T actually equals e(g, g)bc/a, C� is easily seen
to be a valid encryption of md� using the encryption exponent z = c/a. If T is
random on the other hand (say T = e(g, h)z′

for a random z′ ∈R Z∗
p), we can

check that C�
0 = md� ·e(Y, g)z ·e(g, h)(z−z′)r�

, which means that md� is perfectly
hidden from A’s view as long as r� is so.

We now have to make sure that no information on r� ever leaks during the
game. To do so, we distinguish two kinds of adversaries:

- Type I adversaries choose to be challenged on an identity id� that is cor-
rupted at some point of the game but is revoked at period t� or before.

- Type II adversaries do not corrupt the target identity id� at any time.

At the outset of the game, the simulator B flips a coin cmode
R← {0, 1} as a guess

for the type of adversarial behavior that it will be faced with. In the expectation
of Type I adversary (i.e., cmode = 0), B additionally has to guess which private
key query will involve the identity id� that A chooses to be challenged upon. If
cmode = 0, it thus draws j� R← {1, . . . , q} at the beginning of the game and the
input idj of the jth private key query happens to be id� with probability 1/q.

Regardless of the value of cmode, for each tree node θ ∈ T, B splits the public
key element Y ∈ G into two node-specific multiplicative shares (Y1,θ, Y2,θ) such
that Y = Y1,θ ·Y2,θ. That is, at the first time that a node θ ∈ T is involved in some
query, B defines and stores exponents γ1,θ, γ2,θ, r

�
1,θ, r

�
2,θ such that γ = γ1,θ+γ2,θ,

r� = r�
1,θ + r�

2,θ and defines Y1,θ = Xγ1,θ · h−r�
1,θ , Y2,θ = Xγ2,θ · h−r�

2,θ .
From here on, we assume that B is fortunate in the random guesses that

it makes (i.e., cmode ∈ {0, 1} and j� R← {1, . . . , q} if cmode = 0). Then, the
treatment of A’s queries is the following. Revocation queries are dealt with
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by following the specification of the revocation algorithm that simply inserts
the appropriate node trees in the revocation list RL. The way to answer other
queries now depends on the bit cmode.

• If cmode = 0, B uses the following strategy.

- SK(.) queries: let idj be the input of the jth private key query and let v ∈ T
be the node that B assigns to idj .

� If j �= j�, for each node θ ∈ Path(v), B re-computes Y1,θ = Xγ1,θ · h−r�
1,θ

using the shares (γ1,θ, γ2,θ, r
�
1,θ, r

�
2,θ). It picks r1,θ, s1,θ

R← Z∗
p, defines

W = Y1,θ · hr1,θ and calculates

(d1,θ, d2,θ) =
(
Fu(idj)s1,θ ·W−K(idj )

J(idj) , Xs1,θ ·W− 1
J(idj)

)
(6)

which is well-defined since J(idj) �= 0 and can be checked to provide
a correctly-shaped triple didj ,θ = (d1,θ, d2,θ, r1,θ) for node θ if we set
˜s1,θ = s1,θ − w/(aJ(idj)) where w = logg(W ). Indeed,

W 1/a · Fu(idj) ˜s1,θ = W 1/a · Fu(idj)s1,θ · (gJ(idj) ·XK(idj))
− w

aJ(idj)

= Fu(idj)s1,θ ·W−K(idj)
J(idj)

and X ˜s1,θ = Xs1,θ ·W− 1
J(idj) . In this case, for all nodes θ ∈ Path(v), the

share r�
1,θ remains perfectly hidden from A’s view.

� If j = j� (and thus idj = id� if B was lucky when choosing j�), for
each node θ ∈ Path(v), B picks a random s1,θ

R← Z∗
p and uses the shares

(γ1,θ, γ2,θ, r
�
1,θ, r

�
2,θ) to compute a triple didj ,θ = (d1,θ, d2,θ, r

�
1,θ) where

(d1,θ, d2,θ) = (gγ1,θ · Fu(idj)s1,θ , Xs1,θ )

We see that didj ,θ is well-formed since (Y1,θ · hr�
1,θ )1/a = gγ1,θ . In this

case, the shares {r�
1,θ}θ∈Path(v) are revealed to A as part of didj ,θ.

- KU(.) queries:
� For periods t �= t�, B runs KUNodes(T, RL, t) to find the right set Y of

non-revoked nodes. For each θ ∈ Y, B re-constructs Y2,θ = Xγ2,θ · h−r�
2,θ

using the shares (γ1,θ, γ2,θ, r
�
1,θ, r

�
2,θ). It sets W = Y2,θ ·hr2,θ for a random

r2,θ
R← Z∗

p. Then, it picks s2,θ
R← Z∗

p and computes

(ku1,θ, ku2,θ) =
(
Fv(t)s2,θ ·W− α

β(t−t�) , Xs2,θ ·W− 1
β(t−t�)

)
,

which is well-defined since Fv(t) = gβ(t−t�) · Xα and t �= t� and, if we
define ˜s2,θ = s2,θ − w/(βa(t− t�)) (with w = logg(W )), we have

W 1/a · Fv(t) ˜s2,θ = W 1/a · Fv(t)s2,θ · (gβ(t−t�) ·Xα)−
w

βa(t−t�)

= Fv(t)s2,θ ·W− α
β(t−t�)

and X ˜s2,θ = Xs2,θ ·W− 1
β(t−t�) . Finally, B returns {(ku1,θ, ku2,θ, r2,θ)}θ∈Y

and, for all nodes θ ∈ Y, the share r�
2,θ remains perfectly hidden.
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� For period t = t�, B determines the set Y ∈ T of non-revoked nodes using
KUNodes(T, RL, t). For each θ ∈ Y, B uses the shares (γ1,θ, γ2,θ, r

�
1,θ, r

�
2,θ)

to construct kut�,θ as the triple kut�,θ = (ku1,θ, ku2,θ, r
�
2,θ) where

(ku1,θ, ku2,θ) =
(
gγ2,θ · Fv(t�)s2,θ , Xs2,θ

)
for a random s2,θ

R← Z∗
p. This pair has the correct distribution since

(Y2,θ · hr�
2,θ )1/a = gγ2,θ . In this case, shares {r�

2,θ}θ∈Y are given away.

By inspection, we check that, with non-negligible probability, B never has to
reveal two complementary shares r�

1,θ, r
�
2,θ of r� for any node θ ∈ T. Let v�

be the leaf that B assigns to the target identity id� (which is also idj� with
probability 1/q). For all θ ∈ Path(v�), A never sees both r�

1,θ and r�
2,θ because,

according to the rules of definition 2, id� must be revoked by period t� if A
decides to corrupt it at some point. Then, no ancestor of v� lies in the set Y
determined by KUNodes at period t�.

• The case cmode = 1 is easier to handle. Recall that, if A indeed behaves as a
Type II adversary, it does not query the private key of id� at any time.

- SK(.) queries: let id be the queried identity. We must have J(id) �= 0 with
non-negligible probability and B can compute a private key as suggested by
relation (6) in the case cmode = 0. In particular, the value r�

1,θ does not leak
for any θ ∈ Path(v) where v is the leaf associated with id.

- KU(.) queries are processed exactly as in the case cmode = 0. Namely, B
distinguishes the same situations t �= t� and t = t� and only reveals r�

2,θ, for
non-revoked nodes θ ∈ Y, when generating updates for period t = t�.

Again, the simulator does not reveal both r�
1,θ and r�

2,θ for any node since r�
1,θ

is never used to answer private key queries.
With non-negligible probability, the value r� thus remains independent of A’s

view for either value of cmode ∈ {0, 1}. This completes the outline of the proof,
which is more thoroughly detailed the full paper. ��

As we mentioned earlier, the reduction leaves room for improvement as its
quadratic degradation factor q2 becomes cubic since we must have tmax ≥ q
to tolerate a polynomial number O(q) of revocation queries. Although loose, the
reduction is polynomial and thus solves the problem left open in [4].

Chosen-ciphertext security can be efficiently achieved using the usual tech-
niques [16,11,12] or, since the outlined simulator knows a valid private key for
each identity as in [24], in the fashion of Cramer-Shoup [19].

5 Conclusion

We showed that regular IBE schemes can be used to implement the efficient revoca-
tionmechanismsuggestedbyBoldyrevaetal.andnotablyprovidethefirstadaptive-
ID secure revocable IBE. The latter was obtained by sharing the key generation
processof a 2-levelHIBEsystemfromthe“commutative-blinding family” (initiated
with the first scheme of [5]). As another extension, the same ideas make it possible
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to construct revocable identity-based broadcast encryption schemes (using the re-
cent Boneh-Hamburg constructions [10] for instance) in the selective-ID model.

An open problem is to devise adaptive-ID secure R-IBE systems with a tighter
reduction than what we could obtain. It would also be interesting to see how
revocation can be handled in the context of hierarchical IBE [26,23], where each
entity of the hierarchy should be responsible for revoking its children.
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Abstract. In [14], Boneh and Katz introduced a primitive called encap-
sulation scheme, which is a special kind of commitment scheme. Using
the encapsulation scheme, they improved the generic transformation by
Canetti, Halevi, and Katz [17] which transforms any semantically secure
identity-based encryption (IBE) scheme into a chosen-ciphertext secure
public key encryption (PKE) scheme (we call the BK transformation).
The ciphertext size of the transformed PKE scheme directly depends
on the parameter sizes of the underlying encapsulation scheme. In this
paper, by designing a size-efficient encapsulation scheme, we further im-
prove the BK transformation. With our proposed encapsulation scheme,
the ciphertext overhead of a transformed PKE scheme via the BK trans-
formation can be that of the underlying IBE scheme plus 384-bit, while
the original BK scheme yields that of the underlying IBE scheme plus
at least 704-bit, for 128-bit security. Our encapsulation scheme is con-
structed from a pseudorandom generator (PRG) that has a special prop-
erty called near collision resistance, which is a fairly weak primitive. As
evidence of it, we also address how to generically construct a PRG with
such a property from any one-way permutation.

Keywords: encapsulation, pseudorandom generator, public key encryp-
tion, identity-based encryption, IND-CCA security.

1 Introduction

1.1 Background

Studies on constructing and understanding efficient public key encryption (PKE)
schemes secure against chosen ciphertext attacks (CCA) [38,22] are important
research topics in the area of cryptography. Among several approaches towards
CCA secure PKE schemes, one of the promising approaches is the “IBE-to-
PKE” transformation paradigm [17], which is a method to obtain CCA secure
PKE schemes from identity-based encryption (IBE) schemes [42,13].
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In [17], Canetti, Halevi, and Katz showed a generic construction of CCA se-
cure PKE schemes from any semantically secure IBE and a one-time signature
(we call this IBE-to-PKE transformation the CHK transformation). This con-
struction is fairly simple. Specifically, its ciphertext consists of (χ, vk, σ) where
χ is a ciphertext of the underlying IBE scheme (under identity “vk”), vk is a
verification of a one-time signature scheme, and σ is a valid signature of χ (under
verification key vk). However, due to the use of a one-time signature, ciphertext
size of the resulting scheme becomes larger than that of the underlying IBE
scheme for |vk| and |σ|, which might result in significantly large ciphertexts.

This method was later improved by Boneh and Katz [14] (we call the BK
transformation) by replacing a one-time signature in the CHK transformation
with an encapsulation scheme and a message authentication code (MAC) scheme,
where an encapsulation scheme (the notion of which is introduced in the same
paper [14]) is a special kind of commitment scheme that commits a random
value. This method has a possibility of drastically reducing computation costs
for encryption and decryption algorithms and ciphertext size of the transformed
PKE scheme, compared to the CHK transformation. However, its ciphertext
size directly depends on the size of parameters (commitment, decommitment,
and the committed value) of the underlying encapsulation scheme, and thus an
encapsulation scheme with large parameters still yields a large ciphertext for a
transformed PKE scheme. Since the concrete encapsulation scheme that Boneh
and Katz presented in [14] (we call the BK encapsulation scheme) had somewhat
large parameters, PKE schemes transformed via the BK transformation could
not be as size-efficient as existing practical CCA secure PKE schemes, e.g. [19,31].

Thus, there is still a room for further improvement for the BK transformation in
terms of ciphertext size, by designing an encapsulation scheme with small param-
eter sizes.

1.2 Our Contribution

In this paper, focusing on the size-efficiency of the BK transformation, we present
an efficient encapsulation scheme. Specifically, for 128-bit security, the ciphertext
overhead (the difference of size between the whole ciphertext and its plaintext)
of a PKE scheme obtained via the BK transformation with our encapsulation
scheme can be that of the underlying IBE scheme plus 384-bit, while that of a
PKE scheme via the BK transformation with their encapsulation scheme needs
to be that of the underlying IBE scheme plus at least 704-bit.

The main building block used in the proposed encapsulation scheme is a pseu-
dorandom generator (PRG) with a special property called near collision resistance
for predetermined parts of output (NCR for short), which was first introduced and
used by Boldyreva and Fischlin in [10]. Roughly speaking, NCR property is target
collision resistance [34,7] for some part of output. In this paper, we only consider κ-
least significant bits of output as the predetermined parts of NCR property, where
κ is the security parameter. See Section 2.2 for more details.

We also show concrete instantiations of a PRG with NCR property. One
construction is a slight modification of a practical PRG [1] used in practice
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which is based on cryptographic hash functions such as SHA-1. If we can assume
that the hash functions used in the PRG satisfy target collision resistance, we
immediately obtain a PRG with NCR property. Though we can provide only
a heuristic analysis for this construction, we believe that it is fairly reasonable
to assume that this practical PRG satisfies NCR property and we can use it in
practical scenarios.

In order to confirm that a PRG with NCR property, though seemingly strong,
is actually a fairly weak primitive, we also address how to generically construct
such a PRG from any one-way permutation. Interestingly, the construction is
the well-known one by Blum and Micali [9] and Yao [45] itself. Namely, the
Blum-Micali-Yao PRG has NCR property as it is.

1.3 Related Works

CCA Security of PKE. The notion of CCA security of a PKE scheme was first
introduced by Naor and Yung [35] and later extended by Rackoff and Simon [38]
and Dolev, Dwork, and Naor [22]. Naor and Yung [35] proposed a generic con-
struction of non-adaptive CCA secure PKE schemes from semantically secure
PKE schemes, using non-interactive zero knowledge proofs which yield ineffi-
cient and complicated structure and are not practical. Based on the Naor-Yung
paradigm, some generic constructions of fully CCA secure PKE schemes were
also proposed, e.g., [22]. The first practical CCA secure PKE scheme is proposed
by Cramer and Shoup [19], and they also generalized their method as universal
hash proof technique [20] as well as some other instantiations of it. Kurosawa
and Desmedt [31] further improved efficiency of the Cramer-Shoup scheme. To-
day, many practical CCA secure PKE schemes that pursue smaller ciphertext
overhead and/or basing the security on weaker intractability assumptions are
known, such as [15,29,41,27,18,25].

Canetti, Halevi, and Katz [17] proposed a novel methodology for achieving
CCA security from IBE schemes. See Section 1.1 for more details.

Peikert and Waters [37] proposed a methodology to obtain CCA secure PKE
schemes using a new primitive called lossy trapdoor functions. Recently, Rosen
and Segev [40] proposed a generic paradigm for obtaining CCA secure PKE
schemes from (injective) trapdoor functions that are one-way under correlated
products. Hanaoka and Kurosawa [25] proposed yet another paradigm to achieve
CCA secure PKE schemes from any CPA secure broadcast encryption with ver-
ifiability.

In the random oracle methodology [5], several generic methodologies (e.g.,
[6,23,36]) and concrete practical schemes are known. However, since the results
from several papers, such as [16], have shown that this methodology has some
problem, in this paper we focus only on the constructions in the standard model.

Other IBE-to-PKE Transformations and Tag-Based Encryption. The IBE-to-
PKE transformations we focus on in this paper are the ones that are generically
applicable to any IBE scheme (with semantic security). However, there are also
several transformations that can be applied to only IBE schemes with special
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structures or properties. We review them below. Using ideas from [17,14] and
specific algebraic properties of the underlying IBE schemes [11,44], Boyen, Mei,
and Waters [15] proposed the currently best CCA secure PKE schemes in terms
of ciphertext overhead. Using chameleon hash functions [30], Abe et al. [3] pro-
posed several IBE-to-PKE transformations for partitioned identity-based key
encapsulation mechanisms and constructed several CCA secure PKE schemes
via the Tag-KEM/DEM paradigm [4]. Zhang [46] independently proposed two
transformations that also use chameleon hash functions, where the first transfor-
mation is applicable to schemes with separable property which are similar to [3]
and the second transformation is applicable generically but needs stronger secu-
rity for a chameleon hash function. In this paper, we do not aim at a size-efficient
IBE-to-PKE transformation at the cost of “generality” for the underlying IBE,
so that the transformation can be widely applicable. Moreover, a chameleon
hash function usually yields a computation of exponentiations, which is heavier
compared to computation of “symmetric-key” primitives such as a computation
of block ciphers. Recently, Matsuda et al. [33] proposed another generic and effi-
cient IBE-to-PKE transformation. But it requires IBE to be non-malleable, and
no concrete efficient IBE scheme (other than the CCA secure IBE schemes) is
known so far.

Kiltz [28] showed that the IBE-to-PKE transformation paradigm can be gener-
ically applied to tag-based encryption schemes [32] of appropriate security, which
are weaker primitives than IBE schemes.

2 Preliminaries

In this section, we review the definitions necessary for describing our result.

Notations. In this paper, “x← y” denotes that x is chosen uniformly at random
from y if y is a set or x is output from y if y is a function or an algorithm. “x||y”
denotes a concatenation of x and y. “|x|” denotes the size of the set if x is a
finite set or bit length of x if x is an element of some set. “x-LSB(y)” denotes
x-least significant bits of y if y is a string. For simplicity, in most cases we drop
the security parameter (1κ) for input of the algorithms considered in this paper.

2.1 Encapsulation Scheme

Boneh and Katz [14] introduced the notion of an encapsulation scheme, which
works as the main building block in the BK transformation. Roughly speaking,
an encapsulation scheme is a kind of commitment scheme that commits a random
value, so that it can be later recovered by using a decommitment.

Formally, an encapsulation scheme E consists of the following three (probabilis-
tic) algorithms. A setup algorithm Encap.Setup takes 1κ (security parameter κ) as
input, and outputs a public parameter prm. A commitment algorithm Encap.Com
takes a public parameter prm as input, and outputs a committed value r ∈ V ,
a commitment c ∈ C, and a decommitment d ∈ D (where V , C, and D are a
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committed value space, a commitment space, and a decommitment space of E,
respectively). A recovery algorithm Encap.Rec takes a public parameter prm, a
commitment c ∈ C, and a decommitment d ∈ D as input, and outputs a com-
mitted value r ∈ V∪{⊥}. We require Encap.Rec(prm, c, d) = r for all prm output
from Encap.Setup and all (r, c, d) ∈ V × C × D output from Encap.Com(prm).

Hiding Property. We define the advantage of an adversary A against hiding
property of an encapsulation scheme E as follows:

AdvHiding
E,A =

∣∣∣∣∣Pr

[ bC ← {0, 1}; prm← Encap.Setup(1κ);
(r∗1 , c∗, d∗)← Encap.Com(prm);
r∗0 ← V ; bA ← A(prm, r∗bC

, c∗)
: bA = bC

]
− 1

2

∣∣∣∣∣.
Definition 1. We say that an encapsulation scheme E is (t, ε)-hiding if we have
AdvHiding

E,A ≤ ε for any algorithm A running in time less than t.

Binding Property. We define the advantage of an adversary A against binding
property of an encapsulation scheme E as follows:

AdvBinding
E,A = Pr

[
prm← Encap.Setup(1κ);
(r∗, c∗, d∗)← Encap.Com(prm);
d′ ← A(prm, r∗, c∗, d∗)

:
Encap.Rec(prm, c∗, d′)
/∈ {⊥, r∗} ∧ d′ �= d∗

]
.

Definition 2. We say that an encapsulation scheme E is (t, ε)-binding if we
have AdvBinding

E,A ≤ ε for any algorithm A running in time less than t.

2.2 Pseudorandom Generator

Let G : D → R be a function with |D| ≤ |R|. We define the advantage of an
adversary A against pseudorandomness of G as follows:

AdvPR
G,A =

∣∣∣∣Pr
[
bC ← {0, 1}; x∗ ← D; y∗

1 ← G(x∗);
y∗
0 ←R; bA ← A(y∗

bC
) : bA = bC

]
− 1

2

∣∣∣∣ .
Definition 3. We say that a function G is (t, ε)-pseudorandom if we have
AdvPR

G,A ≤ ε for any algorithm A running in time less than t. We also say that
G is a (t, ε)-pseudorandom generator (PRG).

Near Collision Resistance (for Predetermined Parts of Output). Boldyreva and
Fischlin [10] introduced the notion of near collision resistance (NCR) for predeter-
mined parts of output of a PRG. Roughly speaking, NCR property ensures that
given a randomly chosen input x ∈ D, no adversary can efficiently find another
input x′(�= x) ∈ D such that the predetermined parts of output becomes identical.
Since an adversary cannot have a control over one of the inputs, it is more related
to target collision resistance [34,7] than ordinary (any) collision resistance [21]. Ac-
cording to the authors of [10] “near collision resistance” is named after [8].
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In this paper, we only consider κ-least significant bits of output of G as the pre-
determined parts for NCR property, where κ is the security parameter. Formally,
we define the advantage of an adversary A against NCR for κ-least significant
bits of output of G as follows:

AdvNCR-κ-LSB
G,A = Pr[x∗ ← D; x′ ← A(x∗) : κ-LSB(G(x′)) = κ-LSB(G(x∗)) ∧ x′ �= x∗].

Definition 4. We say that a function (or pseudorandom generator) G is
(t, ε)-near collision resistant for κ-least significant bits of output if we have
AdvNCR-κ-LSB

G,A ≤ ε for any algorithm A running in time less than t. We also
say that G is (t, ε)-NCR-κ-LSB.

2.3 Target Collision Resistant Hashing

Let H : D → R be a hash function with |D| ≥ |R|. We define the advantage of
an adversary A against target collision resistance of H as follows:

AdvTCR
H,A = Pr[x∗ ← D; x′ ← A(x∗) : H(x′) = H(x∗) ∧ x′ �= x∗].

Definition 5. We say that a hash function H is (t, ε)-target collision resistant
if we have AdvTCR

H,A ≤ ε for any algorithm A running in time less than t. We also
say that H is a (t, ε)-target collision resistant hash function (TCRHF).

2.4 Other Primitives

Here, we review only the algorithms of public key encryption, identity-based
encryption, and a message authentication code (MAC) scheme. Refer to [14] for
security definitions of these primitives.

A public key encryption (PKE) scheme Π consists of the following three (prob-
abilistic) algorithms. A key generation algorithm PKE.KG takes 1κ (security pa-
rameter κ) as input, and outputs a pair of a secret key sk and a public key pk. An
encryption algorithm PKE.Enc takes a public key pk and a plaintext m ∈M as
input, and outputs a ciphertext χ (whereM is a plaintext space of Π). A decryp-
tion algorithm PKE.Dec takes a secret key sk and a ciphertext χ as input, and
outputs a plaintext m ∈M∪{⊥}. We require PKE.Dec(sk, PKE.Enc(pk, m)) = m
for all (sk, pk) output from PKE.KG and all m ∈M.

An identity-based encryption (IBE) scheme Π consists of the following four
(probabilistic) algorithms. A setup algorithm IBE.Setup takes 1κ (security pa-
rameter κ) as input, and outputs a pair of a master secret key msk and global
parameters prm. A key extraction algorithm IBE.Ext takes global parameters
prm, a master secret key msk, and an identity ID ∈ I as input, and outputs a
decryption key dkID corresponding to ID (where I is an identity space of Π). An
encryption algorithm IBE.Enc takes global parameters prm, an identity ID ∈ I,
and a plaintext m ∈ M as input, and outputs a ciphertext χ (where M is a
plaintext space of Π). A decryption algorithm IBE.Dec takes a decryption key
dkID and a ciphertext χ as input, and outputs a plaintext m ∈ M∪{⊥}. We re-
quire IBE.Dec(IBE.Ext(prm, msk, ID), IBE.Enc(prm, ID, m)) = m for all (msk, prm)
output from IBE.Setup, all ID ∈ I, and all m ∈ M.
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A message authentication code (MAC) scheme Σ consists of the following two
algorithms. A MAC generating algorithm MAC.Mac takes a MAC key k ∈ K and
a message m ∈ M as input, and outputs a valid MAC tag tag on m under k
(where K andM are a MAC key space and a message space of Σ, respectively).
A verification algorithm MAC.Verify takes a MAC key k, a message m, and a
MAC tag tag as input, and outputs accept if tag is a valid MAC tag on m or
reject otherwise. We require MAC.Verify(k, m, MAC.Mac(k, m)) = accept for
all k ∈ K and all m ∈ M.

3 The Boneh-Katz Transformation

In this section, we briefly review the IBE-to-PKE transformation by Boneh and
Katz [14]. Let Π = (IBE.Setup, IBE.Ext, IBE.Enc, IBE.Dec) be an IBE scheme, E
= (Encap.Setup, Encap.Com, Encap.Rec) be an encapsulation scheme, and Σ =
(MAC.Mac, MAC.Verify) be a MAC scheme. Then, a PKE scheme Π ′ = (PKE.KG,
PKE.Enc, PKE.Dec) obtained via the BK transformation is as shown in Fig. 1.
CCA security of Π ′ was proved assuming that Π is IND-sID-CPA secure, E
satisfies binding and hiding, and Σ is one-time secure. See [14] for details.

Notice that the overhead of ciphertext size from that of the underlying IBE
scheme is caused by a commitment c, a decommitment d, and a MAC tag tag.
Since the size of a MAC tag can be κ-bit for κ-bit security and is optimal,
designing an encapsulation scheme such that the sizes of parameters (c, d) are
small is desirable for obtaining a PKE scheme with a small ciphertext overhead.

In [14], the authors also showed a concrete construction of an encapsulation
scheme. Here, we briefly review their encapsulation scheme. Encap.Setup(1κ)
picks a target collision resistant hash function (TCRHF) TCR and a
pairwise-independent hash function (PIHF) h, and outputs prm ← (TCR, h).
Encap.Com(prm) picks a decommitment d randomly, computes c← TCR(d) and
r ← h(d), then outputs (r, c, d). Encap.Rec(prm, c, d) checks whether TCR(d) = c
or not, and outputs r← h(d) if this holds or ⊥ otherwise.

Their scheme only uses a TCRHF and a PIHF for both the commitment and
the recovery algorithms and thus is fairly efficient in terms of computation cost.

PKE.KG(1κ) :
(msk, prmI) ← IBE.Setup(1κ)
prmE ← Encap.Setup(1κ)
SK ← msk; PK ← (prmI , prmE)
Output (SK, PK).

PKE.Enc(PK,m) :
(r, c, d) ← Encap.Com(prmE)
y ← IBE.Enc(prmI , c, (m||d))
tag ← MAC.Mac(r, y)
Output χ ← 〈c, y, tag〉.

PKE.Dec(SK, χ) :
Parse χ as 〈c, y, tag〉.; dkc ← IBE.Ext(prmI , msk, c)
(m||d) ← IBE.Dec(dkc, y) (if this returns ⊥ then output ⊥ and stop.)
r ← Encap.Rec(prmE , c, d) (if this returns ⊥ then output ⊥ and stop.)
Output m if MAC.Verify(r, y, tag) = accept. Otherwise output ⊥.

Fig. 1. The Boneh-Katz Transformation
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However, due to the leftover hash lemma [26] used to show hiding property, we
need to set d to be at least 448-bit for 128-bit security (it achieves hiding property
in a statistical sense). Thus, even though we use an efficient IBE scheme such
as [11] as the underlying IBE scheme in the BK transformation, it results in a
PKE scheme with somewhat large ciphertext because of the size of d. However,
as the authors of [14] pointed out, it is important to note that we do not need
“statistical security” for neither hiding nor binding properties. We only need
“computational security” for both. (Our proposed encapsulation scheme in the
next section actually achieves them in computational sense.)

4 Proposed Encapsulation Scheme

As we have seen in Section 3, designing an encapsulation scheme with small
parameter size is important for the size-efficiency of the BK transformation. In
this section, we present an efficient encapsulation scheme using a PRG with
NCR property and prove its security. We also show a concrete instantiation of
the PRG with NCR property.

Let G : {0, 1}κ → {0, 1}2κ be a PRG (with NCR-κ-LSB property). Then we
construct an encapsulation scheme E = (Encap.Setup, Encap.Com, Encap.Rec) as
follows.

Encap.Setup(1κ): Set prm← G and output prm.
Encap.Com(prm): Pick d ∈ {0, 1}κ uniformly at random, compute (r||c)← G(d)

such that |r| = |c| = κ, and output (r, c, d).
Encap.Rec(prm, c, d): Compute (r||c′) ← G(d) such that |r| = |c′| = κ, and

output r if c′ = c or ⊥ otherwise.

4.1 Security

In this subsection, we prove hiding and binding properties of the proposed
scheme. The proofs for both properties are fairly intuitive and easy to see. Specif-
ically, pseudorandomness of G provides hiding property and NCR-κ-LSB of G
provides binding property of the proposed encapsulation scheme E.

Theorem 1. If G is a (t, εprg)-PRG, then the proposed encapsulation scheme
E is (t, 2εprg)-hiding.

Proof. Suppose A is an adversary that breaks (t, q, εhide)-hiding property of E,
which means that A with running time t wins the hiding game with proba-
bility 1

2 + εhide. Then we construct a simulator S who can break (t, 1
2 εhide)-

pseudorandomness of G. Our simulator S, simulating the hiding game for A,
plays the PRG game with the PRG challenger C as follows.

Given a 2κ-bit string y∗
bC

, first S sets prm ← G and (r∗1 ||c∗) ← y∗
bC

such
that |r∗1 | = |c∗| = κ, and then picks bS ∈ {0, 1} and r∗0 ∈ {0, 1}κ uniformly at
random. S gives (prm, r∗bS

, c∗) to A. After A outputs his guess bA, S sets b′S ← 1
if bA = bS or b′S ← 0 otherwise. Then S outputs b′S as its guess.



24 T. Matsuda et al.

Next, we estimate the advantage of S. We have

AdvPR
G,S = |Pr[b′S = bC ]− 1

2
| = 1

2
|Pr[b′S = 1|bC = 1]− Pr[b′S = 1|bC = 0]|

=
1
2
|Pr[bA = bS|bC = 1]− Pr[bA = bS |bC = 0]|.

To complete the proof, we prove the following claims.

Claim 1. Pr[bA = bS |bC = 1] = 1
2 + εhide

Proof of Claim 1. In the case bC = 1, c∗ and r∗1 are computed with G with a
uniformly chosen input d∗ ∈ {0, 1}κ (i.e. (r∗1 ||c∗) = y∗

1 = G(d∗)). On the other
hand, r∗0 is chosen uniformly by S. Thus, the view ofA is exactly the same as that
in the hiding game (with the challenger’s bit is bS). Therefore, the probability
that bA = bS occurs is exactly the same as the probability that A succeeds in
guessing in the hiding game, i.e., 1

2 + εhide. ��

Claim 2. Pr[bA = bS |bC = 0] = 1
2

Proof of Claim 2. In the case bC = 0, since y∗
0 given to S is a uniformly chosen 2κ-

bit string, c∗ and r∗1 are both uniformly and independently distributed in {0, 1}κ.
Therefore, c∗ may not necessarily be in the range of G and thus S’s simulation
for Amay be imperfect. Thus, Amay notice that he is in the simulated game and
act unfavorably for S. However, r∗0 is also uniformly chosen from {0, 1}κ by S.
Since the distribution of the uniformly distributed value r∗1 and the distribution
of a uniformly chosen value r∗0 are perfectly indistinguishable, it is information-
theoretically impossible for A to distinguish r∗1 and r∗0 . Therefore, the probability
that bA = bS occurs is exactly 1

2 . ��
Above shows that if A wins the hiding game of E with advantage greater than
εhide, then S breaks pseudorandomness of G with advantage greater than 1

2εhide,
which completes the proof of Theorem 1. ��

Theorem 2. If G is (t, εncr)-NCR-κ-LSB, then the proposed encapsulation
scheme E is (t, εncr)-binding.

Proof. Suppose A is an adversary that breaks (t, εbind)-binding property of E,
which means that A with running time t wins the binding game with probability
εbind. Then we construct a simulator S who can break (t, εbind)-NCR-κ-LSB
property of G. The description of S is as follows.

Given d∗ ∈ {0, 1}κ which is chosen uniformly, first S sets prm← G and com-
putes (r∗||c∗) ← G(d∗) such that |r∗| = |c∗| = κ. Then S gives (prm, r∗, c∗, d∗)
to A. After A outputs d′, S simply outputs it as its output.

Note that S’s simulation for A is perfect. Next, we estimate the advantage of
S. Let r′ and c′ be defined as (r′||c′) = G(d′) such that |r′| = |c′| = κ. We have

AdvNCR-κ-LSB
G,S = Pr[κ-LSB(G(d′)) = κ-LSB(G(d∗)) ∧ d′ �= d∗]

= Pr[c′ = c∗ ∧ d′ �= d∗] = Pr[Encap.Rec(prm, c∗, d′) �= ⊥ ∧ d′ �= d∗]
≥ Pr[Encap.Rec(prm, c∗, d′) /∈ {r∗,⊥} ∧ d′ �= d∗] = εbind,
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where the transition from the second to the third equalities is due to the defini-
tion of the recovery algorithm Encap.Rec of our encapsulation scheme E in this
section. Above means that if A succeeds in breaking binding property of E with
advantage greater than εbind, S also succeeds in breaking NCR-κ-LSB property
with advantage greater than εbind, which completes the proof of Theorem 2. ��

4.2 Concrete Instantiation of PRG with NCR Property

In this subsection, we show a concrete construction of a PRG that has NCR
property for practical scenarios. Specifically, we discuss that it is reasonable to
assume that (a slight modification of) the PRG currently described in FIPS 186-
2, Revised Appendix 3.1 [1] satisfies NCR property. Here, we briefly review the
essential construction of the PRG in [1].

Let H : {0, 1}∗ → {0, 1}m be a cryptographic hash function. The construction
of a PRG FIPSPRGH

c : {0, 1}m → {0, 1}cm for c ≥ 1 is as follows:

Step 1. On input x ∈ {0, 1}m, set x0 ← x.
Step 2. Compute wi ← H(xi−1) and xi ← (1+xi−1 +wi) mod 2m for 1 ≤ i ≤ c.
Step 3. Output (w1||w2|| . . . ||wc).

Then, we define our PRG GH by interchanging the first and the second m-bit
blocks of FIPSPRGH

2 , i.e.,

GH(x) = ( H( (1 + x + H(x)) mod 2m ) || H(x) ) .

Note that GH is a PRG as long as FIPSPRGH
2 is. Moreover, since m-least signifi-

cant bits of GH(x) is H(x) itself, if we can assume that H satisfies target collision
resistance [34,7], then we will obviously obtain a PRG with NCR-m-LSB.

Below, we address the above in a more formal manner.

Definition 6. (FIPS186-2-PRG Assumption) We say that the (t, ε)-FIPS186-
2-PRG assumption with regard to FIPSPRGH

c holds if we can assume that the
PRG FIPSPRGH

c constructed using a hash function H as above is a (t, ε)-PRG.

Theorem 3. If the (t, εfips)-FIPS186-2-PRG assumption with regard to
FIPSPRGH

2 holds, then GH constructed as above is a (t, εfips)-PRG.

Proof. Suppose A is an adversary that breaks the (t, εpr)-pseudorandomness
of GH . Then we construct a simulator S who can break (t, εpr)-FIPS186-2-PRG
assumption with regard to FIPSPRGH

2 , which means that S can break the (t, εpr)-
pseudorandomness of FIPSPRGH

2 . The description of S is as follows.
Given a 2m-bit string y∗

bC
, S sets z∗ as a 2m-bit string such that first and

the second m-bit blocks of y∗
bC

are interchanged. Then S gives z∗ to A. After A
outputs its guess bA, S sets bS ← bA and output bS as its guess.

Notice that S simulates the experiment of attacking pseudorandomness of
GH perfectly for A. Namely, if bC = 1, i.e., y∗

bC
= FIPSPRGH

2 (x) where x ∈
{0, 1}m is chosen uniformly at random, z∗ given to A is a 2m-bit string that is
FIPSPRGH

2 (x) for the uniformly random value x. On the other hand, if bC = 0,
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i.e., y∗
bC

is a uniformly chosen 2m-bit string, then z∗ given to A is also a uniformly
random 2m-bit string. Therefore, we have

AdvPR
FIPSPRGH

2 ,S = |Pr[bS = bC ]− 1
2
| = |Pr[bA = bC ]− 1

2
| = εpr.

Above shows that if A breaks pseudorandomness of GH with advantage greater
than εpr, then S breaks pseudorandomness of FIPSPRGH

2 with advantage greater
than εpr. This completes the proof of Theorem 3. ��

Theorem 4. If a hash function H that is a building block of GH is a (t, εtcr)-
TCRHF, then GH is (t, εtcr)-NCR-m-LSB.

Proof. Suppose A is an adversary that breaks the (t, εncr)-NCR-m-LSB of GH .
Then we construct a simulator S who can break (t, εncr)-target collision resis-
tance of H . The description of S is as follows.

Given x∗ ∈ {0, 1}m which is chosen uniformly at random, S gives x∗ to A.
After A outputs x′, S outputs x′ as its own output.

It is easy to see that the S’s simulation of the experiment attacking NCR-m-
LSB of GH for A is perfect. S’s advantage is estimated as

AdvTCR
H,S = Pr[H(x′) = H(x∗) ∧ x′ �= x∗]

= Pr[m-LSB(GH(x′)) = m-LSB(GH(x∗)) ∧ x′ �= x∗] = εncr.

Above shows that if A breaks NCR-m-LSB property of GH with advantage
greater than εncr, then S breaks target collision resistance of H with advantage
greater than εncr. This completes the proof of Theorem 4. ��

As shown above, since we do not need full power of collision resistance [21]
but target collision resistance, we can set m = κ for κ-bit security. In practice,
(an appropriate modification of) SHA-1 may be used as H . (Though SHA-1 is
known to be already broken as a collision resistant hash function [43], it is still
reasonable to assume that SHA-1 is target collision resistant.)

Although the FIPS186-2-PRG assumption with regard to FIPSPRGH
2 is

somewhat heuristic (note that the FIPS186-2-PRG assumption with regard to
FIPSPRGH

1 is the same assumption that H with m-bit input space is a PRG),
we note that the PRG FIPSPRGH

c we introduced here is used (recommended) for
generating randomness for Digital Signature Standard (DSS) and is also listed
in Recommended techniques of CRYPTREC [2], and thus, using the PRG GH

we presented above as a PRG with NCR-κ-LSB in our encapsulation scheme is
fairly reasonable.

One might still think that a PRG with NCR-κ-LSB is a somewhat strong
primitive. However, we can actually show that a PRG with NCR-κ-LSB can be
constructed from a fairly weak assumption. As addressed in the next section,
existence of a PRG with NCR property is generically implied by existence of
a one-way permutation which is one of the most fundamental cryptographic
primitives.
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5 PRG with Near Collision Resistance from Any
One-Way Permutation

The security of the PRG we show in Section 4.2 is somewhat heuristic (though
we believe it to be fairly reasonable to use in practical scenarios). Here, we show
an evidence that a PRG with NCR-κ-LSB is actually a very weak primitive.
Specifically, we address that a PRG with NCR-κ-LSB can be generically con-
structed based on any one-way permutation, which is a fundamental and weak
assumption in the area of cryptography. Actually, the construction we show here
is the well-known and well-studied PRG by Blum and Micali [9] and Yao [45]
(we call the BMY-PRG) itself. Namely, the BMY-PRG construction satisfies
NCR-κ-LSB property as it is. We briefly review the construction below.

Let g : {0, 1}κ → {0, 1}κ be a one-way permutation and h : {0, 1}κ → {0, 1}
be a hardcore bit function of g (e.g. the Goldreich-Levin bit [24]). Then the
BMY-PRG G : {0, 1}κ → {0, 1}κ+l for l > 0 is defined as follows:

G(x) =
(

h(x) || h(g(x)) || h(g(2)(x)) || . . . || h(g(l−1)(x)) || g(l)(x)
)

,

where g(i)(x) = g(g(i−1)(x)) and g(1)(x) = g(x). Pseudorandomness of G con-
structed as above was proved assuming the one-wayness of the permutation g.
See [9,45] for details.

As for NCR-κ-LSB property, it was already mentioned by Boldyreva and
Fischlin in [10] that the BMY-PRG has the property. Here, however, we prove
for completeness. The following shows that a PRG with NCR-κ-LSB can be
actually constructed only from a one-way permutation.

Theorem 5. ([10]) If G is constructed as above, then G is (t, 0)-NCR-κ-LSB
for any t.

Proof. According to the definition of the NCR-κ-LSB advantage, for an adversary
A, we have

AdvNCR-κ-LSB
G,A

= Pr[x∗ ← {0, 1}κ; x′ ← A(G, x∗) : κ-LSB(G(x′)) = κ-LSB(G(x∗)) ∧ x′ �= x∗]
= Pr[x∗ ← {0, 1}κ; x′ ← A(G, x∗) : g(l)(x′) = g(l)(x∗) ∧ x′ �= x∗].

Since g is a permutation, for any x, x′(�= x) ∈ {0, 1}κ and any i ≥ 1, we have
g(i)(x) �= g(i)(x′). Therefore, of course we have g(l)(x) �= g(l)(x′) for any x, x′(�=
x) ∈ {0, 1}κ and any l > 0, and thus the above probability equals to zero for
any adversary A with any running time. ��

6 Comparison

Table 1 shows the comparison among generic IBE-to-PKE transformations, in-
cluding the CHK transformation (CHK) [17] where the one-time signature is
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instantiated with no stronger primitive tool than one implied by a one-way func-
tion (e.g. [39]) (CHK), the CHK transformation where the one-time signature is
instantiated with the strongly unforgeable signature by Boneh and Boyen [12]
(known as one of the best signature schemes in terms of signature size) (CHK w.
BB), the BK transformation where the BK encapsulation scheme is used (BK),
and the BK transformation where the encapsulation scheme is instantiated with
ours in Section 4 (BK w. Ours).

In Table 1, the column “Overhead by Transformation” denotes how much the
ciphertext size increases from that of the underlying IBE scheme (typical sizes
for 128-bit security are given as numerical examples), and the column “Required
Size for MIBE” denotes how much size is necessary for the plaintext space of
the underlying IBE scheme.

Ciphertext Overhead. If the BK transformation is instantiated with our encap-
sulation scheme, overhead from the ciphertext of the underlying IBE scheme is
caused by two κ-bit strings and one MAC. Thus, if we require 128-bit security,
we can set each to be 128-bit and thus we will have 384-bit overhead in total. In
the original BK scheme, on the other hand, the overhead is caused by a TCRHF
(TCR), a MAC, and a large randomness d which is a decommitment of the BK
encapsulation scheme (as already noted in Section 3, we need large size for d due
to the leftover hash lemma [26]). Because of d, though size of the image TCR(d)
with the TCRHF TCR and the MAC tag can be 128-bit, we need at least 448-
bit for d, and the overhead in total needs to be at least 704-bit. Compared to
the CHK scheme, even though the one-time signature is instantiated with the
Boneh-Boyen scheme, the most size-efficient scheme in the standard model so
far, it cannot provide a smaller overhead than ours.

Computation Overhead. If we use the PRG in Section 4.2 for our encapsulation
scheme, then the essential efficiency of computations (two computations of a

Table 1. Comparison among Generic IBE-to-PKE Transformations

Overhead by Transformation Required Size
(Numerical Example (bit)‡) for MIBE

CHK [17] |vk| + |sig| (> 10000) |mPKE |
CHK w. BB [12]† (2|g2|) + (|g1| + |p|) (≥ 1024) |mPKE |
BK [14] |TCR(d)| + |d| + |MAC| (704) |mPKE | + |d|
BK w. Ours 2κ + |MAC| (384) |mPKE | + κ

vk and sig denote the verification key and the signature of the one-time signature in the
CHK transformation. d is a randomness (decommitment) used in the BK encapsulation
scheme. |mPKE | is a plaintext size of a transformed PKE scheme.
† We assume that the Boneh-Boyen signature scheme is implemented using a bilinear
groups (G1, G2) of prime order p with an asymmetric pairing e : G1 × G2 → GT and
generators g1 ∈ G1 and g2 ∈ G2.
‡ We assume that generators (g1, g2) of the Boneh-Boyen scheme can be removed
from the size of the verification key. We set |g2| = |p| = 256, |g1| ≥ 256, and |d| = 448.
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cryptographic hash function) of the encapsulation scheme is comparable to the
BK encapsulation scheme (one computation of a cryptographic hash function
and one computation of a PIHF, the latter of which is usually a cheap arith-
metic computation over some finite field). If we use the PRG in Section 5 for our
encapsulation scheme, then, because of the computation of the BMY-PRG, our
encapsulation scheme requires heavier computations for both commitment and
recovery algorithms compared to the BK encapsulation scheme. Specifically, for
obtaining a 2κ-bit pseudorandom string from κ-bit string with the BMY-PRG,
we have to compute a one-way permutation κ times (though this can be reduced
to κ/(logκ) times by taking not just one bit but log κ bits of hardcore bits in
each iteration of the computation of a one-way permutation in the BMY-PRG,
this is still far worse than the BK encapsulation scheme). However, since the
computations in these encapsulation schemes are all “symmetric-key” computa-
tions, in most cases they are not so significant compared to the computations
done in encryption and decryption algorithms of the IBE scheme, which usually
include computations of exponentiations and/or pairings.
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Abstract. We introduce the first universally anonymous, thus key-pri-
vate, IBE whose security is based on the standard quadratic residuosity
assumption. Our scheme is a variant of Cocks IBE (which is not anony-
mous) and is efficient and highly parallelizable.

1 Introduction

Identity-based encryption was introduced by Shamir in 1984 [21]. He asked
whether it was possible to encrypt a message by just using the identity of the
intended recipient. Several partial and inefficient solutions were proposed after
Shamir’s initial challenge but it was only in 2000 that Sakai et al. [19], Boneh
and Franklin [8], and Cocks [11] came up with very practical solutions.

The Boneh-Franklin work has been the most influential of all: it did not
just introduce the first practical IBE scheme but, more importantly, it provided
appropriate assumptions and definitions and showed how to pick the right curves,
how to encode and map elements into points, etc.

Cocks’ scheme is per se revolutionary: it is the first IBE that does not use
pairings but rather it works in standard RSA groups and its security relies
on the standard quadratic residuosity assumption (within the random oracle
model). Cocks IBE, however, encrypts the message bit by bit and thus it is
considered very bandwidth consuming. On the other end, Cocks [11] observes
that his scheme can be used in practice to encrypt short session keys in which
case the scheme becomes very attractive. We may add that the importance of
relying on such a standard assumption should not be underestimated. In fact,
this is what motivated the recent work of Boneh, Gentry, and Hamburg [9] where
a new space-efficient IBE scheme is introduced whose security is also based on the
quadratic residuosity assumption. Unfortunately, as the authors point out [9],
their scheme is not efficient, it is more expensive than Cocks IBE and in fact it is
more expensive than all standard IBE and public-key encryption schemes since
its complexity is quartic in the security parameter (in particular, the encryption
algorithm may take several seconds to complete even on a fast machine).

However, the scheme of Boneh et al. [9] has an important advantage over the
scheme of Cocks: it provides anonymity, i.e., nobody can tell who the intended
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recipient is by just looking at the ciphertext. Anonymity, or key-privacy, is a
very important property that was first studied by Bellare et al. [4]. Recipient
anonymity can be used, for example, to thwart traffic analysis, to enable search-
ing on encrypted data [7], or to anonymously broadcast messages [1]. Several IBE
schemes provide anonymity, for instance the Boneh-Franklin scheme is anony-
mous. Other schemes that do not originally provide anonymity can be either
properly modified [10] or adapted to work in the XDH setting [2,3,6,20].

At this point, it is natural to ask whether it is possible to enhance Cocks IBE
and come up with a variant that provides anonymity and that, unlike Boneh et
al.’s scheme [9], is as efficient as the original scheme of Cocks.

The first attempt in this direction has been proposed recently by Di Crescenzo
and Saraswat [14]. They provide the first public-key encryption with keyword
search (PEKS) that is not based on pairings. Although their scheme is suitable
for PEKS, we note that when used as an IBE it becomes quite impractical: it
uses four times the amount of bandwidth required by Cocks and it requires each
user to store and use a very large number of secret keys (four keys per each bit
of the plaintext). In addition, the security of their scheme is based on a new
assumption they introduce but we can show that their assumption is equivalent
to the standard quadratic residuosity one.

Universal anonymity is a new and exciting notion introduced at Asiacrypt
2005 by Hayashi and Tanaka [17]. An encryption scheme is universally anony-
mous if ciphertexts can be made anonymous by anyone and not just by whoever
created the ciphertexts. Specifically, a universally anonymizable public-key en-
cryption scheme consists of a standard public-key encryption scheme and two
additional algorithms: one used to anonymize ciphertexts, which takes as input
only the public key of the recipient, and the other is used by the recipient to
decrypt anonymized ciphertexts.

The following observations are obvious butworth emphasizing: (1)Auniversally
anonymous scheme is also key-private in the sense of Bellare et al. [4]. What makes
universally anonymity interesting and unique is that anyone can anonymize cipher-
texts using just the public key of the recipient. (2)Key-private schemes can be more
expensive than their non-private counterparts. For instance, RSA-OAEP can be
made key-private as shown in [4] but the new anonymous variant is more expen-
sive. (3) The concept of universal anonymity makes sense also for schemes that are
already key-private. For instance, ElGamal is key-private only by assuming that
all keys are generated in the same group and participants share the same public
parameters. But in many scenarios this is not the case. In PGP, for instance, pa-
rameters for each user are selected in distinct groups. Evidently, ElGamal applied
in different algebraic groups is not anonymous anymore as one can test whether a
given ciphertext is in a group or not.
Our contributions are
(1) We enhance Cocks IBE and make it universally anonymous, and thus key-
private in the sense of Bellare et al. [4]. Our variant of Cocks IBE can be seen
as the most efficient anonymous IBE whose security is based on the quadratic
residuosity assumption. The efficiency of our scheme is comparable to that of
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Cocks IBE. In fact, it is substantially more efficient than the recent scheme of
Boneh et al. [9] and the IBE that derives from the PEKS construction by Di
Crescenzo et al. [14]. In addition, the ciphertext expansion of our scheme is
comparable to that of Cocks IBE.
(2) We implemented our variant and measured its performance. We show that
in practice the efficiency of Cocks IBE and the variant we propose in this paper
compare favorably even with that of the Boneh-Franklin scheme.
(3) Incidentally, our solutions and techniques can be used to simplify the PEKS
construction in [14] and our Lemma 2 in Section 2.3 can be used to show that
the new security assumption introduced in [14] is actually equivalent to the stan-
dard quadratic residuosity assumption, thus making the elegant Di Crescenzo-
Saraswat PEKS scheme the first one whose security is based solely on such a
standard assumption (which was left as an open problem in the area). However,
we will not elaborate on this point any further for lack of space.

Hybrid Encryption and CCA-security. It is well-known that in order to encrypt
long messages, asymmetric encryption can be used in combination with sym-
metric encryption for improved efficiency. This simple and well-known paradigm
has been formalized only recently by Cramer and Shoup [13,12] and Shoup [23].
It is introduced as the KEM-DEM construction which consists of two parts: the
key encapsulation mechanism (KEM), used to encrypt a symmetric key, and the
data encapsulation mechanism (DEM) that is used to encrypt the plaintext via
a symmetric cipher.

The focus of this paper is on variants of Cocks IBE which can be proven secure
only in the random oracle model. Thus, it makes sense to consider KEM-DEM
constructions that are CCA-secure in such a model. It is possible to show (see,
e.g., Bentahar et al. [5]) that if a KEM returns (EncryptUAnonIBE(K), F (K)),
where EncryptUAnonIBE(K) is a one-way encryption for an identity and F is a
hash function modeled as a random oracle, then the combination of this KEM
with a CCA-secure DEM results in a CCA-secure hybrid encryption. (Note that
one-way encryption is implied by CPA-security.) Since our scheme UAnonIBE
and its efficient variants are CPA-secure in the random oracle model, the result-
ing hybrid encryption that follows from the paradigm above is a CCA-secure
encryption in the random oracle model.

2 Preliminaries

In this section, we recall first the IBE scheme proposed by Cocks [11]. Then we
show that Cocks IBE is not anonymous due to a test proposed by Galbraith, as
reported in [7]. Finally, we show that Galbraith’s test is the “best test” possible
against the anonymity of Cocks IBE. We assume that N is a large-enough RSA-
type modulus. Hence, throughout the paper, we will omit to consider cases where
randomly picked elements are in ZN but not in Z∗

N or, analogously, have Jacobi
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symbol over N equal to 0 since these cases occur only with negligible probability1.
Therefore, for consistency, we always assume to work in Z∗

N rather than in ZN

even though Z∗
N is not closed under modular addition.

We will denote with Z∗
N [+1] (Z∗

N [−1]) the set of elements in Z∗
N with Jacobi

symbol +1 (−1, resp.) and with QR(N) the set of quadratic residues (or squares)
in Z∗

N . The security of Cocks IBE (and our variants) relies on the standard
quadratic residuosity assumption which simply states that the two distributions
DQR(n) = {(c, N) : (N, p, q) R←− Gen(1n), c

R←− QR(N)} and DQRN(n) =
{(c, N) : (N, p, q) R←− Gen(1n), c

R←− Z∗
N [+1] \ QR(N)} are computationally

indistinguishable, where n is a security parameter and Gen(·) generates a RSA-
type n-bit Blum modulus and its two prime factors.

2.1 Cocks’ IBE Scheme

Let N = pq be a Blum integer, i.e., where p and q are primes each congruent to
3 modulo 4. In addition, we consider H : {0, 1}∗ → Z∗

N [+1] a full-domain hash
which will be modeled as a random oracle in the security analysis.

Master Key: The secret key of the trusted authority is (p, q) while its public
key is N = pq.

Key Generation: Given the identity ID, the authority generates a = H(ID)
(thus the Jacobi symbol

(
a
N

)
is +1). The secret key for the identity ID is a

value r randomly chosen in Z∗
N such that r2 ≡ a mod N or r2 ≡ −a mod N .

This value r is stored and returned systematically.

Encryption: To encrypt a bit b ∈ {−1, +1} for identity ID, choose uniformly
at random two values t, v ∈ Z∗

N , such that
(

t
N

)
=
(

v
N

)
= b, and compute:

(c, d) =
(
t +

a

t
mod N, v − a

v
mod N

)
Decryption: Given a ciphertext (c, d), first set s = c if r2 ≡ a mod N or s = d
otherwise. Then, decrypt by computing:(

s + 2r

N

)
= b

Notice that s + 2r ≡ w(1 + r/w)2 mod N , thus the Jacobi symbol of s + 2r is
equal to that of w, where w is either t or v.

2.2 Galbraith’s Test (GT)

As mentioned in the paper by Boneh et al. [7], Galbraith showed that Cocks’
scheme is not anonymous. Indeed, let a ∈ Z∗

N [+1] be a public key and consider
the following set:
1 The Jacobi symbol of a ∈ ZN is denoted as

(
a
N

)
and is either −1, 0, or +1. However,(

a
N

)
= 0 if and only if gcd(a, N) �= 1, thus this case happens only with negligible

probability since the value gcd(a,N) would be a non-trivial factor of N .
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Sa[N ] =
{

t +
a

t
mod N | t ∈ Z∗

N

}
⊂ Z∗

N

Given two random public keys a, b ∈ Z∗
N [+1], Galbraith’s test (which we will

denote with “GT (·)”) allows us to distinguish the uniform distribution on the
set Sa[N ] from the uniform distribution on the set Sb[N ]. Given c ∈ Z∗

N , the test
over the public key a is defined as the Jacobi symbol of c2 − 4a over N , that is:

GT (a, c, N) =
(

c2 − 4a

N

)
Notice that when c is sampled from Sa[N ], the test GT (a, c, N) will always return
+1 given that c2 − 4a = (t − (a/t))2 is a square. However, if c is sampled from
Sb[N ] the test is expected to return +1 with probability negligibly close to 1/2
since, in this case, the distribution of the Jacobi symbol of the element c2 − 4a
in Z∗

N follows the uniform distribution on {−1, +1}.
It is mentioned in [7] that since Cocks ciphertext is composed of several val-

ues sampled from either Sa[N ] (and S−a[N ]) or Sb[N ] (and S−b[N ], respec-
tively), then an adversary can repeatedly apply Galbraith’s test to determine
with overwhelming probability whether a given ciphertext is intended for a or b.
However, one must first prove some meaningful results about the distribution of
Jacobi symbols of elements of the form c2− 4b in Z∗

N , for fixed random elements
a, b ∈ Z∗

N [+1] and for c ∈ Sa[N ]. These results are reported in the next section.

2.3 Relevant Lemmata and Remarks

Damg̊ard in [15] studied the distribution of Jacobi symbols of elements in Z∗
N in

order to build pseudo-random number generators. In his paper, Damg̊ard reports
of a study performed in the 50s by Perron in which it is proven that for a prime
p and for any a, the set a+QR(p) contains as many squares as non squares in Z∗

p

when p ≡ 1 mod 4, or the difference is just 1 when p ≡ 3 mod 4. It is possible
to generalize Perron’s result to study the properties of the set a+ QR(N) in Z∗

N

but we also point out that the security of Cocks IBE implicitly depends on the
following Lemma:

Lemma 1. Let (a, N) be a pair such that (N, p, q) R←− Gen(1n) and a
R←−

Z∗
N [+1]. The distribution

{(
t2+a

N

)
: t

R←− Z∗
N

}
is computationally indistinguish-

able from the uniform distribution on {−1, +1} under the quadratic residuosity
assumption.

To prove the Lemma above it is enough to observe that if we compute the Jacobi
symbol of a value c ∈ Sa[N ] we obtain:( c

N

)
=
(

(t2 + a)/t

N

)
=
(

t2 + a

N

)(
t

N

)



Universally Anonymous IBE Based on the Quadratic Residuosity 37

However the Jacobi symbol of t over N is the plaintext in Cocks IBE and thus
Lemma 1 must follow otherwise the CPA-security of Cocks IBE would not hold.

Remark. Let’s pick c randomly in Z∗
N . If GT (a, c, N) = −1, we can clearly

conclude that c /∈ Sa[N ]. However, if GT (a, c, N) = +1, what is the probability
that c ∈ Sa[N ]? The answer is 1/2 since a t exists such that c = t+a/t whenever
c2 − 4a is a square and this happens only half of the times (clearly GT (a, c, N)
is equal to 0 with negligible probability hence we do not consider this case). To
summarize:

GT (a, c, N) =
{+1 =⇒ c ∈ Sa[N ] with prob. 1/2
−1 =⇒ c /∈ Sa[N ]

We will argue that there is no better test against anonymity over an encrypted
bit. That is, we show that a test that returns +1 to imply that c ∈ Sa[N ] with
probability 1/2+ δ (for a non-negligible δ > 0) cannot exist under the quadratic
residuosity assumption. We first notice that c ∈ Sa[N ] if and only if Δ = c2−4a
is a square. Indeed, if c = t + a/t then Δ = (t − a/t)2. If Δ is a square then
the quadratic equation c = t + a/t has solutions for t in Z∗

N with overwhelming
probability. Thus Sa[N ] can alternatively be defined as the set of all c ∈ Z∗

N

such that c2 − 4a is a square.
Intuitively, we can see Galbraith’s test as an algorithm that checks whether

the discriminant Δ has Jacobi symbol +1 or −1, and this is clearly the best it
can do since the factors of the modulus N are unknown. (Remember that we do
not consider cases where the Jacobi symbol is 0 since they occur with negligible
probability.) Indeed, if ±x and ±y are the four distinct square roots modulo
N of Δ, then t2 − ct + a is congruent to 0 modulo N whenever t is congruent
modulo N to any of the following four distinct values:

c± x

2
and

c± y

2

We denote with GT N
a [+1] the set {c ∈ Z∗

N | GT (a, c, N) = +1}. Analogously, we
define GT N

a [−1] as the set {c ∈ Z∗
N | GT (a, c, N) = −1}. We prove the following

Lemma:

Lemma 2. [VQR–Variable Quadratic Residuosity] The distributions D0(n) ={
(a, c, N) : (N, p, q) R←− Gen(1n), a

R←− Z∗
N [+1], c

R←− Sa[N ]
}

and D1(n) ={
(a, c, N) : (N, p, q) R←− Gen(1n), a

R←− Z∗
N [+1], c

R←− GT N
a [+1] \ Sa[N ]

}
are

computationally indistinguishable under the quadratic residuosity assumption.

Proof. We assume there is a PPT adversary A that can distinguish between
D0(n) and D1(n) with non-negligible advantage and we use it to solve a random
instance of the quadratic residuosity problem. We make no assumptions on how
A operates and we evaluate it via oracle access.

The simulator is given a random tuple (N, x) where (N, p, q) R←− Gen(1n) and
x ∈ Z∗

N [+1]. The simulation proceeds as follows:
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1. Find a random r ∈ Z∗
N such that a = (r2 − x)/4 has Jacobi symbol +1 (see

Lemma 1). A receives as input (a, r, N), where a ∈ Z∗
N [+1] and r ∈ GT N

a [+1].
Notice that releasing the public key a effectively provides A with the ability
to generate several values in Sa[N ] (and S−a[N ]);

2. If A responds that r ∈ Sa[N ] then output “x is a square” otherwise output
“x is not a square”.

The value a is distributed properly and it has already been established that
r ∈ Sa[N ] if and only if r2− 4a is a square. But r2− 4a = x, therefore A cannot
have non-negligible advantage under the quadratic residuosity assumption. ��

The next Lemma easily follows from Lemma 1 since c2 − 4a can be written as
c2 + h for a fixed h ∈ Z∗

N [+1].

Lemma 3. Let (a, N) be a pair such that (N, p, q) R←− Gen(1n) and a
R←−

Z∗
N [+1]. The distribution

{
GT (a, c, N) : c

R←− Z∗
N

}
is computationally indis-

tinguishable from the uniform distribution on {−1, +1}.

3 Our Basic Construction and Its Efficient Variants

We extend Cocks’ scheme to support anonymity. Unlike previous proposals, our
scheme UAnonIBE has efficiency, storage, and bandwidth requirements similar to
those of the original scheme by Cocks (which is not anonymous). Our scheme is
also the first universally anonymous IBE, according to the definition in [17] (al-
though we do not include the extra algorithms as in [17] to keep the presentation
simple).

3.1 The Basic Scheme

Let H : {0, 1}∗ → Z∗
N [+1] be a full-domain hash modeled as a random oracle.

Let n and m be two security parameters. The algorithms which form UAnonIBE
are defined as follows (all operations are performed modulo N):

Master Key: The public key of the trusted authority is the n-bit Blum integer
N = pq, where p and q are n/2-bit primes each congruent to 3 modulo 4.

Key Generation: Given the identity ID, the authority generates a = H(ID)
(thus the Jacobi symbol

(
a
N

)
is +1). The secret key for the identity ID is a

value r randomly chosen in Z∗
N such that r2 ≡ a mod N or r2 ≡ −a mod N .

This value r is stored and returned systematically.

Encryption: To encrypt a bit b ∈ {−1, +1} for identity ID, choose uniformly
at random two values t, v ∈ Z∗

N , such that
(

t
N

)
=
(

v
N

)
= b, and compute

(c, d) =
(
t + a

t , v − a
v

)
.
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Then, compute the mask to anonymize the ciphertext (c, d) as follows:

1. Pick two indices k1 and k2 independently from the geometric distribution2

D with probability parameter 1/2;
2. Select random T, V in Z∗

N and set Z1 = c + T and Z2 = d + V ;
3. For 1 ≤ i < k1, select random values Ti ∈ Z∗

N s.t. GT (a, Z1 − Ti, N) = −1;
4. For 1 ≤ i < k2, select random values Vi ∈ Z∗

N s.t. GT (−a, Z2−Vi, N) = −1;
5. Set Tk1 = T and Vk2 = V ;
6. For k1 < i ≤ m, select random values Ti ∈ Z∗

N ;
7. For k2 < i ≤ m, select random values Vi ∈ Z∗

N ;

Finally, output (Z1, T1, . . . , Tm) and (Z2, V1, . . . , Vm).3

Decryption: Given a ciphertext (Z1, T1, . . . , Tm) and (Z2, V1, . . . , Vm), first dis-
card one of the two tuples based on whether a or −a is a square. Let’s assume
we keep the tuple (Z1, T1, . . . , Tm) and we discard the other. In order to decrypt,
find the smallest index 1 ≤ i ≤ m s.t. GT (a, Z1 − Ti, N) = +1 and output:(

Z1 − Ti + 2r

N

)
= b

We run the same procedure above if the second tuple is actually selected and
the first is discarded. It is enough to replace a with −a, Z1 with Z2, and Ti

with Vi.

3.2 Security Analysis

We need to show that our scheme, UAnonIBE, is ANON-IND-ID-CPA-secure
[1,9], that is, the ciphertext does not reveal any information about the plaintext
and an adversary cannot determine the identity under which an encryption is
computed, even thought the adversary selects the identities and the plaintext.

In [16], Halevi provides a sufficient condition for a CPA public-key encryption
scheme to meet the notion of key-privacy, or anonymity, as defined by Bellare
et al. in [4]. In [1], Abdalla et al. extend Halevi’s condition to identity-based en-
cryption. In addition, their notion is defined within the random oracle model and
Halevi’s statistical requirement is weakened to a computational one. Informally,
it was observed that if an IBE scheme is already IND-ID-CPA-secure then the
oracle does not have to encrypt the message chosen by the adversary but can
encrypt a random message of the same length. The game where the oracle replies
with an encryption on a random message is called ANON-RE-CPA. In [1], it was
shown that if a scheme is IND-ID-CPA-secure and ANON-RE-CPA-secure then
it is also ANON-IND-ID-CPA-secure.
2 The geometric distribution is a discrete memoryless random distribution for k =

1, 2, 3, . . . having probability function Pr[k] = p(1−p)k−1 where 0 < p < 1. Therefore,
for p = 1/2 the probability that k1 = k is 2−k. For more details see, e.g., [24].

3 Note that if we build a sequence c1, . . . , cm by selecting a k from D and setting
ci = −1 for 1 ≤ i < k, ck = 1, and ci ∈R {−1, 1} for k < i ≤ m, we have that
Pr[ci = 1] = 2−i +

∑i
j=2 2−j = 1/2.
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ANON-RE-CPA game. We briefly describe the security game introduced by
Abdalla et al. in [1]. MPK represents the set of public parameters of the trusted
authority. The adversary A has access to a random oracle H and to an oracle
KeyDer that given an identity ID returns the private key for ID according to
the IBE scheme.

Experiment Expanon−re−cpa−b
IBE,A (n) :

pick random oracle H
(ID0, ID1, msg, state)← AKeyDer(·),H(find, MPK)
W

R←− {0, 1}|msg|; C ← EncH(MPK, IDb, W )
b′ ← AKeyDer(·),H(guess, C, state)
return b′

The adversary cannot request the private key for ID0 or ID1 and the message
msg must be in the message space associated with the scheme. The ANON-RE-
CPA-advantage of an adversary A in violating the anonymity of the scheme IBE
is defined as:

Advanon−re−cpa
IBE,A (n) = Pr

[
Expanon−re−cpa−1

IBE,A (n) = 1
]
− Pr

[
Expanon−re−cpa−0

IBE,A (n) = 1
]

A scheme is said to be ANON-RE-CPA-secure if the above advantage is negligible
in n.

Theorem 1. UAnonIBE is ANON-IND-ID-CPA-secure in the random oracle
model under the quadratic residuosity assumption.

In order to simplify the proof of theorem 1, we make and prove an important
claim first. We will show that a ciphertext for a random a ∈ Z∗

N [+1] is indis-
tinguishable from a sequence of random elements in Z∗

N to a PPT distinguisher
DS. In particular, let O{Sa[N ], GT N

a [−1], GT N
a [+1]} be an oracle that returns

UAnonIBE encryptions of random messages under the public key a and let O∗

an oracle that returns a (m + 1)-tuple of elements picked uniformly at random
from Z∗

N . We prove the following:

Claim. The distinguisher DS has only negligible advantage in distinguishing
the outputs of the oracles O{Sa[N ], GT N

a [−1], GT N
a [+1]} and O∗ under the

quadratic residuosity assumption.

Proof. Let (Z1, T1, . . . , Tm) be the output of O{Sa[N ], GT N
a [−1], GT N

a [+1]}. In
particular, a c ∈ Sa[N ] is randomly picked and Z1 is set to c + Tk, where k
is chosen according to the geometric distribution D defined in the UAnonIBE
encryption algorithm. Let (U0, U1, . . . , Um) be the output of O∗.

First, notice that there exists a minimal index k′ such that GT (a, U0 −
Uk′ , N) = +1. Such an index exists with probability 1− 2−m because of Lemma
3. Second, it is easy to see that the distribution induced by the index k′ is in-
distinguishable from the distribution D. This still follows from Lemma 3 since
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we know that the probability that GT (a, U0 − Ui, N) = +1 is negligibly close
to 1/2, for 1 ≤ i ≤ m. Hence, the probability that k′ = v, for a positive integer
v ∈ N, is negligibly close to 2−v. Thus, both indices k and k′ determine the same
distribution except with negligible probability (to account for the cases where
Galbraith’s test returns 0). Finally, because of Lemma 2, DS cannot determine
whether U0 − Uk′ ∈ GT N

a [+1] is in Sa[N ] or not. ��

Remark. We point out an insightful analogy between the oracle O{Sa[N ],
GT N

a [−1], GT N
a [+1]} in the claim above and the oracle O{QR(N), Z∗

N [−1],
Z∗

N [+1]} which picks elements c ∈ QR(N) (rather than in Sa[N ]) and sets
Z1 = c + Tk, where k is chosen according to D. Then, it generates elements
T1, . . . , Tm such that: (1) Z1−Ti ∈ Z∗

N [−1], for 1 ≤ i < k, (2) Z1−Tk ∈ QR(N),
and (3) Z1 − Ti ∈ Z∗

N , for k < i ≤ m. Evidently, even the outputs of this oracle
are indistinguishable from the outputs of O∗ under the quadratic residuosity
assumption.

Proof of Theorem 1. It must be clear that UAnonIBE is IND-ID-CPA-secure
since Cocks IBE is IND-ID-CPA-secure in the random oracle model under the
quadratic residuosity assumption and the mask is computed without knowing the
plaintext or the secret key of the intended recipient. Thus, we only need to show
that UAnonIBE is ANON-RE-CPA-secure. But, because of the Claim above,
a PPT adversary A must have negligible advantage in determining whether
the ciphertext C returned by ENCH(·) is for ID0 or ID1 because C is (with
overwhelming probability) a proper encryption for both ID0 and ID1 on two
random bits. (It is equivalent to respond to A with two (m+1)-tuples of random
elements in Z∗

N .) ��

3.3 A First Efficient Variant: Reducing Ciphertext Expansion

The obvious drawback of the basic scheme is its ciphertext expansion. Indeed,
for each bit of the plaintext 2 · (m+1) values in Z∗

N must be sent while in Cocks
IBE each bit of the plaintext requires two values in Z∗

N . Therefore, we need a
total of 2 · (m + 1) · n bits for a single bit in the plaintext, where n and m are
the security parameters (e.g., n = 1024 and m = 128). However, this issue is
easy to fix. Intuitively, since our scheme requires the random oracle model for
its security, we could use another random oracle that expands a short seed into
a value selected uniformly and independently in Z∗

N .
Specifically, a function G : {0, 1}∗ → Z∗

N is used, which we model as a random
oracle, that maps a e-bit string α to a random value in Z∗

N . The parameter e
must be large enough, e.g., e = 160.

It is tempting to use the oracle G and a single short seed α plus a counter to
generate all values T1, . . . , Tm and V1, . . . , Vm. This first solution would provide
minimal ciphertext expansion, since only the seed α must be sent, however it
may turn out to be computationally expensive. To see this, consider that an α
must be found such that GT (a, Z1 − Ti, N) = −1 for 1 ≤ i < k1. Now, if k1
happens to be large, say k1 = 20, then clearly finding a suitable α could be
computationally intensive. Nevertheless, we prove that this scheme is secure as
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long as the basic UAnonIBE scheme is secure. More importantly, we emphasize
that the proof of security of all other schemes proposed after this first one can
easily be derived from the proof of the following theorem.

Theorem 2. The first efficient variant of UAnonIBE is ANON-IND-ID-CPA-
secure in the random oracle model under the quadratic residuosity assumption.

Proof. We let the simulator S play the role of a man-in-the-middle attacker be-
tween two ANON-RE-CPA games: the first game is against the basic UAnonIBE
and the second game is against an adversary A that has non-negligible advan-
tage in breaking the first variant of UAnonIBE. We show that S can use A to
win in the first ANON-RE-CPA game, thus violating the quadratic residuosity
assumption. The simulation is straightforward: S forwards the H-queries and
KeyDer-queries to the respective oracles. When A challenges for identities ID0
and ID1, S challenges on the same identities in the first ANON-RE-CPA game.
Then S receives the ciphertext (Z1, T1, . . . , Tm), (Z2, V1, . . . , Vm). S sends to A,
(Z1, α), (Z2, β) where α and β are chosen uniformly at random in {0, 1}e. At
this point, the simulator responds to the G-queries as follows:

G(α || i) = Ti and G(β || i) = Vi , for 1 ≤ i ≤ m,

and with random values in Z∗
N in any other cases. The adversary A eventually

returns its guess which S uses in the first game in order to win with non-negligible
advantage. ��

The obvious next-best solution is to use a single seed per value. Thus, rather
than sending the ciphertext as per our basic scheme, that is (Z1, T1, . . . , Tm) and
(Z2, V1, . . . , Vm), the following values could be sent:

(Z1, α1, . . . , αm) and (Z2, β1, . . . , βm),

where αi, βi are chosen uniformly at random in {0, 1}e until the conditions in
steps 3. and 4. of the encryption algorithm of the basic scheme are satisfied. The
recipient would then derive the intended ciphertext by computing Ti = G(αi)
and Vi = G(βi), for 1 ≤ i ≤ m. If we set e to be large enough, say e = 160, then
clearly the security of this variant is equivalent to the one of the basic scheme
in the random oracle model and a single bit of the plaintext would require
2 · (m · e + n) bits rather than 2 · (m · n + n), where e < n. Hence, for n = 1024,
m = 128 and e = 160, we need to send 2 · (160 · 128 + 1024) bits while Cocks’
scheme requires only 2 · (1024) bits.

On a closer look however, it is easy to see that since G is a random oracle we
just need to ensure that its inputs are repeated only with negligible probability.
Let X = x(1)x(2) . . . x(t) be the plaintext of t bits. For each plaintext X , the
sender selects a random message identifier MIDX ∈ {0, 1}e1 which is sent along
with the ciphertext. For bit x(j), the sender computes:

(Z(j)
1 , α

(j)
1 , . . . , α(j)

m ) and (Z(j)
2 , β

(j)
1 , . . . , β(j)

m ),
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where the coefficients α
(j)
i , β

(j)
i are chosen uniformly at random in {0, 1}e until

the conditions in steps 3. and 4. of the encryption algorithm of the basic scheme
are satisfied (thus notice that e can be small but still big enough to be able to
find those values T

(j)
i and V

(j)
i that satisfy such conditions). The recipient will

derive the intended ciphertext by computing:

T
(j)
i = G(MIDX || 0 || α(j)

i || i || j) or V
(j)
i = G(MIDX || 1 || β(j)

i || i || j),

where i ∈ {1, . . . , m} and j ∈ {1, . . . , t}. As an example, we can set m = 128,
e1 = 160, and e = 8. In this case the ciphertext expansion per single bit of the
plaintext is only 2 · (1024 + 1024) bits which is twice the amount required by
Cocks IBE for n = 1024. (In addition, extra 160 bits are needed for MIDX but
these bits are transmitted only once per message.)

3.4 A Second Efficient Variant: Trade-Off between Ciphertext
Expansion and Performance

We propose a second variant of UAnonIBE which provides an optimal trade-off
between efficiency and ciphertext expansion. Our performance tests show that
this variant is in practice as efficient as any of the previous variants and at the
same time it provides the smallest ciphertext expansion (thus we recommend
this version for practical systems).

We fix a new global parameter � which is a small positive integer. Let X =
x(1)x(2) . . . x(t) be the plaintext of t bits. For each plaintext X , the sender selects
a random identifier MIDX ∈ {0, 1}e1 which is sent along with the ciphertext.
For bit x(j), the sender computes:

(Z(j)
1 , α

(j)
1 , . . . , α

(j)
	 ) and (Z(j)

2 , β
(j)
1 , . . . , β

(j)
	 )

where α
(j)
i , β

(j)
i are in {0, 1}e, when i < �, and α

(j)
	 , β

(j)
	 are in {0, 1}e′

, for some
e′ > e. The intended ciphertext is derived by the recipient by computing:

T
(j)
i = G(MIDX || 0 || α(j)

i || i || j) or V
(j)
i = G(MIDX || 1 || β(j)

i || i || j)

for i < l, and

T
(j)
i = G(MIDX || 0 || α(j)

	 || i || j) or V
(j)
i = G(MIDX || 1 || β(j)

	 || i || j)

for i ≥ �. Note that in this variant of our basic scheme an arbitrary number of
T

(j)
i and V

(j)
i can be generated (i.e., there is no fixed global parameter m).

Given the distribution of k1, k2, for a large enough �, we expect k1 ≤ � or
k2 ≤ � with high probability. When k1 ≤ � or k2 ≤ � the scheme is as efficient
as the first variant. When k1 > � (or k2 > �) the computational cost of finding
a value for α

(j)
	 (or β

(j)
	 ) is exponential in k1 − � (k2 − �, respectively).

As an example, we set the global parameter � = 6 and then e1 = 160, e = 8,
e′ = 80, and n = 1024. The ciphertext expansion of this variant of UAnonIBE
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is 2 · ((� − 1) · e + e′ + n), therefore, the ciphertext size for a single bit of the
plaintext is now only 2 · (120 + 1024) bits which is very close to the number of
bits (2 · (1024)) required by Cocks IBE (which is not anonymous). Note that for
each message, the sender also transmits the random message identifier MIDX .

4 Optimizations and Implementation

An important aspect that should be considered in order to implement UAnonIBE

efficiently is the value of the parameters �, e (the size of α
(j)
1 , . . . , α

(j)
	−1) and

e′ (the size of α
(j)
	 ). These values affect both the ciphertext expansion and the

encryption time significantly, therefore they must be selected carefully. Choosing
e or e′ to be too small can reduce the probability of encrypting to an unacceptable
level. Choosing � to be too small can make the encryption process very slow. If
we set e = 8 and e′ = 80, we can find a suitable value for each α

(j)
i , and therefore

encrypt, with a probability of at least 1−2−80. We found that the value � = 6 is
the best compromise between encryption time and ciphertext expansion. If we
set e = 8, e′ = 80 and � = 6, the ciphertext expansion for a 128-bit message is
3840 bytes more than a Cocks encryption for both +a and −a: for a 1024-bit
modulus N the encrypted message size is about 36KB instead of 32KB with
Cocks IBE.

Size of e 2 4 6 8 10 Cocks IBE
Ciphertext size in bytes 33748 34708 35668 36628 37588 32768

We implemented the second efficient variant of UAnonIBE and compared it
with the original Cocks IBE [11] and the scheme proposed by Boneh and Franklin
based on pairings [8]. We have two goals in mind. The first is to show that Cocks
IBE and our schemes are practical when used as hybrid encryption algorithms
(following the KEM-DEM paradigm), even when compared with the Boneh-
Franklin IBE, with the clear advantage compared to other IBE schemes of relying
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Fig. 1. The two graphs show UAnonIBE’s ciphertext size relative to Cocks’ scheme. The
first shows how the relative bandwidth overhead introduced by our solution decreases
with the size of the master parameter, while the second shows how the size of the
ciphertext increases, varying the size of e and fixing e′ = 10 · e, compared to Cocks’
ciphertext.
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Fig. 2. The two graphs show the average time required respectively to anonymize and
de-anonymize a 128-bit message encrypted with Cocks algorithm varying �

on a well-established assumption. Our second goal is to show that the efficiency
of our scheme is comparable to that of the original scheme by Cocks.

For our performance analysis, we set the size of the values α
(j)
i and β

(j)
i with

1 ≤ i < � to 8 bits and the size of α
(j)
	 and β

(j)
	 to 80 bits. However, our tests

showed that the size of those parameters have no measurable impact on the
performance of the scheme. In order to calculate the optimal value for �, we
measured the time required to anonymize a key of 128 bit (for a total of 256
encrypted bits, considering both cases +a and −a). Figure 2 summarizes our
results. The value � = 6 seems to be optimal, since further increasing � does not
noticeably affect the time required to anonymize or decrypt a message.
Experimental Setup. We employed the MIRACL software package, developed
by Shamus Software [22], to run our tests. MIRACL is a comprehensive library
often used to implement cryptographic systems based on pairings. We used the
optimized implementation of the Boneh-Franklin IBE provided by the library
and we implemented Cocks IBE and our scheme with an RSA modulus of 1024
bits. The implementation of the Boneh-Franklin IBE uses a 512-bit prime p,
Tate pairing and a small 160-bit subgroup q. The curve used is y2 = x3 + x
instead of y2 = x3 + 1 because it allows for a faster implementation. Those two
settings should provide the same level of security according to NIST [18]. The
tests were run on a machine that consisted of an Intel Pentium 4 2.8GHz with
512MB RAM. The system was running Linux kernel 2.6.20 with the compiler
GCC 4.1.2. We implemented the cryptographic primitives using version 5.2.3 of
the MIRACL library. Every source file was compiled with optimization ‘-02’, as
suggested in the MIRACL documentation. The table below shows average times
over 1000 runs of the cryptographic operations specified in the first column. The
symmetric key encrypted in our tests is of 128 bits.

Extract Encrypt Decrypt Anonymous Universally Anonymous
Boneh-Franklin 9.1 ms 91.6 ms 85.4 ms YES NO
Cocks IBE 14.2 ms 115.3 ms 35.0 ms NO NO
Our Scheme 14.2 ms 319.4 ms 78.1 ms YES YES

In the table we also indicate whether a scheme is anonymous or not. Cocks IBE
is not anonymous while Boneh-Franklin IBE is anonymous but not universally
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anonymous. One could try to turn Boneh-Franklin IBE into a universally anony-
mous scheme using for example the techniques in [17]. But, even assuming that
this is possible, the new scheme would be different and more expensive than the
original one and still depending on pairing-based assumptions.

5 Conclusions

We proposed UAnonIBE: the first IBE providing universal anonymity (thus key-
privacy) and secure under the standard quadratic residuosity assumption. The ef-
ficiency and ciphertext expansion of our scheme are comparable to those of Cocks
IBE. We showed that Cocks IBE and our anonymous variant are suitable in prac-
tice whenever hybrid encryption (KEM-DEM paradigm) is employed. We believe
our schemes are valid alternatives to decidedly more expensive schemes introduced
in [9] (which, in addition, are anonymous but not universally anonymous).

Acknowledgments. We are grateful to Giovanni Di Crescenzo, Marc Joye,
Ivano Repetto, and the anonymous reviewers for their insightful comments.
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Abstract. Digital Enhanced Cordless Telecommunications (DECT) is
a standard for connecting cordless telephones to a fixed telecommunica-
tions network over a short range. The cryptographic algorithms used in
DECT are not publicly available. In this paper we reveal one of the two
algorithms used by DECT, the DECT Standard Authentication Algo-
rithm (DSAA). We give a very detailed security analysis of the DSAA
including some very effective attacks on the building blocks used for
DSAA as well as a common implementation error that can practically
lead to a total break of DECT security. We also present a low cost at-
tack on the DECT protocol, which allows an attacker to impersonate a
base station and therefore listen to and reroute all phone calls made by
a handset.

1 Introduction

Digital Enhanced Cordless Telecommunications (DECT) is a standard for
connecting cordless telephones to a fixed telecommunications network. It was
standardized in 1992 by the CEPT, a predecessor of the ETSI (European
Telecommunications Standards Institute) and is the de-facto standard for cord-
less telephony in Europe today. For authentication and privacy, two proprietary
algorithms are used: The DECT Standard Authentication Algorithm (DSAA)
and the DECT Standard Cipher (DSC). These algorithms have thus far only
been available under a Non-Disclosure Agreement from the ETSI and have not
been subject to academic scrutiny. Recently, the DSAA algorithm was reverse
engineered by the authors of this paper to develop an open-source driver for a
PCMCIA DECT card.

Our contribution: This paper gives the first public description of the DSAA as
well as cryptanalytic results on its components. Furthermore we show two types
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of flaws that result in practical attacks against DECT implementations. One is
a protocol flaw in the authentication mechanism, the other is a combination of
a common implementation error combined with a brittle protocol deisgn.

The paper is structured as follows: Section 2 describes the authentication
methods used in DECT. Section 3 details how easily a DECT base station can
be impersonated in practice and outlines the consequences. Section 4 describes
the DECT Standard Authentication Algorithm and explains how a weak PRNG
can lead to a total break of DECT security. Section 5 presents the first public
analysis of the DSAA. We conclude the paper in Section 6.

1.1 Notation and Conventions

We use bold font for variable names in algorithm descriptions as well as for
input and output parameters. Hexadecimal constants are denoted with their
least significant byte first in a typewriter font. For example, if all bits of
the variable b are 0 except for a single bit, we write 0100 if b[0] = 1, 0200 if
b[1] = 1, 0001 if b[8] = 1 and 0080 if b[15] = 1. Function names are typeset
with a sans-serif font.

Function names written in capital letters like A11 are functions that can be
found in the public DECT standard [5]. Conversely function names written in
lowercase letters like step1 have been introduced by the authors of this paper.
Functions always have a return value and never modify their arguments.

To access a bit of an array, the [·] notation is used. For example foo[0] denotes
the first bit of the array foo. If more than a single bit, for example a byte should
be extracted, the [· . . . ·] notation is used. For example foo[0 . . . 7] extracts the
first 8 bits in foo, which is the least significant byte in foo.

To assign a value in pseudocode, the ← operator is used. Whenever the oper-
ators + and ∗ are used in pseudocode, they denote addition and multiplication
modulo 256. For example foo[0 . . . 7] ← bar[0 . . . 7] ∗ barn[0 . . . 7] multiplies the
first byte in bar with the first byte in barn, reduces this value modulo 256 and
stores the result in the first byte of foo.

If a bit or byte pattern is repeated, the (·)· notation can be used. For example
instead of writing aabbaabbaabb, we can write (aabb)3. For concatenating two
values, the || operator is used. For example aa||bb results in aabb.

1.2 Additional Terminology

In the following we will use the terminology of the DECT standards [5,4]. To
make this paper self-contained, we briefly explain the most important terms:
A FT is fixed terminal, also called base station. A PT is a portable terminal,
e.g. a telephone or handset. The Radio Fixed Party Identity (RFPI) is a 40-bit
identifier of an FT. A PT is identified by a International Portable User Identity
(IPUI), a value similar to the RFPI of variable length. In challenge/response
authentications, responses are named RES1 or RES2. The value received during
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the authentication is called SRES1 or SRES2, and the value calcluated by the
station (expected as a response) is called XRES1 or XRES2.

2 Authentication in DECT

The public standard describing the security features of DECT specifies four dif-
ferent authentication processes A11, A12, A21 and A22. These four processes are
used for both authentication and key derivation and make use of an authentica-
tion algorithm A. DECT equipment conforming to the GAP standard [4] must
support the DSAA to achieve vendor interoperability.

The algorithms A11 and A12 are used during the authentication of a PT.
They are also used to derive a key for the DSC and to generate keying material
during the initial pairing of a PT with a FT. The algorithms A21 and A22 are
only used during the authentication of a FT. Furthermore the processes A11,
A12, A21 and A22 are used to pair a PT with a FT.

2.1 Keys Used in DECT

In most cases of residential DECT usage, the user buys a DECT FT, and one
or more DECT PTs. The first step then is to pair the PTs with the FT, unless
they have been bought as a bundle and the pairing was already completed by the
manufacturer. This procedure is called key allocation in the DECT standards
and described in more detail in Section 2.5. After this process, every DECT PT
shares a 128 bit secret key with the FT, called the UAK.

In all scenarios we have seen so far, the UAK was the only key used to derive
any other keys, but the DECT standard allows two alternative options:

– The UAK is used together with a UPI, a short 16-32 bit secret, manually
entered by the user of the PT. The UAK und UPI are then used to derive a
key.

– No UAK is used. Instead a short 16-32 bit secret called AC is entered by the
user, which forms the key. The DECT standard suggests that the AC should
only be used, if a short term coupling between PT and FT is required.

For the rest of this paper we will mainly focus on the first case, where the
only the UAK is used.

2.2 Authentication of a PT and Derivation of the DSC Key

When a PT needs to authenticate itself against a FT, the procedures A11 and
A12 are used. The FT generates two random 64 bit values RS and RAND F and
sends them to the PT.

The PT uses the A11 algorithm, which takes a 128 bit key UAK and a 64
bit value RS as input, and generates a 128 bit output KS, which is used as an
intermediate key. The PT then uses the A12 algorithm, which takes KS and
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RAND F as input and produces two outputs: a 32 bit response called SRES1
and a 64 bit key DCK, which can be used for the DSC. SRES1 then is sent to
the FT.

The same computation is done on the FT too, except here the first output of
A12 is called XRES1 instead of SRES1. The FT receives the value SRES1 from
the PT and compares it with his own value XRES1. If both are equal, the PT
is authenticated.

2.3 Authentication of a FT

When a FT needs to authenticate itself against a PT, a similar procedure is
used.

First the PT generates a 64 bit value RAND P and sends it to a FT. Then the
FT generates a 64 bit value RS and uses A21 to compute a 128 bit intermediate
key KS from UAK and RS. Now A22 is used to compute a 32 bit response SRES2
from KS and RAND P. A22 only generates SRES2 and no key for the DSC. The
FT sends SRES2 and KS to the PT.

After having received KS, the PT can do the same computations. Here the
output of A22 is called XRES2. The PT now compares XRES2 with the received
value SRES2. If both are equal, the FT is authenticated.

This protocol might seem odd at the first look. As far as we know, the design
goal was to build a protocol where a PT can be used in a roaming scenario,
similar to GSM. Here, the home network provider could hand over a couple of
(RS, KS) pairs to the partner network, which can then allow a PT to operate
without having to know the UAK.

2.4 Mutual Authentication

The standard specifies different methods of mutual authentication:

– A direct method, which simply consists of executing A11 and A12 to authen-
ticate the PT first followed by A21 and A22 to authenticate the FT.

– Indirect methods which involve a one-sided authentication of the PT together
with a cipher key derivation that is used for data confidentiality.

However, even though the indirect methods are recommended for all applications
except for local loop installations (see the reference configurations in Appendix
F.2 of [5]), they are inherently flawed as they do not provide a mutual authen-
tication at all. This indirect method is reminiscent of the case of GSM [1]. A
derived cipher key does not necessarily have to be used, a FT may simply send
a message indicating that it does not support encryption – it is an optional fea-
ture in the GAP standard. Moreover, even if encryption is enabled, being able
to transmit encrypted messages under a derived key does not proof possession
of this key: The FT may just replay authentication challenges, subsequently
replaying encrypted messages that were previously recorded.
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2.5 Key Allocation

Most DECT systems allow an automatic pairing process. To initiate pairing the
user switches both a PT and a FT to a dedicated pairing mode and enters the
same PIN number on both devices1. This step needs to be repeated with all
DECT PT devices. Each PT performs a handshake with the FT and a mutual
authentication using the DSAA algorithm and the PIN as a shared secret is
performed. During this handshake, three 64-bit random numbers are generated.
However only a single 64 bit random number RS sent by the FT is used together
with the PIN to generate the 128 bit UAK. For a 4 digit PIN number, there are
only 277.288 possible values for the UAK. If a flawed random number generator is
used on the FT for which an attacker can predict the subset of random numbers
generated during key allocation, the number of possibe UAKs shrinks accord-
ingly. This can be exploited by sniffing challenge-response pairs ((RAND F, RS),
SRES1) at any time after key allocation that can be used as 32-bit filters. In
practice we did indeed find weak PRNGs implemented in the firmware of several
base stations – across a variety of vendors – in one specific case only providing
24 bits of entropy for the 64 bit value RS. This leads to a very practical and
devastating attack against DECT PTs using vulnerable DECT stacks.

3 Impersonating a Base Station

As described in the previous section, in most cases authentication of the FT is
optional. This makes DECT telephones vulnerable to a very simple, yet effective
and practical attack: An attacker impersonates a DECT FT by spoofing its RFPI
and faking the authentication of the PT. This is done by sending out random
values RAND F and RS for which any response SRES1 is accepted. Subsequently
the impersonating FT simply rejects any attempts to do cipher mode switching.
This technique is significantly simpler to implement than a protocol reflection
attack and has been verified to work in practice by us.

We implemented this attack in practice by modifying the driver of a PCMCIA
DECT card. The drivers and firmware for this card do not support the DECT
Standard Cipher. Furthermore, the frames are completely generated in soft-
ware which allows us to easily spoof the RFPI of another base station. Upon
initialization of the card, the RFPI was read from the card and written to a
structure in memory. We patched the driver such that the RFPI field in this
structure was overwritten with an assumed RFPI value of our choosing directly
after the original value was written there. Then we modified the routine com-
paring the RES values returned by the PT with the computed XRES values.
We verified that we were indeed broadcasting a fake RFPI with a USRP [3]
and a DECT sniffer that was written for the GNURadio framework by the
authors.

1 Some DECT FTs are shipped with a fixed default PIN number – usually specified
in the manual – which user has to enter as given on the DECT PT.
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For our lab setup, we used an ordinary consumer DECT handset paired
to a consumer base station. We set the modified driver of our PCMCIA card to
broadcast the RFPI of this base station and added the IPUI of the phone to the
database of registered handsets of the card. The device key was set to an arbi-
trary value. After jamming the DECT over-the-air communication for a short
time, the handset switched to our faked base station with a probability of about
50%. From this point on, every call made by the phone was handled by our
PCMCIA hard, and we where completely able to trace all communications and
reroute all calls. No warning or error message was displayed on the telephone.
Both the handset and the base station where purchased in 2008, which shows
that even current DECT phones do not authenticate base stations and also do
not force encrypted communication.

This attack shows that it is possible to intercept, record and reroute DECT
phonecalls with equipment as expensive as a wireless LAN card, making attacks
on DECT as cheap as on wireless LANs. Subsequently we also succeeded in
converting this card to a passive sniffing device with a custom-written Linux
and firmware2.

4 The DECT Standard Authentication Algorithm

The algorithms A11, A12, A21, and A22 can be seen as wrappers around an
algorithm, we call DSAA. The algorithm DSAA accepts an 128 bit key and a 64
bit random as input and produces a 128 bit output. This output is now modified
as follows:

– A11 just returns the whole output of DSAA, without any further modifica-
tion.

– A21 behaves similar to A11, but here, every second bit of the output is
inverted, starting with the first bit of the output. For example if the first
byte of output of DSAA is ca, then the first byte of output of A21 is 60.

– A22 just returns the last 4 bytes of output of DSAA as RES.
– A12 is similar to A22, except here, the middle 8 bytes of DSAA are returned

too, as DCK.

5 Security Analysis of the DECT Authentication

DSAA is surprisingly insecure. The middle 64 bits of the output of DSAA only
depend on the middle 64 bits of the key. This allows trivial attacks against
DSAA, which allow the recovery of all 128 secret key bits with an effort in the
magnitude of about 264 evaluations of DSAA. Even if attacks against the DSAA
cannot improved past this bound, keep in mind the entropy problems of the
random number generators that we found and described in Section 2.5.

2 This software is available at http://www.dedected.org

http://www.dedected.org
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Table 1. The DSAA S-Box (sbox)

0 1 2 3 4 5 6 7 8 9 a b c d e f

00 b0 68 6f f6 7d e8 16 85 39 7c 7f de 43 f0 59 a9

10 fb 80 32 ae 5f 25 8c f5 94 6b d8 ea 88 98 c2 29

20 cf 3a 50 96 1c 08 95 f4 82 37 0a 56 2c ff 4f c4

30 60 a5 83 21 30 f8 f3 28 fa 93 49 34 42 78 bf fc

40 61 c6 f1 a7 1a 53 03 4d 86 d3 04 87 7e 8f a0 b7

50 31 b3 e7 0e 2f cc 69 c3 c0 d9 c8 13 dc 8b 01 52

60 c1 48 ef af 73 dd 5c 2e 19 91 df 22 d5 3d 0d a3

70 58 81 3e fd 62 44 24 2d b6 8d 5a 05 17 be 27 54

80 5d 9d d6 ad 6c ed 64 ce f2 72 3f d4 46 a4 10 a2

90 3b 89 97 4c 6e 74 99 e4 e3 bb ee 70 00 bd 65 20

a0 0f 7a e9 9e 9b c7 b5 63 e6 aa e1 8a c5 07 06 1e

b0 5e 1d 35 38 77 14 11 e2 b9 84 18 9f 2a cb da f7

c0 a6 b2 66 7b b1 9c 6d 6a f9 fe ca c9 a8 41 bc 79

d0 db b8 67 ba ac 36 ab 92 4b d7 e5 9a 76 cd 15 1f

e0 4e 4a 57 71 1b 55 09 51 33 0c b4 8e 2b e0 d0 5b

f0 47 75 45 40 02 d1 3c ec 23 eb 0b d2 a1 90 26 12

Besides that, the security of DSAA mainly relies on the security of the cassable
block cipher. Our analysis of cassable showed that cassable is surprisinglyweak too.

5.1 The Cassable Block Cipher

The DSAA can be interpreted as a cascade of four very similarly constructed
block ciphers. We shall call this family of block ciphers cassable. A member of
this family is a substitution-linear network parametrized by two parameters that
only slightly change the key scheduling. The block cipher uses 6 rounds, each of
the rounds performing of a key addition, applying a bricklayer of S-Boxes and a
mixing step in sequence. The last round is not followed by a final key addition,
so that the last round is completely invertible, besides the key addition. This
reduces the effective number of rounds to 5.

In the following we will describe how the cassable block ciphers are con-
structed. The functions σi : GF (2)64 → GF (2)64 with 1 ≤ i ≤ 4 denoting
bit permutations that are used to derive the round keys from the cipher key.
The function λi : (Z/256Z)8 → (Z/256Z)8 denotes the mixing functions used in
the block ciphers, the function γ : GF (2)64 → GF (2)64 is a bricklayer transform
that is defined as:

γ(A||B|| · · · ||A) = ρ(A)||ρ(B)|| · · · ||ρ(H)

with A, B, . . . , H ∈ GF (2)8 and ρ : GF (2)8 → GF (2)8 denoting the application
of the invertible S-Box that is given in Table 1. The linear transforms perform
butterfly-style mixing:
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λ1 : (A,. . . ,H) �→(2A+E, 2B+F, 2C+G, 2D+H, 3E+A, 3F+B, 3G+C, 3H+D)
λ2 : (A,. . . ,H) �→(2A+C, 2B+D, 3C+A, 3D+B, 2E+G, 2F+H, 3G+E, 3H+F )
λ3 : (A,. . . ,H) �→(2A+B, 3B+A, 2C+D, 3D+C, 2E+F, 3F+E, 2G+H, 3H+G)

The round keys Ki ∈ GF (2)64 with 1 ≤ i ≤ 6 are iteratively derived from the
cipher key K0 ∈ GF (2)64 using the following parametrized function σ(m,l):

σ(m,l) : (k0, . . . , k63) �→ (km, k(m+l) mod 64, k(m+2l) mod 64, . . . , k(m+63l) mod 64)

by simply applying a σ(m,l) to the cipher key i times:

Ki = σi
(l,m)(K)

The individual bytes of the key Ki can be accessed by Ki,A to Ki,H .
To be able to compose the round function, we identify the elements of the

vector space GF (2)8 with the elements of the ring Z/256Z using the canonical
embedding. Given a fixed σ, the round function fr for round r with 1 ≤ r ≤ 6
that transforms a cipher key K and a state X into the state of the next round
then looks as follows:

fr : (X, K) �→ λ(((r−1) mod 3)+1)(X ⊕ σr(K))

The Mixing Layer. To diffuse local changes in the state bits widely, the func-
tions λi with 1 ≤ i ≤ 3 (lambda1, lambda2, and lambda3 in the pseudo-code) are
used. These form a butterfly network. At first look, it seems that full diffusion
is achieved after the third round, because every byte of the state depends on
every other byte of the input at this point. However, we made an interesting
observation: The λi functions only multiply the inputs with either the constant
2 or 3. This means that for the components of the output vector formed as

c = (a ∗ 2 + b) mod 256

the lowestmost bit of c will be equal to the lowestmost bit of b and not depend
on a at all. This observation will be used in Section 5.2.

The S-Box. The DSAA S-Box has a tendency towards flipping the lowest bit.
If a random input is chosen, the lowest bit of the output will equal to the lowest
bit of the input with a probability of 120

256 . For up to three rounds we were able
to find exploitable linear approximations depending on the lowest bits of the
input bytes, the lowest bits of the state and various bits of the key. Although
this sounds promising, the linear and differential properties of the S-Box are
optimal. Interpolating the S-Box over GF (28) yields dense polynomials of degree
254, interpolation over GF (2) results in equations of maximum degree.

The Key Scheduling. The key bit permutation used in the key scheduling is
not optimal for the cassable ciphers used in DSAA. Although the bit permutation
could have a maximum order of 64, a lower order was observed for the cassable
ciphers instantiated, namely 8 and 16.
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5.2 A Practical Attack on Cassable

The individual block ciphers used within the DSAA can be fully broken using
differential cryptanalysis [2] with only a very small number of chosen plaintexts.
Assume that we have an input m = mA||mB ||mC ||mD||mE ||mF ||mG||mH with
mi ∈ {0, 1}8 and a second input m′ = m′

A||m′
B||m′

C ||m′
D||m′

E ||m′
F ||m′

G||m′
H

where every second byte is the same, i. e. mB = m′
B, mD = m′

D, mF = m′
F ,

and mH = m′
H . Now both inputs are encrypted. Let s = si,A|| . . . ||si,H and

s′ = s′i,A|| . . . ||s′i,H be the states after i rounds of cassable. After the first round,
s1,B = s′1,B, s1,D = s′1,D, s1,F = s′1,F , and s1,H = s′1,H holds. This equality still
holds after the second round. After the third round, the equality is destroyed,
but s3,A ≡ s′3,A mod 2, s3,C ≡ s′3,C mod 2, s3,E ≡ s′3,E , and s3,G ≡ s′3,G mod 2
holds. The key addition in round four preserves this property, with only the
fourth application of the S-Box ρ4,j destroying it.

An attacker can use this to recover the secret key of the cipher. Assume the
attacker is able to encrypt two such messages m and m′ with the same secret
key and see the output. He can invert the lambda3 and gamma steps of the last
round, because they are not key-dependent. To recover the value of s3,A ⊕K4,A

and s3,E⊕K4,E, he only needs 32 round key bits of round key 6 which are added
to s5,A, s5,C , s5,E , and s5,G, and 16 round key bits of round key 5, which are
added to s4,A and s4,E. Due to overlaps in the round key bits these are only
38 different bits for cassable46,35, 36 different bits for cassable25,47, 42 different
bits for cassable60,27, and 40 different bits for cassable55,39. After the attacker
has recovered s3,A ⊕K4,A, s3,E ⊕K4,E, s′3,A ⊕K4,A and s′3,E ⊕K4,A, he checks
whether s3,A ⊕ K4,A = s′3,A ⊕ K4,A mod 2 and s3,E ⊕ K4,E = s′3,E ⊕ K4,E

mod 2 holds. If at least one of the conditions is not satisfied, he can be sure
that his guess for the round key bits was wrong. Checking all possible values for
these round key bits will eliminate about 3

4 of the key space with computational
costs of about 2k invocations of cassable, if there are k different key bits for the
required round key parts of round key 5 and 6.

After having eliminated 75% of the key space, an attacker can repeat this with
another pair on the remaining key space and eliminate 75% of the remaining
key space again. Iterating this procedure with a total of 15 pairs, only about 234

possible keys are expected to remain. These can then be checked using exhaustive
search. The total workload amounts to 2k + 1

42k + 1
162k + 1

642k + . . . + 234 block
cipher invocations which is bounded by 1.5834 · 2k for k ≥ 36. For cassable25,47,
this would be about 236.7.

An efficient implementation needs only negligible memory when every possible
value of the k round key bits is enumerated and every combination is checked
against all available message pairs. Only the combinations which pass their tests
against all available pairs are saved, which should be about 2k−30.

If the attacker can choose the input for cassable, he can choose 16 different
inputs, where every second byte is set to an arbitrary constant. If the attacker
can only observe random inputs, he can expect to find a pair in whcih every sec-
ond byte is the same after 216 random inputs. After 4 · 216 inputs, the expected
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number of pairs is about 4 · 4 = 16, which is sufficient for the attack. If not
enough pairs are available to the attacker, the attack is still possible, however
with increased computational effort and memory usage.

5.3 A Known-Plaintext Attack on Three Rounds Using a Single
Plaintext/Ciphertext Pair

Three rounds of the cassable block cipher can be attacked using a single plain-
text/ciphertext pair. This is of relevance as attacking B4 or B2 allows us to
invert the preceding ciphers B1 and B3.

Assume a plaintext m = mA||mB||mC ||mD||mE ||mF ||mG||mH encrypted
over three rounds. The output after the third round then is S3 = s3,A, . . . , s3,H .
As in the previous attack, we can invert the diffusion layer λ3 and the S-Box
layer ρ without knowing any key bits, obtaining (z0, . . . , z7) := S2 ⊕ K3 with
zi ∈ GF (2)8 for 0 ≤ i < 8. At this point the diffusion is not yet complete. For
instance, the following relation holds for z0:

z0 = ρ((2 · ρ(m0 ⊕K1,A) + ρ(m4 ⊕K1,E))⊕K2,A) +
ρ((2 · ρ(m2 ⊕K1,C) + ρ(m6 ⊕K1,G))⊕K2,C)⊕K3,A

Due to overlaps in the key bits, for the block cipher B1 the value z0 then only
depends on 41 key bits, for B2 on 36 key bits, for B3 on 44 key bits and for B4
on 46 key bits.

We can use the equations for the zi as a filter which discard 255
256 of the searched

key bit subspace.
In the following, we give an example of how the attacks works for B2: Starting

with z0, we expect 228 key bit combinations after the filtering step. Interestingly,
the key bits involved in z0 for B2 are the same as for z2, so we can use this byte
to filter down to about 220 combinations. Another filtering step using both z4
and z6 will just cost us an additional 4 key bits, meaning we can filter about
224 combinations down to about 28. All of these filtering steps can be chained
without storing intermediate results in memory, making the memory complexity
negligible.

For the remaining combinations we can exhaustively search through the re-
maining 24 key bits, giving a 232 work factor. The overall cost of the attack
is dominated by the first filtering step however, which means the attack costs
about 236 cassable invocations.

For B4, the key bit permutations work against our favor: After filtering with
z0 we expect 238 key bit combinations to remain. Subsequently we filter with
z2, which causes another 6 key bits to be involved (z4 and z6 would involve
10 more key bits). This yields 236 key bit combinations. Subsequently filter-
ing with z4 involves 8 more key bits, causing the number of combinations to
stay at 236. Finally we can filter with z6, which adds 4 more key bits, bring-
ing the number of combinations down to 232. As there are no more unused key
bits left, we can test all of the 232 key candidates. The total cost for this attack is
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again dominated by the first filtering step which requires 246 cassable invocations.
Again the attack can be completed using negligible memory by chaining the
filtering conditions.

The attacks on B2 and B4 can be used to attack a reduced version of the
DSAA where B1 and B3 are 6 round versions of cassable and B2 and B4 are
reduced to three rounds. An attack on this reduced version costs approximately
244 invocations of the reduced DSAA since approximately three 6 round cassable
invocations are used per DSAA operation.

6 Conclusion

We have shown the first public description of the DSAA algorithm, which clearly
shows that the algorithm only provides at most 64 bit of symmetric security.
An analysis using only the official documents published by ETSI would not have
revealed these information.

We could also show that the building blocks used for the DSAA have some
serious design flaws, which might allow attacks with a complexity below 264.
Especially the block cipher used in DSAA seems to be weak and can be completely
broken using differential cryptanalysis.

Although 64 bit of symmetric security might be sufficient to hold off un-
motivated attackers, most of the currently deployed DECT systems might be
much easier attackable, because encryption and an authentication of the base
station is not always required. This allows an attacker spending about 30$ for
a PCMCIA card to intercept most DECT phone calls and totally breach the
security architecture of DECT.

Currently, we see two possible countermeasures. First, all DECT installations
should be upgraded to require mutual authentication and encryption of all phone
calls. This should only be seen as a temporary fix until a better solution is
available.

A possible long term solution would be an upgrade of the DECT security archi-
tecture to use public well analyzed methods and algorithms for key exchange and
traffic encryption and integrity protection. A possible alternative could be IEEE
802.11 based Voice over IP phone systems, where networks can be encrypted
using WPA2. These systems are currently more costly than DECT installations
and still more difficult to configure than DECT phones for a novice user, but
encrypt and protect all calls and signaling informations using AES-CCMP and
allow a variety of different protocols for the key exchange. However it is open
to debate whether these systems can provide a viable alternative to DECT sys-
tems because of their different properties in term of power consumption, radio
spectrum and quality of service provided.

We would like to thank all the people who supported and helped us
with this paper, especially those, whose names are not mentioned in this
document.
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A Pseudocode for the DSAA

The DSAA (see Algorithm 1) uses four different 64 bit block cipher like functions
as building blocks. DSAA takes a random value rand ∈ {0, 1}64 and a key
key ∈ {0, 1}128 as input and splits the 128 bit key into two parts of 64 bit.
The first part of the key are the 64 middle bits of the key. DSAA calls the step1
function with the random value and the first part of the key to produce the first
64 bits of output, which only depend on the middle 64 bits of the key. Then the
output of step1 is used to produce the second 64 bits of output using the step2
function and the second half of the key. Please note that the second half of the
output only depends on the first half of the output and the second part of the
key.

Algorithm 1. DSAA (rand ∈ {0, 1}64, key ∈ {0, 1}128)
1: t ← step1(rev(rand), rev(key[32 . . . 95]))
2: b ← step2(t, rev(key[96 . . . 127])||rev(key[0 . . . 31]))
3: return rev(b[32 . . . 63])||rev(t)||rev(b[0 . . . 31]))

We will now have a closer look at the functions step1 and step2. Both are very
similar and each one uses two block cipher like functions as building blocks.

Algorithm 2. step1(rand ∈ {0, 1}64,key ∈ {0, 1}64)
1: k = cassable46,35

rand(key)
2: return cassable25,47

k (rand)

step1 takes a 64 bit key key and a 64 bit random value rand as input and
uses two block ciphers to produce its output. The key is used as a key for
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the first cipher and the random value as a plaintext. The value rand then is
used as an input to the second block cipher and is encrypted with the output of
the first block cipher as the key.

Algorithm 3. cassablestart,stepkey (m ∈ {0, 1}64)
1: t ← key
2: s ← m
3: for i = 0 to 1 do
4: t ← sigma(start, step, t)
5: s ← lambda1(gamma(s ⊕ t))
6: t ← sigma(start, step, t)
7: s ← lambda2(gamma(s ⊕ t))
8: t ← sigma(start, step, t)
9: s ← lambda3(gamma(s ⊕ t))

10: end for
11: return s

To describe the block ciphers, we introduce a family of block ciphers we call
cassable. These block ciphers differ only in their key schedule, where round keys
are always bit permutations of the input key. All bit permutations used by
cassable can be described by two numbers start and step.

The block cipher cassable itself is a substitution linear network. To mix the
round key into the state, a simple XOR is used. Additionally, Z256-linear mixing
is used for diffusion and an 8× 8 S-Box for non-linearity of the round function.

Algorithm 4. step2(rand ∈ {0, 1}64,key ∈ {0, 1}64)
1: k = cassable60,27

rand(key)
2: return cassable55,39

k (rand)

step2 is similar to step1, just two other bit permutations are used. The function
rev simply reverses the order of the bytes of its input.

Algorithm 5. rev(in ∈ {0, 1}i∗8)
Ensure: Byte-reverses the input in

for j = 0 to i − 1 do
k ← i − j − 1
out[j ∗ 8 . . . j ∗ 8 + 7] ← in[k ∗ 8 . . . k ∗ 8 + 7]

end for
return out



62 S. Lucks et al.

Algorithm 6. lambda1(in ∈ {0, 1}64)
1: out[0 . . . 7] ← in[32 . . . 39] + 2 ∗ in[0 . . . 7]
2: out[32 . . . 39] ← in[0 . . . 7] + 3 ∗ in[32 . . . 39]
3: out[8 . . . 15] ← in[40 . . . 47] + 2 ∗ in[8 . . . 15]
4: out[40 . . . 47] ← in[8 . . . 15] + 3 ∗ in[40 . . . 47]
5: out[16 . . . 23] ← in[48 . . . 55] + 2 ∗ in[16 . . . 23]
6: out[48 . . . 55] ← in[16 . . . 23] + 3 ∗ in[48 . . . 55]
7: out[24 . . . 31] ← in[56 . . . 63] + 2 ∗ in[24 . . . 31]
8: out[56 . . . 63] ← in[24 . . . 31] + 3 ∗ in[56 . . . 63]
9: return out

Algorithm 7. lambda2(in ∈ {0, 1}64)
1: out[0 . . . 7] ← in[16 . . . 23] + 2 ∗ in[0 . . . 7]
2: out[16 . . . 23] ← in[0 . . . 7] + 3 ∗ in[16 . . . 23]
3: out[8 . . . 15] ← in[24 . . . 31] + 2 ∗ in[8 . . . 15]
4: out[24 . . . 31] ← in[8 . . . 15] + 3 ∗ in[24 . . . 31]
5: out[32 . . . 39] ← in[48 . . . 55] + 2 ∗ in[32 . . . 39]
6: out[48 . . . 55] ← in[32 . . . 39] + 3 ∗ in[48 . . . 55]
7: out[40 . . . 47] ← in[56 . . . 63] + 2 ∗ in[40 . . . 47]
8: out[56 . . . 63] ← in[40 . . . 47] + 3 ∗ in[56 . . . 63]
9: return out

Algorithm 8. lambda3(in ∈ {0, 1}64)
1: out[0 . . . 7] ← in[8 . . . 15] + 2 ∗ in[0 . . . 7]
2: out[8 . . . 15] ← in[0 . . . 7] + 3 ∗ in[8 . . . 15]
3: out[16 . . . 23] ← in[24 . . . 31] + 2 ∗ in[16 . . . 23]
4: out[24 . . . 31] ← in[16 . . . 23] + 3 ∗ in[24 . . . 31]
5: out[32 . . . 39] ← in[40 . . . 47] + 2 ∗ in[32 . . . 39]
6: out[40 . . . 47] ← in[32 . . . 39] + 3 ∗ in[40 . . . 47]
7: out[48 . . . 55] ← in[56 . . . 63] + 2 ∗ in[48 . . . 55]
8: out[56 . . . 63] ← in[48 . . . 55] + 3 ∗ in[56 . . . 63]
9: return out

Algorithm 9. sigma(start, step, in ∈ {0, 1}64)
1: out ← (00)8

2: for i = 0 to 63 do
3: out[start] ← in[i]
4: start ← (start + step) mod 64
5: end for
6: return out

Algorithm 10. gamma(in ∈ {0, 1}64)
1: for i = 0 to 7 do
2: out[i ∗ 8 . . . i ∗ 8 + 7] ← sbox[in[i ∗ 8 . . . i ∗ 8 + 7]]
3: end for
4: return out
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B Test Vectors for DSAA

To make implementation of these algorithms easier, we decided to pro-
vide some test vectors. Let us assume that A11 is called with the key
K=ffff9124ffff9124ffff9124ffff9124 and the RS=0000000000000000 as in
[5] Annex K. These values will be passed directly to the DSAA algorithm. Now,
step1(0000000000000000, 2491ffff2491ffff) will be called. While processing
the input, the internal variables will be updated according to Table 2. The final
result after step2(ca41f5f250ea57d0, 2491ffff2491ffff) has been calculated
is 93638b457afd40fa585feb6030d572a2, which is the UAK. The internal states
of step2 can be found in Table 3.

Table 2. Trace of step1(0000000000000000, 2491ffff2491ffff)

algorithm after line i t s

cassable46,35 5 0 0000000000000000 549b363670244848

cassable46,35 7 0 0000000000000000 51d3084936beeaae

cassable46,35 9 0 0000000000000000 20e145b2c0816ec6

cassable46,35 5 1 0000000000000000 4431b3d7c1217a7c

cassable46,35 7 1 0000000000000000 6cdcc25bbe8bc07f

cassable46,35 9 1 0000000000000000 2037df9f8856a0a2

cassable25,47 5 0 77fe578089a40531 cce76e5f83f77b4c

cassable25,47 7 0 f5b720768a8a8817 c69973d6388f3cf7

cassable25,47 9 0 552023ae0791ddf4 1cd81853ba428a2c

cassable25,47 5 1 8856a0a22037df9f ca643e2238dc1d1d

cassable25,47 7 1 89a4053177fe5780 82fa43b0725dc387

cassable25,47 9 1 8a8a8817f5b72076 ca41f5f250ea57d0

Table 3. Trace of step2(ca41f5f250ea57d0, 2491ffff2491ffff)

algorithm after line i t s

cassable60,27 5 0 66f9d1c1c6524b4b 39ad15f5f68ab424

cassable60,27 7 0 5bd0d66bf152e4c0 59e160ed3bb1189c

cassable60,27 9 0 d5ebead34f434050 0bc33d7c093128b8

cassable60,27 5 1 d2c057d860e3dd72 3f538f008a2b52f9

cassable60,27 7 1 c6d2e3614c5953cb ab826a7542ffa5c7

cassable60,27 9 1 f158c640d3f27cc3 757782ad02592b4e

cassable55,39 5 0 b0ec588246ea9577 40be7413fe173981

cassable55,39 7 0 df212e1b790245e6 087978cbb37813af

cassable55,39 9 0 e671b9d44296ee08 d97b8d2dbae583b9

cassable55,39 5 1 2a0f207383ec575d 1340ba1df9d60b52

cassable55,39 7 1 d022e4e81dd712ee f7af7e62a1fa5ce6

cassable55,39 9 1 04b3db206f4e7d03 08d87f9aef21c939
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C Example of a Weak PRNG Used in DECT Stacks

Algorithm 11 is a typical example for the quality of pseudo random-number
generators (PRNGs) used in DECT stacks. Although it is supposed to provide
64-bit of randomness per nonce output, it only manages to use 24 bits of entropy.
Moreover, the total number of distinct 64-bit rand values of this PRNG is only
222 since outputs collide.

Algorithm 11. vendor A PRNG(xorval ∈ {0, 1}8, counter ∈ {0, 1}16)
1: for i = 0 to 7 do
2: out[(i ∗ 8)) . . . (i ∗ 8 + 7)] ← �counter/2i� ⊕ xorval
3: end for
4: return out

The values produced by this particular PRNG can be easily stored in ASCII
representation in a file just 68 Megabytes big. This means that to identify vul-
nerable implementations, an attacker or evaluator simply has to search for an
intercepted rand in this text file.
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D Structure of the cassable Block Cipher

∗1 ∗2 ∗3

λ1

λ2

λ3

λ1

λ2

λ3

round key 1

round key 2

round key 3

round key 4

round key 5

round key 6

s0,A s0,B s0,C s0,D s0,E s0,F s0,G s0,H

⊕K1,A ⊕K1,B ⊕K1,C ⊕K1,D ⊕K1,E ⊕K1,F ⊕K1,G ⊕K1,H

ρ1,A ρ1,B ρ1,C ρ1,D ρ1,E ρ1,F ρ1,G ρ1,H

s1,A s1,B s1,C s1,D s1,E s1,F s1,G s1,H

⊕K2,A ⊕K2,B ⊕K2,C ⊕K2,D ⊕K2,E ⊕K2,F ⊕K2,G ⊕K2,H

ρ2,A ρ2,B ρ2,C ρ2,D ρ2,E ρ2,F ρ2,G ρ2,H

s2,A s2,B s2,C s2,D s2,E s2,F s2,G s2,H

⊕K3,A ⊕K3,B ⊕K3,C ⊕K3,D ⊕K3,E ⊕K3,F ⊕K3,G ⊕K3,H

ρ3,A ρ3,B ρ3,C ρ3,D ρ3,E ρ3,F ρ3,G ρ3,H

s3,A s3,B s3,C s3,D s3,E s3,F s3,G s3,H

⊕K4,A ⊕K4,B ⊕K4,C ⊕K4,D ⊕K4,E ⊕K4,F ⊕K4,G ⊕K4,H

ρ4,A ρ4,B ρ4,C ρ4,D ρ4,E ρ4,F ρ4,G ρ4,H

s4,A s4,B s4,C s4,D s4,E s4,F s4,G s4,H

⊕K5,A ⊕K5,B ⊕K5,C ⊕K5,D ⊕K5,E ⊕K5,F ⊕K5,G ⊕K5,H

ρ5,A ρ5,B ρ5,C ρ5,D ρ5,E ρ5,F ρ5,G ρ5,H

s5,A s5,B s5,C s5,D s5,E s5,F s5,G s5,H

⊕K6,A ⊕K6,B ⊕K6,C ⊕K6,D ⊕K6,E ⊕K6,F ⊕K6,G ⊕K6,H

ρ6,A ρ6,B ρ6,C ρ6,D ρ6,E ρ6,F ρ6,G ρ6,H

s6,A s6,B s6,C s6,D s6,E s6,F s6,G s6,H
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Abstract. In this paper we study key exchange protocols in a model
where the key exchange takes place between devices with limited displays
that can be compared by a human user. If the devices display the same
value then the human user is convinced that the key exchange terminated
successfully and securely, and if they do not then the user knows that it
came under attack. The main result of this paper is a rigorous proof that
the numeric comparison mode for device pairing in Bluetooth version
2.1 is secure, under appropriate assumptions regarding the cryptographic
functions used. Our proof is in the standard model and in particular does
not model any of the functions as random oracles. In order to prove our
main result, we present formal definitions for key exchange in this model
and show our definition to be equivalent to a simpler definition. This is
a useful result of independent interest that facilitates an easier security
analysis of protocols in this model.

1 Introduction

A central problem in cryptography is that of enabling parties to communicate
secretly and reliably in the presence of an adversary. This is often achieved by
having the parties run a protocol for generating a mutual and secret session
key. This session key can then be used for secure communication using known
techniques (e.g., applying encryption and message authentication codes to all
communication). Two important parameters to define regarding this problem
relate to the strength of the adversary and the communication model and/or
initial setup for the parties. The problem of session-key generation was initially
studied by Diffie and Hellman [8] who considered a passive adversary that can
eavesdrop on the communication of the parties, but cannot actively modify mes-
sages on the communication line. Thus, the parties are assumed to be connected
by reliable, albeit non-private, channels. Many efficient and secure protocols are
known for this scenario. In contrast, in this paper, we consider a far more pow-
erful adversary who can modify and delete messages sent between the parties,
as well as insert messages of its own choice. It is well known that in the presence
of such a powerful adversary, it is impossible for the parties to generate a secret
session key if they have no initial secrets and can only communicate over the
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adversarially controlled channel. This is due to the fact that the adversary can
carry out a separate execution with each of the parties, where in each execu-
tion it impersonates the other. Since there is no initial secret (like a password
or public-key infrastructure), there is nothing that prevents the adversary from
succeeding in its impersonation.

The common solution to the above problem is to indeed introduce a shared
secret, like a password, or to assume a public-key infrastructure. However, these
solutions are not always possible nor always desired (a user cannot memorize a
long private-key and short human-memorizable passwords are notoriously prob-
lematic). Another option is therefore to assume that the parties have an addi-
tional authenticated communication channel that cannot be tampered with by
the adversary and can be used to send a short message [10,16]. There are a num-
ber of ways that such a channel can be implemented in reality. In this paper,
we consider the case that the parties running the key exchange protocol (or,
more accurately, the devices) each have a screen upon which they can display a
short (say, 6 digit) number. The human user then compares to make sure that
both devices display the same number, and if they do, is convinced that the key
exchange terminated securely. We remark that although this does not seem to
be an authenticated communication channel, it is essentially equivalent to one.
This is because one party can send a short message to the other party (using the
insecure channel), and then they can both display the message on their screens.
If the adversary modifies the message en route, then this will be detected by the
human user who will reject the result. Thus, the screens can be used to commu-
nicate a single short number from one party to the other (for usability reasons,
it is required that only a single value be displayed).

Our results. Our main result is a rigorous proof of security of the numeric com-
parison mode in the simple pairing protocol of Bluetooth version 2.1 [1]. The
importance of this result is due to the popularity of Bluetooth, and the unfor-
tunate historic fact that vulnerabilities have often been found in unproven key
exchange protocols, sometimes many years after they were released. We stress
that our analysis focuses solely on the numeric comparison mode and says noth-
ing about the security of the entire standard (and in particular, nothing about
the security regarding the interplay between the different modes and backward
compatibility with version 2.0). We prove the security of the protocol in the
standard model, by appropriately modeling the functions used in the Bluetooth
protocol as standard cryptographic primitives. We stress that we do not model
any of the functions as ideal primitives (like random oracles), although this would
have made the proof of security much easier.

In order to prove our results, we present a formal definition of comparison-
based key exchange that is based on the definitions of key exchange of [3,4]. Our
definition is similar in spirit to that of [16], except that we focus specifically
on the problem of key exchange, whereas [16] considered a more general setting
of message authentication. As is standard for definitions of security for key ex-
change protocols, we consider a complex setting where many different protocol
instances are run concurrently. Since it is difficult to analyze the security of
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protocols in complex settings, we present an alternative definition that implies
our main definition. The alternative definition is slightly more restrictive but
seems to capture the way protocols typically work in this setting. This definition
is easier to work with, and to demonstrate this further, we show that it is equiv-
alent to a definition whereby only a single protocol execution takes place. We
believe that this alternative definition and its equivalence to the simpler setting
is of independent interest as it facilitates significantly easier proofs of security of
protocols in this model.

Related work. The problem of secure key exchange has achieved a huge amount
of attention, whether it be in the plain model with an eavesdropping adversary,
or whether it considers an active adversary and assumes the existence of a full
public-key infrastructure, shared high quality secrets or low quality passwords.
The comparison-based model that we consider here was first studied in [11,12,10],
with a more general treatment appearing in [16]. Tight bounds for achieving
information-theoretic security in this model were shown in [15]. The MA-DH
protocol of [13] has many similarities to the Bluetooth v2.1 numeric compari-
son protocol analyzed in this paper. Nevertheless, it has significant differences,
making it necessary to provide a separate security analysis and proof.

2 Comparison-Based Secure Key-Exchange – Definitions

Preliminaries. We denote the security parameter by n. A function f : N→ [0, 1]
is negligible if for every polynomial p(·) there exists an integer N such that for
every n > N it holds that f(n) < 1/p(n). We denote an arbitrary negligible
function by negl.

Background. In this section, we adapt the definition of secure key exchange
of [3,4] to our setting. Although the basic ideas are similar, there are a num-
ber of fundamental differences between this model and the classic model of key
exchange. First and foremost, the parties do not only interact via regular com-
munication channels. In particular, the parties are able to carry out a numeric
comparison between two short numbers of length �, and this can be used to pre-
vent the adversary from carrying out a successful man-in-the-middle attack. We
formally model the comparison as part of the protocol in the following simple
way: each entity participating in a key exchange holds a local public “compar-
ison variable” (the variable is public in the sense that the adversary can read
its value whenever it wishes). The comparison variable can be set only once in
any instance (i.e., it is write-once only); this rules out protocols that use mul-
tiple comparisons (arguably, such protocols have more limited use in practice).
Another fundamental difference between this setting and the classic model of
key exchange is that it is not enough for the adversary to learn the secret key
that one of the parties obtains at the end of a protocol execution (it can always
succeed in doing this by just interacting with the party). Rather, the adversary
only succeeds if it manages to learn the secret key that a pair of parties obtain
in an execution in which the parties’ comparison variables are equal. A third dif-
ference is that there is no public-key infrastructure or secret setup information
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and thus all instances of the protocol are identical. This is in contrast to the
shared secret setting where each pair of parties hold a shared secret key, and
every protocol instance run by a party is initialized with the party’s secret key.
Despite this, the protocol is supposed to be secure in the presence of an active
adversary, and not just an eavesdropping one.

We remark that in our setting here, it makes no sense to allow a single party
to run many instances of the protocol concurrently. This is because each party
has only one interface for displaying the comparison variable, and so more than
one execution cannot be run at the same time. In addition, since there is no
shared setup between different executions, allowing more than one execution
would be equivalent in any case (when there is no shared setup, a number of
executions by a single party is equivalent to a number of parties running a single
execution each). Of course, the different parties running different executions
may be running concurrently. We could additionally allow each party to run
many executions sequentially, but this clearly makes no difference and thus for
simplicity we just assume that each party runs one execution.

The definition. A protocol for secure key exchange assumes that there is a set
of principals which are the parties (clients, servers or others) who will engage
in the protocol. We denote by Πi the instance of the protocol that is run by
user Pi (recall that in contrast to [3,4] each party runs one execution only). The
adversary is given oracle access to these instances and may also control some of
the instances itself. We remark that unlike the standard notion of an “oracle”, in
this model instances maintain state which is updated as the protocol progresses.
In addition to information regarding the protocol execution, the state of an
instance Πi includes the following variables (initialized as null):

– sidi: the session identifier of this particular instance;
– compi: the aforementioned write-once comparison variable of the instance;

we denote the length of compi by �;
– pidi: the partner identifier which is the name of the principal Pj with whom

Pi’s comparison variable is compared (we note that pidi can never equal i);
in our setting here, it is always the case that if pidi = j then pidj = i because
the human comparing the variables will always work in this way;1

– acci: a boolean variable set to true or false denoting whether Πi accepts or
rejects at the end of the execution.

Partnering. We say that two instances Πi and Πj are partnered if the following
properties hold: (1) pidi = j (and thus by our requirement pidj = i); and (2)
sidi = sidj �= null. The notion of partnering is important for defining security,
as we will see.

The adversary model. The adversary is given total control of the external
network (i.e., the network connecting clients to servers). In particular we assume
that the adversary has the ability to not only listen to the messages exchanged by
1 This is in contrast to the standard setting of key exchange where P1 may think that

it’s interacting with P2 who in turn thinks that it’s interacting with P3.
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players, but also to interject messages of its choice and modify or delete messages
sent by the parties.2 The above-described adversarial power is modeled by giving
the adversary oracle access to the instances of the protocol that are run by the
principals. Notice that this means that the parties actually only communicate
through the adversary. The oracles provided to the adversary are as follows:

– Execute(i, j): When this oracle is called, pidi is set to j and pidj is set to
i, and then a complete protocol execution between instances Πi and Πj is
run. The oracle-output is the protocol transcript (i.e., the complete series
of messages exchanged by the instances throughout the execution). These
oracle calls reflect the adversary’s ability to passively eavesdrop on protocol
executions. As we shall see, the adversary should learn nothing from such
oracle calls. If an Init call has already been made including i or j, then
Execute(i, j) is ignored.

– Init(i, j): This call initializes pidi = j and pidj = i. If pidi or pidj is already
set, then this call does nothing. In addition, it returns the first message that
Πi sends to Πj in a protocol execution.

– Send(i,M): This call sends the message M to the instance Πi. The output
of the oracle is whatever message the instance Πi would send after receiving
the message M (given its current state). This oracle allows the adversary to
carry out an active man-in-the-middle attack on the protocol executions.

– Reveal(i): This call outputs the secret key ski that instance Πi outputs at
the end of the protocol execution. This oracle allows the adversary to learn
session keys from previous and concurrent executions, modeling improper
exposure of past session keys and ensuring independence of different session
keys in different executions.

– Test(i): This call is needed for the definition of security and does not model
any real adversarial ability. The adversary is only allowed to query it once,
and the output is either the private session key of Πi, denoted ski, or a
random key sk that is chosen independently of the protocol executions (each
case happens with probability 1/2). The adversary’s aim is to distinguish
these two cases. We let bi

test denote the bit chosen by Test(i) to determine
whether to output ski or a random sk.

The security of key exchange protocols is composed of three components: non-
triviality, correctness and privacy. We begin by stating the non-triviality require-
ment (this is different from the definition in [3,4] because we also require that
compi = compj so that a human user will accept the result):

Non-triviality. If two instances Πi and Πj that hold each other’s partner iden-
tifier communicate without adversarial interference (as in an Execute call), then
Πi and Πj are partnered, compi = compj and they both accept.

2 In principle, the adversary should also be given control over a subset of the oracles,
modeling the case of an “inside attacker”. However, in our setting, there are no initial
secrets and thus this makes no difference.
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Correctness. If two partnered instances Πi and Πj accept (i.e., acci = accj = 1)
and compi = compj , then they must both conclude with the same session key
(i.e., ski = skj).

Privacy. We now define what it means for a protocol to be private. Intuitively,
a protocol achieves privacy if the adversary cannot distinguish real session keys
from random ones. (This then implies that the parties can use their generated
session keys in order to establish secure channels; see [5] for more discussion
on this issue.) Of course, the adversary can always correctly guess the bit in a
Test(i) query if it queried Reveal(i) or Reveal(j) when Πi and Πj are partnered.
Therefore, A is only said to have succeeded if these oracles were not queried.
In addition, we are only interested in the case that A correctly guesses the key
when compi = compj and both instances accept. This is due to the fact that if
compi �= compj then the human user will not accept the result, and if one of the
instances does not accept then no session-key will be output by that instance.
This yields the following definition of adversarial success. Formally, we say that
an adversary A succeeds if the following conditions are all fulfilled:

1. A outputs bi
test

2. compi = compj and acci = accj = true
3. If Πi and Πj are partnered then A did not query Reveal(i) or Reveal(j).

Now, the adversary’s advantage is formally defined by:

Adv(A) = |2 · Prob[A succeeds ]− 1| .

We reiterate that an adversary is only considered to have succeeded if it correctly
guesses the bit used by the Test(i) oracle, compi = compj , and the adversary
did not query Reveal(i) or Reveal(j) when Πi and Πj are partnered. We stress
that if pidi = j but sidi �= sidj , then Πi and Πj are not partnered and thus the
adversary succeeds if compi = compj and it correctly guesses the bit used by the
Test(i) oracle, even if it queried Reveal(j).

An important observation here is that when there is no initial setup and only a
short comparison channel of length � is used, the adversary can gain an advantage
of 2−� for every pair of instances by just running two separate executions with
two instances and hoping that their comparison variables will end up being equal.
A protocol is therefore called private if it is limited to random success of this
fashion. Notice that in Execute oracle calls, the adversary is passive and thus
it should only have a negligible advantage in guessing the secret key of such
an instance, irrespective of the value of �. We do not explicitly require this, but
rather provide it with a 2−� advantage only when it queries the Send oracle. This
is reminiscent of the definition for password-based key exchange of [2]. In order
to define this, we define Qsend to be the number of protocol instances without
common partner identifiers to which the adversary made Send oracle queries.
We stress that if A makes multiple Send queries to Πi and to Πj , and pidi = j,
then this is counted as 1 in Qsend. Formally, a protocol is said to be private if
the advantage of the adversary is at most negligibly more than Qsend/2�, where
� is the length of the comparison variable. In summary,
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Definition 1 (comparison-based key exchange). A comparison-based key ex-
change protocol with a comparison variable of length � ∈ N is said to be secure
if for every probabilistic polynomial-time adversary A that makes at most Qsend
queries of type Send to different protocol instances without common partner iden-
tifiers, there exists a negligible function negl such that

Adv(A) <
Qsend

2�
+ negl(n).

Furthermore, the probability that the non-triviality or correctness requirement is
violated is at most negligible in the security parameter n.

We note that the bound of Qsend/2� for A’s advantage is optimal. Specifically,
one can construct an adversaryA who obtains this exact advantage by separately
interacting with two protocol instances Πi and Πj for which pidi = j and pidj =
i. At the end of the execution, A will know both ski and skj and will succeed if
compi = compj . If this does not hold, then A can just invoke an Execute oracle
call for two other instances, query the Test oracle for one of those instances, and
then just randomly guess the test result, succeeding with probability one half.
The advantage of this adversary A is as follows. First, under the assumption
that an honest protocol execution yields a uniformly distributed comparison
variable, we have that compi = compj with probability exactly 2−�. In this case,
A succeeds with probability 1. Noting further that if compi �= compj then A
succeeds with probability 1/2, we have:

Pr[A succeeds] = Pr[A succeeds | compi = compj ] · Pr[compi = compj ]
+Pr[A succeeds | compi �= compj ] · Pr[compi �= compj ]

= 1 · 1
2�

+
1
2
·
(

1− 1
2�

)
=

1
2�

+
1
2
− 1

2�+1 =
1
2

+
1

2�+1

implying that A’s advantage is 1/2�. Noting finally that Qsend = 1 in this case,
we have that A achieves the upper bound of Qsend/2� on the advantage as stated
in Definition 1. The above argument holds for any value of Qsend (and not just
the special case that Qsend = 1). In this case, A interacts separately with Qsend
pairs and succeeds if for any of the pairs it holds that compi = compj (or with
probability 1/2 otherwise, as above). Since the probability that compi = compj

in at least one of the executions is Qsend/2� we have that A succeeds with
probability Qsend/2� + 1

2 · (1−Qsend/2�). As above, this results in an advantage
of Qsend/2�, as required.

An alternative definition. In the full version of this paper [14] we present
an alternative definition that is easier to work with. We prove that security
under the alternative definition implies security under Definition 1 and thus
it suffices to use the alternative definition. In addition, we prove that when
considering the alternative definition, security in the concurrent setting with
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many protocols instances is equivalent to security in a one-time setting where an
adversary interacts once with a protocol instance P1 and once with a protocol
instance P2 (and where pid1 = 2 and pid2 = 1). Since there is only one instance of
each type, from here on we just refer to the adversary interacting with parties P1
and P2. We use the alternative definition to prove the security of the Bluetooth
protocol since it is significantly easier to work with. In order to facilitate reading
the proof below, we briefly describe the alternative definition. We define two
events referring to the adversary’s success:

1. An adversary A succeeds in a guess attack, denoted succguess
A , if it outputs

the correct bi
test after querying Test(i) for an instance Πi that is partnered

with some other instance Πj , and Reveal(i) or Reveal(j) were not queried.
2. An adversary A succeeds in a comparison attack, denoted succcomp

A , if there
exist two accepting instances Πi and Πj with pidi = j and pidj = i that are
not partnered and yet compi = compj .

We say that a protocol is secure if for every probabilistic polynomial-time A, the
probability of succguess

A is at most negligibly greater than 1/2, and the probability
of succcomp

A is at most negligibly greater than 2−�. The justification for this
definition can be found in the full version of this paper, as well as the fact that
it suffices to analyze the security of a protocol in a restricted setting where the
adversary interacts with a single pair of parties P1 and P2.

3 Bluetooth Pairing in Numeric Comparison Mode

In this section, we describe the Bluetooth pairing protocol in the numeric com-
parison mode. We also describe the cryptographic functions that are used by
the protocol, and state the assumptions that are needed regarding each one in
order to prove the security of the protocol. The Bluetooth specification refers to
devices A and B; in order to be consistent with our definitional notations, we
refer to parties P1 and P2 instead.

3.1 Cryptographic Tools and Functions

The numeric comparison mode in the Bluetooth simple pairing protocol uses the
following tools:
• An Elliptic curve group in which it is assumed that the Decisional Diffie-

Hellman problem is hard. We denote the group by G, the generator by g, and
the group order by q.

• A non-interactive computationally binding and non-malleable commitment
scheme C. We denote a commitment to a string x using coins r by C(x; r).
The computational binding property means that it is infeasible for any poly-
nomial-time adversary A to find x, r, x′, r′ where x �= x′ but C(x; r) =
C(x′; r′). Informally speaking, non-malleability [9] means that given a com-
mitment c = C(x; r) it is infeasible for a polynomial-time adversary to gen-
erate a commitment c′ so that later given (x, r) it can produce (x′, r′) such
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that c′ = C(x′; r′) and x, x′ are related via a predetermined polynomial-
time computable relation; this is typically called non-malleability with respect
to opening [7]. Our formal definition can be found in Appendix A and is
adapted from the definition in [6] with some minor changes.

The commitment scheme is instantiated as follows: in order to commit to
a string x, ra where ra is uniformly distributed and half of the length of the
key for HMAC-SHA256, choose a random string rb which is also half of the
length of the key for HMAC-SHA256, compute HMAC-SHA256r(x) where
r = (ra, rb), and set the commitment value to be the 128 most significant
bits of the result. We remark that it may appear to be more natural to use
randomness that is the entire length of the HMAC key and then let x be the
entire string that is committed to. Indeed, this would have been more natural.
However, in the Bluetooth protocol, part of r must be considered to remain
secret and we therefore take it to be part of the value being committed to. We
remark that the computational binding of this commitment scheme follows
directly from the assumption that it is hard to find a collision in SHA256.
The assumption on non-malleability is less studied, but seems reasonable
given the chaotic behavior of such functions. We remark also that it follows
trivially from any random-oracle type assumption.

• A function g : {0, 1}∗ → {0, 1}� with the property that when any long-enough
part of the input is uniformly distributed, then the output is close to uniform.
We formalize this by allowing an adversary to choose two values α and β and
then asking what the probability is that g(α, r) = β when r ∈R {0, 1}n/2

is uniformly distributed. We call this computational 2-universal hashing. In
order to be consistent with the exact use of g in the protocol, we first intro-
duce the following notation: For an arbitrary string α, we denote by α[r] the
string derived by combining α and r in a predetermined way. (In our use,
α[r] will either be the concatenation of r after α, or it involves parsing α into
α1 and α2 where |α2| = n/2 and then setting α[r] = (α1, r, α2).) Then:

Definition 2. A function g : {0, 1}∗ → {0, 1}� is a computational 2-universal
hash function if for every probabilistic polynomial-time machine A there exists
a negligible function negl such that

Pr(α,β)←A(1n);r←{0,1}n/2 [g(α[r]) = β] <
1
2�

+ negl(n)

We stress that r ∈R {0, 1}n/2 is uniformly distributed and thus chosen inde-
pendently of α and β output by A. The function g in Bluetooth is defined by
g(x) = SHA256(x)mod232. It seems very reasonable to assume that SHA256
fulfills this property.

• A pseudorandom function F keyed with keys output from Diffie-Hellman
key exchange over Elliptic curve groups. This is implemented using HMAC-
SHA256 and taking the 128 most significant bits. Formally, we say that a
function F is pseudorandom when keyed with G if it is a pseudorandom function
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when the key is a random element of G. It is easy to show that if F is
pseudorandom when keyed with G and the Decisional Diffie-Hellman (DDH)
assumption holds in G, then it is pseudorandom when keyed with the result of
a Diffie-Hellman key exchange. This follows directly from DDH which states
that the result of a Diffie-Hellman key exchange is indistinguishable from a
random element in G. For simplicity, we state this directly in the Definition
below:

Definition 3. Let gen(1n) be an algorithm that outputs the description of a
group G, its generator g, and its order q. A function ensemble F = {Fk} is
pseudorandom when DDH-keyed with gen if for every probabilistic polynomial-
time distinguisher D there exists a negligible function negl such that∣∣∣Pr

[
DF

gab (1n, ga, gb) = 1
]
− Pr

[
DH(1n, ga, gb) = 1

]∣∣∣ < negl(n)

where (G, g, q) ← gen(1n), a, b are randomly chosen in {1, . . . , q}, and H is
a truly random function ensemble.

As we have mentioned, any function ensemble that is pseudorandom when
keyed with a random element from G is also pseudorandom when DDH-keyed
with gen, under the assumption that the DDH assumption holds relative to
gen. Note that a “standard” pseudorandom function receives a uniformly
distributed bit string. Therefore, this does not necessarily suffice (a random
element of G is not necessarily a uniformly distributed bit string).

3.2 The Protocol and Correctness

The Bluetooth simple pairing protocol in numeric comparison mode appears in
Figure 1 and is denoted Π . It is easy to see that Protocol Π is non-trivial. The
proof that Π fulfills correctness is also not difficult and appears in the full version
of this paper [14].

4 The Proof of Security

We now prove that Π is a secure comparison-based key-exchange protocol. The
structure of our proof demonstrates the usefulness of the alternative definition
as a tool; a proof of security that works directly with Definition 1 would be much
more complex.

Theorem 4. Assume that the Decisional Diffie-Hellman assumption holds rel-
ative to gen, that F is a pseudorandom function when DDH-keyed with gen,
that C is a computationally-binding non-malleable commitment scheme and that
g is a computational 2-universal hash function. Then, Protocol Π is a secure
comparison-based key-exchange protocol.
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Protocol Π

• Pre-protocol exchange: Parties P1 and P2 exchange party identifiers 1 and
2 (in Bluetooth, these are their respective Bluetooth addresses) as well as
additional auxiliary information α1 and α2 (we will ignore the content of this
information here). P1 sets pid1 = 2, and P2 sets pid2 = 1.

• Phase 1 – Public-Key Exchange:
1. The initiating party P1 generates a Diffie-Hellman value by choosing a

random a ∈ {1, . . . , q} and computing pk1 = ga. P1 sends pk1 to P2.

2. Upon receiving pk1 from P1, party P2 chooses a random b ∈ {1, . . . , q},
computes pk2 = gb, and sends pk2 to P1.

3. Party P1 sets sid1 = (pk1, pk2) and party P2 sets sid2 = (pk1, pk2).

• Phase 2 – Authentication Stage 1:
1. P2 chooses a random string r2 ∈R {0, 1}n and sends c2 = C(pk2, pk1, 0; r2)

to P1.

2. P1 chooses a random string r1 ∈R {0, 1}n and sends r1 to P2.

3. P2 sends r2 to P1. Upon receiving r2, party P1 checks that c2 =
C(pk2, pk1, 0; r2), where c2 is the value it received above and pk1, pk2 are
as exchanged in phase 1.

4. P1 sets comp1 = g(pk1, pk2, r1, r2) and P2 sets comp2 = g(pk1, pk2, r1, r2).

• Phase 3 – Authentication Stage 2:
1. P1 computes k = (pk2)a and P2 computes k = (pk1)b, where the compu-

tation is in the group G.

2. P1 computes e1 = Fk(r1, r2, 0, α1, 1, 2) and sends e1 to P2. (Note that 1
and 2 here, and below, are the parties identifiers and not constants. Thus,
they are actually the parties’ Bluetooth addresses and more.)

3. P2 checks that e1 = Fk(r1, r2, 0, α2, 1, 2); if yes it sends P1 the value e2 =
Fk(r1, r2, 0, α1, 2, 1) and sets acc2 = true; otherwise P2 sets acc2 = false
and aborts.

4. P1 checks that e2 = Fk(r1, r2, 0, α1, 2, 1); if yes it sets acc1 = true, and if
not it sets acc1 = false and aborts.

• Phase 4 – Link-Key Calculation:
1. Party P1 outputs sk1 = Fk(r1, r2, β, 2, 1) where β is a fixed string.

2. Party P2 outputs sk2 = Fk(r1, r2, β, 2, 1).

Fig. 1. Bluetooth 2.1 Pairing – Numeric Comparison Mode
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Proof. We prove the security of Π in two stages. First, we prove that succguess
A

occurs with probability at most negligibly greater than 1/2. Intuitively, this holds
because if P1 and P2 are partnered, then this implies that they both have the
same Diffie-Hellman values and so essentially have completed a Diffie-Hellman
key exchange undisturbed, with the adversary only eavesdropping. This in turn
implies that Fk is a pseudorandom function and thus the session keys that are
output are pseudorandom. We then proceed to prove that succcomp

A occurs with
probability at most negligibly greater than 2−�. This follows from the security
of the commitment scheme C and the 2-universality of g. Specifically, phase 2
of the protocol can be viewed as a method of choosing two random strings r1
and r2 that are (computationally) independent of each other. In order for this to
hold even if A carries out a man-in-the-middle attack, the commitment scheme
C must be non-malleable (see Appendix A). This forces A to either just copy the
commitment sent by P2 or modify it, in which case it will contain an independent
r2 value. If A copies the commitment, then it will contain the parties’ public
keys. However, by the assumption that they are not partnered, these keys do
not match with those that the parties received in the protocol. A must therefore
modify the commitment, resulting in r1 and r2 being independent of each other.
Once this is given, it is possible to apply the 2-universality of g stating that
whichever is chosen last causes the comparison value to be almost uniformly
distributed. We proceed now to the formal proof.

As stated, we prove the protocol using the alternative definition (which is
proven in the full version to imply security under Definition 1). We begin by
proving that for every probabilistic polynomial-time A interacting with P1 and
P2, it holds that

Pr[succguess
A ] <

1
2

+ negl(n)

Recall that succguess
A occurs if A outputs the correct btest value after querying

Test(1) or Test(2) and P1 is partnered with P2. Now, by the protocol description,
the session identifiers are defined to be (pk1, pk2) and thus if sid1 = sid2 it follows
that P1 and P2 hold the same Diffie-Hellman values. Intuitively, this means that
if A can guess the correct btest value with non-negligible probability, then it
can solve the DDH problem in G with non-negligible advantage. The formal
reduction follows. Let A be a probabilistic polynomial-time adversary and let
ε be a function such that Pr[succguess

A ] = 1
2 + ε(n). We show that ε must be

negligible by presenting a distinguisher D that solves the DDH problem in G
with advantage ε. Distinguisher D receives (ga, gb, k) and attempts to determine
if k = gab or if k ∈R G. D invokes A and when it sends a Send oracle query
to which P1 is supposed to reply with its public-key exchange message, then
D replies with pk1 = ga. Likewise, when A sends an analogous message for P2
then D replies with pk2 = gb. If A does not forward the same pk1, pk2 messages
unmodified (and so P1 and P2 are not partnered) then D outputs a random bit
and halts. Otherwise, it proceeds. (Note that D may need to proceed with the
simulation before knowing if they are partnered. In this case, it assumes that
they will be, and if it turns out to be incorrect it immediately outputs a random
bit and halts.) Now, from this step on, D acts exactly like the honest P1 and P2
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would. In particular, when D reaches the authentication stage 2 of the protocol,
it uses the value k that it received in its input to compute e1 and e2. Likewise,
it uses k to compute sk1 and sk2. Now, when A queries Test(1) or Test(2), D
chooses a random b ∈R {0, 1} and replies with sk1 (or sk2 respectively) if b = 0
and with a random value s̃k ∈R {0, 1}|sk1| otherwise. Finally, D outputs 1 if and
only if A outputs btest = b.

If k = gab then the simulation above by D is exactly what A would see in a
real protocol execution. Therefore,

Pr[D(ga, gb, gab) = 1] =
1
2

+ ε(n)

In contrast, when k is a random value, the simulation by D is “wrong”. In partic-
ular, the e1, e2, sk1, sk2 values are computed using a random key k independent
of pk1, pk2, instead of using gab. We would like to claim that A outputs btest = b
with probability 1/2 in this case, but this may not be true because k has been
used to compute e1, e2 which are seen by A. Thus, if A was not computationally
bounded it could determine btest = b. Nevertheless, we prove that if F is indeed
a pseudorandom function, then A can output btest = b with probability at most
1/2+negl(n). Let δ be a function such that A outputs btest = b in this case with
probability 1/2+ δ(n). We first prove that δ is a negligible function. Specifically,
we construct a distinguisher DF who receives an oracle that is either the pseudo-
random function Fk or a truly random function. DF invokes A and works in the
same way as D with the following differences. First, DF generates random pk1
and pk2 values itself and uses them. Second, it computes e1, e2, sk1, sk2 using
its function oracle. If DF is given a random function oracle, then sk1, sk2 are
completely random and independent of everything that A has seen so far. Thus,
information-theoretically, A outputs btest = b with probability exactly 1/2. In
contrast, if DF is given Fk as an oracle, then it generates exactly the same dis-
tribution as D when k ∈R G is a random value. It follows that in this case A
outputs btest = b with probability 1/2 + δ(n). This implies that∣∣∣Pr[DFk

F (1n) = 1]− Pr[DH
F (1n) = 1]

∣∣∣ = δ(n)

and so δ must be a negligible function, by the assumption that Fk is a pseudo-
random function. Combining the above, we have that∣∣Pr[D(ga, gb, gab) = 1]− Pr[D(ga, gb, k) = 1]

∣∣
=
∣∣∣∣12 + ε(n)− 1

2
− δ(n)

∣∣∣∣ = |ε(n)− δ(n)|

and so ε must also be a negligible function, proving that succguess
A occurs with

probability that is at most negligibly greater than 1/2, as required.

We now prove that for every probabilistic polynomial-time A interacting only
with P1 and P2, it holds that

Pr[succcomp
A ] <

1
2�

+ negl(n)
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Recall that succcomp
A holds if P1 and P2 are not partnered, and yet comp1 =

comp2. Since the session identifier in Π is defined to be the pair of public keys
(pk1, pk2) exchanged in the first phase, we have that succcomp

A can only hold
if P1 and P2 hold different public keys. This occurs if at least one of the keys
sent by an instance was not received as-is by the other instance, but was rather
“modified” en route by A.

We introduce the following notation that will be helpful in the proof below.
If one instance sends a message α, then we denote by α′ the message received
by the other instance. Thus, the public key sent by P1 is denoted pk1 and the
public key received by P2 is denoted pk′1. Using this notation, we have that P1
and P2 are not partnered if P1 has sid1 = (pk1, pk

′
2) and P2 has sid2 = (pk′1, pk2),

and either pk1 �= pk′1 or pk2 �= pk′2 or both.
Now, the first authentication stage involves P2 sending c2 = C(pk2, pk

′
1, 0; r2)

and P1 receiving some c′2. Then, P1 sends r1 and P2 receives r′1. Finally, P2
returns r2 and P1 receives some string r′2. Using the above notation, we have
that succcomp

A occurs if and only if

(pk1, pk
′
2) �= (pk′1, pk2) and g(pk1, pk

′
2, r1, r

′
2) = g(pk′1, pk2, r

′
1, r2) (1)

(Note that comp1 = g(pk1, pk
′
2, r1, r

′
2) and comp2 = g(pk′1, pk2, r

′
1, r2).) Without

loss of generality, we assume that A always causes P1 and P2 to be not part-
nered (otherwise it always fails so this does not make any difference), and so
(pk1, pk

′
2) �= (pk′1, pk2) always. We analyze the probability that Eq. (1) holds in

two disjoint cases related to the possible schedulings of messages by A:

1. Case 1 – P2 sends r2 after P1 has received c′2: The main difficulty in the proof
here is due to the fact that it is theoretically possible that A can make c′2
depend on c2 (and likewise r′2 can depend on r2). Therefore, the inability ofA
to succeed depends on the non-malleability of the commitment scheme C; see
Definition 5 in Appendix A (familiarity with the exact definition is needed
for the proof below). Let A be a probabilistic polynomial-time adversary.
We prove that succcomp

A occurs in this case with probability that is at most
negligibly greater than 2−�. First, we show that there exists an adversary
Â, a relation R̂ and a distribution D̂ for the non-malleability experiment
ExptrealÂ,R̂,D̂

(1n) such that

Pr[ExptrealÂ,R̂,D̂
(1n) = 1] = Pr[succcomp

A ] (2)

Adversary Â for the non-malleability experiment begins by invoking A (the
adversary for the key exchange protocol) and emulating the parties P1 and
P2 until the point that P2 is supposed to send c2. Note that at this point,
the keys pk′1 and pk2 are fully defined. Then, Â outputs z = (pk2, pk

′
1). The

distribution D̂ receives z, chooses a random ra
2 ∈R {0, 1}n/2 and outputs

m1 = (pk2, pk
′
1, 0, ra

2). Adversary Â then receives com1 (by the definition of
C, com1 is a commitment to m1 using random coins rb

2 of length n/2), and
hands it toA as if it is the commitment c2 sent by P2 in the key exchange pro-
tocol. When A sends a commitment c′2 to P1, then Â defines this to be com2
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and outputs it. Following this, as defined in the non-malleability experiment,
Â receives dec1 which is the string (pk2, pk

′
1, 0, r

a
2 , r

b
2). Â defines r2 = (ra

2 , r
b
2)

and hands it to A as if coming from P2. Finally, when A wishes to send r′2
to P1, Â defines dec2 = (pk′2, pk1, 0, ra

2
′, rb

2
′) and σ = (pk1, pk

′
2, r1, r

′
1, r

b
2, r

b
2
′)

where these are the appropriate strings sent in the emulation carried out by
Â (Â needs to include rb

2 and rb
2
′ because these are not part of the mes-

sages m1,m2 but randomness used to generate the commitments). Finally,
R outputs 1 if and only if g(pk1, pk

′
2, r1, r

′
2) = g(pk′1, pk2, r

′
1, r2), where the

values input to g are parsed from m1, m2 and σ. Eq. (2) follows from the
observation that Â’s emulation of an execution of Π for A is perfect, and
from the fact that R outputs 1 if and only if succcomp

A occurs.
Now, by the assumption that the commitment scheme C is non-malleable

with respect to opening, we have that there exists an adversary Â′ such that

Pr[ExptrealÂ,R̂,D̂
(1n) = 1] < Pr[ExptsimÂ′,R̂,D̂

(1n) = 1] + negl(n)

We don’t know how Â′ works, but we do know that it first outputs a string z
and then a pair (σ,m2). The output of the experiment is then equal to 1 if and
only if g(pk1, pk

′
2, r1, r

′
2) = g(pk′1, pk2, r

′
1, r2), where pk1, pk

′
2, pk

′
1, pk2, r1, r

′
1,

r′2 are all derived from z, σ and m2, and ra
2 is uniformly distributed and

independent of all other values. We stress that ra
2 is random and independent

since ra
2 ∈R {0, 1}n/2 is chosen randomly by D̂ and not given to Â′. (Note

that we cannot say anything about rb
2 because this is chosen by Â′ as part

of σ.) We conclude this case by using the computational 2-universality of g.
That is, letting β = comp1 (which is fully defined by z, σ and m2) and
α1 = (pk′1, pk2, r

′
1), α2 = rb

2 (again, fully defined by z and σ), we have that

Prra
2←{0,1}n/2 [g(α1, r

a
2 , α2) = β] <

1
2�

+ negl(n).

Thus
Pr[ExptsimÂ′,R̂,D̂

(1n) = 1] <
1
2�

+ negl(n),

implying that

Pr[succcomp
A ] = Pr[ExptrealÂ,R̂,D̂

(1n) = 1]

< Pr[ExptsimÂ′,R̂,D̂
(1n) = 1] + negl(n) <

1
2�

+ negl′(n)

proving that the probability that succcomp
A is at most negligibly greater than

2−�, as required. (We remark that the above proof only works in the schedul-
ing case where A sends c′2 to P1 before receiving r2 from P2, because in the
non-malleability experiment com2 must be output by the adversary before
it receives dec1.)

2. Case 2 – P2 sends r2 before P1 has received c′2: Observe that phase 2 involves
P2 sending c2, P1 sending r1 and then P2 replying with r2. Thus, in this case,
A effectively runs the executions with P1 and P2 sequentially. That is, A
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concludes phase 2 with P2 before beginning phase 2 with P1. Intuitively, in
this case, succcomp

A can only occur with probability 2−� because comp2 is fixed
before r1 is chosen by P1. Thus, the computational 2-universality of g suffices
to show that comp1 = comp2 with probability at most negligibly greater than
2−�. More formally, let β be the comp2 value of P2. By this scheduling case,
this is fixed before P1 receives c′2 and so, in particular, before it chooses r1.
However, if A can choose r′2 after receiving r1 from P1, then the property of
g no longer holds (recall that α and β must be independent of r). Intuitively
this is not a problem due to the computational binding property of C.

Formally, let A be an adversary for the key exchange protocol; we assume
that A always sends a valid r′2 to P1 (otherwise P1 rejects). We construct
α and β as required for g as follows. Invoke A and emulate an execution
with P1 and P2 until the end of phase 2 with P1. Since phase 2 has finished,
the strings c′2 and r′2 are fully defined, as are pk1, pk

′
1, pk2, pk

′
2, r2, r

′
1 (recall

that phase 2 with P2 concluded before it even started with P1). These values
therefore define α and β as follows: α = (pk1, pk

′
2, r

′
2) and β = comp2 =

g(pk′1, pk2, r
′
1, r2). Now, we argue that

Pr[succcomp
A ] < Prr←{0,1}n [g(α, r) = β] + negl(n) (3)

In order to see that this holds, after A sends r′2 at the end of phase 2 (in the
above procedure for determining α and β), rewind A to the point before r1 is
sent by P1. Then, replace it with the random string r in Eq. (3). The value r1
sent by P1 in the process of determining α and β is identically distributed to
the value r from Eq. (3). Now, there are two possibilities: A sends the same
r′2 as when determining α and β, or A sends a different r′2. In the first case,
we have that succcomp

A occurs if and only if g(α, r) = β. In the second case,
we have that A can be used to contradict the binding property of C (the
formal reduction of this fact is straightforward and thus omitted). Thus, this
case can occur with at most negligible probability. Eq. (3) therefore follows.
By the security of g, we have that succcomp

A occurs with probability at most
negligibly greater than 2−� + negl(n), as required.

This completes the proof of security.
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A Non-malleable Commitments – Definition

Informally speaking, a commitment scheme is non-malleable if given a commit-
ment c it is computationally hard to generate a commitment c′ that is “related”
by some predefined relation R. When considering computationally binding com-
mitments, it is possible that c′ can actually be a commitment to any value.
Therefore, it is not clear what it means that the value committed to in c′ is
related to the value committed to in c. This problem is solved by defining the
notion with respect to opening [7]. This means that given a decommitment for
c to some value x, it is hard for the adversary (who generated c′ after being
given c) to generate a decommitment for c′ to some x′ so that x′ is related to
x. Of course, the probability of success depends on the relation (some are “eas-
ier” than others). Therefore, the requirement is that it is possible to generate
a related commitment c′ given c with the same probability as it is possible to
generate a related x′ without even being given x. This is formalized by defining
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two experiments: a real experiment in which the adversary is given c, and a sim-
ulation experiment where the adversary just outputs a message and hopes that
it’s related. Our formal definition is adapted from [6] with two minor changes.
First, we allow the adversary A to provide input to the distribution machine
that generates the value to be committed to. Second, we allow the adversary to
output state information which is used by the relation. Both of these changes do
not seem to make it particularly easier for the adversary, but they make the def-
inition much more useful for proving the security of protocols which rely on non
malleability. The experiments relate to a probabilistic polynomial-time adversary
A, a polynomial-time computable relation R and a probabilistic polynomial-time
samplable distribution D. We also denote the committer/sender algorithm by
P1 and the receiver algorithm by P2 (the receiver takes for input a commitment
string and a decommitment value and output a string that represents the value
that was committed to). The experiments are defined as follows:

Experiment ExptrealA,R,D(1n):

1. z ← A(1n)
2. m1 ← D(1n, z)
3. (com1, dec1)← P1(m1)
4. com2 ← A(1n, com1)
5. (σ, dec2)← A(1n, com1, dec1)
6. m2 ← P2(com2, dec2)
7. Output 1 if and only if com1 �= com2 and R(σ,m1,m2) = 1

Experiment ExptsimA′,R,D(1n):

1. z ← A′(1n)
2. m1 ← D(1n, z)
3. (σ,m2)← A′(1n)
4. Output 1 if and only if R(σ,m1,m2) = 1

We now define security by stating that for everyA in the real experiment there
exists an A′ who succeeds with almost the same probability in the simulation
experiment. We allow the machine A′ to know the distribution machine D and
relation R (unlike [6]); this suffices for our proof of security and is possibly a
weaker requirement.

Definition 5. A non-interactive commitment scheme C with sender/receiver
algorithms (P1, P2) is non-malleable with respect to opening if for every proba-
bilistic polynomial-time A, every probabilistic polynomial-time samplable distri-
bution D and every polynomial-time computable ternary relation R, there exists
a probabilistic polynomial-time A′ and a negligible function negl such that:

Pr
[
ExptrealA,R,D(1n) = 1

]
< Pr

[
ExptsimA′,R,D(1n) = 1

]
+ negl(n)
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Abstract. Key insulation (KI) and Intrusion resilience (IR) are methods
to protect a user’s key against exposure by utilizing periodic communica-
tions with an auxiliary helper. But existing work assumes a secure channel
between user and helper. If we want to realize KI or IR in practice we must
realize this secure channel. This paper looks at the question of how to do
this when the communication is over what we are more likely to have in
practice, namely a public channel such as the Internet or a wireless net-
work. We explain why this problem is not trivial, introduce models and
definitions that capture the desired security in a public channel setting,
and provide a complete (and surprising) answer to the question of when
KI and IR are possible over a public channel. The information we provide
is important to guide practitioners with regard to the usage of KI and IR
and also to guide future research in this area.

1 Introduction

Key Insulation (KI) [15,16] and Intrusion Resilience (IR) [13,20] are technologies
to protect against key exposure. They have been extensively researched in the
cryptographic community and we have lots of schemes, variations and exten-
sions [13,14,15,16,18,19,20]. However, all this work assumes a secure communi-
cation channel between the parties. If we want to realize KI or IR in practice we
must realize this secure channel. How can this be done? Surprisingly, this funda-
mental question has received no attention until now. We address it and turn up
some surprising answers which have important implications for the realizability
of KI and IR in practice.

1.1 Background

An important threat to the security of cryptography-using applications is ex-
posure of the secret key due to viruses, worms or other break-ins allowed by

M. Fischlin (Ed.): CT-RSA 2009, LNCS 5473, pp. 84–99, 2009.
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operating-system holes. Forward security [1,2,7,10] is one way to counter this,
or at least mitigate the damage caused. Here the user has a single, fixed pub-
lic key pk whose lifetime is divided into stages 1, . . . , N . The secret (signing or
decryption) key evolves with time: at the start of stage i, the user computes its
stage i secret key uski as a function of its stage i− 1 secret key uski−1 and then
discards the latter. The security condition is that for j < i, a break-in during
stage i (resulting in exposure of uski) does not allow the adversary to compute
uskj or compromise its uses. (Meaning that forgery of documents with date j or
decryption of ciphertexts sent in stage j remains hard.) Once uski is exposed,
however, uski+1, . . . ,uskN are automatically compromised (they can be com-
puted from uski), and the best the user can hope to do about this is detect the
break-in and revoke the public key.

Key-insulated (KI) security as introduced by Dodis, Katz, Xu, and Yung
[15,16] and refined by [4] attempts to provide both forward and backward secu-
rity, meaning a break-in during stage i leaves uskj uncompromised for all j �= i.
More generally, break-ins for all stages i ∈ I leave uskj and its uses secure for
all j ∈ [N ] \ I, where [N ] = {1, . . . , N}. To accomplish this, an auxiliary party,
called a helper, is introduced. The secret key uski of stage i is now computed
by the user not merely as a function of uski−1, but also of a key hski sent by
the helper to the user at the start of stage i. The advantage of this system (over
a merely forward-secure one) is that the public key is never revoked. Intrusion
resilience (IR) [20,13] is an extension where forward and backword security are
provided even if both user and helper are compromised as long as the compro-
mise is not simultaneous and, even in the latter case, forward security is assured.
Further extensions and variants include KI with parallel helpers [18] and KI (hi-
erarchical) identity-based encryption [19]. Our discussion below will focus on the
simpler KI case. We will discuss the extension to IR later.

KI security requires that the communication channel between user and helper
is secure. Indeed, if not, meaning if an adversary could obtain the helper keys
hsk1, . . . ,hskN sent over the channel, a single break-in in a stage i would allow
it to compute all subsequent user secret keys by simply using the key-update
process of the user, and KI would end up providing no more than forward secu-
rity, which does not even need a helper. In previous works, this secure-channel
assumption is built into the model, which denies the adversary hskj unless it
has broken in during stage j.

1.2 Realizing the Secure Channel

To deploy KI in practice we must have some way to realize the secure channel.
In some settings it may be possible to do this through physical means, but such
settings are rare. The range of application for KI would be greatly increased if
the communication between user and helper could flow over a public channel
such as the Internet or a wireless network. This would allow the helper to be, for
example, a server on the Internet. Alternatively, the helper could be your cell
phone with the user being your laptop. (In this case, even though the devices
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may be in close proximity, the communication would be over a public wireless
phone network.)

While definitely important for applications, enabling KI over public channels
looks at first to be something trivial. This is because we would appear to know
very well how to implement a secure channel over a public one. After all, isn’t
this the main task of basic cryptography? Specifically, let us just use encryption
and authentication, either under a symmetric key shared by the parties, or under
public keys.

However, we make the important observation that this standard solution runs
into an inherent problem here, where the name of the game is break-in and key
exposure. Namely, if the adversary breaks in during some stage i, one should
realistically assume it exposes not just uski but also any keys used to secure
the channel. (Meaning either the shared key or the user’s decryption key.) This
renders the channel insecure from then on, and key-insulated security vanishes
(more accurately, one has only forward security) as explained above.

The above indicates that realizing KI over a public channel is nontrivial but
not (yet) that it is impossible. The reason is that we have not yet exploited the
full power of the model. Specifically there are two capabilities one can offer the
parties. First, since we are already in a setting where keys evolve, instead of
trying to secure the channel with static keys, we could allow channel-securing
keys to evolve as well. Second, we could allow the update process to be an
interactive protocol rather than merely a single flow.

1.3 Our Model

What the above reflects is that we need a new model to formally investigate the
possibility of KI over a public channel. Providing such a model is the first contri-
bution to our paper. In our model, the user in stage i has (in addition to uski) a
stage i channel-securing key ucki, while the helper has a corresponding hcki. At
the start of stage i + 1, the parties engage in an arbitrary interactive channel-
update protocol. This protocol uses —and aims to get its security from— the
current channel keys ucki, hcki. Its goal is two-fold: to (securely) communicate
hski+1 from helper to user, and to “refresh” the channel keys, meaning deal the
helper with a new key hcki+1 and the user with a corresponding new key ucki+1.
Once the protocol terminates, the user can update uski to uski+1 using hski+1
as before, install ucki+1 as its new channel key, and discard both uski and ucki.
As an example, the protocol could begin with an authenticated session-key ex-
change based on its current channel keys and then use the session key to securely
transfer hski+1 and fresh channel keys. But now, a break-in during period i ex-
poses not only uski and hski but also ucki. Actually we go further, allowing the
adversary to even obtain the user coins underlying the stage i channel-update
protocol execution. This is realistic because the intruder could be on the system
when the protocol executes, but this added adversary capability will make our
proofs harder. While the core elements of the new model are natural and clear,
there are subtle details. In Section 4, we describe our model and provide a formal
definition of KI security over a public channel.
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1.4 Our Results

Now that we have a model, we ask whether it is possible to design KI schemes
secure in this public channel model. Interestingly, the answer turns out to depend
on whether the adversary is active or merely passive. Specifically, the answer is
“no” in the first case and “yes” in the second. Let us now elaborate on these
results.

Active security. The communication security model cryptographers prefer
to consider is that of an active adversary who has full control of the channel.
It can not only see all transmissions, but stop, inject or alter any transmission.
This is the model adopted, for example, in the work of Canetti and Krawczyk
defining notions of secure channels [11,12], and also in work on session-key ex-
change [5,11]. It would be desirable to achieve public-channel KI security in the
face of such an adversary. We show that this is impossible. That is, even in
our above-described model, which allows an interactive channel-update proto-
col and evolving channel-security keys, an active adversary can always succeed
in breaking the scheme. The reason is that after it breaks in, it obtains the
user’s channel-security key and can thus impersonate the user. We note that au-
thentication (such as an authenticated session-key exchange) does not prevent
this since the adversary acquires all the user’s credentials via the break-in. This
negative result is particularly strong because our public-channel KI model is as
generous as one can get, while keeping in the spirit of KI.

There seem to be only two ways to circumvent the negative result. The first is
to revoke the public key upon break-in discovery, but if one is willing to do this,
one may as well just use forward security and avoid the helper altogether. Indeed,
the whole point of the helper and KI is to never have to revoke the public key.
The other possibility is to use an out-of-band method to redistribute channel-
securing keys after break-in discovery such as a physically secure channel. But
this is just an assumed secure channel under another name, exactly what we are
trying to avoid. In conclusion, our result suggests that it would be inadvisable
to implement any form of KI when the channel may be open to active attack.

Passive security. On the positive side, we show that public-channel KI is
possible against an adversary that is allowed only a passive attack on the com-
munication channel. (Meaning it can eavesdrop, but not inject messages.) Our
method is general, meaning it yields a compiler that can take any KI scheme
secure in the secure-channel model and turn it into a KI scheme secure in our
public-channel model under passive attack. The transformation is simple. Our
channel-update protocol begins with a secure key exchange (e.g., Diffie-Hellman)
to get a session key under which the helper encrypts the data it needs to trans-
mit. The key exchange is not authenticated: this is not necessary for security
against passive attack and, given the above, would not help to achieve security
against active attack. We clarify that our choice of channel-update protocol is
purely illustrative. The reader can surely think of others that will work.

This positive result is significant for two reasons. First, it shows that KI is at
least possible over a channel where the adversary may be able to eavesdrop but
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finds it hard to inject or corrupt transmissions. Second, the result shows that our
new method, allowing an interactive channel-update protocol, has borne fruit.
Indeed, even KI under passive attack is not possible when the communication
consists of a single transmission from helper to user.

Although the protocol is simple, there are subtleties in the proof arising from
the strength of our model which allows the adversary to obtain the user coins
from the channel-update protocol execution in any stage in which it breaks in.
A consequence of this is that the starting secure-channel KI scheme needs to
have optimal threshold, meaning be secure even if there are break ins in all but
one stage. Some early secure-channel KI encryption schemes [15] were threshold
and did not have this property, and, in this case, we cannot offer security over
a public channel even in the presence of a passive adversary. Luckily, secure-
channel KI schemes with optimal threshold exist for both encryption [4] and
signatures [16].

Practical implications. Our results imply that KI will only work if one has a
channel whose physical properties preclude active attack. Anyone contemplating
actual usage of KI needs to be aware of this limitation and the need to be careful
about the choice of channel.

1.5 Extensions

The intrusion resilience (IR) setting of [20,13] continues to make the secure-
channel assumption, and our results extend to it. However the model is con-
siderably more complex due to the presence of both refreshes and updates and
again there are subtle details to be careful about in creating the public chan-
nel analog. In the full version of this paper [3], we recall the secure-channel IR
model and then provide a detailed description of our public-channel IR model.
When this is done, the negative result, showing the impossibility of IR over a
public channel in the presence of an active adversary, carries over easily from
the KI case since IR includes KI as a special case. We need to extend the pre-
vious positive result, however. We are able to show that secure key exchange
can still be used for both refresh and update to transform any secure-channel IR
scheme into a public-channel IR scheme secure against passive adversaries. The
proof is, however, more complex than in the KI case and is given in [3]. Similar
extensions hold for the many variant notions in this area, including strong KI
security [15,16] and KI with parallel helpers [18].

1.6 Discussion

Cryptographic protocols commonly make the assumption that parties are con-
nected by secure channels. This abstraction would seem both natural and con-
venient; after all, isn’t this exactly what standard cryptography (encryption and
authentication) gives us? Yet there are settings where secure channels are sur-
prisingly difficult to realize. One example is secure computation, where a secure
channel between each pair of parties is a standard assumption [8]. Yet this chan-
nel is astonishingly difficult to realize, at least in the public-key setting, due in
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part to the selective-decryption problem [17]. Solutions were finally given by [9].
Our work provides another example.

2 Definitions

We let N = {1, 2, . . .} be the set of positive integers, and for N ∈ N we let [N ] =
{1, . . . , N}. The empty string is denoted ε. The notation x

$← S denotes that x is
selected randomly from set S. Unless otherwise indicated, an algorithm may be
randomized. An adversary is an algorithm. If A is an algorithm, then the notation
x

$← A(a1, a2, . . .) denotes that x is assigned the outcome of the experiment of
running A on inputs a1, a2, . . ., with fresh coins. If A is deterministic, we might
write x← A(a1, a2, . . .) instead.

Games. We will use code-based games [6] in definitions and some proofs. We
recall some background here. A game —see Figure 1 for an example— has an
Initialize procedure, procedures to respond to adversary oracle queries, and a
Finalize procedure. A game G is executed with an adversary A as follows. First,
Initialize executes and its outputs are the inputs to A. Then, A executes, its
oracle queries being answered by the corresponding procedures of G. When A
terminates, its output becomes the input to the Finalize procedure. The output
of the latter, denoted GA, is called the output of the game, and we let “GA ⇒ y”
denote the event that this game output takes value y. Variables not explicitly
initialized or assigned are assumed to have value ⊥, except for booleans which
are assumed initialized to false.

Interactive algorithms. We will model each party in a two-party protocol
as an interactive algorithm. Such an algorithm I takes as input an incoming
message Min, a current state St , and a decision d which can be acc, rej or
⊥. Its output, denoted I(Min,St , d), is a triple (Mout,St ′, d′) consisting of an
outgoing message, an updated state, and an updated decision. We require that
if d �= ⊥ then Mout = ⊥, St ′ = St , and d′ = d. Our convention is that the
initial state provided to an interactive algorithm is its local input and random
coins. Given a pair of interactive algorithms (I, J), we assume that the first
move in the interaction always belongs to I. The first incoming message for I is
set to ε. An interactive algorithm terminates when its decision becomes acc or
rej. Once it terminates, it outputs ⊥ as its outgoing message in response to any
incoming message and its state and decision stay the same. The local output of
an interactive algorithm is its final state.

Given a pair of interactive algorithms (I, J) with local inputs xI , xJ and
coins ωI , ωJ respectively, we define Run(I, xI , J, xJ ;ωI , ωJ) to be the quintuple
(Conv,StI , dI ,StJ , dJ) consisting of the conversation transcript (meaning the
sequence of messages exchanged between the parties), I’s local output, I’s de-
cision, J ’s local output, and J ’s decision, respectively, after an interaction in
which I has local input xI and random coins ωI and J has local input xJ and
random coins ωJ . We let Run(I, xI , J, xJ) be the random variable whose value
is Run(I, xI , J, xJ ;ωI , ωJ) when ωI , ωJ are chosen at random.
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3 Key Insulation in the Secure-Channel Model

We will take a modular approach to KI over a public channel, where a public-
channel KI scheme consists of a (standard) secure-channel KI scheme —meaning
one in the model of an assumed-secure channel— together with a channel-key-
update protocol. We will then be able to give “compiler” style results which
transform any secure-channel KI scheme into a public-channel KI scheme for
suitable channel-key-update protocols. (Of course, this is only for passive ad-
versaries since in the active case we will show that KI over public channels is
impossible.) To enable this we first recall a definition of secure-channel KI. The
latter has been defined for both encryption [15,4] and signatures [16]. For sim-
plicity, we will treat the case of signatures. The case of encryption is entirely
analogous and all our results carry over. Our definition below differs from that
of [16] in some details, but this does not affect the results.

A key-updating signature scheme KUS = (KG,HKU,UKU, Sig,Ver) is speci-
fied by five algorithms with the following functionality. The randomized key-
generation algorithm KG returns (pk, usk0, hsk), where pk is the user public
key, usk0 is the stage 0 user secret key, and hsk is the master helper key. The
user is initialized with pk, usk0, while the helper is initialized with pk, hsk. At
the start of stage a ≥ 1, the helper applies the deterministic helper key-update
algorithm HKU to a, pk, hsk to obtain a stage a helper key hska, which is then
assumed to be conveyed to the user via a secure channel. The user receives hska

from the helper and then applies the deterministic user key-update algorithm
UKU to a, pk, hska, uska−1 to obtain the stage a user secret key uska. The user
then discards (erases) uska−1. In stage a the user can apply the signing algo-
rithm Sig to a, its stage a secret key uska, and a message M ∈ {0, 1}∗ to obtain
a pair (a, σ), consisting of the stage number a and a signature σ. During stage a
anyone can apply the deterministic verification algorithm Ver to pk, a message
M , and a pair (i, σ) to obtain either 1, indicating acceptance, or 0, indicating
rejection. We require that if (i, σ), where 1 ≤ i ≤ a, was produced by applying
the signing algorithm to i, uski,M then Ver(pk,M, (i, σ)) = 1.

Security. Consider game KIS of Figure ??. The Initialize procedure provides
adversary A with input pk. A can call its Next oracle to move the system into
the next stage. It may break in during the current stage by calling its Expose
oracle and getting back the user and helper keys for that stage. A may obtain
signatures for messages of its choice during the current stage by calling its Sign
oracle. To win, A must output a message M and a signature (j, σ) such that j
is an unexposed stage, Ver(pk,M, (j, σ)) = 1, and M was not queried to Sign
during stage j. A’s advantage is

Advki
KUS(A) = Pr

[
KISA ⇒ true

]
.

We adopt the convention that the running time of an adversary A is the execu-
tion time of the entire game, including the time taken for initialization, the time
taken by the oracles to compute replies to the adversary’s queries, and the time
taken for finalization.
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procedure Initialize

(pk, usk0, hsk) $← KG ; a ← 0 ; S ← ∅ ; E ← ∅
Return pk

procedure Next()
a ← a + 1
hska ← HKU(a, pk, hsk)
uska ← UKU(a, pk, hska, uska−1)

procedure Expose()
E ← E ∪ {a}
Return (uska, hska)

procedure Sign(M)

(a, σ) $← Sig(a,uska, M)
S ← S ∪ {(a, M)}
Return (a, σ)

procedure Finalize(M, (j, σ))
Return (j �∈ E ∧ (j, M) �∈ S ∧ Ver(pk, M, (j, σ)) = 1)

Fig. 1. Game KIS used to define KI signatures in the secure-channel model

The implicit secure-channel assumption. As discussed in Section 1, the
secure-channel assumption is implicit in the above model. This is due to the fact
that A is not given hska for stages a in which it did not make an Expose query.
Also note that the assumption is necessary, for if A had an additional oracle Get
that returned hska, but the rest of the game was the same, it could win via

Next() ; (hsk1, usk1)← Expose() ; Next()
hsk2 ← Get() ; usk2 ← UKU(2, pk, hsk2, usk1)
(2, σ)← Sig(2, usk2, 0) ; return (0, (2, σ))

4 Key Insulation in the Public-Channel Model

We saw above that a secure channel between helper and user is both assumed
and necessary in the existing notion of KI. Here we consider how the channel
can be implemented. Let us first discuss how key exposure implies failure of the
obvious way to secure the channel.

Static keys won’t secure the channel. The obvious solution is to use
standard cryptography. Let the helper have a signing key sk whose correspond-
ing verification key vk is held by the user, and correspondingly, let the user
have a decryption key dk whose corresponding encryption key ek is held by the
helper. (These keys are generated and distributed honestly and securely along
with usk0, hsk when the system is initialized. The cryptography could be sym-
metric or asymmetric. In the first case, the signature is a MAC and encryption
is symmetric, so that sk = vk and dk = ek. In the second case, the signature
and encryption are public-key based.) Now in stage a, the helper sends (C, σ) to
the user, where C is an encryption of hska under ek and σ is a signature of C
under sk. The user verifies the signature using vk and decrypts C using dk to
get hska. This, however, fails completely to provide security in the key-exposure
setting, even for an adversary that is merely passive with regard to channel ac-
cess. (That is, it can eavesdrop the communication but not send messages itself.)
This is because one must realistically assume that a break-in in a stage a exposes
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all information the user has, which includes not only uska but also dk. Equipped
with uska, dk via the break-in, the adversary can now obtain the stage a + 1
channel transmission (Ca+1, σa+1) via its channel access, decrypt Ca+1 using dk
to get hska+1, and compute uska+1 = UKU(a+ 1, pk, hska+1, uska). Continuing
in this fashion, it can obtain uski for all i ≥ a.

Evolving channel-securing keys. The above is already something of which
potential implementers should be aware, but not yet enough to give up hope
of obtaining KI, for there is an obvious next step, which we take. Namely, let
us allow the channel to be secured not under keys that are static but which
themselves evolve, so that a break-in exposes only the current keys. This section
introduces and formalizes a very general model to this end, where an interactive
protocol (such as a secure key exchange) may be used in each step to provide a
secure channel and also update the channel keys.

Public-channel key updating signature schemes. A public-channel key-
updating signature scheme is a triple PCKUS = (KUS,CKG, (U,H)), where KUS
= (KG,HKU,UKU, Sig,Ver) is a key-updating signature scheme, CKG is the
channel-key-generation algorithm, and the channel-key-update protocol (U,H)
is a pair of interactive algorithms to be run by user and helper, respectively. Let
us now explain how the system runs.

Algorithm CKG returns (uck0, hck0), where uck0 is the stage 0 user channel
key and hck0 is the stage 0 helper channel key. When the user is initialized, in
addition to the public key pk and stage 0 user secret key usk0 produced by KG,
the user is given uck0. When the helper is initialized, in addition to pk and the
master helper key hsk (also generated by KG), the helper is given hck0.

In any stage a (a ≥ 0), the user holds not only its stage a user secret key
uska, but also a stage a user channel key ucka. The helper holds hsk and a
stage a helper channel key hcka. At the start of stage a+1, the helper computes
hska+1 = HKU(a + 1, pk, hsk). The parties then engage in the channel-key-
update protocol (U,H). The local input of U is the stage a user secret key uska,
the stage a user channel key ucka and some random coins ωU

a , while the local
input of H is the stage a + 1 helper key hska+1, the stage a helper channel
key hcka and some random coins ωH

a . After the interaction, the expected local
output of U is hska+1 plus the stage a + 1 user channel key ucka+1, while the
expected local output of H is the stage a+1 helper channel key hcka+1. Once the
protocol has completed, the user can update its key as before, namely it computes
uska+1 = UKU(a + 1, pk, hska+1, uska). It then discards not only uska but also
its previous channel key ucka. We require the natural correctness condition,
namely that the stage a + 1 helper key produced by U in the interaction in
which U has input uska, ucka, ω

U
a and H has input hska+1, hcka, ω

H
a , is hska+1

with probability one. In addition, we require that at the end of the interaction,
U’s decision dU

a+1 and H’s decision dH
a+1 are both acc.

Security.We proceed to formalize two notions of security for public-channel key-
updating signature schemes: key insulation under active and passive attacks. We
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procedure Initialize

(pk,usk0,hsk)
$← KG

(uck0,hck0)
$← CKG

hsk1 ← HKU(1, pk, hsk)

ωU
0

$← COINS ; ωH
0

$← COINS

StU
1 ← (usk0, uck0, ωU

0 )

StH
1 ← (hsk1,hck0, ωH

0 )

a← 0 ; S ← ∅ ; E ← ∅
Return pk

procedure Next()

a← a + 1

If ( dU
a = acc ) then

(hska,ucka)← StU
a

uska ← UKU(a, pk,hska, uska−1)

ωU
a

$← COINS

StU
a+1 ← (uska,ucka, ωU

a )

If ( dH
a = acc ) then

hcka ← StH
a

hska+1 ← HKU(a + 1,pk,hsk)

ωH
a

$← COINS

StH
a+1 ← (hska+1,hcka, ωH

a )

procedure Expose()

E ← E ∪ {a}
Return (uska, hska,ucka, ωU

a )

procedure SendU(Min)

Mout ← ⊥
If ( dU

a = rej ) then dU
a+1 ← rej

If ( dU
a+1 = ⊥ ) then

(Mout,StU
a+1,dU

a+1)← U(Min,StU
a+1,dU

a )

Return (Mout, dU
a+1)

procedure SendH(Min)

Mout ← ⊥
If ( dH

a = rej ) then dH
a+1 ← rej

If ( dH
a+1 = ⊥ ) then

(Mout,StH
a+1,dH

a+1)← H(Min,StH
a+1, dH

a )

Return (Mout, dH
a+1)

procedure Sign(M)

(a, σ)
$← Sig(a, uska, M)

S ← S ∪ {(a, M)}
Return (a, σ)

procedure Finalize(M, (j, σ))

Return (j �∈ E ∧ (j, M) �∈ S∧
Ver(pk, M, (j, σ)) = 1)

procedure Conv()

If ( dU
a+1 = ⊥ ∧ dH

a+1 = ⊥ ) then

(Conv,StU
a+1,dU

a+1, StH
a+1, dH

a+1)
$← Run(U, StU

a+1, H,StH
a+1)

Return (Conv, dU
a+1,dH

a+1)

Fig. 2. Games used to define public-channel key insulation under active and passive
attack. Game PCKI-aa includes all of the procedures except Conv, while game PCKI-pa
includes all except SendU and SendH.

first provide definitions and then explanations. Let PCKUS = ((KG,HKU,UKU,
Sig,Ver),CKG, (U,H)) be a public-channel key-updating signature scheme. We
consider an adversary A interacting with the games of Figure 2. The Initialize
procedure gives A input pk. In an active attack, A is provided with oracles Next,
Expose, SendU, SendH, and Sign, while in a passive attack it is provided with
oracles Next, Expose, Conv, and Sign. It may query the oracles adaptively, in
any order it wants, with the following restriction: In the case of an active adver-
sary, as soon as SendU returns dU

a+1 = acc and SendH returns dH
a+1 = acc, A

makes a query to oracle Next. In the case of a passive adversary, every query to
oracle Conv is immediately followed by a query to oracle Next. Eventually, A
outputs a message M and a signature (j, σ) and halts. An active (resp., passive)
adversary is said to win if game PCKI-aa (resp., PCKI-pa) returns true, meaning
j is an unexposed stage, Ver(pk,M, (j, σ)) = 1, and M was not queried to oracle
Sign during stage j. For atk ∈ {aa, pa}, A’s atk-advantage is
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Advpcki-atk
PCKUS (A) = Pr

[
PCKI-atkA ⇒ true

]
.

Again, we adopt the convention that the running time of an adversary A is the
execution time of the entire game, including the time taken for initialization,
the time taken by the oracles to compute replies to the adversary’s queries, and
the time taken for finalization.

Explanation. An active adversary has full control over the communication
between the helper and the user. It can deliver messages out of order, modify
messages or inject messages of its own choosing. This is modeled by providing
the adversary access to oracles SendU and SendH, which represent the user
and helper, respectively, running the channel-key-update protocol. Once this
protocol terminates, the adversary is required to call its Next oracle to move
the system into the next stage. This models the user updating his keys as soon
as he obtains the helper secret key for the next stage. As in the case of key
insulation in the secure-channel model, the adversary may break in during the
current stage by calling its Expose oracle, but here it gets back the user secret
key, the helper key, the user channel key, and the user’s coins, for that stage. As
before, the adversary may obtain signatures for messages of its choice during the
current stage by calling its Sign oracle. To win, it must output a valid forgery
for an unexposed stage.

A passive adversary cannot modify or inject messages, but it can eavesdrop
on the communication channel, obtaining transcripts of conversations between
the user and the helper. We model this by providing the adversary access to
oracle Conv which runs the channel-key-update protocol and returns the con-
versation transcript and the decisions of U and H. In all other respects, a passive
adversary is like an active adversary: as soon as the channel-key-update protocol
terminates, the adversary is required to call its Next oracle to move the system
into the next stage, the adversary can break in during the current stage, it can
obtain signatures for messages of its choice during the current stage, and its goal
is to produce a valid forgery for an unexposed stage.

5 Impossibility of Public-Channel KI Under Active
Attack

We show that the notion of public-channel key insulation under active attack is
unachievable, meaning all public-channel key-updating signature schemes are vul-
nerable to an active attack. The precise statement of our result is the following.

Theorem 1. Let PCKUS = ((KG,HKU,UKU, Sig,Ver),CKG, (U,H)) be a public-
channel key-updating signature scheme. Let tKG, tHKU, tUKU, tSig, tVer, and tCKG

denote the running times of the corresponding algorithms, and t(U,H) denote the
running time of protocol (U,H). Let m be the maximum number of moves in this
protocol. Then there exists an adversary A against PCKUS that makes one query
to oracle Next, one Expose query, at most �m/2 SendU queries, at most
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2�m/2 SendH queries, and no Sign queries, such that

Advpcki-aa
PCKUS (A) = 1 .

Furthermore, the running time of A is tKG + tCKG +2tHKU +2tUKU +2t(U,H) + tSig.

The proof of the above theorem, which is given in [3], is simple, as is not un-
common for impossibility results, where the key insights are in the development
of the model and the question posed.

6 Possibility of Public-Channel KI Under Passive Attack

Given a KI signature scheme in the secure-channel model, we show in this section
how to transform it into a KI signature scheme secure against passive attack
in the public-channel model. We first discuss the primitives we use, namely
an arbitrary secret-key-exchange protocol and an arbitrary one-time symmetric
encryption scheme.

Secret-key-exchange (SKE) Protocol. An SKE protocol with key length
k is a pair of interactive algorithms (I, J) each of which has local output a k bit
string. We require that

Pr
[
(KI = KJ) ∧ (dI = dJ = acc)

]
= 1 ,

where (Conv,KI , d
I ,KJ , d

J) $← Run(I, ε, J, ε) meaning the parties agree on a
common key. For security we require that the common key be computationally
indistinguishable from random. This is captured by defining the ske-advantage
of an adversary A as

Advske
(I,J)(A) = 2 · Pr

[
SKEA

(I,J) ⇒ true
]
− 1 ,

where game SKE(I,J) is defined in Figure 3.
One example of a suitable SKE protocol is a Diffie-Hellman key exchange. (The

DH key needs to be suitably hashed to a k bit string.) Another possibility, based on
any asymmetric encryption scheme (AKg,AEnc,ADec), works as follows. I picks a
public/secret key pair (pk, sk) by running AKg and sends pk to J. The latter selects
a random k-bit stringK, encrypts it under pk using AEnc and sends the ciphertext
to I. I decrypts the ciphertext with sk using ADec to obtain K.

Symmetric encryption. A symmetric encryption scheme SE = (SEnc, SDec)
with key length k consists of two algorithms. The encryption algorithm SEnc
takes a k bit key K and plaintext M ∈ {0, 1}∗ to return a ciphertext C. The
decryption algorithm SDec takes K and C to return either a plaintext M or the
symbol ⊥. We require

Pr
[
K

$← {0, 1}k : SDec(K, SEnc(K,M)) = M
]

= 1

for all M ∈ {0, 1}∗. We also require standard IND-CPA security except that it
need only be one-time. This is captured by letting

Advind-cpa
SE (A) = 2 · Pr

[
INDCPAA

SE ⇒ true
]
− 1 ,
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procedure Initialize

b
$← {0, 1}

procedure Conv()

(Conv, K1, d
I , K1, d

J ) $← Run(I, ε, J, ε)

K0
$← {0, 1}k

Return (Conv, dI , dJ , Kb)

procedure Finalize(d)
Return (b = d)

procedure Initialize

K
$← {0, 1}k

b
$← {0, 1}

procedure LR(M0, M1)

C
$← SEnc(K, Mb)

Return C

procedure Finalize(d)
Return (b = d)

Fig. 3. Game SKE(I,J) on the left is used to define security of SKE protocol (I, J) and
game INDCPASE on the right is used to define security of symmetric encryption scheme
SE = (SEnc, SDec). In both cases, the key length is k.

where game INDCPASE is in Figure 3 and A is required to make only one LR
query (this is how the one-time requirement is captured), consisting of a pair of
equal-length messages.

Construction. Let KUS = (KG,HKU,UKU, Sig,Ver) be a key-updating sig-
nature scheme. We transform it into a public-channel key-updating signature
scheme PCKUS = (KUS,CKG, (U,H)), where CKG always returns (ε, ε), by defin-
ing the channel-key-update protocol (U,H) in terms of any secret-key-exchange
protocol (I, J) and symmetric encryption scheme SE = (SEnc, SDec), both with
the same key length k, as follows. The parties first run the secret-key-exchange
protocol, with U playing the role of I and H playing the role of J, to agree on a
common key K. The helper then encrypts hski under K using SEnc to obtain a
ciphertext C which it sends to the user. The latter decrypts C under K using
SDec to obtain hski.

We clarify that this particular channel-update protocol is chosen for illustra-
tive purposes. Many others are possible, as the reader will probably see. However,
it does include several different instantiations, arising from the different available
choices of SKE protocols mentioned above.

Security of our construction. We prove that if the given key-updating
signature scheme is KI in the secure-channel model and the secret-key-exchange
protocol as well as the symmetric encryption scheme are secure, then the public-
channel key-updating signature scheme obtained using our construction is KI
under passive attack in the public-channel model.

Theorem 2. Let KUS = (KG,HKU,UKU, Sig,Ver) be a key-updating signature
scheme. Let PCKUS = ((KG,HKU,UKU, Sig,Ver),CKG, (U,H)) be the public-
channel key-updating signature scheme constructed from KUS, secret-key-
exchange protocol (I, J) and symmetric encryption scheme SE = (SEnc, SDec)
as described above. Let tKG, tHKU, tUKU, tSig, tVer, and tCKG denote the running
times of the corresponding algorithms, and t(U,H) denote the running time of pro-
tocol (U,H). Let A be an adversary against PCKUS, making q queries to oracles
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Conv and Next, qE queries to Expose, and qS queries to Sign. Then there
exist adversaries E, B, S such that

Advpcki-pa
PCKUS (A) ≤ q ·Advske

(I,J)(E) + q ·Advind-cpa
SE (B) + q ·Advki

KUS(S) . (1)

Furthermore, the running times of E, B are both tKG+tCKG+qN ·tHKU+qN ·tUKU+
qS · tSig + q · t(U,H), and the running time of S is tCKG +O(q+ qS + qE)+ q · t(U,H).
Also S makes q − 1 queries to its Expose oracle and q queries to its Next
oracle.

Proof overview. The proof that our construction achieves public-channel KI
security under passive attack seems easy at first, but there are subtle difficulties
arising from the fact that our model allows the adversary to obtain the user coins
from the channel-update protocol execution in any stage in which it breaks in.
This means that the adversary obtains the session key, and can check whether
the ciphertext transmitted by the helper decrypts to the helper secret key for
the stages in question, a value it also has from its break-in. Of course, in the
real protocol, this will always be true. But the natural simulation is to consider
a protocol in which, rather than encrypting the helper key under the session
key yielded by the session-key exchange protocol, the helper encrypts a constant
under a new, random key. The security of the session-key exchange protocol
and the encryption scheme should imply that this makes no difference. However,
the adversary can in fact detect the difference between the simulation and the
real game because, as we said above, it can obtain the real session key and
decrypt the ciphertext under it. To get around this, we guess a stage in which
the adversary does not break in, and switch to the simulated key and message
only in this stage, using the real key and real message in other stages. But to
do this, our simulation needs to know the real message, which is the helper
secret key, and the only way to get this is to break in. Luckily, it can do so by
consequence of the assumed security of the underlying secure-channel KI scheme,
but the result is a discrepancy in resources: even if the adversary against the
public channel protocol does very few break-ins, the adversary against the secure-
channel protocol breaks-in to N−1 out of N stages. Therefore, it is required that
the given secure-channel scheme be secure against N − 1 break-ins. Luckily, we
have such schemes. For signatures, the schemes of [16] have the desired property.
For encryption, some of the original schemes of [15] are threshold and don’t have
the property, but the scheme of [4] does. Due to space limitations, we defer the
full proof of Theorem 2 to [3].

7 Intrusion Resilience in the Public-Channel Model

As in the case of key insulation, we take a modular approach to IR over a pub-
lic channel, where a public-channel IR scheme consists of a secure-channel IR
scheme—meaning one in the model of an assumed-secure channel—together with
a channel-key-update protocol and a channel-key-refresh protocol. We will then
show how to transform any secure-channel IR scheme into a public-channel IR
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scheme secure against passive adversaries for suitable channel-key-update and
channel-key-refresh protocols. IR has been defined for signatures [20] and encryp-
tion [13,14]. For simplicity, we treat the case of signatures. The case of encryption
is entirely analogous. In [3] we recall a definition of secure-channel IR, present
our model for public-channel IR signatures, and construct a public-channel IR
signature scheme secure against passive attack based on any secure-channel IR
signature scheme, any secret-key-exchange protocol and any symmetric encryp-
tion scheme.
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Abstract. Zero-knowledge set is a primitive introduced by Micali, Ra-
bin, and Kilian (FOCS 2003) which enables a prover to commit a set to
a verifier, without revealing even the size of the set. Later the prover can
give zero-knowledge proofs to convince the verifier of membership/non-
membership of elements in/not in the committed set. We present a
new primitive called Statistically Hiding Sets (SHS), similar to zero-
knowledge sets, but providing an information theoretic hiding guarantee,
rather than one based on efficient simulation. Then we present a new
scheme for statistically hiding sets, which does not fit into the “Merkle-
tree/mercurial-commitment” paradigm that has been used for all zero-
knowledge set constructions so far. This not only provides efficiency gains
compared to the best schemes in that paradigm, but also lets us pro-
vide statistical hiding; previous approaches required the prover to main-
tain growing amounts of state with each new proof for such a statistical
security.

Our construction is based on an algebraic tool called trapdoor DDH
groups (TDG), introduced recently by Dent and Galbraith (ANTS 2006).
However the specific hardness assumptions we associate with TDG are
different, and of a strong nature — strong RSA and a knowledge-of-
exponent assumption. Our new knowledge-of-exponent assumption may
be of independent interest. We prove this assumption in the generic group
model.

1 Introduction

Zero-knowledge set is a fascinating cryptographic primitive introduced by Micali,
Rabin, and Kilian [22], which has generated much interest since then
[24,21,10,8,17,9]. It enables a party (the prover) to commit a set — without
revealing even its size — to another party (the verifier). Later the verifier can
make membership queries with respect to the committed set; the prover can
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answer these queries and give proofs to convince the verifier of the correctness
of the answers, without revealing anything further about the set.

In this paper, we revisit the notion of zero-knowledge sets. We provide an
alternate notion — which we call statistically hiding sets (SHS) — that replaces
the zero-knowledge property by the slightly weaker requirement of “statisti-
cal hiding.” Statistical hiding, unlike zero-knowledge, does not require efficient
simulatability; this relaxation is comparable to how witness-independence is a
weakening of zero-knowledge property for zero-knowledge proofs. But the intu-
itive security guarantees provided by SHS is the same as that provided by zero-
knowledge sets. (In particular, the informal description in the previous paragraph
is applicable to both.)

Then we present a novel scheme for this new primitive, significantly departing
from previous approaches for building zero-knowledge sets. While all previous
approaches for zero-knowledge sets used a tree-based construction (along with a
primitive called mercurial commitments), ours is a direct algebraic construction.
To the best of our knowledge, this is the first construction for this kind of primi-
tive that does not fit into the Merkle-tree/mercurial-commitment paradigm. This
construction (a) provides statistical zero-knowledge, without the prover having
to maintain growing amounts of state with each new proof1 and (b) provides effi-
ciency gains compared to previous constructions of zero-knowledge sets. Further,
since the techniques used are different, our construction opens up the possibil-
ity of building zero-knowledge sets (or SHS) with certain features that are not
amenable to the Merkle-tree/mercurial-commitment based approach.

Our construction is based on trapdoor DDH groups (TDG), a primitive intro-
duced recently by Dent and Galbraith [13]. Ours is perhaps the first non-trivial
application of this cryptographic primitive, illustrating its potential and versatil-
ity. The specific hardness assumptions we associate with TDG are different from
those in [13], and of a strong nature (strong RSA and a Knowledge-of-Exponent
assumption). While we believe these assumptions are reasonable given the state-
of-the-art in algorithmic number theory, we do hope that our approach leads to
newer efficient constructions of statistically hiding sets and similar tools based
on more standard assumptions. We also hope that our work will help in better
understanding certain powerful assumptions. In particular, the new simple and
powerful knowledge-of-exponent assumption that we introduce (and prove to
hold in a generic group model) may be of independent interest. See Section 1.4
below for more details.

1.1 Our Contributions

We briefly point out the highlights of this work, and discuss the tradeoffs we
achieve.

1 The Merkle-tree based approach requires the prover to use a pseudorandom function
to eliminate the need for maintaining state that grows with each new proof. This
makes the resulting zero-knowledge computational rather than perfect or statistical.
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– Prior constructions for ZK sets either required the prover to accumulate
more state information with each query, or guaranteed only computational hid-
ing (which was based on the security of pseudorandom functions). In contrast,
our construction for SHS provides unconditional statistical hiding (without grow-
ing state information). In particular, this makes our scheme unconditionally for-
ward secure: even an unbounded adversary cannot break the security after the
commitments and proofs are over.

However, our soundness guarantee depends on new complexity assumptions
(see Section 1.4). But as we explain below, complexity assumptions are more
justified when used for soundness than when used for hiding.

– Compared to previous ZK set constructions, we obtain efficiency gains in
communication complexity and in the amount of private storage that the prover
has to maintain after the commitment phase. The computational complexity of
verification of the proofs is also better, depending on the specifics of the mercurial
commitments and the group operations involved. However, the computational
complexity of generating the proofs is higher in our case. In [25] we provide a
detailed comparison.

– Since all previous constructions of ZK sets use a Merkle-tree/mercurial
commitmet based approach, we consider it an important contribution to provide
an alternate methodology. We hope that this can lead to constructions with
features that could not be achieved previously. In particular, our construction
suggests the possibility of achieving a notion of updateability with better privacy
than obtained in [21]. We do not investigate this here.

– The definition of SHS is also an important contribution of this work. It dif-
fers from the definition of ZK sets in certain technical aspects (see Section 1.3)
which might be more suitable in some situations. But more importantly, it pro-
vides a technically relaxed definition of security, retaining the conceptual security
guarantees of ZK sets.2 This technical relaxation has already helped us achieve a
fixed-state construction with statistical security. Going further, we believe SHS
could lead to better composability than ZK sets, because the hiding guarantee
is formulated as a statistical guarantee and not in terms of efficient simulation.
Again, we leave this for future investigation.

– Finally, in this work we introduce a new “knowledge-of-exponent” assump-
tion (called KEA-DDH), closely related to the standard DDH assumption. We
prove that the assumption holds in the generic group model. Due to its natural-
ity, the new assumption could provide a useful abstraction for constructing and
analysing new cryptographic schemes.

On the use of computational assumptions for soundness. The main disadvantage
of our construction is the use of non-standard computational assumptions. How-
ever, we point out an arguably desirable trade-off it achieves, compared to existing
constructions of ZK sets. When maintaining growing state information is not an

2 The relaxation is in that we do not require efficient simulation. Note that compared
to computational ZK sets, SHS’ security is stronger in some aspects. We remark that
though one could define computationally hiding sets, such a primitive does not have
the above mentioned advantages that SHS has over ZK sets.
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option, existing ZK set constructions offer only computational security for the
prover,based on the security of the pseudorandomfunction being used. If the pseu-
dorandom function gets broken eventually (due to advances in cryptanalysis, or
better computational technology), then the prover’s security is lost.

In contrast, our SHS construction provides unconditional and everlasting se-
curity for the prover. Further, security guarantee for the verifier depends only
on assumptions on prover’s computational ability during the protocol execution.
So, in future, if the assumptions we make turn out to be false and even if an
explicit algorithm is found to violate them, this causes no concern to a verifier
who accepted a proof earlier.

In short, our use of stronger complexity assumptions is offset by the fact that
they are required to hold only against adversaries operating during the protocol
execution. In return,we obtain unconditional security after the protocol execution.
Statistically Hiding Databases. Merkle-tree based constructions of zero-
knowledge sets naturally extend to zero-knowledge database with little or no
overhead. Our construction does not extend in this manner. However in the full
version [25] we point out a simple way to use zero-knowledge sets (or statistically
hiding sets) in a black-box manner to implement zero-knowledge databases (or
statistically hiding databases, respectively).

1.2 Related Work

Micali, Rabin and Kilian introduced the concept of zero-knowledge sets, and
provided a construction based on a Merkle-tree based approach [22]. All sub-
sequent constructions have followed this essential idea, until now. Chase et al.
abstracted the properties of the commitments used in [22] and successfully for-
malized a general notion of commitments named mercurial commitments [10].
Catalano et al. [8] further clarified the notion of mercurial commitments used
in these constructions. More recently Catalano et al. [9] introduced a variant of
mercurial commitments that allowed using q-ary Merkle-trees in the above con-
struction to obtain a constant factor reduction in the proof sizes (under stronger
assumptions on groups with bilinear pairing).

Liskov [21] augmented the original construction of Micali et al. to be up-
datable. Gennaro and Micali [17] introduced a non-malleability-like requirement
called independence and constructed mercurial commitments with appropriate
properties which when used in the Merkle-tree based construction resulted in a
zero-knowledge set scheme with the independence property. Ostrovsky et al. [24]
extended the Merkle-tree based approach to handle more general datastruc-
tures (directed acyclic graphs); however in their notion of privacy the size of the
data-structure is allowed to be publicly known, and as such they do not require
mercurial commitments.

Our construction is motivated by prior constructions of accumulators. The
notion of accumulators was first presented in [5] to allow rolling a set of values
into one value, such that there is a short proof for each value that went into it.
Barić and Pfitzmann [3] proposed a construction of a collision-resistant accumu-
lator under the strong RSA assumption. Camenisch and Lysyanskaya [6] further
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developed a dynamic accumulator so that accumulated values can be added
or removed from the accumulator. The most important difference between an
accumulator and a zero-knowledge set is that the former does not require the
prover to provide a proof of non-membership for elements not accumulated.
Our scheme bears resemblance to the “universal accumulators” proposed in Li
et al. [20], which does allow proofs of non-membership, but does not have the
zero-knowledge or hiding property. Subsequent to our work Xue et al. [27] have
proposed a more efficient scheme, secure in the random oracle model.

Trapdoor DDH groups were introduced by [13], and to the best of our knowl-
edge has not been employed in any cryptographic application (except a simple
illustrative example in [13]). They also gave a candidate for this primitive based
on elliptic curve groups with composite order, using “hidden pairings.” Indeed,
Galbraith and McKee [15] had pointed out that if the pairing operation is not
hidden, typical hardness assumptions like the RSA assumption may not be justi-
fied in those groups. [13] also defined another primitive called Trapdoor Discrete
Logarithm groups; however the candidate they proposed for this – with some
reservations – was subsequently shown to be insecure [23].

Our hardness assumptions on TDG are different from those in [13]. The first
assumption we use, namely the Strong RSA assumption, was introduced by Barić
and Pfitzmann in their work on accumulators [3] mentioned above, as well as by
Fujisaki and Okamoto [14]. Subsequently it has been studied extensively and used
in a variety of cryptographic applications (for e.g. [16,11,7,1,6,2,26]). The second
assumption we make is a Knowledge-of-Exponent Assumption (KEA). The first
KEA, now called KEA1, was introduced by [12], to construct an efficient public
key cryptosystem secure against chosen ciphertext attacks. Hada and Tanaka
[19] employed it together with another assumption (called KEA2) to propose
3-round, negligible-error zero-knowledge arguments for NP. Bellare and Palacio
in [4] falsified the KEA2 assumption and used another extension of KEA1, called
KEA3, to restore the results in [19].

1.3 Differences with the Original Definition

Our definition differs from that of Micali, Rabin and Kilian [22] in several tech-
nical aspects. The original definition was in the setting of the trusted setup of
a common reference string; it also required proofs to be publicly verifiable; the
zero-knowledge property was required for PPT verifiers and was defined in terms
of a PPT simulator (the indistinguishability could be computational, statistical
or perfect).

In contrast, we define an SHS scheme as a two-party protocol, with no require-
ment of public verifiability of the proofs; but we do not allow a trusted setup.
We require the hiding property to hold even when the verifier is computationally
unbounded; but we do not require an efficient simulation.

As mentioned before, we consider these differences to be of a technical nature:
the basic utility provided by SHS is the same as that by ZK sets. However we do
expect qualitative differences to show up when considering composition issues
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(cf. parallel composition of zero-knowledge proofs and witness indistinguishable
proofs). We leave this for future investigation.

Our definition of the statistical hiding property is formulated using a compu-
tationally unbounded simulation. It is instructive to cast our security definition
(when the verifier is corrupt) in the “real-world/ideal-world” paradigm of def-
initions that are conventional for multi-party computation. In the ideal world
the corrupt verifier (simulator) can be computationally unbounded, but gets
access only to a blackbox to answer the membership queries. We require a sta-
tistically indistinguishable simulation — effectively requiring security even in a
computationally unbounded “environment.” (However our definition is not in
the Universal Composition framework, as we do not allow the environment to
interact with the adversary during the protocol.)

In [25] we include a further discussion of the new definition, comparing and
contrasting it with the definition of zero-knowledge proofs.

1.4 Assumptions Used

The hardness asssumptions used in this work are of a strong nature. We use
a combination of a strong RSA assumption and a knowledge-of-exponent as-
sumption. Further these assumptions are applied to a relatively new family of
groups, namely, trapdoor DDH groups. Therefore we advise caution in using our
protocol before gaining further confidence in these assumptions. Nevertheless
we point out that the assumptions are used only for soundness. The statistical
hiding property is unconditional. This means that even if an adversary manages
to violate our assumptions after one finishes using the scheme, it cannot violate
the security guarantee at that point.

The knowledge of exponent assumption we use — called KEA-DH — is a
new proposal, but similar to KEA1 introduced in 1991 by Damgard [12]. We
believe this powerful assumption could prove very useful in constructing effi-
cient cryptographic schemes, yet is reasonable enough to be safely assumed in
different families of groups. In this work we combine KEA-DH with another
(more standard) assumption called the strong RSA assumption. In Section 3 we
descibe these assumptions, and in the full version [25] we provide some further
preliminary observations about them (including a proof that KEA-DH holds in
a generic group model).

Our construction depends on the idea of trapdoor DDH groups by Dent and
Galbraith [13]. (But our use of this primitive does not require exactly the same
features as a trapdoor DDH scheme offers; in particular, we do not use the DDH
assumption.)

2 Statistically Hiding Sets

In this section we present our definition of statistically hiding sets (SHS). It is
slightly different from the original definition of zero-knowledge sets of Micali et
al. [22], but offers the same intuitive guarantees.
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Notation. We write Pr[experiment : condition] to denote the probability that a
condition holds after an experiment. An experiment is a probabilistic computa-
tion (typically described as a sequence of simpler computations); the condition
will be in terms of variables set during the experiment. We write {experiment :
random variable} to denote the distribution in which a random variable will be
distributed after an experiment.

The security parameter will be denoted by k. By a PPT algorithm we mean a
non-uniform probabilistic algorithm which terminates within poly(k) time for
some polynomial poly. We say two distributions are almost the same if the
statistical difference between them is negligible in k.

Statistically Hiding Set Scheme: Syntax. A (non-interactive) SHS scheme con-
sists of four PPT algorithms: setup, commit, prove and verify.

– setup: This is run by the verifier to produce a public-key/private-key pair:
(PK,VK) ← setup(1k). Here k is the security parameter; the public-key PK
is to be used by a prover who makes a commitment to the verifier, and
the private (verification) key VK is used by the verifier to verify proofs of
membership and non-membership.

– commit: Algorithm used by the prover to generate a commitment σ of a
finite set S, along with private information ρ used for generating proofs: it
takes as input (σ, ρ)← commit(S,PK).

– prove: Algorithm used by the prover to compute non-interactive proofs of
memberships or non-memberships of queried elements: π ← prove(x, ρ,PK).
Here π is a proof of membership or non-membership of x in a set S that
was committed using commit; ρ is the the private information computed by
commit.

– verify: Algorithm used by the verifier to verify a given proof of membership
or non-membership: b ← verify(π, σ, x,VK). The output b is either a bit 0
or 1 (corresponding to accepting a proof of non-membership, or a proof of
membership, respectively), or ⊥ (corresponding to rejecting the proof).

Statistically Hiding Set Scheme: Security. Let Uk stand for the universal set of
elements allowed by the scheme for security parameter k (i.e., the sets committed
using the scheme are subsets of Uk). Uk can be finite (e.g., {0, 1}k) or infinite
(e.g. {0, 1}∗). We say that PPT algorithms (setup, commit, prove, verify) form a
secure SHS scheme if they satisfy the properties stated below.
• Perfect completeness: For any finite set S ⊆ Uk, and x ∈ Uk,

Pr
[
(PK,VK)← setup(1k); (σ, ρ)← commit(PK, S);π ← prove(PK, ρ, x);

b← verify(VK, π, σ, x) : x ∈ S =⇒ b = 0 and x �∈ S =⇒ b = 1
]

= 1

That is, if the prover and verifier honestly follow the protocol, then the verifier
is always convinced by the proofs given by the prover (it never outputs ⊥).
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• Computational Soundness: For any PPT adversary A, there is a negligible
function ν s.t.

Pr
[
(PK,VK)← setup(1k); (σ, x, π0, π1)← A(PK); b0 ← verify(VK, π0, σ, x);

b1 ← verify(VK, π1, σ, x) : b0 = 0 and b1 = 1
]
≤ ν(k)

That is, except with negligible probability, an adversary cannot produce a
commitment σ and two proofs π0, π1 which will be accepted by the verifier
respectively as a proof of non-membership and of membership of an element x
in the committed set.
• Statistical Hiding: There exists a distribution simcommit(PK), and two dis-
tributions simprove0(PK, ρ, x) and simprove1(PK, ρ, x), such that for every ad-
versary A (not necessarily PPT), and every finite S ⊆ Uk and any polynomial
t = t(k), the following two distributions have a negligible statistical distance
between them.

{
(PK, s0)← A(1k; aux(S));

(σ, ρ)← commit(PK, S);
π0 := σ;
for i = 1, . . . , t

(xi, si)← A(si−1, πi−1);
πi ← prove(PK, ρ, xi);

endfor

: (st, πt)
}

{
(PK, s0)← A(1k; aux(S));

(σ, ρ)← simcommit(PK);
π0 := σ;
for i = 1, . . . , t

(xi, si)← A(si−1, πi−1);
πi ← simproveχS

xi
(PK, ρ, xi);

endfor

: (st, πt)
}

Here aux(S) denotes arbitrary auxiliary information regarding the set S being
committed to.3 χS

x is a bit indicating x ∈ S or not, which is the only bit of infor-
mation that each invocation of simprove uses. In the outcome of the experiment,
the state st may include all information that A received so far, including σ and
all the previous proofs πi.

Note that the second of these two distributions does not depend on S, but
only on whether xi ∈ S for i = 1, . . . , t. We do not require the distributions
simcommit(·) and simprove(·) to be efficiently sampleable. An alternate (but
equivalent) definition of the hiding property is in terms of a (computationally
unbounded) simulator which can statistically simulate an adversary’s view, with
access to only an oracle which tells it whether x ∈ S for each x for which it has
to produce a proof.

3 We include aux only for clarity, because by virtue of the order of quantifiers (∀A and
S) we are allowing A auxiliary information about the set S.
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3 Trapdoor DDH Group

Following Dent and Galbraith[13], we define a trapdoor DDH group (TDG, for
short) as follows. The hardness assumptions we make on such a group are dif-
ferent.

A TDG is defined by two PPT algorithms: a group generation algorithm Gen
and a trapdoor DDH algorithm TDDH.

– Gen takes as input the security parameter k (in unary), and outputs a de-
scription (i.e., an algorithm for the group operation) for a group G, an el-
ement g ∈ G, an integer n = 2O(k) as an upperbound on the order of g
in G, and a trapdoor τ . The representation of this output should be such
that given a tuple (G, g, n) (purportedly) produced by Gen(1k), it should be
possible to efficiently verify that G is indeed a group and g ∈ G has order at
most n.4

– TDDH takes as input (G, g, n, τ) produced by Gen, as well as elements A,B,C
and outputs 1 if and only if A,B,C ∈ G and there exist integers a, b, c such
that A = ga, B = gb, C = gab.

We make the following two hardness assumptions on a TDG.

Assumption 1 (Strong RSA Assumption). For every PPT algorithm A,
there is a negligible function ν such that Pr

[
(G, g, n, τ) ← Gen(1k); (x, e) ←

A(G, g, n) : x ∈ G, e > 1 and xe = g
]
< ν(k). The probability is over the coin

tosses of Gen and A.

Assumption 2 (Diffie-Hellman Knowledge of Exponent Assumption).
(KEA-DH) For every PPT adversary A, there is a PPT extractor E and a
negligible function ν such that

Pr
[
(G, g, n, τ)← Gen(1k); (A,B,C)← A(G, g, n; r); z ← E(G, g, n; r)

:
(
∃a, b : A = ga, B = gb, C = gab

)
, C �= Az , C �= Bz

]
< ν(k).

Here r stands for the coin tosses of A; E may toss additional coins. The proba-
bility is over the coin tosses of Gen, A (namely r), and any extra coins used by
E.

Further this holds even if A is given oracle access to a DDH oracle for the
group G. The extractor E does not access this oracle.

Informally, KEA-DH says that if an adversary takes g generated by Gen and
outputs a DDH tuple (ga, gb, gab), then it must know either a or b. However,
since A may not know the order of g in G, the integers a, b are not unique.
4 The upperbound on the order of g can often be the order of G itself, which could

be part of the description of G. We include this upperbound explicitly in the output
of Gen as it plays an important role in the construction and the proof of security.
However we stress that the exact order of g will be (assumed to be) hard to compute
from (G, g, n).
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For our use later, we remark that the extractor E can be modified to output
its inputs as well as the output of A, along with z. Then KEA-DH asserts that if
there exists an adversary that takes (G, g, n) as input and produces (α,A,B,C)
which satisfies some prescribed property and in which (A,B,C) is a DDH tuple,
with non-negligible probability, then there is a machine E which takes (G, g, n)
as input, and with non-negligible probability outputs (G, g, α,A,B,C, z) such
that (α,A,B,C) satisfies the prescribed property and either C = Az or C = Bz ,

In [25] we discuss the trapdoor DDH group proposed by Dent and Gal-
braith [13], and also make preliminary observations about our assumptions
above. In particular we prove that KEA-DH holds in a generic group with a
bilinear pairing operation.

Note that in Assumption 2 we allow A access to a DDH oracle in G, but
requires an extractor which does not have this access. This captures the intuition
that A cannot effectively make use of such an oracle: either a query to such an
oracle can be seen to be a DDH tuple by considering how the tuple was derived,
or if not, it is highly unlikely that it will be a DDH tuple. Indeed, this is the case
in the generic group. Finally, we point out that in the KEA-DH assumption the
adversary does not obtain any auxiliary information (from Gen, for instance).
For proving the security of our construction it will be sufficient to restrict to
such adversaries (even though we allow auxiliary information in the security
definition).

4 Our Construction

Our SHS construction somewhat resembles the construction of accumulators in
[3,16,18,6,20]. In the following we require the elements in the universe (a finite
subset of which will be committed to) to be represented by sufficiently large
prime numbers. In [25] we show that such a representation is easily achieved
(under standard number theoretic conjectures on dsitribution of prime numbers).

Construction 1 (Statistically Hiding Sets). The construction consists of
the following four algorithms:

1. setup The verifier takes the security parameter k as the input and runs a
trapdoor DDH group generation algorithm to obtain (G, g, n, τ). The verifier
then sends (G, g, n) to the prover. The prover verifies that G is indeed a group
and g ∈ G has order at most n. (Recall that an upper bound on the order of
g is explicitly included as part of description of G. See Footnote 4.) In the
following let N = 2kn.

2. commit To commit to a set S = {p1, p2, . . . , pm}, the prover chooses an
integer v ∈ {0, . . . , N − 1} at random and computes

u =
i=m∏
i=1

pi C = guv

and outputs σ = C as the public commitment and ρ = uv as the private
information for generating proofs in future.
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3. prove When the prover receives a query about an element p, it will respond
depending on whether p ∈ S or not:
– p ∈ S: In this case the prover computes u0 = u/p and C0 = gvu0 and

sends π = (yes;C0) to the verifier.
– p /∈ S: Since v < p and gcd(p, u) = 1, we have gcd(p, uv) = 1. The

extended Euclidean algorithm allows the prover to compute integers
(a0, b0) such that a0uv + b0p = 1. The prover then chooses a number
γ ∈ {0, . . . , N − 1} at random, and forms the pair of integers (a, b) :=
(a0+γp, b0−γuv). Finally, the prover evaluates A = ga, B = gb, D = Ca

and sends π = (no;A,B,D) to the verifier.
4. verify When the verifier queries about an element p and receives a proof π

from the prover, it does the following:
– If π is of the form (yes, C0), i.e., the prover asserts that p ∈ S, then the

verifier checks if Cp
0 = C holds. It outputs 1 if the preceding equation

holds, and ⊥ otherwise.
– If π is of the form (no, A,B,D), i.e., the prover claims p /∈ S, then the

verifier checks if TDDH(A,C,D; G, g, τ) = 1 (i.e., whether (g,A,C,D) is
a DDH tuple in G) and if D ·Bp = g holds in the group. It outputs 0 if
both the checks are satisfied, and ⊥ otherwise.

5 Security of Our Scheme

Theorem 1. Under the strong RSA and the KEA-DH assumptions, Construc-
tion 1 is a secure statistically hiding set scheme.

In the rest of this section we prove this. The soundness of the construction
depends on the computational assumptions (Lemma 2), but the statistical hiding
property is unconditional (Lemma 6 which is proven using Lemma 3, Lemma 4
and Lemma 5).

Completeness. For the completeness property, we need to show that an honest
prover can always convince the verifier about the membership of the queried
element.

Lemma 1. Construction 1 satisfies the completeness property.

Proof. For any finite set S and any element p, we show that an honest prover’s
proof of membership or non-membership will be accepted by an honest verifier.
Let S = {p1, . . . , pm}, let u, v be computed as in the commitment phase of our
construction and p be an element queried by the verifier.

If p ∈ S, then p | uv and so uv/p is an integer. So the prover can indeed
compute C0 = guv/p and send it to the verifier. The verifier will accept this
proof since Cp

0 = C.
If p �∈ S, then p � u. Note that since we require p ≥ N and 0 ≤ v < N ,

we have p > v. So p � uv and p being prime, gcd(p, uv) = 1. So the prover
can run the extended Euclidean algorithm and find (a0, b0) ∈ Z × Z such that
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a0uv + b0p = 1. For any integer γ (and in particular for γ ∈ {0, . . . , N − 1}), for
(a, b) = (a0 + γp, b0 − γuv), it holds

auv + bp = (a0 + γp)uv + (b0 − γuv)p = a0uv + b0p = 1.

The prover evaluates A = ga, B = gb, D = Ca = guva and sends (A,B,D) to
the verifier. Clearly the tuple (g,A,C,D) = (g, ga, C, Ca) is a DDH tuple and
hence TDDH(A,C,D; G, g, τ) = 1. Also

D ·Bp = Ca ·Bp = g(uv)a · gpb = gauv+bp = g. (1)

Hence in this case also the verifier accepts the proof. �

Soundness. The soundness property guarantees that the scheme does not allow
a malicious prover to equivocate about the membership of any element p in the
committed set.

Lemma 2. Under the strong RSA and the KEA-DH assumptions, construc-
tion 1 has the soundness property.

Proof. To violate the soundness of our construction, a corrupt prover A must
make a commitment C and subsequently for some prime p give out valid proofs
for membership and non-membership of p. That is, on input (G, g, n), A outputs
(p, C,C1, A,B,D) satisfying

Cp
1 = C (2)

∃a s.t. A = ga, D = Ca (3)
D · Bp = g (4)

We will show that the probability of this is negligible.
First note that from KEA-DH there is an extractor E corresponding to A,

such that with almost the same probability as A satisfies the above conditions E
outputs (G, g, p, C,C1, A,B,D, z) such that in addition to the above conditions,
either A = gz or C = gz.

1. In case z is such that C = gz, we consider two cases.
– If gcd(p, z) = 1: Then using extended Euclidean algorithm on input (p, z)

one can efficiently compute integers (α, β) such that αz + bp = 1. That is,
gaz+bp = g. Using equation (2), Cp

1 = gz and so this can be rewritten as
Cap

1 gbp = g. That is by setting x = Cα
1 g

β , we have xp = g.
– If gcd(p, z) �= 1, then p | z as p is a prime. Then z/p is an integer. Let

x = Az/p · B; note that by substituting C = gz into equation (3) we get
D = Az, and hence by equation (4), xp = g.

2. In case A = gz, then in the subgroup generated by g, we have xa = xz for
all x (that is, a and z are congruent modulo the order of g). From equations (2)
(3) and (4), we have

g = D ·Bp = Ca ·Bp = (Cp
1 )a · Bp = (Ca

1 · B)p.

Setting x = Ca
1 ·B = Cz

1 · B we have xp = g.
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Thus in all cases from the output of E , one can efficiently find (x, p) such that
xp = g and p > 1. This is possible with the same probability (up to negligible
difference) as A succeeding in breaking the soundness. But by the strong RSA
assumption this probability must be negligible, Hence the probability that A
violates soundness is negligible. �

Statistical Hiding. The hiding property is statistical and unconditional. We shall
show that the commitment as well as the proofs given by an honest prover
are distributed (almost) independent of the set that is committed to. The only
guarantee that is required from the setup information (G, g, n) sent out by the
verifier is that the order of g ∈ G is bounded by n (as will be verified by the
prover).

First we prove that the commitment is almost uniformly distributed in the
subgroup 〈g〉. We use the following observation.

Lemma 3. Let Um be the uniform distribution over Zm. Let UN |m be the distri-
bution over Zm obtained by sampling an element uniformly from ZN and reduc-
ing it modulo m. Then the statistical distance between Um and UN |m is at most
m/N .

Proof. UN |m can be written as a convex combination of Um and of the distribu-
tion of v mod m when v is chosen uniformly at random from {tm, . . . , N − 1},
where t = �N/m�. The weights used in the convex combination are tm/N and
(N − tm)/N respectively. So the statistical difference is at most (N − tm)/N <
m/N .

Lemma 4. For any finite S ⊆ Uk, and any valid setup public-key PK=(G, g, n),
the commitment C produced by commit(PK, S) is almost uniformly distributed
over 〈g〉.

Proof. The proof is a simple consequence of Lemma 3.
Note that the commitment C is distributed as gv

1 where v is distributed as
UN |m where m = ord(g1). Here g1 = gu where u =

∏
pi∈S pi. Since pi > n >

ord(g) we have gcd(u, ord(g)) = 1, and therefore m = ord(g1) = ord(g) and
〈gu〉 = 〈g〉. Then applying Lemma 3 with N = 2kn and m ≤ n, we get that the
statistical distance between the distribution of C and the uniform distribution
over 〈g〉 is at most 2−k which is negligible in the security parameter k.

That means, we can define the distribution simcommit from the definition of
statistical hiding (Section 2) as simcommit(G, g, n) = {σ ← U〈g〉 : (σ, σ)}, where
U〈g〉 is the uniform distribution over the subgroup of G generated by g. This is
for (G, g, n) being a valid public-key for the setup; otherwise — i.e., if G is not a
valid group with g as an element, or ord(g) is not upper bounded by n — then
commit will abort. Next we specify simprove0 and simprove1.

Lemma 5. For any valid public-key PK = (G, g, n), any finite S ⊆ Uk, and
any commitment (public and private information) (σ, ρ) = (C, uv) that can be
produced by commit(S,PK), for each prime p > ord(g), there are distributions
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simprove0(G, g, n, C, p) and simprove1(G, g, n, C, p) such that for p ∈ S (respec-
tively, p �∈ S), the proof of membership of p (respectively of non-membership),
prove(p, ρ,PK) is distributed almost as simprove1(G, g, n, C, p) (respectively as
simprove0(G, g, n, C, p)).

Proof. Let simprove1(G, g, n, C, p) be just concentrated on the single unique el-
ement (yes, C0) where C0 ∈ 〈g〉 is such that Cp

0 = C (i.e., C0 = Cp−1 mod ord(g)).
Clearly, the proof generated by the honest prover is exactly the same (though
the prover does not compute p−1 mod ord(g) directly).

simprove0(G, g, n, C, p) is defined as (no, A′, B′, D′) where A′ = ga′
, B′ =

gb′ , D′ = Ca′
, with (a′, b′) distributed as follows. Let m = ord(g). Let c be the

unique number in {0, . . . ,m − 1} such that C = gc. Then (a′, b′) is distributed
uniformly over the set

Zc,p,m = {(a′, b′)|a′, b′ ∈ Zm and a′c + b′p ≡ 1 (mod m)}.

We argue that the proof of p �∈ S produced by an honest prover (conditioned
on PK = (G, g, n) and commitment C), no matter which set S ⊆ Uk\{p} is
used, is almost identically distributed as simprove0(G, g, n, C, p). For this, it is
enough to show that (a, b) computed by prove is such that (a mod m, b mod m)
is distributed (almost) identically as (a′, b′) above – i.e., uniformly over Zc,p,m.

Firstly, by Lemma 3, we have that for γ as sampled by the prover (i.e., γ ←
{0, . . . , N − 1}), γ mod m is close to being uniform over Zm (the statistical
difference being negligible in the security parameter). So we can ignore this
difference, and assume that in fact the prover does sample γ such that γ mod m
is uniform over Zm.

Secondly, note that uv ≡ c (mod m), since C = guv = gc. Hence, when the
prover uses the extended Euclidean algorithm on the pair of integers (uv, p) to
find (a0, b0) ∈ Z2 we have that

a0c + b0p ≡ 1 (mod m). (5)

We remark that the input to the extended Euclidean algorithm uv, and hence
its output (a0, b0), do depend on u and hence on the set S being committed. In
fact, even (a0 mod m, b0 mod m) depends on uv and not just on c.

But recall that the prover sets (a, b) to be (a0 + γb, b0 − γa) where γ is sam-
pled such that γ mod m is (almost) uniform over Zm. We make the following
observations:

1. ((a0 + γp) mod m, (b0 − γc) mod m) ∈ Zc,p,m for every integer γ, by equa-
tion (5).

2. Since gcd(p,m) = 1, if ((a0 + γ1p) mod m, (b0 − γ1c) mod m) = ((a0 +
γ2p) mod m, (b0−γ2c) mod m) then γ1 ≡ γ2 (mod m). So for each distinct value
of γ mod m there is a unique element in Zc,p,m that ((a0 + γp) mod m, (b0 −
γc) mod m) evaluates to.

3. Finally, |Zc,p,m| = m because for each value of a ∈ Zm there is a unique
b = (1−ac)·p−1 ∈ Zm such that (a, b) ∈ Zc,p,m. So for every (a′, b′) ∈ Zc,p,m there
is exactly one γ ∈ Zm such that (a′, b′) = ((a0 + γp) mod m, (b0 − γc) mod m).
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So we conclude that since the prover samples γ (almost) uniformly from Zm,
(a, b) it computes is such that (a mod m, b mod m) is indeed (almost) uniform
over Zc,p,m.

To conclude we derive the following from the above.

Lemma 6. Construction 1 satisfies the statistical hiding property.

Proof. This follows from Lemmas 4 and 5. The two lemmas give distributions
simcommit(PK), and simprove0(PK, ρ, x) and simprove1(PK, ρ, x), as required in
the definition of statistical hiding property. That they indeed statisfy the con-
dition there, is an easy consequence of the fact that the adversary A is allowed
auxiliary information about the set S in the experiments.

More formally, we define t + 1 hybrid distributions, by modifying the experi-
ments in the two distributions in the definition of the hiding property: commit is
used to generate the commitment, but in the ith hybrid, for the first i− 1 itera-
tions of the for loop simprove is used,5 and in the rest prove is used. The first of
these hybrids is identical to the left hand side distribution in the definition, and
the last one is statistically close to the right hand side distribution by Lemma 4.
Two adjacent hybrids are statistically close by Lemma 5.
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Abstract. In the setting of multiparty computation a set of parties with
private inputs wish to compute some joint function of their inputs, whilst
preserving certain security properties (like privacy and correctness). An
adaptively secure protocol is one in which the security properties are
preserved even if an adversary can adaptively and dynamically corrupt
parties during a computation. This provides a high level of security, that
is arguably necessary in today’s world of active computer break-ins. Until
now, the work on adaptively secure multiparty computation has focused
almost exclusively on the setting of an honest majority, and very few
works have considered the honest minority and two-party cases. In ad-
dition, significant computational and communication costs are incurred
by most protocols that achieve adaptive security.

In this work, we consider the two-party setting and assume that hon-
est parties may erase data. We show that in this model it is possible to
securely compute any two-party functionality in the presence of adap-
tive semi-honest adversaries. Furthermore, our protocol remains secure
under concurrent general composition (meaning that it remains secure
irrespective of the other protocols running together with it). Our proto-
col is based on Yao’s garbled-circuit construction and, importantly, is as
efficient as the analogous protocol for static corruptions. We argue that
the model of adaptive corruptions with erasures has been unjustifiably
neglected and that it deserves much more attention.

1 Introduction

In the setting of multiparty computation, a set of parties with private inputs wish
to jointly compute some function of those inputs. Loosely speaking, the security
requirements are that even if some of the participants are adversarial, nothing is
learned from the protocol other than the output (privacy), and the output is dis-
tributed according to the prescribed functionality (correctness). The definition
of security that has become standard today [17,25,1,5] blends these two condi-
tions (and adds more). This setting models essentially any cryptographic task
of interest, including problems ranging from key exchange and authentication,
to voting, elections and privacy-preserving data mining. Due to its generality,
understanding what can and cannot be computed in this model, and at what
complexity, has far reaching implications for the field of cryptography.
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One important issue regarding secure computation is the environment in
which it takes place. In the basic setting, called the stand-alone model, the secure
protocol is run only once and in isolation (or equivalently, the adversary attacks
only this execution). A more advanced setting is that of composition, where the
secure protocol may be run many times concurrently with itself and arbitrary
other protocols. This setting is called universal composability [6], or equivalently
security under concurrent general composition [20], and more accurately models
the real-world security needs than the stand-alone model.

A central question that needs to be addressed in this setting is the power
of the adversary. An adversary can be semi-honest (in which case it follows the
protocol specification exactly but attempts to learn more information than it
should by analyzing the messages it receives) or malicious (in which case it can
take arbitrary actions). In addition, one can consider static corruptions (meaning
that the set of corrupted parties that are under the control of the adversary is
fixed before the protocol execution begins) or adaptive corruptions (in which case
the adversary can choose to corrupt parties during the computation based on
its view). There are two main models that have been considered for adaptive
corruptions. In both models, upon corrupting an honest party the adversary
receives the internal state of that party. The difference lies in the question of
what is included in that state. In the non-erasure model, honest parties are not
assumed to be able to reliably erase data. Therefore, the internal state of a
party includes its input, randomness and all of the messages that it received
in the past. In contrast, in the model with erasures, honest parties may erase
data if so instructed by the protocol and so the state includes all data as above
except for data that has been explicitly erased. (Of course, not all intermediate
data can be erased because the party needs to be able to run the protocol
and compute the output.) In this paper, we consider the problem of achieving
security in the presence of adaptive semi-honest adversaries with erasures. We
remark that adaptive corruptions model the setting where hackers actively break
in to computers during secure computations. As such, it more accurately models
real-world threats than the model of static corruptions.

To erase or not to erase. In the cryptographic literature, the non-erasure
model of adaptive corruptions has received far more attention than the erasure
model (see prior work below). The argument has typically been that it is gen-
erally hard to ensure that parties fully erase data. After all, this can depend on
the operating system, and in real life passwords and other secret data can often
be found on swap files way after they were supposedly erased. We counter this
argument by commenting that non-swappable memory is provided by all modern
operating systems today and it is possible to use this type of memory for the data
which is to be erased (as specified by the protocol). Of course, it is more elegant
to assume that there are no erasures. However, the price of this assumption has
been very great. That is, the complexity and communication of protocols that
are secure under adaptive corruptions without erasures are all much higher than
the analogous protocols that are secure under static corruptions (for example,
we don’t even have a constant-round protocol for general two-party computation
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that is secure under adaptive corruptions). We argue that the result of this is
that no protocol designer today would even consider adaptive corruptions if the
aim is to construct an efficient protocol that could possibly be used in practice.

Our results. We begin by studying the stand-alone model and note that the
current situation is actually very good, as long as erasures are considered. Specif-
ically, by combining results from Beaver and Haber [3], Canetti [5], and Canetti
et al. [7], we show the following:

Theorem 1. Let f be any two-party functionality and let π be a protocol that
securely computes f in the presence of static malicious (resp., semi-honest) ad-
versaries, in the stand-alone model. Then, assuming the existence of one-way
functions, there exists a highly efficient transformation of π to π′ such that π′

securely computes f in the presence of adaptive malicious (resp., semi-honest)
adversaries with erasures, in the stand-alone model.

We have no technical contribution in deriving Theorem 1; rather our contribution
here is toobservethatacombinationofknown resultsyieldsthetheorem.To thebest
of our knowledge, the fact that this theorem holds has previously gone unnoticed.

The only drawback of Theorem 1 is that it holds only for the stand-alone
model (see Section 3 for an explanation as to why). As we have mentioned, this
is a relatively unrealistic model in today’s world where many different protocols
are run concurrently. Our main technical contribution is therefore to show that
it is possible to construct secure protocols for general two-party computation
in the presence of semi-honest adaptive adversaries (and with erasures) that
are secure under concurrent general composition [20] (equivalently, universally
composable [6]). Importantly, the complexity of our protocol is analogous to the
complexity of the most efficient protocol known for the case of semi-honest static
adversaries (namely, Yao’s protocol [27]). We prove the following theorem:

Theorem 2. Assume that there exist enhanced1 trapdoor permutations. Then,
for every two-party probabilistic polynomial-time functionality f there exists a
constant-round protocol that securely computes f under concurrent general com-
position, in the presence of adaptive, semi-honest adversaries with erasures.

The contributions of Theorem 2 are as follows:

1. Round complexity: Our protocol for adaptive two-party computation requires
a constant number of rounds. The only other protocols for general adaptive
two-party computation that are secure under concurrent composition follow
the GMW paradigm [16] and the number of rounds is therefore equal to
the depth of the circuit that computes the function f ; see [10]. We stress
that [10] does not assume erasures, whereas we do.

2. Hardness assumptions: Our protocol requires the minimal assumption for se-
cure computation in the static model of enhanced trapdoor permutations. In
contrast, allknownprotocols for adaptive oblivious transfer (and thus adaptive

1 See [15, Appendix C.1].
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secure computation)without erasures assume seemingly stronger assumptions,
like a public-key cryptosystem with the ability to sample a public-key without
knowing the corresponding secret key. In fact, in a recent paper, it was shown
thatadaptively secure computationcannot beachieved inablack-boxway from
enhanced trapdoor permutations alone [24]. Thus, without assuming erasures,
it is not possible to construct secure protocols for the adaptive model under this
minimal assumption (at least, not in a black-box way).

In addition to the above, our protocol has the same complexity as Yao’s protocol
for static adversaries in all respects. We view this as highly important and as
a sign that it is well worth considering this model when constructing efficient
secure protocols. In particular, if it is possible to achieve security in the presence
of adaptive corruptions with erasures “for free”, then this provides a significant
advantage over protocols that are only secure for static corruptions (of course, as
long as such erasures can really be carried out). In addition, the typical argument
against considering security under composition is that the resulting protocols are
far less efficient. Our results demonstrate that this is not the case for the setting
of semi-honest adaptive adversaries with erasures. Indeed our protocol is no less
efficient than the basic protocol for the semi-honest stand-alone setting.

We remark that our protocol is very similar to the protocol of Yao and we
only need to slightly change the order of some operations and include some erase
instructions (i.e., in some sense, the original protocol is “almost” adaptively
secure). Nevertheless, our proof of security is significantly different and requires
a completely different simulation strategy to that provided in [22].

Related work. The vast majority of work on adaptive corruptions for secure
computation has considered the setting of multiparty computation with an hon-
est majority [3,8,2] and thus is not applicable to the two-party setting. To the
best of our knowledge, the only two works that considered the basic question of
adaptive corruptions for general secure computation in the setting of no honest
majority are [10] and [7]. Canetti et al. [7] study the relation between adaptive
and static security and present a series of results that greatly clarifies the defi-
nitions and their differences. However, this work only relates to the stand-alone
setting. In the setting of composition, Canetti et al. [10] presented a protocol
that is universally composable (equivalently, secure under concurrent general
composition). The construction presented there considers a model with no era-
sures. As such, it is far less efficient (e.g., it is not constant-round), far more
complicated, and relies on seemingly stronger cryptographic hardness assump-
tions. Regarding secure computation of functions of specific interest, there has
also been little work on achieving adaptive security, with the notable exception
of threshold cryptosystems [9,13,19] and oblivious transfer [14].

2 Definitions

Due to lack of space in this extended abstract, we refer to [5] for definitions
of security in the stand-alone model for both static and adaptive corruptions.
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We use the definition of security from [5] with the exception that the post-
execution corruption phase and external environment are removed (as stated
in [5, Remark 5] and further discussed in Section 3, these properties are not
needed in the case of erasures). Our definitions also refer to the stand-alone
model only. In order to derive security under concurrent general composition (or
equivalently, universal composability [6]), we rely on [18] who proved that any
protocol that has been proven secure in the stand-alone model, using a simulator
that is black-box and straight-line and so doesn’t rewind the adversary, is secure
under concurrent-general composition. In actuality, an additional requirement
for this to be true is something called initial synchronization. In the two-party
setting, this just means that the parties send each other an init message before
actually running the protocol. Our proofs of security therefore all refer to the
stand-alone model only; security is derived for the setting of concurrent general
composition because all of our simulators are black-box and straight-line. See
the full version of this paper for more details [21].

3 Stand-Alone Two-Party Computation for Malicious
Adversaries

In this section, we observe that in the stand-alone model, any two-party protocol
that is secure in the presence of static adversaries can be efficiently converted
into a protocol that is secure in the presence of adaptive adversaries, as long as
erasures are allowed. This powerful result is another good reason why it is worth
considering erasures – indeed, adaptive security is obtained almost for free. In
order to see why this is true, we combine three different results:

1. First, Beaver and Haber [3] proved that any protocol that is adaptively se-
cure in a model with ideally secure communication channels can be efficiently
converted into a protocol that is adaptively secure in a model with regular
(authenticated) communication channels, assuming erasures. The transfor-
mation of [3] requires public-key encryption and thus assumes the existence
of trapdoor permutations. We stress that under specific assumptions, it can
be implemented at very low cost.

2. Next, Canetti et al. [7] consider a modification of the standard definition
of security for adaptive adversaries. The standard definition includes a post-
execution corruption phase (known as PEC for short); this phase is necessary
for obtaining sequential composition as described in [5].2 Nevertheless, most
of the results in [7] consider a modified definition where there is no PEC
phase. Amongst many other results, it is proven in [7] that in a model with
ideally secure channels and no PEC, any two-party protocol that is secure
in the presence of static malicious adversaries is also secure in the presence
of adaptive malicious adversaries. (The same holds also for semi-honest ad-
versaries.)

2 We remark that there is no PEC requirement for the definition of security in the
presence of static adversaries.
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A combination of the results of [3] and [7] yields the result that any two-
party protocol that is secure in the presence of static malicious adversaries
can be efficiently transformed into a protocol that is secure in the presence
of adaptive malicious adversaries under a definition without PEC. (The re-
quirement of [7] for ideally secure channels is removed by [3].) This result
is still somewhat lacking because PEC is in general a necessary definitional
requirement.

3. The post-execution corruption phase is not needed in the adaptive model
where erasures are allowed [5, Remark 5]. In particular, modular sequen-
tial composition holds in this model even without this phase. (There is one
requirement: the honest parties must erase the internal data they used at
the end of the secure protocol execution, and can store only the input and
output. There is no problem doing this because the input and output is all
that they need.) Thus, in a model allowing erasures, the results of [7] guar-
antee adaptive security under a definition of security that is sufficient (and
in particular implies sequential composition).

Combining the above three observations, we obtain the following theorem:

Theorem 3. Consider the stand-alone model of computation. Let f be a two-
party functionality and let π be a protocol that securely computes f in the pres-
ence of malicious static adversaries. Then, assuming the existence of trapdoor
permutations, there exists a protocol π′ that securely computes f in the presence
of malicious adaptive adversaries, with erasures.

The theorem statement hides the fact that the transformation of π to π′ is highly
efficient and thus the boosting of the security guarantee from static to adaptive
adversaries is obtained at almost no cost. Before concluding, we stress again that
this result only holds in a model assuming that honest parties can safely erase
data. This is due to the fact that in the non-erasure model the PEC requirement
is needed, and so the combination of the results of [3] and [7] yields a protocol
that is not useful. (In particular, it is not necessarily secure with PEC and so
may not be secure under sequential composition.)

Concurrent composition. The above relates to the stand-alone model (and
so, of course, also to sequential composition). What happens when considering
concurrent composition? An analogous result cannot be achieved because the
proof of [7] relies inherently on the fact that the simulator can rewind the ad-
versary. Specifically, [7] prove the equivalence of adaptive and static security in
the following way. The adaptive simulator begins by running the static simula-
tor for the case that no party is corrupted. Then, if the adversary corrupts a
party (say party P1), the adaptive simulator rewinds the adversary and begins
the simulation from scratch running the static simulator for the case that P1
is corrupted. The adaptive simulator runs the static simulator multiple times
until the adversary asks to corrupt P1 in the same place as the first time. Since
the static simulator assumes that P1 is corrupted, it can complete the simula-
tion. This is the general idea of the simulation strategy; for more details and
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the actual proof, see [7]. In any case, since rewinding is an inherent part of the
strategy, their proof cannot be used in the setting of concurrent composition
(where rewinding simulation strategies do not work).

4 Two-Party Computation for Semi-honest Adversaries

4.1 Adaptively-Secure Oblivious Transfer

We start by observing that in the setting of concurrent composition, the oblivious
transfer protocol of [12] is not adaptively secure (at least, it is not simulatable
without rewinding). In order to see this, recall that this protocol works by the
sender P1 choosing an enhanced trapdoor permutation f with its trapdoor t and
sending f to the receiver P2. Upon input σ, party P2 then sends P1 values y0, y1
so that it knows the preimage of yσ but not of y1−σ. Party P1 then masks its
input bit z0 with the hard-core bit of f−1(y0) and masks its input bit z1 with the
hard-core bit of f−1(y1). The protocol concludes by P2 extracting zσ; it can do
this because it knows the preimage of yσ and so can compute the hard-core bit
used to mask zσ. Now, consider an adversarial strategy that waits until P1 sends
its second message and then corrupts the receiver. Following this corruption,
the adversary should be able to obtain P2’s state and compute zσ from P1’s
message (the adversary must be able to do this because P2 must be able to
do this). However, when the messages from P1 are generated by the simulator
and no party is corrupted, the simulator cannot know what values of z to place
in the message. The simulation will therefore often fail. A similar (and in fact
worse) problem appears in the known oblivious transfer protocols that rely on
homomorphic encryption.

Our approach to solving this problem is novel and has great advantages. We
show that any oblivious transfer protocol that is secure for static corruptions
can be modified so that with a minor addition adaptive security (with erasures)
is obtained. The idea is to run any secure oblivious transfer upon random inputs
and then use the random values obtained to exchange the actual bit. This method
was presented in [26] in order to show a reduction from standard OT to OT with
random inputs. Here we use it to obtain adaptive security. We remark that our
protocol is exactly that of [26]; our contribution is in observing and proving that
it is adaptively secure.

Protocol 1 (oblivious transfer):

– Inputs: P1 has two strings x0, x1 ∈ {0, 1}n, and P2 has a bit σ ∈ {0, 1}.
– The protocol:

1. P1 chooses random strings r0, r1 ∈R {0, 1}n and P2 chooses a random
bit b ∈R {0, 1}.
P1 and P2 run an oblivious transfer protocol, using the chosen random
inputs. (Note that P2’s output is rb.) At the conclusion of the protocol,
P1 and P2 erase all of the randomness that they used, and remain only
with their inputs and outputs from the subprotocol (i.e., P1 remains with
(r0, r1) and P2 remains with (b, rb)).
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2. P2 sends P1 the bit β = b⊕ σ.
3. P1 sends P2 the pair y0 = x0 ⊕ rβ and y1 = x1 ⊕ r1−β.
4. P2 outputs yσ ⊕ rb.

Before proving security, we first show that the protocol is correct. If σ = 0
then β = b and so y0 = x0 ⊕ rb, implying that P2 outputs y0 ⊕ rb = x0 as
required. Likewise, if σ = 1 then β = b ⊕ 1 and so y1 = x1 ⊕ rb, implying that
P2 outputs y1 ⊕ rb = x1 as required. We have the following theorem.

Theorem 4. If the oblivious transfer used in Step 1 of Protocol 1 is secure in
the presence of semi-honest static adversaries in the stand-alone model, then
Protocol 1 is secure under concurrent general composition in the presence of
semi-honest adaptive adversaries with erasures.

Proof: Before beginning the proof, we remark that we cannot analyze the
security of the protocol in a hybrid model where the oblivious transfer of Step 1
is run by a trusted party. This is because the oblivious transfer protocol of
Step 1 is only secure in the presence of static adversaries, and we are working
in the adaptive model. We now proceed with the proof. Intuitively, the protocol
is adaptively secure because any corruptions that occur before Step 1 are easily
dealt with due to the fact that even the honest parties use random inputs in this
stage (and thus inputs that are independent of their real input). Furthermore,
any corruptions that take place after Step 1 can be dealt with because the
oblivious transfer protocol used in Step 1 is statically secure, and so hides the
actual inputs used. Given that the parties erase their internal state after this
step, the simulator is able to lie about what “random” inputs the parties actually
used.

Let A be a probabilistic polynomial-time real adversary. We construct a sim-
ulator S for Protocol 1, separately describing its actions for every corruption
case (of course, S doesn’t know when corruptions occur so its actions are the
same until corruptions happen). Upon auxiliary input z, simulator S invokes A
upon input z and works as follows:

1. No corruption, or corruption at the end: S begins by choosing random r0, r1
and b and playing the honest parties in the oblivious transfer protocol of
Step 1. Then, S simulates P2 sending a random β to P1, and P1 replying
with two random strings (y0, y1).
If A carries out corruptions following the execution, then S acts as follows,
according to the case:
(a) Corruption of P1 first: S corrupts P1 and obtains its input pair (x0, x1).

Then, S sets rβ = x0 ⊕ y0 and r1−β = x1 ⊕ y1, where β, y0, y1 are as
above (and the values r0, r1 chosen in the simulation of the oblivious
transfer subprotocol are ignored). S generates the view of P1 based on
this (r0, r1).
If A corrupts P2 following this, then S corrupts P2 and obtains its input
bit σ. Then, S sets the value b (that P2 supposedly used in its input to
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the OT subprotocol) to be β⊕σ. S generates the view of P2 based on it
using input b to the OT and receiving output rb, where the value of rb

is as fixed after the corruption of P1.
(b) Corruption of P2 first: S corrupts P2 and obtains its input bit σ together

with its output string xσ. Then, S sets b = σ⊕β and rb = xσ⊕yσ, where
β is the value set above and likewise yσ is from the pair (y0, y1) above.
S then generates the view of P2 based on its input to the OT being b
and its output being rb.

If A corrupts P1 follows this, then S corrupts P1 and obtains its
input pair (x0, x1) (note that xσ was already obtained). Then, S sets
r1−b = x1−σ ⊕ y1−σ and generates the view of P1 such that its input to
the OT subprotocol was (r0, r1) as generated upon the corruption of P2
and the later corruption of P1.

2. Corruption of both P1 and P2 at any point until Step 1 concludes: S begins by
emulating the OT subprotocol with random (r0, r1) and b as described above.
Then, upon corruption of party Pi, simulator S corrupts Pi and obtains its
input. It can then just hand A the input of Pi together with its view in the
emulated subprotocol using the inputs (r0, r1) and b.

3. Corruption of P1 up until Step 1 concludes and P2 after it concludes: The
corruption of P1 is dealt with exactly as in the previous case. We remark
that once P1 is corrupted, S continues to play P2 while interacting with A
controlling P1 as if in a real execution (and using the random input b that
was chosen). After the OT subprotocol concludes, S simulates P2 sending a
random β to P1, and obtains back a pair (y0, y1) from A who controls P1.3

If A corrupts P2 at this point, then S corrupts P2 and obtains σ. S sets
P2’s input in the OT subprotocol to be b = σ ⊕ β and generates the view
accordingly.

4. Corruption of P2 up until Step 1 concludes and P1 after it concludes: The
corruption of P2 is dealt with exactly as in the corruption case in item 2
above. As previously, once P2 is corrupted S continues to play P1 while
interacting with A controlling P2 as if in a real execution (and using the
random input (r0, r1) that was chosen). Let σ be P1’s input and let xσ be
its output. After the OT subprotocol concludes, S obtains a random bit β
from A controlling P2 and sets yσ = xσ ⊕ rb where b is the input used by
P2 in the OT subprotocol (whether corrupted or not) and rb is from above.
Furthermore, S chooses a random y1−σ ∈R {0, 1}n, and simulates P1 sending
(y0, y1) to P2.

If A corrupts P1 at this point (or before (y0, y1) were sent – but it makes
no difference), then S corrupts P1 and obtains (x0, x1). It then redefines

3 Note that if A was malicious and not semi-honest, then the simulation at this point
would not work because S cannot know which inputs A used in the oblivious transfer
(this is due to the fact that the corruption occurred in the middle of the oblivious
transfer and the static simulator may not necessarily be able to deal with this). For
this reason, we have only been able to prove our transformation for the semi-honest
model.
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the value of r1−b to be y1−σ ⊕ x1−σ, and generates the view based on these
values.

This covers all corruption cases. We now proceed to prove that{
idealOT,S(z)(n, x0, x1, σ)

}
x0,x1,σ,z;n∈N

c≡
{
realπ,A(z)(n, x0, x1, σ)

}
x0,x1,σ,z;n∈N

We present our analysis following the case-by-case description of the simulator:

1. No corruption, or corruption at the end: In order to prove this corruption
case, we begin by showing that when no parties are corrupted, every obliv-
ious transfer protocol (that is secure for the static corruption model) has
the following property. Let A be a probabilistic polynomial-time adversary
that corrupts no parties, and only eavesdrops on the communication in the
protocol. Then, for all strings r0, r1, r

′
0, r

′
1 ∈ {0, 1}n and every probabilistic

polynomial-time distinguisher D:

|Pr[D(realπ,A(z)(n, r0, r1, 0)) = 1]−Pr[D(realπ,A(z)(n, r′0, r
′
1, 1)) = 1]| ≤ negl(n)

(1)
for some negligible function negl. The above follows from the following three
equations (all equations relate to the same quantification as above over all
strings and all distinguishers):

|Pr[D(realπ,A(z)(n, r0, r1, 0)) = 1]−Pr[D(realπ,A(z)(n, r0, r
′
1, 0)) = 1]| ≤ negl(n)

This holds because otherwise an adversary corrupting the receiver P2 could
learn something about the second string of P1’s input, even though it used
input 0 and so received r0. (This would contradict the security of the protocol
in the ideal model; the formal statement of this is straightforward and so
omitted.) Next,

|Pr[D(realπ,A(z)(n, r0, r
′
1, 0)) = 1]−Pr[D(realπ,A(z)(n, r0, r

′
1, 1)) = 1]| ≤ negl(n)

This second equation holds because otherwise an adversary corrupting the
sender P1 could distinguish the case that the receiver P2 has input 0 or 1.
Finally,

|Pr[D(realπ,A(z)(n, r0, r
′
1, 1)) = 1]−Pr[D(realπ,A(z)(n, r′0, r

′
1, 1)) = 1]| ≤ negl(n)

As with the first equation, this holds because otherwise an adversary cor-
rupting P2 can learn something about the first string of P1’s input even
though it used input 1. Combining the above three together, Eq. (1) follows.
Now, let r′0, r

′
1, b

′ be the values used by S to simulate the oblivious transfer
in Step 1 of the protocol, and let y0, y1, β be the random values sent by S
in the later steps. In addition, let x0, x1, σ be the real parties’ inputs that
are received by S upon corruption of both P1 and P2. As in the simulation
description, we separately analyze the case that no parties are corrupted, the
case that P1 was corrupted first and the case that P2 was corrupted first.
(a) No corruptions: In the case of no corruptions, all the adversary sees is

the oblivious transfer transcript, a random bit β and two random strings
y0, y1. Let x0, x1, σ be the real inputs of the honest parties. Then, the
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values y0, y1, β seen by the adversary are “correct” if the inputs used in
the oblivious transfer are r′β = x0⊕y0 and r′1−β = x1⊕y1 and b′ = β⊕σ.
However, S used inputs r0, r1, b and not these r′0, r′1, b′. Nevertheless,
Eq. (1) guarantees that the distribution over the transcript generated
using r0, r1, b (as in the simulation) is computationally indistinguishable
from the distribution over the transcript generated using r′0, r

′
1, b

′ (as in
a real execution). Thus, indistinguishability holds for this case.

(b) Corruption of P1 first: As described in the simulation, S sets rβ = x0⊕y0
and r1−β = x1 ⊕ y1. Then, S sets b = β ⊕ σ. If S had used r0, r1, b as
defined here in the simulation of Step 1 of the protocol, then the simula-
tion would be perfect (because all of the values are constructed exactly
as the honest parties would construct them upon inputs x0, x1, σ). Thus,
using Eq. (1), we have that the distributions are computationally indis-
tinguishable. (Recall that Eq. (1) refers to the transcript generated when
no parties are corrupted. However, this is exactly the case here because
the corruptions occur after the subprotocol has concluded. Furthermore,
because the parties erase their internal state, the only information about
the subprotocol that A receives is the transcript of messages sent, as re-
quired.)

(c) Corruption of P2 first: The proof of this is almost identical to the case
where P1 is corrupted first.

2. Corruption of both P1 and P2 at any point until Step 1 concludes: This case
is trivial because in Step 1 both S and the honest parties use random inputs
that are independent of the inputs. Thus the distribution generated by S is
identical as in a real execution.

3. Corruption of P1 until Step 1 concludes and P2 after it concludes: The dis-
tribution of the view of P1 generated by S is identical to a real execution,
because as in the previous case, the inputs used until the end of Step 1
are random and independent of the party’s actual input. Regarding P2’s
view, indistinguishability follows from the fact that for any oblivious trans-
fer protocol (that is secure for static corruptions), it holds that when A has
corrupted P1 only, we have that for all r0, r1 ∈ {0, 1}n{

realπ,A(z)(n, r0, r1, 0)
}

n∈N

c≡
{
realπ,A(z)(n, r0, r1, 1)

}
n∈N

This follows similarly to Eq. (1) because in the ideal model, a corrupted P1
cannot know if P2 has input 0 or 1.

4. Corruption of P2 until Step 1 concludes and P1 after it concludes: The proof
of this case is almost identical to the previous case.

This completes the proof of the theorem.

4.2 The Two-Party Protocol for Semi-honest Adversaries

We present a protocol for securely computing any functionality f that maps two
n-bit inputs into an n-bit output. It is possible to generalize the construction
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to functions for which the input and output lengths vary. However, the security
of our protocol relies crucially on the fact that the length of the output of f
equals the length of the second input y. (This is because our simulation works
by generating a garbled circuit computing f(x, y) = y which must be indistin-
guishable from a garbled circuit computing C(x, y). Such indistinguishability can
only hold if |C(x, y)| = |y|.) This can be achieved w.l.o.g. by padding the length
of P2’s input y with zeroes. Our description assumes familiarity with Yao’s gar-
bled circuit construction; see Appendix A for a full description. Observe that
we consider only a “same-output functionality”, meaning that both P1 and P2
receive the same output value f(x, y). In [22], this was shown to be without loss
of generality: given any protocol as we describe here it is possible to construct
a protocol where the parties have different outputs with very little additional
overhead.

Convention. We require that the circuit C used to compute f is of a given
structure. Technically, what we need is that the same structure of the circuit
(i.e., the positions of the wires connecting the gates) can be used to compute
the function f ′(x, y) = y (of course, the actual gates would be different, but this
is fine). This can be achieved without difficulty, and so we will not elaborate
further.

Protocol 2

– Inputs: P1 has x ∈ {0, 1}n and P2 has y ∈ {0, 1}n
– Auxiliary input: A boolean circuit C such that for every x, y ∈ {0, 1}n it

holds that C(x, y) = f(x, y), where f :{0, 1}n × {0, 1}n → {0, 1}n.4
– The protocol:

1. P1 constructs the garbled circuit G(C) as described in Appendix A, but
does not yet send it to P2.

2. Let w1, . . . , wn be the circuit-input wires corresponding to x, and let
wn+1, . . . , w2n be the circuit-input wires corresponding to y. Then,
(a) P1 sends P2 the strings kx1

1 , . . . , kxn
n .

(b) For every i, P1 and P2 execute a 1-out-of-2 oblivious transfer protocol
that is adaptively secure for semi-honest adversaries, in which P1’s
input equals (k0

n+i, k
1
n+i) and P2’s input equals yi.

The above oblivious transfers can all be run in parallel.
3. After the previous step is completed, P1 erases all of the randomness

it used to construct the garbled circuit (and in particular, erases all of
the secret keys). Following this erasure, P1 sends P2 the garbled circuit
G(C).

4. Following the above, P2 has obtained the garbled circuit and 2n keys
corresponding to the 2n input wires to C. Party P2 then computes the
circuit, as described in Appendix A, obtaining f(x, y). P2 then sends
f(x, y) to P1 and they both output this value.

4 As in [22], we require that C is such that if a circuit-output wire leaves some gate
g, then gate g has no other wires leading from it into other gates (i.e., no circuit-
output wire is also a gate-input wire). Likewise, a circuit-input wire that is also a
circuit-output wire enters no gates.
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The only differences between Protocol 2 and Yao’s protocol as it appears in [22]
are:

1. P1 does not send G(C) to P2 until the oblivious transfers have concluded.
2. P1 erases all of its internal state before it actually sends G(C).
3. The oblivious transfers must be secure in the presence of adaptive semi-

honest adversaries.

The above differences make no difference whatsoever to the proof of security
in the static case. However, the simulator provided in [22] does not work in
the case of adaptive corruptions. In order to see this, recall that the simulator
there works by constructing a special fake circuit that outputs a predetermined
value. In the setting of static security this suffices because the simulator is given
the output value before it begins the simulation; it can therefore set the pre-
determined output value of the fake circuit to the party’s output. However, in
the setting of adaptive corruptions, the simulator may need to generate a fake
garbled circuit before it knows any of the party’s outputs (in particular, this
happens if corruptions occur only at the end of the execution). It therefore does
not know the circuit’s output when it generates it. One way to overcome this
problem is to use an equivocal encryption scheme that can be opened to any
value. However, this raises a whole other set of problems, and would also be far
less efficient. In our proof below we show that, in fact, the construction need not
be modified at all. Rather, the simulator can construct a fake garbled circuit
that computes the function f(x, y) = y (instead of a fake circuit that outputs a
predetermined value). This means that by choosing appropriate keys for the in-
put wires associated with y (i.e., those associated with P2’s input), it is possible
for the simulator to cause the circuit to output any value that it wishes. More
specifically, after constructing such a fake garbled circuit, when the simulator
receives an output value z = f(x, y) it can simply choose the keys to the input
wires associated with P2’s input to be those that are associated with the output
value z. This will then result in the circuit being opened to z, as required. Our
proof shows that such a circuit is computationally indistinguishable from a real
garbled circuit, and so the simulation works.

In the full version of this work [21], we use this simulation strategy to formally
prove the following theorem:

Theorem 5. Let f be a deterministic same-output functionality. Furthermore,
assume that the oblivious transfer protocol is secure in the presence of adaptive
semi-honest adversaries (with erasures), and that the encryption scheme has
indistinguishable encryptions under chosen plaintext attacks, and has an elusive
and efficiently verifiable range. Then, Protocol 2 securely computes f in the
presence of adaptive semi-honest adversaries (with erasures).

Since, as we have shown, adaptively secure oblivious transfer (in the erasure
model) can be achieved assuming only the existence of enhanced trapdoor per-
mutations, Theorem 5 implies Theorem 2 as stated in the introduction.
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A Yao’s Garbled Circuit Construction

In this section, we describe Yao’s protocol for secure two-party computation in
the presence of semi-honest adversaries [27]. The specific construction described
here is from [22], where a full proof of security is also provided.

Let C be a Boolean circuit that receives two inputs x, y ∈ {0, 1}n and outputs
C(x, y) ∈ {0, 1}n (for simplicity, we assume that the input length, output length
and the security parameter are all of the same length n). We also assume that
C has the property that if a circuit-output wire comes from a gate g, then gate
g has no wires that are input to other gates.5 (Likewise, if a circuit-input wire
is itself also a circuit-output, then it is not input into any gate.)

We begin by describing the construction of a single garbled gate g in C.
The circuit C is Boolean, and therefore any gate is represented by a function
g : {0, 1} × {0, 1} → {0, 1}. Now, let the two input wires to g be labelled
w1 and w2, and let the output wire from g be labelled w3. Furthermore, let
k0
1 , k

1
1 , k

0
2 , k

1
2 , k

0
3 , k

1
3 be six keys obtained by independently invoking the key-

generation algorithm G(1n); for simplicity, assume that these keys are also of
length n. Intuitively, we wish to be able to compute k

g(α,β)
3 from kα

1 and kβ
2 ,

without revealing any of the other three values k
g(1−α,β)
3 , k

g(α,1−β)
3 , k

g(1−α,1−β)
3 .

The gate g is defined by the following four values

c0,0 = Ek0
1
(Ek0

2
(kg(0,0)

3 ))

c0,1 = Ek0
1
(Ek1

2
(kg(0,1)

3 ))

5 This requirement is due to our labelling of gates described below, that does not
provide a unique label to each wire (see [22] for more discussion). We note that this
assumption on C increases the number of gates by at most n.
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c1,0 = Ek1
1
(Ek0

2
(kg(1,0)

3 ))

c1,1 = Ek1
1
(Ek1

2
(kg(1,1)

3 ))

where E is from a private key encryption scheme (G,E,D) that has indistin-
guishable encryptions for multiple messages, and has an elusive efficiently verifi-
able range; see [22]. The actual gate is defined by a random permutation of the
above values, denoted as c0, c1, c2, c3; from here on we call them the garbled table
of gate g. Notice that given kα

1 and kβ
2 , and the values c0, c1, c2, c3, it is possi-

ble to compute the output of the gate k
g(α,β)
3 as follows. For every i, compute

Dkβ
2
(Dkα

1
(ci)). If more than one decryption returns a non-⊥ value, then output

abort. Otherwise, define kγ
3 to be the only non-⊥ value that is obtained. (Notice

that if only a single non-⊥ value is obtained, then this will be k
g(α,β)
3 because

it is encrypted under the given keys kα
1 and kβ

2 . Later we will show that except
with negligible probability, only one non-⊥ value is indeed obtained.)

We are now ready to show how to construct the entire garbled circuit. Let m
be the number of wires in the circuit C, and let w1, . . . , wm be labels of these
wires. These labels are all chosen uniquely with the following exception: if wi

and wj are both output wires from the same gate g, then wi = wj (this occurs if
the fan-out of g is greater than one). Likewise, if an input bit enters more than
one gate, then all circuit-input wires associated with this bit will have the same
label. Next, for every label wi, choose two independent keys k0

i , k
1
i ← G(1n); we

stress that all of these keys are chosen independently of the others. Now, given
these keys, the four garbled values of each gate are computed as described above
and the results are permuted randomly. Finally, the output or decryption tables
of the garbled circuit are computed. These tables simply consist of the values
(0, k0

i ) and (1, k1
i ) where wi is a circuit-output wire. (Alternatively, output gates

can just compute 0 or 1 directly. That is, in an output gate, one can define
cα,β = Ekα

1
(Ekβ

2
(g(α, β))) for every α, β ∈ {0, 1}.)

The entire garbled circuit of C, denoted G(C), consists of the garbled table
for each gate and the output tables. We note that the structure of C is given,
and the garbled version of C is simply defined by specifying the output tables
and the garbled table that belongs to each gate. This completes the description
of the garbled circuit.

Let x = x1 · · ·xn and y = y1 · · · yn be two n-bit inputs for C. Furthermore,
let w1, . . . , wn be the input labels corresponding to x, and let wn+1, . . . , w2n be
the input labels corresponding to y. It is shown in [22] that given the garbled
circuit G(C) and the strings kx1

1 , . . . , kxn
n , ky1

n+1, . . . , k
yn

2n , it is possible to compute
C(x, y), except with negligible probability.
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Abstract. A redactable signature scheme for a string of objects sup-
ports verification even if multiple substrings are removed from the orig-
inal string. It is important that the redacted string and its signature do
not reveal anything about the content of the removed substrings. Ex-
isting schemes completely or partially leak a piece of information: the
lengths of the removed substrings. Such length information could be
crucial in many applications, especially when the removed substring has
low entropy. We propose a scheme that can hide the length. Our scheme
consists of two components. The first component H, which is a “colli-
sion resistant” hash, maps a string to an unordered set, whereby existing
schemes on unordered sets can then be applied. However, a sequence of
random numbers has to be explicitly stored and thus it produces a large
signature of size at least (mk)-bits where m is the number of objects
and k is the size of a key sufficiently large for cryptographic operations.
The second component uses RGGM tree, a variant of GGM tree, to gen-
erate the pseudo random numbers from a short seed, expected to be of
size O(k + tk log m) where t is the number of removed substrings. Unlike
GGM tree, the structure of the proposed RGGM tree is random. By an
intriguing statistical property of the random tree, the redacted tree does
not reveal the lengths of the substrings removed. The hash function H
and the RGGM tree can be of independent interests.

Keyword: Redactable Signature Scheme, Random Tree, Privacy.

1 Introduction

We are interested in a signature scheme for strings of objects whereby their
authenticity can be verified even if some substrings have been removed, that is,
the strings are redacted. Let x = x1x2 . . . xm be a string, for example a text
document where each object can be a character or a word, or an audio file where
each object is a sample. The string x is signed by the authority and both x and
its signature s are passed to another party, say Alice. Alice wants to show Bob
x but Bob is not authorized to view certain parts of the string, say x2x3x4 and
x7. Thus, Alice shows Bob x̃ = x1 � x5x6 � x8 . . . xm where each � indicates the
location of a removed substring. On the other hand, Bob may want to verify the
authenticity of x̃. A redactable signature scheme allows Alice to produce a valid
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signature s̃ for the redacted string x̃, even if Alice does not have the authority’s
secret key. From the new signature s̃, Bob can then verify that x̃ is indeed a
redacted version of a string signed by the authority.

Unlike the usual signature schemes, redactable signature scheme has additional
requirement on privacy: information of the removed strings should be hidden. In
this paper, we consider the stringent requirement that, Bob could not obtain any
information of any removed substring, except the fact that a non-empty substring
has been removed at each location �. This simple requirement turns out to be dif-
ficult to achieve. Existing schemes are unable to completely hide a piece of infor-
mation: the length of each removed substring. Note that information on length
could be crucial if the substring has low entropy. For example, if the substring
is either “Approved” or “Not Approved”, then its length reveals everything. The
redactable signature scheme proposed by Johnson et al. [9] employs a Merkle tree
[11] and a GGM tree [7] to generate a short signature. However, it is easy to derive
the length from the structures of the redacted Merkle and GGM trees. A straight-
forward modification by introducing randomness into the tree structure also does
not hide the length completely. Schemes by Johnson et al. [9] (set-homomorphic
signatures) and Miyazaki et al. [13] are designed for unordered sets and are not
applicable for a string. A way to extend their schemes to strings is by assigning a
sequence of increasing random numbers to the objects [13]. However, this leads to
large signatures since the random numbers have to be explicitly stored, and more
importantly, it is insecure since the gaps in the sequence reveal some information
about the number of removed objects.

Note that the type of information to be removed varies for different applica-
tions. There are applications where the lengths of the removed strings should not
be hidden. As noted by Johnson et al. [9], semantic attack could be possible in
some scenarios if the length information is hidden. On the other hand, there are
also applications where not only the substrings have to be completely purged,
the fact that a string has been redacted must be hidden. Our scheme can be
modified to cater for the above two scenarios.

In this paper, we propose a scheme that can hide the lengths of the removed
substrings. Our scheme incorporates two components: a hash, and a random tree
with a hiding property. We first give a scheme RSS using the first component,
and then another scheme SRSS with both components. The first component
hashes a string of objects to an unordered set. For the unordered set, exist-
ing redactable schemes [13,9] on unordered sets can be applied. The scheme
RSS satisfies the requirements on unforgeability and privacy preserving under
reasonable cryptographic assumptions. However, it produces a large signature.
Essentially, the main portion of the signature is a sequence of random numbers
〈r1, r2, . . . , rm〉, where each ri is associated with the i-th object in the string.

The goal of the second component is to reduce the signature size by generating
the ri’s from a small seed t. If a substring is removed, the corresponding ran-
dom numbers have to be removed accordingly. Thus, a straightforward method
of generating the random numbers iteratively starting from the seed violates
privacy, since the seed t reveals all the random numbers.
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(a) (b)

Ancestor nodes to be deleted

Leaf node to be removed

Random number to be removed

r1 r3 r4 r5 r7 r8 r1 r2 r3 r4 r5 r7 r8 r9r9r2 r6

Fig. 1. Redacting the tree in (a) by removing r6, gives rise to the redacted tree (b)

We employ a variant of GGM binary tree to generate the ri’s in a top-down
manner, where the ri’s are at the leaves, and the seed t is at the root. Unlike the
GGM tree which is balanced, we use a random binary tree where the structure
of the binary tree is random. After a substring is removed, the associated leaves
and all their ancestors are to be removed, resulting in a collection of subtrees
(Figure 1). The roots of the subtrees collectively form the new seed t̃ for the
redacted ri’s. Note that from the structures of the subtrees, an adversary might
still derive some information of the length of a removed substring. Our main
observation is that, by choosing an appropriate tree generation algorithm, the
structure of the subtrees reveals nothing about the size of the original tree.
Consider a game between- Alice and Bob. Suppose Alice randomly picks a binary
tree and it is equal likely that the tree contains 1000 leaves or 9 leaves. Now Alice
redacts the tree by removing one substring and only 8 leaves are left. From the
structure of the remaining subtrees (for example Figure 1(b)), Bob tries to guess
the size of the original tree. Now, if Alice employs a tree generation algorithm
with the hiding property, Bob cannot succeed with probability more than 0.5.
This hiding property is rather counter-intuitive. Since the size of the tree is
involved in the tree generation and thus intuitively the information about the
size of the tree is spread throughout the tree. It is quite surprising that the global
information on size can be completely removed by deleting some nodes.

Contribution and Organization
1. We propose a “collision resistant” hash H that maps strings to unordered
sets. From H we obtain RSS, a redactable signature scheme for strings. Un-
like previously known methods, RSS is able to hide the lengths of the removed
substrings. We show that RSS is secure against chosen message attack (The-
orem 2) and privacy preserving (Theorem 3) under assumptions weaker than
the random oracle assumption. However, the signature size is large. It consists
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of km + kt + κ bits, where κ is the size of the signature produced by a known
redactable signature scheme for unordered sets, m is the number of objects in
the redacted string, t is the number of substrings removed, and k is a security
parameter (e.g. k = 1024).

2. We observe a hiding property of a random tree (Theorem 4). Based on the
observation, we propose RGGM, a pseudo random number generator which can
be viewed as a randomized version of GGM [7]. If multiple substrings of pseudo
random numbers are to be removed, we can efficiently find a new seed that gen-
erates the retained numbers, and yet it is computationally difficult to derive the
content and length of each removed substring from the new seed, except the
locations of the removed substrings.

3. We propose SRSS by incorporating RGGM into RSS. The expected size of
the signature is in κ+ O(k + kt logm). SRSS is secure against chosen message
attack (Corollary 5) and privacy preserving (Corollary 6).

2 Related Work

Johnson et al. [9] introduced redactable signature schemes which enable verifi-
cation of a redacted signed document. Signature scheme with similar property
has also been proposed for XML documents [15], where the redaction opera-
tion is to remove XML nodes. Redactable signatures are examples of homo-
morphic signatures which are introduced by Rivest in his talks on “Two New
Signature Schemes” [14] and formalized by Johnson et al. [9]. Micali et al.
[12] gave a transitive signature scheme as the first construction of homomor-
phic signatures. They also asked for other possible “signature algebras”. The
notions on homomorphic signatures can be traced back to incremental cryp-
tography, introduced by Bellare, Goldreich and Goldwasser [3,4]. Recently, Ate-
niese et al. [2] introduced sanitizable signature scheme [10,8,16,13] allowing a
semi-trusted censor modifies the signed documents in a limited and controlled
way.

The redactable signature scheme on strings is closely related to directed tran-
sitive signature scheme [12,17]. It is possible to convert a directed transitive
signature scheme to a redactable signature scheme on strings. However, exist-
ing directed transitive signature schemes do not provide privacy in the sense
that the resulting signatures reveal some information about the removed sub-
strings.

There are extensive works on random tree. Aldous [1] considered random
trees satisfying this consistency property: removing a random leaf from R(k)
gives R(k − 1), where R(k) is a random tree with k leaves. Thus, given a tree
with k leaves, it can be originated from a tree with k+ t leaves, and then with t
randomly chosen leaves removed, for any t. This consistency property is similar to
the hiding property we seek. Unfortunately, it cannot be applied in our problem,
since the leaves to be removed are not randomly chosen.
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3 Formulation and Background

Johnson et al.[9] gave definitions on homomorphic signature schemes and their
security for binary operators. The next two definitions (Definition 1 & 2) are
based on the notations by Johnson et al.[9].

A string is a sequence of objects from an object space (or alphabet) O. For
example, O can be the set of ASCII characters, collection of words, or audio
samples, etc. We assume that the first and last object in x can not be removed.
This assumption can be easily met by putting a special symbol at the front and
back of the string. After a few substrings are removed from x, the string x may
break into substrings, say x1,x2, . . . ,xu. The redacted string (x̃, e), which we
call annotated string1, is represented by the string x̃ = x1‖x2‖ . . . ‖xu and an
annotation e = 〈m, b1, b2, . . . , bv〉 where ‖ denotes concatenation, bi’s is a strictly
increasing sequence indicating the locations of the removed substrings, m is the
number of objects in x̃, and v ∈ {u − 1, u, u + 1}. For each i, bi indicates that
a non-empty substring has been removed in between the bi-th and (1 + bi)-th
locations. If b1 = 0 or bv = m, this indicates that a non-empty substring has
been removed at the beginning or end of the string respectively. For example,
(abcda, 〈5, 0, 3〉) is a redacted string of the original xxxabcyyyda. For convenient,
we sometimes write a sequence of objects as 〈x1, x2, x3, . . . , xm〉 or as a string
x1x2x3 . . . xm.

Let us define a binary relation � between annotated strings. Given two an-
notated strings X1 = (x1, e1) and X2 = (x2, e2), we say X1 � X2, if either x2
can be obtained from x1 by removing a non-empty substring in x1, and the e2
is updated from e1 accordingly, or there is a X s.t. X1 � X and X � X2.

Definition 1 (Redactable Signature Scheme [9]). A redactable signature
scheme with respect to binary relation �, is a tuple of probabilistic polynomial
time algorithms (KGen, Sign, Verify, Redact), such that

1. for any message x, σ = SignSK(x)⇒ VerifyPK(x, σ) = TRUE;
2. for any messages x and y, such that x � y,

VerifyPK(x, σ)=TRUE ∧ σ′=RedactPK(x, σ, y)⇒VerifyPK(y, σ′)=TRUE,

where (PK,SK)← KGen(1k) and k is the security parameter.

Both Johnson et al.[9] and Miyazaki et al.[13] presented a redactable signature
scheme w.r.t superset relation. Johnson et al.[9] also gave security definition
for homomorphic signature schemes. We adapt their definition for redactable
signature scheme. Let � denote a binary relation. For any set S, let span	(S)
denote the set {x : ∃y ∈ S, s.t. y � x}.

Definition 2 (Unforgeability of Redactable Signature Scheme [9]).

A redactable signature scheme 〈KGen, Sign, Verify, Redact〉 is (t, q, ε)-unforgeable
against existential forgeries with respect to � under adaptive chosen message
1 A string with an annotation which specifies the locations of redactions.
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attack, if any adversary A that makes at most q chosen-message queries adaptively
and runs in time at most t, has advantage AdvA ≤ ε. The advantage of an adver-
sary A is defined as the probability that, after queries on � (� ≤ q)
messages x1, x2, . . . , x�, A outputs a valid signature σ for some message x �∈
span	({x1, x2, . . . , x�}). Formally,

AdvA = Pr

[
(PK,SK)← KGen(1k); ASignSK = (x, σ);

VerifyPK(x, σ) = TRUE and x �∈ span	({x1, x2, . . . , x�})

]
,

where the probability is taken over the random coins used by KGen, Sign and A.

Redactable signature schemes have an additional security requirement on privacy
[2]: the adversary should not be able to derive any information about the removed
substrings from a redacted string and its signature.

Definition 3 (Privacy Preserving). A redactable signature scheme
〈KGen, Sign, Verify, Redact〉 is privacy preserving if, given the public key PK
and any annotated strings X1,X2,X , such that X1 � X and X2 � X , the follow-
ing distributions S1 and S2 are computationally indistinguishable:

S1 = {σ : σ = RedactPK(X1, SignSK(X1; r1),X ; r2)},
S2 = {σ : σ = RedactPK(X2, SignSK(X2; r1),X ; r2)},

where r1 and r2 are random bits used by Sign and Redact respectively, and
public/private key (PK,SK) is generated by KGen.

4 RSS: Redactable Signature Scheme for Strings

We propose RSS , a redactable signature scheme for strings that is able to hide
the lengths of the removed substrings. Our approach is as follows: we first propose
a hash function H that maps an annotated string X and an auxiliary input y to
an unordered set. This hash is “collision resistant” and satisfies some properties
on substring removal. Using H and some known redactable signature schemes
for unordered sets, we have a redactable signature scheme for strings.

4.1 Hashing Strings to Unordered Sets

LetH be a hash function that maps an annotated string X and an auxiliary input
y to a (unordered) set of elements from some universe. The auxiliary could be
a sequence of numbers from a finite ring, and is not of particular interest right
now. In our construction (Table 1), H maps the input to a set of 3-tuples in
Zn × Zn × Zn, where n is some chosen parameter.

Definition 4 (Collision Resistant). H is (t, ε)-collision-resistant if, for any
algorithm A with running time at most t,

Pr [X1 �� X2 ∧ H(X2,y2) ⊂ H(X1,y1)] ≤ ε,

where (X1,X2,y2) is the output of A on input y1, and the probability is taken
over uniformly randomly chosen y1 and random bits used by A.
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To be used in constructing a secure scheme, besides collision resistance, the hash
function H is also required to be,

1. redactable, that is, given X1, X2 and y1, such that X1 � X2, it is easy to
find y2 such that H(X1,y1) ⊃ H(X2,y2); and

2. privacy preserving, that is, H(X2,y2) must not reveal any information about
the removed substring.

The property on privacy preserving is essential and used in the proof of Theorem 3.
However, for simplicity, we will not explicitly formulate the requirement here.

4.2 Construction of H
We present a hash function H(·, ·) in Table 1 based on some hash functions h
that output odd numbers. In practice, we may use popular cryptographic hash
function like SHA-2 as h, but with the least significant bit always set to 1.
For security analysis, we choose functions with certain security requirements as
stated in Lemma 1.

Redactable requirement. Note that the hash H is redactable as mentioned in
Section 4.1, that is, given (x1, e1), (r1,w1) and (x2, e2) where (x1, e1) � (x2, e2),
it is easy to find a (r2,w2) such that

H((x1, e1), (r1,w1)) ⊃ H((x2, e2), (r2,w2)).

The design ofH is “inspired” by the following observation. Let us view the sequence
〈t1, t2, . . . , tm〉 as the outputs of an iterative hash. We can rewrite ti’s in the form:
ti+1 = C(ti, xi+1, ri+1), where C is the basic block in the iterative hash. In the
event that a substring, say at location i−1 and i, is to be removed,both (xi−1, ri−1)
and (xi, ri) also have to be removed. Yet, we want the iterative hash can still be
computed. This can be achieved with the help of the witness wi’s.

Remarks on ri’s. It is crucial that the value of ri is explicitly represented in ti
for each i (Table 1). If the ri’s are omitted in the design, for instance, by using
this alternative definition,

H̃((x, e), (r,w)) � {t̂i : t̂i = (xi, (w
∏ i

j=1 h(rj)
i mod n))},

then there would be no linkage between the ri’s and xi’s. Such lack of linkage
can be exploited to find collisions.

Table 1. Definition of H(·, ·)

Let n be a RSA modulus, and h : Zn → Zn be a hash function. Given x = x1x2 . . . xm

associated with annotation e, r = r1r2r3 . . . rm, and w = w1w2w3 . . . wm, where for
each i, xi, ri, wi ∈ Zn (i.e. x, r and w are strings over alphabet Zn), we define H as

H((x, e), (r,w)) � {ti : ti = (xi, ri, (w
∏i

j=1 h(rj)

i mod n)), 1 ≤ i ≤ m}.
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Table 2. RSS: KGen

KGen. Given security parameter k.

1. Choose a RSA modulus n, and an element g of large order in Zn.
2. Run key generating algorithm keygen on input 1k to get key (PK,SK).
3. Output (n, g,PK) as public key and SK as private key.

Lemma 1. The hash function H as defined in Table 1, is (poly1(k), 1
poly2(k) )-

collision-resistant for any positive polynomials poly1(·) and poly2(·), where k
is the security parameter, i.e. the bit length of n, assuming that h is division
intractable2 and always outputs odd prime integers, and Strong RSA Problem is
hard.

Essentially, the proof reduces Strong RSA Problem or Division Problem [6]
to the problem of finding collisions. Gennaro et al.[6] gave a way to construct a
hash function that is division intractable and always outputs odd prime numbers.
Thus the conditions of the Lemma 1 can be achieved.

4.3 Construction of RSS

We construct a redactable signature scheme RSS , which consists of four al-
gorithms KGen, Sign, Verify, and Redact, for strings with respect to binary
relation � based on the hash function H defined in Table 1 and a redactable
signature scheme for (unordered) sets with respect to superset relation ⊇.

The signer chooses a RSA modulus n and an element g of large order in Z∗
n.

Both n and g are public. Let the object space be Zn , that is, a string is a
sequence of integers from Zn. Let h : Zn → Zn be a hash which satisfies security
requirement stated in Lemma 1. Note that in practice, it may be suffice to employ
popular cryptographic hash like SHA-2 (but with the least significant bit of the
output always set to 1) as the function h. Let SSS = (keygen, sig, vrf, rec)
be a redactable signature scheme for unordered sets w.r.t superset relation ⊇.
The signer also needs to choose the public and secret key pair (PK,SK) of the
underlying signature scheme SSS. The details of KGen, Sign, Verify, and Redact
are presented in Table 2, Table 3, Table 4 and Table 5 respectively.

The final signature of a string x1x2 . . . xm consists of m random numbers
r1, r2, . . . , rm, the witnesses w1, w2, . . . , wm where ri, wi ∈ Zn for each i, and a
signature s constructed by SSS.

Initially, the witness is set to be wi = g for each i (Step 1 in Table 3). The
witness will be modified during redactions. By comparing the neighboring value
within the witness w, we can deduce the locations of the removed substrings.
Specifically, for any 1 < i ≤ m, wi−1 �= wi if and only if a non-empty substring
has been removed between xi−1 and xi. Recall that the first and last object in

2 Division intractability [6] implies collision resistance.
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Table 3. RSS: Sign

Sign. Given x = x1x2 . . . xm and its associated annotation e = 〈m〉.
1. Let wi = g for each i. Choose m distinct random numbers r1, r2, . . . , rm. Let

r = r1r2r3 . . . rm and w = w1w2w3 . . . wm. Compute

t = H((x, e), (r,w)).

2. Sign the set t using SSS with the secret key SK to obtain s:

s = sigSK(t).

3. The final signature consists of the random numbers ri’s, witnesses wi’s, and the
signature s. That is,

(r,w, s) or (r1, r2, . . . , rm; w1, w2, . . . , wm; s)

Table 4. RSS: Verify

Verify. Given a string x = x1x2 . . . xm associated with annotation e, its signature
(r,w, s), the public information n, g, and the public key PK of SSS.

1. If e and w are not consistent, output FALSE.
2. Compute t = H(x, (r,w)).
3. (r,w, s) is a valid signature of x under RSS, if and only if s is a valid signature

of t under SSS, i.e.
vrfPK(t, s) = TRUE.

the string cannot be removed (Section 3) and thus we do not have to consider
cases when i = 1 and i− 1 = m.

Since the witness w should be consistent with the annotation b, and the H
is collision-resistant, it can be used to verify the integrity of b, as in the Step 1
of Table 4.

Theorem 2. RSS is (t, q, ε1
1−ε2

)-unforgeable against existential forgeries with
respect to relation �, if SSS is (t+ qt0, q, ε1)-unforgeable against existential forg-
eries with respect to superset relation ⊇, and H is (t+qt1, ε2)-collision-resistant,
where t0 is the running time of H and t1 is the time needed by RSS to sign a
document.

Our construction of H (Table 1) is collision resistant (Lemma 1). Johnson et
al.[9] showed their redactable signature scheme Sig (in Section 5 of [9]) is
(t, q, ε)-unforgeable under reasonable assumptions (see Theorem 1 in [9]), for
some proper parameters t, q and ε. Miyazaki et al.[13] also showed a similar
result on the unforgeability of the redactable signature scheme they proposed.
Hence, conditions in Theorem 2 can be satisfied.
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Table 5. RSS: Redact

Redact. Given a string x = x1x2 . . . xm associated with annotation e, and its sig-
nature (r, w, s), where r = r1r2 . . . rm, w = w1w2 . . . wm, the public information n, g,
public key PK for SSS, and (i, j) the location of the string to be removed (that is
xixi+1 . . . xj is to be removed).

1. Update e to obtain new annotation ê. Compute u =
∏j

k=i h(rk), to update the
witnesses in the following way: for each � > j, update w�

ŵ� ← wu
� mod n.

2. Let x̂ = x1x2 . . . xi−1xj+1 . . . xm, r̂ = r1r2 . . . ri−1rj+1 . . . rm and ŵ =
w1w2 . . . wi−1ŵj+1ŵj+2 . . . ŵm. Compute

t̂ = H((x̂, ê), (r̂, ŵ)).

3. Compute
ŝ = recPK(t, s, t̂)

where t = H((x, e), (r, w)).
4. Output (r̂, ŵ, ŝ) as the signature of (x̂, ê).

Theorem 3. The redactable signature scheme RSS is privacy preserving (as
defined in Definition 3), assuming that hash function h satisfies the property:
the two distributions X = gh(U1)h(U2) mod n and Y = gh(U ′

1) mod n are com-
putationally indistinguishable, where n is a RSA modulus, g is an element of
large order in Z∗

n and Ui’s and U ′
j’s are all independent uniform random vari-

ables over Zn.

Note that the scheme SSS does not need to satisfy requirement on privacy, this
is because information is already removed before algorithms of SSS are applied.

4.4 Efficiency

The size of s depends on SSS, and let us assume it requires κ bits. The number
of distinct wi’s is about the same as the number of redactions occurred. So wi’s
can be represented in t(k + �logm) bits, where t is the number of substrings
removed, and k is the bit length of n. Thus the total number of bits required is
at most k(m + t) + t�logm + κ. The dominant term is km, which is the total
size of the random numbers ri’s.

Disregarding the time taken by the scheme SSS, and the time required to
compute the hash h(·), during signing, O(m) of k-bits exponentiation operations
are required. During redaction, if � consecutive objects are to be removed between
position i and j, and t′ number of redactions have been made after position j,
then the number of k-bit exponentiation operations is at most �(t′ +1), which is
in O(�m). During verification, O(tm) number of k-bits exponentiation operations
are required. Hence, our scheme is suitable for small t, which is reasonable in
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practice. In sum, the main drawback of RSS is the size of its signature. In the
next section, we will reduce its size using a random tree.

5 RGGM: Random Tree with Hiding Property

We propose RGGM, a variant of GGM tree [7] to generate a sequence of pseudo
random numbers, where the structure of the tree is randomized. This generator
provides us with the ability to remove multiple substrings of pseudo random
numbers, while still being able to generate the retained numbers from a short
seed. The expected size of the new seed is in O(k + tk logm) where t is the
number of removed substrings, m is the number of pseudo random numbers,
and k is a security parameter. More importantly, the new seed does not reveal
any information about the size nor the content of the removed substrings.

Pseudo random number generation. To generate m pseudo random numbers
we employ a method similar to that in the redactable signature scheme proposed
by Johnson et al. [9], which is based on the GGM tree [7]. Let G : K → K ×K
be a length-doubling pseudo random number generator. First pick an arbitrary
binary tree T with m leaves, where all internal nodes of T have exactly two
children, the left and right child. Next, pick a seed t ∈ K uniformly at random,
and associate it with the root. The pseudo random numbers r1, r2, . . . , rm are
then computed from t in the usual top-down manner along the binary tree.

Hiding random numbers. If ri is to be removed, the associated leaf node and all
its ancestors will be removed, as illustrated by the example in Figure 1(b). The
values associated with the roots of the remaining subtrees, and a description
of the structure of the subtrees, form the new seed, whereby the remaining
random values rj ’s (j �= i) can be re-computed. By the property of G, it is
computationally difficult to guess the removed value ri from the new seed.

Unlike the method proposed by Johnson et al. [9], our tree T is randomly
generated. If the tree is known to be balanced (or known to be of some fixed
structure), some information on the number of leaf nodes removed can be derived
from the redacted tree. Our random trees are generated by the probabilistic
algorithm TreeGen in Table 6. Note that descriptions of the structure of the tree
are required for the regeneration of the random values ri’s.

At the moment, for ease of presentation, the descriptions are stored together
with the seed. This increases the size of the seed. To reduce the size, we can

Table 6. TreeGen: a random tree generation algorithm

TreeGen: Given m, output a binary tree T with m leaves:

1. Pick a p uniformly at random from {1, 2, . . . , m − 1}.
2. Recursively generate a tree T1 with p leaves.
3. Recursively generate a tree T2 with m − p leaves.
4. Output a binary tree with T1 as the left subtree and T2 as the right subtree.
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replace the description by another short random seed t̂, which is assigned to the
root. The random input required in Step 1 of the algorithm can be generated
from t̂ using G. A difference between the two methods of storing the (redacted)
tree structure information is that in the former, we will have an information
theoretic security result, whereas in the later, the security depends on G.

Our main observation is as follows: after a substring of leaves is removed from
the random tree, the remaining subtrees do not reveal (information theoretically)
anything about the number of leaves removed, except the fact that at least one
leaf has been removed at that location.

Notations. Given a binary tree T , its leaf nodes can be listed from left to
right to obtain a sequence. We call a subsequence of consecutive leaves a sub-
string of leaves. After multiple substrings of leaves and all of their ancestor nodes
are deleted, the remaining structures form a redacted tree3 represented by two
sequences, T = 〈T1, T2, . . . , Tv〉 and b = 〈m, b1, b2, . . . , bu〉, where Ti’s are the
subtrees retained, and each bi indicates that a substring was removed between
the bi-th and (bi + 1)-th locations in the remaining sequence of leaf nodes. Let
qi be the number of leaves that were removed in this substring. We call the se-
quence 〈m, (b1, q1), (b2, q2), . . . , (bu, qu)〉 the original annotation of b. Thus, the
total number of leaf nodes removed is

∑u
i=1 qi.

Let us consider this process. Given an original annotation b1 = 〈m, (b1, q1),
(b2, q2), . . . , (bu, qu)〉, a random tree T of size m +

∑u
i=1 qi is generated using

TreeGen, and then redacted according to b1. Let RED(b1) be the redacted tree.
From an adversary’s point of view, he has RED(b1), represented as (T,b), and

wants to guess the qi’s in the original annotation b1. We can show that the
additional knowledge of T does not improve his chances, compared to another
adversary who only has the annotation b but not the tree T. It is suffice to
show that, given any b and any two possible original annotations b1 and b2, the
conditional probabilities of obtaining (T,b) are the same. That is,

Theorem 4. For any redacted tree (T,b), any distribution B on the original an-
notation, and b1 = 〈m, (b1, q1), (b2, q2), . . . , (bu, qu)〉, b2 = 〈m, (b1, q′1), (b2, q

′
2),

. . . , (bu, q
′
u)〉,

Prob(RED(B) = (T,b) | B = b1) = Prob(RED(B) = (T,b) | B = b2)

6 SRSS: A Short Redactable Signature Scheme for
Strings

RSS produces a large signature, whose main portion is a sequence of true ran-
dom numbers ri’s. We can combine RGGM with RSS to produce a short sig-
nature by replacing the ri’s with pseudo random numbers generated by RGGM.
Let us call this combined scheme SRSS , short redactable signature scheme for
3 Although strictly speaking it is a forest.
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strings. It is easy to show that SRSS is unforgeable and privacy preserving
from Lemma 1, Theorem 2, Theorem 3, Theorem 4, and the fact that RGGM is
a pseudo random number generator.

Unforgeability. From the definition of cryptographic secure pseudo random
number generator and Theorem 2, we conclude that SRSS is unforgeable.

Corollary 5. For any positive polynomials (in κ) t and q, SRSS is
(t, q, ε1

1−ε2
)-unforgeable against existential forgeries with respect to �, if SSS is

(t + qt0, q, ε1)-unforgeable against existential forgeries with respect to ⊇, H
is (t+qt1, ε2)-collision-resistant, and G is a cryptographic secure pseudo random
number generator, where t0 is the running time of H, t1 is the time needed by
SRSS to sign a document, and κ is the security parameter.

Privacy. From the definition of cryptographic secure pseudo random num-
ber generator, Theorem 3 and Theorem 4, we conclude that SRSS is privacy
preserving.

Corollary 6. The redactable signature scheme SRSS is privacy preserving
(as defined in Definition 3), assuming that the hash function h satisfies the
property: the two distributions X = gh(U1)h(U2) mod n and Y = gh(U ′

1) mod n
are computationally indistinguishable, and G is a cryptographic secure pseudo
random number generator, where n is a RSA modulus, g is an element of large
order in Z∗

n and Ui’s and U ′
j’s are all independent uniform random variables

over Zn, and h(·) is used to define H in Table 1.

Efficiency. The improvement of SRSS is in signature size. Given the unredacted
string, the size of the signature is κ+2k, where κ is the signature size of SSS, and
k is the length of each seed. Recall that we need two seeds in RGGM, one for the
generation of the numbers, and the other for the tree structure. If t substrings
are removed, the signature size is κ+ tk + O(kt logm), where the term tk is for
the witness, and O(kt logm) is required for the RGGM.

7 Other Variants

7.1 Allowing Removal of Empty Substring

Both RSS and SRSS do not allow removal of empty substrings. In fact, it is
considered to be a forgery if a censor declares that a substring has been removed
but actually the censor does not remove anything. However, some applications
may want to allow removal of empty substrings. This can be achieved by slight
modifications to our schemes. To sign a string x1x2 . . . xm, special symbol �
is inserted to obtain the expanded string x̃ = �x1�x2� . . . �xm� which will be
signed directly using RSS or SRSS. To remove a substring x0, the expanded
substring of x0 is actually removed. In the case where a substring has already
being removed in front or at the end of x0, the � is not included at the front
or the end accordingly. To remove an empty substring, simply remove the � at
intended location.
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7.2 Hiding the Fact That the String Is Redacted

There is a question on whether one should hide the location of a removed sub-
string or even the occurrence of redaction. This requirement is also known as
invisibility or transparency [2,13]. For a small object space, if invisibility is sat-
isfied, a censor may take a long signed string, remove some substrings to form
an arbitrary “authentic” short string. Nevertheless, some applications may need
invisibility.

Here is a simple variation of RSS that achieves this. To sign a string, sim-
ply add a special symbols � in-between any two consecutive objects. Sign the
expanded string and then immediately redact it by removing all �’s. Redaction
and verification is the same as before. However, this variant produces a large sig-
nature even if we use SRSS . Furthermore, the computation during verification
is high. At least Ω(m2) exponentiation operations are required.

To reduce the size of signature, there is an alternative: sign all the pairs of
objects. To sign the string x = x1x2x3 . . . xm, first generate random numbers
r1, r2, . . . , rm such that ri‖xi’s are distinct. Next, let t be the set of all pairs
{(ri‖xi, rj‖xj)}i<j and employ SSS to sign t. When an object xi is to be removed,
simply remove all the pairs that involve xi from t. Since the role of ri is to ensure
that all elements are distinct, the size of each ri can be smaller than the random
numbers required by RSS.

8 Discussion and Conclusion

We considered a simple but difficult requirement in redactable signature scheme:
hiding the lengths of the removed substrings. We exploited an intriguing statistical
property of random trees, and employed a hash from strings to unordered sets to
achieve the requirement. Although the signature is short, its size still depends on
the number of substrings removed and the length of the string. In contrast, there
are known schemes for unordered sets, whose signature size is a constant. Hence,
it is interesting to find out whether it is possible to close the gap.

The two main components, the hash H and the RGGM tree, proposed in
this paper, could be of independent interests. The hash function may play a
role in the design of transitive signature with additional property on privacy
preservation. Many secure outsourced database applications involve Merkel tree
or GGM tree. The hiding property of the RGGM tree may be useful in those
applications.
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Abstract. On-line/Off-line signatures are used in a particular scenario
where the signer must respond quickly once the message to be signed is
presented. The idea is to split the signing procedure into two phases: the
off-line and on-line phases. The signer can do some pre-computations in
off-line phase before he sees the message to be signed.

In most of these schemes, when signing a message m, a partial signa-
ture of m is computed in the off-line phase. We call this part of signature
the off-line signature token of message m. In some special applications,
the off-line signature tokens might be exposed in the off-line phase. For
example, some signers might want to transmit off-line signature tokens
in the off-line phase in order to save the on-line transmission bandwidth.
Another example is in the case of on-line/off-line threshold signature
schemes, where off-line signature tokens are unavoidably exposed to all
the users in the off-line phase.

This paper discusses this exposure problem and introduces a new no-
tion: divisible on-line/off-line signatures, in which exposure of off-line
signature tokens in off-line phase is allowed. An efficient construction of
this type of signatures is also proposed. Furthermore, we show an im-
portant application of divisible on-line/off-line signatures in the area of
on-line/off-line threshold signatures.

Keywords: Signature Schemes, Divisible On-line/Off-line Signatures,
On-line/Off-line Threshold Signatures.

1 Introduction

On-line/Off-line signatures are used in a particular scenario where the signer
must respond quickly once the message to be signed is presented. This notion
was first introduced by Even, Goldreich and Micali in 1990 [10]. The idea of on-
line/off-line signatures is to split the signing procedure into two phases. The first
phase is off-line: in this phase, the signer does some preparing works before the
message to be signed is presented. The second phase is on-line: once the message
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to be signed is known, the signer utilizes the result of the pre-computation and
uses a very short time to accomplish the signing procedure.

Some signature schemes can be naturally viewed as on-line/off-line signature
schemes. They include Fiat-Shamir [11], Schnorr [19], El-Gamal [9], DSS [17]
and Boneh-Boyen [2] signature schemes.

Up to now, there are two general approaches to convert any signature scheme
into an on-line/off-line signature scheme. They are Even et al.’s paradigm [10]
based on one time signatures and Shamir and Tauman’s paradigm [20] based on
trapdoor hash functions. Even et al.’s concrete implementation in [10] has a very
long signature length and thus is not practical. Shamir-Tauman paradigm greatly
reduces the signature length, whilst the on-line computation is fast. In PKC08,
Catalano et al. [4] unified Even et al.’s paradigm and Shamir-Tauman paradigm,
in the sense that they both use an ordinary signature scheme and a (weak)
one time signature scheme as components1. Here the trapdoor hash function
in Shamir-Tauman paradigm is viewed as a weak one time signature scheme.
However, these two paradigms truly have different security characterizations if we
consider the partial signature exposure problem described in the next subsection.
See next subsection for more details.

Some recent works in on-line/off-line signatures have also been done in [18,
21, 22, 5, 15, 6, 3]. These schemes aim at some specific goals such as improving
the efficiency [18], eliminating the random oracle model assumption [15], con-
structing ID-based schemes [21], constructing threshold schemes [6, 3], avoiding
key exposure [5], or avoiding trapdoor hash primitives [22].

1.1 Divisible On-Line/Off-Line Signatures

In most of the on-line/off-line signature schemes( [9, 17, 18, 21, 22, 5, 15, 6, 3, 2]
and some variations of [11, 19]), when signing a message m, a partial signature
of m is computed in the off-line phase. We call this part of signature the off-
line signature token of message m. Although the signature generation is broken
into two stages, the transmission of a signature is at one time, i.e., the whole
signature of a message is transmitted to the recipient at the end of the on-line
phase, while nothing is transmitted in the off-line phase.

A question thus naturally arises: can the off-line signature token be transmit-
ted to the recipient off-line? An equivalent question is: is the signature scheme
still secure if the adversary is allowed to query the signing oracle with a message
depending on this message’s off-line signature token? Addressing this question
is meaningful because in some special applications, the off-line signature tokens
might be exposed in the off-line phase. For example, some signers might want to
transmit off-line signature tokens in the off-line phase in order to save the on-
line transmission bandwidth. Another example is in the case of on-line/off-line
threshold signature schemes [6, 3], where off-line signature tokens are unavoid-
ably exposed to all the users in the off-line phase.

1 Here the “weak” means the signature scheme is unforgeable only against generic
chosen message attack [14].
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Unfortunately, most on-line/off-line signature schemes can not be proven to be
secure if their off-line signature tokens are exposed in the off-line signing phase. In
this paper, we introduce a new notion called divisible on-line/off-line signatures,
in which exposure of off-line signature tokens in off-line singing phase is allowed.
To exemplify this new notion, we give in appendix some on-line/off-line signature
schemes extracted from existing literatures, which satisfy the new property of
divisibility. This paper also presents an efficient construction satisfying the new
requirement, which is based on Boneh and Boyen(BB)’s signature scheme [2].

An informal description. Let OS be an on-line/off-line signature scheme.
When signing a message m submitted by a receiver (or generated randomly), the
signer uses the signing algorithm of OS to obtain a signature, say Σ. Informally,
we say scheme OS is divisible if: i) Σ can be separated into two parts Σoff and
Σon, where Σoff is obtained before the message m is known by the signer. ii)
Before the signer knows the message, he can send Σoff to the receiver first. In
other word, the message requested to be signed in the attack game can depend
on the first part of the signature. A formal definition is presented in Section 3.

An on-line/off-line signature scheme is trivially divisible if its Σoff is null. For
this reason we restrict to non-trivial divisibility in this paper. In the rest of this
paper, the word divisible/divisibility usually means a non-trivial case.

Existing Schemes with divisibility. Some existing on-line/off-line signature
schemes are listed in Table 1 to show whether they can be proved divisible. We
can see that some schemes are divisible such as Scheme Schnorr-OS and Even et
al.’s scheme. However, most schemes like Shamir and Tauman’s general paradigm
can not be proven to have this property, at least using currently known methods.

It is worthwhile noting that Even et al.’s paradigm, which uses an one time
signature scheme as a component, is divisible; whereas Shamir and Tauman’s
general paradigm cannot be proven divisible because it only uses a weak one
time signature scheme.

Remark 1. We argue that El-Gamal signature scheme cannot be proven divisible
using the technique in [9]. In short, the simulated hash oracle H(·) should not
set the value of H(m‖Σoff) to a value pre-determined in off-line phase, because
that could lead to a hash collision if another m′‖Σoff is also requested to the
hash oracle before Σoff is used.

Motivations. Considering the exposure problem might be interesting by itself.
Besides, there are two main reasons to consider the divisibility of an on-line/off-
line signature scheme:

1. To save the on-line bandwidth. If an on-line/off-line scheme is divisible, the
signer can send the off-line part of the signature in the off-line phase instead of
in the on-line phase. This reduces the on-line bandwidth of the communication
channel.

2. To construct on-line/off-line threshold signatures. An on-line/off-line thresh-
old signature (OT S) scheme [6, 3] is a threshold signature scheme [7, 8] which
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Table 1. Some on-line/off-line signature schemes. The second column shows whether
they can be proved to be divisible using existing methods.

Schemes Divisible? Note
Fiat-Shamir [11] No

El-Gamal [9] No
DSS [17] No

Boneh-Boyen [2] No
Shamir and Tauman’s
paradigm (general) [20] No

Some specific constructions can be
proved divisible. See Appendix A,B.

Xu et al.’s scheme [21] No
It seems divisible. However a
deeper analysis shows it is not.

Chen et al.’s scheme [5] No
Even et al.’s scheme [10] Yes It has a long signature length.

Schnorr-OS Yes
It’s a variant of Schnorr signature
scheme [19]. See Appendix C.

CMTW-OS Yes
See Appendix A. It is extracted
from [6].

BCG-OS Yes
See Appendix B. It is extracted
from [3].

can be partitioned into off-line and on-line phases. In an OT S scheme, off-line
signature tokens will be unavoidably exposed to all the users in the off-line
phase.

In the full paper [12] we prove that if an OT S scheme is simulatable to
a divisible on-line/off-line signature scheme DOS , then the unforgeability of
OT S can be reduced to that of DOS . This provides a theoretical basis for
securely constructing an OT S scheme through the simulation approach.

Related work. The notion of divisible on-line/off-line signatures is first ex-
plicitly given in this paper, but the original idea goes back to [6, 3]. When
proving the unforgeability of an on-line/off-line threshold signature scheme, the
authors noticed that the off-line simulation of the scheme should not depend on
the message to be signed. From [6, 3], we extract two on-line/off-line signature
schemes(CMTW-OS and BCG-OS, see Appendix A,B), which can be proven di-
visible using the same proof techniques in [6, 3]. Besides, some existing schemes
can also be proven divisible. They include Even et al.’s paradigm [10] and Scheme
Schnorr-OS (a variant of Schnorr signature scheme, see Appendix C). Even et al.’s
work has already contained a proof for their scheme’s divisibility. But Schnorr-OS
needs a new proof for its divisibility which is given in the full paper [12].

Scheme CMTW-OS and BCG-OS are both based on Shamir and Tauman’s
hash-sign-switch paradigm [20], which utilizes trapdoor hash functions. But
Shamir-Tauman paradigm itself cannot be proven divisible. However, as in
CMTW-OS and BCG-OS, if the specific trapdoor hash functions used can be
viewed as a fully secure one time signature scheme, Shamir-Tauman paradigm
can be unified again into Even et al.’s general paradigm, in the sense that these
two paradigms both uses an one time signature scheme as a component and thus
can be proven divisible [4].
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1.2 Our Contribution

In this paper, we first explicitly give and exemplify the notion of divisible on-
line/off-line signatures. Furthermore, without resorting to the random oracle
model, we present an efficient divisible scheme, which is based on BB’s signature
scheme [2]. Compared to divisible schemes extracted from [6, 3], it does not rely
on another signature scheme’s security and is more efficient. We also show in
the full paper that based on a divisible on-line/off-line signature scheme, an on-
line/off-line threshold signature scheme can be proven secure if it is simulatable.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we give some prelim-
inaries. Section 3 gives the security model of divisible on-line/off-line signatures.
Section 4 presents an efficient divisible on-line/off-line signature scheme whose
security is proven in the standard model. Section 5 concludes the paper with an
application to on-line/off-line threshold signatures and some discussions.

2 Preliminaries

2.1 Notations and Definitions

We denote by N the set of natural numbers, and by Z the set of integers. If
k ∈ N, we denote by 1k the concatenation of k ones and by {0, 1}k the set of
bitstrings of bitlength k. By {0, 1}∗, we denote the set of bitstrings of arbitrary
bitlength. “PPT” is an abbreviation for “probabilistic polynomial-time” and “‖”
represents the concatenation operation.

If S is a set, then the notation x
R← S denotes that x is selected randomly

from the set S. Similarly, x ∈R S denotes x is a random element of S. If A
is an algorithm, by A(·) we denote that A receives only one input. If A re-
ceives two inputs we write A(·, ·) and so on. If A(·) is a probabilistic algorithm,
y ← AO1,O2,...(x1, x2, . . . ) means that on input x1, x2, . . . and with access to
oracles O1,O2, . . . , A’s output is y. If p(·, ·, . . . ) is a predicate, the notation
Pr[p(x, y, . . . ) : x R← S; y R← T ; . . . ] denotes the probability that p(x, y, . . . ) will
be true after the ordered execution of the algorithms x

R← S, y
R← T, . . . , etc.

Definition 1 (Negligible Function). A function ε : N→ R is negligible if for
all c > 0, ε(k) < 1/kc for all sufficiently large k.

Definition 2 (Bilinear Paring). Let G,GT be two multiplicative cyclic group
of prime order p. A bilinear pairing on (G,GT ) is a function e : G × G → GT

which has the following properties:

1. Bilinear: e(ua, vb) = e(u, v)ab, for all u, v ∈ G and a, b ∈ Z.
2. Non-degenerate: e(u, v) �= 1 for some u, v ∈ G. Here 1 denotes the identity

element in GT .
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3. Computable: paring e(u, v) can be efficiently computed for all u, v ∈ G.

For generality, one can set e : G1 × G2 → GT where G1 �= G2. An efficiently
computable isomorphism ψ : G2 → G1 can convert this general case to the
simple case where G1 = G2.

Definition 3 (q-SDH Assumption [2]). Let G be a group of prime order p
and x be a random element in Z∗

p. Let g be a generator of G. Solving the q-SDH
problem in G is to compute a pair (c, g1/(x+c)) where c ∈ Zp\{−x}, given a
(q + 1)-tuple (g, gx, g(x2), . . . , g(xq)). The q-SDH assumption in group G states
that the q-SDH problem in G is hard to solve, i.e., for any PPT algorithm A,
the following probability is negligible in k.

ε(k) = Pr[A(g, gx, g(x2), . . . , g(xq)) = (c, g1/(x+c)) : x R← Z∗
p]

The following lemma states that given a q-SDH problem instance (g, gx, . . . , g(xq)),
we can construct a new 1-SDH problem instance (h, hx) with q−1 known solutions
(ci, si = h1/(x+ci)) where any new solution reveals a solution to the original prob-
lem instance. Using the same technique in Lemma 9 of [2], this lemma can be easily
proved.

Lemma 1. There exists a PPT algorithm Γ which satisfies:

– Its inputs are:
1. descr(G). A description of a group G with prime order p.
2. (g, gx, . . . , g(xq)). A q-SDH problem instance in Group G where q ∈ N.
3. c1, . . . , cq−1 ∈ Zp\{−x}.

– It outputs a PPT algorithm Δ and a tuple ((h, u), (s1, . . . , sq−1)) ∈ G2×Gq−1

which satisfy:
1. u = hx.
2. si = h1/(x+ci), i.e., (ci, si) (1 ≤ i ≤ q − 1) are solutions of the 1-SDH

problem instance (h, hx).
3. By using Algorithm Δ, any new solution (c∗, s∗) �= (ci, si) for the 1-SDH

problem instance (h, hx) reveals a solution to the original instance,i.e., on
inputs (c∗, s∗) ∈ Zp\{−x}×G where (c∗, s∗) �= (ci, si) for all i ∈ {1, . . . , q−
1} and s∗ = h1/(x+c∗), Δ can output a pair (c, g1/(x+c)) ∈ Zp\{−x}×G in
polynomial time.

3 Security Model

We give the security model of divisible online/offline signatures and some security
notions.

3.1 Syntax

A divisible online/offline signature scheme (DOS) is a tuple of algorithms
(KeyGen, Signoff , Signon,Ver).
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– (pk, sk)← KeyGen(1k). The key generation algorithm, a PPT algorithm which
on input a security parameter k ∈ N, outputs a public/private key pair
(pk, sk).

– (Σoff
i , Sti) ← Signoff(sk). The i-th (i ∈ N) executing of the off-line signing

algorithm, a PPT algorithm which on input a private key, outputs a (public)
off-line signature token Σoff

i and a (secret) state information Sti. The state
information is kept secret and will be passed to the i-th executing of the on-line
signing algorithm.

– Σon
i ← Signon(sk, Sti,mi). The i-th (i ∈ N) executing of the on-line signing

algorithm, a PPT algorithm which on input sk, a state information Sti and a
message mi, outputs an on-line signature token Σon

i . The signature for mi is
defined as Σi = (Σoff

i , Σon
i )

– 0/1 ← Ver(pk,m,Σ). The verification algorithm, a PPT algorithm which on
input the public key pk, a message m and a signature Σ, outputs 0 or 1 for
reject or accept respectively.

Completeness: It is required that if (Σoff, St) ← Signoff(sk) and Σon ← Signon

(sk, St,m), then Ver(pk,m,Σ) = 1 for all (pk, sk) generated by KeyGen(1k).

3.2 Security Notion

In the following, we define a security notion for a divisible on-line/off-line signa-
ture scheme.
EU-CMA: For a divisible on-line/off-line signature scheme DOS, existential
unforgeability against adaptive chosen message attacks (EU-CMA) is defined in
the following game. This game is carried out between a challenger S and an
adversary A. The adversary A is allowed to make queries to an off-line signing
oracle Signoff(sk) and an on-line signing oracle Signon(sk, St, ·) defined in Sec-
tion 3.1. We assume that if A makes the i-th on-line signature query then it has
already made the i-th off-line signature query. This requirement is reasonable
since the signer always execute his i-th off-line signature signing before his i-th
on-line signing. The attack game is as follows:

1. The challenger runs KeyGen on input 1k to get (pk, sk). pk is sent to A.
2. On input (1k, pk),A is allowed to query the oracles Signoff(sk), Signon(sk, St, ·)

polynomial times. The i-th state information Sti of Signon, which is kept secret
from the adversary, is passed from the i-th executing of Signoff(sk).

3. A outputs a pair (m,Σ).

The adversary wins the game if the message m has never been queried to the on-
line signing oracle Signon(sk, St, ·) and Ver(pk,m,Σ) = 1 holds. Let AdvA,DOS
be the advantage of the adversary A in breaking the signature scheme, i.e.,

AdvA,DOS = Pr
[

Ver(pk,m,Σ) = 1 : (pk, sk)← KeyGen(1k);
(m,Σ)← ASignoff(sk),Signon(sk,St,·).

]
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where A has never requested the signature of m from the on-line signing oracle.
The probability is taken over the internal coin tosses of the algorithms KeyGen,
Signoff , Signon and A.

In detail, if Amakes qoff off-line signing queries and qon on-line singing queries,
AdvA,DOS is defined as:

AdvA,DOS = Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ver(pk,m, Σ) = 1 and m �= mi for all i ∈ {1, . . . , qon} :

(pk, sk) ← KeyGen(1k);

(Σoff
1 , St1) ← Signoff(sk);

· · · · · · · · · · · ·
(Σoff

qoff , Stqoff) ← Signoff(sk);

m1 ← A(pk, Σoff
1 , . . . , Σoff

qoff);
Σon

1 ← Signon(sk, St1, m1);
· · · · · · · · · · · ·
mqon ← A(pk, Σoff

1 , Σon
1 , m1, . . . , Σ

off
qon , Σoff

qon+1, . . . , Σ
off
qoff

);
Σon

qon ← Signon(sk, Stqon , mqon);

(m, Σ) ← A(pk, Σoff
1 , Σon

1 , m1, . . . , Σ
off
qon , Σon

qon , mqon , . . . , Σoff
qoff).

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Definition 4. An adversary A (t, qoff, qon, ε)-breaks a divisible online/offline
signature scheme DOS if A runs in time at most t, makes at most qoff queries
to the off-line signing oracle, at most qon queries to the on-line signing oracle,
and AdvA,DOS is at least ε.

A divisible on-line/off-line signature scheme DOS is EU-CMA if for every
PPT adversary A, AdvA,DOS is negligible.

Difference to the previous definition. The above definition is different from
the attack game for an ordinary on-line/off-line signature scheme where the
adversary is only allowed to query the oracle Sign(sk, ·). In other word, in the
attack game of an ordinary scheme, the off-line signature token is returned to
the adversary only after the message to be signed is submitted, whilst in the
game for a divisible scheme, the adversary obtains the off-line signature token
of a message before he submits this message.

Thus, the unforgeability defined above is stronger than the unforgeability
defined as usual for ordinary on-line/off-line signatures. Note, however, that
the unforgeability defined as usual is enough for the applications where off-line
signature tokens are not exposed in the off-line signing phase.

4 A Divisible On-Line/Off-Line Signature Scheme Based
on the q-SDH Assumption

In this section, we propose an efficient divisible on-line/off-line signature scheme
whose security is proven in the standard model. This scheme is based on Boneh
and Boyen’s signature scheme [2].
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4.1 Construction

Let G be a bilinear group of prime order p, where p’s bit-length depends on
the security parameter. Assume the message space is Zp. Note that using a
collision resistant hash function H : {0, 1}∗ → Zp, one can extend the message
domain to {0, 1}∗. The new divisible on-line/off-line signature scheme is defined
as SDH-OS = (KeyGen, Signoff, Signon,Ver), where

– KeyGen. Pick a random generator g ∈ G. Choose random x, y, z ∈R Z∗
p, and

compute X = gx ∈ G, Y = gy ∈ G and Z = gz ∈ G. Also compute v =
e(g, g) ∈ GT . The public key is (g,X, Y, Z, v). The private key is (x, y, z).

– Signoff. (The i-th run). Choose a random θ ∈ Zp\{−x}. Compute σ = g
1

(x+θ)

where 1
(x+θ) is the inverse of (x + θ) in Z∗

p. Store the state information θ.
Output the off-line signature token σ.

– Signon. (The i-th run, on a message m). Retrieve from the memory the i-th
state information θ. Compute r, w ∈ Zp such that:

m + yr + zw = θ.

(This can be done by first selecting a random r ∈ Zp, and computing w =
(θ −m− yr)z−1 mod p.) Output the on-line signature token (r, w).

– Ver. Given a message m ∈ Zp and a signature (σ, r, w), verify that whether
e(σ,XgmY rZw) = v.

Remark 2. To reduce the on-line signing cost, we can move the selection of r
and computing y · r to the off-line phase. Thus, the on-line signing requires only
1 modular multiplication in Zp.

Completeness: Note that

e(σ,XgmY rZw) = e(g1/(x+θ), gx+m+yr+zw)

= e(g1/(x+θ), gx+θ)
= e(g, g) = v

Thus the proposed scheme satisfies the property of completeness.

4.2 Security

Theorem 1. The divisible on-line/off-line signature scheme SDH-OS is EU-
CMA, provided that the q-SDH assumption holds in Group G.

Proof. We prove this theorem by contradiction. Assume there exists an algorithm
A which (t, qoff, q−1, ε) breaks the unforgeability of SDH-OS in the game defined
in Section 3. Then we construct an algorithm B which breaks the q-SDH problem
in polynomial time with a non-negligible probability ε′ ≥ ε

3 −
q−1

p .
Without loss of generality, we assume thatAmakes qoff off-line signing queries,

and makes q − 1 on-line signing queries on messages {mi}i∈{1,...,q−1} where
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q − 1 ≤ qoff. Let {(σi, ri, wi)}i∈{1,...,q−1} be the q − 1 full signatures returned
by the signing oracle. At the end of A’s attack game, A outputs a valid forgery
(σ∗, r∗, w∗) on a new message m∗ with probability at least ε. We can see one of
the following cases, which cover all types of successful attacks of A, must hold
with probability at least ε/3:

Case 1: hm∗Y r∗Zw∗ �= hmiY riZwi for all i ∈ {1, . . . , q − 1}.
Case 2: hm∗Y r∗Zw∗ = hmiY riZwi for some i ∈ {1, . . . , q − 1}, and r∗ �= ri.
Case 3: hm∗Y r∗Zw∗ = hmiY riZwi for some i ∈ {1, . . . , q − 1}, and r∗ = ri, but

w∗ �= wi.

Let G be a group of prime order p. Let g be a generator of G. Algorithm B is
given a q-SDH problem instance (g, gτ , g(τ2), . . . , g(τq)). To solve this problem
instance, B selects a list of elements c1, . . . , cq−1 ∈R Zp. We may assume ci +
τ �= 0 for all i ∈ {1, . . . , q − 1}, or else B has already obtained τ and thus
the q-SDH problem is solved. Next, B feeds Algorithm Γ in Lemma 1 with
inputs descr(G), (g, gτ , g(τ2), . . . , g(τq)), (c1, . . . , cq−1) to get an algorithm Δ and
((h, u), (s1, . . . , sq−1)) ∈ G2×Gq−1. Note that as described in Lemma 1, u = hτ

and si = h1/(τ+ci). Algorithm B computes v = e(h, h) and proceeds for each
above case respectively as follows.

[CASE 1.]
Setup: Algorithm B selects y, z ∈R Z∗

p and sends to A a public key (h,X, Y, Z, v)
where X is set to u, Y is set to hy, and Z is set to hz.

Simulating the Signing Oracle (Off-line): Upon the i-th query, if 1 ≤ i ≤
q−1, B returns σi = si as the i-th off-line signature token; else if q ≤ i ≤ qoff,
B just returns a random element in G\{1}.

Simulating the Signing Oracle (On-line): Upon the i-th(1 ≤ i ≤ q − 1)
query input mi, B selects ri ∈R Zp, sets wi = (ci − mi − yri)z−1 mod p,
and outputs (ri, wi) as the i-th online signature token. It can be verified that
(σi, ri, wi) is a valid signature on the message mi.

Output: The simulated off-line/on-line singing oracles are identical to the real
ones for A. If Algorithm A outputs a valid forgery (m∗, σ∗, r∗, w∗) satisfying
the condition in Case 1, then we get a new solution (c∗, σ∗) for the 1-SDH
problem instance (h, hτ ) where c∗

def= m∗ + yr∗ + zw∗. This is because from
the verification equation we can get σ∗ = h1/(τ+c∗) and from hm∗Y r∗Zw∗ �=
hmiY riZwi for all i we can get c∗ �= ci for all i. From Lemma 1, the original
q-SDH problem instance can be solved in polynomial time by Algorithm Δ.
Therefore if Case 1 occurs with probability at least ε/3, B can successfully
solve the original q-SDH problem instance with the same probability.

[CASE 2.]
Setup: Algorithm B selects x, z ∈R Z∗

p and sends toA a public key (h,X, Y, Z, v)
where X is set to hx, Y is set to u, and Z is set to hz.

Simulating the Signing Oracle (Off-line): Upon the i-th query, if 1 ≤ i ≤
q−1, B selects ri ∈R Z∗

p, and returns σi = (si)
1
ri as the i-th off-line signature

token; else if q ≤ i ≤ qoff, B just returns a random element in G\{1}.
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Simulating the Signing Oracle (On-line): Upon the i-th(1 ≤ i ≤ q − 1)
query input mi, B sets wi = (ciri− x−mi)z−1 mod p, and outputs (ri, wi)
as the i-th online signature token. It can be verified that (σi, ri, wi) is a valid
signature on the message mi.

Output: From A’s view, the simulated oracles are indistinguishable to the real
ones for A. In particular, the only difference is that in the simulation ri

is uniformly distributed in Z∗
p whereas in the real world ri is uniformly

distributed in Zp. Thus for one signature the statistical difference is 1/p and
for the whole game the difference is at most (q−1)/p. If Algorithm A outputs
a valid forgery (m∗, σ∗, r∗, w∗) satisfying the condition in Case 2, then for
some i, hm∗Y r∗Zw∗ = hmiY riZwi and r∗ �= ri hold. Algorithm B can check
to find this i and get τ = dlhu = dlhY = [(wi−w∗)z+(mi−m∗)] ·(r∗−ri)−1

mod p. Therefore if Case 2 occurs with probability at least ε/3 in the real
world, B can successfully solve the original q-SDH problem instance with
probability at least ε/3− (q − 1)/p.

[CASE 3.]
Setup: Algorithm B selects x, y ∈R Z∗

p and sends to A a public key (h,X, Y, Z, v)
where X is set to hx, Y is set to hy, and Z is set to u.

Simulating the Signing Oracle (Off-line): Upon the i-th query, if 1 ≤ i ≤
q−1, B selects wi ∈R Z∗

p, and returns σi = (si)
1

wi as the i-th off-line signature
token; else if q ≤ i ≤ qoff, B just returns a random element in G\{1}.

Simulating the Signing Oracle (On-line): Upon the i-th(1 ≤ i ≤ q − 1)
query input mi, B sets ri = (ciwi− x−mi)y−1 mod p, and outputs (ri, wi)
as the i-th online signature token. It can be verified that (σi, ri, wi) is a valid
signature on the message mi.

Output: The argument is similar to that of Case 2. Finally Algorithm B can
get τ = dlhu = dlhZ = [(ri−r∗)y+(mi−m∗)] ·(w∗−wi)−1 mod p for some
i with probability at least ε/3 − (q − 1)/p, where (m∗, σ∗, r∗, w∗) is a valid
forgery output by A satisfying hm∗Y r∗Zw∗ = hmiY riZwi and w∗ �= wi.

To sum up, there exists an algorithm B, which can break the original q-SDH
problem instance with probability at least ε/3− (q − 1)/p, in polynomial time.
This contradicts the q-SDH assumption and thus the theorem is proved. �
The purpose of introducing ′z′. Introducing an additional trapdoor z to
the BB’s original scheme enables the off-line signing oracle to generate the off-
line signature token without knowing the message. Here f(m, r, w) def= hmY rZw

plays a role of “double-trapdoor hash function” in the scheme. Boneh and Boyen
mentioned in [2] that the exposure of the off-line tokens (and the unused state
informations) causes no harm if these tokens will not subsequently used to create
signatures. However we note that for a divisible on-line/off-line signature scheme,
an exposed (and unused) token also should can be used.

4.3 Comparison

We compare our new scheme SDH-OS with some known divisible on-line/off-line
signature schemes in Table 2. To achieve the same security level, we assume the
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Table 2. Comparisons amongst divisible on-line/off-line signature schemes. The word
“stand.” refers to operations or signature length of the underlying standard signature
scheme. “Sig” in the assumption column means the security also depends on the se-
curity of the underlying standard signature scheme. Abbreviations used are: “sq.” for
squaring, and “mult.” for multiplication.

Schemes Signoff Signon
Ver

Signature Size
Off-line/
On-line

Assumptions

New Scheme
k sq. in G

k
2

mult. in G
1 mult.
in Zp

k sq. in G
7
8
k mult. in G
1 pairing

k bits / 2k bits q-SDH

CMTW-OS
(Appendix A)

k sq. in G
3
4
k mult. in G
1 stand. sig

1 mult.
in Zp

k sq. in G
3
4
k mult. in G
1 stand. ver

1 stand.sig /
k bits

Sig,
one-more-
discrete-log

BCG-OS
(Appendix B)

k sq. in G
7
8
k mult. in G
1 stand. sig

1 mult.
in Zp

k sq. in G
7
8
k mult. in G
1 stand. ver

1 stand.sig /
2k bits

Sig,
discrete log

Schnorr-OS
(Appendix C)

k sq. in G
k
2

mult. in G
1 mult.
in Zp

k sq. in G
3
4
k mult. in G

k bits/ k bits
ROM,

one-more-
discrete-log

parameter p in our new scheme and Schemes CMTW-OS, BCG-OS and Schnorr-
OS are all k-bit long. When using an elliptic curves with k = 160, our scheme
has the same security level with a 1024-bit key RSA signature [2]. In this case,
our scheme has a 160-bit off-line signature length and a 320-bit on-line signature
length. In comparison, we omit additions in the signing algorithm.

To our knowledge, the most efficient divisible on-line/off-line signature scheme
is Scheme Schnorr-OS. However, its security proof is based on the random oracle
model(ROM). Our scheme preserves all advantages of BB’s original scheme: its
security is proven in the standard model; its overall computational cost of signing
is only one scalar exponentiation in the group G (i.e., roughly k squarings and
k/2 multiplications2 in G), which is comparable to Scheme Schnorr-OS and is
superior to other schemes whose security is proved in the standard model. Our
new scheme’s on-line signing requires only 1 modular multiplication in Zp. This
is very efficient and comparable to other efficient schemes.

5 Conclusion and Discussions

We propose a new notion called divisible on-line/off-line signatures, in which
off-line signature tokens can be sent to others before the messages to be signed
are seen. We also propose an efficient construction, and prove its security under

2 Suppose gi are in some group G, ei are all k-bit random values and t is small com-
pared to k. By using a variant of the “square-and-multiply” method for exponenti-
ation(Algorithm 14.88, [16]), computing ge1

1 ge2
2 . . . get

t requires roughly k squarings
and (1 − 1

2t )k multiplications in G.
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the new definition without resorting to the RO model. Below we end with an
important application of the new notion and some discussions.

1. Application to on-line/off-line threshold signature schemes. Gennaro et al.
[13] has proved that if a threshold signature scheme is simulatable, then its
unforgeability can be reduced to the unforgeability of its underlying signature
scheme. This provides a way to simplify the security proof of a threshold
signature scheme. However, this result cannot be applied to on-line/off-line
threshold signature schemes due to the partial signature exposure problem. In
the full paper [12] we provide a similar result called simulation theorem for on-
line/off-line threshold signature schemes. This theorem states that a sufficient
condition for the security reduction of an on-line/off-line threshold signature
scheme is that it is simulatable to a divisible on-line/off-line signature scheme.

2. The gap between the security models of an ordinary on-line/off-line signature
scheme and a divisible one. It seems unlikely that Shamir-Tauman’s gen-
eral paradigm or BB’s original scheme can be proven divisible, whilst these
schemes are secure in a common sense. So Intuition tells us there exists a gap
between the ordinary security model and the new one. However we cannot
present a substantial attack against these schemes under the new model to
illustrate this gap. This leaves us an open problem to find this potential gap.

3. More shorter on-line signature length. The main drawback of our divisible
scheme is that the on-line signature length is 2 log2 p, which is twice the
length of Scheme CMTW-OS or Schnorr-OS. Thus, it remains an unsolved
problem to find a divisible scheme whose security is proven in the standard
model and whose performance is comparable to Scheme Schnorr-OS.
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A. Crutchfield et al.’s Divisible On-Line/Off-Line Scheme
CMTW-OS

The on-line/off-line signature scheme CMTW-OS is extracted from [6]. In [6],
the authors construct an on-line/off-line threshold signature scheme which is a
threshold version of this basic scheme. Let S = (G, S,V) be an ordinary signature
scheme. The on-line/off-line signature scheme CMTW-OS = (KeyGen, Signoff ,
Signon,Ver), where

– KeyGen. Choose x ∈R Zp, and let h = gx. Run the key generation algorithm
of S to obtain (pk, sk) which is public/private key pair for S. The public key
of OS is (E, p, g, h, pk), and the private key is (x, sk).

– Signoff . (The i-th run). Choose r,m ∈R Zp, and compute u = grhm. Use the
signing algorithm of S to obtain σ = Ssk(u). Store the state information r,m.
The off-line signature token is σ.

– Signon. (The i-th run, on a message m′ ∈ Zp). Retrieve m, r from the memory.
Compute r′ = r + (m−m′)x mod p. The on-line signature token is r′.

– Ver. (On a message-signature pair (m′, Σ) where Σ = (σ, r′)). Verify that
whether Vpk(gr′

hm′
, σ) = 1.

Theorem 2. The on-line/off-line signature scheme constructed above is divis-
ible and existentially unforgeable under adaptive chosen message attacks, pro-
vided that the underlying signature scheme S is existentially unforgeable against
generic chosen message attacks and the one-more-discrete-log assumption [1]
holds in G.

The proof of this theorem is omitted. Please refer to Theorem 2 of [6] for details.3

B. Bresson et al.’s Divisible On-Line/Off-Line Scheme
BCG-OS

The on-line/off-line signature scheme BCG-OS is extracted from [3]. In [3], the au-
thors construct an on-line/off-line threshold signature scheme which is a threshold
versionof this basic scheme. LetS = (G, S,V)beanordinary signature scheme.The
on-line/off-line signature scheme BCG-OS = (KeyGen, Signoff , Signon, Ver), where

– KeyGen. Choose x, y ∈R Zp, and let h1 = gx, h2 = gy. Run the key generation
algorithm of S to obtain (pk, sk) which is public/private key pair for S. The
public key is (E, p, g, h1, h2, pk), and the private key is (x, y, sk).

– Signoff . (The i-th run). Choose r, s,m ∈R Zp, and compute u = gmhr
1h

s
2. Use

the signing algorithm of S to obtain σ = Ssk(u). Store the state information
r, s,m. The off-line signature token is σ.

3 The proof in [6] reduces the security of the on-line/off-line scheme CMTW-OS to the
one-more-discrete-log assumption, or the collision resistance of a trapdoor hash func-
tion, or the unforgeability of S . A small modification of this proof can simply reduce
the security to the one-more-discrete-log assumption or the unforgeability of S .
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– Signon. (The i-th run, on a message m′). Retrieve r, s,m from the memory.
Choose r′ ∈R Zp and compute s′ = s+ y−1[(m−m′)+ (r− r′)x] mod p. The
on-line signature token is (r′, s′).

– Ver. (On a message-signature pair (m′, Σ) where Σ = (σ, r′, s′)). Verify that
whether Vpk(gm′

hr′
1 hs′

2 , σ) = 1.

Remark 3. To reduce the on-line signing cost, we can move the selection of r′

and computing (r−r′) ·x to the off-line phase. Thus, the on-line signing requires
only 1 modular multiplication in Zp.

Theorem 3. The on-line/off-line signature scheme constructed above is divisible
and existentially unforgeable under adaptive chosen message attacks, provided that
the underlying signature scheme S is existentially unforgeable against generic cho-
sen message attacks and the discrete logarithm assumption holds in G.

The proof of this theorem is also omitted. Please refer to Theorem 1 of [3] for
details.

C. Proving the Schnorr Signature Scheme [19] is Divisible

A variant of the Schnorr signature scheme can be naturally viewed as a divisible
on-line/off-line signature scheme: Schnorr-OS = (KeyGen, Signoff , Signon,Ver).

– KeyGen. Choose x ∈R Zp, and let h = gx. Let H be a hash function: H :
{0, 1}∗ → Zp. The public key is (E, p, g, h,H), and the private key is x.

– Signoff . (The i-th run). Choose r ∈R Zp, and compute u = gr. Store the state
information r. The off-line signature token is u.

– Signon. (The i-th run, on a message m). Retrieve r from the memory. Set
c = H(m‖u) and compute s = r − cx mod p. The on-line signature token is
s.

– Ver. (On a message-signature pair (Σ,m) where Σ = (u, s). Verify that
whether gshH(m‖u) = u.

Remark 4. The signature token is defined as (u, s) ∈ G × Zp instead of (c, s) ∈
Zp × Zp. This is to decrease the on-line signature length because the value of c
can’t be computed in the off-line phase.

Theorem 4. The divisible on-line/off-line signature scheme Schnorr-OS is ex-
istentially unforgeable against adaptive chosen message attacks in the random
oracle model, provided that the one-more-discrete-log assumption holds in G.

Please consult the full paper for the proof.
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Abstract. We describe a new tool for the search of collisions for hash
functions. The tool is applicable when an attack is based on a differential
trail, whose probability determines the complexity of the attack. Using
the linear algebra methods we show how to organize the search so that
many (in some cases — all) trail conditions are always satisfied thus
significantly reducing the number of trials and the overall complexity.

The method is illustrated with the collision and second preimage at-
tacks on the compression functions based on Rijndael. We show that slow
diffusion in the Rijndael (and AES) key schedule allows to run an attack
on a version with a 13-round compression function, and the S-boxes do
not prevent the attack. We finally propose how to modify the key sched-
ule to resist the attack and provide lower bounds on the complexity of
the generic differential attacks for our modification.

1 Introduction

Bit-oriented hash functions like MD5 [17] and SHA [10] have drawn much at-
tention since the early 1990s being the de-facto standard in the industry. Re-
cent cryptanalytic efforts and the appearance of real collisions for underlying
compression functions [19,18,4,13] motivated researchers to develop new fast
primitives. Several designs were presented last years (LASH [2], Grindahl [12],
RadioGatun [3], LAKE [1]) but many have already been broken [14,15,6].

While many hash functions are designed mostly from scratch one can easily
obtain a compression function from a block cipher. Several reliable constructions,
such as so-called Davies-Meyer and Miyaguchi-Preneel modes, were described in
a paper by Preneel et al. [16].

In this paper we present a method for speeding up collision search for byte-
oriented hash functions. The method is relatively generic, which is an advantage
in the view that most collision attacks exploit specific features of the internal
structure of the hash function (see, e.g., the attack on Grindahl [15]) and can be
hardly carried on to other primitives.

Most of the collision attacks are differential in nature. They consider a pair of
messages with the difference specified by the attacker and study propagation of
this difference through the compression function — a differential trail. The goal
of a cryptanalyst is to find a pair of messages that follows the trail (a conforming
pair). Our idea is to deal with fixed values of internal variables as sufficient
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conditions for the trail to be followed. We express all internal transformations
as equations and rearrange them such that one can quickly construct a pair of
executions that fits the trail.

We illustrate the method with a cryptanalysis of AES [7] in the Davies-Meyer
mode. The AES block cipher attracted much attention and was occasionally
considered as a basis for a compression function (mostly unofficially, though
some modes were proposed [5] and AES-related hash designs were also investi-
gated [12,11]).

This paper is organized as follows. In the next section we give an idea and
formal description of the algorithm. Then in Section 3 we show how to find
collisions, semi-free-start collisions and second preimages for the compression
functions based on the versions of Rijndael. Section 4 is devoted to the prop-
erties of the Rijndael internal transformations, which are weaknesses in the
hash function environment. Finally, we propose a modification to the original
key schedule, which prevents our attack, and provide some lower bounds for
attacks based on the differential techniques. The resulting hash function, which
we call Cheetah, is formally introduced in Appendix.

2 Idea in Theory

State of the art. Most of the recent attacks on compression functions deal with
a differential trail. Informally, a trail is a sequence of pairs of internal states with
a restriction on the contents. An adversary looks for the pair of messages that
produces such states in each round.

More formally, suppose that the compression function takes the initial value
IV and the message M as an input and outputs the hash value H . The whole
transformation is usually defined as a sequence of smaller transformations —
rounds. Then the execution of a k-round compression function looks as follows:

IV
f(M1,·)−−−−−→ S1

f(M2,·)−−−−−→ S2 · · ·Sk−1
f(Mk,·)−−−−−→ H,

where f is a round function of two arguments: the message block Mi and the
current internal state Si−1. The message blocks are a result of the message
schedule — a transformation of the original message. A collision is a pair of
messages (M,M ′) producing the same hash value H given the initial value IV .

In the collision search the exact contents of internal states are not important;
the only conditions are the fixed IV and the coincidence of resulting hash values.
Thus an adversary considers a pair of executions where the intermediate values
are not specified. However, a naive collision search for a pair of colliding messages
would have complexity 2n/2 queries (with the help of birthday paradox) where
n is the bit length of the hash value. Thus the search should be optimized.

In the differential approach an adversary specifies the difference in message
blocks Mi and internal states Si. A pair of executions can be considered as the
execution that deals with the differences: it starts and ends with a zero difference,
and some internal differences are also specified.
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A differential trail is a set of conditions on the pair of executions. We assume
that this set of conditions is final, i.e. the attacker use them as is and tries
message pairs one by one till all the conditions are satisfied. A trail may include
non-differential conditions, ex. constraints on specific bits, in order to maximize
the chances for the trail to be fulfilled. The complexity of the attack with a trail
is then defined by the probability that a message pair produce an execution that
fits the trail. This probability is determined by the nonlinear components (e.g.
S-boxes) that affect the propagation of the difference.

First idea. As we pointed out before, an adversary may try all the possible pairs
and check every condition. He may also strengthen a condition by fixing the
input value (or the output) of a non-linear function. Then in each trail he checks
whether the value is as specified. Thus to find a collision it would be enough
to build an execution such that the specified values follow the trail, and the
second execution will be derived by adding the differences to the first one. Our
algorithm (given below) deals with this type of trails.

Our improvement. Our goal is to carry out the message trials so that many
conditions are always satisfied. In such case the complexity of the attack is
determined by the conditions that we do not cover. Before we explain how our
algorithm works we introduce the notion of free variables.

First, we express all the transformations as equations, which link the internal
variables. Variables refer to bits or bytes/words depending on the trail. Secondly,
notice that the IV and the message fully define all the other variables and thus
the full execution. We call free variables1 a set of variables that completely and
computationally fast define the execution. If some variables are pre-fixed the
number of free variables decreases.

The idea of our method is to build a set of free variables provided that some
variables are already fixed. The size of such a set depends on how many variables
are fixed. The latter value also defines the applicability of our method. The heart
of our tool is an algorithm for the search of free variables. It may vary and be
combined with some heuristics depending on the compression function that it is
applied for, but the main idea can be illustrated on the following example.

Example 1. Assume we have 7 byte variables s, t, u, v, x, y, and z which are in-
volved in the following equations:

F (x ⊕ s)⊕ v = 0;
G(x ⊕ u)⊕ s⊕ L(y ⊕ z) = 0;
v ⊕G(u ⊕ s) = 0;
H(z ⊕ s⊕ v)⊕ t = 0;
u⊕H(t⊕ x) = 0.

1 Recall the Gaussian elimination process. After a linear system has been transformed
to the row echelon form all the variables are divided into 2 groups: bound variables
and free variables. Free variables are to be assigned with arbitrary values; and bound
variables are derived from the values of free variables.
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where F , G, H , and L are bijective functions. Note that y is involved in only one
equation so it can be assigned after all the other variables have been defined.
Thus we temporarily exclude the second equation from the system. Then note
that z is involved in only one equation among the remaining ones, so we again
exclude the equation from the system. This Gaussian-like elimination process
leads to the following system:

F (y⊕ z)⊕ L( u⊕ x)⊕ s = 0;
z ⊕H−1( t)⊕ v⊕ s = 0;

t⊕H−1( u)⊕ x = 0;
u⊕G−1( v)⊕ s = 0;

v ⊕ F ( x⊕ s) = 0.

Evidently, x and s can be assigned randomly and fully define the other three
variables. Thus x and s are free variables. Varying them we easily get other
solutions.

Now assume that the variable u is pre-fixed to a value a. Then the system is
transformed in a different way:

F (y⊕ z)⊕ L( x⊕ a )⊕ s = 0;
z ⊕H−1( t)⊕ v⊕ s = 0;

t⊕ x⊕ H−1(a) = 0;
x⊕ F−1(v)⊕ s = 0;

G−1(v)⊕ a⊕ s = 0.

Here only one variable — s — is free.
Now we provide a more formal description of the algorithm.

1. Build a system of equations based on the compression function.
The values defined by the trail are fixed to constants.

2. Mark all the variables and all the equations as non-processed.
3. Find the variable involved in only one non-processed equation.

Mark the variable and the equation as processed. If there is no
such variable — exit.

4. If there exist non-processed equations go to Step 3.
5. Mark all non-processed variables as free.
6. Assign random values to free variables and derive variables of

processed variables.

Depending on the structure of the equations, some heuristics can be applied at
step 3. For example, if there are many linear equations, real Gaussian elimination
can be applied. If there are terms of degree 2, one variable can be fixed to 0, and
so on.

When the algorithm can be applied. If there is no restriction on the internal
variables, the algorithm always succeeds: the message variables can be taken as
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free. As soon as we fix some internal variables we have fewer options for choosing
free variables. In terms of block cipher based compression functions, we say that
the more active S-boxes we have the fewer free variables exist.

The main property of the compression function that affects the performance
of the algorithm is diffusion. The slower diffusion is, the more rounds can be
processed by the algorithm. As we show in Section 3, a slow diffusion in the
message schedule can be enough to maintain the attack.

This algorithm is not as universal as other algorithms dealing with non-linear
equations: SAT-solver based and Gröbner basis based. However, if it works a
cryptanalyst can generate a number of solutions in polynomial time while generic
algorithms have exponential complexity. This is a real benefit, since we can use
the algorithm at the top or at the bottom part of the trail, thus increasing
probability of a solution.

Equation properties. There is a desired property of equations: each variable
should be uniquely determined by the other ones. If this is not the case (fixing
all but one variable may not give a bijection) then the last step of the algorithm
becomes probabilistic (some values of free variables do not lead to the solution)
or, on the contrary, some variables can be assigned by one of a few values. We
can also emphasize not a single variable but a group of variables if it is fully
determined by the other variables involved in the equation.

We conclude that under these assumptions the exact functions that link vari-
ables do not matter. The only requirement is that they can be easily inverted,
which is typically true for the internal functions of a block cipher or a hash
function. If no heuristics which mix rows are applied then the algorithm does
not need the information about the non-linear functions, only the variables that
are involved in. Thus we consider not a system of equations but a matrix of de-
pendencies where rows correspond to equations, and columns to variables. The
following matrix represents the system from Example 1:

Before triangulation:

⎛⎜⎜⎜⎜⎜⎜⎝
s t u v x y z
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 0 0 0
1 1 0 1 0 0 1
0 1 1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . After:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y z t u v x s
1 1 0 1 0 1 1
0 1 1 0 1 0 1
0 0 1 1 0 1 0
0 0 0 1 1 0 1
0 0 0 0 1 1 1

free
variables

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Comparison to other methods. Several tools that reduce the search cost by elim-
inating some conditions were recently proposed. They are often referred to as
message modification (a notion introduced by Wang in attacks on SHA) though
there is often no direct ”modification”. The idea is to satisfy conditions by re-
stricting internal variables to pre-fixed values and trying to carry out those
restrictions from internal variables to message bits, which are controlled.

Compared to message modification and similar methods, our algorithm may
give a solution even if the restrictions can not be carried out to message bits
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directly. If a system of equations is solved, the algorithm produces one or many
solutions that satisfy the restrictions. Even if all the restrictions can not be
processed then one may try to solve the most expensive part. Thus we expect
our method to work in a more general and automated way compared to the
dedicated methods designed before.

3 Idea in Practice

We illustrate our approach with the cryptanalysis of a hash function based on
Rijndael [7] in the Davies-Meyer mode. The security of Rijndael as a com-
pression function has been frequently discussed in both official and non-official
talks though no clear answer was provided in favour of or against such a con-
struction. Additionally, the exact parameters of Rijndael as a hash function
are a subject of a discussion.

The Davies-Meyer mode has been chosen due to its message length/block
length ratio, which is crucial for the performance. Assume we want to construct
a compression function with performance comparable to SHA-1. The AES block
length of 128 bits is too small against birthday attack so 160 bits would be the
minimal admissible value. The size of a message block to be hashed should be
also increased in order to achieve better performance. However, there should be a
tradeoff between the message length and the number of rounds. A simple solution
is to take the message block equal to 2 internal blocks (320 bits). The 14-round
Rijndael-based construction gives us performance comparable to SHA-1. We
will concentrate on this set of parameters though other ones will be also pointed
out.

3.1 Properties of Rijndael Transformations. How to Build a Trail

Rijndael is surprisingly suitable for the analysis with our method due to sim-
plicity of its operations and properties of its S-boxes. A differential trail provides
a set of active S-boxes. Due to the special differential properties of Rijndael S-
boxes (2−6 maximal differential probability) the number of possible input/output
values is limited to not more than 4 possibilities. We take one of the few values
of an S-box input that provides the propagation of differences as a sufficient
condition. We found a 12-round trail (Figure 4) which has 50 active S-boxes (44
in the SubBytes transformations and 6 in the KeySchedule). However, most of
the active S-boxes are in the upper part of the trail, which allows us to use the
algorithm.

The crucial weakness of the Rijndael key schedule, which is exactly the
message schedule procedure in the considered compression function, is the XOR
operation that produces columns of the next subkey. It provides a good diffusion
as a key schedule, which was the goal of the Rijndael design, but is not adapted
for the use in a compression function, where all the internal variables are known
to an adversary.
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The KeySchedule transformation for a key of size 256 bits and more is given
by the following expressions:

ki,0 ← S(ki+1,NK−1)⊕ Cr, 0 ≤ i ≤ 3;
ki,j ← ki,j−1 ⊕ ki,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3;
ki,4 ← S(ki,3)⊕ ki,4, 0 ≤ i ≤ 3;
ki,j ← ki,j−1 ⊕ ki,j , 0 ≤ i ≤ 3, 5 ≤ j ≤ NK − 1,

(1)

where S() stands for the SubBytes transformation, and Cr — for the round-
dependant constant. It is easy to check that the first byte in a row affects all
the other bytes in the row, so that any difference will propagate through all the
xor operations. NK is a parameter equal to 8 for a 256-bit key. However, the
KeySchedule transformation is invertible, and its inversion has a slow diffusion.
This is the fact that we exploit. More precisely, the formulas for the inversion
are as following:

ki,j ← ki,j−1 ⊕ ki,j , 0 ≤ i ≤ 3, NK − 1 ≥ j ≥ 5,
ki,4 ← S(ki,3)⊕ ki,4, 0 ≤ i ≤ 3;
ki,j ← ki,j−1 ⊕ ki,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3;

ki,0 ← S−1(ki+1,NK−1 ⊕ Cr), 0 ≤ i ≤ 3.

(2)

We build two trails: for 12 rounds and for 7 rounds. We use a local collision
illustrated in Figure 1 as a base for both of them. There, a one byte difference is
injected by the AddRoundKey transformation and spread to 4-byte difference after
MixColumns. The 4-byte difference is canceled out by the next AddRoundKey. Due
to a long message block both differences can be arranged into different columns.
The 4-byte difference is fully determined by the contents of the one active S-box.
We mark this value by a in Figure 1. It is a sufficient condition for the local
collision.

If we start with this pattern and go down all the bytes of the message block will
likely have the difference. However, the backward propagation is much different.
We can build a 7-round trail with only 9 active S-boxes (Figure 5). In order to
build a longer trail we swap the left and the right halves of the message block
and use some ad-hoc tricks in the first rounds. As a result, we obtain 12-round
trail with 50 active S-boxes (Figure 4).

3.2 Collisions, Second Preimages and the Matrix of Dependencies
for the Rijndael-Based Hash

Matrix of Dependencies. First we explain in details our usage of variables
and equations. We consider byte variables: the IV (4*NB variables2), the output
(4*NB), the message (4*NK per message schedule round), the internal states.
We deal with two internal states per round: after the SubBytes transformations
and after the MixColumns transformation. Thus we obtain 8*NB variables per
round. The equations are derived from the following transformations:
2 NB is the number of columns in the internal state. NB is equal to 8 in Rijndael-256.
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SubBytes
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MixColumns

SubBytes

ShiftRows
MixColumns

a
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Fig. 1. Local collision: non-zero differences (a) and fixed values (b)

I SubBytes◦AddRoundKey transformations: 4*NB equations in each internal
round;

II MixColumns◦ShiftRows transformations: NB equations in each internal
round;

III KeySchedule transformations: 4*NK equations in each schedule round.

The MixColumns transformation is actually a set of 4 linear transformations.
In the latter ones any 4 of 5 variables uniquely determine the other one. For the
MixColumns transformation as a whole a more complicated property holds: any
4 of 8 variables are determined by the other ones.

The variables that are predefined by a trail are substituted into the equations
and are not considered in the matrix.

320/160. 5 rounds. The simplest challenge is to build a 5-round collision for
the Rijndael-based hash with 320-bit message block and 160-bit internal state.
The trail is derived by removing the first two rounds from the 7-round trail
(Figure 5). There are 5 active S-boxes, which fix 5 of the 320 internal variables.
There are 225 equations. The resulting matrix of dependencies is presented in
Figure 2. The non-zero elements are color pixels with green ones representing
the MixColumns transformation.

The value of the one-byte difference is chosen randomly as well as that of
the active S-box. Let us denote the one-byte difference by δ and the input to
the active S-box by a. Then the 4-byte difference is the MixColumns matrix M
multiplied by (S(a) + S(a + δ), 0, 0, 0).

The matrix is easily triangulated (Figure 3). We obtain 55 free variables. Any
assignment of those variables and 5 fixed S-box inputs fully determine the IV
and the message.

320/160. 7 rounds. The trail in Figure 5 is a 7-round collision trail with 9
active S-boxes. Although the triangulation algorithm can not be directly applied
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320 variables

225
equations

Fig. 2. The matrix of dependencies for the 5-round trail before the triangulation

260 bound variables
60 free

variables

Fig. 3. The matrix of dependencies after the triangulation

to the resulting matrix, we can run it for the first 5 rounds, which contain 8 of 9
active S-boxes. Since we have several free variables we are able to generate many
colliding pairs. About one of 27 pairs satisfy the condition on the one remaining
active S-box so we repeat the last step of the algorithm 27 times and obtain a
7-round collision. The exact colliding messages are presented in Table 1.

320/160. 12 rounds. A 12-round trail is presented in Figure 4. We swap the
left and the right halves of the message block and use some ad-hoc tricks in the
first rounds. As a result, we obtain a 12-round trail with 50 active S-boxes with
only 6 of them in KeySchedule transformations.3

3 The most of non-zero columns in the differences between message blocks are of the
form (a, 0, 0, 0) or (b, c, d, e) where a, b, c, d and e are the same in all message blocks.
Those values are that are used for obtaining a local collision (Figure 1). They are
marked as grey cells in Figures 5 and 4. If they interleave some other values are
produced. The latter ones are marked as olive cells.
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Table 1. 7-round collision for the Rijndael-based compression function. Message bytes
with different values are emphasized.

IV

b8 29 68 d1 f8
5b d0 01 bd 17
05 83 8a 43 4b
40 40 9e 0c c5

Message 1

77 e6 a7 1e e3 40 e6 ef 56 26
7e 1b aa 2b fa 44 70 88 66 0c
04 2b 7b e1 d6 df 4d 09 52 5c
4a 81 31 98 b6 df 67 79 c6 ab

Output

83 e5 06 a4 46
5f e7 7c ba 49
8e 7d 1e bd 96
b8 d4 e3 e9 a0

Message 2

76 e7 a6 1f e3 42 e4 ed 54 26
7e 1b aa 2b fa 45 71 89 67 0c
04 2b 7b e1 d6 de 4c 08 53 5c
4a 81 31 98 b6 dc 64 7a c5 ab

The trail is too long to be processed by the triangulation algorithm directly.
Instead we fix not all S-box inputs. More precisely, we fix the 6 variables that
enter the active S-boxes in the first three KeySchedule transformations (actually
all active S-boxes in the message scheduling) and the 35 variables that are the
outputs of active S-boxes in first 4 rounds. There are 9 active S-boxes left unfixed.
We have 11 free variables and generate 27∗9 = 263 colliding pairs so that one of
them pass through those 9 S-boxes and gives the 12-round collision. The resulting
complexity is 263 compression function calls.
Fixed IV. So far we considered that the IV is constant but can be freely chosen,
mainly because we do not attack an already existing standard or a particular
proposal. Nevertheless, compression functions with a similar structure, which
may be designed later, would require an attack with the fixed IV.

The algorithm described before may be easily adapted to this case. We just
mark all the input variables in the trail as pre-fixed, which is equivalent to just
the removal of the corresponding columns from the matrix of dependencies. The
number of equations is not changed so the probability of successful triangulation
can only decrease, not increase. This is the case: now we are not able to reduce
the matrix for the 5-round trail, but for the 3-round one we can still do this.
This fact does not imply that the 3-round collisions is the maximum achieved
level. Actually we just bypass the next two rounds with some probability. If
the number of active S-boxes in the trail after these 3 rounds is not large, this
probability may still be reasonable.

For example, we can use the trail for 7-rounds collision and process by the
algorithm only first three rounds. Then we have to bypass through 3 active S-
boxes, which requires about 221 evaluations of the compression function and can
be done in real time.

512/256. If we just increase the hash length keeping the message/hash ratio we
actually get a much weaker compression function.

For example, a differential trail for 13 rounds with no active S-boxes in the
message scheduling can be easily built from the trail in Figure 5. The matrix
triangulation algorithm works for 7 rounds, and a 13-round collision can be found
after 235 computations of the compression function, which is substantially faster
than the birthday attack.
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Fig. 4. 12-round differential trail for the Rijndael-based compression function with
the 320-bit message block and the 160-bit internal state (Rijndael-hash 320/160)

3.3 Second Preimage Attack

320/160. Here we assume that the message is fixed, the IV is constant but not
fixed and we have to find a message such that it produces the same hash value as
the first one. Our goal is to obtain a second preimage faster than for 2160 calls.
We just take any trail such that the conditions on the message variables do not
confuse with the pre-fixed values. For example, the 7-round trail (Figure 5) do
not impose such restrictions on message variables.

We mark all the message variables as fixed and run the triangulation algorithm
on first three rounds. We obtain 60− 40− 6 = 14 variables that can be assigned
randomly. We generate 221 pairs (IV, second message) so that one of them passes
the three other active S-boxes in rounds 4-7. The resulting complexity of the
second-preimage search is about 221 compression function calls.

Although we have a longer collision trail (Figure 4), it can not be used because
the number of active S-boxes is bigger than the number of the degrees of freedom.
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Fig. 5. 7-round differential trail for Rijndael-hash 320/160

4 Rijndael Properties That May Lead to Weaknesses in
Compression Functions

Here we summarize the properties of Rijndael that allow us to attack Rijn-

dael-based compression functions.
Let us first look at the Rijndael key schedule ((1), (2)). The weakness that

we exploited is a non-symmetric diffusion. More precisely, one byte in block i
affects only two or three bytes in block i−1. Furthermore, one can build a trail in
a key schedule without active S-boxes for NK−4 schedule rounds. Full diffusion
in key schedule may take up to 4*NK schedule rounds if we consider one-byte
difference in a corner byte and proceed backwards.

Even active S-boxes in a trail give some additional power to an adversary.
Due to the differential properties of the Rijndael S-box non-zero difference Δa
can be converted to any of about 127 differences Δb; only half of differences can
not be reached. The exact value of the output difference is guaranteed by the
value of the S-box input variable.
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The derivation of unknown internal variables from the known ones is also
easier than that in the bit-oriented hash functions such as the SHA-family. In
Rijndael if we know two of three variables in the bitwise addition or four of eight
in MixColumns then we can uniquely determine the other variables. We would
not be able to do this if we had equations of type x1x2 = x3. So we claim that
equations in Rijndael are actually pseudo-linear rather that non-linear. Though
we do not know how to exploit this fact in attacks on Rijndael as a block cipher,
it is valuable if we consider a Rijndael-based compression function.

Finally we note that our attacks are only weakly dependant on some Rijn-

dael parameters such as actual S-box tables, the MixColumnsmatrix coefficients
and ShiftRows rotation values. For example, we only need a row that is not ro-
tated by the ShiftRows but it does not matter matter where it is exactly located.

5 Modification to the Message Schedule — Our Proposal

In this section we propose an improvement to the Rijndael message schedule,
which prevents the low-weight trails that were shown above.

The key idea is to use primitives providing good diffusion. The Rijndael

round function was designed so that no low-weight trails can be built for the
full cipher. We propose to use a modified version of this round function in the
message schedule for future Rijndael-based hash functions.

First, we significantly extend the size of the message block that is processed
by one call of the compression function. Secondly, 256 bits is going to be the
main digest size for SHA-3 [9]. A 1024-bit message block combined with a 256-
bit internal state give a good security/performance tradeoff, which is justified
below.

The message block is treated as a 8×16 byte square and passes through 3 iter-
ations of a round function. Like that of Rijndael, the round function we propose
is a composition of the SubBytes, the ShiftRows, and the MixColumns trans-
formations. While S-boxes remain the same, the ShiftRows and MixColumns
operations are modified in order to get a maximal possible diffusion. We propose
to use the following offset table and the MixColumns matrix:

The matrix A, which is modified version of the matrix used in Grindahl [12],
is an MDS-matrix.

Table 2. ShiftRows and MixColumns parameters for a new message schedule proposal

Index Offset Index Offset
0 0 4 5
1 1 5 6
2 2 6 7
3 3 7 8

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

02 0c 06 08 01 04 01 01
01 02 0c 06 08 01 04 01
01 01 02 0c 06 08 01 04
04 01 01 02 0c 06 08 01
01 04 01 01 02 0c 06 08
08 01 04 01 01 02 0c 06
06 08 01 04 01 01 02 0c
0c 06 08 01 04 01 01 02

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Speeding up Collision Search for Byte-Oriented Hash Functions 177

This round function provides full diffusion after 3 rounds thus giving 4096
bits to inject to the internal state. Since the internal state is 16 times smaller,
we propose to increase the number of rounds to 16. The resulting compression
function is more formally introduced in Appendix.

Resistance to attacks. We did not manage to find a good trail for the resulting
compression function so we can not apply our attack. Furthermore, now we
give arguments supporting that low-weight trails are impossible in the resulting
design: we give a lower bound on the number of active S-boxes in such a trail.

We consider a 16-round trail which starts and ends with a zero-difference state.
Let us denote the number of non-zero differences in the internal state before the
SubBytes transformation by si, 1 ≤ i ≤ 16. The last si is equal to zero. Let
us also denote by ci the number of non-zero differences in the internal after the
internal MixColumns transformation. The last ci is equal to 0 as well. Finally, we
denote by mi the number of non-zero differences in the round message block that
is xored to the internal state. These differences either cancel non-zero differences
in the internal state or create them. Thus the following condition holds

si + ci−1 ≥ mi (3)

Due to the branch number of the internal MixColumns transformation ci is
upper bounded: ci ≤ 4si. Thus we obtain the following:

si + 4si−1 ≥ mi ⇒
∑

i

si +
∑

i

4si−1 ≥
∑

i

mi ⇒ S ≥ M

5
,

where S is the number of active S-boxes in the internal state of the compression
function, and M is the number of non-zero byte differences in the expanded
message.

Now we estimate the minimum number of non-zero byte differences in the
message scheduling only. First we note that this number is equal to the number
of the active S-boxes in the message scheduling extended to 4 round. Such a
4-round transformation is actually a Rijndael-like block cipher, which can be
investigated using the theory of the wide trail design by Daemen and Rijmen [8].

Daemen and Rijmen estimated the minimum number of active S-boxes in 4
rounds of a Rijndael-like block cipher (Theorem 3, [8]). The sufficient condition
to apply their theorem is that the ShiftRows should be diffusion optimal: bytes
from a single column should be distributed to different columns, which is the
case. Thus the number of active S-boxes can be estimated as the square of the
branch number of the 8×8 MixColumns matrix, which is equal to 9. As a result,
any pair of different message blocks has difference in at least M = 81 bytes
of ExpandedBlock. This implies the lower bound 17 for S. Thus we obtain the
following proposition.

Proposition 1. Any collision trail has at least 17 active S-boxes in the internal
state.
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Thus any attack using such minimal trail as is would be only slightly faster
than the birthday attack. However, we expect that the values of M even close
to minimal do not give collision trails due to the following reasons:

– Small number of active S-boxes in the internal state implicitly assumes many
local collisions;

– The distribution of non-zero differences in the message scheduling is not
suitable for local collisions due to high diffusion;

– The MixColumns matrix in the message scheduling differs from that of the
internal transformation so, e.g., 4-byte difference collapse to 1-byte difference
via only one of two transformations.

6 Conclusions and Future Directions

We proposed the triangulation algorithm for the efficient search of the message
pairs that fit a differential trail with fixed internal variables. We illustrated the
work of the algorithm by applying it to Rijndael in the Davies-Meyer mode
with different parameters. Although the trails that we built contain many active
S-boxes, the task of the search for a message pair becomes much easier with our
algorithm. It allows to build message pairs that satisfy subtrails of an original
trails. Such subtrail can be chosen in order to minimize the number of active
S-boxes in the other part of the trail.

In Table 3 we summarize our efforts on building collisions and preimages for
Rijndael-based compression functions.

Table 3. Summary of attacks

Hash length Message length Rounds Compl. Type of a collision
160 320 7 27 Full collision
160 320 12 263 Full collision
160 320 7 221 Second preimage
256 512 13 235 Full collision

We also investigated why Rijndael as a compression function is vulnerable
to collision attacks. We showed how the non-symmetric diffusion in the message
schedule allows to build long differential trails.

As a countermeasure, we propose a new version of the message schedule for
the Rijndael-based compression functions and provide lower bounds for the
probability of differential trails for the resulting function.
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the FNR.



Speeding up Collision Search for Byte-Oriented Hash Functions 179

References

1. Aumasson, J.-P., Meier, W., Phan, R.C.-W.: The hash function family LAKE.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 36–53. Springer, Heidelberg
(2008)

2. Bentahar, K., Page, D., Saarinen, M.-J.O., Silverman, J.H., Smart, N.: LASH,
Tech. report, NIST Cryptographic Hash Workshop (2006)

3. Bertoni, G., Daemen, J., Peeters, M., van Assche, G.: Radiogatun, a belt-and-mill
hash function (2006), http://radiogatun.noekeon.org/

4. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

5. Cohen, B.: AES-hash, International Organization for Standardization (2001)
6. Contini, S., Matusiewicz, K., Pieprzyk, J., Steinfeld, R., Jian, G., San, L., Wang,

H.: Cryptanalysis of LASH. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
207–223. Springer, Heidelberg (2008)

7. Daemen, J., Rijmen, V.: AES proposal: Rijndael, Tech. report (1999),
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

8. Daemen, J., Rijmen, V.: The wide trail design strategy. In: IMA Int. Conf., pp. 222–
238 (2001)

9. Cryptographic hash project, http://csrc.nist.gov/groups/ST/hash/index.html
10. FIPS 180-2. secure hash standard (2002), http://csrc.nist.gov/publications/
11. International Organization for Standardization, The Whirlpool hash function.

iso/iec 10118-3:2004 (2004)
12. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The grindahl hash functions. In:

Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg
(2007)

13. Manuel, S., Peyrin, T.: Collisions on SHA-0 in one hour. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 16–35. Springer, Heidelberg (2008)

14. Matusiewicz, K., Peyrin, T., Billet, O., Contini, S., Pieprzyk, J.: Cryptanalysis of
FORK-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 19–38. Springer,
Heidelberg (2007)

15. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

16. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

17. Rivest, R.L.: The MD5 message-digest algorithm, request for comments (RFC
1320), Internet Activities Board, Internet Privacy Task Force (1992)

18. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

19. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

A Hash Function Cheetah-256

Now we formally introduce a hash function proposal, which is based on the ideas
discussed in Section 5. Due to space restrictions we limit ourselves to the design
of the compression function.

http://radiogatun.noekeon.org/
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/groups/ST/hash/index.html
http://csrc.nist.gov/publications/


180 D. Khovratovich, A. Biryukov, and I. Nikolic

The Cheetah compression function is an iterative transformation based on the
Rijndael block cipher. The 128-byte message block is expanded to a 512-byte
block by the message schedule. The internal state is of size 32 bytes and is
iterated for 16 rounds. The output hash value is 32 bytes (256 bits).

The message block is expanded by the means of the message schedule. The
resulting block is divided into 16 vectors, which are xored to the internal state
before every round. The Cheetah compression function is then defined by the
following pseudo-code:

CheetahCompression(IntermediateHashValue, MessageBlock) {
InternalState = IntermediateHashValue;
ExpandedBlock = MessageExpansion(MessageBlock);
for(i=1; i<= 16; i++)
{

InternalState +=RoundBlock(ExpandedBlock,i);
InternalState = InternalRound(InternalState);

}
return InternalState;

}

The procedures MessageExpansion, RoundBlock, and InternalRound are deter-
mined below.

Message Schedule. The MessageExpansion procedure is a Rijndael-like trans-
formation, which is defined in pseudocode as follows:

MessageExpansion(byte MessageBlock[128]) {
byte ExpandedBlock[512];
ExpandedBlock[0..127] = MessageBlock;
for(i=1; i<=3; i++)
{

SubBytes(MessageBlock);
ShiftRows8(MessageBlock);
MixColumn8(MessageBlock);
AddRoundConstant(MessageBlock,i);
ExpandedBlock[128*i..128*i+127] = MessageBlock;

}
}

The SubBytes transformation is the byte-wise SubBytes transformation used
in Rijndael. The ShiftRows8 and the MixColumns8 operation parameters were
given in Table 2.

The AddRoundConstant operation adds a 32-bit constant to the message
block. The constant is a function of the round index r:

mi,0 = S[4 ∗ r + i], 0 ≤ i ≤ 3,

where S stands for the S-box.
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The RoundBlock operation selects a 32-byte block from ExpandedBlock =
(E0, E1, E2, E3). Define the round index r as r = 4l+m, 0 ≤ l,m ≤ 3. Then the
selected block is the 4× 8 byte array Mr, that is defined as follows:

Mr = (mi,j)4×8, El = (ei,j)8×16;
mi,j = e4∗(m%2)+i,4∗(m/2)+j .

The selected block is bytewise xored to the InternalState: anew
i,j ← ai,j + mi,j .

· · ·

···

Internal
state

Expanded
block

Message
block

Fig. 6. The outline of the com-
pression function

Internal round. The InternalRound transfor-
mation is actually the Rijndael round as it
would be used with 32-byte block. It consists
of three operations: SubBytes, ShiftRows, and
MixColumns.

InternalRound(byte InternalState[256]) {
SubBytes(InternalState);
ShiftRows4(InternalState);
MixColumn4(InternalState);

}

The SubBytes operation has already been
defined above. Both the ShiftRows and
MixColumns operations treat the InternalState
as a byte array of size 4 × 8, with 4 rows and 8
columns.

Parameters of the ShiftRows and the
MixColumns transformations are the same as
that of Rijndael-256 (Table 4).

Table 4. ShiftRows and MixColumns parameters for the internal round function

Row index Offset
i ci

0 0
1 1
2 3
3 4

B =

⎛⎜⎜⎝
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞⎟⎟⎠ .
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Abstract. The Zémor-Tillich hash function has remained unbroken since
its introduction at CRYPTO’94. We present the first generic collision and
preimage attacks against this function, in the sense that the attacks work
for any parameters of the function. Their complexity is the cubic root of
the birthday bound; for the parameters initially suggested by Tillich and
Zémor they are very close to being practical. Our attacks exploit a sep-
aration of the collision problem into an easy and a hard component. We
subsequently present two variants of the Zémor-Tillich hash function with
essentially the same collision resistance but reduced outputs of 2n and n
bits instead of the original 3n bits. Our second variant keeps only the hard
component of the collision problem; for well-chosen parameters the best
collision attack on it is the birthday attack.

1 Introduction

Since its introduction at CRYPTO’94, the Zémor-Tillich hash function has kept
on appealing Cryptographers by its originality, its elegance, its simplicity and its
security. The function computation can be parallelized and even the serial version
is quite efficient as it only requires XOR, SHIFT and TEST operations. Uniform
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distribution of the outputs follows from a graph theoretical interpretation of the
hash computation, and collision resistance is strictly equivalent to an interesting
group theoretical problem [9].

A few publications have claimed attacks on the Zémor-Tillich hash function.
However, a closer look at these papers reveals that the scheme has not been seri-
ously threatened so far. Some of the claimed “attacks” are unpractical, creating
very long colliding messages [3]. Others are trapdoor attacks that can be avoided
by fixing the parameters in an appropriate way [2,1,8]. A last, important class of
attacks are subgroup attacks [8], damaging for particular parameters in a similar
way as RSA algorithm can be insecure if the parameters are not correctly gener-
ated. For well-chosen parameters, the function has remained unbroken so far.

In this paper, we present new collision and preimage subgroup attacks against
the Zémor-Tillich hash function. Unlike previous ones, our attacks are generic in
the sense that they work for any parameters of the function. With a time complex-
ity close to 2n/2, our attacks beat by far the birthday bound and ideal preimage
complexities which are 23n/2 and 23n for the Zémor-Tillich hash function. The at-
tacks are practical up to n ≈ 120, 130 that is very close to the parameter’s lower
bound n ≥ 130 initially proposed by Zémor and Tillich. As the attacks include a
birthday search in a reduced set of size 2n they do not invalidate the scheme but
rather suggest that the initial parameters were too small.

Our attacks exploit a separation of the collision problem into an easy and
a hard component, and suggest that an output of n bits should be extracted
from the original 3n bits of Zémor-Tillich. We consequently present two reduced
versions of Zémor-Tillich, the vectorial and projective versions with output sizes
respectively 2n and n, and we show that their collision resistance is essentially
equivalent to the collision resistance of the original Zémor-Tillich.

This paper is organized as follows: the Zémor-Tillich hash function is recalled
in Section 2. In Section 3 we present a general result separating hard and easy
components of the collision problem, then we apply this result in Section 4 to
obtain a generic collision search algorithm with time complexity close to 2n/2

(while the birthday bound is 23n/2). This collision algorithm is extended in
Section 5 to a generic preimage attack with the same complexity (while the
ideal bound would be 23n), and memory free versions of these algorithms are
given in Section 6. Finally, we introduce the vectorial and projective versions of
Zémor-Tillich in Sections 7 and 8 and conclude the paper in Section 9.

2 The Zémor-Tillich Hash Function

Let m = m0m1...mk be the bit string representation of a message m. Let Pn(X)
be an irreducible polynomial of degree n (Tillich and Zémor suggested using
130 ≤ n ≤ 170) and let us represent the field F2n by F2[X ]/(Pn(X)). Let A0, A1
be the matrices of G := SL(2,F2n) (the group of 2 × 2 matrices over F2n with
unitary determinant) defined by

A0 =
(
X 1
1 0

)
A1 =

(
X X + 1
1 1

)
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The Zémor-Tillich hash value of m is defined as the matrix product [9]

hZT (m) := Am0Am1 ...Amk
.

As the group SL(2,F2n) has size 2n(22n − 1), the output size is roughly 3n
bits if the matrices of SL(2,F2n) are mapped to bitstrings.

3 Hard and Easy Components of Collision Search

The best attack so far against the Zémor-Tillich hash function has been the sub-
group attack of Steinwandt et al. [8]. However, as this attack exploits subgroups
of SL(2,F2n) that are specific to composite degrees n and particular polynomials
Pn(X), it can be simply prevented by choosing n in an appropriate way.

In this section, we consider the generic subgroups of SL(2,F2n) (subgroups
existing for any parameter n), including the subgroups of diagonal or triangular
matrices and the subgroups of matrices with a given left or right eigenvector. We
show that finding elements of these subgroups together with their factorization
is nearly as hard as finding collisions for the Zémor-Tillich hash function. As
our reductions involve solving discrete logarithms in F∗

2n we do not claim ppt
(probabilistic polynomial time) reductions but reductions that are practical for
the parameters initially suggested by Zémor and Tillich.

We start with an easy proposition that will simplify our proofs later.

Proposition 1

(a) Let ( a b ) , ( a′ b′ ) ∈ F2
2n \ {( 0 0 )} and M ∈ SL(2, F2n) such that ( a b ) M = ( a′ b′ ).

Then there exists ε ∈ F2n such that M =
(

a−1 b
0 a

) (
a′ b′
0 a′−1

)
+ ε ( b

a ) ( a′ b′ ) .

(b) If M1 =
(

a−1
0 b0
0 a0

)(
a1 b1
0 a−1

1

)
+ ε1

(
b0
a0

)
( a1 b1 ) and M2 =

(
a−1
1 b1
0 a1

) (
a2 b2
0 a−1

2

)
+

ε2
(

b1
a1

)
( a2 b2 ) then M1M2 =

(
a−1
0 b0
0 a0

) (
a2 b2
0 a−1

2

)
+ (ε1 + ε2)

(
b0
a0

)
( a2 b2 ).

Proof: Part (a) is implied by the two following observations:

– For ε = 0 we have ( a b )
(

a−1 b
0 a

) (
a′ b′
0 a′−1

)
= ( a′ b′ ).

– If M1,M2 ∈ SL(2,F2n) satisfy (a, b)M1 = (a, b)M2 = (a′, b′) then M1+M2 =
ε ( b

a ) ( a′ b′ ). Indeed, let c, d such that
(

a b
c d

)
is unitary and let

(
a′ b′
c1 d1

)
:=(

a b
c d

)
M1 and

(
a′ b′
c2 d2

)
:=
(

a b
c d

)
M2. As M1,M2 and

(
a b
c d

)
are in SL(2,F2n),

we have det
(

a′ b′
c1 d1

)
= det

(
a′ b′
c2 d2

)
= 1. We get

M1 + M2 =
(

a b
c d

)−1 [( a′ b′
c1 d1

)
+
(

a′ b′
c2 d2

)]
= ( d b

c a )
( 0 0

c1+c2 d1+d2

)
= ( b

a ) ( c1+c2 d1+d2 ) .

Moreover, as ( c1+c2 d1+d2 ) ( b
a ) = a(d1 + d2) + b(c1 + c2) = (ad2 + bc2) +

(ad1 + bc1) = 0, we get the result.
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Part (b) is a straightforward computation. �

We now define the (generalized) representation problem in F∗
2n and we show how

it can be solved for small n (and certainly if n ≤ 170).

Problem 1 Representation problem in F∗
2n : Given N (randomly chosen) ele-

ments gi ∈ F∗
2n , find a factorization

∏
gei

i = 1 such that
∑
|ei| is not too large.

Generalized representation problem in F∗
2n : Given N (randomly chosen) ele-

ments gi ∈ F∗
2n and a (randomly chosen) element g0 ∈ F∗

2n , find a factorization∏
gei

i = g0 such that
∑
|ei| is not too large.

Proposition 2 The (generalized) representation problem can be solved in groups
F∗

2n where the discrete logarithm problem can be solved.

Proof: Let gi ∈ F∗
2n , i = 0, ...N . Let g a generator of F∗

2n , and let αi be
the discrete logarithms of gi with respect to base g. The representation prob-
lem amounts to solving the following problem: find {ei} such that

∑
eiαi =

α0 mod (2n− 1) and
∑
|ei| is not too large. A good solution to this problem can

be computed with the LLL algorithm [4]. �

If the exponents αi are random numbers uniformly distributed in [1, 2n− 1] the
smallest solution has expected size

∑
i |ei| about N2n/N (approximating that

there is no collision, the sums
∑

eiαi for ei ≤ 2n/N produce the 2n − 1 possible
values). The LLL algorithm actually gives a solution such that

∑
|ei|2 is close to

optimal, but this is enough for our purposes. By the LLL approximation bound,
the solution provided using LLL has a norm 2 smaller than

√
N2n/N+N which

is subexponential for N ≈
√
n. In practice, LLL performs much better and in

the analysis of our algorithms, we will approximate that the isze of the solution
given by LLL algorithm is also about N2n/N .

With this method, the representation problem in F∗
2n can be solved if discrete

logarithms can be computed, in particular the representation problem can be
solved today for n ≤ 170. The following result follows from Proposition 2.

Proposition 3 Let n be such that discrete logarithms can be solved in F∗
2n . Let

D, T up, T low,Lv,Rv ⊂ SL(2,F2n) be the subgroups of diagonal, upper and lower
triangular matrices and the subgroup of matrices with left or right eigenvector
v. If an attacker can compute N random elements Mi of one of these subgroups
together with bit sequences mi of length at most L hashing to these matrices,
then he can also find a message m such that hZT (m) = I. The message m
has expected size smaller than NL2n/N in the diagonal case and smaller than
NL21+n/N in the other cases.

Proof: Clearly any diagonal matrix writes down as Di =
(

ai 0
0 a−1

i

)
for some

ai ∈ F∗
2n . Let {ei} be a solution to the representation problem with respect to

{ai}, that is
∏

aei

i = 1. Construct m as the concatenation of e1 messages m1, e2

messages m2, etc. (in any order). Then hZT (m) =
∏

Dei

i =
(∏

a
ei
i 0

0
∏

a
−ei
i

)
= I.
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Similarly, an upper triangular matrix Ti writes down as
(

ai bi

0 a−1
i

)
for some ai ∈

F∗
2n , bi ∈ F2n . Let {ei} be a solution to the representation problem with respect

to {ai}, that is
∏

aei

i = 1. Construct m′ as the concatenation of e1 messages m1,
e2 messages m2, etc. (in any order) and m = m′||m′. Then hZT (m′) =

( 1 b
0 1−1

)
for some b ∈ F2n and hZT (m) = I.

By definition each Mi ∈ L( a b ) satisfies ( a b )Mi = λi ( a b ) for some λi ∈ F∗
2n .

Let {ei} be a solution to the representation problem with respect to {λi}, that
is
∏

λei

i = 1. Construct m′ as the concatenation of e1 messages m1, e2 messages
m2, etc. (in any order) and m = m′||m′. Then ( a b )hZT (m′) = ( a b ) which by
Proposition 1 implies hZT (m′) = I + ε ( b

a ) ( a b ) hence hZT (m) = I.
The proof for T low and Rv are similar and the claim on the message lengths

follows from our analysis of the representation problem in F∗
2n . �

The part of Proposition 3 concerning Lv and Rv has interesting graph interpre-
tations that we give in Appendix A.

4 A New Generic Collision Attack

We now give an algorithm finding N2 matrices Mi such that ( 1 0 )Mi = λi ( 1 0 )
for some λi ∈ F∗

2n , and combining them as in Proposition 3 to find collisions for
the Zémor-Tillich hash function.

We denote by P1(F2n) the projective space of dimension 1 on F2n , which is the
set of equivalence classes of F2n × F2n that results from identifying two vectors
( a1 b1 ) and ( a2 b2 ) if and only if ( a2 b2 ) = λ ( a1 b1 ) for some λ ∈ F∗

2n . We denote
by [a : b] the projective point that is the equivalence class of a vector ( a b ). To
any message m = m1m2...mk we associate two projective points q(m), q−1(m) ∈
P1(F2n) as follows. We define ( a(m) b(m) ) := ( 1 0 )

∏k
i=1 Mmi = ( 1 0 )hZT (m)

and ( a′(m) b′(m) ) := ( 1 0 )
∏1

i=k M
−1
mi

= ( 1 0 )h−1
ZT (m), then q(m) := [a(m) :

b(m)] and q−1(m) := [a′(m) : b′(m)].
Our algorithm first performs a birthday attack [11] to find collisions on the

q values as follows. Random messages m and m′ of size k > n/2 are generated
and stored together with q(m) and q(−m′), until m1,m2 are found such that
q(m1) = q−1(m2) (see Figure 1). As there are 2n + 1 points in P1(F2n), the

probability that q(m1) = q−1(m2) for some m1,m2 is 1−
(
1− 2N1

2n+1

)2N1

after 2N1

steps. In particular, after 2N1 = 2n/2 steps we have a probability 1− e−1 ≈ 0.63
to know a message m := m1||m2 of size 2k such that ( 1 0 )hZT (m) = λ ( 1 0 ) for
some λ ∈ F∗

2n .
This collision search is repeated until N2 distinct messages mi are found

such that ( 1 0 )hZT (mi) = λi ( 1 0 ) for some λi ∈ F∗
2n . To guarantee that the

collisions found are all distinct, we may perform each collision search with a
different length k > n/2, or choose k slightly larger than n/2 + log2(N2), say
k = n/2 + log2(N2) + 10.



Hard and Easy Components of Collision Search 187

[1 : 0]

[1 : 0]

q(m) and q−1(m
′) values

Fig. 1. Collision search on q values

The next step of the algorithm combines the messages mi to get a collision for
the Zémor-Tillich hash function. As in the proof of Proposition 3, we compute
a solution {ei} to the representation problem in F∗

2n with respect to the λi,
that is

∏
λei

i = 1. From this solution, we finally construct a message m′ as
the concatenation of each message mi repeated ei times (in any order), and a
message m = m′||m′ that collides with the void message as shown in the proof
of Proposition 3.

To analyze this attack, suppose that the N2 collision searches are done with
k = n/2 + 1, ..., n/2 + N2 and that the algorithm described in Section 3 is used
to solve the representation problem. The expected size of the collision is then
bounded by (n/2 +N2)N22n/N2+2, the memory requirement is 2n/2+1n and the
time complexity is N22n/2+1t + tREP where t is the time needed to compute
one q value and tREP is the time needed to solve the representation problem.
In particular for n = 130 and N2 = 16, this attack produces a collision to the
void message of size about 218 in time 269t and memory requirements 269. The
memory requirements will be removed in Section 6 by using distinguished points
techniques [6].

5 A New Generic Preimage Attack

We now extend our ideas to a preimage attack. Interestingly, this attack has
essentially the same complexity as the collision attack.

Suppose we want to find a preimage to a matrix M =
(

a b
c d

)
, that is a message

m = m1...mk such that M = hZT (m) =
∏

Mmi . As we showed in previous
section, random messages mi of size L > n such that ( 1 0 )hZT (mi) = λi ( 1 0 ) for
some λi ∈ F∗

2n can be found with memory n2n/2+1 and time 2n/2+1t. Similarly,
random messages mi, i = 0, ...N2 of size L > n satisfying ( 1 0 )hZT (m0) =
λ0 ( a b ) and ( a b ) hZT (mi) = λi ( a b ) , i > 0 for some λi ∈ F∗

2n can also be
found with the same time and memory complexities.
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Solving a (generalized) representation problem, we can compute {ei} such
that

∏
λei

i = λ0, hence we can compute a message m′
0 of size N2L2n/N2 and a

matrix M0 := hZT (m′
0) such that ( 1 0 )M0 = ( a b ). Similarly, from N3 different

solutions to the representation problem
∏

λei

i = 1 we get N3 messages m′
i of

size N2L2n/N2 such that ( a b )hZT (m′
i) = ( a b ). Let ( c′ d′ ) := ( 0 1 ) hZT (m′

0).
As ad′ + bc′ = ad+ bc = 1, we have a(d+d′)+ b(c+ c′) = 0, that is ( c+c′ d+d′ ) =
δ0 ( a b ) for some δ0 ∈ F2n .

According to Proposition 1, for all i > 0 there exists δi ∈ F2n such that
hZT (m′

i) = ( 1 0
0 1 ) + δi ( b

a ) ( a b ); moreover we have hZT (m′
i1

)hZT (m′
i2

) = ( 1 0
0 1 ) +

(δi1 + δi2) ( b
a ) ( a b ). Suppose the δi values generate F2n/F2, which is very likely

if N3 is shortly bigger than n, say N3 = n+ 10. Then by solving a binary linear
system, we can write δ0 =

∑
i∈I δi for some I ⊂ {1, ..., N3} of size ≤ n and

hence M1 :=
∏

i∈I hZT (m′
i) = ( 1 0

0 1 ) + δ0 ( b
a ) ( a b ). Finally, we have M0M1 =(

a b
c′ d′

)
[( 1 0

0 1 ) + δ0 ( b
a ) ( a b )] =

(
a b
c d

)
.

This shows that any message made of m′
0 concatenated with any concate-

nation of the messages m′
i, i ∈ I, is a preimage to

(
a b
c d

)
. The collision size is

about bounded by N3(n/2 +N2)N22n/N2+2, that is 12n2(n+ 10) if N2 = n and
N3 = n + 10. The memory requirement of this attack is 2n/2+1n and the time
complexity is N22n/2+1t + tREP where t is the time needed to compute one q
value and tREP is the time needed to solve the representation problem (note
that finding N3 solutions to a representation problem essentially requires the
same time as finding one solution because both times are essentially determined
by the computation of the discrete logarithms). As for our collision attack, the
memory requirements can be removed by using distinguished points techniques.

6 Memory-Free Versions of Our Attacks

The attacks of Sections 4 and 5 require storing two databases of about 2n/2

projective points in P1(F2n) and their corresponding messages. We now remove
the memory requirements by using distinguished points techniques [6].

Let α : P1(F2n) → {0, 1}k and β : P1(F2n) → {0, 1} be two “pseudorandom
functions” and let ϕ : P1(F2n)→ P1(F2n) be defined by

p→ ϕ(p) =
{
q(α(p)) if β(p) = 0
q−1(α(p)) if β(p) = 1,

where k > n is arbitrarily chosen and q and q−1 are defined as in Section 4.
The iterates q0, ϕ(q0), ϕ(ϕ(q0)), ... of ϕ on q0 all belong to the finite domain

P1(F2n) so at some point iterating ϕ will produce a collision (see Figure 2), that
is two points p1 and p2 such that ϕ(p1) = ϕ(p2) = c. If the behavior of ϕ is
sufficiently random then β(p1) �= β(p2) with a probability 1/2, in which case
α(p1) and α(p2) can be combined to produce a message m of size 2k such that
( 1 0 )hZT (m) = λ ( 1 0 ) for some λ ∈ F∗

2n .
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The functions α and β do not need to be “pseudorandom” in the strong cryp-
tographic meaning, but only “sufficiently pseudorandom” for the above analysis
to hold.

Now that the problem of finding a collision on the q values has been translated
in the problem of detecting a cycle in the iterates of ϕ, we can remove the memory
requirements by standard techniques. We recall here the method of distinguished
points ; other methods are described in [7]. Let Dd := {q = [a : b] ∈ P1(F2n)|b �=
0, lsbd(a/b) = 0d} be sets of 2n−d distinguished q values such that their d last bits
are all 0. During the collision search, we only store the q values that belong to D
and only look for collisions on these particular q values. Finding a collision c′ on
distinguished points requires 2d−1 additional steps in average but the memory
is reduced to 2n/2−d; if d = n/2 − 10 the time overhead is negligible and the
memory requirements are very small (see Figure 3).

From the two distinguished points p′1 and p′2 that precede c′ in the iterates
of ϕ, we can recover the points p1 and p2 that produce the actual collision c as
follows. Iterate again ϕ on p′1 and p′2 and store only distinguished points but this
time with d = n/2 − 20. After about 2n/2−10 steps on each side (and a small
memory of about 211) a collision c′′ and preceding distinguished points p′′1 and
p′′2 are found that are closer to the actual collision c, p1, p2. Iterating again from
p′′1 and p′′2 with a larger distinguished-point set, we finally get the actual collision
with small time overhead and small memory.

q0

c

p1
p2

Fig. 2. Iterating ϕ from
some initial point q0, we
eventually get a collision c

q0

c

p1
p2

p′1

c′

p′2

Fig. 3. Collision graph with markers on the distin-
guished points. The average distance between two dis-
tinguished points is 2d. The average length of the path is
2n/2. Finding a collision on a distinguished point requires
essentially the same time as finding a general collision,
as soon as 2d << 2n/2.

With this method instead of the trivial collision search steps, our collision
and preimage attacks require negligible memory and essentially the same time
complexity. As the output of Zémor-Tillich is about 3n bits, these attacks are far
better than birthday and optimal preimage bounds. In the following sections, we
introduce two variants of Zémor-Tillich with reduced output sizes respectively
2n and n bits, and we show that these variants are essentially as secure as the
original Zémor-Tillich for sufficiently small parameters including the parameters
initially suggested in [9].
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7 Vectorial Version of Zémor-Tillich

Our first variant hvec
ZT is simply the first row of Zémor-Tillich, that is hvec

ZT (m) :=
( a b ) if hZT (m) =

(
a b
c d

)
. This variant was introduced in [5] by Petit et al.

but without a proof of its equivalence to the original function. Alternatively,
we may parameterize the function hvec

ZT by an initial vector ( a0 b0 ) �= ( 0 0 ) as
h

vec,( a0 b0 )
ZT (m) := ( a0 b0 )hZT (m). Clearly, the output has 2n bits.
Finding a collision for this variant corresponds to finding two messages m and

m′ such that ( a0 b0 )hZT (m) = ( a0 b0 )hZT (m′), in particular it is enough to find
one message m such that ( a0 b0 )hZT (m) = ( a0 b0 ) (we call such a collision a
cyclic collision). Finding a preimage to a vector ( a b ) is finding a message m
such that ( a0 b0 )hZT (m) = ( a b ).

The following proposition shows that hvec
ZT is collision resistant if and only if

the original function hZT is collision resistant.

Proposition 4 If there exists a ppt (probabilistic polynomial time) algorithm
that for randomly chosen starting vectors ( a0 b0 ) �= ( 0 0 ) finds a collision on
h

vec,( a0 b0 )
ZT , then there exists a ppt algorithm finding collisions for the original

Zémor-Tillich function.

Proof: Given a ppt algorithm Avec finding collisions for the vectorial version,
we build a ppt algorithm Amat finding collisions for the original matrix version.
The algorithm Amat first picks a random matrix M0 :=

(
a0 b0
c0 d0

)
∈ SL(2,F2n)

and runs Avec on (a0, b0) to get two messages m10 and m11 corresponding to
matrices M10 and M11 such that (a0, b0)M10 = (a0, b0)M11 = (a1, b1). Without
loss of generality, we can assume that (a1, b1) is randomly uniformly distributed
(otherwise we may just append the same randomly chosen sequence of bits to
both messages). Algorithm Amat then calls again Avec on (a1, b1) to get two
matrices M20 and M21, etc. It repeats this operation n + 1 times.

Let vi := ( ai bi ) and ṽi :=
(

bi
ai

)
. According to Proposition 1(a), the matrices

Mij write down as

Mij =
(
a−1

i−1 bi−1
0 ai−1

)(
ai bi

0 a−1
i

)
+ εij ṽi−1vi

for some εij ∈ F2n . Applying Proposition 1(b) recursively, for any e = e1...en+1 ∈
{0, 1}n+1, we have

n+1∏
i=1

Miei =
(
a−1
0 b0
0 a0

)(
an+1 bn+1

0 a−1
n+1

)
+

(
n+1∑
i=1

εiei

)
ṽ0vn+1.

For 1 ≤ i ≤ n+1, let εi := εi0 + εi1. Seeing each εi as a binary vector of length
n over F2, these vectors are linearly dependent. Moreover, finding a subset I of
{1, ..., n + 1} such that

∑
i∈I εi = 0 simply amounts to invert a binary linear

system, which is cubic in n + 1.
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We now conclude the description of Amat. After computing I ⊂ {1, ..., n+ 1}
such that

∑
i∈I εi = 0, the algorithm Amat returns m = m10||m20||...||mn+1,0

and m′ = m1e1 ||m2e2 ||...||mn+1,en+1 where ei = 1 if and only if i ∈ I. By the
discussion above, it is clear that

hmat
ZT (m) = hmat

ZT (m′) =
(
a−1
0 b0
0 a0

)(
an+1 bn+1

0 a−1
n+1

)
+

(
n+1∑
i=1

εi0

)
ṽ0vn+1.

�

The reduction of Proposition 4 is polynomial but not completely tight: the al-
gorithm Amat runs n + 1 times the algorithm Avec. Note that if instead of Avec

we have an algorithm A′vec returning a message m corresponding to a cycle for
the vectorial version, then the message m||m is a collision for the matrix ver-
sion. Indeed, if ( a b )M = ( a b ) Proposition 1(a) shows that M writes down as
M =

(
a−1 b
0 a

) (
a b
0 a−1

)
+ ε ( b

a ) ( a b ) = I + ε ( b
a ) ( a b ) hence M2 = I.

8 Projective Version of Zémor-Tillich

Our second variant hproj,( a0 b0 )
ZT exploits even further Proposition 3. We define

h
proj,( a0 b0 )
ZT := [a : b]

where ( a b ) := h
vec,( a0 b0 )
ZT (m) and [a : b] ∈ P1(F2n). Finding a collision for

h
proj,( a0 b0 )
ZT is finding two messages m and m′ such that ( a0 b0 ) hZT (m) =

λ ( a0 b0 )hZT (m′) for some λ, in particular it is enough to find a cyclic colli-
sion which is a message m such that ( a0 b0 ) is a left eigenvector of hZT (m).

The output of h
proj,( a0 b0 )
ZT is very close to n bits. For the parameters sug-

gested by Tillich and Zémor, its collision resistance is equivalent to the collision
resistance of the original function.

Proposition 5 If there exists an algorithm that finds collisions on h
proj,(a0 b0 )
ZT ,

there exists an algorithm that finds collisions on h
vec,( a0 b0 )
ZT , assuming that for

some n′ > n it is feasible to compute n′ discrete logarithms in F∗
2n and one subset

sum problem of size n′.
If we denote by tproj, tDL and tSS(n′) the times needed respectively to find

collisions on the projective version, to solve one discrete logarithm problem in
F∗

2n and to solve a subset sum problem of size n′, collisions on the vectorial
version can be found in time n′(tproj + tDL) + tKN (n′).

Proof: Given an algorithm Aproj finding collisions for the projective version, we
build an algorithm Aproj finding collisions for the vectorial version. Receiving an
initial vector v0 = (a0, b0), Avec forwards it to Aproj and receives two messages
m10,m11. To the two messages correspond two vectors (a10, b10) and (a11, b11) =
λ1(a10, b10) for some λ1. The algorithm Avec computes the discrete logarithm
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d1 of λ1 with respect to some generator g of F∗
2n . The algorithm Avec then runs

Aproj on the projective point (a10, b10) and computes d2 similarly, etc.
After n′ steps, the algorithm Avec computes a subset I ⊂ {1, ..., n′} such

that
∑

i∈I di = 0 mod 2n − 1. By concatenating the paths miei where ei = 1
if i ∈ I and ei = 0 otherwise, algorithm Avec produces a collision with the
message m10||...||mn′0 for the vectorial version. The output is correct because
both messages lead to the vector

(∏
i∈I λi

)
(an′0, bn′0) = g

∑
i∈I di(an′0, bn′0) =

(an′0, bn′0).
The claim on the running time follows straightforwardly. �

The best choice for n′ depends on the exact values of tproj , tDL and tSS(n′).
Solving discrete logarithms problems is believed to be hard but is definitely
feasible in F∗

2n if n < 170. Computing I ⊂ {1, ..., n′} such that
∑

i∈I di =
0 mod 2n−1 is related to the subset sum problem which is NP-hard but usually
easy in average. For the parameters proposed by Zémor-Tillich, lattice reduction
algorithms like LLL will probably succeed in performing the reduction. Another
method is to use Wagner’s “k-lists” algorithm [10] for solving the subset sum
problem. This algorithm can solve the subset sum problem in time and space
k2n/(1+log k) which for k ≈

√
n is roughly 22

√
n which is about 226 for n = 170.

The drawback with this method is that n′ must also increase to 22
√

n hence the
discrete logarithm costs increase and the quality of the reduction decreases.

Assuming the existence of an algorithm A′proj computing cyclic collisions
on the projective version (messages mi such that (a0, b0)hmat(mi) = λi(a0, b0)
for some λi) the reduction slightly improves. Indeed, Avec must only compute
a small integer solution (x1, ..., xn′) to

∑
i xidi = 0 mod 2n − 1 instead of a

binary solution. The reduction algorithm still has to compute discrete logarithm
problems but it must not solve any subset sum problem.

9 Conclusion

We have given new algorithms for computing collisions for the Zémor-Tillich hash
function in a time equal to the cubic root of the birthday bound. Our attacks are
the first generic ones in the sense that unlike previous attacks they work for any
parameters n and Pn(X) of the function. Moreover, they are very close to being
practical for the parameters n ∈ [130, 170] initially suggested in [9].

Interestingly, we could extend our collision attacks to new preimage attacks
with the same complexity due to the inherent possibility of “meet-in-the-middle”
attacks in Zémor-Tillich and the fact that our collision attacks use a subgroup
structure that preserves this possibility.

Our attacks exploit a separation of the collision problem into an easy and a
hard component, and suggest that the output of Zémor-Tillich should be of n
bits rather than 3n bits. We have consequently introduced two variants of this
function, the vectorial and the projective versions, with reduced output sizes of
respectively 2n and n bits. We have proved that the original function is collision
resistant if and only if the vectorial variant and ((for small n) if and only if the
projective variant are collision resistant.
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A Graphical Interpretation of Proposition 3

The part of Proposition 3 concerning Lv and Rv has interesting graph interpre-
tations. To the Zémor-Tillich hash function is associated a Cayley graph ZT , in
which each vertex corresponds to a matrix M ∈ SL(2,F2n) and each edge to a
couple (M1,M2) ∈ SL(2,F2n)2 such that M2 = M1A0 or M2 = M1A1 [9].

We now construct the graphs ZT vec and ZT proj as follows. For ZT vec,
associate a vertex to each row vector ( a b ) ∈ F1×2

2n \{( 0 0 )} and an edge to
each couple of such vectors (( a1 b1 ) , ( a2 b2 )) satisfying ( a2 b2 ) = ( a1 b1 )A0 or
( a2 b2 ) = ( a1 b1 )A1. Alternatively, the graph ZT vec can be constructed from
the graph ZT by identifying two vertices M1 =

(
a1 b1
c1 d1

)
and M2 =

(
a2 b2
c2 d2

)
when

( a1 b1 ) = ( a2 b2 ). An example of such a graph is shown in Figure 4.



194 C. Petit et al.

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(6, 0)

(7, 0)

(8, 0)

(9, 0)

(10, 0)

(11, 0)

(12, 0)

(13, 0)

(14, 0)

(15, 0)

(16, 0)

(17, 0)

(18, 0)

(19, 0)

(20, 0)

(21, 0)

(22, 0)

(23, 0)

(24, 0)

(25, 0)

(26, 0)

(27, 0)

(28, 0)

(29, 0)

(30, 0)

(31, 0)

(0, 1)

(1, 1)

(2, 1)(3, 1)

(4, 1)

(5, 1)

(6, 1)

(7, 1)

(8, 1)

(9, 1)

(10, 1)

(11, 1)

(12, 1)

(13, 1)

(14, 1)

(15, 1)

(16, 1)

(17, 1)

(18, 1)

(19, 1)

(20, 1)

(21, 1)

(22, 1)

(23, 1)

(24, 1)

(25, 1)

(26, 1)

(27, 1)

(28, 1)

(29, 1)

(30, 1)

(31, 1)

(0, 2)

(1, 2)

(2, 2)

(3, 2)

(4, 2)

(5, 2)

(6, 2)

(7, 2)

(8, 2)

(9, 2)

(10, 2)

(11, 2)

(12, 2)

(13, 2)

(14, 2)

(15, 2)

(16, 2)

(17, 2)

(18, 2)

(19, 2)

(20, 2)

(21, 2)

(22, 2)

(23, 2)

(24, 2)

(25, 2)

(26, 2)

(27, 2)

(28, 2)

(29, 2)

(30, 2)

(31, 2)

(0, 3)

(1, 3)

(2, 3)

(3, 3)

(4, 3)

(5, 3)
(6, 3)

(7, 3)

(8, 3)

(9, 3)(10, 3)
(11, 3)

(12, 3)

(13, 3)

(14, 3)

(15, 3)

(16, 3)

(17, 3)

(18, 3)

(19, 3)

(20, 3)

(21, 3)

(22, 3)

(23, 3)

(24, 3)

(25, 3)

(26, 3)

(27, 3)

(28, 3)

(29, 3)

(30, 3)

(31, 3)

(0, 4)

(1, 4)

(2, 4)

(3, 4)

(4, 4)

(5, 4)

(6, 4)

(7, 4)

(8, 4)

(9, 4)

(10, 4)

(11, 4)

(12, 4)

(13, 4)

(14, 4)

(15, 4)

(16, 4)

(17, 4)

(18, 4)

(19, 4)

(20, 4)

(21, 4)

(22, 4)

(23, 4)

(24, 4)

(25, 4)

(26, 4)

(27, 4)

(28, 4)

(29, 4)

(30, 4)

(31, 4)

(0, 5)
(1, 5)

(2, 5)

(3, 5)

(4, 5)

(5, 5)

(6, 5) (7, 5)

(8, 5)

(9, 5)

(10, 5)

(11, 5)

(12, 5)

(13, 5)

(14, 5)

(15, 5)

(16, 5)

(17, 5)

(18, 5)

(19, 5)

(20, 5)

(21, 5)

(22, 5)

(23, 5)

(24, 5)

(25, 5)

(26, 5)

(27, 5)

(28, 5)

(29, 5)

(30, 5)

(31, 5)

(0, 6)

(1, 6)

(2, 6)

(3, 6)

(4, 6)

(5, 6)

(6, 6)

(7, 6)

(8, 6)

(9, 6)

(10, 6)

(11, 6)

(12, 6)

(13, 6)

(14, 6)

(15, 6)

(16, 6)

(17, 6)

(18, 6)

(19, 6)

(20, 6)

(21, 6)

(22, 6)

(23, 6)

(24, 6)

(25, 6)

(26, 6)

(27, 6)

(28, 6) (29, 6)

(30, 6)

(31, 6)

(0, 7)

(1, 7)

(2, 7)
(3, 7)

(4, 7)

(5, 7)

(6, 7)

(7, 7)

(8, 7)

(9, 7)

(10, 7)

(11, 7)

(12, 7)

(13, 7)

(14, 7)

(15, 7)

(16, 7)

(17, 7)

(18, 7)

(19, 7)
(20, 7)

(21, 7)

(22, 7)

(23, 7)

(24, 7)

(25, 7)

(26, 7)
(27, 7)

(28, 7)

(29, 7)

(30, 7)

(31, 7)

(0, 8)

(1, 8)

(2, 8)

(3, 8)

(4, 8)

(5, 8)

(6, 8)

(7, 8)

(8, 8)

(9, 8)

(10, 8)

(11, 8)

(12, 8)

(13, 8)

(14, 8)

(15, 8)

(16, 8)

(17, 8)

(18, 8)

(19, 8)

(20, 8)

(21, 8)

(22, 8)

(23, 8)

(24, 8)

(25, 8)

(26, 8)

(27, 8)

(28, 8)

(29, 8)

(30, 8)

(31, 8)

(0, 9)

(1, 9)

(2, 9)

(3, 9)

(4, 9)

(5, 9)

(6, 9)

(7, 9)

(8, 9)

(9, 9)

(10, 9)

(11, 9)

(12, 9)

(13, 9)

(14, 9)

(15, 9)

(16, 9)

(17, 9)

(18, 9)

(19, 9)

(20, 9)

(21, 9)

(22, 9)

(23, 9)

(24, 9)

(25, 9)

(26, 9)

(27, 9)

(28, 9)

(29, 9)

(30, 9)
(31, 9)

(0, 10)

(1, 10)

(2, 10)

(3, 10)

(4, 10)

(5, 10)

(6, 10)

(7, 10)

(8, 10)

(9, 10)

(10, 10)

(11, 10)

(12, 10)

(13, 10)

(14, 10)

(15, 10)

(16, 10)

(17, 10)

(18, 10)

(19, 10)

(20, 10)

(21, 10)

(22, 10)

(23, 10)
(24, 10)

(25, 10)

(26, 10)

(27, 10)

(28, 10)

(29, 10)

(30, 10)

(31, 10)

(0, 11)

(1, 11)

(2, 11)

(3, 11)

(4, 11)

(5, 11)

(6, 11)

(7, 11)

(8, 11)

(9, 11)

(10, 11)

(11, 11)

(12, 11)

(13, 11)

(14, 11)

(15, 11)

(16, 11)

(17, 11)

(18, 11)

(19, 11)

(20, 11)(21, 11)

(22, 11)

(23, 11)

(24, 11)

(25, 11)

(26, 11)

(27, 11)

(28, 11)

(29, 11)

(30, 11)

(31, 11)

(0, 12)

(1, 12)

(2, 12)

(3, 12)
(4, 12)

(5, 12)

(6, 12)

(7, 12)

(8, 12)

(9, 12)

(10, 12)

(11, 12)

(12, 12)

(13, 12)

(14, 12)

(15, 12)

(16, 12)

(17, 12)

(18, 12)

(19, 12)

(20, 12)

(21, 12)

(22, 12)

(23, 12)

(24, 12)

(25, 12)

(26, 12)

(27, 12)

(28, 12)

(29, 12)

(30, 12)

(31, 12)

(0, 13)

(1, 13)

(2, 13)

(3, 13)

(4, 13)

(5, 13)

(6, 13)

(7, 13)

(8, 13)

(9, 13)

(10, 13)

(11, 13)

(12, 13)

(13, 13)

(14, 13)

(15, 13)
(16, 13)

(17, 13)
(18, 13)

(19, 13)

(20, 13)

(21, 13)

(22, 13)

(23, 13)

(24, 13)

(25, 13)

(26, 13)

(27, 13)

(28, 13)

(29, 13)

(30, 13)

(31, 13)

(0, 14)

(1, 14)

(2, 14)
(3, 14)

(4, 14)

(5, 14)

(6, 14)

(7, 14)

(8, 14)

(9, 14)

(10, 14)

(11, 14)

(12, 14)

(13, 14)

(14, 14)

(15, 14)

(16, 14)

(17, 14)

(18, 14)

(19, 14)

(20, 14)

(21, 14)

(22, 14)

(23, 14)

(24, 14)

(25, 14)

(26, 14)

(27, 14)

(28, 14)

(29, 14)

(30, 14)

(31, 14)

(0, 15)

(1, 15)

(2, 15)

(3, 15)

(4, 15)

(5, 15)

(6, 15)

(7, 15)

(8, 15)

(9, 15)

(10, 15)

(11, 15)

(12, 15)

(13, 15)

(14, 15)

(15, 15)

(16, 15)

(17, 15)

(18, 15)

(19, 15)

(20, 15)

(21, 15)

(22, 15)

(23, 15)

(24, 15)

(25, 15)

(26, 15)

(27, 15)

(28, 15)

(29, 15)

(30, 15)

(31, 15)

(0, 16)

(1, 16)

(2, 16)

(3, 16)

(4, 16)

(5, 16)

(6, 16)

(7, 16)
(8, 16)

(9, 16)

(10, 16)

(11, 16)

(12, 16)

(13, 16)

(14, 16)

(15, 16)

(16, 16)

(17, 16)

(18, 16)

(19, 16)

(20, 16)

(21, 16)

(22, 16)

(23, 16)

(24, 16)

(25, 16)

(26, 16)

(27, 16)

(28, 16)

(29, 16)

(30, 16)

(31, 16)

(0, 17)

(1, 17)

(2, 17)

(3, 17)

(4, 17)

(5, 17)

(6, 17)

(7, 17)

(8, 17)

(9, 17)

(10, 17)

(11, 17)

(12, 17)

(13, 17)

(14, 17)

(15, 17)

(16, 17)

(17, 17)

(18, 17)

(19, 17)

(20, 17)

(21, 17)

(22, 17)

(23, 17)

(24, 17)

(25, 17)

(26, 17)

(27, 17)

(28, 17)

(29, 17)

(30, 17)

(31, 17)

(0, 18)

(1, 18)

(2, 18)

(3, 18)

(4, 18)

(5, 18)

(6, 18)

(7, 18)

(8, 18)

(9, 18)

(10, 18)

(11, 18)

(12, 18)

(13, 18)

(14, 18)

(15, 18)

(16, 18)

(17, 18)

(18, 18)

(19, 18)

(20, 18)
(21, 18)

(22, 18)

(23, 18)

(24, 18)

(25, 18)

(26, 18)

(27, 18)

(28, 18)

(29, 18)

(30, 18)

(31, 18)

(0, 19)

(1, 19)

(2, 19)

(3, 19)

(4, 19)

(5, 19)

(6, 19)

(7, 19)

(8, 19)

(9, 19)

(10, 19)

(11, 19)

(12, 19)

(13, 19)

(14, 19)

(15, 19)

(16, 19)

(17, 19)

(18, 19)

(19, 19)

(20, 19)

(21, 19)

(22, 19)

(23, 19)

(24, 19)

(25, 19)

(26, 19)

(27, 19)

(28, 19)

(29, 19)

(30, 19)

(31, 19)

(0, 20)

(1, 20)

(2, 20)

(3, 20)
(4, 20)

(5, 20)

(6, 20)

(7, 20)

(8, 20)

(9, 20)

(10, 20)

(11, 20)

(12, 20)

(13, 20)

(14, 20)

(15, 20)

(16, 20)

(17, 20)

(18, 20)

(19, 20)

(20, 20)

(21, 20)

(22, 20)

(23, 20)

(24, 20)

(25, 20)

(26, 20)

(27, 20)

(28, 20)

(29, 20)

(30, 20)

(31, 20)

(0, 21)

(1, 21)

(2, 21)

(3, 21)

(4, 21)

(5, 21)

(6, 21)

(7, 21)

(8, 21)

(9, 21)

(10, 21)

(11, 21)

(12, 21)

(13, 21)

(14, 21)

(15, 21)

(16, 21)

(17, 21)

(18, 21)

(19, 21)

(20, 21)

(21, 21)

(22, 21)

(23, 21)

(24, 21)

(25, 21)

(26, 21)

(27, 21)

(28, 21) (29, 21)

(30, 21)

(31, 21)

(0, 22)

(1, 22)

(2, 22)

(3, 22)

(4, 22)

(5, 22)

(6, 22)

(7, 22)

(8, 22)

(9, 22)

(10, 22)

(11, 22)

(12, 22)

(13, 22)

(14, 22)

(15, 22)

(16, 22)

(17, 22)

(18, 22)

(19, 22)

(20, 22)

(21, 22)

(22, 22)

(23, 22)

(24, 22)

(25, 22)

(26, 22)

(27, 22)

(28, 22)

(29, 22)

(30, 22)

(31, 22)

(0, 23)

(1, 23)

(2, 23)

(3, 23)

(4, 23)

(5, 23)

(6, 23)

(7, 23)

(8, 23)

(9, 23)

(10, 23)

(11, 23)

(12, 23)

(13, 23)

(14, 23)

(15, 23)

(16, 23)

(17, 23)

(18, 23)

(19, 23)

(20, 23)

(21, 23)

(22, 23)

(23, 23)

(24, 23)
(25, 23)

(26, 23)

(27, 23)

(28, 23)

(29, 23)

(30, 23)

(31, 23)

(0, 24)

(1, 24)

(2, 24)

(3, 24)

(4, 24)

(5, 24)

(6, 24)

(7, 24)

(8, 24)

(9, 24)

(10, 24)

(11, 24)

(12, 24)

(13, 24)

(14, 24)

(15, 24)
(16, 24)

(17, 24)

(18, 24)

(19, 24)

(20, 24)

(21, 24)

(22, 24)

(23, 24)

(24, 24)

(25, 24)

(26, 24)

(27, 24)

(28, 24)

(29, 24)

(30, 24)

(31, 24)

(0, 25)

(1, 25)

(2, 25)

(3, 25)

(4, 25)

(5, 25)

(6, 25)

(7, 25)

(8, 25)

(9, 25)

(10, 25)

(11, 25)

(12, 25)

(13, 25)

(14, 25)

(15, 25)

(16, 25)

(17, 25)

(18, 25)

(19, 25)

(20, 25)

(21, 25)

(22, 25)

(23, 25)

(24, 25)

(25, 25)

(26, 25)

(27, 25)

(28, 25)

(29, 25)

(30, 25)

(31, 25)

(0, 26)

(1, 26)

(2, 26)

(3, 26)

(4, 26)

(5, 26)

(6, 26)

(7, 26)

(8, 26)

(9, 26)

(10, 26)

(11, 26)

(12, 26)

(13, 26)

(14, 26)

(15, 26)

(16, 26)

(17, 26)

(18, 26)

(19, 26)

(20, 26)

(21, 26)

(22, 26)

(23, 26)

(24, 26)

(25, 26)

(26, 26)

(27, 26)

(28, 26)

(29, 26)

(30, 26)

(31, 26)

(0, 27)

(1, 27)

(2, 27) (3, 27)

(4, 27)

(5, 27)

(6, 27)

(7, 27)

(8, 27)

(9, 27)

(10, 27)

(11, 27)

(12, 27)

(13, 27)

(14, 27)

(15, 27)

(16, 27)

(17, 27)

(18, 27)

(19, 27)

(20, 27)

(21, 27)

(22, 27)

(23, 27)

(24, 27)

(25, 27)

(26, 27)

(27, 27)

(28, 27)

(29, 27)

(30, 27)

(31, 27)

(0, 28)

(1, 28)

(2, 28)

(3, 28)

(4, 28)

(5, 28)

(6, 28)

(7, 28)

(8, 28)

(9, 28)

(10, 28)

(11, 28)

(12, 28)

(13, 28)

(14, 28)

(15, 28)

(16, 28)

(17, 28)

(18, 28)

(19, 28)

(20, 28)

(21, 28)

(22, 28)

(23, 28)

(24, 28) (25, 28)

(26, 28)

(27, 28)

(28, 28)

(29, 28)

(30, 28)

(31, 28)
(0, 29)

(1, 29)

(2, 29)

(3, 29)

(4, 29)

(5, 29)

(6, 29)

(7, 29)

(8, 29)

(9, 29)

(10, 29)

(11, 29)

(12, 29)

(13, 29)

(14, 29)

(15, 29)

(16, 29)

(17, 29)

(18, 29)

(19, 29)

(20, 29)

(21, 29)

(22, 29)

(23, 29)

(24, 29)

(25, 29)(26, 29)

(27, 29)

(28, 29)

(29, 29)

(30, 29)

(31, 29)

(0, 30)

(1, 30)

(2, 30)

(3, 30)

(4, 30)

(5, 30)

(6, 30)

(7, 30)

(8, 30)

(9, 30)

(10, 30)

(11, 30)

(12, 30)

(13, 30)

(14, 30)

(15, 30)

(16, 30)

(17, 30)

(18, 30)

(19, 30)

(20, 30)

(21, 30)

(22, 30)

(23, 30)

(24, 30)

(25, 30)

(26, 30)

(27, 30)

(28, 30)
(29, 30)

(30, 30)

(31, 30)

(0, 31)

(1, 31)

(2, 31)

(3, 31)

(4, 31)

(5, 31)

(6, 31)

(7, 31)

(8, 31)

(9, 31)

(10, 31)

(11, 31)

(12, 31)

(13, 31)

(14, 31)

(15, 31)

(16, 31)

(17, 31)

(18, 31)

(19, 31)

(20, 31)

(21, 31)

(22, 31)

(23, 31)

(24, 31)

(25, 31)

(26, 31)

(27, 31)

(28, 31)

(29, 31)

(30, 31)

(31, 31)

Fig. 4. ZT vec graph for parameter P5(X) = X5 + X2 + 1. The vertices are labeled by
matrices. Red dotted (resp. blue solid) arrows correspond to multiplication by matrix
A0 (resp. A1). Each polynomial

∑
aiX

i is written as
∑

ai2i.

Similarly, we associate a vertex of ZT proj to each projective point qi = [ai :
bi] ∈ P1(F2n) and an edge to each couple (q1, q2) such that λ ( a2 b2 ) = ( a1 b1 )A0
or λ ( a2 b2 ) = ( a1 b1 )A1 for some λ ∈ F∗

2n . Alternatively, the graph ZT proj may
be constructed from the graph ZT vec by identifying two vertices ( a1 b1 ) and
( a2 b2 ) when ( a1 b1 ) = λ ( a2 b2 ) for some λ ∈ F∗

2n .
Finding a cycle in ZT vec is just as hard as finding a cycle in ZT because if

( a b )M = ( a b ) then M2 = I. The radial symmetry in the graph ZT vec (Figure
4) is not surprising as it reflects the relation ( a b )Ai = ( a′ b′ )⇔ [λ ( a b )]Ai =
[λ ( a′ b′ )]: multiplying each vertex of ZT vec by a constant λ is equivalent to a
rotation of the graph.

Roughly, a vertex in the graph ZT vec can be characterized by a radial and
an angular position. A cycle in the graph ZT proj induces a path in the graph
ZT vec from a vertex to another vertex with the same radial coordinate, but
not necessarily the same angular coordinate. Clearly, different such paths can
be combined to give a cycle in the graph ZT vec. According to Proposition 3
and its proof, this can be done if the discrete logarithm problem, hence the
representation problem, can be solved in F∗

2n .
A cycle in ZT vec induces cycles in both radial and angular coordinates. Propo-

sition 3 means that solving the angular part of the representation problem is easy
once the radial part can be solved to produce various points with the same radius.
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Abstract. In this paper, we present a statistical saturation attack that
combines previously introduced cryptanalysis techniques against block
ciphers. As the name suggests, the attack is statistical and can be seen
as a particular example of partitioning cryptanalysis. It extracts informa-
tion about the key by observing non-uniform distributions in the cipher-
texts. It can also be seen as a dual to saturation (aka square, integral)
attacks in the sense that it exploits the diffusion properties in block ci-
phers and a combination of active and passive multisets of bits in the
plaintexts. The attack is chosen-plaintext in its basic version but can be
easily extended to a known-plaintext scenario. As an illustration, it is
applied to the block cipher PRESENT proposed by Bogdanov et al. at
CHES 2007. We provide theoretical arguments to predict the attack effi-
ciency and show that it improves previous (linear, differential) cryptanal-
ysis results. We also provide experimental evidence that we can break up
to 15 rounds of PRESENT with 235.6 plaintext-ciphertext pairs. Even-
tually, we discuss the attack specificities and possible countermeasures.
Although dedicated to PRESENT, it is an open question to determine if
this technique improves the best known cryptanalysis for other ciphers.

Introduction

This paper introduces a statistical attack that is closely related to previous works
in partitioning cryptanalysis [2,8,9]. Such attacks can be seen as a generalization
of the linear cryptanalysis in which one exploits partitions of the plaintexts (resp.
ciphertexts) leading to significantly non uniform distributions of the ciphertexts
(resp. plaintexts). While arguably more powerful than linear cryptanalysis, they
usually face the question of how to find good partitions for a given cipher. Hence,
in practice they generally rely on some specificities that a cryptanalyst may
find within the ciphers, e.g. in [7,15]. Following these works, our results focus
on a (relatively) generic and simple way to find partitions that can, in certain
contexts, lead to efficient attacks. For this purpose, we exploit ideas from the
integral cryptanalysis [13], originally introduced as a specialized attack against
the SQUARE block cipher [6] and also known as saturation attacks [11]. Such
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attacks are chosen-plaintext and generally study the propagation of well chosen
sets of plaintexts through the cipher. In practice, they typically fix a number
of plaintext bytes to a constant value and track the evolution of some other
bytes having a known distribution. To some extent, the proposed statistical
saturation attack can be seen as a dual of the previous saturation attacks. It also
takes advantage of several plaintexts with some bits fixed while the others vary
randomly. But instead of observing the evolution of the variable bits in the cipher
state, we observe the diffusion of the fixed bits during the encryption process.
That is, we track the evolution of a non-uniform input plaintext distribution
through the cipher. The name statistical saturation attack refers both to the
the way the inputs are generated and to the fact that it exploits the diffusion
properties (and possibly weaknesses) of the target cipher.

As an illustration, we apply the proposed technique to the block cipher PRE-
SENT that was presented at CHES 2007 by Bogdanov et al. It is a compact
block cipher primarily designed for hardware constrained environments such
as RFID tags and sensor networks. The name PRESENT reflects its similar-
ity with the block cipher SERPENT [1], known for its security and hardware
performances. In the specifications of the cipher [4], the authors analyze the
security of PRESENT against various cryptanalytic attacks. In order to argue
about the immunity against linear and differential cryptanalysis, they provide
lower bounds for the number of active S-boxes in any linear/differential trail
of the cipher. Resistance against structural, algebraic and related-key attacks is
also analyzed. The security of PRESENT against differential cryptanalysis was
further studied in [17] in which the authors present an attack against 16 rounds
that requires the entire codebook and a time complexity of 265 memory accesses.

PRESENT is a good target for the proposed statistical saturation attack be-
cause it exhibits a particular weakness in its diffusion layer. As a consequence, our
following results improve the complexities of the best reported attacks against
this cipher, both in theoretical estimations and in experimental validations. In
practice, we broke up to 15 rounds of PRESENT with 235.6 plaintext-ciphertext
pairs. Additionally to these results, we discuss the specificities of the attack com-
pared to other known cryptanalytic techniques. We show that it depends both
on the diffusion and substitution layers in a block cipher. We also show that
current criteria for S-box design do not properly capture the non-uniformities
that are exploited in our partitions. Due to the generality of its principles, the
proposed technique could be applied to other ciphers as well. However, since
its effectiveness depends on the diffusion properties of the targets, it is an open
question to determine if it can improve other cryptanalytic results.

The rest of this paper is divided in three parts. Section 1 presents the basic
principles of our attack with theoretical arguments that support it. A comparison
between theoretical predictions and experimental observations is also provided.
The second section extends the basic profiling attack of Section 1 to a distin-
guishing attack that is more efficient, both in terms of computations and data
complexity. Section 3 discusses countermeasures and the impact of the S-boxes
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on the attack performances. We conclude the paper and suggest further research
in Section 4. The PRESENT block cipher is additionally described in Appendix.

1 A Basic Profiling Attack

1.1 Principle of the Attack

Our attack is based on a weakness in the diffusion layer of PRESENT. A closer
look at the permutation shows that, e.g. for the S-boxes 5,6,9 and 10 (counting
from S-box 0 at the right), only 8 out of 16 input bits are directed to other
S-boxes. Figure 1 illustrates this observation. Note that there exists many other
examples of poor diffusion in the permutation (i.e. with 8 bits out of 16 remaining
in the same 4 S-boxes after permutation). Consequently, if we fix the 16 bits at
the input of the S-boxes 5-6-9-10, then 8 bits will be known at the very same
input for the next round. We can iteratively repeat this process round by round
and observe a non-uniform behavior at the output of the S-boxes 5-6-9-10.

In order to exploit this weakness, we first evaluate theoretically the distribu-
tion of the 8 bits in the bold trail of Figure 1 at the output of the S-box layer,
for a fixed value of the same 8 bits of plaintext. This requires to guess the 8
subkey bits involved in the trail. One also needs to assume that the bits not
situated in the trail are uniformly distributed. This is a reasonable assumption
as soon as the 56 remaining bits of plaintext (excluding the 8 bits in the trail)
are randomly generated. Then, given the distribution of the 8-bit trail at the
input of a round, it is possible to compute the 8-bit distribution at the output of
the round with Algorithm 1 (given in Appendix B). By iteratively applying this
algorithm, we can compute the distribution for an arbitrary number of rounds.
For each key guess, the work needed to compute the theoretical distribution of
the target trail after r rounds is equivalent to r · 216 partial encryptions.

Once we have computed the theoretical distributions of the trail for each
possible key guess, we can attack the cipher by simply comparing them with a
practical distribution obtained by encrypting a large number of plaintexts with

Fig. 1. Permutation layer of PRESENT: bold lines underline the poor diffusion
property
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a secret key. The key guess minimizing the distance between theoretical and
practical distributions is chosen as the correct key. As in [3], we can construct
a list of key candidates sorted according to the distance between theory and
practice. The better the position of the right key in the list, the better the attack.

1.2 Experimental Results

We evaluated the practicability of our attack a against reduced-round version of
PRESENT. In order to reduce the guess work, the key-scheduling of PRESENT
was simplified in these experiments and the same subkey was used at each round.
With this modification, only 8 bits of the master key have to be estimated and
the correct distribution has to be found among 256 possible ones.

Comparison Between Theoretical and Experimental Distributions. Fig-
ure 2 depicts the distribution of the 8 bits in the trail after 2,4,6 and 8 rounds for a
fixed 8-bit key byte. The theoretical predictions (in black) are compared with ex-
perimental results (in grey) generated with 230 plaintexts-ciphertexts pairs. Note
that our attack is choosen-plaintext as we have to fix 8 plaintext bits. But it can be
turned into a known-plaintext attack by dividing random plaintexts in 256 classes
according to the value of the 8 fixed input bits in the trail and observing the output
distributions for each of the 256 cases independently.

Both experimental and theoretical distributions present a significant deviation
from uniform, even after 8 rounds. The deviation tends to decrease with the
number of rounds however. We can observe that predictions match experiments
very closely for up to 6 rounds, and then begin to distinguish. This illustrates
that the sampling is not sufficient anymore to approximate the distributions.

Fig. 2. Comparison between the experimental (in gray) and theoretical (in black) dis-
tributions of the target trail output for a given key byte and 2, 4, 6 and 8 rounds
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Fig. 3. Distance between the experimental (in gray) and theoretical (in black) distri-
bution of a secret key byte and the theoretical distributions of the 256 possible key
guesses. 230 plaintexts were used for the experimental results.

Comparison Between Theoretical and Experimental Distances. Figure
3 shows the evolution of the distance between the distribution corresponding
to a secret key byte 32 and the distributions corresponding to the 256 possible
key guesses for this secret key byte. The number of rounds in the figure again
varies from 2 to 8. The black (resp. grey) curves represent the distance between
the theoretical (resp. experimental) distribution of the correct key byte and the
theoretical distributions for each possible key guess. For up to 8 rounds, we
observe that position 32 minimizes the distance between theory and practice.
Note that we used both an Euclidean and a Kullback-Leibler distance in our
experiments: both metrics gave similar results.

In order to confirm the effectiveness of the proposed cryptanalysis in a key
recovery context, we also computed the gain of the attack, as defined in [3]:

Gain the Attack. If an attack is used to recover an n-bit key and is expected
to return the correct key after having checked on the average M candidates, then
the gain of the attack, expressed in bits, is defined as:

γ = −log2
2 ·M − 1

2n
(1)

Intuitively, the gain is a measure of the remaining workload (or number of
key candidates to test) after a cryptanalysis has been performed. In the context
of our attack, we can produce a list of key candidates sorted according to the
distance between their theoretical distribution and the experimental distribution
computed with the correct secret key. The gain is simply determined by the
position of the secret key in this list. Figure 4 shows the gain of the attack for 1
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Fig. 4. Gain of the profiling attack against 1- to 14- round PRESENT

to 14 rounds of PRESENT (still with a modified key-scheduling) in function of
the data complexity. This experiment used up to 230 plaintext-ciphertext pairs.
The gain is bounded by 8, as we guess 8 bits of key material. It increases with
the number of texts and decreases with the number of rounds.

Effect of theKey-SchedulingAlgorithm. Unlike slide and related key attack,
the proposed technique does not use a particular weakness in the key-scheduling.
However, the number of subkey bits to guess at each round directly affects the time
complexity of the attack, as one must compute the theoretical distribution for each
of these keyguesses. Itmayalso increase thedata complexityasdistinguishingmore
keys generally requires more text pairs. The number of bits to guess according to
the number of rounds is given in Table 1 for the complete key-scheduling algorithm.
After 12 rounds, we have to guess 63 bits of the key, for a complexity equivalent to
263×216 = 279 encryptions. Consequently, this bounds the interest of the profiling
attack to 12 rounds of the (simplified) cipher.

Table 1. Number of bits to guess according to the number of rounds in the attack

#rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#bits 8 15 24 31 35 39 43 47 51 55 59 63 65 67 69 71 73 75 77 79 80

2 A Distinguishing Attack

In order to get rid of the previous computational limits, we now present a vari-
ant of the attack. It has the advantage of not requiring the precomputation
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of theoretical distributions anymore. The distinguisher is based on the fact that
the theoretical distribution at the output of the target trail (as computed with
Algorithm 1) is significantly different from uniform, whatever subkey is used.

2.1 Principle of the Attack

The attack is similar to the one presented above, yet it is simpler. We begin by
generating a large number of plaintexts with 8 fixed bits. We encrypt those plain-
texts using r-rounds PRESENT and record the distribution of the ciphertexts
for the 16 bits at the output of the 4 active S-box in the last round. Given this
experimental distribution, it is possible to compute the output distribution of
the target 8-bit trail one round before by a classical partial decryption process.
For one key guess, the evaluation of such an r − 1-round distribution requires
216 computations. Hence the total time complexity for all the key guesses equals
216 ∗ 216 = 232. Additionally using an FFT-based trick similar to the technique
presented in [5], this complexity can be decreased to 16 · 216. For the correct key
guess, the experimental 8-bit distribution in the penultimate round is expected
to be more non-uniform than for any other guess. This is because decrypting
with a wrong guess is expected to have the same effect as encrypting one more
round. We can thus hope to distinguish the correct key from the wrong ones by
computing the distance between a partially decrypted distribution and the uni-
form distribution. If the attack works properly, the distribution with the highest
distance should correspond to the correct key.

2.2 Extensions of the Attack

(ext. 1) Increase the fixed part in the plaintext. One can easily gain one
round in the attack by simply fixing the 16 bits of plaintext corresponding to the
4 active input S-boxes of the trail. This way, the 8-bit trail in the second round
is also fixed and the diffusion is postponed by one round. By fixing 32 bits out
of 64 (corresponding to S-boxes 4-5-6-7-8-9-10-11), one can similarly extend the
attack by 2 rounds. However, we are then limited in the generation of at most
232 texts. This limitation may be mitigated with the following extension.

(ext. 2) Use multiple fixed plaintext values. The same analysis can be per-
formed multiple times, using different values for the 8-bit (or 16- or 32-bit) fixed
part of the plaintexts and then combining the results (e.g. taking the sum of the
uniform vs. measured distances corresponding to the different fixed plaintexts).
This allows exploiting more texts and moving to a known-plaintext context. The
resulting attack is similar to multiple linear cryptanalysis: each fixed part of the
plaintext can be seen as analogous to an additional approximation in [3,12].

(ext. 3) Partial decryption of two rounds instead of one. In this case,
8 S-boxes are active in the last round instead of 4. Therefore, we have to keep
a 32-bit distribution table in memory. Additionally, 38 bits of the key must be
guessed for the partial decryption (32 bits for the last round + 16 bits for the
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penultimate round − 10 bits that are redundant). Using this trick, the adversary
has to distinguish an r− 2-round distribution for the correct key from an r + 2-
round distribution for the wrong candidates. The time complexity would be
(32 · 232) · (16 · 216) = 257 using again the results in [5].

2.3 Experimental Results

We have run experiments against reduced-round versions of PRESENT with up
to 15 rounds and evaluated the gain of the attack in different contexts. First,
Figure 5 represents the mean result of 4 attacks using 234 plaintexts where 16
input bits were fixed (i.e. using only ext. 1).

To confirm the intuition that non-uniform distributions are observed for the
correct key candidate, we represented the distance between the experimental dis-
tributions of the trail after partial decryption using a correct key and a uniform
distribution. Figure 6 illustrates that this distance decreases with the number of
rounds and stabilizes after a sufficient number of plaintexts have been reached.

Figure 7 illustrates the results of a variant of the attack where 32 plaintext
bits were fixed and consequently only 232 texts were generated. As expected, the
results are slightly better than in the previous experiment.

Figure 8 finally shows an application of ext. 2. The graph represents the
evolution of the attack gain against 1 to 32-rounds after 232 plaintexts. The
top and bottom curves represent the maximum and minimum gains among 12
experiments, while the two other curves represent respectively the average gain
and the gain of the attack combining the 12 experiments. We clearly observe that
combining the distances corresponding to the 12 experiments and computing a
list of key candidates afterwards gives rise to much better result than computing

Fig. 5. Average gain of 4 attacks against 2 to 15-round PRESENT (ext. 1, 16
fixed bits)
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Fig. 6. Distance between uniform and output distributions after 1 to 15 rounds

Fig. 7. Avg. gain of 12 attacks against 5 to 16-round PRESENT (ext. 1, 32 fixed bits)

a list for each experiment and then taking the average position for each key
guess. Using the first method, we reach a significant gain up to 15 rounds.

For discussion purpose, Figure 13 in appendix C represents the gain of a linear
cryptanalysis against 6- to 16-rounds PRESENT. The attack is based upon an
iterative approximation involving one S-box with bias 2−2 in the first round and
one S-box with bias 2−3 in each other round. It can recover up to 12 bits of the
last subkey. Note that this example is not given for comparing the efficiencies of
different attacks but to illustrate the big difference between security bounds as
provided for the “best possible” linear attacks in [4] and attacks based on approx-
imations that can be found in practice. The one that we proposed in appendix is
obviously not optimal, but it is exploits the same iterativeness as our statistical
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Fig. 8. Gain of attacks against 1- to 32-rounds PRESENT with 12 · 232 = 235.6 texts

saturation attack. As a matter of fact, the attacks we discuss in this paper are
experimented and therefore cannot be straightforwardly compared with bounds.
They more directly relate to actual attacks such as presented in [17].

3 Theoretical Complexity

Intuitively, the efficiency of our distinguisher depends on the extent to which an
experimental distribution after r-rounds PRESENT can be distinguished from a
uniform distribution. Therefore, it can be nicely related to the theoretical anal-
ysis of Baignères et al. in [2] which shows that the data complexity required to
distinguish two distributions is proportional to the inverse of the squared Eu-
clidean distance between these distributions. Using Algorithm 1, we can easily
compute a theoretical approximation of this Euclidean distance for PRESENT.
It directly gives rise to Figure 9 in which the complexity of distinguishing the
theoretical distributions at the output of PRESENT from uniform distributions
is given for 1 to 16 rounds. We also illustrate the complexity of a linear crypt-
analysis using the same approximation as the attack in Appendix C. Again, the
difference between the effectiveness of an actual linear attack as in this figure and
the security bounds in [4] should be emphasized. But even these security bounds
(e.g. 284 plaintext-ciphertext pairs to break 28-rounds PRESENT) suggest that
our attack is an improvement compared to the theoretical expectations.

More interesting are the results in Table 2 that summarize the complexity
of the attacks against PRESENT known so far (i.e. mainly [17] and the results
in this paper). Note that due to the iterative nature of our trail, the time and
memory complexities do not vary with the number of rounds in the trail. They
only depend on the number of rounds that are partially decrypted. Most im-
portantly, the provided data complexities are based upon the theoretical values
given by the graph in Figure 9 and rely on the following assumptions:
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Fig. 9. Theoretical data complexity of the attack against PRESENT

Table 2. Summary of attacks (italic are not experimented and use ext. 2)

#rounds type of attack data compl. time compl. memory compl. gain reference
16 Diff. Crypt. 264 265MA 6 ∗ 232bits ≤ 32 [17]
8 our attack∗ c ∗ 212 220 op.∗ 216 counters ≤ 16 this paper

our attack∗∗ c ∗ 29 257 op.∗ 232 counters ≤ 38 this paper
12 our attack∗ c ∗ 224 220 op.∗ 216 counters ≤ 16 this paper

our attack∗∗ c ∗ 221 257 op.∗ 232 counters ≤ 38 this paper
16 our attack∗ c ∗ 236 220 op.∗ 216 counters ≤ 16 this paper

our attack∗∗ c ∗ 233 257 op.∗ 232 counters ≤ 38 this paper
20 our attack∗ c ∗ 248 220 op.∗ 216 counters ≤ 16 this paper

our attack∗∗ c ∗ 245 257 op.∗ 232 counters ≤ 38 this paper
24 our attack∗ c ∗ 260 220 op.∗ 216 counters ≤ 16 this paper

our attack∗∗ c ∗ 257 257 op.∗ 232 counters ≤ 38 this paper
* 1-round decryption, ** 2-round decryption.

– All attacks use ext. 1 with 32 plaintext bits fixed.
– In 1-round (resp. 2-round as suggested in ext. 3) decryption attacks, we

use a r − 3-round (resp. r − 4-round) distinguisher and have the time and
memory complexities discussed in Sections 2.1 and 2.2.

– When the number of plaintexts needed to perform the attack exceeds 232,
we use ext. 2. By combining multiple fixed plaintext values, we consider an
attack exploiting distributions of larger dimensions, similarly to the multiple
linear cryptanalysis in [3]. But it is an open problem to determine exactly the
effect of this extension to the attack complexities. At least, our experiments
suggest that these estimations are valid up to 16 rounds.

Note that our attack only recovers 16 key bits while [17] recovers the whole
key. But as mentioned in Section 1.1, similar trails could be used to recover
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32 more key bits with similar complexities. Hence, our results (including the
part confirmed experimentally) anyway improve the best reported attack
considerably.

4 Countermeasures and Influence of the S-Box

The origin of the proposed statistical saturation attack against PRESENT mainly
lies in a weakness of the diffusion layer. A straightforward countermeasure would
be to modify the permutation in order to avoid poor diffusion in any subset of S-
boxes. But the proposed attack relates to the overall diffusion properties of the
cipher. Hence the S-boxes also have an impact with this respect that we shortly
study in this section. To do so, we generated 5000 different S-boxes respecting the
four conditions imposed in the generation of the PRESENT S-box (see [4], Sec-
tion 4.3). According to the authors, these constraints ensure that PRESENT is
resistant to differential and linear attacks. Figure 14 in Appendix D represents the
evolution of the squared distance between the uniform and output distribution of
the cipher according to the number of rounds. Each curve represent a different
choice for the S-box used in the cipher. It is noticeable that the PRESENT S-box
is among the worst possible choices to resist our attack.

To confirm this impact of a weak vs. strong S-box in our cryptanalysis, we
finally ran new experiments against a tweaked PRESENT where the original S-
boxes were replaced by the dashed S-boxes of Figure 14 (i.e. those corresponding
to the best and worst diffusion properties among our 5000 generated S-boxes).
Figure 10 gives the gain of these attacks for different number of rounds (each
attack used 230 chosen plaintexts). As expected, the attack against the weak ver-
sion of the cipher gives the best results. The figure emphasizes that the proposed
attack is not directly related to linear or differential cryptanalysis (i.e. it is pos-
sible to find a cipher that is immune against linear and differential cryptanalysis,
but not against the proposed statistical saturation attack).

Fig. 10. Comparison between weak (left) and strong (right) S-boxes
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Fig. 11. Another poor diffusion trail in the permutation layer of PRESENT

5 Conclusion and Further Works

In this paper, we presented a new attack against the block cipher PRESENT that
improves previously known cryptanalyses against this cipher. Experimentally,
it allows us to break 15 rounds with 235.6 plaintext-ciphertext pairs. We also
present theoretical estimations of attacks than can break more cipher rounds.
Additionally, we show that the proposed cryptanalysis is not directly related to
linear and differential attacks. In practice, the security of the full cipher does not
seem to be compromised by our results although the proposed attack was not
discussed in the algorithm specifications. However, it confirms and emphasizes
that PRESENT has been designed with little security margins.

Determining if the proposed statistical saturation attacks can improve crypt-
analytic results against other ciphers is an interesting open question. Since they
only exploit very general principles (namely, uncomplete diffusion after some
cipher rounds), they are likely to be applicable to other reduced algorithms.
But on the other hand, the proposed attack was particularly efficient against
PRESENT due to a weakness in its permutation. Hence, it is not clear if the
proposed technique can be as effective against other ciphers, with better diffusion
properties. More theoretically, a better theoretical analysis of the attack, in par-
ticular the analogy between multiple linear cryptanalysis and the use of multiple
fixed plaintext bytes in our context is also worth further investigation. Eventu-
ally, it would be interesting to investigate if the multidimensional cryptanalysis
presented in [10] could be used to improve our results.

Another research direction would be to use the trail of Figure 11 in which 27
bits out of 36 are redirected to only 9 S-boxes at each round. It means that the
lack of diffusion could be worse than in the trail of Figure 1 (we found 4 trails of
this kind). However, this weakness is compensated by a larger trail size (36 bits
instead of 16) which increases the diffusion inside the trail. Applying the attack
presented in this paper to this new trail is also more difficult to experiment
because of the 36-bit distributions for which a 1-round decryption would have
to be performed. Hence, the efficiency of this attack is an open question.
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A The Block Cipher PRESENT

PRESENT is a Substitution-Permutation Network with a block size of 64 bits.
The recommended key size is 80 bits, which should be sufficient for the expected
applications of the cipher. However a 128-bit key-schedule is also proposed. The
encryption is composed of 31 rounds. Each of the 31 rounds consists of a XOR
operation to introduce a round key Ki for 1 ≤ i ≤ 32, where K32 is used for post-
whitening, a linear bitwise permutation and a non-linear substitution layer. The
non-linear layer uses a single 4-bit S-box S which is applied 16 times in parallel
in each round. The cipher is described in pseudo-code in Figure 1.

Fig. 12. Top-level algorithmic description of PRESENT according to [4]

The linear permutation is defined by Table 3 where bit i of input is moved to
bit position P (i). The 4-bit S-box is defined according to the table 4. The 4-bit
nibble i at the input of an S-box is substituted by the 4-bit S[i] in output.

We don’t mention the key-schedule here as we don’t make explicit use of it in
our attack. We refer to the original paper [4] for the details of the specifications.

Table 3. Permutation layer for PRESENT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 48 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 4. S-box table for PRESENT (hexadecimal notation)

i 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[i] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
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B Theoretical Evaluation of the Target Trail Distribution

Algorithme 1
1 input: a 8-bit subkey guess sk and the 8-bit input distribution distrib in[256]
2 output: the 8-bit output distribution distrib out[256]
3
4 initialize distrib out[256] to the all-zero state
5 for each 8-bit values text do
6 for each 8-bit values rand do
7 fix the 8-bit trail to text and xor with sk
8 fix the 8-bit non trail to rand
9 apply the sboxes

10 apply the permutation
11 evaluate the value of the 8 bit trail out
12 update distrib out[out]= distrib out[out]+ distrib in[text]/256;
13 end for
14 end for

C Linear Cryptanalysis Using a Single Approximation

Fig. 13. Gain of a linear cryptanalysis against 6- to 16-rounds PRESENT

D Influence of the S-Box on the Attack Effectiveness

Fig. 14. Evolution of the squared distance between uniform and output distribution
for 5000 different S-boxes (the PRESENT S-box is in plain black)
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Abstract. In this paper we analyze recently introduced questions for
masked logic styles in general and for one such logic style called MDPL
in particular. The DPA resistance of MDPL suffers significantly from a
problem called early propagation, which denotes a data-dependent time
of evaluation of logic cells depending on input signal-delay differences.
Experiments on a prototype chip show that in case of specific MDPL
modules like the analyzed AES coprocessor, early propagation does not
unconditionally break the DPA resistance of MDPL. Investigations in-
dicate that this might be due to the regular structure of the particular
MDPL circuit, which is assumed to cause only relatively “small” sig-
nal delay differences. Furthermore, in this article it is shown that the
recently proposed, so-called PDF-attack could not be turned into a suc-
cessful practical attack in our environment. Finally, the recently raised
question whether MDPL has special requirements in terms of the gener-
ation of random mask bits or not is discussed theoretically.

Keywords: DPA-Resistant Masked Logic Styles, MDPL, Prototype
Chip, Hardware AES, PDF-Attack, PRNG.

1 Introduction

In the last years, various masked logic styles have been presented. These logic
styles counteract differential power analysis (DPA) attacks at the cell level by
randomizing the processed values on a cryptographic device [7].

Many masked logic styles have only been proposed and were never imple-
mented in real silicon. One of the masked logic styles that was also tested in
practice is masked dual-rail precharge logic (MDPL) [12]. MDPL received plenty
of attention in the last years and there are also rather recent publications about
this topic, e.g. [10].

The problems of the first masked logic styles like [4,18] with glitches [8,15] have
been avoided for MDPL. Also other masked logic styles like random-switching
logic (RSL) [16] have been designed with the glitch-problem in mind. RSL is
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rather complicated to implement due to special timing constraints between the
levels of combinational logic blocks. Dual-rail random-switching logic (DRSL)
[1] was later introduced, which simplifies the circuit design of RSL. However,
DRSL and especially MDPL suffer from early propagation [14]. Recent proposals
like improved MDPL (iMDPL) [11] and precharged masked Reed-Muller logic
(PMRML) [5] also take the issue of early propagation into account.

The analysis of an MDPL prototype chip, which implements an 8051-compat-
ible microcontroller [11], clearly showed that for the large signal-delay differences
in the range of a nanosecond that occur in this design, no increase in the DPA
resistance could be achieved. Still an open question in this context is how this
effect scales in a design with smaller delay differences. In our work we analyzed
this issue with the help of an AES coprocessor that is also part of the micro-
controller on the prototype chip. This AES module is based on a very regular
architecture. Thus, the occurring signal-delay differences are much smaller than
in the microcontroller module itself. The attack results presented in Section 3
indicate that MDPL might not be broken in all circumstances. So far, we were
not able to mount a successful DPA attack on the AES coprocessor.

Also some more general possible vulnerabilities of masked logic styles have
been discussed recently. The authors of [13,17] presented an attack which appar-
ently allows to undo the effect of masking in a clock cycle of a masked circuit by
analyzing the mean of the power consumption during that clock cycle. With this
method, which is called PDF-attack (PDF . . . probability density function), it
should be possible to remove the effects of the mask completely or at least to
introduce a significant bias in the mask. With the help of the prototype chip,
we analyze the PDF-attack in practice. It turned out that, at least in our envi-
ronment, no direct impact on the DPA resistance of the attacked device could
be shown. Another recent publication states that MDPL seems to have special
requirements for the generation of the mask bits [3]. We elaborate on that issue
in a theoretical manner.

This article is structured as follows. In the next section, MDPL and the ana-
lyzed prototype chip are shortly introduced. In Section 3, the results of the DPA
attacks on the AES hardware module of the MDPL prototype chip are presented
in detail. Section 4 describes the analysis results for the PDF-attack and Sec-
tion 5 goes further into the question of mask generation for MDPL. Conclusions
are drawn in Section 6.

2 MDPL and the Prototype Chip

MDPL conceals the characteristic data dependent power consumption of im-
plementations in CMOS logic, which are well known to be vulnerable to DPA
attacks. The goal of MDPL is to break the dependency between the processed
data and the instantaneous power consumption of a device by applying the same
random mask bit to every signal in the device. Every operation within the im-
plementation only processes masked data, and hence, the power consumption of
an MDPL circuit only depends on the masked data. Thus, an attacker cannot
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obtain information about the unmasked data from the power consumption as
long as the mask remains secret.

Additionally to masking, MDPL is based on the dual-rail precharge (DRP)
principle in order to avoid glitches, which may significantly reduce the DPA resis-
tance of a device. The operating principle of DRP logic and MDPL is the follow-
ing. Basically, DRP logic tries to break the dependency between the processed
data and the power consumption by making the power consumption constant in
each clock cycle. For this purpose, every signal in the circuit is represented by
two complementary wires d and d̄. Depending on the value of the signal that the
wires d and d̄ belong to, either d or d̄ switches to ”1” in each clock cycle, both
wires never switch to ”1” at the same time. In order to reach a constant power
consumption, the wire loads (i.e. capacitive and resistive wire loads) need to be
perfectly balanced. Unfortunately, this requirement is very hard to achieve in
practice, and hence, MDPL uses masking to bypass the need of perfectly bal-
anced wires. One important fact related to MDPL is that DRP logic prevents
glitches by adding a precharge phase in each clock cycle. This way it is ensured
that every wire in the circuit switches its value at most once per clock cycle.

The analysis of MDPL has been performed by means of a prototype chip
that contains several cores implemented in different logic styles using a 0.13μm
CMOS process technology. The focus of our work lies on the cores implemented
in CMOS and MDPL. Each core contains an 8051-compatible microcontroller
with a serial interface as well as an AES coprocessor. A pseudo-random number
generator (PRNG) on the prototype chip supplies the MDPL core with a pseudo-
random mask bit.

The implementations of the CMOS and the MDPL core on the prototype chip
have the following main attributes: the MDPL core (1mm2) has about 5 times
the size of the CMOS core (0.2mm2), reaches approximately half the maximum
clock frequency (MDPL runs at 7 MHz, CMOS runs at 18MHz), and consumes
about 11 times more power than the CMOS core (MDPL approx. 4.5mA, CMOS
approx. 0.4mA).

3 DPA Attacks on the MDPL AES Hardware Module

The cryptographic coprocessor attached to every 8051-compatible microcon-
troller is a hardware implementation of AES-128. Its architecture follows the
standard version of the regular and scalable AES hardware architecture pre-
sented in [6], which reproduces the logical 4x4 State layout of AES in hardware.
The two main differences are the missing CBC unit and key storage in the key
unit. Thus, the AES module is only capable of the ECB mode of operation and
the secret key has to be loaded into the AES module before each operation.

The datapath of the AES coprocessor is shown in Figure 1. The third and last
main difference to the original design is the single MixColumns module attached
to the left column of the AES State. The ShiftRows operation is implemented
as a Barrel shifter. The four S-boxes performing the SubBytes operation are
combinational and pipelined (one stage) implementations as described in [19].
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Fig. 1. Architecture of the datapath of the AES hardware module

The initial State values are loaded column-wise from the right (not shown in
figure). One round of AES takes 9 clock cycles in this architecture. First, each of
the 16 AES State cells applies the AddRoundKey operation to its stored value.
Then, the State is shifted row-wise down through the S-boxes and afterwards
column-wise left through the MixColumns module. Calculation of the next AES
round key happens in parallel to the MixColumns operation. When the AES
operation is finished, the final State values are read out column-wise to the left.

3.1 Measurement Setup Description

In this subsection the measurement setup that has been used to investigate the
DPA resistance of the MDPL core on the prototype chip is described. The power
measurements have been performed using a host PC to obtain and store the
power traces, a digital oscilloscope, and a test board holding the prototype chip.
The power consumption has been measured via the voltage drop over a 10Ohm
resistor in the VDD line with a differential probe and a digital oscilloscope (both
with a bandwidth of 1GHz) to sample the measured data. The sampling rate
has been set to 4 GS/s and the prototype chip has been operated with a clock
frequency of 3.6864MHz.

3.2 DPA Scenario Description

The target of the DPA attack are the movements of the SubBytes results of the
first AES round through the State registers 1 to 16. According to the architecture
shown in Figure 1, these values are moved in the AES State from top to bottom
during the SubBytes operation and from right to left during the subsequent
MixColumns operation. Each of the SubBytes results depends exactly on one
byte of the unknown secret key, thus there are 256 possibilities for each of them.
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Fig. 2. Power trace and clock signal during the execution of the attacked AES opera-
tions for the CMOS core (left) and the MDPL core (right)

As an example, we track the movements of a plaintext byte in the AES State
cell 4. In the first clock cycle, the initial AddRoundKey operation with round
key byte 4 is performed by the State cell. The result enters the first stage of
the S-box until the intermediate result is stored in the pipeline registers. In the
next clock cycle, the second stage of the S-box is performed and the substitution
result is stored in State cell 1. Since the value we track belongs to the fourth
row of the AES State, the byte is rotated three positions to the left in the third
clock cycle. Thus, it gets stored in State cell 6. In the following two clock cycles,
the byte moves down through cell 7 into cell 8, which is its final position after
SubBytes and ShiftRows. In the next clock cycles, the byte is moved to the left
because the MixColumns operation is performed.

During its way through the AES State, a SubBytes result overwrites other
SubBytes results. In case of the attacks on the CMOS core, the Hamming dis-
tance (HD) of such two values is used as the power model in the DPA attack.
Note that with our approach, we favor the attacker in the following way. We
assume that the secret key byte which is necessary to calculate the overwritten
SubBytes result is known. In doing so, we keep the number of possibilities for
the secret key in one DPA attack at 256. In the attacks on the MDPL core,
we only have to predict the Hamming weight (HW) of the moved SubBytes re-
sult. The reason is that before a byte is transferred over a bus, all bus lines get
precharged to 0. Furthermore, since MDPL is a dual-rail logic style with more or
less randomly imbalanced wire pairs, we can generally only use 1 bit at a time
of the 8-bit SubBytes result in a meaningful leakage model. In the following, we
call this the HWbit power model.

Figure 2 shows the power trace and the clock signal of the part of the first AES
round we have measured for the DPA attacks. An identifier beneath each clock
cycle indicates the step of the operation that is performed (SB = SubBytes; MC
= MixColumns). A trigger signal was generated by the attacked device to easily
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locate these important clock cycles. The assumption that one knows when the
power consumption needs to be measured also favors the attacker significantly,
because the amount of data and the measurement and analysis time are in this
case substantially reduced.

3.3 DPA Attack Results

In the DPA attacks, the Pearson correlation coefficient is used to quantify the
dependency between measured power consumption and predicted power con-
sumption [2]. The height of the correlation peak in a successful attack is used
to calculate the minimum number of needed power traces to get a distinct peak.
For correlation peaks ρck,ct ≤ 0.2, the minimum number of needed power traces
n is approximated as follows: n = 28/ρ2

ck,ct (confidence = 99.99%, ck . . . correct
key, ct . . . point in time where the correlation peak occurs) [7]. The number n is
used to quantify the DPA resistance of the attacked device for the given attack
scenario.

DPA Attack on the CMOS Reference Core
The DPA attacks on the hardware AES in the CMOS reference module showed
that the leakage (i.e. the height of the resulting correlation peak) of the different
key bytes significantly depends on the path each key byte takes through the
AES State matrix (see Figure 1). It turned out that State cell 4 leaks the most
information because its output is connected to an S-box input, a MixColumns
input and the AES module output bus. The State cells 1 to 3 leak the second
most and cells 8, 12, and 16 leak the third most. The least leakage occurs for all
other cells because their output is only connected to their neighboring cells to
the left (circuitry for a State shift to the left) and their neighboring cells below
(circuitry for a State shift to the bottom).

640 000 traces have been measured to attack the CMOS AES hardware mod-
ule. As mentioned in Section 3.2, the HD power model has been used to map
the byte transitions in the AES State cells to power consumption values. All key
bytes have been successfully attacked. The lowest correlation peak value of 0.01
has been achieved for key byte 13 using the byte transition 14 → 13 (i.e. data
related to key byte 14 is overwritten by data related to key byte 13). This byte
transition only occurs in State cell 13, which has a very low leakage. A correlation
peak value of 0.01 maps to a number of needed traces n of more than 276 000.
This rather high number is caused by the small output load of the involved State
cell 13 and the high amount of noise caused by the microcontroller working in
parallel. The highest correlation peak value of 0.0382 has been achieved for key
byte 8 using the byte transition 4 → 8. This byte transition occurs in State cell
4, which is that one with the highest leakage. A correlation peak value of 0.0382
maps to a number of needed traces n of about 19 200. The transition also occurs
one clock cycle earlier in State cell 8, which has a lower leakage (see Figure 3,
left). For the transition in State cell 8, a correlation peak value of 0.02 has been
achieved.
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Fig. 3. CMOS AES hardware module: 256 correlation traces for key byte 8 (left, 640 000
measurements, HD power model) and evolution of the maxima of the correlation traces
over measurements (right); traces for the correct key are plotted in black

Figure 3 (left) shows the correlation traces for the attack on key byte 8. The
correlation trace for the correct key guess is plotted in black. The clock cycles
when the attacked byte transition occurs in State cell 8 (lower correlation peak)
and one clock cycle later in State cell 4 (higher correlation peak) can clearly be
seen. The time axis of the left figure matches that one of Figure 2 (left).

DPA Attack on the MDPL Core with Deactivated PRNG
In order to get some experience with the MDPL AES hardware module, we first
attacked it with deactivated PRNG. This gave us the chance to see if our attack
scripts are correct and that we used the correct part of the power trace in the
attack. We were able to attack more than half of the key bytes with the number
of measurements we performed.

The DPA results in case of the MDPL AES module look quite different from
those of the CMOS AES module. For MDPL, we could not clearly identify State
cells with a higher and State cells with a lower leakage. Furthermore, the findings
concerning the amount of leakage of the AES State cells for the CMOS core could
not be reproduced for the MDPL core. The reason for it is that in a dual-rail
logic style like MDPL, the amount of leakage of a cell does not depend on the
absolute load connected the a cell’s output but on how well the dual-rail output
wires are balanced. Since no explicit balancing was done in the MDPL circuit,
the actual balancing situation in the placed and routed circuit is more or less
random.

For the DPA attack on the MDPL AES with deactivated PRNG we measured
1 256 000 power traces. With the arguments from the last paragraph and from
Section 3.2 in mind, one would typically assume that the HWbit power model
is the best choice for this attack. However, our analysis showed that with the
HWbit model, we could find only 1 key byte (key byte 12; bit 1 used in attack;
resulting correlation peak ρck,ct,12 = 0.0056). Much better results were yielded
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Fig. 4. MDPL AES hardware module with deactivated PRNG: 256 correlation traces
for key byte 14 (left, 1 256 000 measurements, HW power model) and evolution of the
maxima of the correlation traces over measurements (right); traces for the correct key
are plotted in black

by using the HD model and the best results were achieved with the HW model.
The reason for this behavior most likely lies in the architecture of the MDPL
flip-flops [12]. They store the masked data in a single-rail flip-flop, which is
connected to only one part of the complementary network of the input signal.
This leads to a more or less uniform direction of the imbalance of the dual-rail
signals going into an MDPL flip-flop. Therefore, the HW power model leads to
better results than the HWbit model in case such signals are attacked.

When using the HD power model as in the DPA attack on the CMOS AES
module, the highest correlation peak we got had a value of 0.0054, which maps
to a number of required traces n of around 960 000. We could unambiguously
identify 6 key bytes. In case of the HW power model, we got more and higher
correlation peaks for the different key bytes (due to the precharging, which also
happens in the input stages of MDPL flip-flops). However, we could not find all
key bytes with the 1 256 000 measured power traces. The four highest correlation
peaks occurred for key bytes 5 (ρck,ct,5 = 0.0067), 13 (ρck,ct,13 = 0.0061), 14
(ρck,ct,14 = 0.0074), and 15 (ρck,ct,15 = 0.0061). This maps to a number of
needed power traces of approximately: n5 = 624 000, n13 = n15 = 752 000, and
n14 = 511 000. More than half of the key bytes could be successfully attacked,
for the others there were either ambiguous peaks for incorrect key guesses or no
peaks at all in the correlation traces. Figure 4 (left) shows the correlation traces
for the HW attack on key byte 14. The correlation trace for the correct key
guess is plotted in black and the time axis matches the one of Figure 2 (right).
In Figure 4 (right), the evolution of the maxima of the correlation traces over
the measurements can be seen. It clearly shows that the number of needed power
traces n14 = 511 000, which has been calculated above, is reasonable.
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Fig. 5. MDPL AES hardware module with activated PRNG: 256 correlation traces
for key byte 14 (left, 3 511 000 measurements, HW power model) and evolution of the
maxima of the correlation traces over measurements (right); traces for the correct key
are plotted in black

DPA Attack on the MDPL Core with Activated PRNG
Due to the findings described in the last section, we attacked the MDPL core
with activated PRNG also by using the power models HWbit, HD, and HW. A
similar behavior was observed: No at least “almost” or “weak” correlation peaks
could be achieved with the HWbit and the HD power model. With the HW
power model, we were also not able to identify a single key byte unambiguously.
However, there were 4 key bytes (9, 10, 13, 14) for which one could get the
impression that not too many more measurements would be necessary to get a
distinct correlation peak. But this is only a speculation.

For the attack on the MDPL core with activated PRNG, we measured three
sets of power traces to improve our statistical sampling accuracy. For the biggest
set, we measured 3 511 000 power traces, because we expected an increase in the
number of needed measurements due to the random mask that is provided to
the MDPL AES core.

Figure 5 shows the correlation results for key byte 14 (HW attack), which
showed the highest correlation peak in the HW attack on the MDPL core with
deactivated PRNG. One can clearly see that the maxima of the correlation trace
over measurements for the correct key (right figure, black trace) stay for long
periods at the top border of the gray correlation-maxima band. However, its
value always declines with more measurements, which is not the case in a suc-
cessful attack (see Figures 3 and 4). The correlation traces for the other three
suspicious key bytes showed a similar behavior. Therefore, we regard the MDPL
AES module in the prototype chip (with activated PRNG) as secure for at least
3 511 000 measurements under the given attack scenario.
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Fig. 6. Power histograms of the PDF-attack on the MDPL core with activated PRNG:
clock cycle MC1 (left), clock cycle MC4 (right). Each power value in the histogram
is the sum of the absolute values of the power consumption in the evaluation phase of
the respective clock cycle.

4 The PDF-Attack in Practice

In [13] and [17], the authors present a new attack methodology against masked
logic styles like MDPL. In an experiment with the MDPL core on our prototype
chip, we tested whether we can practically reproduce this PDF-attack. The out-
come of the experiment was that we could not mount a successful attack on the
MDPL core in our environment.

In Section 3.3, we found out that key byte 14 leaks the most information in
an attack on the AES hardware module in the MDPL core when the PRNG is
deactivated. In case of an activated PRNG, the correlation result for key byte
14 was ambiguous. In order to test the effectiveness of the PDF-attack, we chose
the following approach. If the PDF-attack works (i.e. if the mask can be biased),
it should be possible to turn the ambiguous result for key byte 14 (DPA attack
with activated PRNG) into an unambiguous result.

The first step in the PDF-attack was to build power profiles of the clock cycles
where we expect a significant leakage and where we thus want to bias the mask.
We selected two clock cycles for this purpose. The first clock cycle was that one
where the correlation peak occurred in the attack on key byte 14 on the MDPL
core with deactivated PRNG: clock cycle MC1 around 0.75μs (see Figure 4 left
and Figure 2 right). The other clock cycle was the one where there might be
the beginning of a correlation peak in the DPA attack on the MDPL core with
activated PRNG: clock cycle MC4 around 1.6μs (see Figure 5 left and Figure 2
right).

For the power profiles, we took the power values during the evaluation phase
of the clock cycles MC1 and MC4, respectively, for each measurement sample
of the MDPL core with activated PRNG. Then, we calculated the sum of the
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Fig. 7. Power histograms for the MDPL core with deactivated PRNG: clock cycle MC1
(left), clock cycle MC4 (right). Each power value in the histogram is the sum of the
absolute values of the power consumption in the evaluation phase of the respective
clock cycle.

absolute values of the selected points of each clock cycle. This is done in accor-
dance to [13] where the analysis is based on toggle counts of clock cycles. As
a result, we got two power values for every measurement sample, one for clock
cycle MC1 and one for clock cycle MC4. Figure 6 shows the two histograms
of the two groups of power values. The shape of the histograms were rather
unexpected, because according to the PDF-attack, there should be two equally
high peaks (we verified that the PRNG does not have such a significant bias
via simulations, which could also cause such a shape). For comparison, Figure 7
shows the power histograms for the same clock cycles MC1 and MC4 in case of
a deactivated PRNG. Here, the histograms show single peaks as expected.

According to the theory of the PDF-attack, it should now be possible to
bias the mask by using just the power traces in a DPA attack that have a
power consumption in the profiled clock cycles that is above (below) the mean
power consumption in the respective clock cycle. Since we were not sure where
the different peaks in the power profile histograms originated from, we selected
different values as discerning points: the overall mean of each histogram, the
mean of each peak in the histograms, and the lowest value in the valley between
two peaks of a histogram (we also tried various other clock cycles and in some
of them, we got more separated peaks with a valley between them).

The original number of power traces we had at hand for the PDF-attack were
3 511 000. After the selection process according to the chosen discerning point,
we always had around 1.5 million traces left for the PDF-attack. According to
the needed power traces to successfully attack the MDPL core with deactivated
PRNG, this amount of traces should have been enough. However, in none of the
settings for the discerning point, we could turn the DPA attack against key byte



222 T. Popp, M. Kirschbaum, and S. Mangard

Table 1. Truth table and energy dissipa-
tion of an MDPL AND gate

q a b m bias qm am bm E
0 0 0 0 α 0 0 0 δ
0 0 0 1 1 − α 1 1 1 γ

0 0 1 0 α 0 0 1 δ
0 0 1 1 1 − α 1 1 0 γ
0 1 0 0 α 0 1 0 δ
0 1 0 1 1 − α 1 0 1 γ

1 1 1 0 α 1 1 1 γ
1 1 1 1 1 − α 0 0 0 δ

Table 2. Truth table and energy
dissipation of a masked signal q in
general

q m bias qm E (generic) E
0 0 α 0 E1 δ
0 1 1 − α 1 E2 γ
1 0 α 1 E3 γ
1 1 1 − α 0 E4 δ

14 in a successful one. Finally, we targeted some other key bytes in PDF-attacks
and we used the hypotheses for the HD power model instead of the hypotheses
for the HW power model. Also these attacks were not successful.

5 Mask Generation for MDPL

The mask generation is of crucial importance for every countermeasure that is
based on masking. Every countermeasure of this type requires that the masks
are unknown by the attacker, randomly generated and uniformly distributed.
Otherwise masking does not provide protection against power analysis attacks.
This property is well known and can be easily shown for every masking scheme.
Descriptions of attacks that exploit biased masks can for example be found in [7].

At CHES 2007, Gierlichs presented an article [3] that is devoted to the dis-
cussion of the effect of a biased mask on the DPA resistance of MDPL. Unfortu-
nately, the article does not make a clear statement about the fact how much the
mask needs to be biased for a successful attack and only talks about slight biases.
Hence, one might get the impression that MDPL has different requirements on
the mask generation than other masking schemes. In this section we analyze the
arguments presented in [3] and we show that these arguments are not specific for
MDPL. MDPL does not have other requirements concerning mask generation
than any other countermeasure that is based on masking.

The basic idea of the attack presented in [3] can be best illustrated using a
truth table of an MDPL AND gate as shown in Table 1. The last column of
this table shows the power consumption of the gate. The power consumption δ
occurs, if the output qm is 0 and it is γ, if qm is 1. Gierlichs proposes to perform
a DPA attack by exploiting the difference between the power consumption for
the case (a = 1, b = 1) and the case (a = 0, b = 0). The expected value of the
difference d between these two cases is given by

dMDPL = αγ + (1− α)δ − αδ − (1− α)γ = 2αγ − 2αδ + δ − γ (1)
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Clearly, there is only a difference dMDPL > 0 between these two cases, if
α �= 0.5. We now compare this result with the result of a DPA attack on a
masked signal in general. Table 2 shows the energy dissipation that occurs, if
a signal q is masked and hence represented by qm and m in the circuit. This
leads to four possible different representations of the signal in the circuit with
potentially four different energy dissipations E1 . . . E4. In a DPA attack on the
value q, the attacker calculates the difference between the cases for q = 0 and
q = 1. The expected value of the difference is hence given by

dgeneric = αE3 + (1− α)E4 − αE1 − (1− α)E2 (2)

In this generic case, there can be several reasons why dgeneric > 0. In an im-
plementation where m and qm are processed independently (i.e. the total power
consumption is the sum of the power consumption of the mask and the power
consumption of the masked value), it holds that E1 = E4 = δ and E2 = E3 = γ.
In this case, dgeneric can only be bigger than zero, if there is a bias on the mask.
In fact, in this case it holds that dgeneric = dMDPL. In implementations, where
there are glitches or other joint timing properties of the mask and the data (see
for example [9], [14]) it can hold that E1 �= E2 �= E3 �= E4. In this case there
can be a leakage even if there is no bias on the mask.

In summary, the argumentation for exploiting a bias in a mask of an MDPL
circuit that is provided in [3] is not different than it is for any other masked
implementation. In fact, the presented DPA attack in [3] is equivalent to a DPA
attack on a generic masked signal in a circuit where the mask and masked data
are processed independently.

6 Conclusions

In our work, we showed that the masked logic style MDPL is not completely bro-
ken because of early propagation. In regular designs where the signal-delay dif-
ferences are small, MDPL still provides an acceptable level of protection against
DPA attacks. No key byte of the attacked MDPL AES coprocessor was revealed
with 3 511 000 power measurements. For the recently presented PDF-attack we
could show that the attack does not work offhand in practice. This is also clear
from the following perspective. With the settings chosen for the PDF-attack in
theory (no electronic and other forms of noise, no perfect balancing of dual-rail
wire pairs, . . . ), it can easily be shown that all DPA-resistant logic styles that try
to achieve a constant power consumption are also completely broken. However,
various publications draw opposite conclusions. Finally, we showed that mask
generation is not particularly difficult for MDPL.

Acknowledgements. This work has been supported by the Austrian Gov-
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Abstract. CTC is a toy cipher designed in order to assess the strength
of algebraic attacks. While the structure of CTC is deliberately weak
with respect to algebraic attacks, it was claimed by the designers that
CTC is secure with respect to statistical attacks, such as differential
and linear cryptanalysis. After a linear attack on CTC was presented,
the cipher’s linear transformation was tweaked to offer more diffusion,
and specifically to prevent the existence of 1-bit to 1-bit approximations
(and differentials) through the linear transformation. The new cipher
was named CTC2, and was analyzed by the designers using algebraic
techniques.

In this paper we analyze the security of CTC2 with respect to differ-
ential and differential-linear attacks. The data complexities of our best
attacks on 6-round, 7-round, and 8-round variants of CTC2 are 64, 215,
and 237 chosen plaintexts, respectively, and the time complexities are
dominated by the time required to encrypt the data.

Our findings show that the diffusion of CTC2 is relatively low, and
hence variants of the cipher with a small number of rounds are relatively
weak, which may explain (to some extent) the success of the algebraic
attacks on these variants.

1 Introduction

The merits of algebraic attacks [8,13] are still debated in the cryptographic
community. In the field of stream ciphers, algebraic attacks succeeded signif-
icantly, allowing to break several ciphers much faster than other known tech-
niques (see [7,12]). At the same time, in the field of block ciphers, the situation
is more complicated: while there are several instances in which algebraic attacks
can be applied (see [5,11,16]), algebraic attacks did not succeed in attacking any
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well known block cipher better than other techniques. Hence, the applicability
of algebraic attacks to block ciphers have stirred quite a debate in the crypto-
graphic community, arguing whether this class of attacks can indeed impose a
threat to “strong” block ciphers.

In [8], Courtois presented the block cipher CTC, intended to provide an exam-
ple of a “cryptographically strong” cipher that can be attacked using algebraic
techniques. CTC is an SP network, with scalable parameters. The most interest-
ing set of parameters is when the block and key sizes are of 255 bits, and a large
number of 3-bit S-boxes (its six-round variant was broken using algebraic ap-
proaches). The components of the cipher are intentionally weak with respect to
algebraic attacks: the S-boxes are 3-bit to 3-bit, and the linear transformation is
extremely simple. It was claimed in [8] that despite these weaknesses, the cipher
is strong against statistical attacks, such as differential and linear cryptanalysis.

The resistance of CTC against linear cryptanalysis was challenged in [14]. It
was shown that the linear transformation of CTC, along with the particular S-
box used in the cipher, allow for an iterative linear approximation with a single
active S-box in every round. This approximation has a bias of 1/4 per round,
thus allowing to mount a simple key recovery attack on r-round CTC with data
complexity of about 22r+2 known plaintexts. Moreover, it was shown that for a
large portion of the 3-bit S-boxes, similar results would hold.

As a response to the suggested attack, CTC’s designers changed the linear
transformation of the cipher and introduced CTC2 [9,10]. The new linear trans-
formation no longer allows for one bit to depend only on one bit. Despite this
fact, the diffusion of the new linear transformation is still very weak as most
of the bits after the linear transformation depend on only two bits before the
linear transformation (except for one bit which depends on three bits). The
weak diffusion can be combined with the 3-bit to 3-bit S-boxes to construct high
probability differentials and linear approximations for a small number of rounds.

In this paper we examine the security of CTC2 against statistical attacks.
We start by examining 3-round and 4-round variants of the cipher. We present
a meet-in-the-middle attack on 4-round CTC2 with data complexity of 4 cho-
sen plaintexts and a negligible time complexity. Furthermore, we present many
“structural” differential characteristics (with probability 2−14 each) and linear
approximations (with bias 2−8 each) for 3-round CTC2, and also a 4-round dif-
ferential with probability 2−18 and a 4-round linear approximation with bias
2−10.

We then present truncated differential attacks against 5-round, 6-round, and
7-round variants of CTC2. The data complexities of the attacks are 24, 64, and
215 chosen plaintexts, respectively, and the time complexities are dominated by
the time required for encrypting the data.

Finally, we present differential-linear attacks against 7-round and 8-round
variants of the cipher. The 8-round attack has data complexity of 237 chosen
plaintexts and time complexity of 237 encryptions.

It is important to note that our attacks do not imply that algebraic attacks
on block ciphers are unfit to play a role in the cryptanalytic toolbox. However,
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it seems that our findings show that the diffusion in CTC2 is insufficient to offer
security when the number of rounds is relatively small (e.g., 8 or less), which
may explain the success of the algebraic attack on CTC2 with a small number
of rounds.

The rest of the paper is organized as follows: Section 2 shortly describes the
CTC and CTC2 block ciphers. In Section 3 we present an efficient meet-in-
the-middle attack on 4-round CTC2. We discuss short differentials and linear
approximations of CTC2 in Section 4. In Section 5 these differentials are used
to present truncated differential attacks on CTC2, and in Section 6 the differ-
entials and the linear approximations are combined in differential-linear attacks
on CTC2. We discuss our results in Section 7.

2 A Description of CTC2

CTC is a toy cipher presented for the sake of cryptanalysis using algebraic at-
tacks [8]. The cipher supports a variable block size, and a variable number of
rounds. After an iterative linear approximation with a large bias was presented
in [14], the designers of CTC introduced a tweaked version of the cipher called
CTC2 [9,10].

The most discussed version of CTC has a block size and a key size of 255 bits.
Each round is composed of an XOR with a subkey, parallel application of the
same S-box, and a simple linear transformation. After the last round another
subkey is XORed to the output.

The 3-bit to 3-bit S-box used in CTC is S[·] = {7, 6, 0, 4, 2, 5, 1, 3}. The state
is initialized to the plaintext XORed with the first subkey, and the bits enter the
S-boxes in groups of three consecutive bits, where bit 0 is the least significant
bit of the first S-box (which we denote by S-box 0) and bit 254 is the most
significant bit of the 85th S-box (which we denote by S-box 84).

The linear transformation of CTC is very simple, and each output bit, denoted
by Zi, depends on one or two of the input bits, denoted by Yi. We note that in [8]
the notations are slightly different (as they include the round number before the
number of the bit):{

Z2 = Y0
Zi·202+2 mod 255 = Yi ⊕ Yi+137 mod 255 for i = 1, . . . 254

The key schedule of CTC is also very simple: The ith round subkey is obtained
from the secret key by a cyclical rotation to the left by i bits.

The main difference between CTC and CTC2 is a different linear transforma-
tion used in CTC2 [9,10]:{

Z151 = Y2 ⊕ Y139 ⊕ Y21
Zi·202+2 mod 255 = Yi ⊕ Yi+137 mod 255 for i = 0, 1, 3, 4 . . .254

In addition, the key schedule of CTC2 is slightly different: The ith round subkey
is obtained from the secret key by a right rotation by i bits (instead of a left
rotation used in CTC).
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3 A Meet-in-the-Middle Approach

The relatively slow diffusion of CTC2 allows to mount simple meet-in-the-middle
attacks on small number of rounds of the cipher. As an example, we present a
4-round attack following the methodology presented in [15]. The attack exploits
the fact that there are bits in the intermediate state after three full rounds of
encryption, that depend on less than 255 plaintext bits. Consider a concrete bit
x having this property, and denote the set of plaintext bits x depends on by S1.
It is clear that if two plaintexts have the same value in all the bits of S1, then
the corresponding intermediate values after three rounds agree on the bit x.

To attack 4-round CTC2, we consider several plaintexts having the same value
in the bits of S1. We would like to partially decrypt the ciphertexts through the
last round and check whether the intermediate values after three rounds agree
on the bit x. Since the fourth round is the last one, we can swap the order of
the linear transformation and the key addition in the fourth round, and hence
guessing three bits of an equivalent subkey is sufficient to recover the value of the
bit x.1 For each guess of these three bits, we check whether the suggested values
of the bit x are the same for all the encryptions, and if not, we discard the key
guess. The right key guess is expected to pass this filtering, and the probability
that at most one wrong key guess passes the filtering is as high as 78%, if 4
plaintexts are used in the attack (for 6 plaintexts, only the right subkey remains
with probability 80%). Hence, the attacker gains two bits of key information. The
time complexity of the attack is dominated by the partial decryption of the first
two ciphertexts, since after them the number of candidate subkeys is smaller. By
using a simple precomputed table, the attacker can retrieve the possible subkey
values by a simple table query.

We note that while the attack seems to retrieve only a small number of subkey
bits, it is possible to obtain additional key information by repeating the attack
with a different bit instead of x. This would result in an increase in the data
complexity of the attack, but this increase can be moderated by using structures,
allowing to re-use the same data in attacks with different values of the bit x.
For example, the sets of unaffected plaintext bits corresponding to the two least
significant bits (i.e., x = e0 and x = e1)2, share seven joint bits, and hence the
attacks with x = e0 and x = e1 can be mounted simultaneously using the same
data set.

3.1 Attacking More Rounds Using the 4-Round Meet-in-the-Middle
Attack

It is possible to use the above attack to speed-up exhaustive key search on
more than 4 rounds of CTC2 when only four chosen plaintexts are available
1 This standard technique is used in all the attacks presented in this paper. In the se-

quel, we do not mention it explicitly, and use the term “equivalent subkey”, referring
to the subkey resulting from the swap.

2 Throughout the paper ei denotes a value of 0’s in all positions but position i. Simi-
larly, ei,j = ei ⊕ ej , ei,j,k = ei,j ⊕ ek, etc.
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to the attacker. The attack is based on guessing the subkey of the last rounds,
partially decrypting the ciphertexts, and then checking whether the meet-in-the-
middle attack “succeeds” (i.e., retrieves a subkey which agrees with the partial
decryption).

To attack r-round CTC2, for each key guess, the attacker has to decrypt
two of the ciphertexts (which takes time proportional to 2 · (r − 4) rounds in a
trivial implementation). Then, the attacker checks whether the subkey the two
ciphertexts suggest agrees with the key guess. In case the check succeeds, then
the attacker partially decrypts the remaining pairs, and checks them. Only if
the 4-round attack succeeds with the four plaintext/ciphertext pairs, then the
attacker performs the full trial encryption. As the first step is the most time
consuming, the time complexity of this approach is about r/(2 · (r − 4)) times
faster than exhaustive key search (about 60% speed-up for a 5-round attack, a
33% speed-up for a 6-round attack, and a 14% speed-up for a 7-round attack).

Moreover, the attacker can use a slightly better implementation of the partial
decryptions (which are done under the same subkeys). For example, by imple-
menting the partial decryption step in a bit-slice manner (which is expected to
be the faster implementation of CTC2’s decryption in any case), and using the
fact that most modern CPUs can support several operations in parallel (or at
least have higher throughput by scheduling the operations correctly), one can
reduce the time required for the decryption of two values to almost the time
required for decrypting one value. In such a case, the expected speed-up is going
to be about r/(r− 4), i.e., offer a 80% speed-up for a 5-round attack and a 66%
speed-up for a 6-round attack.

4 Linear Approximations and Differentials of CTC2

4.1 Linear Approximations

Due to the low diffusion of CTC2, there are many linear approximations for a
small number of rounds with a relatively high bias. These approximations exploit
the following two properties of CTC2:

1. The S-box of CTC2 has several one-bit to one-bit linear approximations. We
note that this property is not a weakness of the particular S-box used in
CTC2. The majority of the 3-bit to 3-bit S-boxes have such approximations.

2. The diffusion of the linear transformation in the backward direction is ex-
tremely low: Each bit after the linear transformation, except for one, is the
XOR of only two bits before the linear transformation. The remaining bit is
the XOR of three bits.

Using these properties, it is easy to construct many 3-round linear approxima-
tions having only seven active S-boxes: four active S-boxes in the first round,
two active S-boxes in the second round, and one active S-box in the third round.
All these approximations have a bias of ±1/4 for each active S-box, or a total of
q = ±26 · (2−2)7 = ±2−8. Most of them can be easily extended by one (or two)
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more rounds in the backward direction, where in the additional rounds there are
eight (or 24, respectively) more active S-boxes. The following is an example of
such approximation:

λP = e14,104,134,241
S−→ e14,104,132,241 p = 1

2 − 2−5

LT−−→ e38,154
S−→ e36,154 p = 1

2 + 2−3

LT−−→ e0
S−→ e2 = λC p = 1

2 + 2−2

We note that there are many ways to change the approximation slightly and
get similar approximations with bias 2−8 and the same output mask. Hence, at-
tacks which exploit multiple linear approximations [4,6] are expected to succeed
against CTC2 significantly better than a standard linear attack.

While the diffusion of the linear transformation in the backward direction is
very low, the diffusion in the forward direction is extremely high.3 Most of the
bits before the linear transformation are the XOR of more than 50 bits after the
linear transformation, and hence most of the linear approximations presented
above cannot be extended in the forward direction. However, there exist several
special bits whose linear diffusion in the forward direction is weak. In particular,
bit 2 before the linear transformation is the XOR of bits 30 and 151 after the
linear transformation. As a result, the specific approximation presented above
can be extended by one more round by concatenating the following 1-round
approximation:

e2
LT−−→ e30,151

S−→ e32,151 = λC p = 1
2 − 2−3

The resulting 4-round approximation (with bias 2−10) cannot be extended fur-
ther due to the high diffusion of bits 32 and 151 in the forward direction.

In total, the best linear approximations we detected for three, four and five
rounds of the cipher have biases of 2−6, 2−10, and 2−18, respectively.

4.2 Differential Characteristics

The analysis of short differentials of CTC2 is similar to the analysis of short linear
approximations presented above. The only difference is that for differentials,
the diffusion in the forward direction is very weak (i.e., a difference in a single
bit before the linear transformation influences only two or three bits after the
linear transformation), while the diffusion in the backward direction is extremely
high.4 As a result, there are many 3-round differentials with only seven active S-
boxes, that can be extended in the forward direction by one or two more rounds
3 We note that this situation is not typical in block ciphers. In most of the ciphers,

the diffusions in both directions are comparable, and hence usually approximations
have a round with a single active S-box in the middle, and then are extended to
both directions. In CTC2, the round with a single active S-box can be placed only
at the end of the approximation.

4 This situation is quite general in block ciphers. Differentials in the forward direction
usually correspond to linear approximations in the backward direction and vice versa,
see [1].
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(with 8 or 24 more active S-boxes, respectively). One of these differentials is the
following:

ΩP = e2
S−→ e0 p = 2−2

LT−−→ e2,123
S−→ e0,123 p = 2−4

LT−−→ e2,113,123,234
S−→ e0,111,123,234 = ΩC p = 2−8

Due to the low diffusion of bit 2 in the backward direction, this specific differen-
tial can be extended in the backward direction by adding the following one-round
differential:

e30,150
S−→ e30,151

LT−−→ e2 p = 2−4

The resulting four-round differential has probability 2−18. In total, the best
differential characteristics we detected for 3, 4, and 5 rounds of the cipher have
probabilities 2−14, 2−18, and 2−34, respectively.

5 Differential Attacks on CTC2

5.1 A 5-Round Differential Attack

The differentials presented above can be used to construct a high-probability
truncated differential for 5 rounds of CTC2. The truncated differential starts
with the first two rounds of the above 4-round differential:

ΩP = e30,150
S−→ e30,151 p = 2−4

LT−−→ e2
S−→ e0 p = 2−2

From e0 (before the linear transformation of the second round), the difference
propagates unconstrained for 3 more rounds. If the two first rounds of the dif-
ferential hold, then there is no difference in 35 bits after the fifth round. Denote
the set of these 35 bits by S2.5

This truncated differential can be used to mount a simple attack on 5-round
CTC2. The attacker considers 64 pairs of plaintexts with difference ΩP , and
checks whether in the corresponding ciphertext pairs, the difference in the bits
of S2 is zero. Since for a random pair, the probability that a difference in 35 bits
is zero is 2−35, it is expected that only pairs satisfying the differential (the right
pairs) pass this filtering. The probability of the differential is 1/64, and hence it
is expected that only the right pair remains after the filtering. Once identified,
this pair can be used to retrieve the subkey used in S-boxes 10 and 50 in the
first round.
5 For completeness we give the set S2:

S2 = {13, 14, 24, 35, 50, 56, 59, 65, 66, 74, 79, 80, 82, 112, 116, 118, 131, 132, 135, 148, 165,

169, 171, 184, 187, 190, 199, 200, 201, 222, 226, 237, 240, 243, 252}.
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The data complexity of the attack can be reduced using structures. The at-
tacker considers a structure of 24 plaintexts, in which the value in all the S-boxes
except for S-boxes 10 and 50 is constant, and the values in these two S-boxes are
distinct. These plaintexts can be combined into 24·23/2 = 276 pairs, and about 4
of them6 are expected to have difference only in bit 2 after the first round. Since
the probability of the second round of the differential is 2−2, it is expected that
the data contains one right pair. As in the basic attack, this right pair can be
detected immediately (by checking whether the ciphertexts have zero difference
in the bits of S2) and used to retrieve the subkeys used in S-boxes 10 and 50 in
the first round. The identification of the right pair is immediate when using a
hash table, and the complexity of the attack is dominated by the encryptions of
the 24 plaintexts.

5.2 A 6-Round Differential Attack

Using the low diffusion of CTC2, the truncated differential presented above can
be used to attack 6-round CTC2.

As in the 5-round attack, we consider plaintext pairs with input difference
ΩP . First, we note that if the differential is satisfied, then the input difference
to each of the S-boxes 5,27, and 67 in round 6 has at most one active bit (since
the difference in bits 13, 14, 79, 80, 199, and 200 in the output of round 5 is zero
by the differential). As a result, the output difference in each of these S-boxes
can assume only 5 out of the 8 possible values.

Second, we observe that given a right pair, we can easily construct additional
right pairs based on it. We note that bit 3 of the plaintext does not influence
the bits of S-boxes 10 and 50 in round 1 and S-box 1 in round 2, which are
the only S-boxes used in the differential. Hence, if (P1, P2) is a right pair, then
(P1 ⊕ e3, P2 ⊕ e3) is also a right pair.

Using these two observations, we can attack 6-round CTC2 in the following
manner. We consider 64 plaintext pairs with difference ΩP , and for each pair
(P1, P2), we consider also the pair (P1 ⊕ e3, P2 ⊕ e3). For each pair of pairs, we
check whether the ciphertext differences satisfy the constraint in S-boxes 5,27,
and 67. For a random pair of pairs, the probability of passing this filtering is
((5/8)2)3 = 2−4.06, and hence four pairs of pairs are expected to remain. These
pairs are expected to contain one pair of right pairs (since the probability of the
differential is 1/64).

For each of the remaining pairs of pairs, we guess the 9 bits of the equivalent
subkeys used in S-boxes 5,27, and 67 of round 6, and check whether the difference
in bits 13, 14, 79, 80, 199, and 200 in the input of round 6 is indeed zero. Each pair
of pairs is expected to suggest one consistent subkey proposal on average for the
nine subkey bits under attack. Thus, out of the four pairs of pairs, we expect four
subkey suggestions for 9-bit information about the key. These suggestions contain

6 In a “full” structure of 64 plaintexts, there are 64 · 63/2 = 2016 possible pairs, of
which 32 satisfy the required input difference. Hence, amongst 276 pairs, we expect
32 · 276/2016 = 4.38 pairs with the required input difference.
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the correct value of the subkey bits (the one suggested by the pair of right pairs).
More key information can be obtained by attaching to the right pairs another
“companion” pair, using other input bits that do not affect the differential (e.g.,
bit 4). In addition, the attacker can gain information by analyzing the S-boxes
in round 6 in which the differential predicts the difference in a single input bit.

Hence, using two structures of 32 plaintexts each, it is possible to deduce the
equivalent of seven subkey bits for the last round’s subkey quickly and efficiently.

5.3 A Differential Attack on 7-Round CTC2

In order to mount a differential attack on a 7-round variant of the cipher, we
have to extend the 5-round truncated differential presented above to 6 rounds. A
natural way to extend the differential is to add one round in which the difference
is “fully specified”, such that the differential will consist of three constrained
rounds and three unconstrained rounds. However, we checked all the possible
differentials of this class and found that the number of output bits in which the
difference is assured to be zero is too small, and hence cannot be used to detect
the right pairs. Therefore, we use in the attack a differential consisting of four
fully specified rounds and two unconstrained rounds. The first four rounds of
the differential are:

ΩP = e30,150
S−→ e30,151 p = 2−4

LT−−→ e2
S−→ e0 p = 2−2

LT−−→ e2,123
S−→ e0,123 p = 2−4

LT−−→ e2,113,123,234
S−→ e0,111,125,236 p = 2−8

These four rounds are followed by two rounds where there is no restriction on the
development of the difference. If the differential is satisfied, then in the output
of round 6, there is zero difference in S-boxes 22 and 65, and at most one active
bit in the differences of 21 more S-boxes (in total, 92 bits are assured to have
zero difference).

Like the differential, the attack algorithm should also be modified. Since every
input bit affects some of the S-boxes used in the differential, right pairs cannot
be used to produce “companion” right pairs anymore. We compensate for that
by using the stronger filtering in the last round, along with a filtering in the first
round.

In the attack, we examine 29 = 512 structures of plaintexts, where in each
structure the input to S-boxes 10 and 50 takes all the 64 possible values, and
the rest of the bits are constant. For each structure, we decrypt the ciphertexts
through the linear transformation, and detect the pairs whose intermediate val-
ues satisfy the restrictions on the difference imposed by the differential (zero
difference in S-boxes 22 and 65, and one of the five possible differences in 21
more S-boxes).

In each structure there are 64 · 63/2 ≈ 211 pairs, 32 of which have difference
e2 after the first round. Hence, in total there are about 220 pairs, 214 of them
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may satisfy the differential in rounds 2–6. As the probability of rounds 2–6 of
the differential is 2−14, the obtained data is expected to contain about one right
pair. The probability that a wrong pair satisfies the difference in the intermediate
encryption values is

(2−3)2 ·
(

5
8

)21

= 2−6 · 2−0.678·21 = 2−20.2.

Therefore, besides the right pair, about one wrong pair is expected to remain.
At this stage, we consider the remaining pairs and check (for each pair)

whether the input difference can lead to the difference e2 after the first round.
Since only 16 of the 64 input differences satisfy this requirement, it is expected
that only the right pair remains after this step. As in the 5-round attack, the
right pair can be used to suggest two values for the 6 subkey bits used in S-boxes
11 and 51 in round 1. In addition, the pair suggests two values for the 3-bit sub-
key in each of the S-boxes in round 7, in which the input difference has exactly
one active bit.7 Hence, in total the attack reveals four bits of key information in
round 1, and between 0 and 42 bits of key information in round 7.

The data complexity of the attack is 215 chosen plaintexts, and the time
complexity is dominated by the time required for encrypting the plaintexts (the
filtering condition on the ciphertext pairs can be performed efficiently using a
hash table). The memory complexity is also small, as it is sufficient to store one
structure at a time.

To extend the attack to 8-round CTC2, one can extend the differential to a
7-round truncated differential, in which the differences are fully specified in the
first 6 rounds, and completely unrestricted in the seventh round. This results in
an attack whose data and time complexities are about 260, which is inferior to
the differential-linear attack that we present in the next section.

6 Differential-Linear Attacks on CTC2

The truncated differentials and the linear approximations presented in the previ-
ous sections can be concatenated to devise differential-linear attacks on a bigger
number of rounds. In this section we present differential-linear attacks on 7-round
and 8-round CTC2.

6.1 A Differential-Linear Attack on 7-Round CTC2

The differential-linear attack on 7-round CTC2 is based on a 6-round distin-
guisher, composed of a 5-round truncated differential and a one-round linear
approximation. The truncated differential is the same used in the 5-round dif-
ferential attack (Section 5.1), which assures that the difference in 35 bits after
7 The differential has 23 S-boxes in round 7 for which the input difference has at most

one active bit. S-boxes where all the input bits have zero difference do not suggest
key information, since in these S-boxes the output difference is zero, regardless of
the key.
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round 5 is zero. These 35 bits contain bits 50 and 184, and hence the differential
can be combined with the following one-round linear approximation:

e50,184
S−→ e48,185

LT−−→ e131 p = 1
2 − 2−3

We note that this specific linear approximation is chosen in order to have a single
active S-box in the round after the distinguisher. Since the probability of the
differential is 2−6 and the bias of the linear approximation is 2−3, the overall
bias of the differential-linear approximation is 2 ·2−6 · (2−3)2 = 2−11 (see [2,17]).
Thus, a simple 7-round attack exploiting the distinguisher requires 224 plaintext
pairs with input difference ΩP . After obtaining the ciphertexts, the attacker
guesses three bits in the equivalent last round subkey, and checks whether the
differential-linear approximation holds or not.

Like in the 5-round differential attack, the data complexity of the attack can
be reduced using structures. The attacker considers structures of 64 plaintexts,
in which the value in all the S-boxes except for S-boxes 10 and 50 is constant,
and the values in these two S-boxes assume all the 64 possible values. For each
guess of the six corresponding bits of the first subkey, the attacker can find 32
pairs in each structure satisfying the input difference of the second round of
the differential. For these pairs, the attacker can apply a 5-round differential-
linear approximation composed of the four last rounds of the differential and the
same linear approximation used before. The bias of the reduced approximation
is 2 · 2−2 · (2−3)2 = 2−7, and thus 216 pairs are sufficient for the attack. Since
each structure contains 32 pairs, the attack requires 211 structures, which are
217 chosen plaintexts.

In order to reduce the time complexity of the attack we use an observation
similar to the one presented in [3]. In the partial decryption phase of the attack,
the attacker has to decrypt only a single S-box. In this S-box, there are only
64 possible pairs of ciphertext values. Hence, instead of decrypting the same
values many times, the attacker can perform the following: First, the attacker
counts how many times each of these 64 values occurs amongst the ciphertext
pairs. Then, for each guess of the three equivalent last subkey bits, the attacker
decrypts the 64 values, and checks for each of them whether the differential-
linear approximation holds or not. Finally, the attacker combines the result of
the check with the number of occurrences of each of the 64 values to compute
the overall probability that the approximation holds, and use this probability to
choose the most biased key.

Using this strategy, the time complexity of the decryption phase is negligible
compared to the encryption of the plaintexts. The time complexity of the first
round subkey guess is 26 · 2 · 217 S-box computations, which are faster than 217

encryptions. Hence, the overall data complexity of the attack is approximately
217 encryptions.

Following [18], we can calculate the success rate of the attack to be about
81.5% (this is the probability that the right subkey is the most biased).
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6.2 A Differential-Linear Attack on 8-Round CTC2

The attack on 8-round CTC2 is based on a 7-round distinguisher, composed
of a 6-round truncated differential and a one-round linear approximation. The
truncated differential is the same used in the 7-round differential attack (Sec-
tion 5.3), which assures that the difference in 73 bits after round 6 is zero. These
bits contain bit 1, and hence the differential can be combined with the following
one-round linear approximation:

e1
S−→ e2

LT−−→ e30,151 p = 1
2 − 2−2

The probability of the differential is 2−18 and the bias of the linear approximation
is 2−2. Thus, the bias of the differential-linear approximation is 2 ·2−18 ·(2−2)2 =
2−21. A simple 8-round attack exploiting the 7-round differential-linear approx-
imation requires 245 chosen plaintexts.

This basic attack can be improved using structures exactly in the same man-
ner as in the 7-round attack. This reduces the data complexity to 237 chosen
plaintexts, while maintaining a low time complexity dominated by encrypting
the plaintexts.

Following [18], we can calculate the success rate of the attack to be about
61.8% (this is the probability that the right subkey is the most biased, with
probability 69.5% the right key is amongst the two most biased keys, etc.).

7 Summary and Conclusions

In this paper we have presented several attacks on CTC2. We have showed that
due to its slow diffusion, CTC2 is susceptible to standard cryptanalytic attacks.
In Table 1 we summarize the various attacks, and their complexities.

We note that our attacks rely very strongly on the very slow diffusion of
the cipher. The slow diffusion, as our results exposed, may be the reason for
the success of the algebraic attacks on CTC2. While this does not mean that

Table 1. Summary of the Complexities of Our Attacks on CTC2

Attack Rounds Complexity
Data Time

Meet in the middle 4 4 4

Differential 5 24 24
Differential 6 64 64
Differential 7 215 215

Differential-Linear 7 217 217

Differential-Linear 8 237 237

Data complexity is given in chosen plaintexts.
Time complexity is given in encryption units.



238 O. Dunkelman and N. Keller

algebraic attacks are inferior to standard attacks, it does re-open the issue of
finding an example where algebraic attacks are better than standard and well
understood cryptanalytic techniques.

When we compare our results to the ones in [10], we encounter some similar-
ities. In [10], a 6-round attack with data complexity of 4 chosen plaintexts and
time complexity of about 2253 encryptions is presented. Without discussing the
methodology which was used for the time complexity estimations of [10], we note
that by employing the meet-in-the-middle attack presented in Section 3.1, an at-
tacker which is allowed only 4 chosen plaintexts can attack 6-round CTC2 with
an expected speed-up of about 66%. In other words, a basic meet-in-the-middle
attack, which probably can be further optimized (e.g., there are key considera-
tions which may be useful for improving the attack) achieves a 66% speed-up,
to be compared with the 75% speed-up gained in [10].

If only meet-in-the-middle attacks given 4 chosen plaintexts are taken into
consideration, it seems that 4-round CTC2 can be easily broken, while 6-round
CTC2 requires an exponential time (equivalent to about 2253 trial encryptions).
Even though time estimates for algebraic attacks on 4-round CTC2 are not given,
it would be surprising if such attacks require time complexity which is of the
order of magnitude of exhaustive key search. Hence, it seems that the strength of
the algebraic technique in attacking 4-round or 6-round CTC2 is approximately
equivalent to the strength of the meet-in-the-middle technique.

This leaves the issue of attacking 5-round CTC2 as a challenge for the al-
gebraic technique. We believe that given 4 chosen plaintexts, the best attack
on 5-round CTC2 using a simple meet-in-the-middle technique, is the variant
of exhaustive search presented in Section 3.1. If algebraic techniques can beat
these results by an order of magnitude, this would look as a proof of their merits
(assuming of course, that no one finds a better attack using easy to analyze
attack methods).
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Abstract. We show that a recently proposed construction by Rosen and
Segev can be used for obtaining the first public key encryption scheme
based on the McEliece assumptions which is secure against adaptive
chosen ciphertext attacks in the standard model.

1 Introduction

Indistinguishability of messages under adaptive chosen ciphertext attacks is the
strongest known notion of security for public key encryption schemes (PKE).
Many computational assumptions have been used in the literature for obtain-
ing cryptosystems meeting such a strong security requirements. Given one-way
trapdoor permutations, we know how to obtain CCA2 security from any seman-
tically secure public key cryptosystem [14,20,12]. Efficient constructions are also
known based on number-theoretic assumptions [6] or on identity based encryp-
tion schemes [3]. Obtaining a CCA2 secure cryptosystem (even an inefficient
one) based on the McEliece assumptions in the standard model has been an
open problem in this area for quite a while.

Recently, Rosen and Segev proposed an elegant and simple new computational
assumption for obtaining CCA2 secure PKEs: correlated products [19]. They
provided constructions of correlated products based on the existence of certain
lossy trapdoor functions [16] which in turn can be based on the decisional Diffie-
Hellman problem and on Paillier’s decisional residuosity problem [16].

In this paper, we show that the ideas of Rosen and Segev can also be applied
for obtaining the first construction of a PKE built upon the McEliece assump-
tions. Based on the definition of correlated products [19], we define a new kind
of PKE called k-repetition CPA secure cryptosystem and show that the con-
struction proposed in [19] directly translates to this new scenario. We then show
that a randomized version of the McEliece cryptosystem [15] is k-repetition CPA
secure and obtain a CCA2 secure scheme in the standard model. The resulting
cryptosystem enciphers many bits as opposed to the single-bit PKE obtained in
[19]. We expand the public and private keys and the ciphertext by a factor of k
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when compared to the original McEliece PKE. Additionally, our result implies
a new construction of correlated products based on the McEliece assumptions.

In a concurrent and independent work [9], Goldwasser and Vaikuntanathan
proposed a new CCA-secure public-key encryption scheme based on lattices using
the construction by Rosen and Segev. Their scheme assumed that the problem
of learning with errors (LWE) is hard [18].

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while |S| represents the cardinality of a
set S. If n ∈ N then 1n denotes the string of n ones. s � S denotes the operation
of choosing an element s of a set S uniformly at random. w � A(x, y, . . .)
represents the act of running the algorithm A with inputs x, y, . . . and producing
output w. We write w � AO(x, y, . . .) for representing an algorithm A having
access to an oracle O. We denote by Pr[E] the probability that the event E
occurs. If a and b are two strings of bits or two matrices, we denote by a|b their
concatenation. The transpose of a matrix M is MT . If a and b are two strings of
bits, we denote by 〈a, b〉 their dot product modulo 2 and by a⊕ b their bitwise
XOR. Un is an oracle that returns a random element of {0, 1}n.

2.2 Public-Key Encryption Schemes

A Public Key Encryption Scheme (PKE) is defined as follows:

Definition 1. (Public-Key Encryption). A public-key encryption scheme is a
triplet of algorithms (Gen, Enc, Dec) such that:

– Gen is a probabilistic polynomial-time key generation algorithm which takes
as input a security parameter 1n and outputs a public key pk and a secret key
sk. The public key specifies the message spaceM and the ciphertext space C.

– Enc is a (possibly) probabilistic polynomial-time encryption algorithm which
receives as input a public key pk and a message m ∈ M, and outputs a
ciphertext c ∈ C.

– Dec is a deterministic polynomial-time decryption algorithm which takes as
input a secret key sk and a ciphertext c, and outputs either a message m ∈M
or an error symbol ⊥.

– (Soundness) For any pair of public and private keys generated by Gen and
any message m ∈ M it holds that Dec(sk,Enc(pk,m)) = m with overwhelming
probability over the randomness used by Gen and Enc.

Below we define indistinguishability against chosen-plaintext attacks (IND-CPA)
[8] and against adaptive chosen-ciphertext attacks (IND-CCA2) [17]. Our game
definition follows the approach of [10].
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Definition 2. (IND-CPA security). To a two-stage adversary A = (A1,A2)
against PKE we associate the following experiment Expcpa

PKE,A(n):

(pk, sk) � Gen(1n)
(m0,m1, state) � A1(pk) s.t. |m0| = |m1|
b � {0, 1}
c∗ � Enc(pk,mb)
b′ � A2(c∗, state)
If b = b′ return 1 else return 0

We define the advantage of A in the experiment as

Advcpa
PKE,A(n) = |Pr[Expcpa

PKE,A(n) = 1]− 1
2 |

We say that PKE is indistinguishable against chosen-plaintext attacks (IND-
CPA) if for all probabilistic polynomial time (PPT) adversaries A = (A1,A2)
the advantage of A in the experiment is a negligible function of n.

Definition 3. (IND-CCA2 security). To a two-stage adversary A = (A1,A2)
against PKE we associate the following experiment Expcca2

PKE,A(n):

(pk, sk) � Gen(1n)
(m0,m1, state) � ADec(sk,·)

1 (pk) s.t. |m0| = |m1|
b � {0, 1}
c∗ � Enc(pk,mb)
b′ � ADec(sk,·)

2 (c∗, state)
If b = b′ return 1 else return 0

The adversary A2 is not allowed to query Dec(sk, · ) with c∗. We define the
advantage of A in the experiment as

Advcca2
PKE,A(n) = |Pr[Expcca2

PKE,A(n) = 1]− 1
2 |

We say that PKE is indistinguishable against adaptive chosen-ciphertext at-
tacks (IND-CCA2) if for all probabilistic polynomial time (PPT) adversaries
A = (A1,A2) that makes a polynomial number of oracle queries the advantage
of A in the experiment is a negligible function of n.

2.3 McEliece Cryptosystem

In this Section we define the McEliece cryptosystem [13]. We closely follow [15].
The McEliece PKE consists of a triplet of probabilistic algorithms (GenMcE,
EncMcE,DecMcE) such that:

– The probabilistic polynomial-time key generation algorithm, GenMcE, works
as follows:
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1. Generate a l×n generator matrix G of a Goppa code, where we assume
that there is an efficient error-correction algorithm Correct which can
always correct up to t errors.

2. Generate a l × l random non-singular matrix S.
3. Generate a n× n random permutation matrix T.
4. Set P = SGT,M = {0, 1}l, C = {0, 1}n.
5. Output pk = (P, t,M, C) and sk = (S,G,T).

– The probabilistic polynomial-time encryption algorithm, EncMcE, takes the
public-key pk and a plaintext m ∈ {0, 1}l as input and outputs a ciphertext
c = mP⊕ e, where e ∈ {0, 1}n is a random vector of Hamming weight t.

– The deterministic polynomial-time decryption algorithm, DecMcE, works as
follows:
1. Compute cT−1 = (mS)G⊕eT−1, where T−1 denotes the inverse matrix

of T.
2. Compute mS = Correct(cT−1).
3. Output m = (mS)S−1.

In our work we use a slightly modified version of the McEliece PKC. Instead
of creating an error vector by choosing it randomly from the set of vectors with
Hamming weight t, we generate e by choosing each of its bits according to the
Bernoulli distribution Bθ with parameter θ = t

n − ε for some ε > 0. Clearly, due
to the law of large numbers, the resulting error vector should be within the error
capabilities of the code.

2.4 McEliece Assumptions

In this subsection, we briefly introduce and discuss the McEliece assumptions.
We assume that there is no efficient algorithm which can distinguish the

scrambled (according to the description in the previous subsection) generating
matrix of the Goppa code P and a random matrix of the same size. The best
algorithm attacking this assumption is by Courtois et al. [5] and it is based on
the support splitting algorithm [21].

Assumption 4. There is no PPT algorithm which can distinguish the public-
key matrix P of the McEliece cryptosystem from a random matrix of the same
size with non-negligible probability.

We note that this assumption was utilized in [5] to construct a digital signature
scheme.

We also assume that the Syndrome Decoding Problem is hard. This problem
is known to be NP-complete [1], and all currently known algorithms to solve this
problem are exponential. The best algorithms were presented by Canteaut and
Chabaud [4] and recently by Bernstein et al. [2].

Assumption 5. The Syndrome Decoding Problem problem is hard for every
PPT algorithm.
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This problem is equivalent to the problem of learning parity with noise (LPN).
Below we give the definition of LPN problem following the description of [15].

Definition 6. (LPN problem) Let r, a be binary strings of length l. We consider
the Bernoulli distribution Bθ with parameter θ ∈ (0, 1

2 ). Let Qr,θ be the following
distribution:

{(a, 〈r, a〉 ⊕ v)|a � {0, 1}l, v � Bθ}

For an adversary A trying to discover the random r, we define its advantage
as:

AdvLPNθ,A(l) = Pr[AQr,θ = r|r � {0, 1}l]

The LPNθ problem with parameter θ is hard if the advantage of all PPT ad-
versaries A that makes a polynomial number of oracle queries is negligible.

2.5 Admissible PKE

Below we define admissible PKEs which are known to imply IND-CPA secu-
rity [15]. In the following, Enc(pk,m, r) denotes a public key encryption scheme
enciphering a message m with a public key pk and randomness r.

Definition 7. (Admissible PKE [15]) A public-key encryption scheme PKE =
(Gen,Enc,Dec) with message space M and random space R is called admissible
if there is a pair of deterministic polynomial-time algorithms Enc1 and Enc2
satisfying the following properties:

– Dividability: Enc1 takes as input the public key pk and r ∈ R, and outputs a
p(n) bit-string. Enc2 takes as input the public key pk and m ∈M, and outputs
a p(n) bit-string. Here p is some polynomial in n. Then for any pk generated
by Gen, r ∈ R and m ∈M, Enc1(pk, r) ⊕ Enc2(pk,m) = Enc(pk,m, r).

– Pseudorandomness: Consider a probabilistic polynomial time adversary A
against PKE, we associate with it the following experiment Expind

PKE,A(n):

(pk, sk) � Gen(1n)
s0 � Up(n)
r ∈ R
s1 � Enc1(pk, r)
b � {0, 1}
b′ � A(pk, sb)
If b = b′ return 1 else return 0

We define the advantage of A in the experiment as

Advind
PKE,A(n) = |Pr[Expind

PKE,A(n) = 1]− 1
2 |

For all probabilist polynomial time (PPT) adversaries A, the advantage of
A in the experiment must be a negligible function of n.
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2.6 Signature Schemes

We explain signature schemes (SS) and define one-time strong unforgeability.

Definition 8. (Signature Scheme). A signature scheme is a triplet of algorithms
(Gen, Sign, Ver) such that:

– Gen is a probabilistic polynomial-time key generation algorithm which takes
as input a security parameter 1n and outputs a verification key vk and a
signing key dsk. The verification key specifies the message space M and the
signature space S.

– Sign is a (possibly) probabilistic polynomial-time signing algorithm which re-
ceives as input a signing key dsk and a message m ∈ M, and outputs a
signature σ ∈ S.

– Ver is a deterministic polynomial-time verification algorithm which takes as
input a verification key vk, a message m ∈ M and a signature σ ∈ S, and
outputs a bit indicating whether σ is a valid signature for m or not (i.e., the
algorithm outputs 1 if it is a valid signature and outputs 0 otherwise).

– For any pair of signing and verification keys generated by Gen and any mes-
sage m ∈ M it holds that Ver(vk,m, Sign(dsk,m)) = 1 with overwhelming
probability over the randomness used by Gen and Sign.

Definition 9. (One-Time Strong Unforgeability). To a two-stage adversary A =
(A1,A2) against SS we associate the following experiment Expotsu

SS,A(n):

(vk, dsk) � Gen(1n)
(m, state) � A1(vk)
σ � Sign(dsk,m)
(m∗, σ∗) � A2(m, σ, state)
If Ver(vk,m∗, σ∗) = 1 and (m∗, σ∗) �= (m, σ) return 1, else return 0

We say that a signature scheme SS is one-time strongly unforgeable if for all
probabilist polynomial time (PPT) adversaries A = (A1,A2) the probability that
Expotsu

SS,A(n) outputs 1 is a negligible function of n.

3 k-Repetition PKE

3.1 Definitions

We define a k-repetition Public-Key Encryption.

Definition 10. (k-repetition Public-Key Encryption). For a PKE (Gen, Enc,
Dec), we define the k-repetition public-key encryption scheme (PKEk) as the
triplet of algorithms (Genk, Enck, Deck) such that:

– Genk is a probabilistic polynomial-time key generation algorithm which takes
as input a security parameter 1n and calls the PKE’s key generation algo-
rithm k times obtaining the public keys (pk1, . . . , pkk) and the secret keys
(sk1, . . . , skk). Genk sets the public key as pk = (pk1, . . . , pkk) and the secret
key as sk = (sk1, . . . , skk).
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– Enck is a (possibly) probabilistic polynomial-time encryption algorithm which
receives as input a public key pk = (pk1, . . . , pkk) and a message m ∈ M,
and outputs a ciphertext c = (c1, . . . , ck) = (Enc(pk1,m), . . . ,Enc(pkk,m)).

– Deck is a deterministic polynomial-time decryption algorithm which takes as
input a secret key sk = (sk1, . . . , skk) and a ciphertext c = (c1, . . . , ck). It
outputs a message m if Dec(sk1, c1), . . . ,Dec(skk, ck) are all equal to some
m ∈M. Otherwise, it outputs an error symbol ⊥.

– (Soundness) For any k pairs of public and private keys generated by Genk

and any message m ∈M it holds that Deck(sk,Enck(pk,m)) = m with over-
whelming probability over the randomness used by Genk and Enck.

We also define security properties that the k-repetition Public-Key Encryption
scheme used in the next sections should meet.

Definition 11. (Security under uniform k-repetition of IND-CPA schemes).
We say that PKEk (built from an IND-CPA secure scheme PKE) is secure under
uniform k-repetition if PKEk is IND-CPA secure.

Definition 12. (Verification under uniform k-repetition of IND-CPA schemes).
We say that PKEk is verifiable under uniform k-repetition if given a ciphertext
c ∈ C, the public key pk = (pk1, . . . , pkk) and any ski for i ∈ {1, . . . , k}, it is
possible to verify if c is a valid ciphertext.

3.2 IND-CCA2 Security from CPA Secure k-Repetition PKE

In this subsection we describe the IND-CCA2 secure public key encryption
scheme (PKEcca2) and prove its security. We assume the existence of an one-
time strongly unforgeable signature scheme and of a PKEk that is secure and
verifiable under uniform k-repetition.

Key Generation: Gencca2 is a probabilistic polynomial-time key generation
algorithm which takes as input a security parameter 1n. Gencca2 does as
follows:
1. Calls the PKE’s key generation algorithm 2k times obtaining the public

keys (pk0
1, pk1

1, . . . , pk0
k, pk1

k) and the secret keys (sk0
1, sk

1
1, . . . , sk

0
k, sk

1
k).

2. Executes the key generation algorithm of the signature scheme obtaining
a signing key dsk∗ and a verification key vk∗. Denote by vk∗i the i-bit of
vk∗.

3. Sets the public key as pk = (pk0
1, pk1

1, . . . , pk0
k, pk1

k) and the secret key as
sk = (vk∗, sk1−vk∗1

1 , . . . , sk
1−vk∗k
k ).

Encryption: Enccca2 is a (possibly) probabilistic polynomial-time encryption
algorithm which receives as input the public key pk = (pk0

1, pk1
1, . . . , pk0

k, pk1
k)

and a message m ∈M and proceeds as follows:
1. Executes the key generation algorithm of the signature scheme obtaining

a signing key dsk and a verification key vk. Denote by vki the i-bit of vk.
2. Computes ci = Enc(pkvki

i ,m) for i ∈ {1, . . . , k}.
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3. Computes the signature σ = Sign(dsk, (c1, . . . , ck)).
4. Outputs the ciphertext c = (c1, . . . , ck, vk, σ).

Decryption: Deccca2 is a deterministic polynomial-time decryption algorithm
which takes as input a secret key sk = (vk∗, sk1−vk∗1

1 , . . . , sk
1−vk∗k
k ) and a ci-

phertext c = (c1, . . . , ck, vk, σ) and proceeds as follows:
1. If vk = vk∗ or Ver(vk, (c1, . . . , ck), σ) = 0, it outputs ⊥ and halts.
2. For some i ∈ {1, . . . , k} suchthatvki �= vk∗i , it computesm = Dec(skvki , ci).
3. Verifies if ci = Enc(pkvki

i ,m) for all i ∈ {1, . . . , k}. If the condition is
satisfied, it outputs m. Otherwise, it outputs ⊥.

The probability that Deccca2(sk,Enccca2(pk,m)) �= m is the same as the prob-
ability that vk = vk∗, but this probability is negligible since the signature scheme
is one-time strongly unforgeable.

As in [19], we can apply a universal one-way hash function to the verification
keys (as in [7]) and use k = nε for a constant 0 < ε < 1. For ease of presentation,
we do not apply this method in our scheme description.

Theorem 1. Given that SS is a one-time strongly unforgeable signature scheme
and that PKEk is secure and verifiable under uniform k-repetition, the public key
encryption scheme PKEcca2 is IND-CCA2 secure.

Proof. In this proof we closely follow [19]. Denote byA the IND-CCA2 adversary.
Let Forge be the event that for some decryption query made by A we have that
Ver(vk, (c1, . . . , ck), σ) = 1 and vk = vk∗. The theorem follow from the two
lemmas below.

Lemma 1. Pr[Forge] is negligible.

Proof. Assume that for a PPT adversaryA against PKEcca2 the forge probability
(Pr[Forge]) is non-negligible, then we construct an adversary A′ that forges a
signature with the same probability. A′ simulates the IND-CCA2 interaction for
A as follows:

Key Generation: A′ invokes the key generation algorithm of the signature
scheme and obtains vk∗. It calls the PKE’s key generation algorithm 2k
times obtaining the public keys (pk0

1, pk1
1, . . . , pk0

k, pk1
k) and the secret keys

(sk0
1, sk

1
1, . . . , sk

0
k, sk

1
k) and uses vk∗ for forming the secret key of PKEcca2. It

sends the public key to A.
Decryption Queries: Whenever A makes a decryption query, A′ proceeds as

follows:
1. If vk = vk∗ and Ver(vk, (c1, . . . , ck), σ) = 1, A′ outputs ((c1, . . . , ck), σ)

as the forgery and halts.
2. Otherwise, A′ decrypts the ciphertext using the procedures of PKEcca2.

Challenging Query: Whenever A makes the challenging query with two mes-
sages m0,m1 ∈ M such that |m0| = |m1|, A′ proceeds as follows:
1. Chooses randomly b ∈ {0, 1}.
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2. Encrypts the message mb using the procedures of PKEcca2. This is possi-
ble becauseA′ can ask the signature oracle to sign one message, so it asks
the oracle to sign the value (c1, . . . , ck) obtained during the encryption
process.

As long as the event Forge did not occur, the simulation is perfect, so the
probability that A′ breaks the one-time strongly unforgeable signature scheme
is exactly Pr[Forge]. Since the signature scheme is strongly unforgeable by as-
sumption, Pr[Forge] is negligible for all PPT adversaries against PKEcca2.

Lemma 2. Given that Forge did not occur, the advantage of a PPT adversary
A against PKEcca2,

|Pr[Forge ∧ Expcca2
PKEcca2,A(n) = 1]- 1

2 |,
is negligible.

Proof. Assume that for some PPT adversary A against PKEcca2 we have that
|Pr[Expcca2

PKEcca2,A(n) = 1∧Forge]- 1
2 | is non-negligible, then we construct an adver-

sary A′ that breaks the IND-CPA security of PKEk. A′ simulates the IND-CCA2
interaction for A as follows:

Key Generation: A′ receives as input the public key (pk1, . . . , pkk) of PKEk.
A′ proceeds as follows:
1. Runs the key generation algorithm of the signature scheme and obtain

the verification key vk∗ and the signing key dsk∗.
2. Sets pk

vk∗i
i = pki for i ∈ {1, . . . , k}.

3. Runs PKE’s key generation algorithm k times obtaining the public keys
(pk

1−vk∗1
1 , . . . , pk

1−vk∗k
k ) and the secret keys (sk1−vk∗1

1 , . . . , sk
1−vk∗k
k ).

4. Sets the public key as pk = (pk0
1, pk1

1, . . . , pk0
k, pk1

k) and the secret key as
sk = (vk∗, sk1−vk∗1

1 , . . . , sk
1−vk∗k
k ).

5. Sends the public key to A.
Decryption Queries: Whenever A makes a decryption query, A′ proceeds as

follows:
1. If Forge occurs, then A′ halts.
2. Otherwise, A′ decrypts the ciphertext using the procedures of PKEcca2.

Challenging Query: When A makes the challenging query with two messages
m0,m1 ∈ M such that |m0| = |m1|, A′ proceeds as follows:
1. Sends m0 and m1 to A′ challenging oracle and obtain as response (c∗1, . . . ,

c∗k).
2. Signs (c∗1, . . . , c

∗
k) using dsk∗.

3. Outputs the challenge ciphertext c∗ = (c∗1, . . . , c
∗
k, vk

∗, σ∗).
Output: When A outputs b, A′ also outputs b.

As long as the event Forge does not occur, the advantage of A′ in breaking the
IND-CPA-security of PKEk is the same as the advantage of A in breaking the
IND-CCA2-security of PKEcca2. Since PKEk is IND-CPA-secure by assumption,
we have that PKEcca2 is IND-CCA2-secure.
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4 The Randomized McEliece Scheme

In [15] it was proved that the cryptosystem obtained by changing the encryp-
tion algorithm of the McEliece cryptosystem to encrypt r|m (where r is random
padding) instead of just encrypting the message m, the so called Randomized
McEliece Cryptosystem, is IND-CPA secure.

We modify the encryption algorithm of the Randomized McEliece Cryptosys-
tem as follows. Instead of choosing the error vector randomly from the bit strings
of length n and Hamming weight t, we choose each bit of the error vector ac-
cording to the Bernoulli distribution Bθ with parameter θ = t

n − ε for some
ε > 0.

By the law of large numbers, for large enough n the Hamming weight of error
vector e generated by this procedure will be between t − 2nε and t with over-
whelming probability. So this cryptosystem meets the soundness condition. The
IND-CPA security follows from assumptions 4 and 5, since ε can be arbitrarily
small (given that n is large enough).

4.1 Security of the k-Repetition Randomized McEliece

We prove that the modified Randomized McEliece is secure and verifiable under
k-repetition, i.e., we prove that the cryptosystem formed by encrypting k times
r|m with different public and private keys (PKEk,McE) is sound, IND-CPA secure
and that it allows the verification of a ciphertext validity given the public keys
and one secret key.

By the soundness of each instance, the probability that in one instance i ∈
{1, . . . , k} a correctly generated ciphertext is incorrectly decoded is negligible.
Since k is polynomial, it follows by the union bound that the probability that a
correctly generated ciphertext of PKEk,McE is incorrectly decoded is also negli-
gible. So PKEk,McE meets the soundness requirement.

In order to prove that the cryptosystem PKEk,McE is admissible (and so IND-
CPA secure [15]), we prove that it meets the pseudorandom property (the divid-
ability follows trivially). Denote by R1, . . . ,Rk random matrices of size l × n,
by P1, . . . ,Pk the public key matrices of the McEliece cryptosystem and by
e1, . . . , ek the error vectors. Define l1 = |r| and l2 = |m|. Let Ri,1 and Ri,2 be
the l1 × n and l2 × n sub-matrices of Ri such that RT

i = RT
i,1|RT

i,2. Define Pi,1
and Pi,2 similarly. We need a lemma from [11]:

Lemma 3. Say there exists an algorithm A making q oracle queries, running
in time t, and such that

|Pr[AQr,θ = 1|r � {0, 1}l1]− Pr[AUl1+1 = 1]| ≥ δ

Then there exists an adversary A′ making q′ = O(qδ−2logl1) oracle queries,
running in time t′ = O(tl1δ−2logl1), and such that

AdvLPNθ,A′ ≥ δ
4



250 R. Dowsley, J. Müller-Quade, and A.C.A. Nascimento

Setting q = kn in the lemma, we have that (rR1,1 ⊕ e1)| . . . |(rRk,1 ⊕ ek) is
pseudorandom if the LPNθ is hard.

Now we prove that substituting the random matrices for the public key ma-
trices of the McEliece cryptosystem does not alter the pseudorandomness of the
output (rP1,1 ⊕ e1)| . . . |(rPk,1 ⊕ ek).

Lemma 4. (rP1,1 ⊕ e1)| . . . |(rPk,1 ⊕ ek) is pseudorandom.

Proof. Suppose that some PPT adversary A has non-negligible advantage in
distinguishing (rR1,1 ⊕ e1)| . . . |(rRk,1 ⊕ ek) from (rP1,1 ⊕ e1)| . . . |(rPk,1 ⊕ ek).
Denote them by H0 and Hk respectively. For i ∈ {1, . . . , k − 1}, let Hi be

(rP1,1 ⊕ e1)| . . . |(rPi,1 ⊕ ei)|(rRi+1,1 ⊕ ei+1)| . . . |(rRk,1 ⊕ ek).

Since k is polynomial, by the hybrid argument it is possible to build an ad-
versary A′ that uses A as a black-box and has a non-negligible advantage in
distinguishing Hi−1 from Hi for some i ∈ {1, . . . , k}, but this would imply that
A′ has a non-negligible advantage in distinguishing the public-key matrix P of
the McEliece cryptosystem from a random matrix of the same size. By assump-
tion 4, there exists no such A′ and so there cannot exist an adversary A with
non-negligible advantage in distinguishing H0 from Hk.

Theorem 2. PKEk,McE is IND-CPA secure.

Proof. From the lemmas 3 and 4 we have that (rP1,1 ⊕ e1)| . . . |(rPk,1 ⊕ ek) is
pseudorandom. So the cryptosystem is admissible. The IND-CPA security of
the cryptosystem follows from the fact that an admissible cryptosystem is also
IND-CPA secure [15].

Theorem 3. PKEk,McE is verifiable under k-repetition.

Proof. To verify if a ciphertext (c1, . . . , ck) is valid given the public keys and
any secret key of the McEliece cryptosystem (Sj ,Gj,Tj), we simply decrypt cj

obtaining r|m and for all i ∈ {1, . . . , k} compute c′i = (r|m)Pi and verify if the
hamming distance between c′i and ci is less than or equal to t .

Theorem 4. It is possible to construct an IND-CCA2 secure public key encryp-
tion scheme based on McEliece assumptions.

Proof. Follows directly from theorems 1, 2 and 3.
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Abstract. We propose and analyze a multivariate encryption scheme
that uses odd characteristic and an embedding in its construction. This
system has a very simple core map F (X) = X2, allowing for efficient
decryption. We also discuss ways to make this decryption faster with
specific parameter choices. We give heuristic arguments along with ex-
perimental data to show that this scheme resists all known attacks.

1 Introduction

Multivariate public-key cryptosystems (MPKCs) are considered viable options
for post-quantum cryptography. This is because they are based on the problem of
solving a system of multivariate polynomial equations, a problem which seems
just as hard for a quantum computer to solve as any other computer [12,20].
There are a few MPKCs that are believed secure and practical. We propose and
analyze a new encryption scheme that is both efficient and secure.

One tool used in several systems is the “big field” idea. While the public keys
of MPKCs are polynomial maps kn → kn for some finite field k, some are con-
structed using maps over a “big field” K ∼= kn, using vector space isomorphisms
to go back and forth between the spaces. This approach is a two-edged sword in
the sense that the field structure of K can make decryption easier but can also
be utilized by attackers.

Until recently, the systems based on the “big field” idea (such as the original
MPKC C∗ proposed by Matsumoto and Imai, HFE proposed by Patarin, and
their many variants) had other commonalities. All used characteristic 2 fields,
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often k = F2, and the collection of plaintexts comprised all of K. Both of these
conventions have recently been called into question.

Odd-characteristic MPKCs have not been popular, presumably because char-
acteristic 2 is so fast and easy to implement. However, it now appears that even
characteristic has a major drawback. The field equations x2

i − xi = 0 allow
algebraic attacks to be much more successful, as will be discussed below. Re-
cent work shows that odd-characteristic systems can be much simpler than their
even-characteristic counterparts while still evading algebraic attacks [2,6].

As for using all of K, the idea of using a “projection” or embedding is not
new but has not held significant interest until recently. By using a K larger
than kn, there is hope that the field structure can still be helpful but no longer
troublesome. Our data, and that of others, suggests that this is in fact a good
idea.

The new system that we propose uses both of these ideas and comes to the
surprising conclusion that under specific circumstances, a variant of the original
Matsumoto-Imai system (which has been broken for more than 10 years) can be
viable. The main idea was also proposed by Patarin [20], but he dismissed it.
Also, at the time Patarin’s system was published, the powerful algebraic attack
tools F4 and F5 were not yet invented so he did not have to consider them.
The Square system we will describe avoids Patarin’s original attack and resists
algebraic attacks as well.

This paper is organized as follows. In Section 2, we discuss relevant back-
ground material. In Section 3 we describe the new system Square. In Section 4
we analyze the effectiveness of known attacks. In Section 5 we give our param-
eter suggestions, as well as discuss how the system can be made very fast (see
Table 1, [8]). We conclude the paper in Section 6.

Table 1. Speed of Square instances compared to other systems on a Core 2 Duo 2.4GHz

Scheme q n l PubKey PrvKey Encr Decr
Square-42 31 42 3 28.4 kB 1350 B 9.4 μs 9.6 μs
Square-51 31 51 3 49.6 kB 1944 B 13.6 μs 14.4 μs

NTRU 587 787 n/a 1.5 kB 1854 B 149.2 μs 251.5 μs
McEliece n/a n/a n/a 79.5 kB 137282 B 29.7 μs 444.1 μs

2 MPKCs and Relevant Attacks

2.1 C∗ and HFE

Among first MPKCs was an encryption scheme C∗ [16]. This system has since
been broken [17], but has inspired many new encryption and signature schemes.
One of these is HFE (Hidden Field Equations) [18], which can be seen as a
generalization of the Matsumoto-Imai idea. Attacks on either of these systems
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K
F �� K

φ

��
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L1 ��

Public Key P

��kn ��

φ−1

��

kn
L2 �� kn

Fig. 1. The MI and HFE systems

or their variants could be relevant to the new system, so we will describe both
HFE and C∗ here.

Refer to Figure 1. In either system, the plaintext is a vector of length n over
k, a field of q elements where q is a power of 2. Since there is a field K of the
same size as kn, we can utilize a nonlinear core map F : K → K. In fact, the
public key is P = L2 ◦ φ ◦ F ◦ φ−1 ◦ L1, where L1 and L2 are linear maps and
φ is a vector space isomorphism K → kn. P is a collection of n polynomials
pi(x1, . . . , xn) in n variables. The decomposition, in particular L1 and L2, is the
private key.

In the case of C∗, F (X) = Xqθ+1 for an appropriate θ. In the case of HFE,
for some D

F (X) =
∑

0≤i<j<n
qi+qj≤D

aijX
qi+qj

+
∑

0≤i<n
qi≤D

biX
qi

+ c. (1)

2.2 Linearization Equations Attack

In the original attack on C∗, Patarin noticed that if Y = Xqθ+1, then XY qθ −
Xq2θ

Y = 0 [17]. This equation forces plaintext-ciphertext pairs from C∗ systems
to satisfy linearization equations

n∑
i,j=1

aijxiyj +
n∑

j=1

bjxj +
n∑

j=1

cjyj + d = 0,

where (y1, . . . , yn) = P (x1, . . . , xn). Such equations are extremely useful for an
attacker because given a ciphertext, the linearization equations yield linear equa-
tions satisfied by the plaintext. Also, linearization equations can be found easily
from the public key, so an attacker has access to them.

Diene et al showed that the space of linearization equations satisfied by a
C∗ public key has dimension at least n in most cases [4]. Furthermore Patarin
showed that for a given nonzero ciphertext, the space of linear equations satisfied
by the correspoding plaintext is at least n− gcd(n, θ) [17].

Note that in the original C∗ construction, θ = 0 cannot be chosen since X2

is a linear map when q = 2.



Square, a New Multivariate Encryption Scheme 255

2.3 Algebraic Attack

Algebraic attacks can be employed against any MPKC. Suppose that some-
one, who does not know the private key, wants to recover the plaintext from
a ciphertext (ỹ1, . . . , ỹn) ∈ kn. This attacker has access only to the public key
(p1, p2, . . . , pn) : kn → kn. The most straightforward way to attack is to solve
the system of equations

p1(x1, . . . , xn)− ỹ1 = 0
p2(x1, . . . , xn)− ỹ2 = 0

...
pn(x1, . . . , xn)− ỹn = 0.

(2)

Solving these equations directly, without the use of the internal structure of
the system, is known as the algebraic attack. Currently the most efficient al-
gebraic attacks are the Gröbner basis algorithms F4 [9] and F5 [10]. Another
algorithm called XL has also been widely discussed but F4 is seen to be more ef-
ficient [1], so we focused our energy on studying algebraic attacks via F4. Among
the best implementations of these algorithms is the F4 function of MAGMA [15],
which represents the state of the art in polynomial solving technology.

Gröbner basis attacks are very fast against the C∗ scheme, and also quite
effective against HFE as well [11].

2.4 SFlash-Style Attack

SFlash is a C∗− signature scheme. The system is constructed in the same way as
C∗, except that some number r of the public key polynomials are not published
[19]. SFlash was broken using properties of its differential. Recall that for a
function f the differential is

Df(a, x) = f(a + x)− f(a)− f(x) + f(0).

In the case of the C∗ core map F (X) = Xqθ+1 for ξ, A, X ∈ K,

DF (ξA,X) + DF (A, ξX) = (ξ + ξqθ

)DF (A,X). (3)

This equation leads to conditions which allow us to identify which matrices
in Mn×n(k) correspond to multiplications in K. These matrices Nξ have the
property that for the C∗ public key P ,

P (Nξ(x1, . . . , xn)) = M(P (x1, . . . , xn))

for some linear map M . In other words, the Nξ mix up the public key polynomi-
als, allowing Dubois et al to complete the collection of public key polynomials
thus breaking the system [7].
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2.5 Kipnis-Shamir Style Attacks

The Kipnis-Shamir attack against HFE exploits the “big field” structure. It uses
the following facts, all found in [14]:

– LetFqn be thefieldof qn elements. IfG ∈ Fqn [X ] such that the q-Hamingweight
of all monomials is 2 (ie, G(X) =

∑
aijX

qi+qj

), then ∃G ∈ Mn×n(Fqn) such
that

G(X) =
(
X Xq · · · Xqn−1

)
G

⎛⎜⎜⎜⎝
X
Xq

...
Xqn−1

⎞⎟⎟⎟⎠ .

– If G is such a matrix for G, S is a linear map Fqn → Fqn , and F = S ◦ G,
then

F =
n∑

j=0

sjG∗j ,

where the sj are the coefficients of S and the G∗j are obtained from G via
permutations and Frobenius maps (x "→ xqj

for 0 ≤ j ≤ n− 1).
– If G is such a matrix for G, S is a linear map Fqn → Fqn , and F = G ◦ S,

then
F = WGWT ,

where W is obtained from the coefficients of S.

Kipnis and Shamir noted that in the case of HFE, by “lifting” the public key
to an extension L ∼= Fqn via some isomorphism ψ : L→ kn and considering the
quadratic part, we can find corresponding matrices whose rank must be no more
than D. Though L is not necessarily the K used to construct the public key, we
still have a decomposition P = ψ ◦S ◦F ◦T ◦ψ−1 where S and T are linear and
F is some HFE core map.

Using the facts above, Kipnis and Shamir were able to find such a decom-
position [14]. The success depends on solving the MinRank problem: Given a
collection of matrices, find a linear combination of them that has minimal rank.
In general, this problem is NP-complete [3].

3 Design of Square

Having seen what a multivariate encryption scheme is up against, we now de-
scribe a new system Square.

See Figure 2. Let k be a field of size q, where q ≡ 3 mod 4. Plaintexts will be
vectors in kn. Let K ∼= k[y]/〈g(y)〉 be a degree n + l extension of k, where l is
such that n+ l is odd. The public key will be built up from the following maps:

– ϕ : K → kn+l, the vector space isomorphism given by

an+ly
n+l−1 + · · ·+ a2y + a1 "→ (an+l, . . . , a1)
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K
F �� K

ϕ

��

kn
L1 ��

P

��kn+l

ϕ−1

��

�� kn+l
L2 �� kn+l

Fig. 2. The Square system

– F : K → K, given by F (X) = X2

– L1 : kn → kn+l, an injective affine map
– L2 : kn+l → kn+l, an invertible affine map.

From these we construct the public key

P = L2 ◦ ϕ ◦ F ◦ ϕ−1 ◦ L1.

P will be an (n + l)-tuple of quadratic polynomials

P (x1, . . . , xn) =

⎛⎜⎜⎜⎝
p1(x1, . . . , xn)
p2(x1, . . . , xn)

...
pn+l(x1, . . . , xn)

⎞⎟⎟⎟⎠ .

This can be thought of as a C∗ system over odd characteristic with θ = 0 and
an embedding L1.

Encryption of a plaintext (m1, . . . ,mn) ∈ kn is obtained by computing cj =
pj(m1, . . . ,mn) for j = 1, . . . , n + l.

Decryption of a ciphertext (c1, . . . , cn+l) = P (m1, . . . ,mn) ∈ kn+l is per-
formed as follows: first, let Y = ϕ−1 ◦ L−1

2 (c1, . . . , cn+l). Then solve X2 = Y .
By choosing q ≡ 3 mod 4 and n + l odd, we ensure that |K| ≡ 3 mod 4. This
allows us to use the fact that

X = ±Y
qn+l+1

4 . (4)

This gives two solutions. Since L1 is affine, in general only one of them will be
in the image of ϕ−1 ◦ L1. The preimage of this solution under ϕ−1 ◦ L1 will be
(m1 . . . ,mn).

This simple method to find a preimage under the core map is a major advan-
tage over traditional characteristic-2 HFE systems which require the decryptor
to solve a univariate equation of high degree (using Berlekamp’s algorithm or its
improvements). In fact, encryption and decryption are quite fast. See Table 2
for a summary of times for various choices of q and n. For all experimental data
in this paper, we used an Intel(R) Core(TM)2 2.40 GHz processor with 1.99 GB
of memory installed.
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Table 2. Encryption and decryption times, in seconds, for Square systems. 10 public
keys tested and 100 messages encrypted and decrypted per key.

q n l Average Encrypt Time Average Decrypt Time
31 20 3 0.00022 0.001527
31 32 3 0.00033 0.006781
31 34 3 0.000423 0.003651
43 20 3 0.000234 0.001783
43 34 3 0.000495 0.008135

4 Security Analysis

Let us now present our case for the security of this design. We will explain our
motivation and then dig into the specific reasons why each of the aforementioned
attacks does not work.

But first, we provide a more thorough comparison to the very similar system
proposed by Patarin [20]. His system D∗ also uses a square core map, and Patarin
broke D∗ himself. He did so by finding a way to recover “big field” multiplications
without having the big field. As we will see below in Section 4.4, the embedding
makes it very hard to recover the multiplicative structure of K. In particular,
Patarin’s attack on D∗ relies on the ability to find pairs of linear maps (C,D)
such that for all x1, x2 ∈ kn,

C(F (x1 + x2)− F (x1 − x2)) = F (D(x1) + x2)− F (D(x1)− x2).

When L1 is invertible, the collection of such pairs forms a vector space of di-
mension at least n (exactly n according to [20]) which is required for Patarin’s
attack. In our case, L1 is a map kn → kn+l and thus cannot be invertible.

4.1 Motivation for the Design

All of the ideas used in Square have been seen before; what makes this system
novel is that these ideas are combined in such a way that they work.

First, the use of odd characteristic was shown to be a good idea for thwarting
algebraic attacks in [6]. This seems to be because the attacker knows that a
plaintext (x1, . . . , xn) satisfies not only the public key equations (2) but also the
Fq field equations xq

i − xi = 0. When q is small, this additional information is
very useful, and feeding the field equations into MAGMA along with (2) allows
for more efficient solving. However, as discussed in [6], for larger q the field
equations do not simplify the algorithm and in fact F4 runs faster without them.

Secondly, the use of a low-degree core map was inspired by [2], where an odd-
characteristic signature scheme with low-degree core map was proposed. It was
natural to ask if this idea could be used for encryption as well. However, the
signature scheme in [2] uses a vinegar construction, which is not well-suited for
encrytion.
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This led to the third modification, that of an embedding. Such a tool has been
mentioned, but dismissed until recently when a reformulated version of the idea
showed promise [5].

Each of these modifications would be weak on their own, but we will make
the case below that combined, they are quite strong.

4.2 Linearization Equations Attack

Note that when θ = 0, the equation XY qθ −Xq2θ

Y = 0 that Patarin discovered
becomes simply XY = XY . So our system should not satisfy any linearization
equations other than the trivial one satisfied by any map. In other words, the
space of linearization equations should have dimension 0 rather than n. Since
the algebraic attack described in 2.3 detects linearization equations, the fact
that algebraic attacks are not particularly effective, as descibed below, is an
indication that this is in fact the case. To be sure, we did experiments to find
the dimension of the space of linearization equations. For each of the 2500 keys
we tested, the dimension of this space was 0.

4.3 Algebraic Attack

In order to test the system’s resistance to algebraic attacks, we performed the
following experiments: We generated a public key and used it to encrypt 50
messages. We then used MAGMA’s implementation of F4 to solve the equations
defined by the public key and ciphertext as in 2. We did this for two public keys
per choice of parameters q, n, and l. We found that the public key polynomials
behave similar to systems of the same size with random polynomials. A sampling
of our results are in Table 3.

Plotting this data reveals a clear exponential trend in both time and memory
usage as n increases. In fact, linear least-squares approximation on the log of
the data has a high correlation. See Figure 3. This trend leads us to believe that
n ≥ 33 is a good choice for a practical system.

Table 3. Average algebraic attack time in seconds and memory usage in MB. q = 31

n l sec MB
2 1 0.000 6
3 1 0.000 6
4 1 0.001 6
5 1 0.002 6
6 1 0.006 6
7 1 0.024 6
8 1 0.129 6
9 1 0.696 8
10 1 4.747 13
11 1 27.423 30
12 1 215.678 32
13 1 1330.657 325

n l sec. MB
3 2 0.000 6
4 2 0.001 6
5 2 0.001 6
6 2 0.003 6
7 2 0.008 6
8 2 0.021 6
9 2 0.165 7
10 2 0.818 9
11 2 3.137 14
12 2 17.294 30
13 2 83.516 76
14 2 431.894 262

n l sec MB
4 3 0.000 6
5 3 0.001 6
6 3 0.003 6
7 3 0.007 6
8 3 0.019 6
9 3 0.115 7
10 3 0.406 8
11 3 2.223 12
12 3 15.924 26
13 3 83.433 68
14 3 206.602 137
15 3 2218.500 632
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Fig. 3. Algebraic attack for q=31, l = 3, varying n

To inform our choice of q, we tested the effect of changing q while fixing n and
l. Our results can be found in Table 4.3 and Figure 4.3. These attacks were done
without using field equations xq

i −xi = 0 for the reasons described in Section 4.1.
From this data we see that beyond small values of q, the size of the field does
not seem to impact F4’s running time or memory usage. This was expected in
light of the results of [2] and [6], and justifies the choice of q = 31 for a practical
system. Another reason to choose q = 31 is that such a choice makes good use
of memory, in the sense that the elements of k will require 5 bits to be stored
and any larger field will require more bits to store an element.

Table 4. Algebraic attack for n = 12, l = 3 and varying q

q Average F4 Memory
Running Time Usage

3 0.011 6
7 7.082 22
11 9.092 24
19 16.502 26
23 16.308 26
31 15.973 26
43 15.685 26
47 15.618 26

4.4 SFlash-Style Attack

Our public keys are maps kn → kn+l. We have constructed the public key P by
emebedding the space of plaintexts into a larger space, but one could imagine P
as coming from a larger C∗ scheme by setting the last l components of the input
to 0. Effectively, P is the public key for a (non-embedded) C∗ scheme with all
monomials involving xn+1, . . . , or xn+l deleted.

From this point of view, it is important to study the attack on SFlash since its
purpose was to recover missing coefficients of the public key (ie, the coefficients
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Fig. 4. Algebraic attack for n = 12, l = 3 and varying q

of the deleted polynomials). Since both SFlash and Square stem from C∗, the
differential property (3) exploited by Dubois et al still holds.

While in the case of SFlash this property yields linear equations for the at-
tacker, in our case the property gives us quadratic conditions. In fact, the re-
sulting system of quadratic equations is larger than the system of public key
equations. It seemed unlikely that this attack would work. However to be sure,
we applied F4 to these systems of quadratic equations. We quickly realized that
the Gröbner basis attack finds no special properties of these systems and takes
as long as one might expect. In the “baby” case of q = 5, n = 2, l = 1, this
method generates 27 equations in 30 variables which were beyond the abilities
of our computer to solve. It stands to reason that with realistic parameters such
as q = 31, n = 34, l = 3 these equations will pose no threat.

4.5 Kipnis-Shamir Style Attacks

The attack that Kipnis and Shamir used against HFE depends on finding a
combination of matrices derived from the public key which has minimal rank. In
our case, we may use the same idea as for the SFlash-style attack and consider the
public key as a piece of a C∗ public key of n+l variables. In this setting, the rank
of the analogous combination of matrices will be 1. As in Kipnis and Shamir’s
paper [14], we could try to determine the proper combination by finding a basis
of the null space of these matrices. The difference between the two systems is that
in HFE this yields quadratic equations, while in Square the “missing” coefficients
cause the equations to be cubic. One could reduce to quadratic equations, but
not without using additional variables.

The HFE attackers claimed that the MinRank problem could be solved in the
specific circumstances of HFE [14]. Since that time, doubt has been cast over
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the original efficiency claims [13]. We tested this attack in the Square case and
found that even with the “baby” case of q = 5, n = 2, l = 1, the system that
arises from this attack involves 18 cubic equations in 14 variables and solving it
exceeded the memory of our computer. We also tried using 2×2 minors as a way
to generate equations from the rank condition, but this yields quartic equations
with a savings of only 2 variables. This method also exceeded the memory of
our computer with q = 5, n = 2, l = 1. Considering this, it is not plausible that
such an attack would be dangerous for realistic parameter choices.

5 Parameter Suggestions and Implementations

Based on the security analysis above, an Square system with the following pa-
rameter choices will be viable:

Square-34
– q = 31
– n = 34
– l = 3
– Average encryption time: 0.000423 seconds
– Average decryption time: 0.003651 seconds
– Public key size: 15 KB
– Best known attack: > 280 computations.

A system with these parameters will be secure and have relatively fast decryption
using the power forumla mentioned in Section 3. Of course, these numbers are
very conservative. If we are concerned for speed and not so much for portability,
there are ways to get the implementation much faster.

Square Roots. Since we are always dealing with a pre-determined field, pre-
computation is not a problem. If (field size) − 1 = 2a × (odd number o),
taking square roots is always possible via raising to the power of o−1

2 using
a pre-computed table with 2a elements (the Tonelli-Shanks method [21]).

Consider the case n = 51, l = 3. Since n + l = 54 is even, during decryp-

tion we cannot use the formula X = ±Y qn+l+1
4 as in the Square-34 case.

However, via raising to a power of 1
128 (3154−65), we see that square roots in

1 (mod 4) and 3 (mod 4) field sizes does not differ much, since the number
of “total multiplications” does not increase much (at most 1.5× in all our
experiments).

Choice of Field. We should choose a field with a “good” irreducible polyno-
mial. For example, for k = F31, only certain (xh − α) can be irreducible
which makes things very fast. Values of h above 34 that is of interest to us
here are 45 and 54. and in fact F3145 ∼= k[x]/(x45−3), F3154 ∼= k[x]/(x54−3).
Which in and of itself is very simple. But there is a further trick as in the
following:
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Tower Fields. Tower fields are very common in MPKCs of characteristic two.
Here we may use also this trick and use

F3115 ∼= k[t]/(t15 − 3), F3145 ∼= F3115 [x]/(x3 − t); or
F3118 ∼= k[t]/(t18 − 3), F3154 ∼= F3118 [x]/(x3 − t).

Other Techniques. We should delay modulo operations by checking for num-
ber sizes appropriately and do not do a modulo-q for as long as we can help
it. We should also write the relevant routines in assembly.

Usually the multiplication in an extension of this size would be unwieldy, but due
to the tricks mentioned above, “big field” operations have a low computational
cost. Our tests show that we can achieve a hundred-fold speed increase.

Hence, we propose alternate parameter choices which can be made even faster
than the Square described above as in Tab. 1.

6 Conclusion

In this paper we analyzed a new multivariate encryption scheme that has great
promise. In a sense, Square continues the bloodline of the original C∗ scheme
but our arguments and results above suggest that our system avoids the pitfalls
of its predecessors. We showed, via experimental data when possible, that at-
tacks against similar systems are not effective against a reasonably-sized Square
system.

We gave parameter choices for a secure system Square-34. We also proposed
larger but even more efficient implementations Square-45 and Square-54. Part of
our future work will be optimizations of Square systems with other parameters.
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Abstract. We design communication efficient two-party and multi-party
protocols for the longest common subsequence (LCS) and related prob-
lems. Our protocols achieve privacywith respect to passive adversaries, un-
der reasonable cryptographic assumptions. We benefit from the somewhat
surprising interplay of an efficient block-retrieval PIR (Gentry-Ramzan,
ICALP 2005) with the classic “four Russians” algorithmic design. This re-
sult is the first improvement to the communication complexity for this ap-
plication over generic results (such as Yao’s garbled circuit protocol) and,
as such, is interesting as a contribution to the theory of communication ef-
ficiency for secure two-party and multiparty applications.

1 Introduction

We design communication efficient two-party and multi-party protocols for two
variants of the longest common subsequence (LCS) problem, and related prob-
lems. The first variant returns only the length of the LCS, while the second
outputs the string encoding the subsequence itself. Previous work on this topic
[25,34,10] has focused on implementing basic dynamic programming algorithms
privately, using techniques that each achieve O(n2) communication complexity
(where n is the length of each input string). Jha, Kruger, and Shmatikov [25]
demonstrate that some of these solutions may be practically quite efficient. This
previous work, however, does not improve on the asymptotic communication
complexity of generic solutions such as Yao’s garbled circuit protocol [36]. Thus,
our work is both theoretically and practically interesting since it can be inter-
preted as a new upper bound on the communication complexity of this problem.

Traditionally, the method known as the “four Russians” technique yields only
a logarithmic improvement in the running time of the dynamic programming
solution for LCS. Somewhat surprisingly, we show how to take advantage of an
efficient block-retrieval PIR due to Gentry and Ramzan [21] and use the “four
Russians” technique to obtain a communication efficient private protocol for
the LCS problem. Specifically, we design protocols that achieve O(n2/t) total
communication cost, for any positive t < n.

In our protocol, the computational cost of one party increases (anywhere
between linearly and exponentially, depending on the choice of parameter t),
while the remaining parties’ computation costs reduce to O(n2/t). In the most
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practical setting, where each party performs only a polynomial amount of com-
putation, we achieve a new, sub-quadratic upper bound for the private protocol’s
communication complexity.

If some participant can perform more work, our protocol becomes even more
communication efficient. This setting, where an asymmetric work load yields
communication savings for all participants, may be quite advantageous. This
client-server setting may even be realistic, given the large volume of genomic
data held by central entities. We also show how to outsource the work needed
by our protocol to a set of powerful, dedicated yet untrusted servers.
Motivation: Performing different computational tasks on large biological data-
bases is becoming a more common practice in both public and private institu-
tions. The FBI maintains a database of over four million DNA profiles of criminal
offenders, crime scene evidence, and missing persons in its CODIS system [2],
and uses the data for forensic studies and DNA-based identification. deCODE
Genetics [3], a biopharmaceutical company which studies genomic data for drug
discovery and development, has collected the genotypic and medical data of over
50 percent of the population in Iceland. Similar endeavors seek to make these
types of databases available for scientific study [5].

The genomic data stored in these databases may be extremely sensitive: an
individual’s DNA sequence reveals a great deal of information regarding that in-
dividual’s health, background, and physical appearance [1,4]. It has been shown
that a sequence can be linked to the corresponding individual simply by recog-
nizing the presence of certain markers [27]. Protecting a patient’s privacy when
working with genomic data is recognized as a major challenge for the biomedical
research community [8,35]. Furthermore, in the United States, HIPAA’s Privacy
Rule [32] mandates that a patient’s identity must be protected when their data
(including genomic data) is shared; failure to assure this may result in legal
action, fines, revocation of government funding, and imprisonment.

The pioneering work of Jha, Kruger, and Shamtikov [25] and others [34,10]
has recognized the need for private and efficient computation on genomic data
in general, and the LCS and edit distance problems in particular. We hope our
results continue to motivate improvements to the state-of-the-art in this domain.

2 Related Work

It is possible to use generic solutions or pre-existing protocols to solve the prob-
lems considered in this paper. However, we desire protocols that are efficient in
terms of communication complexity (the total number of bits sent and received
by the participants in the protocol).

While the theoretical lower bound1 for the running time of an algorithm that
solves the LCS problem for two strings of length n is Ω(|Σ|n) for a fixed alphabet
Σ [6], the theoretically fastest known algorithm solving this problem is that of

1 This lower bound becomes Ω(n2) when the alphabet is not fixed, and the basic
operations considered are comparisons.
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Masek and Patterson [28], achieving O(n2/ logn). The circuit simulating this
algorithm, however, is of size O(n2). Thus, generic compilers like Yao’s garbled
circuit protocol [36] would yield communication complexity O(n2). Naor and
Nissim’s communication preserving compiler [30] may yield a protocol with O(n)
communication complexity, but the protocol would require on-line work that is
exponential in n.

We can reduce the LCS problem to the shortest path problem, and then use
secure matrix multiplication protocols, e.g. [26], or secure graph protocols [11]
to recover a solution. The reduction, however, increases the input size of the
problem, so that instead of an input of size Θ(n), we now must consider a graph
or matrix of size Θ(n2). Even assuming we have access to private protocols for
matrix multiplication or shortest path with optimal communication efficiency,
using this reduction will yield a protocol with Ω(n2) communication complexity.

We could also re-use secure protocols implementing the Needleman-Wunsch
algorithm (or a variation of it, the Smith-Waterman algorithm) [10,34,25]. These
algorithms solve a generalization of the edit distance problem, where insertions
and deletions have variable costs. When all costs are 1, these algorithms can be
used to directly solve the problems we consider here. Szajda, Pohl, Owen, and
Lawson [34] provide a heuristic protocol for Smith-Waterman attaining heuristic
security, which fails to meet the correctness or privacy needs considered here.
Atallah, Kerschbaum, and Du [10] and Jha, Kruger, and Shmatikov [25] pro-
vide protocols whose communication complexities are O(n2), meeting but not
improving upon the asymptotic efficiency of the generic solution, using Yao’s
garbled circuit protocol.

3 Notations and Definitions

Notation Ω(f) denotes that the asymptotic lower bound f is tight; Θ(f), means
that f is both a lower bound and an upperbound, and Õ(f) denotes the asymp-
totic upper bound O(f), ignoring polylog(f) factors.

Sharing Values. We take advantage of two simple sharing schemes, XOR sharing
and additive sharing, in our protocols. Alice and Bob XOR share a value c, if
Alice holds the value a and Bob holds the value b, such that a⊕ b = c. Similarly,
an integer c is additively shared between the parties if a + b mod N = c, where
N is a properly chosen and publicly known integer.

Security. We prove our protocols secure against a passive adversary (also re-
ferred to as semi-honest) who follows the steps of the protocol but tries to learn
additional information based on the messages he receives throughout the pro-
tocol. The security in this model is defined by requiring that any adversary in
the real protocol, can be simulated by an adversary in an ideal world where
parties send their inputs to a trusted party who computes and sends back their
corresponding outputs. For a more formal definition, we refer the reader to [22,
Volume 2]. Central to our security claims is the following composition theorem.
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Theorem 1 (Composition for Passive Adversaries [22]). Suppose that g
is privately reducible to f and that there exists a protocol for privately computing
f . Then, there exists a protocol for privately computing g.

Using the above theorem, along with simple hybrid arguments, it is straight-
forward to prove our protocols private against a passive adversary as long as our
subprotocols are private.

4 Longest Common Subsequence

Let A and B be two strings over a fixed alphabet Σ of size σ, with lengths
m = |A| and n = |B| (without loss of generality, let m ≤ n). A subsequence of
A is a string X such that A can be transformed into X by deleting characters
from A. A longest common subsequence (LCS) of A and B is a subsequence of
both A and B such that no other common subsequence has greater length.

Algorithms that solve the longest common subsequence problem return one
or more of the following outputs:

1. The length of the LCS of A and B.
2. A string which is a LCS of A and B.
3. An embedding α, β of a LCS of A and B

Where an embedding α ∈ {0, 1}m and β ∈ {0, 1}n are bit-strings which select
an LCS from A and B, respectively.

4.1 LCS Algorithm Using Standard Dynamic Programming
Techniques

The following dynamic programming algorithm solving the longest common
subsequence problem was independently discovered by many researchers, in
both computer science and biology. For a standard presentation of this type
of dynamic programming solution, see [14, §16.3] or [23, §11.3]. Let L be the
(m+1)× (n+1) matrix whose entries can be computed (row-by-row or column-
by-column) using the following:

L[i, j] =

⎧⎨⎩
0 if i = 0 or j = 0
L[i− 1, j − 1] + 1 if A[i] = B[j]
max(L[i− 1, j], L[i, j − 1]) otherwise

Entry L[m,n] holds the length of the LCS for A and B, and simple determinis-
tic backtracking algorithms exist for recovering the value and/or the embedding
of an LCS for A and B.

4.2 LCS Algorithm Using the “Four Russians” Technique

Masek and Patterson [28] give a variant on this dynamic programming solution
for the LCS problem, using ideas (colloquially known as the “four Russians”
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m

0

0 n

i

...

i + t

j · · · j + t

W (i, j) E(i, j)

N(i, j)

S(i, j)

L[i, j]

Fig. 1. The t × t block beginning at position (i, j) in the (m + 1) × (n + 1) matrix L

technique) introduced by Arlazarov, Dinic, Kronod and Faradzev [9] for boolean
matrix multiplication.

Let t be a positive integer. Then, the boundaries of the t × t block of the
dynamic programming table L starting at position (i, j) can be denoted with
the following variables (see Figure 1).

N(i, j) = (L[i, j], L[i, j + 1], . . . , L[i, j + t])
W (i, j) = (L[i, j], L[i + 1, j], . . . , L[i + t, j])
S(i, j) = (L[i + t, j], L[i + t, j + 1], . . . , L[i + t, j + t])
E(i, j) = (L[i, j + t], L[i + 1, j + t], . . . , L[i + t, j + t])

Let the offset vectors I1(i, j), I2(i, j) ∈ {0, 1}t be defined as

I1(i, j)[k] =
{

0 for k = 1
N(i, j)[k]−N(i, j)[k − 1] for 1 < k ≤ t

I2(i, j)[k] =
{

0 for k = 1
W (i, j)[k]−W (i, j)[k − 1] for 1 < k ≤ t

It is simple to check that consecutive values in the L matrix increase by at
most one, so the offsets are indeed bit-vectors.

The basic observation underlying the four Russians technique is that the val-
ues E(i, j) and S(i, j) are completely determined by A[i, . . . , i+t], B[j, . . . , j+t],
I1(i, j), I2(i, j), and L[i, j]. Denote this basic block functionality as bbf(A[i, . . . ,
i+t], B[j, . . . , j+t], I1(i, j), I2(i, j), L[i, j]) = (E(i, j), S(i, j)). Thus, we can com-
pute the entire dynamic programming table in the following manner:
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1. Pre-processing: pre-compute all possible t × t blocks, by considering all
possible t-length strings and offset vectors, but assume the first value of the
block is 0. That is, generate a table summarizing bbf(·, ·, ·, ·, 0). Note that
bbf(·, ·, ·, ·, 0) + C = bbf(·, ·, ·, ·, C); i.e., if the first value of the block is C
and not zero, the pre-computed outputs differ from the desired outputs in
every place by the additive term C. The number of entries in this table is
σ2t22t.

2. Rebuilding the L matrix: Consider the L matrix to be composed of t× t
blocks that overlap in one row and one column with each other. Retrieve
bbf(A[i, . . . , i + t], B[j, . . . , j + t], I1(i, j), I2(i, j), 0) = (Ẽ(i, j), S̃(i, j)) by
looking up the appropriate pre-computed block. Any L[i′, j′] entry situated
on the boundary of this block can be calculated by adding L[i, j] to the ap-
propriate value from the retrieved Ẽ(i, j) or S̃(i, j) vectors. Iterate in this
fashion, using S̃(i, j), Ẽ(i, j) to determine I1(i + t, j), I2(i, j + t), each time
considering the first value of the block to be 0 during look-up and then
compensating by adding back the appropriate additive term.

Essentially, we have reduced our m × n matrix to an m/t × n/t matrix. In
the unit-cost RAM model, partially filling out the L matrix in this fashion takes
O(mn/t2) time.

5 Communication Efficient Protocols for Private LCS

Here, we build a private protocol for determining the length of the LCS. Later,
we provide a deterministic backtracking algorithm for privately recovering an
actual LCS or LCS embedding.

Definition 1 (Private LCS-length). A protocol is a private LCS-length pro-
tocol between two parties (one holding a private input string A, the other holding
a private input string B) if the protocol outputs the length of the LCS of A and
B, but reveals no information to a passive adversary other than what she can
learn from the output.

Below we provide details describing a private LCS-length protocol. At a high-
level, the protocol executes the algorithm of Masek and Patterson described
earlier, but each party holds shares of the L matrix. Basic block function table
look-ups are performed using a communication efficient private block retrieval
scheme, while the remaining computations are designed to be performed by the
parties locally.

Private block retrieval (PBR) was first introduced in the original PIR paper of
Chor et al. [13]. A PBR scheme is essentially a private information retrieval (PIR)
scheme that allows the chooser to retrieve �-bit database entries, as opposed to
bit entries. We call such a scheme a symmetric PBR (SPBR) scheme if it also
provides privacy for the server (database).

Any secure two-party PBR schemes can be transformed into an SPBR scheme
that provides this functionality, via the Naor-Pinkas transform [31], the Aiello-
Ishai-Reingold transform [7], or zero-knowledge proofs. We note that, excluding
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zero-knowledge based techniques, these transforms incur no loss of efficiency for
the SPBR.

1. Pre-computation: Alice pre-computes the table summarizing the func-
tion bbf(·, ·, ·, ·, 0), in the following way. Let the binary representation of the
inputs A[i, . . . , i + t], B[j, . . . , j + t], I1(i, j), I2(i, j) be x1, x2, x3, x4. The
resulting index x1||x2||x3||x4 is a bit-string of length 2 log(σ)t + 2t. At this
index, Alice stores the following:
– Ẽ(i, j), S̃(i, j).
– The offset vectors I1(i + t, j), I2(i, j + t) associated with Ẽ(i, j), S̃(i, j).

Clearly these two vector pairs are redundant because given either pair we can
compute the other, but as each is shared using a different sharing scheme,
holding both will make local computations easier, later. Because the first
entry of the pre-computed block is set to zero, the values of Ẽ(i, j), S̃(i, j)
will always be in the interval [0, t]. This means each entry of our look-up
table will be a bit-string of length 2t + 2t log t.

2. Accessing the basic block function: From previous database accesses,
Alice and Bob will hold XOR shares of I1(i+ t, j) = x3 and I2(i+ t, j) = x4.
In all cases, x1 is known only to Alice and x2 is known only to Bob. Thus,
Alice can simply consider her share of x2 to be 0t log σ, and similarly for Bob.
This allows Alice and Bob to locally concatenate their values, producing
valid XOR shares of the next index x1||x2||x3||x4. The database defining the
basic block function is accessed each time in the following way:
(a) Alice picks some random value and locally blinds each of her database’s

entries by this value. Particularly, XORing by a random string is used
for each offset vector, and adding a random value is used for each Ẽ(i, j)
and S̃(i, j).

(b) Alice locally permutes her database by her share of x1||x2||x3||x4.
(c) Alice and Bob engage in a SPBR protocol using Bob’s index share as

input, allowing Bob to recover the blinded entries. Alice’s shares are the
random values (strings) she added (XORed) in the blinding step. Thus,
Alice and Bob hold valid shares of the entries of interest.

3. Reconstructing L: As in the original Masek and Patterson algorithm, after
the appropriate entries of the basic block function are retrieved, Alice and
Bob can (non-interactively) use the additive shares of the values to compute
shares of entry L[m,n]. They then privately exchange these shares to recover
L[m,n], the length of the LCS of A and B.

Theorem 2. The above protocol is a private LCS-length protocol for inputs of
length n and m, assuming we have a secure SPBR scheme for a database of N
entries each of size �.

Proof. (sketch) The above security claim follows from the security of the share
conversion protocols, our black-box use of SPBR, and from general composition
theorems [12,22]. How to specify the parameters N and � to attain the efficiency
we desire is explained in the complexity analysis, below.
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5.1 Analysis

Theorem 3. Assume we have an SBR scheme such that: (1) for a database of
size N , on query i the scheme returns the i-th �-bit entry of the database for
integer parameter � with 2� < N , and (2) the scheme has g(N, �) = O(logN)
communication complexity and requires f(N, �) = O(N) work.

Then the described protocol for LCS-length has the following complexities, as
a function of the parameter t.

Communication Round Alice’s Bob’s
Complexity Complexity Work Work

O(mn/t) O(m/t + n/t) Õ(t2t) O(mn/t)

Proof. The above protocol fills out the L matrix as in the Masek-Patterson
algorithm after mn/t2 invocations of the SPBR protocol. Naively, the protocol
proceeds (row-by-row or column-by-column) in mn/t2 rounds. In a straight-
forward manner, we can parallelize many of these steps and improve this to
m/t + n/t rounds.

When we set N = �2t, then the query returns the appropriate �-bit entry of the
bbf look-up table of size 2t. When � = t log t, the computational complexity of the
protocol is O(22t ∗f(�N, �)∗ (2t+2t log t)/�) = Õ(t2t). The total communication
complexity is O(mn/t2 ∗ g(�N, �) ∗ (2t + 2t log t)/�) = O(mn/t).

Claim. Concretely, the assumptions of Theorems 2 and 3 are satisfied by the
SPBR scheme attained by transforming the Gentry-Ramzan PBR scheme [21]
to an SPBR scheme using either the Aiello-Ishai-Reingold or Naor-Pinkas trans-
forms. The security of this SPBR scheme is based on the hardness of the
“extended decision subgroup problem” and the assumptions required for the
transform (e.g., secure homomorphic encryption for Aiello-Ishai-Reingold).

The proposed protocol establishes a useful framework for many dynamic pro-
gramming algorithms, providing a range of efficiencies based on trading compu-
tational complexity for communication complexity. At one extreme, when t = 1,
the communication and computational complexities resemble that of Yao’s gar-
bled circuit protocol. At the other extreme, when t = n, the costs match those of
the communication preserving compiler of Naor and Nissim [30], achieving O(m)
communication complexity (matching the simple theoretic lower bound) but re-
quiring work exponential in n. Between these extremes, the protocol yields a
smooth trade-off between work and communication, achieving any sub-quadratic
communication complexity at the expense of computational complexity.

6 Private Backtracking in Our Protocol

We have provided a protocol for determining the length of an LCS of A and B
privately, although a natural remaining question is to ask is if we can recover
the value of an LCS string itself (or the bit-string which encodes how an LCS
is embedded in A and B) privately. We call this a private LCS-backtracking
protocol.
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Definition 2 (Private LCS-backtracking). A private LCS-backtracking pro-
tocol between two parties is one in which (1) the parties hold private input strings
A and B, (2) the protocol outputs an LCS (or, embedding of the LCS) for A and
B, (3) there is some deterministic algorithm that agrees with the protocol’s out-
put for any valid input, (4) the protocol reveals no information to a passive
adversary other than what she can learn from the output.

In fact, with some careful planning, we can modify our LCS-length protocol
to build a LCS-backtracking protocol. Our LCS-backtracking protocol relies on
no stronger assumptions than our LCS-length protocol, and its communication
complexity and work are asymptotically no greater than that of our LCS-length
protocol. The full details of this protocol are provided in Appendix A of the full
version of this paper [18].

7 Related Applications

Our techniques can be viewed as a specialization of Naor-Nissim circuits with
look-up tables [30], for a class of dynamic programming problems that have the
property that their subproblems can be “efficiently encoded.” By this, we mean
that the problem can be decomposed into overlapping subproblems of size t, each
of which can be encoded using O(t) bits. For the LCS problem, it was essential
that adjacent entries in L differed by at most 1, so each t × t block could be
encoded with O(t) bits. If, however, adjacent entries differed by, say, an arbitrary
value in [0, n], then any encoding of the subproblem would require O(t log n) bits;
the size of the subproblem’s look-up table would be strictly greater than O(2t),
and the cost of iteratively accessing this table would result in no savings when
compared to Yao’s garbled circuit protocol.

There are natural applications that fall into this general framework of dynamic
programming problems with “efficiently encoded” subproblems. We list some
below, with remarks on how to solve each with our private protocols for LCS-
length and LCS-backtracking, either immediately or with minor modifications.

7.1 Edit Distance

The private LCS-length protocol automatically yields a private algorithm recov-
ering the edit distance (Levenshtein distance), because

edit-distance(A,B) = m + n− 2 ∗ LCS-length(A,B)

This relationship holds because transforming A into B via a series of deletions
and insertions is equivalent to deleting n−LCS-length characters, and inserting
m− LCS-length characters.

Damerau-Levenshtein distance (where the allowable operations are insertions,
deletions, substitutions, or transpositions) is not automatically implied by LCS-
length, but it is clear that a small modification of our protocol will suffice. In
particular, when pre-computing the t× t block at position (i, j) in L, in order to
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consider transposition operations we may need to refer back to data in row i− 1
and column j − 1. That is, the input to the basic block function will require 4t
offset vectors (instead of 2t vectors), and the t× t blocks will tile the L matrix
overlapping with a previous block in two rows or columns (instead of just one).
Such a modification does not change the asymptotic complexity of the resultant
protocol.

Ulam’s metric is a type of similarity measure or distance metric for permuta-
tions, similar to Kendall’s τ -metric or Spearman’s rank correlation metric. For
permutations π, π′ of order n, the Levenshtein distance of π and π′ is equivalent
to the Ulam distance. Thus, our protocol gives two parties the ability to pri-
vately compute the Ulam similarity of their ordered preference lists of common
elements. Note that this is somewhat different from the setting of Freedman et
al. [20], which performed a privacy-preserving set intersection to measure the
similarity between unordered preference lists of different elements.

7.2 Shortest Common Supersequence

The private LCS-length protocol automatically yields a private algorithm recov-
ering the length of the shortest common supersequence (SCS), because

SCS-length(A,B) = m + n− LCS-length(A,B)

This relationship holds because the SCS is the shortest string containing A and
B as subsequences, which can always be obtained by adding to an LCS the extra
characters from A and B. However, when the number of strings is greater than
2, there is no longer a relationship between the problems [19].

7.3 Other Dynamic Programming Applications

The longest common substring (LCSS) problem and longest increasing subse-
quence (LIS) problem both have dynamic programming solutions with similar
structure. Our protocol can be used directly or with slight modifications to
solve these problems. For example, given the string A and an ordering on Σ,
σ1 < σ2 < . . . < σ|Σ|, we have LIS(A) = LCS(A,B) where B = σ

|A|
1 σ

|A|
2 · · ·σ|A|

|Σ|.
The LCSS problem can be solved by modifying the basic block function to utilize
the recurrence

LCSS(i, j) =
{

LCSS(i− 1, j − 1) + 1 if A[i] = B[j]
0 otherwise

Both the LIS and LCSS problems, however, have more efficient non-dynamic
programming solutions: LIS can be solved in O(n log n) time with arrays and
binary search; LCSS can be solved in O(n+m) time with suffix trees. While the
circuits implementing these solutions are of size O(mn), it is likely that there
are more efficient specialized two-party protocols implementing these solutions.
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7.4 Private diff

The Unix command “diff A B” traditionally returns an annotated file showing
the least-costly merge of file A and file B. From the annotations, both A and B
can be recovered. Thus, a private implementation of diff has little utility, as the
output leaks both inputs. It may be natural, however, to consider an asymmetric
version of diff, where Alice does not learn an annotated file merging A and B
but instead learns which parts of A have been removed, which parts have been
preserved, and where insertions have been made (analogous to an embedding).
Modifying LCS-backtracking to achieve this functionality is straight-forward.
Similarly, it may be natural to consider calculating statistics related to the diff
of two files, and not output the merged file itself. For example, the command

diff A B | wc -1

returns the edit distance of files A and B and, as we have seen, is easily calculated
using our LCS-length protocol.

A private diff protocol may be useful in the situation where Alice and Bob
want to collaborate to determine if either one has “plagiarized” the other, with-
out leaking their own proprietary data to the other participant who, necessarily,
they suspect may be possible of plagiarism. A realistic scenario similar to this
one is discovering GPL violations [33]; the protocol may be a useful discovery
mechanism, allowing Bob to inspect if Alice has violated the use restrictions of
his software licensed under the GPL (by including it in her proprietary code
without redistributing it under the GPL) while at the same time respecting the
Alice’s potentially non-infringing, proprietary code.

7.5 Multiparty Variants of LCS-Length and LCS-Backtracing

Instead of running a protocol between two parties, it may be desirable to out-
source the work to some fixed number of parties m, such that no passive adver-
sary corrupting less than m participants can learn any information beyond the
output, for privacy reasons. Alternatively, perhaps neither Alice nor Bob want to
play the role of the server (who pre-computes the basic block function table) but
instead want to leverage the resources of one or more external servers, without
having to trust them. We can generalize our LCS-length and LCS-backtracking
protocols to this scenario using a multiparty generalization of indirect index-
ing [17,24]. In particular, the multiparty indirect indexing scheme of Ishai et
al. [24] is a general construction using any 2-round OT protocol. To achieve a
construction with polylogarithmic communication complexity, Ishai et al. use
an OT scheme based on PIR with length-flexible messages (achieved using a
length-flexible homomorphic encryption scheme such as Damg̊ard-Jurik [15,16]).
To achieve multiparty indirect indexing with a strictly logarithmic communi-
cation complexity, we can instead use Gentry-Ramzan. With a database of
size N , the m-iterated use of Gentry-Ramzan generates messages of length
O(logNcm) = O(logN) for a small constant c < 8 [29]. Thus, we can use the
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construction of Ishai et al., instantiated with an appropriate version of Gentry-
Ramzan, to perform multiparty indirect indexing, and generalize our protocols
to the multiparty scenario with no asymptotic increase to the costs.

7.6 Fixed m-String LCS

In the multiparty version of LCS-length and LCS-backtracking protocols, it is
natural to consider the situation were each party i holds a string Ai as her
private input, and the m parties wish to compute the length (or embedding or
string) of the LCS of the strings A1, . . . , Am. The following is a straight-forward
generalization of the standard dynamic programming solution for this problem,
using an m-dimensional L matrix.
1: for i1 ← 1 . . . |A1|, i2 ← 1 . . . |A2|, . . ., im ← 1 . . . |Am| do
2: if (A1[i1] = A2[i2] = · · · = Am[im]) then
3: L[i1, i2, . . . , im]← L[i1 − 1, i2 − 1, . . . , im − 1] + 1
4: else
5: L[i1, i2, . . . , im] ← max{L[i1 − b1, i2 − b2, . . . , im − bm] : b1b2 . . . bm ∈

{0, 1}m is a bit-string of Hamming weight m− 1}
6: end if
7: end for

As before, adjacent rows and columns never differ by more than 1, so the offset
vectors can be efficiently encoded using bit-strings. Thus, the four Russians
technique can still be used. We can generalize our protocols to simulate this
algorithm in a similarly straight-forward fashion.

8 Conclusion

We have presented a private protocol for the longest common subsequence prob-
lem, a classic problem for both computer scientists and biologists. While the
“four Russians” technique traditionally offers only a logarithmic savings in work
for the traditional dynamic programming algorithm for LCS, we use it to achieve
a smooth trade-off between communication complexity and work, filling in the
theoretical “terrain” between polynomial-work compilers (like Yao) and expo-
nential-work compilers (like Naor-Nissim). Our protocol features an asymmetry
in the work required from each participant, making it appealing in a client-server
setting where it may be reasonable to believe there is an available server able to
perform super-polynomial work to help compute on genomic data. Even when
restricting all participants to polynomial resources, the result is a private proto-
col for the LCS problem achieving a sub-quadratic communication complexity:
the first private LCS protocol whose efficiency improves on that of the generic
solution using Yao’s garbled circuit protocol. We have shown that the protocol
and techniques extend (trivially, in some cases) to numerous other string algo-
rithms useful for computing with genomic data. We anticipate this technique to
be useful in achieving communication-efficient protocols for many other problems
that have similarly-structured dynamic programming algorithms.
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Abstract. Proxy re-encryption (PRE) allows a proxy to convert a ci-
phertext encrypted under one key into an encryption of the same mes-
sage under another key. The main idea is to place as little trust and
reveal as little information to the proxy as necessary to allow it to per-
form its translations. At the very least, the proxy should not be able to
learn the keys of the participants or the content of the messages it re-
encrypts. However, in all prior PRE schemes, it is easy for the proxy to
determine between which participants a re-encryption key can transform
ciphertexts. This can be a problem in practice. For example, in a secure
distributed file system, content owners may want to use the proxy to
help re-encrypt sensitive information without revealing to the proxy the
identity of the recipients.

In this work, we propose key-private (or anonymous) re-encryption
keys as an additional useful property of PRE schemes. We formulate
a definition of what it means for a PRE scheme to be secure and key-
private. Surprisingly, we show that this property is not captured by prior
definitions or achieved by prior schemes, including even the secure ob-
fuscation of PRE by Hohenberger et al. (TCC 2007). Finally, we propose
the first key-private PRE construction and prove its CPA-security under
a simple extension of Decisional Bilinear Diffie Hellman assumption and
its key-privacy under the Decision Linear assumption in the standard
model.

1 Introduction

In many applications, data protected under one public key pk1 needs to be
distributed to a user with a different public key pk2. It is not always practical
for the owner of sk1 to be online to decrypt these ciphertexts and then encrypt
these contents anew under pk2. For example, Alice might wish to have her mail
server forward her encrypted email to Bob while she is on vacation. However,
how can Alice do this without revealing her sk1 to either her mail server or Bob?

As a solution to this key management problem, the concept of proxy re-
encryption (PRE) was introduced [5]. Proxy re-encryption is a cryptosystem
with the special property that a proxy, given special information, can efficiently
convert a ciphertext for Alice into a ciphertext of the same message for Bob. The
proxy should not, however, learn either party’s secret key or the contents of the
messages it re-encrypts. The main idea is to place as little trust in the proxy as
possible. When PRE is used for distributed file systems [2], this absence of trust
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directly reduces the desirability for an adversary to compromise the distribution
server, without compromising functionality.

In addition to hiding the contents of files from the proxy, it is also useful in
practice to suppress as much meta-data as possible. For example, we might want
the proxy file server to re-encrypt sensitive files for certain recipients without
revealing to the proxy the recipient’s identity. For example, the server might
be told to re-encrypt all category one files with key one and category two files
with keys two and three, without the proxy being able to deduce the public keys
behind these values. This way, if the proxy is compromised, the adversary will
not be able to extract a list of “who was speaking privately with whom”. This
is highly desirable for many encrypted communication scenarios.

This level of privacy for standard encryption schemes was formalized as key-
private (or anonymous) encryption in 2001 by Bellare, Boldyreva, Desai and
Pointcheval (BBDP) [4]. Intuitively, they studied encryption schemes where it
is impossible to derive the recipient of a message from the ciphertext and the
set of public keys. Consequently, the ciphertext is anonymous; that is, it cannot
be linked to a particular public key and its owner. Fortunately, most public
key encryption schemes already satisfy this property, such as Elgamal, Cramer-
Shoup, and RSA-OAEP.

In this work, we introduce the strictly stronger notion of key-private (or anony-
mous) PRE. Intuitively, it should be impossible for the proxy and a set of collud-
ing users to derive either the sender or receiver’s identities from a re-encryption
key even when given the public keys and flexible interaction ability within the
system. As we formalize in Section 2.1, achieving key-private PRE is only pos-
sible when the underlying encryption scheme is key-private.

Unfortunately, this condition is far from sufficient. Finding a key-private PRE
was a surprisingly difficult task. Whereas most standard encryption schemes are
already key-private under the BBDP definition, none of the half-dozen existing
PRE schemes are key-private under our natural definition in Section 2. This
includes even the recent PRE construction of Hohenberger et al. [10], which was
proven secure under a very strong obfuscation definition. In the next section, we
discuss the problems with each existing scheme and the necessary conditions for
realizing key-private PRE.

The main contribution of this work, in addition to our formal definition in
Section 2, is the first realization of a key-private PRE scheme. Our construction
is efficient, reasonably simple, and secure under basic assumptions about bilinear
groups in the standard model. Formally, it is a unidirectional, single-hop, CPA-
secure PRE with key-privacy. Thus, we show, for the first time, that this natural
extension of anonymous encryption is practical and available for many existing
PRE applications, as discussed in Section 1.2.

1.1 The Notion of Key-Private PRE and Prior Constructions

In this section, we examine the half-dozen existing proxy re-encryption schemes
and discuss why they do not satisfy the notion of key-privacy. Let us first sketch
the privacy notion wanted. Intuitively, we want to capture the strong guarantee



Key-Private Proxy Re-encryption 281

that even an active proxy colluding with a set of malicious users in the system
cannot learn from the re-encryption key the identity of the involved participants
nor the contents of their encrypted messages.

Informally, the key-privacy game works as follows. First, the adversary is given
the public keys of all honest users and the keypairs of all corrupt users. Next,
the adversary is allowed to query two oracles an arbitrary number of times. The
adversary may either request: (1) to have a chosen ciphertext under any user i
re-encrypted to any user j or (2) to obtain the re-encryption key that translates
ciphertexts from any user i to any user j. These oracles will operate regardless
of the corruption status of i or j. Finally, the adversary must output a challenge
pair of honest users (i∗, j∗), with the restriction that the adversary cannot have
asked for this key before. The challenger will then return either the re-encryption
key from i∗ to j∗ or a random key in the key space. The adversary wins if he
can distinguish these cases with non-negligible probability.

Before discussing the problems with specific PRE constructions, let’s get a
better sense of what cannot possibly work. In Section 2.1, we point out that no
deterministic re-encryption algorithm can satisfy the key-privacy definition. To
see this, consider the generic attack where an adversary asks for a re-encryption
of ciphertext C under user i to user j to obtain output C′. The adversary can
then challenge on (i, j) and apply the returned re-encryption key to C. Since the
re-encryption algorithm is deterministic, this should result in output C′ if this is
a proper key from i to j and is unlikely to do so for a random key. Unfortunately,
the first four (out of six) prior PRE schemes have deterministic re-encryption
algorithms, and thus cannot be key-private.

Similarly, in Section 2.1, we show that for a PRE scheme to be key-private
(that is, one cannot distinguish the participants from seeing the key), the un-
derlying encryption scheme must also be key-private in the sense of Bellare,
Boldyreva, Desai and Pointcheval [4] (that is, one cannot distinguish the re-
cipient from seeing the ciphertext). Some of the schemes also fail to have this
property; mainly because they are in a bilinear setting, where the map can be
used for this test.

Let us now discuss some specifics of prior schemes.

BBS PRE. Proxy re-encryption was first proposed by Blaze, Bleumer, and
Strauss (BBS) [5] in Eurocrypt 1998. Their scheme, based on Elgamal, works in
a group G of prime order p. Anyone can send a message m ∈ G to user A with
public key ga (with g ∈ G) by computing (mgk, (ga)k), for a random k ∈ Zp.
A can delegate to B (with public key gb) her decryption rights by giving the
proxy the value b/a mod p. All ciphertexts for A can be converted to ciphertexts
for B by computing (gak)b/a = gbk and then releasing the ciphertext (mgk, gbk).
Unfortunately, this scheme is trivially not key-private, because its re-encryption
algorithm is deterministic. But there is an even easier attack: the adversary
challenges on (A,B) to obtain challenge key r, this key is correct iff r = b/a.
Using the public keys (ga, gb), the adversary can test this as (ga)r = gb.

AFGH PRE. Ateniese, Fu, Green and Hohenberger [2] proposed new PRE
schemes that employ bilinear pairings. Their protocols are unidirectional
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(a re-encryption key from A to B does not imply a key from B to A), an im-
provement over BBS where the keys are bidirectional. Their schemes require a
bilinear map e : G × G → GT , where g ∈ G and Z = e(g, g) ∈ GT . In their
first scheme, public key for A is ga and similarly B’s public key is gb. The re-
encryption key rkA→B is gb/a. However, this scheme is not key-private, because
the adversary can challenge on (A,B) to obtain key r and then test if r = gb/a

as e(ga, r) = e(gb, g). A similar attack also works for their second scheme.1 But
since both schemes are deterministic, the generic attack also applies here.

CH PRE. Canetti and Hohenberger [8] proposed the first CCA-secure bidirec-
tional PRE scheme in the standard model. However, even CCA-security does not
ensure key-privacy, because the public keys (e.g., ga, gb) and re-encryption keys
(e.g., b/a) are the same as in the BBS PRE, so the proxy can attack key-privacy
here using the same algorithm from BBS. Part of the re-encryption algorithm of
this scheme is also deterministic, and therefore, the generic attack again applies.

LV PRE. Libert and Vergnaud [12] proposed the first CCA-secure unidirec-
tional PRE scheme in the standard model. To achieve CCA-security, they em-
ploy a quite interesting technique whereby the encryption of the scheme in [2]
is randomized by the proxy via a blinding factor that effectively hides the re-
encryption key within the re-encryption (which is also followed by a proof of
consistency). Interestingly, their scheme is not key-private even though the re-
encryption algorithm is probabilistic. Indeed, A and B have respectively public
keys ga and gb, and the proxy key is rkA→B = gb/a, just as in AFGH. Thus, as
in AFGH [2], the adversary can challenge on (A,B) to obtain key r and then
test if r = gb/a as e(ga, r) = e(gb, g).

HRSV PRE. Recently, Hohenberger, Rothblum, shelat, and Vaikuntanathan
[10] presented a CPA-secure unidirectional PRE in the standard model, with
probabilistic algorithms for performing encryption and generating re-encryption
keys. Moreover, HRSV satisfied a very strong security notion, treating the re-
encryption key together with the re-encryption algorithm as an obfuscated re-
encryption program. That is, a program whose code is scrambled in such a way
that: (1) it still produces the correct outputs, and yet (2) it is not possible to
“reverse engineer” the program to learn its secrets (i.e., anything that cannot be
learned from black-box access to the program.) Interestingly, even their strong
obfuscation definition does not imply key privacy and their construction does not
satisfy our definition. To see this, recall that their construction is set in a bilinear
group, where Alice’s public key is of the form (g, ga1, ga2) and Bob’s public key is
of the form (h, hb1 , hb2) for random g, h ∈ G and random exponents a1, a2, b1, b2.
Given these public keys, the adversary can ask to see the re-encryption key

1 To see why the second AFGH scheme is not key-private, consider the following attack.
The adversary can ask for the re-encryption key from (C, A) to obtain r1 = ga2c1 .
The adversary can next challenge on (C, B) to obtain r2. Then the adversary can
test if r2 = gb2c1 , making it a valid re-encryption key from C to B, via e(r1, g

b2) =
e(r2, g

a2) with public key values ga2 and gb2 . This test determines if two keys have
the same delegator, which is not possible under our key-privacy definition.



Key-Private Proxy Re-encryption 283

for (A,B) which will be (y, yb1/a1 , yb2/a2), where y ∈ G is chosen randomly.
The adversary can then challenge on (B,A) to obtain a key (r, r1, r2), which if
correct, is of the form (r, ra1/b1 , ra2/b2) for a random r ∈ G. The adversary can
then test for correctness as e(y, r) = e(yb1/a1 , r1) = e(yb2/a2 , r2). Thus, even
this obfuscation is not key-private. Indeed, our notion seems difficult to satisfy
because, unlike the obfuscation definition, we will allow the adversary broad
query powers and the ability to collude with system users, whereas the current
definition of obfuscation considers the release of only one re-encryption program.

1.2 Applications

PRE has been proposed for use in email-forwarding [5], secure file systems [2],
DRM [14], and secure mailing lists [11]. All these applications can benefit from
the key-privacy property in some way. In email-forwarding, Alice may not want
the mail server to know to whom she is delegating her decryption rights. This
is similar in the real world to a P.O. Box address where mail can be sent to
a physical location but neither the sender nor the carrier may know who the
actual recipient is. Alice can hide the fact that Bob is a delegatee by instructing
the server to convert her encrypted emails via a key-private PRE scheme and to
forward the results to an anonymous (or group) email address (i.e., an address
reachable by Bob but that does not contain any identifiable information on Bob,
like a P.O. Box address indeed).

In a distributed file system, PRE schemes can be used as an access control
mechanism to specify who can access and read encrypted files [2]. Alice may
want Bob to read some of her encrypted files, thus she instructs the file system
to convert those files using a proxy re-encryption key from Alice to Bob. In a
distributed file system, anyone can access those files but only Bob can read them.
If the PRE scheme employed is key-private, nobody can even tell who can access
and read any file in the system.

In [14], Taban, Cárdenas, and Gligor describe a secure and interoperable dig-
ital rights management (DRM) system based on proxy re-encryption and proxy
re-signatures [3]. They specify, implement, and analyze a framework within which
different DRM systems can interoperate. Proxy re-encryption is used by a Do-
main Interoperability Manager (DIM) that translates DRM packaged digital
content between devices with distinct DRM systems. The DIM is a semi-trusted
entity that is susceptible to compromise, thus encryption is used to ensure pri-
vacy of the content and licenses associated with each DRM system. A key-private
PRE scheme would also hide the associations between the various devices and
their respective DRM systems in case of compromise.

In [11], Khurana, Heo, and Pant propose to use proxy re-encryption for SELS
(Secure Email List Services), a system that provides private email discussion lists
via encryption. A list is composed of several members that exchange messages
internally or with other members outside the list. To send a private message
to a list (and to its members), it is enough to encrypt the message under a
public-key associated with the list. A List Server (LS) uses a PRE scheme to
translate that encryption into encryptions under the public keys of each member
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of the list, respectively. If the LS server is ever compromised, the secret keys of
the list and its members would remain protected as well as the content of any
messages exchanged within the list. However, the identities of the members in
a list would be exposed by just looking at the re-encryption keys. This may not
be desirable in many contexts and thus a key-private PRE scheme would be
preferable whenever the privacy of list members must be guaranteed.

In [13], Suriadi, Foo and Smith use proxy re-encryption to develop a credential
system with conditional privacy. Their system has many proxies providing keys
to parities who wish to remain anonymous. They use multiple-hops in their key
distribution to help maintain anonymity; it would be possible to instead use a
key-private PRE scheme.

2 Key-Private PRE Definitions

We build upon the re-encryption definitions of [2] and [8] to introduce the
concept of key privacy. We will only consider a definition for unidirectional,
single-hop PREs. By single-hop, we mean that only original ciphertexts (and not
re-encrypted ciphertexts) can be re-encrypted.

Definition 1. (Unidirectional, Single-Hop PRE) A unidirectional, single-
hop, proxy re-encryption scheme is a tuple of algorithms Π = (Setup,KeyGen,
ReKeyGen,Enc,ReEnc,Dec) for message space M :

– Setup(1k) → PP . On input security parameter 1k, the setup algorithm out-
puts the public parameters PP .

– KeyGen(PP ) → (pk, sk). On input public parameters, the key generation
algorithm KeyGen outputs a public key pk and a secret key sk.

– ReKeyGen(PP, ski, pkj) → rki→j . Given a secret key ski and a public key
pkj, where i �= j, this algorithm outputs a unidirectional re-encryption key
rki→j . The restriction that i �= j is provided as re-encrypting a message to
the original recipient is impractical.

– Enc(PP, pki,m) → Ci. On input a public key pki and a message m ∈ M ,
the encryption algorithm outputs an original ciphertext Ci.

– ReEnc(PP, rki→j , Ci) → Cj. Given a re-encryption key from i to j and an
original ciphertext for i, the re-encryption algorithm outputs a ciphertext for
j or the error symbol ⊥.

– Dec(PP, ski, Ci) → m. Given a secret key for user i and a ciphertext for i,
the decryption algorithm Dec outputs a message m ∈M or error symbol ⊥.

A PRE scheme Π is correct with respect to domain M if:

– For all (pk, sk) ∈ KeyGen(PP ) and all m ∈M , it holds that

Dec(PP, sk,Enc(PP, pk,m)) = m.

– For all pairs (pki, ski), (pkj , skj) ∈ KeyGen(PP ) and re-encryption keys
rki→j ∈ ReKeyGen(PP, ski, pkj), and m ∈M , it holds that

Dec(PP, skj ,ReEnc(PP, rki→j ,Enc(PP, pki,m))) = m.
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Definition 2. (Unidirectional, Single-Hop PRE CPA-Security Game)
Let 1k be the security parameter. Let A be an oracle TM, representing the ad-
versary. The PRE-CPA game consists of an execution of A with the following
oracles. The game consists of three phases, which are executed in order. Within
each phase, each oracle can be executed in any order, poly(k) times, unless oth-
erwise specified.
Phase 1:

– Public Parameter Generation: The public parameters are generated and
given to A. This oracle is executed first and only once.

– Uncorrupted Key Generation: Obtain a new key pair (pk, sk) by running
KeyGen(PP ). A is given pk. Let ΓH be the set of honest user indices.

– Corrupted Key Generation: Obtain a new key pair (pk, sk) by running
KeyGen(PP ). A is given (pk, sk). Let ΓC be the set of corrupt user indices.

Phase 2:

– Re-encryption Key Generation Orkey: On input (i, j) by the adversary,
where the key pairs for i and j were generated in Phase 1, return the key
rki→j = ReKeyGen(PP, ski, pkj). All requests where i = j or where i ∈ ΓH

and j ∈ ΓC are ignored (an output of ⊥).
– Re-encryption Orenc: On input (i, j, Ci), where the keys for i and j were

generated in Phase 1, return Cj = ReEnc(PP,ReKeyGen(PP, ski, pkj), Ci).
For requests where i = j or where i ∈ ΓH and j ∈ ΓC , output ⊥.

– Challenge Oracle: On input (i,m0,m1), the oracle chooses a random b←
{0, 1} and returns the challenge ciphertext Ci = Enc(PP, pki,mb). This or-
acle can only be queried once, and it is required that i ∈ ΓH .

Phase 3:

– Decision: Eventually, A outputs decision b′ ∈ {0, 1}. A wins the game if
and only if b = b′.

Definition 3. (Unidirectional, Single-Hop PRE CPA Security) Given
security parameter 1k, a PRE scheme is Unidirectional PRE CPA secure for
domain M of messages if is it correct for M and ∀ p.p.t. adversaries A, ∃ a
negligible function ε such that A wins the unidirectional PRE-CPA game with
probability at most 1

2 + ε(k).

Remark 1 (Corruptions). As in many prior re-encryption papers [2,8,12], we
work in a static corruption model, where the adversary must chose to either
corrupt a party or not at the time the party’s keypair is generated. Indeed, the
problem of handling dynamic corruptions for any encryption scheme is a clas-
sically difficult problem. This rules out allowing the adversary to query Orkey

from an honest to a corrupt user, since this action would corrupt the honest
user. Moreover, we also disallow adversarial queries to Orenc from honest to
corrupt users, as in [2], since such access could simulate a decryption oracle
which we do not consider in CPA-secure constructions.



286 G. Ateniese, K. Benson, and S. Hohenberger

Next, we turn to what it means for a re-encryption key to be key-private. In-
formally, we want a proxy to be unable to identify either the delegator i or the
delegatee j when given the re-encryption key rk i→j and flexible interaction with
the system (e.g., other re-encryption keys, access to re-encryption oracles, etc.)
To capture this idea, we say that the proxy is allowed to choose (i, j) and then
cannot distinguish the valid key rk i→j from a random value in the key space.

Our definition for key privacy is more challenging to realize than CPA-security,
because most of the restrictions on how the adversary can call Orkey and Orenc

are now removed. Indeed, we allow a form of dynamic corruption here. For
example, it is now legal for the adversary to ask for re-encryption keys and
re-encryptions from honest to corrupt parties, and then later to challenge on
these honest parties. In other words, key-privacy is maintained even when honest
parties unwisely delegate decryption capabilities to corrupt parties.

Definition 4. (Unidirectional, Single-Hop PRE Key-Privacy Game)
Let k be the security parameter. Let A be an oracle TM, representing the adver-
sary. The PRE Key-Privacy Game consists of an execution of A with the same
oracles as before unless specified below. There are three phases.
Phase 1:

– The adversary is given the public parameters, and then may request uncor-
rupted or corrupted key pairs to be created, as before.

Phase 2:

– Re-encryption Key Generation Orkey: On input (i, j) by the adversary,
where the key pairs for i and j were generated in Phase 1, return the key in
table T corresponding to (i, j). If there is no such entry in the table, compute
it as ReKeyGen(PP, ski, pkj), add the key to the table T in cell (i, j), and
output this key. The oracle will only produce a single re-encryption key for
(i, j). If i = j then the error symbol ⊥ is returned. Note that there is no
longer the restriction that i �∈ ΓH or j �∈ ΓC .

– Re-encryption Orenc: On input (i, j, Ci) where the key pairs for i and j were
generated by KeyGen, obtain the re-encryption key s corresponding to (i, j) in
table T . If no such key exists, create it as s← ReKeyGen(PP, sk i, pk j) and save
it in table T . Return either Cj = ReEnc(PP, s, Ci) or ⊥ if i = j.

– Challenge Oracle: This oracle can only be challenged once. On input (i, j),
the oracle sets s to be the key corresponding to (i, j) in table T . If no such key
exists, it creates it as s← ReKeyGen(PP, sk i, pk j). The oracle then chooses
a bit b ← {0, 1} and then returns the value s if b = 1 and a random key in
the key space otherwise. The constraints are that Orkey must not have been
queried for (i, j) before, i �= j and i, j ∈ ΓH .

Phase 3:

– Decision: Eventually, A outputs decision b′ ∈ {0, 1}. We say that A wins
the game if and only if b = b′.



Key-Private Proxy Re-encryption 287

Definition 5. (Unidirectional, Single-Hop PRE Key Privacy) For secu-
rity parameter 1k, a PRE scheme is key-private if ∀ p.p.t. adversaries A, ∃ a
negligible function ε such that A wins the unidirectional PRE Key-Privacy Game
with probability at most 1

2 + ε(k).

2.1 Impossibility Results for Key-Private Re-encryption

Before seeing the construction, we lay out some necessary, but not sufficient,
conditions for satisfying the above definition in two simple lemmas.

Lemma 1. Any bidirectional or unidirectional re-encryption scheme (Setup,
KeyGen,ReKeyGen,Enc,ReEnc,Dec), where the ReEnc algorithm is determinis-
tic cannot satisfy key-privacy (Definition 5).

Proof. Suppose ReEnc is deterministic. An adversary A wins the key-privacy
game as follows:

1. Ask for a set of uncorrupted parties to be generated; obtain the public pa-
rameters and keys.

2. Choose a random m in the message space and compute c = Enc(PP, pk1,m).
3. Query the re-encryption oracle Orenc(1, 2, c) to obtain the response c′.
4. Challenge on identities (1, 2) and obtain the challenge key s. (Recall that,

by definition, the key-privacy challenger will return the same key here that
it used in the previous step.)

5. Using s, run the deterministic algorithm ReEnc(PP, s, c)→ c′′.
6. If c′ = c′′, output 1, else output 0.

It is easy to see that A succeeds with overwhelming probability.

This lemma immediately rules out almost all prior PRE constructions [5,2,8] as
candidates for key privacy. Nor is it obvious how to transform these construc-
tions into key-private schemes. The schemes by Libert and Vergnaud [12] and
Hohenberger et al. [10] employ probabilistic re-encryption algorithms, but they
still admit key-privacy attacks. Thus, a probabilistic re-encryption algorithm is
a necessary, but not sufficient condition.

Lemma 2. Any bidirectional or unidirectional re-encryption scheme (Setup,
KeyGen,ReKeyGen,Enc,ReEnc,Dec) satisfying the key-privacy (Definition 5) im-
plies that (Setup,KeyGen,Enc,Dec) admits a key-private encryption scheme ac-
cording to the standard definition [4].

In other words, it is not possible for a PRE scheme to be key-private, unless
the underlying encryption resulting from a re-encryption is key-private. The
point here is that any key-private PRE must admit some key-private encryption
scheme. Bellare, Boldyreva, Desai and Pointcheval [4] introduced key-private
encryption, where an adversary cannot distinguish the intended recipient from
the ciphertext. More formally, the adversary is given two public keys pk0, pk1,
chooses a message m, is given an encryption of m under one of the two keys
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b ∈ {0, 1} chosen at random, and finally issues a guess b′ ∈ {0, 1}. The se-
curity notion requires that all efficient adversaries cannot achieve b = b′ with
probability non-negligibly better than random guessing.

For a PRE scheme to be key-private, the proxy cannot distinguish the intended
recipient from the ciphertext even when given access to re-encryption keys and
re-encryption oracles. To see this, consider that otherwise an adversary A can
win the key-privacy game as follows:

1. Ask for n uncorrupted parties to be generated; obtain the public parameters
and keys.

2. Choose a random m in the message space and compute c = Enc(PP, pk1,m).
3. Challenge on identities (1, 2) and obtain the challenge key s.
4. Using s, run the possibly probabilistic algorithm ReEnc(PP, s, c)→ c′.
5. If c′ is a ciphertext under public key pk2, output 1, else output 0.

The BBS PRE [5] uses Elgamal (in a non-bilinear setting) as its encryption
base and thus satisfies anonymous encryption via Bellare et al. [4], although it is
not a key-private PRE. Thus, this condition is also necessary, but not sufficient.

3 A Key-Private PRE Scheme

3.1 Algebraic Setting

Bilinear Groups. We write G = 〈g〉 to denote that g generates the group G.
Let BSetup be an algorithm that, on input the security parameter 1k, outputs
the parameters for a bilinear map as (q, g,G,GT , e), where G,GT are of prime
order q ∈ Θ(2k) and 〈g〉 = G. The efficient mapping e : G × G → GT is both:
(Bilinear) for all g ∈ G and a, b ∈ Zq, e(ga, gb) = e(g, g)ab; and (Non-degenerate)
if g generates G, then e(g, g) �= 1. We consider the following assumptions.

Decisional Bilinear Diffie-Hellman (DBDH) [7]:LetBSetup(1k)→ (q, g,G,
GT , e),where 〈g〉 = G. For allp.p.t. adversariesA, there exists anegligible function
ε such that the following probability is less than or equal to 1/2 + ε(k):

Pr[a, b, c, d← Zq; x1 ← e(g, g)abc; x0 ← e(g, g)d; z ← {0, 1};
z′ ← A(g, ga, gb, gc, xz) : z = z′].

Extended DBDH (EDBDH) [2]: Let BSetup(1k)→ (q, g,G,GT , e), where
〈g〉 = G. For all p.p.t. adversaries A, there exists a negligible function ε such
that the following probability is less than or equal to 1/2 + ε(k):

Pr[a, b, c, d← Zq; x1 ← e(g, g)abc; x0 ← e(g, g)d; z ← {0, 1};

z′ ← A(g, ga, gb, gc, e(g, g)bc2
, xz) : z = z′].

Decision Linear [6]: Let BSetup(1k)→ (q, g,G,GT , e), where 〈g〉 = G. Let h, f
be random generators in G. For all p.p.t. adversaries A, there exists a negligible
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function ε such that the following probability is less than or equal to 1/2 + ε(k):

Pr[x, y, r ← Zq; q1 ← fx+y; q0 ← f r; z ← {0, 1};
z′ ← A(g, h, f, gx, hy, qz) : z = z′].

3.2 The Construction

Scheme Π = (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) is described as follows:

Setup (Setup): Run BSetup(1k) → (q, g,G,GT , e), where 〈g〉 = G. Choose a
random generator h ∈ G. Compute Z = e(g, h), and set the public parame-
ters PP = (g, h, Z). In the following, we assume that all parties have PP .

Key Generation (KeyGen): Choose random values a1, a2 ∈ Zq and set the
public key as pk = (Za1 , ga2) with secret key sk = (a1, a2).

Re-Encryption Key Generation (ReKeyGen): UserAwith secret key (a1, a2)
can delegate to user B with public key (Zb1 , gb2) by selecting random values
r, w ∈ Zq and then computing rkA→B as:

((gb2)a1+r, hr, e(gb2 , h)w, e(g, h)w) = (gb2(a1+r), hr, Zb2w, Zw).

Encryption (Enc): To encrypt a message m ∈ GT under public key pkA =
(Za1 , ga2), select random value k ∈ Zq and compute the ciphertext as:

(gk, hk,m · Za1k).

We note that, as in prior schemes [2], it is possible to use this same public key
to produce a ciphertext that cannot be re-encrypted, and thus only opened
by the holder of skA by selecting a random k ∈ Zq and outputting the
Elgamal ciphertext (e(ga2 , h)k,m ·Zk) = (Za2k,m · Zk). We refer to this as
a first-level ciphertext, and re-encryptable ones as second-level ciphertexts.

Re-Encryption (ReEnc): Given a re-encryption key rkA→B = (R1, R2, R3, R4)
= (gb2(a1+r), hr, Zb2w, Zw), it is possible to convert a second-level ciphertext
CA = (α, β, γ) for A into a first-level ciphertext for B as follows:
1. Verify that the ciphertext is well-formed, by checking that it uses consis-

tent randomness in its first two parts as: e(α, h) = e(g, β). If this does
not hold, output ⊥ and abort.

2. Otherwise, there exists some k ∈ Zq and m ∈ GT such that α = gk,
β = hk and γ = m ·Za1k, and thus, (α, β, γ) is a valid encryption of this
m under pkA = (Za1 , ga2).

3. Compute t1 = e(R1, β) = e(gb2(a1+r), hk) = Zb2k(a1+r).
4. Compute t2 = γ · e(α,R2) = m · Za1k · Zrk = m · Zk(a1+r).
5. Select a random w′ ∈ Zq.
6. Re-randomize t1 by setting t′1 = t1 ·Rw′

3 = Zb2(k(a1+r)+ww′).
7. Re-randomize t2 by setting t′2 = t2 ·Rw′

4 = m · Zk(a1+r)+ww′
.

8. Publish CB = (t′1, t
′
2) = (Zb2y,m · Zy), where y = k(a1 + r) + ww′.
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Decryption (Dec): Given secret key (a1, a2), to decrypt a first-level cipher-
text (α, β), compute m = β/α1/a2 ; and to decrypt a second-level ciphertext
(α, β, γ), output ⊥ if e(α, h) �= e(g, β), otherwise output m = γ/e(α, h)a1 .

Fortunately, this scheme is practical and multi-purpose. Public keys can be
used either for re-encryption purposes or for regular Elgamal encryptions. For
completeness, we show in the full version [1] that the CPA-security of the first-
level ciphertexts holds under DBDH.

3.3 Security Analysis

We first argue that the above scheme is secure and then that it is key-private.

Theorem 1 (CPA Security). Under the EDBDH assumption in G, scheme
Π is a unidirectional, single-hop, CPA-secure PRE scheme for message domain
GT according to Definition 3.

The main difficulty in the proof of Theorem 1 is ensuring that the reduction can
properly answer all the re-encryption key and re-encryption queries asked by A.
It will be easier to work with the following assumption implied by EDBDH:

Definition 6. Modified Extended Decisional Bilinear Diffie-Hellman
(mEDBDH): Let BSetup(1k) → (q, g,G,GT , e), where 〈g〉 = G. For all p.p.t.
adversaries A, there exists a negligible function ε such that the following proba-
bility is less than or equal to 1/2 + ε(k):

Pr[s, t, u, v← Zq; x1 ← e(g, g)st/u; x0 ← e(g, g)v; z ← {0, 1};
z′ ← A(g, gs, gt, gu, e(g, g)t/u, xz) : z = z′].

Lemma 3. If the EDBDH assumption holds in G, then so does the mEDBDH
assumption. (Proof of this Lemma appears in the full version [1].)

We now proceed with the proof of Theorem 1.

Proof. Suppose A breaks the CPA-security of our PRE construction with prob-
ability 1/2 + μ, then we create an adversary B who breaks the mEDBDH as-
sumption with probability 1/2+μ/2. Recall that mEDBDH asks when given (g,
gs, gt, gu, e(g, g)t/u, Q) is Q = e(g, g)st/u. Given a mEDBDH instance Δ, B
handles oracle queries from A as:

– Public Parameter Generation B sets up the global parameters for A by
selecting a random n ∈ Zq and setting (g, h, Z) = (g, gn, e(g, g)n).

– Uncorrupted Key Generation B chooses random x, y ∈ Zq and outputs
the public key pk = ((e(g, g)t/u)nx, (gu)y), where the secret key is implicitly
defined as sk = (tx/u, uy).

– Corrupted Key Generation B choose random xi, yi ∈ Zq, and outputs
pki = (Zxi , gyi) and ski = (xi, yi).
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– Re-encryption Key Generation On input (i, j) to Orkey, do:
• If (1) i is uncorrupted and j is corrupted or (2) i = j, output ⊥.
• If i and j are corrupted, pick random r, w ∈ Zq and output (gyj(xi+r), hr,

e(gyj , h)w, Zw).
• If i and j are both uncorrupted, select a random r, w ∈ Zq and output

((gt)yjxi · (gu)yjr, hr, e((gu)yj , h)w, Zw).
• If i is corrupted and j is uncorrupted, select a random r, w ∈ Zq and

output the key ((gu)yj(xi+r), hr, e((gu)yj , h)w, Zw).
– Re-encryption On input (i, j, Ci = (α, β, γ)) to Orenc, do:
• If (1) i is uncorrupted and j is corrupted, (2) i = j or (3) e(α, h) �=

e(g, β), output ⊥.
• Otherwise, there exists some k ∈ Zq and m ∈ GT such that α = gk,

β = hk and γ = m ·Ztxik/u if i is honest or γ = m ·Zkxi if i is corrupted.
• If i and j are both corrupted, recover m = γ/e(g, β)xi, then select a

random r ∈ Zq and output (Zyjr,m · Zr).
• If i and j are both uncorrupted, select random r, w ∈ Zq and output

(e(gtyjxi · guyjr, β) · e(gu, h)yjw, γ · e(α, hr) ·Zw) = (e(gtyjxi · guyjr, hk) ·
e(gu, h)yjw,m · Zkxit/u · e(gk, hr) · Zw).
• If i is corrupted and j is uncorrupted, recover m = γ/e(g, β)xi, then

select a random r ∈ Zq and output (e(gu, h)yjr,m · Zr).
– Challenge Oracle Challenges are of the form (i,m0,m1) where i is the

index of an uncorrupted user. B responds by choosing random d ∈ {0, 1}
and outputting the ciphertext: (gs, (gs)n,md ·Qnxi).

– Decision A will submit a guess of d′ ∈ {0, 1}. If d = d′ then B outputs 1 (is
a mEDBDH instance) otherwise it outputs 0 (not a mEDBDH instance).

By construction, the public parameters and all uncorrupted keys, corrupted
keys, re-encryption keys, and re-encryptions are correct and distributed prop-
erly. As to the challenge ciphertext, we have two cases. In the case that Q =
e(g, g)st/u, then the challenge ciphertext is a proper encryption of md. A will
output d′ such that d = d′ with probability 1

2 +μ. Consequently, B will determine
that Δ was a mEDBDH instance and answer 1 with the same probability. When
Q is random, independent of s, t and u then the challenge ciphertext reveals
no information about md. A will guess that d = d′ with probability of exactly
1
2 , and B will correctly output 0 (not a mEDBDH) with the same probability.
The probability that Δ is a valid mEDBDH instance is 1

2 , and B will output
the correct answer with probability: (1

2 )(1
2 + μ) + (1

2 )(1
2 ) = 1

2 + μ
2 . We apply

Lemma 3 to establish the result.

Theorem 2 (Key Privacy). Under the Decision Linear assumption in G,
scheme Π is a unidirectional, single-hop, key-private PRE scheme according
to Definition 5.

The key-privacy proof is more difficult than that of CPA security. In particular,
here we must be able to correctly re-encrypt ciphertexts for a special pair of users
(I, J) even though we may not be able to compute a valid re-encryption key from
I to J . To do this, we designed our encryption scheme in such a way that there is
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a “back door” for decryption, which in some cases, allows us to decrypt and then
encrypt (thus simulating re-encryption) even when we cannot directly compute
the re-encryption key needed to run the real re-encryption algorithm.

Proof. We show that if an adversary A can break the key-privacy game with
probability 1/2 + μ, then we can construct an adversary B who can break the
Decision Linear assumption with probability roughly 1

2 + μ
4n2 , where n is the

number of honest users. (This loose bound comes from letting the adversary
dynamically pick its pair of honest users to challenge on. In prior key-privacy
definitions [4], the adversary was restricted to a single pair.)

Given a Decision Linear input Δ′ = (g, h, f, gx, hy, Q
?= fx+y), B handles ora-

cle queries from A as follows. Let n be the bound on the number of uncorrupted
users which A will ask to be created. B randomly chooses two as special users I
and J , out of these n, and predicts that A will challenge on identities (I, J). B
will proceed to set up things, so that first two elements of the valid re-encryption
key from I to J will be (fx+y, hy). At a high-level, if A challenged on (I, J) then
his response will be used to help B, and if A challenges on anything else B will
abort. Fortunately, we will see that B does not abort with probability ≥ 1/2n2.

Assuming (I, J) are chosen, let’s see how B proceeds:

– Public Parameter Generation B sets up the parameters of A as (g, h, Z)
= (g, h, e(g, h)).

– Uncorrupted Key Generation
• If this is the key for special user I, then select random a ∈ Zq and output

(e(gx, h), ga).
• If this is the key for special user J , then select random b ∈ Zq output

(Zb, f). Denote f := gs, for some s ∈ Zq.
• Otherwise select random mi, ni ∈ Zq and output (Zmi , gni).

– Corrupted Key Generation Select random mi, ni ∈ Zq and output the
public key as (Zmi , gni), as well as the private key pair (mi, ni).

– Re-encryption Key Generation Given a request to encrypt from i to j,
B selects a random r ∈ Zq and proceeds as follows. If i is corrupted, this
computation can be done by A.
• If B produced a re-encryption key from i to j before or i = j, output ⊥.
• If i is I and j is J , then abort. (I.e., (I, J) will not be the challenge pair.)
• If i is I and j is other, then output ((gx)nj · gnjr, hr, Znjw, Zw).
• If i is J and j is I, then output (ga(b+r), hr, Zaw, Zw).
• If i is J and j is other, then output ((gnj )b+r, hr, Znjw, Zw).
• If i is other and j is I, then output (ga(mi+r), hr, Zaw, Zw).
• If i is other and j is J , then output (fmi+r, hr, e(f, h)w, Zw).
• If i is other and j is other, then output (gnj(mi+r), hr, Znjw, Zw).

– Re-encryption On input (i, j, Ci),
• Check that Ci = (α, β, γ) is properly formed by testing if e(α, h) =

e(g, β). If this check fails or i = j, output ⊥.
• If (i, j) is (I, J), then decrypt Ci using gx as m = γ/e(gx, β). Choose a

random r ∈ Zq and output (e(f, h)r ,m · Zr) = (Zsr,m · Zr). This is a
key step in the proof.
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• Otherwise obtain a re-encryption key (ζ, η, θ, λ) of the same form as the
re-encryption oracle. (It will not matter here if the same key is used or
a new key generated each time, since the next step re-randomizes the
output to hide which key was used.) The ciphertext is then re-encrypted
and re-randomized by selecting a random w′ ∈ Zq and the output is
(e(ζ, β) · θw′

, γ · e(α, η) · λw′
).

– Challenge Oracle Challenges are of the form (i, j) where i and j are indices
of uncorrupted users which have not been queried before. If (i, j) is (I, J),
B outputs (Q, hy, e(f, h)w, Zw). Else, B aborts and makes a random guess.

– Decision A will submit a guess of d ∈ {0, 1}. If d = 1, then B outputs 1 (is a
Decision Linear instance), else it outputs 0 (not a Decision Linear instance).

The public parameters, key generation algorithm, and all responses of Orkey

and Orenc are correct and properly distributed. When B does not abort on
the challenge and A does not detect improper queries, we have two cases. If
Q = fx+y, then the challenge is a valid re-encryption key for (I, J) and A will
output 1 (a good re-encryption key) with probability 1

2 + μ. B will output the
correct answer (is Decision Linear instance) with the same probability. If Q is
random, then A will output the correct answer of 0 (not a valid re-encryption
key) with probability 1

2 . B outputs the same answer, so it will correctly determine
that Δ′ is not a Decision Linear instance with the same probability. Given that
each case occurs with probability 1/2 when B does not abort and B does not
abort with probability ≥ 1

2n2 , the total probability of B’s success is ≥ 1
2 + 1

2n2 · μ2 .

4 Conclusions and Open Problems

We formalized the notion of key-privacy for proxy re-encryption schemes. We
discussed why none of the six or more existing PRE schemes satisfy this sim-
ple privacy notion. We then presented the first construction. It is secure under
standard assumptions in the standard model.

Our construction realizes CPA-security. It would be interesting to realize key-
private CCA-secure PRE. However, some basic approaches, such as applying
the CPA-to-CCA transformation of Fujisaki and Okamoto [9] do not appear to
maintain the key-privacy properties. It was also surprising that the definition of
obfuscation, as in [10], does not capture key-privacy. It would be very interesting
to know if a secure obfuscation of PRE could be realized when allowing the
proxy and users to collude and allowing all the re-encryption and re-encryption
key queries admitted here, as they would be in a real system.

Finally, we suspect that simpler key-private PRE schemes can be devised,
although at the cost of stronger assumptions. The extended version of DBDH and
the Decision Linear assumptions used here are actually quite mild. Nevertheless,
finding more efficient schemes, even under stronger assumptions or in the random
oracle model, would be quite useful for several applications.
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Abstract. We present the first dynamic universal accumulator that al-
lows (1) the accumulation of elements in a DDH-hard group G and (2)
one who knows x such that y = gx has — or has not — been accumu-
lated, where g generates G, to efficiently prove her knowledge of such x
in zero knowledge, and hence without revealing, e.g., x or y.

We introduce the Attribute-Based Anonymous Credential System,
which allows the verifier to authenticate anonymous users according to
any access control policy expressible as a formula of possibly negated
boolean user attributes. We construct the system from our accumulator.

1 Introduction

1.1 Background

Accumulators. Introduced by Benaloh and Mare [5], accumulators allow the
representation of a set of elements Y = {y1, y2, . . . , yn} by a single value v of
size independent of Y ’s cardinality; using an initial value u, one can accumulate
Y into v by invoking the accumulating function f as v := f(u, Y ). Accumulators
should be collision-resistant [3]:

for any element y and any value v, there exists an efficiently computable
witness w for y w.r.t. v if and only if y has been accumulated into v (often
abbreviated as “y is in v”). To prove that y is in v, one can thus demonstrate
the existence of a corresponding w by proving, potentially in zero-knowledge,
the knowledge of w.

Several uses of accumulators, e.g., in anonymous credential systems [10], re-
quire them to be dynamic [12]: one can efficiently update an accumulator value
� Supported in part by the Institute for Security, Technology, and Society, under grant

2005-DD-BX-1091, and the National Science Foundation, under grant CNS-0524695.
The views in this paper do not necessarily reflect those of the sponsors.

M. Fischlin (Ed.): CT-RSA 2009, LNCS 5473, pp. 295–308, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



296 M.H. Au et al.

by adding elements to — and possibly later deleting them from — the value.
Furthermore, when a value is updated, e.g., from v to v′, the witness w for
some element y w.r.t. v can also be efficiently updated to the witness w′ for the
same element y w.r.t. the new value v′. Such accumulators are called dynamic
accumulators (DA’s).

Dynamic universal accumulators (DUA’s) [20], on the other hand, are DA’s
with the additional property of universality: for any element set Y and any
element ȳ, there exists an efficiently computable non-membership witness w̄ for
ȳ w.r.t. value v = f(u, Y ) if and only if ȳ �∈ Y . By demonstrating the existence
of w̄, one can prove that ȳ is not in v. Non-membership witnesses should allow
efficient update.

Several existing DA/DUA constructions have f : (u, {y1, y2, . . . , yn}) "→
uy1y2...yn mod N as their accumulating function [3,12,20], where N is a safe-
prime product and u ∈ QR(N)1. They permit only primes (up to a certain size)
to be accumulated. Their security relies on the Strong RSA (SRSA) assump-
tion [3].

Nguyen [21] constructed a DA from bilinear pairings (to be defined later). It
has f : (u, {y1, y2, . . . , yn}) "→ u(s+y1)(s+y2)...(s+yn) as the accumulating function,
where s is the master secret of the accumulator instance and u is in some group
equipped with a bilinear pairing. The construction allows elements in Zp\{−s}
for some prime p to be accumulated. Its security relies on the q-Strong Diffie-
Hellman (q-SDH) assumption [7]. Unlike the above “SRSA-based” constructions,
dynamically adding an element to a value in Nguyen’s construction requires the
knowledge of s.

An accumulator would not be too useful (at least for building anonymous cre-
dential systems) without a suite of efficient zero-knowledge protocols for proving
various facts about the accumulator values and elements. For instance, all the
aforementioned constructions are equipped with a protocol for in zero-knowledge
that a commitment c opens to some element in an accumulator value v.

Anonymous Credential Systems. In an anonymous credential system
(ACS) [10], those and only those users who have registered to an organization O
can authenticate their membership in O to any verifier (e.g., a server, another
organization, etc.) anonymously and unlinkably among the set of all members in
O. Camenisch and Lysyanskaya [10] constructed the first ACS using a signature
scheme with efficient protocols [11] (commonly referred to as CL-signatures or
P-signatures [4]) as a key building block. Many subsequent works have taken the
same approach [11,12,13,4].

In this approach, to join an organization O, a user U first registers her
pseudonym, which is simply a commitment of her pre-established private key
xU , e.g., in her PKI credential. Pseudonyms (even those of the same user) are
hence unlinkable. O then issues a CL-signature σU on xU according to the issu-
ing protocol for CL-signatures, during which O learns nothing about xU . U uses
σU as her anonymous credential.

1 QR(N) denotes the group of quadratic residues modulo N .
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To be able to revoke membership efficiently, O can maintain a DA as a “white-
list” of users whose membership has not yet been revoked [12], by adding each
user U ’s credential σU (or its identifier) to its DA when U registers and, when de-
sired, deleting σU from DA to revoke U ’s membership. Therefore, to demonstrate
her non-revoked membership in O to a verifier V , U conducts a zero-knowledge
proof that (1) she has O’s signature on her private key, and that (2) the sig-
nature is a credential in O’s current DA. Alternatively, O can maintain a DUA
as a “blacklist” of users whose membership has been revoked [20]. In this case,
to demonstrate her non-revoked membership in O, U instead proves in zero-
knowledge that (1) she has O’s signature on her private key, and that (2) the
signature is not a credential in O’s current DUA.

1.2 Attribute-Based Anonymous Credential Systems

As a major contribution of this paper, we present the Attribute-Based Anony-
mous Credential System (ABACS), which generalizes the conventional notion
of anonymous credential system (ACS) [10], in a fashion analogous to how
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [6] generalizes public-
key encryption, and how attribute certificates generalize identity certificates in
X.509 PKIs [18].

Credentials in ABACS can be more precisely referred to as
anonymous attribute credentials — they are issued to users to certify their
possession of an attribute, allowing the users to prove various facts to any
verifier about their credential ownership and hence attribute possession in some
anonymous fashion. ABACS thus enables privacy-preserving attribute-based
access control , in which a server is willing to grant a user access to an object
such as a file or a service so long as the attributes possessed and/or lacked
by the user satisfy the server’s access control policy on the object, while
privacy-concerned users desire to access the object by revealing merely the fact
that they satisfy the policy, and can thus conceal, e.g., their identity, how they
satisfy the policy, and etc.

In this paper, we confine ourselves to boolean attributes only. (Some attributes
such as age and weight may take a value from a wider range such as non-negative
integers and real numbers, and are hence non-boolean.) Boolean attributes pro-
vide rich semantics for labeling objects for access control. For example, they can
represent group membership, or “roles” in Role-Based Access Control (RBAC).

Features. ABACS is a credential system with the following features.

– Flexible attribute-based access control. The verifier can choose to enforce any
access control policy expressible as a boolean attribute formula in disjunctive
normal form (DNF), i.e., a disjunction of terms, where each term is a conjunc-
tion of possibly negated boolean attributes, e.g., “(Student∧Bio)∨(¬Bio)”.

– Multiple ACAs. To support an attribute, a corresponding Attribute Certifica-
tion Authority (ACA) is created (during setup or dynamically when needed)
to issue credentials to users to certify their possession of that attribute. These
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ACAs are mutually independent; an ACA can only certify the possession of
attributes for which it was created. This allows them to have different cer-
tification procedures with different trust levels, and confines the damages of
their compromises.

– Robust accountability. The verifier accepts in the authentication only if the
authenticating user satisfies the access control policy being enforced, i.e.,
the corresponding boolean formula evaluates to true on input the set of
attribute for which the user has acquired a credential2.
Hence, a user who has acquired a credential for an attribute can’t pretend
that she hasn’t, and colluding users, none of which alone satisfy the policy,
can’t satisfy it by pooling together their credentials.

– Anonymous authentication. The verifier knows only whether an authenticat-
ing user satisfies the access control policy he is enforcing. More precisely,
authentication attempts by honest users who (resp. do not) satisfy the ver-
ifier’s policy are anonymous and unlinkable among the set of all users who
also (resp. do not) satisfy the policy.

– Anonymous certification. While ACAs must make public some data related
to the certification status of users’ attribute possession for authentication
to be possible, some applications may require that such data reveals no
(computational) information about the identity of the certified users, or more
generally, no one can tell if two ACAs have issued a credential a common
user.

– Efficiency and practical negation support. The authentication can be done
in O(|P |) time, where |P | is the size of the verifier’s policy measured in
the number of (negated) attributes in it, and hence regardless of, e.g., the
number of users, verifiers, ACAs, or attributes that the authenticating user
possesses/lacks.
Also, a user who lacks an attribute never has to contact anyone (e.g., the
corresponding ACA) before she can prove her lack of the attribute.

Applications. The two scenarios below can benefit from ABACS.
The Biology department provides free parking to its students and any visitor

from outside the department. The parking lot entrance hence enforces an access
control policy of “(Bio ∧ Student) ∨ (¬Bio)”. Identifiable authentication solu-
tions3 would violate the privacy desired by some users. A solution should allow
different departments to locally manage their own “membership”. Also, a visitor
shouldn’t have to show up at the Biology Department to get a “¬Bio” credential
before he or she can park.

A pharmacist must check that “Fever∧ ¬Asthma” holds for a patient before
dispensing Aspirin (as many asthma sufferers are allergic to Aspirin), while the
patient may not want to disclose her entire medical record, e.g., when she has
an unrelated genetic disorder. Also, a fever patient with asthma with the “help”
from someone without fever or asthma must still be unable to obtain Aspirin.
2 A (resp. negated) attribute in a formula evaluates to true if and only if it is (resp.

not) contained in the user’s attribute set.
3 E.g., waving an RFID card, or an e-token installed with X.509 attribute certificates.
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2 Solution Overview

We start with some preliminaries. We then briefly describe how we construct a
DUA that allows the accumulation of elements in a DDH-hard group, which we
call DUA-DDH. Finally, we highlight how we build ABACS from it.

2.1 Preliminaries

Bilinear pairings. A bilinear pairing is a mapping from a pair of group elements
to a group element. Specifically, let G1 and G2 be some cyclic groups of prime
order p. Let g be a generator of G1. A function ê : G1 × G1 → G2 is a bilinear
pairing if the following holds:

– Unique Representation. Each element in G1, G2 has unique binary represen-
tation.

– Bilinearity. e(Ax, gy) = e(A,B)xy for all A,B ∈ G1 and x, y ∈ Zp.
– Non-degeneracy. e(g, g) �= 1, where 1 is the identity element in G2.
– Efficient Computability. e(A,B) can be computed efficiently (i.e. in polyno-

mial time) for all A,B ∈ G1.

Complexity assumptions. The Decisional Diffie-Hellman (DDH) problem in G
is defined as follows: On input a quadruple (h0, h1, h

x
0 , y

∗) ∈ G4, output 1 if
y∗ = hx

1 and 0 otherwise. We say that the DDH assumption holds in G if no
PPT algorithm has non-negligible advantage over random guessing in solving
the DDH problem in G. We call a group DDH-hard if the DDH assumption
holds in the group.

The q-Strong Diffie-Hellman (q-SDH) problem in G = 〈g0〉 is defined as fol-
lows: On input a (q + 1)-tuple (g0, gα

0 , gα2

0 , . . ., gαq

0 ) ∈ Gq+1, output a pair
(w, y) ∈ G × Z∗

p, where p is the order of G, such that w(α+y) = g0. We say
that the q-SDH assumption holds in G if no PPT algorithm has non-negligible
advantage in solving the q-SDH problem in G.

Zero-knowledge proof-of-knowledge. In a zero-knowledge proof of knowledge pro-
tocol [19], a prover convinces a verifier that some statement is true without
the verifier learning anything except the validity of the statement. We use Ca-
menisch and Stadler’s notation [14]. For example, PK{(x) : y = gx} denotes
a zero-knowledge proof-of-knowledge protocol that proves the knowledge of the
discrete logarithm of y to the base g.

2.2 Our Dynamic Universal Accumulators for DDH Groups

To construct DUA-DDH, we take Nguyen’s DA construction as the point of de-
parture; we augment universality to it. Li et al. [20] presented a technique to
augment universality to Camenisch and Lysyanskaya’s DA construction [12].
The technique, however, requires the unique factorization of integers and relies
on the SRSA assumption, and hence is not immediately applicable to Nguyen’s
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DA. Fortunately, we make the observation that the technique works as long as
the domain of accumulatable elements is (a subset of) a Euclidean domain. (In
the case of Li et al.’s, the domain is the ring of integers.) Consequently, to aug-
ment universality to Nguyen’s construction, we adapt the technique to work on
a different Euclidean domain, namely the ring of polynomials over a finite field.

We also equip our accumulator construction with a few useful zero-knowledge
protocols. Of particular importance is the following pair:⎧⎨⎩

PK {(x, y) : C = Com1(x) ∧ D = Com2(y) ∧ y = gx ∧ y is in v)}

PK {(x, y) : C = Com1(x) ∧ D = Com2(y) ∧ y = gx ∧ y is not in v)}

where Com1 and Com2 are commitment schemes and g generates a DDH group,
the elements in which can be accumulated in our accumulator. We construct the
protocol using Pedersen’s commitment scheme [22] and Camenisch’s technique
for proving double discrete logarithms [14]. The construction has a complexity
of O(λ) for a cheating probability of 2−λ.

This protocol is the cornerstone of our ABACS construction.

2.3 Our Attribute-Based Anonymous Credential System

Let G be a DDH group. Let ACA i be the ACA that certifies users’ possession of
attribute i. Each ACA i instantiates and maintains a DUA-DDH Ai of its own,
but for the same G, and independently picks a generator gi of G at random.

Let U be a user with a pre-established private key x. For each attribute i she
possesses, she can get certified by ACA i by providing her pseudonym yi = gx

i

w.r.t. ACA i. ACA i then adds yi to its Ai. To later revoke the certification,
ACA i can simply delete yi from Ai. Finally, for each attribute j U lacks, she
need not do anything (such as contacting ACA j); her pseudonym w.r.t. ACA j
is by default not in ACA j’s Aj .

Each ACA i publishes Ai, gi (with a proof of their correct generation) and the
list of pseudonyms that have been added in Ai. Thanks to the DDH assumption,
no one — not even to the ACAs — can tell which user a pseudonym belongs to,
or whether two ACAs’ pseudonym lists contain a common user (non-negligibly
better than random guessing).

From the published information, a user can compute a (resp. non-) member-
ship witness for each attribute i she has (resp. not) been certified. The first-time
computation takes O(|Li|) time when ACA i has certified |Li| users. This com-
putation can be further reduced to O(1) by moving the computation to ACA
which is in possession of the auxiliary information of the accumulator. Updat-
ing the witness in the future take constant time per each change in the list of
certified users.

User U who possesses attribute i and has been certified by ACA i can prove
such fact to any verifier during authentication by proving that she has the knowl-
edge of some x such that yi = gx

i is in Ai. Similarly, if U lacks attribute j, she
can prove the fact by proving that yj = gx

j is not in Aj . These proofs can be
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accomplished in constant time. Generalizing the proof using a standard tech-
nique [16], a user can prove the validity of any DNF boolean attribute formula
in time linear in the size of the formula.

Due to page limitation, the presentation of our ABACS ends here. More details
about its syntax, construction, security formalism and proofs can be found in
the full version of this paper [2].

3 Our Dynamic Universal Accumulators for DDH Groups

3.1 Definitions

We incrementally define Dynamic Universal Accumulators for DDH Groups
(DUA-DDH’s). We start by adapting Li et al.’s definition of universality to
pairing-based accumulators.

Definition 1 (Universal Accumulators (UAs)). A universal accumulator
is a scheme with the following properties:

– Efficient generation There exists a Probabilistic Polynomial-Time (PPT)
algorithm Gen that, on input security parameter 1λ, outputs a tuple
(f, g,Yf , u, tf), where f is a function Uf × Y ′

f → Uf and g is another function
Uf → Ug for some domains Yf′ ,Uf ,Ug; Yf ⊆ Y ′

f is the domain for accumu-
latable elements; tf is some optional auxiliary information about f; and u is
a element in Uf . We assume the tuple (f, g) is drawn uniformly at random
from its domain.

– Quasi-commutativity For all (f, g,Yf , ·) ← Gen(1λ), v ∈ Uf and y1, y2 ∈
Y ′

f , we have f( f(v, y1), y2) = f( f(v, y2), y1). Hence, if Y = {y1, . . ., yk} ⊂ Y ′
f ,

then we can denote f( · · · f( f(v, y1), y2) · · · , yk) by f(v, Y ) unambiguously.
– Efficient evaluation For all (f, g,Yf , tf , u)← Gen(1λ), v ∈ Uf , and Y ⊂ Yf

so that |Y | is polynomial in λ, the function g ◦ f(v, Y ) is computable in
time polynomial in λ. v = g ◦ f(u, Y ) represents the set Y . We call v the
accumulator value for Y and say that y has been accumulated into v (or y
is “in” v), for all y ∈ Y .

– Membership (resp. non-membership) witnesses For all (f, g,Yf , ·) ←
Gen(1λ), there exists a relation Ω (resp. Ω) that defines membership (resp.
non-membership) witnesses: w (resp. w) is a valid membership (resp. non-
membership) witness for element y ∈ Yf w.r.t. accumulator value v ∈ Uf if
and only if Ω(w, y, v) = 1 (resp. Ω(w, y, v) = 1). Membership witness (resp.
non-membership witness) should be efficiently computable (in polynomial-
time in λ) with tf . %&

The security of universal accumulators requires that it is hard to find a valid
membership (resp. non-membership) witness for an element that is not in (resp.
is indeed in) an accumulator value w.r.t. that accumulator value. We employ a
strong definition in which the adversary is considered successful even if he present
an element that is outside the intended domain of the accumulator (Y ′

f instead
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of Yf). Accumulators with this stronger sense of security improves efficiency of
systems on which it is based because users within this system needs not conduct
proof to demonstrate the elements presented is inside the intended domain of
the accumulator. Below we give a precise definition.

Definition 2 (Security of Universal Accumulators (UAs)). A universal
accumulator is secure if, for any PPT algorithm A, both P1 and P2 are negligible
in λ, where:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P1 = Pr
[
(f, g,Yf , u, ·)← Gen(1λ); (y, w, Y )← A(g ◦ f, g,Yf , u) :
Y ⊂ Y ′

f ∧ y ∈ Y ′
f\Y ∧ Ω(w, y, g ◦ f(u, Y )) = 1

]
,

P2 = Pr
[
(f, g,Yf , u)← Gen(1λ); (y, w, Y )← A(g ◦ f, g,Yf , u) :
Y ⊂ Y ′

f ∧ y ∈ Y ∧Ω(w, y, g ◦ f(u, Y )) = 1

]
.

%&

Definition 3 (Dynamic Universal Accumulators (DUAs)). A DUA is an
UA with the following additional properties:

– Efficient update of accumulator. There exists an efficient algorithm D1
such that for all v = g ◦ f(u, Y ), y /∈ Y and v̂ ← D1(tf , v, y), we have
v̂ = g ◦ f(u, Y ∪ {y}). If y ∈ Y instead, then we have v̂ = g ◦ f(1, Y \ {y})
instead.

– Efficient update of membership witnesses. Let v and v̂ be the original
and updated accumulator values respectively and ŷ be the newly added
(or deleted) element. There exists an efficient algorithm D2 that, on input
y, w, v, v̂ with y �= ŷ and Ω(w, y, v) = 1, outputs ŵ such that Ω(ŵ, y, v̂) = 1.

– Efficient update of non-membership witnesses. Let v and v̂ be the orig-
inal and updated accumulator values respectively and ŷ be the newly added
(or deleted) element. There exists an efficient algorithm D3 that, on input
y, w, v, v̂ with y �= ŷ and Ω(w, y, v) = 1, outputs ŵ such that Ω(ŵ, y, v̂) = 1.

%&

In the above, we call an algorithm “efficient” if its time complexity is independent
of the cardinality of the accumulated element set Y . Security of DUA is defined
as follows. Capabilities of an adversary is defined through queries to oracle OD

which models a working DUA. OD is initialized with the tuple (f, g,Yf , u, tf)
and maintains a list of elements Y , which is initially empty. OD responds to
two types of queries, namely “add y” and “delete y.” It responds to an “add
y” query by adding y to the set Y , modifying the accumulator value v using
algorithm D1 and sending back the updated accumulator value v̂. It responds to
a “delete y” query by deleting it from set Y , modifying the accumulator value v
using algorithm D1 and sending back the updated accumulator value v̂. In the
end, OD outputs the current set Y and accumulator value v. The following is
the definition of secure DUA.

Definition 4 (Security of Dynamic Universal Accumulators (DUAs)).
An universal accumulator is secure if, for any PPT algorithm A, P3 and P4 are
negligible in λ, where:
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P3 = Pr

[
(f, g,Yf , u, tf)← Gen(1λ); (y, w, Y )← AOD(f,g,Yf ,tf)(g ◦ f, g,Yf) :
Y ⊂ Y ′

f ∧ y ∈ Y ′
f\Y ∧ v = g ◦ f(u, Y ) ∧ Ω(w, y, v) = 1

]

P4 = Pr
[
(f, g,Yf , u, tf)← Gen(1λ); (y, w, Y )← AOD(f,g,Yf ,tf)(g ◦ f, g,Yf) :
Y ⊂ Y ′

f ∧ y ∈ Y ∧ v = g ◦ f(u, Y ) ∧ Ω(w, y, v) = 1

]
%&

We state the following theorem. Its proof can be found in the full version of this
paper [2].

Theorem 1. A DUA is secure if the underlying UA is secure. %&

Finally, a DUA-DDH is a DUA such that there exists a cyclic group G ⊂ Yf in
which the DDH assumption holds.

3.2 Constructions

We construct our DUA-DDH in stages. We first give a construction of UA for
DDH groups. We then adds the necessary algorithms for enabling dynamism.

Our UA construction. This construction can be thought as the extension
of Nguyen’s accumulator to support universality. Our computation of non-
membership witnesses involves operations on polynomials over finite fields.

– Generation. Let λ be a security parameter. Let ê : G1 × G1 → G2 be a
bilinear pairing such that |G1| = |G2| = p for some λ-bit prime p. Let g0 be
a generator of G1 and Gq = 〈h〉 be a cyclic group of prime order q such that
Gq ⊂ Z∗

p.
4 The generation algorithm Gen randomly chooses α ∈R Z∗

p. For
simplicity, we always take the initial element u = 1, the identity element in
Z∗

p . The function f is defined as f : Z∗
p×Z∗

p → Z∗
p such that f : u, y "→ u(y+α).

The function g is defined as g : Z∗
p × G1 such that g : y "→ gy

0 . The domain
Yf of accumulatable elements is Gq

5. The auxiliary information tf is α.
– Evaluation. Computing g ◦ f(1, Y ) efficiently is straightforward with the

auxiliary information α. In case one wishes to allow computation of g ◦ f
without α, one can publish gαi

0 for i = 0 to k, where k is the maxi-
mum number of elements to be accumulated. If we denote the polynomial∏

y∈Y (y + α) =
∑i=k

i=0(uiα
i) of maximum degree k as v(α), one can effi-

ciently compute g ◦ f(1, Y ) as g ◦ f(1, Y ) = g
v(α)
0 =

∏i=k
i=0 g

ui

i ∈ G1, without
the knowledge of α.

– Membership witnesses. The relation Ω is defined as Ω(w, y, v) = 1 if and
only if ê(w, gy

0g
α
0 ) = ê(v, g0). For a set of elements Y := {y1, . . . , yk} ∈ Gq,

a membership witness for the element y ∈ Y can be computed in either
one of the following ways, depending on whether one knows the auxiliary
information.

4 If p = 2q + 1, one can choose a random element in h ∈R Z∗
p with order q and set

Gq = 〈h〉.
5 Formally, it is Gq \ {−α}.
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• (With auxiliary information.) Compute the witness as w =

[g
∏k

i=1(yi+α)
0 ]

1
α+y .

• (Without auxiliary information.) Let w(α) be the polynomial∏k
i=1,i�=j(yi +α). Expand w and write it as w(α) =

∑i=k−1
i=0 (uiα

i). Com-

pute the witness as w = g
w(α)
0 =

∏i=k−1
i=0 gui

i ∈ G1.
– Non-membership witnesses. The relation Ω for non-membership wit-

nesses is defined as Ω(w, y, v) = 1 if and only if w = (c, d) and
ê(c, gy

0g
α
0 )ê(g0, g0)d = ê(v, g0). For a set of elements Y := {y1, . . . , yk} ∈ Gq,

a non-membership witness for ỹ /∈ Y can be computed in either one of the
following ways, depending on whether one knows the auxiliary information:
• (With auxiliary information.) Compute w = (c, d) according to d =∏k

i=1(yi + α) mod (α + ỹ) ∈ Zp and c = g

∏k
i=1(yi+α)−d

ỹ+α

0 ∈ G1.
• (Without auxiliary information.) Denote the polynomial v(α) as∏k

i=1(yi + α). Compute a polynomial division of v(α) by (α + ỹ).
Since (α + ỹ) is a degree one polynomial and ỹ �= yi for all i, there
exists a degree k − 1 polynomial c(α) and a constant d such that
v(α) = c(α)(α + ỹ) + d. Expand c and write it as c(α) =

∑i=k−1
i=0 (uiα

i).
Compute c = g

c(α)
0 =

∏i=k−1
i=0 gui

i ∈ G1. The non-membership witness of
ỹ is w = (c, d).

The theorem below states the security of our UA. Its proof can be found in
the full version of this paper [2].

Theorem 2 (Security of our UA construction). Under the k-SDH assump-
tion in G1, the above construction is a secure universal accumulator. %&

Our DUA-DDH construction. We present our construction of DUA-DDH
by adding the various dynamism algorithms D1, D2, D3 to our UAconstruction
above. Due to Theorem 1 and 2, our construction is secure under the k-SDH
assumption.

– Update of accumulator (algorithm D1). Adding an element ŷ to the
accumulator value v can be done by computing v̂ = vŷ+α. Similarly, deleting
an element ŷ in the accumulator v can be done by computing v̂ = v

1
ŷ+α .

Both cases require the auxiliary information α.
– Update of membership witnesses (algorithm D2). Let w be the orig-

inal membership witness of y w.r.t the accumulator value v. Let v̂ and ŷ
be the new accumulator value and the element added (resp. deleted) re-
spectively. Suppose ŷ has been added, the new membership witness ŵ for
y can be computed as vwŷ−y. Suppose ŷ �= y has been deleted, the new
non-membership witness ŵ for y can be computed as w

1
ŷ−y v̂

1
y−ŷ .

– Update of non-membership witnesses (algorithm D3). Let c, d be
the original non-membership witness of y w.r.t. accumulator value v. Let v̂
and ŷ be the new accumulator value and the element added (resp. deleted)
respectively.
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• (Addition.) Suppose ŷ �= y has been added, the new non-membership
witness ĉ, d̂ of y can be computed as ĉ = vcŷ−y ∈ G1 and d̂ = d(ŷ− y) ∈
Z∗

p. This can be verified as follows:

v̂ =vα+ŷ = v(α+y)+(ŷ−y) = vα+yvŷ−y = vα+y(cα+ygd
0)ŷ−y

=[vcŷ−y]α+yg
d(ŷ−y)
0 = ĉα+ygd̂

0

• (Deletion.) Suppose ŷ has been deleted, the new non-membership witness
ĉ, d̂ of y can be computed as ĉ = (cv̂−1)

1
ŷ−y ∈ G1 and d̂ = d

ŷ−y ∈ Z∗
p.

Indeed,

v̂ =v̂
(α+ŷ)−(α+y)

ŷ−y = v
1

ŷ−y v̂
α+y
y−ŷ = [cα+ygd

0 ]
1

ŷ−y v̂
α+y
y−ŷ

=[(cv̂−1)α+ygd
0 ]

1
ŷ−y = [(cv̂−1)

1
ŷ−y ]α+yg

d
ŷ−y

0 = ĉα+ygd̂
0

4 Zero-Knowledge Protocols for Our DUA-DDH

We present several efficient zero-knowledge protocols for our DUA-DDH construc-
tion. In the presentation, we give priority to clarity over efficiency; the protocols
may be optimized for better performance.

Let G1 = 〈g〉 and Gq = 〈h〉 be cyclic groups of prime order p and q respectively,
such that Gq ⊂ Z∗

p is the domain of our DUA-DDH construction. Let g0, g1 and
h0, h1, h2 be independent generators of G1 and Gq respectively. Let y = hx

0 ∈ Gq

and let C = gy
0g

r
1 ∈ G1 be the commitment of y using random number r. Let v

be an accumulator value.

4.1 Proof of Knowledge of the Discrete Logarithm of a Committed
Element

This protocol is the main building block of the protocols used in our DUA-DDH
construction. We call it PK1. Let D = hx

1hs
2 ∈ Gq be the commitment of x using

some random number s. The goal of PK1 is to prove the knowledge of x and y
such that y = hx

0 in zero-knowledge, thus without revealing, e.g., x or y. In other
words, we have:

PK1

{(
y, r, x, s

)
: C = gy

0g
r
1 ∧ D = hx

1hs
2 ∧ y = hx

0

}
The protocol can be used with the common discrete logarithm relationship

proofs [9] to demonstrate relationships of discrete logarithms in G1 or Gq. Instan-
tiation of PK1 makes use of the zero-knowledge proof-of-knowledge of double
discrete logarithms [14], as we now describe. Let λk be a security parameter that
determines the cheating probability of the protocol. (The cheating probability is
2−λk , we hence suggest λk = 80.) PK1 consists of PK1A and PK1B as follows.
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PK1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PK1A

{(
y, r
)

: C = gy
0g

r
1

}

PK1B

{(
x, r, s

)
: C = g

hx
0

0 gr
1 ∧ D = hx

1hs
2

}
Instantiating PK1A is straightforward. Below we only show how to instantiate

PK1B .

(Commitment.) For i = 1 to λk, the prover randomly generates ρx,i, ρs,i ∈R Zq

and ρr,i ∈R Zp, computes T1,i = g
h

ρx,i
0

0 g
ρr,i

1 ∈ G1 and T2,i = h
ρx,i

1 h
ρs,i

2 ∈ Gq,
and sends T1,i, T2,i to the verifier.

(Challenge.) The verifier randomly generates a λk-bit challenge m and sends it
to the prover.

(Response.) Denote by m[i] the i-th bit of m, starting from i = 1. For i = 1 to
λk, the prover computes zx,i = ρx,i −m[i]x ∈ Zq, zs,i = ρs,i −m[i]s ∈ Zq

and zri = ρr,i −m[i]hx
0r ∈ Zp. She sends

(
zx,i, zs,i, zr,i

)λk

i=1 to the verifier.
(Verify.) The verifier outputs 1 if the following holds for all i = 1 to λk. He

outputs 0 otherwise.

T2,i
?= Dm[i]h

zx,i

1 h
zs,i

2 and T1,i
?=

{
g

h
zx,i
0

0 g
zr,i

1 , if m[i] = 0,
Ch

zx,i
0 g

zr,i

1 , otherwise.

It is straightforward to show that PK1 is Honest-Verifier Zero-Knowledge.
It can be converted into a 4-round perfect zero-knowledge protocol using the
technique due to Cramer et al. [15] or 3-move concurrent zero-knowledge protocol
in the auxiliary string model based on trapdoor commitment schemes [17]. Note
that the prover does not need to explicitly prove that the r in PK1A and PK1B

are the same; they are bounded to be the same under the discrete logarithm
assumption.

4.2 Proof of Knowledge of a Committed Element in an Accumulator
Value

Suppose y is in the accumulator value v. That is, there exists witness w such
that Ω(w, y, v) = 1. The following protocol demonstrates that the element y,
committed as C, is in the accumulator value v.

PK2

{(
w, y, r

)
: ê(w, gy

0g
α
0 ) = ê(v, g0) ∧ C = gy

0g
r
1

}
PK2 can be instantiated using the standard proof-of-knowledge of an SDH-

tuple [8,1].
Combining PK1 and PK2, we have a protocol, denoted as PK3, that proves

the knowledge of the discrete logarithm of an element in an accumulator value:

PK3

{(
w, y, x

)
: ê(w, gy

0g
α
0 ) = ê(v, g0) ∧ y = hx

0

}
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4.3 Proof of Knowledge of a Committed Element Not in an
Accumulator Value

Suppose y is not in the accumulator value v. Then there exists witness w = (c, d)
such that d �= 0 and Ω(w, y, v) = 1. The following protocol demonstrates that
the element y, committed as C, is not in the accumulator value v.

PK4

{(
c, d, y, r

)
: ê(c, gy

0g
α
0 ) = ê(v, g0)ê(g0, g0)d ∧ d �= 0 ∧ C = gy

0g
r
1

}
PK4 can be instantiated using standard techniques, which we describe in the

full version of this paper [2].
Combining PK1 and PK4, we have a protocol, denoted as PK5, that proves the

knowledge of the discrete logarithm of an element not in an accumulator value:

PK5

{(
c, d, y, x

)
: ê(c, gy

0g
α
0 )ê(g0, g0)d = ê(v, g0) ∧ d �= 0 ∧ y = hx

0

}

5 Concluding Remarks

We have presented the first dynamic universal accumulator construction for ac-
cumulating elements in DDH-hard groups and a number of useful zero-knowledge
protocols for it. Using this accumulator, we have built an Attribute-Based
Anonymous Credential System, which allows the verifier to authenticate anony-
mous users according to any access control policy expressible as formula of
boolean user attributes in the DNF form. Our system features many practical-
ity and scalability properties for a large-scale deployment of privacy-preserving
access control in a heterogeneous and decentralized environment.

We end the paper with two research questions that we believe to be worth
exploring in the future. The first one is how one can construct ABACS that
also efficiently supports numeric attributes. (While one could certainly encode
a numerical attribute by a bunch of boolean attributes, that wouldn’t be very
efficient.) The second question is how one can construct ABACS that avoids the
need to prove double discrete logarithms, and hence achieves better efficiency.
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Abstract. In many applications, it is desirable to work with signatures
that are short, and yet where many messages from different signers be ver-
ified very quickly. RSA signatures satisfy the latter condition, but are gen-
erally thousands of bits in length. Recent developments in pairing-based
cryptography produced a number of “short” signatures which provide
equivalent security in a fraction of the space. Unfortunately, verifying
these signatures is computationally intensive due to the expensive pair-
ing operation. Toward achieving “short and fast” signatures, Camenisch,
Hohenberger and Pedersen (Eurocrypt 2007) showed how to batch verify
two pairing-based schemes so that the total number of pairings was inde-
pendent of the number of signatures to verify.

In this work, we present both theoretical and practical contributions.
On the theoretical side, we introduce new batch verifiers for a wide
variety of regular, identity-based, group, ring and aggregate signature
schemes. These are the first constructions for batching group signatures,
which answers an open problem of Camenisch et al. On the practical
side, we implement each of these algorithms and compare each batching
algorithm to doing individual verifications. Our goal is to test whether
batching is practical; that is, whether the benefits of removing pairings
significantly outweigh the cost of the additional operations required for
batching, such as group membership testing, randomness generation, and
additional modular exponentiations and multiplications. We experimen-
tally verify that the theoretical results of Camenisch et al. and this work,
indeed, provide an efficient, effective approach to verifying multiple sig-
natures from (possibly) different signers.

1 Introduction

As we move into the era of pervasive computing, where computers are everywhere
as an integrated part of our surroundings, there are going to be a host of devices
exchanging messages with each other, e.g., sensor networks, vehicle-2-vehicle
communications [1,2]. For these systems to work properly, messages must carry
some form of authentication, but the system requirements on the authentication
are particularly demanding. Any cryptographic solution must simultaneously be:
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1. Short: Bandwidth is an issue. Raya and Hubaux argue that due to the lim-
ited spectrum available for vehicular communication, something shorter than
RSA signatures is needed [3].

2. Quick to verify large numbers of messages from different sources: Raya and
Hubaux also suggest that vehicles will transmit safety messages every 300ms
to all other vehicles within a minimum range of 110 meters [3], which in
turn may retransmit these messages. Thus, it is much more critical that
authentications be quick to verify rather than to generate.

3. Privacy-friendly: Users should be held accountable, but not become publicly
identifiable.

Due to the high overhead of using digital signatures, researchers have de-
veloped a number of alternative protocols designed to amortize signatures over
many packets [4,5], or to replace them with symmetric MACs [6]. Each approach
has significant drawbacks; e.g., the MAC-based protocols use time-delayed deliv-
ery so that the necessary verification keys are delivered after the authenticated
messages arrive. This approach can be highly efficient within a restricted setting
where synchronized clocks are available, but it does not provide non-repudiability
of messages (to hold malicious users accountable) or privacy. Signature amortiza-
tion requires verifiers to obtain many packets before verifying, and is vulnerable
to denial of service. Other approaches, such as the short, undeniable signatures
of Monnerat and Vaudenay [7,8] are inappropriate for the pervasive settings we
consider, since verification requires interaction with the signer.

In 2001, Boneh, Lynn and Shacham developed a pairing-based signature that
provides security equivalent to 1024-bit RSA at a cost of only 170 bits [9] (slightly
larger than HMAC-SHA1). This was followed by many signature variants, some
of them privacy-friendly, which were also relatively short, e.g., [10,11,12,13]. Un-
fortunately, the focus was on reducing the signature size, but less attention was
paid to the verification cost which require expensive pairing operations.

Recently, Camenisch, Hohenberger and Pedersen [14] took a step toward
speeding up the verification of short signatures, by showing how to batch verify
two short pairing-based signatures so that the total number of dominant (pair-
ing) operations was independent of the number of signatures to verify. However,
their solution left open several questions which this work addresses.

First, their work was purely theoretical. To our knowledge, we are the first
to provide a detailed empirical analysis of batch verification of short signatures.
This is interesting, because our theoretical results and those of Camenisch et
al. [14] reduce the total number of pairings by adding in other operations, such
as random number generation and small modular exponentiations, so it was
unclear how well these algorithms would perform in practice. Fortunately, in
section 5, we verify that these algorithms do work well.

Second, Camenisch et al. [14] dealt only with batching regular and identity-
based signatures. They specifically mentioned batching group signatures as an
interesting open problem. Here, we present the first batch verifier for a group sig-
nature scheme, as well as new verifiers for many other types of regular, identity-
based, ring and aggregate signatures.
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Finally, Camenisch et al. [14] did not address the practical issue of what to do
if the batch verification fails. How does one detect which signatures in the batch
are invalid? Does this detection process eliminate all of the efficiency gains of
batch verification? Fortunately, our empirical studies reveal good news: invalid
signatures can be detected via a recursive divide-and-conquer approach, and if
< 15% of the signatures are invalid, then batch verification is still more efficient
than individual verification. At the time we conducted these experiments, the
divide-and-conquer approach was the best method known to us. Recently, Law
and Matt [15] proposed three new techniques for finding invalid signatures in a
batch. One of their techniques allows to save approximately half the time needed
by the simple divide-and-conquer approach, for large batch sizes. Thus, while our
numbers seem good, they can be further improved.

Overall, we conclude that many interesting short signatures can be batch
verified, and that batch verification is an extremely valuable tool for system
implementors. As an example of our results in section 5, for the short group
signatures of Boneh, Boyen and Shacham [10], we see that when batching 200
group signatures (in a 160-bit MNT curve) individual verification takes 139ms
whereas batch verification reduces the cost to 25ms per signature (see Figure 3).

2 Algebraic Setting: Pairings

Let PSetup be an algorithm that, on input the security parameter 1τ , outputs
the parameters for a bilinear pairing as (q, g1, g2,G1,G2,GT , e), where G1 =
〈g1〉,G2 = 〈g2〉 and GT are of prime order q ∈ Θ(2τ ). The efficient mapping
e : G1 × G2 → GT is both: (bilinear) for all g ∈ G1, h ∈ G2 and a, b ← Zq,
e(ga, hb) = e(g, h)ab; and (non-degenerate) if g generates G1 and h generates
G2, then e(g, h) �= 1. This is called the asymmetric setting; in the symmetric
setting, G1 = G2.

In the asymmetric setting, the best we can hope for are group elements in
G1,G2 and GT of size 160, 512 and 1024 bits respectively. In the symmetric
setting, it seems the best curve is a supersingular curve (with k = 2), where
G1 = G2 and GT will be of size 512 and 1024 bits respectively. Most of the
signature schemes we discuss can be implemented in the asymmetric setting to
take advantage of the smaller group sizes. We discuss this more and the case of
batching composite order groups in the full version of this paper [16].

Testing Membership. Our proofs will require that elements of purported signa-
tures are members of G1, but how efficiently can this fact be verified? Deter-
mining whether some data represents a point on a curve is easy. The question
is whether it is in the correct subgroup. Assume that the subgroup has order q.
The easy way to verify if y ∈ G1 is simply to test yq = 1. Since q might be quite
large this test is inefficient, but as we will see later the time required to test
membership of group elements are insignificant compared to the time required
to do the pairings in the applications we have in mind. Yet, in some cases, there
are more efficient ways to test group membership [17].
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3 Basic Tools for Pairing-Based Batch Verification

Let us begin with a formal definition of a pairing based batch verifier. Recall
that PSetup is an algorithm that, on input the security parameter 1τ , outputs
the parameters (q, g1, g2,G1,G2, GT , e), where G1,G2,GT are of prime order
q ∈ Θ(2τ ). Pairing-based verification equation are represented by a generic pair-
ing based claim X corresponding to a boolean relation of the following form:∏k

i=1 e(fi, hi)ci
?= A, for k ∈ poly(τ) and fi ∈ G1, hi ∈ G2 and ci ∈ Z∗

q , for
each i = 1, . . . , k. A pairing-based verifier Verify for a generic pairing-based
claim is a probabilistic poly(τ)-time algorithm which on input the representa-
tion 〈A, f1, . . . , fk, h1, . . . , hk, c1, . . . , ck〉 of a claim X , outputs accept if X holds
and reject otherwise. We define a batch verifier for pairing-based claims.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1τ ) → (q, g1, g2,
G1,G2,GT , e). For each j ∈ [1, η], where η ∈ poly(τ), let X(j) be a generic
pairing-based claim and let Verify be a pairing based verifier. We define a pairing-
based batch verifier for Verify as a probabilistic poly(τ)-time algorithm which
outputs:

– accept if X(j) holds for all j ∈ [1, η];
– reject if X(j) does not hold for any j ∈ [1, η] except with negligible probability.

3.1 Small Exponents Test Applied to Pairings

Bellare, Garay and Rabin proposed methods for verifying multiple equations of
the form yi = gxi for i = 1 to n, where g is a generator for a group of prime
order [18]. One might be tempted to just multiply these equations together and
check if

∏n
i=1 yi = g

∑n
i=1 xi . However, it would be easy to produce two pairs

(x1, y1) and (x2, y2) such that the product of them verifies correctly, but each
individual verification does not, e.g. by submitting the pairs (x1 − α, y1) and
(x2 + α, y2) for any α. Instead, Bellare et al. proposed the following method,
which we will later apply to pairings.

Small Exponents Test: Choose exponents δi of (a small number of) �b bits
and compute

∏n
i=1 y

δi

i = g
∑n

i=1 xiδi . Then the probability of accepting a bad pair
is 2−�b. The size of �b is a tradeoff between efficiency and security. (In Section 5,
we set �b = 80 bits.)

Theorem 1. Let PSetup(1τ ) → (q, g1, g2,G1,G2,GT , e) where q is prime. For
each j ∈ [1, η], where η ∈ poly(τ), let X(j) corresponds to a generic claim as
in Definition 1. For simplicity, assume that X(j) is of the form A

?= Y (j) where
A is fixed for all j and all the input values to the claim X(j) are in the correct
groups. For any random vector Δ = (δ1, . . . , δη) of �b bit elements from Zq, an
algorithm Batch which tests the following equation

∏η
j=1 A

δj
?=
∏η

j=1 Y
(j)δj is

a pairing-based batch verifier that accepts an invalid batch with probability at
most 2−�b .
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The proof closely follows the proof of the small exponents test by Bellare et
al. [18], we include a full proof of this theorem in the full version of this paper [16].
Thus, Theorem 1 provides a single verification equation, which we then want to
optimize.

3.2 Basic Batching Techniques

Armed with Theorem 1, let’s back up for a moment to get a complete picture
of how to develop an efficient batch verifier. This summarizes the ideas we used
to obtain the results in Figure 1, which we believe will be useful elsewhere.
Immediately after the summary, we’ll explain the details.

Summary: Suppose you have η bilinear equations. Batch verify them as follows:

1. Apply Technique 1 to the individual verification equation, if applicable.
2. Apply Theorem 1 to the equations. This combines all equations into a single

equation after checking membership in the expected algebraic groups and
using the small exponents test.

3. Optimize the resulting single equation using Techniques 2, 3 and 4.
4. If batch verification fails, use the divide-and-conquer approach to identify

the bad signatures.

Technique 1 Change the verification equation. Recall that a Σ-protocol is a
three step protocol (commit, challenge, response) allowing a prover to prove
various statements to a verifier. Using the Fiat-Shamir heuristic a Σ-protocol
can be turned into a signature scheme, by forming the challenge as the hash
of the commitment and the message to be signed. The signature is then either
(commit, response) or (challenge, response). The latter is often preferred, since
the challenge is usually smaller than the commitment, which results in a smaller
signature. However, we observed that this often causes batch verification to be-
come very inefficient, whereas using (commit, response) results in a much more
suitable verification equation.

We use this technique to help batch the Hess IBS [19] and the group signatures
of Boneh, Boyen and Shacham [10] and Boyen and Shacham [11]. Indeed, we
believe that prior attempts to batch verify group signatures overlooked this idea
and thus came up without efficient solutions.

Combination Step: Given η pairing-based claims, apply Theorem 1 to obtain
a single equation. The combination step actually consist of two substeps:

1. Check Membership: Check that all elements are in the correct subgroup. Only
elements that could be generated by an adversary needs to be checked (e.g.,
elements of a signature one wants to verify). Public parameters need not be
checked, or could be checked only once.

2. Small Exponents Test: Combine all equations into one and apply the small
exponents test.
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Next, optimize this single equation using any of the following techniques in
any order.

Technique 2 Move the exponent into the pairing. When a pairing of the form
e(gi, hi)δi appears, move the exponent δi into e(). Since elements of G are usually
smaller than elements of GT , this gives a small speedup when computing the
exponentiation.

Replace e(gi, hi)δi with e(gδi

i , hi)

Technique 3. When two pairings with a common first or second element appear,

they can be combined. This can reduce η pairings to one. It will work like this:

Replace
η∏

i=1

e(gδi

i , h) with e(
η∏

i=1

gδi

i , h)

In rare cases, it might be useful to apply this technique“in reverse”, e.g., splitting
a single pairing into two or more pairings to allow for the application of other
techniques. For example, we do this when batching Boyen’s ring signatures [13],
so that we can apply Technique 4 below.

Technique 4 Waters hash. In his IBE, Waters described how hash identities to
values in G1 [20], using a technique that was subsequently employed in several
signature schemes. Assume the identity is a bit string V = v1v2 . . . vm, then
given public parameters u1, . . . , um, u′ ∈ G1, the hash is u′∏m

i=1 u
vi

i . Following
works by Naccache [21] and Chatterjee and Sarkar [22,23] documented the gen-
eralization where instead of evaluating the identity bit by bit, divide the k bit
identity bit string into z blocks, and then hash. (In Section 5, we SHA1 hash
our messages to a 160-bit string, and use z = 5 as proposed in [21].) Recently,
Camenisch et al. [14] pointed out the following method:

Replace
η∏

j=1

e(gj ,

m∏
i=1

u
vij

i ) with
m∏

i=1

e(
η∏

j=1

gj
vij , ui)

In the full version of this paper [16], we apply this technique to schemes with
structures related to the Waters hash; namely, the ring signatures of Boyen [13]
and the aggregate signatures of Lu et al. [24].

3.3 Handling Invalid Signatures

If there is even a single invalid signature in the batch, then the batch verifier
will reject the entire batch with high probability. In many real-world situations,
a signature collection may contain invalid signatures caused by accidental data
corruption, or possibly malicious activity by an adversary seeking to degrade
service. In some cases, this may not be a serious concern. E.g., sensor networks
with a high level of redundancy may choose to simply drop messages that cannot
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be efficiently verified. Alternatively, systems may be able to cache and/or indi-
vidually verify important messages when batch verification fails. Yet, in some
applications, it might be critical to tolerate some percentage of invalid signatures
without losing the performance advantage of batch verification.

In Section 5.2, we employ a recursive divide-and-conquer approach, similar
to that of Pastuszak, Pieprzyk, Michalek and Seberry [25], as: First, shuffle the
incoming batch of signatures, and if batch verification fails, simply divide the
collection into two halves, and recurse on the halves. When this process termi-
nates, the batch verifier outputs the index of each invalid signature. Through
careful implementation and caching of intermediate results, much of the work of
the batch verification (i.e., computing the product of many signature elements)
can be performed once over the full signature collection, and need not be re-
peated when verifying each sub-collection. Thus, the cost of each recursion is
dominated by the number of pairings used in the batch verification algorithm.
In Section 5.2, we show that even if up to 15% of the signatures are invalid, this
technique still performs faster than individual verification.

Recently, Law and Matt [15] proposed three new techniques for finding invalid
signatures in a batch. One of their techniques, which is the most efficient for large
batch sizes, allows to save approximately half the time needed by the simple
divide-and-conquer approach. Thus, it is possible to do even better than the
performance numbers we present.

4 Batch Verifiers for Short Signatures

Given the basic batching tools in the last section, it still requires creativity to
figure out how best to apply them to batch any given scheme. In this section, we
present new results for batch verifying a selection of existing regular, identity-
based, group, ring, and aggregate signature schemes. To our knowledge, these
are the first such verifiers for group, ring and aggregate signatures. After a search
through the existing literature, we present the schemes with the best results.

Figure 1 shows a summary of our theoretical results, together with an indica-
tion of which batching techniques were used. Due to space limitations, we cannot
describe the details of each scheme. Instead, we demonstrate one example in the
Boneh, Boyen and Shacham [10] group signatures and then describe all remaining
signatures and their batch verifiers in the full version of this paper [16].

4.1 Batching the Boneh-Boyen-Shacham (BBS) Group Signatures

This scheme does not appear to batch well without making some alterations,
which increase the signature size by one group element, but where only 2 pairings
are sufficient to batch an arbitrary number of signatures. A group signature
scheme allows any member to sign on behalf of the group in such a way that
anyone can verify a signature using the group public key while nobody, but
the group manager, can identify the actual signer. A scheme consists of four
algorithms: KeyGen, Sign, Verify and Open, that, respectively generate public
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Scheme Model Individual-Verify Batch-Verify Reference Techniques
Group Signatures

BBS [10] RO 5η 2 §4.1 1,2,3
BS [11] RO 5η 2 [16] 1,2,3
ID-based Ring Signatures

CYH [12] RO 2η 2 [16] 2,3
Ring Signatures
Boyen [13] (same ring) plain � · (η + 1) min{η · � + 1, 3 · � + 1} [16] 2,3,4
Signatures

BLS [26] RO 2η s + 1 [26] 2,3
CHP [14] (time restrictions) RO 3η 3 [14] 2,3
ID-based Signatures

Hess [19] RO 2η 2 [16] 1,2,3
ChCh [27] RO 2η 2 [15] 2,3
Waters [20,21,28,23] plain 3η min{(2η + 3), (z + 3)} [14] 2,3,4
Aggregate Signatures

BGLS [29] (same users) RO η(� + 1) � + 1 [16] 2,3
Sh [30] (same users) RO η(� + 2) � + 2 [16] 2,3
LOSSW [24] (same sequence) plain η(� + 1) min{(η + 2), (� · k + 3)} [16] 2,3,4

Fig. 1. Signatures with Efficient Batch Verifiers. Let η be the number of signa-
tures to verify, s be the number of distinct signers involved and � be either the size
of a ring or the size of an aggregate. Boyen batch verifier requires each signature to
be issued according to the same ring. Aggregate verifiers work for signatures related
to the same set of users. In CHP, only signatures from the same time period can be
batched and z is a (small) parameter (e.g., 8). In LOSSW, k is the message bit-length.
RO stands for random oracle. The details of each scheme and its batch verifier are
provided in the full version of this paper [16].

and private keys for users and the group manager, sign a message on behalf of
a group, verify the signature on a message according to the group and trace a
signature to a signer. For our purposes, we focus on the verification algorithm.

The Boneh-Boyen-Shacham (BBS) Group Signatures. Let PSetup(1τ )→ (q, g1,
g2, G1, G2, GT , e), where H : {0, 1}∗ → Zq is a hash function and there exists
an efficiently-computable isomorphism ψ : G2 → G1. Let � be the number of
users in a group.

Key Gen. Select a random g2 ∈ G2 and sets g1 ← ψ(g2). Select h $← G1\{1G1},
r1, r2

$← Z∗
q , and set u, v such that ur1 = vr2 = h. Select γ

$← Z∗
q , and set

w = gγ
2 . For i = 1 to n, select xi

$← Z∗
q , and set fi = g

1/(γ+xi)
1 . The public key is

gpk = (g1, g2, h, u, v, w), the group manager’s secret key is gmsk = (r1, r2) and
the secret key of the i’th user is gsk[i] = (fi, xi).
Sign. Given a group public key gpk = (g1, g2, h, u, v, w), a user private key
(f, x) and a message M ∈ {0, 1}∗, compute the signature σ as follows: Se-
lect α, β, rα, rβ , rx, rγ1 , rγ2

$← Zq. Compute T1 = uα; T2 = vβ ; T3 = f ·
hα+β , γ1 = x · α and γ2 = x · β, R1 = urα ; R2 = vrβ ;R3 = e(T3, g2)rx ·
e(h,w)−rα−rβ · e(h, g2)−rγ1−rγ2 ; R4 = T rx

1 · u−rγ1 ; R5 = T rx
2 · v−rγ2 . Compute

c = H(M,T1, T2, T3, R1, R2, R3, R4, R5). Compute sα = rα +c ·α; sβ = rβ +c ·β;
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sx = rx + c · x; sγ1 = rγ1 + c · γ1; sγ2 = rγ2 + c · γ2. The signature is σ =
(T1, T2, T3, c, sα, sβ , sx, sγ1 , sγ2).
Verify. Given a group public key gpk = (g1, g2, h, u, v, w), a message M and a
group signature σ = (T1, T2, T3, c, sα, sβ , sx, sγ1 , sγ2), compute the values R1 =
usα · T−c

1 , R2 = vsβ · T−c
2 , R3 = e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 ·(

e(T3, w) · e(g1, g2)−1
)c

, and R4 = T sx
1 · u−sδ1 ; R5 = T sx

2 · v−sδ2 . Accept iff
c

?= H(M,T1, T2, T3, R1, R2, R3, R4, R5).

An Efficient Batch Verifier for BBS Group Signatures. Computing R3
is the most expensive part of the verification above, but at first glance it is not
clear that this can be batched, because each R3 is hashed in the verification
equation. However, as described by Technique 1, the signature and the verifica-
tion algorithm can be modified at the expense of increasing the signature size by
one element. Let σ = (T1, T2, T3, R3, c, sα, sβ, sx, sγ1 , sγ2) be the new signature,
together with:
New Individual Verify. Given a group public key gpk = (g1, g2, h, u, v, w),
a message M and a group signature σ = (T1, T2, T3, R3, c, sα, sβ, sx, sγ1 ,
sγ2), compute the values R1 ← usα · T−c

1 ; R2 ← vsβ · T−c
2 ; R4 ← T sx

1 · u−sγ1 ;
R5 ← T sx

2 · v−sγ2 , then check the following equation

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sγ1−sγ2 ·
(
e(T3, w) · e(g1, g2)−1)c ?= R3.

Finally check if c
?= H(M,T1, T2, T3, R1, R2, R3, R4, R5). Accept if all checks

succeed, else reject.

Now we define a batch verifier, where the main objective is to use a constant
number of pairings.
Batch Verify. Let gpk = (g1, g2, h, u, v, w) be the group public key, and let
σj = (Tj,1, Tj,2, Tj,3, Rj,3, cj , sj,α, sj,β , sj,x, sj,γ1 , sj,γ2) be the j’th signature
on the message Mj , for each j = 1, . . . , η. For each j = 1, . . . , η, compute the
following values:

Rj,1 ← usj,α · T−cj

j,1 Rj,2 ← vsj,β · T−cj

j,2

Rj,4 ← T
sj,x

j,1 · u−sj,γ1 Rj,5 ← T
sj,x

j,2 · v−sj,γ2

Now for each j = 1, . . . , η, check that cj
?= H(Mj, Tj,1, Tj,2, Tj,3, Rj,1, Rj,2, Rj,3,

Rj,4, Rj,5). Then check the following single pairing based equation

e(
η∏

j=1

(T sj,x

j,3 · h−sj,γ1−sj,γ2 · g−cj

1 )δj , g2) · e(
η∏

j=1

(h−sj,α−sj,β · T c
3 )δj , w) ?=

η∏
j=1

R
δj

j,3.

where (δ1, . . . , δη) is a random vector of �b bit elements from Zq. Accept iff all
checks succeed.

Theorem 2. For security level �b, the above algorithm is a batch verifier for the
BBS group signature scheme, where the probability of accepting an invalid signa-
ture is 2−�b . (Proof of this theorem appears in the full version of this paper [16].)
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5 Implementation and Performance Analysis

The previous work on batching short signatures [14] considers only asymptotic
performance. Unfortunately, this “paper analysis”conceals many details that are
revealed only through empirical evaluation. Additionally, the existing work does
not address how to handle invalid signatures.

We seek to answer these questions by conducting the first empirical investiga-
tion into the feasibility of short signature batching. To conduct our experiments,
we built concrete implementations of seven signature schemes described in this
work, including two public key signature schemes (BLS, CHP), three Identity-
Based Signature schemes (ChCh, Hess, Waters), a ring signature (CYH), and a
short group signature scheme (BBS). For each scheme, we measured the perfor-
mance of the individual verification algorithm against that of the corresponding
batch verifier. We then turned our attention to the problem of efficiently sorting
out invalid signatures.

Experimental Setup. To evaluate our batch verifiers, we implemented each signa-
ture scheme in C++ using the MIRACL library for elliptic curve operations [31].
Our timed experiments were conducted on a 3.0Ghz Pentium D 930 with 4GB
of RAM running Linux Kernel 2.6. All hashing was implemented using SHA1,1

and small exponents were of size 80 bits. For each scheme, our basic experiment
followed the same outline: (1) generate a collection of η distinct signatures on
100-byte random message strings. (2) Conduct a timed verification of this col-
lection using the batch verifier. (3) Repeat steps (1, 2) four times, averaging to
obtain a mean timing. To obtain a view of batching efficiency on collections of
increasing size, we conducted the preceding test for values of η ranging from 1 to
approximately 400 signatures in intervals of 20. Finally, to provide a baseline, we
separately measured the performance of the corresponding non-batched verifica-
tion, by verifying 1000 signatures and dividing to obtain the average verification
time per signature. A high-level summary of our results is presented in Figure 3.

Curve k R(G1) R(GT ) SRSA Pairing Time
MNT160 6 160 bits 960 bits 960 bits 23.3 ms
MNT192 6 192 bits 1152 bits 1152 bits 33.2 ms
SS512 2 512 bits 1024 bits 957 bits 16.7 ms

Fig. 2. Description of the elliptic curve parameters used in our experiments. R(·) de-
scribes the approximate number of bits to optimally represent a group element. SRSA

is an estimate of “RSA-equivalent”security derived via the approach of Page et al. [32].

1 We selected SHA1 because the digest size closely matches the order of G1. One could
use other hash functions with a similar digest size, e.g., RIPEMD-160, or truncate
the output of a hash function such as SHA-256 or Whirlpool. Because the hashing
time is negligible in our experiments, this should not greatly impact our results.
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Signature Size (bits) Individual Verification Batched Verification∗

Scheme MNT160 MNT192 SS512 MNT160 MNT192 SS512 MNT160 MNT192 SS512

Signatures

BLS (single signer) 160 192 512 47.6 ms 77.8 ms 52.3 ms 2.28 ms 2.93 ms 32.42 ms
CHP 160 192 512 73.6 ms 119.0 ms 93.0 ms 26.16 ms 34.66 ms 34.50 ms
BLS cert + CHP sig 1280 1536 1536 121.2 ms† 196.8 ms† 145.3 ms† 28.44 ms† 37.59 ms† 66.92 ms†

Identity-Based Signatures

ChCh 320 384 1024 49.1 ms 79.7 ms 73.3 ms 3.93 ms 5.24 ms 59.45 ms
Waters 480 576 1536 91.2 ms 138.64 ms 61.1 ms 9.44 ms 11.49 ms 59.32 ms
Hess 1120 1344 1536 49.1 ms 79.0 ms 73.1 ms 6.70 ms 8.72 ms 55.94 ms
Anonymous Signatures

BBS (modified per §[16]) 2400 2880 3008 139.0 ms 218.3 ms 193.0 ms 24.80 ms 34.18 ms 198.03 ms
CYH, 2-member ring 480 576 1536 52.0 ms 77.0 ms 113.0 ms 6.03 ms 8.30 ms 105.69 ms
CYH, 20-member ring 3360 4032 10752 86.5 ms 126.8 ms 829.3 ms 43.93 ms 61.47 ms 932.66 ms
∗Average time per verification when batching 200 signatures.
†Values were derived by manually combining data from BLS and CHP tests.

Fig. 3. Summary of experimental results. Timing results indicate verification time per
signature. With the exception of BLS, our experiments considered signatures generated
by distinct signers.

Curve Parameters. The selection of elliptic curve parameters impacts both sig-
nature size and verification time. The two most important choices are the size
of the underlying finite field Fp, and the curve’s embedding degree k. Due to
the MOV attack, security is bounded by the size of the associated finite field
Fpk . Simultaneously, the representation of elements G1 requires approximately
|p| bits. Thus, most of the literature on short signatures recommends choosing
a relatively small p, and a curve with a high value of k. (For example, an MNT
curve with |p| = 192 bits and k = 6 is thought to offer approximately the same
level of security as 1152-bit RSA [32].) The literature on short signatures focuses
mainly on signature size rather than verification time, so it is easy to miss the
fact that using such high-degree curves substantially increases the cost of a pair-
ing operation, and thus verification time. To incorporate these effects into our
results, we implemented our schemes using two high-degree (k = 6) MNT curves
with |p| equal to 160 bits and 192 bits. For completeness, we also considered a
|p|=512 bit supersingular curve with embeddeing degree k = 2, and a subgroup
G1 of size 2160. Figure 2 details the curve choices along with relevant details such
as pairing time and “RSA-equivalent” security determined using the approach of
Page et al. [32].

5.1 Performance Results

Public-Key signatures. Figure 4 presents the results of our timing experi-
ments for the public-key BLS and CHP verifiers. Because the BLS signature does
not batch efficiently for messages created by distinct signers, we studied the
combination suggested in [14], where BLS is used for certificates which are cre-
ated by a single master authority, and CHP is used to sign the actual messages
under users’ individual signing keys. Unfortunately, the CHP batch verifier ap-
pears to be quite costly in the recommended MNT curve setting. This outcome
stems from the requirement that user public keys be in the G2 subgroup. This
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Fig. 4. Public-Key Signature Schemes. Per-signature times were computed by dividing
total batch verification time by the number of signatures verified. Note that in the BLS
case, all signatures are formulated by the same signer (as for certificate generation),
while for CHP each signature was produced by a different signer. Individual verification
times are included for comparison.

necessitates expensive point operations in the curve defined over the extension
field, which undoes some of the advantage gained by batching. However, batch-
ing still reduces the per-signature verification cost to as little as 1/3 to 1/4 that
of individual verification.

Identity-Based signatures. Figure 5 gives our measurements for three IBS
schemes: ChCh, Waters and Hess. (For comparison, we also present CHP signa-
tures with BLS-signed public-key certificates.) In all experiments, we consider
signatures generated by different signers. In contrast with regular signatures,
the IBSes batch quite efficiently, at least when implemented in MNT curves.
The Waters scheme offers strong performance for a scheme not dependent on
random oracles.2 In our implementation of Waters, we first apply a SHA1 to the
message, and use the Waters hash parameter z = 5 which divides the resulting
160-bit digest into blocks of 32 bits (as in [21]).

Anonymous signatures. Figure 6 gives our results for two privacy-preserving
signatures: the CYH ring signature and the modified BBS group signature. As
is common with ring signatures, in CYH both the signature size and verification
time grow linearly with the number of members in the ring. For our experiments
we arbitrarily selected two cases: (1) where all signatures are formed under a 2-
member ring (useful for applications such as lightweight email signing [33]), and

2 However, it should be noted that Waters has a somewhat loose security reduction,
and may therefore require larger parameters in order to achieve security comparable
to alternative schemes.



Practical Short Signature Batch Verification 321

MNT160 MNT192 SS512

 0

 20

 40

 60

 80

 100

 0  40  80  120  160  200

m
s 

pe
r 

si
gn

at
ur

e

Number of signatures

Waters
ChCh
Hess

CHP+BLS cert

 0

 20

 40

 60

 80

 100

 0  40  80  120  160  200

m
s 

pe
r 

si
gn

at
ur

e

Number of signatures

Waters
ChCh
Hess

CHP+BLS cert

 0

 20

 40

 60

 80

 100

 0  40  80  120  160  200

m
s 

pe
r 

si
gn

at
ur

e

Number of signatures

Waters
ChCh
Hess

CHP+BLS cert

Fig. 5. Identity-Based Signature Schemes. Times represent total batch verification time
divided by the number of signatures verified. “CHP+BLS cert” represents the batched
public-key alternative using certificates, and is included for comparison.
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Fig. 6. Anonymous Signature Schemes. Times represent total batch verification time
divided by the number of signatures verified. For the CYH ring signature, we consider
two distinct signature collections, one consisting of 2-member rings, and another with
20-member rings. The BBS signature verification is independent of the group size.

(2) where all signatures are formed using a 20-member ring.3 In contrast, both
the signature size and verification time of the BBS group signature are indepen-
dent of the size of the group. This makes group signatures like BBS significantly
more practical for applications such as vehicle communication networks, where
the number of signers might be quite large.

5.2 Batch Verification and Invalid Signatures

In Section 3.3, we discuss techniques for dealing with invalid signatures. When
batch verification fails, this divide-and-conquer approach recursively applies the
batch verifier to individual halves of the batch, until all invalid invalid signatures
have been located. To save time when recursing, we compute products of the form∏η

i=1 x
δi

i so that partial products will be in place for each subset on which me
might recurse. We accomplish this by placing each xδi

i at the leaf of a binary
tree and caching intermediate products at each level. This requires no additional
3 Although the CYH batch verifier can easily batch signatures formed over differently-

sized rings, our experiments use a constant ring size. Our results are representative
of any signature collection where the mean ring size is 20.
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Fig. 7. BLS batch verification in the presence of invalid signatures (160-bit MNT curve).
A “resilient” BLS batch verifier was applied to a collection of 1024 purported BLS sig-
natures, where some percentage were randomly corrupted. Per-signature times were
computed by dividing the total verification time (including identification of invalid
signatures) by the total number of signatures (1024), and averaging over multiple ex-
perimental runs.

computation, and total storage of approximately 2η group elements for each
product to be computed.

To evaluate the feasibility of this technique, we used it to implement a “re-
silient” batch verifier for the BLS signature scheme. This verifier accepts as
input a collection of signatures where some may be invalid, and outputs the in-
dex of each invalid signature found. To evaluate batching performance, we first
generated a collection of 1024 valid signatures, and then randomly corrupted
an r-fraction by replacing them with random group elements. We repeated this
experiment for values of r ranging from 0 to 15% of the collection, collecting mul-
tiple timings at each point, and averaging to obtain a mean verification time.
The results are presented in Figure 7.

Batchedverification ofBLS signatures is preferable to thenäıve individual verifi-
cation algorithm even as the number of invalid signatures exceeds 10% of the total
batch size. The random distribution of invalid signatures within the collection is
nearly the worst-case for resilient verification. In practice, invalid signatures might
be grouped together within the batch (e.g., if corruption is due to a burst of EM
interference). In this case, the verifier might achieve better results by omitting the
random shuffle step or using another re-ordering technique.

6 Conclusion and Open Problems

Our experiments provide strong evidence that batching short signatures is prac-
tical, even in a setting where an adversary can inject invalid signatures. We
present new algorithms for batching a host of short signature schemes, including
the first such verifiers for group, ring and aggregate signatures. At a deeper level,
our results indicate that efficient batching depends heavily on the underlying de-
sign of a signature scheme, particularly on the placement of elements within the
elliptic curve subgroups. For example, the CHP signature and the ChCh IBS
have comparable size and security, yet the latter scheme can batch more than
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250 signatures per second (each from a different signer), while our CHP imple-
mentation clocks in at fewer than 40. Designers should take these considerations
into account when proposing new pairing-based signature schemes.

It remains open to batch verify a group signature scheme without random
oracles. While many candidate schemes exist, it is not clear how to batch ver-
ify them. It also remains open to verify a batch of very short signatures (one
group element) in constant pairings without the time-period restriction used by
Camenisch et al. [14], even with random oracles.
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Abstract. We study the problem of traversing a hash chain with dy-
namic helper points (called pebbles). Basically, two kinds of algorithms
for this problem are known to date. Jakobsson algorithm is a single-layer
fractal algorithm with the computational cost of �log n� (hash evalu-
ations per chain link) and �log n� pebbles. Coppersmith-Jakobsson al-
gorithm is a complicated double-layer fractal algorithm that improves
efficiency at the expense of simplicity; with a complex movement pat-
tern and some extra pebbles, it reduces the computational cost by half.
Specifically, Coppersmith-Jakobsson algorithm requires � 1

2
log n� hash

evaluations per chain link and �log n� + �log(log n + 1)� pebbles, which
attains an almost optimal complexity. We introduce a new hash chain
traversal algorithm that achieves both simplicity and efficiency. While
our algorithm is based on the simple single-layer fractal structure of the
Jakobsson algorithm, it reduces the computational cost by half without
using extra pebbles; specifically, � 1

2
log n� hash evaluations per chain link

and �log n� pebbles are needed.

1 Introduction

Hash chains have been used as an important cryptographic tool for various ap-
plications including payment systems [1,14], one-time password systems [5], mul-
ticast authentication [12,13], secure routing [7], and on-line auctions [16]. The
popularity of hash chains mainly stems from the low computational cost for each
output link. While public-key cryptographic primitives are still too heavy for
many small devices, hash functions can be computed even by RFID tags. How-
ever, the situation becomes problematic when the length of hash chains increases.
For example, computing links of hash chains with length 232 is overwhelming for
most mobile devices. To deal with long chains, hash chain traversal algorithms,
the subject of this paper, study time-space tradeoffs and try to reduce the worst
case computational cost per chain link with minimal storage.

A hash chain H for a cryptographic hash function h : {0, 1}∗ → {0, 1}l is a
sequence of values 〈v0, v1, . . . , vi, . . . , vn〉, where vn is a value chosen uniformly
at random from {0, 1}l and vi = h(vi+1). The beginning link v0 and the end
link vn are the public key and the secret key, respectively. The budget b is the
worst case computational cost per chain link. In other words, b hash function

M. Fischlin (Ed.): CT-RSA 2009, LNCS 5473, pp. 325–339, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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evaluations are allowed per chain link that is output. Hash chain traversal al-
gorithms compute and output the hash chain H , (except the already published
link v0) starting from v1 and ending with vn. A trivial hash chain traversal al-
gorithm is to recompute each output link from the secret key vn. That is, one
simply calculates vi = hn−i(vn) in round i, where 1 ≤ i ≤ n and h0(vn) = vn.
The budget of this solution is n − 1 and the storage requirement is 1. Another
trivial algorithm is to precompute and store all links in memory and output
the link vi in round i by executing lookup operations. However, this solution
requires too much memory to be used in small devices. One could easily obtain
memory-computation tradeoffs in these trivial algorithms by storing some links
and computing each output link from a near stored link. Such variations have a
memory-times-computational complexity of O(n).

Jakobsson algorithm. The first breakthrough in the hash chain traversal was
made by Jakobsson [9]. Let us assume that there is a dynamic helper point
(called a pebble) that stores a hash chain link for the position it is associated
with. If the pebble stores a link vd at the outset, the first output link v1 can
be computed with d − 1 hash function evaluations and the second output link
v2 with d − 2 hash function evaluations. Once the link vd stored in the pebble
is output, the computational cost of the next output link vd+1 will be that of
n− (d + 1) hash function evaluations or that of reaching the secret key (or the
end link) vn from the current output position. One can see that the budget is
minimized if d = n

2 , i.e., the pebble is located on the mid-point of the hash chain.
Assume that three links are stored; the secret key and two additional pebbles

p1 and p2. Instead of spacing the three links n
3 apart (which would require a

budget n
3 −1), p2 is placed in the middle of the chain and p1 in the middle of the

first half; p1 at position n
4 and p2 at position n

2 . One can see that this requires
a budget n

4 − 1 during the first n
2 rounds. After the first pebble p1 at position n

4
has been reached in round n

4 , it is relocated to the position n (of the secret key)
and then gradually moved to the middle of the second half (i.e., position 3n

4 ).
Each such step costs one hash function evaluation, but the cost of all the steps is
amortized from round n

4 to round n
2 ; the budget is first spent on the output link

and then any “leftover computation” is applied to moving p1. If the pebble p1
reaches its destination of position 3n

4 by round n
2 , the budget n

4 − 1 will also be
enough for the remaining rounds (from round n

2 to round n). On the whole, p1
recursively divides the chain with segments of length n

4 (and p2 with segments
of length n

2 ) by utilizing computational leftovers.
Assume that there are logn pebbles, where log .= log2. Instead of split-

ting the chain with equally long segments, these pebbles (including the se-
cret key) are located with exponentially increasing distances, i.e., at positions
2, 22, 23, ..., n

22 ,
n
2 , n. For 1 ≤ i ≤ logn, each pebble pi is placed at position 2i

in the beginning and recursively divides the chain with segments of length 2i.
Like fractals, where images can be found within images with the same shapes
(but with difference sizes), the pebbles move within segments and sub-segments
according to a highly symmetric pattern. As p1 recursively divides the chain
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with segments of 2, the average cost of computing the next output is that of
half a hash function evaluation. This makes the cost for relocation of pebbles
the dominating portion of the total budget. It can be shown that the relocat-
ing pebbles will always arrive at their destinations “on time,” if each relocating
pebble moves two steps per round towards its destination. Since two consecutive
pebbles need not be relocated simultaneously, we have at most log n

2 “active”
pebbles — still moving (or relocating) towards its destination — in each round
and need no more than logn (= log n

2 pebble × 2 step/pebble) hash evaluations
per round. Based on these observations, Jakobsson presented a single-layer frac-
tal algorithm that can traverse a hash chain of length n with a budget �logn
and total �logn pebbles [9].

Coppersmith-Jakobsson algorithm. While the Jakobsson algorithm stresses
simplicity over efficiency, the Coppersmith-Jakobsson algorithm takes the oppo-
site approach; efficiency is improved at the expense of simplicity [3]. To consume
leftover budgets completely, pebbles are partitioned into high-priority pebbles
and low-priority pebbles. High-priority pebbles are relocated into already rather
small segments, located close to the current output position. Low-priority peb-
bles, in turn, traverse larger distances, and further from the current output posi-
tion. Therefore, the Coppersmith-Jakobsson algorithm has a double-layer fractal
structure where the outer layer is created by low-priority pebbles and the inner
layer by high-priority pebbles. Low-priority pebbles are only assigned those por-
tions of the budget that remain after the current output has been computed and
high-priority pebbles have exhausted their needs (i.e., arrived at their respective
destinations). The role of low-priority pebbles is to soak up any computational
leftovers and make sure high-priority pebbles stay inside small segments.

Assume that there are logn + log(logn + 1) pebbles. Just like the Jakobsson
algorithm, each pebble pi is located at position 2i for 1 ≤ i ≤ logn. The remain-
ing log(logn+ 1) extra pebbles are free at the outset and inserted when needed.
In each round, “first things are done first.” The current output link is computed
and then any remaining budget is assigned to active high-priority pebbles, start-
ing with the pebble with the lowest position (i.e., closest to the current output
position). First then, any still remaining budget is assigned to active low-priority
pebbles. While each pebble of the Jakobsson algorithm divides the chain with
segments of fixed length, pebbles of the Coppersmith-Jakobsson algorithm are
not assigned any predetermined task. Irrespective of the initial position, a high-
priority pebble is relocated in the first segment (of length greater than two)
that does not already contain an active pebble. Moreover, a high-priority peb-
ble can become a low-priority pebble once it is reached by the current pointer
(and vice versa). In other words, a pebble can belong to the inner layer of the
fractal structure one time and to the outer layer another time. Based on the
double-layer fractal structure with extra pebbles, the Coppersmith-Jakobsson
algorithm can traverse a hash chain of length n with a budget � 12 logn� and
total �logn+ �log(logn + 1) pebbles, which can be shown almost optimal [3].
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Our contribution. To accomplish better efficiency, the Coppersmith-Jakobsson
algorithm combined two algorithms: a “greedy” algorithm that creates the inner
layer of the fractal structure and a “sweeper” algorithm that sucks up all computa-
tional leftovers to build the outer layer. The greedy algorithm does not care about
the future pebble movements and just fills up the first segment of length greater
than two. Thanks to the outer layer of the fractal structure that is created by the
sweep algorithm, the length of the hash chain looks relatively small in the greedy
algorithm’s view. The periods of the two fractal structures, however, do not match
perfectly by the initial �logn pebbles. Hence, �log(logn + 1) extra pebbles are
required to harmonize them.

Our first observation on the Coppersmith-Jakobsson algorithm is that the
greedy algorithm may not be the best choice for the entire traversal algorithm.
If the greedy algorithm cares more about the whole picture (or the future peb-
ble movements), we can reduce the burden of the sweeper algorithm, which may
result in an improvement of the traversal algorithm. Our second observation is
that we are able to use the extra pebbles more cleverly. The extra pebbles of the
Coppersmith-Jakobsson algorithm are free in the beginning and inserted when
needed. However, we can improve the traversal algorithm by storing whatever
links in these extra pebbles. For example, if we store the first �log(logn + 1)
links at the outset, we virtually reduce the total length of the hash chain by
�log(logn + 1). Based on these observations, one could devise a hash chain
traversal algorithm more efficient but more complex than the Coppersmith-
Jakobsson algorithm. On the contrary, we aim for an algorithm more efficient
and more straightforward than the Coppersmith-Jakobsson algorithm.

We introduce a new hash chain traversal algorithm that achieves both simplic-
ity and efficiency. Surprisingly, pebbles in our algorithm are setup and recursively
relocated exactly the same as those in the Jakobsson algorithm. Pebbles are setup
at positions 2, 22, 23, ..., n

22 ,
n
2 , n and each pebble pi at the initial position 2i re-

cursively divides the chain with segments of length 2i. Therefore, our algorithm
has a simple single-layer fractal structure and eliminates all the extra pebbles.
The crux of our algorithm is that we can do this only with the budget � 12 logn.
This seems a contradiction because the Jakobsson algorithm with the same peb-
ble deployment strategy requires �logn hash evaluations per chain link and the
complex double-layer fractal structure and extra pebbles in the Coppersmith-
Jakobsson algorithm are all to reduce the budget by half. Our algorithm uses
the single-layer fractal structure but an improved stepping procedure. After a
series of modifications and analyses, we found that the pebble relocation pattern
of the Jakobsson algorithm is better than that of the Coppersmith-Jakobsson
algorithm. However, instead of the stepping procedure of the Jakobsson algo-
rithm (i.e., moving each active pebble two steps towards its destination in each
round), we employ a different amortization principle; moving the leftmost active
pebble (and repeatedly the next leftmost active pebble) towards its destination
just as many steps as possible until the budget in the round is used up. Our
analysis shows that active pebbles always arrive at their respective destinations
on time with a budget � 12 logn. Therefore, our single-layer fractal algorithm
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can traverse a hash chain of length n with a budget � 12 logn and total �logn
pebbles (without extra pebbles).

Related works. Influenced by amortization techniques proposed by Itkis and
Reyzin [8], Jakobsson [9] introduced a hash chain traversal algorithm with a bud-
get �logn and �logn pebbles. Coppersmith and Jakobsson [3] reduced the com-
putational cost by half at the price of a more complex algorithm structure and
extra pebbles: � 12 logn� hash evaluations per chain link and �logn+�log(logn+
1) pebbles. They also proved that their algorithm is near optimal by providing a
theoretical lower bound for the most efficient algorithm possible (but not known
to exist yet). Specifically, any traversal algorithm of hash chain of length n with
α pebbles should have a budget b that is at least 1

4α log2 n. The optimal case is
α = 1

2 logn, where the budget b is also 1
2 logn. Thus, the Coppersmith-Jakobsson

algorithm is (practically speaking) no more than a factor of two away from the
optimal solution in terms of computation-times-storage complexity.

Sella [15] studied algorithms that traverse a hash chain of length n with a
budget b, where b is a constant unrelated to n. One general algorithm and one
specific algorithm were presented. The general algorithm for the budget 1 ≤ b ≤
logn− 1 has storage requirement of (b + 1) · n1/(b+1) and the specific algorithm
for the budget b = 1 needs 2

√
n pebbles. The latter was also shown to be length-

optimal; it can traverse the longest hash chain under given budget and storage.
Kim [11] reduced the storage requirement of Sella’s algorithm by n1/(b+1)−1

n1/(b+1) ; total
(b+1)·(n1/(b+1)−1) pebbles are required. If the budget b comes near logn, Kim’s
algorithm matches the memory and computation requirements of the Jakobsson
algorithm but is more complex.

Jakobsson et al. [10] introduced a technique for traversal of hash trees (or
Merkle trees) and proposed an efficient algorithm that generates a sequence of
leaves along with their associated authentication paths. Szydlo [17] proposed an
asymptotically optimal Merkle tree traversal algorithm that computes sequential
tree leaves and authentication path data in time 2 logN and space less than
3 logN where N is the number of leaves. Berman et al. [2] investigated further
tradeoffs between time and space requirements.

Efficient traversal algorithms for hierarchical (or multi-dimensional) chains
were studied by Hu et al. [6]. They introduced the Sandwich-chain and Comb
Skipchain in order to allow for both rapid generation and verification of interme-
diary links. Another interesting technique was taken by Fischlin [4], in which he
shows how to augment the output from the hash chain traversal with a checksum
in order to allow for faster verification of standard hash chain links.

On types of pebbles. In the Jakobsson algorithm [9], a pebble has a pre-
determined type τ and recursively divides the chain with segments of length
τ . Meanwhile, the index i of a pebble pi changes repeatedly by sorting. Conse-
quently, we should say that pi recursively divides the chain with segments of its
type (rather than 2i). However, for brevity’s sake, we fix the index of each pebble
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and do not employ types. Note also that pebbles in the Coppersmith-Jakobsson
algorithm [3] have neither types nor predetermined tasks.

On asymptotic complexity. The primary beneficiaries of hash chain traversal
algorithms are applications with harsh constraints (e.g., small mobile devices,
real-time systems, and heavily loaded servers). Hence, we avoid using asymp-
totic complexity notations such as O(·) and Θ(·) because hidden constants are
critical for the applications we consider. Actually, the Jakobsson algorithm [9],
the Coppersmith-Jakobsson algorithm [3], and the theoretic optimal algorithm
(not known to us yet) [3] have all the same complexity in the asymptotic sense.

2 Preliminaries

We mostly follow the terminology and basic definitions of previous works [3,9,15].
A hash chain H for a function h : {0, 1}∗ → {0, 1}l is a sequence of values
〈v0, v1, . . . , vi, . . . , vn〉, where vn is a value chosen uniformly at random from
{0, 1}l and vi = h(vi+1). The function h is usually a cryptographic hash function
or another publicly computable one-way function. We use the notation h0(x) = x
and hi(x) = h(hi−1(x)) for i ≥ 1. A single value vi is referred to as a link. The
beginning link v0 and the end link vn are the public key and the secret key,
respectively. As v0 is known publicly, the length of the hash chain 〈v0, v1, . . . , vn〉
is defined as n (not including v0) or the number of links that are to be output.
We assume that n = 2κ for some positive integer κ. A hash chain traversal
algorithm for the hash chain H = 〈v0, v1, . . . , vn〉 computes and outputs links
starting from v1 and ending with vn. The traversal algorithm is executed in n
rounds and should output the i-th link vi in round i.

Pictorially, we represent a hash chain as (n+1) points that are equally spaced
in a horizontal line, where points are placed from left to right, i.e., the i-th point
is placed at position i and the (i+1)-th point on the right of the i-th point. Each
point is associated with the link of its position; the i-th point is associated with
the link vi. The beginning link v0 is also called the leftmost link of the chain and
the end link vn the rightmost link. A segment is a set of consecutive links (or
sometimes the points associated with the links). Each segment has also its own
leftmost link and rightmost link. Let [i, j] denote a segment including points at
i, i + 1, . . . , j and |[i, j]| = j − i + 1 be the length of the segment. We introduce
a current pointer, a kind of counter, that points the position i in round i. The
link associated with the current pointer is called the current (output) link.

A pebble is a dynamic helper point that stores a specific link. If a pebble has
position i, then it stores the associated link vi whenever the value is available.
We assume that the secret key vn is stored in a pebble. Each pebble pi also
has its starting position (the position from which it starts), current position (the
position at which it stays now), destination (the position to which it is going) and
status (ready, active, or arrived). Here, a pebble that is ready has been assigned
the starting position and destination but does not store its associated link (i.e.,
the link of the starting position) because it is not available at the moment. A
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pebble that is active has the starting position, destination, and its associated
link, but has not yet arrived at the destination (i.e., still in motion towards the
destination). A pebble is assigned status arrived if it is located at its destination
and is still needed there (i.e., has not yet been reached by the current pointer).

We define the budget b as the number of computational units allowed per link
of the sequence that is output. Here we only count hash function evaluations
and not other computational operations associated with the algorithm execution.
This is reasonable given the fact that the computational effort of performing one
hash function evaluation far exceeds the remaining work per round. A traversal
algorithm with a budget b and k pebbles succeeds in round i if it outputs the
link vi in round i with at most b hash evaluations and k stored links.

3 Algorithm

Setup. When a chain length n, a hash output length l, a description of hash
function h(·), and κ (= logn) pebbles are input, our setup algorithm chooses
the end link vn uniformly at random from {0, 1}l and locates pebbles with ex-
ponentially increasing distances. A pebble is modeled as an object that has four
attributes: position, destination, value, and status. When a pebble is initialized,
position is the same as destination. When a pebble is reached by the current
pointer, position and destination are assigned a starting position and a desti-
nation, respectively. As a pebble moves to its destination, position is updated
with its current position. The link associated with its position is stored in value
whenever available. If the link is not available, value stores a special null value
⊥. The attribute status can have one of three status values ready, active, and
arrived. The setup algorithm assigns the arrived status to all pebbles and thus
position and destination of each pebble have the same value. The setup algorithm
is given in Algorithm 1, where ← denotes the assignment operation, R← the uni-
form random selection, and // comments. We say that a segment of length 2β

is in a canonical form if β pebbles are located in the segment and they store the
2γ-th links of the segment where 1 ≤ γ ≤ β.

Algorithm 1. Setup

Input: n, l, h(·) and pi, where n = 2κ and 1 ≤ i ≤ κ.

1. vn
R← {0, 1}l; // vn is chosen uniformly at random from {0, 1}l

2. v0 ← hn(vn); // setup of the public key
3. i ← 1;
4. WHILE i ≤ κ DO // setup of pebbles p1, p2, . . . , pκ

pi.position ← 2i; // pebbles are located in a canonical form
pi.destination ← pi.position;
pi.value ← hn−2i

(vn); // pi.value = v2i = hn−2i

(vn)
pi.status ← arrived;
i ← i + 1;

Each pebble pi is located in position 2i and stores its associated link v2i for
1 ≤ i ≤ κ. The secret key vn is stored in the rightmost pebble pκ. Actually,
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the setup algorithm can be implemented with total n hash function evaluations,
since pi.value can be recycled in the computation of pi−1.value. This is clear if
we rewrite the setup algorithm as Algorithm 2.

Algorithm 2. Alternative setup

Input: n, l, h(·) and pi, where n = 2κ and 1 ≤ i ≤ κ.

1. vn
R← {0, 1}l;

2. i ← κ; // setup of pκ.
pi.position ← n;
pi.destination ← pi.position;
pi.value ← vn;
pi.status ← arrived;
i ← i − 1;

3. WHILE i > 0 DO // setup of pκ−1, pκ−2, . . . , p1.

pi.position ← p(i+1).position

2
;

pi.destination ← pi.position;
pi.value ← hpi.position(p(i+1).value);
pi.status ← arrived;
i ← i − 1;

4. v0 ← h2(p1.value); // setup of the public key

The rightmost pebble pκ requires no hash function evaluation. Pebbles (in the
WHILE loop) pκ−1, pκ−2, . . . , p1 require n

2 ,
n
22 , . . . , 2 hash function evaluations,

where n
2 + n

22 + · · · + 2 =
n
2 (1− 1

2κ−1 )
1− 1

2
= n − 2. The public key v0 needs 2 hash

function evaluations. Therefore, total n hash function evaluations are required.

Traversal. The proposed traversal algorithm is given in Algorithm 3 and ex-
amples for n = 16 and 64 (or κ = 4 and 6) are given in Appendix A. In each
round, the traversal algorithm first outputs the current output link and then
spends the remaining budget to relocate pebbles for future pebble movements.
After pi has been reached by the current pointer, it will be assigned the new
starting position of pi.position + 3 · 2i and destination of pi.destination + 2 · 2i to
divide a segment of length 2i+1 (from pi.position + 2i + 1 to pi.position + 3 · 2i)
with two sub-segments of length 2i (from pi.position+2i +1 to pi.position+2 ·2i

and from pi.position+ 2 · 2i + 1 to pi.position+3 · 2i). By this way, pi recursively
divides the chain with segments of length 2i. If the link associated with the new
starting position is not available, a special null value ⊥ is stored in pi.value and
the status becomes ready. Since the new starting position of pi corresponds to
the destination of another pebble with index greater than i, the link of the new
starting position will be available eventually. Once the link becomes available,
pi stores it and changes the status to active. Therefore, a newly arrived pebble
always checks whether or not there is a ready pebble in the destination. When
the round 2i is finished, pebbles of the segment [2i + 1, 2i+1] are located in a
canonical form. According to Algorithm 3, the leftmost arrived pebble will al-
ways be located in the first even position from the current pointer inclusive.
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Therefore, the link (say vi) associated with the leftmost arrived pebble is output
in even rounds and h(vi) in odd rounds.

To facilitate description, we define a utility function P : {0, 1}∗ × N→ N.

– P(α, β) returns the index of a pebble satisfying status = α and position = β.
– P(α, 0) returns the index of the leftmost pebble satisfying status = α.
– If there is no pebble satisfying the condition, P returns ⊥.

In Algorithm 3, the utility function P is used to access pebbles of two categories;
the leftmost arrived/active pebble and the arrived/ready pebble in a specific
position. This allows us to simplify the implementation of P in various ways.
For example, the first category can be dealt with ordinary pointers (rather than
a function). However, the implementation details of the utility function P are not
important to us, because the hash function evaluation is much more expensive
than the evaluation of P with �logn pebbles for all practical purposes.

Algorithm 3. Traversal

Input: n, h(·) and pi, where n = 2κ and 1 ≤ i ≤ κ.
0. b = �κ

2
�, current = 0; // initialization of the budget and the current pointer

1. IF current = n THEN
HALT;

ELSE
current ← current + 1; // a new round begins
available ← b; // the remaining budget is set

2. i ← P(arrived,0); // the leftmost arrived pebble is selected
IF current mod 2 = 1 THEN // if current is odd

OUTPUT h(pi.value);
available ← available − 1;

ELSE // if current is even
OUTPUT pi.value;
pi.position ← pi.position + 3 · 2i; // a new starting position is assigned
pi.destination ← pi.destination + 2 · 2i; // a new destination is assigned
pi.value ← ⊥;
pi.status ← ready;
j ← P(arrived, pi.position);
IF j �= ⊥ THEN // if the link of the starting position is available

pi.value ← pj .value;
pi.status ← active;

3. i ← P(active, 0); // the leftmost active pebble is selected
IF i = ⊥ THEN // if there is no active pebble

GO TO 1;
WHILE available > 0 DO

pi.position ← pi.position − 1; // pi moves one step towards its destination
pi.value ← h(pi.value); // pi upates its associated link
available ← available − 1;
IF pi.position = pi.destination THEN // if pi arrives at its destination

pi.status ← arrived;
j ← P(ready, pi.destination);
IF j �= ⊥ THEN

pj .value ← pi.value;
pj .status ← active;

GO TO 3;
GO TO 1; // this line is reached only if available = 0
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4 Claims

Theorem 1. The proposed hash chain traversal algorithm succeeds in round i,
1 ≤ i ≤ n, for a length n = 2κ, budget b = �κ

2 , and κ pebbles.

Proof. For κ = 1, 2, 3, one can easily check the validity of the claim by executing
the algorithm (like examples in Appendix A). Therefore, we assume κ ≥ 4 (b =
�κ

2  ≥ 2) and prove Theorem 1 with a series of lemmata. Let segment-2 = [1, 2]
and segment-2i = [2i−1 + 1, 2i] for 2 ≤ i ≤ κ. Then, |segment-2| = 2 and
|segment-2i| = 2i−1 for 2 ≤ i ≤ κ. The entire chain is composed of segment-2,
segment-22, . . . , segment-2κ. We begin with two trivial bootstrapping lemmata.
Lemma 1 follows easily from b ≥ 2 and Lemma 2 from p2.position = 22 by the
setup algorithm.

Lemma 1. The traversal algorithm succeeds in segment-2.

Lemma 2. segment-22 is in a canonical form when round 3 (= 21 + 1) begins.

We define the cumulative budget of a segment as the sum of the budgets in
the segment and the cumulative expenditure of a segment as the hash function
evaluations required by the algorithm during the execution of the segment (i.e.,
while points in the segment are current). Let budget-2i and expenditure-2i be
the cumulative budget and the cumulative expenditure in segment-2i for 2 ≤
i ≤ κ − 1. Then, the balance of segment-2i can be defined by balance-2i =
budget-2i − expenditure-2i.

Lemma 3. Assume that segment-2i for 2 ≤ i ≤ κ − 1 is in a canonical form
when round 2i−1 + 1 begins. Then, we have balance-2i ≥ 0.

Proof. The cumulative budget budget-2i = 2i−1b is obtained simply by length
2i−1 times budget b. The cumulative expenditure expenditure-2i consists of three
parts. First, we need 2i−1 · 1

2 hash evaluations to compute the output links; 1
hash evaluation in odd round and 0 hash evaluation in even round. Second, we
need to relocate pebbles recursively in segment-2i = [2i−1 + 1, 2i]. When round
2i−1 + 1 begins, pebbles in segment-2i are in a canonical form. This means that
p1, p2, . . . , pi−2 are located at positions 2i−1 + 2, 2i−1 + 22, . . . , 2i−1 + 2i−2 and
pi at 2i. Note that p1 is the leftmost pebble, pi−2 is the midpoint pebble, pi

is the rightmost pebble, and pi−1 is not located in segment-2i. Since pj divides
segment-2i of length 2i−1 with sub-segments of length 2j, pi and pi−2 are not
relocated in segment-2i. pi−3 is relocated once (= 2 − 1) in segment-2i, pi−4
three times (= 22 − 1), pi−5 seven times (= 23 − 1), and so on. Therefore,
2i−3(2 − 1) + 2i−4(22 − 1) + 2i−5(23 − 1) + · · · + 2(2i−3 − 1) = (i − 4)2i−2 + 2
is the required number of hash evaluations.1 Third, pebbles should be located
in a canonical form in segment-2i+1 until round 2i is finished. The worst case is
1 This equation was derived for i ≥ 4. However, it is also valid for i = 2, 3, because

(i − 4)2i−2 + 2 = 0 for i = 2, 3.



Single-Layer Fractal Hash Chain Traversal 335

that when round 2i−1 + 1 begins, segment-2i+1 of length 2i has only one pebble
pi+1 at position 2i+1. In that case, we need 2i−2 hash evaluations. By summing
up the three parts, we have the cumulative expenditure expenditure-2i = (2i−1 ·
1
2 )+ ((i−4)2i−2 +2)+ (2i−2) = 2i−2(i+1). From budget-2i and expenditure-2i,
we have balance-2i = 2i−1b− 2i−2(i + 1) = 2i−2(2b− i− 1) ≥ 0, where 2i−2 ≥ 1
and 2b− i− 1 = 2�κ

2 − i− 1 ≥ 2 · κ
2 − i− 1 = κ− i− 1 ≥ 0 for 2 ≤ i ≤ κ− 1.

From Lemma 3, we know that balance-2i ≥ 0. However, this does not guarantee
the success of the algorithm because there might not be enough active pebbles
to soak up computational leftovers in some rounds, which results in waste of
budgets. The following lemma shows that pebbles are recursively relocated on
time.

Lemma 4. Assume that segment-2i for 2 ≤ i ≤ κ − 1 is in a canonical form
when round 2i−1 +1 begins. Then, the traversal algorithm succeeds in segment-2i

and, before round 2i + 1 begins, segment-2i+1 gets to be in a canonical form.

Proof. (Sketch)2 When round 2i−1+1 begins, p1, p2, . . . , pi−2 are located at posi-
tions 2i−1+2, 2i−1+22, . . . , 2i−1+2i−2 and pi at 2i in segment-2i = [2i−1+1, 2i].
As pj for 1 ≤ j ≤ i− 2 divides segment-2i with sub-segments of length 2j, pj in
round 2i−2j outputs its stored link, leaves segment-2i, and obtains a new start-
ing position and destination in the next segment segment-2i+1. Hence, pebbles
leave segment-2i in the order of pi−2, pi−3, . . . , p2, and p1. Note that pi leaves
segment-2i in round 2i and then is relocated in segment-2i+2 (not segment-2i+1).
We assume the worst case that during round 2i, pi stays at its new starting
position (in segment-2i+2) and does not move towards its new destination, i.e.,
pi does not consume any leftover budget during the execution of segment-2i.

For 2 ≤ j ≤ i − 1, let S(pi−j) be the sub-segment of segment-2i where pi−j

has the largest index during execution of segment-2i. For example, S(pi−2) =
[2i − 2i−1 + 1, 2i − 2i−2], S(pi−3) = [2i − 2i−2 + 1, 2i − 2i−3] and S(pi−j) =
[2i − 2i−j+1 + 1, 2i − 2i−j ]. Let S′(pi−j) = [2i − 2i−j + 1, 2i] be the remaining
sub-segment of segment-2i after S(pi−j) has been executed. Then, |S(pi−j)| =
|S′(pi−j)| = 2i−j. We also define S(p0) = [2i − 1, 2i] and S′(p0) = φ. During
the execution of S(pi−j), the traversal algorithm should (1) output 2i−j links of
S(pi−j), which requires 2i−j−1 hash evaluations, (2) relocate pebbles recursively
in S(pi−j), which requires (i − j − 3)2i−j−1 + 2 hash evaluations, (3) relocate
pebbles in S′(pi−j), which requires 2i−j−2 hash evaluations, and (4) move pi−j+1
to its destination, which requires 2i−j+1 hash evaluations. For 1 ≤ i ≤ κ−1 and
2 ≤ j ≤ i − 1, the cumulative budget of S(pi−j) is 2i−jb ≥ 2i−j−1κ, which is
greater than (1) + (2) + (3) = 2i−j−1(i − j). Similarly, the cumulative budget
of S(p0) is 2b ≥ 4, which is greater than (1) + (2) + (3) = 1 + 0 + 0. Therefore,
the traversal algorithm succeeds in segment-2i. However, it is not trivial that
segment-2i+1 gets to be in a canonical form before the round 2i+1 begins, because

2 To prove Lemma 4, we should consider all fractal repetitions of segment-2i. Instead
of providing complex mathematical induction, we focus on the first level repetition
of segment-2i to give intuition. We leave the complete proof of Lemma 4 to readers.
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the cumulative budget 2i−jb is not always greater than (1) + (2) + (3) + (4) =
2i−j−1(i− j) + 2i−j+1.

Let balance-S(pi−j) = 2i−jb − 2i−j−1(i − j) − 2i−j+1 be the balance of the
sub-segment S(pi−j). When round 2i− 2i−j+1 + 1 begins, S(pi−j) is in a canon-
ical form and the pebble pi−j+1 of either active or ready status stays at the
starting position in segment-2i+1. If pi−j+1 does not arrive at its destination
before round 2i − 2i−j + 1, pi−j+1 has consumed computational leftovers of
S(pi−j) completely. Otherwise, there might be waste of budgets after the arrival
of pi−j+1 at the destination. Suppose that for every j such that 2 ≤ j ≤ i − 1,
pi−j+1 has not arrived at the destination in segment-2i+1 during the execution of
S(pi−j). Then, there is no waste of budgets before the execution of S(p0) and by
Lemma 3, p1 can arrive at the destination on time, meaning that segment-2i+1

gets to be in a canonical form. If pi−j+1 for some 2 ≤ j ≤ i − 1 has arrived
at the destination in segment-2i+1 during the execution of S(pi−j) (which im-
plies balance-S(pi−j) ≥ 0), all the following pebbles, i.e., pi−j , pi−j−1, . . . , p1
also arrive at their respective destinations on time because balance-S(pi−j−v) =
2i−j−vb− 2i−j−v−1(i− j− v)− 2i−j−v+1 = 2−vbalance-S(pi−j)+ 2i−j−v−1v ≥ 0
for 0 ≤ v ≤ i− j−1 and balance-S(p0) = 2b−3 ≥ 0. Consequently, segment-2i+1

gets to be in a canonical form.

By Lemma 1, the traversal algorithm succeeds in round 1 and round 2. By
Lemma 2, segment-22 is in a canonical form when round 3(= 21 + 1) begins. By
Lemma 4 (with Lemma 2), the traversal algorithm succeeds in segment-2i for
2 ≤ i ≤ κ−1. In other words, the traversal algorithm succeeds in the first half of
the chain, i.e., rounds 1, 2, . . . , 2κ−1. Now we only have to show that the traversal
algorithm succeeds in the second half of the chain, i.e., rounds 2κ−1 + 1, . . . , 2κ.

Lemma 5. If the traversal algorithm succeeds in the first half of the chain, i.e.,
segment-2, segment-22, . . . , segment-2κ−1, then it also succeeds in the second half
of the chain, i.e., segment-2κ.

Proof. Lemma 5 follows from the symmetry of the first half and the second half.
When round 1 begins, the first half of the chain is in a canonical form by the
setup algorithm. From Lemma 1, 2, and 4, the traversal algorithm succeeds in
the first half and when round 2κ−1 + 1 begins, the second half (i.e., segment-2κ)
is also in a canonical form. Therefore, the traversal algorithm succeeds in the
second half, just like in the first half. Actually, the traversal in the second half
is much easier because the second half can use all budgets for itself, i.e., there is
no future pebble movements after segment-2κ.

Theorem 1 follows from Lemma 1, 2, 4, and 5. Q.E.D.
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Appendix A

We illustrate the proposed hash chain traversal algorithm with two examples.
Fig. 1 shows execution of the algorithm for a hash chain of length n = 16, in
which budget b = 2 and total 4 pebbles are required. Fig. 2 is for a hash chain
of length n = 64, in which budget b = 3 and total 6 pebbles are required. Note
that Fig. 2 contains rounds 1–32 and omits rounds 33–64. The latter is executed
just as the former because of the symmetry of the two.

Legends in Fig. 1 and Fig. 2 are defined as follows.

C current pointer
Pi pebble pi with active status
Pi pebble pi with arrived status
(Pi) pebble pi with ready status
Pi,j active pebble pi and arrived pebble pj at the same position
��� trace of a pebble

For example, P1 ��� P3 of round 2 in Fig. 1 is the result of a series of actions;
(1) P1 is assigned a new starting position 8 and destination 6, (2) P1 is assigned
its link and status active because P3 is already at position 8, (3) P1 moves
from position 8 to position 7, and (4) P1 moves from position 7 to position 6
(destination) and is assigned status arrived.
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Fig. 1. Execution of the proposed hash chain traversal for n = 16
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Fig. 2. Execution of the proposed hash chain traversal for n = 64
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Abstract. A technique for computing the quotient (�ab/n�) of Eu-
clidean divisions from the difference of two remainders (ab (mod n)− ab
(mod n + 1)) was proposed by Fischer and Seifert. The technique allows
a 2�-bit modular multiplication to work on most �-bit modular multipli-
ers. However, the cost of the quotient computation rises sharply when
computing modular multiplications larger than 2� bits with a recursive
approach. This paper addresses the computation cost and improves on
previous 2�-bit modular multiplication algorithms to return not only the
remainder but also the quotient, resulting in an higher performance in
the recursive approach, which becomes twice faster in the quadrupling
case and four times faster in the octupling case. In addition to Euclidean
multiplication, this paper proposes a new 2�-bit Montgomery multipli-
cation algorithm to return both of the remainder and the quotient.

Keywords: modular multiplication, efficient implementation, RSA, ari-
thmetic unit, low-end device, crypto-coprocessors, double-size technique.

1 Introduction

Cryptographic hardware accelerators are dedicated units for fast modular multi-
plication and typically process heavy modular exponentiation in low-end devices.
Since they are penalized by a fixed operand size, Fischer and Seifert proposed
an efficient 2�-bit modular multiplication technique calling only the �-bit arith-
metic units based on Euclidean division which returns not only an �-bit remain-
der but also an �-bit quotient, i.e., on input a, b and n, both ab (mod n) and
�ab/n� are returned. Such modular operation can be supported by most hard-
ware architectures; indeed, the arithmetic units involved in the execution of a
modular reduction can be easily enriched to simultaneously output a quotient
with little extra hardware cost. Furthermore, software techniques for computing
the quotient (�ab/n�) from the difference of two remainders (ab (mod n) − ab
(mod n + 1)) were also proposed [FS03]:

ab = qn + r = q(n + 1) + (r − q) = (q − 1)(n + 1) + (r − q + n + 1),

which is the keypoint of constructing a 2�-bit modular multiplication algorithm.
The previous doubling techniques consist of two steps. The first step is to

compute a 2�-bit (not modular) multiplication step by step using the above

M. Fischlin (Ed.): CT-RSA 2009, LNCS 5473, pp. 340–356, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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relation ab = qn + r. Then, the second step reduces the 4�-bit product with
modulus N = n12� + n0 using the equation n12� = −n0 (mod N): the 2�-bit
product n12� is reduced to one negative �-bit integer (−n0). Using successive
reductions, the 4�- bit product can be reduced to a 2�-bit integer, that is, the
remainder of double-size modular multiplication, which is the output of this
algorithm.

Taking into account the above tricks, one may consider the natural question:

Question: Is it possible to avoid the 2�-bit quotient computation when
the double-size technique is applied recursively ?

The motivation comes from the following fact: although double-size techniques
output remainders only, the requirement for the underlying �-bit multiplier is
to return both of quotients and remainders, or simulate such a multiplier in
software using two remainders.

This paper improves the double-size modular multiplication algorithms so as
to return not only the remainder but also the quotient. Unlike the previous
techniques which are penalized by the heavy cost of generating double-size quo-
tients, our approaches are liberated from such additional computation: the new
techniques preserve the quotient while processing modular multiplication, and
return both a remainder and a quotient without any additional cost compared
with previous techniques returning only a remainder. In a similar scenario with
Chevallier-Mames et al., one of our schemes requires 6 calls for double-size com-
putations, but only 36 calls in the 22�-bit case, and only 216 calls in the 23�-bit
case. Furthermore, in order to speed up performances, this paper proposes sev-
eral algorithms corresponding to different environments: with different modular
multiplication algorithms, depending on whether or not precomputations are
feasible, or depending on the modulus value. As a result, our proposals result in
a performance improvement at least twice as fast as previous techniques in any
environment.

The rest of this paper is organized as follows. Section 2 introduces previous
techniques for both of Euclidean and Montgomery multiplications, and shows
their issues for the recursive approach. Section 3 proposes a series of new algo-
rithms to compute both a quotient and a remainder using Euclidean or Mont-
gomery multiplication units. Section 4 shows another approach to compute the
quadrupling case with precomputations, without calling the double-size tech-
niques recursively. Section 5 compares the computational cost of our proposals
to the previous, and finally we conclude the paper in Section 6.

2 Related Work for Quadrupling Modular Multiplication

2.1 Previous Double-Size Techniques

Double-size techniques stronglydependon thedesignof crypto coprocessors andes-
pecially the modular multiplication algorithm [FS03, CJP03, YOV07a, YOV07b].
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Fischer and Seifert introduced the following two instructions based on the Euc-
lidean division returning not only a remainder but also a quotient.

Definition 1. For numbers, 0 ≤ a, b, n, t, EucMul1 instruction and EucMulInit1

instruction are defined as

(�ab/n�, ab (mod n))← EucMul(a, b, n),
(�(ab + t2�)/n�, ab + t2� (mod n))← EucMulInit(a, b, t, n)

where a, b, n and t are �-bit integers.

It is implicitly required in [FS03, CJP03] that both instructions can work with
negative operands a, b and t: the processor is able to handle such operands with
a signed representation and outputs correct results. Furthermore, non-reduced
inputs such that |a| > n are also acceptable.

Alg.1. Double-size modular multiplication 1

Input: A = a12� + a0, B = b12� + b0 and N = n12� + n0;
Output: AB (mod N);

(q1, r1) ← EucMul(a1, b1, n1)
(q2, r2) ← EucMul(q1, n0, 2�)
(q3, r3) ← EucMul(a0 + a1, b0 + b1, 2� − 1)
(q4, r4) ← EucMul(a0, b0, 2�)
(q5, r5) ← EucMul(2� − 1,−q2 + q3 − q4 + r1, n1)
(q6, r6) ← EucMul(q5, n0, 2�)
Return (−q6 − r2 + r3 − r4 + r5)2� + (r2 + r4 − r6)

One of the fastest double-size algorithms is introduced in Algorithm 1 (with
six EucMul instruction calls) [CJP03]. Algorithm 1 applies a simple radix repre-
sentation with base 2� such that A = a12� + a0 and outputs a remainder only:
AB (mod N). Other algorithms proposed by Chevallier-Mames et al. use both
EucMul and EucMulInit instructions or apply more sophisticated representations
with fewer instruction calls. The number of calls are shown in Table 1 and the
algorithms are introduced in Appendix A.

The previous double-size techniques consist of two steps. The first step is
to compute a 2�-bit (not modular) multiplication step by step using an �-bit
multiplier. Then, the second step reduces the 4�-bit product with modulus N
using the equation n12� = −n0 (mod N): the 2�-bit product n12� is reduced to
one negative �-bit integer (−n0). Using successive reductions, the 4�-bit product
can be reduced to a 2�-bit integer, that is, the result of the double-size modular
multiplication.

1 In order to avoid misreading, this paper uses different names from the original Mult-
ModDiv and MultModDivInit instructions [FS03]. Later, MonMul instruction comput-
ing Montgomery multiplications will be introduced in this paper.
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Table 1. Call numbers of double-size techniques

Algorithm Alg.1 Alg.10 Alg.11 Alg.12 Alg.13
EucMul 6 4 5 3 0

EucMulInit 0 1 0 0 0
MonMul 0 0 0 0 6
Calls 6 5 5 3 6

Unlike naive implementations of Euclidean multiplications, Montgomery mul-
tiplications are not affected by carry propagation delays and as a result, Mont-
gomery multiplications have been widely implemented in cryptographic copro-
cessors [Mon85]. Yoshino et al. extended the double-size techniques using an
�-bit Euclidean instruction to an �-bit Montgomery multiplication unit which is
the following instruction [YOV07a, YOV08].

Definition 2. For numbers, 0 ≤ a, b, n and positive constant m, MonMul in-
struction is defined as

(ab− rm/n, r = abm−1 (mod n))← MonMul(a, b, n)

where a, b and n are �-bit integers and gcd(m,n) = 1

The MonMul instruction has assumptions that are similar to those of EucMul
and EucMulInit instructions: negative and non-reduced operands a, b such that
|a| > n are acceptable.

The double-size Montgomery multiplication consists of two steps, similarly to
Algorithm 1. The first step is to compute a 2�-bit multiplication step by step
using the MonMul instruction. Then, the second step reduces the 4�-bit product
to a 2�-bit integer based on the modulus equation. Only the 2�-bit integer is
returned by 2�-bit Montgomery multiplications such as Algorithm 13.

Table 1 displays the cost of each double-size technique, including Algorithm
1 and other algorithms described in Appendix A.

2.2 Costly Quotient Computation for Size Quadrupling Approach

At first sight, it can be expected that from a recursive use of the best cur-
rent doubling algorithm, one could straight-forwardly derive the best possible
quadrupling technique. Unfortunately, this is not true. Originally, double-size
techniques based on a single-size instruction outputting a quotient and a re-
mainder returns only a double-size remainder. Therefore, a recursive approach
requires additional computations for the double-size quotient. See for example
Algorithm 2 deriving an quotient from the difference of two remainders (Step 3)
[FS03]: in addition to one computation of a double-size modular multiplication
for the remainder, extra computations are required for the quotient.

Currently, Algorithm 2 computing a quotient from two different remainders is
the preferred method for the double-size approach; however, this fact means that
the performance of the quadrupling approach is not as optimized as that of double-
size techniques. The double-size technique using Algorithm 1 requires only six
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Alg.2. Simulation of the EucMul instruction

Input: a, b, n with 0 ≤ a, b, n;
Output: �ab/n�, ab (mod n);

r ← ab (mod n))
r′ ← ab (mod (n + 1))
q ← r − r′

If q < 0, then q ← q + n + 1.
Return (q, r)

single-size instruction calls, however, the quadrupling approach using Algorithm 1
requires twelve double-size instruction calls, which is twice thenumber of calls com-
pared with the doubling case. Unfortunately, a similar situation can be observed
for all previous double-size techniques implemented in a recursive manner.

3 New Double-Size Techniques

This section proposes new solutions to compute a double-size quotient and re-
mainder simultaneously without additional computational cost compared with
previous double-size techniques. Unlike the previous techniques based on the
equation of the 2�-bit modular multiplication R = AB (mod N) or the 2�-bit
Montgomery multiplication R = ABM−1 (mod N), our approach calculates a
quotient Q and a remainder R satisfying the equation AB = QN + RM where
M = 1 for Euclidean multipliers and M = 22� for Montgomery multipliers.

Figure 1 illustrates the fact that positions of the remainders are different
for each modular multiplication algorithm. Our technique computes the 4�-bit
product AB and divides it into the 2�-bit quotient Q and remainder R step by
step using �-bit instructions.

The available approaches for our new double-size techniques depend on sev-
eral conditions such as the type of coprocessors, the possibility of performing
precomputations or the value of the modulus. This section introduces several
algorithms to cover most of the above settings: Section 3.1–3.3 targets an Eu-
clidean multiplication unit, and Section 3.4 shows an extension to a Montgomery
multiplication unit.

ABAB

QNQN

RR 0 · · · 00 · · · 0

��

++

2� bits2� bits 2� bits2� bits

4� bits4� bits
MSB MSBLSB LSB

(Montgomery case)(Euclidean case)

Fig. 1. Different Remainders Position in Equation AB = QN + RM
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3.1 Simple �-bit Width Representation Approach

Since the operand size of the EucMul instruction is limited to � bits, double-size
techniques need to split 2�-bit integers into at most � bits. One of the simplest
splitting method is to apply the binary representation with �-bit width, which
does not require any precomputation.

Algorithm 3 introduced hereafter requires the same number of calls to the
EucMul instruction as Algorithm 1.

Proposition 1. Algorithm 3 requires six �-bit EucMul instructions to compute
2�-bit integers Q and R satisfying AB = QN + R provided with 2�-bit arbitrary
integers A, B, N where 0 ≤ A, B < N .

Alg.3. Double-size EucMul instruction 1

Input: A = a12� + a0, B = b12� + b0 and N = n12� + n0;
Output: �AB/N� and AB (mod N);

(q1, r1) ← EucMul(a0, b0, 2�)
(q2, r2) ← EucMul(a0 + a1, b0 + b1, n1)
(q3, r3) ← EucMul(a1, b1, n1)
(q4, r4) ← EucMul(r3 − q1, 2�, n1)
(q5, r5) ← EucMul(q3, n0, n1)
(q6, r6) ← EucMul(q2 − q3 + q4 − q5, n0, 2�)
Return q32� + (q2 − q3 + q4 − q5) and (q1 − q6 − r1 + r2 − r3 + r4 − r5)2� + (r1 − r6)

Proof. Hereafter, the correctness of Algorithm 3 is proven.
First, 2�-bit integers A, B, N expressed in binary are processed assuming the

following �-bit representation;

A = a12� + a0, B = b12� + b0, N = n12� + n0.

Karatsuba can be applied to compute the multiplication AB in order to reduce
computational cost.

AB = a1b12�(2� − 1) + (a1 + a0)(b1 + b0)2� − a0b0(2� − 1) (1)

Successively, each term of Equation (1) can be calculated with �-bit EucMul in-
structions, outputting �-bit quotients and remainders as the following equations.

a0b0 = q12� + r1 (2a)
(a1 + a0)(b1 + b0) = q2n1 + r2 (2b)

a1b1 = q3n1 + r3 (2c)

Then, Equations (2a), (2b) and (2c) can be reinjected in Equation (1).

AB = {q32� + (q2 − q3)}n12� + (r3 − q1)22� + (q1 − r1 + r2 − r3)2� + r1.
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Similarly, one can change some of the terms in the above equation using the
EucMul instruction in order to transform a 4�-bit integer into multiples of the
modulus (n12� + n0).

(r3 − q1)2� = q4n1 + r4 (3a)
q3n0 = q5n1 + r5 (3b)

(q2 − q3 + q4 − q5)n0 = q62� + r6 (3c)

Finally, the product AB can be rewritten into the following equations, where
underline related to EucMul instruction calls are depicted for easier comprehen-
sion.

AB = {q32� + (q2 − q3)}n12� + (q4n1 + r4)2� + (q1 − r1 + r2 − r3)2� + r1(∵ (3a))

= {q32� + (q2 − q3 + q4)}(n12� + n0)− {q32� + (q2 − q3 + q4)}n0

+(q1 − r1 + r2 − r3 + r4)2� + r1 (∵ (3b))
= {q32� + (q2 − q3 + q4 − q5)}(n12� + n0)− (q2 − q3 + q4 − q5)n0

+(q1 − r1 + r2 − r3 + r4 − r5)2� + r1 (∵ (3c))

= {q32� + (q2 − q3 + q4 − q5)}(n12� + n0)
+{(q1 − q6 − r1 + r2 − r3 + r4 − r5)2� + r1 − r6}. (4)

As a result, Equation (4) can be seen as AB = QN + R with Q = q32� + (q2 −
q3 + q4 − q5) and R = (q1 − q6 − r1 + r2 − r3 + r4 − r5)2� + (r1 − r6).

%&

Algorithm 3 was derived in the case that the instruction EucMul only is avail-
able; however, modern coprocessors may be equipped with not only the EucMul
instruction but also a more advanced function, namely the EucMulInit instruc-
tion. Using both instructions, Algorithm 4 decreases the number of calls to the
available instructions by one compared to Algorithm 3.

Proposition 2. Algorithm 4 requires four �-bit EucMul instructions and one
�-bit EucMulInit instruction to compute 2�-bit integers Q and R satisfying AB =
QN + R provided with 2�-bit arbitrary integers A, B, N where 0 ≤ A, B < N .

The correctness of Algorithm 4 is proven in Appendix B.

3.2 Sophisticated Representation Approach

Algorithms 3 and 4 manipulate integers in a simple radix representation with
base 2�. Now this subsection introduces a representation change that may lead
to further cost savings. The change, which is not as simple as the �-bit width
representation, needs to be performed prior to the execution of the correspond-
ing double-size multiplication algorithm, and can be executed once and for all,
especially when not only a single multiplication but a modular exponentiation
is performed, as in RSA, DSA or DH [MOV96].
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Alg.4. Double-size EucMul instruction 2

Input: A = a12� + a0, B = b12� + b0 and N = n12� + n0;
Output: �AB/N� and AB (mod N);

(q1, r1) ← EucMul(a0 + a1, b0 + b1, n1)
(q2, r2) ← EucMul(a1, b1, n1)
(q3, r3) ← EucMul(a0, b0, 2�)
(q4, r4) ← EucMulInit(q2, n0, q3 − r2, n1)
(q5, r5) ← EucMul(q1 − q2 − q4, n0, 2�)
Return q22� + (q1 − q2 − q4) and (q3 − q5 + r1 − r2 − r3 − r4)2� + (r3 − r5)

Proposition 3. Algorithm 5 requires five �-bit EucMul instructions to compute
2�-bit integers Q and R satisfying AB = QN + R provided with 2�-bit arbitrary
integers A, B, N where 0 ≤ A, B < N .

Let s be an integer satisfying s2 = N +α and s ≤ �
√
N. Then, the above binary

representation can be changed using the �-bit integer s; for instance A = a1s+a0.
Since α < 2s holds, α can be processed by the EucMul instruction.

Alg.5. Double-size EucMul instruction 3

Precomp: radix base s satisfying that s2 = N + α and s ≤ �√N�;
Input: A = a1s + a0, B = b1s + b0, s, α;
Output: �AB/N� and AB (mod N);

(q1, r1) ← EucMul(a0 + a1, b0 + b1, s)
(q2, r2) ← EucMul(a1, b1, s)
(q3, r3) ← EucMul(a0, b0, s)
(q4, r4) ← EucMul(α, q2, s)
(q5, r5) ← EucMul(α, q1 − q2 − q3 + q4 + r2, s)
Return q2s + (q1 − q2 − q3 + q4 + r2) and (q3 + q5 + r1 − r2 − r3 + r4)s + (r3 + r5)

The correctness of Algorithm 5 is proven in Appendix B.

3.3 Approach Using Specific Modulus

Optimal performances are reached when α = −1, 0, 1 in Algorithm 5: the compu-
tational cost reduces to only 3 EucMul instructions. The existence of s can be guar-
anteed by modifying key generation, and [CJP03] argues that this can be achieved
with simple algebraic techniques while preserving security of the modulus.

Other choices for the representation base may be an �-bit integer t such that
t2 = N + α+ δt. If the key generation is modified, it is possible to select advan-
tageous values for α and δ such as α = δ = 1.

Proposition 4. Algorithm 6 requires three �-bit EucMul instructions to com-
pute 2�-bit integers Q and R satisfying AB = QN + R provided with 2�-bit
arbitrary integers A, B, N where 0 ≤ A, B < N .
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Alg.6. Double-size EucMul instruction 4

Precomp: radix base t satisfying that t2 = N + α + δt;
Input: A = a1t + a0, B = b1t + b0, α, δ;
Output: �AB/N� and AB (mod N);

(q1, r1) ← EucMul(a0 + a1, b0 + b1, t)
(q2, r2) ← EucMul(a1, b1, t)
(q3, r3) ← EucMul(a0, b0, t)
Return q2t + (q2δ + q1 − q2 − q3 + r2) and {q1δ + q2(α + δ2 − δ) − q3(δ − 1) + r1 +
r2(δ − 1) − r3}t + (q1 + q2(δ − 1) − q3 + r2)α + r3

The correctness of Algorithm 6 is proven in Appendix B.

3.4 Extension to Montgomery-Type Multiplication

Unlike naive implementations of Euclidean multiplications, Montgomery multi-
plications are not affected by carry propagation delays and as a result, Mont-
gomery multiplications have been widely implemented for costly modular multi-
plications. On the other hand, the Montgomery quotient and remainder satisfy
equations that are different from the case of Euclidean multiplication; more pre-
cisely, the relationship between product, quotient and remainder involves the so-
called Montgomery constant M : AB = QN +RM . In practice, for efficient com-
putations, M is set as 22� in the case of a 2�-bit instruction [MOV96, YOV07a].
This paper follows the same pattern and assumes that M = 22�.

First, we propose Algorithm 7 based on an �-bit width representation using
the �-bit Montgomery constant m = 2�.
Proposition 5. Algorithm 7 requires six �-bit MonMul instructions to compute
2�-bit integers Q and R satisfying AB = QN+RM provided with 2�-bit arbitrary
integers A, B, N where 0 ≤ A, B,N .

Alg.7. Double-size MonMul instruction 1

Input: A = a1 + a0m, B = b1 + b0m and N = n1 + n0m with m = 2�;
Output: (AB − RM)/N and ABM−1 (mod N) with M = 22�;

(q1, r1) ← MonMul(a0 + a1, b0 + b1, n1)
(q2, r2) ← MonMul(a1, b1, n1)
(q3, r3) ← MonMul(a0, b0, m − 1)
(q4, r4) ← MonMul(q3 + r2, 1, n1)
(q5, r5) ← MonMul(q2, n0, n1)
(q6, r6) ← MonMul(q5, n0, m − 1)
Return q2 + (q1 − q2 + q4 − q5)m and (−q1 + q2 − 2q3 − q4 − q6 + r1 − r2 − r3 + r4 −
r5) + (q3 + q6 + r3 + r6)m

The correctness of Algorithm 7 is in a similar fashion to Algorithm 3.
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Not only the above simple �-bit width binary representation, but also more so-
phisticated representations are applicable even for Montgomery multiplications;
note that this direction has never been investigated by previous techniques for
computing 2�-bit Montgomery remainders [YOV07a, YOV07b, YOV08]. In fact,
the following algorithm based on a more sophisticated representation enjoys
higher performance, even for the doubling case.

Proposition 6. Algorithm 8 requires five �-bit MonMul instructions to compute
2�-bit integers Q and R satisfying AB = QN+RM provided with 2�-bit arbitrary
integers A, B, N where 0 ≤ A, B, N .

Let u be an integer satisfying u2 = N +αm and u ≤ �√n1 +1m1/2 where n1 =
�N/m�. Since u < m holds, a new representation with u such as A = a1u+ a0m
is available for the MonMul instruction.

Alg.8. Double-size MonMul instruction 2

Precomp: radix base u satisfying that u2 = N + αm and u ≤ �√n1 + 1�m1/2;
Input: A = a1u + a0m, B = b1u + b0m, u, α;
Output: (AB − RM)/N and ABM−1 (mod N);

(q1, r1) ← MonMul(a0 + a1, b0 + b1, u)
(q2, r2) ← MonMul(a1, b1, u)
(q3, r3) ← MonMul(a0, b0, u)
(q4, r4) ← MonMul(α, q2, u)
(q5, r5) ← MonMul(α, q1 − q2 − q3 + q4 + r2, u)
Return q2 + (q1 − q2 − q3 + q4 + r2)u and (q3 + q5 + r1 − r2 − r3 + r4) + (r3 + r5)u

The correctness of Algorithm 8 is proven in a similar fashion to Algorithm 5.

4 Multiplication and Reduction Approach with
Precomputation

Section 3 introduced a new double-size approach for outputting both a quo-
tient and a remainder in order to accelerate long modular multiplication such as
quadrupling. This section describes a different k�-bit modular multiplication ap-
proach which does not call double-size techniques recursively, and can be applied
to arbitrary k such as k = 3, 4, 5, . . . It is easier to adjust the value k to a bit-
length required by cryptographic standards than when using recursive approach,
which only allows powers of two. For example, with a cryptographic processor
which is able to process 512-bit modular multiplications one can select k = 3
for 1408-bit modular multiplications, which is a standard RSA key-length for
credit card protocols [EMV]. However, in order to process this flexible approach
efficiently, devices should be equipped with storage for precomputed values.
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Proposition 7. Algorithm 9 requires twenty eight �-bit EucMul instructions
to compute 4�-bit integers R satisfying R = AB (mod N) provided with 4�-bit
arbitrary integers A, B, N where 0 ≤ A, B, N .

Alg.9. Quadrupling-size classical modular multiplication

Precomp: elements ci,j satisfying that
∑3

j=0 ci,j2j� = 2i� (mod N)(i = 4, 5, 6, 7);
Input: A =

∑3
i=0 ai2i�, B =

∑3
i=0 bi2i�, N =

∑3
i=0 ni2i� ;

Output: AB (mod N);

Compute a multiplication according to Karatsuba.
1. (q1, r1) ← EucMul(a0, b0, 2�)
2. (q2, r2) ← EucMul(a1, b1, 2�)
3. (q3, r3) ← EucMul(a1 + a0, b1 + b0, 2�)
4. (q4, r4) ← EucMul(a2 + a0, b2 + b0, 2�)
5. (q5, r5) ← EucMul(a3 + a1, b3 + b1, 2�)
6. (q6, r6) ← EucMul(a3 + a2 + a1 + a0, b3 + b2 + b1 + b0, 2�)
7. (q7, r7) ← EucMul(a2, b2, 2�)
8. (q8, r8) ← EucMul(a3, b3, 2�)
9. (q9, r9) ← EucMul(a3 + a2, b3 + b2, 2�)

For i from 0 to 7, compute si satisfying that AB =
∑7

i=0 si2i (mod N)
1. s0 ← r1

2. s1 ← q1 + r3 − r2 − r1

3. s2 ← q3 − q2 − q1 + r4 + r2

4. s3 ← q4 + q2 + r6 − r5 − r4

5. s4 ← q6 − q5 − q4 + r7 + r5

6. s5 ← q7 + q5 + r9 − r8 − r7

7. s6 ← q9 − q8 − q7 + r8

8. s7 ← q8

For i from 0 to 3, compute (q10+i, r10+i) ← EucMul(s4+i, c4+i,3, n3)
For j from 0 to 2, do
1. For i from 0 to 3, compute (q14+i+4j , r14+i+4j) ← EucMul(s4+i, c4+i,3−j , 2�)

For i from 0 to 2, compute (q26+i, r26+i) ← EucMul(q10 + q11 + q12 + q13), n2−i, 2�)
Return {s3+

∑3
i=0(q14+i +r10+i)−q26}23� +{s2+

∑3
i=0(q18+i +r14+i)−q27−r26}22� +

{s1 +
∑3

i=0(q22+i + r18+i) − q28 − r27}2� + (s0 +
∑3

i=0 r22+i − r28)

Algorithm 9 is designed for classical modular multiplications, however, it can
be easily changed for Montgomery multiplications with �-bit MonMul instruc-
tions. Furthermore, Algorithm 9 only treats the case of k = 4, but can be easily
extended to general k.

Proposition 8. There are algorithms to compute k�-bit modular multiplication
runs in at most (2k2 − k)2�-bit modular multiplications.

2 Roughly speaking, the approach consists of k�-bit (not modular) multiplication
steps per �-bits, and k�-bit modular reduction with precomputed value. Performance
can be improved if a fast multiplication algorithm is applied on the first k�-bit
multiplication step.
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5 Comparison

This section evaluates the number of calls to the �-bit instructions in 4�-bit
modular multiplication, which is the smallest operand size for recursive approach
(with 22 = 4).

Table 2 shows that the proposed double-size Euclidean multiplication is twice
as fast as the previous double-size techniques from a viewpoint of the number
of calls to �-bit instructions. Our �-bit width representation technique improves
72 calls to 36 calls if the EucMul instruction only is available (that is condition
(a) in Table 2), and 50 calls to 25 calls if both EucMul and EucMulInit instruc-
tions are available (condition (b)). Furthermore, if precomputations are available
(condition(c)), 50 calls are improved to 25 calls, and 18 calls are improved to 9
calls with specific moduli (condition (d)).

Table 2. Cost of quadrupling modular multiplication

Previous techniques Proposal
Condition (a) (b) (c) (d) (a) (b) (c) (d)
Algorithm Alg.1 Alg.10 Alg.11 Alg.12 Alg.3 Alg.4 Alg.5 Alg.6

EucMul 72 40 50 18 36 20 25 9
EucMulInit 0 10 0 0 0 5 0 0

Table 3 gives performance results of both the previous techniques and our
proposals based on the �-bit Montgomery multiplication unit. 72 calls are im-
proved to 36 calls with the �-bit width binary representation (condition (A)),
and with the approach of using the more sophisticated representation, which
requires a small precomputation, the number of calls is decreased from 72 to 25
(condition(B)).

Table 3. Cost of quadrupling Montgomery multiplication

Previous Proposal
Condition (A) (A) (B)
Algorithm Alg.13 Alg.7 Alg.8

MonMul 72 36 25

In addition to the recursive approach, Section 5 proposed a multiplication-
and-reduction technique which can directly compute k�-bit modular or Mont-
gomery multiplications if storage for precomputations is available. In the 4�-bit
case, it has 28 calls to �-bit instructions based on Euclid multiplication or Mont-
gomery multiplication.
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6 Conclusion

This paper addresses the issue of the high computation costwhen getting aquotient
from the difference of two remainders and improves 2�-bit modular multiplication
algorithms to return both a remainder and a quotient. Our technique results in a
performance improvement for the recursive approach, and is at least twice as fast
as previous schemes in the 4�-bit case and four times faster in the 8�-bit case.

Modular multiplications are one of the most time-critical parts in cryptosys-
tems, however, their performance might be affected by other glue instructions
which cannot take advantage of the coprocessor. Future work will consider this
problem and deal with practical implementations.

References

[CJP03] Chevallier-Mames, B., Joye, M., Paillierinst, P.: Faster double-size modu-
lar multiplication from euclidean multipliers. In: Walter, C.D., Koç, Ç.K.,
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A Previous Double-Size Techniques

Algorithm using both the EucMul and the EucMulInit instructions requires only
five calls to the instructions.

Alg.10. Double-size modular multiplication 2

Input: A = a12� + a0, B = b12� + b0 and N = n12� + n0;
Output: AB (mod N);

(q1, r1) ← EucMul(a1, b1, n1)
(q2, r2) ← EucMul(a0 + a1, b0 + b1, 2� − 1)
(q3, r3) ← EucMul(a0, b0, 2�)
(q4, r4) ← EucMulInit(q1, n0,−q2 + q3 − r1, n1)
(q5, r5) ← EucMul(q4, n0 + n1, 2�)
Return (r2 − r3 − r4 + q5)2� + (r3 + r4 + r5)

In addition to Algorithm 1 and 10 with a simple base 2�, Chevallier-Mames
et al. presented another algorithm with a special radix s, which needs only five
calls to the EucMul instruction.

Alg.11. Double-size modular multiplication 3

Precomp: α = s2 (mod N);
Input: A = a1s + a0, B = b1s + b0, N = n1s + n0;
Output: AB (mod N);

(q1, r1) ← EucMul(a0, b0, s)
(q2, r2) ← EucMul(a0 + a1, b0 + b1, s)
(q3, r3) ← EucMul(a1, b1, s)
(q4, r4) ← EucMul(α, q3, s)
(q5, r5) ← EucMul(α,−q1 + q2 − q3 + q4 + r3, s)
Return (−r1 + r2 − r3 + r4 + q1 + q5)s + (r1 + r5)
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Furthermore, Chevallier-Mames et al. showed optimized algorithms with a
specific modulus satisfying t2 = α + δt (mod N) where α and δ are simple
numbers such as α = δ = 1.

Alg.12. Double-size modular multiplication 4

Precomp: t2 = α + δt (mod N);
Input: A = a1t + a0, B = b1t + b0, N = n1t + n0;
Output: AB (mod N);

(q1, r1) ← EucMul(a0, b0, t)
(q2, r2) ← EucMul(a0 + a1, b0 + b1, t)
(q3, r3) ← EucMul(a1, b1, t)
Return α(−q1+q2−q3+r3+q3δ)+r1 + t(−r1+r2−r3+q1+q3(α+δ2)+(−q1+q2−q3+r3)δ)

Yoshino et al. proposed double-size Montgomery multiplication algorithms
which call only six times the MonMul instruction.

Alg.13. Double-size Montgomery modular multiplication 1

Input: A = a1(m − 1) + a0m, B = b1(m − 1) + b0m, N = n1(m − 1) + n0m;
Output: ABM−1 (mod N) where M = m2;

(q1, r1) ← MonMul(a1, b1, n1)
(q2, r2) ← MonMul(q1, n0, (m − 1))
(q3, r3) ← MonMul(a0 + a1, b0 + b1, (m − 1))
(q4, r4) ← MonMul(a0, b0, (m − 1))
(q5, r5) ← MonMul((m − 1),−q2 + q3 − q4 + r1, n1)
(q6, r6) ← MonMul(q5, n0, (m − 1))
Return (q2 + q4 − q6 − r1 − r2 + r3 − r4 + r5)(m − 1) + (r2 + r4 − r6)m

B Proof of Correctness

B.1 Algorithm 4

Proof. Hereafter, the correctness of Algorithm 4 is proven.
First, 2�-bit integers A, B, N presented with natural binary representation

are converted to the following �-bit representations; A = a12� + a0, B = b12� +
b0, N = n12� + n0. Karatsuba can be applied to compute the multiplication
AB for less cost. AB = a1b12�(2� − 1) + (a1 + a0)(b1 + b0)2� − a0b0(2� − 1).
Successively, each term of the above equation is represented in the following
equations: (a1 + a0)(b1 + b0) = q1n1 + r1, a1b1 = q2n1 + r2 and a0b0 = q32� + r3.
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Then, the above equation is affected from changes of the above terms. AB =
{q22� + (q1 − q2)}n12� + (r2 − q3)22� + (q3 + r1 − r2 − r3)2� + r3.

Similarly, one can change each representation with the following EucMulInit

and EucMul instruction calls: q2n0 + (q3 − r2)2� = q4n1 + r4 and (q1 − q2 −
q4)n0 = q52� + r5. Finally, the product AB will be changed into the following
equations, where underline related to EucMul instruction calls are depicted for
easier comprehension.

AB = {q22� + (q1 − q2)}(n12� + n0)− {q2n0 + (q3 − r2)2�}2�

−(q1 − q2)n0 + (q3 + r1 − r2 − r3)2� + r3

= {q22� + (q1 − q2 − q4)}(n12� + n0)− (q1 − q2 − q4)n0

+(q3 + r1 − r2 − r3 − r4)2� + r3

= {q22� + (q1 − q2 − q4)}(n12� + n0)

+(q3 − q5 + r1 − r2 − r3 − r4)2� + (r3 − r5)

As a result, AB = QN +R where Q = q22�+ (q1 − q2 − q4) and R = (q3 − q5 +
r1 − r2 − r3 − r4)2� + (r3 − r5) holds.

%&
B.2 Algorithm 5

Proof. AB = (a1s+a0)(b1s+b0) = a1b1s(s−1)+(a1+a0)(b1+b0)s−a0b0(s−1)
Each term is converted based on the following equations. (a1 + a0)(b1 + b0)s =
(q1s + r1)s, a1b1s(s−1) = (q2s + r2)s(s−1) and a0b0(s−1) = (q3s + r3)(s−1).
Then, the equation is rewritten as follows.

AB = {q2s + (q1 − q2 − q3 + r2)}N + (q3 + r1 − r2 − r3)s + r3

+q2αs + (q1 − q2 − q3 + r2)α

= {q2s + (q1 − q2 − q3 + r2)}N + (q3 + r1 − r2 − r3)s + r3

+(q4s + r4)s + (q1 − q2 − q3 + r2)α

= {q2s + (q1 − q2 − q3 + q4 + r2)}N + (q3 + r1 − r2 − r3 + r4)s + r3

+(q1 − q2 − q3 + q4 + r2)α

= {q2s + (q1 − q2 − q3 + q4 + r2)}N + (q3 + r1 − r2 − r3 + r4)s + r3 + q5s + r5

= {q2s + (q1 − q2 − q3 + q4 + r2)}N + (q3 + q5 + r1 − r2 − r3 + r4)s + (r3 + r5).

As a result, AB = QN + R where Q = q2s + (q1 − q2 − q3 + q4 + r2) and
R = (q3 + q5 + r1 − r2 − r3 + r4)s+ (r3 + r5) proves that Algorithm 5 computes
the quotient and remainder of 2�-bit multiplications.

%&
B.3 Algorithm 6

Proof. AB = (a1t+a0)(b1t+b0) = a1b1t(t−1)+(a1+a0)(b1+b0)t−a0b0(t−1). All
terms of the above equations are modified according to the following equations.
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(a1 + a0)(b1 + b0)t = (q1t + r1)t = q1N + (q1δ + r1)t + q1α, a1b1t(t − 1) =
(q2t + r2)t(t−1) = {q2t+q2(δ−1)+r2}N+{q2(α+δ2−δ)+r2(δ−1)}t+{q2(δ−
1)+r2}α and a0b0(t−1) = (q3t + r3)(t−1) = q3N +{q3(δ−1)+r3}t+q3α−r3.

Then, the equation is rewritten in the following equations.

AB = {q2t + (q2δ + q1 − q2 − q3 + r2)}N + (q1 + q2(δ − 1)− q3 + r2)α + r3

+{q1δ + q2(α + δ2 − δ)− q3(δ − 1) + r1 + r2(δ − 1)− r3}t.

%&
B.4 Algorithm 9

Proof. The proof is conducted with general k, which includes k = 4.
First, A and B are represented with ah and bi (h, i = 0, · · ·k) which are

�-bit pieces of A and B. A =
∑k

h=0 ah2h�, B =
∑k

i=0 bi2i�, N =
∑k

j=0 nj2j�.

Then, the 2k�-bit product AB is rewritten as AB =
∑k

h=0
∑k

i=0 ahbi2(h+i)� =∑k−1
h=0 si2i�+

∑2k−1
h=k si2i�. Now, precomputations are injected in the second term.

2k−1∑
h=k

si2i� =
2k−1∑
h=k

si

k−1∑
j=0

ci,j2j� =
2k−1∑
h=k

si(ci,k−12(k−1)� +
k−2∑
j=0

ci,j2j�)

= −q
k−2∑
j=0

nj2j� + r2(k−1)� +
2k−1∑
h=k

si

k−2∑
j=0

ci,j2j�

where sici,k−1 = qnk−1 + r and N =
∑k

j=0 nj2j�.
Then, the following equation for modular reduction holds.

AB (mod N) =
k−1∑
h=0

si2i� − q
k−2∑
j=0

nj2j� + r2(k−1)� + S
k−2∑
j=0

ci,j2j�

%&



Constant-Rounds, Almost-Linear
Bit-Decomposition of Secret Shared Values

Tomas Toft1,2,�

1 CWI Amsterdam, The Netherlands
2 TU Eindhoven, The Netherlands

Abstract. Bit-decomposition of secret shared values – securely com-
puting sharings of the binary representation – is an important primitive
in multi-party computation. The problem of performing this task in a
constant number of rounds has only recently been solved.

This work presents a novel approach at constant-rounds bit-decom-
position. The basic idea provides a solution matching the big-O-bound
of the original while decreasing the hidden constants. More importantly,
further solutions improve asymptotic complexity with only a small in-
crease in constants, reducing it from O(� log(�)) to O(� log∗(�)) and even
lower. Like previous solutions, the present one is unconditionally secure
against both active and adaptive adversaries.

Keywords: Secret Sharing, Constant-rounds Multi-party Computation,
Bit-decomposition.

1 Introduction

Secure multi-party computation (MPC) allows a number of parties to perform a
computation based on private inputs, learning the result but revealing no other
information than what this implies. The general solutions providing uncondi-
tional security phrase the computation as a circuit over secret shared inputs,
however, the gates must be evaluated in an iterative fashion, implying that
round complexity is equivalent to circuit depth.1

A clever choice of representation of the inputs can have great influence on
possible constant-rounds solutions. Consider determining the sum of a number
of private integer values. Their binary representation could be taken as input, but
constant-rounds bitwise addition is expensive. A much simpler solution would
be to choose a prime, p, greater than the maximal sum, and view the inputs
as elements of Zp – the Zp computation simulates the task to be performed.
However, if we wish to determine some property of the sum, say a particular bit,
then we are stuck. This would be trivial given the binary representation.
� Supported by the research program Sentinels (http://www.sentinels.nl). Sentinels

is being financed by Technology Foundation STW, the Netherlands Organization for
Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

1 With a linear secret sharing scheme only multiplication gates are counted regarding
depth.
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Being able to switch representation gives us the best of both worlds. An
efficient means of extracting all bits in a constant number of rounds is therefore
an important primitive (the other direction is trivial). Though this problem
has already been solved, it is worth improving the solutions, as more efficient
primitives implies better complexity for any application.

1.1 Setting and Goal

Formalizing the above, our setting is the following: A value x is secret shared
among n parties P1, . . . , Pn using an unconditionally secure, linear secret shar-
ing scheme over the prime-field Zp. In addition to this, the parties have access
to a secure, constant-rounds multiplication protocol for shared values, i.e. given
sharings of a and b, the parties can obtain a sharing of the product. All primi-
tives are assumed to allow concurrent execution. The above can be instantiated
with Shamir’s secret sharing scheme [Sha79] and the protocols of Ben-Or et al.
[BGW88].

The parties wish to securely compute sharings of the binary representation of
x in a constant number of rounds of interaction. I.e. they should obtain sharings
of x�−1, . . . , x0 ∈ {0, 1} ⊆ Zp – where � is the bit-length of p – such that

x =
�−1∑
i=0

2ixi

when viewed as occuring over the integers.

1.2 Related Work

Bit-decomposition has been considered in various settings. Algesheimer et al.
presented a solution starting with an additive secret sharing, [ACS02]. This was
not constant-rounds though, and only secure against semi-honest adversaries.

The first constant-rounds solution to the bit-decomposition problem is due to
Damg̊ard et al., [DFK+06]. Similar to here, unconditional security against active
and adaptive adversaries was considered. The computation requires O(� log(�))
invocations of the multiplication protocol.

The [DFK+06] computation was later improved by a constant factor by Nishide
and Ohta, [NO07] – the basic idea was the same, but it was observed that one of the
two invocations of the most expensive primitive, bitwise addition, was unnecessary.

Toft later sketched a theoretically improved solution, [Tof07] also building on
[DFK+06]. Complexity was reduced to O(� log(c)(�)) for any constant integer,
c, where log(c) is the logarithm applied c times. The round complexity of that
solution was O(c) and required multiple sequential applications of the bitwise
addition protocol.

Concurrently and independently of Damg̊ard et al., Schoenmakers and Tuyls
considered bit-decomposition of Paillier encrypted values, i.e. the cryptographic
setting, [ST06]. Though their main focus was not on constant round complexity,
they noted that the techniques of [DFK+06] could be applied in that setting too.
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1.3 Contribution

This work presents a practical, unconditionally secure,2 constant-rounds bit-
decomposition protocol with improved complexity compared to previous solu-
tions. Security guarantees are equivalent to that of the primitives, i.e. when these
are secure against active and adaptive adversaries, then so are the proposed pro-
tocols.

Complexity is O(� log(∗(c))(�)) invocations of the multiplication protocol for
any constant integer c, where log(∗(1)) = log∗, the iterated logarithm, while for
c > 1, log(∗(c)) is the iteration of log(∗(c−1)).

log(∗(c))(�) =

{
0 � ≤ 1
1 + log(∗(c))(log(∗(c−1))(�)) � > 1

Round complexity is O(c) implying a tradeoff between communication com-
plexity and the number of rounds: decreasing big-O-complexity comes at the
cost of increased constants. However, even small c imply an essentially linear
solution – log∗ is in practice at most 5. Thus, the constants remain competitive
for a solution which is “linear in practice.” A comparison of this and previous
work on constant-rounds bit-decomposition is seen in Table 1.

Table 1. Complexities of constant-rounds bit-decomposition protocols

Rounds Multiplications

[DFK+06] O(1) O(� log(�))
[NO07] O(1) O(� log(�))
[Tof07] O(c) O(� log(c)(�) + c�)
This paper O(c) O(c� log(∗(c))(�))

It is noted that the techniques presented here are also applicable in other
settings, e.g. to MPC protocols based on Paillier encryption. The ideas may
also be used to construct novel, non-constant-rounds variations, which may be
preferable in practice.

1.4 An Overview of This Paper

Section 2 introduces preliminaries, including known sub-protocols. Section 3 pre-
sents the overall intuition and translation of the problem to post-fix comparison,
which is introduced fully in Sect. 4. The following two sections both provide
solutions to post-fix comparison, with Sect. 6 building on Sect. 5. Finally, Sect. 7
provides analysis and concluding remarks.
2 Technically, security is perfect; there is, however, a negligible probability of “faults.”

The effect can be chosen, e.g. only expected constant-rounds, only unconditional
security, imperfect correctness.
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2 Preliminaries

This section elaborates on the setting introduced in Sect. 1.1. Moreover, addi-
tional primitives needed below are also listed.

2.1 Setting and Complexity

The basic setting of a linear secret sharing scheme with a multiplication protocol
can be modelled as an incorruptible third party. This party allows the parties of
the protocol to input values (share), perform arithmetic (when sufficiently many
agree), and to output values (reconstruct). More formally, this trusted party is
instantiated as an ideal functionality, e.g. similar to the arithmetic black-box of
Damg̊ard and Nielsen [DN03]. The present protocols then apply to any schemes
shown equivalent to this ideal functionality. This also implies that in order to
show security, it must simply be argued that any values revealed, do not reveal
any information; sub-protocols are secure by assumption.

Similar to other work, interaction is considered the most important resource.
As the primitives considered are abstract, the measures are phrased as invo-
cations of the sub-protocols. For simplicity, as the multiplication protocol is
both the most expensive and the most used primitive, only its invocations are
counted. Complexity is therefore measured in secure multiplications. Note that
secure computation of linear combinations follows directly from the linearity of
the underlying scheme and is therefore considered costless.

Complexity is divided into two measures: Rounds (the overall number of times
that messages are exchanged between all parties) and the communication size
(the overall size of all messages). The former is represented by the number of
sequential secure multiplications, while the latter consists of the overall number.
Note that round complexity counts sequential multiplications, and not the actual
number of messages. However, with abstract primitives it is not possible to
be more precise. Moreover, with a constant-rounds multiplication protocol, the
rounds-measures are equivalent under big-O.

2.2 Basic Notation

Though protocols are considered, the notation used will be algorithmic in nature.
[a] will denote a sharing of a, with a← output([a]) indicating its reconstruction.
Computation will be written in an infix notation, which eases readability. For
example,

[y]← c1 · [x1] · [x2] + c2 · [x3] · [x4]

denotes two invocations of the multiplication protocol followed by a linear com-
putation. As the protocol invocations may be performed in parallel, this requires
only a single round.

Certain intermediate values of the protocol will be bit-decomposed. To dis-
tinguish these, they will be written [x]B. The notation is simply shorthand for a
list bits, [xi]. Any arithmetic operation taking such an input implicitly converts
it to a field element. This is a linear computation and therefore costless.
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Abusing notation, we sometimes write multiple shared values – such as a list
of shared values – with the same notation as a single sharing, [x]. It will be clear
from context when this occurs.

2.3 Known Primitives

Regarding the primitives needed, all are described in detail in both [DFK+06]
and [NO07]. The most basic is that of random bit generation – generating a ran-
dom sharing of a uniformly random bit unknown to all parties. This is considered
equivalent to two sequential multiplications.

The second primitive consists of comparison of secret shared values. An exe-
cution results in a sharing of [b] ∈ {0, 1} which is 1 exactly when the first input
is greater than the second. This work only needs a protocol for the case when
the inputs are already bit-decomposed. Similar to arithmetic, this is also written

with an infix notation,
?
≥. For efficiency, the present work considers a variation

of the one used in [DFK+06] and [NO07]; the basic idea is the same, hence the
difference is only sketched.

Given two �-bit inputs, [a]B and [b]B, their bitwise XOR is computed in the
standard way, [ai ⊕ bi] = [ai]+ [bi]− 2[aibi]. Then, rather than performing a full
prefix-OR on this, we stop after having determined and run brute-force prefix-
OR on the first interesting block of size

√
� (i.e. the first block containing a

one). The associated block of [a]B is determined (in parallel with that of the
XOR-list) and the answer to [a]B > [b]B may be extracted as the dot product
between these two list of length

√
� – this is the bit of [a]B at the most significant

differing bit-position, which is also the result.
Overall this requires six rounds (plus two rounds of preprocessing) in which the

multiplication protocol is invoked �+5�+(5/2)(�+
√
�)+2�+(5/2)(�+

√
�)+
√
� =

13� + 6
√
� times.3

In this work, we also need a comparison which does not only provide single
bit output, but considers three cases – smaller, equal, or larger – encoded in two
bits:

comp ([a]B, [b]B) =

⎧⎪⎨⎪⎩
([1]
[0]

)
if [a]B > [b]B([0]

[0]

)
if [a]B = [b]B([0]

[1]

)
if [a]B < [b]B

This is essentially just a comparison that goes both ways – comparing both [a]B
to [b]B and [b]B to [a]B. This adds only �+

√
� extra multiplications and require

no additional rounds. The bulk of the work consists of determining the most
significant bit-position where the inputs differ.

The final primitive is the generation of uniformly random, bitwise shared
values of Zp, written [r]B ∈R Zp. For �-bit p, this is done by securely generating
� random bits, [x]B = ([x�−1], . . . , [x0]), and verifying that [x]B < p. This may of

3 In difference to [DFK+06] and [NO07], it is noted that the quadratic, brute force
prefix-OR requires 5/2(k +

√
k) multiplications on lists of size

√
k rather than 5k.
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course fail; as in previous work, it is assumed that four attempts (run in parallel)
are needed. This implies a complexity of seven rounds and 4(2�+(11�+6

√
�)) =

52� + 24
√
� multiplications; note the slightly reduced complexity as p is public.

3 Overall Intuition – Simplifying the Problem

The overall solution transforms the problem of bit-decomposition to one of post-
fix comparison described fully in Sect. 4 below. For clarity, we first introduce the
overall idea through a näıve solution. Complexity is worse than previous ones,
but the solution – seen as Protocol 1 – provides intuition needed for the following
sections.

Protocol 1. The overall bit-decomposition
Input: [x].
Output: The bit-decomposition, [x]B = ([x�−1], [x�−2] . . . , [x0])

[r]B ∈R Zp

c ← output([x] + [r]B)
c′ ← c + p � Addition over the integers

[f ] ← [r]B
?
> c

5: for i = 0, . . . , � do
[c̃i] ← [f ] · (c′i − ci) + ci

end for
[c̃]B ← ([c̃�], . . . , [c̃0])[
x mod 2�

]← [x]
10: for i = � − 1, . . . , 1 do

[ui] ←
[
r mod 2i

]
B

?
> (
[
c̃ mod 2i

]
B

)[
x mod 2i

]← ([
c̃ mod 2i

]
B

)− [r mod 2i
]
B

+ 2i[ui]
[xi] ← 2−i

([
x mod 2i+1

] − [x mod 2i
])

end for
15: [x0] ← [x mod 2]

Correctness: The protocol starts similarly to the one from [NO07], lines 1
through 8. [x] is additively masked by a random [r]B, and the binary repre-
sentation of c̃ = x + r (over the integers) is computed securely. It is clear that
c̃ ∈ {c, c+ p}, thus, if it can be determined which is the case, then for every bit-
position, the relevant bit can be selected. This selection occurs in line 6, where
[f ] is used to obliviously choose between the two bits. [f ] is 1 when [r]B > c, i.e.
exactly when an overflow has occurred in the computation of c. This is the case
where c + p should be chosen.

The remaining computation – lines 9 to 15 – extracts the actual bits. The main
idea is to reduce [x] securely modulo all powers of 2 and compute differences
between neighbors. Clearly

(x mod 2i+1)− (x mod 2i) = 2ixi

which is easily mapped to a binary value.
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p is �-bit, so
[
x mod 2�

]
is computed correctly. Moreover, as we have c̃− r =

x over the integers, reducing both [c̃]B and [r]B modulo 2i and subtracting
provides the right result, at least if the computation had been modulo 2i. Since it
occurs modulo p, an underflow occurs when

[
r mod 2i

]
B
>
[
c̃ mod 2i

]
B

. Line 12
compensates by adding 2i in this case. Thus, the [xi] are correct. The needed
reductions of [c̃]B and [r]B modulo powers of two are easily done. Both are
bit-decomposed, and it is therefore merely a question of ignoring the top bits.

Complexity: Until the start of the first loop, a random element is generated,
added to [x], and then compared to the (public) outcome. Following this are the
costless linear combinations of the loop as well as a bit of renaming, lines 8 and
9. All of this is linear and requires only a constant number of rounds.

In the actual bit extraction, �− 1 comparisons of length 1, . . . , �− 1 must be
performed. This implies a quadratic number of multiplications, however, note
that though the bits are extracted in a linear manner, this does not imply a
linear number of rounds. Line 11 does not depend on previous iterations of the
loop, and all other computation is costless.

Thus, overall complexity is O(�2) multiplications and O(1) rounds. However,
we have an immediate improvement, if the comparisons in the final loop can be
performed more efficiently.

Security: Security follows directly from the security of the sub-protocols and
the masking of [x]. [r] is chosen uniformly at random from Zp, thus c is also
uniformly random over Zp and therefore reveals nothing.

4 The Post-fix Comparison Problem

Section 3 transformed the problem of bit-decomposition to that of performing �−
1 comparisons (line 11). In general this is quadratic, however, here the numbers
are highly interdependent: they are reductions modulo all powers of two of the
same initial values, [c̃]B and [r]B, which leads to the formulation of the post-fix
comparison problem.

Problem 1 (Post-fix Comparison). Given two bitwise shared �̂-bit values

[a]B =
∑�̂−1

i=0 2i[ai] and [b]B =
∑�̂−1

i=0 2i[bi], compute

[ci] =
[
a mod 2i

]
B

?
>
[
b mod 2i

]
B

for all i ∈ {1, 2, . . . , �̂}.

Recall from Sect. 3 that in addition to the post-fix comparison, Protocol 1
required only O(�) secure multiplications. Presenting a protocol which solves
post-fix comparison more efficiently than O(� log(�)) (O(� log(c)(�))) therefore
implies an improvement over [DFK+06, NO07] ([Tof07]). The näıve solution
above is of course much worse.



364 T. Toft

5 Solving Post-fix Comparison, O(� log(�)) Work

The O(� log(�)) bound is not beaten in one go. Rather, we start with a solution
equalling it, which is used as a sub-protocol below. This not only introduces
needed primitives, but also provides a gradual presentation of the ideas.

For this section, assume that we are given a post-fix comparison problem of
size �.4 (Assume for simplicity that � is a power of 2, this can always be achieved
by padding with zeros.) Rather than considering the input as two separate num-
bers to be compared, we may write it as a string of bit-pairs,((

[a�−1]
[b�−1]

)
, . . . ,

(
[a0]
[b0]

))
.

Abusing notation, we write

comp
((

[ai+j−1]
[bi+j−1]

)
, . . . ,

(
[aj ]
[bj]

))
meaning the comparison of the numbers represented by the (sub-string) of bit-
pairs.

The näıve solution to the post-fix comparison problem divided the inputs
into all post-fixes, and processed these individually. Here, we split into blocks
of length powers of two. The final result can then be constructed from these.
Rather than simply solving Problem 1, we consider a slightly more difficult
variation and require the output from the extended comparison, comp(·). This
results in slightly more (shared) information which will be needed below.

The division into blocks is best viewed as a balanced, binary tree. Every
node represents a comparison of some sub-block of bit-positions. The root node
represents the full comparison, while the leaves represent (the comparison of)
single bit positions. Internal nodes represent the comparison of either the first
half (left child) or second half (right child) of its parent. I.e. if a node represents
the comparison of [ai2k−1

], . . . , [ai0 ] and [bi2k−1
], . . . , [bi0 ], then its left (right)

child represents [ai2k−1
], . . . , [ai2k−1 ] and [bi2k−1

], . . . , [bi2k−1 ] ([ai2k−1−1
], . . . , [ai0 ]

and [bi2k−1−1
], . . . , [bi0 ]). Such a tree is constructed by running Protocol 2 on the

full input.
From this tree, ([

c�i
][

c⊥i
]) = comp

([
a mod 2i

]
,
[
b mod 2i

])
can be computed using Protocol 3. Note that || denotes the concatenation of
lists; line 5 sets [s] to an empty list, while line 8 appends the outcomes of the
comp(·)’s, i.e. pairs of bits. Executing the protocol on all i, 1 ≤ i < �, results in
the desired output.
4 Though [c̃]B is (� + 1)-bit, the extra bit added by the conversion to the post-fix

comparison problem can be ignored.
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Protocol 2. The tree construction protocol, treecomp(·), for solving post-fix
comparison using O(� log(�)) multiplications.

Input: Two �̂-bit, bitwise secret shared numbers,
[
a�̂−1

]
, . . . , [a0] and

[
b�̂−1

]
, . . . , [b0].

Output: A binary tree of results of sub-comparisons; each node represents a block of
bit-positions.
if �̂ = 1 then

return (comp([a0], [b0]),⊥,⊥)
end if
[d] ← comp((

[
a�̂−1

]
, . . . , [a0]), (

[
b�̂−1

]
, . . . , [b0]))

5: [cleft] ← treecomp((
[
a�̂−1

]
, . . . ,

[
a�̂/2

]
), (
[
b�̂−1

]
, . . . ,

[
b�̂/2

]
))

[cright] ← treecomp((
[
a�̂/2−1

]
, . . . , [a0]), (

[
b�̂/2−1

]
, . . . , [b0]))

return ([d], [cleft], [cright])

Protocol 3. Extracting one result for post-fix comparison from a treecomp(·)-
tree.
Input: A bit-position, 1 ≤ i < � and the output of treecomp(·) on two �-bit, bitwise

secret shared numbers, [a�−1], . . . , [a0] and [b�−1], . . . , [b0].
Output: Output equivalent to that of comp(

[
a mod 2i

]
,
[
b mod 2i

]
).

if i = � then
return root.[d]

end if
node ← leaf(i)

5: [s] ← EmptyList
while node is not root do

if node is left child then
[s] ← [s]||(sibling(node).[d])

end if
10: node ← parent(node)

end while
return comp ([s])

Correctness: The intuition behind this section is that the division into blocks
creates halves, quarters, eighths, etc. Any postfix of bit-positions, i − 1, . . . , 0,
can be “covered” by only a logarithmic number of disjoint blocks – at most
one from each level of the tree is needed. Replacing the bits of a block with
the output of comp(·) changes the numbers involved, but comparing these new
numbers provides the same result. For example, for blocks [a�] and [a⊥] ([b�]
and [b⊥]) covering [a] ([b]), we have

comp
((

[a�]
[b�]

)
||
(

[a⊥]
[b⊥]

))
= comp

(
comp

(
[a�]
[b�]

)
|| comp

(
[a⊥]
[b⊥]

))
To see this, note that comparison simply extracts the most significant, differ-

ing bit-position. Replacing blocks with their output of comp essentially compresses
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strings to bit-pairs containing the relevant information, i.e. which was bigger (or
whether they were equal). Thus, replacing the bits of the blocks of the cover with
the outcome of their comparisons, results in a much smaller comparison problem
with the same result.

Protocol 2 constructs all the covers needed for all positions, while Protocol 3
selects the covers needed for the i’th position. These are exactly the siblings of
the left children on the path to the root. Finally, the log-length comparisons
provide the right result.

Complexity: It is easily verified that Protocol 2 requires O(� log(�)) multiplica-
tions. Each of the log(�) levels of the tree is a subdivision of the original problem
into disjoint blocks, which are then compared, i.e. each level requires a linear
number of secure multiplications, which matches the stated bound. Round com-
plexity is O(1); the only secure computation is the invocations of comp(·). As
these are all independent of each other, they may be performed in parallel.

Protocol 3 traverses a path from a leaf to the root and gathers data. This is
purely bookkeeping, the only multi-party computation is the comparison at the
very end. The path from leaf to root is of length log(�), thus the bit-length of
the values of [s] is at most log(�), implying O(log(�)) multiplications.

Applying Protocol 2 on the input and Protocol 3 on the tree � times – once
for every bit-position i – is overall O(� log(�)). Only O(1) rounds are needed as
the bit-positions may be processed concurrently.

Security: Security is easily argued. Neither of Protocols 2 and 3 output any
information. They are simply deterministic applications of the primitives, which
are secure and composable by assumption.

6 Solving Post-fix Comparison, O(� log∗(�)) and Better

In order to use the present ideas, while also decreasing complexity, the height of
the tree of sub-comparisons of Sect. 5 must be reduced. However, if fan-out is
increased (the block of each node split into more than two sub-blocks), each of
the results of the post-fix comparison, [ci], may depend on more than one block
from each level. There is no longer a single node per level which handles all less
significant bits of ancestors on the path to the root. The solution is to increase
fan-out and then “combine” the blocks represented by siblings, such that each
output again depends on only one node per level.

Analogously to Sect. 5, initially each node will simply represent a distinct
sub-block of that of its parent. For each node, the parts of the inputs it rep-
resents are compared. As each level simply divides [a] and [b] into sub-blocks,
overall complexity is O(h�), where h is the height of the tree. The construction
is analogous to Protocol 2 and is seen as Protocol 4; the main difference is the
addition of the function, F , specifying the fan-out which depends on the size of
the parent node.
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Protocol 4. Extending the tree construction protocol, treecomp(·) to non-
binary fan-out.
Input: Two �̂-bit, bitwise secret shared numbers,

[
a�̂−1

]
, . . . , [a0] and

[
b�̂−1

]
, . . . , [b0],

as well as a F : N �→ N specifying the fan-out.
Output: A tree of results of sub-comparisons with fan-out specified by F ; each node

represents a block of bit-positions.
if �̂ = 1 then

return (comp([a0], [b0]),⊥)
end if
[d] ← comp((

[
a�̂−1

]
, . . . , [a0]), (

[
b�̂−1

]
, . . . , [b0]))

5: f ← F (�̂)
[c] ← EmptyList
for i = 0, . . . , f − 2 do

[c] ← [c]|| treecomp
(([a


̂−i(�
̂/f�)−1

]
[
b

̂−i(�
̂/f�)−1

]), . . . , ([a
̂−(i+1)(�
̂/f�)
]

[
b

̂−(i+1)(�
̂/f�)

]))
end for

10: [c] ← [c]||treecomp
(([a


̂−(f−1)(�
̂/f�)−1

]
[
b

̂−(f−1)(�
̂/f�)−1

]), . . . , ([a0]
[b0]

))
return ([d], [c])

In order to ensure that only one node from each level is needed, each node
must be “extended” to represent not only the comparison of its own block,
but also those of its less significant siblings. This is best explained through an
example. Consider node n32 on Fig. 1, this is the third child of n3 and should
therefore represent the comparison of the initial blocks of nodes n32, n31, and
n30. Once this is the case for all nodes, each post-fix will again depend on at
most one node from every level. Continuing the example of Fig. 1: n2, n1, and
n0 are combined and stored in n2 at the first level, while n32, n31, and n30 are
combined and stored in n32 at the second. Together they represent everything
up to and including the block of n32.

Thus, once siblings are combined – [d] is set to represent the comparison of
not only their own block but that of all their less significant siblings – each
of the � output values can be computed. The task, which is a straight forward
generalization of Protocol 3 of Sect. 5, is seen as Protocol 5. For all non-rightmost
nodes on the path to the root, its right-neighbor sibling – which provides a cover
for all the less significant bits of the parent – is included. Together, these provide
the full cover.

The arguments of correctness and security are the same as in the previous
section. Sub-strings are compressed resulting in a smaller comparison, and all
interaction still occurs using only secure primitives. Regarding complexity, apart
from the combining of the comparison results of siblings, this is O(h�). First each
level is split into disjoint sub-blocks which are compared. Then � comparisons
of h-bit numbers are performed. It remains to explain how to choose F and
combine siblings.



368 T. Toft

n33

n33

n32

n32

n31

n31

n30

n30

n3

n3

n23

n23

n20

n20

n2

n2

n13

n13

n10

n10

n1

n1

n03

n03

n00

n00

n0

n0

r

r

. . . . . .. . .

. . . . . .. . .

Fig. 1. Combining children with less significant siblings

Protocol 5. Extracting one result for post-fix comparison from a generalized
treecomp(·)-tree.
Input: A bit-position, 1 ≤ i < � and the output of the generalized treecomp(·) on two

�-bit, bitwise secret shared numbers, [a�−1], . . . , [a0] and [b�−1], . . . , [b0].
Output: Output equivalent to that of comp(

[
a mod 2i

]
,
[
b mod 2i

]
).

if i = � then
return root.[d]

end if
node ← leaf(i)

5: [s] ← EmptyList
while node is not root do

if node is a non-rightmost child then
[s] ← [s]||(right sibling(node).[d])

end if
10: node ← parent(node)

end while
return comp ([s])

6.1 O(� log∗(�))

In order to see how the sub-results of the children can be combined efficiently,
note that combine means compare up to and including this block. This is a sub-
problem of the post-fix comparison problem, where only every �̂/F (�̂)’th result
is needed. Viewed differently, it is the full post-fix comparison problem on the
numbers represented by the outcome of the comparisons of the children – as
before, replacing a block with the outcome of its comparison does not change
the result.

While it seems as if we are back to square one, this is not the case, as the
size of the post-fix comparison problem is reduced. For a (parent) problem with
�̂-bit inputs, letting the children be of logarithmic-size – i.e. setting the fan-out
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F (x) = �x/ log(x) – implies that the new problem is of size ��̂/ log(�̂). This
can be solved using O(�̂) secure multiplications – linear in the parent – using
the solution of Sect. 5. Doing this for all nodes is linear at each level of the tree,
as each node still represents a distinct block of the inputs. Thus, overall this is
O(h�).

The choice of F reduces the size of children in log-steps resulting in h =
log∗(�), i.e. this solution requires onlyO(� log∗(�)) multiplications. Security again
follows from the fact that the primitives are secure by definition and no infor-
mation is output.

6.2 Decreasing Complexity Further

Further improvements are trivial. It is merely a question of choosing a greater
fan-out and solving the post-fix comparison problems linearly in the parents. The
choice of fan-out above ensured linearity with the solution of Sect. 5. Increasing
fan-out to F (x) = �x/log∗(x) provides post-fix comparison problems of size
�̂/log∗(�̂) for nodes of size �̂. These can be solved usingO(�̂) secure multiplications
by applying the improved solution of Sect. 6.1. This implies a O(� log(∗(2))(�))
solution.

The process can be repeated indefinitely, however, each iteration increases
round complexity. Each new version executes its predecessor as a sub-compu-
tation in addition to the initial comparison for every block and the concluding
comparison for every output. Thus, to ensure a constant number of rounds, only
a constant number of improvements are possible.

It is simple to verify that the complexity of the this secure computation for
post-fix comparison is as stated – O(c) rounds and O(� log(∗(c))(�)) where c is
constant. From Sect. 4 it now follows that constant-rounds bit-decomposition is
possible in the same complexity.

Theorem 1. For any integer c, there exists a O(c)-rounds bit-decomposition
protocol for arbitrary [x] ∈ Zp, which requires only O(� log(∗(c))(�)) invocations
of the multiplication protocol.

7 Analysis and Conclusion

This paper has presented a novel solution to the problem of constant-rounds
bit-decomposition. Rather than simulating bitwise addition, a random mask and
the masked value (transformed to simulate that the addition occurred over the
integers) are reduced modulo all powers of two. Subtraction in Z2i for all i
is then simulated efficiently with Zp arithmetic. The resulting complexity of
O(� log(∗(c))(�)) is essentially linear – log∗ is “bounded” by 5 on any reasonable
input. Only when the bit-length, �, of the prime defining the field exceeds 265536 is
it larger. A detailed analysis allows the protocol to be compared to the previous
solutions.
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The initial transformation requires the generation of a random element and a
comparison. As the latter has a public input, the initial XOR and the selection
of the associated block are costless. This implies (52� + 24

√
�) + (11� + 6

√
�) =

63� + 30
√
� multiplications in 7 + 5 = 12 rounds.

The basicO(� log(�)) solution to the post-fix comparisonproblem first compares
at each level (equivalent to one full �-bit comparison per level); second, it performs
a comparison for each of the � paths. With a few observations, namely that

– a single bitwise XOR of the inputs suffices for all levels
– for the output of comp(·), the XOR is free as

(1
1

)
does not occur

– for bit-decomposition, the final comparison of the post-fix comparison prob-
lem does not have to be comp(·)

it can be seen that this requires 1 + 5 + 5 = 11 rounds and

� + log(�) ·
(
13� + 7

√
�
)

+ � ·
(
12 log (�) + 6

√
log (�)

)
< 31� log(�) + 8�

multiplications, where the inequality holds for � ≥ 4.
The analysis of the improved solution is similar. The “inner” post-fix com-

parison protocol is bounded by two sequential invocations of comp(·) (for each
parent). This adds 10 rounds as well as

2(13� + 7
√
�) = 26� + 14

√
�

multiplications per level. Thus, complexity for the general solution is 11 + 10c
rounds and (31+26c)� log(∗(c))(�)+8�+14c

√
� log(∗(c)) (�) secure multiplications.

For the full bit-decomposition protocol, this implies 23 + 10c rounds and

(31 + 26c)� log(∗(c))(�) + 71� + 14c
√
� log(∗(c)) (�) + 30

√
�

multiplications overall.
Concluding, we focus on theO(� log(�)) andO(� log∗(�)) solutions, as these are

closest to the competition and there is little practical gain from the theoretically
better options. For fairness, the optimized comparison (and thus also random
element generation) is used in all cases. The details are summarized in Table 2.

The proposed O(� log(�)) solution requires fewer rounds and multiplications
than any of the other solutions of that complexity. In the long run, the better
complexity of [Tof07] will provide fewer multiplications, however, this comes at

Table 2. Explicit complexities of constant-rounds bit-decomposition protocols

Rounds Multiplications

[DFK+06] 38 94� log(�) + 63� + 30
√

�

[NO07] 25 47� log(�) + 63� + 30
√

�

[Tof07] 38c 94� log(c)(�) + (130(c − 1) + 63) · � + 30
√

�

This paper, O(� log(�)) 23 31� log(�) + 71� + 30
√

�

This paper, O(� log∗(�)) 33 57� log∗(�) + 71� + 14
√

� log∗(�) + 30
√

�
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a cost of increased round complexity. Moreover, for the O(�loglog(�)) solution,
the turning point does not occur until � ≈ 216, due to the large constants.

The proposed O(� log∗(�)) solution beats [Tof07] outright, however, both the
solution of [NO07] and the present O(� log(�)) have better constants. When
� ≈ 38 this solution and the one of [NO07] use about the same number of secure
multiplications, while the present O(� log(�)) solution is beaten around � ≈ 180
bits. Thus, if additional rounds are acceptable, then the theoretically better
solution may also win in practice.

Finally, it is noted that “hybrids” are also possible. The ideas of [Tof07] can be
applied to [NO07], as well as be combined with the ideas of this paper. Though
asymptotic complexity is not improved, such variations may be competitive in
practice, as the c factor is on the linear rather than on the � log(c)(�) term.

Acknowledgements

The author would like to thank Eike Kiltz and Berry Schoenmakers for discus-
sions and suggestions. The anonymous referees are thanked for their input and
comments.

References

[ACS02] Algesheimer, J., Camenisch, J.L., Shoup, V.: Efficient computation modulo
a shared secret with application to the generation of shared safe-prime
products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–
432. Springer, Heidelberg (2002)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
noncryptographic fault-tolerant distributed computations. In: 20th Annual
ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New
York (1988)

[DFK+06] Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally
secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

[DN03] Damg̊ard, I.B., Nielsen, J.B.: Universally composable efficient multiparty
computation from threshold homomorphic encryption. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

[NO07] Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg
(2007)

[Sha79] Shamir, A.: How to share a secret. Communications of the ACM 22(11),
612–613 (1979)

[ST06] Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier
encrypted values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 522–537. Springer, Heidelberg (2006)

[Tof07] Toft, T.: Primitives and Applications for Multi-party Computation. PhD
thesis, University of Aarhus (2007),
http://www.daimi.au.dk/~ttoft/publications/dissertation.pdf

http://www.daimi.au.dk/~ttoft/publications/dissertation.pdf


Local Sequentiality Does Not Help for
Concurrent Composition

Andrew Y. Lindell

Aladdin Knowledge Systems and Bar-Ilan University, Israel
andrew.lindell@aladdin.com, lindell@cs.biu.ac.il

Abstract. Broad impossibility results have been proven regarding the
feasibility of obtaining protocols that remain secure under concurrent
composition when there is no honest majority. These results hold both
for the case of general composition (where a secure protocol is run many
times concurrently with arbitrary other protocols) and self composition
(where a single secure protocol is run many times concurrently). One
approach for bypassing these impossibility results is to consider more
limited settings of concurrency. In this paper, we investigate a restriction
that we call local sequentiality. In this setting, every honest party in
the multi-party network runs its protocol executions strictly sequentially
(thus, sequentiality is preserved locally, but not globally). Since security
is preserved under global sequential composition, one may conjecture
that it also preserved under local sequentiality. However, we show that
local sequentiality does not help. That is, any protocol that is secure
under local sequentiality is also secure under concurrent self composition
(when the scheduling is fixed). Thus, known impossibility results apply.

1 Introduction

In modern network settings, protocols must remain secure even when many pro-
tocol executions take place concurrently. Impossibility results have been proven,
showing that in the case of no honest majority and no trusted setup, large
classes of functions cannot be securely computed under concurrent composition
[8,7,9,19,20]. These results hold for both concurrent general composition (where a
secure protocol is run concurrently with arbitrary other protocols) and concur-
rent self composition (where a single secure protocol is run many times concur-
rently). In fact, these two types of composition have been shown to be (almost)
equivalent [20]. One suggestion for overcoming these impossibility results is to
introduce restrictions on the network or on the behavior of the honest parties.
Such restrictions come in two flavors:

1. Assumptions on the network: Here, an assumption is made regarding the net-
work activity. For example, in the setting of m-bounded concurrent composi-
tion [1,18], it is assumed thatatmostmdifferent concurrent executionsoverlap.
Another assumption that has been used is that of timing, where it is assumed
that parties have clocks that proceed at approximately the same rate [13,17].
We note that restrictions of this type are true “assumptions”, in that they can-
not be enforced through local instructions provided to the honest parties.

M. Fischlin (Ed.): CT-RSA 2009, LNCS 5473, pp. 372–388, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2. Locally enforceable policies regarding the honest parties’ behavior: Here, the
honest parties are provided with some policy that they can locally enforce
(i.e., enforcing the policy requires no coordination with other honest parties
or with a centralized entity).

Needless to say, the best case regarding the construction of secure protocols is to
not assume any restriction whatsoever. However, as we have mentioned, this is
not possible. We therefore aim to construct protocols that remain secure under
reasonable network assumptions or realistic enforceable policy. (An important
issue regarding network assumptions is what is the “damage” if an assumption
does not hold due to some anomaly. Such cases should be carefully examined
and dealt with.) In this paper, we consider a realistic restriction of the second
type and ask if it suffices for bypassing the impossibility results.

Local sequentiality. We consider a restriction where honest parties run proto-
col executions in a strictly sequential manner (concluding one before beginning
the next). Observe that since many different sets of parties participate in differ-
ent executions, many protocol executions are run concurrently from the global
perspective. Nevertheless, from a local perspective, sequentiality is enforced (of
course, an adversary may act as it wishes; it is the honest parties who run proto-
cols sequentially). This restriction seems promising since security in the stand-
alone model implies security under globally sequential composition [6], where
sequentiality is assumed with respect to all executions in the network (i.e., no
two executions are ever run at the same time). Thus, one may hope that such
a theorem also holds with respect to local sequentiality. Note, that although
quite restrictive (and thus not very desirable), honest parties can easily enforce
a policy of local sequentiality. This is in contrast to global sequentiality which
is not at all realistic. Unfortunately, we show that local sequentiality does not
guarantee security. In fact, we show that the known impossibility results for con-
current self composition all hold also for locally sequential self composition. This
is proven in two steps. First, we show that any protocol that is secure under lo-
cally sequential self composition is also secure under concurrent self composition,
as long as the adversary for concurrent self composition uses a fixed schedule.
(Loosely speaking, an adversary uses a fixed schedule if the order in which the
messages are sent in the different executions is fixed and does not depend on the
adversary’s input or view during the actual execution.) In order to prove this,
we show that many concurrent executions by two parties can be simulated un-
der local sequentiality by having many different parties run the executions (the
concurrency is achieved on a global sense and yet suffices for the simulation).
Second, we observe that the known impossibility results for concurrent self com-
position (as proven in [18,20] who build on [9,19]) all hold for adversaries that
use fixed schedules. Broad impossibility results and lower bounds are therefore
immediately obtained for the setting of local sequentiality as well. We stress that
these impossibility results hold only when there is no honest majority or trusted
setup phase (otherwise, security under concurrent composition can be achieved,
see related work discussed below).
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Related work. Secure computation was first studied in the stand-alone model,
where it was shown that any multi-party functionality can be securely computed
[28,15,4,11]. The study of concurrent composition of protocols was initiated by [14]
in the context of witness indistinguishability, and was next considered by [12] in
the context of non-malleability. Until recently, the majority of work on concur-
rent composition was in the context of concurrent zero-knowledge [13,27]. The con-
current composition of protocols for general secure computation was only consid-
ered much later. Specifically, the first definition and composition theorem for se-
curity under concurrent general composition was presented by [25] for the case
that a secure protocol is executed once in an arbitrary network. The general case,
where many secure protocol executions may take place (again, in an arbitrary net-
work)was then considered in the definition (and composition theorem) of universal
composability [7]. Here, it was also shown that any functionality can be securely
realized assuming an honest majority [7], or assuming a trusted setup phase in the
form of a common reference string [10]. However, in the case of no honest major-
ity or trusted setup, broad impossibility results have been demonstrated for uni-
versal composability, concurrent general composition and concurrent self compo-
sition [8,7,9,19,20]. These impossibility results justify and provide motivation for
considering restricted networks settings and weakernotions of security. Two exam-
ples of restrictions that have been considered are bounded concurrency [18,24,23]
and timing [17], and an example of a weakernotion of security that has been studied
can be found in [22,26,2].

2 Definitions

We denote the security parameter by n. A function μ(·) is negligible in n (or
just negligible) if for every polynomial p(·) there exists a value N such that for
all n > N it holds that μ(n) < 1/p(n). Let X = {X(n, a)}n∈N,a∈{0,1}∗ and
Y = {Y (n, a)}n∈N,a∈{0,1}∗ be distribution ensembles. Then, we say that X and
Y are computationally indistinguishable, denoted X

c≡ Y , if for every probabilistic
polynomial-time distinguisher D there exists a negligible function μ(·) such that
for every a ∈ {0, 1}∗, |Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]| < μ(n). When
X and Y are equivalent distributions, we write X ≡ Y . A machine is said to run
in polynomial-time if its number of steps is polynomial in the security parameter,
irrespective of the length of its input.

2.1 Two-Party Concurrent Self Composition

We begin by defining concurrent self composition for two parties; the extension
to local sequentiality is described below. The definition here is taken from [20]
and follows the ideal/real paradigm of [16,3,21,6].

Two-party computation. A two-party protocol problem is cast by spec-
ifying a random process that maps pairs of inputs to pairs of outputs (one
for each party). We refer to such a process as a functionality and denote it
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f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for ev-
ery pair of inputs (x, y), the output-pair is a random variable (f1(x, y), f2(x, y))
ranging over pairs of strings. The first party (with input x) wishes to obtain
f1(x, y) and the second party (with input y) wishes to obtain f2(x, y). We of-
ten denote such a functionality by (x, y) "→ (f1(x, y), f2(x, y)). In the context
of concurrent composition, each party actually uses many inputs (one for each
execution), and these may be chosen adaptively based on previous outputs.
Adversarial behavior. In this work we consider a malicious, static adversary
that runs in polynomial time. Such an adversary controls one of the parties (who
is called corrupted) and may then interact with the honest party while arbitrarily
deviating from the specified protocol. Our definition does not guarantee any
fairness. That is, the adversary always receives its own output and can then
decide when (if at all) the honest party will receive its output. The scheduling
of message delivery is decided by the adversary.
Security of protocols (informal). The security of a protocol is analyzed by
comparing what an adversary can do in the protocol to what it can do in an
ideal scenario that is trivially secure. This is formalized by considering an ideal
computation involving an incorruptible trusted third party to whom the parties
send their inputs. The trusted party computes the functionality on the inputs
and returns to each party its respective output. Unlike in the case of stand-alone
computation, here the trusted party computes the functionality many times, each
time upon different inputs. Loosely speaking, a protocol is secure if any adversary
interacting in the real protocol (where no trusted third party exists) can do no
more harm than if it was involved in the above-described ideal computation.
Since the trusted party computes the functionality and does nothing else, we
will sometimes say that the parties interact with the functionality (rather than
interacting with the trusted party computing the functionality).
Concurrent executions in the ideal model. An ideal execution with an
adversary who controls P2 proceeds as follows (when the adversary controls P1
the roles are simply reversed):

Inputs: Party P1 and P2’s inputs are respectively determined by probabilistic
polynomial-time Turing machines M1 and M2, and initial inputs x and y to
these machines. As we will see below, these Turing machines determine the
values that the parties use as inputs in the protocol executions. These input
values are computed from the initial input, the current session number and
outputs that were obtained from executions that have already concluded.
Note that the number of previous outputs ranges from zero (for the case
that no previous outputs have yet been obtained) to some polynomial in n
that depends on the number of sessions initiated by the adversary.

Session initiation: The adversary initiates a new session by sending a start-
session message to the trusted party, who then sends (start-session, i) to the
honest party, where i is the index of the session (i.e., this is the ith session
to be started).

Honest party sends input to trusted party: Upon receiving (start-session,
i) from the trusted party, the honest party P1 applies its input-selecting ma-
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chine M1 to its initial input x, the session number i and its previous outputs,
and obtains a new input xi. That is, in the first session, x1 = M1(x, 1). In later
sessions, xi = M1(x, i, γi1 , . . . , γij ) where j sessions have already concluded
and the outputs were γi1 , . . . , γij . (We assume that the output γik

explicitly
contains the index of the session ik from which it was output.)
The honest party P1 sends (i, xi) to the trusted party.

Adversary sends input to the trusted party and receives output: When-
ever the adversary wishes, it may send a message (i, yi) to the trusted party,
for any yi of its choice. Upon sending this pair, it receives back (i, f2(xi, yi))
where xi is the value thatP1 previously sent the trusted party. (If i start-session
messages have not yet been sent to the trusted party, then the (i, yi) message
from the adversary is ignored. In addition, once an input indexed by i has al-
ready been sent by the adversary, the trusted party ignores any subsequent
such messages.)

Adversary instructs trusted party to answer honest party: When the
adversary sends a message of the type (send-output, i) to the trusted party,
the trusted party sends (i, f1(xi, yi)) to the honest party P1, where xi and
yi are the respective inputs sent by P1 and the adversary for this session. (If
(i, xi) and (i, yi) have not yet been received by the trusted party, then this
(send-output, i) message is ignored.)

Outputs: The honest party P1 outputs the vector (f1(xi1 , yi1), f1(xi2 , yi2), . . .)
of outputs that it received from the trusted party. Formally, whenever it
receives an output, it writes it to its output-tape. Thus, the outputs do not
appear in ascending order according to the session numbers, but rather in
the order that they are received. The adversary may output an arbitrary
(probabilistic polynomial-time computable) function of its auxiliary input
z, the corrupted party P2’s input-selecting machine M2, initial input y, and
the outputs obtained from the trusted party.

Let f : {0, 1}∗×{0, 1}∗→ {0, 1}∗×{0, 1}∗ be a functionality, where f = (f1, f2),
and let S be a non-uniform probabilistic polynomial-time machine (represent-
ing the ideal-model adversary). Then, the ideal execution of f (with security
parameter n, input-selecting machines M = (M1,M2), initial inputs (x, y), and
auxiliary input z to S), denoted conc-idealf,S,M (n, x, y, z), is defined as the
output pair of the honest party and S from the above ideal execution.

We note that in the above-described interaction of the adversary with the
trusted party, the adversary is allowed to obtain outputs in any order that it
wishes, and can choose its inputs adaptively based on previous outputs. This is
inevitable in a concurrent setting where the adversary can schedule the order in
which all protocol executions take place.

Execution in the real model. We next consider the real model in which a
real two-party protocol is executed (and there exists no trusted third party).
Formally, a two-party protocol ρ is defined by two sets of instructions ρ1 and ρ2
for parties P1 and P2, respectively. A protocol is said to be polynomial-time if the
running-time of each ρi in a single execution is bounded by a fixed polynomial
in the security parameter n, irrespective of the length of the input.
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Let f be as above and let ρ be a probabilistic polynomial-time two-party
protocol for computing f . In addition, let A be a non-uniform probabilistic
polynomial-time adversary that controls either P1 or P2. Then, the real concur-
rent execution of ρ (with security parameter n, input-selecting machines M =
(M1,M2), initial inputs (x, y) to the parties, and auxiliary input z to A), de-
noted conc-realρ,A,M (n, x, y, z), is defined as the output pair of the honest
party and A, resulting from the following process. The parties run concurrent
executions of the protocol, where an honest party P1 follows the instructions of
ρ1 in all of the executions; likewise, an honest P2 always follows ρ2. Thus, the
parties play the same role in every execution. Now, the ith session is initiated by
the adversary by sending a start-session message to the honest party. The honest
party then applies its input-selecting machine on its initial input, the session
number i and its previously received outputs, and obtains the input for this new
session. Upon the conclusion of an execution of ρ, the honest party writes its
output from that execution on its output-tape. The scheduling of all messages
throughout the executions is controlled by the adversary. That is, the execution
proceeds as follows. The adversary sends a message of the form (i, α) to the
honest party. The honest party then adds the message α to the view of its ith

execution of ρ and replies according to the instructions of ρ and this view. (Note
that the honest party runs each execution of ρ obliviously to the other execu-
tions. Thus, this is stateless composition.) The adversary continues by sending
another message (j, β), and so on. We note that there is no restriction on the
scheduling allowed by the adversary.

Security as emulation of a real execution in the ideal model. Loosely
speaking, a protocol is secure if for every real-model adversary A and pair of
input-selecting machines (M1,M2), there exists an ideal model adversary S such
that for all initial inputs x, y, the outcome of an ideal execution with S is compu-
tationally indistinguishable from the outcome of a real protocol execution with
A. Notice that the order of quantifiers is such that S comes after M1 and M2.
Thus, S knows the strategy used by the honest parties to choose their inputs.
However, S does not know the initial input of the honest party, nor the random
tape used by its input-selecting machine (any “secrets” used by the honest par-
ties are included in the initial input, not the input-selecting machine). Notice
also that a special case of this definition is where the inputs are fixed ahead of
time. In this case, the initial inputs are vectors where the ith value is the input
for the ith session, and in the ith session the input-selecting machines M1 and
M2 just output the ith value of the input vector. We now present the definition:

Definition 1 A protocol ρ is said to securely compute f under concurrent self
composition if for every real-model non-uniform probabilistic polynomial-time
adversary A controlling party Pi (i ∈ {1, 2}) and every pair of probabilistic
polynomial-time input-selecting machines M = (M1,M2), there exists an ideal-
model non-uniform prob. polynomial-time adversary S controlling Pi, such that{

conc-idealf,S,M (n, x, y, z)
}

c≡
{
conc-realρ,A,M (n, x, y, z)

}
where the ensembles are indexed by n ∈ N and x, y, z ∈ {0, 1}∗.
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Definition 1 requires that the ideal-model simulator/adversary run in strict
polynomial-time. However, a more liberal interpretation of “efficient simulation”
is often allowed, in which case the simulator can run in expected polynomial-time.

Adaptively chosen inputs. Definition 1 allows the honest parties to choose
their inputs adaptively, based on previously obtained outputs. Our impossibility
result for locally sequential self composition relies inherently on this ability.
Nevertheless, we claim that allowing inputs to be adaptively chosen is crucial
for many (if not, most) applications.

Fixed roles. In our definition here, the parties are restricted to always using
the same role (i.e., P1 always runs ρ1 and P2 always runs ρ2). A more general
definition would allow P1 and P2 to run either ρ1 or ρ2 (the specific role taken
by each can be negotiated upon initiating the execution). This property of the
definition is inherited in the definition of locally sequential self composition (Sec-
tion 2.2). Since our results for local sequentiality are negative, considering fixed
roles only strengthens the results.

2.2 Locally Sequential Self Composition

In the setting of local sequentiality, we consider a multi-party network with
parties P1, . . . , Pm for some m = poly(n). The parties run two-party protocols
amongst themselves with the following limitation: if an honest party Pi is cur-
rently running a secure protocol ρ, then it ignores all incoming messages that do
not belong to this execution of ρ. There are two possibilities regarding what Pi

does with these incoming messages that are ignored: one possibility is to drop
them and the other is to buffer them and deal with them one at a time after the
current execution of ρ concludes. Our results hold for both of these possibilities,
and for the sake of concreteness, we choose the latter option. We stress that
although each individual party enforces a policy of sequentiality, protocol exe-
cutions are run concurrently when considering the overall network. Specifically,
P1 and P2 may run a protocol execution at the same time as P3 and P4. Fur-
thermore, the specific interleaving between these executions is arbitrary and can
be decided by the adversary. In addition, a corrupted P5 can run two protocol
executions at the same time with honest parties P6 and P7. (The adversary is
not limited to sequentiality at all.)

The changes that are necessary to the definitions in Section 2.1 are as follows.
First, the network now contains many parties. Therefore, in the definition of the
ideal model, the start-session and send-output messages are modified so that they
contain the identities of the parties. That is, in order to initiate a session between
parties Pj and Pk, the adversary sends (start-session, j, k) to the trusted party,
who then sends (start-session, i, j, k) to Pj and Pk, where this is the ith session
that Pj and Pk run together. Likewise, all later messages (inputs, outputs and
send-output) are all indexed by (i, j, k), and the input selecting machines also
receive the identities of the participating parties, as well as the session index.
Finally, the trusted party also checks that a (send-output, i, j, k) message has
been received before it agrees to start the i + 1th session between Pj and Pk.
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This completes the changes to the ideal model, which is denoted seq-ideal here.
In the real model, denoted seq-real, we modify the honest parties’ behavior
so that they enforce local sequentiality (as described above). In addition, they
index all messages with the identities involved and the session index. Everything
else remains the same as in Section 2.1. We also impose fixed roles in this setting,
and so every honest party is designated a role in that it runs either ρ1 in every
execution or ρ2 in every execution (this just strengthens our results). We obtain
the following definition:

Definition 2 (security under locally sequential self composition): Let f be a
two-party functionality, let ρ = (ρ1, ρ2) be a polynomial-time protocol, and let
P1, . . . , Pm be parties in the network. Protocol ρ is said to securely compute f
under locally sequential self composition if for every real-model non-uniform prob-
abilistic polynomial-time adversary A controlling a subset P ⊆ {P1, . . . , Pm} of
the parties and every series of probabilistic polynomial-time input-selecting ma-
chines M = (M1, . . . ,Mm), there exists an ideal-model non-uniform probabilistic
polynomial-time adversary S controlling the parties in P, such that{

seq-idealf,S,M (n, x, z)
}

c≡
{
seq-realρ,A,M (n, x, z)

}
where the ensembles are indexed by n ∈ N and x, z ∈ {0, 1}∗.

Locally sequential general composition. As a tool in order to prove our
results, we refer to the notion of locally sequential general composition. In the
setting of general composition, a secure protocol ρ for computing a functionality
F is run alongside an arbitrary other protocol π. In sequential composition and
in the real model, the arbitrary messages of π are sent in between executions
of ρ (and thus, sequentiality is preserved). In order to define security, a hybrid
model is considered where π is unchanged, but the executions of ρ are replaced
by ideal calls to the functionality F ; this model is called the F -hybrid model.
Loosely speaking, a protocol ρ is said to be secure under locally sequential general
composition if for every protocol ρ and every real-model adversaryA, there exists
a hybrid-model adversary S such that the outputs of πρ in the real execution are
indistinguishable from those generated by π in the F -hybrid model. We denote a
real execution of π with ρ in this model by seq-realπρ,A(n, x, z), and a hybrid
execution of π with F by seq-hybrid

F
π,A(n, x, z).

3 Locally Sequential Self Composition

In this section, we consider adversaries for the setting of concurrent self compo-
sition that have fixed scheduling. Intuitively, this means that the order in which
the messages are sent in the different executions is fixed, and does not depend on
the adversary’s input or its view during the actual execution. Formally, a sched-
ule for the setting of concurrent self composition is a series of indices i1, i2, . . .
such that the jth message sent by the adversary to the honest party is (ij , α) for
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some α. That is, the jth message belongs to session ij, and this is the jth index
in the schedule. We note that by convention, the first message sent by the adver-
sary in any session is a start-session message. (This is without loss of generality
because the honest party can be instructed to ignore any message (i, α) if at
least i start-session messages were not received. Alternatively, the honest party
can be instructed to send itself the appropriate number of start-session messages
in the case that it receives a message (i, α) and less than i start-session messages
were received.) Security for adversaries with fixed scheduling is formulated by
requiring that for every real-model adversary A and every schedule I, there ex-
ists an ideal-model adversary/simulator S, such that the usual requirement of
indistinguishability holds.

We remark that the limitation of adversaries to fixed scheduling is severe and
unrealistic. However, the known impossibility results for the setting of concurrent
composition in [9,18,19,20] all use adversaries with fixed scheduling. Therefore,
the relevant impossibility results can also be applied here. Furthermore, since
our focus in this paper is impossibility, this is not a limitation.

We begin by showing an “equivalence” between locally sequential self compo-
sition and locally sequential general composition, and then use this to prove our
main result.

3.1 Locally Sequential Self Versus General Composition

In this section, we show an equivalence between self and general composition in
the setting of local sequentiality. An analogous equivalence for the concurrent
setting was demonstrated in [20]; the proof here is almost the same.

Bit transmission. Informally speaking, a functionality enables bit transmission
if it can be used by the parties to send bits to each other. For example, the “less
than” functionality enables bit transmission, as follows. If P1 wishes to send a
bit to P2, then P2 fixes its input at a predetermined value (say 5). Now, if P1
wishes to send P2 the bit 0, then it uses input 4, and if it wishes to send P2 the
bit 1 then it uses input 6. In this way, P2 will know which bit P1 sends based on
the output. More generally, P1 can transmit a bit to P2 if there exists an input
y for P2 and a pair of inputs x and x′ for P1 such that f2(x, y) �= f2(x′, y). This
suffices because P1 and P2 can decide that f2(x, y) should be interpreted as bit 0
and f2(x′, y) as bit 1. Likewise, P2 can transmit a bit to P1 if the reverse holds.
We say that a functionality enables bit transmission if it can be used by P1 to
transmit a bit to P2 and vice versa. Thus, a functionality can only enable bit
transmission if both parties receive output (it is impossible to transmit a bit to
a party that receives no output). We now present the formal definition:

Definition 3 A deterministic functionality f = (f1, f2) enables bit transmission
from P1 to P2 if there exists an input y for P2 and a pair of inputs x and x′ for
P1 such that f2(x, y) �= f2(x′, y). Likewise, f = (f1, f2) enables bit transmission
from P2 to P1 if there exists an input x for P1 and a pair of inputs y and y′ for P2
such that f1(x, y) �= f1(x, y′). We say that a functionality enables bit transmission
if it enables bit transmission from P1 to P2 and from P2 to P1.
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We are now ready to prove that in the setting of local sequentiality, security
under self composition is equivalent to security under general composition (for
functionalities that enable bit transmission).

Proposition 4 Let F be a functionality that enables bit transmission. Then, a
protocol ρ securely computes F under locally sequential self composition if and
only if it securely computes F under locally sequential general composition.

Proof Sketch: The proof of this proposition is almost identical to the proof of
equivalence between security under concurrent self composition and concurrent
general composition in [20]. We therefore only describe why the proposition holds
here as well. The main observation is that when a functionality F enables bit
transmission, it can be used by the parties to send any message to each other.
Specifically, a message α = α1 · · ·αm of length m can be sent by party P to
party P ′ by invoking m ideal calls to F ; in the ith call the bit αi is transmitted.
Furthermore, these m calls can be carried out sequentially, thereby preserving the
requirement of local sequentiality. (Recall that in the setting of locally sequential
general composition, arbitrary messages can only be sent in between executions
of the secure protocol. Thus, the secure protocol can be invoked sequentially
for the sake of bit transmission, and local sequentiality is still preserved.) We
therefore have that security under self composition implies security under general
composition. The other direction follows immediately from the fact that self
composition is just a special case of general composition where the arbitrary
protocol is “empty”.

Interchangeable roles. The model that we consider here is one where parties
have fixed roles in the computation (e.g., a party who proves a statement in
zero-knowledge must play the prover role in all executions). As shown in [20],
in a setting where parties may adopt different roles, the equivalence stated in
Proposition 4 holds for all functionalities (and not just for those enabling bit
transmission). See [20] for more details.

3.2 Locally Sequential Composition and Concurrent Composition

We prove our impossibility results for locally sequential self composition by show-
ing that security in this setting actually implies security in the setting of con-
current self composition (for adversaries with fixed scheduling). We then derive
impossibility by applying the known results for concurrent self composition.

Theorem 5. Let F be a functionality that enables bit transmission. If a protocol
ρ securely computes F under locally sequential self composition (with many par-
ties), then it securely computes F under concurrent self composition with fixed
scheduling (and with two parties).

Proof: We begin by providing the idea behind the proof of the theorem, and
then proceed to the full proof. An execution of t concurrent sessions of a secure
protocol with two parties P1 and P2 can be emulated by 2t parties P̃1, . . . , P̃2t,
each of which runs just a single execution. Specifically, the ith session between
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P1 and P2 is actually run by P̃2i−1 and P̃2i (where P̃2i−1 plays the role of P1,
and P̃2i plays the role of P2). Since the honest P1 and P2 run each execution
obliviously of the others, there is no problem having different parties run each
different execution. (Note that we rely heavily on the fact that stateless compo-
sition is used here.) Furthermore, since each pair runs only a single execution,
local sequentiality is trivially preserved. One problem that arises according to
this strategy, however, is that in the concurrent setting parties P1 and P2 use
their previously received outputs in order to compute their new inputs. There-
fore, in the setting of local sequentiality, outputs that are received by one honest
party must be sent to all the other honest parties (in order to enable them to
compute their inputs in the same way as P1 and P2 in the concurrent setting).
In principle, this is achieved by using the bit transmission property of the func-
tionality F (i.e., when an honest party receives its output from an execution of
ρ, it sends this output to all other honest parties by running many executions
of ρ and sending a single bit of the output in each such execution). However,
this introduces a difficulty with respect to the scheduling of the delivery of these
received outputs. In particular, the adversary may deliver some of these outputs
and not others, and may also deliver them in different orders to different pairs.
This concern can happen in the setting of local sequentiality, but not when just
two parties run many concurrent executions. This problem is overcome by rely-
ing on the assumption that the adversary’s schedule is fixed. In this way, it is
possible to have the parties in the setting of local sequentiality only agree to run
protocol executions in the same order as the concurrent adversary runs them.
This completes the proof sketch; the full proof follows.

Let ρ be a protocol that is secure under locally sequential self composition with
many parties. By Proposition 4 and the fact that F enables bit transmission, we
have that ρ is also secure under locally sequential general composition. We now
show that this implies that ρ is secure under concurrent self composition with
fixed scheduling.

Let P1 and P2 be two parties with input-selecting machines M1 and M2,
respectively, let A be an adversary who “attacks” P1 and P2 in the setting of
concurrent self composition, and let I denote the schedule of messages for A.
Recall that I is a series of indices i1, i2, . . . such that the messages sent by A in a
concurrent execution are (i1, α1), (i2, α2), . . . for αj ’s of A’s choice. Furthermore,
in the first appearance of an index j in the series, it always holds that αj =
start-session. We observe that I fully defines the order in which sessions both
begin and terminate. Therefore, the sessions from which outputs have already
been received at the time that a new session begins are also fully determined.
Recall that the input to every new session is based on already-received outputs.

In order to construct a simulator S for A, we first define a setting of locally
sequential general composition that emulates the concurrent executions of P1
and P2. Let t = t(n) be an upper bound on the running time of A, and thus
on the length of the series I. Then, define parties P̃1, . . . , P̃2t who all run an
arbitrary protocol π. Before describing π, we call the parties (P̃1, P̃3, . . . , P̃2t−1

odd (i.e., they have odd indices), and we call the parties (P̃2, P̃4, . . . , P̃2t) even.
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We now present protocol π that works in the F -hybrid model (the protocol
specification includes the input-selecting machines M1 and M2 of P1 and P2):

Protocol π:

1. Instructions for Party P̃i, for even i, 1 ≤ i ≤ 2t: Wait until a start-session
message is received from party Pi−1. Until such a message is received, ac-
cept any message of the form (received-output, j, γj) from even parties Pj

with j < i. When a start-session message is received, do the following. First,
let (j1, γj1), . . . , (jk, γjk

) be the received-output values that were received (in
the order that they were received). Then, check that according to the sched-
ule I, the i

2
th

session between P1 and P2 (with adversary A) begins after
P2 has already concluded and thus received output in sessions j1, j2, . . . , jk
(and only these sessions). Furthermore, check that this is the order that P2
concludes these sessions in I. If one of these checks fails, halt and output
⊥. Otherwise, compute x ← M2(xi,

i
2 , γj1 , . . . , γjk

), where xi is Pi’s initial
input. Then, send x to the ideal functionality F and receive back the output
γ. Finally, send (received-output, i, γ) to all even parties Pj for j > i, write
γ to the output tape and halt.

2. Instructions for Party Pi, for odd i, 1 ≤ i ≤ 2t: The instructions here are
the same as for an even i except that Pi receives outputs from odd parties,
it checks that P1 would have concluded the sessions and in this order, it
applies M1 (instead of M2), and it sends its output to odd parties Pj , j > i.

This completes the description of π.

Notice that in the real model, when the ideal calls to F are replaced by executions
of ρ, the parties do not respond to any non-ρ message that is received during
the execution of ρ. (This is due to the local sequentiality requirement.)

Having described the protocol π, we now construct a real adversary Ã such
that the outcome of a locally sequential execution with Ã is essentially identical
to the outcome of an execution in the setting of concurrent self composition with
A and schedule I. In other words, Ã with P̃1, . . . , P̃2t essentially emulates the
concurrent executions of A with P1 and P2 according to the schedule I.

We first define the corruption sets of A and Ã: if A controls P1, then Ã
controls all the odd parties P̃1, P̃3, . . . , P̃2t−1; if A controls P2 then Ã controls
all the even parties P̃2, P̃4, . . . , P̃2t. (This corruption pattern is fixed from here
on.) Now, upon input z, the adversary Ã internally invokes A with input z and
perfectly emulates the setting of concurrent self composition with P1 and P2
(despite the fact that it runs in the setting of local sequentiality). This emulation
is carried out as follows; for the sake of clarity our description and proof from
here on is for the case that P1 is corrupted (the other case is proven analogously):

1. Session initiation: When A sends the ith start-session message to P2, then Ã
instructs P̃2i−1 to send a start-session message to P̃2i. (That is, for the 1st

such message, Ã instructs P̃1 to send a start-session message to P̃2; for the
2nd such message, Ã instructs P̃3 to send a start message to P̃4, and so on.)
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2. Session execution: Whenever A instructs P1 to send P2 a message (i, α)
belonging to the ith session, Ã instructs P̃2i−1 to send α to P̃2i. Likewise,
when P̃2i−1 receives a message β back from P̃2i, adversary Ã hands (i, β) to
A, as if it was received from P2.

3. Delivery of π-messages: After Ã sends P̃2i the last message of session i, it
immediately delivers all of the received-output messages that P̃2i sends to all
even parties.

4. Conclusion: When A outputs γ and halts, Ã also outputs γ and halts.

Now, let x1, x2 be arbitrary values. Then, we denote by xt(x1, x2) the length-2t
vector of the form xt(x1, x2) = (x1, x2, x1, x2, . . . , x1, x2); i.e., t repetitions of
the pair (x1, x2). We claim that the execution with Ã perfectly emulates the real
execution of A. That is, for every x1, x2, z ∈ {0, 1}∗ and every n ∈ N,{

seq-realπρ,Ã(n, xt(x1, x2), z)
}
≡
{
conc-realρ,A(n, x1, x2, z)

}
(1)

Actually, the format of the random variable seq-real differs from that of
conc-real; the first is a vector of Ã’s output together with the output of
all the 2t participating parties P̃1, . . . , P̃2t, whereas the second is the vector of
A’s output together with the output of P1 and P2. Rather than introducing
special notation for this, our intention is that the output of Ã together with the
vector of outputs of the honest parties P̃2, P̃4, . . . , P̃2t is identically distributed
to the output of A together with the output of the honest P2. (Another way
of stating this is that there exists an efficient function h that can be applied to
seq-real so that h(seq-real) is identically distributed to conc-real. This
efficient function h merely involves “re-arranging” the outputs.)

Stated simply, Eq. (1) states that the output of Ã and the honest parties in the
setting of local sequentiality is identically distributed to the output of A and P2
in the setting of concurrent self composition. In order to see this, notice that the
distribution of messages sent by P2 and P̃2i in session i is identical, assuming that
they begin with the same input. (This holds because the composition is stateless
and so in each session, P2 runs the protocol as if it was the only protocol being
executed.) In addition, by the definition of π, we know that P2 and P̃2i also
always use the same input in session i. This holds because (a) they both use
the input-selecting machine M2 to decide inputs, and (b) they both apply M2
to the same series of messages (x2, γ1, . . . , γk). The latter holds due to the fact
that the schedule of A is fixed and P̃2i checks that it has all the outputs that P2
would also have already received. (We remark that we don’t actually need to use
the fact that the schedule is fixed for this part of the proof; it can be proven in
any case.) Now, since the messages sent by A to P2 in the ith concurrent session
are just forwarded by Ã to P̃2i in the setting of local sequentiality, the view of
A and the resulting outputs are identical in both settings. Eq. (1) follows.

By the security of ρ under locally sequential general composition, we have that
for every Ã there exists an ideal-model adversary/simulator S̃ such that,{

seq-hybrid
F
π,S̃(n, x, z)

}
c≡
{
seq-realπρ,Ã(n, x, z)

}
(2)
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Eq. (2) holds for every x, and in particular when x is of the form xt(x1, x2), as
in Eq. (1). It remains for us to show that for every S̃ working in the F -hybrid
model for local sequentiality, there exists an adversary S working in the ideal
model for F in the setting of concurrent self composition, such that for every
x1, x2, z ∈ {0, 1}∗ and every n ∈ N,{

conc-idealF ,S(n, x1, x2, z)
}
≡
{
seq-hybrid

F
π,S̃(n, xt(x1, x2), z)

}
(3)

Once again, the format of the random variableconc-ideal differs to seq-hybrid.
As before, our intention is thatEq. (3) holds for the above-mentioned efficient func-
tion h applied to seq-hybrid. (This suffices because we obtain the series of “equal-
ities”: conc-ideal ≡ h(seq-hybrid)

c≡ h(seq-real) ≡ conc-real, implying
that conc-ideal

c≡ conc-real as required.)
We now describe the ideal-model adversary/simulator S for which Eq. (3)

holds. For this part of the proof, it is crucial that A have a fixed schedule I (we
do not know how to prove that the equation holds otherwise). Simulator S works
as follows (as above, the corruption pattern is fixed so that S controls P1 if S̃
controls all the odd parties, and S controls P2 if S̃ controls all the even parties).
Upon input z, the adversary S internally invokes S̃ with input z and perfectly
emulates the hybrid-model setting of local sequentiality for S̃, while running in
the ideal-model for concurrent self composition. This emulation is carried out as
follows; as above, for the sake of clarity our description is for the case that P1 is
corrupted (the other case is analogous):

1. Session initiation: This step is carried out initially and after every time that
P2 receives output. Let γ = γ1, . . . , γk be the outputs that P2 has already
received in the concurrent execution with A (initially γ is empty). Then, S
checks I to find the list of sessions which begin after P2 has received the
outputs in γ, and before P2 receives any more outputs. Let i1, . . . , ij be
these sessions. Then, S sends j start-session messages to the trusted party
(corresponding to sessions i1, . . . , ij). Recall that upon receiving such a mes-
sage, the trusted party sends (start-session, i) to P2, where this is the ith

start-session message to be received.
Now, when S̃ wishes to send a start-session(i−1, i) message to the trusted

party (where i is even), adversary S checks that Pi has already received the
outputs that are defined by the schedule I and so by π. If not, S halts and
outputs fail. Otherwise, S does nothing (start-session messages must have
already been sent above).

We note that by the construction of π, party Pi only accepts a start-
session message from Pi−1. S can therefore just ignore any start message
that is not of this form.

2. Send input and receive output: When S̃ wishes to send an input message
(i−1, i, x) to the trusted party, S sends ( i

2 , x) to the trusted party. When S
receives the output ( i

2 , γ) from the trusted party, it internally passes S̃ the
message (i−i, i, γ), as if from S̃’s trusted party.
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As in the previous item, S can ignore all messages that are not of this form,
because by the definition of π, honest parties will not participate in such
executions.

3. Instruction to send output to honest party: When S̃ wishes to send a message
(send-output, i−1, i) to its trusted party, S does nothing. Rather, S sends
send-output messages to the trusted party according to the order of outputs
received in the schedule I. After sending such output, S proceeds to the
“session-initiation” step.

4. Conclusion: When S̃ outputs γ and halts, S also outputs γ and halts.
In order to show that Eq. (3) holds, we show that the inputs that the honest
parties P̃2, P̃4, . . . send in seq-hybrid are identically distributed to the inputs
that P2 sends in conc-real. In particular, this means that the ith input sent
by an honest party in seq-hybrid is identically distributed to the ith input sent
by P2 in conc-real. Observe that for every i, party P̃2i obtains its input by
computing M2(x2, i, γ). Likewise, in the ith session, party P2 obtains its input
by computing M2(x2, i, γ

′). Thus, it suffices to show that γ′ = γ; that is, the
input computed by P̃2i is based on the same set of received-outputs as the
input computed by P2 in the ith session. However, this follows immediately
from the fact that both S and P̃2i check that their list of received-outputs is
as defined by the schedule I. That is, S sends a (start-session, i) messages as
soon as the necessary outputs have already been received. Likewise, S ensures
that the outputs are received by P2 in the order defined by I. In the setting of
seq-hybrid, the same effect is achieved by the fact that each party P̃2i checks
its received outputs before computing its input (and if this check fails, it outputs
⊥). Thus, as long as no party P̃2i outputs ⊥ in π, we have that the inputs sent are
identically distributed. This suffices because in the real execution of seq-real

with Ã, no honest party outputs ⊥. Therefore, the probability that an honest
party will output ⊥ in the seq-hybrid execution with S̃ is at most negligible.
(It is possible that S̃ will instruct outputs to be sent in the “incorrect order”.
However, if sessions are then started, based on this order, we are guaranteed that
an honest party will output ⊥. Essentially, this means that S̃ cannot behave in
this way except with negligible probability.)

We have so far established that the inputs sent by the honest parties P̃2i

in seq-hybrid are identically distributed to those sent by P2 is conc-ideal.
Given this fact, the view of S̃ in the emulation by S is identical to its view in a
seq-hybrid execution. This follows immediately from the fact that S forwards
all messages to S̃, as it expects to receive from the trusted party. Thus, Eq. (3)
holds. Combining Equations (1), (2) and (3), the theorem follows.
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Abstract. We show a simple chosen-ciphertext attack against a pub-
lic key encryption scheme with non-interactive opening (PKENO) pre-
sented by Damg̊ard, Kiltz, Hofheinz and Thorbek in CT-RSA 2008. In a
PKENO scheme a receiver can convincingly reveal to a verifier what the
result of decrypting a ciphertext C is, without interaction and without
compromising the confidentiality of non-opened ciphertexts. A special
interesting feature of PKENO is that a verifier can even ask for open-
ing proofs on invalid ciphertexts. Those opening proofs will convince the
verifier that the ciphertext was indeed invalid. We show that one of the
schemes by Damg̊ard et al. does not achieve the claimed security goal.
Next we provide a fix for it. The repaired scheme presents essentially
no overhead and is proven secure under the Decisional Bilinear Diffie-
Hellman assumption in the standard model.

Keywords: identity-based encryption, public key encryption, non-
interactive proofs, standard model.

1 Introduction

The primitive public key encryption with non-interactive opening (PKENO) al-
lows a receiver Bob to reveal the plaintext m obtained in decrypting any given
ciphertext C under Bob’s public key pkB to a verifier Alice. By using PKENO
Bob can do so convincingly and without interaction. More precisely, Bob runs a
proving algorithm Prove on inputs its secret key skB and the intended ciphertext
C, thereby generating a proof π. On the other hand, Alice runs a verification
algorithm Ver on inputs Bob’s public key pkB, ciphertext C, the plaintext m
that purportedly was output by the decryption algorithm, and an opening proof
π. The verification algorithm outputs 1 if C was indeed an encryption of m,
and 0 otherwise. A special interesting feature of PKENO is that Bob can also
convince Alice of the fact that a given ciphertext C is invalid, i.e. it is rejected
by the decryption algorithm.

PKENO was recently introduced in [DT07, DHKT08] as a means to enable
publicly-verifiable decryption. For instance, Damg̊ard and Thorbek [DT07] use
PKENO in multiparty computation to prove that a given party did not follow the
protocol, in the sense that it sent encrypted fake information. Damg̊ard, Kiltz,
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c© Springer-Verlag Berlin Heidelberg 2009



390 D. Galindo

Hofheinz and Thorbek [DHKT08] present two constructions of PKENO schemes.
The first proposal is a generic construction that takes as atomic primitives
an identity-based encryption scheme (IBE) and a one-time signature scheme.
This construction resembles Canetti, Halevi and Katz IBE-to-PKE transforma-
tion [CHK04] (where PKE stands for public key encryption). The second pro-
posal is a concrete scheme based on a chosen-ciphertext secure pairing-based key
encapsulation mechanism by Boyen, Mei and Waters [BMW05].

The security of a PKENO scheme is roughly defined as follows. First, a
PKENO must be indistinguishable against chosen-ciphertext and prove attacks
(IND-CCPA security). This attack model is obtained by augmenting the stan-
dard IND-CCA game, namely giving the adversary additional access to a prove
oracle, that on input a ciphertext returns an opening proof. Secondly it must
be difficult for a malicious receiver to forge a proof on any ciphertext sent to
him, i.e. it must be infeasible to produce a proof convincing a verifier that the
ciphertext opens to a different result than what is obtained from the decryption
algorithm.

In this paper we show that the second scheme in [DHKT08] is insecure. In
particular, we exhibit an attack that breaks the confidentiality of any honestly-
generated ciphertext C� by having access to a proving oracle on a related but
different ciphertext C. Next we propose a fix that precludes the above attacks.
We show that the new scheme is nearly as efficient as the original one and that it
is secure under under the Decisional Bilinear Diffie-Hellman assumption in the
standard model.

2 Preliminaries

In this section we review the definitions and tools we need to present our results.
We start by fixing some notation.

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes
its size. If k is a natural number, then 1k denotes the string of k ones. If S is
a set then s1, . . . , sn

$← S denotes the operation of picking n elements si of S
independently and uniformly at random. We write A(x, y, . . .) to indicate that A
is an algorithm with inputs x, y, . . . and by z ← A(x, y, . . .) we denote the oper-
ation of running A with inputs (x, y, . . .) and letting z be the output. We use the
abbreviation PPT to refer to a probabilistic polynomial time algorithm [Gol01].

2.2 Public Key Encryption Scheme with Non-interactive Opening

A PKENO scheme PKENO = (Gen,Enc,Dec,Prove,Ver) is a tuple of five PPT
algorithms:
– Gen is a probabilistic algorithm taking as input a security parameter 1k. It

returns a public key pk and a secret key sk. The public key includes the
description of the set of plaintextsMpk.
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– Enc is a probabilistic algorithm taking as inputs a public key pk and a message
m ∈Mpk. It returns a ciphertext C.

– Dec is a deterministic algorithm that takes as inputs a ciphertext C and
a secret key sk. It returns a message m ∈ Mpk or the special symbol ⊥
meaning that the ciphertext is invalid.

– Prove is a probabilistic algorithm taking as inputs a ciphertext C and a secret
key sk. It returns a proof π.

– Ver is a deterministic algorithm taking as inputs a public key pk, a ciphertext
C, a plaintext m and a proof π. It returns a result res ∈ {0, 1} meaning
accepted and rejected proof respectively. In particular 1 ← Ver(pk, C,⊥, π)
must be interpreted as the verifier being convinced that C is an invalid
ciphertext.

For correctness and completeness it is required that for a honestly generated key
pair (pk, sk)← Gen(1k), the following holds:

– Correctness. For all messages m ∈ Mpk, we have Pr[Dec(Enc(pk,m)) =
m] = 1.

– Completeness. For all ciphertexts C we have that

Pr
[
1← Ver

(
pk, C,Dec(sk, C),Prove(sk, C)

) ]
= 1,

i.e. the verification algorithm accepts with overwhelming probability.

Definition 1 (IND-CCPA security). Let us a consider the following game
between a challenger and an adversary A:

Setup. The challenger runs Gen(1k) and gives pk to A.
Phase 1. The adversary issues queries of the form:

a) decryption query to an oracle Dec(sk, ·)
b) proof query to an oracle Prove(sk, ·).
These queries may be asked adaptively, that is, they may depend on the
answers to previous queries.

Challenge. At some point, A outputs two equal-length messages m0,m1 ∈
Mpk. The challenger chooses a random bit β and returns C� ← Enc(pk,mβ).

Phase 2. As in Phase 1, with the restriction that decryption or proof queries
on C� are not allowed.

Guess. The adversary A outputs a guess β′ ∈ {0, 1}. The adversary wins the
game if β = β′.

Define A’s advantage as Advind−ccpa
PKENO,A(1k) =

∣∣Pr[β′ = β]−1/2
∣∣. A scheme PKENO

is called indistinguishable against chosen-ciphertext and prove attacks (IND-
CCPA secure) if for every adversary A, Advind−ccpa

PKENO,A(·) is negligible.

Definition 2 (Soundness). Let us a consider the following game between a
challenger and an adversary A:

Setup. The challenger runs Gen(1k) and gives (pk, sk) to A.
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Challenge. The adversary chooses a message m ∈ Mpk and gives it to an
encryption oracle which returns C ← Enc(pk,m).

Define A’s advantage in forging a proof by Advforge
PKENO,A(1k) = Pr[1← Ver(pk, C,

m′, π′) ∧ m′ �= m]. A scheme PKENO is said to satifsy computational proof
soundness if for every adversary A, Advforge

PKENO,A(·) is negligible.

Definition 3 (PKENO security). A PKENO scheme is said to be secure if
it has IND-CCPA security and computational proof soundness.

2.3 Pairing Assumptions

Parameter Generation Algorithms for Bilinear Groups. (Symmetric)
Pairing-based schemes are parameterized by a pairing parameter generator. This
is a PPT algorithm G that on input 1k returns the description of an multiplicative
cyclic group G1 of prime order p, where 2k < p < 2k+1, the description of a
multiplicative cyclic group GT of the same order, and a non-degenerate bilinear
pairing e: G1×G1 → GT . See [BF03, BSS05] for a description of the properties
of such pairings. We use G∗

1 to denote G1 \ {0}, i.e. the set of all group elements
except the neutral element. We shall use P = (G1,GT , p, e) as shorthand for the
description of bilinear groups.

The BDDH Assumption. Let P be the description of pairing groups. Consider
the following problem first considered by Joux [Jou00] and later formalized by
Boneh and Franklin [BF03]: given (g, ga, gb, gc,W ) ∈ G4

1 ×GT as input, output
yes if W = e(g, g)abc and no otherwise. More formally, to a parameter generation
algorithm for pairing-groups G and an adversary B we associate the following
experiment.

Experiment Expbddh
G,A (1k)

P
$← G(1k)

a, b, c, w
$← Z∗

p

β
$← {0, 1}

If β = 1 then W ← e(g, g)abc else W ← e(g, g)w

β′ $← A(1k,P, g, ga, gb, gc,W )
If β �= β′ then return 0 else return 1

We define the advantage of B in the above experiment as

Advbddh
G,A (k) =

∣∣∣∣Pr
[
Expbddh

G,A (1k) = 1
]
− 1

2

∣∣∣∣ .
We say that the Bilinear Decision Diffie-Hellman (BDDH) assumption relative
to generator G holds if Advbddh

G,A is a negligible function in k for all PPT algo-
rithm A.
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2.4 Collision-Resistant Hashing

Let us consider a family of hash functions CR = {CRs : Σs → Zp(s)}s∈S(k),
where k is a security parameter; Σs and S(k) are finite sets such that |σ| and |s|
are polynomially bounded as functions of k for any σ ∈ Σs and s ∈ S(k); p(s)
are prime numbers with |p(s)| polynomially bounded in the security parameter.
We say that CR is collision resistant if for any PPT algorithm A we have

Pr[ CRs(x) = CRs(y) and x �= y : s $← S(k) ; (x, y)←− A(s)]

is negligible in k (cf. [Gol01] for a definition of the class of negligible functions).

3 Damg̊ard et al. Scheme

Let P = (G1,GT , p, e) the description of a bilinear group. Let TCR : G1 → Zp

be a (target) collision-resistant hash function. Let (E,D) be a chosen-ciphertext
secure symmetric encryption scheme (see [Gol01] for a definition) such that its
keys’ space is GT .

Damg̊ard, Hofheinz,Kiltz andThorbek’s second schemepresented in [DHKT08]
is depicted in Figure 1.Mpk is simply defined as the set of messages of the symmet-
ric encryption scheme. Here we complete the description originally given by the
authors in order to describe how the verification algorithm behaves when it takes
inputs of the form (sk, C,⊥, ∅).

3.1 Attack

Let us call a ciphertext C = (c1, c2, c3) consistent if e(g, c2) = e(c1, Xt
1X2),

where t = TCR(c1). Notice that the consistency of a ciphertext does not depend
at any rate on the component c3. Furthermore, the algorithm Prove(sk, ·) on
input C always return a non-trivial proof π �= ∅ as long as C is consistent.

The above suggests the following straightforward attack. Given the target
ciphertext C� = (c�

1, c
�
2, c

�
3), where c�

3 ← E(K�,mβ) for unknown β, the attacker
submits C = (c�

1, c
�
2, c3) �= C� to the proving oracle for random c3 �= c�

3. C
is consistent since it was obtained by changing the third component of C�,
and the latter is consistent by definition. The proving oracle returns (d�

1, d
�
2)←

Prove(sk, C), which is a valid opening proof for C�. The attacker thereby obtains
the symmetric encryption key K� by computing e(c�

1, d
�
1)/e(c�

2, d
�
2). Finally, one

recovers β from mβ ← D(K�, c�
3). This attack succeeds with probability 1.

It is symptomatic of the latter attack the fact that if one looks at scheme in Fig-
ure 1 as a standard public key encryption scheme (i.e. by skipping the Prove and
Ver algorithms), then the security reduction given in [BMW05] for the resulting
PKE scheme can not answer decryption queries related to a ciphertext of the form
(c�

1, c2, c3). Therefore the security proof in [BMW05] does not suffice to simulate
the proving oracle in the scheme in [DHKT08], as the authors thereby claimed.

One way to try to overcome this attack is making the consistency of the whole
ciphertext depend also on the third component. This is the simple idea behind
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Gen(1k)
P

$← G(1k)
x1, x2, y

$← Zp

X1 ← gx1 ; X2 ← gx2 ; Y ← e(g, g)y

pk ← (1k, P, E, D, TCR, X1, X2, Y )
sk ← (pk, x1, x2, y)
output (pk, sk)

Enc(pk, m)
r

$← Zp, ; c1 ← gr

t ← TCR(c1) ; c2 ← (Xt
1X2)r

K ← Y r ∈ GT

c3 ← E(K, m)
output C ← (c1, c2, c3)

Dec(sk, C)
parse C as (c1, c2, c3)
t ← TCR(c1)
if cx1t+x2

1 	= c2

output ⊥
else K ← e(c1, g

y)
output m ← D(K, c3)

Prove(sk, C)
parse C as (c1, c2, c3)
t ← TCR(c1)
if cx1t+x2

1 	= c2

output ∅
else s

$← Zp ; d2 ← gs

d1 ← gy · (Xt
1X2)s

output π ← (d1, d2)
Ver(pk, C, m,π)

parse C as (c1, c2, c3)
t ← TCR(c1)
if m =⊥ and π = ∅

if e(g, c2) = e(Xt
1X2, c1)

output 0 and 1 otherwise
if π 	= ∅

if e(g, c2) = e(Xt
1X2, c1) and

e(g, d2) = Y · e(Xt
1X2, d1)

K ← e(c1, d1)/e(c2, d2)
m′ ← D(K, c3)
if m′ = m output 1
else output 0

else output 0

Fig. 1. Damg̊ard et al. [DHKT08] scheme

our proposal. However to be able to simulate decryption and proof queries one
needs to slightly change the underlying encryption scheme. Fortunately a set of
techniques in the same work [BMW05] resolves the question.

4 Repaired Scheme

Let P = (G1,GT , p, e) the description of a bilinear group. The new scheme uses
a hash function H : {0, 1}n → G1 introduced by Chaum, Evertse and van de
Graaf [CEvdG87] and rediscovered recently by Waters [Wat05]. On input of an
integer n polynomially-bounded in k, the randomized hash key generator chooses
n+1 random groups elements h0, . . . , hn ∈ G1 and returns h = (h0, h1, . . . , hn) as
the hash function key. The hash function H : {0, 1}n → G∗

1 is evaluated on a n-bit
string t = (t1, . . . , tn) ∈ {0, 1}n as the product H(t) = h0

∏n
i=1 h

ti

i . In addition
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Gen(1k)
P

$← G(1k)
α, y0, . . . , yn

$← Zp

h0 ← gy0 , . . . , hn ← gyn ; Y ← e(g, g)α

h ← (h0, . . . , hn)
pk ← (1k, P, E, D, CR, h, Y )
sk ← (pk,α, y0, . . . , yn)
output (pk, sk)

Enc(pk, m)
r

$← Zp, ; c1 ← gr

K ← Y r ∈ GT

c0 ← E(K, m)
t ← CR(c0, c1) ; c2 ← H(t)r

output C ← (c0, c1, c2)

Dec(sk, C)
parse C as (c0, c1, c2)
t ← CR(c0, c1)
parse t as (t0, . . . , tn)
t ← y0 +

∑n
i=1 yiti mod p

if ct
1 	= c2

output ⊥
else K ← e(c1, g

α)
output m ← D(K, c0)

Prove(sk, C)
parse C as (c0, c1, c2)
t ← CR(c0, c1)
parse t as (t0, . . . , tn)
t ← y0 +

∑n
i=1 yiti mod p

if ct
1 	= c2

output ∅
else s

$← Zp

d1 ← gα · H(t)s ; d2 ← gs

output π ← (d1, d2)
Ver(pk,C, m, π)

parse C as (c0, c1, c2)
t ← CR(c0, c1)
parse t as (t0, . . . , tn)
if m =⊥ and π = ∅

if e(g, c2) = e(H(t), c1)
output 0

else output 1
if π 	= ∅

if e(g, c2) = e(H(t), c1) and
e(g, d1) = Y · e(H(t), d1)
K ← e(c1, d1)/e(c2, d2)
m′ ← D(K, c0)
if m′ = m output 1
else output 0

else output 0

Fig. 2. Repaired scheme

the scheme uses a collision-resistant hash function CR : G1 × {0, 1}l → {0, 1}n.
Let (E,D) be a one-time chosen-plaintext secure symmetric encryption scheme
(see [Gol01] for a definition) such that its keys’ space is GT .

The new scheme is displayed in Figure 2, being the plaintext space equal to
that of the encryption scheme (E,D). Its key generation, encryption and de-
cryption algorithms are identical to those of a PKE scheme by Boyen, Mei and
Waters in [BMW05]. That scheme has in turn a strong resemblance to Water’s
identity-based encryption scheme [Wat05]. Indeed, the public and private keys
are essentially identical to the master public and secret keys of Waters’ IBE,
and the n-bit string t plays the role of the recipient’s identity. The intuition on
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why the scheme is secure is simple and is as follows. Given the target ciphertext
C� = (c�

0, c
�
1, c

�
2), where c�

0 ← E(K�,mβ) for unknown β, it is infeasible to com-
pute a different ciphertext C = (c0, c1, c2) which is simultaneously consistent and
such that c1 = c�

1 (i.e. such that C gives raise when decrypted to K = K�). Con-
sistency now means that e(g, c2) = e(H(t), c1), with t← CR(c0, c1). Infeasibility
holds under the assumptions that the hash function CR is collision-resistant and
that the BBDH problem is hard.

Theorem 1. The scheme from Figure 2 is IND-PCCA secure if the DBDH
assumption holds and CR is target collision-resistant.

Sketch of the proof. The proof uses exactly the same techniques as the security
proof given for the encryption scheme in [BMW05] does. As noted before a
ciphertext in the new scheme is essentially an IBE ciphertext where the identity
t is determined from the first two elements. The crucial part in our simulation is
to answer proof queries, since decryption queries are answered as in [BMW05].
We next explain how to answer those queries.

For all proof queries involving a ciphertext C = (c0, c1, c2) the simulator first
checks that the ciphertext is consistent. This amounts to checking e(g, c2) =
e(H(t), c1), with t ← CR(c0, c1). If the ciphertext is consistent, that is c0 = gr

and c2 = H(t)r for some r ∈ Zp, the simulator creates a Waters IBE-like private
key (d1, d2) for the identity t as the opening. We give the main details in the
next paragraph on how (d1, d2) is built.

Let (g, ga, gb, gc,W ) be the input of the BDDH problem. The simulator defines
Y = e(ga, gb), which implies that α is implicitly defined as ab. The hash function
H is indeed a programmable hash function [HK08]. Therefore the simulator can
use an alternative generation algorithm that on inputs (g, gb) produces a public
hash key h̃ = (h̃0, · · · , h̃n) ∈ Gn+1 together with a secret trapdoor information
st, such that h (as obtained by the original PKENO key generation algorithm
Gen) and h̃ are identically distributed. Then with non-negligible probability on
k the simulator computes F (t), J(t) ∈ Zp by using the trapdoor st such that
H(t) = (gb)F (t)gJ(t), where t = CR(c0, c1) and (c0, c1, c2) is any consistent proof
query made by the attacker. At the same time, the simulator is able to compute
J(t�) ∈ Zp such that H(t�) = gJ(t�), where t� = CR(c�

0, c
�
1) and (c�

0, c
�
1, c

�
2) is the

challenge ciphertext (see [HK08] for further details). Thanks to the properties
of the programmable hash function, proof queries with respect to consistent
ciphertexts C = (c0, c1, c2) are answered as

π =
(

(ga)
−J(t)
F (t) ·H(t)r, (ga)

−1
F (t) gr

)
for random r chosen by the simulator. It is a bit cumbersome but straightforward
to check that π thereby obtained is a correct proof (see [BMW05] for hints).

When the attacker outputs the pair of plaintextsm0,m1 to be challenged on, the
simulator creates the challenge ciphertextC� = (c�

0, c
�
1, c

�
2) which can be viewed as

an Waters identity-based encryption under the identity t� = CR(c�
0, c

�
1). This is

done by setting c�
1 = gc, and c�

1 = E(K,mβ) for random β
$← {0, 1} and K

$←
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GT . Thanks again to the properties of the programmable hash function c�
2 is easily

constructed as (gc)J(t�). Since CR is collision resistant, the adversary will not be
able to make any consistent ciphertext nor proof queries related to the identity t�.
Thus, we can answer all proof queries on consistent ciphertexts C �= C�. Finally,
the security of our scheme boils down to the security of the underlying IBE security,
i.e. Waters’ scheme, and the collision-freeness of CR. %&

Theorem 2. The scheme in Section 4 satisfies proof soundness unconditionally.

Proof. Let C = ( c0 = E(Y r,m), c1 = gr, c2 = H(t)r ) with t = CR(c0, c1) be
an honestly generated ciphertext and let π = (d1, d2) be a proof for C. If the
checking if e(g, c2) = e(H(t), c1) and e(g, d2) = Y · e(H(t), d1) is passed, then the
verifier concludes there exist r′, s′ ∈ Zp such that c2 = H(t)r′

and gr = c1 = gr′
;

d1 = gα ·H(t)s′
and d2 = gs′

. Since gr = gr′
implies r = r′, the key K ′ recovered

by the verification algorithm

K ′ ← e(c1, d1)/e(c2, d2) = e(gr, gα · H(t)s′
)/e(H(t)r , gs′

) = e(gr, gα) = K.

Therefore in the verification algorithm the message m′ obtained is always the
encrypted message m thanks to the properties of the bilinear pairing, which hold
unconditionally.

That the adversary can not either forge proofs on invalid ciphertexts can be
seen by using similar arguments. %&

5 Conclusion

We have shown that a PKENO scheme presented in [DHKT08] is insecure. Next
we have proposed a fix and proved the resulting scheme secure under the BDDH
assumption in the standard model. The resulting scheme is essentially as efficient
as the original one and it is based on previous plain PKE scheme by Boyen, Mei and
Waters [BMW05]. In particular encryption requires one exponentiation in GT , two
exponentiations in G and an average of n/2 group operations in G, which amount
to less than one exponentiation in G. In contrast, Damg̊ard et al. scheme requires
one exponentiation in GT , one exponentiation in G and one double-exponentiation
in G. The decryption, prove and verification algorithms have the same cost in both
our scheme and Damg̊ard et al. We leave as an open problem the construction of
an IND-CCPA secure PKENO scheme without pairings.
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Abstract. OAEP is one of the few standardized and widely deployed
public-key encryption schemes. It was designed by Bellare and Rogaway
as a scheme based on a trapdoor permutation such as RSA. RSA-OAEP
is standardized in RSA’s PKCS #1 v2.1 and is part of several standards.
RSA-OAEP was shown to be IND-CCA secure in the random oracle
model under the standard RSA assumption. However, the reduction is
not tight, meaning that the guaranteed level of security is not very high
for a practical parameter choice. We first observe that the situation is
even worse because the analysis was done in the single-query setting,
i.e. where an adversary gets a single challenge ciphertext. This does not
take into account the fact that in reality an adversary can observe mul-
tiple ciphertexts of related messages. The results about the multi-query
setting imply that the guaranteed concrete security can degrade by a
factor of q, which is the number of challenge ciphertexts an adversary
can get. We re-visit a very simple but not well-known modification of the
RSA-OAEP encryption which asks that the RSA function is only applied
to a part of the OAEP transform. We show that in addition to the pre-
viously shown fact that security of this scheme is tightly related to the
hardness of the RSA problem, security does not degrade as the number
of ciphertexts an adversary can see increases. Moreover, this scheme can
be used to encrypt long messages without using hybrid encryption. We
believe that this modification to the RSA-OAEP is easy to implement,
and the benefits it provides deserves the attention of standard bodies.

1 Introduction

Background and Motivation. OAEP is one of the few standardized and
widely deployed public-key encryption schemes. It was designed by Bellare and
Rogaway [5] as a scheme based on a trapdoor permutation such as RSA. RSA-
OAEP is standardized in RSA’s PKCS #1 v2.1 and is part of the ANSI X9.44,
IEEE P1363, ISO 18033-2 and SET standards. The scheme is parameterized
by k0, k1. The encryption algorithm of OAEP[F ] takes a public key f , which
is an instance of a trapdoor permutation family F , and a message M , picks
k0-bit string r at random, pads M with k1 zeros to get M ′ and computes the
ciphertext C = f(s ‖ t) for s = G(r) ⊕M ′ and t = H(s)⊕ r, where G and H
are hash functions. OAEP[F ] was proven to be IND-CPA secure assuming F is
a one-way trapdoor permutation family [5] and IND-CCA secure assuming F is
partial one-way [12], both in the random oracle (RO) model, i.e., where G and

M. Fischlin (Ed.): CT-RSA 2009, LNCS 5473, pp. 399–413, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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H are modeled as random oracles [4]. Partial one-wayness is a stronger property
than one-wayness and it asks that given the result of applying a random instance
of the function family to a random point x it be hard to compute the first part
of x. RSA is believed to be one-way, so under this assumption the result of [5]
implies that OAEP[RSA] (RSA-OAEP) is IND-CPA in the RO model. In [12] it
was shown that one-waynes of RSA also implies partial one-wayness, therefore
RSA-OAEP is IND-CCA under the standard RSA assumption (stating that RSA
is one-way), in the RO model.

While the concrete security reduction showing OAEP is IND-CCA secure
assuming partial one-wayness of the underlying permutation family is tight, the
concrete bound showing RSA-OAEP is IND-CCA under the RSA assumption
is quite loose, due to the “lossy” reduction from partial one-wayness to one-
wayness of RSA. Such a loose concrete security bound implies that it may be
easier to break the scheme than to invert RSA, and to maintain reasonable
security guarantees one would need to use the scheme with a larger security
parameter. It was shown in [16] that keys of length about 4-5 thousand bits
are necessary, i.e. at least 4 times larger than the standard 1024-bit keys, and
this means decryption will be about 64 = 43 times slower than before (since
decryption requires a modulo exponentiation whose complexity is cubic in the
length of the security parameter). This is basically impractical.

Moreover, we note that the definitions of security of encryption in [5,12] only
consider an adversary given a single challenge ciphertext. In reality, of course,
an adversary can observe multiple ciphertexts of possibly related messages. Such
mismatch was studied in [3,2], who defined security in the “multi-query” setting
where the adversary can see multiple challenge ciphertexts on messages of its
choice1. The result of [3] implies that security (IND-CPA or IND-CCA) in the
single-query setting implies security in the multi-query setting, however, concrete
security degrades as the number of queries increases, and this loss cannot be
avoided in general. However it is possible for some specific constructions, e.g.
[3] shows that IND-CPA security of the ElGamal encryption scheme [11] stays
tightly related to security of the decisional Diffie-Hellman problem regardless
of how many queries an adversary makes. Concrete security in the multi-query
setting of RSA-OAEP has not been explicitly addressed before our work.

Interestingly, an extremely simple modification to the the RSA-OAEP scheme
permits several concrete security improvements. Unlike most of alternative con-
structions that have been suggested [17,9,15], the modification we study does not
change the transform construction. The modified scheme differs from OAEP in
that it uses trapdoor permutations of particular structure. Informally, they just
leave the last part of the input (t-part of the output of the OAEP transform) in the
clear. The scheme can be immediately instantiated with the RSA family if we ap-
ply an RSA function only to the s-part of the OAEP transform output, or to a por-
tion of the s-part. This modification has been suggested under the name OAEP++

1 In fact, [3] considers what they call a “multi-user” setting which also allows the
adversary to see multiple challenge ciphertexts under multiple public keys. We do
not consider multiple public keys in this work.



Strengthening Security of RSA-OAEP 401

by Kobara and Imai in [14] in order to improve concrete security of OAEP. They
show that RSA-OAEP++ is IND-CCA secure in the RO model under the stan-
dard RSA assumption and the reduction is tight. However, they only consider the
single-query setting. The result of [3] implies that in the practical multi-query set-
ting the concrete security bound is worse by a factor of q, i.e. security may degrade
as an adversary observes more ciphertexts of possibly related messages. We note
that this modification has been also suggested in [8] for an orthogonal reason of
showing some positive results about non-malleability of OAEP when one or both
ROs are instantiated with existing functions. The paper [8] neither considers the
multi-query setting nor provides concrete security bounds.

Our contributions. We show that this simple modification has even more
advantages. We prove that concrete IND-CCA security of the modified RSA-
OAEP scheme stays tightly related to one-wayness of RSA regardless of how
many challenge ciphertexts an adversary sees (is independent of parameter q).
The proof is in Section 5 and it uses the self-reducibility property of RSA. There
we explain why does not the same idea apply to the original RSA-OAEP scheme.
Hence, the modified RSA-OAEP provides significantly better security guarantees
than the original version, for very practical parameter sizes, which results in a
very efficient scheme.

Additionally, the modified RSA-OAEP scheme can be used to encrypt long
messages without using symmetric encryption in the hybrid encryption con-
struct. For that the function G in the transform is made variable-output-length,
i.e. its output size is of the length of the message plus the zero padding of length
k1. For a fixed-output-length hash G′(·) one can efficiently construct G(·) as
G′(〈0〉 ‖ ·) ‖G′(〈1〉 ‖ ·) . . . ‖G′(〈l〉 ‖ ·), where 〈i〉 means the binary representation
of the counter i ∈ N. The function H in the transform needs to be variable-
input-length, which is not a problem. The RSA function is applied to the first
k (e.g. 1024 bits) of the s-part of the OAEP transform. The proof of security
stays virtually the same. This scheme yields more compact ciphertexts for long
messages than the one obtained through the use of hybrid encryption because
there is no need to encrypt the symmetric key.

We hope the standard bodies will pay attention to the modified RSA-OAEP
as the advantages it offers seem to be well worth a very simple modification to
the standard scheme.

More related work. After it was realized by [12] that IND-CCA security of
RSA-OAEP is not tight there appeared several alternative encryption schemes
using different transforms before applying the RSA function. These include
OAEP+ [17], SAEP+ [9], REACT [15]. Another alternative, which was proposed
in [18] is the simplest construction and is known as Simple RSA or RSA-KEM.
IND-CCA security of all of these schemes are tightly related to the hardness of
the RSA problem, in the RO model and in the single-query setting. The latter
two schemes, unlike the former two, can also be shown to have an improved se-
curity reduction in the multi-query setting (though it was not formally proved).
We think it is important to show that the standardized RSA-OAEP scheme has
similar properties, with the help of a very simple modification that is easy to
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implement, because it appears very hard to replace the standardized schemes
with completely different constructions.

Improving the concrete security bounds is very important. Many papers be-
sides the aforementioned work of [3] focused on this issue. For example, Coron
[10] showed a new proof with improved security reduction for the RSA-based
Full-Domain Hash signature scheme and his technique has been widely used
since then. Abe et al. [1] improved the time bound in the security proofs of
some of RSA-based encryption schemes by considering 4-round Feistel network
transformation.

2 Preliminaries

Notation and conventions. We denote by {0, 1}∗ the set of all binary strings
of finite length. We will refer to members of {0, 1}∗ as strings. If X,Y are strings

then X ‖ Y denotes the concatenation of X and Y . If S is a set then X
$← S

denotes that X is selected uniformly at random from S. If k ∈ N then 1k denotes
the string consisting of k consecutive “1” bits. If A is a randomized algorithm and
n ∈ N, then the notation X

$← A(X1, X2, . . . , Xn) denotes that X is assigned
the outcome of the experiment of running A on inputs X1, X2, . . . , Xn. When
describing algorithms, if X is a variable and Y is a string, then X ← Y denotes
that X is assigned the value of Y .

All algorithms we consider are possibly randomized unless indicated otherwise.
By convention, the running-time of an algorithm is measured relative to the bit-
length of the input and refers to both the actual running-time and program size,
including that of any overlying experiment, according to some fixed RAM model
of computation. k denotes the security parameter. All algorithms we consider
run in time polynomial in k.

Syntax of public-key encryption. A public-key encryption (PKE) scheme
PE = (K, E ,D) with associated message space MsgSp, which may depend on the
security parameter k, consists of three algorithms. The key-generation algorithm
K on input 1k returns a public key pk and matching secret key sk. The encryption
algorithm E takes pk and a plaintext M to return a ciphertext. The deterministic
decryption algorithm D takes sk and a ciphertext C to return a plaintext. The
consistency condition requires that for all k ∈ N and all M ∈ MsgSp(k) the
probability of Dsk(C) = M is 1, where the probability is over the experiment

(pk, sk) $← K(1k) ; C $← Epk(M) .

Security of PKE. We recall the notions of security of public-key encryption
(PKE). We only consider the definitions addressing chosen-ciphertext attack
(as opposed to a weaker version for chosen-plaintext attack). We present two
variants of the standard IND-CCA definition. In the first one the adversary is
given a single challenge ciphertext, and in the second definition the adversary
can see multiple challenge ciphertexts. We then show the relation between the
definitions.
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Definition 1. [Single- and Multi-query CCA Security of PKE] Let PE =
(K, E ,D) be a PKE scheme. Let the left or right selector be the map LR defined by
LR(M0,M1, b) = Mb for all equal-length strings M0,M1, and for any b ∈ {0, 1}.
For an adversary A and b ∈ {0, 1} define the experiment:

Experiment Expind-cca
PE,A (1k)

b
$← {0, 1}

(pk, sk) $← K(1k)

d
$← AEpk(LR(·,·,b)),Dsk(·)

If b = d then return 1 else return 0

It is mandated the LR encryption oracle (also known as the challenge oracle) is
queried on pairs of messages in MsgSp(k) and of equal length and the decryption
oracle is not queried on the outputs of the LR encryption oracle.

For an adversary A who is allowed to make a single query to its challenge
oracle (we will refer to such an adversary a single-query adversary) define the
single-query(sq)-cca-advantage, Advind-cca-sq

PE,A (k) as

2 · Pr
[
Expind-cca

PE,A (1k) = 1
]
− 1 .

We define the multi-query(mq)-cca-advantage, Advind-cca-mq
PE,A (k) the exact

same way, but for the adversary A who can query its challenge oracle an ar-
bitrary number of times. We will refer to such A a multi-query adversary.

A scheme PE is said to be IND-CCA secure in the single- (resp. multi-) query
setting if the single-query (resp, multi-query) -cca-advantage of any polynomial-
time adversary is negligible.

It is shown by using a hybrid argument in [3] that for any k ∈ N, a scheme PE
and any multi-query adversary A making q queries to its challenge oracle there
exists a single-query adversary B so that

Advind-cca-mq
PE,A (k) ≤ q ·Advind-cca-sq

PE,B (k) , (1)

where the running time of B is that of A plus O(log q), and B does the same
number of decryption oracle queries as A.

It was also shown in [3] that the above bound is tight and cannot be improved
in general. But for specific schemes, e.g. ElGamal, the concrete security in the
multi-query setting is basically the same as in the single-query setting.

In this paper we are interested in improving the bound in concrete security
treatment of the popular RSA-OAEP scheme in the multi-query setting. Ac-
cordingly we recall the computational assumptions used in the analyses of the
scheme.

Computational Assumptions. A trapdoor-permutation generator is an algo-
rithm F that on input 1k returns the description of a permutation and its in-
verse f, f−1. The trapdoor property means that for every instance f there exist a
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function f−1 with the same domain and range so that f(f−1) ≡ f−1(f) ≡ ID,
the identity function.

Definition 2. [One-wayness] A trapdoor permutation generator F is called
one-way if for every k ∈ N and every adversary I its advantage Advowf

F ,I(k)
defined as

Pr
[
x = x′ : (f, f−1) $← F(1k) ; x $← {0, 1}k ; x′ $← I(1k, f, f(x))

]
is negligible.

Definition 3. [Partial-Domain One-wayness] A trapdoor permutation gen-
erator F is called partial-domain one-way for k ∈ N and some extra parameter
k′ ≤ k, whch can be a linear function of k, if for every k ∈ N and every adversary
I its advantage Advpd−owf

F ,I (k, k′) defined as

Pr
[
x[1 . . . k′] = x′ : (f, f−1) $← F(1k) ; x $← {0, 1}k ; x′ $← I(1k, f, f(x))

]
is negligible, where x[1 . . . k′] denotes the first k′ bits of x.

An RSA trapdoor permutation generator is an algorithm F that on input 1k

returns (N, e), (N, d) where N is the product of two random distinct �k/2�-bit
primes and ed ≡ 1 mod φ(N). (Here φ(·) is Euler’s phi function.)

The standard assumption is that the RSA trapdoor permutation generator is
one-way, and the reasonable security level requires k to be at least 1024 bits.
It was shown in [12] that under this assumption RSA is also partial one-way.
But the concrete reduction in [12] is not tight showing that a much larger RSA
modulus is required to guarantee reasonable level of the stronger notion of partial
one-wayness.

3 RSA-OAEP and Its Security

OAEP encryption. The OAEP encryption [5] is parameterized by k0, k1 and
k2 (that can be linear functions of k, but typically k0 = k1 = 128 and k2 = k)
and makes use of a trapdoor permutation generator F with domain and range
{0, 1}k2 and two random oracles

G : {0, 1}k0 → {0, 1}k2−k0 and H : {0, 1}k2−k0 → {0, 1}k0 .

The message space is {0, 1}k2−k0−k1 . The scheme OAEP[F ] = (K, E ,D) is de-
fined as follows:

– The key generation algorithm K(1k) picks a pair (f, f−1) $← F(1k2) and
returns f as pk and f−1 as sk.

– The encryption algorithm E(pk,M) picks r
$← {0, 1}k0, computes s ←

G(r) ⊕ (M ‖ 0k1), t← H(s)⊕ r and C ← f(s||t) and returns C.
– The decryption algorithm D(sk, C) computes s ‖ t← f−1(C), r ← t⊕H(s)

and M ← s⊕G(r). If the last k1 bits of M are zeros, then it returns the
first k2 − k0 − k1 bits of M , otherwise it returns ⊥.
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Security of OAEP. The encryption scheme OAEP[F ] is IND-CCA secure in
the RO model if the underlying trapdoor permutation generator F is partial-
domain one-way [12]. The concrete security results in [12] are done for the single-
query IND-CCA security. We “translate” them into the the multi-query IND-
CCA security using the result from [3] recalled in Equation 1.

Theorem 1. [12,3] Let F be a trapdoor permutation generator with domain
and range {0, 1}k. Let OAEP[F ] be the encryption scheme defined above. Then
for any adversary A making qe challenge oracle and qd decryption oracle queries,
qH , qG queries to RO oracles H and G, there exist an adversary B s.t.

Advpd−owf
F ,B (k, k2 − k0) ≥

Advind-cca-mq
OAEP[F ],A(k)

2qeqH
− 1

qeqH

(
qdqG + qd + qG

2k0
+

qd

2k1

)
,

and the running time of B is that of A plus qG · qH · (TF (k) +O(1)) +O(log qe),
where TF (k) is the time needed for evaluating a random instance of F .

As we can see the reduction is not particularly tight, but the situation becomes
even worse if we use RSA, pretty much the only practical trapdoor permutation.
It is believed to be one-way, and it was shown in [12] that under this assumption
it is partial one-way as well, but the reduction is not tight. The concrete result
is as follows.

Theorem 2. [12,3] Consider the RSA trapdoor permutation generator with do-
main and range {0, 1}k. Let OAEP[RSA] be the encryption scheme defined above.
Then for any adversary A making qe challenge oracle and qd decryption oracle
queries, qH , qG queries to RO oracles H and G there exist an adversary B s.t.

Advowf
RSA,B(k) ≥

(Advind-cca-mq
OAEP[RSA],A(k))2

4qe

− 1
qe

(
qdqG + qd + qG

2k0
+

qd

2k1
+

32
2k−2k0

)
,

and the running time of B is 2 times that of A plus qH · (qH + 2qG) · O(k3) +
O(log qe).

Such a loose concrete security bound implies that to maintain reasonable security
guarantees, i.e. so that it not much harder to break the scheme than to invert
1024-bit RSA, one would need to use the scheme with a larger security parameter.
It is shown in [16] show that keys of length about 4-5 thousand bits are necessary,
i.e. at least 4 times larger that the standard 1024-bit keys, and this means
decryption will be about 64 = 43 times slower than before (since decryption
requires a modulo exponentiation whose complexity is cubic in the length of
the parameters). This is basically impractical. Note that the this estimate is
for qe = 1, i.e. when a single challenge ciphertext is considered. If we take into
account the maximum number of queries to the challenge oracle an adversary
makes – qe, then to have reasonable security guarantees in the practical multi-
query settings the RSA parameters should be even larger, making the scheme’s
algorithms prohibitively slow.
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4 Known Concrete Security Improvements

Interestingly an extremely simple modification to the scheme permits several
concrete security improvements. The modified scheme differs from OAEP[F] in
that it uses trapdoor permutations of particular structure, which leave the last
part of the input in the clear. Let F be a generator producing trapdoor per-
mutations with domain and range {0, 1}k. Define a new generator Fk first to
run F ; let (f, f−1) be its output of F , and define the first output of Fk as
fp(x) ≡ f(x[1, . . . , k]) ‖ ID(x[k + 1, . . . , p]) = f(x[1, . . . , k]) ‖ x[k + 1, . . . , p] for
any inputs x of length p ≥ k, where x[1, . . . , k] denotes the first k bits of x.
The second output, the inverse permutation, is defined straight-forwardly. With
regard to the OAEP construction we will be interested in cases when p = k2
and k ≤ k2 − k0, so that applying Fk to the output of the OAEP transform
leaves the t-part in the clear. This modification has been suggested under the
name OAEP++ by Kobara and Imai in [14] in order to improve concrete se-
curity of OAEP. This modification has also been previously suggested in [8] for
an orthogonal reason of showing some positive results about non-malleability
of OAEP when one or both ROs are instantiated with existing functions. The
paper [8] does not provide concrete security bounds.

It is basically straightforward to see that if F is one-way, then Fk is partial
one-way, in that it is infeasible to recover first k bits of the preimage. With
respect to RSA, we get that RSAk, applying RSA to only the first k bits of the
input, is partial-one-way under the standard RSA assumption. That immediately
implies that OAEP[Fk], when k ≤ k2 − k0 is IND-CCA in the RO model, if F
is one-way, and we get that OAEP[RSAk] is IND-CCA in the RO model under
the standard RSA assumption2. For the concrete security result we can use the
bound of Theorem 1.

But as shown in [14] we can get rid of factor qh. This is possible for the modi-
fied scheme for the following reason. The proof of the original scheme constructs
an adversary B breaking partial one-wayess of F using the IND-CCA adversary
A for OAEP[F]. B needs to partially invert its input y = f(s ‖ t), i.e. find s.
This input y is given to A as the challenge ciphertext. The proof argues that
the only way A can win the IND-CCA game is by querying the random oracle
H on s at some point. While B cannot check which of the RO queries A made
is the correct value B is looking for (since B does not know the second part t to
verify this), it can just pick one query at random. This is where the factor qh,
the number of RO queries, is coming from. For the modified scheme, the proof
from [12] applies without a single change, except we can note that B will now be
able to select the correct s out of A’s RO queries because t is in the clear. B just
checks if f(si ‖ t) = y for all queries to the random oracle H that A makes. Here
is the improved security result, which also takes into account the multi-query
setting (not considered in [14]).

2 This was previously observed in [8]. The reduction in [14] does not use this observa-
tion and the proof is done “from scratch”.
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Theorem 3. [14,3] Let F be a trapdoor permutation family with domain and
range {0, 1}k. Let Fk be a trapdoor permutation generator producing permuta-
tions with domain and range {0, 1}p for p ≥ k as defined above. Let OAEP[Fk] =
(K, E ,D) be the encryption scheme defined in Section 3 so that p = k2 and
k ≤ k2 − k0. Then for any adversary A making qe challenge oracle queries, qd

decryption oracle queries, qH , qG queries to RO oracles H and G there exist an
adversary B s.t.

Advowf
F ,B(k) ≥

Advind-cca-mq
OAEP[Fk],A(k)

2qe
− 1

qe

(
qdqG + qd + qG

2k0
+

qd

2k1

)
,

and the running time of B is that of A plus qG · qH · (TFk
(k)+O(1))+O(log qe),

where TFk
(k) is the time needed for evaluating a random instance of Fk.

The RSA instantiation result is immediate if we use RSA in place of F and
RSAk in place of Fk above.

5 Improving the Security in the Multi-query Setting

We show that security in the multi-query setting does not have to degrade as
more messages are encrypted by each user (when an adversary does multiple
queries to the challenge encryption oracle), i.e. we can get rid of the factor qe in
the bound of Theorem 3 when OAEP(RSAk) is used. Hence, the modified scheme
provides significantly better security guarantees than the original version, for
very practical parameter sizes. The following theorem states the improvement
result.

Theorem 4. Let RSA be a trapdoor permutation generator with domain and
range {0, 1}k. Let RSAk be a trapdoor permutation generator with domain and
range {0, 1}p for p ≥ k as defined in Section 4. Let OAEP[RSAk] be the en-
cryption scheme defined in Section 3 so that k2 = p and k ≤ k2 − k0. Then for
any adversary A attacking IND-CCA security of the scheme making at most qe

queries to its challenge oracle, qd decryption oracle queries, qH , qG queries to
RO oracles H and G, there exist an adversary B s.t.

Advowf
RSA,B(k) ≥

Advind-cca-mq
OAEP[RSAk],A(k)

2
−
(
qdqG + qeqd + qeqG

2k0
+

qd

2k1

)
,

and the running time of B is that of A plus (qe + qG · qH) ·O(k3) +O(log qe).

What does the improvement mean in practice? The current belief is that 1024-bit
RSA provides 80 bits of security, so for any adversaryB with reasonable resources
Advowf

RSA,B(k) ≤ 2−80 (and there are indications that this estimate is outdated
in that it does not take into account newer attacks and growing computing power,
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and the bound is likely to be lower [13]). Now assume an adversary manages
to obtain 220 ciphertexts of chosen messages. This is about the number of TLS
connections that were required to mount the well-known attack on RSA-PKCS1
by Bleichenbacher [7] (though his attacks needed that many chosen ciphertexts).
Then according to Theorem 3 the bound on Advind-cca-mq

OAEP[RSAk],A(k) is only about
2−59, which not a strong security level. Theorem 4 implies that in fact security
of the scheme does not degrade as an adversary mounts more chosen-plaintext
attacks and stays tightly related to the assumed security level of the underlying
RSA problem.

Proof. We show how to modify the proof of security of RSA-OAEP in the single-
query setting from [12], which assumes an adversary A attacking IND-CCA
security of OAEP[F] (in the RO model). In our case we consider a special case
of the scheme, OAEP[RSAk] (i.e. when RSA is applied to the first k bits of
the OAEP output, leaving the t-part in the clear). This will allow us to use self-
reducibility of RSA and to incorporate the RSA challenge into multiple challenge
ciphertexts, which the adversary is allowed to see in the multi-query setting.

Following [12] we use the game-playing technique of [6,19] and consider a
sequence of experiments or games, associated with the adversary A. For the
most part the proof is a simple extension of the proof in [12]. For i ∈ N we let
Pr[G0] denote the probability that Game i outputs 1.

Game 0 corresponds to Expind-cca
OAEP[RSAk],A(1k), the standard multi-query IND-

CCA experiment (c.f. Definition 1 for the multi-query case). Each of qe challenge
ciphertexts is generated according to the definition of encryption of OAEP[RSAk]
as follows. For 1 ≤ i ≤ qe, to encrypt Mi,b first r∗i is chosen at random from
{0, 1}k0. Then Ci ← fk(si‖ti), where si = G(r∗i )⊕Mi,b‖0k1 and ti = r∗i ⊕H(si).
Decryption oracle queries are answered according to the decryption algorithm
of OAEP[RSAk]. By construction and Definition 1 we get

1
2

+
1
2
·Advind-cca-mq

OAEP[RSAk],A(k) = Pr[G0] .

Game 1 is different from Game 0 in that it moves the computation of the
random coins, r+

1 , . . . , . . . , r+
qe

, used in the challenge ciphertexts explicitly up
front, together with the computations of g+

1 , . . . , g+
qe

. By computation we mean
choosing the values at random from the corresponding domains ({0, 1}k0 and
{0, 1}k2−k0 resp.) and storing the results. Further in the game r+

i is used in place
of r∗i and g+

i is used in place of G(r+
i ), for all 1 ≤ i ≤ qe. I.e. each challenge

ciphertext has the form fk(s∗i ||t∗i ), where s∗i = (Mi,b‖0k1)⊕ g+
i , t∗i = h+

i ⊕ r∗i for
r∗i = r+

i and h+
i = H(s∗i ). And whenever A queries the random oracle G on r+

i for
any 1 ≤ i ≤ qe, it is given back g+

i . These changes do not affect the distribution
of the view of A compared to that in Game 0, because (r∗1 , G(r∗1), . . . , r∗qe

, G(r∗qe
))

and (r+
1 , g+

1 , . . . , r
+
qe
, g+

qe
) have the same distribution, since G is a random oracle:

Pr[G1] = Pr[G0] .
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Game 2 differs from Game 1 only in that the queries to the random oracle
G on points r∗1 , . . . , r

∗
qe

made by the adversary or by the decryption oracle are
answered at random independently from the values g+

1 , . . . , g+
qe

used to compute
the challenge ciphertexts. Hence the challenge ciphertexts are independent from
the challenge bit b (since they are uniformly distributed, independent of the rest
of A’s view) and

Pr[G2] =
1
2
.

Similarly to [12] we can argue that the view of A and thus its outputs have
the same distribution in Games 1 and 2 unless A queries G oracle on either of
the points r∗1 , . . . , r

∗
qe

(directly or making the decryption oracle make this query).
Let us denote the probability of such event in this game Pr[AskG2], and such an
event is defined similarly in the following games.

Pr[G2]− Pr[G1] ≤ Pr[AskG2] .

Game 3 is different from Game 2 in that it moves the computation of s+
1 , . . . ,

s+
qe

and h+
1 , . . . , h

+
qe

) explicitly up front. By computation we mean choosing
the values at random from the corresponding domains ({0, 1}k2−k0 and {0, 1}k0

resp.) and storing the results. Further s+
i is used in place of s∗i and h+

i is used
in place of H(s+

i ), for all 1 ≤ i ≤ qe. I.e. each challenge ciphertext has the form
fk(s∗i ||t∗i ), where s∗i = s+

i , t∗i = h+
i ⊕ r∗i for r∗i = r+

i and h+
i = H(s∗i ). And

whenever A queries the random oracle H on s+
i for any 1 ≤ i ≤ qe, it is given

back h+
i . These changes do not affect the distribution of the view of A compared

to that in Game 2, because we replaced each quadruple (s∗i , H(s∗i ), g
+
i , b) with

another having the same distribution, since H is a random oracle:

Pr[AskG3] = Pr[AskG2] .

In Game 4, the difference with Game 3 is only in that the queries to the
random oracle H made by the adversary or by the decryption oracle on points
s+
1 , . . . , s

+
qe

are answered at random independently from the values h+
1 , . . . , h

+
qe

used in the challenge ciphertexts.
Similarly to [12] we can argue that the view of A and thus its outputs have

the same distribution in Games 3 and 4 unless A or the decryption oracle queries
the H oracle on either of the points s+

1 , . . . , s
+
qe

. Let’s denote the probability of
such event in this game Pr[AskH4], and such an event is defined similarly in the
following games.

Pr[AskG4]− Pr[AskG3] ≤ Pr[AskH4]

and

Pr[AskG4] ≤
qe(qG + qd)

2k0
.
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Game 5 is similar to Game 4 except the way the challenge ciphertexts are
generated. In this game they are simply picked at random, independently from
everything else. We can argue similarly to the proof in [12] that this does not
change the view and the outputs of A. The reason is that fk is a permutation and
in Game 4 it was applied to uniformly distributed points s∗i ‖ t∗i , where s∗i = s+

i

and t∗i = h+
i ⊕ r+

i .

Pr[AskH5] = Pr[AskH4] .

Games 6–8 deal with answering decryption oracle queries which were simu-
lated perfectly before that. The definitions of the games and their analysis done
in [12] hold for our modified scheme and are independent of the number of the
challenge encryption oracle queries A does, but we describe them for complete-
ness. For a k2-bit ciphertext C we call its last k0 bits t, and the fist k2 − k0 bits
of f−1

k (C) we call s. We call r the result of xoring t with H(s).
Game 6 is like Game 5 except the decryption oracle rejects all ciphertexts for

which the underlying r-value has not been previously queried to the G oracle
by the adversary. The views of A in Games 5 and 6 are different only if A
queries a valid ciphertext without querying the underlying r-value to G oracle.
A ciphertext is valid if the last k1 bits of s⊕G(r) are zeros. But if r has not
been queried, then G(r) is an independent random string and validity will be
satisfied with probability at most 2−k1 . For qd decryption queries we get

Pr[AskH6]− Pr[AskH5] ≤
qd

2k1
.

Game 7 is like Game 6 except that the decryption oracle rejects all ciphertexts
for which the underlying s-value has not been previously queried to the H oracle
by the adversary. The views of A in Games 6 and 7 are different only if A queries
a valid ciphertext without querying the underlying s-value to H oracle when the
query r was made to the G oracle. Since r = H(s)⊕ t, H(s) was not previously
defined, it is random and independent. Hence the probability that r was queried
is at most qG/2k0 . And for qd decryption queries we get

Pr[AskH7]− Pr[AskH6] ≤
qdqG

2k0
.

In the last Game 8 the decryption oracle queries, for which either of the
corresponding r and s values has not been queried, are rejected. The other
ciphertexts are decrypted by using a simple plaintext extractor who expects all
previously made G and H queries made by A and returns the matching plaintext.
Namely, to decrypt C, if there exist stored ri, sj for 1 ≤ i ≤ qG and 1 ≤ j ≤ qH

so that H(sj)⊕ t = ri, the last k0 of fk(sj ‖ t) = C and the last k1 bits of
si ⊕G(r) are zeros, then return the rest of si ⊕G(r). If no such ri, sj are found,
then return ⊥. The view of the adversary does not change and thus

Pr[AskH8] = Pr[AskH7] .
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Putting it all together we get
1
2
·Advind-cca-mq

OAEP[Fk],A(k) = Pr[G0]−
1
2

= Pr[G1]−
1
2

≤ Pr[G2]−
1
2

+ Pr[AskG2]

≤ Pr[AskG2]
= Pr[AskG3]
≤ Pr[AskG4] + Pr[AskH4]

≤ qe(qG + qd)
2k0

+ Pr[AskH5]

≤ qe(qG + qd)
2k0

+
qd

2k1
+ Pr[AskH6]

≤ qe(qG + qd) + qdqG

2k0
+

qd

2k1
+ Pr[AskH7]

=
qe(qG + qd) + qdqG

2k0
+

qd

2k1
+ Pr[AskH8] .

We now claim that there exists an adversary B such that

Pr[AskH8] ≤ Advowf
RSA,B(k) . (2)

This is where we use self-reducibility of RSA to improve tightness of the re-
duction. To justify Equation (2) we construct B as follows. B is given an RSA
public key (N, e) and a challenge y = xe mod N for a random x ∈ Z∗

N . B picks
qe values at random from Z∗

N , let us call them v1, . . . , vqe ; and qe values at ran-
dom from {0, 1}p−k, let us call them w1, . . . , wqe . B runs A on public key (N, e),
answers its RO queries with random and independent values (and records all
queries and answers). To answer the decryption oracle queries B checks if the
corresponding G and H queries were made, and in this case a simple plaintext
extractor we described above is used; otherwise, the ciphertexts are rejected (B
returns ⊥). For 1 ≤ i ≤ qe for an i-th query to the challenge oracle made by A,
B returns (yve

i mod N) ‖ wi.
We claim that B simulates the view of A in Game 8 perfectly. (Except for

the mismatch between the sets Z∗
N

and {0, 1}k, which is usually ignored. For
the possible simple resolutions of this issue see [12].) The challenge ciphertexts
are random and independent strings, and the decryption queries are answered
according to the simple plaintext extractor algorithm that uses the recorded
queries to the random oracles and the (random) answers. Event AskH8 means
that A made a query h to the random oracle G so that h[1, . . . , k]e = yve

j (
mod N) for some 1 ≤ j ≤ qe. B searches for such query and outputs hv−1

j

mod N , which is yd mod N , i.e. it breaks one-wayness of RSA.
The running time of the constructed adversary is greater than that of the

adversary in Theorem 3 by the time to prepare qe ciphertexts which needs qe

RSA applications, and the justification of the former can be found in [12].
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Remark. We comment on why does not the above proof showing the security
improvement work for the unmodified OAEP[RSA] scheme. The reason is that
in the original scheme the RSA permutation is applied to the whole output s ‖ t
of the OAEP transform. The tight security of OAEP[RSA] is only shown as-
suming partial-domain one-wayness of RSA. In the proof above the adversary B
given a challenge y could still use self-reducibility of RSA and generate challenge
ciphertexts for A as yve

1, . . . , yv
e
qe

mod N . In A’s view, these ciphertexts have
the right distribution (in Game 8) unless A queries the H oracle on any of the
underlying s values (the first part of ydv1, . . . , y

dvqe). But if this happens, B
cannot compute yd, as it does not know the remaining part of the transform.

6 Encrypting Long Messages with Modified RSA-OAEP

We observe that the modified RSA-OAEP scheme can be used to encrypt long
messages without employing symmetric encryption in the hybrid encryption con-
struct. For that the function G in the transform is made variable-output-length,
i.e. it’s output is the length of the message plus the zero padding of length
k1. For a fixed-output-length hash G′(·) one can efficiently construct G(·) as
G′(〈0〉 ‖ ·) ‖G′(〈1〉 ‖ ·) . . . ‖G′(〈l〉 ‖ ·), where 〈i〉 means the binary representation
of the counter i ∈ N. In the RO model G is a random oracle if G′ is. The function
H in the transform needs to be variable-input-length, which is not a problem,
since most of the hash functions are. The RSA function is applied to the first
k (e.g. 1024 bits) of the s-part of the OAEP transform. The proof of security
stays virtually the same. This scheme yields more compact ciphertexts for long
messages than the one obtained through the use of hybrid encryption because
there is no need to encrypt the symmetric key.

7 Conclusions

We re-visited a previously suggested slight modification of the well-known and
practical RSA-OAEP encryption. We showed that this scheme has extra advan-
tages, namely its IND-CCA security remains tightly related (in the RO model) to
hardness of the RSA problem, even in the multi-query setting. Additionally, this
scheme can be used for encryption of long messages without employing the hy-
brid encryption method and symmetric encryption. We believe the modification
is very simple to implement and may be considered by the standard bodies.
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Abstract. After attacking the RSA by injecting fault and correspond-
ing countermeasures, works appear now about the need for protecting
RSA public elements against fault attacks. We provide here an extension
of a recent attack [BCG08] based on the public modulus corruption. The
difficulty to decompose the ”Left-To-Right” exponentiation into partial
multiplications is overcome by modifying the public modulus to a number
with known factorization. This fault model is justified here by a com-
plete study of faulty prime numbers with a fixed size. The good success
rate of this attack combined with its practicability raises the question of
using faults for changing algebraic properties of finite field based cryp-
tosystems.

Keywords: RSA, fault attacks, ”Left-To-Right” exponentiation, num-
ber theory.

1 Introduction

Injecting faults during the execution of cryptographic algorithms is a powerful
way to recover secret information. Such a principle was first published by Bellcore
researchers [BDL97, BDL01] against multiple public key cryptosystems. Indeed,
these papers provide successful applications including RSA in both standard and
CRT modes. This work was completed, and named Differential Fault Analysis
(DFA), by E. Biham and A. Shamir with applications to secret key cryptosys-
tems [BS97]. The growing popularity of this kind of attack, in the last decade,
was based on the ease for modifying the behavior of an execution [BECN+04] and
the difficulty for elaborating efficient countermeasures [BOS03, Wag04, Gir05b].

Many applications against the RSA cryptosystem, based on fault injection,
have been published. The first ones dealt with the perturbation of the private
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key or temporary values during the computation [BDL97, BDJ+98, BDL01]. The
perturbation of public elements was considered as a real threat when J-P. Seifert
published an attack on the RSA signature check mechanism [Sei05, Mui06]. This
paper first mentions the possibility of modifying the public modulus N such that
the faulty one is prime or easy to factor. Then, E. Brier et al. extended this
work to the full recovery of the private exponent d for various RSA implementa-
tions [BCMCC06]. Both works are based on the assumption that the fault occurs
before performing the RSA modular exponentiation. A. Berzati et al. first ad-
dress the issue of modifying the modulus during the exponentiation [BCG08].Still
this work was limited to an application against ”Right-To-Left” type exponen-
tiation algorithms.

In this paper we aim to generalize the previous attack to ”Left-To-Right”
type exponentiations. Under the fault assumption that the modulus can become
a number with a known factorization, we prove that it is possible to recover the
whole private exponent. We provide a detailed study of this fault model, based
on number theory, to show its consistency and its practicability for various kinds
of perturbation. Finally, we propose an algorithm to recover the whole private
exponent that is efficient either in terms of fault number or in computational
time.

2 Background

2.1 Notations

Let N , the public modulus, be the product of two large prime numbers p and
q. The length of N is denoted by n. Let e be the public exponent, coprime to
ϕ(N) = (p−1)·(q−1), where ϕ(·) denotes Euler’s totient function. The public key
exponent e is linked to the private exponent d by the equation e·d ≡ 1 mod ϕ(N).
The private exponent d is used to perform the following operations.

RSA Decryption: Decrypting a ciphertext C boils down to compute m̃ ≡
Cd mod N ≡ C

∑n−1
i=0 2i·di mod N where di stands for the i-th bit of d. If no

error occurs during computation, transmission or decryption of C, then m̃
equals m.

RSA Signature: The signature of a message m is given by S ≡ ṁd mod N
where ṁ = μ(m) for some hash and/or deterministic padding function μ.
The signature S is validated by checking that Se ≡ ṁ mod N .

2.2 Modular Exponentiation Algorithms

Binary exponentiation algorithms are often used for computing the RSA modular
exponentiation ṁd mod N where the exponent d is expressed in a binary form as
d =

∑n−1
i=0 2i · di. Their polynomial complexity with respect to the input length

make them very interesting to perform modular exponentiation.
The Algorithm 1 describes a way to compute modular exponentiations by

scanning bits of d from least significant bits (LSB) to most significant bits
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Algorithm 1. ”Right-To-Left” modular
exponentiation

Algorithm 2. ”Left-To-Right” modular
exponentiation

INPUT: m,d, N INPUT: m,d, N

OUTPUT: A ≡ md mod N OUTPUT: A ≡ md mod N

1 : A:=1; 1 : A:=1;
2 : B:=m; 2 : for i from (n − 1) downto 0
3 : for i from 0 upto (n − 1) 3 : A := A2 mod N ;
4 : if (di == 1) 4 : if (di == 1)
5 : A := (A · B) mod N ; 5 : A := (A · m) mod N ;
6 : end if 6 : end if

7 : B := B2 mod N ; 7 : end for
8 : end for 8 : return A;
9 : return A;

(MSB). That is why it is usually referred to as the ”Right-To-Left” modular
exponentiation algorithm. This is that specific implementation that is attacked
in [BCG08] by corrupting the public modulus of RSA.

The dual algorithm that implements the binary modular exponentiation is the
”Left-To-Right” exponentiation described in Algorithm 2. This algorithm scans
bits of the exponent from MSB to LSB and is lighter than ”Right-To-Left” one
in terms of memory consumption.

3 Modification of the Modulus and Extension Attempt

3.1 Previous Work

J-P. Seifert first addressed the issue of corrupting RSA public key elements
[Sei05, Mui06]. This fault attack aims to make a signature verification mechanism
accept false signatures by modifying the value of the public modulus N . No
information about the private exponent d is revealed with this fault attack. Its
efficiency is linked to the attacker’s ability to reproduce the fault model chosen
for the modification of the modulus.

Seifert’s work inspired the authors of [BCMCC06] who first used the public
modulus perturbation to recover the whole private key d. The attacker has to
perform a perturbation campaign to gather a large enough number of (message,
faulty signature) pairs. As in Seifert’s attack, the fault on the modulus is induced
before executing the exponentiation. Three methods based on the use of Chinese
Remainder Theorem and the resolution of quite small discrete logarithms are
proposed in [BCMCC06] and [Cla07] to recover the private exponent from the
set of gathered pairs.

A new fault attack against ”Right-To-Left” exponentiation has been presented
lately [BCG08]. This work completes the state-of-the-art by allowing the attacker
to use other fault models for recovering the private exponent. The details of this
work are presented below.
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3.2 Public Key Perturbation during RSA Execution: Case of the
”Right-To-Left” Algorithm

Fault Model. In J.P Seifert and E. Brier et al.’s proposals [Sei05, BCMCC06]
the fault is provoked before the exponentiation so that the whole execution is
executed with the faulty modulus, N̂ .

The attack presented by A. Berzati et al. [BCG08] extends the fault model
by allowing the attacker to inject the fault during the execution of the ”Right-
To-Left” exponentiation. The modification of N is supposed to be a transient
random byte modification. It means that only one byte of N is set to a random
value. The value of the faulty modulus N̂ is not known by the attacker. However,
the time location of the fault is a parameter known by the attacker and used to
perform the cryptanalysis. This fault model has been chosen for its simplicity
and practicability in smart card context [Gir05a, BO06]. Furthermore, it can be
easily adapted to 16-bit or 32-bit architectures.

Faulty Computation. Let d =
∑n−1

i=0 2i · di be the binary representation of d.
The output of a RSA signature can be written as:

S ≡ ṁ
∑n−1

i=0 2i·di mod N (1)

We consider that a fault has occurred j steps before the end of the exponentia-
tion, during the computation of a square. According to the fault model described,
all subsequent operations are performed with a faulty modulus N̂ . We denote
by A ≡ ṁ

∑ (n−j−1)
i=0 2i·di mod N the internal register value and by B̂ the result of

the faulty square:

B̂ ≡
(
ṁ2(n−j−1)

mod N
)2

mod N̂ (2)

Hence, the faulty signature Ŝ can be written as:

Ŝ ≡ A · B̂
∑n−1

i=(n−j) 2[i−(n−j)]·di mod N̂ (3)

≡ [(ṁ
∑ (n−j−1)

i=0 2i·di mod N) (4)

·(ṁ2(n−j−1)
mod N)

∑n−1
i=(n−j) 2[i−(n−j)+1]·di ] mod N̂

From the previous expression of Ŝ, one can first notice that the fault injection
splits the computation into a correct (computed with N) and a faulty part
(computed with N̂). A part of d is used during the faulty computation. This is
exactly the secret exponent part that will be recovered in the following analysis.

Attack Principle. From both correct signature S and faulty one Ŝ (obtained
from the same message m), the attacker can recover the isolated part of the
private key d(1) =

∑n−1
i=n−j 2i · di. Indeed, he tries to find simultaneously can-

didate values for the faulty modulus N̂ ′ (according to the random byte fault
assumption) and for the part of the exponent d′(1) that satisfies:
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Ŝ ≡
(
S · ṁ−d′

(1) mod N
)
·
(
ṁ2(n−j−1)

mod N
)2[1−(n−j)]·d′

(1)
mod N̂ ′ (5)

According to [BCG08], the pair (d′(1), N̂
′) that satisfies (5) is the right one with

a probability very close to 1. Then, the subsequent secret bits will be found by
repeating this attack using the knowledge of the already found most significant
bits of d and a signature faulted earlier in the process. In terms of fault number,
the whole private key recovery requires an average of (n/l) faulty signatures,
where l is the average number of bits recovered each time. As a consequence, this
few number of required faults makes the attack both efficient and practicable.

3.3 Application to the ”Left-To-Right” Modular Exponentiation

In this section, we try to apply the previously explained fault attack to the ”Left-
To-Right” implementation of RSA. Under the same fault model, we wanted to
know what does prevent an attacker from reproducing the attack against the
dual implementation.

We denote by A the internal register value just before the modification of the
modulus N :

A ≡ ṁ
∑n−1

i=j 2i−j ·di mod N (6)

Hence, knowing that the first perturbed operation is a square, the faulty signa-
ture Ŝ can be written as:

Ŝ ≡
(((

A2 · ṁdj−1
)2 · ṁdj−2

)2
. . .

)2

· ṁd0 mod N̂ (7)

≡ A2j · ṁ
∑ j−1

i=0 2i·di mod N̂

By observing (7), one can notice that the perturbation has two consequences
on the faulty signature Ŝ. First, it splits the computation into a correct part
(i.e: the internal register value A) and a faulty one, like for the perturbation of
the”Right-To-Left” exponentiation [BCG08]. The other one is the addition of j
cascaded squares of the local variable A, computed modulo N̂ . This added opera-
tion defeats the previous attack on the ”Right-To-Left” exponentiation [BCG08]
because of the difficulty to compute square roots in RSA rings.

Our idea for generalizing the previous attack to ”Left-To-Right” exponenti-
ation is to take advantage of the modulus modification to change the algebraic
properties of the RSA ring. In other words, if N̂ is a prime number, then it is
possible to compute square roots in polynomial time. Moreover, it is actually
sufficient that N̂ is B-smooth with B small enough to enable an easy factoriza-
tion of N̂ , then the Chinese Remainder Theorem enables also to compute square
roots in polynomial time. We show next anyway that the number of primes N̂
is sufficient to provide a realistic fault model.

4 Fault Model

According to the previous section, the square root problem can be overcome by
perturbing the modulus N such that N̂ is prime. In this section we will study
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the consistency and the practicability of such a fault model. Even though this
model has already been adopted in Seifert’s attack [Mui06, Sei05], we propose
next further experimental evidences of the practicability of this model.

4.1 Theoretical Estimations

Let us first estimate the number of primes with a fixed number of bits. From
[Dus98, Theorem 1.10], we have the following bounds for the number of primes
π below a certain integer x:

π(x) ≥ x

ln(x)

(
1 +

1
ln(x)

+
1.8

ln2(x)

)
, for x ≥ 32299. (8)

π(x) ≤ x

ln(x)

(
1 +

1
ln(x)

+
2.51

ln2(x)

)
, for x ≥ 355991.

Then, for numbers of exactly t bits such that t ≥ 19 bits, the number of primes
is πt = π(2t)− π(2t−1). By using the previous bounds (8), the probability that
a t-bit number is prime, prt =

πt

2t−1 , satisfies:

prt > Inf(t) =
0.480t5 − 1.229t4 + 0.0265t3 − 7.602t2 + 9.414t− 3.600

t3(t− 1)3 ln3(2)
(9)

prt < Sup(t) =
0.480t5 − 1.229t4 + 2.157t3 − 11.862t2 + 13.674t− 5.02

t3(t− 1)3 ln3(2)

For instance, if t = 1024 bits:

Inf(1024) =
1

709.477
and Sup(1024) =

1
709.474

Therefore around one 1024-bit number out of 709 is prime; and among the 2048-
bit numbers, more than one out of 1419 is prime.

Consider now a set of k randomly selected numbers of exactly t bits and let
PN be the random variable expressing the expected number of primes in this set.
This variable follows a binomial law B(k, prt). Then we can give the following
confidence interval of primes (with a and b integer bounds):

Pr[a ≤ PN ≤ b] =
b∑

i=a

(
k

i

)
pri

t(1− prt)k−i (10)

For example, we construct the following set N according to a random byte
fault model. In other words, if ⊕ is the bit by bit exclusive OR, then1:

N = {N ⊕R8 · 28i, R8 = 0 .. 255, i = 0 .. (
n

8
− 1)}

1 For the sake of clarity we assume that a byte fault can take 28 values. In fact, it
can take only 28 − 1. Indeed, the error can not be null otherwise the value of N is
unchanged and the fault can not be exploited.
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Then the cardinality of N is

|N | = 256 · n
8

= 32 · n

Would the set N be composed of randomly selected values, then the propor-
tion of primes in N would follow (9). Hence, we can set k = |N | and compute the
corresponding average and bounds with an approximation of prt. For n = 1024,
according to (9), we can estimate pr1024 and thus the average number of faulty
primes is 32 ·1024/709.47≈ 46.186. Equation (10) combined with the estimation
of pr1024 shows also that the number of primes in a set is comprised between
[18, 80] in 99.999% of the cases. For n = 2048, the average number of primes
is 46.176 and comprised between 18 and 80 in 99.999% of the cases. Obviously
N is not a set of randomly chosen elements; howbeit, empirical evidence shows
that such sets behave quite like random sets of elements, as shown below.

4.2 Experimental Results

We have computed such sets for randomly selected RSA moduli and counted the
number of primes in those sets. The repartition seems to follow a binomial rule
(as expected) and we have the following experimental data to support our belief
(see Figure 1).

(a) Primes at consecutive 8-bit distance of
some RSA modulus

(b) Primes at consecutive 16-bit distance
of some RSA modulus

Fig. 1. Experimental distribution of primes among faulty RSA moduli

As shown in Table 1 it was anyway never the case that no prime was found
in a set N (more than that we always found more than 18 primes in such a
set). This experimental lower-bound equals to the one obtained by considering
a random set. The same observation can be done for the upper-bound. Hence,
our obtained results confirm our theoretical analysis.

The presented results can be extended to other fault models. The Table 1
presents also theoretical expected results when 16-bit or 32-bit architectures are
targeted. For t = 1024 with 16-bit architecture the average number of primes is
5911.83 and is between [5520, 6320] in 99.999% of the cases.
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Table 1. Experimental counts of primes in N

Architecture n bits |N | |N | · prn # of exp. # of primes
Min. Avg. Max.

8-bit 1024 215 46.186 114890 18 46.26 79
8-bit 2048 216 46.176 57170 22 46.19 80

16-bit 1024 222 5911.83 17725 5621 5919.08 6212
32-bit 1024 237 ≈ 1, 94 · 108

4.3 Consequences

This study strengthen J-P. Seifert’s assumption [Sei05, Mui06] of considering
only prime modification of the modulus. We have showed that our fault model
can be considered as a random modification of the public modulus. Then, an
average of 709 faults on N will be required to obtain a prime N̂ in the case of a
1024-bit RSA.

Additional Remark. By carefully studying the experimental results, one can
notice that, for a given modulus N , the byte location of the fault influences
the number of prime found in the subset. Thus, if the attacker has the ability
of setting the byte location of the fault, he can increase his chances to get a
prime faulty modulus and therefore, dramatically reduce the number of faulty
signatures required to perform the attack.

4.4 The Algorithm of Tonelli and Shanks

The algorithm of Tonelli and Shanks [Coh93] is a probabilistic and quite efficient
algorithm used to compute square roots modulo P , where P is a prime number.
The principle of the algorithm is based on the isomorphism between the multi-
plicative group (Z/PZ)∗ and the additive group Z/ (P − 1)Z. Suppose P − 1 is
written as:

P − 1 = 2e · r, with r odd. (11)

Then, the cyclic group G of order 2e is a subgroup of Z/ (P − 1) Z. Let z be a
generator of G, if a is a quadratic residue modulo N , then:

a(P−1)/2 ≡ (ar)2
e−1

≡ 1 mod P (12)

Noticing that ar mod P is a square in G, then it exists an integer k ∈ [[0 : 2e−1]]
such that

ar · zk = 1 in G (13)

And so, ar+1 · zk = a in G. Hence, the square root of a, is given by

a1/2 ≡ a(r+1)/2 · zk/2 mod P (14)
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Both main operations of this algorithm are:

– Finding the generator z of the subgroup G,
– Computing the exponent k.

The whole complexity of this algorithm is that of finding k, O
(
ln4 P

)
binary

operations or O (lnP ) exponentiations. The details of the above algorithm are
described in [Coh93]. In practice, on a Pentium IV 3.2GHz, the GIVARO2 im-
plementation of this algorithm takes on average 7/1000 of a second to find a
square root for a 1024-bit prime modulus.

4.5 Smooth Modulus

As in [Mui06], what we really need for the faulty modulus is only to be easily
factorable. Indeed, one can compute square roots modulo non prime modulus
as long as the factorization is known. The idea is first to find square roots
modulo each prime factors of N̂ . Then to lift them independently to get square
roots modulo each prime power. And finally to combine them using the Chinese
Remainder Theorem (see e.g. [Sho05, §13.3.3] for more details). The number of
square roots increases but since they are computed on comparatively smaller
primes, the overall complexity thus remains O

(
ln4 N̂

)
binary operations. In the

following we thus consider only prime faulty moduli.

5 Cryptanalysis

The purpose of our fault attack against the ”Left-To-Right” exponentiation is
similar to the attack against the ”Right-To-Left” one [BCG08]. The modulus N
is transiently modified to a prime value during a squaring, jk steps before the
end of the exponentiation. Then, from a correct/faulty signature pair (S, Ŝk),
the attack aims to recover the part of private exponent d(k) =

∑jk−1
i=0 2i · di

isolated by the fault. By referring to [BCG08], the following analysis can be
easily adapted for faults that first occurs during a multiplication.

Dictionary of Prime Modulus. The first step consists in computing a dictio-
nary of prime faulty modulus candidates (N̂i). The attacker tests all possible val-
ues obtained by modifying N according to a chosen fault model. Then, candidate
values for N̂ are tested using the probabilistic Miller-Rabin algorithm [Rab80].
According to our study (see Sect. 4.1), for a random byte fault assumption, the
faulty modulus dictionary will contain 46 entries in average either for a 1024-bit
or a 2048-bit RSA. The size of the dictionary depends on the fault model (see
Table 1).

2 GIVARO is an open source C++ library over the GNU Multi-Precision Library. It
is available on http://packages.debian.org/fr/sid/libgivaro-dev
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Computation of Square Roots. For each entry N̂i of the modulus dictio-
nary, the attacker chooses a candidate value for the searched part of the private
exponent d′(k). Now he can compute3:

R(d′
(k),N̂i) ≡ Ŝk · ṁ−d′

(k) mod N̂i (15)

For the right pair (d(k), N̂), R(d(k),N̂) is expected to be a multiple quadratic
residue (i.e: a jk-th quadratic residue, see Sect. 3.3). As a result, if R(d′

(k),N̂i)

is not a quadratic residue, the attacker can directly deduce that the candidate
pair (d′(k), N̂i) is a wrong one. The quadratic residuosity test can be done in our
case because all precomputed candidate values for the faulty modulus are prime
numbers. The test is based on Fermat’s theorem:

If
(
R(d′

(k),N̂i)

)(N̂i−1)/2
≡ 1 mod N̂i (16)

then R(d′
(k),N̂i)is a quadratic residue modulo N̂i

If the test is satisfied then the attacker can use the Tonelli and Shanks algorithm
(see Sect. 4.4) to compute the square roots of R(d′

(k),N̂i). Therefore, to compute
the jk-th square root of R(d′

(k),N̂i), this step is expected to be repeated jk-times.
But, when one of the jk quadratic residuosity test fails, the current candidate
pair is directly (d′(k), N̂i) rejected and the square root computation is aborted.
The attacker has to choose another candidate pair.

Final Modular Check. The purpose of the two first steps is to cancel the
effects on the faulty signature due to the perturbation. Now, from the jk-th
square root of R(d′

(k),N̂i) the attacker will simulate an error-free end of execution
by computing:

S′ ≡
((

R(d′
(k),N̂i)

)1/2jk

mod N̂i

)2jk

· ṁd′
(k) mod N (17)

Finally, he checks if the following equation is satisfied:

S′ ≡ S mod N (18)

As in the ”Right-To-Left” attack [BCG08], when this latter condition is satisfied,
it means that the candidate pair is very probably the searched one (see Sect.
6.3). Moreover, the knowledge of the already found least significant bits of d is
used to reproduce the attack on the subsequent secret bits. As a consequence,
the attacker has to collect a set of faulty signatures Ŝk by injecting the fault

3 This computation is possible only when d′
k is invertible in Z/ZN̂i; in our case all the

considered Ni are primes and Euclid’s algorithm always computes the inverse.
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at different steps jk before the end of the exponentiation. Moreover, multiple
faulty signature Ŝk,f have to be gathered for a given step jk to take into account
the probability for having a faulty signature Ŝk computed under a prime N̂ ,
that is to say exploitable by the cryptanalysis. This set (Ŝk,f , jk)k,f is sorted in
descending fault location. If faults are injected regularly, each sorted pair is used
to recover a l-bit part of the exponent such that for the k-th pair (Ŝk,f , jk), the
recovered part of d is d(k) =

∑jk−1
i=0 2i · di =

∑k·l−1
i=0 2i · di. These results can be

applied for faults that are not injected regularly (i.e: jk − jk−1 = lk < lmax).
The attack algorithm is given in more details next.

Algorithm 3. DFA against ”Left-To-Right” modular exponentiation

INPUT: N , ṁ, the correct signature S, the size of the dictionary Dlength,
the set of pairs (Ŝk,f , jk)0≤k<n/l, 1≤f≤μ(Fn)

OUTPUT: the private exponent d

1: //Computation of the dictionary of prime faulty modulus candidates
2: Dict = Build Prime Dict(N , Dlength);
3: //Initialization
4: d := 0;
5: //All the faulty signatures are tested
6: for k from 0 upto n/l�
7: for f from 1 upto μ (Fn)
8: for d(k) from 0 upto 2l − 1
9: d′ := d(k) · 2jk + d;
10: for i from 1 upto Dlength

11: R := Ŝk,f · ṁ−d′
mod Dict[i];

12: //The function computes jk square roots and returns 0 when a test fails
13: R := Test And Tonelli(R, jk, Dict[i]);
14: //If a test fails, then we have to test another candidate pair
15: if (R == 0)
16: break;
17: else

18: S′ := R2jk · ṁd′
mod N

19: //Final check
20: if (S′ == S mod N)
21: //The attack continues for the subsequent l-bit part of d
22: d := d′;
23: goto line 6;
24: end if ;
25: end if ;
26: end for;
27: end for;
28: end for;
29: end for;
30: return d;
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6 Performance

6.1 Fault Number

Our fault model is based on the modification of the modulus N such that its
corresponding faulty value is prime. In Section 4.1, we have shown that the
probability for a t-bit number to be prime, prt, can be bounded. Now, let the
number of fault to make N̂ prime be the random variable Ft. This random
variable follows a geometric probability law. Hence the average number of faults
to make N̂ prime is:

1
Sup(t)

< μ (Ft) =
1
prt

<
1

Inf(t)
(19)

For large values of t (i.e: at least 1024 or 2048-bit RSA), we can use the pinching
(or sandwich) theorem to approximate this value asymptotically :

μ (Ft) ∼
t · ln3(2)

0.480
∼ t

1.441
(20)

From a given faulty signature, the attacker can recover a l-bit part of d. There
are at most n/l such parts for an RSA of size n. This shows that the average
number of faults required for a whole private key satisfies:

Number of faults = O
(

n2

1.441 · l

)
tries (21)

This number can be dramatically reduced if the attacker has the ability to chose
the byte location of the fault (see Sect. 4.1) or if the fault model is larger (i.e:
smooth modulus, different architectures targeted . . . ).

6.2 Computational Complexity

Wenowgive theoverall complexityof the attack.The sizeof thedictionary,Dlength,
is let as an attack parameter since the attacker can fix a limit if the chosen fault
model requires more resources than he can get. According to our previous analysis
(see Sect. 4.1), Dlength = 46 for a random byte fault assumption.

Theorem 1. Algorithm 3 is correct and its average complexity for a random
byte fault perturbation of the modulus satisfies:

Cattack = O
(

28+l · n3 · (n + l)
16 · l

)
exponentiations

Proof. Correctness as been shown in section 5. Now for the complexity, the
attacker has to test all possible candidate pairs (d′(k), N̂i). The number of pairs
depends on the size of the dictionary of prime modulus denoted by Dlength and
the window recovery length l:

|(d′(k), N̂i)| = 2l ·Dlength (22)
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For each pair the attacker first computes R(d′
(k),N̂i) (see (15)) by executing a

modular exponentiation of the message and a multiplication.
Then, he performs a series of at most jk quadratic residuosity tests and, for each
success, a square root is computed. By noticing that the probability to fail in the
test follows a geometric probability law, the average number of performed tests4

is 1
Pr[Test fails] = 2. As a consequence, the average complexity of this step is:

CSquare roots(k) = O (2 · CTest + CTonelli & Shanks) (23)
= O (jk · n) exponentiations

The last step of the attack is the final check (see (17)). It requires to compute
jk modular squares and a modular exponentiation of the message followed by a
multiplication. The latter computation is also bounded by O(jk · n) exponenti-
ations.

Now in the case of a fixed size dictionary the average number of primes of this
dictionary for a byte modification of the modulus is Nfaults per blocs = 28n/8

Dlength
.

Then, the attack has to test all of the gathered faulty signatures in order
to recover the whole exponent. Hence, as jk is bounded by k · l, the overall
computational complexity is bounded by:

Cattack =
n/l∑
k=0

Nfaults per blocs · CSquare roots(k) · 2l ·Dlength (24)

= O
(

28+l · n3 · (n + l)
16 · l

)
The presented attack is thus longer than the ”Right-To-Left” one [BCG08],

the principal reason being the extra number of faulty pairs to analyze in order
to get a prime modulus.

6.3 False-Acceptance Probability

As defined in [BCG08], the false-acceptance probability is the probability for a
wrong pair (d′(k), N̂i) to satisfy (18). In our case, the computation of the final
check is done in Z/NZ and requires extra squares. As a consequence the false-
acceptance probability given in [BCG08] has to be adapted by replacing the
search space for N̂ by the dictionary length Dlength:

0 < Pr[F.A] < min

(
(N−1)·2l ·Dlength

N ·(2l ·Dlength − 1)
,
2l ·Dlength

N

)
(25)

Moreover, because of the quadratic residuosity tests (see Sect. 5), false candidates
can be rejected before computing the final check. Hence, the final check will not
4 The test fails when tested value is not a quadratic residue. But all the N̂i are prime.

Let be zi a generator in Z/N̂iZ, all the elements of the group can be expressed as a
power of zi. Hence one element out of 2 is a power of zi

2 and a quadratic residue.
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always be done. The probability that a wrong pair pass all the jk tests is given
by:

Pr
[
R(d′

(k),N̂i)is a jk-times quadratic residue
]

(26)

=
jk−1∏
i=0

Pr
[(

R(d′
(k),N̂i)

)1/2i

is a quadratic residue
]

=
1

2jk

This probability indicates that, for recovering the k-th part of d, only one out
of 2jk wrong pairs will pass all the quadratic residuosity tests. Eventually, the
false-acceptance probability can be upper-bounded:

Pr[F.A] < min

(
1

2jk
,

(N−1)·2l ·Dlength

N ·(2l ·Dlength − 1)
,
2l ·Dlength

N

)
(27)

This expression first shows that because of the last term 2l·Dlength

N , the false-
acceptance probability is highly negligible for commonly used RSA length. Fur-
thermore, one can advantageously notice that the final check can be avoided
when the number of consecutive quadratic residuosity tests to pass is large
enough (i.e: 2jk > Dlength · 2l).

7 Conclusion

In this paper, we generalize the fault attack presented in [BCG08] to ”Left-To-
Right” implementation of RSA by assuming that the faulty modulus can be
prime. Although this model has been already used [Sei05], this paper provides
a detailed theoretical analysis in fault attack context. Furthermore this analysis
proves that such a fault model is not only practicable but extendable to different
architectures. This emphases the need for protecting RSA public elements during
the execution.

More generally the use of a faulty prime modulus to compute square roots
in polynomial time raises the question of using faults for changing algebraic
properties of the underlying finite domain. This paper provides an element of
answer that may be completed by future fault exploitations.
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Abstract. This paper reports a successful Fault Analysis (FA) attack
against a prototype AES (Advanced Encryption Standard) hardware im-
plementation using a logic-level countermeasure called Random Switch-
ing Logic (RSL). The idea of RSL was proposed as one of the most effec-
tive countermeasures for preventing Differential Power Analysis (DPA)
attacks. The RSL technique was applied to AES and a prototype ASIC
was implement with a 0.13-μm standard CMOS library. Although the
main purpose of using RSL is to enhance the DPA resistance, our evalu-
ation results for the ASIC reveal that the DPA countermeasure of RSL
can negatively affect the resistance against FA attacks. We show that
the circuits using RSL has a potential vulnerability against FA attacks
by increasing the clock frequency.

Keywords: Fault Analysis, Random Switching Logic, AES, Clock-based
Attack.

1 Introduction

Secure systems have to be resistant against various malicious attacks in order
to prevent leakage of information or an unexpected use of the system. Recent
threats to cryptographic devices are considered Side-Channel Attacks (SCAs)
which are attacks that observe in a non-intrusive way computational timing,
power variants or electromagnetic radiation of the device. By simple observation
or mathematical processing of the observed physical phenomena, one can retrieve
secret data out of the device.

Among SCAs, passive attacks are based on measuring physical characteristics
leaking from side-channels of the embedded system. Timing Analysis (TA) checks
the computation time. If the execution time varies with the data or the key
used in the computations, this can be detected by the attacker [1]. Simple Power
Analysis (SPA) measures the power fluctuations during cryptographic operations
and guesses the actual types of computations. Furthermore, in [2], Kocher, Jaffe
and Jun introduced Differential Power Analysis (DPA), a type of differential SCA
that also considers effects correlated to data values. Brier, Clavier and Oliver
introduced Correlation Power Analysis (CPA) that aims at enhancing DPA by
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improving the Hamming weight model [3]. Electromagnetic Analysis (EMA) and
Acoustic Analysis (AA) were also introduced as effective SCA examples [4].

For silicon devices, one of the most straightforward attacks is a physical attack
directly to the silicon. This is a powerful method if such a probing point is
available. For instance, it is easy to retrieve secret information by probing the
data on a bus line on the silicon. The fault induction attack or Fault Analysis
(FA) attack reported in [5] is a technique that works by disturbing the device by
inducing errors during a computation. These attacks are named active attacks
after the technique.

Our research in the paper uses the FA attack based on the clock pin of a
cryptographic device to induce a fault. By applying the clock-based FA attack
against a prototype AES (Advanced Encryption Standard [6]) hardware, we will
show that it is possible to retrieve the secret key from a device protected by a
DPA countermeasure called RSL.

The remainder of this paper is as follows. Section 2 describes previous work
for DPA countermeasures and reviews the RSL technique and its application to
AES. In Sect. 3, we show our evaluation method and explain the details about
the clock-based FA attacks against the prototype AES hardware using RSL.
The evaluation results are discussed in Sect. 4. Section 5 concludes the paper
and describes future work.

2 Countermeasures against DPA

In order to resist SCAs, a lot of different countermeasures have been proposed in
recent years. The countermeasures are classified mainly into two categories de-
pending on the type of the countermeasure; algorithm level and logic (or gate)
level. In [7], Coron proposed countermeasures against DPA for elliptic curve
cryptography [8,9]. Those countermeasures utilize random bits when performing
a computational sequence in scalar multiplication, and hence they are considered
as algorithm-level countermeasures. On the other hand, logic-level countermea-
sures try to prevent an information leakage from a device independent of cryp-
tographic algorithms. Hereafter we will focus on the logic-level countermeasures
and discuss the previous work.

2.1 Logic-Level Countermeasures

Tiri and Verbauwhede proposed a design methodology using a complementary
logic called WDDL (Wave Dynamic Differential Logic) [10]. WDDL employs a
dual-rail circuit style so that the same power consumption can be consumed
regardless the input values, e.g. an OR operation a∨ b is operated with an AND
operation (¬a) ∧ (¬b). The difficulty in implementing WDDL circuits is that a
pair of the complementary logics has to be balanced physically (e.g. the wire
load capacitance should be balanced) so that we can observe the same power
consumption for any input signals. Masked-AND proposed by Trichina [11] can
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mask input and output data of AND gates with random bits to resist against
power analysis attacks. However, the vulnerability of the proposed Masked-AND
gate was reported in [12].

MDPL (Masked Dual-rail Precharge Logic) proposed by Popp and Mangard
is designed for solving the physical constraints in WDDL although it is used in
a dual-rail circuit [13]. However, security problems are already pointed out in
terms of DPA attacks even on their implemented prototype ASIC [14,15,16,17].
To date, the RSL technique in [18,19] seems to surmount the security problems
by improving the specification, e.g. applying re-masking operation for each RSL
gate with different random bits. The details are described in the next subsection.

2.2 Random Switching Logic (RSL)

As a logic-level countermeasure against DPA attacks, RSL was proposed by
Suzuki, Saeki and Ichikawa in 2004 [20]. RSL is a technique for masking inter-
mediate values by using random data, and can be used in a single-rail circuit
style. The original RSL was based on the use of a full-custom cell library to re-
alize NAND, NOR and XOR operations. In 2007, the authors mapped the RSL
operations on FPGA slices and implemented AES using the RSL technique [18].
As a result, they showed that the FPGA implementation of AES with RSL is se-
cure against DPA attacks. Furthermore, in order to develop an ASIC prototype
of AES with RSL in a general design environment, RSL was modified so that
it can be realized with a standard cell library [19]. Consequently, they imple-
mented a prototype ASIC of AES with RSL based on a 0.13-μm CMOS library.
The prototype ASIC is mounted on an evaluation platform called SASEBO [21]
and available publicly for the purpose of evaluating the side-channel resistance.
In this paper, we use the prototype ASIC for evaluating security of the RSL
technique. Next, we review RSL in detail.

xr1 = x　r1

Re-masking XORs

r1 r3

en

zr3

Minority Logic

RSL-NAND

Glitch
Suppression

r3

yr2 = y　r2

r2 r3

xr3

yr3

0  (en=0)
zr3 (en=1)

Fig. 1. Block diagram for RSL-NAND with re-masking and glitch suppression
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Figure 1 shows a NAND gate based on RSL (RSL-NAND) that is composed
of re-masking XORs, an inverted majority (minority) logic gate and a glitch
suppression gate. The RSL-NAND has six 1-bit inputs and one 1-bit output.
RSL-NAND has two major features. One is the re-masking mechanism to en-
hance the resistance against SCAs. The other is the glitch suppression gate
controlled by an enable signal. The details of the functionality are described as
follows.

Random Re-Masking. Two inputs, xr1 and yr2 are masked with random bits,
r1 and r2, respectively, i.e.

xr1 = x⊕ r1, yr2 = y ⊕ r2. (1)

In order to re-mask these input data with a new random bit r3, we input two
bits, r1⊕ r3 and r2⊕ r3 to the re-masking XORs. The operation of re-masking
is described as

xr1 ⊕ (r1 ⊕ r3) = x⊕ r3 = xr3, yr2 ⊕ (r2 ⊕ r3) = y ⊕ r3 = yr3. (2)

Minority Logic. The minority logic evaluates three inputs, xr3, yr3 and r3
and outputs 1-bit value. If two or more inputs are ones, it outputs zero and if
not, it outputs one. By utilizing the minority gate, we can calculate a NAND
operation of x and y re-masked with r3 as

zr3 = ¬
(
(xr3 ∨ r3) ∧ (yr3 ∨ r3) ∧ (xr3 ∨ yr3)

)
= ¬(x ∧ y)⊕ r3. (3)

Glitch Suppression. The last remaining input is the enable signal en that is
used for suppressing glitch propagations. The glitch is a short-period electrical
pulse caused by different arrival time of input signals of a (composite) gate. It is
known that the glitch propagation in a hardware chip leaks information via side
channel as reported in [22]. To avoid the glitch propagation, the output signal
of RSL-NAND is controlled by a 1-bit enable signal as

{
zr3 (en = 1)
0 (en = 0). (4)

Namely, the output signal is forced to zero (i.e. precharge to zero) until all input
signals are fixed and the glitch disappears. This is because we need to consider the
arrival time of input signals and the delay of the minority gate when determining
the timing delay of value switching of the enable signals. Thus, we can lower the
risk of glitch-based attacks. The details of enable signals will be explained in the
next subsection.
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2.3 Combinational Logic Using the RSL Gates

In order to explain how the RSL gates work in an actual hardware design, we
use a general architecture illustrated in Fig. 2. The architecture consists of three
functional blocks, the RSL gates, a Random Number Generator (RNG) and a
controller for enable signals. In this example case, we focus on 1-bit datapath
starting from a flip-flop regD1 and ending in a flip-flop regD2. Here, we assume
that the input data, xr1 is already masked with r1 before arriving at regD1.

The RSL gate labeled as RSL1 receives two masked inputs, xr1 and yr2 and
outputs zr3 when the enable signal en1 = 1 by following the Eqs. (1)(2)(3)(4).
Likewise, RSL2 and RSL3 perform RSL-NAND operations and when en2 = 1
and en3 = 1, the output of RSL3 will be as follows:

wr7 = ¬
(
¬
(
¬(x ∧ y) ∧ s

)
∧ u
)
⊕ r7 (en1 = en2 = en3 = 1). (5)

The delay control for the enable signals has an important role to suppress the
glitch propagations. We discuss the mechanism of the controller hereafter.

The order of asserting enable signals must be from en1 to en3. This can be
explained by considering the direction of the signal propagation. For instance, if
en2 is high before en1 is asserted and then en1 becomes high (e.g. (en1, en2) =
(0, 1) → (1, 1)), a glitch may occur in RSL2 depending on the arrival time
of the input signals for RSL2. This glitch cannot be suppressed in RSL2 and
propagates to RSL3 because en2 is already high. Therefore, in order to avoid
such glitch propagation, en1 has to be high at least before en2 becomes high.

On the other hand, the order of negating those enable signals have to be
opposite, i.e. in the order from en3 to en1. If negating en1 earlier than en2
(e.g. and en1 = 0 and en2 = 1), there may happen a glitch in RSL2 and
propagate to RSL3 as well. The asserting or negating order is summarized as

regA

TA3

TB3

Masked
Data output

regB

en3

Random Number Generator

en1 en2

regD2regD1
Masked
Data Input

Controller for enable signals

xr1

RSL1

TA1

TB1

r1 r3r1 r3
r3

r2 r3r2 r3

yr2

zr3

RSL2

r3 r5r3 r5
r5

r4 r5r4 r5

sr4

tr5
RSL3

r5 r7r5 r7
r7

r6 r7r6 r7

ur6

wr7

a2 b2 a3 b3a1 b1

Fig. 2. General hardware architecture using several RSL gates; Random Number Gen-
erator (RNG) and a controller for generating enable signals are necessary



434 K. Sakiyama, T. Yagi, and K. Ohta

follows: (en1, en2, en3) = (0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (1, 1, 1)→ (1, 1, 0)→
(1, 0, 0)→ (0, 0, 0)→ · · · .

In order to facilitate the control of the enable signals, two flip-flops of regA
and regB are used in the controller block. At each positive edge of the clock, they
change values as (regA, regB) = (0, 0)→ (1, 0)→ (1, 1)→ (0, 1)→ (0, 0)→ · · · .
To explain the reason, we use a simple example as follows.

Suppose (regA, regB) = (0, 0) at the first cycle of the clock. If we change the
values of those flip-flops as (regA, regB) = (1, 0) in the next cycle, en1 starts
being high after the time of TA1, where TA1 is the delay time from the output of
regA to the input of the XOR gate generating en1. Then, the signals en2 and
en3 are asserted in this order with the delay times of TA2 and TA3, respectively
as shown in Fig. 3. Moreover, if (regA, regB) = (1, 1) are set at the next cycle,
en3 starts being low in the time of TB3. Likewise, en2 and en1 are negated in
this order. Eventually, we can obtain the enable signals as illustrated in Fig. 3.

Figure 3 also shows a data flow from regD1 to regD2. The data xr1 is deter-
mined by regD1 at a positive edge of the clock and an RSL-NAND operation is
performed in RSL1 with yr2. After all signals are fixed in RSL1, e1 is asserted

0 1 0

10 0

TA3

TA2

TA1

TB2

TB3

TB1

0 0 0

0 0

00 0

00 0

0 00

clock

regB

regA

en3

a3

a2
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b2

en2

en1

b3

b1

regD1 / xr1

regD2

wr7

tr5

zr3

Fig. 3. Timing waveform of the enable signals generated by the controller and data
flow corresponding to the architecture shown in Fig. 2
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and the next NAND operation is performed in RSL2. In the same way, the signal
wr7 is determined and stored in regD2 at the next positive edge of the clock.
Note that we need two cycles to send a data from regD1 to regD2.

3 Evaluation Method for AES Hardware Using RSL

Based on the specification of RSL reviewed in the previous section, we discuss
the security of a circuit using the RSL gates in terms of FA attacks. We introduce
a clock-based FA attack that can induce a fatal error in a circuit implemented
with the RSL gates by increasing the clock frequency.

3.1 Attack Model

Through the observation in Sect. 2, we notice that the RSL technique has a
potential risk for FA attacks when increasing the clock frequency. In order to
explain this, we consider a case of providing a high clock frequency to the circuit
using the RSL gates in Fig. 2. Figure 4 shows a waveform when providing a
clock at a high clock frequency such as Tclock ≤ TA3. This type of the clock
is denoted as ”fast clock” in this paper. Here Tclock is the clock period. For a
normal operation case (i.e. Tclock > TA3), the enable signal en3 should be high
at the positive edge of the clock every two cycles (see Fig. 3). In contrast, this
is not true for the case of providing a fast clock. As can be seen from the Fig. 4,
the enable signal en3 is low at every positive edge of the clock and the register
regD2 cannot store the correct data from the signal wr7. As a result, the register
regD2 stays zero as long as the fast clock is provided.

This attack model is based on the clock-based FA attacks. In this model, we
put the following assumption for attackers’ ability:

10 01 0

00

0 0 0

0

1 1

00 11 0 0 1

Tclock

TB3

TA3

regB

clock

b3

en3

xr1

regA

regD2

wr7

a3

0

0

Fig. 4. Waveform corresponding to the architecture illustrated in Fig. 2 when providing
a fast clock such that Tclock ≤ TA3
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– to operate target devices several times.
– to increase the clock frequency of a target device.

Under the assumption, it is possible to force register values in a circuit using
RSL to be zeroes.

As mentioned in [19], the RSL technique was applied for non-linear functions in
AES except theSubBytes functions in thekey schedulingprocess.Accordingly,we
can illustrate a block diagram that focuses on the final round of the encryption of an
AES hardware with RSL (denoted as RSL-AES) as shown in Fig. 5. When provid-
ing a fast clock to RSL-AES, we assume that the output of the SubBytes function
becomes zeroes and one of the 128-bit inputs for the AddRoundKey function be-
comes zeroes after the ShiftRows transformation. Here, we assume that the key
scheduling block is correctly working and the correct 10th round key, K10 is input
as another 128-bit input of the AddRoundKey block.

Thus, the AddRoundKey function is expected to output 10th round key.
The 10th round key is XORed with random bits r_unmask since the output data
of the RSL gates is masked with random bits by the re-masking mechanism, and
therefore data from the final RSL gates needs to be unmasked. The unmasking is
operated at the final step in Fig. 5. Note that we assume that the final unmasking
block is allocated after the AddRoundKey function since a XOR operation in
the AddRoundKey function could be the DPA selection function [2]. In this
model, we can obtain 128-bit output of dout as

dout = K10⊕ r_unmask, (6)

SubBytes (RSL)

ShiftRows

AddRoundKey

K10 (10th Round Key)

dout

128

128

128

.…
.

0x000    0…0x000    0…

0x000    0…0x000    0…

K10 128 r_unmask

Final Unmasking

128

128

Fig. 5. Final round of AES encryption with a fault induction to the SubBytes block
that is implemented with RSL.



Fault Analysis Attack against an AES Prototype Chip Using RSL 437

where r_unmask is 128-bit data used for unmasking the final result. If r_unmask
is 128-bit random data, we have no clue for guessing K10. Therefore, this attack
model seems useless. However, we will show that the attack model is applicable
in the case of the prototype ASIC in the following subsections.

3.2 SASEBO-R

We use the SASEBO-R (Side-channel Attack Standard Evaluation Board, type-
R) [21] in order to verify our attack model. The SASEBO-R is designed to de-
velop evaluation schemes against physical attacks. The board has two hardware
chips, a prototype ASIC that has several cryptographic functions and a Xilinx
FPGA that controls the ASIC chip. The experiment setting with SASEBO-R is
shown in Fig. 6. Note that we did not use an oscilloscope that is necessary for
SPA or DPA attacks in general.

There are several cryptographic hardware in the ASIC chip and an RSL-
AES is also implemented [23]. To perform one of the cryptographic operations,
the control FPGA sends all necessary signals to the ASIC chip such as a clock
signal, control signals, plaintext, etc. After performing a cryptographic operation,
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AES
(RSL)

AES
(RSL)

AES
(RSL)

Crypto. IPs

clk_fpga

Function
Generator

DC Power
Supply 3.3V

SASEBO-R

Crypto. ASIC

Fig. 6. Evaluation environment with the SASEBO-R
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FPGA receives the result (e.g. ciphertext in the case of encryption) from the
ASIC chip. The FPGA can be programmed and controlled by software in a PC
via USB interface.

3.3 Clock-Based Fault Induction

The clock signal, the most important signal in this paper, is provided from a
function generator to the FPGA on the SASEBO-R although we normally use a
24-MHz on-board oscillator. The function generator sent a clock signal clk_in to
the DCM (Digital Clock Manager) module in the control FPGA. In the default
setting of the DCM, it generates two clock signals, clk_fpga and clk_asic,
which are synchronized. Note that we set the DCM so that the clock frequency
of clk_in can be the same as that of clk_fpga through the paper.

By changing the setting of the DCM module, it can operate as a frequency
multiplier for clk_asic, i.e. the DCM module in this setting can provide a clock
clk_asic whose frequency is multiple of clk_fpga.

For FA attacks in this paper, we set the DCM such as fasic = 6× ffpga since
our concern is to provide a fast clock only to the ASIC chip. In other words, it
is expected that a fault is induced only in the ASIC chip in this setting.

4 Experimental Results

Before inducing a fault, we perform several 128-bit AES encryptions using the
RSL-AES at a normal clock frequency, i.e. ffpga = fasic = 24 MHz.

Although attackers have no idea about the secret key at this moment, one
correct pair of plaintext and ciphertext needs to be kept for the subsequent
analysis. One of the obtained results is summarized in Table 1.

Table 1. Experimental results of 128-bit AES encryption using RSL-AES in the default
setting; the clock frequency of ffpga and fasic are both 24 MHz

No. Plaintext and Ciphertext values (in hex.)
plaintext 9d e6 2f 88 12 fa e8 11 61 1a f3 80 f7 77 fd ef

ciphertext c9 d7 ed 00 e5 07 c9 37 21 bf b0 9b eb 6b 9d 21

4.1 Determination of Clock Frequency to Induce Fault

Then, we set the DCM such that fasic = 6×ffpga = 144 MHz and increased the
clock frequency of fclk in(= ffpga) gradually from 10 MHz to 27 MHz. Here, we
used a fixed plaintext and operated AES encryptions with the same secret key.

As shown in the Table 2, we observed a fixed value when providing fclk in

from 10 MHz to 15 MHz. The observed fixed value is exactly the same as the
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Table 2. Experimental results of 128-bit AES encryption using RSL-AES when in-
creasing the input clock frequency from 10 MHz to 24 MHz under the condition of
fasic = 6 × ffpga. The same secret key and plaintext are used as the case of Table 1.

fclk in = ffpga fasic Output results
10 MHz ∼ 15 MHz 60 MHz ∼ 90 MHz a fixed value
15 MHz ∼ 27 MHz 90 MHz ∼ 162 MHz different values for each encryption

ciphertext observed at the normal clock setting, which means that RSL-AES
operated correctly. On the contrary, in the case for setting fclk in from 15 MHz to
27 MHz, the output data was different for each encryption. Here, we guessed that
this case was in our expected faulty situation because the random behavior of
the output data could be explained by our attack model in Eq. (6). Accordingly,
we decided to use fclk in = ffpga = 24 MHz and fasic = 144 MHz.

4.2 Encryption Results of RSL-AES in the Faulty Situation

For further analysis, we collected several encryption results with ffpga = 24 MHz
and fasic = 144 MHz). As a result, we could obtain the faulty ciphertexts as
shown in Table 3.

From Table 3, we noticed that 1-byte data in the first column (denoted as
dout15) is the same as the data in the fifth column (dout11) for each encryption
result. More precisely, we observed

dout15⊕ dout11 = 0× 00

for all faulty encryption results. Motivated by this finding, we continued the
same operation for dout15 and other douts. As a result, we could see

Table 3. Experimental results of 128-bit AES encryption in the faulty situation
(ffpga = 24 MHz, fasic144 MHz). The same secret key is used as the case of Table 1.

No. Observed Output Value (in hex.)
1 c5 5a 67 1d c5 0b 9e e0 f0 51 71 74 fe 34 01 d2

2 65 fa c7 bd 65 ab 3e 40 50 f1 d1 d4 5e 94 a1 72

3 46 d9 e4 9e 46 88 1d 63 73 d2 f2 f7 7d b7 82 51

4 24 bb 86 fc 24 ea 7f 01 11 b0 90 95 1f d5 e0 33

5 8c 13 2e 54 8c 42 d7 a9 b9 18 38 3d b7 7d 48 9b

6 fc 63 5e 24 fc 32 a7 d9 c9 68 48 4d c7 0d 38 eb

7 2c b3 8e f4 2c e2 77 09 19 b8 98 9d 17 dd e8 3b

8 df 40 7d 07 df 11 84 fa ea 4b 6b 6e e4 2e 1b c8
...

...
dout 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
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dout15⊕ dout14 = 0× 9f,
dout15⊕ dout13 = 0× a2,
dout15⊕ dout12 = 0× d8,
dout15⊕ dout11 = 0× 00,

...
dout15⊕ dout00 = 0× 17.

(7)

for all faulty encryption results. By considering our attack model expressed in
Eq. (6), the results indicate that r_unmask has some relation between bytes,
because we know that K10 is fixed for all encryptions.

In order to clarify the relation of r_unmask in bytes, we XORed two 128-bit
output values listed in Table 3. The results are listed in Table 4. We found a
very interesting property; each result has the same value in bytes.

4.3 Cryptanalysis for the Experimental Results

By applying our attack model, the results of XORing two faulty output values
can be expressed using Eq. (6) as

dout_no1⊕ dout_no2 = r_unmask_no1⊕ r_unmask_no2, (8)

where dout_no1 and dout_no2 are 128-bit output values observed with two dif-
ferent encryptions in the faulty situation, and r_unmask_no1 and r_unmask_no2
are different 128-bit data used for unmasking in the encryptions. Although sev-
eral possibilities can be considered for the concealed specification of r_unmask,
we guess that the same 8-bit random data is used in r_unmask in bytes, i.e.

r_unmask = rnd[7:0] ‖ rnd[7:0] ‖ · · ·rnd[7:0],

from the results summarized in Table 4 and the derived equation expressed in
Eq. (8).

Table 4. XOR results of two output data listed in Table 3

XOR(No., No.) XORed Results (in hex.)
(1, 2) a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0

(1, 3) 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83

(1, 4) e1 e1 e1 e1 e1 e1 e1 e1 e1 e1 e1 e1 e1 e1 e1 e1

(1, 5) 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49

(1, 6) 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39

(1, 7) e9 e9 e9 e9 e9 e9 e9 e9 e9 e9 e9 e9 e9 e9 e9 e9

(1, 8) 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a
...

...
dout 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
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In this way, we can guess that 10th round key K10 is masked with 8-bit (same)
random bits. In our guess, we only need 28 different candidates of K10 for all
possible values of rnd[7:0] because

K10 = dout⊕ (rnd[7:0] ‖ rnd[7:0] ‖ · · · ‖ rnd[7:0]).

To confirm our guess, the corresponding 28 secret-key candidates are prepared
and verified with the correct pair of the plaintext and the ciphertext as shown in
Table 1. As a result, we could find one correct secret-key from the 28 candidates.
The retrieved round key and secret key are listed in Table 5.

Table 5. Retrieved round key and secret key from the ASIC chip

No. Output value (in hex.)
Round key (final round) 3d a2 9f e5 3d f3 66 18 08 a9 89 8c 06 cc f9 2a

Retrieved secret key 00 01 02 03 04 05 06 07 08 4e bb fa 4d 0f ef 53

4.4 Efficiency of our FA Attack

We needed hundreds of the AES encryptions to understand the fault effect and
to retrieve the secret key. However, once we know the architecture of the RSL-
AES, only two encryptions are needed; one is for collecting one correct pair
of plaintext and ciphertext at the normal clock frequency and the other is for
obtaining one output generated in the faulty situation using a fast clock. This
fact implies that:

– we can obtain information related to the hardware architecture as well as
the secret key by this FA attack, and

– the knowledge about the hardware architecture makes it easy to retrieve
secret information from the device.

5 Conclusions and Future Work

We presented a successful fault analysis attack against an AES hardware im-
plementation with a DPA countermeasure by increasing the clock frequency. In
this paper, we evaluated an AES with the RSL technique embedded in a proto-
type ASIC on the SASEBO-R. For the purpose of suppressing the propagation
of the glitches, RSL uses enable signals that have different timing delays. This
fundamental mechanism of RSL was intended to prevent DPA attacks. How-
ever, we showed that the glitch suppression mechanism worked negatively for
our clock-based FA attack that uses a faster clock. In other words, the DPA
countermeasure resulted in lowering the ASIC’s tolerance to FA attacks.

As a countermeasure for our introduced clock-based FA attacks, a detection
circuit for illegal clock inputs will be effective to avoid a high-frequency clock
input. In this case, a special ability, e.g. invasive attacks may be required for
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attackers in order to bypass the detector. However, once a fault is induced in
some way and a part of hardware specification is known, attackers can take
advantage of the knowledge for attacking the same type of hardware chips. That
is, a major lesson learned from this research is that we need to check side effects
carefully when implementing a new countermeasure. Our future work includes a
further security evaluation for other cryptographic implementations using DPA
countermeasures.
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Abstract. Radio-frequency identification (RFID) is an emerging tech-
nology that has found its way into many applications, even in secu-
rity related areas. Integration of cryptographic algorithms into RFID
tags is necessary and the implementation of them needs to be secure
against side-channel analysis (SCA) attacks. RFID tags operating in the
ultra-high frequency (UHF) range are susceptible to so-called parasitic-
backscatter attacks, which can be applied from a distance. In this article,
we evaluate the efficiency of the detached power-supply countermeasure
by applying it to a smart card and performing differential power analy-
sis (DPA) attacks. Consecutively, we discuss the suitability of this coun-
termeasure for protecting passive UHF tags from parasitic-backscatter
attacks. The results show that the non-ideal properties of the analog
switches used by the detached power supply decrease the effectiveness of
this countermeasure. Moreover, we have identified side-channel leakage at
the I/O pin of the smart card as a considerable problem for the detached
power-supply approach. We conclude that utilizing the detached power
supply to protect passive UHF tags from parasitic-backscatter attacks
is feasible, if the integration interval is sufficiently long and the analog
switches have adequate properties. However, longer integration intervals
also increase the power loss of the tag, resulting in reduced read ranges.

Keywords: Differential Power Analysis, Side-Channel Analysis, Deta-
ched Power Supply, Parasitic Backscatter, RFID, UHF.

1 Introduction

Over the last years, radio-frequency identification (RFID) technology has be-
come increasingly important and is used in many applications like ticketing, car
immobilizers, electronic passports, toll collection, and supply-chain management.
The move of RFID technology from simple identification towards more sophisti-
cated applications has increased its need for security. Integrating cryptographic
security into RFID systems in an efficient and reliable manner is a challenging
task and still an active field of research.

In an RFID system, a tag and a reader communicate contactlessly by means
of a radio-frequency field. The tag is a small circuit that consists of a microchip
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attached to an antenna and receives its data and possibly the clock signal from
the field. Passive tags, which are much more prevalent, also obtain their power
from the field. Active tags are supplied by an extra battery [6]. The microchip
of passive tags contains an analog front-end and a digital circuit. Modulating
and demodulating the data, generating the clock signal and extracting the power
from the field is done by the analog front-end. Processing the data and computing
the appropriate responses is handled by the digital circuit. The complexity of
the digital circuit highly depends on the application and ranges from a simple
state machine to a microcontroller with sensors and non-volatile memory.

The power consumption of passive tags must not exceed a specific limit, since
they are supplied by the field and have to achieve certain read ranges. More-
over, passive tags are cost sensitive and produced in high volume, limiting also
the available chip area. These constraints make it fairly difficult to integrate
strong security into passive tags. As an attacker will always try to break the
weakest link, an overall-secure RFID system requires the tags to be secure as
well. Although the research community has initially believed that integrating
standardized cryptographic algorithms into passive tags is infeasible, numerous
publications in the recent years have shown the contrary. The most prominent
attempts to bring standardized cryptographic algorithms to passive tags are, for
example, the integration of symmetric schemes like the Advanced Encryption
Standard (AES) [5, 15], asymmetric schemes like Elliptic Curve Cryptography
(ECC) [1, 24, 9], and coupon-based schemes like GPS [17, 10].

Standardized cryptographic algorithms are secure in a mathematical and
cryptanalytical sense. However, when integrating the algorithms into real de-
vices, they can be vulnerable to implementation attacks. An important imple-
mentation attack is side-channel analysis. There, an attacker measures physi-
cal properties of a device during the execution of the cryptographic algorithm
and tries to reveal secrets stored on the device. A powerful side-channel anal-
ysis technique is differential power analysis (DPA) introduced by Kocher et al.
in 1998 [14]. This technique exploits the fact that the power consumption of
CMOS devices is dependent on the processed data and operations. DPA attacks
use a simplified model for the power consumption, predict intermediate values
computed by the cryptographic algorithm, and combine the predicted results
with the measured power consumption by means of statistical methods. Since
this technique can be applied to a large number of measurements, even a small
data-dependent leakage in the power consumption is sufficient for a successful
DPA attack. When using the electromagnetic (EM) emissions of a cryptographic
device instead of its power consumption, as shown by Gandolfi et al. [7], DPA
attacks are named differential electromagnetic analysis (DEMA) attacks.

Passive tags are also susceptible to side-channel analysis. Hutter et al. [11]
have performed DPA and DEMA attacks on passive tags in the high frequency
(HF) range. Oren and Shamir [20] and Plos [21] have conducted attacks on the
EM emissions of passive tags in the ultra-high frequency (UHF) range. For UHF
tags, it has turned out that the power reflected by the tag’s antenna contains
data-dependent information. Oren and Shamir have named this effect parasitic
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backscatter, which allows to perform successful DEMA attacks from a distance
of one meter and more. Hence, such parasitic-backscatter attacks pose a serious
threat for UHF tags.

Integrating countermeasures into cryptographic devices makes side-channel
analysis techniques like DPA and DEMA attacks less effective. Principally, coun-
termeasures can be divided into hiding and masking [16]. The goal of hiding is
to decouple the power consumption of a cryptographic device from its internally
processed data values. Masking breaks the link between the intermediate val-
ues and the values actually computed by the device. Unfortunately, integrating
countermeasures usually also increases the power consumption and the design
complexity of a device.

A countermeasure recently proposed by Shamir [22, 23] for protecting UHF
tags from parasitic-backscatter attacks is the detached power supply. It is a hard-
ware countermeasure based on hiding at the architectural level. The decoupling
of the power consumption is accomplished by using two capacitors. At any time,
one capacitor powers the digital circuit of the tag and the other capacitor is
charged by the tag’s analog front-end. By periodically switching the capacitors,
energy is transferred from the analog front-end to the digital circuit without a di-
rect physical connection. The simplicity and the fact that its application requires
no extensive modification of existing chip designs makes it interesting for RFID
tags. So far, no information is available about the efficiency of this countermea-
sure. Although there exists a practical implementation of a similar approach by
Corsonello et al. [2] using a three-phase charge pump, results illustrating how
well this countermeasure prevents side-channel analysis are missing.

In this work, we evaluate the efficiency of the detached power supply and
discuss its suitability for protecting passive UHF tags from parasitic-backscatter
attacks. It is the first article that presents practical results of the detached
power-supply countermeasure with respect to side-channel analysis. We have
implemented the detached power supply with discrete components and applied
it to an unprotected smart card with an integrated AES. Using a smart card has
been necessary since commercially-available passive UHF tags do not yet contain
standardized cryptographic algorithms. By performing DPA attacks, we have
analyzed a basic version of the detached power supply and an enhanced version
which uses an additional discharge phase. The results have shown that even
the enhanced version of the detached power supply is still vulnerable to power
analysis because of the non-ideal properties of the analog switches. Moreover,
it has turned out that there is a strong side-channel leakage at the I/O pin
of the smart card, regardless of whether the detached power has been used
or not. In order to address this problem, we suggest a simple countermeasure
that prevents the side-channel leakage at output pins. Finally, an estimation is
provided about the required capacitor size and the power-consumption overhead
caused by integrating the detached power supply into a passive UHF tag.

Our results show that utilizing the detached power supply to protect passive
UHF tags from parasitic-backscatter attacks is feasible, if the integration interval
is sufficiently long and the analog switches have adequate properties. However,
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longer integration intervals also increase the additional power loss of the tags,
resulting in reduced read ranges.

This article is organized as follows. Section 2 describes the principle of the
detached power supply. Section 3 illustrates the practical implementation of the
countermeasure and the measurement setup. The results of the side-channel
analysis are presented in Section 4. A suggestion for a simple countermeasure to
prevent side-channel leakage at output pins is shown in Section 5. In Section 6,
the costs of integrating the detached power supply into passive UHF tags is
discussed. Conclusions are drawn in Section 7.

2 Description of the Detached Power Supply

Initially, the detached power supply has been intended to protect smart cards
from power analysis [22]. However, the countermeasure is much more suitable for
preventing parasitic-backscatter attacks on UHF tags [23]. First, the detached
power supply does not protect from side-channel analysis that uses the direct
emissions of the device. Second, manipulating the capacitors (e.g. interconnect-
ing the pins of the capacitors) makes the countermeasure completely useless.
In case of the parasitic-backscatter attack, where a passive attacker remotely
measures the power reflected from a tag, both arguments are of no importance.
Moreover, the power consumption of passive tags is much lower compared to
smart cards. The lower power consumption allows capacitors to be smaller and
they can directly be integrated into the chip of the tag.

In the following, the principle of the detached power supply is explained in
more detail. After the description of the basic version, an enhanced version with
an additional discharge phase is presented.

2.1 Basic Version of the Detached Power Supply

The basic version of the detached power-supply [23] comprises: two capacitors,
four switches, and two diodes. Figure 1(a) presents a schematic diagram and a
time lapse of the switches’ states. Shaded areas in the sequence diagram indicate
the intervals in which a certain switch is closed. A complete cycle consists of four
phases. In the first phase the switches S1 and S4 are closed and S2 and S3 are
opened. This causes C1 to be charged by the analog front-end, while C2, which
has been charged in a previous phase, powers the tag’s digital circuit. During
the second phase, which is rather short in time, S1 is opened and S2 is closed.
Now, the digital circuit is powered by both capacitors. The diodes D1 and D2
prevent charge equalization between the two capacitors. In the next phase, S4 is
opened and S3 is closed. The digital circuit is powered by C1 and C2 is charged
by the analog front-end, the opposite way around than in the first phase. In the
fourth and last phase, which is again a short phase where both capacitors power
the digital circuit, S3 is opened and S4 is closed. After the fourth phase, the
cycle is completed by opening S2 and closing S1 and starts from the beginning.
The toggling between C1 and C2 is done at the switching frequency fS .
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Fig. 1. Sequence diagrams comprising the states of the switches during the particular
phases and a schematic overview of the circuits used for the basic version (a) and the
enhanced version (b) of the detached power supply

Switching between particular phases can be assigned to a fixed number of clock
cycles or triggered by the voltage of the discharging capacitor when reaching a
certain threshold. Regardless of the switching strategy, an attacker can still get
information about the total amount of charge consumed by the digital circuit
during a discharge phase. This information can be minimized by selecting larger
capacitors allowing to make the discharge phase longer.

2.2 Enhanced Version of the Detached Power Supply

In order to remove the remaining information leakage present in the basic version
of the detached power supply, it is suggested in [22] to discharge each capacitor
to a fixed voltage level before reconnecting it to the analog front-end. This en-
hancement requires two additional switches and a voltage-limiting element for
properly discharging the capacitors. An example for a simple voltage-limiting
element is a Zener diode. Figure 1(b) shows the schematic overview of the cir-
cuit and a sequence diagram comprising the states of the switches during the
particular phases. In contrast to the basic version, the enhanced version needs
six instead of four phases for a complete cycle. During each of the two additional
phases, one capacitor is switched in parallel to the Zener diode D3 to get further
discharged to a predefined voltage level. All other phases are the same as in the
basic version. In the third phase C2 is connected to the Zener diode via S6, in the
sixth phase C1 via S5. As a result, the charge stored in the concerning capacitor
is no longer related to the charge consumed by the digital circuit while it has
been supplied by the capacitor. Theoretically, this makes power-analysis attacks
completely useless.
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3 Implementation of the Detached Power Supply and the
Measurement Setup

Evaluating the effectiveness of the detached power supply requires its implemen-
tation and furthermore application to a physical device. Since passive UHF tags
that are commercially available do not yet have integrated standardized crypto-
graphic algorithms, we have decided to use an unprotected smart card instead.
This allows to draw conclusions for passive UHF tags, because the countermea-
sure operates independently of the circuit it protects. Both the simple and the
enhanced version of the detached power supply have been implemented as an
analog circuit using discrete components. The switches of each circuit are han-
dled by a microcontroller. For better flexibility, the microcontroller is connected
to a PC via a serial interface to adjust certain parameters like the switching
frequency or activation/deactivation of the detached power supply. Figure 2 il-
lustrates how the detached power supply and the smart card are combined to
protect against power analysis. The detached power supply is integrated into the
supply line of the smart card. All other pins like clock, reset, and I/O are left
untouched.

The utilized smart card runs at a clock frequency of 3.57MHz and consumes
about 5mA at 5V. A software version of the AES using a key length of 128
bits is implemented on the smart card. The AES is a block cipher operating on
128-bit blocks of input data. Encrypting a single block of data takes the smart
card less than 3 800 clock cycles. A detailed description of the AES can be found
in [19].

Crucial components of the detached power supply are the analog switches
which should ideally have: high switching speed, low cross talk, high off isolation,
and low on resistance. After testing several switches, it has pointed out that USB
high-speed multiplexers are a good solution since they have excellent electrical
properties. The multiplexers can operate up to some hundreds of MHz, have an
off isolation of about 100dB at 100kHz, and have a maximum on resistance of
10Ω.

Standard ceramic types with a value of 0.1μF have been selected for the
capacitors. Taking into account the smart card’s average power consumption of
about 5 mA and allowing the capacitors to be discharged from 5 to 3.5V, results
in a minimum switching frequency of about 36 kHz. This means that a single
0.1μF capacitor can power the smart card over a time of approximately 100
clock cycles.

Further components of the circuit are low voltage-drop Shottky diodes that
prevent charge equalization between the two capacitors while they are temporar-
ily switched in parallel to the smart card. A Zener diode has been chosen as
voltage-limiting element for the enhanced version of the detached power supply.
The breakdown voltage of the Zener diode depends on the deployed switching
frequency of the detached power supply and needs to be below the minimum
voltage reached by the capacitor after being discharged by powering the smart
card.
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Besides implementing the detached power supply and applying it to a suit-
able cryptographic device, building a measurement setup is necessary for the
evaluation process. Figure 3 shows a measurement setup that allows automated
acquisition of the power traces. Main components of the measurement setup are:
the protected smart card, a smart-card reader, a PC, a differential probe, and
a digital-storage oscilloscope. The smart-card reader, the digital-storage oscillo-
scope, and the microcontroller that is responsible for managing the switches of
the detached power supply are controlled by a MATLAB script running on the
PC. A photo of the actual measurement setup containing the protected smart
card, the smart-card reader, and the differential probe is presented in Figure 4.

The measurement cycle for retrieving a single power trace always follows the
same scheme. After receiving an appropriate command from the smart-card
reader, the protected smart card starts encrypting the incoming data block.
When the encryption begins, the protected smart card releases a trigger event
that causes the digital-storage oscilloscope to record a power trace. Determining
the power consumption is achieved by measuring the voltage drop across a 1 Ω
resistor in the supply line of the protected smart card with a differential probe.
The measurement cycle is finished by transferring the power trace to the PC,
where further analysis work is conducted.

4 Results of the Side-Channel Analysis

This section presents the results obtained by analyzing the power consumption of
the smart card equipped with the detached power supply described in Section 3.
DPA attacks have been carried out using the correlation coefficient ρ to detect
linear dependencies between the measured power consumption and the formed
hypotheses. As power model, the Hamming-weight model has been selected. In
that way, attacking the first key byte of the AES implemented on the smart card
without using any countermeasures, has led to a correlation coefficient of 0.55
for the correct hypothesis. Based on a given ρ, the rule of thumb stated in [16]
allows to determine the number of power traces n that is needed for a successful
attack with high probability (> 99.99%):
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n = 3 + 8
3.7192

ln2(1+ρ
1−ρ )

(1)

Substituting 0.55 for ρ in (1) computes to about 75. Hence, 75 power traces are
required on average for a successful DPA attack on the smart card. This value is
later used as a reference to better quantify the impact on the number of needed
power traces when the countermeasure is activated. Consecutively, the results
of the DPA attacks applied to the smart card with activated detached power
supply are presented. Both basic and enhanced version of the countermeasure
are examined and compared with each other.

4.1 Results of the Basic Version of the Detached Power Supply

After analyzing the side-channel leakage of the smart card itself, measurements
with the basic version of the detached power supply as countermeasure have
been conducted. Various switching frequencies starting from 640kHz to 36 kHz
have been examined. It has shown that analyzing power traces resulting from
measurements with activated detached power supply is costlier since they require
additional pre-processing steps. An example of such a power trace is given in
Figure 5. The traces are afflicted with a variable offset, making it necessary
to align them vertically. Moreover, in our implementation the switching of the
capacitors is controlled by an extra microcontroller and occurs independently
from the operation of the smart card. This makes standard DPA attacks based
on power traces highly inefficient. However, transforming the power traces from
the time domain into the frequency domain as suggested by Gebotys [8], has
solved this problem as well.

When applying the pre-processing techniques described above, power-analysis
attacks have been successful if the basic version of the detached power-supply
countermeasure has been activated. As expected in theory, decreasing the
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switching frequency has lowered the side-channel leakage. Using a switching fre-
quency of 100 kHz, which equals to an integration over about 36 clock cycles
of the smart card’s power consumption, has led to a maximum ρ of 0.1 for the
correct hypothesis. Selecting 36kHz, which is the lowest possible switching fre-
quency for our setup equaling to an integration over 100 clock cycles, has resulted
in a maximum ρ of 0.04. According to (1), approximately 2 800 measurements
are necessary on average for an attack when integrating over 36 clock cycles and
more than 17 200 measurements if integrating over 100 clock cycles.

A side-channel leakage that is not decreased by lowering the switching fre-
quency could be the indicator for inadequate analog switches. We have observed
for example that analog switches with an insufficiently large isolation resistance
at higher frequencies make the detached power-supply countermeasure useless.
Data dependencies modulated on harmonics of the smart card’s clock frequency
pass the analog switches more or less unhampered. Hence, the choice of suitable
switches is essential.

4.2 Results of the Enhanced Version of the Detached Power Supply

Evaluating the efficiency of the enhanced version of the detached power supply is
of much more interest. As a vulnerability to power analysis of the basic version is
already stated in theory, it is not so for the enhanced version. The microcontroller
that is responsible for activating the analog switches of the detached power
supply has been configured such that an additional discharge phase of 10 clock
cycles is introduced. During this phase, one of the two capacitors is further
discharged to a fixed voltage level before reconnecting to the power supply to
get rid of the remaining side-channel leakage.

Two switching frequencies have been examined, 100kHz and 36kHz. By ap-
plying the same pre-processing and analysis techniques as described in Sec-
tion 4.1, a maximum correlation coefficient ρ of 0.022 has been obtained for
a switching frequency of 100kHz. According to (1), this corresponds to 57 100
measurements needed for a successful attack with high probability. Figure 6
shows the correlation coefficient as function of the number of measurements.
The correct hypothesis is printed in black, incorrect hypotheses are printed in
gray. Compared to the basic version of the detached power supply using the
same switching frequency, the maximum correlation coefficient is reduced from
0.1 to 0.022 and the number of needed power traces is increased from 2800 to
57 100. A certain vulnerability to side-channel analysis is still present. However,
when decreasing the switching frequency from 100kHz to 36 kHz, the maximum-
achievable correlation coefficient is lowered as well. We have limited the number
of measurements per experiment to 100 000 and therefore have not been able to
perform a successful attack on the smart card when using a switching frequency
of 36 kHz.

The remaining side-channel leakage is explained with the non-ideal properties
of the analog switches. In contrast to ideal switches whose resistance is assumed
to be zero when activated, our analog switches have a maximum on resistance
RON of about 10Ω. This resistance acts in series to the capacitor during the
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Fig. 6. Correlation coefficient as a func-
tion of the number of measurements for the
enhanced version of the detached power
supply using a switching frequency of
100 kHz
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discharge phase. Consequently, the discharge speed of the capacitor is limited by
the time constant τ which is the product of RON and the value of the capacitor.
The time constant indicates the time required to discharge a capacitor to about
37% of its initial charge. A shorter time constant is achieved by selecting more
appropriate switches with lower RON or by using smaller capacitors.

We have verified the influence of RON by performing simulations with a com-
puter program that is intended for analyzing the behavior of electronic circuits.
In the simulations, two identical capacitors, one charged to 4.0V and the other
to 3.9V, are discharged over a 10Ω resistor to a constant voltage of 3.3V. The
discharge time is selected to be equal to an interval of 10 clock cycles of our smart
card. After discharging the capacitors, one capacitor has a remaining voltage of
3.352V and the other of 3.344V. Hence, the initial voltage difference of 100mV
has not completely disappeared, but has been reduced to 8mV. This clarifies that
even under ideal conditions as they can be found in the simulation, a non-zero
RON has a noticeable effect.

Besides the influence of the RON of real switches, there is another aspect
that needs to be considered when using the detached power supply to protect a
cryptographic device against power analysis. As already mentioned in [22], data-
dependent information can not only leak through the power line of a device but
also through its I/O pins. We have measured the voltage variations at the I/O
pin of our smart card while encrypting data to evaluate whether such attacks
pose a threat or not. The deployed smart card operates conform to the ISO 7816
standard [12] and uses one pin for serially receiving and transmitting data in a
half-duplex mode. During the processing of data, the smart card keeps its I/O
pin in high-impedance mode (tri-state). We have detected rather strong data-
dependent leakage at the smart card’s I/O pin, regardless whether the detached
power supply has been activated or not. A maximum correlation coefficient ρ of
about 0.15 has been obtained by only measuring the voltage variations at the
I/O pin and by consecutively applying a DPA attack.
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5 A Suggestion for Preventing Side-Channel Leakage at
Output Pins

As the results of the previous section illustrate, decorrelating the power con-
sumption of a device alone is not enough. Due to coupling effects on the chip,
data-dependent information can also leak by the device’s I/O pins. An example
for such coupling effects is crosstalk, where the switching activity of one wire
influences the signal of neighboring wires [13]. There exist various techniques for
minimizing crosstalk like reducing the wire lengths, and increasing the distance
between critical signal wires or introducing additional ground planes between
them. This measures need to be applied during the chip-design phase and prob-
ably increase the design complexity and the resulting chip size. In addition, with
shrinking CMOS technology the impact of the crosstalk effect is increased [25].

The digital circuit of UHF tags requires at least one output pin which con-
trols a so-called backscatter circuit that is used to transmit data to the reader.
This backscatter circuit is connected in parallel to the antenna and varies the
power consumption of the tag which in turn influences the power reflected by
the antenna. In contrast to the parasitic backscatter, this is an intended effect.
Consequently, side-channel leakage coupled into the output pin can propagate
through the backscatter circuit to the tag’s antenna. As proposed in [22], the
most obvious solution to avoid the side-channel leakage is to temporarily dis-
connect or to ground the output pin during the execution of cryptographic op-
erations. However, this is not possible if the tag needs to transmit data and to
execute cryptographic operations in parallel.

A decoupling principle similar to the detached power-supply approach can be
applied to address the side-channel leakage at the digital circuit’s output pin.
By using the output-decoupling principle shown in Figure 7, data present at the
output pin of the digital circuit is transmitted to the backscatter circuit without
direct physical connection at any time. Figure 7 also illustrates how to combine
the detached power supply and the decoupling principle to protect passive UHF
tags. The components required for the decoupling of the output are the switches
S1 and S2, the capacitors C1 and C2, and a Schmitt trigger T1. In a first phase,
S2 is opened and S1 is closed. This causes C1 to be charged to the voltage at
the output pin of the digital circuit. The voltage across C2 is buffered by the
Schmitt trigger and converted to a distinct digital voltage level at its output. In
a second phase, which is rather short in time, S1 is opened and S2 is closed. Since
the value of C2 is much smaller than that of C1, the resulting voltage across the
parallel connection of the two capacitors is approximately equal to the initial
voltage across C1. After the second phase, the cycle is completed and continues
from the beginning. The duration of a cycle defines the maximum-achievable
data rate and needs to be selected properly to meet the requirements of the
application.

In terms of additional hardware costs, the decoupling of the output pin is
rather cheap. The size of the capacitors and the switches can be kept small
because of the low currents, and the Schmitt trigger only requires a handful of
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additional transistors. Another advantage of this approach is its simplicity. No
extensive redesign of the tag chip is required to address potential coupling effects
at the output pin of the digital circuit.

6 Discussing the Costs of Integrating the Detached
Power Supply into Passive UHF Tags

Integrating the detached power supply into passive UHF tags introduces ad-
ditional costs in terms of chip size and power consumption that need to be
considered. The low power consumption of passive UHF tags, which is typically
in the range of some microamperes, allows to deploy small capacitors for the
detached power supply. For a rough estimation of the required capacitor size, we
have taken the experimental results from [15], describing the digital circuit of
a passive UHF tag with an integrated AES module. As stated by the authors,
their implementation on a 0.18μm CMOS process has a power consumption of
about 2.6μA at a supply voltage of 1.8V. The clock frequency of the AES mod-
ule is around 420 kHz. When integrating over 100 clock cycles and allowing the
capacitors to be discharged to a voltage of 1V, each of the two capacitors for the
detached power supply needs to have a value of at least 0.78nF. Although ca-
pacitors in the size of 1 nF are not unusual for current UHF tags [4], integrating
another two capacitors of that size directly into the chip of a tag could be too
costly. On-chip capacitors have the advantage that it is more difficult for an at-
tacker to manipulate them. However, in order to protect the tags from parasitic
backscatter attacks, which are conducted remotely and without modification of
the tag, cheaper external capacitors can be deployed as well.

Another important aspect for passive UHF tags is the increased power con-
sumption caused by the detached power supply. Real switches have an on resis-
tance that is different from zero and charging a capacitor always results in extra
thermal power loss. When using the enhanced version of the detached power
supply, the power loss is further increased due to the additional discharge phase
of the capacitors. Generally, the power loss of a switched-capacitor circuit is
proportional to its output current and inversely proportional to the switching
frequency and the size of the capacitors [18]. Consequently, the power loss intro-
duced by the detached power supply is reduced when selecting larger capacitors,
increasing the switching frequency, and using a device with low power consump-
tion. The requirement to utilize high switching frequencies conflicts with the
results in Section 4, which illustrate that the switching frequency needs to be
lowered to obtain a better resistance against power analysis. For the example
of the passive UHF tag with the integrated AES module mentioned before, we
have calculated a power loss of approximately 22% when integrating over 100
clock cycles. There is a square-root relation between the power consumption of
the tag and the maximum read range [3]. Doubling the power consumption of
the tag results in a read range that is decreased by a factor of

√
2. Hence, a

power loss of 22% reduces the read range by a factor of 1.13.
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7 Conclusion

In this work, we have evaluated the effectiveness of the detached power-supply
countermeasure to prevent power analysis and discussed its suitability for pro-
tecting passive UHF tags from parasitic-backscatter attacks. It is the first article
that presents concrete results about the efficiency of this countermeasure with
respect to side-channel analysis. DPA attacks have been applied to a smart card
protected with a basic version of the detached power supply and an enhanced
version that uses an additional discharge phase. Due to the non-ideal properties
of the deployed analog switches, even the enhanced version shows a susceptibil-
ity to power analysis. Moreover, we have depicted that the side-channel leakage
of I/O pins poses a serious problem when utilizing the detached power supply.
In order to address this issue, a simple decoupling principle for output pins has
been presented. Additionally, we provided an estimation concerning the required
capacitor size and the power-consumption overhead introduced by integrating
the detached power supply into a passive UHF tag.

We conclude that the detached power supply significantly reduces the side-
channel leakage in the power consumption of a cryptographic device, if the inte-
gration interval is sufficiently long and the utilized analog switches have adequate
properties. Using this countermeasure to protect passive UHF tags from para-
sitic backscatter attacks is feasible. However, longer integration intervals also
increase the power loss caused by the detached power supply. A higher power
loss results in reduced read ranges of the tags. Combining the detached power
supply with other countermeasures, for example on algorithmic level, is indis-
pensable if more sophisticated attacks need to be prevented as well. Such attacks
involve manipulating the capacitors and measuring the direct emissions close to
the tag chip.
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Abstract. Fault Analysis is a powerful cryptanalytic technique that en-
ables to break cryptographic implementations embedded in portable de-
vices more efficiently than any other technique. For an RSA implemented
with the Chinese Remainder Theorem method, one faulty execution suf-
fices to factorize the public modulus and fully recover the private key.
It is therefore mandatory to protect embedded implementations of RSA
against fault analysis.

This paper provides a new countermeasure against fault analysis for
exponentiation and RSA. It consists in a self-secure exponentiation algo-
rithm, namely an exponentiation algorithm that provides a direct way to
check the result coherence. An RSA implemented with our solution hence
avoids the use of an extended modulus (which slows down the computa-
tion) as in several other countermeasures. Moreover, our exponentiation
algorithm involves 1.65 multiplications per bit of the exponent which is
significantly less than the 2 required by other self-secure exponentiations.

1 Introduction

The physical cryptanalysis gathers different cryptanalytic techniques taking ad-
vantage of the physical properties of cryptographic implementations. Among
these, one mainly identifies side channel analysis [27,26] that physically ob-
serves cryptographic computations and fault analysis [8,6] that physically dis-
turbs them. The latter consists in exploiting the faulty outputs resulting from
erroneous computations in order to retrieve information on the secret key. Fault
analysis has been introduced first against RSA and other public key schemes [8]
and then against DES [6]. Several works followed that improved fault analysis
and generalized it to other algorithms.

A straightforward way to protect any algorithm against fault analysis is by
performing twice the computation and by checking that the same result is ob-
tained. In case of inconsistency, an error message is returned thus preventing the
exposure of the faulty result. A variant consists in verifying an encryption by
a decryption (or vice versa). These countermeasures are suitable for fast algo-
rithms such as block ciphers, but when a public key cryptosystem such as RSA
must be implemented, a doubling of the execution time becomes prohibitive.
That is why, securing RSA against fault analysis constitutes a challenging issue

M. Fischlin (Ed.): CT-RSA 2009, LNCS 5473, pp. 459–480, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



460 M. Rivain

of embedded cryptography. Several methods have been proposed so far but the
number of secure and practical solutions is still quite restricted.

In this paper, we provide a new countermeasure against fault analysis for ex-
ponentiation and RSA that constitutes an efficient alternative to the existing
solutions. First we introduce preliminaries about RSA, fault analysis and the
existing countermeasures (Sect. 2). Then we describe our self-secure exponentia-
tion algorithm (Sect. 3) and the resulting secure RSA-CRT algorithm (Sect. 4).
Afterward we analyze the security of our solution (Sect. 5) and we address its
resistance vs side channel analysis (Sect. 6). Finally, we give an analysis of the
time and memory complexities of our solution and we compare them to previous
solutions in the literature (Sect. 7).

2 RSA and Fault Analysis

2.1 The RSA Cryptosystem

RSA is nowadays the most widely used public key cryptosystem [33]. An RSA
public key is composed of a public modulus N which is the product of two large
secret primes p and q and of a public exponent e which is co-prime with the
Euler’s totient of N namely ϕ(N) = (p − 1) · (q − 1). The corresponding RSA
private key is composed of the public modulus N and the secret exponent d that
is defined as the inverse of e modulo ϕ(N).

An RSA signature (or deciphering) s of a message m < N is obtained by
computing: s = md mod N . The signature verification (or message ciphering) is
the inverse operation that can be performed publicly since, according to Euler’s
Theorem, we have: m = se mod N .

For efficient implementation of RSA, one makes often use of the Chinese
Remainder Theorem (CRT). This theorem implies that md mod N can be com-
puted from md mod p and md mod q. The RSA-CRT hence consists in perform-
ing the two following exponentiations: sp = mdp mod p and sq = mdq mod q,
where dp = d mod (p− 1) and dq = d mod (q − 1). By Fermat’s little Theorem,
we have sp = md mod p and sq = md mod q. Therefore, once sp and sq have been
computed, s can be recovered from sp and sq by applying a so-called recombina-
tion step: s = CRT(sp, sq). Two methods exist for CRT recombination: the one
from Gauss and the one from Garner. The less memory consuming is the Gar-
ner’s recombination that is defined as CRT(sp, sq) = sq +q ·

(
iq ·(sp−sq) mod p),

where iq = q−1 mod p. The whole RSA-CRT is around 4 times faster than the
straightforward RSA which makes its use very common, especially in the context
of low resource devices were computation time is often critical.

2.2 Fault Analysis against RSA

The most powerful fault attack against RSA is known as the Bellcore attack
[8] that targets a CRT implementation. It consists in corrupting one of the two
CRT exponentiations, say the one modulo p. The RSA computation thus results
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in a faulty signature s̃ that is correct modulo q (i.e. s̃ ≡ s mod q) and corrupted
modulo p (i.e. s̃ �≡ s mod p). This implies that the difference s̃− s is a multiple
of q but is not a multiple of p, and hence we have gcd(s̃−s,N) = q. Therefore, a
pair signature/faulty signature provides a way to factorize N and consequently
to fully break RSA. Actually, a pair message/faulty signature suffices to mount
the attack since we have gcd(s̃e −m,N) = q [22]. This way, RSA is broken with
a single faulty computation.

RSA implemented in straightforward mode (i.e. without CRT) is also vulner-
able to fault analysis. Several attacks have been published that assume either
a faulty exponent [3], a faulty modulus [5,12,35] or a faulty intermediate power
[8,9,34]. These attacks require several faulty signatures to fully recover the key
but still constitute practical threats.

Another kind of fault attacks known as safe-error attacks can be distinguished
from the ones addressed above. Depending on the algorithm, a fault injection
may have no effect for some secret key values and may cause a corruption for
others. In that case, simply observing wether the computation was corrupted or
not reveals information on the secret key. Such attacks are especially threatening
since they bypass classical fault analysis countermeasures that return an error in
case of fault detection. Among these attacks, two categories can be distinguished:
the C-safe-error attacks [41] that target dummy operations and the M-safe-error
attacks that target registers allocations [40,24]. Our countermeasure provides
an error detection mechanism and does not aim to thwart safe-error attacks.
However, as discussed in Sect. 5.2, these last can be simply prevented.

Securing RSA Against Fault Analysis. A simple way to protect RSA against
fault analysis is by verifying the signature s before returning it, namely by per-
forming the following check: m ?= se mod N . This method offers a perfect secu-
rity against differential fault analysis since a faulty signature is systematically de-
tected. This countermeasure is efficient as long as e is small, but in the opposite
case, it implies to perform two exponentiations which doubles the time complexity
of RSA. This overhead is clearly prohibitive in the context of low resource devices.
Moreover, depending on the context, the public exponent e may not be available
(e.g. the Javacard API for RSA signature [37]). That is why, many works in the
last decade have been dedicated to the search of alternative solutions. We review
hereafter the main proposals that can be divided into two families: the extended
modulus based countermeasures and the self-secure exponentiations.

2.3 Extended Modulus Based Countermeasures

We present hereafter different countermeasures that all rely on the use of an
extended modulus in order to add redundancy in the computation.

Shamir’s Trick and Variants. A first solution to protect RSA with CRT has
been proposed by Shamir [36]. It consists in performing the two CRT exponen-
tiations with extended moduli p · t and q · t where t is a small integer. Namely,
one computes s∗p = md mod ϕ(p·t) mod p · t and s∗q = md mod ϕ(q·t) mod q · t. The
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consistency of the computation is then checked by verifying that s∗p mod t equals
s∗q mod t. If no error is detected, the algorithm returns CRT(s∗p mod p, s∗q mod q).
Under its simplest form, this countermeasure does not protect the CRT recom-
bination which enables a successful fault attack [2]. Several works have proposed
variants of Shamir’s countermeasure in order to deal with this issue [2,7,14].

Vigilant Scheme. In [38], Vigilant proposed another countermeasure based on
a modulus extension. The modulus is multiplied by t = r2 for a small random
number r. The message is then formatted as follows: m̂ = αm+β ·(1+r) mod Nt
where (α, β) is the unique solution in {1, · · · , Nt}2 of the system α ≡ 1 mod N ,
α ≡ 0 mod t, β ≡ 0 mod N and β ≡ 1 mod t. Then, the exponentiation sr =
m̂d mod Nt is performed. As shown in [38], sr equals αmd + β · (1 + dr) mod Nt.
Therefore, the signature can be recovered from sr since it satisfies s = sr mod
N and the consistency of the computation can be verified by checking sr ≡ 1 +
dr mod t. This method can be extended to protect RSA-CRT (see [38] for details).

Security Considerations. The security of an extended modulus based counter-
measure is not perfect. For instance, if a faulty message m̃ satisfies m̃ ≡ m mod t
and m̃ �≡ m mod N , then the exponentiation of this message results in a faulty
signature that is not detected. The non-detection probability of an extended
modulus based countermeasure is roughly about 2−k where k denotes the bit-
length of the modulus extension t. Therefore, the greater k, the more secure the
countermeasure. However, the greater k, the slower the exponentiation (see Sect.
7.3). This kind of countermeasure hence offers a time/security tradeoff. A usual
choice for k is 64 bits which provides a fair security. However, depending on the
application, one may choose k = 32 (low security, more efficient exponentiation)
or k = 80 (strong security, less efficient exponentiation).

2.4 Self-secure Exponentiations

For the countermeasures presented hereafter, the redundancy is not included in
the modular operations anymore but at the exponentiation level. Namely, the
exponentiation algorithm provides a direct way to check the consistency of the
computation.

Giraud Scheme. The Giraud Scheme [18] relies on the use of the Montgomery
powering ladder. It uses the fact that this exponentiation algorithm works with
a pair of intermediate variables (a0, a1) storing values of the form (mα,mα+1).
At the end of the exponentiation the pair (a0, a1) equals (md−1,md) and the
consistency of the computation can be verified by checking wether a0 ·m equals
a1. If a fault is injected during the computation, the coherence between a0 and
a1 is lost and the fault is detected by the final check.

Boscher et al. Scheme. The scheme by Boscher et al. [10] is based on the right-
to-left square-and-multiply-always algorithm [15] which was originally devoted to
thwart simple side channel analysis (see Sect. 6.1). In [10], the authors observe
that this algorithm computes a triplet (a0, a1, a2) that equals (md,m2l−d−1,m2l

)
at the end of the algorithm, where l denotes the bit-length of d. The principle
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of their countermeasure is hence to check that a0 · a1 ·m equals a2 at the end of
the exponentiation. Once again, in case of fault injection, the relation between
the ai’s is broken and the fault is detected by the final check.

The main drawback of these two countermeasures is that they both impose
the use of an exponentiation algorithm that performs 2 modular multiplications
per bit of the exponent while other exponentiation algorithms require an average
of 1.5 multiplications per bit of the exponent (and sometimes less).

In the next section, we propose a new self-secure exponentiation. Our method
requires around 1.65 multiplications per bit of the exponent in average and hence
constitutes an efficient alternative to the existing countermeasures.

3 A New Self-secure Exponentiation Based on Double
Addition Chains

3.1 Basic Principle

In the following, we shall call double exponentiation an algorithm taking as inputs
an element m and a pair of exponents (a, b), and computing the pair of powers
(ma,mb).

The core idea of our method is to process a double exponentiation to compute
the pair (md,mϕ(N)−d) modulo N . Then, the consistency of the computation is
verified by performing the following check:

md ·mϕ(N)−d ?≡ 1 mod N . (1)

If no error occurs during the computation then, due to Euler’s Theorem, this
check is positive. In that case, the algorithm returns md mod N . On the other
hand, if the computation is corrupted, then the result of this check is negative
with high probability. In that case, the algorithm returns an error message.

In order to construct a self-secure exponentiation based on aforementioned
principle, we need a double exponentiation algorithm. We propose hereafter such
an algorithm that is well suited for implementation constrained in memory. Our
solution is based on the building of an addition chain. This notion, as well as
the ensued notion of addition chain exponentiation are briefly introduced in the
next section (see [25] for more details).

3.2 Addition Chain Exponentiations

At first, we give the definition of an addition chain.

Definition 1. An addition chain for an integer a is a sequence x0, x1, · · · , xn

with x0 = 1 and xn = a that satisfies the following property: for every k there
exist indices i, j < k such that xk = xi + xj.

An addition chain (xi)i for an integer a provides a way to evaluate any element
m to the power a. Let m0 = m. For k from 1 to n, one computes mk = mi ·mj
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where i, j < k are such that xk = xi + xj . By induction, the sequence (mk)k

satisfies: mk = mxk for every k ≤ n which leads to mn = mxn = ma. Such
an addition chain exponentiation may require an important amount of memory
to store the intermediate powers required for the computation of subsequent
powers. This can make the exponentiation unpractical, especially in the context
of low resource devices. Therefore, the minimum number of variables required to
store the intermediate powers is an important parameter of the addition chain
exponentiation. This parameter that directly results from the addition chain will
be called the memory depth of the chain in the following.

In this paper, an addition chain x0, x1, · · · , xn with (xn−1, xn) = (a, b) is
called a double addition chain for the pair (a, b). A double addition chain for a
pair (a, b) provides a way to perform the double exponentiation m "→ (ma,mb)
for any element m.

Remark 1. What we call here double exponentiation shall not be confused with
multi-exponentiations (also known as simultaneous exponentiations) that com-
pute a product of powers

∏
i m

ai

i (see for instance [32]). What we call double
addition chain is also called addition sequence in the general case where possibly
more than two powers must be computed [11,19]. Addition sequences have not
been so much investigated. In [11], the authors propose some heuristics but these
are not suitable for implementations constrained in memory.

3.3 A Heuristic for Double Addition Chains

In this section, we propose a heuristic to compute a double addition chain with
a memory depth of 3 for any pair of natural integers (a, b). This provides us
with a double exponentiation algorithm that is well suited for implementations
constrained in memory.

Without loss of generality, we assume a ≤ b. The chain involves a pair of
intermediate results (ai, bi) that are initialized to (0, 1) and that equal (a, b)
once all the additions have been performed. In order to have a memory depth of
3, one single additional variable is used that keeps the value 1 (this amounts to
keep the element m in a register for the resulting exponentiation). Therefore, at
the ith step of the chain, one can either increment ai or bi by 1, double ai or bi,
or add ai and bi together.

To construct such a chain, we start from the pair (a, b) and go down to the pair
(0, 1) by applying the inverse operations. Namely, we define a sequence (αi, βi)i

such that (α0, β0) = (a, b) and (αn, βn) = (0, 1) for some n ∈ N, and where,
for every i, the pair (αi+1, βi+1) is obtained from (αi, βi) by decrementing, by
dividing by two and/or by subtracting an element to the other one. In order to
limit the memory required to the storage of the chain, we have to restrict the
set of possible operations. Our heuristic is the following one:

(αi+1, βi+1) =

⎧⎨⎩
(
αi, βi/2

)
if αi ≤ βi/2 and βi mod 2 = 0(

αi, (βi − 1)/2
)

if αi ≤ βi/2 and βi mod 2 = 1(
βi − αi, αi

)
if αi > βi/2

(2)
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Proposition 1. If α0, β0 ∈ N∗ are such that α0 ≤ β0 then the sequence (αi, βi)i

satisfies the following properties:

1. For every i, we have αi ≤ βi.
2. There exists n ∈ N such that (αn, βn) = (0, 1).

Proof. The first property is straightforward: it is true for i = 0 and it is preserved
by every step. The second one is demonstrated as follows. For every i such that
αi > 0, we have αi+1 ≤ βi+1 ≤ βi and αi+1 + βi+1 < αi + βi. This implies
that there exists n′ ∈ N such that αn′ > 0 and αn′+1 ≤ 0. From (2), one
deduces αn′ = βn′ > 0 and αn′+1 = 0. Denoting x the natural integer such that
(αn′+1, βn′+1) = (0, x), we finally get (αn′+�log x�, βn′+�log x�) = (0, 1). �

At this point, we need a binary representation for the sequence of additions
to perform for the processing of the sequence (ai, bi)i. Let us denote by n the
natural integer satisfying (αn, βn) = (0, 1). We define τ and ν as the n-bit vectors
whose coordinates satisfy:

τi =
{

0 if αn−i ≤ βn−i/2
1 if αn−i > βn−i/2

(3)

and
νi = βn−i mod 2 . (4)

The sequence (ai, bi)i can be computed from τ and ν by initializing (a0, b0)
to (0, 1) and by iterating:

(ai+1, bi+1) =

⎧⎨⎩
(ai, 2bi) if τi+1 = 0 and νi+1 = 0
(ai, 2bi + 1) if τi+1 = 0 and νi+1 = 1
(bi, ai + bi) if τi+1 = 1

One can verify that (ai, bi)=(αn−i, βn−i) holds for every i which yields (an, bn)=
(a, b).

Let us remark that the whole sequence ν is not necessary for processing this
addition chain (and the resulting exponentiation). Indeed, only the bits νi for
which τi equals 0 are required. Therefore, the exponentiation algorithm shall
make use of a single compressed sequence ω in order to avoid memory loss. We
simply define ω as the sequence obtained from τ by inserting every bit νi for
which τi = 0 between τi and τi+1. In the sequel, we shall denote by n∗ the
bit-length of ω. Moreover, when we will need to make appear the relationship
between the pair (a, b) and ω, we will use the notation ω(a, b).

The sequence ω(a, b) thus constitutes the binary representation of the double
addition chain for the pair of exponents (a, b). To process the relying double
exponentiation one must pre-compute ω. This is done by computing the pair
(αi, βi) for every i ∈ {1, · · · , n}. The following algorithm details such a com-
putation. It makes use of two registers R0 and R1 that store the intermediate
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results αi and βi. It makes also use of a Boolean variable γ such that αi is stored
in Rγ⊕1 and βi is stored in Rγ .

Algorithm 1. Double addition chain computation – ChainCompute
Input: A pair of natural integers (a, b) s.t. a ≤ b
Output: The chain ω(a, b)

1. R0 ← a; R1 ← b; γ ← 1; j ← n∗

2. while (Rγ⊕1, Rγ) 	= (0, 1) do

3. if (Rγ/2 > Rγ⊕1)
4. then ωj−1 ← 0; ωj ← Rγ mod 2; Rγ ← Rγ/2; j ← j − 2
5. else ωj ← 1; Rγ ← Rγ − Rγ⊕1; γ ← γ ⊕ 1; j ← j − 1
6. end while

7. return ω

Remark 2. The length n∗ is a priori unknown before the computation of the
chain. However, as shown in Sect. 7.2, it is upper bounded by 2.2�log b (with
high probability). For a practical implementation of Algorithm 1, one may use
a buffer of 2.2�log b bits to store ω, initializing j by the final bit index of this
buffer.

The following algorithm describes the resulting double modular exponentiation
algorithm. It makes use of two registers R0 and R1 that store the intermediate
results mai and mbi and one more register to hold m. It makes also use of a
Boolean variable γ such that mai is stored in Rγ⊕1 and mbi is stored in Rγ .

Algorithm 2. Double modular exponentiation – DoubleExp
Input: An element m ∈ ZN , a chain ω(a, b) s.t. a ≤ b, a modulus N
Output: The pair of modular powers (ma mod N, mb mod N)

1. R0 ← 1; R1 ← m; γ ← 1
2. for i = 1 to n∗ do

3. if (ωi = 0) then

4. Rγ ← R2
γ mod N ; i ← i + 1

5. if (ωi = 1) then Rγ ← Rγ · m mod N

6. if (ωi = 1) then

7. Rγ⊕1 ← Rγ⊕1 · Rγ mod N ; γ ← γ ⊕ 1
8. end for

9. return (Rγ⊕1, Rγ)

3.4 The Secure Exponentiation Algorithm

Following the principle described in Sect. 3.1, Algorithm 2 provides a way to
perform a modular exponentiation secure against fault analysis. The resulting
secure modular exponentiation is depicted in the following algorithm.
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Algorithm 3. Secure modular exponentiation
Input: A message m, a secret exponent d, a modulus N and its Euler’s totient ϕ(N)
Output: The modular power md mod N

1. ω ← ChainCompute
(
d, 2ϕ(N) − d

)
2. (s, c) ← DoubleExp

(
m, ω, N

)
3. if s · c mod N 	= 1 then return “error”; else return s

Remark 3. For the chain computation (Step 1), ϕ(N)−d is replaced by 2ϕ(N)−d
in order to fit the constraint a ≤ b imposed by the chain computation algorithm.
This does not affect the result of the double exponentiation in Step 2 since we
have mϕ(N)−d ≡ m2ϕ(N)−d mod N .

4 A New Secure RSA-CRT Algorithm

For an RSA computation, the secure modular exponentiation proposed above
can be extended to be performed in CRT mode. Two double exponentiations are
performed separately in order to compute the pairs (sp, cp) and (sq, cq) where
cp = mp−1−dp mod p and cq = mq−1−dq mod q. Then the signature s is recovered
from sp and sq by CRT recombination and its value is checked modulo p (resp.
q) using cp (resp. cq) according to (1).

Algorithm 4. Secure RSA-CRT
Input: A message m, the secret exponents dp and dq, the secret primes p and q
Output: The modular power md mod p · q
1. ωp ← ChainCompute

(
dp, 2(p − 1) − dp)

2. (sp, cp) ← DoubleExp(m mod p, ωp, p)
3. ωq ← ChainCompute

(
dq, 2(q − 1) − dq)

4. (sq, cq) ← DoubleExp(m mod q, ωq, q)
5. s ← CRT(sp, sq)
6. if (s · cp mod p 	= 1 or s · cq mod q 	= 1) then return “error” else return s

Remark 4. We assume that m mod p (resp. m mod q) cannot be corrupted be-
fore the beginning of the double exponentiation. This is mandatory for the se-
curity of Algorithm 4, since such a corruption would not be detected and would
enable the Bellcore attack. In practice, this can be ensure by computing a cyclic
redundancy code for m mod p (resp. m mod q) at the beginning of the RSA-
CRT algorithm. Then, at the beginning of the double exponentiation algorithm,
m mod p (resp. m mod q) is recomputed from m and its integrity is checked once
it has been loaded in two different registers (m and R1 in Algorithm 2). Any
corruption occurring after this check shall be detected by the final check.

Remark 5. The chains ωp and ωq can be either computed on-the-fly as depicted
in Algorithm 4 (Steps 1 and 3) or pre-computed and stored in non-volatile mem-
ory. The first solution has the advantages of preserving the classical RSA-CRT
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parameters and of enabling the exponent blinding countermeasure (see Sect.
6.2). The second solution has the advantage of avoiding the timing and memory
overhead induced by the chain computations.

5 Security against Fault Analysis

In this section, we analyze the security of our method against fault analysis. We
start with two remarks of practical purpose, then we investigate the detection
probability of a fault injection and finally we address safe-error attacks.

Remark 6. In Algorithms 3 and 4, we assume that the integrity of the chain
computation parameters is checked before executing the chain computation al-
gorithm. This avoids any attack that would corrupt d (resp. dp, dq) before the
computation of 2ϕ(N)− d (resp. 2(p− 1)− dp, 2(q − 1)− dq).

Remark 7. Some papers claim that coherence checks using conditional branches
should be avoided to strengthen fault analysis security [42,14]. The argument
behind this assertion is that the coherence check could be easily skipped by cor-
rupting the status register. An alternative solution to direct coherence checking
is to use an infection procedure that renders the erroneous signature harmless in
case of fault detection [42]. However, most of the proposed countermeasures have
security flaws due to ineffective infection methods (for instance [7,14] have been
broken in [39,4]). Moreover, the infection procedure can also be skipped as it has
been practically demonstrated in [23]. In [16], a simple solution is proposed that
performs a coherence check without conditional branches in a way that is secure
against operations skipping. We suggest to use this solution for the coherence
checks performed in Algorithm 3 (Step 3) and Algorithm 4 (Step 6).

5.1 Fault Detection

We analyze hereafter the different fault attacks that can be attempted on our
secure exponentiation algorithm and we investigate the corresponding detection
probability. We only focus on transient faults, namely faults whose effect lasts for
one computation. Permanent fault attacks are easily thwarted by the addition
of some cyclic redundancy codes to check the parameters integrity.

We use the generic notation M to denote the involved modulus that may
equal N (for a straightforward RSA), p or q (for a RSA-CRT) and we denote by
ordM (m) the order of an element m in Z∗

M . When the fault causes the corruption
of an intermediate variable v, we denote the corrupted variable by ṽ and the
error by ε such that ṽ = v + ε. We analyze here the condition about ε for a
non-detection and we bound the probability P of non-detection in the uniform
fault model i.e. assuming that ε is uniformly distributed.

For our analysis, the following lemma shall be useful (see the proof in Ap-
pendix A).
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Lemma 1. Let M be an integer greater than 30. Let m be a random variable
uniformly distributed over Z∗

M and let u be a random variable uniformly dis-
tributed over {1, · · · , ϕ(M)} and independent of m. We have:

P (ordM (m)|u) <
2

M1/3 . (5)

For the sake of simplicity, we approximate hereafter a uniform distribution over
ZM by a uniform distribution over Z∗

M . This approximation is sound in our
context since M is a large prime or an RSA modulus.

Corruption of one of the two exponents. Among the exponents a and b,
one equals d and the other one equals ϕ(M)− d. On the one hand, if ϕ(M)− d
is corrupted, then the result of the exponentiation remains correct (i.e. it equals
md mod M) and the attack failed whatever the result of the final check (which
is however very likely to detect the fault). On the other hand, if d is corrupted,
we show hereafter that the final check will detect the error with high probability.

In fact, the error is not detected if and only if we have md̃ · mϕ(M)−d ≡
1 mod M that is mε ≡ 1 mod M . This occurs if and only if ε is a multiple of
the order of m. Therefore, the probability of non-detection can be expressed as
P = P (ordM (m)|ε). Hence, the lower the order of m, the higher the probability
of non-detection. Since a potential attacker does not know ϕ(M), he cannot
chose m in a way that affect its order. For this reason, m can be considered
uniformly distributed over ZM . Therefore, in the uniform fault model, Lemma
1 implies P < 2/M1/3.

Remark 8. The bound provided by Lemma 1 is not tight at all but it is sufficient
to show that P is negligible. For instance, if M satisfies logM ≥ 244, which is
necessary (but not sufficient) for the security of RSA (even for RSA-CRT where
logN = 2 logM), P is strictly lower than 2−80 which is negligible.

Corruption of the message or an intermediate power. From the defini-
tion of the double addition chain given in Sect. 3.3, one can see that for every
i ∈ {1, · · · , n}, the pair (an, bn) can be expressed as a linear transformation of
the triplet (ai, bi, 1). Let us denote by αa

i , βa
i , δa

i the three coefficients of the
expression of an, namely an = αa

i ai + βa
i bi + δa

i . By analogy, we denote by αb
i ,

βb
i , δ

b
i the coefficients in the expression of bn.

If the message m is corrupted at the ith step of the exponentiation, this last
returns the following pair of powers:

(
ma(m−1 · m̃)δa

i ,mb(m−1 · m̃)δb
i

)
modulo

M . The error is not detected if and only if we have (m−1 · m̃)δa
i +δb

i ≡ 1 mod M ,
that is (1 + ε · m−1)δa

i +δb
i ≡ 1 mod M . This occurs if and only if the order of

m′ = 1 + ε · m−1 divides δa
i + δb

i . Therefore, the probability of non-detection
can be expressed as P = P

(
ordM (m′)|δa

i + δb
i

)
. Following the same reasoning,

a corruption of the intermediate power mai (resp. mbi) is not detected with a
probability P = P

(
ordM (m′)|αa

i + αb
i

)
where m′ = 1 + e · m−ai (resp. P =

P
(
ordM (m′)|βa

i + βb
i

)
where m′ = 1 + ε ·m−bi).
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Since a and b are unknown to the attacker, this one cannot chose the value
of δa

i + δb
i , α

a
i + αb

i or βa
i + βb

i since these directly ensue from a and b. That
is why, we make the heuristic assumption that P equals P (ordM (m′)|u) where
u is uniformly distributed over {1, · · · , ϕ(M)}. In the uniform fault model, we
have the uniformity of m′ that holds from the one-to-one relationship between
ε and m′ for every m �= 0. Consequently, Lemma 1 implies P < 2/M1/3 and p
is negligible.

Corruption of the chain. A faulty chain w̃ results in a faulty pair of powers
(mã,mb̃). The error is not detected if and only if the order of m divides ã + b̃,
hence the non-detection probability can be expressed as P=P

(
ordM (m)|ã + b̃

)
.

As shown in Sect. 7.2, the expected bit-length of the chain ω yielding a pair
of l-bit exponents (a, b) is of 2l. This suggests an almost bijective relationship
between the chains space and the exponents pairs space. In the uniform fault
model, we can therefore consider that ã and b̃ are uniformly distributed which,
by Lemma 1, implies P < 2/M1/3.

Corruption of the modulus. If the modulus M is corrupted at the ith step
of the exponentiation, then this last results in the two following powers: mαa

i
1 ·

m
βa

i
2 · mδa

i mod M̃ and m
αb

i
1 · m

βb
i

2 · mδb
i mod M̃ where m1 = mai mod M and

m2 = mbi mod M . Therefore, the error is not detected if and only if we have
m

αa
i +αb

i
1 ·mβa

i +βb
i

2 ·mδa
i +δb

i mod M̃ = 1.
In the uniform fault model, the faulty modulus M̃ is uniformly distributed

over [0, 2l[ where l denotes the bit-length of M . Therefore, the probability of non-
detection P is close to P (u1 mod u2 = 1) where u1 and u2 are uniform (and in-
dependent) random variables over [0, 2l[. This probability equals 2−l

∑2l−1
i=1 (1/i)

which is strictly lower than 2−80 for every l ≥ 86. The probability of non-
detection P is hence negligible in our context.

5.2 Safe-Error Attacks

As recalled in Sect. 2.2, safe-error attacks divide into two categories: C-safe-error
attacks [41] and M-safe-error attacks [40,24].

To prevent C-safe-error attacks one must ensure that no dummy operation is
conditionally performed depending on the secret key. Our secure exponentiation
does not perform any dummy operation and is hence secure against C-safe-
error attacks. When the chain is computed on-the-fly, it must be done in an
atomic way in order to thwart simple side channel analysis (see Sect. 6.1). The
atomic version of the chain computation algorithm (see Appendix B) makes use
of dummy operations and is hence vulnerable to C-safe-error attacks. In that
case, these can be thwarted by using the exponent blinding countermeasure (see
Sect. 6.2).

To prevent M-safe-error attacks one can either randomize the exponent (using
for instance the exponent blinding) or randomize the indices of the registers that
are addressed by some exponent bits (or chain bits in our context). When the
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chain is pre-computed, the exponent cannot be randomized and the registers
indices randomization introduced hereafter shall be used. The principle is to
randomly chose the registers to store the different variables among the different
used registers. For instance, in Algorithm 1, a random bit r is picked up so that
the registers R0 and R1 are switched if r equals 1. In the description of Algorithm
1 this amounts to replace Rγ by Rγ⊕r. In this way, a M-safe-error attack will
imply a faulty output once out of two, independently of the performed operation.
This simple countermeasure thwarts the attacks recently published in [24].

6 Toward Side Channel Analysis Resistance

In this section, we address the resistance of our exponentiation algorithm against
the two main kinds of side channel analysis (SCA): simple SCA and differential
SCA.

6.1 Simple Side Channel Analysis

Simple SCA [26] exploits the fact that the operation flow of a cryptographic al-
gorithm may depend on the secret key. Different operations may induce different
patterns in the side channel leakage which provides secret information to any
attacker able to eavesdrop this leakage. To thwart simple SCA, an algorithm
must be atomic [13], namely, it must have the same operation flow whatever the
secret key.

The chain computation algorithm (Algorithm 2) and the double exponentia-
tion algorithm (Algorithm 1) may be vulnerable to simple SCA. To circumvent
this weakness, we provide atomic versions of these algorithms in Appendix B.

6.2 Differential Side Channel Analysis

Differential SCA [26] exploits the fact that the side channel leakage reveals in-
formation about some key-dependent intermediate variables of the computation.
Since its first publication, several improvements of differential SCA have been
proposed, especially to attack modular exponentiation [1,17,20,30]. In order to
thwart differential SCA, one usually makes use of randomization techniques.
The message randomization as well as the modulus randomization are usual
countermeasures that can be straightforwardly combined with our method. The
exponent is usually randomized using the blinding technique that consists in
performing the exponentiation to the power d′ = d + r · ϕ(N) for a small ran-
dom number r [27,30,15]. This technique cannot be straightforwardly applied
while using our secure exponentiation algorithm since we have d′ > ϕ(N) for
every r > 0. Therefore, we propose the following simple adaptation: in Step
1 of Algorithm 3, the exponent a is set to d + r1 · ϕ(N) and the exponent b
is set to r2 · ϕ(N) − d where r1 and r2 are two small random numbers with
r2 ≥ r1 + 2. Then the rest of the secure exponentiation algorithm does not
change. Since md+r1·ϕ(N) ≡ md mod N , the desired signature is computed and
since md+r1·ϕ(N) ·mr2·ϕ(N)−d ≡ 1 mod N , the final check is correctly carried out.
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Remark 9. If the chain ω is pre-computed, the exponent blinding cannot be used.
In that case, another kind of randomization (message, modulus) shall be used.
However, these do not prevent a differential SCA targeting the chain itself (as
for instance the SEMD attack of [30] or the address-bit DPA [20]). To deal with
this issue, we suggest to use a Boolean masking such as proposed in [21].

7 Complexity Analysis

In this section we analyze the time complexity and the memory complexity of our
proposal. In the sequel, we shall denote by l the bit-length of the exponentiation
inputs. Namely for a straightforward RSA we have l = �logN and for a RSA-
CRT we have l = �logN/2.

7.1 Time Complexity

Our secure exponentiation is mainly composed of the chain computation and the
double exponentiation. The chain computation loop is shorter than the expo-
nentiation loop and it involves simple operations (e.g. substraction, division by
2) whose time complexities are negligible compared to a modular multiplication.
Therefore, the time complexity of our proposal mainly depends on the number
of multiplications performed by the double exponentiation algorithm (all the
more so as the chain may be pre-computed). We shall denote this number by m
and we shall define the multiplications-per-bit ratio as the coefficient θ satisfying
m = θl.

Some practical values for the expectation and the standard deviation of θ are
given in Table 7.1 that were obtained by simulations. For l ∈ {512, · · · , 1024},
the expected multiplications-per-bit ratio is around 1.65. Compared to the clas-
sical square-and-multiply algorithm, our exponentiation hence requires 10% more
multiplications, implying a 10% overhead in average, which is a fair cost for fault
analysis resistance. Moreover, the time complexity of our exponentiation is stead-
ier than the one of the square-and-multiply since the standard deviation σ (θ)
is lower than 1/5 and decreasing for l ≥ 512 while, for the square-and-multiply
algorithm, it is constant to 1/4.

7.2 Memory Complexity

Our double exponentiation algorithm requires three l-bit registers to store the
message and the pair of powers. If the chain ω is computed on-the-fly, it requires
an additional buffer is necessary to store it.

Table 1. Expectation and standard deviation of the double exponentiation
multiplications-per-bit ratio

l = 512 l = 640 l = 768 l = 896 l = 1024
E (θ) 1.65 1.66 1.66 1.66 1.66
σ (θ) 0.020 0.017 0.017 0.016 0.014
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Table 2. Standard deviation of the chain bit-length

l = 512 l = 640 l = 768 l = 896 l = 1024
σ (n∗) 0.015 l 0.013 l 0.011 l 0.010 l 0.010 l

We performed simulations to derive the practical values of the expectation
and the standard deviation of the chain length n∗. For the expectation, we
obtained E (n∗) ≈ 2.03 l for l ∈ {512, · · · , 1024}. For the standard deviation,
the obtained values are summarized in Table 2. Approximating the distribution
of n∗ by a Gaussian, we get P (n∗ > E (n∗) + kσ (n∗)) =

(
1 − erf

(
k/
√

2
))
/2

where erf(·) denotes the error function. For k = 10 and for l ∈ {512, · · · , 1024},
this probability is lower than 2−80. Consequently, for l ∈ {512, · · · , 1024}, the
probability to have n∗ > 2.2 l is negligible in practice, hence ω can be stored in
a (2.2 l)-bit buffer.

On the whole, our secure exponentiation requires 5.2 l bits of memory when
the chain is computed on-the-fly and it requires 3 l bits of memory when the
chain is pre-computed.

For our secure RSA-CRT (see Algorithm 4), the peak of memory consumption
is reached in the second exponentiation while sp and cp must be kept in memory.
This makes a total memory consumption of 7.2 l bits with on-the-fly chain
computation and of 5 l bits with pre-computed chain.

7.3 Comparison with Previous Solutions

We analyze hereafter the complexity of previous countermeasures in the litera-
ture. As explained in Sect. 2, these can be divided in two categories: the extended
modulus based countermeasures and the self-secure exponentiations.

Extended Modulus Based Countermeasures. The time complexity of an
extended modulus based countermeasure (such as the Shamir’s trick or the Vig-
ilant Scheme) is around the complexity of the main exponentiation loop(s) since
the additional computations are negligible. However, such countermeasures are
not free in terms of timing since the use of an extended modulus slows down
the exponentiation. In fact, the time complexity of a modular multiplication
can be written as l2t0 where t0 denotes a constant time that depends on the
device architecture. Denoting by k the bit-length of the modulus extension, an
extended modulus exponentiation has a time complexity of m(l + k)2t0 while
a normal exponentiation has a time complexity of ml2t0. Besides, the modulus
extension implies an increase of the exponentiation execution time by a factor
(1 + k/l)2. As an illustration, Table 7.3 gives several values of the induced over-
head according to the modulus length and to the extension length. For instance,
an RSA 1024 implemented in CRT (l = 512) with extended modulus provid-
ing a fair level of security (k = 64) is about 27% slower than an unprotected
one. This time overhead is sizeable; in particular it is significantly greater than
the 10% overhead induced by our countermeasure. However, extended modulus
based countermeasures enables the use of exponentiation algorithms faster that
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Table 3. Time overhead (in %) for an extended modulus based modular exponentiation

l = 512 l = 768 l = 1024
k = 32 (low security) 13 9 6
k = 64 (fair security) 27 17 13
k = 80 (strong security) 34 22 16

the square-and-multiply such as the q-ary or the sliding windows methods (see
for instance [29]). Roughly, a q-ary exponentiation has a multiplications-per-bit
ratio of 1+(2q−1)/(q2q) which is lower than or equal to 1.5, but it has a higher
memory complexity since it requires 2q−1 + 1 registers. The use of a sliding
window allows to slightly improve the time complexity of a q-ary method [28].

The memory complexity of an exponentiation with modulus extension is of
nr(l + k) where nr denotes the number of registers required by the exponen-
tiation algorithm. For an RSA-CRT, the memory complexity depends on the
used countermeasure. For the Vigilant Scheme, the memory consumption peak
occurs during the second exponentiation while the values S′

p, iqr, r, R3 and
R4 must hold in memory (see [38]). This results in a memory consumption of
nr(l + k) + (l + k) + 3.5 k = (nr + 1) · l + (nr + 4.5) · k bits.

Remark 10. We do not detail the memory complexity of the other extended
modulus based countermeasures since, for most of them, it is close to the memory
complexity of the Vigilant Scheme.

Previous self-secure exponentiations. The Giraud Scheme and the Boscher
et al. Scheme both have a multiplications-per-bit ratio constant to 2. This im-
plies an average time overhead of 33% compared to the square-and-multiply
algorithm and of 21% compared to our exponentiation. However, both of these
schemes do not require additional computations contrary to the extended mod-
ulus based countermeasures or to our scheme when the chain is computed on-
the-fly. Although these additional computations are theoretically negligible, they
may induce an overhead for a practical implementation depending on the device
architecture.

In terms of memory, we shall focus on the Giraud Scheme since it is less con-
suming than the Boscher et al. Scheme. The secure exponentiation requires two
l-bit registers. For the RSA-CRT, the peak of memory consumption is reached
during the two recombinations. For instance, the first recombination requires
(at least) 3l bits of memory while m, Sp and Sq must hold in memory (see [18])
which makes a total complexity of 7l bits.

Comparison with our solution. Table 4 provides a comparison between the
Giraud Scheme, the Vigilant Scheme and ours for an RSA 1024 with CRT (i.e.
l = 512). For the Vigilant Scheme, we assume a modulus extension of {64, 80}
bits and a q-ary sliding window exponentiation for q = 1, 2 or 3 [29]. The results
given in Table 4 shows that our countermeasure is currently one of the most
competitive solution to thwart fault analysis for an RSA 1024 with CRT.
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Table 4. Memory and time complexities of different fault analysis countermeasures
for an RSA 1024 with CRT

Countermeasure Time (106 · t0) Memory (Kb)
Vigilant [38] (q = 1) {511, 484} {2.4, 2.3}
Vigilant [38] (q = 2) {468, 444} {2.6, 2.5}
Vigilant [38] (q = 3) {440, 417} {3.7, 3.6}
Giraud [18] 537 3.5
This paper 443 2.5 (+1.1)

Remark 11. The time complexity for the Vigilant Scheme with sliding widow
is computed as follows. A q-ary exponentiation performs an average of l ·

(
1 +

(2q − 1)/(q2q)
)

multiplications [29] and the use of a sliding window yields an
improvement of about 5% for l = 512 [28]. Therefore, the time complexity of
one exponentiation is estimated to 0.95 · (l + k)2t0 · l ·

(
1 + (2q − 1)/(q2q)

)
.

Concerning the memory complexity, the sliding window method requires a total
of nr = 2q−1 + 1 registers.

8 Conclusion

In this paper, we have described a new countermeasure to protect exponentiation
and RSA against fault analysis. The core idea of our method is to introduce
redundancy in the computation by performing a double exponentiation. To do so,
we proposed a double exponentiation algorithm that is based on the computation
of an addition chain. We analyzed the security of our solution vs fault analysis
and we showed how it can be protected against side channel analysis. We also
studied the time and memory complexities of our countermeasure which showed
that it offers an efficient alternative to the existing schemes. A direction for
further research would be to investigate more efficient double exponentiation
algorithms and time-memory tradeoffs.
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A Proof of Lemma 1

Proof. By the law of total probability, we have:

P (ordM (m)|u) =
∑

λ∈D(ϕ(M))

P (λ|u) P (ordM (m) = λ) , (6)

where D is the function mapping a natural integer to the set of its divisors.
On the one hand, the probability P (λ|u) equals 1/λ. On the other hand, for
every λ ∈ D(ϕ(M)), there are ϕ(λ) elements of order λ in Z∗

M which leads to
P (ordM (m) = λ) = ϕ(λ)/ϕ(M). On the whole, (6) can be rewritten as:

P (ordM (m)|u) =
1

ϕ(M)

∑
λ∈D(ϕ(M))

ϕ(λ)
λ

. (7)

Since ϕ(λ)/λ is strictly lower than or equal to 1, we have P (ordM (m)|u) ≤
d(ϕ(M))/ϕ(M) where d(·) denotes the divisor function (i.e. the function that
maps a natural integer to the quantity of its distinct divisors). It is well known
that the divisor function satisfies d(x) < 2

√
x for every x [31] which implies

P (ordM (m)|u) < 2/
√
ϕ(M). Since we have ϕ(M) > n2/3 for every M > 30 [31],

we get (5). �

B Atomic Algorithms

Looking at the chain computation algorithm, we observe that the main oper-
ations (namely operations on large registers) performed at each loop iteration
are a division by two and possibly a substraction (depending on the value of
τi). To render the algorithm atomic both operations must be performed at each
loop iteration. The following algorithm describes the atomic version of the chain
computation. It makes use of three registers: R0, R1 and R2 which are used to
store the values of αi and βi as well as a temporary value. It also uses three
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indices iα, iβ, itmp ∈ {0, 1, 2} such that αi is stored in Riα , βi is stored in Riβ

and the temporary value is stored in Ritmp .

Algorithm 5. Atomic double addition chain computation
Input: A pair of natural integer (a, b) s.t. a ≤ b
Output: The chain ω(a, b)

1. Riα ← a; Riβ ← b; j ← n∗

2. while (Riα , Riβ ) 	= (0, 1) do

3. Ritmp ← Riβ − Riα

4. v ← Riβ mod 2
5. Riβ ← Riβ /2
6. t ← (Riβ > Riα)
7. ωj−1 ← t; ωj ← t ∨ v

8. (iα, iβ , itmp) ← (
t ∧ (itmp, iα, iβ)

) ∨ ((t ⊕ 1) ∧ (iα, iβ , itmp)
)

9. i ← (t ∧ iα) ∨ ((t ⊕ 1) ∧ itmp

)
10. Ri ← 2 · Ri + v

11. j ← j − 1 − (t ⊕ 1)
12. end while

13. return ω

Notations. In Step 6, the notation t ← (Riβ
> Riα) is used to denote the oper-

ation that compares the two values in Riβ
and Riα and that returns the binary

value t satisfying t = 1 if Riβ
> Riα and t = 0 otherwise. In Steps 8 and 9,

the logical AND is extended to the {0, 1}× {0, 1}n → {0, 1}n operator perform-
ing a logical AND between the left argument and each coordinate of the right
argument.

Looking at Algorithm 5, we see that, at each loop iteration, the Boolean values
t and v represent the values of τi and νi. One can verify that if t = 0 then these
values are stored in (ωj−1, ωj) and j is decremented by two while if t = 1 then t
is stored in ωj and j is decremented by 1. Moreover, if t = 0 then Steps 8 and 9
have no effect while if t = 1 then Step 8 ensures that the indices of the different
registers are permuted so that (αi, βi) is correctly updated and Step 9 ensures
that the value βi/2 stored in Riα is putted back to βi.

Although Algorithm 5 requires three l-bit registers and a (2.2 l)-bit buffer
to store ω (see Sect. 7), its memory consumption can be reduced to 4.2 l bits
using the following trick. During the computation of the 1.2 l high order bits
of ω, the l low order bits allocated for ω are used as one of the three necessary
l-bit registers. Once the 1.2 l high order bits of ω have been computed, the
intermediate values αi and βi have a bit-length lower than l/2. Therefore, the
three registers can be allocated on less than 2l bits and the low order part of the
buffer for ω can be freed.

The following algorithm describes the atomic version of the double modular
exponentiation. It makes use of two registers R(0,0) and R(0,1) that are used
to store the intermediate results mai and mbi and one more register R(1,0) to
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store m. It makes also use of two Boolean variables γ and μ. The Boolean γ
indicates that mai is stored in R(0,γ⊕1) and that mbi is stored in R(0,γ). And the
Boolean μ indicates wether the next modular multiplication is a multiplication
by m (μ = 0) or not (μ = 1).

Algorithm 6. Atomic double modular exponentiation
Input: An element m ∈ ZN , a chain ω(a, b) s.t. a ≤ b, a modulus N
Output: The pair of modular power (ma mod N, mb mod N)

1. R(0,0) ← 1; R(0,1) ← m; R(1,0) ← m

2. γ ← 1; μ ← 1; i ← 0
3. while i < n do

4. t ← ωj ∧ μ; v ← ωj+1 ∧ μ

5. R(0,γ⊕t) ← R(0,γ⊕t) · R((μ⊕1),γ∧μ) mod N

6. μ ← (t ⊕ 1) ∧ v; γ ← γ ⊕ t

7. i ← i + μ + μ ∧ t

8. end while

9. return (Rγ⊕1, Rγ)

While μ = 1, the Boolean t is evaluated to τi and, if τi = 1, the Boolean v
is evaluated to νi. Then, while t = 1 or v = 0 each loop iteration corresponds
to a step performing one single multiplication which is done in Step 5. If t = 0
and ν = 1, the step must perform two multiplications: R(0,γ) by R(0,γ) and
R(0,γ) by R(1,0). The first one is performed in Step 5 afterward the Boolean μ is
evaluated to 0 thus indicating that the next loop must perform the multiplication
by R(1,0). In that case, i is not incremented and the next loop iteration performs
the desired multiplication before evaluating μ to 1 and normally carrying on the
computation.
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