
Chapter 8
Theory and Application of Transient
Infinite Elements for Simulating Contaminant
Transport Problems in Fractured Porous Media
of Infinite Domains

Numerical simulation of contaminant transport in fractured porous media of infinite
domains is a complex problem in various aspects. The solution for this kind of prob-
lem becomes more difficult once practical considerations, such as the infinite exten-
sion of the problem domain, the leakage effect between the porous medium and
the fissured network, the characterization of the fissured network and other physi-
cal and chemical parameters, are appropriately included in the analysis (Rowe and
Booker 1989, 1990a, 1991). On the other hand, the practical problems involving
contaminant transport in fractured porous media have received rapidly increasing
attention as a result of the treatment of industrial and agricultural wastes, the eval-
uation of potential contamination from nuclear power plants and the disposal activ-
ities of wastes from our daily lives. For the purpose of a better understanding of
contaminant transport processes, it is imperative to develop an efficient and effec-
tive numerical method for simulating transient contaminant (i.e. mass in a general
term) transport problems in fractured porous media of infinite domains.

Since a naturally fractured system contains various discontinuities, most of the
immobile pore-fluid resides in low permeability, disjoint matrix blocks, while most
of the mobile pore-fluid resides in the high permeability, interconnected fissured
network. When contaminant transport takes place in such a system, both advection
and dispersion are dominant processes within the fissured network, while disper-
sion may be a dominant process in the porous matrix. Generally, advection is due to
the bulk movement of pore-fluid, which is caused by a pore-fluid pressure gradient,
according to Darcy’s law (Phillips 1991; Nield and Bejan 1992; Zhao et al. 1997,
1998, 1999a). Dispersion is due to the irregular movement of pore-fluid in a porous
medium (Bear 1972; Bear and Bachmat 1990). On the microscopic scale (i.e. the
pore scale), these irregularities are caused by the tortuosity of flow paths, while on
the macroscopic scale, they are caused by the presence of zones of different perme-
abilities. To simulate a naturally fractured system appropriately, the double porosity
model (Barenblatt et al. 1960; Duguid and Lee 1977; Valliappan and Naghadah
1990) may be the best choice because it bridges the gap between equivalent porous
media and discrete fracture theory. For the double porosity model, the porous block
and fissured network are viewed as two overlapping continua. Equations of mass
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transport for each continuum can be linked by a leakage term that describes the
mass exchange between the two overlapping continua.

In terms of modelling an infinite medium, the coupled computational method of
finite elements and infinite elements (Bettess 1977, 1980, 1992; Chow and Smith
1981; Medina and Taylor 1983; Zhao et al. 1987, 1989, 1992, 1995; Zhao and
Valliappan 1991, 1993a, b, c, d, e) is more appropriate because of the following
two main reasons: (1) both geometrical irregularities and material complexities in
the near field of a system can be simulated using finite elements; and (2) the infinite
extension of the system can be effectively and efficiently simulated using infinite
elements. For simulating static and dynamic problems, both static and dynamic infi-
nite elements have been developed during the past few decades (Beer and Meek
1981; Zhang and Zhao 1987; Valliappan and Zhao 1992; Zhao et al. 1991, 1992).
Since the displacement decay function and wave propagation function are indepen-
dent of time, both static and dynamic infinite elements can be considered as time-
independent infinite elements. For simulating transient pore-fluid flow, heat transfer
and mass transport in fluid-saturated porous media of infinite domains, Zhao and
Valliappan (1993g, h, 1994a) developed transient infinite elements, in which a time
variable is explicitly considered.

In this chapter, two-dimensional mapped transient infinite elements are presented
for simulating contaminant transport problems in fractured porous media of infi-
nite domains. To investigate the coupling effect between porous blocks and fis-
sured networks, various parameters, such as contaminant transmissive coefficients
between porous blocks and fissured networks, porosities, dispersion coefficients and
pore-fluid velocities, are considered in the coupled computational model of finite
elements and transient infinite elements. Since the mass transport function of the
transient infinite element explicitly depends on both time and space variables, tran-
sient contaminant transport processes can be rigorously simulated using the coupled
computational model of finite elements and transient infinite elements for simulating
fractured porous media of infinite domains.

8.1 Coupled Computational Method of Finite Elements
and Transient Infinite Elements for Simulating Transient
Contaminant Transport Problems in Fractured Porous
Media of Infinite Domains

If advection plays a predominant role in a mass transport problem, the conven-
tional Galerkin finite element method fails in solving the problem so that the
resulting solution exhibits pronounced oscillatory behaviour and excessive numer-
ical dispersion. Although a drastic refinement of the finite element mesh can
be used to avoid such unwanted oscillatory behaviour and numerical dispersion,
it is very inefficient, from the computational point of view. To overcome this
problem, the upwind finite element scheme is usually used in the finite element
analysis of advection-dominated mass transport problems (Heinrich et al. 1977;
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Huyakorn 1977; Huyakorn and Nilkuha 1979). This scheme differs from the con-
ventional Galerkin finite element scheme in the following two aspects: (1) spa-
tial discretization is performed through a general weighted residual technique that
employs asymmetrical weighting functions and yields an upwind weighting effect
for the advection term of a mass transport equation; (2) the time derivative term of
the mass transport equation is weighted using the standard trial functions of sym-
metrical nature. For this reason, the upwind finite element scheme is used to derive
the related formulation for simulating contaminant transport problems in fractured
porous media of infinite domains.

8.1.1 Upwind Finite Element Formulation of the Problem

Supposing the principal directions of a double porosity medium are parallel to those
of the x and y axes in a global coordinate system, the governing equations of a
contaminant transport problem in the double porosity medium with a uniform pore-
fluid flow field can be expressed as follows (Barenblatt et al. 1960; Duguid and Lee
1977; Valliappan and Naghadah 1990; Zhao and Valliappan 1994b):
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where D1x and D1y are the dispersion coefficients of contaminant for the porous
block in the x and y directions; D2x and D2y are the dispersion coefficients of
contaminant for the fissured network in the x and y directions; V1x and V1y are the
average linear velocities, which are averaged by the pore space (Bear 1972), of
the pore-fluid flow within the porous block in the x and y directions; V2x and V2y

are the average linear velocities of the pore-fluid flow within the fissured network;
C1 and C2 are the contaminant concentrations of the porous block and fissured
network, respectively; � is a leakage term to express mass exchange between the
porous block and the fissured network; φ1 and φ2 are the porosities of the porous
block and fissured network.

From the mass conservation law, the leakage term, �, can be expressed as

� = χ (φ1C1 − φ2C2) sign (C1 − C2) sign (φ1C1 − φ2C2) , (8.3)

where χ is a transmissive coefficient expressing the contaminant concentration
exchange per unit concentration between the porous block and the fissured network
per unit time. It has a dimension of 1/s. χ = 0 means that there is no exchange
between the porous block and the fissured network, while χ=1 means that maxi-
mum exchange takes place between the porous block and the fissured network.
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Note that Eq. (8.3) always expresses the contaminant transmission from a high-
concentration to a low-concentration region. For example, if the concentration in the
porous block is greater than that in the fissured network, the contaminant will trans-
mit from the porous block to the fissured network and vice versa. This process is
guaranteed by the product of sign (C1 − C2) and sign (φ1C1 − φ2C2), even though
the porosities of both the porous block and the fissured network are involved. To
facilitate computation and to express the formulations concisely, the average con-
taminant concentrations of a finite element, C1 and C2, are used instead of C1 and
C2 in Eq. (8.3). This leads to the following equation:

G
(
C1, C2,φ1,φ2

) = sign
(
C1 − C2

)
sign

(
φ1C1 − φ2 C2

)
. (8.4)

Equation (8.4) indicates that the value of function G is equal to 1, 0 or –1, depend-
ing on the values of C1, C2, φ1 and φ2.

8.1.1.1 Spatial Discretization of the Problem

In the upwind finite element scheme (Heinrich et al. 1977; Huyakorn 1977;
Huyakorn and Nilkuha 1979), the dispersion and advection terms of the transient
mass transport equations are weighted using asymmetrical weighting functions to
avoid oscillatory solutions, while the time derivative term and transmissive term are
weighted using conventional shape functions. Based on this idea, Eqs. (8.1) and
(8.2) can be rewritten for an element as follows (Zhao and Valliappan 1994b):
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where A is the area of the element; [W]1 and [W]2 are the non-symmetrical weight-
ing function matrices of the element for the porous block and fissured network,
respectively; C1 and C2 are the trial functions of the element for the porous block
and fissured network. They can be expressed as the functions of nodal concentra-
tions of the element in the finite element sense.

Ci = [N] {Ci}e (i = 1, 2), (8.7)

where [N] is the conventional shape-function matrix of the element; {C1}e and {C2}e

are the nodal concentration vectors of the element for the porous block and fissured
network at a given time.
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Through integrating by parts and applying Green’s theorem to the second-order
derivatives, Eqs. (8.5) and (8.6) can be written as follows:
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where A is the area of the element; S is the boundary line of the element; nx and ny

are the direction cosines of the outward unit normal vector on the boundary of the
element.

Since Eqs. (8.10), (8.11), (8.12), (8.13) and (8.14) are equally valid for both finite
and transient infinite elements, the corresponding global matrix can be obtained
using the standard assembly procedure in the finite element method (Zienkiewicz
1977). As a result, the global matrix equations for the problem can be expressed as
follows:

[A1] {C1} − Gχφ2

φ1
[Q1] {C2} + [R1]

{
∂C1

∂t

}
= {f1} , (8.15)
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where

[A1] = [E1] + [H1] + Gχ [Q1] , (8.17)

[A2] = [E2] + [H2] + Gχ [Q2] . (8.18)
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Since Eqs. (8.15) and (8.16) are coupled by the exchange term, they are better
written in the matrix form:
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= {f } , (8.19)
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Note that [A] is an asymmetrical matrix due to the consideration of advective
pore-fluid flow and the use of asymmetrical weighting functions in formulating the
property matrices of the upwind finite element. On the other hand, since [A] and
[R] are assembled by both finite elements and transient infinite elements, they are
time-dependent matrices and need to be evaluated at any time of interest.

8.1.1.2 Temporal Discretization of the Problem

The solution of Eq. (8.19) in the time domain can be carried out using the finite
difference approach for {∂C/∂t} as follows:

{
∂C

∂t

}
= 1

�t

({C}t+�t − {C}t) , (8.24)

where the superscript represents the time level and�t is the time step. In the process
of solving transient contaminant transport problems using the upwind finite element
scheme, both the element size,�l, and the time step,�t, need to be selected in such
a way that the resulting value of the Courant number ( Cr = Vmax�t/�l) is less
than 2.

After the finite difference approach is used for the first derivative of contaminant
concentration with respect to time, it is necessary to determine the time level in a
time interval between t and t + �t, at which the value of the contaminant concen-
tration is evaluated. Generally, the nodal contaminant concentration vector, {C}, can
be approximated anywhere between t and t +�t.

{C} = (1 − α) {C}t + α {C}t+�t , (8.25)
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where 0 ≤ α ≤ 1. If α = 1, the solution scheme is fully implicit, while if α = 0,
the solution scheme is fully explicit. If {C} is approximated at a time, t + (�t/2),
Eq. (8.19) can be rewritten as follows:
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)
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8.1.1.3 Weighting and Shape Functions of the Upwind Finite Element

For a two-dimensional four-node finite element shown in Fig. 8.1, the conventional
shape function of the element is well known (Zienkiewicz 1977). The asymmetrical
weighting functions for each node of the element can be expressed by the following
equations (Zhao and Valliappan 1994b; Zhao et al. 1994):
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]
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where W11, W21, W31 and W41 are the weighting functions of nodes 1, 2, 3 and
4 of the element for the porous block; W12, W22, W32 and W42 are the weighting
functions of nodes 1, 2, 3 and 4 of the element for the fissured network; ξ and η

Fig. 8.1 Definition of a
four-node upwind finite
element
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are the local isoparametric coordinates of the element; α11, β11, α21 and β21 are the
upwind parameters corresponding with sides 3-4, 4-1, 2-1 and 3-2 of the element for
the porous block; α12, β12, α22 and β22 are the upwind parameters corresponding
with sides 3-4, 4-1, 2-1 and 3-2 of the element for the fissured network.

For the upwind finite element scheme, the signs of these upwind parameters
depend on the signs of the average pore-fluid flow velocities of the element sides,
representing the advective flow direction associated with the contaminant transport
process in the fractured porous medium. For this reason, these upwind parameters
are expressed as

αij = α
opt
ij sign

(
Vj
)

(i = 1, 2; j = 1, 2), (8.31)

β ij = β
opt
ij sign

(
Vj
)

(i = 1, 2; j = 1, 2), (8.32)

where αopt
ij and βopt

ij (i = 1, 2; j = 1, 2) are the optimal values of the upwind param-

eters for the related element sides; V1 is the corresponding average speed of pore-
fluid flow along the element side for the porous block; V2 is the corresponding
average speed of pore-fluid flow along the element side for the fissured network; V1
and V2 can be determined using the following formulas:

V1 = 1

2

(�V1p + �V1q
) • �Ipq, (8.33)

V2 = 1

2

(�V2p + �V2q
) • �Ipq, (8.34)

where p and q are the node numbers of an element side; �V1p and �V1q are the velocity
vectors of nodes p and q of the element for the porous block; �V2p and �V2q are the
velocity vectors of nodes p and q of the element for the fissured network; �Ipq is
the direction vector of the element side in the local coordinate system with the same
positive direction as that of the local coordinate system of the element.

The optimal values of upwind parameters depend on the Courant number of the
element side and can be determined using the following equations (Huyakorn and
Nilkuha 1979; Zhao et al. 1994):

α
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2Dix
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(i = 1, 2; j = 1, 2), (8.36)

where coth stands for the hyperbolic cotangent function; �l is the characteristic
length of the element.

To obtain satisfactory solutions, the derivatives, ∂Wij
/
∂ξ and ∂Wij

/
∂η (i =

1, 2, 3, 4; j = 1, 2), of the element need to be evaluated in such a way that when
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differentiation is taken with respect to one particular coordinate variable, the values
of the upwind parameters along the remaining coordinate variables must be set to
zero. Thus, the derivatives of the upwind weighting functions of the element can be
expressed as follows:

∂W1i

∂ξ
= −1

4
(1 + η) (3α2iξ − 1) (i = 1, 2), (8.37)
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If the conventional mapping technique for isoparametric elements is used, substi-
tuting the asymmetrical upwind weighting functions and conventional shape func-
tions of the element into Eqs. (8.10), (8.11), (8.12) and (8.13) yields the following
property matrices of the proposed upwind finite element for simulating transient
contaminant transport problems in double porosity media:
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where |J| is the Jacobian determinant of the upwind finite element.
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8.1.2 Fundamental Formulas of Mapped Transient Infinite
Elements for Simulating Transient Contaminant
Transport Problems

To illustrate the fundamental concept of transient infinite elements, a one-
dimensional contaminant transport problem in a fluid-saturated porous medium of
an infinite domain is considered in this subsection. Supposing that a unit point con-
taminant concentraction exists at x = 0 and a unidirectional pore-fluid flow is along
the positive direction of the x axis, both advection and dispersion will take place
from the origin of the x axis (x = 0) to the far field of the system. The governing
equation for the resulting one-dimensional transient contaminant transport problem
in a fluid-saturated porous medium can be expressed as

∂C

∂t
= Dx

∂2C

∂x2
− Vx

∂C

∂x
, (8.49)

where Dx is the dispersion coefficient of contaminant in the x direction; Vx is the
average linear velocity of the unidirectional pore-fluid flow; C is the contaminant
concentration in the fluid-saturated porous medium.

Since Eq. (8.49) is one-dimensional in space, the analytical solution for this equa-
tion with Dx and Vx constant and a given initial contaminant concentration at the
origin of the global coordinate system is available (Ogata and Banks 1961).

C(x, t) = C0√
4πDxt

exp

[
− (x − Vxt)2

4Dxt

]
, (8.50)

where C0 is the concentration of the point contaminant source at the origin of the
global coordinate system.

For a typical one-dimensional transient infinite element shown in Fig. 8.2, the
global coordinate of node 1 is x1 and the local coordinate of this node is identi-
cal to zero. The contaminant concentration at this node for a given time, t, can be
expressed as follows:

C(x1, t) = C0√
4πDxt

exp

[
− (x1 − Vxt)2

4Dxt

]
. (8.51)

For any point within this one-dimensional transient infinite element, taking x =
x1 +�x as an example, the contaminant concentration of this point can be derived
from Eq. (8.51).

Fig. 8.2 One-dimensional
mapped transient infinite
elements
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C(x1 +�x, t) = C(x1, t) exp

[
−�x2 + 2�x(x1 − Vxt)

4Dxt

]
. (8.52)

Considering the fact that ξ = �x for this one-dimensional transient infinite ele-
ment, the mass transport function of this element can be expressed as

Fmt(ξ , t) = exp

[
−ξ

2 + 2(x1 − Vxt)ξ

4Dxt

]
. (8.52)

As a result, the contaminant concentration field within the one-dimensional tran-
sient infinite element can be expressed in the form:

C (ξ ,t) = C1Fmt (ξ ,t) = C1N1, (8.54)

where C1 is the nodal contaminant concentration of the one-dimensional transient
infinite element; C is the contaminant concentration within the one-dimensional
transient infinite element; N1 is the shape function of the one-dimensional tran-
sient infinite element. Note that the mass transport function of the transient infinite
element is identical to the shape function for simulating one-dimensional transient
contaminant transport problems.

Figures 8.3 and 8.4 show the distributions of the mass transport function for sev-
eral cases. In these figures, Vx = 0 and Vx = 0.1 m d−1 are considered to illustrate
the effects of the pore-fluid flow velocity on the distribution of the mass transport
function. Not only can both the dispersion coefficient and the pore-fluid flow veloc-
ity have considerable influences on the distribution of the mass transport function,
but also the time in the analysis can have a significant effect on the distribution of the
mass transport function of the transient infinite element. It is the explicit considera-
tion of the effect of a time variable that determines the characteristic of the proposed
transient infinite element. On the other hand, since the mass transport function of
the transient infinite element explicitly depends on time, it can be concluded that
the time effect should be considered in the process of constructing transient infinite
elements for simulating various transient problems. Otherwise, errors in the corre-
sponding numerical simulation will inevitably occur.

The above procedure, associated with the one-dimensional transient infinite
element, can be extended to the construction of two-dimensional transient infi-
nite elements for simulating transient contaminant transport problems in fractured
porous media of infinite domains (Zhao and Valliappan 1994b). If the near field
of an infinite domain system is appropriately chosen, the leakage effect between
the porous block and the fissured network in the far field of the system may become
negligible as a result of the term, φ1C1 −φ2C2 in Eq. (8.3), approaching zero. In this
case, the mass transport functions of a transient infinite element can be expressed as

F1mt(ξ ,t) = exp

[

−ξ
2 + 2(x1 − V1ξ t)ξ

4D1ξ t

]

, (8.55)
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Fig. 8.3 Distributions of mass transport functions of the transient infinite element (Vx = 0)

F2mt(ξ ,t) = exp

[

−ξ
2 + 2(x1 − V2ξ t)ξ

4D2ξ t

]

, (8.56)

where F1mt and F2mt are the mass transport functions of the transient infinite element
for the porous block and fissured network, respectively; V1ξ and V2ξ are the average
linear pore-fluid flow velocities in the ξ direction of the local coordinate system;
D1ξ and D2ξ are the dispersion coefficients in the ξ direction of the local coordinate
system.
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Fig. 8.4 Distributions of mass transport functions of the transient infinite element (Vx =
0.1 m d−1)

Based on the mass transport functions of transient infinite elements, the
contaminant concentration shape function matrix of a two-dimensional transient
infinite element can be derived (Zhao and Valliappan 1994b). Figure 8.5 shows a
two-dimensional four-node transient infinite element, for which the mapping rela-
tionship between the global and local coordinate systems can be expressed as

x =
4∑

i=1

Mixi, (8.57)
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Fig. 8.5 Two-dimensional
mapped transient infinite
elements

y =
4∑

i=1

Miyi, (8.58)

where Mi is the mapping function at each node of the element, viz.,

M1 = 1

2
(1 − ξ )(1 − η), (8.59)

M2 = 1

2
(1 − ξ )(1 + η), (8.60)

M3 = 1

2
ξ (1 + η), (8.61)

M4 = 1

2
ξ (1 − η). (8.62)

The contaminant concentration field within the two-dimensional transient infinite
element shown in Fig. 8.5 can be defined as

Ci =
2∑

j=1

N̂jiCji = [N̂]i

{
C1i

C2i

}
(i = 1, 2), (8.63)

where C1 and C2 are the contaminant concentrations for the porous block and

fissured network;
[
N̂
]

1
and

[
N̂
]

2
are the shape function matrices of the two-

dimensional transient infinite element for the porous block and fissured network;
N̂1i and N̂2i (i = 1, 2) are the shape functions of nodes 1 and 2 for the porous block
and fissured network, respectively.

N̂1i = 1

2
Fimt(ξ ,t)(1 − η) (i = 1, 2), (8.64)

N̂2i = 1

2
Fimt(ξ ,t)(1 + η) (i = 1, 2). (8.65)

Since the number of nodes used for the definition of the shape of the two-
dimensional transient infinite element is greater than that used for defining the
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contaminant concentration field of the two-dimensional transient infinite element,
the corresponding two-dimensional parent transient infinite element is a superpara-
metric element.

Based on the same procedures as those used in the conventional finite element
method (Zienkiewicz 1977; Zhao and Valliappan 1994b), the property matrices of
this two-dimensional transient infinite element can be expressed as

[Êi]
e =

∫ ∞

0

∫ 1

−1

(

Dix
∂[Ŵ]T

i

∂x

∂[N̂]i

∂x
+ Diy

∂[Ŵ]T
i

∂y

∂[N̂]i

∂y

)

|J| dηdξ (i = 1, 2),

(8.66)

[Ĥi]
e =

∫ ∞

0

∫ 1

−1

(

Vix[Ŵ]T
i
∂[N̂]i

∂x
+ Viy[Ŵ]T

i
∂[N̂]i

∂y

)

|J| dηdξ (i = 1, 2),

(8.67)

[Q̂i]
e = [R̂i]

e =
∫ ∞

0

∫ 1

−1

(
[N̂]T

i [N̂]i

)
|J| dηdξ (i = 1, 2), (8.68)

[
N̂
]

i
=
[
N̂1i N̂2i

]
, (i = 1, 2), (8.69)

[
Ŵ
]

i
=
[
Ŵ1i Ŵ2i

]
, (i = 1, 2), (8.70)

where |J| is the Jacobian determinant of the two-dimensional transient infinite
element.

To reflect the upwind effect for the two-dimensional transient infinite element,
the following asymmetric weighting functions are used in evaluating the property
matrices of the two-dimensional transient infinite elements:

[
Ŵ (ξ , η, t)

]

i
=
[
N̂ (ξ , η, t −�t)

]

i
, (i = 1, 2), (8.71)

By using the variable substitution technique and letting ξ = (1 + β)
/

(1 − β) ,
Eqs. (8.66), (8.67) and (8.68) can be rewritten as

[Êi]
e
1 =

∫ 1

−1

∫ 1

−1

(

Dix
∂[Ŵ]T

i

∂x

∂[N̂]i

∂x
+ Diy

∂[Ŵ]T
i

∂y

∂[N̂]i

∂y

)
2

(β − 1)2
|J| dηdβ (i = 1, 2),

(8.72)

[Ĥi]
e
1 =

∫ 1

−1

∫ 1

−1

(

Vix[Ŵ]T
i
∂[N̂]i

∂x
+ Viy[Ŵ]T

i
∂[N̂]i

∂y

)
2

(β − 1)2
|J| dηdβ (i = 1, 2),

(8.73)

[Q̂i]
e
1 = [R̂i]

e
1 =

∫ 1

−1

∫ 1

−1

(
[N̂]T

i [N̂]i

) 2

(β − 1)2
|J| dηdβ (i = 1, 2). (8.74)
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Fig. 8.6 Two-dimensional
mapped transient bi-infinite
elements

Equations (8.72), (8.73) and (8.74) indicate that the property matrices of the two-
dimensional transient infinite element can be evaluated using the Gauss–Legendre
integration scheme.

It is noted that under certain situations, a two-dimensional three-node transient
bi-infinite element, as shown in Fig. 8.6, can be useful for the numerical analysis.
Similarly, the mapping relationship of this two-dimensional three-node transient bi-
infinite element can be defined as follows:

x =
3∑

i=1

Mixi, (8.75)

y =
3∑

i=1

Miyi, (8.76)

where Mi is the mapping function at each node of the two-dimensional three-node
transient bi-infinite element

M1 = (1 − ξ )(1 − η), (8.77)

M2 = 1

2
ξ (1 + η), (8.78)

M3 = 1

2
(1 + ξ )η. (8.79)

The contaminant concentration shape function of this two-dimensional three-
node transient bi-infinite element can be expressed as

[N̂]i = [N̂1]i = [Fimt(ξ , t)Fimt(η, t)] (i = 1, 2), (8.80)

where

Fimt(ξ , t) = exp

[

−ξ
2 + 2(x1 − Viξ t)ξ

4Diξ t

]

(i = 1, 2), (8.81)
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Fimt(η, t) = exp

[

−η
2 + 2(y1 − Viηt)η

4Diηt

]

(i = 1, 2). (8.82)

Finally, the property matrices of the two-dimensional three-node transient bi-
infinite element can be derived (Zhao and Valliappan 1994b).

[Êi]
e
2 =

∫ 1

−1

∫ 1

−1

(

Dix
∂[Ŵ]T

i

∂x

∂[N̂]i

∂x
+ Diy

∂[Ŵ]T
i

∂y

∂[N̂]i

∂y

)

4

(β − 1)2(γ − 1)2
|J| dγ dβ (i = 1, 2), (8.83)

[Ĥi]
e
2 =

∫ 1

−1

∫ 1

−1

(

Vix[Ŵ]T
i
∂[N̂]i

∂x
+ Viy[W]T

i
∂[N̂]i

∂y

)

4

(β − 1)2(γ − 1)2
|J| dγ dβ (i = 1, 2), (8.84)

[Q̂i]
e
2 = [R̂i]

e
2 =

∫ 1

−1

∫ 1

−1

(
[W]T

i [N̂]i

) 2

(β − 1)2(γ − 1)2
|J| dγ dβ (i = 1, 2),

(8.85)
[
Ŵ (ξ ,η,t)

]

i
=
[
N̂ (ξ ,η,t −�t)

]

i
, (i = 1, 2). (8.86)

After the property matrices of both upwind finite elements and transient infinite
elements are obtained, the coupled computational method of upwind finite elements
and transient infinite elements can be used to solve transient contaminant transport
problems in fractured porous media of infinite domains. As the present transient
infinite element explicitly depends on time, the corresponding property matrices
need to be evaluated at each time step in the computation so that the accuracy of
numerical results can be ensured for any time of interest.

8.1.3 Verification of the Coupled Computational Method
of Upwind Finite Elements and Transient Infinite Elements

The correctness and usefulness of the coupled computational method of upwind
finite elements and transient infinite elements can be verified by some simple but
critical problems, for which the exact analytical solutions are already available.
To examine the two-dimensional behaviour of the proposed transient infinite ele-
ments, a fundamental problem with a given contaminant concentration at the centre
of a single porosity medium in a horizontal infinite plane is considered in this sub-
section. This can be carried out by simply setting the exchange term in a double
porosity medium to zero so that the double porosity medium can be treated as two
overlapping independent media of single porosity. Figure 8.7 shows the discretized
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Fig. 8.7 Coupled
computational model of a
verification problem: (a)
squared finite element mesh;
(b) inclined finite element
mesh

model of this problem, where the origin of the global coordinate system is sub-
jected to a point contaminant source with the concentration of 100 mg cm–3 (i.e.
C 0 = 100 mg cm–3) at t = 0. For the purpose of investigating the effect of the
finite element mesh on the numerical results, the near field of the system, which is
chosen as 80 × 80 m, has been simulated by squared regular finite elements (see
Fig. 8.7(a)) and by inclined irregular finite elements (see Fig. 8.7(b)). The far field
is simulated by two-dimensional transient mapped infinite elements as proposed in
this chapter. The following parameters are used in the numerical analysis: the aver-
age linear velocities of pore-fluid flow are 0.05 m d–1 in the x and y directions; the
diffusion/dispersion coefficients are 0.5 m2 d–1 in the x and y directions; the time
step used in the computation is 10 days.

Figure 8.8 shows the comparison between the current numerical and the analyt-
ical solutions (Lardner and Song 1991). In this figure, the dimensionless concen-
tration distributions of the contaminant in the near field of the first quadrant of the
global coordinate system, namely in the region of 40 m ≥ x ≥ 0 and 40 m ≥ y ≥ 0,
have been displayed at three different time instants. It is noted that, in terms of
the numerical solutions shown in Fig. 8.8, the solid lines represent the numerical
results obtained by using the mesh of squared regular finite elements, while the



8.1 Coupled Method for Simulating Contaminant Transport Problems 219

Fig. 8.8 Comparison of numerical results with analytical solutions

dashed lines express the numerical results from using the mesh of inclined irregular
finite elements. From this figure, it can be observed that excellent coincidence exists
between the current numerical results and the analytical solutions, even though the
near field simulated by finite elements is very small. This demonstrates that the
coupled computational method of upwind finite elements and transient infinite ele-
ments is very useful for the numerical simulation of transient contaminant transport
problems in fluid-saturated porous media of infinite domains. In addition, it is clear
that the numerical results obtained by using the mesh of the squared regular finite
elements yield good agreement with those using the mesh of the inclined irregular
finite elements. This illustrates that the coupled method of upwind finite elements
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and transient infinite elements can be used to solve transient contaminant transport
problems with irregular meshes in the near field of the system.

8.2 Parametric Study of Transient Contaminant Transport
Problems in Fractured Porous Media of Infinite Domains

Although the quantitative application of a numerical model to a contaminant trans-
port problem in natural environments is limited by difficulties in determining the
values of distributions of appropriate field parameters, a sophisticated numerical
model can play a useful role in demonstrating the sensitivity of a contaminant trans-
port process to each of the parameters involved. The resulting information from this
kind of study may provide an improved understanding of the effect of each parame-
ter on the contaminant transport process. In this regard, the sophisticated numerical
model can lead to greater efficiency and insight in the process of collecting field
data. This is the main reason for conducting a parametric study on contaminant
transport processes in fractured porous media of infinite domains in this section.

Regarding the determination of material parameters involved in the governing
equations of transient contaminant transport problems in fractured porous media,
Rowe et al. (1988) proposed some laboratory techniques for assessing the effective
matrix porosity so that a reduction in the total porosity obtained by normal geotech-
nical procedures is considered as a result of the dead-end pores and pores too small
to permit contaminant transport. On the other hand, if a fissured network is com-
prised of three orthogonally intersecting sets of equally spaced, parallel fractures,
Rowe and Booker (1989, 1990a, b, 1991) presented the relationships between the
fissure spacing and related parameters. The general form of such relationships can
be expressed in the x direction as follows:

vax = v f
1x

h1

H1
+ v f

2x
h2

H2
, (8.87)

Dax = D f
1x

h1

H1
+ D f

2x
h2

H2
, (8.88)

φf = h1

H1
+ h2

H2
+ h3

H3
, (8.89)

where v f
1x and v f

2x are the average linear pore-fluid velocities in sets one and two of

fissures, the normal of whose surfaces are perpendicular to the x axis; Df
1x and Df

2x
are the corresponding dispersion coefficients of these two sets of fissures; vax is the
Darcy velocity in the x direction; Dax is the apparent dispersion coefficient of the
fissured network in the x direction; φf is the porosity of the fissured network; h1 and
h2 are the widths of these two sets of fissures under consideration; H1 and H2 are
the corresponding fissure spacing for these two sets of fissures; h3 and H3 are the
width and spacing of the third set of fissures, of which the normal surface is parallel
to the x axis.
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For a two- or three-dimensional contaminant transport problem, similar formulas
to those expressed in Eqs. (8.87) and (8.88) can be employed to determine the values
of the Darcy velocity and apparent dispersion coefficient of the fissured network in
the y and z directions. Since the fissure characteristics of a fissured network can be
represented by the parameters such as vax, Dax and φf , instead of using the fissure
spacing and width directly, average linear pore-fluid velocities, dispersion coeffi-
cients and the porosity of the fissured network are used to investigate the effects
of the fissured network on transient contaminant transport processes in fractured
porous media.

8.2.1 Effects of the Leakage between a Porous Block
and a Fissured Network on Contaminant Concentration
Distributions in the Fractured Porous Medium

In this subsection, the effects of leakages between porous blocks and fissured net-
works on contaminant transport processes in fractured porous media of infinite
domains are considered using the coupled method of upwind finite elements and
transient infinite elements. Such leakage effects reflect the interactions between
porous blocks and fissured networks in fractured porous media. From a mathe-
matical point of view, since a distributed contaminant source can be decomposed
into a sum of several point contaminant sources, the use of a point contaminant
source may be the best choice for investigating the general contaminant transport
mechanism in fractured porous media of infinite domains. For this reason, a fun-
damental mass transport problem with an initial point contaminant source of a
given concentration at the centre of a horizontal infinite plane is considered in this
subsection.

As shown in Fig. 8.9, the origin of the coordinate system is subjected to a point
contaminant source with a concentration of 1 kg m–3 at t = 0. This means that the
initial boundary condition of the problem is C(x, y, t) = δ(x)δ(y)δ(t) kgm−3, where δ
is the Kronecker delta with a value of either one or zero. The whole problem domain
is divided into a near field (|x|<100 m, |y|<100 m) and a far field (|x|>100 m, |y|>
100 m), so that the interface between the near field and the far field is presented by
the four lines expressed by x = ±100 m (|y|≤100 m) and y = ±100 m (|x|≤100 m)
in the computational model. The near field of the problem domain is simulated using
upwind finite elements, while the far field of the problem domain is simulated using
transient infinite elements. To investigate the effect of advective pore-fluid flow on
the contaminant transport process in a fractured porous medium, it is assumed that
the positive direction of the pore-fluid flow is in coincidence with that of the x axis.

The following parameters are used in the coupled computational model of
upwind finite elements and transient infinite elements. For the porous continuum,
the average linear velocities of pore-fluid flow are 0.1 m d−1 and 0 m d−1 in the x
and y directions, respectively; the dispersion coefficients are 1 m2d−1 and 0.1 m2d−1

in the x and y directions. For the fissured continuum, both the average linear veloc-
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Fig. 8.9 Computational
model of contaminant
transport in a fractured
porous medium: the near field
is simulated using finite
elements, while the far field is
simulated using transient
infinite elements

ities of pore-fluid flow and the dispersion coefficients in the x and y directions are
exactly the same as those used for the porous continuum. Since only the poros-
ity ratio between the fissured continuum (representing the fissured network) and
the porous continuum (representing the porous block) is involved in the governing
equations of contaminant transport problems in fractured porous media, which are
treated as double porosity continua, the porosity ratio of the fissured continuum to
the porous continuum, φ2/φ1, is assumed to be 4, while the porosity of the contin-
uum (i.e. φ1) is 0.05 in the computational model of the overlapping double porosity
continua. Regarding the discretization of time, the central difference scheme (Zhao
and Valliappan 1994b, c) is used with a time step of�t = 10 days. Since the leakage
due to the solute diffusion between the porous block and the fissured network can
be considered by a transmissive coefficient in the computational model, six different
transmissive coefficients between the porous and fissured continua, namely χ =0,
0.001, 0.005, 0.01, 0.1 and 1.0 per unit time, are used to investigate the effects of
leakages between the porous block and the fissured network on the contaminant
concentration distributions in the fractured porous medium.

Figures 8.10 and 8.11 show the dimensionless concentration distribution of con-
taminant in the near field of the first quadrant of the fractured porous medium at
t = 100 and 400 days, respectively. Note that the dimensionless contaminant con-
centration is defined as (C/C0) × 103. In these figures, Tr is used to represent the
transmissive coefficient between the porous and fissured continua so that Tr = χ

in this subsection. The numerical results shown in the left columns are obtained
from the porous continuum, which is used to represent the porous block, while
the numerical results shown in the right columns are obtained from the fissured
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Fig. 8.10 Effects of leakages on dimensionless contaminant distributions in the fractured porous
medium (t = 100 days)

continuum, which is used to represent the fissured network of the fractured porous
medium. As the strength of the leakage between the porous block and the fissured
network can be represented by the value of the transmissive coefficient, the related
numerical results indicate that the strength of the leakage has a significant effect on
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Fig. 8.11 Effects of leakages on dimensionless contaminant distributions in the fractured porous
medium (t = 400 days)

the dimensionless concentration distribution of contaminant in the fractured porous
medium. With an increase in the value of the transmissive coefficient, Tr, the maxi-
mum value of the dimensionless contaminant concentration increases in the porous
block, but decreases in the fissured network. With t = 100 days taken as an example,
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the maximum values of the dimensionless contaminant concentration in the case of
no leakage (i.e. Tr = 0) between the two continua are 1.86 for both the porous block
and the fissured network. However, the corresponding maximum values for Tr =
0.01(1/s) are 4.29 and 1.26 for the porous block and the fissured network, respec-
tively. This indicates that a higher concentration may appear in the porous block
because the porosity of the porous block is smaller than that of the fissured network
in the computational model. Since advective pore-fluid flow is considered in the x
direction only, both advection and dispersion take place in this direction, so that
the contaminant transport speed in the x direction is much faster than that in the y
direction.

With the increase of time, the maximum values of the dimensionless contam-
inant concentration in both the porous block and the fissured network decrease
because the contaminant spreads over a broad area due to the development of
solute advection and dispersion in the fractured porous medium. For instance, when
Tr = 0.01(1/s), the maximum values of the dimensionless contaminant concentra-
tion are 4.29 and 1.26 at t = 100 days for the porous block and the fissured network,
respectively, while they are 1.41 and 0.35 at t = 400 days for the porous block and
the fissured network. The numerical results also indicate that the proposed coupled
model of upwind finite elements and transient infinite elements reflects the mass
conservation law very well during contaminant transport in the fractured porous
medium. Since the contaminant has reached the right boundary of the upwind finite
elements (at x = 100 m) in the x direction but only reached about one-third of the
near field (at y = 30 m) in the y direction when t = 400 days, it can be concluded
that pore-fluid flow advection plays an important role in the contaminant transport
processes in fractured porous media of infinite domains. Although the transmissive
coefficient between the porous block and the fissured network has a significant influ-
ence on the contaminant concentration distribution in the fractured porous medium,
it has little effect on the contaminant transport speed in the coupled computational
model of upwind finite elements and transient infinite elements.

Figures 8.12 and 8.13 show the dimensionless contaminant concentration versus
time at six observation points in the computational model of the fractured porous
medium. In these figures, the unit of time is day. Similarly, the results shown in
the left columns are obtained for the porous continuum, while the results shown
in the right columns are obtained for the fissured continuum. These results clearly
indicate that the contaminant arrives at different observation points with different
times. For example, the first arrival time of the contaminant at the observation point
of x = 20 m and y = 0 m is about 20 days, while the corresponding arrival times
at the other two observation points, namely (x = 60 m, y = 0 m) and (x =–20 m,
y = 0 m), are about 100 and 35 days, respectively. Since the three observation points
are located on the x axis and the contaminant source is located at the origin of
the coordinate system when t = 0, both advection and dispersion take place at the
three observation points in the fractured porous medium. Owing to the effect of a
dispersion process, the contaminant arrives at the upstream observation point of
x = –20 m and y = 0 m after it arrives at the downstream observation point of
x = 20 m and y = 0 m. Through comparing the arrival time of the contaminant at an
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Fig. 8.12 Time-history distributions of dimensionless contaminant concentration due to different
transmissive coefficients

observation point in the x axis with that at similar observation point, which is of the
same distance from the origin of the coordinate system but is located in the y axis, it
has been found that the contaminant travels much faster in the x direction than in the
y direction. The first arrival time of the contaminant is 20 days for the observation
point of x = 20 m and y = 0 m, while it is 200 days for the observation point of x
= 0 m and y = 20 m. Since only dispersion takes place in the y direction, the first
arrival time of the contaminant is identical for the three observation points shown
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Fig. 8.13 Time-history distributions of dimensionless contaminant concentration due to different
transmissive coefficients

in Fig. 8.13. These three observation points have the same y coordinates (i.e. y =
20 m) but different x coordinates (i.e. x = 0, 20 and 60 m, respectively). Owing to
the advection effect, the first arrival time of the contaminant is different for a pair of
symmetric observation points at the x axis, as can be seen from the two observation
points at x = 20 m and x = –20 m at the x axis of the coordinate system.

In terms of the leakage effect between the porous block and the fissured net-
work on the contaminant transport process in the fractured porous medium, it
has been recognized that when the transmissive coefficient, Tr, is within a range
between 0 and 0.005 s–1, any small change in its value can have a profound influ-
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ence on the dimensionless contaminant concentration distribution in the fractured
porous medium. However, when the transmissive coefficient becomes greater, an
increase in its value has only some effects on the dimensionless contaminant con-
centration distribution in a limited adjacent region around the input contaminant
source during the early period of time. This means that if the leakage effect between
the porous block and the fissured network is weak, great caution should be taken for
determining the value of the transmissive coefficient because it is very sensitive to
the contaminant concentration distribution in both the near field and the far field of
the system. On the other hand, if the leakage effect between the porous block and
the fissured network is strong, any variation in the value of the transmissive coeffi-
cient has only a short-term effect on the contaminant concentration distribution in
the near field of the system.

8.2.2 Effects of Medium Porosities on Contaminant Concentration
Distributions in the Porous Block and Fissured Network

To investigate the effects of the porosities of the medium in both the porous
block and the fissured network on contaminant transport processes in fractured
porous media of infinite domains, the same fundamental problem as considered in
Sect. 8.2.1 is simulated by the coupled computational model of upwind finite ele-
ments and transient infinite elements in this subsection. The following parameters
are used in the coupled computational model. For the porous continuum, both the
average linear velocities of pore-fluid flow and the dispersion coefficients in the x
and y directions are exactly the same as those used in Sect. 8.2.1. For the fissured
continuum, the average linear velocities of pore-fluid flow and the dispersion coef-
ficients in the x and y directions are assumed to be the same as those used for the
porous continuum. The transmissive coefficient between the porous and fissured
continua is 0.01 (1/s). The porosity of the porous continuum (i.e. φ1) is 0.05. Five
different porosity ratios of the fissured continuum to the porous continuum, namely
φ2/φ1=1, 2, 4, 6 and 10, are considered to investigate the effects of medium porosi-
ties on the contaminant concentration distribution in the fractured porous medium.

Figures 8.14 and 8.15 show the dimensionless concentration distribution of the
contaminant in the near field of the first quadrant of the fractured porous medium
at two different time instants. In these figures, n2, is used to represent the poros-
ity ratio of the fissured medium to the porous medium, φ2/φ1, so that n2 = φ2/φ1
in this subsection. Clearly, the porosity ratio of the fissured medium to the porous
medium has a significant influence on the dimensionless concentration distribution
of the contaminant in the computational model of the fractured porous medium. The
greater the porosity ratio of the fissured medium to the porous medium, the greater
the dimensionless contaminant concentration in the near field of the porous medium
is. Owing to the mass conservation of the contaminant, the greater the porosity
ratio, the smaller the dimensionless contaminant concentration in the fissured
medium is.

With an increase in the porosity ratio of the fissured medium to the porous
medium, the maximum value of the dimensionless contaminant concentration
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Fig. 8.14 Effects of porosity ratios on dimensionless contaminant distributions in the fractured
porous medium (t = 100 days)

increases in the porous block but decreases in the fissured network. For example,
the maximum values of the dimensionless contaminant concentration in the case of
n2 = φ2/φ1=2 are 1.575 and 0.795 for the porous block and the fissured network,
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Fig. 8.15 Effects of porosity ratios on dimensionless contaminant distributions in the fractured
porous medium (t = 400 days)
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respectively, while the corresponding maximum values in the case of n2= 6 are
3.469 and 0.624, indicating that more contaminant may reside in the porous block
when the porosity of the porous block is smaller than that of the fissured network.
Since pore-fluid flow is considered in the x direction only, both advection and dis-
persion takes place in this direction, so that the contaminant transport speed in the x
direction is faster than that in the y direction of the computational model. With the
increase of time, the maximum value of the dimensionless contaminant concentra-
tion for both the porous medium and the fissured medium decreases as a result of
the wide spread of the contaminant. Since the average linear velocity of the pore-
fluid flow in the x direction is constant in the computational model, a change in
the porosity ratio of the fissured medium to the porous medium has little effect on
the contaminant transport speed in the computational model, even though it has a
significant influence on the contaminant concentration distribution in the fractured
porous medium.

Figures 8.16 and 8.17 show the dimensionless contaminant concentration versus
time at several observation points of the computational model. Due to the consider-
ation of a point contaminant source acting at the origin of the coordinate system at
t = 0, the contaminant arrives at different observation points with different times,
indicating that the contaminant concentration distribution is dependent on both
space and time. Since the porosity ratio of the fissured medium to the porous
medium and the transmissive coefficient between the porous medium and the fis-
sured medium play similar roles in the contaminant transport process for the dou-
ble porosity model of a fractured porous medium, the same conclusions as those
obtained in Sect. 8.2.1 can be made on the first arrival time of the contaminant at
a given observation point in the coupled computational model of upwind finite ele-
ments and transient infinite elements.

Regarding the effects of the porosity ratio of the fissured medium to the porous
medium on the contaminant concentration distribution in the fractured porous
medium, the related numerical results (in Figs. 8.16 and 8.17) indicate that within
the parameter range studied, a slight change in the value of the porosity ratio can
have a significant effect on both the short-term and the long-term contaminant
concentration distributions in the fractured porous medium of infinite domain. For
example, in the case of x = 20 m and y = 0 m, the dimensionless contaminant con-
centrations of the porous block at t = 100 days are 1.51, 2.16, 3.47, 4.77 and 7.38
for n2 = φ2/φ1=1, 2, 4, 6 and 10, respectively, while the corresponding dimension-
less contaminant concentrations at t = 500 days are 0.30, 0.45, 0.74, 1.04 and 1.63
for n2 = φ2/φ1=1, 2, 4, 6 and 10. Although the dimensionless contaminant con-
centrations in both the porous block and the fissured network at each observation
point vary as time goes on, their change rates are considerably different for different
porosity ratios of the fissured medium to the porous medium in the fractured porous
medium. This indicates that great caution should be taken for determining the value
of the porosity ratio of the fissured network to the porous block because it can sig-
nificantly affect the contaminant concentration distribution in both the near field and
the far field of a fractured porous medium.
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Fig. 8.16 Time-history distributions of dimensionless contaminant concentration due to different
porosity ratios

8.2.3 Effects of Pore-Fluid Advection on Contaminant
Concentration Distributions in the Porous Block
and Fissured Network

The main purpose of this subsection is to investigate the effects of pore-fluid advec-
tion on contaminant concentration distributions in the porous block and fissured net-
work of a fractured porous medium. For this purpose, a fundamental mass transport
problem with an initial point contaminant source at the centre of a horizontal infi-
nite plane consisting of a fractured porous medium is simulated using the coupled
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Fig. 8.17 Time-history distributions of dimensionless contaminant concentration due to different
porosity ratios

computational method of upwind finite elements and transient infinite elements.
With the porosity ratio, the dispersion coefficient and the transmissive coefficient
kept constant, several different average linear velocities of pore-fluid flow are con-
sidered to examine the effects of pore-fluid advection on contaminant concentration
distributions in the porous block and fissured network of a fractured porous medium.

The following parameters are used in the coupled computational model of the
fractured porous medium. For the porous continuum, the dispersion coefficients are
1 m2d−1 and 0.1 m2d−1 in the x and y directions, respectively; the average linear
velocity of the pore-fluid flow in the x direction (i.e. V1x) is 0.05 m d–1 when the



234 8 Theory and Application of Transient Infinite Elements

average linear velocity of the pore-fluid flow in the y direction (i.e. V1y) is equal to
either 0 or 0.05 m d–1. For the fissured continuum, the dispersion coefficients are
1 m2d−1 and 0.1 m2d−1 in the x and y directions, respectively; four different average
linear velocities of the pore-fluid flow in the x direction, namely V2x=0.05, 0.1, 0.2
and 0.5 m d–1, are considered in the case of V2y=0 m d–1, while the average linear
velocity of the pore-fluid flow in the x direction is 0.1 m d–1 in the case of V2y=0.1
m d–1; the porosity ratio of the fissured continuum to the porous continuum is 4; the
porosity of the continuum (i.e. φ1) is 0.05; the transmissive coefficient between the
porous block and the fissured network is 0.01 s–1.

Figure 8.18 shows the effects of pore-fluid advection on the dimensionless con-
centration distribution of the contaminant in the near field of the first quadrant of the
fractured porous medium at t = 100 days. In this figure, the numerical results asso-
ciated with V2x= 0.05, 0.1 and 0.5 are obtained when the average linear velocities
in the x and y directions are 0.05 m d–1 and 0 m d–1 in the porous continuum, but the
average linear velocity in the y direction is 0 m d–1 in the fissured continuum. These
results indicate that for three different values of the average linear velocity in the x
direction within the fissured network, the distribution patterns of the dimensionless
contaminant concentration are significantly different, implying that the average lin-
ear velocity of the pore-fluid flow has a remarkable influence on the dimensionless
concentration distribution of the contaminant in the coupled computational model
of the fractured porous medium.

Figures 8.19 and 8.20 show the dimensionless contaminant concentration dis-
tribution versus time at several observation points of the computational model. In
these two figures, the numerical results marked by V2x= 0.05, 0.1, 0.2 and 0.5 are
obtained when the average linear velocities in the x and the y directions are 0.05
m d–1 and 0 m d–1 in the porous continuum, but the average linear velocity in the
y direction is 0 m d–1 in the fissured continuum. In contrast, the numerical results
marked by V2x= 0.1 and V2y= 0.1 are obtained when the average linear velocities
in both the x and the y directions are 0.05 m d–1 in the porous continuum. Obviously,
the pore-fluid advection, which is represented by a different set of pore-fluid veloc-
ities, has a profound effect on the contaminant transport speed in the computational
model of the fractured porous medium. The greater the average liner velocity of
pore-fluid flow, the greater the contaminant transport speed in the fractured porous
medium is.

For a given observation point, the average linear velocity of the pore-fluid flow
affects not only the time-history distribution pattern, but also the maximum value
of the dimensionless contaminant concentration in the fractured porous medium.
With the three observation points (in Fig. 8.19) at the x axis taken as an example,
the maximum value of the dimensionless contaminant concentration in the case of
V1x = V1y=0.05 m d–1 and V2x = V2y=0.1 m d–1 is smaller than that in the other
four cases. However, for the three observation points beyond the x axis (in Fig. 8.20),
the maximum value of the dimensionless contaminant concentration in the case of
V1x = V1y= 0.05 m d–1 and V2x = V2y=0.1 m d–1 is greater than that in the other
four cases. This phenomenon is due to the fact that the contaminant can spread a
broader area when advection takes place in both the x and y directions, compared
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Fig. 8.18 Effects of pore-fluid advection on dimensionless contaminant distributions in the frac-
tured porous medium (t = 100 days)

with when it takes place in the x direction only. Since the average linear velocity
of pore-fluid flow affects both the contaminant transport speed and the maximum
value of the contaminant concentration in a fractured porous medium, it should
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Fig. 8.19 Time-history distributions of dimensionless contaminant concentration due to different
pore-fluid flow velocities

be determined carefully for the computational simulation of transient contaminant
transport problems in fractured porous media of infinite domains.
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Fig. 8.20 Time-history distributions of dimensionless contaminant concentration due to different
pore-fluid flow velocities

8.2.4 Effects of Solute Dispersion on Contaminant Concentration
Distributions in the Porous Block and Fissured Network

To investigate the effects of solute dispersion in both the porous block and the fis-
sured network on contaminant transport processes in fractured porous media of infi-
nite domains, the same fundamental mass transport problem as that considered in the
previous subsections is simulated by the coupled computational model of upwind
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finite elements and transient infinite elements in this subsection. Through keeping
the porosity ratio, the average linear velocity of pore-fluid flow and the transmis-
sive coefficient constant, several different dispersion coefficients are considered to
examine the effects of solute dispersion in both the porous block and the fissured
network on contaminant transport processes in fractured porous media of infinite
domains.

The following parameters are used in the coupled computational model. For the
porous continuum, the average linear velocity of pore-fluid flow is 0.1 m d–1 in the x
direction and zero in the y direction; the dispersion coefficient in the x direction (i.e.
D1x) is 1 m2 d–1 when the dispersion coefficient in the y direction (i.e. D1y) is equal
to either 0.1 m2 d–1 or 0.05 m2 d–1. For the fissured continuum, the average linear
velocity of pore-fluid flow is 0.1 m d–1 in the x direction and zero in the y direction;
four different dispersion coefficients in the x direction, namely D2x= 0.2, 0.5, 0.7
and 1.0 m2d–1, are considered when the dispersion coefficient in the y direction (i.e.
D2y) is equal to 0.1 m2 d–1; while only the dispersion coefficient of 0.2 m2 d–1 in the
x direction is considered when the dispersion coefficient in the y direction is equal to
0.2 m2 d–1; the porosity ratio of the fissured continuum to the porous continuum is
4; the porosity of the porous continuum (i.e. φ1) is 0.05; the transmissive coefficient
between the porous block and the fissured network is 0.01 s–1.

Figure 8.21 shows the effects of solute dispersion on the dimensionless concen-
tration distribution of the contaminant in the near field of the first quadrant of the
fractured porous medium at t = 100 days. In this figure, the numerical results asso-
ciated with D2x= 0.2, 0.5 and 1.0 are obtained when the dispersion coefficient of
the porous continuum are 1.0 and 0.1 m2 d–1 in the x and y directions, respectively,
while the dispersion coefficient of the fissured continuum (i.e. D2y) is 0.1 m2 d–1 in
the y direction. These results indicate that for the three different dispersion coef-
ficients of the fissured network in the x direction, the distribution patterns of the
dimensionless contaminant concentration are significantly different, implying that
the solute dispersion has a remarkable influence on the dimensionless concentration
distribution of the contaminant in the coupled computational model of the fractured
porous medium.

Figures 8.22 and 8.23 show the dimensionless contaminant concentration dis-
tribution versus time at several observation points of the computational model. In
these two figures, the numerical results marked with D2x= 0.2, 0.5, 0.7 and 1.0 are
obtained when the dispersion coefficients of the porous continuum are 1.0 and 0.1
m2 d–1 in the x and y directions, while the dispersion coefficients of the fissured
continuum is 0.1 m2 d–1 in the y direction. On the other hand, the numerical results
marked with D2x= 0.2 and D2y= 0.2 are obtained when the dispersion coefficients
of the porous continuum are equal to 1.0 m2 d–1 in both the x and y directions.
Clearly, the solute dispersion, which is represented by a different set of dispersion
coefficients in this study, has a profound effect on the contaminant transport speed
in the computational model of the fractured porous medium. The greater the disper-
sion coefficient, the greater the contaminant transport speed in the fractured porous
medium is.

Similarly, for a given observation point, the solute advection affects not only the
time-history distribution pattern, but also the maximum value of the dimensionless
contaminant concentration in the fractured porous medium. For the three observa-
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Fig. 8.21 Effects of solute dispersion on dimensionless contaminant distributions in the fractured
porous medium (t = 100 days)

tion points (in Fig. 8.22) at the x axis, the maximum value of the dimensionless
contaminant concentration in the case of D1x = D1y=1.0 m2 d–1 and D2x = D2y=
0.2 m2 d–1 is smaller than that in the other four cases. However, for the three obser-
vation points beyond the x axis (in Fig. 8.23), the maximum value of the dimen-
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Fig. 8.22 Time-history distributions of dimensionless contaminant concentration due to different
dispersion coefficients

sionless contaminant concentration in the case of D1x = D1y=1.0 m2 d–1 and
D2x = D2y=0.2 m2 d–1 is greater than that in the other four cases. Since disper-
sion coefficients can affect both the contaminant transport speed and the maximum
value of the contaminant concentration in a fractured porous medium, they should
be determined carefully in the coupled computational model of upwind finite ele-
ments and transient infinite elements for simulating transient contaminant transport
problems in fractured porous media of infinite domains.
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Fig. 8.23 Time-history distributions of dimensionless contaminant concentration due to different
dispersion coefficients

In summary, the leakage between the porous block and the fissured network has
a significant influence on the distributions of the contaminant concentration in frac-
tured porous media. Generally, the maximum value of the contamination concen-
tration increases in the porous block, but it decreases in the fissured network as a
result of the leakage between the porous block and the fissured network. This indi-
cates that more contaminant resides in the porous block. With the increase of time,
the maximum values of the contaminant concentration in both the porous block
and the fissured network decrease as the contaminant spreads over a broad area.
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The transmissive coefficient between the porous block and the fissured network has
little effect on the transport speed of the contaminant, even though it has a signifi-
cant influence on the values of the contaminant concentration in a fractured porous
medium.

Considering the effect of the porosities of the fractured porous medium, a larger
porosity of the fissured network results in a greater value of the contaminant con-
centration in the near field of the porous block, whereas it results in a smaller value
in the near field of the fissured network. With an increase in the porosity of the fis-
sured network, the maximum value of the contaminant concentration increases in
the porous block but decreases in the fissured network.

The average linear velocity (representing the advection) of pore-fluid flow has a
significant influence on both the concentration distribution pattern and the transport
speed of the contaminant in the fractured porous medium. The larger the average
linear velocity of the pore-fluid flow is, the greater will be the transport speed of the
contaminant in both the porous block and the fissured network. The same conclusion
can be made when the effect of the dispersion is considered in the fractured porous
medium.
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