
Chapter 5
Theory of Three-Dimensional Dynamic Infinite
Elements for Simulating Wave Propagation
Problems in Infinite Media

Numerical simulation of infinite media is an important topic in dynamic soil–
structure interaction problems. This topic arose from numerous practical problems,
such as numerical simulation of building structural foundations, offshore structural
foundations, dam foundations, nuclear power station foundations, just to name a
few. The study of this topic becomes more important when the structure is large and
the effects of earthquake waves are considered. Owing to the importance of dynamic
soil–structure interaction effects, a large amount of research has been carried out in
the past few decades (Elorduy et al. 1967; Lysmer and Kuhlemyer 1969; Kausel
1974; Zienkiewicz and Bettess 1975; Wong and Luco 1976; White et al. 1977;
Cundall et al. 1978; Chow and Smith 1981; Hamidzadeh-Eraghi and Grootenhuis
1981; Medina and Taylor 1983; Liao et al. 1984; Wolf 1985, 1988; Zhao et al. 1987,
1989; Zhang and Zhao 1987; Zhao and Liu 2002, 2003). The general methodology
of dealing with a dynamic soil–structure interaction problem is to divide the whole
infinite foundation of the problem into a near field, which is comprised of a limited
region of the infinite foundation, and a far field, which is comprised of the remain-
ing part of the infinite foundation. As the near field is usually simulated by using the
finite element method, both the geometrical irregularity and the non-homogeneity
of an infinite foundation can be considered to determine the boundary of the near
field. Since the far field is usually simplified as an isotropic, homogeneous, elastic
medium, its effect on the near field can be represented either by some special arti-
ficial boundaries (Lysmer and Kuhlemyer 1969; Kausel 1974; White et al. 1977;
Cundall et al. 1978; Liao et al. 1984; Zhao and Liu 2002, 2003) or by some special
elements (Ungless 1973; Zienkiewicz and Bettess 1975; Bettess 1977, 1980; Chow
and Smith 1981; Medina and Taylor 1983; Zhao et al. 1987, 1989). Through apply-
ing these special artificial boundaries or elements on the interface between the near
field and the far field, the effect of the far field on the near field can be considered
in the corresponding computational models.

From the wave-propagation point of view, there are two typical kinds of prob-
lems: a kind of wave radiation problem and a kind of wave scattering problem. For
a wave radiation problem, the vibration source of the problem is located within the
interior region of the near field, while for a wave scattering problem, the vibra-
tion source of the problem is located within the exterior region of the near field.
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The artificial boundary technique works well for dealing with wave radiation prob-
lems in infinite foundations, but it often fails in solving wave scattering problems
in infinite foundations. Since the seismic analysis of a structure can be treated as a
wave scattering problem, it is very difficult, if not impossible, to use the artificial
boundary technique for solving dynamic soil–structure interaction problems, where
earthquake waves are coming from the far fields of structural foundations. In such
a case, the use of special elements such as dynamic infinite elements and bound-
ary elements is a potential way for dealing with dynamic soil–structure interaction
problems under earthquake loadings. Although the boundary element method is an
efficient way to simulate wave scattering problems in a homogeneous medium due
to a significant reduction in the total number of degrees-of-freedom of the system,
the dynamic infinite element method is more suitable for simulating wave scattering
problems in a non-homogeneous medium due to the banded and symmetrical nature
of the resulting global mass and stiffness matrices of the system. On the other hand,
for large structures such as arch dams, especially for double-curvature arch dams
with smaller thicknesses and complicated configurations, a few finite elements are
usually enough to simulate the thickness of a double-curvature arch dam so that
the total number of degrees-of-freedom of the double-curvature arch dam cannot
be greatly reduced when it is simulated using the boundary element method. In this
case, the boundary element method loses its computational advantage in comparison
to the finite element method, implying that for the seismic analysis of arch dams,
the coupled computational method of finite elements and dynamic infinite elements
(Zhao et al. 1989, 1992; Zhao and Valliappan 1991, 1993d, e) is more appropriate
for simulating both an arch dam and the infinite foundation.

The concept of static infinite elements was initially presented in the seventies of
the last century (Ungless 1973; Bettess 1977). Further work was carried out to apply
the coupled computational model of finite elements and static infinite elements to
the solution of static problems in engineering practice (Beer and Meek 1981; Zhao
et al. 1986). The fundamental idea behind construction of a static infinite element
is either to derive a special element displacement shape function, which is the pro-
duction of a Lagrange interpolation function and a decay function, or to use special
mapping techniques to map the infinite element into a finite one. The same idea has
been used to develop two-dimensional dynamic infinite elements (Chow and Smith
1981; Medina and Taylor 1983; Zhao et al. 1987, 1992). Owing to the complicated
mechanism of wave propagation in an infinite medium, the decay function for the
static infinite element needs to be replaced by a wave propagation function for the
dynamic infinite element. For simulating infinite solid media, several forms of two-
dimensional dynamic infinite elements, which differ from the selection of the corre-
sponding wave-propagation function of a dynamic infinite element, are presented by
different authors (Chow and Smith 1981; Medina and Taylor 1983; Zhao et al. 1987,
1992). Nevertheless, early work on the development of dynamic infinite elements
(Chow and Smith 1981; Medina and Taylor 1983) was mainly attributed to numer-
ical simulation of two-dimensional and axisymmetrical wave radiation problems
in infinite media. Although a previous three-dimensional dynamic infinite element
(Zhao et al. 1989) was used to simulate a wavescattering problem for an arch dam–
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foundation system, it has only one wavenumber so that it cannot be used to simulate
efficiently and simultaneously wave-propagation problems of multiple wavenum-
bers (Zhao 1987). This means that for a given incident earthquake wave, one must
first separate this wave into SH-wave, SV-wave and P-wave components and then
use the wavenumber of each wave component to evaluate the stiffness and mass
matrices of a dynamic infinite element. As a result, the stiffness and mass matri-
ces of the previous three-dimensional dynamic infinite element need to be evaluated
three times since only one wavenumber can be exactly represented each time by the
previous three-dimensional dynamic infinite element.

Based on the above considerations, the theory of three-dimensional dynamic infi-
nite elements is presented in this chapter. The wavenumbers of SH-waves, SV-waves
and P-waves are used in the proposed three-dimensional dynamic infinite element.
As a result, the coupled computational model of three-dimensional finite elements
and three-dimensional dynamic infinite elements are better suited for simulating
seismic wave propagation problems in the infinite foundations of arch dams. Owing
to the use of a mapping technique in the process of developing the three-dimensional
dynamic infinite element, it is feasible to use the coupled computational model of
three-dimensional finite elements and three-dimensional dynamic infinite elements
for dealing with dynamic arch dam–foundation interaction problems in a rectangu-
lar coordinate system. Two vibration problems, namely the vibration of a square
rigid plate on a homogeneous elastic half-space and the vibration of a square rigid
plate on a layered foundation, are considered as benchmark problems for the verifi-
cation of the coupled computational model of three-dimensional finite elements and
dynamic infinite elements.

5.1 Coupled Computational Model for Simulating
Three-Dimensional Wave Propagation Problems in Infinite
Foundations of Structures

For the numerical simulation of wave propagation problems in infinite foundations
of structures, it is necessary to investigate the propagating mechanisms of harmonic
waves in the infinite foundations of structures, because an arbitrary wave can be
decomposed into the sum of several harmonic waves. The understanding of the
detailed mechanisms of harmonic wave propagation in an infinite foundation can
provide important insights into the fundamental behaviours and characteristics of a
dynamic structure–foundation interaction system. After harmonic wave propagation
problems in the infinite foundation are solved, the seismic analysis of a structure–
foundation system can be straightforwardly carried out using the fast Fourier trans-
form (FFT) and inverse Fourier transform (IFFT) techniques. Both the frequency
domain method and the hybrid frequency-time domain method can be used for the
linear and nonlinear dynamic analysis of a dynamic structure–foundation interac-
tion system (Wolf 1985, 1988). Since an iteration technique is used for the hybrid
frequency-time domain method, a nonlinear dynamic system, at each iteration, can
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be approximately simulated as a linear one, so that the nonlinear effect of the
dynamic system can be represented by pseudo-forces. These forces compensate for
the difference between the internal forces obtained from the pseudo-linear system
and those obtained from the original nonlinear system. The iteration can be contin-
ued until the convergence is achieved. For these reasons, harmonic waves are used
to establish the theoretical basis of three-dimensional dynamic infinite elements in
this section.

Assuming an infinite foundation is subjected to a harmonic loading and that the
material of the infinite foundation exhibits hysteretic damping, the governing equa-
tions of wave motion of the system can be expressed as follows:

G∗∇2u + (λ∗ + G∗)

(
∂2u

∂x2
+ ∂2v

∂x∂y
+ ∂2w

∂x∂z

)
+ fx = ρ

∂2u

∂t2
, (5.1)

G∗∇2v + (λ∗ + G∗)

(
∂2u

∂x∂y
+ ∂2v

∂y2
+ ∂2w

∂y∂z

)
+ fy = ρ

∂2v

∂t2
, (5.2)

G∗∇2w + (λ∗ + G∗)

(
∂2u

∂x∂z
+ ∂2v

∂y∂z
+ ∂2w

∂z2

)
+ fz = ρ

∂2w

∂t2
, (5.3)

G∗ = (1 + iηd)G, λ∗ = (1 + iηd)λ, (5.4)

where G is the shear modulus; λ is the Lamé constant; ηd is the hysteretic damping
coefficient of the medium; u, v and w are the displacements in the x, y and z direc-
tions; fx, fy and fz are the body force components in the x, y and z directions respec-
tively; ρ is the density of the medium; ∇2 is the second-order three-dimensional
Laplace operator.

By making use of the Galerkin weighted residual method and neglecting the
body forces in Eqs. (5.1), (5.2) and (5.3), the following discretized equations of
wave motion of the system can be obtained:

− ω2[M]{�} + (1 + iηd)[K]{�} = {F0}, (5.5)

where {�} is the unknown nodal displacement vector; ω is the circular frequency
of a harmonic wave; [M] and [K] are the global mass and stiffness matrices of the
system, respectively; and {F0} is the amplitude vector of the applied harmonic load.
[M], [K] and {F0} can be assembled from the following element submatrices and
subvectors:

[M]e =
∫∫∫

V
[N]Tρ[N]dV , (5.6)

[K]e =
∫∫∫

V
[B]T [D∗][B]dV , (5.7)
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{F0}e =
∫∫

A
[N]T{X0}dA + [N]T{P0}, (5.8)

where V and A are the volume and surface area of the element; {X0} is the amplitude
vector of the element boundary traction; {P0} is the amplitude vector of concentrated
loads acting on the element; [D∗] is the constitutive matrix of the element material;
[B] and [N] are the strain matrix and shape function matrix of the element.

It needs to be pointed out that Eqs. (5.6), (5.7) and (5.8) are equally valid for
both the finite and dynamic infinite elements. Although the volume of the dynamic
infinite element can approach infinity, the mass and stiffness matrices of the ele-
ment are still of finite values (Chow and Smith 1981; Medina and Taylor 1983;
Zhao et al. 1987, 1989). This is because both the displacement shape function and
strain matrices of the dynamic infinite element have a common term, known as the
wave propagation function, whose value tends to zero as the volume of the dynamic
infinite element approaches infinity. Since the derivation of three-dimensional finite
element formulation is well known (Zienkiewicz 1977; Rao 1989), only the formu-
lation of three-dimensional dynamic infinite elements is derived in the next section.

5.2 Formulation of Three-Dimensional Dynamic
Infinite Elements

In terms of simulating a continuum system numerically, the continuous displace-
ment field of the system is approximately represented by a discretized displacement
field. The accuracy of the discretized model depends, to a large extent, on both the
element size and the extent to which the displacement shape function of an element
approaches the continuous displacement field of the original system. In the finite
element analysis, the restriction of the construction of the displacement shape func-
tion for a finite element can be somewhat relaxed if a fine mesh of smaller elements
is used to simulate the discretized system. However, the use of smaller elements can
result in a significant increase in the total number of degrees-of-freedom of the dis-
cretized system so that both the computer CPU time and storage requirement for a
given problem will increase remarkably. On the other hand, it is possible to construct
an element using a more accurate displacement shape function to match the continu-
ous displacement field of a real system so as to reduce significantly the total number
of degrees-of-freedom of the discretized model of the system. This is the basic idea
behind the construction of some special elements such as the finite strip element
(Cheung 1976) and the boundary element (Brebbia 1978). When these special ele-
ments are used appropriately in the numerical simulation of a system, both computer
CPU times and storage requirements are reduced significantly, compared with the
finite element simulation of the same system. This basic idea is also applicable to
the construction of a three-dimensional dynamic infinite element and, therefore, the
key issue associated with the construction of a three-dimensional dynamic infinite
element is how to choose an accurate displacement shape function for the element.
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5.2.1 Mapping Functions of Three-Dimensional Dynamic
Infinite Elements

To make the resulting three-dimensional dynamic infinite element more suitable
for simulating both the geometrical irregularity and the material variety of a
natural arch-dam foundation, a coordinate mapping technique is used to map a
three-dimensional dynamic infinite element in the global coordinate system into
a typical parent dynamic infinite element in the local coordinate system. Through
the theoretical analysis of this typical parent dynamic infinite element, the mass
and stiffness matrices of the three-dimensional dynamic infinite element can be
derived.

For the three-dimensional dynamic infinite element shown in Fig. 5.1, the four
sides of the infinite element in the direction of approaching infinity can be rep-
resented by straight lines, so that only eight nodes are sufficient to describe the
geometry of the three-dimensional dynamic infinite element in the global coordi-
nate system. However, to represent the wave propagation behaviour within the infi-
nite element appropriately, 12 nodes are used to describe the displacement field of
the three-dimensional dynamic infinite element. For this reason, the mapping rela-
tionship between the global coordinate system and the local coordinate system for
the three-dimensional dynamic infinite element can be expressed as follows:

Fig. 5.1 Geometry of a
three-dimensional 12-node
dynamic infinite element: (A)
the physical element; (B) the
parent element
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x =
8∑

q=1

Mqxq, (5.9)

y =
8∑

q=1

Mqyq, (5.10)

z =
8∑

q=1

Mqzq, (5.11)

where xq, yq and zq are the nodal coordinates of the three-dimensional dynamic
infinite element in the x, y and z directions, respectively; Mq (q = 1,2, . . . , 8) is the
mapping function of the three-dimensional dynamic infinite element.

M1 = 1

4
(1 − ξ )(1 + η)(1 + ζ ), (5.12)

M2 = 1

4
(1 − ξ )(1 + η)(1 − ζ ), (5.13)

M3 = 1

4
(1 − ξ )(1 − η)(1 − ζ ), (5.14)

M4 = 1

4
(1 − ξ )(1 − η)(1 + ζ ), (5.15)

M5 = 1

4
ξ (1 + η)(1 + ζ ), (5.16)

M6 = 1

4
ξ (1 + η)(1 − ζ ), (5.17)

M7 = 1

4
ξ (1 − η)(1 − ζ ), (5.18)

M8 = 1

4
ξ (1 − η)(1 + ζ ). (5.19)

Note that since the mapping functions of the three-dimensional dynamic infinite
element are different from the displacement shape functions of the element, the
three-dimensional dynamic infinite element is not an isoparametric element.

5.2.2 Displacement Shape Functions of Three-Dimensional
Dynamic Infinite Elements

Consideration of the displacement compatibility condition on the connected
interface between a three-dimensional eight-node isoparametric finite element
(Zienkiewicz 1977) and a three-dimensional 12-node dynamic infinite element
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(Zhao et al. 1993d) yields the following displacement field for the three-dimensional
12-node dynamic infinite element:

u =
12∑

q=1

Nquq, (5.20)

v =
12∑

q=1

Nqvq, (5.21)

w =
12∑

q=1

Nqwq, (5.22)

where Nq (q = 1, 2, . . ., 12) is the displacement shape function of the three-
dimensional 12-node dynamic infinite element as follows:

Nq = Pq(ξ )

[
1

4
(1 + η)(1 + ζ )

]
(q = 1, 5, 9), (5.23)

Nq = Pq(ξ )

[
1

4
(1 + η)(1 − ζ )

]
(q = 2, 6, 10), (5.24)

Nq = Pq(ξ )

[
1

4
(1 − η)(1 − ζ )

]
(q = 3, 7, 11), (5.25)

Nq = Pq(ξ )

[
1

4
(1 − η)(1 + ζ )

]
(q = 4, 8, 12), (5.26)

where Pq(ξ ) (q = 1, 2, . . ., 12) is the wave propagation function of the three-
dimensional 12-node dynamic infinite element; Nq (q = 1, 2, . . ., 12) is the displace-
ment shape function of the three-dimensional 12-node dynamic infinite element.
The wave propagation function of the three-dimensional 12-node dynamic infi-
nite element can be determined by investigating the harmonic wave propagation
behaviour in an infinite medium (Zhao and Valliappan 1993d). When an isotropic,
homogeneous and elastic half-space is subjected to a harmonic loading, the induced
harmonic waves propagate from the vibration source into the far field of the half-
space. The analytical solution for this problem can be expressed using the special
functions, known as Bessel functions and Hankel functions (Graff 1975; Medina
and Taylor 1983). For example, for P-waves and S-waves propagating with spherical
symmetry, the harmonic free-vibration solution for spherically symmetrical waves
traveling in a homogeneous, isotropic and elastic medium, away from the origin of
a vibration source, is expressed as follows (Medina and Taylor 1983):

u = B1h(2)
1 (kpR), (5.27)

v = B2h(2)
0 (ksR), (5.28)

w = B3h(2)
0 (ksR), (5.29)



5.2 Formulation of Three-Dimensional Dynamic Infinite Elements 127

R =
√

x2 + y2 + z2, (5.30)

where h(2)
0 and h(2)

1 are the zeroth order and first-order spherical Hankel functions of
the second kind; B1, B2 and B3 are three constants; kp and ks are the wavenumbers
of a P-wave and an S-wave, respectively.

Note that the asymptotic behaviour of h(2)
0 and h(2)

1 can be expressed using the
following equations (Graff 1975; Medina and Taylor 1983):

h(2)
0 (x) = 1

x
exp
[
i
(

x − π

4

)]
+ O

(
|x|−2

)
, (5.31)

h(2)
1 (x) = 1

x
exp

[
i

(
x − 3π

4

)]
+ O

(
|x|−2

)
. (5.32)

Equations (5.27), (5.28), (5.29), (5.31) and (5.32) clearly indicate that the wave
propagation behaviour in the far field of a half-space can be approximately rep-
resented by exponential functions. A similar conclusion can be obtained when a
cylindrical Rayleigh wave (i.e. R-wave) propagating in a homogeneous, isotropic
and elastic half-space is considered. Therefore, in the far field of a half-space, the
asymptotic behaviour of these special functions can be approximately expressed as
a combination of several exponential functions. The physical explanation for this
is that the induced waves in the far field of the half-space can be approximately
represented using the superposition of plane harmonic waves. Based on this recog-
nition and consideration of induced waves with multiple wavenumbers, the general
form of the wave propagation function for the three-dimensional 12-node dynamic
infinite element can be expressed as

Pq(ξ ) = exp (−αξ) [c1 exp (−iβ1ξ)+ c2 exp (−iβ2ξ)

+c3 exp (−iβ3ξ)
]

(q = 1, 2, . . . , 12),
(5.33)

where α is the nominal decay coefficient that is used to express the wave ampli-
tude attenuation due to both the wave energy dissipation in the three-dimensional
12-node dynamic infinite element and the geometrical divergence of the three-
dimensional 12-node dynamic infinite element. Note that the determination of the
value of α was addressed in Chap. 2. β1, β2 and β3 are three nominal wavenumbers
corresponding to R-, S- and P-waves in the three-dimensional 12-node dynamic
infinite element. These nominal wavenumbers are used to express the phase char-
acteristics of wave propagation in the three-dimensional 12-node dynamic infinite
element. c1, c2 and c3 are three constants to be determined by matching the displace-
ment field of the three-dimensional 12-node dynamic infinite element with that of
the infinite medium.

Although R-waves, S-waves and P-waves decay with distance from the point
of excitation at different rates, previous studies (Zhang and Zhao 1987; Zhao et al.
1989) have demonstrated that the decay rates of different waves in a dynamic infinite
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element are not sensitive to the numerical results. Thus, the same decay rate is used
for all three waves involved in the construction of the wave propagation function of
the three-dimensional 12-node dynamic infinite element. Regarding the exponential
decay of the Rayleigh wave with the depth from ground surface, it is reasonable to
represent this phenomenon approximately by using piecewise interpolation in the η

and ζ directions for the three-dimensional 12-node dynamic infinite element.
To determine the constants c1, c2 and c3, the displacement field of the three-

dimensional 12-node dynamic infinite element needs to be considered. Letting nodal
displacements for the nodes located at an infinite side in the ξ direction of the ele-
ment be equal to the element displacement field expressed in Eqs. (5.20), (5.21) and
(5.22), these three constants can be determined. For instance, if the side of the three-
dimensional 12-node dynamic infinite element with nodes 1 ( ξ = 0), 5 ( ξ = 1/2)
and 9 ( ξ = 1) is considered, the following relationships emerge:

⎧
⎨

⎩

u1
u5
u9

⎫
⎬

⎭
=
⎡

⎢
⎣

1 1 1

− exp
[
− 1

2 (α + iβ1)
]

− exp
[
− 1

2 (α + iβ2)
]

− exp
[
− 1

2 (α + iβ3)
]

exp [− (α + iβ1)] exp [− (α + iβ2)] exp [− (α + iβ3)]

⎤

⎥
⎦

⎧
⎨

⎩

c1
c2
c3

⎫
⎬

⎭
= [C]

⎧
⎨

⎩

c1
c2
c3

⎫
⎬

⎭
.

(5.34)

Solving Eq. (5.34) yields the following matrix equation:

⎧
⎨

⎩

c1
c2
c3

⎫
⎬

⎭
= [C]−1

⎧
⎨

⎩

u1
u5
u9

⎫
⎬

⎭
= [E]

⎧
⎨

⎩

u1
u5
u9

⎫
⎬

⎭
. (5.35)

After these three constants are determined, the wave-propagation function for
the three-dimensional 12-node dynamic infinite element can be further expressed as
follows:

Pq(ξ ) = E11 exp [− (α + iβ1) ξ ] + E21 exp [− (α + iβ2) ξ ]

+ E31 exp [− (α + iβ3) ξ ] (q = 1, 2, 3, 4),
(5.36)

Pq(ξ ) = E12 exp [− (α + iβ1) ξ ] + E22 exp [− (α + iβ2) ξ ]

+ E32 exp [− (α + iβ3) ξ ] (q = 5,6,7,8),
(5.37)

Pq(ξ ) = E13 exp [− (α + iβ1) ξ ] + E23 exp [− (α + iβ2) ξ ]

+ E33 exp [− (α + iβ3) ξ ] (q = 9, 10, 11, 12),
(5.38)

where

E11 = 1

�
exp

[
−1

2
(3α + iβ2 + iβ3)

] [
exp

(
− i

2
β3

)
− exp

(
− i

2
β2

)]
, (5.39)
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E21 = 1

�
exp

[
−1

2
(3α + iβ1 + iβ3)

] [
exp

(
− i

2
β1

)
− exp

(
− i

2
β3

)]
, (5.40)

E31 = 1

�
exp

[
−1

2
(3α + iβ1 + iβ2)

] [
exp

(
− i

2
β2

)
− exp

(
− i

2
β1

)]
, (5.41)

E12 = 1

�
exp (−α) [exp (−iβ2)− exp (−iβ3)

]
, (5.42)

E22 = 1

�
exp (−α) [exp (−iβ3)− exp (−iβ1)

]
, (5.43)

E32 = 1

�
exp (−α) [exp (−iβ1)− exp (−iβ2)

]
, (5.44)

E13 = 1

�
exp

(
−1

2
α

)[
exp

(
− i

2
β3

)
− exp

(
− i

2
β2

)]
, (5.45)

E23 = 1

�
exp

(
−1

2
α

)[
exp

(
− i

2
β1

)
− exp

(
− i

2
β3

)]
, (5.46)

E33 = 1

�
exp

(
−1

2
α

)[
exp

(
− i

2
β2

)
− exp

(
− i

2
β1

)]
, (5.47)

� = exp

(
−3

2
α

){
exp

[
− i

2
(β2 + β3)

] [
exp

(
− i

2
β3

)
− exp

(
− i

2
β2

)]}

+ exp

(
−3

2
α

){
exp

[
− i

2
(β1 + β2)

] [
exp

(
− i

2
β2

)
− exp

(
− i

2
β1

)]}

+ exp

(
−3

2
α

){
exp

(
− i

2
(β1 + β3)

)[
exp

(
− i

2
β1

)
− exp

(
− i

2
β3

)]}
.

(5.48)

Note that a sufficient condition for the existence of Pq(ξ ) (q= 1, 2, . . ., 12) in the
three-dimensional 12-node dynamic infinite element is that β1, β2 and β3 are three
different constants. This condition can be satisfied for simulating wave-propagation
problems in an infinite medium, because, from the physical point of view, R-, S- and
P-waves have three different wavenumbers in the infinite medium.

In addition, the following expression for the wave propagation function of the
three-dimensional 12-node dynamic infinite element exists:

Pq(ξr) = δqr (q = 1, 2, . . . ,12; r = 1, 2, . . . ,12), (5.49)

where δqr is the Kronecker delta. This implies that for any displacement shape func-
tion, Nq (q = 1, 2, . . ., 12), Nq = 1 when ξ = ξq, η = ηq and ζ = ζq, while Nq = 0
when ξ = ξr, η = ηr and ζ = ζr, where r �= q.

Supposing the velocities of the P-wave, S-wave and R-wave in an elastic infinite
medium are 3000, 1500 and 1398 m s–1, respectively, and that the excitation circular
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Fig. 5.2 Distributions of wave-propagation functions in a three-dimensional 12-node dynamic
infinite element: the solid lines represent the real parts of the wave-propagation function, while the
dashed lines represent the imaginary parts of the wave-propagation function
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frequency is 30 rad s−1, the corresponding wavenumbers for the P-wave, S-wave and
R-wave are 0.01, 0.02 and 0.0215, respectively. If these wavenumbers are multiplied
by 100, which means that the global coordinates of the three-dimensional 12-node
dynamic infinite element is divided by 100 in the ξ direction, the distributions of
the wave propagation functions (i.e. Pq(ξ ) (q = 1, 2, . . ., 12)), which are used in the
three-dimensional 12-node dynamic infinite element, are shown in Fig. 5.2, where
α = 2.2, β1 = 1, β2 = 2 and β3 = 2.25. In this figure, the solid and dashed
lines are the real and imaginary parts of the wave-propagation functions, which are
used to express the element-displacement pattern for the three-dimensional 12-node
dynamic infinite element. From the wave-propagation point of view, it is the wave-
propagation function that describes how waves in the three-dimensional 12-node
dynamic infinite element propagate from the element nodes to the far field of the
infinite medium.

Another characteristic of the three-dimensional 12-node dynamic infinite ele-
ment is that real (physical) wavenumbers in a global coordinate system can be
adjusted by changing the locations of element side nodes 5, 6, 7 and 8 in the global
coordinate system. This technique is helpful when the three-dimensional 12-node
dynamic infinite element is used to simulate wave-propagation problems in non-
homogeneous infinite foundations (Zhao et al. 1987, 1989).

5.2.3 Mass and Stiffness Matrices of Three-Dimensional Dynamic
Infinite Elements

If the same procedures as those used in the finite element method (Zienkiewicz
1977; Zhao et al. 1992) are used, both the mass matrix and the stiffness matrix of the
three-dimensional 12-node dynamic infinite element can be expressed as follows:

[M]e =
∫ 1

−1

∫ 1

−1

∫ ∞

0
[N]Tρ[N] |J| dξdηdζ , (5.50)

[K]e =
∫ 1

−1

∫ 1

−1

∫ ∞

0
[B]T [D∗][B] |J| dξdηdζ , (5.51)

where [B] and [N] are the strain matrix and shape function matrix of the three-
dimensional 12-node dynamic infinite element; [D∗] is the constitutive matrix of
the element material; |J| is the Jacobian determinant which can be determined using
the mapping relationship of the element (in Eqs. (5.9), (5.10) and (5.11)); and ρ is
the density of the element material.

To determine the shape function matrix, Eqs. (5.20), (5.21) and (5.22) can be
written in the matrix form:

⎧
⎨

⎩

u
v
w

⎫
⎬

⎭

e

= [N] {�}e , (5.52)
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where [N] is the shape function matrix of the three-dimensional 12-node dynamic
infinite element; {�}e is the nodal displacement vector of the element. They are of
the following forms:

[N] = [ [N1] [N2] [N3] [N4] [N5] [N6] [N7] [N8] [N9] [N10] [N11] [N12]
]

, (5.53)

{�}e = { {�1} {�2} {�3} {�4} {�5} {�6} {�7} {�8} {�9} {�10} {�11} {�12} }T ,

(5.54)

where
[
Nq
]

and
{
�q
}

are the corresponding submatrix and subvector related to the
node q (q = 1, 2, . . ., 12) of the three-dimensional 12-node dynamic infinite element.
They can be expressed as follows:

[
Nq
] =

⎡

⎣
Nq 0 0
0 Nq 0
0 0 Nq

⎤

⎦ (q = 1,2, . . . ,12), (5.55)

{
�q
} =

⎧
⎨

⎩

uq

vq

wq

⎫
⎬

⎭
(q = 1,2, . . . ,12), (5.56)

where Nq (q = 1, 2, . . ., 12) is the displacement shape function of node q; uq, vq and
wq (q = 1, 2, . . ., 12) are the displacement components of node q in the x, y and z
directions, respectively.

Using the above definitions, the strain matrix of the three-dimensional 12-node
dynamic infinite element can be expressed as follows:

{ε}e =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γxy

γyz

γzx

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u/∂x
∂v/∂y
∂w/∂z

∂u/∂y + ∂v/∂x
∂v/∂z + ∂w/∂y
∂w/∂x + ∂u/∂z

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= [B] {�}e , (5.57)

where [B] is the strain matrix of the three-dimensional 12-node dynamic infinite
element; and {ε}e is the strain vector of the element. The strain matrix of the three-
dimensional 12-node dynamic infinite element can be further expressed as

[B] = [ [B1] [B2] [B3] [B4] [B5] [B6] [B7] [B8] [B9] [B10] [B11] [B12]
]

, (5.58)

where
[
Bq
]

is the corresponding strain submatrix related to the node q (q = 1, 2, . . .,
12) of the three-dimensional 12-node dynamic infinite element. It can be expressed
as follows:
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[
Bq
] =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

∂Nq/∂x 0 0
0 ∂Nq/∂y 0
0 0 ∂Nq/∂z

∂Nq/∂y ∂Nq/∂x 0
0 ∂Nq/∂z ∂Nq/∂y

∂Nq/∂z 0 ∂Nq/∂x.

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(q = 1, 2, . . . , 12). (5.59)

To evaluate the strain matrix of the three-dimensional 12-node dynamic infinite
element, it is necessary to calculate the first derivatives of the displacement shape
functions with respect to the local ξ, η and ζ coordinates as follows:

∂Nq

∂ξ
= ∂Nq

∂x

∂x

∂ξ
+ ∂Nq

∂y

∂y

∂ξ
+ ∂Nq

∂z

∂z

∂ξ
(q = 1, 2, . . . ,12), (5.60)

∂Nq

∂η
= ∂Nq

∂x

∂x

∂η
+ ∂Nq

∂y

∂y

∂η
+ ∂Nq

∂z

∂z

∂η
(q = 1, 2, . . . ,12), (5.61)

∂Nq

∂ζ
= ∂Nq

∂x

∂x

∂ζ
+ ∂Nq

∂y

∂y

∂ζ
+ ∂Nq

∂z

∂z

∂ζ
(q = 1, 2, . . . ,12). (5.62)

Equations (5.60), (5.61) and (5.62) can be readily expressed in the following
matrix form:

⎧
⎨

⎩

∂Nq/∂ξ

∂Nq/∂η

∂Nq/∂ζ

⎫
⎬

⎭
=
⎡

⎣
∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ

⎤

⎦

⎧
⎨

⎩

∂Nq/∂x
∂Nq/∂y
∂Nq/∂z

⎫
⎬

⎭

= [J]

⎧
⎨

⎩

∂Nq/∂x
∂Nq/∂y
∂Nq/∂z

⎫
⎬

⎭
(q = 1, 2, . . . , 12),

(5.63)

where the matrix [J] , called the Jacobian matrix, is given by the following
equation:

[J] =
⎡

⎣
∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ

⎤

⎦. (5.64)

Substituting Eqs. (5.9), (5.10) and (5.11) into Eq. (5.64) yields the final expres-
sion for the Jacobian matrix as follows:

[J] =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

8∑

q=1

[(
∂Mq/∂ξ

)
xq
] 8∑

q=1

[(
∂Mq/∂ξ

)
yq
] 8∑

q=1

[(
∂Mq/∂ξ

)
zq
]

8∑

q=1

[(
∂Mq/∂η

)
xq
] 8∑

q=1

[(
∂Mq/∂η

)
yq
] 8∑

q=1

[(
∂Mq/∂η

)
zq
]

8∑

q=1

[(
∂Mq/∂ζ

)
xq
] 8∑

q=1

[(
∂Mq/∂ζ

)
yq
] 8∑

q=1

[(
∂Mq/∂ζ

)
zq
]

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

. (5.65)
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Therefore, the first derivatives of the displacement shape functions with respect
to the global x, y and z coordinates can be expressed as follows:

⎧
⎨

⎩

∂Nq/∂x
∂Nq/∂y
∂Nq/∂z

⎫
⎬

⎭
= [J]−1

⎧
⎨

⎩

∂Nq/∂ξ

∂Nq/∂η

∂Nq/∂ζ

⎫
⎬

⎭
. (q = 1, 2, . . . , 12). (5.66)

Mathematically, the value of the Jacobian determinant |J| can be determined from
the Jacobian matrix [J] .

For three-dimensional solids with hysteretic damping, the constitutive matrix of
the element material can be expressed in the following form:

[
D∗] = E(1 + iηd)

(1 + μ)(1 − 2μ)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − μ μ μ 0 0 0
μ 1 − μ μ 0 0 0
μ μ 1 − μ 0 0 0
0 0 0 (1 − 2μ)/2 0 0
0 0 0 0 (1 − 2μ)/2 0
0 0 0 0 0 (1 − 2μ)/2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(5.67)
where E and μ are the elastic modulus and Poisson’s ratio of the element material,
respectively; ηd is the hysteretic damping coefficient of the element material.

Substituting Eqs. (5.53), (5.58) and (5.67) into Eqs. (5.50) and (5.51) yields the
following generalized integral for the evaluation of the mass and stiffness matrices
of the three-dimensional 12-node dynamic infinite element:

I =
∫ ∞

0
F(ξ ) exp

[−(2α + iβq + iβr)ξ
]
dξ (q = 1, 2, 3; r = 1, 2, 3). (5.68)

To evaluate the generalized integral using the numerical integration technique
(Chow and Smith 1981; Zhang and Zhao 1987), the following definition

β = βq + βr

2
(q = 1, 2, 3; r = 1, 2, 3) (5.69)

is introduced. As a result, Eq. (5.68) can be evaluated using the numerical integration
technique described in Sect. 2.1.1.

5.3 Verification of Three-Dimensional Dynamic Infinite Elements

The first numerical example for verifying the proposed three-dimensional 12-node
dynamic infinite element is to simulate the dynamic response of a square massless
rigid plate resting on a homogeneous, isotropic and elastic half-space. If the square
massless plate is rigid, the analytical solutions for the compliance of the plate are
available (Wong and Luco 1976; Hamidzadeh-Eraghi and Grootenhuis 1981). In
the process of deriving the analytical solutions, the rigid plate is considered by
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assuming that the whole plate has the same translational and rotational deforma-
tions. This means that an elastic modulus of infinity is equivalently used in the
related theoretical analysis. However, from the computational point of view, the
elastic modulus of a finite value needs to be used for simulating the plate. To com-
pare the emerging numerical results with the analytical solutions, the value of the
elastic modulus of the plate must be several orders higher than that of the underlying
rock in the coupled computational model of three-dimensional finite and dynamic
infinite elements (Zhao et al. 1989, 1992, 1993d). This implies that only a “relatively
rigid” plate is simulated in the corresponding computational models.

Figure 5.3 shows the computational model of a square massless plate resting on a
homogeneous, isotropic and elastic half-space, in which only a quarter of the plate-
foundation system is simulated using three-dimensional finite and dynamic infinite
elements due to the symmetrical nature of the problem. The symmetry boundary
condition is applied to the xz (i.e. y= 0) and yz (i.e. x= 0) planes for the verti-
cal vibration of the square massless plate, while the symmetry boundary condition
is applied to the xz (i.e. y= 0) plane and the anti-symmetry boundary condition
is applied to the yz (i.e. x= 0) plane for the horizontal and rocking vibration of
the square massless plate. To compare the current numerical results with the previ-
ous solutions (Wong and Luco 1976; Hamidzadeh-Eraghi and Grootenhuis 1981),
the same assumptions as those used in the previous work are adopted for the cou-
pled computational model of three-dimensional finite and dynamic infinite elements
(Zhao et al. 1989, 1992, 1993d).

The following parameters are used in the coupled computational model of
the plate-foundation system. For the rock foundation, the elastic modulus (Er)
is 24 × 109 Pa; the value of Poisson’s ratio (νr) is 1/3; the rock density (ρr) is
2400 kg m−3. For the square massless plate, the elastic modulus (Ep) is 24×1012 Pa
so that the plate is “relatively rigid” to the rock foundation; the half-width of the

Fig. 5.3 Computational
model of a massless plate
resting on a homogeneous,
isotropic and elastic
half-space: the near field is
simulated using plate and
solid finite elements, while
the far field is simulated using
dynamic infinite elements
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plate (B) is 10 m; the thickness of the plate is B/10. According to these parame-
ters, the decay factor (α) used in the three-dimensional dynamic infinite elements is
assumed to be 0.028, while the P-wave, S-wave and R-wave velocities, which can
be determined from elastic wave theory (Graff 1975), are 3872, 1936 and 1804m
s–1 in the rock foundation, respectively. Based on these wave velocities and the
harmonic circular frequency of excitation, the three wavenumbers used in the three-
dimensional dynamic infinite elements can be evaluated.

In the coupled computational model of the plate-foundation system, the square
massless plate is simulated either by thick plate elements or by a combina-
tion of thick plate elements and plane stress elements (Hamidzadeh-Eraghi and
Grootenhuis 1981). The near field of the rock foundation is simulated using three-
dimensional eight-node solid finite elements, while the far field of the rock founda-
tion is simulated using three-dimensional 12-node dynamic infinite elements. The
resulting numerical solutions are compared with the “exact” solutions of Wong
and Luco (1976), Hamidzadeh-Eraghi and Grootenhuis (1981) using the following
parameters:

CHH(a0) = GB�1

P0
, (5.70)

CVV (a0) = GB�3

P0
, (5.71)

CMM(a0) = GB3θx

Mx
, (5.72)

CHM(a0) = GB2�1

Mx
, (5.73)

where CHH and CVV are the dimensionless compliances of the plate due to the con-
centrated dynamic load (P0) applied at the plate centre in the x and z directions,
respectively; �1 and �3 are the corresponding complex displacements of the plate
in the x and z directions; CMM and CHM are the dimensionless compliances of the
plate due to the dynamic moment (Mx) applied at the plate centre; θx is the rotation
angle of the plate corresponding to the applied moment (Mx) with respect to the x
axis; G is the shear modulus of the rock foundation; a0 is a dimensionless frequency
with the following definition:

a0 = ωB

CS
, (5.74)

where ω is the circular frequency of the excitation load; Cs is the S-wave velocity
in the rock foundation.

Figure 5.4 shows the comparison between the current numerical results and the
previous ones. In this figure, the solid and dashed lines, which are used for the
representation of CHH and CVV , are cited from the work carried out by Wong and
Luco (1976), while the solid and dashed lines, which are used for the representa-
tion of CMM and CHM , are cited from the work carried out by Hamidzadeh-Eraghi
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Fig. 5.4 Comparison of current results with previous results (Massless plate resting on a homoge-
neous, isotropic and elastic half-space)

and Grootenhuis (1981). For the computation of CMM and CHM , Poisson’s ratio of
the rock foundation is assumed to be 0.25 so that the corresponding wavenumbers
for the P-wave, S-wave and R-wave need to be changed accordingly in the three-
dimensional 12-node dynamic infinite elements. The solid dots and circles are used
to express the numerical results obtained from the coupled computational model, in
which the plate is simulated using a combination of thick plate elements and plane
stress elements, while the solid triangles and hollow triangles are used to express
the numerical results obtained from the coupled computational model, in which the
plate is simulated only using thick plate elements. There is good agreement between
the current numerical results and the previous ones when the plate is simulated using
a combination of thick plate elements and plane stress elements, indicating that the
accurate numerical results can be obtained from the coupled computational model of
three-dimensional finite (plate) elements and dynamic infinite elements. However,
when the plate is subjected to either a horizontal or a rocking loading and simu-
lated only using thick plate elements, a significant discrepancy between the current
numerical results and the previous ones is observed because the sway modes of the
plate cannot be appropriately simulated by thick plate elements alone. Therefore, it
is recommended that in the seismic analysis of a plate subjected to horizontal earth-
quakes, shell elements or a combination of thick plate elements and plane stress
elements be used in the coupled computational model of three-dimensional finite
(plate) elements and dynamic infinite elements.

The second numerical example for verifying the proposed three-dimensional
12-node dynamic infinite element is to simulate the dynamic response of a square
massless plate resting on a visco-elastic layered foundation. This example, in
essence, belongs to a wave propagation problem in a non-homogeneous infinite
foundation. Figure 5.5 shows the computational model of the plate-foundation
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Fig. 5.5 Computational
model of a massless plate
resting on a layered
foundation: the near field is
simulated using plate and
solid finite elements, while
the far field is simulated using
dynamic infinite elements

system. Owing to the symmetrical nature of the plate-foundation system, only a
quarter of the plate-foundation system is simulated using three-dimensional finite
(plate) elements and dynamic infinite elements. The same parameters as those used
for the first verification example are employed in the computational model of the
plate and layered foundation system. Since a layer resting on the rigid base rock
is considered, the ratio of the layer depth to the plate width is assumed to be 2 in
the coupled computational model of three-dimensional finite (plate) elements and
dynamic infinite elements.

Figure 5.6 shows the comparison between the current numerical results with the
previous ones (Chow 1987). In this figure, K and C are the dynamic stiffness coef-
ficient and damping coefficient of the plate, respectively. The solid line is used to
express the previous results (Chow 1987), while the solid dots are used to express the
current numerical results obtained from the coupled computational model of three-
dimensional finite (plate) elements and dynamic infinite elements. Generally, there
is good agreement between the current numerical results and the previous ones,
indicating that accurate numerical results can be obtained from the application of
the coupled computational model of three-dimensional finite (plate) elements and
dynamic infinite elements for solving three-dimensional wave-propagation prob-
lems in layered infinite foundations. Note that if the foundation of a plate/structure
can be treated as a homogeneous, isotropic and visco-elastic half-space, the previous
analytical and semi-analytical methods are computationally cheaper, compared with
the coupled computational model used in this chapter. However, if the foundation
of a plate/structure can be only treated as a non-homogeneous infinite medium, the
previous analytical procedures (Wong and Luco 1976; Brebbia 1978; Hamidzadeh-
Eraghi and Grootenhuis 1981; Chow 1987) are no longer directly applicable for
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Fig. 5.6 Comparison of current results with previous results (massless plate resting on a layered
foundation): the solid lines represent the previous solutions, while the solid dots represent the
current results

dealing with dynamic plate/structure–foundation interaction problems, especially
when dealing with dynamic arch dam—foundation interaction problems. In this
case, the coupled computational model of three-dimensional finite (plate) elements
and dynamic infinite elements can still work well through simply altering the param-
eters of different material regions, which are simulated by the three-dimensional
finite (plate) elements and dynamic infinite elements.
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