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Preamble

Effective and efficient modelling of infinite media is important to the production of
accurate and useful solutions for many scientific and engineering problems involv-
ing infinite domains, such as earthquake wave propagation within the upper crust of
the Earth in the fields of geophysics and seismology, dynamic structure–foundation
interaction in the fields of geotechnical, civil and dam engineering, transient pore-
fluid flow, heat transfer and mass transport within the interior of the Earth in the
fields of geoscience and geoenvironmental engineering, to name only a few. Such
an effective and efficient modelling provides useful analytical and numerical tools
for simulating, both accurately and efficiently, the effect of the far field of a system
on the near field of the system so that computational resources can be concentrated
on the simulation aspects of multiple processes, multiple scales, complicated geo-
logical and geometrical conditions for the near field of the system. Towards this
end, dynamic and transient infinite elements have been developed during the past
few decades.

This monograph aims to provide a state-of-the-art report on the theory and appli-
cation of dynamic and transient infinite elements for simulating the far fields of
infinite domains involved in many scientific and engineering problems, based on
the author’s own work during the last two decades. For this purpose, while the the-
oretical aspects of either dynamic infinite elements or transient infinite elements are
systematically presented, the related application examples are immediately followed
to illustrate the usefulness and applicability of these infinite elements for simulat-
ing a wide range of dynamic and transient problems involving infinite domains.
To broaden the readership of this monograph, common mathematical notations are
used to derive the formulations of both dynamic and transient infinite elements. This
enables this monograph to be used either as a useful textbook for postgraduate stu-
dents or as a valuable reference book for computational geoscientists, geotechnical
engineers, civil engineers and applied mathematicians. In addition, each chapter is
written independently of the remainder of the monograph so that readers may read
the chapters of interest separately.

In this monograph, the coupled computational method of finite elements and
dynamic infinite elements is used to solve wave propagation problems in infinite
domains. For a given wave propagation problem, the near field of the problem
is simulated using finite elements so that complicated geometries and complex
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vi Preamble

material properties can be considered in the coupled computational method. The
far field of the problem is simulated using dynamic infinite elements so that waves
can be propagated from the near field to the far field without causing spurious
reflection and refraction at the interface between finite elements and dynamic infi-
nite elements in the coupled computational model. By taking advantages of both
finite elements and dynamic infinite elements, the coupled computational method
of finite elements and dynamic infinite elements provides a powerful simulation
tool for dealing with a wide range of practical problems, such as the distributions
of free-field motion during earthquakes, the seismic responses of dam–reservoir
water–sediment–foundation systems and the dynamic analyses of civil structure–
foundation interactions. To simulate transient pore-fluid flow, heat transfer and mass
transport problems in infinite domains, the coupled computational method of finite
elements and transient infinite elements is also presented. As an application exam-
ple, this coupled method has been used to investigate the effects of several key
factors on contaminant transport processes in fractured porous media of infinite
domains. The related theoretical developments and application results are briefly
described as follows: (1) Owing to the characteristics of propagating waves from the
near field to the far field of a system, the wave propagation function of a dynamic
infinite element plays a key role in the formulation of the element. Since the wave
propagation function is explicitly dependent on frequency, the coupled computa-
tional method of finite elements and dynamic infinite elements can be directly
used to solve linear wave propagation problems in the frequency domain, while
it can be only used to deal with nonlinear wave propagation problems in the hybrid
frequency–time domain. (2) For a two-dimensional dynamic infinite element, the
corresponding wave propagation function has two independent wavenumbers so that
it can be used to simulate explicitly both P-wave and SV-wave propagation in the far
field of a system. Similarly, for a three-dimensional dynamic infinite element, the
corresponding wave propagation function has three independent wavenumbers so
that it is capable of simulating simultaneously P-wave, SV-wave and R-wave prop-
agation in the far field of a system. (3) The coupled computational model of finite
elements and dynamic infinite elements can be used to solve both wave scattering
and wave radiation problems in infinite domains. When dealing with wave scatter-
ing problems, a wave input procedure, which can be easily applied to the coupled
computational model of finite elements and dynamic infinite elements, is presented
to transform an incident wave into equivalent nodal loads at a wave input boundary
located within the coupled computational model. (4) For the application of dynamic
infinite elements to dam engineering problems, the coupled computational method
of two-dimensional finite elements and dynamic infinite elements has been used to
simulate the dynamic responses of both a gravity dam–water–sediment–foundation
system and an embankment dam–water–sediment–foundation system. For a gravity
dam, the related numerical results have indicated that the reservoir bottom sedi-
ment has a remarkable effect on the dynamic response of the dam, while in the
case of an embankment dam, the corresponding results have demonstrated that both
the type and the location of impervious members within the dam have significant
influences on the dynamic response of the embankment dam. (5) As an application
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example of simulating wave scattering problems in the fields of geophysics and
seismology, the coupled computational method of two-dimensional finite elements
and dynamic infinite elements has been used to investigate the effects of canyon
topographical and geological conditions on the distributions of free-field motion
during earthquakes. The related numerical results have demonstrated that both topo-
graphical and geological conditions have significant influences on seismic accelera-
tion distributions along the surface of a canyon, implying that structures located on
softer soils may be subjected to stronger seismic loads than those located on stiffer
rocks. (6) The coupled computational model of three-dimensional finite elements
and dynamic infinite elements has been used to solve dynamic framed structure–
raft foundation–underlying medium interaction problems in the field of civil engi-
neering. The related numerical results have demonstrated that since the radiation
damping of an underlying medium plays a predominant role in determining the total
damping of the underlying medium, the dynamic response of a three-dimensional
framed structure on a layered medium is much stronger than that on a homogeneous
medium, as a result of wave reflection and refraction within the soft layer. (7) To
construct transient infinite elements for simulating transient pore-fluid flow and heat
transfer problems in fluid-saturated porous media of infinite domains, the hydraulic
head distribution and heat transfer functions are used to derive the formulations of
the transient infinite elements. Since these functions are explicitly dependent on
time, the coupled computational method of finite elements and transient infinite ele-
ments can be straightforwardly employed to solve transient pore-fluid flow and heat
transfer problems in the time domain. (8) Based on the mass transport function con-
cept, the formulations of transient infinite elements are derived for simulating the
far fields of mass transport problems in fractured porous media of infinite domains.
With the use of the double porosity continuum approach, the porous block and fis-
sured network in a fractured porous medium can be treated as an equivalent medium
consisting of two overlapping continua. This enables the coupled computational
method of finite elements and transient infinite elements to be used for investigating
the effects of various key factors on contaminant transport processes in fractured
porous media of infinite domains. The related numerical results have demonstrated
that the leakage between the porous block and the fissure network, the porosity ratio
of the fissured network to the porous block, pore-fluid advection and solute disper-
sion have significant effects on contaminant concentration distributions in fractured
porous media of infinite domains.

November 28, 2008 Chongbin Zhao
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Nomenclature

The following symbols are commonly used with the attached definitions, unless
otherwise specified in the monograph.

A area of a finite element
C contaminant concentration
{C} contaminant concentration vector
C1 contaminant concentration in the porous block
C2 contaminant concentration in the fissured network
cp specific heat of pore-fluid
D dispersion coefficient
g acceleration due to gravity
h hydraulic head
H reference length
K hydraulic conductivity
L length of a problem domain
M mapping function
N shape function
[N] shape function matrix
p pressure
P nodal force
{P} nodal force vector
P0 concentrated force
Pλ nodal force on the wave input boundary
S boundary length of a finite element
T temperature
{T} temperature vector
t temporal variable
u displacement in the x direction
v displacement in the y direction
V volume of a finite element
w displacement in the z direction
x, y, z spatial coordinates in a global coordinate system

xv



xvi Nomenclature

λ thermal conductivity
λe0 reference thermal conductivity in the horizontal direction
φ porosity
ψ vector potential function
ρ density
ν Poisson’s ratio
β stress increase factor
σ normal stress
τ shear stress
ω circular frequency
ξ , η, ζ spatial coordinates in a local coordinate system
θ wave incident angle
ηd hysteretic damping coefficient
χ transmissive coefficient between the porous block and the fissured

network in a fractured porous medium

Subscripts

f pertaining to pore-fluid
0 pertaining to reference quantities
P pertaining to P-wave
SV pertaining to SV-wave

Superscripts

e pertaining to quantities in a finite element level
∗ pertaining to dimensionless quantities
s pertaining to solid matrix
T pertaining to the transpose of a matrix



Chapter 1
Introduction

Effective and efficient modelling of infinite media is important for the production of
accurate and useful solutions for many scientific and engineering problems involv-
ing infinite domains (Bettess 1977, 1980; Chow and Smith 1981; Medina and Taylor
1983; Zhang and Zhao 1987; Zhao et al. 1989; Zhao and Valliappan 1993a, b, c, d;
Astley 1996, 1998; Yang et al. 1996; Yang and Huang 2001; Yun et al. 2000, 2007;
Wang et al. 2006). Some typical examples involving infinite domains are as follows:
(1) earthquake wave propagation within the upper crust of the Earth in the fields
of geophysics and seismology; (2) dynamic structure–foundation interaction in the
fields of geotechnical, civil and dam engineering; and (3) transient pore-fluid flow,
heat transfer and mass transport within the interior of the Earth in the fields of geo-
science and geoenvironmental engineering. Although the solid Earth is viewed as a
bounded domain at the terrestrial scale, it can be treated as an unbounded domain at
the human scale. For instance, in the case of predicting possible property damages
caused by an earthquake, only a limited region around the epicentre is of interest
because the earthquake wave energy is significantly reduced as the distance from
the epicentre is increased. Compared with the region of interest around an epicen-
tre, which is called the near field or the interior domain of a system, the outside
region, referred to as the far field or the exterior domain of the system, is large
enough to be treated as an infinite domain, from the mathematical point of view.
Similarly, the sizes of engineering structures such as civil buildings, dams, embank-
ments, retaining walls and nuclear reactors are very small, compared with those of
their foundations. Since only the response of a structure and its surrounding founda-
tion is of interest, from the structural design point of view, computational resources
should be concentrated on the analysis of the structure and the near field of the
foundation.

In terms of simulating the near fields of systems involving infinite domains, the
finite element method provides a very powerful tool in the sense that complicated
geometries and complex material distributions can be effectively and efficiently con-
sidered in a finite element model (Zienkiewicz 1997; Rao 1989). In particular, the
numerical adequacy and convergence properties of a finite element model were
extensively studied, so that many numerical simulation criteria have been estab-
lished. For example, when a finite element is used to simulate wave propagation
problems, there is a mesh size requirement criterion available, which states that in

1C. Zhao, Dynamic and Transient Infinite Elements, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-00846-7_1,
C© Springer-Verlag Berlin Heidelberg 2009



2 1 Introduction

order to ensure the numerical adequacy and convergence of a finite element model,
the size of a linear finite element should be less than one-eighth of the wavelength
to be simulated, whereas the size of a quadratic finite element should be less than
one-fourth of the wave length to be simulated in the finite element model. Simi-
larly, when a finite element is used to simulate transient mass transport problems,
the size of the element should satisfy the Courant number, so that the numerical
adequacy and convergence of a finite element model can be ensured (Zienkiewicz
1977; Zhao et al. 1994). For these reasons, the finite element mesh of the near field
can be designed on the basis of the related mesh criteria available, without a need to
conduct a mesh refinement study.

Since the finite element method can be used to simulate problems of finite
domains, it is necessary to develop useful numerical techniques for simulating the
far fields of problems when they are of infinite domains. Towards this end, static,
dynamic and transient infinite elements have been developed for simulating the far
fields of many scientific and engineering problems involving infinite domains during
the past few decades. Static infinite elements refer to the time-independent infinite
elements suitable for simulating the far fields of static problems. Dynamic infinite
elements refer to the frequency-dependent infinite elements suitable for simulating
the far fields of dynamic and wave propagation problems, while transient infinite
elements refer to the time-dependent infinite elements suitable for simulating the
far fields of transient pore-fluid flow, heat transfer and mass transport problems.
On the other hand, for most scientific and engineering problems involving infinite
domains, the near field of a problem can be appropriately determined so that the
nonlinear behaviour of the problem can be simulated by finite elements. As a result,
for the sake of developing dynamic and transient infinite elements, linear dynamic
elasticity (in certain cases including linear visco-elasticity) is used to represent the
mechanical behaviour of the far field, while linearized ground water flow and diffu-
sive mass transport equations are used to approximately represent the behaviours of
the corresponding far fields.

For the numerical simulation of an infinite domain, a primitive and very simple
method, in which the infinite domain was approximately truncated as a large-enough
finite domain, was widely used at the early stage of the finite element analysis. The
major disadvantages in using this primitive method are as follows: (1) the simu-
lation of a large-enough domain leads to a significant increase in computational
resources; (2) the boundary conditions of a problem at infinity cannot be rigorously
satisfied. For instance, stresses and displacements attenuating zero at infinity for a
static problem and the wave radiation condition in the far field for a dynamic prob-
lem have to be violated in the numerical analysis; (3) stretching a fixed number of
finite elements to model a vast domain can result in a severe loss of solution accu-
racy for static problems, while it results in spurious solutions for dynamic problems
because the element size requirement for appropriately simulating dynamic prob-
lems cannot be satisfied in the numerical simulation; (4) for transient heat transfer
and mass transport problems, the use of artificially truncated boundaries can cause
unexpected numerical reflections back into the near field, where the solutions are
usually of great interest to the analyst, of a system.
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To overcome the above-mentioned disadvantages, infinite elements have been
developed to simulate, both effectively and efficiently, the physical and mechanical
effects of the far field of a system on the near field of the system. In this respect,
Ungless (1973) presented the static infinite element concept for simulating infinite
domains of static problems. This concept attracted considerable research on the
development and application of static infinite elements during both the 1970s and
the 1980s (Bettess 1977, 1980, 1992; Beer and Meek 1981; Booker and Small 1981;
Zhao et al. 1986). In the early 1980s, Chow and Smith (1981) extended the static
infinite element concept to the simulation of infinite domains for dynamic problems.
Owing to the wave propagation characteristics associated with dynamic problems,
a large amount of research has been contributed to the development and application
of dynamic infinite elements for simulating the far-field effects of infinite domains
since the 1980s (Medina and Taylor 1983; Zhang and Zhao 1987; Zhao et al. 1989;
Zhao and Valliappan 1993a, b, c, d; Astley 1996, 1998; Yang et al. 1996; Yang and
Huang 2001; Yun et al. 2000, 2007; Wang et al. 2006). As most of the research con-
ducted in the development of dynamic infinite elements is associated with steady-
state wave propagation problems in the frequency domain, it remains desirable to
directly develop dynamic infinite elements in the time domain for simulating elas-
tic wave propagation problems involving infinite domains in the future. On the
other hand, for dealing with the numerical simulation of infinite domains associated
with transient pore-fluid flow, heat transfer and mass transport problems, Zhao and
Valliappan (1993e, f, 1994a) presented (time-dependent) transient infinite elements
in the time domain. Since the proposed transient infinite elements are time depen-
dent, they have been successfully used, with a combination of the conventional finite
element method, to solve a wide range of transient pore-fluid flow, heat transfer and
mass transport problems in fluid-saturated porous media of infinite domains (Zhao
et al. 1994b, c; Khalili et al. 1999a, b; Lai et al. 2002; Zhang et al. 2007).

The prediction of an earthquake and related property damages has been a hot
research topic in the fields of geology, geophysics and seismology. Although earth-
quakes cannot be predicted using the present day’s knowledge of geoscientists,
modern advances in computational simulation methods provide some useful tools
suitable for investigating the detailed dynamic processes and mechanisms associ-
ated with an earthquake. From the computational simulation point of view, an earth-
quake may involve the following two important stages: an inception stage and an
occurrence stage. At an inception stage, the deformation rate of crustal materials
(i.e. about a few centimetres per year) is so slow that the geological system related
to the inception of an earthquake can be treated as a quasi-static system, indicating
that the whole geological system can be simulated using the coupled computational
method of finite elements and static infinite elements. However, at the occurrence
stage of an earthquake, the resulting earthquake wave propagates at a speed of a few
thousand kilometres per second within the crust of the Earth, so that the geologi-
cal system related to the occurrence of an earthquake must be treated as a dynamic
system. In this situation, the whole geological system needs to be simulated using
the coupled computational method of finite elements and dynamic infinite elements.
To demonstrate the potential application of dynamic infinite elements in the fields of
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geophysics and seismology, the coupled computational method of two-dimensional
finite elements and dynamic infinite elements is used to investigate the effects of
canyon topographical and geological conditions on the distributions of free-field
motion during earthquakes. This is studied in the fourth chapter of this monograph.

As extensive studies on the dynamic response of concrete gravity and embank-
ment dams due to earthquake loadings have demonstrated, the dynamic response
of either a concrete gravity dam or an embankment dam is mainly affected by the
following factors: (1) the interaction between the dam and the impounded reser-
voir water (Chopra 1968; Chakarbarti and Chopra 1974; Liam-Finn et al. 1977);
(2) the compressibility of the impounded water (Chopra and Gupta 1982); (3) the
interaction between the dam and the foundation rock (Liam-Finn et al. 1977; Liam-
Finn and Varoglu 1972a, b,1975); (4) the materials at the reservoir bottom (Hall
and Copra 1982; Fenves and Chopra 1983, 1984, 1985; Lotfi et al. 1987; Medina
et al. 1990. Based on a substructure method, Chopra and his colleagues considered
the above factors and made some interesting conclusions on the dynamic response
of concrete gravity dams due to earthquake loadings (Chopra 1968; Chakarbarti
and Chopra 1974; Hall and Copra 1982; Fenves and Chopra 1983, 1984, 1985).
Owing to the limitations of the substructure method, the reservoir bottom mate-
rial was assumed to have zero thickness. However, in certain circumstances such as
concrete gravity and embankment dams built in the Yellow River valley, China, not
only materials at a reservoir bottom have considerable thicknesses, but sediments at
the reservoir bottom are also comprised of very soft clay materials. Although some
basic studies have been carried out to investigate how reservoir bottom sediments
affect the dynamic response of concrete gravity dams (Medina et al. 1990; Zhao
1994), further studies are needed to investigate the detailed dynamic mechanisms
associated with the effects of reservoir bottom sediments on the dynamic response
of concrete gravity and embankments dams. In view of this fact, the coupled compu-
tational method of finite and dynamic infinite elements is used for investigating the
effects of reservoir bottom sediments on the dynamic response of concrete gravity
and embankment dams. Since the coupled computational model keeps all advan-
tages of the conventional finite element method, complicated geometrical, physical
and mechanical properties of a dam–water–foundation system, including the reser-
voir bottom sediment effect, can be straightforwardly considered in the correspond-
ing numerical simulations.

Transient pore-fluid flow, heat transfer and mass transport in fluid-saturated
porous media of infinite domains are important phenomena in many scientific and
engineering fields. For example, in the field of exploration geoscience, pore-fluid
flow, heat transfer and mass transport from the interior of the Earth to the surface of
the Earth are three important physical processes to control ore body formation and
mineralization within the upper crust of the Earth. Owing to the increasing demand
for natural minerals and the possible exhaustion of existing mineral resources in
the foreseeable future, there has been an ever-increasing interest in the study of
key controlling processes associated with ore body formation and mineralization
within the upper crust of the Earth (Phillips 1991; Yeh and Tripathi 1991; Nield and
Bejan 1992; Steefel and Lasaga 1994; Raffensperger and Garven 1995; Schafer et al.
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1998a, b; Xu et al. 1999; Schaubs and Zhao 2002; Ord et al. 2002; Gow et al. 2002;
Zhao et al. 1997–2008). In the field of environmental engineering, carbon diox-
ide gas sequestration in the deep Earth is becoming a potential way to reduce the
greenhouse effect. Even in our daily lives, pore-fluid flow and contaminant transport
through fluid-saturated porous soils can be encountered almost everywhere. This
means that transient infinite elements can be used to solve a wide range of scientific
and engineering problems encountered in nature. To illustrate how transient infinite
elements are used to solve contaminant transport problems in the field of geoen-
vironmental engineering, the coupled computational method of finite elements and
transient infinite elements is used for investigating the effects of various key factors
on contaminant transport processes in fractured porous media of infinite domains.

The arrangements of the forthcoming parts of this monograph are as follows.
In Chap. 2, the formulations of two-dimensional dynamic infinite elements are
presented in detail. To use the coupled computational method of two-dimensional
finite elements and dynamic infinite elements for wave scattering problems in infi-
nite media, a wave input procedure is also presented in this chapter. In Chap. 3,
the coupled computational method of two-dimensional finite elements and dynamic
infinite elements is used to solve dynamic dam–water–sediment–foundation inter-
action problems in the fields of geotechnical and dam engineering. Both a concrete
gravity dam and an embankment dam are considered and some interesting results
are presented. In Chap. 4, the coupled computational method of two-dimensional
finite elements and dynamic infinite elements is used to simulate the spatial
distribution of free-field motion during an earthquake, which is a fundamental
scientific problem in the fields of geophysics and seismology. The effects of differ-
ent topographical and geological conditions on the spatial distributions of free-field
motion during earthquakes have been investigated. The detailed formulations asso-
ciated with three-dimensional dynamic infinite elements are presented in Chap. 5.
Through a combination of three-dimensional finite elements and dynamic infinite
elements, two benchmark problems have been used to verify the correctness and
usefulness of the proposed three-dimensional dynamic infinite elements for simu-
lating wave radiation problems in three-dimensional infinite media. Based on the
related formulations presented in Chap. 5, the coupled computational method of
three-dimensional finite elements and dynamic infinite elements is used in Chap. 6
to simulate dynamic structure–foundation interaction problems in the fields of
civil and structural engineering. For the purpose of understanding the dynamic
mechanisms of a structure–foundation interaction problem, a fundamental problem,
namely the vibration of a rigid plate foundation on a visco-elastic half-space, is
considered before the dynamic response of a three-dimensional framed structure–
raft foundation–underlying medium system is simulated by the coupled computa-
tional method of three-dimensional finite elements and dynamic infinite elements.
In Chap. 7, the detailed formulations of transient infinite elements are presented
for simulating pore-fluid flow and heat transfer problems in fluid-saturated porous
media of infinite domains, because such problems can be found in a broad range of
scientific and engineering fields. Two different approaches are employed to derive
the property matrices of these transient infinite elements. The detailed formulations
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associated with transient infinite elements for simulating mass transport problems
are presented in Chap. 8, when the coupled computational method of finite elements
and transient infinite elements is used to simulate contaminant transport problems in
fractured porous media of infinite domains. On the basis of the double porosity con-
cept, a fractured porous medium can be treated as an equivalent medium consisting
of two overlapping continua, namely a porous continuum and a fissured continuum.
Finally, some conclusions are given at the end of the monograph.



Chapter 2
Theory of Two-Dimensional Dynamic Infinite
Elements for Simulating Wave Propagation
Problems in Infinite Media

Numerical simulation of wave propagation problems in infinite media has attracted
significant attention in many scientific and engineering fields such as geophysics,
seismology, civil engineering and earthquake engineering. From a wave motion
point of view, structural vibration problems can be divided into two categories. One
is a wave radiation problem, or an interior domain problem, in which wave energy is
produced within the near field and then propagated into the far field of the problem
in various wave forms. Typical examples of this category are foundation vibration
problems as a result of trains passing on railways, machine vibration problems on
the foundations of buildings, impacting vibration problems on the ground surface
of an airport during airplanes landing, to name just a few. The other is a wave scat-
tering problem, or an exterior domain problem, in which wave energy is produced
in the far field and propagated into the near field of the problem. An earthquake
source or an explosion in the far field is a typical example of this category. Since
the formulations of dynamic infinite elements for simulating wave radiation prob-
lems are essentially the same as those for simulating wave scattering problems, the
focus of this chapter is on the formulation and derivation of dynamic infinite ele-
ments for simulating wave scattering problems. In this regard, a wave input method
needs to be developed for simulating incoming waves from the far field of an infinite
medium.

For the theoretical analysis of wave scattering problems in the fields of seismol-
ogy and geophysics, extensive work has been carried out over the past years. Aki
and Larner (1970) proposed a practical method using both the discrete wavenumber
representation for a wave field and the related Rayleigh assumption. In their method,
a scattered wave field is expressed as the superposition of plane waves, which
have unknown complex amplitudes and propagate in various directions. The total
motion of the system is obtained through integration over the horizontal wavenum-
ber. Under the assumption of horizontal periodicity of irregularity, the resulting inte-
gral can be replaced by an infinite series. Truncation of this series and application
of interface conditions of continuity for both stress and displacement lead to a set
of linear equations for the unknown complex amplitudes. This method has found
many applications in the fields of geophysics and seismology (Bard 1982; Geli et al.
1988). Trifunac (1973) and Wong and Trifunac (1974) presented analytical solutions
for SH-wave scattering problems around semi-circular and semi-elliptical valleys

7C. Zhao, Dynamic and Transient Infinite Elements, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-00846-7_2,
C© Springer-Verlag Berlin Heidelberg 2009
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using a Hankel function expansion. By means of boundary integral equations, Wong
(1982) improved the discrete wavenumber method (Aki and Larner 1970) and pre-
sented a general inverse method to solve the P-wave, SV-wave and Rayleigh wave
scattering problems for alluvial valleys of both semi-circular and semi-elliptical
shapes. Lee (1984) and Eshraghi and Dravinski (1989a, b) used a wave function
expansion method to solve wave scattering problems around either hemi-spherical
valleys or dipping layers, respectively. Sanchez-Sesma (1983) applied the boundary
integration method to the scattering of elastic waves around axisymmetric irregular-
ities. Kawase (1988) suggested a discrete wavenumber boundary element method,
in which the conventional boundary element method is used with Green’s functions
of discrete wavenumbers, for dealing with wave scattering problems. Khair et al.
(1989) introduced the hybrid method of finite and boundary elements for solv-
ing three-dimensional scattering problems of plane P-waves and SV-waves around
cylindrical valleys. Obviously, all methods mentioned above are mainly suitable for
dealing with linear, isotropic and homogeneous materials as a result of using half-
space elastic wave theory to describe earthquake excitations in these methods.

The finite element method (Zienkiewicz 1977) is one of the most powerful
numerical methods for solving complex and complicated problems in both scien-
tific and engineering fields (Zhao et al. 1994, 1995, 1997, 1998). However, for the
finite element simulation of wave scattering problems in infinite media, the follow-
ing two issues have to be considered. The first is the infinite extension of a problem
domain, while the second is the incidence of an earthquake wave from the far field of
a system. To simulate infinite media both effectively and efficiently, Ungless (1973)
and Bettess (1977, 1980) presented a static infinite element method for dealing with
static problems. Chow and Smith (1981), Medina and Taylor (1983) and Zhao et al.
(1989) extended the static infinite element method to the solution of wave radiation
problems in infinite media. Using a combination of finite and infinite elements, a
whole system can be divided into a near field and a far field. The near field is sim-
ulated using finite elements, while the far field is simulated using dynamic infinite
elements. For the seismic analysis of a structure, the main concern is usually about
the dynamic response of the structure, so that only a small region of the infinite
medium needs to be treated as the near field of the system. This can result in a sig-
nificant reduction in the total number of finite elements that are used to simulate
the computational domain of the system. Since dynamic infinite elements are capa-
ble of simulating wave propagation within themselves, unwanted wave reflection
phenomena at the interface between a finite element and an infinite element can be
avoided.

Early work on earthquake input procedures for the finite element method was
carried out by Reimer et al. (1974), with particular attention to the finite element
analysis of arch dams. Due to the difficulties of this problem, they suggested a mass-
less finite element model, which is called the massless foundation earthquake input
model. In this model, only a limited massless foundation is simulated using finite
elements, and the acceleration of an earthquake is applied to the whole finite ele-
ment model. This procedure has some obvious discrepancies from physical reality,
as it cannot simulate wave propagation effects in the foundation of an arch dam. To
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overcome these discrepancies, Clough et al. (1985) proposed a sophisticated earth-
quake input method, called the free field input method, for the finite element analysis
of arch dams subjected to earthquakes. Although both the spatial amplitude and the
spatial phase differences of an earthquake can be considered in the free field input
method, it is difficult to apply this method to practical problems in the field of earth-
quake engineering, because few earthquakes have been recorded along the surfaces
of natural canyons. Another wave input method used in the hybrid model of finite
and boundary elements is called the standard wave input method, which is estab-
lished on the basis of the half-space elastic wave theory. Furthermore, Zhao (1987)
presented a wave propagation input method on the basis of using finite and dynamic
infinite element coupled models and considering wave propagation characteristics
in elastic solid media. As this method has been successfully used to solve SH-wave
scattering problems (Zhang and Zhao 1988), it is worth extending this method to
the solution of P-wave and SV-wave scattering problems because of wave mode
conversions in these situations.

To take advantage of the coupled computational model of finite and dynamic
infinite elements for simulating natural foundations, a numerical model for dealing
with wave scattering problems in infinite media is presented in this chapter. With
consideration of P-wave and SV-wave reflection characteristics on a fixed boundary,
the harmonic P-wave and SV-wave propagating from the far field of a system are
transformed into nodal dynamic forces on the wave input boundary, where scatter-
ing waves from canyons or structures can be transmitted back into the far field of
the system through dynamic infinite elements. The major advantage of using the
proposed model is that, by choosing a horizontal boundary in the underlying rock,
full-space elastic wave theory can be used to describe earthquake excitations in the
coupled computational model of finite and dynamic infinite elements. As a result,
the proposed model is capable of simulating wave propagation and scattering mech-
anisms within the region of interest, which is located above the wave input boundary,
under any geometrical and geological conditions. In addition, the proposed numer-
ical model is clear in the physical concept and easy to be included into the existing
finite element computer code. The related numerical results from solving P-wave
and SV-wave scattering problems in a half-plane and a semi-circular canyon have
been obtained using the proposed model.

2.1 Formulation of Two-Dimensional Dynamic Infinite Elements
and Wave Input Method

To derive the formulations of two-dimensional dynamic infinite elements, it is nat-
ural to consider wave motion equations in a half-plane. Since an earthquake wave
can be decomposed into the sum of several harmonic waves, it is necessary to inves-
tigate the propagation behaviours of harmonic waves in a half-plane. Since material
damping occurring in the soil/rock involves a frictional loss of energy, it can be con-
sidered as hysteretic damping, which is independent of frequency, by means of the
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correspondence principle (Wolf 1985). Using this principle, the damped solution of
a system can be obtained from the elastic one by replacing the elastic constants with
the corresponding complex ones. Under the assumption that the dynamic system is
subjected to a harmonic wave loading and that the medium of the system exhibits
hysteretic damping, the corresponding governing wave equations of the system can
be expressed as follows:

G∗∇2u + (λ∗ + G∗)
(
∂2u

∂x2
+ ∂2v

∂x∂y

)
+ fx = ρ

∂2u

∂t2
, (2.1)

G∗∇2v + (λ∗ + G∗)
(
∂2u

∂x∂y
+ ∂2v

∂y2

)
+ fy = ρ

∂2v

∂t2
, (2.2)

G∗ = (1 + iηd)G, λ∗ = (1 + iηd) λ, (2.3)

where G is the shear modulus; λ is the Lamé constant; ηd is the hysteretic damping
coefficient of the medium; u and v are displacements in the x and y directions; fx
and fy are body forces in the x and y directions, respectively; ρ is the density of the
medium; ∇2 is the second-order two-dimensional Laplace operator.

Using the Galerkin weighted residual procedure and neglecting body forces in
Eqs. (2.1) and (2.2), the discretized wave equation of the system can be derived as

− ω2 [M] {�} + (1 + iηd) [K] {�} = {F0} , (2.4)

where {�} is the unknown nodal displacement vector; ω is the circular frequency
of the harmonic wave; [M] and [K] are the global mass and stiffness matrices of the
system respectively; and {F0} is the amplitude vector of the applied harmonic load.
[M], [K] and {F0} can be assembled from the following element submatrices and
subvectors:

[M]e =
∫∫

A
[N]T ρ [N] dA, (2.5)

[K]e =
∫∫

A
[B]T [D∗] [B] dA, (2.6)

{F0}e =
∫

S
[N]T {X0

}
dS + [N]T {P0

}
, (2.7)

where A and S are the area and boundary length of the element; {X̄0} is the ampli-
tude vector of element boundary traction; {P̄0} is the amplitude vector of concen-
trated loads acting on the element; [D∗] is the constitutive matrix of the element
material; and [B] and [N] are the strain matrix and shape function matrix of the ele-
ment. It needs to be pointed out that Eqs. (2.5), (2.6) and (2.7) are equally valid for
both finite and dynamic infinite elements. Since the derivation of two-dimensional
finite element formulation is well known (Zienkiewicz 1977; Rao 1989), only the
formulation of two-dimensional dynamic infinite elements is derived below.
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2.1.1 Formulation of Two-Dimensional Dynamic Infinite Elements

For dealing with wave propagation problems in infinite media of geometrical irreg-
ularities and geological complexities, the use of a coupled computational model of
finite and dynamic infinite elements is very effective (Zhao 1987; Zhang and Zhao
1987; Zhao et al. 1989, 1991, 1992; Zhao and Valliappan 1993a, b, c, d, e, f). Con-
sidering a dynamic infinite element shown in Fig. 2.1, the corresponding coordinate
mapping can be expressed as follows:

x =
5∑

i=1

Mixi, (2.8)

y =
5∑

i=1

Miyi, (2.9)

where Mi (i = 1, 2, . . ., 5) is the following mapping function of the dynamic infinite
element:

M1 = 1

2
(ξ − 1) (η − 1) , (2.10)

M2 = 0, (2.11)

M3 = −1

2
(ξ − 1)(η + 1), (2.12)

M4 = 1

2
ξ (η + 1), (2.13)

M5 = −1

2
ξ (η − 1). (2.14)

The displacement field within this dynamic infinite element can be expressed as
follows:

u =
3∑

i=1

Niui, (2.15)

v =
3∑

i=1

Nivi, (2.16)

Fig. 2.1 Two-dimensional
dynamic infinite element:
nodes 1, 2 and 3 are the end
nodes to be connected with a
finite element; nodes 4 and 5
are the middle nodes with ξ =
1; nodes 6 and 7 are at
infinity
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where Ni (i = 1, 2 and 3) is the following displacement shape function of the
dynamic infinite element:

N1 = P(ξ )
η(η − 1)

2
, (2.17)

N2 = −P(ξ )(η − 1)(η + 1), (2.18)

N3 = P(ξ )
η(η + 1)

2
, (2.19)

where P(ξ ) is the wave propagation function of the dynamic infinite element. From
a harmonic wave propagation point of view, P(ξ ) can be expressed in the following
form:

P(ξ ) = exp
[−(α + iβ)ξ

]
, (2.20)

where α and β are the displacement–amplitude decay factor and nominal wavenum-
ber of the dynamic infinite element in the local coordinate system. Physically,
exp (−αξ) expresses the behaviour of displacement amplitude attenuation within
the dynamic infinite element as a result of wave energy dissipation; while
exp (−iβξ) expresses the behaviour of phase delays as a result of wave propaga-
tion in the local coordinate system.

Equations (2.15) and (2.16) can be written in the matrix form as follows:
{

u
v

}e

== [N]{�}e , (2.21)

where [N] is the shape function matrix of the dynamic infinite element; {�}e is the
nodal displacement vector of the element. They are of the following forms:

[N] =
[

N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]
,

{�}e = {u1 v1 u2 v2 u3 v3
}T . (2.23)

Using the above definitions, the strain matrix of the dynamic infinite element can
be expressed as follows:

{ε}e =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x

∂v

∂y

∂u

∂y
+ ∂v

∂x

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

∂N1

∂x
0

∂N2

∂x
0

∂N3

∂x
0

0
∂N1

∂y
0

∂N2

∂y
0

∂N3

∂y

∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x

∂N3

∂y

∂N3

∂x

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

= [B]{�}e , (2.24)

where [B] is the strain matrix of the dynamic infinite element; {ε}e is the strain
vector of the element. The strain matrix of the dynamic infinite element can be
further expressed as
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[B] =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

∂N1

∂x
0

∂N2

∂x
0

∂N3

∂x
0

0
∂N1

∂y
0

∂N2

∂y
0

∂N3

∂y
∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x

∂N3

∂y

∂N3

∂x

⎤

⎥
⎥⎥⎥⎥⎥
⎦

. (2.25)

To evaluate the strain matrix of the dynamic infinite element, it is necessary to
calculate the first derivatives of the displacement shape functions with respect to the
local ξ and η coordinates as follows:

∂Ni

∂ξ
= ∂Ni

∂x

∂x

∂ξ
+ ∂Ni

∂y

∂y

∂ξ
(i = 1, 2, 3), (2.26)

∂Ni

∂η
= ∂Ni

∂x

∂x

∂η
+ ∂Ni

∂y

∂y

∂η
(i = 1, 2, 3). (2.27)

Equations (2.26) and (2.27) can be readily expressed in the following matrix
form:

⎧
⎪⎪⎨

⎪⎪⎩

∂Ni

∂ξ

∂Ni

∂η

⎫
⎪⎪⎬

⎪⎪⎭
=

⎡

⎢⎢
⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤

⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

∂Ni

∂x
∂Ni

∂y

⎫
⎪⎪⎬

⎪⎪⎭
= [J]

⎧
⎪⎪⎨

⎪⎪⎩

∂Ni

∂x
∂Ni

∂y

⎫
⎪⎪⎬

⎪⎪⎭
(i = 1, 2, 3), (2.28)

where the matrix [J] , called the Jacobian matrix, is given by the following equa-
tion:

[J] =

⎡

⎢⎢
⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤

⎥⎥
⎦. (2.29)

Substituting Eqs. (2.8) and (2.9) into Eq. (2.29) yields the final expression for the
Jacobian matrix as follows:

[J] =

⎡

⎢⎢
⎢
⎣

5∑

i=1

(
∂Mi

∂ξ
xi

)
5∑

i=1

(
∂Mi

∂ξ
yi

)

5∑

i=1

(
∂Mi

∂η
xi

)
5∑

i=1

(
∂Mi

∂η
yi

)

⎤

⎥⎥
⎥
⎦

. (2.30)

Thus, the first derivatives of the displacement shape functions with respect to the
global x and y coordinates can be expressed as follows:
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⎧
⎪⎪⎨

⎪⎪⎩

∂Ni

∂x
∂Ni

∂y

⎫
⎪⎪⎬

⎪⎪⎭
= [J]−1

⎧
⎪⎪⎨

⎪⎪⎩

∂Ni

∂ξ

∂Ni

∂η

⎫
⎪⎪⎬

⎪⎪⎭
(i = 1,2,3). (2.31)

Mathematically, there exists the following expression:

dA = dxdy = |J| dξdη, (2.32)

where |J| is the Jacobian determinant.
The displacement-amplitude decay factor, α, can be determined from elastic

wave theory. Considering an elastic homogeneous half-plane under a concentrated
harmonic excitation force as shown in Fig. 2.2 and assuming that no energy dissipa-
tion occurs in the elastic medium, the total wave energy passing through a cylindri-
cal surface with radius R1 should be equal to that with radius R2. From a physical
point of view, the energy flow density of a harmonic wave in an elastic medium can
be defined as follows:

< I >= kω2A2, (2.33)

where k is the coefficient associated with the material property of the medium; ω
is the circular frequency of excitation; and A is the displacement amplitude of the
elastic wave.

Suppose the end nodal points (i.e. nodes 1, 2 and 3) and middle nodal points (i.e.
nodes 4 and 5) of the dynamic infinite element pass through two cylindrical sur-
faces with radii R1 and R2 in the elastic homogeneous half-plane, the displacement
amplitude of the harmonic wave at node 1 can be expressed as follows:

A1 = |U1| = |u1N1|ξ=0 = |u1| exp ( − αξ )|ξ=0 = |u1| (2.34)

where u1 is the nodal displacement of node 1.

Fig. 2.2 Amplitude decay of
harmonic waves in an infinite
medium: owing to the wave
energy conservation, the
amplitude of a harmonic wave
decreases as the radius of a
cylindrical surface increases
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Similarly, the displacement amplitude of the harmonic wave at node 5 can be
expressed as follows:

A2 = |U5| = |u1N1|ξ=1 = |u1| exp (−αξ )|ξ=1 = |u1| exp (−α). (2.35)

Therefore, the energy flow densities of the harmonic wave through these two
cylindrical surfaces can be expressed as follows:

< I1 >= kω2A2
1 = kω2u2

1 (on the surface with node 1), (2.36)

< I2 >= kω2A2
2 = kω2u2

1 exp (− 2α) (on the surface with node 5) (2.37)

Considering the equality condition of wave energy through these two cylindrical
surfaces yields the following equation:

< I1 > πR1 =< I2 > πR2. (2.38)

Once Eqs. (2.36) and (2.37) are substituted into Eq. (2.38), the displacement-
amplitude decay factor of the element can be obtained and expressed as follows:

α = −1

2
ln

(
R1

R2

)
. (2.39)

Since the interface between a finite element and a dynamic infinite element is not
exactly a cylindrical surface in a computational model, the following approximate
formula can be used in the process of establishing the computational model:

α = −1

2
ln

(
DF

DF +�DF

)
, (2.40)

where DF is the length of the finite element region and�DF is the distance between
the middle and corner nodes of a two-dimensional dynamic infinite element.

Equation (2.39) or (2.40) clearly indicates the influence of the position of an
arbitrarily chosen boundary (i.e. the near field boundary of a computational model)
between a finite element and a dynamic infinite element on the displacement ampli-
tude factor of the two-dimensional dynamic infinite element.

Based on Eqs. (2.5), (2.6) and (2.32), the mass and stiffness matrices of the
dynamic infinite element can be rewritten as follows:

[M]e =
∫ 1

−1

∫ ∞

0
[N]Tρ[N] |J| dξdη, (2.41)

[K]e =
∫ 1

−1

∫ ∞

0
[B]T [D∗] [B] |J| dξdη, (2.42)

where |J| is the Jacobian determinant.
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Evaluation of Eqs. (2.41) and (2.42) involves the general integrals of the follow-
ing form:

I =
∫ ∞

0
F(ξ ) exp

[−2 (α + iβ) ξ
]
dξ . (2.43)

The sufficient condition for the convergence of Eq. (2.43) is that α > 0. From the
physical point of view, wave propagation in an infinite medium is always accompa-
nied by dispersion and attenuation. Thus, the convergent condition for Eq. (2.43)
can be evidently satisfied.

The selection of integration points in the ξ direction is related to the function,
F(ξ ). According to the shape functions of the dynamic infinite element, F(ξ ) is
a polynomial with a power not greater than 3. Therefore, the four-point Newton–
Cotes integration scheme, with ξ=2, 4, 6 and 8 as numerical integration points, is
used and the corresponding weighting coefficients are as follows (Chow and Smith
1981):

W1 = 1

24

(
96γ − 52γ 2 + 18γ 3 − 3γ 4

)
, (2.44)

W2 = 1

8

(
−48γ + 38γ 2 − 16γ 3 + 3γ 4

)
, (2.45)

W3 = 1

8

(
32γ − 28γ 2 + 14γ 3 − 3γ 4

)
, (2.46)

W4 = 1

24

(
−24γ + 22γ 2 − 12γ 3 + 3γ 4

)
, (2.47)

where γ is the following function of α and β:

γ = 1

2

(
α − iβ

α2 + β2

)
. (2.48)

Note that W1, W2, W3 and W4 are complex numbers. They are related to the
nominal wavenumber ( β) of the dynamic infinite element in the local coordinate
system.

Another important issue associated with the application of dynamic infinite ele-
ments to the numerical simulation of elastic wave propagation problems is that the
displacement shape function of a dynamic infinite element contains, either implic-
itly or explicitly, the wavenumber of an elastic wave. In an elastic medium, there
are at least two types of waves, S-waves and P-waves. Generally, it is difficult to
separate the components of these two types of waves, because they are associated
with all displacement components, especially for dealing with wave radiation prob-
lems in infinite media. Over the past, several schemes were used to overcome this
difficulty. Medina and Taylor (1983) used a split scheme between wave components
on the basis of analytical solutions. Chow and Smith (1981) assumed, arbitrarily,
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that the vertical component of a wave is associated with an S-wave and that the hor-
izontal component of a wave is associated with a P-wave. Zhang and Zhao (1987)
used, as an approximation, Rayleigh wavenumbers for the lateral infinite elements
and S-wave numbers for the bottom infinite elements within a computational model
of finite and dynamic infinite elements. Although some assumptions were used to
choose wavenumbers for two-dimensional dynamic infinite elements, satisfactory
numerical results were obtained from using the above-mentioned approaches for
solving wave radiation problems in infinite media (Chow and Smith 1981; Zhang
and Zhao 1987). As the types of incident waves are known for wave scattering
problems, in contrast to wave radiation problems, the selections of wavenumbers
for two-dimensional dynamic infinite elements are much easier, especially in deal-
ing with vertical incident waves. In the case of dealing with a vertical incident wave,
the wavenumber of the incident wave can be used as the wavenumber for all the two-
dimensional dynamic infinite elements, because the type of the incident wave is a
dominate wave type within the system.

2.1.2 Wave Input Method for Simulating Wave Scattering
Problems in Infinite Media

Since natural earthquake waves can be decomposed into a large number of harmonic
waves using the fast Fourier transform technique (i.e. FFT for short), a harmonic
wave propagating in an infinite medium can be used for developing the wave input
method. Figure 2.3 shows a typical dynamic soil–structure interaction problem dur-
ing earthquakes. From the wave motion theory point of view, this problem can be
essentially treated as a wave scattering problem due to geometrical irregularities
and material property complexities in both the structure and the near field of the
infinite medium. Using the coupled computational model of finite and dynamic infi-
nite elements, the whole problem domain can be divided into an interior domain (i.e.
�I) and an exterior domain (i.e.�E). The interior domain, which is simulated using
finite elements, is comprised of both the structure and the near field of the infinite
medium, while the exterior domain, which is simulated using dynamic infinite ele-
ments, is comprised of the far field of the infinite medium. Supposing a harmonic
wave is propagating from the exterior domain into the interior domain, a horizon-
tal boundary, which is a part of the interface between finite and dynamic infinite
elements within the underlying rock, is defined as the wave input boundary, �λ.

To obtain the dynamic response of the interior domain when an incident wave
approaches from the far field, the model shown in Fig. 2.3(A) can be decom-
posed into two computational models that are shown in Figs. 2.3(B) and 2.3(C),
respectively. In the computational model shown in Fig. 2.3(B), an artificially fixed
boundary condition is applied to the wave input boundary, so that the incident wave
reflects and, consequently, reaction forces (i.e. Pλ) are generated on the fixed bound-
ary within the computational model. By adding the opposite of the reaction forces
(i.e. – Pλ) on the wave input boundary within the computational model shown in
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Fig. 2.3 Wave input method for simulating wave scattering problems in infinite media: (A) the
model of the original problem; (B) the modified model with a fixed boundary; (C) the equivalent
model for simulating the wave scattering problem

Fig. 2.3(C), the effect of the artificially fixed boundary condition can be eliminated.
As there is no response in the interior domain of the computational model shown
in Fig. 2.3(B), the one shown in Fig. 2.3(C) can be used to simulate the dynamic
response of the interior domain of the whole system, instead of the original model
shown in Fig. 2.3(A). However, the dynamic response of the exterior domain under
the horizontal wave input boundary can be obtained only by superposition of the
numerical results from using both the computational models shown in Figs. 2.3(B)
and 2.3(C).

The major advantage of using the proposed wave input method is that full-space
elastic wave theory can be used to describe an earthquake excitation by simply
choosing a horizontal boundary within the underlying rock. Free boundary condi-
tions on the surfaces of both the structure and the foundation can be easily satisfied
by applying zero nodal forces to the surface nodes of the computational model. As a
result, the proposed computational model (shown in Fig. 2.3(C)) is capable of simu-
lating wave propagating and scattering mechanisms under any arbitrary geometrical
and geological conditions within the region located above the horizontal wave input
boundary.

Suppose the materials of an infinite medium have hysteretic damping, the dis-
cretized wave equation for the computational model shown in Fig. 2.3(C) can be
expressed as follows:

{
−ω2

[
Mλλ Mλ0
M0λ M00

]
+ (1 + iηd)

[
Kλλ Kλ0
K0λ K00

]}{
�λ
�0

}
=
{

Pλ
P0

}
, (2.49)

where �λ and �0 are the complex displacement vectors for the wave input bound-
ary and the rest of the interior domain, respectively; ηd is the hysteretic damping
coefficient; ω is the circular frequency of an incident wave; the elements in mass
matrix [M] and stiffness matrix [K] represent the submatrices associated with �λ
and �0; and {Pλ} is the subvector of the equivalent nodal loads associated with �λ.
The equivalent nodal load vector for an element can be evaluated using the following
equation:

{Pλ}e = −
∫

S
[N]T {σ }e dS, (2.50)
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where [N] is the displacement shape function of the element; and {σ }e is a general-
ized stress vector acting on the wave input boundary, S, of the element. This stress
vector can be evaluated by considering incident wave types and wave reflection
characteristics on a fixed boundary.

2.2 Incident P-wave and SV-wave Reflection Characteristics
on a Fixed Boundary

To evaluate the reaction forces on the wave input boundary (i.e. Y = 0 in Fig. 2.3(B)),
it is necessary to investigate both the incident P-wave and the incident SV-wave
reflection characteristics on a fixed boundary. As shown in Fig. 2.4, it is assumed
that either a plane harmonic P-wave or a plane harmonic SV-wave propagates in the
space and impinges onto a fixed boundary. From wave motion theory (Graff 1975),
the corresponding governing equations for this problem can be expressed as follows:

u = ∂φ

∂x
+ ∂ψz

∂y
, (2.51)

v = ∂φ

∂y
− ∂ψz

∂x
, (2.52)

∇2φ = 1

C2
P

∂2φ

∂t2
, (2.53)

∇2ψz = 1

C2
SV

∂2ψz

∂t2
, (2.54)

Fig. 2.4 P-wave and
SV-wave reflections on a
fixed boundary: θ1 is the
incident and reflection angles
of a P-wave; θ2 is the
incident and reflection angles
of an SV-wave
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where u and v are the particle displacements in the x and y directions, respec-
tively; φ and ψz are the scalar potential and the component of a vector potential
(i.e. �ψ = ψx�i + ψy�j + ψz�k) in the z direction; CP and CSV are the P-wave and SV-
wave velocities; and ∇2 is a two-dimensional Laplace operator. Note that for the
sake of convenience, it is assumed that the xoy coordinate system is coincident with
the XOY one in this section.

The artificially fixed boundary has the following boundary conditions:

u = 0, v = 0 (on Y = 0). (2.55)

For plane harmonic wave incidences, Eqs. (2.53) and (2.54) have the following
analytical solutions:

φ = AP
I exp

[
iγP (−x sin θ1 + y cos θ1 + CPt)

]

+ AP
R exp

[
iγP (−x sin θ1 − y cos θ1 + CPt)

]
,

(2.56)

ψz = BSV
I exp

[
iγSV (−x sin θ2 + y cos θ2 + CSVt)

]

+ BSV
R exp

[
iγSV (−x sin θ2 − y cos θ2 + CSVt)

]
,

(2.57)

where AP
I and AP

R are the potential amplitudes of the incident P-wave and reflected
P-wave, respectively; BSV

I and BSV
R are the potential amplitudes of the incident

SV-wave and reflected SV-wave, respectively; θ1 is the P-wave incident or reflec-
tion angle; θ2 is the SV-wave incident or reflection angle; and γP and γSV are the
wavenumbers of the P-wave and SV-wave, respectively. By definition, these two
wavenumbers can be expressed as follows:

γP = ω

CP
, (2.58)

γSV = ω

CSV
. (2.59)

From elastic wave theory, θ1 and θ2 satisfy the following relationship (Graff
1975):

sin θ1

sin θ2
= CP

CSV
= γSV

γP
= D =

√
2(1 − ν)

1 − 2ν
, (2.60)

where ν is Poisson’s ratio of the elastic medium.
By considering Eqs. (2.53), (2.54), (2.55), (2.56) and (2.57) simultaneously, the

ratios of related potential amplitudes can be determined. This leads to the following
solutions:

(i) in the case of a P-wave incidence:

AP
R

AP
I

= cos θ1 cos θ2 − sin θ1 sin θ2

cos θ1 cos θ2 + sin θ1 sin θ2
, (2.61)

BSV
R

AP
I

= −γP sin θ1 cos θ1

γSV (cos θ1 cos θ2 + sin θ1 sin θ2)
. (2.62)



2.2 Incident P-wave and SV-wave Reflection Characteristics on a Fixed Boundary 21

Note that if the P-wave incident angle is identical to zero (i.e. θ1 = 0), then
BSV

R /AP
I = 0, implying that no wave mode conversion takes place for this special

vertical incident angle. Otherwise, when θ1 �= 0, wave mode conversion takes place,
so that a reflected SV-wave occurs.

(ii) For an SV-wave incidence, in which the incident angle (i.e. θ2) is less than
the critical incident angle (i.e. θcritical), the following solutions can be obtained:

BSV
R

BSV
I

= cos θ1 cos θ2 − sin θ1 sin θ2

cos θ1 cos θ2 + sin θ1 sin θ2
, (2.63)

AP
R

BSV
I

= 2γSV sin θ2 cos θ2

γP (cos θ1 cos θ2 + sin θ1 sin θ2)
. (2.64)

Similarly as above, if the incident angle of the SV-wave is identical to zero (i.e.
θ2 = 0), then AP

R/B
SV
I = 0, indicating that no wave mode conversion takes place for

this special vertical incident angle. Otherwise, when θ2 �= 0, wave mode conversion
takes place and a P-wave is generated.

From elastic wave theory, the stresses are given by the following relationships:

σx = (λ+ 2G)

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
− 2G

(
∂2φ

∂y2
− ∂2ψz

∂x∂y

)
, (2.65)

σy = (λ+ 2G)

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
− 2G

(
∂2φ

∂x2
+ ∂2ψz

∂x∂y

)
, (2.66)

τxy = G

(
2
∂2φ

∂x∂y
+ ∂2ψz

∂y2
− ∂2ψz

∂x2

)
, (2.67)

where G is the shear modulus; λ is the Lamé constant of the medium; σx and σy are
the normal stresses in the x and y directions; and τxy is the shear stress on the fixed
boundary.

To determine the reaction forces on the fixed boundary (i.e. Y = 0), only the
normal stress σy and shear stress τxy need to be considered. Using Eqs. (2.56), (2.57),
(2.65), (2.66) and (2.67), the ratio of the total stress to the stress induced by an
incident wave can be determined. This leads to the following solutions.

(i) For a P-wave incidence:

σP
y

σP
y0

= 1 + AP
R

AP
I

+ BSV
R Gγ 2

SV sin (2θ2)

AP
I γ

2
P

[
(λ+ 2G)+ 2G sin2 θ1

] = 1 + βP
σ , (2.68)

τP
xy

τP
xy0

= 1 − AP
R

AP
I

− BSV
R γ 2

SV cos (2θ2)

AP
I γ

2
P sin (2θ1)

= 1 + βP
τ , (2.69)

where σP
y and τP

xy are the normal and shear stresses on the fixed boundary as a result
of the P-wave incidence; βP

σ and βP
τ are the stress increase factors of the stresses σP

y
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and τP
xy on the fixed boundary; and σP

y0 and τP
xy0 are the normal and shear stresses on

the fixed boundary just before wave reflections take place.
(ii) For an SV-wave incidence, whose incident angle (i.e. θ2) is less than the

corresponding critical incident angle (i.e. θcritical), the following solutions can be
obtained:

σ SV
y

σ SV
y0

= 1 − BSV
R

BSY
I

+ AP
Rγ

2
P

(
D2 − 2 sin2 θ1

)

BSV
I γ 2

SV sin (2θ2)
= 1 + βSV

σ , (2.70)

τ SV
xy

τ SV
xy0

= 1 + BSV
R

BSV
I

+ AP
Rγ

2
P sin (2θ1)

BSV
I γ 2

SV cos (2θ2)
= 1 + βSV

τ , (2.71)

D = CP

CSV
, (2.72)

where σ SV
y and τ SV

xy are the normal and shear stresses on the fixed boundary as a

result of the SV-wave incidence; βSV
σ and βSV

τ are the stress increase factors of the
stresses σ SV

y and τ SV
xy on the fixed boundary; and σ SV

y0 and τ SV
xy0 are the normal and

shear stresses on the fixed boundary just before wave reflections take place.
Considering Eqs. (2.61), (2.62), (2.63), (2.64), (2.68), (2.69), (2.70) and (2.71)

simultaneously yields the following results:

βP
σ = cos (θ1 + θ2)

cos (θ1 − θ2)
− D sin (2θ1) sin (2θ2)

cos (θ1 − θ2)
(
2 sin2 θ1 − D2

) , (2.73)

βP
τ = −cos (θ1 + θ2)

cos (θ1 − θ2)
− D cos (2θ2)

cos (θ1 − θ2)
, (2.74)

βSV
σ = −cos (θ1 + θ2)

cos (θ1 − θ2)
− D2 − 2 sin2 θ1

D cos (θ1 − θ2)
, (2.75)

βSV
τ = cos (θ1 + θ2)

cos (θ1 − θ2)
+ sin (2θ1) sin (2θ2)

D cos (θ1 − θ2) cos (2θ2)
. (2.76)

Figure 2.5 shows the distributions of stress increase factors resulting from differ-
ent wave modes, wave incident angles and Poisson’s ratios of the medium material.
From these analytical results, it can be concluded that (1) stress increase factors on
a fixed boundary are highly dependent on the incident wave modes, wave incident
angles and Poisson’s ratio of the medium material; (2) if the incident angle is zero
(i.e. either θ1 = 0 or θ2 = 0), both βP

σ and βSV
τ are equal to unity and independent

of the Poisson’s ratio of the medium material; and (3) for an SV-wave incidence,
there exists a critical incident angle, θcritical, which is dependent on the Poisson’s
ratio of the medium material and can be determined from Eq. (2.43) with θ1 = 90◦
as follows:

sin θ1 = D sin θ2 = 1, θcritical = sin−1
(

1

D

)
= sin−1

(√
1 − 2ν

2(1 − ν)

)

. (2.77)
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criticalθ

Fig. 2.5 Distributions of stress increase factors arising from P-wave and SV-wave incidences on a
fixed boundary: five different values of Poisson’s ratio are considered in the figure

For example, when ν = 0.33 (where ν is Poisson’s ratio of the medium material),
θcritical = 30◦, while in the case of ν = 0.05, θcritical = 43.5◦. Moreover, when an
SV-wave incident angle approaches the corresponding critical incident angle, two
stress increase factors, namely βSV

σ and βSV
τ , will change dramatically.
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2.3 Formulation of Generalized Stresses on the Wave Input
Boundary

When the normal and shear stresses are determined on a fixed boundary (as shown in
Fig. 2.4), the equivalent nodal load vector of an element on the wave input boundary
can be evaluated using Eq. (2.33). To determine the total stresses (i.e. σy and τxy) on
a fixed boundary, two original stresses (i.e. σy0 and τxy0), which are generated by an
incident wave just before the occurrence of wave reflection, need to be evaluated on
the basis of elastic wave theory. Note that the xoy coordinate system is assumed to
be coincident with the XOY one in this section.

2.3.1 SV-wave Incidence

Consider a plane SV-wave as shown in Fig. 2.6, propagating from the far field of a
system into the near field of the system and arriving at a fixed boundary. Before the
incident SV-wave reflects on the fixed boundary, the particle displacements of the
incident SV-wave can be expressed as

uλx = uλ cos θ , (2.78)

uλy = uλ sin θ , (2.79)

where uλ is the particle displacement of the incident plane SV-wave while arriving
at the fixed boundary (i.e. Y = 0) before the reflection of the incident wave; uλx and
uλy are the components of uλ in the x and y directions, respectively; and θ is the
incident angle of the plane SV-wave.

Fig. 2.6 Particle
displacement on a fixed
boundary for an SV-wave
incidence
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Assuming the incident plane SV-wave is a harmonic wave with unit amplitude,
the displacement of this wave can be expressed as follows:

uλ = exp

[
iω

(
1 − x

CSVx
+ y

CSVy

)]
, (2.80)

where CSVx and CSVy are the apparent wave velocities of the incident plane SV-wave
in the x and y directions, respectively:

CSVx = CSV

sin θ
, (2.81)

CSVy = CSV

cos θ
. (2.82)

From elastic wave theory, the strain vector resulting only from uλ on the fixed
boundary (i.e. Y = 0) can be expressed as follows:

{ε0} =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂uλx

∂x
∂uλy

∂y
∂uλx

∂y
+ ∂uλy

∂x

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= iω

CSV
exp

[
iω

(
t − x

CSVx

)]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1

2
sin (2θ )

1

2
sin (2θ )

cos (2θ )

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (2.83)

The following relationship between stresses and strains exists in elastic wave
theory:

{σ0} = [D] {ε0} , (2.84)

where {σ0} is a stress vector resulting only from uλ on the fixed boundary (i.e.
Y = 0); and [D] is a constitutive matrix of the medium. For plane strain problems,
this constitutive matrix can be expressed in the following matrix form:

[D] = E

1 + ν

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1 − ν

1 − 2ν

ν

1 − 2ν
0

ν

1 − 2ν

1 − ν

1 − 2ν
0

0 0
1

2

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

, (2.85)

where E and ν are the modulus of elasticity (i.e. Young’s modulus) and Poisson’s
ratio of the medium, respectively.

Substituting Eqs. (2.83) and (2.85) into Eq. (2.84) yields the following equation:
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{σ0} =
⎧
⎨

⎩

σx0
σy0
τxy0

⎫
⎬

⎭
= iEω

2CSV (1 + ν)
exp

[
iω

(
t − x

CSVx

)]
⎧
⎨

⎩

− sin (2θ )
sin (2θ )
cos (2θ )

⎫
⎬

⎭
. (2.86)

In the frequency domain analysis, the term, eiωt, can be omitted so that σ SV
y0 and

τ SV
xy0 can be expressed as follows:

σ SV
y0 = iEω sin (2θ )

2CSV (1 + ν)
exp

(
−i

ω

CSVx
x

)
, (2.87)

τ SV
xy0 = iEω cos (2θ )

2CSV (1 + ν)
exp

(
−i

ω

CSVx
x

)
. (2.88)

Considering Eqs. (2.70), (2.71), (2.87) and (2.88) yields the following general-
ized stress vector (in Eq. (2.50)) as a result of the plane SV-wave incidence on the
wave input boundary (i.e. Y = 0):

{σ }e =
{
σ SV

y
τ SV

xy

}
= − iEω

CSV
exp

(
−i

ω

CSVx
x

){
f SV
σ

f SV
τ

}
, (2.89)

where f SV
σ and f SV

τ are the stress factors resulting from the plane SV-wave incidence.
They can be expressed as follows:

f SV
σ = − sin (2θ )

2(1 + ν)

(
1 + βSV

σ

)
, (2.90)

f SV
τ = − cos (2θ )

2(1 + ν)

(
1 + βSV

τ

)
. (2.91)

2.3.2 P-wave Incidence

The same procedure can be used to derive the generalized stress vector resulting
from a plane P-wave incidence. As shown in Fig. 2.7, a plane P-wave propagates
from the far field of a system into the near field of the system and arrives at a fixed
boundary (i.e. Y = 0). Before the incident P-wave reflects on the fixed boundary, the
displacement field of the incident P-wave can be expressed as:

uλx = uλ sin θ , (2.92)

uλy = −uλ cos θ . (2.93)

Under the assumption that the incident plane P-wave is a harmonic wave with
unit amplitude, the displacement of this incident wave can be written in the form:

uλ = exp

[
iω

(
1 − x

CPx
+ y

CPy

)]
, (2.94)
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Fig. 2.7 Particle
displacement on a fixed
boundary for a P-wave
incidence

where CPx and CPy are the apparent wave velocities of the incident plane P-wave in
the x and y directions, respectively.

CPx = CP

sin θ
, (2.95)

CPy = CP

cos θ
. (2.96)

Elastic wave theory is used to determine the strain vector resulting only from the
plane P-wave incidence on the fixed boundary (i.e. Y = 0):

{ε0} =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂uλx

∂x
∂uλy

∂y
∂uλx

∂y
+ ∂uλy

∂x

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= iω

CP
exp

[
iω

(
t − x

CPx

)]
⎧
⎨

⎩

− sin2 θ

− cos2 θ

sin (2θ )

⎫
⎬

⎭
. (2.97)

Substituting Eqs. (2.85) and (2.97) into Eq. (2.84) yields the following equation:

{σ0}=
{
σx0
σy0
τxy0

}

= iEω

CP(1 + ν)
exp

[
iω

(
t − x

CSVx

)]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− 1 − ν

1 − 2ν

(
sin2 θ + ν

1 − ν
cos2 θ

)

− 1 − ν

1 − 2ν

(
cos2 θ + ν

1 − ν
sin2 θ

)

1

2
sin (2θ )

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(2.98)
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If the analysis is carried out in the frequency domain, term eiωt is a common
factor and can be omitted so that σP

y0 and τP
xy0 can be expressed as

σP
y0 = −

iEω(1 − ν)
(

cos2 θ + ν
1−ν sin2 θ

)

CP(1 + ν)(1 − 2ν)
exp

(
−i

ω

CSVx
x

)
, (2.99)

τ
p
xy0 = iEω sin (2θ )

2CP(1 + ν)
exp

(
−i

ω

CSVx
x

)
. (2.100)

Considering Eqs. (2.68), (2.69), (2.99) and (2.100) yields the following general-
ized stress vector (in Eq. (2.50)) as a result of the plane P-wave incidence on the
wave input boundary (i.e. Y = 0):

{σ }e =
{
σP

y

τP
xy

}

= − iEω

CP
exp

(
−i

ω

CSVx
x

){ f P
σ

f P
τ

}

, (2.101)

where f P
σ and f P

τ are the stress factors resulting from the plane P-wave incidence.
These stress factors can be expressed as

f P
σ = (1 − ν)

(1 + ν)(1 − 2ν)

(
cos2 θ + ν

1 − ν
sin2 θ

) (
1 + βP

σ

)
, (2.102)

f P
τ = − sin (2θ )

2(1 + ν)

(
1 + βP

τ

)
. (2.103)

Although the stress factors expressed in Eqs. (2.90), (2.91), (2.102) and (2.103)
are independent of the frequency of the incident wave, the resulting generalized
stresses on the wave input boundary are dependent on the frequency of the incident
wave. For a non-zero incident angle, θ , there exist phase differences along the wave
input boundary. These phase differences are expressed by the exponential function
terms in Eqs. (2.89) and (2.101).

Figure 2.8 shows the distribution of stress factors as a result of P-wave and SV-
wave incidences. From the analytical results shown in this figure, it can be concluded
that: (1) just like stress increase factors, stress factors on the wave input boundary
are significantly dependent on the incident wave modes, wave incident angles and
Poisson’s ratio of the medium; (2) for a P-wave incidence, there exists a non-zero
incident angle, θ , so that f P

τ = 0, indicating that no shear stress appears for this spe-
cial incident angle because of wave-mode conversion on a fixed boundary; and (3)
for vertical incidences of both, a P-wave and an SV-wave, f P

τ = 0 and f SV
σ = 0, but

the stress increase factors, βP
τ and βSV

σ , are not equal to zero (as shown in Fig. 2.5).
This indicates that for a vertically incident P-wave, only normal stress appears on
the wave input boundary, while for a vertically incident SV-wave, only shear stress
appears on the wave input boundary. Thus, there is no wave mode conversion for
vertically incident P-waves and SV-waves.
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criticalθ

Fig. 2.8 Distributions of stress factors arising from P-wave and SV-wave incidences on a fixed
boundary: five different values of Poisson’s ratio are considered in the figure
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2.4 Verification of the Proposed Computational Model
for Simulating Wave Scattering Problems in Infinite Media

Based on the proposed dynamic infinite element theory and wave input method, a
computer program has been developed. As a result, the proposed computational
model of finite elements and dynamic infinite elements can be used to investi-
gate the dynamic responses of both a half-plane and a semi-circular canyon under
P-wave and SV-wave incidences. Through comparison of the corresponding numer-
ical results with theoretical results and Wong’s analytical results (Wong 1982), the
correctness and accuracy of the proposed computational model can be verified.

2.4.1 Wave Reflection on the Surface of an Elastic Half-Plane

To examine the correctness and accuracy of the proposed computational model for
simulating wave scattering problems in infinite media, the reflection of both a plane
harmonic SV-wave and a plane harmonic P-wave on the surface of an elastic half-
plane is considered in this subsection. As shown in Fig. 2.9, the near field of the
half-plane is simulated using eight-node isoparametric finite elements, while the
far field is simulated by the proposed two-dimensional dynamic infinite elements.
A horizontal line (i.e. Y = 0) is used as the wave input boundary. Both a unit plane
harmonic SV-wave and a unit plane harmonic P-wave, which propagate vertically
from the far field under the wave input boundary into the near field, are consid-
ered in the coupled computational model of finite elements and dynamic infinite
elements. The wavenumbers of dynamic infinite elements are chosen as either SV-
wavenumbers or P-wavenumbers, depending on the types of incident waves. For
the purpose of investigating the effect of the wave input boundary length, modelled
by finite elements, on the accuracy of the numerical results, three different lengths

Fig. 2.9 Coupled model of finite and dynamic infinite elements for simulating wave reflection on
the surface of a half-plane
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(i.e. α= 2, 3 and 4 in Fig. 2.9) are taken into account in the following computations.
Since the sizes of the finite elements used in the near field can be determined by
the size requirement criterion (Zienkiewicz 1977), no mesh refinement in the near
field needs to be tested. However, to ensure the accuracy and convergence of the
coupled computational model of finite elements and dynamic infinite elements, it is
necessary to investigate the effect of the overall size of the near field on the numer-
ical solutions. For α= 2, the near field and far field of the coupled computational
model are simulated using 48 eight-node isoparametric elements and 22 dynamic
infinite elements. When α= 4, they are simulated using 80 eight-node isoparametric
elements and 30 dynamic infinite elements, respectively.

The following parameters are used for the computational model: the reference
length of the problem (i.e. R) is 100 m; the elastic modulus of the medium (i.e. E)
is 24 × 109Pa; the density of the medium (i.e. ρ) is 2400 kg m−3; Poisson’s ratio of
the medium (i.e. ν) is 1

/
3; the velocities of the P-wave and SV-wave in the medium

are 3872 m s−1 and 1936 m s−1, respectively.
Figure 2.10 shows the distribution of displacement amplitudes along the surface

of the half-plane as a result of the vertical incidence of either a plane harmonic
SV-wave or a plane harmonic P-wave. In this figure, AU is the amplitude of the hori-
zontal displacement on the surface of the half-plane, while AV is the amplitude of the
vertical displacement on the surface of the half-plane. For the vertical incidence of
a unit plane harmonic SV-wave, the theoretical result indicates that the amplitude of
horizontal displacement on the surface of the half-plane is identical to 2. Similarly,
for the vertical incidence of a unit plane harmonic P-wave, the theoretical result indi-
cates that the amplitude of the vertical displacement on the surface of the half-plane

Fig. 2.10 Distributions of displacement amplitudes along the surface of a half-plane for vertical
SV-wave and P-wave incidences
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is also identical to 2. Note that a dimensionless frequency, a0 = ωR/(πCSV ), is
used to show the numerical results in Fig. 2.10. Clearly, the related numerical results
indicate that the wave input boundary length, which can be represented by α, has a
significant effect on the accuracy of the numerical results. With the SV-wave vertical
incidence and a0 = 0.5 taken as an example, if α = 2, the maximum relative error
from the numerical results can reach 21%, while for α = 3 and α = 4, the maxi-
mum relative error can be reduced to 10 and 4%, respectively. The same phenomena
can be observed from the numerical results when the P-wave vertical incidence and
other different values of the dimensionless frequencies are considered in the compu-
tational model. This indicates that, so long as the wave input boundary modelled by
finite elements is sufficiently long, accurate numerical results can be obtained from
using the coupled computational model of finite elements and dynamic infinite ele-
ments for simulating wave scattering problems in infinite media.

2.4.2 Wave Scattering on the Surface of a Semi-circular Canyon

As the second example, a wave scattering problem on the surface of a semi-circular
canyon is simulated using the proposed computational model of finite and dynamic
infinite elements. For the purpose of verifying the computational model and the pro-
posed wave input method, it is assumed that both a unit plane harmonic SV-wave and
a unit plane harmonic P-wave propagate from the far field of a semi-circular canyon
into the near field. Once the incident wave reaches the semi-circular canyon, it scat-
ters and reflects on the surface of the semi-circular canyon. Since semi-analytical
solutions are available for this problem (Wong 1982), the proposed computational
model of finite and dynamic infinite elements can be verified through comparison
of the current numerical solutions with Wong’s semi-analytical solutions (Wong
1982). Figure 2.11 shows the computational model for simulating the wave scatter-
ing problem on the surface of a semi-circular canyon. In this computational model,

Fig. 2.11 Coupled model of finite and dynamic infinite elements for simulating wave scattering
on the surface of a semi-circular canyon
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the near field of the semi-circular canyon is simulated using eight-node isoparamet-
ric finite elements, while the far field is simulated using two-dimensional dynamic
infinite elements. A horizontal line (i.e. Y = 0) is used as the wave input bound-
ary. The wavenumbers of the dynamic infinite elements are chosen as either SV-
wavenumbers or P-wavenumbers, depending on the types of incident waves. The
radius of the semi-circular canyon, which is equal to 100 m (i.e. R = 100 m), is
defined as the reference length of this problem. Other material parameters of the

(A) θ = 0°

(B) θ = 15°

Fig. 2.12 Distributions of displacement amplitudes along the surface of a semi-circular canyon in
the case of an SV-wave incidence: (A) θ = 0◦ ; (B) θ = 15◦
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medium are the same as those used for the half-plane wave reflection problem in the
previous subsection.

Figures 2.12 and 2.13 show the distributions of displacement amplitudes along
the surface of the semi-circular canyon for cases of SV-wave and P-wave incidences.
In these figures, a0 is the dimensionless frequency; AU and AV are the amplitudes of
displacements in the x and y directions, respectively. The related numerical results
clearly indicate that the wave input boundary length, which is represented by α in the

(A) θ = 0°

(B) θ = 60°

Fig. 2.13 Distributions of displacement amplitudes along the surface of a semi-circular canyon
for a P-wave incidence: (A) θ = 0◦ ; (B) θ = 60◦
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computational model, has significant effects on the accuracy of the current numer-
ical solutions. For α ≥ 3, the current numerical solutions are in good agreement
with Wong’s (1982) semi-analytical solutions, especially in the cases of SV-wave
and P-wave vertical incidences. This is because the whole wave field of the sys-
tem is dominated by the incident wave. For this reason, it is reasonable to use the
wavenumber of the incident wave for dynamic infinite elements in the computa-
tional model. As expected, the current numerical solutions demonstrate that if the
wave input boundary length modelled by using finite elements is long enough, the
coupled computational model with the proposed wave input method can be used to
produce accurate numerical solutions for simulating SV-wave and P-wave scattering
problems in infinite media.

If the SV-wave incidence is vertical, vertical displacement components along the
surface of a semi-circular canyon will be generated, even though only horizontal
displacements are applied on the wave input boundary. This phenomenon is differ-
ent from what was observed when the incident wave is an SH-wave (Zhang and
Zhao 1988). For an SH-wave incidence, no wave-mode conversion occurs along
the surface of a semi-circular canyon. However, since wave-mode conversion can
occur for either SV-wave or P-wave oblique incidences on a surface, a similar phe-
nomenon can be observed of the numerical solutions when the incident wave is a
P-wave. For SV-wave and P-wave incidences, the displacement amplifications along
the surface of a semi-circular canyon are significant, especially at the top corner of
the semi-circular canyon.

2.4.3 Wave Scattering on the Surface of an Embankment Dam

The coupled computational model of finite elements and dynamic infinite elements
can be used to simulate wave scattering and propagation mechanisms in heteroge-
neous media. To illustrate this point, the dynamic response of a 30-m high embank-
ment dam under an SV-wave vertical incidence from the base rock is considered in
this subsection. Figure 2.14 shows the geometry of this computational problem, in

Fig. 2.14 Computational model for simulating wave scattering along the surface of an embank-
ment dam: in the first case, the layer is comprised of rock; while in the second case, the layer is
comprised of soil
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which two cases are considered. In the first case the foundation of the embankment
dam is comprised of a homogeneous elastic rock base, called the rock foundation,
while in the second case the foundation of the embankment dam is comprised of a
soil layer and a rock base, called the soil layer foundation.

The following parameters are used in the coupled computational model of finite
elements and dynamic infinite elements. For both the soil embankment dam and the

Fig. 2.15 Amplitude distributions of complex frequency functions for displacements of the dam:
(A) soil layer foundation; (B) rock foundation. As shown in Fig. 2.14, Stations 1, 24 and 63 are
located at the top, the middle and the bottom of the dam
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soil layer, the elastic modulus (Es) is 0.252×109Pa; the value of Poisson’s ratio (νs)
is 0.3 and the density (ρs) is 2000 kg m−3. For the rock, the elastic modulus (Er) is
28.8 × 109Pa; Poisson’s ratio ( νr) is 0.2 and the density ( ρr) is 2400 kg m−3. To
apply the incident SV-wave from the far field, a horizontal line (Y = 0) is used as the
wave input boundary. From a structural dynamic analysis point of view, the complex
frequency response function can be used to represent the dynamic response of the
embankment dam. In this regard, a unit vertically incident harmonic SV-wave is
applied on the wave input boundary of the computational model.

Figure 2.15 shows the amplitudes of the complex frequency response functions
for the displacements of the embankment dam, which is located on the soil layer
foundation and the rock foundation, respectively. In these two figures, solid lines
and dashed lines represent the horizontal and vertical displacements of the embank-
ment dam. Three different stations (i.e. stations 1, 24 and 63 shown in Fig. 2.14)
are located at the top, the middle and the bottom of the embankment dam. For
the rock foundation, the fundamental frequency of the dam–foundation system is
13.5 rad s–1, whereas for the soil layer foundation, the fundamental frequency of the
dam–foundation system is 7.5 rad s–1. Compared with the dynamic response curve
of the dam–rock foundation system, the dynamic response curve of the dam–soil
layer–foundation system has more peaks because of the reflection and refraction
of waves within the soil layer. For the rock foundation, the amplitude of the com-
plex frequency response function at the dam–foundation interface (i.e. station 63
shown in Fig. 2.14) approaches a constant value, except for the resonance frequen-
cies of the system. However, for the soil layer foundation, the dynamic response at
the dam–foundation interface is very complicated, indicating that the effect of the
dam–foundation interaction becomes stronger as the foundation of the embankment
dam becomes softer. Generally, the dynamic response at the top (i.e. station 1 shown
in Fig. 2.14) of the embankment dam is much stronger than that at the bottom (i.e.
station 63) of the embankment dam. Although only horizontal displacements are
applied on the wave input boundary of the computational model, vertical displace-
ments appear in the dynamic response of an embankment dam because of the wave
scattering effect of the embankment dam.



Chapter 3
Application of Two-Dimensional Dynamic
Infinite Elements: Simulation of Dynamic
Dam–Water–Foundation Interaction Problems

3.1 Simulation of Dynamic Gravity Dam–Water–Foundation
Interaction Systems

Extensive studies on the dynamic response of concrete gravity dams due to earth-
quake loadings have demonstrated that their dynamic response is mainly affected by
the following factors: (1) the interaction between the dam and impounded reservoir
water (Chopra 1968; Chakarbarti and Chopra 1974; Liam-Finn et al. 1977); (2) the
compressibility of the impounded water (Chopra and Gupta 1982); (3) the interac-
tion between the dam and the foundation rock (Liam-Finn et al. 1977; Liam-Finn
and Varoglu 1972a, b, 1975); and (4) the materials at the reservoir bottom (Hall and
Copra 1982; Fenves and Chopra 1983, 1984, 1985; Lotfi et al. 1987; Medina et al.
1990). By means of a substructure method, Chopra and his colleagues considered
the above factors and made some interesting conclusions on the dynamic response
of concrete gravity dams due to earthquake loadings (Chopra 1968; Chakarbarti and
Chopra 1974; Hall and Copra 1982; Fenves and Chopra 1983, 1984, 1985). Because
of limitations of the substructure method, in which analytical solutions need to be
employed to simulate an infinite reservoir in the upstream direction of a gravity
dam–water–foundation system, materials at the reservoir bottom were assumed to
have zero thickness. However, in certain circumstances such as the concrete gravity
dams built in the Yellow River valley, China, not only materials at a reservoir bottom
have considerable thicknesses, but also sediments at the reservoir bottom are com-
prised of very soft clay materials. Although some basic studies have been carried
out to investigate how reservoir bottom sediments affect the dynamic response of
concrete gravity dams (Medina et al. 1990; Zhao 1994), further studies are needed
to investigate the detailed dynamic mechanisms associated with the effect of reser-
voir bottom sediments on the dynamic response of such dams. In view of this fact, a
more realistic computational model, which is capable of including both the gravity
dam–water–foundation interaction effect and the reservoir bottom sediment effect
simultaneously, was developed (Valliappan and Zhao 1992; Zhao et al. 1995). In
this computational model, a finite and dynamic infinite element coupling technique
is used to simulate a whole gravity dam–water–foundation system, including the
reservoir bottom sediment effect. Since reservoir bottom sediments may comprise

39C. Zhao, Dynamic and Transient Infinite Elements, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-00846-7_3,
C© Springer-Verlag Berlin Heidelberg 2009
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very soft clay materials, it is assumed that they can be treated as visco-elastic solid
materials in the corresponding computational models.

The main purpose of this section is to use a coupled computational model of
finite and dynamic infinite elements for investigating the effects of reservoir bottom
sediments on the dynamic response of concrete gravity dams. Since the coupled
computational model keeps all the advantages of the conventional finite element
method, the complicated geometries, complex physical and mechanical properties
of a gravity dam–water–foundation system, including the reservoir bottom sediment
effect, can be straightforwardly considered in the corresponding computational sim-
ulations. In addition, the use of dynamic infinite elements allows the infinite exten-
sion of both the reservoir and the foundation of a concrete gravity dam to be simu-
lated more reasonably for the dynamic analysis of a gravity dam–water–foundation
system. To examine how reservoir bottom sediments affect the dynamic response of
a concrete gravity dam, their thickness, softness and damping are considered as the
main parameters in the following parametric studies. Since the soft layer of reser-
voir bottom sediments has a significant amplification effect on an incident accel-
eration wave from the underlying rock, the amplitude of the acceleration wave at
the water–sediment interface is much greater than that of the corresponding free-
field motion, especially when the layer of reservoir bottom sediments is thick and
soft. Consideration of the amplification effect of an incident earthquake wave due to
reservoir bottom sediments makes this study different from the previous work (Hall
and Copra 1982; Fenves and Chopra 1983, 1984, 1985; Lotfi et al. 1987; Medina
et al. 1990). The free-field motion on the surface of an elastic half-plane is dou-
ble the value of an incident wave under the assumption of either a P-wave or an
SV-wave vertical incidence from the far field of the elastic half-plane (Graff 1975;
Zhao et al. 1992; Zhao and Valliappan 1993a, b). Although wave energy, to some
extent, can be dissipated (absorbed) by the damping of reservoir bottom sediments
so as to reduce the dynamic response of a concrete gravity dam, the amplified accel-
eration at the water–sediment interface may result in a considerable increase in the
dynamic response of the concrete gravity dam. Thus, the physical and mechanical
properties of reservoir bottom sediments, which are considered approximately in
the previous studies (Hall and Copra 1982; Fenves and Chopra 1983, 1984, 1985),
can be simulated more reasonably and realistically using the coupled computational
model of finite and dynamic infinite elements.

3.1.1 Computational Model of a Concrete Gravity
Dam–Water–Foundation System Including Reservoir
Bottom Sediments

At the bottom of a reservoir in the upstream direction of a concrete gravity dam,
there usually exist highly variable layers of exposed bedrock, alluvium, silt, clay
and other sedimentary materials. These sediments may be deposited to a significant
thickness in some rivers over a long period of time before a concrete gravity dam
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is constructed. Generally, once the concrete gravity dam is put into operation, sed-
iments can continue to be deposited at the reservoir bottom of the concrete gravity
dam, especially when the latter is located in a river with more sediments and sands.
During operation of the reservoir, the thickness of the reservoir bottom sediments
increases gradually and may approach a constant value because sand-sluices are
usually constructed in the dam system. As reservoir bottom sediments are complex
and variable for most rivers, some simplification about their characteristics needs
to be made in the computational model. Figure 3.1 shows the conceptual model
of a gravity dam–water–foundation system, including reservoir bottom sediments.
When reservoir bottom sediments are treated as visco-elastic solid materials, the
whole gravity dam–water–foundation system can be divided into a water region,
�W , and a solid region, �S. An interface between the water region and the solid
region is defined as �WS. Since the governing equations for the water region are dif-
ferent from those for the solid region, these two regions need to be considered sepa-
rately in the process of deriving the formulations for the computational model. The
solid region can be further divided into the following three subregions: a sediment
subregion, �S1, a dam subregion, �S2 and a foundation subregion, �S3. Although
these three subregions may have different geometrical shapes and material prop-
erties, their governing equations are exactly the same, according to elastic wave
motion theory. Since both the water region and the solid region extend to infinity,
the coupled computational model of finite and dynamic infinite elements (Saini et al.
1978; Chow and Smith 1981; Medina and Taylor 1983; Zhao 1987; Zhang and Zhao
1987, 1988; Zhao et al. 1987, 1989, 1992, 1995; Zhao and Valliappan 1991, 1993a,
b, c, d, e) is more suitable for simulating this problem.

Fig. 3.1 Geometry of the concrete gravity dam–water–foundation system including reservoir
bottom sediments
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3.1.1.1 Computational Simulation of the Water Region

For the water region, the wave equation can be expressed as follows:

∂2p

∂x2
+ ∂2p

∂y2
= 1

C2
W

∂2p

∂t2
, (3.1)

where p is the pressure in the water region; CW is the wave velocity of water. If
the reservoir is full, the corresponding boundary conditions can be written in the
following form:

p = 0 (on y = H), (3.2)

∂p

∂n
= −ρW

∂2un

∂t2
(on �WS), (3.3)

where ρW is the density of water; n represents the direction normal to the boundary,
�WS; and un is the displacement in the n direction.

By means of the Galerkin weighted-residual method, the discretized equation of
motion for the water region can be expressed as follows:

(
−ω2 [Q] + [H]

)
{P} = {B} , (3.4)

where ω is the circular frequency of excitation; [Q], [H] and {B} are the property
matrices and vector for the water region. The elements in these property matrices
and vector can be evaluated using the following equations:

Hij =
∑

e
hij, (3.5)

Qij =
∑

e
qij, (3.6)

Bi =
∑

e
bi, (3.7)

where
∑

e implies a summation over all elements in the water region. From a com-
putational point of view, hij, qij and bi can be expressed as follows:
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∫

A

[
∂N′

i
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qij = 1
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bi =
∫

SW

[
N′
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∂p

∂n

]
dSW , (3.10)
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where N′
i is the shape function for the water element; A and SW are, respectively,

the area of the water element and the contact length between water and solid for the
water element.

Equation (3.4) can be rewritten in the following partition form:

[
[E11] [E12]
[E21] [E22]

]{{PWS}
{PI}

}
=
{{BWS}

{0}
}

, (3.11)

where {PWS} and {P1} are the nodal pressure vectors corresponding to the water–
solid interface and the interior domain of the water region, respectively; �Eij� and
{BWS} are, respectively, the corresponding property matrix and vector for the water
region and the water–solid interface.

Using the dynamic condensation technique, the nodal pressure vector on the
water–solid interface can be expressed as follows:

{PWS} = [EC]−1 {BWS} , (3.12)

[EC] = [E11] − [E12] [E22]−1 [E21] . (3.13)

3.1.1.2 Computational Simulation of the Solid Region

For the solid region, assuming the solid material is of hysteretic damping and
neglecting the body force of the solid medium, the corresponding wave equations
of motion can be expressed in the following form:

G∗
(
∂2u

∂x2
+ ∂2u

∂y2

)
+ (λ∗ + G∗)

(
∂2u

∂x2
+ ∂2v

∂x∂y

)
= ρ

∂2u

∂t2
, (3.14)

G∗
(
∂2v

∂x2
+ ∂2v

∂y2

)
+ (λ∗ + G∗)

(
∂2u

∂x∂y
+ ∂2v

∂y2

)
= ρ

∂2v

∂t2
, (3.15)

G∗ = (1 + iηd)G, λ∗ = (1 + iηd)λ, (3.16)

where G is the shear modulus; λ is the Lamé constant; ηd is the hysteretic damping
coefficient of the solid medium; u and v are the displacements of the solid medium
in the x and y directions; ρ is the density of the solid medium.

Equations (3.14) and (3.15) can be discretized using the coupled computational
method of finite and dynamic infinite elements. As a result, the discretized equation
of motion for the solid region can be expressed as

(
−ω2 [M] + (1 + iηd) [K]

)
{�} = {F0} , (3.17)

where [M] and [K] are the global mass and stiffness matrices of the solid region,
respectively; {} is the global nodal displacement vector of the solid region; {F0}
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is the amplitude vector of the input harmonic load. These matrices and vector can
be evaluated by assembling the corresponding elemental property matrices and vec-
tors of the solid region (Zhao et al. 1989, 1992, 1995; Zhao and Valliappan 1991,
1993a, b, c, d).

To derive the coupling equation between the solid region and the water region,
Eq. (3.7) is rewritten in the following partition form:

⎛

⎜
⎝−ω2

⎡

⎢
⎣

[MWW ] [MWλ] [MWO]
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⎫
⎪⎬

⎪⎭
,

(3.18)

where {�W}, {�λ} and {�O} are the nodal displacement vectors corresponding to
the water–solid interface, the wave input boundary (�λ) and the rest of the solid
region, respectively. Submatrices in the global mass matrix [M] and global stiffness
matrix [K] are related to vectors {�W}, {�λ} and {�O}. {Pλ} is the driving force
vector due to an incident wave and can be evaluated from elastic wave theory (Zhao
et al. 1992; Valliappan and Zhao 1992; Zhao and Valliappan 1993a, b). {PW} is the
coupling force vector on the water–solid interface.

3.1.1.3 Determination of the Coupling Force between the Water
and the Solid Regions

In previous subsections, the equations of motion (i.e. Eqs. (3.11) and (3.18)) for both
the water region and the solid region have been derived independently. Since there is
an interaction effect between the water region and the solid region, these equations
of motion cannot be solved directly. For example, in Eq. (3.11), the vector {BWS}
depends on the displacement of the solid region, while in Eq. (3.18), the vector
{PW}, in turn, depends on the pressure acting on the water–solid interface. Thus, in
order to obtain solutions for either the water region or the solid region, Eqs. (3.11)
and (3.18) need to be solved simultaneously.

As shown in Fig. 3.2, if it is assumed that the water–solid interface is simulated
using a three-node line element, which is, in fact, a side of an eight-node isopara-
metric finite element, a pressure–displacement relationship on this interface can be
determined as follows.

For the reservoir water, the following equation holds:

ün = ∂2un

∂t2
= ∂2u

∂t2
sinα − ∂2v

∂t2
cosβ = m

∂2u

∂t2
− l
∂2v

∂t2
, (3.19)

where ün is the acceleration in the normal direction of the water–solid interface;
ü = ∂2u

/
(∂t2) and v̈ = ∂2v

/
(∂t2) are the accelerations in the x and y directions,
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Fig. 3.2 Interaction effect on the water–solid interface

respectively. For a three-node (water) element, these accelerations can be expressed,
at the element level, as follows:

{
ü
v̈

}e

= [[NS1] [NS2] [NS3]
] {
�̈W
}e = [NS]

{
�̈W
}e

, (3.20)

where
{
�̈W
}e

is the acceleration vector of the element; [NS] is the displacement
shape function matrix of the element. Submatrix [NSi] in matrix [NS] can be
written in the form:

[NSi] =
[

Ni 0
0 Ni

]
(i = 1,2,3). (3.21)

Substituting Eqs. (3.3), (3.19) and (3.20) into Eq. (3.10) yields the following
element vector, {BWS}e, on the water–solid interface:

{BWS}e = −ρW [L]e {�̈W
}e

, (3.22)

[L]e =
∫

SW

(
[NW ]T [m −l] [NS]

)
dSW , (3.23)

where [L]e is a matrix expressing the pressure–displacement relation on the water–
solid interface. [NW ] is the following pressure shape function of the water element:

[NW ] = [N1 N2 N3]. (3.24)

By assembling the element vector {BWS}e on the water–solid interface, the global
matrix {BWS} on this interface can be expressed as

{BWS} = −ρW [L]
{
�̈W
}

. (3.25)
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Substituting Eq. (3.25) into Eq. (3.12) yields

{PWS} = −ρW [EC]−1 [L]
{
�̈W
}

. (3.26)

Consequently, the equivalent nodal force of the element on the water–solid inter-
face can be derived as

{PW}e = ([L]e)T {PWS}e . (3.27)

Similarly, assembling the equivalent nodal force vector for all the elements on
the water–solid interface yields the global vector on this interface in the form:

{PW} = [L]T {PWS} = ω2ρW [L]T [EC]−1 [L] {�W} . (3.28)

Note that the relation

{
�̈W
} = −ω2 {�W} (3.29)

was used to derive the above equation. Substituting Eq. (3.29) into Eq. (3.18) yields
the coupling equation between the water and the solid regions:

⎛
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⎢
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[KλW ] [Kλλ] [KλO]
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⎤

⎥
⎦

⎞

⎟
⎠

⎧
⎪⎨

⎪⎩

{�W }
{�λ}
{�O}

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

{0}
{Pλ}
{0}

⎫
⎪⎬

⎪⎭
,

(3.30)

[
M∗

WW

] = [MWW ] + ρW [L]T [EC]−1 [L] . (3.31)

Note that since the total values of the nodal displacement vectors {�W}, {�λ}
and {�O} are used as fundamental variables in Eq. (3.30), the interaction effect
between the water and solid regions can be simulated using frequency-dependent
masses on the water–solid interface in the coupled computational model of finite
and dynamic infinite elements. This differs from the conventional dynamic analysis
of concrete gravity dam–water–foundation systems (Hall and Copra 1982; Fenves
and Chopra 1983, 1984, 1985), in which the relative values of nodal displacements
of a discretized system is used as fundamental variables, so that the free-field motion
can be employed to describethe input earthquake acceleration wave on interfaces
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between the dam and the foundation as well as between the reservoir water
and the foundation.

3.1.2 Effects of Reservoir Bottom Sediments on the Dynamic
Response of Concrete Gravity Dams due to Unit Harmonic
Wave Incidences

Reservoir bottom sediments can be characterized by the following parameters: the
thickness, Poisson’s ratio and the damping coefficient of the sediments. Since each
of these parameters may have different effects on the dynamic response of con-
crete gravity dams, it is necessary to consider each of them separately, so that the
dynamic mechanisms associated with how reservoir bottom sediments affect the
dynamic response of concrete gravity dams can be recognized. From this point of
view, a concrete gravity dam, which is comprised of a homogeneous and isotropic
material and is founded on an elastic half-plane, is considered in this subsection. As
the complex frequency response function of a dam body is capable of representing
the dynamic behaviour of the dam–water–foundation system, including reservoir
bottom sediments, both a unit acceleration harmonic P-wave and a unit accelera-
tion harmonic SV-wave are used as incident waves on the wave input boundary of
the computational model (Zhao et al. 1992, 1995; Zhao and Valliappan 1993a, b).
For ease of making comparison with previous studies (Hall and Copra 1982; Fenves
and Chopra 1983, 1984, 1985), these incident acceleration waves are assumed to
propagate vertically from the far field to the near field of the dam–water–foundation
system.

Figure 3.3 shows the coupled computational model of finite and dynamic infi-
nite elements for simulating the dam–water–foundation system. An incident unit

Fig. 3.3 Computational model of the concrete gravity dam–water–foundation system: the near
field is simulated using finite elements, while the far field is simulated using dynamic infinite
elements
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harmonic wave, which is either an SV-wave or a P-wave, is applied to the wave input
boundary (i.e. a horizontal line) within the computational model. A detailed expla-
nation of the wave input method can be found in Chap. 2. The following param-
eters are used for the coupled computational model. For the concrete gravity dam
and rock foundation, the elastic modulus is 28.8 × 109 Pa; the value of Poisson’s
ratio is 0.2; the density of the concrete and rock is 2400 kg m−3; the corresponding
shear-wave velocity in the dam and rock foundation is 2236 ms−1. For the reservoir
water, the density is 2400 kg m−3; the corresponding P-wave velocity is 1436 m s−1.
For the reservoir bottom sediment, different parameters, which are given in the fol-
lowing subsections, are used to investigate their effects on the dynamic response
of the dam–water–foundation system. To facilitate the investigations of the effects
of reservoir bottom sediments, a dam–foundation without reservoir water (i.e. an
empty reservoir) is used as a basic problem for comparison.

Figure 3.4 shows the amplitude distributions of the complex frequency response
function for the acceleration of the concrete gravity dam at three different stations,
namely stations 1, 7 and 15 shown in Fig. 3.3. These three stations are located at
the top (i.e. station 1), the middle (i.e. station 7) and the bottom (i.e. station 15) of
the dam. In this figure, üA and v̈A are the acceleration amplitudes in the horizontal
and vertical directions, respectively. Since a unit acceleration wave is used as the
incident wave, the acceleration shown in Fig. 3.4 can be viewed as dimensionless.
It is clear that there is a response peak occurring at station 1 when ω ≈ 20 rad s−1,
indicating that the predominant circular frequency of the concrete gravity dam is
about 20 rad s−1. As the current numerical results are very similar to the previous

Fig. 3.4 Amplitude distributions of the complex frequency response function for the acceleration
of the concrete gravity dam (empty reservoir): the peak value of the dynamic response at station 1
shows that the predominant circular frequency of the system is about 20 rad s–1.
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results (Hall and Copra 1982; Fenves and Chopra 1983, 1984, 1985), the coupled
computational model of finite and dynamic infinite elements is suitable for dealing
with concrete dam–foundation interaction problems. Since absolute accelerations at
the nodes of elements in the coupled computational model are used as fundamental
variables, the dynamic response of the concrete dam is expressed using the absolute
acceleration, which includes both the ground acceleration and the relative acceler-
ation (to the ground surface) for a given nodal point in the coupled computational
model. For the unit harmonic acceleration wave of a vertical incident angle propa-
gating in an elastic half-plane, the value of the resulting acceleration is doubled on
the surface of the elastic half-plane due to the reflection of the incident wave. This
double-valued acceleration on the surface of the elastic half-plane, which is called
the free-field motion, is the equivalent ground acceleration applied to the computa-
tional model. Note that this equivalent ground acceleration was used as the input
acceleration in the previous analysis (Hall and Copra 1982; Fenves and Chopra
1983, 1984, 1985). If the value of the ground acceleration, which is equal to two
in this situation, is subtracted from the current numerical results, the relative accel-
eration for the dynamic response of the concrete gravity dam can be obtained from
the current computational model. Nevertheless, for the purpose of investigating the
dynamic response of a concrete gravity dam–water–foundation system, either the
absolute acceleration or the relative acceleration can be used as the fundamental
variable, only depending on the wave input method employed in the computational
model.

3.1.2.1 Effects of Sediment Thickness on the Dynamic Response of Concrete
Gravity Dams due to Unit Harmonic Wave Incidences

To investigate the effect of the reservoir bottom sediment thickness on the dynamic
response of the concrete gravity dam, three different ratios of the sediment thickness
(HS) to the dam height (H), namely HS/H = 0, 0.1 and 0.2, are considered in the
corresponding computational models. Assuming the reservoir bottom sediment is
composed of a soft clay layer, the following parameters are used for the sediment
material: the elastic modulus is 0.252 × 109 Pa; the value of Poisson’s ratio is 0.3;
the density is 2000 kg m−3; the corresponding shear-wave velocity is 220 m s−1.

Figure 3.5 shows the effects of sediment thicknesses on the amplitude distribu-
tions of the complex frequency response function for the acceleration of the con-
crete gravity dam at the same three different stations (shown in Fig. 3.3) due to
SV-wave and P-wave vertical incidences from the far field of the concrete gravity
dam–water–foundation system. In this figure, cases 1, 2 and 3 represent the numer-
ical results when the ratios of the sediment thickness (HS) to the dam height (H)
is equal to 0, 0.1 and 0.2, respectively. When HS/H = 0, the whole reservoir is
filled with water so that there is no sediment at the reservoir bottom. For an SV-
wave vertical incidence, the acceleration value of the concrete gravity dam with a
thin sediment layer (i.e. case 2) is smaller than that without sediment (i.e. case 1).
This observation is similar to what was observed from the previous results (Hall and
Copra 1982; Fenves and Chopra 1983, 1984, 1985). However, the acceleration value
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(A) SV-wave incidence

(B) P-wave incidence

Fig. 3.5 Effects of sediment thickness on the amplitude distribution of the complex frequency
response function for the acceleration of the concrete gravity dam: (A) SV-wave incidence; (B)
P-wave incidence

of the concrete gravity dam with a thicker sediment layer (i.e. case 3) is greater than
that without sediment (i.e. case 1). This opposite behavior is due to the fact that
when the sediment thickness is considered in the computational model, it has two
main effects on the dynamic response of the concrete gravity dam–water–foundation
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system. The first effect is to dissipate the wave energy of the system due to both the
sediment material damping and the radiation damping within the sediment layer, so
that the dynamic response of the concrete gravity dam is reduced. The second effect
is to amplify the acceleration at the water–sediment interface. This can cause an
increase in dynamic water pressure on the upstream surface of the concrete gravity
dam, so that the dynamic response of the concrete gravity dam is increased. For a
given sediment material, since the amplification of the reservoir bottom sediment
layer to the incident wave is dependent on both the sediment layer thickness and the
sediment material properties, the thicker the sediment layer is, the greater will be
the acceleration on the water–sediment interface.

For an SV-wave vertical incidence, both the scattered vertical acceleration on
the water–sediment interface and the amplified horizontal acceleration on the dam–
sediment interface can result in an increase in the dynamic response of the concrete
gravity dam. When the sediment layer thickness is small, the scattered vertical accel-
eration and the amplified horizontal acceleration are small, so that they do not play
a dominant role in controlling the dynamic response of the concrete gravity dam–
water–foundation system. In this situation, energy dissipation (absorption) within
the sediment layer plays a dominant role, so that the acceleration of the concrete
gravity dam–water–foundation system is decreased. However, when the sediment
layer is thicker, both the scattered vertical acceleration and the horizontal accelera-
tion within the sediment layer become stronger, resulting in a stronger response of
the concrete gravity dam–water–foundation system.

For a P-wave vertical incidence, the amplified vertical acceleration on the water–
sediment interface has a profound effect on the dynamic response of the con-
crete gravity dam–water–foundation system, compared with what is observed for
an SV-wave vertical incidence. The reason is that a vertical acceleration is the pri-
mary component for the P-wave vertical incidence considered in the computational
model, while it is a ramification for the SV-wave vertical incidence due to the wave
mode conversion on the water–sediment interface. For a P-wave vertical incidence,
even a small thickness of the reservoir bottom sediment layer (e.g. HS/H = 0.1)
can produce a stronger vertical acceleration on the water–sediment interface, result-
ing in both a greater dynamic water pressure on the upstream surface of a concrete
gravity dam and a stronger dynamic response of the concrete gravity dam–water–
foundation system. It can be concluded that the thickness of a reservoir bottom
layer has a greater effect on the dynamic response of the concrete gravity dam for a
P-wave vertical incidence than it has for an SV-wave vertical incidence. Therefore,
for the sake of making a safer design of a concrete gravity dam, it is suggested that
both the reservoir bottom sediment thickness and material properties of the sediment
be carefully considered in the computational model. Nevertheless, it seems that the
reservoir bottom sediment thickness has little influence on the resonant frequency
of a concrete gravity dam–water–foundation system.

Compared with the numerical results obtained for the empty reservoir case
(i.e. Fig. 3.4), the existence of reservoir water and reservoir bottom sediments
can cause a reduction in the resonant frequency of a concrete gravity dam–
water–foundation system. For example, the predominant circular frequency of the
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dam–water–foundation system is about 14 rad s–1, as shown in Fig. 3.5. However,
the predominant circular frequency of the empty reservoir case is about 20 rad s–1.
Such predominant circular frequencies are clearly displayed by the response peaks
(at station 1) in Figs. 3.4 and 3.5. This is because in the current computational model
the reservoir water can be simulated as added (frequency-dependent) masses on the
water–solid interface. Owing to the existence of the reservoir water and reservoir
bottom sediments, the horizontal acceleration of the concrete gravity dam is greater
than the vertical one, even for a P-wave vertical incidence, as shown by the numeri-
cal results in Fig. 3.5. The dynamic response on the dam–foundation interface (e.g.
station 15) is relatively small for both the empty reservoir case (i.e. Fig. 3.4) and the
full reservoir cases with reservoir bottom sediments (i.e. Fig. 3.5). Generally, the
higher the location at the body of a concrete gravity dam, the stronger the dynamic
response of the concrete gravity dam (Hall and Copra 1982; Fenves and Chopra
1983, 1984, 1985; Valliappan and Zhao 1992; Zhao et al. 1995)

3.1.2.2 Effects of Sediment Elastic Properties on the Dynamic Response
of Concrete Gravity Dams due to Unit Harmonic Wave Incidences

For the purpose of investigating the effects of reservoir bottom sediments on the
dynamic response of the concrete gravity dam–water–foundation system (shown in
Fig. 3.3), the ratio of the sediment thickness to the dam height is kept constant at
HS/H = 0.1, while three different elastic moduli of the sediment material, namely
0.252×109 Pa, 1.4×109 Pa and 0.252×1010 Pa, are considered as cases 1, 2 and 3,
respectively, in the corresponding computational models. The same Poisson’s ratio
(νs = 0.3) and the same density of the sediment material (ρs = 2000 kg m−3) are
used in these three cases.

Figure 3.6 shows the effects of sediment elastic modulus on the amplitude dis-
tributions of the complex frequency response function for the acceleration of the
concrete gravity dam at the same three different stations (as shown in Fig. 3.3)
due to SV-wave and P-wave vertical incidences. For an SV-wave vertical incidence
and the given thickness of the reservoir bottom sediment layer (HS/H = 0.1), an
increase in the elasticity of the sediment material results in an increase in the accel-
erations of the concrete gravity dam. Such an increase becomes negligible small for
the higher values of elastic moduli of the sediment material. The reason is that for
a small value of the sediment-layer thickness, as explained in the previous subsec-
tion, the existence of the sediment layer can play an important role in dissipating
the wave energy of the concrete gravity dam–water–foundation system, resulting
in a considerable decrease in the dynamic response of the concrete gravity dam.
This observation is in good coincidence with the previous conclusion stating that a
softer sediment layer usually results in greater wave energy dissipation within the
concrete gravity dam–water–foundation system (Hall and Copra 1982; Fenves and
Chopra 1983, 1984, 1985; Valliappan and Zhao 1992; Zhao et al. 1995).

For a P-wave vertical incidence, the amplification of a sediment layer to the inci-
dent wave plays a major role in controlling the dynamic response of a concrete



3.1 Simulation of Dynamic Gravity Dam–Water–Foundation Interaction Systems 53

(A) SV-wave incidence

(B) P-wave incidence

Fig. 3.6 Effects of sediment elastic modulus on the amplitude distribution of the complex fre-
quency response function for the acceleration of the concrete gravity dam: (A) SV-wave incidence;
(B) P-wave incidence

gravity dam. As the elastic modulus of the sediment material increases, the ampli-
fication of the sediment layer to the incident wave decreases. Consequently, the
dynamic water pressure on the upstream surface of the concrete gravity dam
decreases, resulting in a decrease in the dynamic response of the concrete gravity
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dam. With a further increase in the elastic modulus of the sediment material, the
dynamic response curve of the concrete gravity dam becomes smoother for both
SV-wave and P-wave vertical incidences. Since a small difference between the elas-
tic modulus of the sediment material and that of the foundation rock can only cause
a similar response of the concrete gravity dam, a much smoother response curve of
the concrete gravity dam is obtained in the empty reservoir case (i.e. Fig. 3.4). For
both SV-wave and P-wave vertical incidences, the strongest response of a concrete
gravity dam always takes place at the crest of the concrete gravity dam, while the
weakest response occurs at the heel of the concrete gravity dam.

3.1.2.3 Effects of Poisson’s Ratios of the Sediment on the Dynamic Response
of Concrete Gravity Dams due to Unit Harmonic Wave Incidences

Further study is carried out to investigate the effects of Poisson’s ratios of the reser-
voir bottom sediment material on the dynamic response of the concrete gravity dam–
water–foundation system. By keeping other parameters of the sediment material
unchanged, three different Poisson’s ratios of the sediment material, namely 0.2, 0.3
and 0.4, are used in cases 1, 2 and 3 for the corresponding computational models.
The unchanged parameters of the sediment material in the computational models
are as follows: the elastic modulus of the sediment material is 0.252 × 109 Pa; the
density of the sediment material is 2000 kg m−3; the ratio of the sediment thickness
to the dam height is 0.1.

Figure 3.7 shows the effects of the sediment Poisson’s ratios on the amplitude
distributions of the complex frequency response function for the acceleration of the
concrete gravity dam at the given three different stations (in Fig. 3.3) due to SV-
wave and P-wave vertical incidences. For an SV-wave vertical incidence, the overall
trend of the effects of Poisson’s ratios on the dynamic response of the concrete
gravity dam is that with an increase in Poisson’s ratio of the sediment material, the
acceleration value of the concrete gravity dam is increased. Since a higher Pois-
son’s ratio of the sediment material can cause a greater vertical deformation on the
water–sediment interface due to the wave scattering effect, more energy of the input
wave can be changed into the vertical movement of the particle on this interface.
As a result, the scattered vertical acceleration becomes stronger as Poisson’s ratio
of the sediment material becomes greater. On the other hand, a stronger vertical
acceleration can cause a higher dynamic water pressure on the upstream surface of
the concrete gravity dam, so that a greater dynamic response of the concrete gravity
dam is obtained.

For a P-wave vertical incidence, although a higher Poisson’s ratio of the sediment
material can result in a greater horizontal movement of the particle on the water–
sediment interface, a stronger scattered horizontal acceleration on this interface has
little effects on the dynamic response of the concrete gravity dam. However, since
the wave energy of the incident wave is changed into the horizontal movement of
the particles on the water–sediment interface, the vertical acceleration of the par-
ticles on this interface becomes smaller under the condition that the total energy
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(A) SV-wave incidence

(B) P-wave incidence

Fig. 3.7 Effects of sediment Poisson’s ratios on the amplitude distribution of the complex fre-
quency response function for the acceleration of the concrete gravity dam: (A) SV-wave incidence;
(B) P-wave incidence

of the particles should be conservative on this interface. Therefore, in the case of
the P-wave vertical incidence, the dynamic response of the concrete gravity dam
decreases as Poisson’s ratio of the sediment material increases. This phenomenon
can be clearly observed from the numerical results shown in Fig. 3.7.
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3.1.2.4 Effects of the Sediment Damping Coefficients on the Dynamic
Response of Concrete Gravity Dams due to Unit Harmonic Wave
Incidences

Assuming the damping characteristic of the reservoir bottom sediment is hysteretic,
three different damping coefficients, namely 0, 0.1 and 0.2 in cases 1, 2 and 3,
respectively, are considered for investigating the effects of sediment damping coef-
ficients on the dynamic response of the concrete gravity dam–water–foundation sys-
tem. Other parameters of the sediment material are exactly the same as those used
in Sect. 3.1.2.3, exempt for a constant of 0.3 being used for Poisson’s ratio of the
sediment material in all the three cases.

Figure 3.8 shows the effects of sediment damping coefficients on the amplitude
distributions of the complex frequency response function for the acceleration of
the concrete gravity dam at the three different stations (shown in Fig. 3.3) due to
SV-wave and P-wave vertical incidences. Since the dynamic response of a con-
crete gravity dam is more sensitive to the vertical acceleration on a water–sediment
interface than to the horizontal acceleration on this interface, the sediment damping
coefficient has little effect on the dynamic response of the concrete gravity dam due
to an SV-wave vertical incidence, even though it may cause a considerable reduc-
tion in the horizontal acceleration on the water–sediment interface located far away
from the concrete gravity dam. This interpretation is supported by the numerical
results shown in Fig. 3.8. For a P-wave vertical incidence, a larger sediment damp-
ing coefficient can result in a greater decrease in the vertical acceleration on the
water–sediment interface, so that a decrease in the horizontal acceleration of the
concrete gravity dam can be observed from the corresponding numerical results. It
is concluded that the sediment damping coefficient can have a remarkable effect on
the dynamic response of the concrete gravity dam due to a P-wave vertical inci-
dence. However, for both SV-wave and P-wave vertical incidences, the sediment
damping coefficient has little influence on the fundamental resonant frequency of
the concrete gravity dam–water–foundation system.

3.1.3 Transient Response of Concrete Gravity Dams due
to Earthquake Wave Incidences

Using the coupled computational model of finite and dynamic infinite elements for
simulating wave scattering problems due to P-wave and SV-wave incidences (Zhao
et al. 1992, 1995), it is convenient to investigate the transient seismic response of
a concrete gravity dam–water–foundation system in the frequency domain (Zhao
and Valliappan 1993a; Zhao et al. 1995). A transient incident earthquake wave,
which is assumed to be a plane acceleration wave, can be decomposed into a series
of harmonic waves (Clough and Penzien 1975; Wolf 1985; Zhao and Valliappan
1993a; Zhao et al. 1995). The amplitude of each harmonic wave can be expressed
as follows:

ÜI(ω) =
∫ +∞

−∞
üI(t)e

−iωtdt, (3.32)
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(A) SV-wave incidence

(B) P-wave incidence

Fig. 3.8 Effects of sediment damping on the amplitude distribution of the complex frequency
response function for the acceleration of the concrete gravity dam: (A) SV-wave incidence; (B)
P-wave incidence

where üI(t) is the acceleration of the incident earthquake wave; ω is the circular fre-
quency of a decomposed harmonic wave; ÜI(ω) is the Fourier spectrum amplitude
of the decomposed harmonic wave.
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As Eq. (3.32) is the Fourier transform integral, its inverse form can be expressed
using the following equation:

üI(t) = 1

2π

∫ +∞

−∞
ÜI(ω)eiωtdω. (3.33)

After an incident acceleration wave is decomposed, a unit harmonic wave with
frequency ω can be used to compute the complex frequency response function,
Hj(ω), for nodal point j in the concrete gravity dam–water–foundation system (Zhao
et al. 1992, 1995; Zhao and Valliappan 1993a).

To obtain the transient seismic response for any points in the concrete gravity
dam–water–foundation system, an arbitrary nodal point, namely nodal point j, is
considered to illustrate the related procedures. For this nodal point, the harmonic
response due to a given decomposed harmonic acceleration wave with amplitude
ÜI(ω) and circular frequency ω can be evaluated:

ÜRj(ω) = Hj(ω)ÜI(ω), (3.34)

where ÜRj (ω) is the acceleration amplitude of the harmonic response for nodal point
j in the concrete gravity dam–water–foundation system due to the decomposed har-
monic acceleration-wave incidence (Zhao et al. 1992, 1995; Zhao and Valliappan
1993a).

By superposition of the harmonic responses for all the decomposed harmonic
waves, the transient seismic response for nodal point j in the concrete gravity dam–
water–foundation system due to the earthquake acceleration-wave incidence can be
obtained as follows:

üRj (t) = 1

2π

∫ +∞

−∞
ÜRj (ω)eiωtdω, (3.35)

where üRj (t) is the acceleration of the transient seismic response of the nodal point j
in the concrete gravity dam–water–foundation system.

From a computational point of view, the discretized Fourier transform is used
in the coupled computational model of finite and dynamic infinite elements for
simulating the concrete gravity dam–water–foundation system due to earthquake
acceleration-wave incidences. For this reason, the incident acceleration wave, üI(t),
is usually assumed to be periodic with a finite period, T. To make use of the fast
Fourier transform (i.e. FFT) technique, this period (T) is divided into n equal inter-
vals of �t, where n is selected as a power of 2. The variable frequency (ω) is also
divided into the same number of intervals �ω as the time variable (t). The lowest
and highest frequencies in the numerical analysis can be expressed in the following
equations:

ωmin = �ω = 2π

T
, (3.36)

ωmax = n

2
�ω = π

�t
, (3.37)
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where ωmax is called the cut-off frequency or the Nyquist frequency, which is related
to the interval of time (�t) and can be determined from the characteristics of an
incident acceleration wave.

To derive the discretized form for Eqs. (3.32) and (3.35), the following relation-
ships are introduced:

tk = k�t = kT

n
(k = 0, 1, 2, . . . , n − 1), (3.38)

ωq = q�ω = 2πq

T
(q = 0, 1, 2, . . . , n − 1). (3.39)

Substituting Eqs. (3.38) and (3.39) into Eqs. (3.32) and (3.35) yields

ÜI(ωq) = �t
n−1∑

k=0

üI(tk)e−2π i(qk/n) (q = 0, 1, 2, . . . , n − 1), (3.40)

üRj (tk) = �ω

2π

n−1∑

q=0

ÜRj (ωq)e2π i(qk/n) (k = 0, 1, 2, . . . , n − 1). (3.41)

3.1.3.1 Selection of an Earthquake for the Transient Response of Concrete
Gravity Dams due to Earthquake Wave Incidences

Earthquakes are very complicated and complex phenomena in nature. Their time
histories recorded on natural ground are quite irregular. This is because of com-
plexities of sources mechanisms, wave reflections and refractions at irregular inter-
faces, wave dispersions along their travelling paths. The state-of-the-art techniques
for selecting input earthquake waves in engineering practice include the following
two aspects. If the recorded history data of an earthquake are available at a specific
structure site under consideration, then this earthquake can be used as an input earth-
quake for the seismic analysis of the structure. However, if there are no earthquake
records available at a specific structure site under consideration, then the so-called
engineering analogy method is used to produce an artificial input earthquake wave.
In this case, for a given structure site, it is necessary to investigate the topological
and geological conditions of the structure site and the activities of faults (i.e. poten-
tial earthquake sources) near the structure site. An earthquake time history, which is
recorded at a similar site to the structure site under consideration, is selected as an
input earthquake wave, even though necessary modifications are needed to make this
selected earthquake wave suitable for reproducing the design earthquake intensity
of the given structure site.

For the purpose of investigating the effects of reservoir bottom sediments on the
transient seismic response of a concrete gravity dam–water–foundation system, one
could select an arbitrary earthquake motion as the input earthquake wave. From this
point of view, the acceleration time history of an S25W component of the Parkfield,
California earthquake (McEvilly et al. 1967; Trifunac and Udwadia 1974; Zhao and
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Valliappan 1993a), is selected as the input earthquake wave for investigating the
effects of reservoir bottom sediments on the transient seismic response of the con-
crete gravity dam–water–foundation system, which is already considered in the pre-
vious subsections. This selected earthquake took place on 27 June 1966 and the peak
value of the S25W acceleration component was −3.408 m s−2. For convenience of
the seismic analysis, this acceleration time history is normalized through dividing
the acceleration by the absolute value of the peak magnitude, 3.408, resulting in a
unit earthquake acceleration wave. This unit earthquake acceleration wave has the
same frequency characteristics as the original one.

Figure 3.9 shows the acceleration, Fourier spectrum and acceleration response
spectrum of the selected unit earthquake acceleration wave. In this figure, a is
used to represent the acceleration; F-S the Fourier spectrum; ξ the damping ratio
of a one-degree-of-freedom dynamic system; and Sa the acceleration spectrum. To
make use of the FFT technique, an equal time interval, �t = 0.02 s, is adopted
and 1024 pairs of data are used to represent this unit earthquake acceleration wave,
resulting in the lowest frequency of 0.3068 rad s−1 (i.e. ωmin = 0.3068 rad s−1) and
the highest frequency of 157.08 rad s−1 (i.e. ωmax = 157.08 rad s−1), respectively.
As can be seen from the Fourier spectrum in Fig. 3.9, the predominant circular
frequency is about 17 rad s−1, which has a corresponding predominant period of
0.37 s. In engineering practice, the acceleration response spectrum, which expresses
the maximum acceleration response of a one-degree-of-freedom dynamic system
excited by a given earthquake acceleration wave, can be used to represent roughly
the dynamic response of a structure under the given earthquake acceleration wave.
In other words, the acceleration response spectrum can be used as a kind of mea-
surement of the structural response intensity due to a given input earthquake wave,
to judge roughly the dynamic response intensity for a series of structures of different
fundamental frequencies.

3.1.3.2 Transient Seismic Response of a Concrete Gravity
Dam–Water–Foundation System Including Reservoir
Bottom Sediment Effects

In this subsection, the same coupled computational model of finite and dynamic
infinite elements as that shown in Fig. 3.3 is used to investigate the transient seismic
response of the concrete gravity dam–water–foundation system, including reservoir
bottom effects. The following parameters are used in the coupled computational
model. For both the concrete gravity dam and the underlying rock foundation, the
elastic modulus is 28.8 × 109 Pa; the value of Poisson’s ratio is 0.2; the density of
the medium is 2400 kg m−3. These parameters results in a shear wave velocity of
2236 m s−1 within both the concrete gravity dam and the underlying rock founda-
tion. For the reservoir water, the density is 1000 kg m−3; the compressional wave
velocity of water is assumed to be 1436 m s−1. For the reservoir bottom sediment,
the elastic modulus is 0.252 × 109 Pa; the value of Poisson’s ratio is 0.3; the density
of the sediment material is 2000 kg m−3. These parameters results in a shear-wave
velocity of 220 m s−1 within the reservoir bottom sediment layer. To consider the
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Fig. 3.9 The acceleration time history, Fourier spectrum and response spectrum of the selected
input earthquake wave: (a) input earthquake accelerogram; (b) Fourier spectrum; and (c) response
spectrum
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effect of the reservoir bottom sediment on the transient seismic response of the con-
crete gravity dam, a constant of 0.1 for the ratio of the sediment-layer thickness to
the dam height, namely HS/H = 0.1, is used in the coupled computational model
of finite and dynamic infinite elements. Without loss of generality, the selected unit
earthquake acceleration wave (Fig. 3.13) in the previous subsection is applied, as
either an input SV-wave or an input P-wave, to the wave input boundary of the cou-
pled computational model.

Figures 3.10 and 3.11 show the acceleration distributions at three typical stations
of the concrete gravity dam due to the seismic SV-wave vertical incidence. The
numerical results shown in Fig. 3.10 are obtained for the full-reservoir model with-
out reservoir bottom sediments (i.e. HS/H = 0), while the numerical results shown
in Fig. 3.11 are obtained for the full reservoir with reservoir bottom sediments (i.e.
HS/H = 0.1). In these figures, ax and ay are the horizontal and vertical components
of the acceleration response of the concrete gravity dam. As shown in Fig. 3.3, sta-
tions 1, 7 and 15 are located at the crest, the middle height position and the heel of
the concrete gravity dam, respectively. For both the full reservoir with reservoir bot-
tom sediments and the full reservoir without reservoir bottom sediments, the seismic
response at the crest of the concrete gravity dam is much stronger than that at the
heel of the concrete gravity dam. Due to the predominant role of energy dissipation
in a sediment layer, the seismic response of the concrete gravity dam without reser-
voir bottom sediments is stronger than that with reservoir bottom sediments, indicat-
ing that these sediments have a significant effect on the transient seismic response
of the concrete gravity dam–water–foundation system. For the full reservoir without
reservoir bottom sediments, the amplitude of the horizontal acceleration at the crest
(station 1) of the concrete gravity dam is about 9 m s−2, while for the full reservoir
with reservoir bottom sediments, the amplitude of the horizontal acceleration at the
crest (station 1) of the concrete gravity dam is about 5 m s−2. These amplitudes take
place at about 4.6 s in the coupled computational model. Since a considerable dif-
ference in horizontal accelerations along the height of a concrete gravity dam can
result in rotation and bending of the dam, it can be concluded that for the seis-
mic SV-wave vertical incidence, the neglect of the reservoir bottom sediment effect
in a concrete gravity dam–water–foundation system is conservative for the seismic
design of the concrete gravity dam, because the consideration of reservoir bottom
sediments can result in a remarkable increase in the damping of the whole concrete
gravity dam–water–foundation system.

Figures 3.12 and 3.13 show the acceleration distributions at three typical sta-
tions, namely stations 1, 7 and 15 in Fig. 3.3, of the concrete gravity dam due to
the seismic P-wave vertical incidence. The numerical results shown in Fig. 3.12
are obtained from the full reservoir model without reservoir bottom sediments (i.e.
HS/H = 0), while the numerical results shown in Fig. 3.13 are obtained from the
full reservoir with reservoir bottom sediments (i.e. HS/H = 0.1). When reservoir
bottom sediments are considered in the coupled computational model of the con-
crete gravity dam-water-foundation system, the overall acceleration response of the
concrete gravity dam due to the seismic P-wave vertical incidence is stronger than
that due to the seismic SV-wave vertical incidence. For example, the amplitude of
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Fig. 3.10 Acceleration response of the concrete gravity dam due to the seismic SV-wave incidence
(without sediments): as shown in Fig. 3.3, stations 1, 7 and 15 are located at the top, the middle
and the bottom of the dam

the horizontal acceleration at the crest of the concrete gravity dam (in Fig. 3.13)
is about 12 m s−2 in the case of the seismic P-wave vertical incidence, while it
is about 5 m s−2 in the case of the seismic SV-wave vertical incidence, as shown
in Fig. 3.11. Due to the predominant role of reservoir bottom sediments in the
amplification of the input seismic wave, the horizontal acceleration response of the
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Fig. 3.11 Acceleration response of the concrete gravity dam due to the seismic SV-wave incidence
(with sediments): as shown in Fig. 3.3, stations 1, 7 and 15 are located at the top, the middle and
the bottom of the dam

concrete gravity dam is stronger than the vertical acceleration response of the con-
crete gravity dam, even though the vertical seismic acceleration wave is applied
to the wave input boundary of the coupled computational model as a result of the
seismic P-wave vertical incidence. This indicates that the consideration of reser-
voir bottom sediments is important for the seismic design of a concrete gravity dam
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Fig. 3.12 Acceleration response of the concrete gravity dam due to the seismic P-wave incidence
(without sediments): as shown in Fig. 3.3, stations 1, 7 and 15 are located at the top, the middle
and the bottom of the dam

under the seismic P-wave vertical incidence. Since the seismic response of a con-
crete gravity dam for a seismic P-wave vertical incidence is significantly different
from that for a seismic SV-wave vertical incidence, it is suggested that the type of an
incident seismic wave be carefully considered for the seismic design of the concrete
gravity dam.
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Fig. 3.13 Acceleration response of the concrete gravity dam due to the seismic P-wave incidence
(with sediments): as shown in Fig. 3.3, stations 1, 7 and 15 are located at the top, the middle and
the bottom of the dam

3.2 Simulation of Dynamic Embankment
Dam–Water–Foundation Interaction Systems

Embankment dams can be found widely around the world. Some of them have
been built in high seismic activity areas. The Lubuge Dam in Yunnan province,
the Miyun Dam in Beijing, the Xiaolongdi Dam in Henan province and the Shimen
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Dam in Shaanxi province are typical examples. These dams are not only built in
the region where the seismic intensity for the design of embankment dams is 8◦ or
higher, but also their heights are above 60 m. Due to ever-increasing demand for
both water supply and flood protection, demand for construction of embankment
dams in high-seismic-activity regions still exists even today. On the other hand, the
accurate risk evaluation associated with existing dams and the successful designs for
future dams are highly dependent on the appropriate understanding of their dynamic
behaviours under earthquake loadings. Due to the possibility of disastrous conse-
quences resulting from the failure of an embankment dam, the seismic design of
embankment dams has become an important topic in the field of dam engineering.
The major sliding in the Lower San Fernando Dam during the California Earth-
quake in 1971 resulted in a loss of about 10 m of freeboard, while the sliding of
the upstream inclined clay apron in the Miyun Dam during the Tangshan Earth-
quake in 1976 jeopardized the safety of the dam. This indicates that further under-
standing of the seismic behaviours of embankment dams remains a major task for
dam engineers.

Some important aspects that may affect the dynamic response of embank-
ment dams under earthquake loadings have been recognized as follows: (1) since
embankment dams undergo deformation that influences the motion of reservoir
water, the embankment dam–water interaction must be taken into account (Chopra
1968; Liam-Finn et al. 1977); (2) when embankment dams are built on deformable
(soil) foundations, the embankment dam–foundation interaction needs to be con-
sidered (Liam-Finn and Varoglu 1972a, b; Chopra and Gupta 1982; Zhao et al.
1993); (3) as water pressure on a reservoir bottom can affect the motion of the
foundation that in turn affect the dynamic response of the embankment dam
(Hall and Chopra 1982; Zhao 1994), the water–foundation interaction should be
included in the dynamic response of an embankment dam–water–foundation sys-
tem; and (4) reservoir bottom sediments can have a significant effect on inci-
dent waves, especially for incident P-waves (Fenves and Chopra 1983, 1984;
Lofti et al. 1987; Medina et al. 1990; Valliappan and Zhao 1992; Zhao et al.
1993, 1995). Thus, it is necessary to consider the above four factors for dealing
with the dynamic response of an embankment dam–water–sediment–foundation
system.

One of the most likely effects of an earthquake on an embankment dam is to cause
damage of the impervious member of the dam, resulting in reservoir-water leakage
through the impervious member of the embankment dam. The failure of an imper-
vious member of the embankment dam is usually caused by remarkable differential
displacements in the impervious member of the embankment dam. Since different
parts of an embankment dam may have different amplification effects on an incident
earthquake wave, a better design for the location of an impervious member within an
embankment dam is beneficial to the safety of the embankment dam. It is common
practice to use different configurations of impervious members within embankment
dams. Typical examples of the impervious member configurations are central clay
cores, central concrete cores, upstream inclined impervious aprons and upstream
concrete watertight protection. From a wave motion point of view, all the impervious
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members may have different advantages and disadvantages for a particular embank-
ment dam–water–sediment–foundation system. For this reason, it is imperative
to carry out a systematic study for investigating the effect of impervious mem-
bers on the dynamic response of an embankment dam–water–sediment–foundation
system.

When an embankment dam is built across a valley of a river with considerable
sediments, a remarkable thickness of soft materials (i.e. sediments) can be accu-
mulated at the reservoir bottom during the lifetime of the embankment dam. The
effect of reservoir bottom sediments on the dynamic response of a concrete gravity
dam–water–foundation system has been investigated in previous studies. Medina
et al. (1990) solved the dynamic gravity dam–water–sediment–foundation inter-
action problem using a combination of the finite element and the boundary ele-
ment methods. Fenves and Chopra (1983, 1984) used an absorptive reservoir bot-
tom condition to represent the reservoir bottom effect in the finite element model
of a concrete gravity dam–water–foundation system. Valliappan and Zhao (1992)
proposed a more realistic computational model, in which a concrete gravity dam–
water–foundation system including the thickness and material properties of the
reservoir bottom sediment is simulated using finite elements and dynamic infi-
nite elements. They concluded that the effect of reservoir bottom sediments on
the dynamic response of concrete gravity dams is quite significant during earth-
quake wave incidences, especially during seismic P-wave incidences (Zhao et al.
1995). Nevertheless, only limited work has been done for investigating the effect
of reservoir bottom sediments on the dynamic response of an embankment dam–
water–sediment–foundation system (Zhao et al. 1993).

Due to the complexity of an embankment dam–water–sediment–foundation sys-
tem, the coupled computational model of finite and dynamic infinite elements (Zhao
et al. 1987, 1989, 1991; Zhao and Valliappan 1991; Valliappan and Zhao 1992)
provides an effective and efficient way for investigating the dynamic response of
the embankment dam–water–sediment–foundation system. Using the coupled com-
putational model, not only can the infinite extension of both reservoir and dam
foundation be simulated realistically, but also the input mechanism of an inci-
dent seismic wave can be simulated more appropriately (Zhao et al. 1992, 1995;
Zhao and Valliappan 1993a, b, c; Valliappan and Zhao 1992). As the far field
of an embankment dam–water–sediment–foundation system is simulated using
dynamic infinite elements, the use of the coupled computational model of finite
and dynamic infinite elements can reduce computer efforts significantly. Another
advantage in using the coupled computational model of finite and dynamic infi-
nite elements is that an incident wave coming from the far field of the system is
transformed into equivalent nodal forces on the input wave boundary, where the
scattered waves from the near field of the system can be transmitted back into the
far field of the system through dynamic infinite elements. Owing to these advan-
tages, the coupled computational model of finite and dynamic infinite elements
is used to investigate the effects of both impervious member types and reservoir
bottom sediments on the dynamic response of embankment dams in the following
subsections.
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3.2.1 Effects of Impervious Member Types on the Dynamic
Response of an Embankment Dam–Foundation System

In dam engineering practice, central clay cores and upstream inclined impervi-
ous aprons are used as two primary ways to prevent reservoir water from leaking
through embankment dams. From an embankment-dam design point of view, both
dam configurations and materials are quite different for these two types of imper-
vious members. This means that the type of impervious members may affect the
dynamic response of an embankment dam–foundation system.

Figure 3.14 shows a typical embankment dam profile with either a central clay
core or an upstream inclined concrete apron. In this figure, the height of the dam is
60 m; the slope of the upstream surface of the dam is 1:2 from the top to the bottom
of the dam; the slopes of the downstream surface of the dam are 1:2 for the upper
part and 1:3 for the lower part of the dam; the width of the dam crest is 10 m; the
width of the dam bottom is 300 m. A berm of 7.5 m width is constructed at the level
of 37.5 m, which is measured from the dam bottom. For the purpose of investigat-
ing the effect of foundation materials on the dynamic response of the embankment
dam–foundation system (shown in Fig. 3.14), both a layered foundation and a homo-
geneous soil foundation are considered in the corresponding coupled computational
model of finite and dynamic infinite elements. The embankment dam and the near
field of the foundation are simulated using eight-node isoparametric finite elements,
while the far field of the foundation is simulated using dynamic infinite elements.
The horizontal interface between finite elements and dynamic infinite elements is
used as the wave input boundary, where the incident waves coming from the far
field of the system are transmitted into equivalent nodal forces using elastic wave
theory (Zhao et al. 1992). As scattered waves from the embankment dam due to
complicated dam configurations and various material properties can be transmitted
from the near field back into the far field of the system, spurious reflected waves can
be avoided on the wave input boundary. Since the main purpose of this subsection
is to investigate the effect of impervious member types on the dynamic response
of embankment dams, vertically incident unit harmonic P-waves and SV-waves are
considered in the coupled computational model.

Fig. 3.14 Computational model of an embankment dam with either a central clay core or an
upstream inclined concrete apron
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The following material properties are used throughout this subsection. For both
the crust of the embankment dam and the underlying soil layer, which are usually
comprised of sands and gravels, the elastic modulus is 200 × 106 Pa; the value of
Poisson’s ratio is 0.33; the density of the material is 2070 kg m−3; the hysteretic
damping coefficient is 0.2. These parameters result in a shear wave of 189 m s−1

within the crust of the embankment dam and the underlying soil layer. For the
clay core, the elastic modulus is 90 × 106 Pa; the value of Poisson’s ratio is 0.41;
the density of the material is 2020 kg m−3; the hysteretic damping coefficient is
0.2. These parameters result in a shear wave of 125 m s−1 within the central clay
core of the embankment dam. For the inclined concrete apron, the elastic modu-
lus is 20 × 109 Pa; the value of Poisson’s ratio is 0.16; the density of the mate-
rial is 2380 kg m−3; the hysteretic damping coefficient is 0.05; the corresponding
shear wave within the upstream inclined concrete apron of the embankment dam is
1871 m s−1. For the rock foundation, the elastic modulus is 30 × 109 Pa; the value
of Poisson’s ratio is 0.16; the density of the material is 2400 kg m−3; the hysteretic
damping coefficient is 0.05; the corresponding shear wave within the rock founda-
tion of the embankment dam is 2321 m s−1. Since shear wave velocities are different
for the different parts of the embankment dam–foundation system, the maximum
size of finite elements is determined by the softest material, so that the requirement
for using an appropriate element size due to wave propagation is satisfied for all
the finite elements used in the coupled computational model of finite and dynamic
infinite elements.

Figures 3.15 and 3.16 show the dynamic response of an embankment dam with
empty reservoir on a layered foundation due to SV-wave and P-wave vertical inci-
dences, respectively. In these figures, the solid lines represent the amplification fac-
tors of the horizontal accelerations at three different positions of the embankment
dam, while the dashed lines denote the amplification factors of the vertical accelera-
tions at three different positions of the embankment dam. Note that the resonant fre-
quency of the embankment dam–foundation system with an upstream inclined con-
crete apron is different from that with a central clay core. As an upstream inclined
concrete apron is much stiffer than a central clay core, the fundamental resonant fre-
quency of the embankment dam with the upstream inclined concrete apron is greater
than that with the central clay core. However, since the thickness of an upstream
inclined concrete apron is relatively small, which is 0.5 m in the coupled compu-
tational model, an increase in the fundamental resonant frequency of the embank-
ment dam is not profound, even though this increase deserves to be considered in
the dynamic analysis of the embankment dam–foundation system. For instance, the
fundamental resonant frequency of the embankment dam with a clay core is about
8 rad s−1, while it is about 9 rad s−1 for the same embankment dam with an upstream
inclined concrete apron.

In terms of the (acceleration) amplification factors of the embankment dam–
foundation system, different impervious member types have a significant influence
on the dynamic response of the embankment dam in the lower frequency range of
excitation, but they have little effect on the dynamic response of the embankment
dam in the higher frequency range of excitation. As was pointed out in a previous



3.2 Simulation of Dynamic Embankment Dam–Water–Foundation Interaction Systems 71

Fig. 3.15 Response of the empty embankment dam on a layered foundation due to the SV-wave
vertical incidence

study (Zhao and Valliappan, 1991), the material damping of a dynamic system plays
a more important role in controlling the dynamic response of the system for lower
frequency excitation than it plays for higher frequency excitation. For an embank-
ment dam with an upstream inclined concrete apron, the total material damping of
the embankment dam–foundation system decreases as a result of a decrease in the
hysteretic damping coefficient of the related material, compared with the embank-
ment dam with a central clay core. For this reason, both the (acceleration) amplifi-
cation factor and the dynamic response of the embankment dam with an upstream
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Fig. 3.16 Response of the empty embankment dam on a layered foundation due to the P-wave
vertical incidence

inclined concrete apron increase in the lower frequency range of excitation. It can
be concluded that from the seismic resistance point of view, central clay cores are
more suitable as impervious members for embankment dams. Since the dynamic
response of an embankment dam–foundation system is dominated by the radiation
damping of the system for higher frequency excitation, the (acceleration) amplifica-
tion factors of the embankment dam with an upstream inclined concrete apron are
almost the same as those with a central clay core because of the identical radiation
damping of the foundation for both the upstream inclined concrete apron and the
central clay core cases.
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As shown in Figs. 3.15 and 3.16, there are many peaks in the dynamic response
curves of the empty embankment dam on a layered foundation due to the unit har-
monic SV-wave and P-wave vertical incidences. As the incident harmonic wave is
applied on the wave input boundary consisting of a horizontal line, which is an
interface between the finite elements and dynamic infinite elements, in the cou-
pled computational model, it may result in significant different responses on the
surfaces of two different foundation models. For the layered foundation model, the
incident harmonic wave is applied to a wave input boundary within the underlying
rock, instead of within the soil layer. When an incident harmonic wave propagates
through the soil layer, the characteristics of the incident harmonic wave is changed
significantly, so that the response curve on the top surface of the soil layer appears
as many peaks due to the wave reflection and refraction within the soil layer. It is
the propagating mechanism of an incident wave within a soil layer that makes the
(acceleration) response curves of the embankment dam–layered foundation system
with many peaks.

When the embankment dam is located on a homogeneous soil foundation, the
(acceleration) response curves of the embankment dam–foundation system are com-
paratively smooth, as demonstrated in Figs. 3.17 and 3.18. This indicates that if the
propagating mechanism of an incident wave, which propagates for the far field into
the near field of the foundation, is considered in the coupled computational model,
the foundation material has a significant influence on the dynamic response of the
embankment dam–foundation system. Since the embankment dam and its layered
foundation are considered as a whole system, the (acceleration) amplification fac-
tors of the embankment dam are quite high due to the amplification effect of the soil
layer on the incident wave.

Figures 3.17 and 3.18 show the dynamic response of an empty embankment dam
on a homogeneous soil foundation due to the unit harmonic SV-wave and P-wave
vertical incidences. Again, the amplification factors of both the horizontal accelera-
tion (marked by solid lines) and the vertical acceleration (marked by dashed lines)
are used to display the dynamic response of the embankment dam–foundation sys-
tem. In terms of the effect of impervious member types on the fundamental resonant
frequency and amplification factors of the embankment dam, the same conclusions
as those obtained in the layered foundation case can be made for the homoge-
neous soil foundation case. However, the (acceleration) amplification factors of the
embankment dam on a homogeneous soil foundation are much smaller than those on
a layered foundation. As mentioned previously, soil layers can cause greater ampli-
fication to the incident wave, resulting in an increase in the amplification factors of
the embankment dam. Since the soil/rock layered foundation is much stiffer than the
homogeneous soil foundation, the fundamental resonant frequency of the embank-
ment dam on a homogeneous soil foundation is much smaller than that on a layered
foundation. This indicates that the foundation material has a significant effect on the
dynamic response of the embankment dam–foundation system. With an increase in
the height of an embankment dam, the amplification factors of the embankment dam
increase in most cases, due to the reflection and refraction of the incident wave on
the surface of the embankment dam.
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Fig. 3.17 Response of the empty embankment dam on a homogeneous soil foundation due to the
SV-wave vertical incidence

Figures 3.19, 3.20, 3.21 and 3.22 show the deformed shapes of different embank-
ment dam–foundation systems due to SV-wave and P-wave vertical incidences with
two different circular frequencies. It may be desired that these deformed shapes be
plotted at the different fundamental resonant frequencies for different embankment
dam–foundation systems. Since the fundamental resonant frequencies are different
for the different embankment dam–foundation systems under consideration, for the
purpose of demonstrating the effects of both impervious member types and foun-
dation materials, the deformed shapes of different embankment dam–foundation
systems are plotted for two circular frequencies, namely ω = 15 rad s−1 and
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Fig. 3.18 Response of the empty embankment dam on a homogeneous soil foundation due to the
P-wave vertical incidence

ω = 30 rad s−1. Note that the deformations in these figures have been exaggerated
for the purpose of clear illustration.

For the vertically incident SV-wave with a circular frequency, ω = 15 rad s−1,
the deformed shapes of the embankment dam are significantly affected by the foun-
dation material rather than the impervious member type. However, for the vertically
incident SV-wave with a higher circular frequency, ω = 30 rad s−1, the deformed
shapes of the embankment dam depend on both the impervious member type and the
foundation material. Since the frequencies considered for incident harmonic waves
are within an appropriate range of a natural earthquake wave, it can be concluded
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(a) Empty reservoir on homogeneous foundation
(Central clay core)

(b) Empty reservoir on homogeneous foundation
(Upstream inclined apron)

(c) Empty reservoir on layered foundation
(Central clay core)

(d) Empty reservoir on layered foundation
(Upstream inclined apron)

Fig. 3.19 Deformed shapes
of the embankment dam due
to the SV-wave vertical
incidence (ω = 15 rad s−1)

that both the impervious member type and the foundation material have a significant
effect on the seismic response of an embankment dam–foundation system. Com-
pared with the SV-wave vertical incidence, the deformed shapes of the embankment
dam due to the P-wave vertical incidence are different for all the cases studied,
implying that incident wave types can have a significant influence on the dynamic
response of an embankment dam–foundation system. Generally, the deformed shape
of an embankment dam on a layered foundation is more complicated than that on a
homogeneous soil foundation. This phenomenon is caused by the multiple reflection
and refraction of waves within both the embankment dam and the layered soil.

3.2.2 Effects of Reservoir Bottom Sediments on the Dynamic
Response of an Embankment Dam–Foundation System

For a central clay core dam with full impounded reservoir water, the water table
within the dam body is too high to be neglected for the dynamic analysis of the
embankment dam. However, when an embankment dam with an upstream inclined
concrete apron is considered, even for a full impounded reservoir water, the water
table behind the upstream inclined concrete apron is so low that it can be ignored
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(a) Empty reservoir on homogeneous foundation
(Central clay core)

(b) Empty reservoir on homogeneous foundation
(Upstream inclined apron)

(c) Empty reservoir on layered foundation
(Central clay core)

(d) Empty reservoir on layered foundation
(Upstream inclined apron)

Fig. 3.20 Deformed shapes
of the embankment dam due
to the SV-wave vertical
incidence (ω = 30 rad s–1)

for the dynamic analysis of the embankment dam without causing any considerable
loss of accuracy.

Since the main purpose of this subsection is to investigate the effect of reservoir
bottom sediments on the dynamic response of embankment dams, an embankment
dam with an upstream inclined concrete apron, as shown in Fig. 3.23, is considered
in this subsection. To emphasize the effect of reservoir bottom sediments, some
factors, which may affect the dynamic response of embankment dams, such as the
liquefaction of an embankment dam and the nonlinear behaviour of an embank-
ment dam–foundation system, are neglected here. The material properties of the
embankment dam and foundation are exactly the same as those used in the previ-
ous subsection. It is assumed that the reservoir bottom sediment is comprised of
soft clay materials under unsaturated conditions, which is the most dangerous case
(Cheng 1986) and may give a maximum estimation for the effect of reservoir bottom
sediments on the dynamic response of the embankment dam.

For the reservoir bottom sediment, the following parameters are used in the cou-
pled computational model of finite and dynamic infinite elements (in Fig. 3.23): the
elastic modulus is 70 × 106 Pa; the value of Poisson’s ratio is 0.3; the density of the
sediment is 1750 kg m−3; the thickness is 5 m; the hysteretic damping coefficient
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(a) Empty reservoir on homogeneous foundation
(Central clay core)

(b) Empty reservoir on homogeneous foundation
(Upstream inclined apron)

(c) Empty reservoir on layered foundation
(Central clay core)

(d) Empty reservoir on layered foundation
(Upstream inclined apron)

Fig. 3.21 Deformed shapes
of the embankment dam due
to the P-wave vertical
incidence (ω = 15 rad s–1)

is 0.2; the corresponding shear wave within the rock foundation of the embank-
ment dam is 124 m s−1. In order to examine the effect of incident wave types on
the dynamic response of the embankment dam–water–sediment–foundation system,
both a unit harmonic SV-wave and a unit harmonic P-wave are used as the incident
waves for the coupled computational model of finite and dynamic infinite elements.
To obtain accurate numerical results, the finite element mesh, which is used to sim-
ulate the near field of the whole embankment dam–water–sediment–foundation sys-
tem, is fine enough to capture the travelling waves of minimum wavelength in the
range of frequencies used in this subsection.

Figures 3.24 and 3.25 show the dynamic response of the embankment dam with
an upstream inclined concrete apron due to the unit harmonic SV-wave and P-wave
vertical incidences. In these figures, the amplification factor, which is defined as
the ratio of the movement of a nodal point in the embankment dam to that of the
incident wave, is used to exhibit the dynamic response of the embankment dam.
To investigate the effect of reservoir bottom sediments on the dynamic response of
the embankment dam, numerical results for three different cases, namely an empty
reservoir, a full-reservoir-without-sediment and a full-reservoir-with-sediment, are
displayed in these two figures (i.e. Figs. 3.24 and 3.25), where the solid and
dashed lines represent the horizontal and vertical movements of a nodal point
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(a) Empty reservoir on homogeneous foundation
(Central clay core)

(b) Empty reservoir on homogeneous foundation
(Upstream inclined apron)

(c) Empty reservoir on layered foundation
(Central clay core)

(d) Empty reservoir on layered foundation
(Upstream inclined apron)

Fig. 3.22 Deformed shapes
of the embankment dam due
to the P-wave vertical
incidence (ω = 30 rad s–1)

Fig. 3.23 Computational model of an embankment dam–water–sediment–foundation system

in the embankment dam. Compared with the empty reservoir case, the funda-
mental resonant frequency of the embankment dam–water–sediment–foundation
system becomes small for a full reservoir with or without reservoir bottom
sediments.

For a full reservoir, the total mass of the system including the reservoir water
becomes somewhat larger, while the total stiffness of the embankment dam remains
unchanged, compared with the empty reservoir case. Since the embankment dam–
water–sediment–foundation is considered as a whole system, the reservoir water,
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Fig. 3.24 Response of the embankment dam with an upstream inclined concrete apron due to the
SV-wave vertical incidence

which is assumed to extend through to infinity in the upstream direction of the
embankment dam, can make a considerable contribution to the total mass of the
system for an SV-wave vertical incidence. For the coupled computational model
of finite and dynamic infinite elements (Zhao et al. 1987, 1989, 1991, 1992, 1995;
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Fig. 3.25 Response of the embankment dam with an upstream inclined concrete apron due to the
P-wave vertical incidence

Zhao and Valliappan 1991, 1993a, b, c, Zhao and Xu 1994), the interaction effect
at a water–solid interface can be treated as frequency-dependent masses, which
are applied to the upstream surface of an embankment dam and the upper surface
of a reservoir bottom sediment layer. For this reason, the coupled computational
model of finite and dynamic infinite elements differs from the conventional dynamic
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Fig. 3.26 Amplification effect of incident waves due to reservoir bottom sediments

analysis model (Hall and Copra 1982; Fenves and Chopra 1983, 1984, 1985), where
either the domain of reservoir water is considered as a finite domain or the contri-
bution of reservoir water to the mass of the upper surface of the reservoir bottom
sediment layer is neglected.

For the SV-wave vertical incidence, the overall trend of the amplification factor of
a nodal point in the embankment dam for the full-reservoir-without-sediment case is
similar to that for the full-reservoir-with-sediment case, indicating that the reservoir
bottom sediment has little influence on the amplification factor of the embankment
dam–water–sediment–foundation system.
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Since the reservoir bottom sediment has a little amplification to the incident SV-
wave (Valliappan and Zhao 1992; Zhao et al. 1995), the induced hydrodynamic
pressure on the inclined upstream surface of an embankment dam is smaller than
that on the vertical upstream surface of a concrete gravity dam.

However, for the P-wave vertical incidence, the amplification factor of a nodal
point in the embankment dam for the full-reservoir-with-sediment case is greater
than that for the full-reservoir-without-sediment case, especially in the range of fre-
quencies that are greater than the fundamental resonant frequency of the embank-
ment dam–water–sediment–foundation system. This indicates that the reservoir bot-
tom sediment has a considerable effect on the dynamic response of the embankment
dam–water–sediment–foundation system for a P-wave vertical incidence. In order
to gain insight into how the reservoir bottom sediment amplifies the incident wave
on the upper surface of the sediment layer, the related numerical results are shown
in Fig. 3.26, where the solid and dashed lines represent the horizontal and vertical
movements respectively. In this figure, stations 4 and 6 denote the sediment–soil
interface and the water–sediment interface, respectively, while station 5 denotes the
soil–rock interface within the dam foundation.

These numerical results indicate that the reservoir bottom sediment has little
amplification effect on the vertically incident SV-wave. For example, the maximum
value of the amplification factor due to the sediment layer itself is about 35/25,
which is the ratio of the maximum value of the amplification at the water–sediment
interface (i.e. station 6) to that at the sediment–soil interface (i.e. station 4). How-
ever, for the P-wave vertical incidence, the maximum value of the amplification
factor due to the sediment layer itself is about 68/25, indicating that the move-
ment at the water–sediment interface for the P-wave vertical incidence is stronger
than that for the SV-wave vertical incidence. Since the vertical movement at the
water–sediment interface due to a P-wave vertical incidence has a much greater
influence on the hydrodynamic pressure (at the upstream surface of the embank-
ment dam) than the horizontal movement at the water–sediment interface due to
an SV-wave vertical incidence, the dynamic response of the embankment dam–
water–sediment–foundation system due to the P-wave vertical incidence is much
stronger than that due to the SV-wave vertical incidence. This indicates that consid-
eration of the incident wave type is important for the dynamic analysis of embank-
ment dams when the dynamic embankment dam–water–sediment–foundation inter-
action is included in the coupled computational model of finite and dynamic infinite
elements.

Figures 3.27 and 3.28 show the deformed shapes of the embankment dam with an
upstream inclined concrete apron due to the unit harmonic SV-wave and P-wave ver-
tical incidences with several frequencies, respectively. The related numerical results
indicate that the deformed shapes obtained from the full-reservoir-without-sediment
case are considerably different from those obtained from the full-reservoir-with-
sediment case, implying that the reservoir bottom sediment has a considerable effect
on the deformed shapes of the embankment dam for both SV-wave and P-wave verti-
cal incidences. This further demonstrates that the consideration of the reservoir bot-
tom sediment is important for the dynamic stability analysis of embankment dams.
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Fig. 3.27 Deformed shapes
of the embankment dam with
an upstream inclined concrete
apron due to the SV-wave
vertical incidence

Fig. 3.28 Deformed shapes
of the embankment dam with
an upstream inclined concrete
apron due to the P-wave
vertical incidence



Chapter 4
Application of Two-Dimensional Dynamic
Infinite Elements: Simulation of Wave
Scattering Effects under Different Canyon
Topographical and Geological Conditions

Previous studies related to the surface motion of wave propagation demonstrated
that the topographical and geological features of a canyon have a significant influ-
ence on the motions of the ground (Bouchon 1973; Rogers et al. 1974; Datta and
El-Akily 1978; Bard 1982; Shah et al. 1982, 1983; Dravinski 1983; Toki and Sato
1983; Ohtsuki and Harumi 1984; Zahradnik and Urban 1984; Sanchez-Sesma et al.
1985; Wong et al. 1985; Geli et al. 1988; Zhao and Valliappan 1993a, b). This
fact may have an important impact on the dynamic response of such large-scale
structures as dams and bridges, because free-field motions have obviously different
amplitudes and phases along an abutment on which a structure is founded. One of
the key questions associated with the selection of a dam or bridge site is to inves-
tigate which kind of canyon is more beneficial to the cost and safety of a structure,
from a seismic resistance point of view. As illustrated in previous studies (Zhao
1987; Zhang and Zhao 1988), the amplitude and phase differences of the ground
motion can affect the dynamic response of a massive structure dramatically, so that
it is necessary to carry out a detailed study on the distribution of the free-field motion
along a natural canyon. This work may have great significance in engineering
practice.

From the point of view of wave motion theory, the analysis of a free-field motion
can be attributed to a wave scattering problem in an infinite medium. An earthquake
wave usually originates from an epicentre and propagates in the infinite medium.
When the earthquake wave reaches a canyon or a structure, wave reflection and
scattering take place, so that the resulting free-field motion should be a sum of the
incident earthquake-wave field and the scattered wave field. As an earthquake wave
propagating in an elastic medium can be decomposed into a sum of several harmonic
waves, it is convenient to use a harmonic wave for investigating the distribution
characteristics of free-field motions. Once a dynamic analysis for the distribution
characteristics of free-field motions due to harmonic waves is made, it is straight-
forward to extend the analysis to an earthquake-wave-incident case using the FFT
(i.e. Fast Fourier Transform) technique. For this reason, both harmonic and seismic
waves are used to examine the effects of canyon topographical and geological con-
ditions on ground motions due to P-wave and SV-wave incidences from the far field
of the canyon.
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Regarding the effects of the canyon topographical and geological conditions on
the ground motions, theoretical studies, which were initiated in the 1960s, were
mainly devoted to the reflection and diffraction behaviours of SH-waves on ground
surfaces (Asano 1966; McIvor 1969; Boor 1972). Trifunac (1973) and Wong and
Trifunac (1974) obtained analytical solutions for SH-wave scattering along semi-
circular and semi-elliptical canyons using both variable separation techniques and
special functions. Because of the complexity of the problem, pure analytical solu-
tions were restricted not only to very simple topographical and geological condi-
tions, but also to the incidences of simple wave types such as SH-waves. With
the development of computational techniques, many different numerical meth-
ods, such as the discrete wavenumber method (Aki and Larner 1970), the finite
element method (Reimer et al. 1974; Smith 1975), the boundary integral equa-
tion method (Wong and Jennings 1975; Sanchez-Sesma 1983), the general inverse
method (Wong 1982), the wave function approach (Eshraghi and Dravinski 1989a,
b) and the discrete wavenumber boundary element method (Kawase 1988; Khair
et al. 1989) were presented for solving wave scattering problems along canyons
of more complicated geometrical shapes. Among these methods, the finite element
method is very powerful, because the complexities of geometrical and geological
conditions in a natural canyon can be easily simulated.

Using the finite element method for wave scattering problems, Reimer et al.
(1974) and Smith (1975) conducted some pioneering work. In the work of Reimer
et al. (1974), finite elements were used to simulate a dam and its foundation. Using
the assumption of a massless foundation, a uniform earthquake model, in which
the wave-propagation effects in the foundation were ignored, was used to input
the earthquake load. This wave input model has obvious drawbacks and has been
improved by Clough et al. (1985). In Smith’s work on the wave-propagation prob-
lem (Smith 1975), finite elements and non-reflecting boundaries were used to sim-
ulate the infinite foundation, and initial displacements were applied to the wave
input boundary of the finite element model. The common drawbacks of using these
early finite element models to simulate an infinite foundation is that one cannot con-
sider both the simulation of the infinite foundation and the earthquake-wave-input
mechanism appropriately at the same time. To overcome these drawbacks, Zhao
(1987) presented a wave-input procedure for wave propagation in an infinite foun-
dation. In Zhao’s wave-input procedure, a natural infinite foundation was simulated
using a coupled computational model of finite and dynamic infinite elements, and an
earthquake wave was applied to a wave-input boundary within the coupled compu-
tational model. For ease of computation, the wave-input boundary was assumed to
be a horizontal line in the underlying rock (Zhao 1987; Zhao et al. 1992; Zhao and
Valliappan 1993a, b). The seismic force on the wave-input boundary can be evalu-
ated by considering the characteristics of the input earthquake wave. Zhao’s original
work was used to simulate SH-wave, SV-wave and P-wave scattering problems in
infinite foundations (Zhang and Zhao 1988; Zhao and Valliappan 1993a, b).

Taking into consideration both geometrical and geological complexities and the
infinite extent of natural canyons, a coupled computational model of finite and
dynamic infinite elements is used, in this chapter, for investigating the effects of
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canyon topographical and geological conditions on the ground motions due to P- and
SV-wave incidences. In the coupled computational model, the near field of a canyon
is simulated using finite elements, while the far field of the canyon is simulated using
dynamic infinite elements. Several topographical conditions, represented by trape-
zoidal and V-shaped canyons with different ratios of top width to height (L /H),
are considered in the corresponding coupled computational models, when both
P- and SV-waves with different incident angles propagate from the far fields into the
near fields of these different canyons. The amplification factors and distribution pat-
terns of displacements along canyon surfaces are used to show the effects of canyon
topographical conditions on the ground motions. To examine the effects of geologi-
cal conditions on the ground motions, weathered rock layers on the canyon surfaces
are considered in the corresponding coupled computational models, in which the
different ratio of the elastic modulus of a weathered rock layer to that of the under-
lying rock is used to represent different geological conditions of the canyon.

4.1 Simulation of Infinite Domain of a Canyon

In dealing with wave-propagation problems in infinite domains with geometrical
and geological complexities, the coupled computational model of finite and dynamic
infinite elements has been proven very effective (Chow and Smith 1981; Medina
and Taylor 1983; Zhang and Zhao 1987, 1988; Zhao et al. 1989, 1991, 1992; Zhao
and Valliappan 1993a, b). In this chapter, eight-node isoparametric finite elements
are used to simulate the near field of a canyon. Their formulations are well known
(Zienkiewicz 1977) and therefore, need not to be repeated. Since the previous two-
dimensional dynamic infinite element (Zhang and Zhao 1987, 1988; Zhao et al.
1992) has only one wavenumber to represent the displacement shape function of the
element, it is necessary to develop another kind of two-dimensional dynamic infinite
element, in which both the P wavenumber and SV wavenumber are used to express
the displacement shape function of the element due to the coexistence of these two
waves in wave-scattering problems along a canyon.

For the two-dimensional six-node dynamic infinite element shown in Fig. 4.1,
since the sides of the element in the ξ direction can be represented by straight
lines, four nodes are sufficient to describe exactly the geometry of the two-
dimensional six-node dynamic infinite element in the global coordinate system. The
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Fig. 4.1 Two-dimensional
six-node dynamic infinite
element: nodes 1, 2 and 3 are
the end nodes to be connected
with a finite element; nodes 4,
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mapping relationship between the global and local coordinate systems for this two-
dimensional six-node dynamic infinite element can be expressed as follows:

x =
6∑

q=1

Mqxq, (4.1)

y =
6∑

q=1

Mqyq, (4.2)

where xq and yq are the nodal coordinates of the two-dimensional six-node dynamic
infinite element in the x and y directions, respectively; Mq (q=1, 2, . . ., 6) is the
mapping function of the two-dimensional six-node dynamic infinite element:

M1 = 1

2
(ξ − 1)(η − 1), (4.3)

M2 = M5 = 0, (4.4)

M3 = −1

2
(ξ − 1)(η + 1), (4.5)

M4 = 1

2
ξ (η + 1), (4.6)

M6 = −1

2
ξ (η − 1). (4.7)

Note that for the convenience of expressing the coordinate mapping relation-
ship, M2 and M5 are set to zero for the two-dimensional six-node dynamic infinite
element.

Consideration of the displacement compatibility condition on the connected
interface between a two-dimensional eight-node isoparametric finite element and
a two-dimensional six-node dynamic infinite element yields the following dis-
placement shape functions for the two-dimensional six-node dynamic infinite
element:

Nq = Pq(ξ )
η(η − 1)

2
(q = 1, 6), (4.8)

Nq = −Pq(ξ )(η + 1)(η − 1) (q = 2, 5), (4.9)

Nq = Pq(ξ )
η(η + 1)

2
(q = 3, 4), (4.10)

where Pq(ξ ) (q = 1, 2, . . ., 6) is the wave-propagation function of the two-
dimensional six-node dynamic infinite element; Nq (q = 1, 2, . . ., 6) is the displace-
ment shape function of the two-dimensional six-node dynamic infinite element. It
can be determined by investigating the harmonic wave-propagation behaviour in an
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infinite medium (Zhao et al. 1992; Zhao and Valliappan 1993b). When an isotropic
homogeneous elastic half-space is subjected to a harmonic loading, the induced har-
monic waves propagate from the vibration source into the far field of the half-space.
The analytical solution for this problem can be expressed using the special func-
tions, known as Bessel functions and Hankel functions (Graff 1975; Medina and
Taylor 1983). For the far field of the half-space, the asymptotic behaviour of these
special functions can be approximately expressed as a combination of several expo-
nential functions. The physical explanation for this is that the induced waves in the
far field of the half-space can be approximately represented using superposition of
plane harmonic waves. Based on this recognition and consideration of the induced
wave with multiple wavenumbers, the general form of the wave propagation func-
tion for the two-dimensional six-node dynamic infinite element can be expressed as
follows:

Pq(ξ ) = exp(−αξ) [c1 exp(−iβ1ξ)+ c2 exp(−iβ2ξ)
]

(q = 1, 2, . . . , 6),
(4.11)

where α is the nominal decay coefficient that is used to express the wave amplitude
attenuation due to both the wave energy dissipation in the two-dimensional six-node
dynamic infinite element and the geometric divergence of the two-dimensional six-
node dynamic infinite element. Note that the determination of α was addressed in
Chap. 2. β1 and β2 are two nominal wavenumbers corresponding to an S-wave and
P-wave in the two-dimensional six-node dynamic infinite element. These nominal
wavenumbers are used to express the phase characteristics of the wave propagation
in the two-dimensional six-node dynamic infinite element. c1 and c2 are two con-
stants to be determined by matching the displacement field of the two-dimensional
six-node dynamic infinite element with that of the infinite medium.

Based on the equality condition of nodal displacements at any infinite side of
the two-dimensional six-node dynamic infinite element in the ξ direction, c1 and
c2 in Eq. (4.11) can be determined. With one side of the two-dimensional six-node
dynamic infinite element (with nodes 1 and 6) taken as an example, the following
relationships exist:

{
u1
u6

}
=
[

1 1
exp [−(α + iβ1)] exp [−(α + iβ2)]

]{
c1
c2

}
= [C]

{
c1
c2

}
. (4.12)

Solving Eq. (4.12) yields the following solution for c1 and c2:

{
c1
c2

}
= [C]−1

{
u1
u6

}
. (4.13)

If Eqs. (4.8), (4.9), (4.10), (4.11), (4.12) and (4.13) are considered simultane-
ously, then Pq(ξ ) (q=1, 2, . . ., 6) can be expressed as follows:
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Pq(ξ ) = 1

�
{exp [−(α + iβ2)] exp [−(α + iβ1)ξ ]

− exp [−(α + iβ1)] exp [−(α + iβ2)ξ ]} (q = 1, 2, 3),
(4.14)

Pq(ξ ) = 1

�
{− exp [−(α + iβ1)ξ ] + exp [−(α + iβ2)ξ ]} (q = 4, 5, 6), (4.15)

� = exp [−(α + iβ2)] − exp [−(α + iβ1)] . (4.16)

Note that a sufficient condition for the existence of Pq(ξ ) (q = 1, 2, . . ., 6) in
the two-dimensional six-node dynamic infinite element is that β1 and β2 are two
different constants. This condition can be satisfied for simulating wave-propagation
problems in an infinite medium, because an S-wave and a P-wave have two different
wavenumbers in the infinite medium.

In addition, the following expression for the wave-propagation function of the
two-dimensional six-node dynamic infinite element holds:

Pq(ξr) = δqr (q = 1, 2, . . . , 6; r = 1, 2, . . . , 6), (4.17)

where δqr is the Kronecker delta. This implies that for any displacement shape func-
tion Nq (q = 1, 2, . . ., 6), Nq = 1 when ξ = ξq and η = ηq, while Nq = 0 when
ξ = ξr and η = ηr, where r �= q.

By following the same procedures as those used in the finite element method
(Zienkiewicz 1977; Zhao et al. 1992), both the mass matrix and the stiffness matrix
of the two-dimensional six-node dynamic infinite element can be expressed as
follows:

[M]e =
∫ 1

−1

∫ ∞

0
[N]Tρ[N] |J| dξdη, (4.18)

[K]e =
∫ 1

−1

∫ ∞

0
[B]T [D∗][B] |J| dξdη, (4.19)

where [B] and [N] are the strain matrix and shape function matrix of the two-
dimensional six-node dynamic infinite element; [D∗] is the constitutive matrix of
the element material; |J| is the Jacobian determinant, which can be determined using
the mapping relationship of the element (in Eqs. (4.1) and (4.2)); ρ is the density of
the element material.

Using the displacement shape functions expressed in Eqs. (4.8), (4.9) and (4.10),
the displacement field within this two-dimensional six-node dynamic infinite ele-
ment can be expressed as follows:

u =
6∑

q=1

Nquq, (4.20)

v =
6∑

q=1

Nqvq, (4.21)
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where Nq (q = 1, 2, . . ., 6) is the displacement shape functions of the two-
dimensional six-node dynamic infinite element.

Equations (4.20) and (4.21) can be written in the matrix form:

{
u
v

}e

== [N] {�}e , (4.22)

where [N] is the shape function matrix of the two-dimensional six-node dynamic
infinite element; {�}e is the nodal displacement vector of the element. They are of
the following forms:

[N] =
[

N1 0 N2 0 N3 0 N4 0 N5 0 N6 0
0 N1 0 N2 0 N3 0 N4 0 N5 0 N6

]
, (4.23)

{�}e = { u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6
}T . (4.24)

Using the above definitions, the strain matrix of the two-dimensional six-node
dynamic infinite element can be expressed as follows:

{ε}e =

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

⎫
⎪⎪⎬

⎪⎪⎭
= [B] {�}e , (4.25)

where [B] is the strain matrix of the two-dimensional six-node dynamic infinite
element; {ε}e is the strain vector of the element. The strain matrix of the dynamic
infinite element can be further expressed as

[B] =

⎡

⎢⎢
⎣

∂N1
∂x 0 ∂N2

∂x 0 ∂N3
∂x 0 ∂N4

∂x 0 ∂N5
∂x 0 ∂N6

∂x 0

0 ∂N1
∂y 0 ∂N2

∂y 0 ∂N3
∂y 0 ∂N4

∂y 0 ∂N5
∂y 0 ∂N6

∂x
∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x

∂N3
∂y

∂N3
∂x

∂N4
∂y

∂N4
∂x

∂N5
∂y

∂N5
∂x

∂N6
∂y

∂N6
∂x

⎤

⎥⎥
⎦ . (4.26)

To evaluate the strain matrix of the two-dimensional six-node dynamic infinite
element, it is necessary to calculate the first derivatives of the displacement shape
functions with respect to the local ξ and η coordinates as follows:

∂Nq

∂ξ
= ∂Nq

∂x

∂x

∂ξ
+ ∂Nq

∂y

∂y

∂ξ
(q = 1, 2, . . . , 6), (4.27)

∂Nq

∂η
= ∂Nq

∂x

∂x

∂η
+ ∂Nq

∂y

∂y

∂η
(q = 1, 2, . . . , 6). (4.28)
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Equations (4.27) and (4.28) can be readily expressed in the following matrix
form:
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(q = 1, 2, . . . , 6), (4.29)

where the matrix [J], called the Jacobian matrix, is given by the following equation:

[J] =
⎡

⎣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤

⎦ . (4.30)

Substituting Eqs. (4.1) and (4.2) into Eq. (4.30) yields the final expression for the
Jacobian matrix as follows:
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. (4.31)

Therefore, the first derivatives of the displacement shape functions with respect
to the global x and y coordinates can be expressed as follows:
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⎭
(q = 1, 2, . . . , 6). (4.32)

Mathematically, the value of the Jacobian determinant |J| can be determined from
the Jacobian matrix [J].

For the plane strain problem, the constitutive matrix of the element material can
be expressed in the following form:

[
D∗] = E(1 + iηd)

1 + μ

⎡

⎢⎢
⎣

1−μ
1−2μ

μ
1−2μ 0

μ
1−2μ

1−μ
1−2μ 0

0 0 1
2

⎤

⎥⎥
⎦ , (4.33)

where E and μ are the elastic modulus and Poisson’s ratio of the element material,
respectively; ηd is the hysteretic damping coefficient of the element material.

Substituting Eqs. (4.23), (4.26) and (4.33) into Eqs. (4.18) and (4.19) yields the
following generalized integral for the evaluation of the mass and stiffness matrices
of the two-dimensional six-node dynamic infinite element:

I =
∫ ∞

0
F(ξ ) exp

[−(2α + iβq + iβr)ξ
]
dξ (q = 1, 2; r = 1, 2). (4.34)
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To evaluate the generalized integral using the numerical integration technique
(Chow and Smith 1981; Zhang and Zhao 1987), the following definition is intro-
duced:

β = βq + βr

2
(q = 1, 2; r = 1, 2). (4.35)

As a result, Eq. (4.34) can be evaluated using the numerical integration technique
described in Sect. 2.1.1.

To investigate the accuracy of the proposed two-dimensional six-node dynamic
infinite element, a coupled computational model of two-dimensional eight-node
finite elements and six-node dynamic infinite elements is used for simulating a wave
propagation problem in an elastic half-plane under a unit harmonic SV-wave ver-
tical incidence. Figure 4.2 shows the coupled computational model, in which the
near field of the half-plane is simulated using two-dimensional eight-node isopara-
metric finite elements, while the far field of the half-plane is simulated using two-
dimensional six-node dynamic infinite elements. The two bottom corners of the
computational model are simulated using two degenerated two-dimensional six-
node dynamic infinite elements, in which nodes 1, 2 and 3 are coincident. The hori-
zontal line (Y = 0) of infinite length is used as the wave-input boundary (Zhao et al.
1992; Zhao and Valliappan 1993a, b), which can be divided into two parts. The first
part is comprised of the horizontal interface (at Y = 0) between finite and dynamic
infinite elements, while the second part is comprised of the interfaces between two
normal dynamic infinite elements and two degenerated dynamic infinite elements.
A unit harmonic wave is considered to propagate vertically from the far field beneath
the wave input boundary into the near field of the computational model. For the pur-
pose of investigating the horizontal length effects of the first part of the wave-input
boundary on the accuracy of numerical results, three different lengths represented
by three different values of α (i.e. α = 2, 3 and 4 in Fig. 4.2) are considered in the
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Fig. 4.2 Computational model of eight-node finite and six-node infinite elements for a wave-
reflection problem in an elastic half-plane (α = 2, 3, 4): the near field is simulated using eight-node
finite elements, while the far field is simulated using six-node dynamic infinite elements
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corresponding computational models. Note that with an increase in the value of α,
the number of the two-dimensional eight-node finite elements is increased accord-
ingly, so that the critical element size requirement is satisfied.

Tables 4.1 and 4.2 show the distribution of displacement amplitudes along the
surface of the half-plane due to plane SV-wave vertical incidences with two different
frequencies. In these two tables, AU is the amplitude of the horizontal displacement;
δ1 is the relative error; and a0 is a dimensionless frequency with the following defi-
nition: a0 = ωR/(πCSV ), where ω and CSV are the circular frequency and velocity
of the incident SV-wave, respectively. Note that for a unit harmonic SV-wave verti-
cal incidence, the theoretical value for the amplitude of the horizontal displacement
on the surface of an elastic homogeneous half-plane is equal to 2 (Graff 1975; Zhao
et al. 1992).

As expected, the horizontal length of the first part of the wave-input boundary,
which is represented by the value of α, has a significant effect on the accuracy of
the numerical results. With the SV-wave vertical incidence and a0 = 0.5 taken as
an example, when α = 2, the maximum relative error can reach 19%, while for
α = 3 and α = 4, the corresponding maximum relative error can be reduced to 9.5
and 4%, respectively. This demonstrates that so long as the horizontal length of the
first part of the wave-input boundary is appropriate, accurate numerical results can
be obtained from the coupled computational model of two-dimensional eight-node
finite elements and six-node dynamic infinite elements.

For the SV-wave vertical incidence with a higher frequency, a0 = 1.0, for most
observation points represented by different values of x/R, the relative error increases
as α increases from 3 to 4. This implies that the wave-input method, which is used in
the coupled computational model of two-dimensional eight-node finite elements and
six-node dynamic infinite elements, is more suitable for simulating low-frequency
than high-frequency wave-propagation problems. Since the primary components of

Table 4.1 Distribution of displacement amplitudes along the half-plane surface (SV-wave vertical
incidence, a0 = 0.5)

α = 2 α = 3 α = 4

x/R AU δ1(%) AU δ1(%) AU δ1(%)

–1.5 1.62 19.0 1.88 6.0 2.04 2.0
–1.25 1.65 17.5 1.97 1.5 2.07 3.5
–1.0 1.67 16.5 2.05 2.5 2.08 4.0
–0.75 1.69 15.5 2.10 5.0 2.07 3.5
–0.5 1.71 14.5 2.12 6.0 2.06 3.0
–0.25 1.72 14.0 2.17 8.5 2.05 2.5

0.0 1.73 13.5 2.19 9.5 2.04 2.0
0.25 1.72 14.0 2.17 8.5 2.05 2.5
0.5 1.71 14.5 2.12 6.0 2.06 3.0
0.75 1.69 15.5 2.10 5.0 2.07 3.5
1.0 1.67 16.5 2.05 2.5 2.08 4.0
1.25 1.65 17.5 1.97 1.5 2.07 3.5
1.5 1.62 19.0 1.88 6.0 2.04 2.0
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Table 4.2 Distribution of displacement amplitudes along the half-plane surface (SV-wave vertical
incidence, a0 = 1.0)

α = 2 α = 3 α = 4

x/R AU δ1(%) AU δ1(%) Au δ1(%)

–1.5 1.77 11.5 2.08 4.0 1.98 1.0
–1.25 1.89 5.5 2.11 5.5 2.05 2.5
–1.0 1.98 1.0 2.10 5.0 2.10 5.0
–0.75 2.05 2.5 2.05 2.5 2.10 5.0
–0.5 2.10 5.0 1.99 0.5 2.08 4.0
–0.25 2.13 6.5 1.94 3.0 2.09 4.5

0.0 2.14 7.0 1.92 4.0 2.06 3.0
0.25 2.13 6.5 1.94 3.0 2.09 4.5
0.5 2.10 5.0 1.99 0.5 2.08 4.0
0.75 2.05 2.5 2.05 2.5 2.10 5.0
1.0 1.98 1.0 2.10 5.0 2.10 5.0
1.25 1.89 5.5 2.11 5.5 2.05 2.5
1.5 1.77 11.5 2.08 4.0 1.98 1.0

an earthquake incident wave in a rock foundation are within a low-frequency range,
the wave-input method (Zhao 1987; Zhang and Zhao 1988; Zhao et al. 1992) is
suitable for the seismic-response analysis of canyons and structures.

4.2 Effects of Canyon Topographical Conditions on the Ground
Motions due to Harmonic Wave Incidences

As natural canyon shapes are complicated and diversified, it is impossible to include
all possible canyon shapes in a study. For the sake of simplicity, two typical canyon
shapes, namely V-shaped canyons and trapezoidal canyons, are considered in this
study. By varying the following two canyon geometrical parameters, height H and
top width L, the effects of their topographical conditions on the ground motions due
to harmonic wave incidences can be investigated using the coupled computational
model of two-dimensional eight-node isoparametric finite elements and six-node
dynamic infinite elements (Zhao et al. 1992; Zhao and Valliappan 1993a, b).

4.2.1 Free-Field Motions along V-shaped Canyons due
to Harmonic Wave Incidences

In this subsection, a V-shaped canyon with three different ratios of the top width to
the height of the canyon, namely L /H=1, 3 and 5, is considered to investigate the
effects of the topographical conditions on the free-field motions due to harmonic
wave incidences. As shown in Fig. 4.3, the near field of the canyon is simulated
using two-dimensional eight-node isoparametric finite elements, while the far field
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Fig. 4.3 Computational model of a V-shaped canyon: the near field is simulated using eight-node
finite elements, while the far field is simulated using six-node dynamic infinite elements

of the canyon is simulated using two-dimensional six-node dynamic infinite ele-
ments. Since a displacement distribution pattern along the canyon can be used to
represent the free-field motion, a unit plane harmonic displacement SV-wave, which
has different frequencies and different incident angles, is used in the coupled compu-
tational model of two-dimensional eight-node isoparametric finite elements and six-
node dynamic infinite elements. By means of the wave-input method (Zhao 1987;
Zhao et al. 1992; Zhao and Valliappan 1993a, b), a horizontal line (i.e. Y = 0) in the
coupled computational model is used as the wave-input boundary, where the inci-
dent harmonic displacement SV-wave can be transformed into dynamic nodal loads
for the related finite and dynamic infinite elements using elastic wave theory (Graff
1975; Zhao 1987; Zhao et al. 1992). An angle between the normal of the front of
the incident plane harmonic SV-wave and a vertical line coincident with the y axis
of the coordinate system (in Fig. 4.3) is defined as the wave incident angle, θ , for
the coupled computational model. Thus, θ = 0o means that the plane harmonic SV-
wave is vertically propagating to the wave-input boundary, while a non-zero incident
angle (i.e. θ �= 0o) means that the plane harmonic SV-wave is obliquely propagat-
ing to the wave-input boundary. To examine the effects of wave incident angles
on the free-field motion along the canyon surface, two different incident angles,
namely θ = 0o and θ = 15o, are used in the corresponding coupled computational
model.

The following parameters are used: the height of the V-shaped canyon is 100 m;
the elastic modulus of the surrounding rock of the canyon is 24 × 109 Pa; the Pois-
son’s ratio of the surrounding rock is 1/3 and the density of the surrounding rock is
2400 kg m–3.

To investigate the effect of the incident SV-wave frequency on the free-field
motion along the surface of the V-shaped canyon, a dimensionless frequency a0
is defined as

a0 = ωH

πCSV
, (4.36)
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where ω is the circular frequency of the incident harmonic SV-wave; H is the height
of the V-shaped canyon; and CSV is the SV-wave velocity in the surrounding rock of
the canyon.

The numerical results for the free-field motion can be represented using the fol-
lowing expressions for the displacement amplitudes at surface nodal points of the
coupled computational model:

Au =
√

[Re(u)]2 + [Im(u)]2, (4.37)

Av =
√

[Re(v)]2 + [Im(v)]2, (4.38)

where Au and Av are the nodal displacement amplitudes in the x and y directions;
u and v are the corresponding displacements in the x and y directions, respectively;
Re and Im are the real part and imaginary part of the displacement.

Using the displacement amplitudes defined in Eqs. (4.37) and (4.38), not only
can the displacement distribution pattern along the canyon surface be described, but
also the amplification factor of the displacement can be expressed as a result of the
unit plane harmonic displacement SV-wave incidence.

Figure 4.4 shows the displacement amplitude distributions along the V-shaped
canyon due to harmonic plane SV-wave incidences with two different incident
angles. For the SV-wave vertical incidence (i.e. Fig. 4.4(A)), the symmetry of the
displacement distribution pattern along the canyon surface is maintained due to the
symmetric feature of the problem. Both the maximum value and the distribution
patterns of the displacement amplitudes along the canyon surface are different for
different ratios of the top width to the height of the V-shaped canyon (i.e. L /H). This
is especially so for the incident SV-wave with the higher frequency (i.e. a0 = 1.0).
This indicates that the canyon topographic condition can have a significant effect on
the free-field motion along the surface of a natural canyon.

For the SV-wave vertical incidence, the maximum value of the displacement
amplitude along the canyon surface can reach values above 3. This maximum value
occurs at the top (i.e. x /H = 0.5) of the most narrow canyon (i.e. L /H = 1). Even
though a vertical incident plane harmonic SV-wave is considered, both Au and Av

are not equal to zero due to wave-mode conversion and scattering on the surface
of the V-shaped canyon. This phenomenon is different from what is observed for a
plane harmonic SH-wave incidence (Zhang and Zhao 1988).

For an oblique incident SV-wave, the non-symmetry of the displacement distri-
bution pattern along the surface of the V-shaped canyon is displayed in Fig. 4.4(B).
The distribution pattern of the nodal displacement amplitude along the canyon sur-
face is clearly different for the three different ratios of the canyon top width to the
canyon height (i.e. L /H). For the plane harmonic SV-wave oblique incidence (i.e.
Fig. 4.4(B)), the shield effect of the V-shaped canyon is not obvious, compared with
what is observed from the plane harmonic SH-wave oblique incidence (Zhang and
Zhao 1988). This phenomenon can be attributed to the wave-mode conversion in
the case of plane harmonic SV-wave oblique incidence. Since the numerical results
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(A) θ = 0°

(B) θ = 15°

Fig. 4.4 Distributions of displacement amplitudes along V-shaped canyons due to the harmonic
SV-wave incidence: (A) θ = 0◦ ; (B) θ = 15◦

obtained from the coupled computational model due to the plane harmonic SV-wave
vertical incidence (i.e. Fig. 4.4(A)) are remarkably different from those due to the
plane harmonic SV-wave oblique incidence (i.e. Fig. 4.4(B)), it can be concluded
that wave incident angles have significant effects on the free-field motion along the
surface of a natural canyon.
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4.2.2 Free-Field Motions along Trapezoidal Canyons due
to Harmonic Wave Incidences

In this subsection, the coupled computational model of two-dimensional eight-node
isoparametric finite elements and six-node dynamic infinite elements is used to sim-
ulate wave propagation and scattering along a typical trapezoidal canyon. Figure 4.5
shows the discretized mesh. To represent the shape of the trapezoidal canyon, a new
parameter, L1, is introduced to express the bottom width of the canyon, so that a
ratio, L1/L, can be used as a canyon shape indicator. Two extreme values, namely
L1/L = 0 and L1/L = 1, can be used to represent a V-shaped canyon and a rectan-
gular canyon, respectively. By keeping the ratio of the canyon top width to canyon
height unchanged (i.e. L /H=3 in this subsection), three different values of L1/L,
namely L1/L = 0, 1/3 and 1, are considered in the coupled computational model
of two-dimensional eight-node isoparametric finite elements and six-node dynamic
infinite elements. The selection of the wave-input boundary and parameters of the
surrounding rock for the computational model used in this subsection is exactly the
same as that in Sect. 4.2.1. The unit plane harmonic displacement waves with dif-
ferent wave types, different frequencies and different incident angles are considered
as input waves for the coupled computational model of two-dimensional eight-node
isoparametric finite elements and six-node dynamic infinite elements.

Figure 4.6 shows the displacement amplitude distributions along a V-shaped
canyon (L1/L = 0), a trapezoidal canyon (L1/L = 1/3) and a rectangular canyon
(L1/L = 1) due to unit plane harmonic (displacement) SV-wave and P-wave verti-
cal incidences with two different frequencies. Note that both SV-wave and P-wave
oblique incidences were also considered previously (Zhao and Valliappan 1993a, b).
For a trapezoidal canyon, the canyon shape can affect the distribution pattern
of displacement amplitudes along the canyon surface dramatically, especially for
the rectangular canyon. Compared with both the V-shaped canyon and the trape-
zoidal canyon (with L1/L = 1/3), the rectangular canyon results in a different

Fig. 4.5 Computational model for a typical trapezoidal canyon: the near field is simulated using
eight-node finite elements, while the far field is simulated using six-node dynamic infinite elements
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(A) Harmonic SV-wave vertical incidence

(B) Harmonic P-wave vertical incidence

Fig. 4.6 Distributions of displacement amplitudes along differently shaped canyons due to the
harmonic SV-wave and P-wave vertical incidences (θ = 0◦): (A) harmonic SV-wave vertical inci-
dence; (B) harmonic P-wave vertical incidence

distribution pattern of the free-field motion due to the abrupt change in the shape
of the canyon bank.

The maximum value of the displacement amplitude along the canyon surface,
which can reach 5 (in Fig. 4.6(A)) for the plane harmonic (displacement) SV-wave



4.3 Effects of Canyon Geological Conditions on Ground Motions 101

vertical incidence and 3.4 (in Fig. 4.6(B)) for the plane harmonic (displacement)
P-wave vertical incidence, is observed at the top corners of the rectangular canyon.
This indicates that a rectangular canyon can result in a greater amplification effect
of the ground motion than either a V-shaped canyon or a trapezoidal canyon. As
a rapid change in the shape of the canyon bank can induce an extreme value for
the free-field motion along the canyon surface, it should carefully be considered in
the seismic analysis of structures. Note that the V-shaped and trapezoidal canyons
result, roughly, in a similar overall trend of the ground motion, although some differ-
ences may exist between the maximum displacement amplitude along the V-shaped
canyon and that along the trapezoidal canyon. The symmetry and asymmetry of the
distribution of the free-field motion along the canyon surface can be clearly observed
for vertical and oblique incident waves. Since the canyon shape indicator, L1/L, and
the ratio of the canyon top width to height, L /H, of a natural canyon are basically
within the range studied in this subsection, the above results likely provide a realistic
insight into and an understanding of how topographical conditions affect the free-
field motions. However, the fact that different amplification effects exist for different
canyon shapes suggested that two-dimensional computational models may not be
appropriate for some natural canyons, where topographical irregularities along the
longitudinal directions of canyons are significant. In this case, three-dimensional
models are needed to simulate the dynamic behaviour of three-dimensional wave-
scattering problems.

4.3 Effects of Canyon Geological Conditions on Ground Motions
due to Harmonic Wave Incidences

In the real world, not only can the shapes of natural canyons be diversified and
variable, but also the geological conditions of natural canyons are changeable. On
the surface of a natural canyon, some alluvial or pluvial materials and weathered
rocks can exist. The existence of such soft materials may affect the free-field motion
along the surface of the natural canyon. The main purpose of this subsection is to
investigate the effects of a weathered rock stratum on the free-field motion along the
surface of the canyon, rather than to conduct a general discussion on the effects of
geological conditions in a broader sense.

As shown in Fig. 4.7, a weathered V-shaped canyon, which has a height of 100 m
(i.e. H = 100 m) and a top-width-to-height ratio of 3 (i.e. L /H = 3), is simulated
by the coupled computational model of two-dimensional eight-node isoparametric
finite elements and six-node dynamic infinite elements. The shaded area in this fig-
ure is the weathered rock stratum with a thickness of 20 m. The ratio of the elastic
modulus of the normal (fresh) rock to that of the weathered rock, En/Ew, can be
used to express the softness of the weathered rock stratum.

The following parameters are used for the coupled computational model: the
elastic modulus of the normal rock (En) is 24 × 109 Pa; Poisson’s ratio is 1/3 for
both the normal rock and the weathered rock; the density of both the normal rock
and the weathered rock is 2400 kg m–3. A unit plane harmonic displacement wave
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Fig. 4.7 Computational model for a weathered V-shaped canyon: the near field is simulated using
eight-node finite elements, while the far field is simulated using six-node dynamic infinite ele-
ments; stations 1 and 5 are used as two observation stations in this chapter

with different wave types, different frequencies and different incident angles is used
as the input wave for the coupled computational model of eight-node isoparamet-
ric finite elements and six-node two-dimensional dynamic infinite elements. The
wave-input method used for the coupled computational model in this subsection is
exactly the same as that in Sect. 4.2. To investigate the effects of the weathered rock
stratum on the free-field motion along the canyon surface, four different values for
En/Ew, namely En/Ew = 1, 5, 10 and 20, are used in the corresponding coupled
computational model. Note that En/Ew = 1 means that the surrounding rock of the
canyon is homogeneous, so that the numerical results obtained for this particular
case can be used as a basis for comparison with those obtained for other weather
rock cases.

Figure 4.8 shows the displacement amplitude distributions along the weathered
canyon surface due to unit plane harmonic SV-wave and P-wave incidences. These
numerical results clearly indicate that the existence of the weathered rock stratum
has a significant influence on the free-field motion along the weathered canyon sur-
face. Generally, the softer the weathered rock stratum, the greater the displacement
amplitude of the free-field motion along the weathered canyon surface. For most
weathered rock stratum cases, the maximum value of the free-field motion takes
place at the upper part of the canyon bank surface. This phenomenon is different
from what is observed in the case of homogeneous rock (En/Ew = 1), where the
maximum value of the free-field motion usually occurs at the top corners of the
canyon bank.

Both the frequency and the angle of incident waves can also affect the displace-
ment amplitude distributions of the free-field motion along the weathered canyon
surface. For the lower frequency (a0 = 0.5), the displacement amplification dis-
tribution on each bank of the weathered canyon surface (i.e. −1.5 < x/H < 0 or
0 < x/H < 1.5) has only one peak, while for the higher frequency (a0 = 1.0), it has
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(A) Harmonic SV-wave vertical incidence

(B) Harmonic P-wave vertical incidence

Fig. 4.8 Distributions of displacement amplitudes along weathered V-shaped canyons due to the
harmonic SV-wave and P-wave vertical incidences (θ = 0◦): (A) harmonic SV-wave vertical inci-
dence; (B) harmonic P-wave vertical incidence

two peaks, indicating that the frequency of an incident wave has a remarkable effect
on the free-field motion along a weathered canyon surface. For the two frequen-
cies used, the maximum value of the displacement amplitude along the weathered
canyon surface can reach about 7.3 and 9.2 for the unit harmonic SV-wave inci-
dence (in Fig. 4.8(A)) and the unit harmonic P-wave incidence (in Fig. 4.8(B)),
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respectively. This demonstrates that the incident wave type can significantly affect
the free-field motion along the weathered canyon surface. Note that for a homo-
geneous canyon (En/Ew = 1), the maximum value of the displacement amplitude
along the canyon surface is just 2.8 for both the unit harmonic SV-wave incidence
(in Fig. 4.8(A)) and the unit harmonic P-wave incidence (in Fig. 4.8(B)). Since the
maximum value of the displacement amplitude along a weathered canyon surface
is significantly different from that along an un-weathered canyon surface, it is con-
cluded that the geological condition of a natural canyon can have remarkable effects
on the free-field motion along the surface of the natural canyon. Thus, an engineer-
ing treatment, such as the removal of weathered rocks by excavation or the cement
grouting on the abutment of an arch dam or a large span bridge, is not only nec-
essary for the static stability of the structure under static loads, but also beneficial
to the earthquake resistance of the structure as a result of a much weaker free-field
motion on sound rock abutments.

A further study is carried out to examine the characteristics of the complex
frequency response along the weathered V-shaped canyon due to unit plane har-
monic (displacement) SV-wave and P-wave incidences. Figure 4.9 shows the dis-
tributions of the complex response functions at different stations on the weathered
V-shaped canyon surface. For a homogeneous canyon (En/Ew = 1), there is little
repeated wave reflection occurring near the canyon surface, so that no consider-
able resonant frequency appears in the complex frequency response curve of the
homogeneous canyon. When the incident wave arrives at the homogeneous canyon
surface, it reflects and scatters due to the free surface condition of the homogeneous
canyon. The resulting reflected and scattered waves are then propagating from the
homogeneous canyon surface into the far field of the homogeneous canyon through
two-dimensional eight-node finite elements and six-node dynamic infinite elements
used in the coupled computational model. This fact demonstrates that the two-
dimensional six-node dynamic infinite element is capable of propagating waves in
an appropriate manner. For the weathered canyon, resonance takes place as a result
of the come-and-go reflection effect of the wave within the weathered rock stratum.
The resonant phenomenon is very obvious for the softer weathered rock stratum
(En/Ew = 20).

The curves of the complex frequency response functions are different at dif-
ferent observation stations along the weathered canyon surface, implying that dif-
ferent parts of a dam–canyon interface may undergo different earthquake motions
due to the wave-scattering effect along the canyon surface. These curves depend
on the incident wave type, the incident angle and the ratio of the elastic mod-
ulus of the normal (fresh) rock to that of the weathered rock, En/Ew. Since an
arch dam is a highly static indeterminate structure, a displacement difference in the
free-field motion along the dam–canyon interface can result in remarkable stresses
within the dam. Therefore, from a seismic design point of view, both phase and
amplitude differences in the free-field motion along an arch dam–canyon inter-
face should be considered in the computational model of the arch dam system.
To reduce the dynamic stress level within an arch dam, it is necessary to take
some measures for strengthening the weathered rock along the surface of a natural
canyon.



4.4 Effects of Canyon Topographical Conditions on Ground Motions 105

(A) Station 1

(B) Station 4

Fig. 4.9 Distributions of complex response functions along weathered V-shaped canyons: (A)
Station 1; (B) Station 4. The locations of these two stations are shown in Fig. 4.7

4.4 Effects of Canyon Topographical Conditions on Ground
Motions due to Seismic Wave Incidences

To compare the numerical results obtained in this section with those obtained in
Sect. 4.3, the same consideration of canyon shapes and computational models as
that in Sect. 4.3 is adopted. For this reason, two typical canyon shapes, namely a
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V-shaped canyon and a trapezoidal canyon, are used to represent approximately the
geometrical aspects of natural canyons. By changing both the height and top width
of a canyon, the effects of topographical conditions on the free-field motion due to
seismic wave incidences can be investigated.

4.4.1 Free-Field Motions along V-shaped Canyons due
to Seismic Wave Incidences

The same coupled computational model for a typical V-shaped canyon, as shown
in Fig. 4.3, is used here to investigate the effect of canyon shape on the free-field
motion along the canyon surface due to seismic wave incidences. Three different
top width to height ratios of the canyon, namely L /H =1, 3 and 5, are considered
in the corresponding coupled computational model of two-dimensional eight-node
isoparametric finite elements and six-node dynamic infinite elements. Under the
assumption of either a plane seismic SV-wave or a plane seismic P-wave propagat-
ing vertically from the far field to the near field of the canyon, a horizontal line (i.e.
Y = 0 in Fig. 4.3) is used as the wave-input boundary within the coupled computa-
tional model (Zhao 1987; Zhao et al. 1992; Zhao and Valliappan 1993a, b).

For the purpose of investigating the effects of topographical and geological con-
ditions on the free-field motions along the canyon surfaces, one could select an
arbitrary earthquake motion as the input seismic wave. We shall use the accelera-
tion time history of an S25W component of the Parkfield, California earthquake as
the input seismic wave for investigating the effects of topographical and geologi-
cal conditions on the free-field motions along the canyon surfaces. This earthquake
took place on 27 June 1966, and the peak value of the S25W acceleration compo-
nent was –3.408 m s–2. For convenience of conducting the seismic analysis, this
acceleration time history is normalized by dividing the acceleration by the absolute
value of the peak magnitude, 3.408, resulting in a unit earthquake acceleration wave.
This wave has the same frequency characteristics as the original one. Note that this
wave has been used to investigate the effects of reservoir bottom sediments on the
transient seismic response of a concrete gravity dam–water–foundation system in
Chap. 3, where both the seismic analysis methodology and the seismic wave selec-
tion principles are discussed in detail. Figure 3.13 shows the acceleration, Fourier
spectrum and acceleration response spectrum of the selected unit earthquake accel-
eration wave. In this figure, a is the acceleration; F-S is the Fourier spectrum; ξ is
the damping ratio of a one-degree-of-freedom dynamic system; Sa is the accelera-
tion spectrum.

Similar to Sect. 4.2.1, the following parameters are used in the coupled computa-
tional model: the height of the V-shaped canyon is 100 m; the elastic modulus of the
surrounding rock of the canyon is 24×109 Pa; the Poisson’s ratio of the surrounding
rock is 1/3; the density of the surrounding rock is 2400 kg m–3.

Figure 4.10 shows the earthquake accelerogram and the corresponding response
spectrum at two different observation stations (i.e. stations 1 and 5 shown in Fig. 4.7)
along the canyon surface due to the plane seismic SV-wave incidence. In these
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(A) Station 1

(B) Station 5

Fig. 4.10 Distributions of acceleration time-history and response spectrum along V-shaped
canyons (seismic SV-wave vertical incidence): (A) Station 1; (B) Station 5. The locations of these
two stations are shown in Fig. 4.7
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figures, au and av are the horizontal and vertical components of the ground accel-
eration; Sau and Sav are the acceleration response spectra corresponding to au

and av, respectively. Although the input wave motion on the wave-input bound-
ary is only in the horizontal direction under the assumption of the plane seismic
SV-wave incidence, the vertical acceleration (av) at station 1 (in Fig. 4.10(A)) is
not equal to zero as a result of wave-mode conversion on the canyon surface.
As expected, the vertical acceleration (av) at station 5 (in Fig. 4.10(B)) is equal
to zero due to the symmetric feature of the V-shaped canyon. This phenomenon
is also observed in plane harmonic SV-wave incidences (Zhao and Valliappan
1993a, b).

The peak values of the horizontal acceleration component (au) on the upper sec-
tion of the canyon at station 1 (in Fig. 4.10(A)) approaches –2 m s–2 for all the
three V-shaped canyons with different top–width-to-height ratios, indicating that
the acceleration-amplification factor at this part of the canyon is about 2 because the
peak value of the incident wave applied to the wave-input boundary is –1 m s–2. At
the lower section of the canyon at station 5 (in Fig. 4.10(B)), the peak value of the
horizontal acceleration component is obviously different for all the three V-shaped
canyons with different top-width-to-height ratios. In this case, the peak value of the
horizontal acceleration component has a peak value of –1.85 m s–2 when the top-
width–to-height ratio of the canyon is equal to 5 (i.e. L /H=5), while it has a peak
value of –0.98 m s–2 and –1.22 m s–2 when the top-width-to-height ratios of the
canyon are equal to 1 and 3, respectively. This clearly demonstrates that under plane
seismic SV-wave incidences, the top-width-to-height ratio (L /H) of a canyon can
affect the free-field motion along the canyon surface.

Compared with a plane harmonic SV-wave incidence, a plane seismic SV-wave
incidence can result in a smaller amplification factor to the free-field motion along
the canyon surface due to the average self-healing effect caused by a series of dif-
ferent harmonic waves arising from an incident earthquake wave. The frequency
distribution characteristics of the free-field motion along the canyon surface can be
investigated from the numerical results (shown in Figs. 4.10(A) and 4.10(B)). For
the horizontal acceleration component of the free-field motion along the canyon sur-
face, the distribution curves of the response spectrum (Sau ) at the lower part of the
canyon (i.e. station 5 in Fig. 4.10(B)) have similar shapes to those of the incident
seismic SV-wave. At the upper part of the canyon (i.e. station 1 in Fig. 4.10(A)),
the higher frequency component becomes stronger, so that there is a slight differ-
ence between the response spectrum (Sau) of the free-field motion along the canyon
surface and that of the incident seismic SV-wave.

Although a vertical acceleration component (av) appears at the free-field motion
along the upper part of the canyon surface due to the plane seismic SV-wave inci-
dence, the peak value of this vertical acceleration component is much smaller
than that of the corresponding horizontal acceleration component (au). The high-
frequency component of the vertical acceleration component (av) for a narrow
canyon (L /H = 1) is more obvious than that for a broader canyon (L /H = 5).
Evidently, canyon shapes have significant effects on the frequency components of
free-field motions along canyon surfaces.
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Under the plane seismic P-wave vertical incidence, the overall trends of the hor-
izontal and vertical acceleration components, au and av, are different from those
under plane seismic SV-wave vertical incidence. Figure 4.11 shows the earthquake
accelerogram and the corresponding response spectrum at two different observation
stations (i.e. stations 1 and 5 shown in Fig. 4.7) along the canyon surface due to
the plane seismic P-wave incidence. In this situation, the vertical acceleration com-
ponent (av) is much greater than the horizontal acceleration component (au). The
peak value of the vertical acceleration component reaches –3 m s–2 for L /H = 5 at
station 1 (in Fig. 4.11(A)), which is greater than that for either L /H = 1 or 3. This
indicates that both different canyon shapes and incident seismic wave types have
different amplification effects on free-field motions along canyon surfaces. Since
the amplification factor of a canyon depends on both the canyon shape and the inci-
dent seismic wave, the maximum amplification factor of a canyon can take place
when the canyon and the incident seismic wave have the same predominant fre-
quency. This phenomenon can be observed from the numerical results obtained for
L /H = 5 due to the plane seismic P-wave incidence. In this situation, the maximum
values of the vertical acceleration response spectrum (Sav) can reach 6 and 3 m s–2

for ξ = 0.05 and 0.2 respectively.
By comparing the numerical results obtained from the consideration of the plane

seismic SV-wave incidence (i.e. Fig. 4.10(A), (B)) with those of the plane seismic
P-wave incidence (i.e. Fig. 4.11(A), (B)), it can be concluded that the wave-mode
conversion effect is more obvious when the plane seismic P-wave incidence is
considered in the coupled computational model of two-dimensional eight-node
isoparametric finite elements and six-node dynamic infinite elements. The peak
value of the horizontal acceleration component (au) due to the plane seismic
P-wave incidence is greater than that of the vertical acceleration component (av)
due to the plane seismic SV-wave incidence, especially for the narrow canyon
(L/H = 1).

As expected, the horizontal acceleration component (au) due to the plane seismic
P-wave vertical incidence vanishes at station 5 (in Fig. 4.11(B)) because of the sym-
metry of the V-shaped canyon. Although different amplification effects exist in the
upper part of the canyon at station 1 (in Fig. 4.11(A)) for three different values of the
top-width-to-height ratio of the canyon (L /H), similar distribution patterns of the
free-field motion in the lower part of the canyon at station 5 (in Fig. 4.11(B)) occur
for all three values of the top-width-to-height ratio of the canyon. This indicates
that different parts of a canyon have different amplification effects on the incident
seismic waves, even though the canyon is of regular V shape.

4.4.2 Free-Field Motions along Trapezoidal Canyons due
to Seismic Wave Incidences

The same coupled computational model for a typical trapezoidal canyon as
shown in Fig. 4.5 is used to investigate the effect of topographical conditions on
the free-field motion along the canyon surface due to seismic wave incidences.
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(A) Station 1

(B) Station 5

Fig. 4.11 Distributions of acceleration time-history and response spectrum along V-shaped
canyons (seismic P-wave vertical incidence) (A) Station 1; (B) Station 5. The locations of these
two stations are shown in Fig. 4.7
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The same parameters as those used in Sect. 4.2.2 are used in this subsection.
The only difference between this subsection and Sect. 4.2.2 is that in the lat-
ter, plane harmonic wave incidences are considered in the coupled computational
model, while in the former, plane seismic wave incidences are considered. The
same incident plane seismic wave as that used in Sect. 4.4.1 is used in this
subsection.

Figure 4.12 shows the canyon surface earthquake accelerogram and the corre-
sponding response spectrum at two different observation stations (i.e. stations 1 and
5 shown in Fig. 4.7) for a V-shaped canyon (i.e. L1 /L = 0), a trapeqoidal canyon
(i.e. L1 /L = 1 /3) and a rectangular canyon (i.e. L1L = 1) due to the unit plane
seismic SV-wave indidence. For the trapezoidal and V-shaped canyons, similar time-
histories of the horizontal acceleration component (at a given observation station)
can be observed from these numerical results. The peak value of the vertical accel-
eration component is small for either a trapezodial canyon or a V-shaped canyon.
Although a similar trend exists for the distribution pattern of the horizontal acceler-
ation component (au) at the same observation station along the surfaces of the three
different canyons, the wave mode conversion effect is more conspicuous when the
rectangular canyon is considered. This phenomenon is also observed for a plane
harmonic SV-wave incidence (Zhao and Valliappan 1993a, b).

An abrupt change in the slope of a canyon bank can result in a stronger wave-
mode conversion effect. For example, at the top of the rectangular canyon (i.e.
station 1 in Fig. 4.12(A)), the peak value of the vertical acceleration component
(av) can reach –1.38 m s–2, while the peak value of the horizontal acceleration
component (au) is –1.81 m s–2. The wave-mode conversion effect is different for
different observation stations along the canyon surface. This indicates that for a
structure built on the top of a steeper canyon bank, not only a stronger horizon-
tal acceleration component but also a stronger vertical acceleration component
should be considered in the seismic design of the structure, irrespective of the
fact that a vertical incident seismic SV-wave has only a horizontal acceleration
component.

For a similar observation station, located on the surface of the three different
canyons, the frequency component distribution of the horizontal acceleration com-
ponent is different, as can be seen from the corresponding response spectrum shown
in Fig. 4.12(A), (B). As expected, the vertical acceleration component vanishes at
station 5 (in Fig. 4.12(B)) due to both the symmetric feature of the canyon and the
vertical incidence of the seismic wave.

For the plane seismic P-wave vertical incidence, the rectangular canyon results in
different distribution patterns for the acceleration time-history and the correspond-
ing response spectrum at the two observation stations on the canyon surface, when
compared with the trapezoidal and V-shaped canyons. Figure 4.13 shows the canyon
surface accelerogram and the corresponding response spectrum (at the two obser-
vation stations) for the three canyons of different shapes due to the plane seismic
P-wave vertical incidence. Clearly, the rectangular canyon results in the strongest
acceleration response among the three different canyons, especially at the upper
part of the rectangular canyon (i.e. station 1 in Fig. 4.13(A)). The peak value of the
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(A) Station 1

(B) Station 5

Fig. 4.12 Distributions of acceleration time-history and response spectrum due to different canyon
shapes (seismic SV-wave vertical incidence): (A) Station 1; (B) Station 5. The locations of these
two stations are shown in Fig. 4.7
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(A) Station 1

(B) Station 5

Fig. 4.13 Distributions of acceleration time-history and response spectrum due to different canyon
shapes (seismic P-wave vertical incidence): (A) Station 1; (B) Station 5. The locations of these two
stations are shown in Fig. 4.7
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vertical acceleration component (av) is –3.2 m s–2 for the rectangular canyon, while
for the trapezoidal and V-shaped canyons, the peak values of the vertical accelera-
tion components are –2.1 m s–2 and –2 m s–2, respectively. This indicates that for
a given vertical incident seismic P-wave, the rectangular canyon results in a higher
amplification factor for the free-field motion on the canyon surface than the trape-
zoidal and V-shaped canyons, although the amplification factor varies at different
observation stations on the canyon surface.

For the seismic P-wave vertical incidence, the free-field motion at the top of a
canyon is stronger than that at the bottom of the canyon. The maximum value of
the vertical acceleration response spectrum (Sav) can reach 12 ms−2 for the rectan-
gular canyon (Fig. 4.13(A)), while the maximum values of the horizontal accelera-
tion response spectrum (Sau) are 4.5 and 4.4 ms−2 for the trapezoidal and V-shaped
canyons, respectively. This implies that a structure located near the top corner of a
rectangular canyon is subjected to stronger ground motion during an earthquake. For
the trapezoidal and V-shaped canyons, similar acceleration time-history curves and
the corresponding response spectrum curves are obtained from the corresponding
computational models.

Although the incident seismic P-wave has only a vertical acceleration compo-
nent on the wave-input boundary in the computational model, the resulting hori-
zontal acceleration component of the free-field motion on the canyon surface is not
equal to zero (in Fig. 4.13(A)) due to the wave-mode conversion effect. Compared
with the plane seismic SV-wave vertical incidence, the plane seismic P-wave ver-
tical incidence can result in a little weaker wave-mode conversion effect for the
rectangular canyon. This demonstrates that the canyon amplification to an incident
seismic wave depends also on the incident wave type. Since one type of incident
seismic wave can excite another type of seismic wave on the canyon surface, hor-
izontal and vertical acceleration components of the free-field motion always exist
simultaneously on the canyon surface during a natural earthquake. This implies that
for the safe seismic design of either a large arch dam or a large bridge, both the
horizontal and the vertical components of an earthquake should be considered at the
same time.

In summary, the shape of a canyon may have a significant effect on the free-field
motion along the canyon surface during earthquake wave incidences. The amplifi-
cation effect of a canyon mainly depends on the location of an observation station
on the surface of the canyon, the incident angle of a seismic wave and the mag-
nitude and type of an incident seismic wave. Compared with an incident seismic
wave, the frequency components of the free-field motion on the surface of a canyon
are considerably different as a result of wave reflection and scattering on the sur-
face of the canyon. A canyon can result in the strongest free-field motion when the
predominant frequency of the canyon coincides with that of the incident earthquake
wave. Both horizontal and vertical components of the free-field motion are simul-
taneously excited on the surface of a canyon, although a vertical incident seismic
wave has only one vertical or horizontal component, depending on the type of the
vertical incident seismic wave. In comparison with harmonic wave incidences (Zhao
and Valliappan 1993a, b), the amplification of a canyon to an incident seismic wave
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is a little smaller because of an averaged self-healing effect arising from a series
of harmonic waves in the incident seismic wave. Generally, the amplification factor
at the top of a canyon is greater than that at the bottom of the canyon during an
earthquake event. A steeper canyon bank can result in stronger wave-mode conver-
sion, and hence the slope of the canyon bank should be considered carefully for the
seismic design of a structure.

4.5 Effects of Canyon Geological Conditions on Ground Motions
due to Seismic Wave Incidences

This section is an extension of Sect. 4.3, in which the effects of canyon geological
conditions on the ground motions due to harmonic wave incidences are investigated
using the coupled computational model of two-dimensional eight-node isopara-
metric finite elements and six-node dynamic infinite elements. The same parame-
ters, computational models and wave input methods as those used in Sect. 4.3 are
employed in this section. The only difference between this section and Sect. 4.3
is that in Sect. 4.3, plane harmonic waves are considered as incident waves in the
computational model, while in this section, plane seismic waves are used as inci-
dent waves in the computational model of two-dimensional eight-node isoparamet-
ric finite elements and six-node dynamic infinite elements. The same incident plane
seismic wave as that used in Sect. 4.4.1 is used here.

Figure 4.14 shows the canyon surface earthquake accelerogram and the corre-
sponding response spectrum at two observation stations for three different weath-
ered stratum cases due to plane seismic SV-wave vertical incidence. In this figure,
the ratio of the elastic modulus of the normal (fresh) rock to that of the weath-
ered rock, En /Ew, is used to express the softness of the weathered stratum. These
results clearly indicate that the weathered rock stratum of the canyon has a sig-
nificant influence on the free-field motion along the canyon surface. For a given
incident seismic wave, the softer the weathered rock stratum is, the stronger will
be the free-field motion along the canyon surface. With station 1 (in Fig. 4.14(A))
taken as an example, the peak value of the horizontal acceleration component (au)
is –2.55, –2.25 and –1.6 m s–2 for En/Ew = 20, 10 and 1, respectively. This indi-
cates that since a unit plane seismic wave is used in the coupled computational
model, the amplification factor of the canyon to the incident seismic wave can reach
2.55 when En/Ew = 20. The strongest free-field motion takes place in the upper
part of the canyon, as can be seen from the numerical results shown at station 1 in
Fig. 4.14(A). The similar phenomenon is also observed in the numerical results of
Sect. 4.3, where a unit plane harmonic wave is considered as the incident wave for
the coupled computational model.

Compared with the horizontal acceleration component (au) due to the plane
seismic SV-wave vertical incidence, the vertical acceleration component (av) is a
little smaller, but is still worth considering for a softer weathered rock stratum
(i.e. En/Ew = 20). The response spectra of the free-field motion at station 1 (in
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(A) Station 1

(B) Station 5

Fig. 4.14 Distributions of acceleration time-history and response spectrum due to different weath-
ered strata (seismic SV-wave vertical incidence): (A) Station 1; (B) Station 5. The locations of these
two stations are shown in Fig. 4.7
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(A) Station 1

(B) Station 5

Fig. 4.15 Distributions of acceleration time-history and response spectrum due to different weath-
ered strata (seismic P-wave vertical incidence): (A) Station 1; (B) Station 5. The locations of these
two stations are shown in Fig. 4.7
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Fig. 4.14(A)) are similar to those of the incident seismic SV-wave for a homoge-
neous rock canyon (i.e. En/Ew = 1) but are different for the weathered rock stratum
on the surface of the fresh rock of the canyon. For station 5 shown in Fig. 4.14(B),
the earthquake accelerogram and the corresponding response spectrum are almost
the same for all three values of En/Ew. As expected, the vertical acceleration com-
ponent remains zero at station 5 as a result of both the canyon symmetry and the
vertical incident seismic SV-wave. Compared with a plane harmonic SV-wave inci-
dence, a plane seismic SV-wave incidence can result in a smaller amplification fac-
tor to the free-field motion along the weathered canyon surface due to the average
self-healing effect caused by a series of different harmonic waves arising from the
incident seismic SV-wave.

To investigate the effect of the incident seismic wave type on the free-field motion
along the weathered canyon surface, a unit vertically incident seismic P-wave, which
has the same acceleration time-history as that used for the unit vertically incident
seismic SV-wave, is used in the coupled computational model. Figure 4.15 shows
the canyon surface earthquake accelerogram and the corresponding response spec-
trum at two observation stations for the three different weathered stratum cases due
to the plane seismic P-wave vertical incidence. The wave mode conversion effect of
the weathered canyon due to the plane seismic P-wave vertical incidence is stronger
than that due to the plane seismic SV-wave vertical incidence. The softer the weath-
ered rock stratum of a canyon, the stronger the wave mode conversion of the canyon.
The peak values of the horizontal and vertical acceleration components (au and av)
are almost the same at station 1 in Fig. 4.15(A), while the peak value of the horizon-
tal acceleration component is even greater than that of the vertical acceleration com-
ponent at station 3, which is located at the middle of the weathered canyon surface.
This indicates that the wave-mode conversion effect depends not only on the inci-
dent seismic wave type and the weathered stratum material on the fresh rock surface
of the canyon, but also on the location of an observation station along the weathered
canyon surface. For the seismic P-wave vertical incidence and En/Ew = 10 (in Fig.
4.15(A)), the maximum amplification factor of the weathered canyon to the incident
seismic P-wave is about 3, which is equivalent to the value obtained for the seismic
SV-wave vertical incidence and En/Ew = 20 (in Fig. 4.13(A)). For all three val-
ues of the softness of the weathered stratum (En/Ew) under consideration, similar
results for the free-field acceleration and the corresponding response spectrum are
obtained at station 5 in Fig. 4.15(B), indicating that the value of En/Ew has little
effect on the free-field motion at station 5 during an earthquake event.

In summary, the geological conditions of a canyon can significantly affect the
free-field motion along the canyon surface during earthquakes. Both the peak value
and the frequency component of the free-field motion along the surface of a nat-
ural canyon mainly depend on the softness of the weathered stratum (En/Ew), the
location of an observation station along the canyon surface and the incident seismic
wave. The softer the weathered rock stratum of a canyon, the greater the amplifica-
tion of the canyon to an incident seismic wave. A softer weathered stratum on the
surface of a canyon can result in a stronger wave-mode conversion effect, especially
for seismic P-wave vertical incidences.



Chapter 5
Theory of Three-Dimensional Dynamic Infinite
Elements for Simulating Wave Propagation
Problems in Infinite Media

Numerical simulation of infinite media is an important topic in dynamic soil–
structure interaction problems. This topic arose from numerous practical problems,
such as numerical simulation of building structural foundations, offshore structural
foundations, dam foundations, nuclear power station foundations, just to name a
few. The study of this topic becomes more important when the structure is large and
the effects of earthquake waves are considered. Owing to the importance of dynamic
soil–structure interaction effects, a large amount of research has been carried out in
the past few decades (Elorduy et al. 1967; Lysmer and Kuhlemyer 1969; Kausel
1974; Zienkiewicz and Bettess 1975; Wong and Luco 1976; White et al. 1977;
Cundall et al. 1978; Chow and Smith 1981; Hamidzadeh-Eraghi and Grootenhuis
1981; Medina and Taylor 1983; Liao et al. 1984; Wolf 1985, 1988; Zhao et al. 1987,
1989; Zhang and Zhao 1987; Zhao and Liu 2002, 2003). The general methodology
of dealing with a dynamic soil–structure interaction problem is to divide the whole
infinite foundation of the problem into a near field, which is comprised of a limited
region of the infinite foundation, and a far field, which is comprised of the remain-
ing part of the infinite foundation. As the near field is usually simulated by using the
finite element method, both the geometrical irregularity and the non-homogeneity
of an infinite foundation can be considered to determine the boundary of the near
field. Since the far field is usually simplified as an isotropic, homogeneous, elastic
medium, its effect on the near field can be represented either by some special arti-
ficial boundaries (Lysmer and Kuhlemyer 1969; Kausel 1974; White et al. 1977;
Cundall et al. 1978; Liao et al. 1984; Zhao and Liu 2002, 2003) or by some special
elements (Ungless 1973; Zienkiewicz and Bettess 1975; Bettess 1977, 1980; Chow
and Smith 1981; Medina and Taylor 1983; Zhao et al. 1987, 1989). Through apply-
ing these special artificial boundaries or elements on the interface between the near
field and the far field, the effect of the far field on the near field can be considered
in the corresponding computational models.

From the wave-propagation point of view, there are two typical kinds of prob-
lems: a kind of wave radiation problem and a kind of wave scattering problem. For
a wave radiation problem, the vibration source of the problem is located within the
interior region of the near field, while for a wave scattering problem, the vibra-
tion source of the problem is located within the exterior region of the near field.

119C. Zhao, Dynamic and Transient Infinite Elements, Advances in Geophysical and
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The artificial boundary technique works well for dealing with wave radiation prob-
lems in infinite foundations, but it often fails in solving wave scattering problems
in infinite foundations. Since the seismic analysis of a structure can be treated as a
wave scattering problem, it is very difficult, if not impossible, to use the artificial
boundary technique for solving dynamic soil–structure interaction problems, where
earthquake waves are coming from the far fields of structural foundations. In such
a case, the use of special elements such as dynamic infinite elements and bound-
ary elements is a potential way for dealing with dynamic soil–structure interaction
problems under earthquake loadings. Although the boundary element method is an
efficient way to simulate wave scattering problems in a homogeneous medium due
to a significant reduction in the total number of degrees-of-freedom of the system,
the dynamic infinite element method is more suitable for simulating wave scattering
problems in a non-homogeneous medium due to the banded and symmetrical nature
of the resulting global mass and stiffness matrices of the system. On the other hand,
for large structures such as arch dams, especially for double-curvature arch dams
with smaller thicknesses and complicated configurations, a few finite elements are
usually enough to simulate the thickness of a double-curvature arch dam so that
the total number of degrees-of-freedom of the double-curvature arch dam cannot
be greatly reduced when it is simulated using the boundary element method. In this
case, the boundary element method loses its computational advantage in comparison
to the finite element method, implying that for the seismic analysis of arch dams,
the coupled computational method of finite elements and dynamic infinite elements
(Zhao et al. 1989, 1992; Zhao and Valliappan 1991, 1993d, e) is more appropriate
for simulating both an arch dam and the infinite foundation.

The concept of static infinite elements was initially presented in the seventies of
the last century (Ungless 1973; Bettess 1977). Further work was carried out to apply
the coupled computational model of finite elements and static infinite elements to
the solution of static problems in engineering practice (Beer and Meek 1981; Zhao
et al. 1986). The fundamental idea behind construction of a static infinite element
is either to derive a special element displacement shape function, which is the pro-
duction of a Lagrange interpolation function and a decay function, or to use special
mapping techniques to map the infinite element into a finite one. The same idea has
been used to develop two-dimensional dynamic infinite elements (Chow and Smith
1981; Medina and Taylor 1983; Zhao et al. 1987, 1992). Owing to the complicated
mechanism of wave propagation in an infinite medium, the decay function for the
static infinite element needs to be replaced by a wave propagation function for the
dynamic infinite element. For simulating infinite solid media, several forms of two-
dimensional dynamic infinite elements, which differ from the selection of the corre-
sponding wave-propagation function of a dynamic infinite element, are presented by
different authors (Chow and Smith 1981; Medina and Taylor 1983; Zhao et al. 1987,
1992). Nevertheless, early work on the development of dynamic infinite elements
(Chow and Smith 1981; Medina and Taylor 1983) was mainly attributed to numer-
ical simulation of two-dimensional and axisymmetrical wave radiation problems
in infinite media. Although a previous three-dimensional dynamic infinite element
(Zhao et al. 1989) was used to simulate a wavescattering problem for an arch dam–
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foundation system, it has only one wavenumber so that it cannot be used to simulate
efficiently and simultaneously wave-propagation problems of multiple wavenum-
bers (Zhao 1987). This means that for a given incident earthquake wave, one must
first separate this wave into SH-wave, SV-wave and P-wave components and then
use the wavenumber of each wave component to evaluate the stiffness and mass
matrices of a dynamic infinite element. As a result, the stiffness and mass matri-
ces of the previous three-dimensional dynamic infinite element need to be evaluated
three times since only one wavenumber can be exactly represented each time by the
previous three-dimensional dynamic infinite element.

Based on the above considerations, the theory of three-dimensional dynamic infi-
nite elements is presented in this chapter. The wavenumbers of SH-waves, SV-waves
and P-waves are used in the proposed three-dimensional dynamic infinite element.
As a result, the coupled computational model of three-dimensional finite elements
and three-dimensional dynamic infinite elements are better suited for simulating
seismic wave propagation problems in the infinite foundations of arch dams. Owing
to the use of a mapping technique in the process of developing the three-dimensional
dynamic infinite element, it is feasible to use the coupled computational model of
three-dimensional finite elements and three-dimensional dynamic infinite elements
for dealing with dynamic arch dam–foundation interaction problems in a rectangu-
lar coordinate system. Two vibration problems, namely the vibration of a square
rigid plate on a homogeneous elastic half-space and the vibration of a square rigid
plate on a layered foundation, are considered as benchmark problems for the verifi-
cation of the coupled computational model of three-dimensional finite elements and
dynamic infinite elements.

5.1 Coupled Computational Model for Simulating
Three-Dimensional Wave Propagation Problems in Infinite
Foundations of Structures

For the numerical simulation of wave propagation problems in infinite foundations
of structures, it is necessary to investigate the propagating mechanisms of harmonic
waves in the infinite foundations of structures, because an arbitrary wave can be
decomposed into the sum of several harmonic waves. The understanding of the
detailed mechanisms of harmonic wave propagation in an infinite foundation can
provide important insights into the fundamental behaviours and characteristics of a
dynamic structure–foundation interaction system. After harmonic wave propagation
problems in the infinite foundation are solved, the seismic analysis of a structure–
foundation system can be straightforwardly carried out using the fast Fourier trans-
form (FFT) and inverse Fourier transform (IFFT) techniques. Both the frequency
domain method and the hybrid frequency-time domain method can be used for the
linear and nonlinear dynamic analysis of a dynamic structure–foundation interac-
tion system (Wolf 1985, 1988). Since an iteration technique is used for the hybrid
frequency-time domain method, a nonlinear dynamic system, at each iteration, can
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be approximately simulated as a linear one, so that the nonlinear effect of the
dynamic system can be represented by pseudo-forces. These forces compensate for
the difference between the internal forces obtained from the pseudo-linear system
and those obtained from the original nonlinear system. The iteration can be contin-
ued until the convergence is achieved. For these reasons, harmonic waves are used
to establish the theoretical basis of three-dimensional dynamic infinite elements in
this section.

Assuming an infinite foundation is subjected to a harmonic loading and that the
material of the infinite foundation exhibits hysteretic damping, the governing equa-
tions of wave motion of the system can be expressed as follows:

G∗∇2u + (λ∗ + G∗)

(
∂2u

∂x2
+ ∂2v

∂x∂y
+ ∂2w

∂x∂z

)
+ fx = ρ

∂2u

∂t2
, (5.1)

G∗∇2v + (λ∗ + G∗)

(
∂2u

∂x∂y
+ ∂2v

∂y2
+ ∂2w

∂y∂z

)
+ fy = ρ

∂2v

∂t2
, (5.2)

G∗∇2w + (λ∗ + G∗)

(
∂2u

∂x∂z
+ ∂2v

∂y∂z
+ ∂2w

∂z2

)
+ fz = ρ

∂2w

∂t2
, (5.3)

G∗ = (1 + iηd)G, λ∗ = (1 + iηd)λ, (5.4)

where G is the shear modulus; λ is the Lamé constant; ηd is the hysteretic damping
coefficient of the medium; u, v and w are the displacements in the x, y and z direc-
tions; fx, fy and fz are the body force components in the x, y and z directions respec-
tively; ρ is the density of the medium; ∇2 is the second-order three-dimensional
Laplace operator.

By making use of the Galerkin weighted residual method and neglecting the
body forces in Eqs. (5.1), (5.2) and (5.3), the following discretized equations of
wave motion of the system can be obtained:

− ω2[M]{�} + (1 + iηd)[K]{�} = {F0}, (5.5)

where {�} is the unknown nodal displacement vector; ω is the circular frequency
of a harmonic wave; [M] and [K] are the global mass and stiffness matrices of the
system, respectively; and {F0} is the amplitude vector of the applied harmonic load.
[M], [K] and {F0} can be assembled from the following element submatrices and
subvectors:

[M]e =
∫∫∫

V
[N]Tρ[N]dV , (5.6)

[K]e =
∫∫∫

V
[B]T [D∗][B]dV , (5.7)
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{F0}e =
∫∫

A
[N]T{X0}dA + [N]T{P0}, (5.8)

where V and A are the volume and surface area of the element; {X0} is the amplitude
vector of the element boundary traction; {P0} is the amplitude vector of concentrated
loads acting on the element; [D∗] is the constitutive matrix of the element material;
[B] and [N] are the strain matrix and shape function matrix of the element.

It needs to be pointed out that Eqs. (5.6), (5.7) and (5.8) are equally valid for
both the finite and dynamic infinite elements. Although the volume of the dynamic
infinite element can approach infinity, the mass and stiffness matrices of the ele-
ment are still of finite values (Chow and Smith 1981; Medina and Taylor 1983;
Zhao et al. 1987, 1989). This is because both the displacement shape function and
strain matrices of the dynamic infinite element have a common term, known as the
wave propagation function, whose value tends to zero as the volume of the dynamic
infinite element approaches infinity. Since the derivation of three-dimensional finite
element formulation is well known (Zienkiewicz 1977; Rao 1989), only the formu-
lation of three-dimensional dynamic infinite elements is derived in the next section.

5.2 Formulation of Three-Dimensional Dynamic
Infinite Elements

In terms of simulating a continuum system numerically, the continuous displace-
ment field of the system is approximately represented by a discretized displacement
field. The accuracy of the discretized model depends, to a large extent, on both the
element size and the extent to which the displacement shape function of an element
approaches the continuous displacement field of the original system. In the finite
element analysis, the restriction of the construction of the displacement shape func-
tion for a finite element can be somewhat relaxed if a fine mesh of smaller elements
is used to simulate the discretized system. However, the use of smaller elements can
result in a significant increase in the total number of degrees-of-freedom of the dis-
cretized system so that both the computer CPU time and storage requirement for a
given problem will increase remarkably. On the other hand, it is possible to construct
an element using a more accurate displacement shape function to match the continu-
ous displacement field of a real system so as to reduce significantly the total number
of degrees-of-freedom of the discretized model of the system. This is the basic idea
behind the construction of some special elements such as the finite strip element
(Cheung 1976) and the boundary element (Brebbia 1978). When these special ele-
ments are used appropriately in the numerical simulation of a system, both computer
CPU times and storage requirements are reduced significantly, compared with the
finite element simulation of the same system. This basic idea is also applicable to
the construction of a three-dimensional dynamic infinite element and, therefore, the
key issue associated with the construction of a three-dimensional dynamic infinite
element is how to choose an accurate displacement shape function for the element.
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5.2.1 Mapping Functions of Three-Dimensional Dynamic
Infinite Elements

To make the resulting three-dimensional dynamic infinite element more suitable
for simulating both the geometrical irregularity and the material variety of a
natural arch-dam foundation, a coordinate mapping technique is used to map a
three-dimensional dynamic infinite element in the global coordinate system into
a typical parent dynamic infinite element in the local coordinate system. Through
the theoretical analysis of this typical parent dynamic infinite element, the mass
and stiffness matrices of the three-dimensional dynamic infinite element can be
derived.

For the three-dimensional dynamic infinite element shown in Fig. 5.1, the four
sides of the infinite element in the direction of approaching infinity can be rep-
resented by straight lines, so that only eight nodes are sufficient to describe the
geometry of the three-dimensional dynamic infinite element in the global coordi-
nate system. However, to represent the wave propagation behaviour within the infi-
nite element appropriately, 12 nodes are used to describe the displacement field of
the three-dimensional dynamic infinite element. For this reason, the mapping rela-
tionship between the global coordinate system and the local coordinate system for
the three-dimensional dynamic infinite element can be expressed as follows:

Fig. 5.1 Geometry of a
three-dimensional 12-node
dynamic infinite element: (A)
the physical element; (B) the
parent element
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x =
8∑

q=1

Mqxq, (5.9)

y =
8∑

q=1

Mqyq, (5.10)

z =
8∑

q=1

Mqzq, (5.11)

where xq, yq and zq are the nodal coordinates of the three-dimensional dynamic
infinite element in the x, y and z directions, respectively; Mq (q = 1,2, . . . , 8) is the
mapping function of the three-dimensional dynamic infinite element.

M1 = 1

4
(1 − ξ )(1 + η)(1 + ζ ), (5.12)

M2 = 1

4
(1 − ξ )(1 + η)(1 − ζ ), (5.13)

M3 = 1

4
(1 − ξ )(1 − η)(1 − ζ ), (5.14)

M4 = 1

4
(1 − ξ )(1 − η)(1 + ζ ), (5.15)

M5 = 1

4
ξ (1 + η)(1 + ζ ), (5.16)

M6 = 1

4
ξ (1 + η)(1 − ζ ), (5.17)

M7 = 1

4
ξ (1 − η)(1 − ζ ), (5.18)

M8 = 1

4
ξ (1 − η)(1 + ζ ). (5.19)

Note that since the mapping functions of the three-dimensional dynamic infinite
element are different from the displacement shape functions of the element, the
three-dimensional dynamic infinite element is not an isoparametric element.

5.2.2 Displacement Shape Functions of Three-Dimensional
Dynamic Infinite Elements

Consideration of the displacement compatibility condition on the connected
interface between a three-dimensional eight-node isoparametric finite element
(Zienkiewicz 1977) and a three-dimensional 12-node dynamic infinite element
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(Zhao et al. 1993d) yields the following displacement field for the three-dimensional
12-node dynamic infinite element:

u =
12∑

q=1

Nquq, (5.20)

v =
12∑

q=1

Nqvq, (5.21)

w =
12∑

q=1

Nqwq, (5.22)

where Nq (q = 1, 2, . . ., 12) is the displacement shape function of the three-
dimensional 12-node dynamic infinite element as follows:

Nq = Pq(ξ )

[
1

4
(1 + η)(1 + ζ )

]
(q = 1, 5, 9), (5.23)

Nq = Pq(ξ )

[
1

4
(1 + η)(1 − ζ )

]
(q = 2, 6, 10), (5.24)

Nq = Pq(ξ )

[
1

4
(1 − η)(1 − ζ )

]
(q = 3, 7, 11), (5.25)

Nq = Pq(ξ )

[
1

4
(1 − η)(1 + ζ )

]
(q = 4, 8, 12), (5.26)

where Pq(ξ ) (q = 1, 2, . . ., 12) is the wave propagation function of the three-
dimensional 12-node dynamic infinite element; Nq (q = 1, 2, . . ., 12) is the displace-
ment shape function of the three-dimensional 12-node dynamic infinite element.
The wave propagation function of the three-dimensional 12-node dynamic infi-
nite element can be determined by investigating the harmonic wave propagation
behaviour in an infinite medium (Zhao and Valliappan 1993d). When an isotropic,
homogeneous and elastic half-space is subjected to a harmonic loading, the induced
harmonic waves propagate from the vibration source into the far field of the half-
space. The analytical solution for this problem can be expressed using the special
functions, known as Bessel functions and Hankel functions (Graff 1975; Medina
and Taylor 1983). For example, for P-waves and S-waves propagating with spherical
symmetry, the harmonic free-vibration solution for spherically symmetrical waves
traveling in a homogeneous, isotropic and elastic medium, away from the origin of
a vibration source, is expressed as follows (Medina and Taylor 1983):

u = B1h(2)
1 (kpR), (5.27)

v = B2h(2)
0 (ksR), (5.28)

w = B3h(2)
0 (ksR), (5.29)
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R =
√

x2 + y2 + z2, (5.30)

where h(2)
0 and h(2)

1 are the zeroth order and first-order spherical Hankel functions of
the second kind; B1, B2 and B3 are three constants; kp and ks are the wavenumbers
of a P-wave and an S-wave, respectively.

Note that the asymptotic behaviour of h(2)
0 and h(2)

1 can be expressed using the
following equations (Graff 1975; Medina and Taylor 1983):

h(2)
0 (x) = 1

x
exp
[
i
(

x − π

4

)]
+ O

(
|x|−2

)
, (5.31)

h(2)
1 (x) = 1

x
exp

[
i

(
x − 3π

4

)]
+ O

(
|x|−2

)
. (5.32)

Equations (5.27), (5.28), (5.29), (5.31) and (5.32) clearly indicate that the wave
propagation behaviour in the far field of a half-space can be approximately rep-
resented by exponential functions. A similar conclusion can be obtained when a
cylindrical Rayleigh wave (i.e. R-wave) propagating in a homogeneous, isotropic
and elastic half-space is considered. Therefore, in the far field of a half-space, the
asymptotic behaviour of these special functions can be approximately expressed as
a combination of several exponential functions. The physical explanation for this
is that the induced waves in the far field of the half-space can be approximately
represented using the superposition of plane harmonic waves. Based on this recog-
nition and consideration of induced waves with multiple wavenumbers, the general
form of the wave propagation function for the three-dimensional 12-node dynamic
infinite element can be expressed as

Pq(ξ ) = exp (−αξ) [c1 exp (−iβ1ξ)+ c2 exp (−iβ2ξ)

+c3 exp (−iβ3ξ)
]

(q = 1, 2, . . . , 12),
(5.33)

where α is the nominal decay coefficient that is used to express the wave ampli-
tude attenuation due to both the wave energy dissipation in the three-dimensional
12-node dynamic infinite element and the geometrical divergence of the three-
dimensional 12-node dynamic infinite element. Note that the determination of the
value of α was addressed in Chap. 2. β1, β2 and β3 are three nominal wavenumbers
corresponding to R-, S- and P-waves in the three-dimensional 12-node dynamic
infinite element. These nominal wavenumbers are used to express the phase char-
acteristics of wave propagation in the three-dimensional 12-node dynamic infinite
element. c1, c2 and c3 are three constants to be determined by matching the displace-
ment field of the three-dimensional 12-node dynamic infinite element with that of
the infinite medium.

Although R-waves, S-waves and P-waves decay with distance from the point
of excitation at different rates, previous studies (Zhang and Zhao 1987; Zhao et al.
1989) have demonstrated that the decay rates of different waves in a dynamic infinite
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element are not sensitive to the numerical results. Thus, the same decay rate is used
for all three waves involved in the construction of the wave propagation function of
the three-dimensional 12-node dynamic infinite element. Regarding the exponential
decay of the Rayleigh wave with the depth from ground surface, it is reasonable to
represent this phenomenon approximately by using piecewise interpolation in the η

and ζ directions for the three-dimensional 12-node dynamic infinite element.
To determine the constants c1, c2 and c3, the displacement field of the three-

dimensional 12-node dynamic infinite element needs to be considered. Letting nodal
displacements for the nodes located at an infinite side in the ξ direction of the ele-
ment be equal to the element displacement field expressed in Eqs. (5.20), (5.21) and
(5.22), these three constants can be determined. For instance, if the side of the three-
dimensional 12-node dynamic infinite element with nodes 1 ( ξ = 0), 5 ( ξ = 1/2)
and 9 ( ξ = 1) is considered, the following relationships emerge:

⎧
⎨

⎩

u1
u5
u9

⎫
⎬

⎭
=
⎡

⎢
⎣

1 1 1

− exp
[
− 1

2 (α + iβ1)
]

− exp
[
− 1

2 (α + iβ2)
]

− exp
[
− 1

2 (α + iβ3)
]

exp [− (α + iβ1)] exp [− (α + iβ2)] exp [− (α + iβ3)]

⎤

⎥
⎦

⎧
⎨

⎩

c1
c2
c3

⎫
⎬

⎭
= [C]

⎧
⎨

⎩

c1
c2
c3

⎫
⎬

⎭
.

(5.34)

Solving Eq. (5.34) yields the following matrix equation:

⎧
⎨

⎩

c1
c2
c3

⎫
⎬

⎭
= [C]−1

⎧
⎨

⎩

u1
u5
u9

⎫
⎬

⎭
= [E]

⎧
⎨

⎩

u1
u5
u9

⎫
⎬

⎭
. (5.35)

After these three constants are determined, the wave-propagation function for
the three-dimensional 12-node dynamic infinite element can be further expressed as
follows:

Pq(ξ ) = E11 exp [− (α + iβ1) ξ ] + E21 exp [− (α + iβ2) ξ ]

+ E31 exp [− (α + iβ3) ξ ] (q = 1, 2, 3, 4),
(5.36)

Pq(ξ ) = E12 exp [− (α + iβ1) ξ ] + E22 exp [− (α + iβ2) ξ ]

+ E32 exp [− (α + iβ3) ξ ] (q = 5,6,7,8),
(5.37)

Pq(ξ ) = E13 exp [− (α + iβ1) ξ ] + E23 exp [− (α + iβ2) ξ ]

+ E33 exp [− (α + iβ3) ξ ] (q = 9, 10, 11, 12),
(5.38)

where

E11 = 1

�
exp

[
−1

2
(3α + iβ2 + iβ3)

] [
exp

(
− i

2
β3

)
− exp

(
− i

2
β2

)]
, (5.39)
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E21 = 1

�
exp

[
−1

2
(3α + iβ1 + iβ3)

] [
exp

(
− i

2
β1

)
− exp

(
− i

2
β3

)]
, (5.40)

E31 = 1

�
exp

[
−1

2
(3α + iβ1 + iβ2)

] [
exp

(
− i

2
β2

)
− exp

(
− i

2
β1

)]
, (5.41)

E12 = 1

�
exp (−α) [exp (−iβ2)− exp (−iβ3)

]
, (5.42)

E22 = 1

�
exp (−α) [exp (−iβ3)− exp (−iβ1)

]
, (5.43)

E32 = 1

�
exp (−α) [exp (−iβ1)− exp (−iβ2)

]
, (5.44)

E13 = 1

�
exp

(
−1

2
α

)[
exp

(
− i

2
β3

)
− exp

(
− i

2
β2

)]
, (5.45)

E23 = 1

�
exp

(
−1

2
α

)[
exp

(
− i

2
β1

)
− exp

(
− i

2
β3

)]
, (5.46)

E33 = 1

�
exp

(
−1

2
α

)[
exp

(
− i

2
β2

)
− exp

(
− i

2
β1

)]
, (5.47)

� = exp

(
−3

2
α

){
exp

[
− i

2
(β2 + β3)

] [
exp

(
− i

2
β3

)
− exp

(
− i

2
β2

)]}

+ exp

(
−3

2
α

){
exp

[
− i

2
(β1 + β2)

] [
exp

(
− i

2
β2

)
− exp

(
− i

2
β1

)]}

+ exp

(
−3

2
α

){
exp

(
− i

2
(β1 + β3)

)[
exp

(
− i

2
β1

)
− exp

(
− i

2
β3

)]}
.

(5.48)

Note that a sufficient condition for the existence of Pq(ξ ) (q= 1, 2, . . ., 12) in the
three-dimensional 12-node dynamic infinite element is that β1, β2 and β3 are three
different constants. This condition can be satisfied for simulating wave-propagation
problems in an infinite medium, because, from the physical point of view, R-, S- and
P-waves have three different wavenumbers in the infinite medium.

In addition, the following expression for the wave propagation function of the
three-dimensional 12-node dynamic infinite element exists:

Pq(ξr) = δqr (q = 1, 2, . . . ,12; r = 1, 2, . . . ,12), (5.49)

where δqr is the Kronecker delta. This implies that for any displacement shape func-
tion, Nq (q = 1, 2, . . ., 12), Nq = 1 when ξ = ξq, η = ηq and ζ = ζq, while Nq = 0
when ξ = ξr, η = ηr and ζ = ζr, where r �= q.

Supposing the velocities of the P-wave, S-wave and R-wave in an elastic infinite
medium are 3000, 1500 and 1398 m s–1, respectively, and that the excitation circular
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Fig. 5.2 Distributions of wave-propagation functions in a three-dimensional 12-node dynamic
infinite element: the solid lines represent the real parts of the wave-propagation function, while the
dashed lines represent the imaginary parts of the wave-propagation function
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frequency is 30 rad s−1, the corresponding wavenumbers for the P-wave, S-wave and
R-wave are 0.01, 0.02 and 0.0215, respectively. If these wavenumbers are multiplied
by 100, which means that the global coordinates of the three-dimensional 12-node
dynamic infinite element is divided by 100 in the ξ direction, the distributions of
the wave propagation functions (i.e. Pq(ξ ) (q = 1, 2, . . ., 12)), which are used in the
three-dimensional 12-node dynamic infinite element, are shown in Fig. 5.2, where
α = 2.2, β1 = 1, β2 = 2 and β3 = 2.25. In this figure, the solid and dashed
lines are the real and imaginary parts of the wave-propagation functions, which are
used to express the element-displacement pattern for the three-dimensional 12-node
dynamic infinite element. From the wave-propagation point of view, it is the wave-
propagation function that describes how waves in the three-dimensional 12-node
dynamic infinite element propagate from the element nodes to the far field of the
infinite medium.

Another characteristic of the three-dimensional 12-node dynamic infinite ele-
ment is that real (physical) wavenumbers in a global coordinate system can be
adjusted by changing the locations of element side nodes 5, 6, 7 and 8 in the global
coordinate system. This technique is helpful when the three-dimensional 12-node
dynamic infinite element is used to simulate wave-propagation problems in non-
homogeneous infinite foundations (Zhao et al. 1987, 1989).

5.2.3 Mass and Stiffness Matrices of Three-Dimensional Dynamic
Infinite Elements

If the same procedures as those used in the finite element method (Zienkiewicz
1977; Zhao et al. 1992) are used, both the mass matrix and the stiffness matrix of the
three-dimensional 12-node dynamic infinite element can be expressed as follows:

[M]e =
∫ 1

−1

∫ 1

−1

∫ ∞

0
[N]Tρ[N] |J| dξdηdζ , (5.50)

[K]e =
∫ 1

−1

∫ 1

−1

∫ ∞

0
[B]T [D∗][B] |J| dξdηdζ , (5.51)

where [B] and [N] are the strain matrix and shape function matrix of the three-
dimensional 12-node dynamic infinite element; [D∗] is the constitutive matrix of
the element material; |J| is the Jacobian determinant which can be determined using
the mapping relationship of the element (in Eqs. (5.9), (5.10) and (5.11)); and ρ is
the density of the element material.

To determine the shape function matrix, Eqs. (5.20), (5.21) and (5.22) can be
written in the matrix form:

⎧
⎨

⎩

u
v
w

⎫
⎬

⎭

e

= [N] {�}e , (5.52)
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where [N] is the shape function matrix of the three-dimensional 12-node dynamic
infinite element; {�}e is the nodal displacement vector of the element. They are of
the following forms:

[N] = [ [N1] [N2] [N3] [N4] [N5] [N6] [N7] [N8] [N9] [N10] [N11] [N12]
]

, (5.53)

{�}e = { {�1} {�2} {�3} {�4} {�5} {�6} {�7} {�8} {�9} {�10} {�11} {�12} }T ,

(5.54)

where
[
Nq
]

and
{
�q
}

are the corresponding submatrix and subvector related to the
node q (q = 1, 2, . . ., 12) of the three-dimensional 12-node dynamic infinite element.
They can be expressed as follows:

[
Nq
] =

⎡

⎣
Nq 0 0
0 Nq 0
0 0 Nq

⎤

⎦ (q = 1,2, . . . ,12), (5.55)

{
�q
} =

⎧
⎨

⎩

uq

vq

wq

⎫
⎬

⎭
(q = 1,2, . . . ,12), (5.56)

where Nq (q = 1, 2, . . ., 12) is the displacement shape function of node q; uq, vq and
wq (q = 1, 2, . . ., 12) are the displacement components of node q in the x, y and z
directions, respectively.

Using the above definitions, the strain matrix of the three-dimensional 12-node
dynamic infinite element can be expressed as follows:

{ε}e =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γxy

γyz

γzx

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u/∂x
∂v/∂y
∂w/∂z

∂u/∂y + ∂v/∂x
∂v/∂z + ∂w/∂y
∂w/∂x + ∂u/∂z

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= [B] {�}e , (5.57)

where [B] is the strain matrix of the three-dimensional 12-node dynamic infinite
element; and {ε}e is the strain vector of the element. The strain matrix of the three-
dimensional 12-node dynamic infinite element can be further expressed as

[B] = [ [B1] [B2] [B3] [B4] [B5] [B6] [B7] [B8] [B9] [B10] [B11] [B12]
]

, (5.58)

where
[
Bq
]

is the corresponding strain submatrix related to the node q (q = 1, 2, . . .,
12) of the three-dimensional 12-node dynamic infinite element. It can be expressed
as follows:
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[
Bq
] =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

∂Nq/∂x 0 0
0 ∂Nq/∂y 0
0 0 ∂Nq/∂z

∂Nq/∂y ∂Nq/∂x 0
0 ∂Nq/∂z ∂Nq/∂y

∂Nq/∂z 0 ∂Nq/∂x.

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(q = 1, 2, . . . , 12). (5.59)

To evaluate the strain matrix of the three-dimensional 12-node dynamic infinite
element, it is necessary to calculate the first derivatives of the displacement shape
functions with respect to the local ξ, η and ζ coordinates as follows:

∂Nq

∂ξ
= ∂Nq

∂x

∂x

∂ξ
+ ∂Nq

∂y

∂y

∂ξ
+ ∂Nq

∂z

∂z

∂ξ
(q = 1, 2, . . . ,12), (5.60)

∂Nq

∂η
= ∂Nq

∂x

∂x

∂η
+ ∂Nq

∂y

∂y

∂η
+ ∂Nq

∂z

∂z

∂η
(q = 1, 2, . . . ,12), (5.61)

∂Nq

∂ζ
= ∂Nq

∂x

∂x

∂ζ
+ ∂Nq

∂y

∂y

∂ζ
+ ∂Nq

∂z

∂z

∂ζ
(q = 1, 2, . . . ,12). (5.62)

Equations (5.60), (5.61) and (5.62) can be readily expressed in the following
matrix form:

⎧
⎨

⎩

∂Nq/∂ξ

∂Nq/∂η

∂Nq/∂ζ

⎫
⎬

⎭
=
⎡

⎣
∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ

⎤

⎦

⎧
⎨

⎩

∂Nq/∂x
∂Nq/∂y
∂Nq/∂z

⎫
⎬

⎭

= [J]

⎧
⎨

⎩

∂Nq/∂x
∂Nq/∂y
∂Nq/∂z

⎫
⎬

⎭
(q = 1, 2, . . . , 12),

(5.63)

where the matrix [J] , called the Jacobian matrix, is given by the following
equation:

[J] =
⎡

⎣
∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ

⎤

⎦. (5.64)

Substituting Eqs. (5.9), (5.10) and (5.11) into Eq. (5.64) yields the final expres-
sion for the Jacobian matrix as follows:

[J] =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

8∑

q=1

[(
∂Mq/∂ξ

)
xq
] 8∑

q=1

[(
∂Mq/∂ξ

)
yq
] 8∑

q=1

[(
∂Mq/∂ξ

)
zq
]

8∑

q=1

[(
∂Mq/∂η

)
xq
] 8∑

q=1

[(
∂Mq/∂η

)
yq
] 8∑

q=1

[(
∂Mq/∂η

)
zq
]

8∑

q=1

[(
∂Mq/∂ζ

)
xq
] 8∑

q=1

[(
∂Mq/∂ζ

)
yq
] 8∑

q=1

[(
∂Mq/∂ζ

)
zq
]

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

. (5.65)
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Therefore, the first derivatives of the displacement shape functions with respect
to the global x, y and z coordinates can be expressed as follows:

⎧
⎨

⎩

∂Nq/∂x
∂Nq/∂y
∂Nq/∂z

⎫
⎬

⎭
= [J]−1

⎧
⎨

⎩

∂Nq/∂ξ

∂Nq/∂η

∂Nq/∂ζ

⎫
⎬

⎭
. (q = 1, 2, . . . , 12). (5.66)

Mathematically, the value of the Jacobian determinant |J| can be determined from
the Jacobian matrix [J] .

For three-dimensional solids with hysteretic damping, the constitutive matrix of
the element material can be expressed in the following form:

[
D∗] = E(1 + iηd)

(1 + μ)(1 − 2μ)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − μ μ μ 0 0 0
μ 1 − μ μ 0 0 0
μ μ 1 − μ 0 0 0
0 0 0 (1 − 2μ)/2 0 0
0 0 0 0 (1 − 2μ)/2 0
0 0 0 0 0 (1 − 2μ)/2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(5.67)
where E and μ are the elastic modulus and Poisson’s ratio of the element material,
respectively; ηd is the hysteretic damping coefficient of the element material.

Substituting Eqs. (5.53), (5.58) and (5.67) into Eqs. (5.50) and (5.51) yields the
following generalized integral for the evaluation of the mass and stiffness matrices
of the three-dimensional 12-node dynamic infinite element:

I =
∫ ∞

0
F(ξ ) exp

[−(2α + iβq + iβr)ξ
]
dξ (q = 1, 2, 3; r = 1, 2, 3). (5.68)

To evaluate the generalized integral using the numerical integration technique
(Chow and Smith 1981; Zhang and Zhao 1987), the following definition

β = βq + βr

2
(q = 1, 2, 3; r = 1, 2, 3) (5.69)

is introduced. As a result, Eq. (5.68) can be evaluated using the numerical integration
technique described in Sect. 2.1.1.

5.3 Verification of Three-Dimensional Dynamic Infinite Elements

The first numerical example for verifying the proposed three-dimensional 12-node
dynamic infinite element is to simulate the dynamic response of a square massless
rigid plate resting on a homogeneous, isotropic and elastic half-space. If the square
massless plate is rigid, the analytical solutions for the compliance of the plate are
available (Wong and Luco 1976; Hamidzadeh-Eraghi and Grootenhuis 1981). In
the process of deriving the analytical solutions, the rigid plate is considered by
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assuming that the whole plate has the same translational and rotational deforma-
tions. This means that an elastic modulus of infinity is equivalently used in the
related theoretical analysis. However, from the computational point of view, the
elastic modulus of a finite value needs to be used for simulating the plate. To com-
pare the emerging numerical results with the analytical solutions, the value of the
elastic modulus of the plate must be several orders higher than that of the underlying
rock in the coupled computational model of three-dimensional finite and dynamic
infinite elements (Zhao et al. 1989, 1992, 1993d). This implies that only a “relatively
rigid” plate is simulated in the corresponding computational models.

Figure 5.3 shows the computational model of a square massless plate resting on a
homogeneous, isotropic and elastic half-space, in which only a quarter of the plate-
foundation system is simulated using three-dimensional finite and dynamic infinite
elements due to the symmetrical nature of the problem. The symmetry boundary
condition is applied to the xz (i.e. y= 0) and yz (i.e. x= 0) planes for the verti-
cal vibration of the square massless plate, while the symmetry boundary condition
is applied to the xz (i.e. y= 0) plane and the anti-symmetry boundary condition
is applied to the yz (i.e. x= 0) plane for the horizontal and rocking vibration of
the square massless plate. To compare the current numerical results with the previ-
ous solutions (Wong and Luco 1976; Hamidzadeh-Eraghi and Grootenhuis 1981),
the same assumptions as those used in the previous work are adopted for the cou-
pled computational model of three-dimensional finite and dynamic infinite elements
(Zhao et al. 1989, 1992, 1993d).

The following parameters are used in the coupled computational model of
the plate-foundation system. For the rock foundation, the elastic modulus (Er)
is 24 × 109 Pa; the value of Poisson’s ratio (νr) is 1/3; the rock density (ρr) is
2400 kg m−3. For the square massless plate, the elastic modulus (Ep) is 24×1012 Pa
so that the plate is “relatively rigid” to the rock foundation; the half-width of the

Fig. 5.3 Computational
model of a massless plate
resting on a homogeneous,
isotropic and elastic
half-space: the near field is
simulated using plate and
solid finite elements, while
the far field is simulated using
dynamic infinite elements
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plate (B) is 10 m; the thickness of the plate is B/10. According to these parame-
ters, the decay factor (α) used in the three-dimensional dynamic infinite elements is
assumed to be 0.028, while the P-wave, S-wave and R-wave velocities, which can
be determined from elastic wave theory (Graff 1975), are 3872, 1936 and 1804m
s–1 in the rock foundation, respectively. Based on these wave velocities and the
harmonic circular frequency of excitation, the three wavenumbers used in the three-
dimensional dynamic infinite elements can be evaluated.

In the coupled computational model of the plate-foundation system, the square
massless plate is simulated either by thick plate elements or by a combina-
tion of thick plate elements and plane stress elements (Hamidzadeh-Eraghi and
Grootenhuis 1981). The near field of the rock foundation is simulated using three-
dimensional eight-node solid finite elements, while the far field of the rock founda-
tion is simulated using three-dimensional 12-node dynamic infinite elements. The
resulting numerical solutions are compared with the “exact” solutions of Wong
and Luco (1976), Hamidzadeh-Eraghi and Grootenhuis (1981) using the following
parameters:

CHH(a0) = GB�1

P0
, (5.70)

CVV (a0) = GB�3

P0
, (5.71)

CMM(a0) = GB3θx

Mx
, (5.72)

CHM(a0) = GB2�1

Mx
, (5.73)

where CHH and CVV are the dimensionless compliances of the plate due to the con-
centrated dynamic load (P0) applied at the plate centre in the x and z directions,
respectively; �1 and �3 are the corresponding complex displacements of the plate
in the x and z directions; CMM and CHM are the dimensionless compliances of the
plate due to the dynamic moment (Mx) applied at the plate centre; θx is the rotation
angle of the plate corresponding to the applied moment (Mx) with respect to the x
axis; G is the shear modulus of the rock foundation; a0 is a dimensionless frequency
with the following definition:

a0 = ωB

CS
, (5.74)

where ω is the circular frequency of the excitation load; Cs is the S-wave velocity
in the rock foundation.

Figure 5.4 shows the comparison between the current numerical results and the
previous ones. In this figure, the solid and dashed lines, which are used for the
representation of CHH and CVV , are cited from the work carried out by Wong and
Luco (1976), while the solid and dashed lines, which are used for the representa-
tion of CMM and CHM , are cited from the work carried out by Hamidzadeh-Eraghi
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Fig. 5.4 Comparison of current results with previous results (Massless plate resting on a homoge-
neous, isotropic and elastic half-space)

and Grootenhuis (1981). For the computation of CMM and CHM , Poisson’s ratio of
the rock foundation is assumed to be 0.25 so that the corresponding wavenumbers
for the P-wave, S-wave and R-wave need to be changed accordingly in the three-
dimensional 12-node dynamic infinite elements. The solid dots and circles are used
to express the numerical results obtained from the coupled computational model, in
which the plate is simulated using a combination of thick plate elements and plane
stress elements, while the solid triangles and hollow triangles are used to express
the numerical results obtained from the coupled computational model, in which the
plate is simulated only using thick plate elements. There is good agreement between
the current numerical results and the previous ones when the plate is simulated using
a combination of thick plate elements and plane stress elements, indicating that the
accurate numerical results can be obtained from the coupled computational model of
three-dimensional finite (plate) elements and dynamic infinite elements. However,
when the plate is subjected to either a horizontal or a rocking loading and simu-
lated only using thick plate elements, a significant discrepancy between the current
numerical results and the previous ones is observed because the sway modes of the
plate cannot be appropriately simulated by thick plate elements alone. Therefore, it
is recommended that in the seismic analysis of a plate subjected to horizontal earth-
quakes, shell elements or a combination of thick plate elements and plane stress
elements be used in the coupled computational model of three-dimensional finite
(plate) elements and dynamic infinite elements.

The second numerical example for verifying the proposed three-dimensional
12-node dynamic infinite element is to simulate the dynamic response of a square
massless plate resting on a visco-elastic layered foundation. This example, in
essence, belongs to a wave propagation problem in a non-homogeneous infinite
foundation. Figure 5.5 shows the computational model of the plate-foundation
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Fig. 5.5 Computational
model of a massless plate
resting on a layered
foundation: the near field is
simulated using plate and
solid finite elements, while
the far field is simulated using
dynamic infinite elements

system. Owing to the symmetrical nature of the plate-foundation system, only a
quarter of the plate-foundation system is simulated using three-dimensional finite
(plate) elements and dynamic infinite elements. The same parameters as those used
for the first verification example are employed in the computational model of the
plate and layered foundation system. Since a layer resting on the rigid base rock
is considered, the ratio of the layer depth to the plate width is assumed to be 2 in
the coupled computational model of three-dimensional finite (plate) elements and
dynamic infinite elements.

Figure 5.6 shows the comparison between the current numerical results with the
previous ones (Chow 1987). In this figure, K and C are the dynamic stiffness coef-
ficient and damping coefficient of the plate, respectively. The solid line is used to
express the previous results (Chow 1987), while the solid dots are used to express the
current numerical results obtained from the coupled computational model of three-
dimensional finite (plate) elements and dynamic infinite elements. Generally, there
is good agreement between the current numerical results and the previous ones,
indicating that accurate numerical results can be obtained from the application of
the coupled computational model of three-dimensional finite (plate) elements and
dynamic infinite elements for solving three-dimensional wave-propagation prob-
lems in layered infinite foundations. Note that if the foundation of a plate/structure
can be treated as a homogeneous, isotropic and visco-elastic half-space, the previous
analytical and semi-analytical methods are computationally cheaper, compared with
the coupled computational model used in this chapter. However, if the foundation
of a plate/structure can be only treated as a non-homogeneous infinite medium, the
previous analytical procedures (Wong and Luco 1976; Brebbia 1978; Hamidzadeh-
Eraghi and Grootenhuis 1981; Chow 1987) are no longer directly applicable for
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Fig. 5.6 Comparison of current results with previous results (massless plate resting on a layered
foundation): the solid lines represent the previous solutions, while the solid dots represent the
current results

dealing with dynamic plate/structure–foundation interaction problems, especially
when dealing with dynamic arch dam—foundation interaction problems. In this
case, the coupled computational model of three-dimensional finite (plate) elements
and dynamic infinite elements can still work well through simply altering the param-
eters of different material regions, which are simulated by the three-dimensional
finite (plate) elements and dynamic infinite elements.



Chapter 6
Application of Three-Dimensional Dynamic
Infinite Elements: Simulation of Dynamic
Structure–Foundation Interaction Problems

Numerical simulation of dynamic structure–foundation interaction problems has
been an important research topic in many scientific and engineering fields (Zhao
et al. 1991, 1992; Zhao and Valliappan 1991, 1993c, e). In terms of a structure–
foundation interaction system, the foundation is referred to as the natural or built-up
formation of soil, subsoil or rock upon which a building or structure is supported.
If a structure is founded on a soft soil foundation, the dynamic structure–foundation
interaction problem is also called the dynamic soil–structure interaction problem
(Mita and Takanashi 1983; Wolf 1985, 1988). For example, the dynamic analysis of
an embankment dam–foundation system is a typical dynamic soil–structure inter-
action problem. Owing to the vast diversity of structural configurations and foun-
dation materials, it is impossible to deal with all the dynamic structure–foundation
interaction problems in one chapter. For the purpose of illustrating how the three-
dimensional dynamic infinite elements can be used for the numerical simulation of
dynamic structure–foundation interaction problems, the following two application
examples are considered in this chapter. The first application example is to simu-
late a dynamic plate–foundation interaction system using the coupled computational
model of three-dimensional finite (plate) elements and dynamic infinite elements,
while the second application example is to investigate the effects of both the raft
foundation flexibility and the underlying rock property on the dynamic response of
a three-dimensional framed structure.

6.1 Numerical Simulation of Plate Foundation Vibration
on a Visco-elastic Half-Space

The dynamic behaviour of a three-dimensional plate foundation, which can be
viewed as the lowest part of a structure and is usually made up of concrete or rein-
forced concrete materials, has been investigated using analytical methods (Elorduy
et al. 1967; Wong and Luco 1976; Kitamura and Sakurai 1979; Adeli et al. 1981;
Hamidzadeh-Eraghi and Grootenhuis 1981; Chow 1986). In these analytical meth-
ods, the plate foundation was often assumed to be rigid so as to derive analytical
solutions. The efficiency and accuracy of the analytical methods depend mainly on

141C. Zhao, Dynamic and Transient Infinite Elements, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-00846-7_6,
C© Springer-Verlag Berlin Heidelberg 2009
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how the complex flexibility influence coefficients for a rigid-plate foundation vibra-
tion problem are determined. Further development of the analytical method is to use
the boundary integral equation approach to evaluate the dynamic stiffness of rectan-
gular foundations in the frequency and time domains, respectively (Dominquez and
Roesset 1978; Karabalis and Beskos 1984). For investigating the dynamic response
of simple shaped (i.e. strip or circular) foundations on a layered half-space, analyt-
ical methods (Luco 1974, 1976, 1986) and semi-analytical methods (Gazetas and
Roesset 1979; Luco and Aspel 1983) are also available in the literature. To improve
the existing methods for dealing with vibration problems of three-dimensional rigid
plate foundations on layered infinite media, Chow (1987) presented an approximate
procedure under an assumption that the square sub-regions of a rigid plate founda-
tion can be replaced approximately by circular sub-regions with equivalent areas. In
this procedure, the complex flexibility influence coefficients of an arbitrary-shaped
foundation are evaluated directly from the analysis of a smooth, rigid circular foun-
dation resting on a layered soil medium using the finite element method with a vis-
cous boundary (Lysmer and Kuhlemyer 1969). Although this method can be used to
geometrically simulate a foundation with any shape, it is suitable only for vertical
vibration of a rigid foundation resting on the surface of a horizontally layered soil
medium of lateral infinite extension. For more general cases of foundation vibration
problems, the coupled computational method of three-dimensional finite elements
and dynamic infinite elements is more appropriate for simulating vibration problems
of arbitrarily shaped “relatively rigid” and flexible foundations on layered infinite
media (Zhao et al. 1989, 1992; Zhao and Valliappan 1991, 1993d, e). Note that in the
process of deriving the analytical solutions, the rigid plate is considered by assum-
ing that the whole plate has the same translational and rotational deformations. This
means that the plate has an equivalent elastic modulus of infinity. However, from
the computational point of view, the elastic modulus of a finite value needs to be
used for simulating the plate. To compare the numerical results with the analyt-
ical solutions, the value of the elastic modulus of the plate must be several orders
higher than that of the underlying rock in the coupled computational model of three-
dimensional finite and dynamic infinite elements (Zhao et al. 1989, 1992, 1993d).
This implies that only a “relatively rigid” plate can be simulated in the correspond-
ing computational models. Since both the geometrical and the mechanical proper-
ties of a plate foundation–underlying foundation system can be represented easily
using three-dimensional finite and dynamic infinite elements, detailed studies on the
dynamic response of a square foundation resting on either a visco-elastic half-space
or a visco-elastic layered infinite foundation are carried out in this section.

6.1.1 Dynamic Response of a Square Plate on a Visco-elastic
Half-Space under Harmonic Loading

Although the dynamic behaviour of massless, frictionless rectangular foundations
on a homogeneous, isotropic and visco-elastic half-space has been studied exten-
sively over the past years, a detailed report on the following two aspects is very
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limited: (1) the effects of different proportions of radiation damping and material
damping with respect to the total damping of an infinite medium and (2) the effects
of material damping on the distribution of wave motion in the near field of the infi-
nite medium. To investigate these effects in this section, the dynamic response of a
square plate on a visco-elastic half-space is simulated using the coupled computa-
tional model of three-dimensional finite (plate) elements and dynamic infinite ele-
ments. Owing to the symmetrical nature of the problem, only a quarter of the plate-
foundation system needs to be simulated in the corresponding computational model.

Figure 6.1 shows the computational model of a square massless plate resting
on a homogeneous, isotropic and visco-elastic half-space, in which a quarter of
both the plate and the half-space is simulated using three-dimensional finite and
dynamic infinite elements. The symmetrical boundary condition is applied to the xz
(i.e. y = 0) and yz (i.e. x = 0) planes when vertical vibration of the square massless
plate is considered, while the symmetrical boundary condition is applied to the xz
(i.e. y = 0) plane and the anti-symmetrical boundary condition is applied to the yz
(i.e. x = 0) plane when horizontal vibration of the square massless plate is con-
sidered. The following parameters are used in the coupled computational model of
three-dimensional finite and dynamic infinite elements: the elastic modulus of the
rock foundation (Er) is 24 × 109Pa; Poisson’s ratio of the rock foundation (νr) is
1/3; the density of the rock foundation (ρr) is 2400 kg m–3; the elastic modulus of
the rigid plate (Ep) is 24 × 1012Pa so that the plate is “relatively rigid” to the under-
lying rock; the half-width of the plate (B) is 10 m; the thickness of the plate is B/10.
According to these parameters, the decay factor (α) used in the three-dimensional
dynamic infinite elements is assumed to be 0.028, while the P-wave, S-wave and R-
wave velocities, which can be determined from elastic wave theory (Graff 1975), are
3872, 1936 and 1804 m s–1 in the rock foundation, respectively. Either a horizontal
harmonic load or a vertical harmonic load (P0) with an amplitude of 22.5 × 109 N
is applied at the central point (X = 0, Y = 0, Z = 0) of the plate.

Fig. 6.1 Computational
model of a plate foundation
overlying on a visco-elastic
half-space: the near field is
simulated using plate and
solid finite elements, while
the far field is simulated using
dynamic infinite elements
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To examine the effect of material damping on the vibration of the plate, three
different hysteretic coefficients of the rock material, namely ηd = 0, 0.1 and 0.25,
are used in the corresponding computation models. When ηd = 0, only the radiation
damping of the rock foundation is considered, while for either ηd = 0.1 or 0.25,
both the radiation damping and the material damping of the rock foundation are
included in the corresponding computation models. By comparing the numerical
results obtained when ηd = 0 with those obtained when either ηd = 0.1 or 0.25,
different proportions of radiation damping and material damping with respect to the
total damping of the rock foundation can be determined.

6.1.1.1 Effects of Material Damping on the Complex Compliance of the Plate

Under a harmonic loading condition, the dimensionless complex compliance of a
plate can be expressed as

CHH(a0) = GB�1

P0
, (6.1)

CVV (a0) = GB�3

P0
, (6.2)

where CHH and CVV are the dimensionless complex compliances of the plate due
to the concentrated dynamic load (P0) applied at the plate centre in the x and z
directions, respectively; �1 and �3 are the corresponding complex displacements
of the plate in the x and z directions; G is the shear modulus of the rock foundation;
and a0 is a dimensionless frequency with the definition:

a0 = ωB

CS
, (6.3)

where ω is the circular frequency of the excitation load; CS is the S-wave velocity
in the rock foundation.

Figure 6.2 shows the effects of material damping on the dimensionless complex
compliances of the plate. In this figure, Re is the real part of the dimensionless com-
plex compliances of the plate, while Im is the imaginary part of the dimensionless
complex compliances of the plate. The numerical results clearly indicate that with
an increase of material damping (ηd), the real parts of the dimensionless complex
compliance of the plate, Re(CHH) and Re(CVV ), decrease. With a0 = 0.5 taken as
an example and for ηd = 0, Re(CHH) and Re(CVV ) are equal to 0.163 and 0.132,
while for ηd = 0.1 and ηd = 0.25, the pair of (Re(CHH), Re(CVV )) is equal to
(0.142, 0.117) and (0.122, 0.096), respectively. Thus, compared with the numerical
results obtained when ηd = 0, there is a reduction of 13% and 11% for Re(CHH)
and Re(CVV ) when ηd = 0.1, and a reduction of 25% and 27% for ηd = 0.25.
This indicates that material damping has a considerable influence on the dimen-
sionless complex compliance of the plate. Note that as ηd increases, the negative
values of the imaginary parts of the dimensionless complex compliance, –Im(CHH)
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Fig. 6.2 Effects of material damping on the dynamic compliance of the rigid plate

and –Im(CVV ), increase slightly in the lower frequency range, implying that the
effect of material damping on the imaginary parts is not as great as it is on the real
parts of the dimensionless complex compliance of the plate. Generally, both the real
and imaginary parts of the dimensionless complex compliance of the plate strongly
depend on the excitation frequency of the harmonic load.

To investigate the relative proportions of radiation damping and material damp-
ing in the rock foundation, the reciprocal of the compliance amplitude of the plate
for ηd = 0 can be used to express approximately the radiation damping of the rock
foundation, whereas the different reciprocals of the compliance amplitudes of the
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plate corresponding to different values of material damping can be used to express
approximately the total damping of the rock foundation with these different values
of material damping. For this purpose, the amplitudes of the dimensionless complex
compliances of the plate can be defined as follows:

AU (a0, ηd) =
√

{Re [CHH (a0, ηd)]}2 + {Im [CHH (a0, ηd)]}2, (6.4)

AW (a0, ηd) =
√

{Re [CVV (a0, ηd)]}2 + {Im [CVV (a0, ηd)]}2, (6.5)

where AU (a0, ηd) is the amplitude of the dimensionless complex compliance,
CHH (a0, ηd), of the plate in the horizontal direction due to a horizontal harmonic
loading; AW (a0, ηd) is the amplitude of the dimensionless complex compliance,
CVV (a0, ηd), of the plate in the vertical direction due to a vertical harmonic loading.

Using Eqs. (6.4) and (6.5), the ratios of radiation damping to the total damping
due to horizontal and vertical loadings can be defined as

ψH(a0, ηd) =
1

AU(a0, 0)
1

AU(a0, ηd)

= AU (a0, ηd)

AU (a0, 0)
, (6.6)

ψV (a0, ηd) =
1

AW (a0, 0)
1

AW (a0, ηd)

= AW (a0, ηd)

AW (a0, 0)
, (6.7)

whereψH andψV are the ratios of radiation damping to the total damping in the hor-
izontal and vertical directions due to horizontal and vertical loadings, respectively.

If the total damping, which is the sum of the damping and material damp-
ing of the rock foundation, is defined as 100%, then 1 − ψH and 1 − ψV can
be used to represent the ratios of the material damping to the total damping for
the different values of the material damping of the rock foundation. In this sec-
tion, ψH1 and ψV1 are used to represent the ratios of the radiation damping to
the total damping for ηd = 0.1, while ψH2 and ψV2 are used to represent the
ratios of the radiation damping to the total damping of the rock foundation for
ηd = 0.25.

Table 6.1 shows the proportions of the radiation damping and material damping
for the two different values of the material damping, namely ηd = 0.1 and 0.25,
in the rock foundation. These numerical results clearly indicate that the radiation
damping plays a dominant role in the total damping of the rock foundation, but the
material damping is a relatively small proportion of the total damping of the rock
foundation. With a0 = 0.5 taken as an example and for ηd = 0.1, the ratios of the
radiation damping to the total damping are 89.5% and 93% in the horizontal and
vertical directions due to horizontal and vertical harmonic loadings, whereas the
ratios of the material damping to the total damping are 10.5% and 7%, respectively.
When ηd = 0.25, the ratios of the radiation damping to the total damping are 83.1%
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Table 6.1 Proportions of the radiation damping and material damping (Total damping = 100%)

ηd = 0.1 ηd = 0.25

a0 ψH1(%) 1 −ψH1(%) ψV1(%) 1 −ψV1(%) ψH2(%) 1 −ψH2(%) ψV2(%) 1 −ψV2(%)

0.5 89.5 10.5 93.0 7.0 83.1 16.9 84.5 15.5
1.0 92.5 7.5 94.5 5.5 87.5 12.5 89.2 10.8
1.5 93.7 6.3 96.2 3.8 89.3 10.7 89.9 10.1
2.0 94.6 5.4 96.7 3.3 89.9 10.1 91.2 8.8
2.5 95.0 5.0 97.1 2.9 92.2 7.8 92.8 7.2
3.0 96.2 3.8 97.5 2.5 92.9 7.1 96.1 3.9
3.5 99.3 0.7 98.9 1.1 94.8 5.2 98.8 1.2
4.0 99.5 0.5 99.6 0.4 97.2 2.8 99.4 0.6

and 84.5% in the horizontal and vertical directions due to horizontal and vertical
harmonic loadings, whereas the corresponding ratios of the material damping to
the total damping are 16.9% and 15.5%. This indicates that the higher the material
damping of a rock foundation is, the greater will be the ratio of the material damping
to the total damping of the rock foundation.

For a given frequency, a0, the ratio of the material damping to the total damping
increases gradually as the material damping of the rock foundation increases. With
a0 = 0.5 taken as an example and for ηd = 0.1, the ratio of the material damping
to the total damping of the rock foundation is equal to 10.5%; while for ηd = 0.25,
this ratio is increased to 16.9%. Although the absolute value of the material damping
increases as the excitation frequency increases, the ratio of the material damping to
the total damping gradually decreases. Since the ratios of the material damping to
the total damping of the rock foundation are relatively small for higher-frequency
excitations, it can be concluded that the material damping of a rock foundation is
negligible for simulating plate vibration problems due to higher-frequency excita-
tions. For instance, when a0 = 0.5, the ratio of the material damping to the total
damping is 10.5%, but when a0 = 3.5, this ratio is reduced to 0.7%. This con-
clusion implies that for the dynamic analysis of a structure–foundation interaction
problem, the radiation damping of the infinite rock foundation plays a dominant
role in controlling the dynamic behaviour of the structure and therefore, it must
be appropriately considered in a computational model. From this point of view,
the coupled computational method of three-dimensional finite and dynamic infinite
elements provides a useful tool for simulating dynamic structure–foundation inter-
action problems in infinite foundations.

6.1.1.2 Effects of Material Damping on the Distribution of Wave Motion
in the near Field

From a structural foundation design point of view, not only can the dynamic
response of a plate foundation play an important role, but also the distribution
of wave motion in the near field of the underlying infinite medium can affect the
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design of the plate foundation, because large displacements in the near field of the
underlying infinite medium may result in the failure of the plate foundation. For
this reason, studies of the effects of material damping on the distribution of wave
motion in the near field of the underlying infinite medium are certainly of engineer-
ing significance. Numerical results obtained from such studies can cast new light on
how the displacement field distributes in the vicinity of the plate foundation. Since
the nodal displacements of both the plate foundation and the underlying infinite
medium are used as fundamental variables for the coupled computational model of
three-dimensional finite and dynamic infinite elements, it is convenient to use the
coupled computational model to obtain the nodal displacement distribution in the
near field of the underlying infinite medium. This is one of the major advantages of
the coupled computational method of three-dimensional finite and dynamic infinite
elements over the previous analytical and semi-analytical methods. In the coupled
computational method of three-dimensional finite and dynamic infinite elements,
both the plate foundation and the underlying infinite medium are considered as an
entire system, while in the analytical and semi-analytical methods, the main focus
is on the plate foundation so that the displacement field of the underlying infinite
medium is usually not available.

Figures 6.3 and 6.4 show the distributions of displacement amplitudes along the
Z axis (i.e. X = Y = 0) and X axis (i.e. Y = Z = 0) in the near field of the under-
lying infinite medium. The related numerical results indicate that for both cases,
a0 = 0.5 and 1.5, the displacement amplitudes along the depth of the underly-
ing infinite medium decrease as the distance from the plate foundation increases.
When the plate foundation is subjected to a harmonic load, it becomes a vibra-
tion source and the resulting vibration energy propagates from the plate foundation
into the underlying infinite medium as different waves. Owing to the divergence
of the three-dimensional geometry and the material damping of the underlying
infinite medium, the energy density of the propagating wave, which is defined as
the flow of wave energy through a unit area, gradually decreases in the homoge-
neous and visco-elastic half-space with an increase in the distance from the plate
foundation. For both frequencies, a0 = 0.5 and 1.5, the distribution pattern of
the wave motion in the near field of the underlying infinite medium is exactly
the same, indicating that the variation of an excitation frequency has little effect
on the distribution pattern of the wave motion in the near field of the underly-
ing homogeneous and visco-elastic half-space, even though displacement ampli-
tudes may be different for different excitation frequencies of the plate foundation.
Since the material damping of an underlying infinite medium has a certain influ-
ence on the dynamic response of the whole system for a lower excitation frequency,
it can affect the dynamic displacement response in the near field. Generally, the
greater the material damping of an underlying infinite medium is, the smaller will
be the dynamic displacement amplitude in the near field of the underlying infinite
medium. On the interface between the plate foundation and the underlying infinite
medium, both horizontal and vertical displacement amplitudes are constant over
the width of the plate foundation, as expected, because of the rigidity of the plate
foundation.
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Fig. 6.3 Distributions of displacement amplitudes within the underlying rock foundation
(a0 = 0.5)

6.1.2 Dynamic Response of a Square Plate on a Layered
Visco-elastic Half-Space under Harmonic Loading

In most previous studies (Luco 1974, 1976; Luco and Aspel 1983; Chow 1987), an
overlying layer was assumed to be fixed on a rigid half-space so that the bottom
of the overlying layer can be treated as a fixed boundary. However, natural lay-
ered media are usually located on flexible media. In this subsection, the dynamic
response of a square plate on a layered medium overlying a flexible half-space is
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Fig. 6.4 Distributions of displacement amplitudes within the underlying rock foundation
(a0 = 1.5)

considered to investigate both the effect of the varying stiffness ratio of the layer
to the underlying half-space and the effect of thickness of the layer immediately
underlying the square plate.

Figure 6.5 shows the computational model of a plate-layered medium-underlying
half-space system, where only a quarter of the whole system is considered due to
the symmetrical nature of the problem. In this figure, E1 and E2 are the elastic
moduli of the layered medium and the underlying rock; H is the thickness of the
layered medium; B is the half-width of the square plate. The parameters for the
underlying rock are as follows: the elastic modulus (E2) is 24 × 109 Pa; Poisson’s
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Fig. 6.5 Conceptual model
of a plate foundation
overlying on a visco-elastic
layered half-space

ratio (ν) is 1/3; the rock density (ρ) is 2400 kg m–3; the hysteretic coefficient of
the rock material (ηd) is 0.1. For the layered medium, the value of Poisson’s ratio,
the density and the hysteretic coefficient are assumed to be exactly the same as
those used for the underlying rock. Three different ratios of the layer thickness to
the plate half-width, namely H/B = 0.5, 1.0 and 1.5, are considered to investigate
the effects of the layer thickness on the dynamic response of the square plate. For
the purpose of examining the effects of the layer stiffness on the dynamic response
of the square plate, five different ratios of the elastic modulus of the underlying
rock to that of the layered medium, namely E2/E1 = 1, 10, 15, 50 and 100, are
considered in the coupled computational model of three-dimensional finite elements
and dynamic infinite elements. Note that E2/E1 = 1 means that the square plate
rests on a homogeneous half-space.

Figures 6.6 and 6.7 show the effects of the elastic modular ratios of the under-
lying rock to the layered medium on the complex displacement amplitudes of
the square plate for a given ratio of the layer thickness to the plate half-width,
H/B = 1.5. For a square plate overlying a homogeneous visco-elastic half-space (i.e.
E2/E1 = 1), no resonant peak appears in the dynamic response curve of the square
plate for either horizontal harmonic loading (in Fig. 6.6) or vertical harmonic load-
ing (in Fig. 6.7). However, in the layered medium cases, the system resonance takes
place and some resonant peaks appear in the dynamic response curve of the square
plate due to wave reflection and refraction within the layered medium. Generally,
both the resonant frequency and the complex displacement amplitude of the square
plate depend on the elastic modular ratios of the underlying rock to the layered
medium. For a given elastic modulus of the underlying rock, E2, a greater value of
E2/E1 means a smaller value of E1 and a softer layered medium. Obviously, a softer
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layered medium results in a greater dynamic displacement response of the square
plate and a lower resonant frequency of the whole plate-layered medium-underlying
rock system.

For both horizontal and vertical loadings, three resonant frequencies of the whole
system appear for each value of E2/E1 and the largest displacement response of the
square plate takes place when E2/E1 is equal to 100 for the parameters used in
the coupled computational model. If the excitation frequency of the square plate
is higher, the radiation damping of the layered infinite foundation becomes greater
so that no obvious peak appears in the displacement amplitude response curve of
the square plate. The corresponding excitation frequency, above which the system
resonance no longer takes place, is defined as the upper limit of the excitation fre-
quency of the whole system. This upper limit depends on the ratio of the elastic
moduli of the underlying rock to the layered medium. The related numerical results
shown in Figs. 6.6 and 6.7 indicate that the smaller the value of this ratio of the
underlying rock to the layered medium (E2/E1), the higher the upper limit of the
excitation frequency of the whole plate-layered medium-underlying rock system.
The dynamic displacement response of the square plate for horizontal loading is
different from that for vertical loading, indicating that the dynamic response of a
plate also depends on how the plate is loaded.

Fig. 6.6 Effects of the ratios
of the elastic moduli on the
horizontal displacement
amplitudes of the plate
foundation (H/B = 1.5)
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Fig. 6.7 Effects of the ratios
of the elastic moduli on the
vertical displacement
amplitudes of the plate
foundation (H/B = 1.5)

Figures 6.8, 6.9, 6.10 and 6.11 show the effects of layer thickness on the com-
plex displacement amplitudes of the square plate for E2/E1 = 100 and E2/E1 = 10,
respectively. Note that the thickness of the layered medium has a significant influ-
ence on the dynamic response of a square plate. The overall trend of the influence is
that the thicker the layered medium, the lower the resonant frequency of the whole
plate-layered medium-underlying rock system. The related numerical results shown
in Figs. 6.8, 6.9, 6.10 and 6.11 indicate that the resonant frequency of the whole
plate-layered medium-underlying rock system is inversely proportional to the layer
thickness for both, horizontal (Figs. 6.8 and 6.10) and vertical vibration (Figs. 6.9
and 6.11) of the square plate. Through comparison of the dynamic response of the
square plate for E2/E1 = 100 with that for E2/E1 = 10, it can be concluded that the
resonant frequency of the whole plate-layered medium-underlying rock system is
directly proportional to the elastic modulus of the layered medium for a given elastic
modulus of the underlying rock. For instance, when E2/E1 = 10 (in Fig. 6.11), the
dimensionless resonant frequency of the whole plate-layered medium-underlying
rock system is about 0.5, 0.9 and 1.95 for the three different values of H/B = 1.5,
1.0 and 0.5, respectively, whereas when E2/E1 = 100 (in Fig. 6.9), the dimension-
less resonant frequency of the whole system is about 0.2, 0.35 and 0.7 for H/B = 1.5,
1.0 and 0.5, respectively. This indicates that, if the elastic modulus of the underlying
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Fig. 6.8 Effects of layer
thickness on the horizontal
displacement amplitudes of
the plate foundation
(E2/E1 = 100)

rock (E2) is kept constant, a smaller elastic modulus of the layered medium implies a
lower resonant frequency of the whole plate-layered medium-underlying rock sys-
tem. The same phenomenon can be observed from the numerical results obtained
in the case of the horizontal vibration of the square plate (in Figs. 6.8 and 6.10).
For larger values of the dimensionless layer thickness (H/B) and ratio of the elastic
moduli (E2/E1), the distribution curve of the displacement amplitudes of the square
plate fluctuates significantly, indicating that a deeper and softer layer may result in
not only a greater dynamic response of the plate foundation, but also a complicated
distribution pattern of the complex frequency response of the whole plate-layered
medium-underlying rock system. In this situation, it is necessary to strengthen the
layered medium so as to avoid the dynamic failure of the plate foundation.

Figures 6.12 and 6.13 show the distributions of the horizontal and vertical
displacement amplitudes in the near field of the whole plate-layered medium-
underlying rock system due to two different excitation frequencies, respectively.
These results can be used to investigate the effects of non-homogeneity, layer
thickness and excitation frequency on the dynamic response of the whole plate-
layered medium-underlying rock system. For example, the effects of medium
non-homogeneity, which is represented by the ratio of the elastic moduli of the
underlying rock to the layered medium (E2/E1), on the dynamic response in the
near field of the system are shown in Fig. 6.12 for both a particular dimensionless
layer thickness (H/B = 1.5) and a particular dimensionless frequency (a0 = 0.5).
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Fig. 6.9 Effects of layer
thickness on the vertical
displacement amplitudes of
the plate foundation
(E2/E1 = 100)

Note that there is no general trend for the distribution pattern of displacement ampli-
tudes in the near field of the system due to the combined complex effect of the three
factors mentioned above. Since the dynamic response of a square plate on a layered
medium fluctuates significantly with an excitation frequency, which can be seen
from Figs. 6.6 and 6.7, it is difficult to draw any general conclusion about how the
layer characteristics affect the distribution pattern of displacement amplitudes in the
near field of the system. Nevertheless, through this investigation, it is possible to
gain some basic recognition about the displacement distribution in the near field of
the whole plate-layered medium-underlying rock system.

As shown in Fig. 6.12 for a lower dimensionless frequency (a0 = 0.5), the max-
imum dynamic response for either horizontal or vertical displacement amplitudes
occurs within the layer itself for all the three cases of layer non-homogeneities,
namely E2/E1 = 10, 50 and 100, especially for a higher ratio of the elastic mod-
uli (E2/E1 = 100). However, for a higher dimensionless frequency (a0 = 1.5),
the numerical results shown in Fig. 6.13 indicates that the horizontal displacement
amplitude reaches its maximum value within the layer when E2/E1 = 10, while the
vertical displacement amplitude reaches its maximum value within the layer when
either E2/E1 = 10 or E2/E1 = 50. This indicates that the dynamic response in the
near field of a plate-layered medium-underlying rock system is different from that
in the near field of a plate-homogeneous half-space system. In the latter case, the
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Fig. 6.10 Effects of layer
thickness on the horizontal
displacement amplitudes of
the plate foundation
(E2/E1 = 10)

maximum dynamic response of the system always takes place at the surface of the
plate foundation.

The engineering implications of this investigation can be summarized as follows:
for a plate overlying a layered infinite medium, if a low-frequency range of excita-
tion is of interest, then it is essential to give proper and careful considerations to the
layered medium so as to avoid any first failure within the layered medium, while if
a high-frequency range of excitation is of interest, then it is essential to give appro-
priate considerations to both the plate foundation and the layered medium, because
the first failure of the system may take place either in the plate foundation or in the
layered medium in this latter case.

6.2 Numerical Simulation of the Dynamic Response of a Framed
Structure–Raft Foundation–Underlying Soil/Rock System

As extensive studies have demonstrated, the dynamic response of a structure
is affected by the following factors (Warburton and Hutton 1978; Gupta et al.
1982; Riggs and Waas 1985; Chen and Penzien 1986; Wolf 1985, 1988; Zhao
and Valliappan 1993e, Zhao and Xu 1994; Zhao et al. 1995): (1) the dynamic
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Fig. 6.11 Effects of layer
thickness on the vertical
displacement amplitudes of
the plate foundation
(E2/E1 = 10)

characteristics of the structure itself; (2) the configuration and flexibility of either
a raft (shallow) foundation or a pile (deep) foundation; (3) the properties of the
underlying soil/rock; and (4) the dynamic load exerted on the structure. Owing
to the complexity of a dynamic structure–foundation–underlying rock interaction
problem, the above factors are usually considered separately and the dynamic
interaction effect is neglected in the previous theoretical analysis, especially for a
three-dimensional structure–foundation–underlying rock system. For this reason,
computational methods are widely used to deal with dynamic structure–foundation–
underlying rock interaction problems (Zhao and Valliappan 1991, 1993c, e; Zhao
et al. 1992, 1993, 1995).

For a three-dimensional dynamic structure–foundation–underlying rock interac-
tion problem, the structure and its foundation are of limited size, whereas the under-
lying rock can be treated as an infinite medium. Thus, the key issue associated with
the numerical simulation of a three-dimensional dynamic structure–foundation–
underlying rock interaction problem is how to simulate effectively and efficiently
the infinite domain of the underlying rock. When the finite element method
is used to deal with three-dimensional dynamic structure–foundation–underlying
rock interaction problems, the size of the finite elements is controlled by the
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Fig. 6.12 Effects of the ratios of the elastic moduli on displacement amplitude distribution in the
near field of the system (a0 = 0.5 and H/B = 1.5)

corresponding wave length so that the wave propagation mechanism can be captured
within each element in a finite element model. To avoid wave reflection and refrac-
tion on the artificially truncated boundary, the extension of a finite element mesh in
the infinite direction of the medium must be large enough so as to obtain useful and
accurate numerical results. For the purpose of reducing the finite element simulated
region of an infinite domain, some special treatments on the artificially truncated
boundary have been proposed in the past few decades (Lysmer and Kuhlemyer 1969;
White et al. 1977; Chow and Smith 1981; Medina and Taylor 1983; Zhao et al. 1987;
Zhao and Valliappan 1991). Because of easy implementation into a finite element
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Fig. 6.13 Effects of the ratios of the elastic moduli on displacement amplitude distribution in the
near field of the system (a0 = 1.5 and H/B = 1.5)

code, the coupled computational model of three-dimensional finite elements and
dynamic infinite elements has been successfully used for solving a wide range of
three-dimensional dynamic structure–foundation–underlying soil/rock interaction
problems (Zhao and Valliappan 1993d, e).

In this section, the coupled computational model of three-dimensional finite ele-
ments and dynamic infinite elements is used to simulate the dynamic response of
a three-dimensional framed structure–raft foundation–underlying soil/rock interac-
tion system. This system is comprised of the following three substructures. The
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first is the superstructure that is a three-dimensional framed structure; the second
is the raft foundation that is made up of concrete or reinforced concrete; and the
third is the underlying soil/rock that is of infinite extent. Since each of these three
substructures has different deformation characteristics, it is necessary to use dif-
ferent kinds of elements in the coupled computational model. For this reason, the
superstructure is simulated using three-dimensional frame elements (Zienkiewicz
1977), while the raft foundation is simulated using a combination of thick plate
elements (Rock and Hinton 1974) and plane stress elements (Zhao and Valliap-
pan 1991). Based on the dynamic condensation technique (Zhao and Valliappan
1993e), the dynamic property matrix of both the superstructure and the raft foun-
dation can be reduced to a small matrix associated with the degree of freedoms on
the raft foundation–underlying soil/rock interface. This reduced matrix can be easily
assembled into the property matrix of the underlying soil/rock substructure. By solv-
ing the dynamic equation of motion of the underlying soil/rock substructure, which
includes the interaction effects of both the superstructure and the raft foundation,
the dynamic response of the underlying soil/rock substructure can be obtained. As a
result, the dynamic response of both the superstructure and the raft foundation can
be evaluated using backward computation. The benefit of using the coupled compu-
tational method is that both the infinite medium and the wave input mechanism can
be simulated more reasonably and realistically (Zhao and Valliappan 1993d, e).

6.2.1 Numerical Simulation of a Three-Dimensional Framed
Structure–Raft Foundation–Underlying Soil/Rock System

In the conventional numerical simulation of a three-dimensional dynamic structure–
foundation interaction system, a building structure is usually simulated using three-
dimensional frame elements, while a raft foundation and its underlying soil/rock
are roughly simulated using a fixed boundary or the impedance (or compliance) of
the underlying soil/rock. Compared with the use of a fixed boundary, the use of
the impedance of the underlying soil/rock is more reasonable. Since the impedance
of an infinite medium is a function of the excitation frequency, the frequency-
domain-analysis technique needs to be used in the numerical simulation of the
three-dimensional dynamic structure–foundation interaction system. Furthermore,
the basic idea behind the earthquake input method used in the conventional numer-
ical simulation of a three-dimensional dynamic structure–foundation interaction
system is to transform the ground earthquake acceleration into the inertial forces
exerted on the masses of the superstructure. Obviously, the earthquake wave propa-
gation mechanism in the underlying soil/rock foundation is neglected in the above-
mentioned earthquake input method. To overcome these drawbacks, together with
the dynamic condensation technique, the coupled computational method of three-
dimensional finite elements and dynamic infinite elements is used to deal with the
three-dimensional framed structure–raft foundation–underlying soil/rock interac-
tion problems.
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6.2.1.1 Numerical Simulation of a Three-Dimensional Framed Structure

The superstructure in the whole framed structure–raft foundation–underlying soil/
rock system is simulated by using three-dimensional frame elements (Zienkiewicz
1977), resulting in the discretized dynamic equation of motion for the three-
dimensional framed structure in the frequency domain:

{
−ω2 [MF] + (1 + iηdF) [KF]

}
{�F} = {PF} , (6.8)

where [MF] and [KF] are the global mass and stiffness matrices of the framed struc-
ture; ηdF is the hysteretic damping coefficient of the structural material; ω is the
excitation circular frequency; and {�F} and {PF} are the global displacement vector
and dynamic load vector of the framed structure.

6.2.1.2 Numerical Simulation of a Raft Foundation

If a framed structure is located on a raft foundation, a combination of the thick plate
element and the plane stress element can be used to simulate the raft foundation for
a horizontal earthquake movement propagating from the underlying soil/rock into
the framed structure. In this situation, the discretized dynamic equation of motion
for the raft foundation can be expressed as

{
−ω2 [MR] + (1 + iηdR) [KR]

}
{�R} = {PR} , (6.9)

where [MR] and [KR] are the global mass and stiffness matrices of the raft founda-
tion; ηdR is the hysteretic damping coefficient of the raft foundation material; ω is
the excitation circular frequency; {�R} and {PR} are the global displacement vector
and dynamic load vector of the raft foundation. These matrices and vectors can be
rewritten into the forms:

[MR] = [MR1] + [MR2] , (6.10)

[KR] = [KR1] + [KR2] , (6.11)

{�R} = {�R1} + {�R2} , (6.12)

{PR} = {PR1} + {PR2} , (6.13)

where [MR1], [KR1], {�R1} and {PR1} express the contributions of the thick plate ele-
ments to the corresponding matrices or vectors of the raft foundation, whilst [MR2],
[KR2], {�R2} and {PR2} express the contributions of the plane stress elements to the
corresponding matrices or vectors of the raft foundation, respectively.
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6.2.1.3 Numerical Simulation of an Infinite Soil/Rock Medium

For the numerical simulation of the wave propagation in an infinite soil/rock
medium, the coupled computational method of three-dimensional solid finite ele-
ments and dynamic infinite elements (Zhao et al. 1989; Zhao and Valliappan 1991,
1993e) is used in this subsection. The discretized dynamic equation of motion for
the infinite soil/rock medium can be expressed as

{
−ω2 [MS] + (1 + iηdS) [KS]

}
{�S} = {PS} , (6.14)

where [MS] and [KS] are the global mass and stiffness matrices of the infinite
soil/rock medium; ηdS is the hysteretic damping coefficient of the infinite soil/rock
medium; ω is the excitation circular frequency; {�S} and {PS} are the global dis-
placement vector and dynamic load vector of the infinite soil/rock medium.

6.2.1.4 Coupling Equation of the Framed Structure–Raft
Foundation–Underlying Soil/Rock System

The dynamic equation of motion for each substructure of the whole system is
already expressed in Eqs. (6.8), (6.9) and (6.14). Since the nodal degrees-of-freedom
for each substructure are not necessarily the same, the global dynamic equation of
motion for the whole system cannot be obtained by simply assembling the above
three equations. For instance, a three-dimensional frame element has six degrees-
of-freedom at each nodal point, namely three translational movements and three
rotations, while either a three-dimensional finite element or a three-dimensional
dynamic infinite element has only three translational but no rotational degrees-of-
freedom at each nodal point. A plate element for simulating the plate flexure has
three degrees-of-freedom at each nodal point, namely one out-of-plane translational
movement that is normal to the middle plane of the plate and two rotations, while a
plane stress element has two in-plane translational degrees-of-freedom at each nodal
point. This means that the combination of a plate element and a plane stress element
has five degrees-of-freedom at each nodal point.

To obtain the dynamic response of the whole framed structure–raft foundation–
underlying soil/rock system, the dynamic condensation technique (Zhao and
Valliappan 1993e) is used in this subsection. This means that the framed struc-
ture and plate foundation need to be treated as a combined substructure, while
the underlying soil/rock is treated as another substructure. The dynamic interac-
tion between these two substructures can be simulated by considering the dynamic
force–stiffness relationship on their interface. The benefit of using such a substruc-
ture method is that either of these two substructures can be solved separately. If Eqs.
(6.8) and (6.9) are arranged appropriately, the dynamic equation of motion for the
combined substructure consisting of both the framed structure and the raft founda-
tion can be obtained. The resulting global dynamic stiffness matrix for such a com-
bined substructure will correspond to six degrees-of-freedom at each nodal point.
To derive the dynamic force–stiffness relationship, which is cause by the combined
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substructure consisting of both the framed structure and the raft foundation, on the
interface between the plate foundation and the underlying soil/rock, this matrix can
be partitioned in the following forms:

[S11 (ω)] {�1} + [S12 (ω)] {�2} = {P1} , (6.15)

[S12 (ω)]
T {�1} + [S22 (ω)] {�2} = {P2} , (6.16)

where {�1} is the nodal translational displacement vector associated with nodal
points at the interface between the (raft) plate foundation and the underlying
soil/rock; {�2} is a displacement vector, which consists of both translational and
rotational movements and is associated with nodal points at the remaining part of the
framed structure and raft foundation; [S11 (ω)], [S12 (ω)] and [S22 (ω)] are the corre-
sponding dynamic stiffness matrices; {P1} and {P2} are the corresponding dynamic
load vectors.

Eliminating {�2} from Eqs. (6.15) and (6.16) yields the contribution of the
framed structure and raft foundation to the dynamic stiffness matrix of the underly-
ing soil/rock as follows:

[
S∗

11 (ω)
] {�1} = {P∗

1

}
, (6.17)

where

[
S∗

11 (ω)
] = [S11 (ω)] [S12 (ω)] [S22 (ω)]

−1 [S12 (ω)]
T , (6.18)

{
P∗

1

} = {P1} − [S12 (ω)] [S22 (ω)]
−1 {P2} . (6.19)

Since the nodal displacement vector of the underlying soil/rock contains the
nodal displacement vector on the interface between the raft foundation and the
underlying soil/rock, Eq. (6.17) can be straightforwardly assembled into Eq. (6.14),
resulting in the global dynamic equation of motion for the underlying soil/rock
including the effects of both the framed structure and the raft foundation. Conse-
quently, the nodal displacements of the underlying soil/rock can be obtained by
directly solving the global dynamic equation of motion for the underlying soil/rock.
By means of the back-substitution technique, the nodal displacements for both the
raft foundation and the framed structure can be computed so that the dynamic
response of the whole framed structure–raft foundation–underlying soil/rock sys-
tem can be obtained.

6.2.2 Effects of Raft Foundation Flexibility on the Dynamic
Response of a Three-Dimensional Framed Structure

The proposed numerical method in the previous subsection can be used to
investigate the effects of raft foundation flexibility on the dynamic response of a
three-dimensional framed structure. Figure 6.14 shows the computational model,
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Fig. 6.14 Computational model of a framed structure–raft foundation–underlying soil/rock sys-
tem: (a) raft foundation and underlying soil/rock; (b) framed structure

in which only a quarter of the whole framed structure–raft foundation–underlying
rock system is simulated due to the geometrically symmetrical nature of the system.
To show the raft foundation and the underlying rock more clearly, the framed
structure is separately shown in the right part of this figure. Note that column 2 is
in coincidence with the Z axis of the coordinate system used in Fig. 6.14, while
columns 1, 3 and 4 are directly connected with nodal points 3, 4 and 5 respectively.
For the purpose of examining the effects of raft-foundation flexibility on the
dynamic response of the three-dimensional framed structure, the raft foundation
is considered as either a “relatively rigid” foundation or a flexible foundation
by changing the elastic modulus of the raft foundation in the corresponding
computational models. Only horizontal harmonic loading is applied at the centre of
the plate foundation (i.e. point O in Fig. 6.14).

The following parameters are used in the computational model. For the underly-
ing rock, the elastic modulus (Er) is 24 × 109 Pa; the value of Poisson’s ratio (νr) is
1/3; the rock density (ρr) is 2400 kg m–3. For the raft foundation, the elastic modu-
lus (ER) is 24 × 1012 Pa so that the raft (plate) is “relatively rigid” to the underlying
rock; the half-width of the plate (B) is 10 m; the thickness of the plate is B/10. For
the flexible raft foundation, the elastic modulus, the value of Poisson’s ratio and
the material density are exactly the same as those for the underlying rock. For the
framed structure, the cross-sectional areas of both the columns and the beams are
0.4 × 0.4 m2; the elastic modulus (EF) is 24 × 109 Pa; the value of Poisson’s ratio
(νF) is 0.16; the material density (ρF) is 2400 kg m–3.

Dimensionless quantities are useful for expressing the dynamic behaviour of a
class of systems, rather than an individual system. A specific dimensionless quan-
tity is defined by considering the related parameters that can be used to repre-
sent the fundamental characteristics of the system. For investigating the horizontal
and vertical vibration of a rigid plate on an elastic, homogeneous and isotropic
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half-space, dimensionless compliances and bending moments were defined to dis-
play the dynamic response of the plate (Luco 1974, 1976; Luco and Aspel 1983;
Chow 1987). Since both the plate foundation and the underlying rock play an
important role in controlling the dynamic response of the entire framed structure–
plate foundation–underlying soil/rock system, the dimensionless compliances and
bending moments defined for plate vibration problems can be used to display the
dynamic response of the framed structure. For this reason, the numerical results
obtained from the framed structure are expressed using the following dimensionless
compliance and bending moment:

CHH (a0) = GB�1

P0
, (6.20)

My (a0) = My

GB3
, (6.21)

where CHH is the dimensionless complex compliance of the framed structure due
to the concentrated dynamic load (P0) applied at the centre of the raft foundation
in the X direction; �1 is the corresponding complex displacement of the framed
structure in the X direction; G is the shear modulus of the underlying rock; B is the
half-width of the raft foundation; My is the bending moment of the framed structure
with respect to the Y axis; My is the corresponding dimensionless bending moment
of the framed structure; a0 is a dimensionless frequency defined as

a0 = ωB

CS
, (6.22)

whereω is the circular frequency of the concentrated dynamic load; CS is the S-wave
velocity in the underlying rock.

Figure 6.15 shows the dimensionless horizontal displacement of the framed
structure (CHH) in the X direction. In this figure, H is the height of the framed struc-
ture; Re and Im are the real part and imaginary part of the dimensionless horizon-
tal displacement; solid triangles, solid dots and solid squares are used to represent
the numerical results for columns 1, 2 and 3 when the raft foundation is flexible.
Note that instead of the relative displacement, the absolute displacement of the
framed structure is obtained using the proposed computational method in this sec-
tion. When the framed structure is subjected to a horizontal ground motion induced
by the dynamic load applied at the centre of the raft foundation, the maximum value
of displacement differences within each story of the framed structure takes place in
the ground story for both the “relatively rigid” and the flexible raft foundation cases.
This indicates that the safety of the columns in the ground story of a framed structure
is an important issue for the seismic design of the framed structure due to a sudden
change in the mass and stiffness along the columns. Such a sudden change is often
caused by the mass and stiffness of the beams in each floor of the framed structure.
From the wave motion point of view, repeated wave reflection takes place within the
columns between the ground floor and the first floor of the framed structure so that
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Fig. 6.15 Dimensionless horizontal displacement distributions of the framed structure

wave energy is trapped in the related columns, resulting in the maximum value of
displacement differences within the columns of the ground story.

The flexibility of the raft foundation has a significant effect on the dynamic dis-
placement response of the ground story of a framed structure. With a0 = 0.5 taken
as an example, in the case of a flexible-raft foundation, maximum values for the real
part of dimensionless displacement differences in the ground floor of the framed
structure are 0.225, 0.875 and 0.13 for columns 1, 2 and 3 respectively, while the
corresponding maximum value is 0.178 when the raft foundation is relatively rigid.
The numerical results shown in Fig. 6.15 indicate that the displacement difference
between a “relatively rigid” raft foundation and a flexible raft foundation is too large
to be ignored, especially for the real part of the dynamic compliance of the framed
structure.

Figure 6.16 shows the distribution of the dimensionless bending moment My

(with respect to the Y axis) of the framed structure. In this figure, H is the height of
the framed structure; Re and Im are the real part and imaginary part of the dimen-
sionless bending moment; solid triangles, solid dots and solid squares are used to
represent the numerical results for columns 1, 2 and 3 when the raft foundation is
flexible. Note that the dimensionless bending moment (My) with respect to the Y axis
is expressed on the basis of the sign convention adopted in structural mechanics. The
maximum value of the dimensionless bending moment occurs within the columns
on the ground floor when the raft foundation is either “relatively rigid” or flexible.
Compared with the numerical results obtained from the framed structure with a “rel-
atively rigid” raft foundation, the maximum dynamic response of the dimensionless
bending moment is much greater when the framed structure is attached on a flex-
ible raft foundation. Since the flexibility of a raft foundation results in an uneven
displacement distribution within the raft foundation, the resulting displacement dif-
ference can cause a larger dynamic response of the dimensionless bending moment
within the framed structure.
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Fig. 6.16 Dimensionless bending moment distributions of the framed structure

Owing to the assumption that columns and the raft foundation are connected by
joints at the bottoms of the columns on the ground floor, the maximum dimension-
less bending moment (My) occurs at the top ends of the columns on the ground floor
of the framed structure. This assumption is based on the fact that when a column
and a raft foundation are rigidly connected, the first plastic joint always occurs at
the bottom of the column on the ground floor of a framed structure during strong
earthquakes. The detailed study on the sequence of plastic joint appearance and the
resulting internal force redistribution within the framed structure is needed in future
research. Although the flexibility of a raft foundation has a significant effect on the
real part of the dimensionless bending moment, it has little influence on the imag-
inary part of the dimensionless bending moment within the framed structure. This
implies that the flexibility of a raft foundation has negligible effects on the damping
of the full system, even though it has indeed a significant effect on its dynamic stiff-
ness. For this reason, the flexibility of a raft foundation needs to be considered in the
dynamic response of a three-dimensional framed structure so as to obtain realistic
numerical solutions.

6.2.3 Effects of Underlying Soil/Rock on the Dynamic Response
of a Three-Dimensional Framed Structure

In this subsection, the computational simulation of a three-dimensional multi-story
framed structure with a square-raft foundation overlying a layered half-space is car-
ried out to investigate the effects of the properties of the layered material on the
dynamic response of the framed structure. The computational model for this prob-
lem is the same as that used in Sect. 6.2.2, except that the underlying soil/rock
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is a layered half-space, instead of a homogeneous half-space. This means that the
homogeneous half-space used in Fig. 6.14 needs to be replaced by the layered half-
space shown in Fig. 6.5. To describe the characteristics of the layered material, two
parameters, namely the ratio of the elastic moduli of the underlying rock to the lay-
ered material (E2/E1) and the dimensionless thickness of the layer (HL/B), are used
in this subsection.

The following parameters are used in the computational model. For the underly-
ing rock, the elastic modulus (E2) is 24 × 109 Pa; the value of Poisson’s ratio (ν) is
1/3; the rock density (ρ) is 2400 kg m–3; the hysteretic coefficient of the rock mate-
rial (ηd) is 0.1. For the layered medium, the value of Poisson’s ratio, the density
and the hysteretic coefficient are assumed to be exactly the same as for the under-
lying rock. Three different dimensionless layer thickness, namely HL/B = 0.5,
1.0 and 1.5, are considered, to investigate the effects of the layer thickness on the
dynamic response of the framed structure. For the purpose of examining the effects
of the layer stiffness on the dynamic response of the framed structure, three dif-
ferent ratios of the elastic moduli of the underlying rock to the layered medium,
namely E2/E1 = 1, 10 and 100, are considered in the coupled computational model
of the three-dimensional framed structure–raft foundation–underlying soil/rock sys-
tem. Note that E2/E1 = 1 means that the raft foundation of the framed structure is
on a homogeneous half-space.

Figures 6.17 and 6.18 show the effects of the layer compressibility on the dimen-
sionless horizontal displacement (CHH) and bending moment (My) distributions
along the column of the framed structure. Since the raft foundation is assumed to be
“relatively rigid” in this subsection, the four columns in Fig. 6.14 have identical hor-
izontal displacement distributions. As the layer compressibility is directly propor-
tional to the ratio of the elastic moduli of the underlying rock to the layered material,
the numerical results clearly indicate that the layer compressibility has a significant
effect on the dynamic response of the framed structure, resulting in a remarkable
change in both the magnitude and distribution pattern of the dimensionless horizon-
tal displacement and bending moment along the columns of the framed structure.
Generally, a softer layer can cause a greater dynamic response of the framed struc-
ture. With a0 = 0.5 taken as an example, the maximum values of dimensionless
horizontal displacement amplitudes of the framed structure are 0.185, 1.07 and 1.09
for E2/E1 = 1, 10 and 100, respectively.

The dynamic responses of the framed structure are different when different exci-
tation frequencies of the horizontal load are considered in the computational model.
The layer compressibility has only a significant effect on the dynamic response at the
lower part of the framed structure for the higher-frequency excitation (i.e. a0 = 1.0),
while it has a significant influence on the dynamic response over the entire framed
structure for the lower-frequency excitation (i.e. a0 = 0.5). This indicates that when
a framed structure is located on a soft layer, the whole framed structure must be con-
sidered appropriately in the seismic analysis because the predominant frequency of
an earthquake is usually in the lower-frequency range. However, when a framed
structure is located on a stiff homogeneous half-space, it may be sufficient to con-
centrate attention on the lower part of the framed structure in the seismic design.
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Fig. 6.17 Effects of layer compressibility on dimensionless horizontal displacement distributions
of the framed structure

Fig. 6.18 Effects of layer compressibility on dimensionless bending moment distributions of the
framed structure

Figures 6.19 and 6.20 show the effects of three dimensionless layer thicknesses
on the distributions of the dimensionless horizontal displacement (CHH) and bend-
ing moment (My) along the column of the framed structure when E2/E1 = 10, while
Figs. 6.21 and 6.22 show the corresponding numerical results when E2/E1 = 100.
Clearly, the layer thickness has a significant effect on the dynamic response of the
framed structure. Since a change in the layer thickness can result in a remarkable
change in the dynamic characteristics of the layered medium (Zhao and Valliappan
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Fig. 6.19 Effects of layer thickness on dimensionless horizontal displacement distributions of the
framed structure (E2/E1 = 10)

Fig. 6.20 Effects of layer thickness on dimensionless bending moment distributions of the framed
structure (E2/E1 = 10)

1991, 1993e), the dynamic response of a framed structure on the layered medium
will be changed accordingly because it depends on the dynamic characteristics of
the layered medium. As the same parameters for the layered medium and underly-
ing rock as those used in Sect. 6.1.2 are employed in this subsection, some previous
numerical results obtained in Sect. 6.1.2 can be used to interpret the current numer-
ical results.
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Fig. 6.21 Effects of layer thickness on dimensionless horizontal displacement distributions of the
framed structure (E2/E1 = 100)

Fig. 6.22 Effects of layer thickness on dimensionless bending moment distributions of the framed
structure (E2/E1 = 100)

When E2/E1 = 10 and a0 = 0.5, the dimensionless horizontal displacement
amplitudes of the “relatively rigid” raft foundation without the framed structure
are 0.81, 1.3 and 0.93 for HL/B = 0.5, 1.0 and 1.5, respectively. When the three-
dimensional framed structure is included in the computational simulation, the cor-
responding maximum values of the dimensionless horizontal displacement ampli-
tudes of the framed structure are 1.12, 1.78 and 1.07 for HL/B = 0.5, 1.0 and
1.5. This indicates that when a three-dimensional framed structure is founded on
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a stiffer-layered medium, the dynamic response of the framed structure is mainly
dominated by the dynamic behaviour of the layered medium so that it is very dif-
ficult to draw any general conclusions about the extent of how the layered medium
affects the dynamic response of the framed structure. Nevertheless, the effect of the
layer thickness on the dynamic response at the upper part of a framed structure is
smaller than that at the lower part, especially for higher-frequency excitation of the
framed structure (i.e. a0 = 1.0).

When E2/E1 = 100 and a0 = 0.5, the dimensionless horizontal displace-
ment amplitudes of the “relatively rigid” raft foundation without the framed struc-
ture are 5.58, 2.43 and 1.22 for HL/B = 0.5, 1.0 and 1.5, respectively. Once
the three-dimensional framed structure is included in the computational model,
the corresponding maximum values of the dimensionless horizontal displacement
amplitudes of the framed structure are 7.69, 8.21 and 1.09 for HL/B = 0.5, 1.0
and 1.5. This indicates that the flexibility of the framed structure may affect the
dynamic characteristics of the whole framed structure–raft foundation–underlying
soil/rock system when the framed structure is founded on a softer layered medium.
Although the effect of the layer thickness on the dimensionless horizontal displace-
ment amplitude at the upper part of the framed structure is negligible, the effect of
the layer thickness on the displacement distribution pattern is still worth consider-
ing because the different displacement distribution patterns of a framed structure can
result in different internal force distributions, as can be seen from Fig. 6.22. Since
the irregular variation of the dimensionless bending moment along the columns of a
framed structure is obtained in the case of a softer layered medium, proper attention
should be paid to the internal force distribution pattern of the framed structure in the
seismic analysis of three-dimensional framed structures.

In summary, the flexibility of a plate has significant effects on the dynamic
response of the three-dimensional framed structure, especially for the ground story
of the framed structure. Because of a sudden change in the mass and stiffness along
the columns due to the beams of each floor, the repeated wave reflection occurs
between the ground floor and the first floor, so that the wave energy is mainly
trapped within these particular regions of the framed structure. As a result, the max-
imum dynamic response of the internal forces of the entire system occurs within
the columns of the ground story of the framed structure. Compared with a “rela-
tively rigid” plate, a flexible plate can result in an uneven displacement distribution
within the plate. Such displacement differences can further cause a larger dynamic
response of the internal forces within the framed structure.

The layer characteristics of soil media underneath a plate can affect the dynamic
response of the three-dimensional framed structure significantly. A softer layer
causes a larger dynamic response of the framed structure. Generally, the compress-
ibility of the layered material can only have a remarkable influence on the dynamic
response at the lower part of the framed structure for higher-frequency excitation,
but it has a significant effect on the dynamic response of the entire framed structure
for lower-frequency excitation. Although the effect of the layer thickness on the dis-
placement amplitude at the upper part of the framed structure is negligible, it is still
worth considering because different displacement-distribution patterns can result in
different internal force distributions within the framed structure.



Chapter 7
Theory of Transient Infinite Elements
for Simulating Pore-Fluid Flow and Heat
Transfer in Porous Media of Infinite Domains

Pore-fluid flow and heat transfer in fluid-saturated porous media of infinite domains
are important phenomena in many scientific and engineering fields. For example,
in the field of exploration geoscience, pore-fluid flow and heat transfer from the
interior of the Earth to the surface of the Earth are two important physical pro-
cesses to control ore body formation and mineralization within the upper crust of the
Earth. Owing to the increasing demand of natural minerals and the possible exhaus-
tion of existing mineral resources in the foreseeable future, there has been an ever-
increasing interest in the study of key controlling processes associated with ore body
formation and mineralization within the upper crust of the Earth (Phillips 1991; Yeh
and Tripathi 1991; Nield and Bejan 1992; Steefel and Lasaga 1994; Raffensperger
and Garven 1995; Schafer et al. 1998a, b; Xu et al. 1999; Schaubs and Zhao 2002;
Ord et al. 2002; Gow et al. 2002; Zhao et al. 1997–2008). In the field of environ-
mental engineering, carbon dioxide gas sequestration in the deep Earth is becoming
a potential way to reduce the greenhouse effect. Even in our daily lives, pore-fluid
flow through fluid-saturated porous soils can be encountered almost everywhere.
Although pore-fluid flow and heat transfer processes in fluid-saturated porous media
are often coupled together, these two processes will be considered separately in this
chapter, so as to facilitate the establishment of the fundamental theory of transient
infinite elements for simulating pore-fluid flow and heat transfer problems in fluid-
saturated porous media of infinite domains.

In numerical simulations of infinite domains, a primitive and most simple
method, in which the infinite domain was approximately truncated as a large enough
finite domain, was widely used at the early stage of the finite element analysis. The
major disadvantages in using this primitive method are as follows: (1) the numerical
simulation for a sufficiently large domain leads to computer CPU costs and storage
penalties; (2) the boundary conditions of a problem at infinity cannot be rigorously
satisfied. For instance, stresses and displacements approaching zero at infinity for a
static problem and the wave radiation condition in the far field for a dynamic prob-
lem are violated in the numerical analysis; (3) stretching a fixed number of finite
elements to model a vast domain can result in a severe loss of solution accuracy
for static problems and spurious solutions for dynamic problems due to the element
size requirement for appropriately simulating dynamic problems; (4) for transient
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pore-fluid flow and heat transfer problems, use of artificially truncated boundaries
can cause unexpected numerical reflections back into the near field, where the solu-
tions are usually of great interest to the analyst, of a system.

For the simulation of many pore-fluid flow and heat transfer problems in scien-
tific and engineering fields, their computational domains can be treated as either
homogeneous isotropic or homogeneous orthotropic porous media of infinite extent
(Bear 1972; Freeze and Cherry 1979; Zhao and Valliappan 1993g, h). From a math-
ematical point of view, the two mutually alien subjects of transient pore-fluid flow
and heat transfer can be treated together in this chapter, because they are described
by the analogous boundary value problems. Since either a homogeneous isotropic
or a homogeneous orthotropic porous medium has two orthogonal principal axes,
it is possible to arrange these two principal axes to coincide with the x and y axes
of a Cartesian coordinate system so that the presentation of the mathematics related
to the derivation of transient infinite element formulation can be greatly simpli-
fied. One of the major advantages of considering either a homogeneous isotropic
or a homogeneous orthotropic porous medium is that the property matrices of
two-dimensional transient infinite elements can be evaluated either analytically or
numerically. In the former case, the corresponding matrices of a transient infinite
element can be expressed in closed forms (Zhao and Valliappan 1993g), whereas
in the latter case, the corresponding matrices need to be computed using numerical
integration (Zhao and Valliappan 1993h). Consequently, from a computational point
of view, two different numerical methods are demonstrated in deriving the property
matrices of two-dimensional transient infinite elements. As for a porous medium of
general anisotropy, from the best knowledge of the author, the formulation of two-
dimensional transient infinite elements remains unavailable so that future research
is needed in this respect. The main purpose of this chapter is to summarize the
fundamental theories of two-dimensional transient infinite elements for simulating
transient pore-fluid flow and heat transfer problems in either fluid-saturated homo-
geneous isotropic or fluid-saturated homogeneous orthotropic porous media consist-
ing of infinite domains.

7.1 Fundamental Theory of Transient Infinite Elements for
Simulating Pore-Fluid Flow Problems in Fluid-Saturated
Porous Media of Infinite Domains

7.1.1 Derivation of the Hydraulic Head Distribution Functions
of Transient Infinite Elements

The key issue of constructing transient infinite elements for simulating pore-fluid
flow problems in fluid-saturated porous media of infinite domains is to appropri-
ately propose a hydraulic head distribution function in the infinite direction of the
element. A general form of the hydraulic head distribution function for such a tran-
sient infinite element can be derived from the analytical solution of a representative
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problem. For this purpose, a pore-fluid flow problem, which has a unit hydraulic
head at the origin of a Cartesian coordinate system in a one-dimensional fluid-
saturated porous medium of infinite domain, is considered to derive the general
form of the hydraulic head distribution function for such a transient infinite ele-
ment. The governing equation of this one-dimensional problem in a fluid-saturated
porous medium of infinite domain can be written as follows (Freeze and Cherry
1979; Zhao and Valliappan 1993g):

Kx
∂2 h

∂x2
= Ss

∂h

∂t
, (7.1)

where Kx is the hydraulic conductivity in the x direction; h is the hydraulic head that
represents energy per unit weight of pore-fluid (i.e. water); Ss is the specific storage
of a saturated aquifer (i.e. porous medium) and is defined as the volume of pore-fluid
released from a unit volume of the aquifer under a unit decline in hydraulic head.
Since a decrease in hydraulic head implies either a decrease in pore-fluid pressure
or an increase in effective stress, the pore fluid released from the aquifer under
the condition of decreasing hydraulic head is mainly caused by the following two
mechanisms. The first mechanism is the compression of the aquifer as a result of
increasing effective stress so that it is controlled by the aquifer (i.e. porous medium)
compressibility, α, while the second mechanism is the expansion of the pore fluid
as a result of decreasing pore-fluid pressure so that it is controlled by the pore-
fluid compressibility, β. Thus, the specific storage of a fluid-saturated aquifer can
be expressed as follows (Freeze and Cherry 1979):

Ss = ρf g(α + φβ), (7.2)

where ρf is the pore-fluid density; g is the acceleration due to gravity; φ is the
porosity of the porous medium. Note that the specific storage (Ss) has the dimension
of L−1.

For constant Kx and Ss, the analytical solution for this one-dimensional pore-fluid
flow problem with a unit hydraulic head at the origin of the Cartesian coordinate
system can be expressed in the following form (Carslaw and Jaeger 1959; Harr
1962):

h(x, t) =
√

Ss

4πKxt
exp

(
− Ssx2

4Kx t

)
. (7.3)

For a typical transient infinite element shown in Fig. 7.1, the global coordinate of
node 1 is x1 and the local coordinate of this node is identical to zero. The hydraulic
head at this node for a given time, t, can be expressed as:

h(x1, t) =
√

Ss

4πKx t
exp

(

− Ssx2
1

4Kx t

)

. (7.4)
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Fig. 7.1 A typical
one-dimensional transient
infinite element for
simulating transient
pore-fluid flow problems

For any point within this transient infinite element, taking x = x1 + �x as an
example, the hydraulic head at this point can be directly derived from Eq. (7.4):

h(x1 +�x, t) = h(x1, t) exp

[
−Ss(�x2 + 2x1�x)

4Kx t

]
. (7.5)

Since ξ = �x for this one-dimensional transient infinite element, the hydraulic
head distribution function of this element can be expressed as

Fhd(ξ , t) = exp

[
−Ss(ξ2 + 2x1ξ )

4Kx t

]
. (7.6)

As a result, the hydraulic head field within the one-dimensional transient infinite
element can be expressed using the following equation:

h(ξ ,t) = h1Fhd(ξ ,t) = h1N1, (7.7)

where h1 is the nodal hydraulic head of the one-dimensional transient infinite ele-
ment; h is the hydraulic head distribution within the infinite element; N1 is the
shape function of the one-dimensional transient infinite element. Note that for
one-dimensional transient pore-fluid flow problems, the hydraulic head distribution
function is identical to the shape function of the one-dimensional transient infinite
element.

N1 = Fhd(ξ , t) = exp

[
−Ss(ξ2 + 2x1ξ )

4Kx t

]
. (7.8)

The first derivative of the shape function with respect to ξ is

∂N1

∂ξ
= −Ss(ξ + x1)

2Kx t
exp

[
−Ss(ξ2 + 2x1ξ )

4Kx t

]
. (7.9)

Using the finite element method (Zienkiewicz 1977; Rao 1989) and the condition
of dx = dξ , the property matrices of the one-dimensional transient infinite element
can be expressed as
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G11 =
∫ ∞

0

(
Kx

Ss

∂N1

∂ξ

∂N1

∂ξ

)
dξ , (7.10)

R11 =
∫ ∞

0
(N1N1) dξ . (7.11)

Substituting Eqs. (7.8) and (7.9) into Eqs. (7.10) and (7.11) yields

G11 = Ss

4Kx t 2

∫ ∞

0

{
(ξ + x1)

2 exp

[
−Ss(ξ2 + 2x1ξ )

2Kx t

]}
dξ , (7.12)

R11 =
∫ ∞

0
exp

[
−Ss(ξ2 + 2x1ξ )

2Kx t

]
dξ . (7.13)

To evaluate Eqs. (7.12) and (7.13), the following integrals have been
encountered:

I1 =
∫ ∞

0
exp
(
−x2
)

dx =
√
π

2
, (7.14)

I2 =
∫ ∞

0
x2 exp

(
−x2
)

dx =
√
π

4
, (7.15)

I3 =
∫ ∞

a
exp
(
−x2
)

dx =
√
π

2
−

∞∑

n=0

( − 1)n

n!
1

2n + 1
a2n+1, (7.16)

I4 =
∫ ∞

a
x2 exp

(
−x2
)

dx =
√
π

4
+ a

2
e−a2 − 1

2

∞∑

n=0

( − 1)n

n!
1

2n + 1
a2n+1. (7.17)

Note that mathematically, the value of an integral is independent of the symbol
of the integration variable used in the integral. Thus, using these integrals expressed
in Eqs. (7.14), (7.15), (7.16) and (7.17), Eqs. (7.12) and (7.13), after some mathe-
matical manipulations, can be expressed as

R11 =
√

2Kx t

Ss
exp

(
Ssx 2

1

2Kx t

)[√
π

2
−

∞∑

n=0

(
( − 1)n

n!
1

2n + 1
λ2n+1

1

)]

, (7.18)

G11 =
√

Kx

8Ss t
exp

(
Ssx 2

1

2Kx t

)[√
π

2
+ λ1 exp

(

− Ssx 2
1

2Kx t

)

−
∞∑

n=0

(
( − 1)n

n!
1

2n + 1
λ2n+1

1

)]

.

(7.19)

λ1 = x1

√
Ss

2Kx t
. (7.20)
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Similarly, if the positive direction of the ξ -axis in the local coordinate system is
opposite to that of the x-axis in the global coordinate system, the hydraulic head dis-
tribution function of the one-dimensional transient infinite element can be expressed
as follows:

F ∗
hd(ξ , t) = exp

[
−Ss(ξ2 − 2x1ξ )

4Kx t

]
. (7.21)

Consequently, the corresponding property matrices of the one-dimensional tran-
sient infinite element can be expressed using the following equations:

R ∗
11 =

√
2Kx t

Ss
exp

(
Ssx 2

1

2Kx t

)[√
π

2
−

∞∑

n=0

(
( − 1) n

n!
1

2n + 1
λ2n+1

2

)]

, (7.22)

G ∗
11 =

√
Kx

8Sst
exp

(
Ssx 2

1

2Kx t

)[√
π

2
+ λ2 exp

(

− Ssx 2
1

2Kx t

)

−
∞∑

n=0

(
( − 1) n

n!
1

2n + 1
λ2n+1

2

)]

,

(7.23)

λ2 = −x1

√
Ss

2Kx t
. (7.24)

After the general form of the hydraulic head distribution function is derived for a
one-dimensional transient infinite element, the same procedure can be used to derive
the general form of the hydraulic head distribution function for a two-dimensional
transient infinite element. If a two-dimensional pore-fluid flow problem, which has
a point hydraulic head at the origin of a Cartesian coordinate system in a fluid-
saturated homogeneous, orthotropic porous medium of infinite extent, is considered,
then the governing equation of this problem (Freeze and Cherry 1979; Zhao and
Valliappan 1993g) can be expressed as follows:

Kx
∂2 h

∂x2
+ Ky

∂2 h

∂y2
= Ss

∂h

∂t
, (7.25)

where Kx and Ky are the hydraulic conductivities in the x and y directions, which are
two principal directions of the fluid-saturated homogeneous and orthotropic porous
medium; h is the hydraulic head in the fluid-saturated porous medium of the infinite
domain.

For constant Kx, Ky and Ss, the analytical solution for the hydraulic head of this
problem (Larder and Song 1991) can be expressed as

h(x, y, t) =
√

Ss

4πKx t

√
Ss

4πKy t
h0 exp

(
− Ssx 2

4Kx t

)
exp

(
− Ssy 2

4Ky t

)
, (7.26)
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where h0 is the point hydraulic head at the origin of the Cartesian coordinate system.
In order to derive the hydraulic head distribution function for a two-dimensional

transient infinite element, Eq. (7.21) can be straightforwardly rewritten into the
form:

h(x, y, t) = h0g1(x, t)g2(y, t), (7.27)

where

g1(x, t) =
√

Ss

4πKx t
exp

(
− Ssx 2

4Kx t

)
, (7.28)

g2(y, t) =
√

Ss

4πKy t
exp

(
− Ssy 2

4Ky t

)
. (7.29)

Since the orthotropy of the porous medium and the different features of pore-
fluid flow are considered in the two principal directions of the porous medium,
more shapes of transient infinite elements need to be considered in the course of
constructing transient infinite elements for the simulation of two-dimensional tran-
sient pore-fluid flow problems in fluid-saturated porous media of infinite domains.
As shown in Fig. 7.2, if the positive directions of pore-fluid flow are identical to
those of the x- and y-axes, then eight categories of transient infinite elements should

Fig. 7.2 Eight categories of
two-dimensional transient
infinite elements for
simulating transient
pore-fluid flow problems
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be constructed to simulate two-dimensional transient pore-fluid flow problems in a
full infinite plane. According to the feature of infinite extent, the transient infinite
elements in categories one to four are called uni-infinite elements, while the transient
infinite elements in categories five to eight are called bi-infinite elements. Following
the same procedure as that used to derive the hydraulic head distribution function for
one-dimensional transient pore-fluid flow problems, the general forms of hydraulic
head distribution functions for two-dimensional transient pore-fluid flow problems
in fluid-saturated porous media of infinite domains can be derived and expressed as
follows:

Fhd(ξ , t) = exp

[
−Ss(ξ 2 + 2x1ξ )

4Kx t

]
, (7.30)

F ∗
hd(ξ , t) = exp

[
−Ss(ξ 2 − 2x1ξ )

4Kx t

]
, (7.31)

Fhd(η, t) = exp

[
−Ss(η 2 + 2y1η)

4Ky t

]
, (7.32)

F ∗
hd(η, t) = exp

[
−Ss(η 2 − 2y1η)

4Ky t

]
, (7.33)

where Fhd(ξ , t) and F ∗
hd(ξ , t) are the hydraulic head distribution functions of two-

dimensional transient infinite elements when the positive direction of the ξ axis is
identical or opposite to that of the x axis; Fhd(η, t) and F ∗

hd(η, t) are the hydraulic
head distribution functions of two-dimensional transient infinite elements when the
positive direction of the η axis is identical or opposite to that of the y axis, respec-
tively; x1 and y1 are nodal coordinates in the global coordinate system.

7.1.2 Derivation of the Property Matrices of Two-Dimensional
Transient Infinite Elements for Simulating Pore-Fluid Flow
Problems

Another key issue associated with the construction of two-dimensional transient
infinite elements is to derive the property matrices of the transient infinite elements
in a mathematical manner. Generally, there are two ways that can be used to derive
the property matrices of two-dimensional transient infinite elements. The first way is
to use more different kinds of parent infinite elements, which have different shapes,
in the process of deriving the property matrices of the transient infinite elements,
while the second way is to use only two kinds of mapped parent infinite elements
in the process of deriving the property matrices of two-dimensional transient infi-
nite elements. Owing to this significant difference, the property matrices derived
using the first way can be expressed in closed forms, but the property matrices
derived using the second way need to be evaluated numerically. In this section,
the first way is used to derive the property matrices of two-dimensional transient
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infinite elements that can be employed to simulate two-dimensional transient pore-
fluid flow problems in fluid-saturated porous media of infinite domains. To avoid
unnecessary repeats, the second way will be adopted in the next section to derive
the property matrices of two-dimensional transient infinite elements, which can be
used to simulate two-dimensional heat transfer problems in fluid-saturated porous
media of infinite domains.

Since the governing equation is of the same mathematical form for both a finite
element and a transient infinite element, the conventional finite element method
(Zienkiewicz 1997; Rao 1989) can be used to derive the property matrices of tran-
sient infinite elements. Using the Galerkin weighted residual method, Eq. (7.25) can
be discretized into a set of algebraic equations as follows:

[G] {h} + [R]

{
∂h

∂t

}
= {f } , (7.34)

where {h} is the global nodal hydraulic head vector of the system; {f } is the global
nodal “load” vector of the system; [G] and [R] are the global property matrices of
the system and their element property matrices can be expressed as

[Ge] =
∫∫

A

(
Kx

Ss

∂[N]T

∂x

∂[N]

∂x
+ Ky

Ss

∂[N]T

∂y

∂[N]

∂y

)
dA, (7.35)

[Re] =
∫∫

A

(
[N]T [N]

)
dA, (7.36)

where [N] is the (hydraulic head) shape function matrix of either a finite element
or a transient infinite element; [N]T is the transpose of [N]; A is the area of the
corresponding element.

7.1.2.1 The First Category of Two-Dimensional Transient Infinite Elements

As shown in Fig. 7.3(A), the shape function matrix of this category of two-
dimensional transient infinite elements can be written as follows:

[N] = [N1 N2] (7.37)

where N1 and N2 are the shape functions for nodes 1 and 2 of the element,
respectively.

N1 = Fhd(ξ , t)
1 − η

2
, (7.38)

N2 = Fhd(ξ , t)
1 + η

2
. (7.39)
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Fig. 7.3 Four categories of
two-dimensional transient
uni-infinite elements

It is noted that for this category of two-dimensional transient infinite elements,
the following relationship exists between the local coordinate system and the global
one.

dx = dξ , (7.40)

dy = 1

2
(y2 − y1)dη. (7.41)

Substituting Eqs. (7.37), (7.38), (7.39), (7.40) and (7.41) into Eqs. (7.35) and
(7.36) yields the property matrices of the first category of two-dimensional transient
infinite elements as follows:

[Ge]1 =
∫ ∞

0

∫ 1

−1

(
Kx

Ss

∂[N]T

∂ξ

∂[N]

∂ξ
+ 4Ky

Ss(y2 − y1)2

∂[N]T

∂η

∂[N]

∂η

)
y2 − y1

2
dηdξ ,

(7.42)

[Re]1 =
∫ ∞

0

∫ 1

−1

(
[N]T [N]

) y2 − y1

2
dηdξ (7.43)

After Eqs. (7.42) and (7.43) are integrated analytically, the resulting property
matrices of the first category of two-dimensional transient infinite elements can be
expressed in the following forms:
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[Ge]1 = Kx(y 2 − y 1)

3Ss
G11(x1, t)

[
1 0.5

0.5 1

]
+ Ky

Ss(y2 − y1)
R11(x 1, t)

[
1 −1

−1 1

]
,

(7.44)

[R e]1 = y2 − y1

3
R11(x 1, t)

[
1 0.5

0.5 1

]
, (7.45)

where R11(x1, t) and G11(x1, t) are defined below:

R11(x1, t) =
√

2Kx t

Ss
exp
(
λ 2

1

)[√
π

2
−

∞∑

n=0

(
( − 1) n

n!
1

2n + 1
λ2n+1

1

)]

, (7.46)

G11(x1, t) =
√

Ss

8Kx t
exp
(
λ2

1

) [√
π

2
+ λ1 exp

(
−λ 2

1

)

−
∞∑

n=0

(
( − 1) n

n!
1

2n + 1
λ2n+1

1

)]

,

(7.47)

where

λ1 = x1

√
Ss

2Kxt
. (7.48)

7.1.2.2 The Second Category of Two-Dimensional Transient Infinite Elements

Figure 7.3(B) shows the second category of two-dimensional transient infinite ele-
ments, the main characteristic of which is that the positive direction of the x axis
is opposite to that of the ξ axis. The shape function matrix of this category of two-
dimensional transient infinite elements can be expressed as follows:

[N] = [N1 N2] , (7.49)

where N1 and N2 are the shape functions for nodes 1 and 2 of the element,
respectively.

N1 = F ∗
hd(ξ , t)

1 − η

2
, (7.50)

N2 = F ∗
hd(ξ , t)

1 + η

2
. (7.51)

Following the similar procedure to that used above, the property matrices of the
second category of two-dimensional transient infinite elements can be derived as
follows:
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[Ge]2 = Kx(y2 − y1)

3Ss
G∗

11(x1,t)

[
1 0.5

0.5 1

]
+ Ky

Ss(y2 − y1)
R∗

11(x1,t)

[
1 −1

−1 1

]
,

(7.52)

[Re]2 = y2 − y1

3
R∗

11(x1,t)

[
1 0.5

0.5 1

]
, (7.53)

where R∗
11(x1,t) and G∗

11(x1,t) are defined below:

R∗
11(x1,t) =

√
2Kxt

Ss
exp
(
λ2

2

)[√
π

2
−

∞∑

n=0

(
( − 1)n

n!
1

2n + 1
λ2n+1

2

)]

, (7.54)

G∗
11(x1,t) =

√
Ss

8Kxt
exp
(
λ2

2

) [√
π

2
+ λ2 exp

(
−λ2

2

)

−
∞∑

n=0

(
( − 1)n

n!
)

1

2n + 1
λ2n+1

2

]

,

(7.55)

where

λ2 = −x1

√
Ss

2Kxt
(7.56)

7.1.2.3 The Third Category of Two-Dimensional Transient Infinite Elements

The fundamental characteristic of the third category of two-dimensional transient
infinite elements is that their sizes extend to infinity in the η direction, instead of the
ξ direction. In order to simulate the vertical component of the pore-fluid flow, it is
assumed that the η axis is parallel to the y axis. As shown in Fig. 7.3(C), the shape
function matrix of this category of two-dimensional transient infinite elements can
be written as follows:

[N] = [N1 N2] , (7.57)

where N 1 and N 2 are the shape functions for nodes 1 and 2 of the infinite element,
respectively.

N1 = Fhd(η,t)
1 − ξ

2
, (7.58)

N2 = Fhd(η,t)
1 + ξ

2
. (7.59)

Using the similar procedure to that used above, the property matrices of the
third category of two-dimensional transient infinite elements can be derived as fol-
lows:
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[Ge]3 = Kx

Ss(x2 − x1)
R11(y1, t)

[
1 −1

−1 1

]
+ Ky(x2 − x1)

3Ss
G11(y1, t)

[
1 0.5

0.5 1

]
,

(7.60)

[Re]3 = x2 − x1

3
R11(y1, t)

[
1 0.5

0.5 1

]
, (7.61)

where R11(y1, t) and G11(y1, t) are defined below:

R11(y1, t) =
√

2Kyt

Ss
exp
(
λ2

3

)[√
π

2
−

∞∑

n=0

(
( − 1)n

n!
1

2n + 1
λ2n+1

3

)]

, (7.62)

G11(y1, t) =
√

Ss

8Kyt
exp
(
λ2

3

) [√
π

2
+ λ3 exp

(
−λ2

3

)

−
∞∑

n=0

(
( − 1)n

n!
1

2n + 1
λ2n+1

3

)]

,

(7.63)

where

λ3 = y1

√
Ss

2Kyt
. (7.64)

7.1.2.4 The Fourth Category of Two-Dimensional Transient Infinite Elements

The basic characteristic of the fourth category of two-dimensional transient infinite
elements is that the positive direction of the η direction is opposite to that of the
y-axis. As shown in Fig. 7.3(D), the shape function matrix of this category of two-
dimensional transient infinite elements can be expressed as follows:

[N] = [N1 N2] , (7.65)

where N 1 and N 2 are the shape functions for nodes 1 and 2 of the infinite element,
respectively:

N1 = F∗
hd(η, t)

1 − ξ

2
, (7.66)

N2 = F∗
hd(η, t)

1 + ξ

2
. (7.67)

Similarly, the property matrices of the fourth category of two-dimensional tran-
sient infinite elements can be derived as follows:
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[Ge]4 = Kx

Ss(x2 − x1)
R∗

11(y1, t)

[
1 −1

−1 1

]
+ Ky(x2 − x1)

3Ss
G∗

11(y1, t)

[
1 0.5

0.5 1

]
,

(7.68)

[Re]4 = x2 − x1

3
R∗

11(y1,t)

[
1 0.5

0.5 1

]
, (7.69)

where R∗
11(y1, t) and G∗

11(y1, t) are defined below:

R∗
11(y1,t) =

√
2Kyt

Ss
exp
(
λ2

4

)[√
π

2
−

∞∑

n=0

(
( − 1)n

n!
1

2n + 1
λ2n+1

4

)]

, (7.70)

G∗
11(y1, t) =

√
Ss

8Kyt
exp
(
λ2

4

) [√
π

2
+ λ4 exp

(
−λ2

4

)

−
∞∑

n=0

(
( − 1)n

n!
1

2n + 1
λ2n+1

4

)]

,

(7.71)

where

λ4 = −y1

√
Ss

2Kyt
. (7.72)

7.1.2.5 Two-Dimensional Transient Bi-infinite Elements

The fifth to eighth categories of two-dimensional transient infinite elements are
called bi-infinite elements due to their infinite extension in both the ξ and the
η directions. Following the same procedures as those used in the previous sub-
sections, the property matrices of two-dimensional transient bi-infinite elements can
be derived and expressed below.

For the fifth category of two-dimensional transient infinite elements shown in
Fig. 7.4(A), the corresponding property matrices are as follows:

[Ge]5 = Kx

Ss
G11(x1, t)R11(y1, t) + Ky

Ss
R11(x1, t)G11(y1, t), (7.73)

[Re]5 = R11(x1, t)R11(y1, t). (7.74)

For the sixth category of two-dimensional transient infinite elements shown in
Fig. 7.4(B), the corresponding property matrices can be expressed as follows:

[Ge]6 = Kx

Ss
G∗

11(x1, t)R11(y1, t) + Ky

Ss
R∗

11(x1, t)G11(y1, t), (7.75)

[Re]6 = R∗
11(x1, t)R11(y1, t). (7.76)
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Fig. 7.4 Four categories of
two-dimensional transient
bi-infinite elements

For the seventh category of two-dimensional transient infinite elements shown in
Fig. 7.4(C), the corresponding property matrices can be written as follows:

[Ge]7 = Kx

Ss
G∗

11(x1, t)R∗
11(y1, t) + Ky

Ss
R∗

11(x1, t)G∗
11(y1, t), (7.77)

[Re]7 = R∗
11(x1, t)R∗

11(y1, t). (7.78)

Finally, for the eighth category of two-dimensional transient infinite elements
shown in Fig. 7.4(D), the corresponding property matrices can be expressed as fol-
lows:

[Ge]8 = Kx

Ss
G11(x1, t)R∗

11(y1, t) + Ky

Ss
R11(x1, t)G∗

11(y1, t), (7.79)

[Re]8 = R11(x1, t)R∗
11(y1, t). (7.80)

Up to now, closed-form solutions have been derived for all property matrices
of two-dimensional transient infinite elements, which can be used to simulate the
far fields of transient pore-fluid flow problems in two-dimensional fluid-saturated
porous media of infinite domains. Since the series involved in the property matrices
of two-dimensional transient infinite elements converges for all real numbers, the
computation of these property matrices can be easily carried out using any comput-
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ers. This is the main advantage in deriving closed-form solutions for all property
matrices of two-dimensional transient infinite elements of eight different shapes.

7.2 Fundamental Theory of Transient Infinite Elements for
Simulating Heat Transfer Problems in Fluid-Saturated
Porous Media of Infinite Domains

7.2.1 Derivation of the Heat Transfer Functions of Transient
Infinite Elements

Like constructing transient infinite elements for simulating pore-fluid flow prob-
lems, the key issue of constructing transient infinite elements for simulating heat
transfer problems in fluid-saturated porous media of infinite domains is to appro-
priately choose a heat transfer function in the infinite direction of the element. The
general form of the heat transfer function for such a transient infinite element can be
derived from the analytical solution of a representative one-dimensional heat trans-
fer problem in an infinite domain. For this particular purpose, a heat advection–
conduction problem, which has a given temperature at the origin of a Cartesian
coordinate system in a one-dimensional fluid-saturated porous medium of an infi-
nite domain, is considered to derive the general form of the heat transfer function.
If heat equilibrium is attained between the pore fluid and the solid matrix, the gov-
erning equation of this one-dimensional heat transfer problem in a fluid-saturated
porous medium of an infinite domain (Nield and Bejan 1992) can be written as
follows:

[φcpfρf + (1 − φ)cpsρs]
∂T

∂t
+ cpfρf Vx

∂T

∂x
= [φλxf + (1 − φ)λxs]

∂2T

∂x2
, (7.81)

where cpf and cps are the specific heats for the pore-fluid and solid matrix; ρf and
ρs are the densities of the pore-fluid and solid matrix; λxf and λxs are the thermal
conductivities of the pore-fluid and solid matrix, respectively; φ is the porosity of
the porous medium; Vx is the Darcy velocity in the x direction; T is the temperature
of the porous medium.

It is obvious that Eq. (7.81) can be rewritten into the following form:

(cpρ)m
∂T

∂t
+ α(cpρ)mVx

∂T

∂x
= λm

x
∂2T

∂x2
, (7.82)

where

λm
x = φλxf + (1 − φ)λxs, (7.83)

(cpρ)m = φcpfρf + (1 − φ)cpsρs, (7.84)
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α = cpfρf

φcpfρf + (1 − φ)cpsρs
. (7.85)

If the coefficients in front of the derivatives of Eq. (7.82) are constant, the ana-
lytical solution for this partial differential equation with a unit constant temperature
at the origin of the global coordinate system can be expressed as follows (Carslaw
and Jaeger 1959):

T(x, t) =
√

(cpρ)m

4πλm
x t

exp

[

− (cpρ)m(x − αVxt)2

4λm
x t

]

. (7.86)

For a transient infinite element shown in Fig. 7.5, the global coordinate of node
1 is x1, while the local coordinate of this node is zero. To express the relationship
between the positive direction of the x axis and that of the ξ axis, node 2 is defined
for this transient infinite element. It is assumed that the global coordinate of node 2
is x2 and that the local coordinate is 1. The temperature of node 1 at a given time, t,
can be expressed as follows:

T(x1, t) =
√

(cpρ)m

4πλm
x t

exp

[

− (cpρ)m(x1 − αVxt)2

4λm
x t

]

. (7.87)

For any point within this transient infinite element, taking x = x1 + �x as an
example, the corresponding temperature at this point can be written below:

T(x1 +�x, t) = T(x1, t) exp

{

− (cpρ)m[�x2 + 2�x(x1 − αVxt)]

4λm
x t

}

. (7.88)

Because ξ = �x for this one-dimensional transient infinite element, the heat
transfer function of this transient infinite element can be expressed as follows:

Fht(ξ , t) = exp

{

− (cpρ)m[ξ2 + 2ξ (x1 − αVxt)]

4λm
x t

}

. (7.89)

Fig. 7.5 A one-dimensional
mapped transient infinite
element for simulating
transient heat transfer
problems
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7.2.2 Derivation of the Property Matrices of Two-Dimensional
Transient Infinite Elements for Simulating Heat
Transfer Problems

Following the same procedures as those used in the previous section, the property
matrices of the transient two-dimensional infinite elements for simulating heat trans-
fer problems can be derived in a mathematical manner. Supposing the principal heat
conduction directions of an orthotropic porous medium are parallel to the x and y
axes in a global Cartesian coordinate system, the governing equation of a heat trans-
fer problem in a uniform pore-fluid flow field (Nield and Bejan 1992; Zhao and
Valliappan 1993h) can be expressed as follows:

(cpρ)m
∂T

∂t
+ α(cpρ)mVx

∂T

∂x
+ α(cpρ)mVy

∂T

∂y
= λm

x
∂2T

∂x2
+ λm

y
∂2T

∂y2
, (7.90)

where

λm
x = φλxf + (1 − φ)λxs, (7.91)

λm
y = φλyf + (1 − φ)λys, (7.92)

(cpρ)m = φcpfρf + (1 − φ)cpsρs, (7.93)

α = cpfρf

φcpfρf + (1 − φ)cpsρs
, (7.94)

where cpf and cps are the specific heats for the pore-fluid and solid matrix; ρf and ρs

are the densities of the pore-fluid and solid matrix; λxf and λxs are the thermal con-
ductivities of the pore-fluid and solid matrix in the x direction; λyf and λys are the
thermal conductivities of the pore-fluid and solid matrix in the y direction, respec-
tively; φ is the porosity of the porous medium; Vx and Vy are the Darcy velocities in
the x and y directions; T is the temperature of the porous medium.

Using the Galerkin weighted residual method (Zienkiewicz 1977; Rao 1989),
Eq. (7.90) can be discretized into a set of algebraic equations as follows:

[Ĝ] {T} + [Ĥ] {T} + [R̂]

{
∂T

∂t

}
=
{

f̂
}

, (7.95)

where {T} is the global nodal temperature vector of the system;
{

f̂
}

is the global

nodal “load” vector of the system; [Ĝ], [Ĥ] and [R̂] are the global property matrices
of the system. These global property matrices can be formed by assembling the
following element property matrices:
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[Ĝe]1 =
∫∫

A

(
λm

x

(cpρ)m

∂[N̂]T

∂x

∂[N̂]

∂x
+ λm

y

(cpρ)m

∂[N̂]T

∂y

∂[N̂]

∂y

)

dA, (7.96)

[Ĥe]1 =
∫∫

A

(

αVx[N̂]T ∂[N̂]

∂x
+ αVy[N̂]T ∂[N̂]

∂y

)

dA, (7.97)

[R̂e]1 =
∫∫

A

(
[N̂]T [N̂]

)
dA, (7.98)

where [N̂] is the temperature shape function of the element; [N̂]T is the transpose of
[N̂]; A is the area of the element. It needs to be pointed out that Eqs. (7.96), (7.97)
and (7.98) hold for both finite elements and transient infinite elements for simulating
heat transfer problems in fluid-saturated porous media.

Using the heat transfer functions of transient infinite elements, the temperature
shape function matrix of a two-dimensional transient infinite element can be derived.
Figure 7.6 shows a two-dimensional four-node transient infinite element, for which
the mapping relationship between the global coordinate system and the local one
can be expressed as follows:

x =
4∑

i=1

Mixi, (7.99)

y =
4∑

i=1

Miyi, (7.100)

where Mi is the mapping function at each node of the element.

M1 = 1

2
(1 − ξ )(1 − η), (7.101)

M2 = 1

2
(1 − ξ )(1 + η), (7.102)

M3 = 1

2
ξ (1 + η), (7.103)

Fig. 7.6 Two-dimensional
mapped transient uni-infinite
elements
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M4 = 1

2
ξ (1 − η). (7.104)

The temperature field within the two-dimensional transient infinite element
shown in Fig. 7.6 can be defined as follows:

T =
2∑

i=1

N̂iTi = [N̂]

{
T1
T2

}
, (7.105)

where N̂1 and N̂2 are the shape functions of nodes 1 and 2, respectively.

N̂1 = 1

2
Fht(ξ , t)(1 − η), (7.106)

N̂2 = 1

2
Fht(ξ , t)(1 + η). (7.107)

Since the number of nodes used for defining the shape of the two-dimensional
transient infinite element is greater than that used for defining the temperature field
of the two-dimensional transient infinite element, the corresponding parent transient
infinite element is a superparametric element.

Substituting Eqs. (7.99), (7.100), (7.101) and (7.102) into Eqs. (7.96), (7.97) and
(7.98) yields the property matrices of this two-dimensional transient infinite element
as follows:

[Ĝe]1 =
∫ ∞

0

∫ 1

−1

(
λm

x

(cpρ)m

∂[N̂]T

∂x

∂[N̂]

∂x
+ λm

y

(cpρ)m

∂[N̂]T

∂y

∂[N̂]

∂y

)

|J| dηdξ , (7.108)

[Ĥe]1 =
∫ ∞

0

∫ 1

−1

(

αVx[N̂]T ∂[N̂]

∂x
+ αVy[N̂]T ∂[N̂]

∂y

)

|J| dηdξ , (7.109)

[R̂e]1 =
∫ ∞

0

∫ 1

−1

(
[N̂]T [N̂]

)
|J| dηdξ , (7.110)

where |J| is the Jacobian determinant of the two-dimensional transient infinite ele-
ment.

By using the variable substitution technique and letting ξ = (1 + β)/(1 − β),
Eqs. (7.108), (7.109) and (7.110) can be rewritten into the following forms:

[Ĝe]1 =
∫ 1

−1

∫ 1

−1

(
λm

x

(cpρ)m

∂[N̂]T

∂x

∂[N̂]

∂x
+ λm

y

(cpρ)m

∂[N̂]T

∂y

∂[N̂]

∂y

)
2

(β − 1)2
|J| dηdβ,

(7.111)

[Ĥe]1 =
∫ 1

−1

∫ 1

−1

(

αVx[N̂]T ∂[N̂]

∂x
+ αVy[N̂]T ∂[N̂]

∂y

)
2

(β − 1)2
|J| dηdβ, (7.112)
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[R̂e]1 =
∫ 1

−1

∫ 1

−1

(
[N̂]T [N̂]

) 2

(β − 1)2
|J| dηdβ. (7.113)

Equations (7.111), (7.112) and (7.113) indicate that the property matrices of
the two-dimensional transient infinite element can be evaluated using the Gauss–
Legendre integration scheme.

It is noted that under certain situations, a two-dimensional three-node transient
bi-infinite element, as shown in Fig. 7.7, can be useful for the numerical analysis.
Similarly, the mapping relationship of this two-dimensional three-node transient bi-
infinite element can be defined as follows:

x =
3∑

i=1

Mixi, (7.114)

y =
3∑

i=1

Miyi, (7.115)

where M i is the mapping function at each node of the two-dimensional three-node
transient bi-infinite element.

M1 = (1 − ξ )(1 − η), (7.116)

M2 = 1

2
ξ (1 + η), (7.117)

M3 = 1

2
(1 + ξ )η. (7.118)

The temperature shape function for this two-dimensional three-node transient
bi-infinite element can be expressed as follows:

[N̂] = [N̂1] = [Fht(ξ , t)Fht(η, t)]. (7.119)

Fig. 7.7 Two-dimensional
mapped transient bi-infinite
elements
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Finally, the property matrices of the two-dimensional three-node transient bi-
infinite element can be derived.

[Ĝe]2 =
∫ 1

−1

∫ 1

−1

(
λm

x

(cpρ)m

∂[N̂]T

∂x

∂[N̂]

∂x
+ λm

y

(cpρ)m

∂[N̂]T

∂y

∂[N̂]

∂y

)

× 4

(β − 1)2(γ − 1)2
|J| dγ dβ,

(7.120)

[Ĥe]2 =
∫ 1

−1

∫ 1

−1

(

αVx[N̂]T ∂[N̂]

∂x
+ αVy[N̂]T ∂[N̂]

∂y

)
4

(β − 1)2(γ − 1)2
|J| dγ dβ,

(7.121)

[R̂e]2 =
∫ 1

−1

∫ 1

−1

(
[N̂]T [N̂]

) 2

(β − 1)2(γ − 1)2
|J| dγ dβ, (7.122)

7.3 Verification of Transient Infinite Elements for Simulating
Pore-Fluid Flow and Heat Transfer Problems in
Fluid-Saturated Porous Media of Infinite Domains

7.3.1 Verification of Transient Infinite Elements for Simulating
a Pore-Fluid Flow Problem in the Fluid-Saturated Porous
Medium of an Infinite Domain

The correctness and usefulness of the proposed transient infinite element theory
can be verified by some simple but critical problems, for which the exact analyt-
ical solutions are already available. To examine the two-dimensional behaviour of
the proposed transient infinite element theory, a fundamental problem with a given
hydraulic head at the centre of a horizontal infinite plane is considered in this sub-
section. Figure 7.8 shows the discretized model of this problem, where the origin of
the global coordinate system is subjected to a given point hydraulic head with the
value of 10 m (i.e. h0 = 10 m) at t = 0. The near field of the system, which is chosen
as 80 × 80 m, has been simulated by two-dimensional four-node square finite ele-
ments, while the far field is simulated by eight categories of two-dimensional tran-
sient infinite elements as proposed in Sect. 7.1. The following parameters are used
in the numerical analysis: the specific storage of the porous medium is 10−6(1/m);
the hydraulic conductivities are 2 × 10−6m/day in the x and y directions; the time
step used in the computation is 10 days.

Figure 7.9 shows the comparison between the current numerical solutions and the
analytical ones (Lardner and Song 1991). In this figure, the dimensionless hydraulic
head distributions in the near field of the first quadrant of the global coordinate
system, namely in the region of 40 m ≥ x ≥ 0 and 40 m ≥ y ≥ 0, have been
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Fig. 7.8 Computational
model for simulating a
transient pore-fluid flow
problem in the fluid-saturated
porous medium of an infinite
domain: the near field is
simulated using 64 finite
elements, while the far field is
simulated using 36 transient
infinite elements.

displayed at three different time instants. From the numerical solutions shown in
Fig. 7.9, it can be observed that excellent coincidence exists between the current
numerical results with the analytical solutions, even though the near field simulated
by finite elements is very small. This demonstrates that the proposed transient infi-
nite element theory is very useful for the numerical simulation of transient pore-fluid
flow problems in fluid-saturated porous media of infinite domains.

7.3.2 Verification of Transient Infinite Elements for Simulating
a Heat Transfer Problem in the Fluid-Saturated Porous
Medium of an Infinite Domain

In this case, a fundamental problem with a given point temperature at the centre of
a horizontal infinite plane is considered. As shown in Fig. 7.10, the origin of the
global coordinate system is subjected to a unit point temperature, T0 = δ(t)δ(x)δ(y).
The computation domain is divided into an interior domain that is referred to as the
near field of the system and an exterior domain that is considered as the far field
of the system. The region of the near field is chosen as 80 × 80 m and simulated
by 64 two-dimensional finite elements, while the far field is simulated by 32 two-
dimensional transient infinite elements and 4 two-dimensional transient bi-infinite
elements as proposed in Sect. 7.2. Supposing the porous medium is made of clay, the
following parameters are used in the numerical analysis: the equivalent product of
specific heat and density (i.e. (cpρ)m) of the porous medium is 396 kcal/(m3 ·◦C); the
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Fig. 7.9 Comparisons of numerical simulation results with analytical solutions for the transient
pore-fluid flow problem

thermal conductivity coefficients of the porous medium are 25.92 kcal/(m ·day ·◦ C)
in both the x and y directions. It is assumed that no pore-fluid flow occurs in the
porous medium so that Vx = 0 and Vy = 0. The time step used in the computation
is 300 days.
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Fig. 7.10 The verification
example for simulating a
transient heat transfer
problem in the fluid-saturated
porous medium of an infinite
domain: the near field is
simulated using 64 finite
elements, while the far field is
simulated using 36 transient
infinite elements

Figure 7.11 shows the comparison between the current numerical solutions and
the previous analytical ones (Lardner and Song 1991). It is clear from these results
that although the maximum time to be considered in the numerical analysis is 15000
days, there is no evidence that the temperature at any point is approaching a constant
value. This indicates that the time-dependent effect is important for most transient
heat transfer problems in fluid-saturated porous media. As expected, the symmetri-
cal distribution of the temperature has been obtained at symmetrical locations of the
system. For example, three locations, namely x = 20 m, y = 0 and x = 0, y = 20
m as well as x =– 20 m, y = 0, have the same temperature due to their symmetri-
cal characteristics. It is also observed that even though the near field simulated by
finite elements is very small, there exists excellent agreement between the current
numerical results and the previous analytical solutions, except for a little oscillation
at an early time. This oscillation is due to the rapid variation of temperature within a
very short time and can be eliminated using a smaller time step in the computation.
Therefore, it has demonstrated that the proposed transient infinite element theory
is very useful for the numerical simulation of transient heat transfer problems in
fluid-saturated porous media of infinite domains.

In summary, transient infinite element theory has been presented for simulating
transient pore-fluid flow and heat transfer problems in fluid-saturated orthotropic
porous media of infinite domains. Two different ways are used to derive the prop-
erty matrices of transient infinite elements. In the first way, more different kinds of
parent infinite elements with different shapes are used in the process of deriving the
property matrices of transient infinite elements. In contrast, in the second way, only
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Fig. 7.11 Comparisons of numerical simulation results with analytical solutions for the transient
heat transfer problem

two kinds of mapped parent infinite elements are used to derive the property matri-
ces of transient infinite elements. Owing to this significant difference, the prop-
erty matrices derived using the first way can be expressed in closed forms, but
the property matrices derived using the second way need to be evaluated numer-
ically. To demonstrate how to use these two different ways, the first way is used
to derive the property matrices of two-dimensional transient infinite elements that
can be employed to simulate transient pore-fluid flow problems in fluid-saturated
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orthotropic porous media of infinite domains, while the second way is employed
to derive the property matrices of two-dimensional transient infinite elements,
which can be used for simulating transient heat transfer problems in fluid-saturated
orthotropic porous media of infinite domains.

Although the transient infinite element theory is presented on the basis of two-
dimensional problems, it can be straightforwardly extended to the simulation of
three-dimensional transient pore-fluid flow and heat transfer problems in fluid-
saturated orthotropic porous media of infinite domains. In addition, the present tran-
sient infinite element theory can also be extended to the simulation of coupled prob-
lems of transient pore-fluid flow, mass transport and heat transfer in fluid-saturated
orthotropic porous media of infinite extent. However, for a porous medium of gen-
eral anisotropy, the formulation of two- and three-dimensional transient infinite ele-
ments remains unavailable so that future research is needed in this respect.



Chapter 8
Theory and Application of Transient
Infinite Elements for Simulating Contaminant
Transport Problems in Fractured Porous Media
of Infinite Domains

Numerical simulation of contaminant transport in fractured porous media of infinite
domains is a complex problem in various aspects. The solution for this kind of prob-
lem becomes more difficult once practical considerations, such as the infinite exten-
sion of the problem domain, the leakage effect between the porous medium and
the fissured network, the characterization of the fissured network and other physi-
cal and chemical parameters, are appropriately included in the analysis (Rowe and
Booker 1989, 1990a, 1991). On the other hand, the practical problems involving
contaminant transport in fractured porous media have received rapidly increasing
attention as a result of the treatment of industrial and agricultural wastes, the eval-
uation of potential contamination from nuclear power plants and the disposal activ-
ities of wastes from our daily lives. For the purpose of a better understanding of
contaminant transport processes, it is imperative to develop an efficient and effec-
tive numerical method for simulating transient contaminant (i.e. mass in a general
term) transport problems in fractured porous media of infinite domains.

Since a naturally fractured system contains various discontinuities, most of the
immobile pore-fluid resides in low permeability, disjoint matrix blocks, while most
of the mobile pore-fluid resides in the high permeability, interconnected fissured
network. When contaminant transport takes place in such a system, both advection
and dispersion are dominant processes within the fissured network, while disper-
sion may be a dominant process in the porous matrix. Generally, advection is due to
the bulk movement of pore-fluid, which is caused by a pore-fluid pressure gradient,
according to Darcy’s law (Phillips 1991; Nield and Bejan 1992; Zhao et al. 1997,
1998, 1999a). Dispersion is due to the irregular movement of pore-fluid in a porous
medium (Bear 1972; Bear and Bachmat 1990). On the microscopic scale (i.e. the
pore scale), these irregularities are caused by the tortuosity of flow paths, while on
the macroscopic scale, they are caused by the presence of zones of different perme-
abilities. To simulate a naturally fractured system appropriately, the double porosity
model (Barenblatt et al. 1960; Duguid and Lee 1977; Valliappan and Naghadah
1990) may be the best choice because it bridges the gap between equivalent porous
media and discrete fracture theory. For the double porosity model, the porous block
and fissured network are viewed as two overlapping continua. Equations of mass

201C. Zhao, Dynamic and Transient Infinite Elements, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-00846-7_8,
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transport for each continuum can be linked by a leakage term that describes the
mass exchange between the two overlapping continua.

In terms of modelling an infinite medium, the coupled computational method of
finite elements and infinite elements (Bettess 1977, 1980, 1992; Chow and Smith
1981; Medina and Taylor 1983; Zhao et al. 1987, 1989, 1992, 1995; Zhao and
Valliappan 1991, 1993a, b, c, d, e) is more appropriate because of the following
two main reasons: (1) both geometrical irregularities and material complexities in
the near field of a system can be simulated using finite elements; and (2) the infinite
extension of the system can be effectively and efficiently simulated using infinite
elements. For simulating static and dynamic problems, both static and dynamic infi-
nite elements have been developed during the past few decades (Beer and Meek
1981; Zhang and Zhao 1987; Valliappan and Zhao 1992; Zhao et al. 1991, 1992).
Since the displacement decay function and wave propagation function are indepen-
dent of time, both static and dynamic infinite elements can be considered as time-
independent infinite elements. For simulating transient pore-fluid flow, heat transfer
and mass transport in fluid-saturated porous media of infinite domains, Zhao and
Valliappan (1993g, h, 1994a) developed transient infinite elements, in which a time
variable is explicitly considered.

In this chapter, two-dimensional mapped transient infinite elements are presented
for simulating contaminant transport problems in fractured porous media of infi-
nite domains. To investigate the coupling effect between porous blocks and fis-
sured networks, various parameters, such as contaminant transmissive coefficients
between porous blocks and fissured networks, porosities, dispersion coefficients and
pore-fluid velocities, are considered in the coupled computational model of finite
elements and transient infinite elements. Since the mass transport function of the
transient infinite element explicitly depends on both time and space variables, tran-
sient contaminant transport processes can be rigorously simulated using the coupled
computational model of finite elements and transient infinite elements for simulating
fractured porous media of infinite domains.

8.1 Coupled Computational Method of Finite Elements
and Transient Infinite Elements for Simulating Transient
Contaminant Transport Problems in Fractured Porous
Media of Infinite Domains

If advection plays a predominant role in a mass transport problem, the conven-
tional Galerkin finite element method fails in solving the problem so that the
resulting solution exhibits pronounced oscillatory behaviour and excessive numer-
ical dispersion. Although a drastic refinement of the finite element mesh can
be used to avoid such unwanted oscillatory behaviour and numerical dispersion,
it is very inefficient, from the computational point of view. To overcome this
problem, the upwind finite element scheme is usually used in the finite element
analysis of advection-dominated mass transport problems (Heinrich et al. 1977;
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Huyakorn 1977; Huyakorn and Nilkuha 1979). This scheme differs from the con-
ventional Galerkin finite element scheme in the following two aspects: (1) spa-
tial discretization is performed through a general weighted residual technique that
employs asymmetrical weighting functions and yields an upwind weighting effect
for the advection term of a mass transport equation; (2) the time derivative term of
the mass transport equation is weighted using the standard trial functions of sym-
metrical nature. For this reason, the upwind finite element scheme is used to derive
the related formulation for simulating contaminant transport problems in fractured
porous media of infinite domains.

8.1.1 Upwind Finite Element Formulation of the Problem

Supposing the principal directions of a double porosity medium are parallel to those
of the x and y axes in a global coordinate system, the governing equations of a
contaminant transport problem in the double porosity medium with a uniform pore-
fluid flow field can be expressed as follows (Barenblatt et al. 1960; Duguid and Lee
1977; Valliappan and Naghadah 1990; Zhao and Valliappan 1994b):

D1x
∂2C1

∂x2
+ D1y

∂2C1

∂y2
− V1x

∂C1

∂x
− V1y

∂C1

∂y
= ∂C1

∂t
+ 1

φ1
�, (8.1)

D2x
∂2C2

∂x2
+ D2y

∂2C2

∂y2
− V2x

∂C2

∂x
− V2y

∂C2

∂y
= ∂C2

∂t
− 1

φ2
�, (8.2)

where D1x and D1y are the dispersion coefficients of contaminant for the porous
block in the x and y directions; D2x and D2y are the dispersion coefficients of
contaminant for the fissured network in the x and y directions; V1x and V1y are the
average linear velocities, which are averaged by the pore space (Bear 1972), of
the pore-fluid flow within the porous block in the x and y directions; V2x and V2y

are the average linear velocities of the pore-fluid flow within the fissured network;
C1 and C2 are the contaminant concentrations of the porous block and fissured
network, respectively; � is a leakage term to express mass exchange between the
porous block and the fissured network; φ1 and φ2 are the porosities of the porous
block and fissured network.

From the mass conservation law, the leakage term, �, can be expressed as

� = χ (φ1C1 − φ2C2) sign (C1 − C2) sign (φ1C1 − φ2C2) , (8.3)

where χ is a transmissive coefficient expressing the contaminant concentration
exchange per unit concentration between the porous block and the fissured network
per unit time. It has a dimension of 1/s. χ = 0 means that there is no exchange
between the porous block and the fissured network, while χ=1 means that maxi-
mum exchange takes place between the porous block and the fissured network.
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Note that Eq. (8.3) always expresses the contaminant transmission from a high-
concentration to a low-concentration region. For example, if the concentration in the
porous block is greater than that in the fissured network, the contaminant will trans-
mit from the porous block to the fissured network and vice versa. This process is
guaranteed by the product of sign (C1 − C2) and sign (φ1C1 − φ2C2), even though
the porosities of both the porous block and the fissured network are involved. To
facilitate computation and to express the formulations concisely, the average con-
taminant concentrations of a finite element, C1 and C2, are used instead of C1 and
C2 in Eq. (8.3). This leads to the following equation:

G
(
C1, C2,φ1,φ2

) = sign
(
C1 − C2

)
sign

(
φ1C1 − φ2 C2

)
. (8.4)

Equation (8.4) indicates that the value of function G is equal to 1, 0 or –1, depend-
ing on the values of C1, C2, φ1 and φ2.

8.1.1.1 Spatial Discretization of the Problem

In the upwind finite element scheme (Heinrich et al. 1977; Huyakorn 1977;
Huyakorn and Nilkuha 1979), the dispersion and advection terms of the transient
mass transport equations are weighted using asymmetrical weighting functions to
avoid oscillatory solutions, while the time derivative term and transmissive term are
weighted using conventional shape functions. Based on this idea, Eqs. (8.1) and
(8.2) can be rewritten for an element as follows (Zhao and Valliappan 1994b):

∫∫

A
[W]T

1

[
D1x

∂2C1

∂x2
+ D1y

∂2C1

∂y2
− V1x

∂C1

∂x
− V1y

∂C1

∂y

]
dA

−
∫∫

A
[N]T

[
∂C1

∂t
+ G

φ1
χ (φ1C1 − φ2C2)

]
dA = 0

, (8.5)

∫∫

A
[W]T

2

[
D2x

∂2C2

∂x2
+ D2y

∂2C2

∂y2
− V2x

∂C2

∂x
− V2y

∂C2

∂y

]
dA

−
∫∫

A
[N]T

[
∂C2

∂t
− G

φ2
χ (φ1C1 − φ2C2)

]
dA = 0

, (8.6)

where A is the area of the element; [W]1 and [W]2 are the non-symmetrical weight-
ing function matrices of the element for the porous block and fissured network,
respectively; C1 and C2 are the trial functions of the element for the porous block
and fissured network. They can be expressed as the functions of nodal concentra-
tions of the element in the finite element sense.

Ci = [N] {Ci}e (i = 1, 2), (8.7)

where [N] is the conventional shape-function matrix of the element; {C1}e and {C2}e

are the nodal concentration vectors of the element for the porous block and fissured
network at a given time.
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Through integrating by parts and applying Green’s theorem to the second-order
derivatives, Eqs. (8.5) and (8.6) can be written as follows:

(
[E1]e + [H1]e) {C1}e + Gχ

φ1
[Q1]e (φ1 [C1]e − φ2 [C2]e)+ [R1]e

{
∂C1

∂t

}e

= {f1}e ,

(8.8)

(
[E2]e + [H2]e) {C2}e − Gχ

φ2
[Q2]e (φ1 [C1]e − φ2 [C2]e)+ [R2]e

{
∂C2

∂t

}e

= {f2}e ,

(8.9)
where

[Ei]
e =

∫∫

A

[

Dix
∂[W]T

i

∂x

∂[N]

∂x
+ Diy

∂[W]T
i

∂y

∂[N]

∂y

]

dA (i = 1, 2), (8.10)

[Hi]
e =

∫∫

A

[
Vix[W]T

i
∂[N]

∂x
+ Viy[W]T

i
∂[N]

∂y

]
dA (i = 1,2), (8.11)

[Qi]
e =

∫∫

A

(
[N]T [N]

)
dA (i = 1, 2), (8.12)

[Ri]
e =

∫∫

A

(
[N]T [N]

)
dA (i = 1, 2), (8.13)

{fi}e =
∫

S
[W]T

i

(
Dix

∂C1

∂x
nx + Diy

∂C2

∂y
ny

)
dS (i = 1, 2), (8.14)

where A is the area of the element; S is the boundary line of the element; nx and ny

are the direction cosines of the outward unit normal vector on the boundary of the
element.

Since Eqs. (8.10), (8.11), (8.12), (8.13) and (8.14) are equally valid for both finite
and transient infinite elements, the corresponding global matrix can be obtained
using the standard assembly procedure in the finite element method (Zienkiewicz
1977). As a result, the global matrix equations for the problem can be expressed as
follows:

[A1] {C1} − Gχφ2

φ1
[Q1] {C2} + [R1]

{
∂C1

∂t

}
= {f1} , (8.15)

[A2] {C2} − Gχφ1

φ2
[Q2] {C1} + [R2]

{
∂C2

∂t

}
= {f2} , (8.16)

where

[A1] = [E1] + [H1] + Gχ [Q1] , (8.17)

[A2] = [E2] + [H2] + Gχ [Q2] . (8.18)
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Since Eqs. (8.15) and (8.16) are coupled by the exchange term, they are better
written in the matrix form:

[A] {C} + [R]

{
∂C

∂t

}
= {f } , (8.19)

where

[A] =
[

[A1] −Gχφ2
φ1

[Q1]

−Gχφ1
φ2

[Q2] [A2]

]

, (8.20)

[R] =
[

[R1] 0
0 [R2]

]
, (8.21)

{C} =
{{C1}
{C2}

}
, (8.22)

{f } =
{{f1}
{f2}
}

. (8.23)

Note that [A] is an asymmetrical matrix due to the consideration of advective
pore-fluid flow and the use of asymmetrical weighting functions in formulating the
property matrices of the upwind finite element. On the other hand, since [A] and
[R] are assembled by both finite elements and transient infinite elements, they are
time-dependent matrices and need to be evaluated at any time of interest.

8.1.1.2 Temporal Discretization of the Problem

The solution of Eq. (8.19) in the time domain can be carried out using the finite
difference approach for {∂C/∂t} as follows:

{
∂C

∂t

}
= 1

�t

({C}t+�t − {C}t) , (8.24)

where the superscript represents the time level and�t is the time step. In the process
of solving transient contaminant transport problems using the upwind finite element
scheme, both the element size,�l, and the time step,�t, need to be selected in such
a way that the resulting value of the Courant number ( Cr = Vmax�t/�l) is less
than 2.

After the finite difference approach is used for the first derivative of contaminant
concentration with respect to time, it is necessary to determine the time level in a
time interval between t and t + �t, at which the value of the contaminant concen-
tration is evaluated. Generally, the nodal contaminant concentration vector, {C}, can
be approximated anywhere between t and t +�t.

{C} = (1 − α) {C}t + α {C}t+�t , (8.25)
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where 0 ≤ α ≤ 1. If α = 1, the solution scheme is fully implicit, while if α = 0,
the solution scheme is fully explicit. If {C} is approximated at a time, t + (�t/2),
Eq. (8.19) can be rewritten as follows:

(
1

2
[A] + 1

�t
[R]

)
{C}t+�t =

(
1

�t
[R] − 1

2
[A]

)
{C}t + {f }t+(�t/2) . (8.26)

8.1.1.3 Weighting and Shape Functions of the Upwind Finite Element

For a two-dimensional four-node finite element shown in Fig. 8.1, the conventional
shape function of the element is well known (Zienkiewicz 1977). The asymmetrical
weighting functions for each node of the element can be expressed by the following
equations (Zhao and Valliappan 1994b; Zhao et al. 1994):

W1i = 1

16
[(1 + ξ) (−3α2iξ + 3α2i + 2)]

[
(1 + η)

(−3β1iη + 3β1i + 2
)]

(i = 1, 2),
(8.27)

W2i = 1

16
[(1 + ξ) (3α2iξ − 3α2i − 2)+ 4]

[
(1 + η)

(−3β2iη + 3β2i + 2
)]

(i = 1, 2),
(8.28)

W3i = 1

16
[(1 + ξ) (3α1iξ − 3α1i − 2)+ 4]

[
(1 + η)

(
3β2iη − 3β2i − 2

)+ 4
]

(i = 1, 2),
(8.29)

W4i = 1

16
[(1 + ξ) (−3α1iξ + 3α1i + 2)]

[
(1 + η)

(
3β1iη − 3β1i − 2

)+ 4
]

(i = 1, 2),
(8.30)

where W11, W21, W31 and W41 are the weighting functions of nodes 1, 2, 3 and
4 of the element for the porous block; W12, W22, W32 and W42 are the weighting
functions of nodes 1, 2, 3 and 4 of the element for the fissured network; ξ and η

Fig. 8.1 Definition of a
four-node upwind finite
element
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are the local isoparametric coordinates of the element; α11, β11, α21 and β21 are the
upwind parameters corresponding with sides 3-4, 4-1, 2-1 and 3-2 of the element for
the porous block; α12, β12, α22 and β22 are the upwind parameters corresponding
with sides 3-4, 4-1, 2-1 and 3-2 of the element for the fissured network.

For the upwind finite element scheme, the signs of these upwind parameters
depend on the signs of the average pore-fluid flow velocities of the element sides,
representing the advective flow direction associated with the contaminant transport
process in the fractured porous medium. For this reason, these upwind parameters
are expressed as

αij = α
opt
ij sign

(
Vj
)

(i = 1, 2; j = 1, 2), (8.31)

β ij = β
opt
ij sign

(
Vj
)

(i = 1, 2; j = 1, 2), (8.32)

where αopt
ij and βopt

ij (i = 1, 2; j = 1, 2) are the optimal values of the upwind param-

eters for the related element sides; V1 is the corresponding average speed of pore-
fluid flow along the element side for the porous block; V2 is the corresponding
average speed of pore-fluid flow along the element side for the fissured network; V1
and V2 can be determined using the following formulas:

V1 = 1

2

(�V1p + �V1q
) • �Ipq, (8.33)

V2 = 1

2

(�V2p + �V2q
) • �Ipq, (8.34)

where p and q are the node numbers of an element side; �V1p and �V1q are the velocity
vectors of nodes p and q of the element for the porous block; �V2p and �V2q are the
velocity vectors of nodes p and q of the element for the fissured network; �Ipq is
the direction vector of the element side in the local coordinate system with the same
positive direction as that of the local coordinate system of the element.

The optimal values of upwind parameters depend on the Courant number of the
element side and can be determined using the following equations (Huyakorn and
Nilkuha 1979; Zhao et al. 1994):

α
opt
ij = coth

(∣∣Vj
∣∣�l

2Dix

)

− 2Dix∣∣Vj
∣∣�l

(i = 1, 2; j = 1, 2), (8.35)

β
opt
ij = coth

(∣
∣Vj
∣
∣�l

2Diy

)

− 2Diy∣∣Vj
∣∣�l

(i = 1, 2; j = 1, 2), (8.36)

where coth stands for the hyperbolic cotangent function; �l is the characteristic
length of the element.

To obtain satisfactory solutions, the derivatives, ∂Wij
/
∂ξ and ∂Wij

/
∂η (i =

1, 2, 3, 4; j = 1, 2), of the element need to be evaluated in such a way that when
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differentiation is taken with respect to one particular coordinate variable, the values
of the upwind parameters along the remaining coordinate variables must be set to
zero. Thus, the derivatives of the upwind weighting functions of the element can be
expressed as follows:

∂W1i

∂ξ
= −1

4
(1 + η) (3α2iξ − 1) (i = 1, 2), (8.37)

∂W2i

∂ξ
= 1

4
(1 + η) (3α2iξ − 1) (i = 1, 2), (8.38)

∂W3i

∂ξ
= 1

4
(1 − η) (3α1iξ − 1) (i = 1, 2), (8.39)

∂W4i

∂ξ
= −1

4
(1 − η) (3α1iξ − 1) (i = 1, 2), (8.40)

∂W1i

∂η
= −1

4
(1 + ξ )

(
3β1iη − 1

)
(i = 1, 2), (8.41)

∂W2i

∂η
= −1

4
(1 − ξ )

(
3β2iη − 1

)
(i = 1, 2), (8.42)

∂W3i

∂η
= 1

4
(1 − ξ )

(
3β2iη − 1

)
(i = 1, 2), (8.43)

∂W4i

∂η
= 1

4
(1 + ξ )

(
3β1iη − 1

)
(i = 1, 2). (8.44)

If the conventional mapping technique for isoparametric elements is used, substi-
tuting the asymmetrical upwind weighting functions and conventional shape func-
tions of the element into Eqs. (8.10), (8.11), (8.12) and (8.13) yields the following
property matrices of the proposed upwind finite element for simulating transient
contaminant transport problems in double porosity media:

[Ei]
e =

∫ 1

−1

∫ 1

−1

(

Dix
∂ [W]T

i

∂x

∂ [N]

∂x
+ Diy

∂ [W]T
i

∂y

∂ [N]

∂y

)

|J| dξdη (i = 1, 2),

(8.45)

[Hi]
e =

∫ 1

−1

∫ 1

−1

(
Vix [W]T

i
∂ [N]

∂x
+ Viy [W]T

i
∂ [N]

∂y

)
|J| dξdη (i = 1, 2), (8.46)

[Qi]
e =

∫ 1

−1

∫ 1

−1

(
[N]T [N]

) |J| dξdη (i = 1, 2), (8.47)

[Ri]
e =

∫ 1

−1

∫ 1

−1

(
[N]T [N]

) |J| dξdη (i = 1, 2), (8.48)

where |J| is the Jacobian determinant of the upwind finite element.
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8.1.2 Fundamental Formulas of Mapped Transient Infinite
Elements for Simulating Transient Contaminant
Transport Problems

To illustrate the fundamental concept of transient infinite elements, a one-
dimensional contaminant transport problem in a fluid-saturated porous medium of
an infinite domain is considered in this subsection. Supposing that a unit point con-
taminant concentraction exists at x = 0 and a unidirectional pore-fluid flow is along
the positive direction of the x axis, both advection and dispersion will take place
from the origin of the x axis (x = 0) to the far field of the system. The governing
equation for the resulting one-dimensional transient contaminant transport problem
in a fluid-saturated porous medium can be expressed as

∂C

∂t
= Dx

∂2C

∂x2
− Vx

∂C

∂x
, (8.49)

where Dx is the dispersion coefficient of contaminant in the x direction; Vx is the
average linear velocity of the unidirectional pore-fluid flow; C is the contaminant
concentration in the fluid-saturated porous medium.

Since Eq. (8.49) is one-dimensional in space, the analytical solution for this equa-
tion with Dx and Vx constant and a given initial contaminant concentration at the
origin of the global coordinate system is available (Ogata and Banks 1961).

C(x, t) = C0√
4πDxt

exp

[
− (x − Vxt)2

4Dxt

]
, (8.50)

where C0 is the concentration of the point contaminant source at the origin of the
global coordinate system.

For a typical one-dimensional transient infinite element shown in Fig. 8.2, the
global coordinate of node 1 is x1 and the local coordinate of this node is identi-
cal to zero. The contaminant concentration at this node for a given time, t, can be
expressed as follows:

C(x1, t) = C0√
4πDxt

exp

[
− (x1 − Vxt)2

4Dxt

]
. (8.51)

For any point within this one-dimensional transient infinite element, taking x =
x1 +�x as an example, the contaminant concentration of this point can be derived
from Eq. (8.51).

Fig. 8.2 One-dimensional
mapped transient infinite
elements



8.1 Coupled Method for Simulating Contaminant Transport Problems 211

C(x1 +�x, t) = C(x1, t) exp

[
−�x2 + 2�x(x1 − Vxt)

4Dxt

]
. (8.52)

Considering the fact that ξ = �x for this one-dimensional transient infinite ele-
ment, the mass transport function of this element can be expressed as

Fmt(ξ , t) = exp

[
−ξ

2 + 2(x1 − Vxt)ξ

4Dxt

]
. (8.52)

As a result, the contaminant concentration field within the one-dimensional tran-
sient infinite element can be expressed in the form:

C (ξ ,t) = C1Fmt (ξ ,t) = C1N1, (8.54)

where C1 is the nodal contaminant concentration of the one-dimensional transient
infinite element; C is the contaminant concentration within the one-dimensional
transient infinite element; N1 is the shape function of the one-dimensional tran-
sient infinite element. Note that the mass transport function of the transient infinite
element is identical to the shape function for simulating one-dimensional transient
contaminant transport problems.

Figures 8.3 and 8.4 show the distributions of the mass transport function for sev-
eral cases. In these figures, Vx = 0 and Vx = 0.1 m d−1 are considered to illustrate
the effects of the pore-fluid flow velocity on the distribution of the mass transport
function. Not only can both the dispersion coefficient and the pore-fluid flow veloc-
ity have considerable influences on the distribution of the mass transport function,
but also the time in the analysis can have a significant effect on the distribution of the
mass transport function of the transient infinite element. It is the explicit considera-
tion of the effect of a time variable that determines the characteristic of the proposed
transient infinite element. On the other hand, since the mass transport function of
the transient infinite element explicitly depends on time, it can be concluded that
the time effect should be considered in the process of constructing transient infinite
elements for simulating various transient problems. Otherwise, errors in the corre-
sponding numerical simulation will inevitably occur.

The above procedure, associated with the one-dimensional transient infinite
element, can be extended to the construction of two-dimensional transient infi-
nite elements for simulating transient contaminant transport problems in fractured
porous media of infinite domains (Zhao and Valliappan 1994b). If the near field
of an infinite domain system is appropriately chosen, the leakage effect between
the porous block and the fissured network in the far field of the system may become
negligible as a result of the term, φ1C1 −φ2C2 in Eq. (8.3), approaching zero. In this
case, the mass transport functions of a transient infinite element can be expressed as

F1mt(ξ ,t) = exp

[

−ξ
2 + 2(x1 − V1ξ t)ξ

4D1ξ t

]

, (8.55)
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Fig. 8.3 Distributions of mass transport functions of the transient infinite element (Vx = 0)

F2mt(ξ ,t) = exp

[

−ξ
2 + 2(x1 − V2ξ t)ξ

4D2ξ t

]

, (8.56)

where F1mt and F2mt are the mass transport functions of the transient infinite element
for the porous block and fissured network, respectively; V1ξ and V2ξ are the average
linear pore-fluid flow velocities in the ξ direction of the local coordinate system;
D1ξ and D2ξ are the dispersion coefficients in the ξ direction of the local coordinate
system.
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Fig. 8.4 Distributions of mass transport functions of the transient infinite element (Vx =
0.1 m d−1)

Based on the mass transport functions of transient infinite elements, the
contaminant concentration shape function matrix of a two-dimensional transient
infinite element can be derived (Zhao and Valliappan 1994b). Figure 8.5 shows a
two-dimensional four-node transient infinite element, for which the mapping rela-
tionship between the global and local coordinate systems can be expressed as

x =
4∑

i=1

Mixi, (8.57)
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Fig. 8.5 Two-dimensional
mapped transient infinite
elements

y =
4∑

i=1

Miyi, (8.58)

where Mi is the mapping function at each node of the element, viz.,

M1 = 1

2
(1 − ξ )(1 − η), (8.59)

M2 = 1

2
(1 − ξ )(1 + η), (8.60)

M3 = 1

2
ξ (1 + η), (8.61)

M4 = 1

2
ξ (1 − η). (8.62)

The contaminant concentration field within the two-dimensional transient infinite
element shown in Fig. 8.5 can be defined as

Ci =
2∑

j=1

N̂jiCji = [N̂]i

{
C1i

C2i

}
(i = 1, 2), (8.63)

where C1 and C2 are the contaminant concentrations for the porous block and

fissured network;
[
N̂
]

1
and

[
N̂
]

2
are the shape function matrices of the two-

dimensional transient infinite element for the porous block and fissured network;
N̂1i and N̂2i (i = 1, 2) are the shape functions of nodes 1 and 2 for the porous block
and fissured network, respectively.

N̂1i = 1

2
Fimt(ξ ,t)(1 − η) (i = 1, 2), (8.64)

N̂2i = 1

2
Fimt(ξ ,t)(1 + η) (i = 1, 2). (8.65)

Since the number of nodes used for the definition of the shape of the two-
dimensional transient infinite element is greater than that used for defining the
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contaminant concentration field of the two-dimensional transient infinite element,
the corresponding two-dimensional parent transient infinite element is a superpara-
metric element.

Based on the same procedures as those used in the conventional finite element
method (Zienkiewicz 1977; Zhao and Valliappan 1994b), the property matrices of
this two-dimensional transient infinite element can be expressed as

[Êi]
e =

∫ ∞

0

∫ 1

−1

(

Dix
∂[Ŵ]T

i

∂x

∂[N̂]i

∂x
+ Diy

∂[Ŵ]T
i

∂y

∂[N̂]i

∂y

)

|J| dηdξ (i = 1, 2),

(8.66)

[Ĥi]
e =

∫ ∞

0

∫ 1

−1

(

Vix[Ŵ]T
i
∂[N̂]i

∂x
+ Viy[Ŵ]T

i
∂[N̂]i

∂y

)

|J| dηdξ (i = 1, 2),

(8.67)

[Q̂i]
e = [R̂i]

e =
∫ ∞

0

∫ 1

−1

(
[N̂]T

i [N̂]i

)
|J| dηdξ (i = 1, 2), (8.68)

[
N̂
]

i
=
[
N̂1i N̂2i

]
, (i = 1, 2), (8.69)

[
Ŵ
]

i
=
[
Ŵ1i Ŵ2i

]
, (i = 1, 2), (8.70)

where |J| is the Jacobian determinant of the two-dimensional transient infinite
element.

To reflect the upwind effect for the two-dimensional transient infinite element,
the following asymmetric weighting functions are used in evaluating the property
matrices of the two-dimensional transient infinite elements:

[
Ŵ (ξ , η, t)

]

i
=
[
N̂ (ξ , η, t −�t)

]

i
, (i = 1, 2), (8.71)

By using the variable substitution technique and letting ξ = (1 + β)
/

(1 − β) ,
Eqs. (8.66), (8.67) and (8.68) can be rewritten as

[Êi]
e
1 =

∫ 1

−1

∫ 1

−1

(

Dix
∂[Ŵ]T

i

∂x

∂[N̂]i

∂x
+ Diy

∂[Ŵ]T
i

∂y

∂[N̂]i

∂y

)
2

(β − 1)2
|J| dηdβ (i = 1, 2),

(8.72)

[Ĥi]
e
1 =

∫ 1

−1

∫ 1

−1

(

Vix[Ŵ]T
i
∂[N̂]i

∂x
+ Viy[Ŵ]T

i
∂[N̂]i

∂y

)
2

(β − 1)2
|J| dηdβ (i = 1, 2),

(8.73)

[Q̂i]
e
1 = [R̂i]

e
1 =

∫ 1

−1

∫ 1

−1

(
[N̂]T

i [N̂]i

) 2

(β − 1)2
|J| dηdβ (i = 1, 2). (8.74)
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Fig. 8.6 Two-dimensional
mapped transient bi-infinite
elements

Equations (8.72), (8.73) and (8.74) indicate that the property matrices of the two-
dimensional transient infinite element can be evaluated using the Gauss–Legendre
integration scheme.

It is noted that under certain situations, a two-dimensional three-node transient
bi-infinite element, as shown in Fig. 8.6, can be useful for the numerical analysis.
Similarly, the mapping relationship of this two-dimensional three-node transient bi-
infinite element can be defined as follows:

x =
3∑

i=1

Mixi, (8.75)

y =
3∑

i=1

Miyi, (8.76)

where Mi is the mapping function at each node of the two-dimensional three-node
transient bi-infinite element

M1 = (1 − ξ )(1 − η), (8.77)

M2 = 1

2
ξ (1 + η), (8.78)

M3 = 1

2
(1 + ξ )η. (8.79)

The contaminant concentration shape function of this two-dimensional three-
node transient bi-infinite element can be expressed as

[N̂]i = [N̂1]i = [Fimt(ξ , t)Fimt(η, t)] (i = 1, 2), (8.80)

where

Fimt(ξ , t) = exp

[

−ξ
2 + 2(x1 − Viξ t)ξ

4Diξ t

]

(i = 1, 2), (8.81)
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Fimt(η, t) = exp

[

−η
2 + 2(y1 − Viηt)η

4Diηt

]

(i = 1, 2). (8.82)

Finally, the property matrices of the two-dimensional three-node transient bi-
infinite element can be derived (Zhao and Valliappan 1994b).

[Êi]
e
2 =

∫ 1

−1

∫ 1

−1

(

Dix
∂[Ŵ]T

i

∂x

∂[N̂]i

∂x
+ Diy

∂[Ŵ]T
i

∂y

∂[N̂]i

∂y

)

4

(β − 1)2(γ − 1)2
|J| dγ dβ (i = 1, 2), (8.83)

[Ĥi]
e
2 =

∫ 1

−1

∫ 1

−1

(

Vix[Ŵ]T
i
∂[N̂]i

∂x
+ Viy[W]T

i
∂[N̂]i

∂y

)

4

(β − 1)2(γ − 1)2
|J| dγ dβ (i = 1, 2), (8.84)

[Q̂i]
e
2 = [R̂i]

e
2 =

∫ 1

−1

∫ 1

−1

(
[W]T

i [N̂]i

) 2

(β − 1)2(γ − 1)2
|J| dγ dβ (i = 1, 2),

(8.85)
[
Ŵ (ξ ,η,t)

]

i
=
[
N̂ (ξ ,η,t −�t)

]

i
, (i = 1, 2). (8.86)

After the property matrices of both upwind finite elements and transient infinite
elements are obtained, the coupled computational method of upwind finite elements
and transient infinite elements can be used to solve transient contaminant transport
problems in fractured porous media of infinite domains. As the present transient
infinite element explicitly depends on time, the corresponding property matrices
need to be evaluated at each time step in the computation so that the accuracy of
numerical results can be ensured for any time of interest.

8.1.3 Verification of the Coupled Computational Method
of Upwind Finite Elements and Transient Infinite Elements

The correctness and usefulness of the coupled computational method of upwind
finite elements and transient infinite elements can be verified by some simple but
critical problems, for which the exact analytical solutions are already available.
To examine the two-dimensional behaviour of the proposed transient infinite ele-
ments, a fundamental problem with a given contaminant concentration at the centre
of a single porosity medium in a horizontal infinite plane is considered in this sub-
section. This can be carried out by simply setting the exchange term in a double
porosity medium to zero so that the double porosity medium can be treated as two
overlapping independent media of single porosity. Figure 8.7 shows the discretized



218 8 Theory and Application of Transient Infinite Elements

Fig. 8.7 Coupled
computational model of a
verification problem: (a)
squared finite element mesh;
(b) inclined finite element
mesh

model of this problem, where the origin of the global coordinate system is sub-
jected to a point contaminant source with the concentration of 100 mg cm–3 (i.e.
C 0 = 100 mg cm–3) at t = 0. For the purpose of investigating the effect of the
finite element mesh on the numerical results, the near field of the system, which is
chosen as 80 × 80 m, has been simulated by squared regular finite elements (see
Fig. 8.7(a)) and by inclined irregular finite elements (see Fig. 8.7(b)). The far field
is simulated by two-dimensional transient mapped infinite elements as proposed in
this chapter. The following parameters are used in the numerical analysis: the aver-
age linear velocities of pore-fluid flow are 0.05 m d–1 in the x and y directions; the
diffusion/dispersion coefficients are 0.5 m2 d–1 in the x and y directions; the time
step used in the computation is 10 days.

Figure 8.8 shows the comparison between the current numerical and the analyt-
ical solutions (Lardner and Song 1991). In this figure, the dimensionless concen-
tration distributions of the contaminant in the near field of the first quadrant of the
global coordinate system, namely in the region of 40 m ≥ x ≥ 0 and 40 m ≥ y ≥ 0,
have been displayed at three different time instants. It is noted that, in terms of
the numerical solutions shown in Fig. 8.8, the solid lines represent the numerical
results obtained by using the mesh of squared regular finite elements, while the
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Fig. 8.8 Comparison of numerical results with analytical solutions

dashed lines express the numerical results from using the mesh of inclined irregular
finite elements. From this figure, it can be observed that excellent coincidence exists
between the current numerical results and the analytical solutions, even though the
near field simulated by finite elements is very small. This demonstrates that the
coupled computational method of upwind finite elements and transient infinite ele-
ments is very useful for the numerical simulation of transient contaminant transport
problems in fluid-saturated porous media of infinite domains. In addition, it is clear
that the numerical results obtained by using the mesh of the squared regular finite
elements yield good agreement with those using the mesh of the inclined irregular
finite elements. This illustrates that the coupled method of upwind finite elements



220 8 Theory and Application of Transient Infinite Elements

and transient infinite elements can be used to solve transient contaminant transport
problems with irregular meshes in the near field of the system.

8.2 Parametric Study of Transient Contaminant Transport
Problems in Fractured Porous Media of Infinite Domains

Although the quantitative application of a numerical model to a contaminant trans-
port problem in natural environments is limited by difficulties in determining the
values of distributions of appropriate field parameters, a sophisticated numerical
model can play a useful role in demonstrating the sensitivity of a contaminant trans-
port process to each of the parameters involved. The resulting information from this
kind of study may provide an improved understanding of the effect of each parame-
ter on the contaminant transport process. In this regard, the sophisticated numerical
model can lead to greater efficiency and insight in the process of collecting field
data. This is the main reason for conducting a parametric study on contaminant
transport processes in fractured porous media of infinite domains in this section.

Regarding the determination of material parameters involved in the governing
equations of transient contaminant transport problems in fractured porous media,
Rowe et al. (1988) proposed some laboratory techniques for assessing the effective
matrix porosity so that a reduction in the total porosity obtained by normal geotech-
nical procedures is considered as a result of the dead-end pores and pores too small
to permit contaminant transport. On the other hand, if a fissured network is com-
prised of three orthogonally intersecting sets of equally spaced, parallel fractures,
Rowe and Booker (1989, 1990a, b, 1991) presented the relationships between the
fissure spacing and related parameters. The general form of such relationships can
be expressed in the x direction as follows:

vax = v f
1x

h1

H1
+ v f

2x
h2

H2
, (8.87)

Dax = D f
1x

h1

H1
+ D f

2x
h2

H2
, (8.88)

φf = h1

H1
+ h2

H2
+ h3

H3
, (8.89)

where v f
1x and v f

2x are the average linear pore-fluid velocities in sets one and two of

fissures, the normal of whose surfaces are perpendicular to the x axis; Df
1x and Df

2x
are the corresponding dispersion coefficients of these two sets of fissures; vax is the
Darcy velocity in the x direction; Dax is the apparent dispersion coefficient of the
fissured network in the x direction; φf is the porosity of the fissured network; h1 and
h2 are the widths of these two sets of fissures under consideration; H1 and H2 are
the corresponding fissure spacing for these two sets of fissures; h3 and H3 are the
width and spacing of the third set of fissures, of which the normal surface is parallel
to the x axis.
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For a two- or three-dimensional contaminant transport problem, similar formulas
to those expressed in Eqs. (8.87) and (8.88) can be employed to determine the values
of the Darcy velocity and apparent dispersion coefficient of the fissured network in
the y and z directions. Since the fissure characteristics of a fissured network can be
represented by the parameters such as vax, Dax and φf , instead of using the fissure
spacing and width directly, average linear pore-fluid velocities, dispersion coeffi-
cients and the porosity of the fissured network are used to investigate the effects
of the fissured network on transient contaminant transport processes in fractured
porous media.

8.2.1 Effects of the Leakage between a Porous Block
and a Fissured Network on Contaminant Concentration
Distributions in the Fractured Porous Medium

In this subsection, the effects of leakages between porous blocks and fissured net-
works on contaminant transport processes in fractured porous media of infinite
domains are considered using the coupled method of upwind finite elements and
transient infinite elements. Such leakage effects reflect the interactions between
porous blocks and fissured networks in fractured porous media. From a mathe-
matical point of view, since a distributed contaminant source can be decomposed
into a sum of several point contaminant sources, the use of a point contaminant
source may be the best choice for investigating the general contaminant transport
mechanism in fractured porous media of infinite domains. For this reason, a fun-
damental mass transport problem with an initial point contaminant source of a
given concentration at the centre of a horizontal infinite plane is considered in this
subsection.

As shown in Fig. 8.9, the origin of the coordinate system is subjected to a point
contaminant source with a concentration of 1 kg m–3 at t = 0. This means that the
initial boundary condition of the problem is C(x, y, t) = δ(x)δ(y)δ(t) kgm−3, where δ
is the Kronecker delta with a value of either one or zero. The whole problem domain
is divided into a near field (|x|<100 m, |y|<100 m) and a far field (|x|>100 m, |y|>
100 m), so that the interface between the near field and the far field is presented by
the four lines expressed by x = ±100 m (|y|≤100 m) and y = ±100 m (|x|≤100 m)
in the computational model. The near field of the problem domain is simulated using
upwind finite elements, while the far field of the problem domain is simulated using
transient infinite elements. To investigate the effect of advective pore-fluid flow on
the contaminant transport process in a fractured porous medium, it is assumed that
the positive direction of the pore-fluid flow is in coincidence with that of the x axis.

The following parameters are used in the coupled computational model of
upwind finite elements and transient infinite elements. For the porous continuum,
the average linear velocities of pore-fluid flow are 0.1 m d−1 and 0 m d−1 in the x
and y directions, respectively; the dispersion coefficients are 1 m2d−1 and 0.1 m2d−1

in the x and y directions. For the fissured continuum, both the average linear veloc-
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Fig. 8.9 Computational
model of contaminant
transport in a fractured
porous medium: the near field
is simulated using finite
elements, while the far field is
simulated using transient
infinite elements

ities of pore-fluid flow and the dispersion coefficients in the x and y directions are
exactly the same as those used for the porous continuum. Since only the poros-
ity ratio between the fissured continuum (representing the fissured network) and
the porous continuum (representing the porous block) is involved in the governing
equations of contaminant transport problems in fractured porous media, which are
treated as double porosity continua, the porosity ratio of the fissured continuum to
the porous continuum, φ2/φ1, is assumed to be 4, while the porosity of the contin-
uum (i.e. φ1) is 0.05 in the computational model of the overlapping double porosity
continua. Regarding the discretization of time, the central difference scheme (Zhao
and Valliappan 1994b, c) is used with a time step of�t = 10 days. Since the leakage
due to the solute diffusion between the porous block and the fissured network can
be considered by a transmissive coefficient in the computational model, six different
transmissive coefficients between the porous and fissured continua, namely χ =0,
0.001, 0.005, 0.01, 0.1 and 1.0 per unit time, are used to investigate the effects of
leakages between the porous block and the fissured network on the contaminant
concentration distributions in the fractured porous medium.

Figures 8.10 and 8.11 show the dimensionless concentration distribution of con-
taminant in the near field of the first quadrant of the fractured porous medium at
t = 100 and 400 days, respectively. Note that the dimensionless contaminant con-
centration is defined as (C/C0) × 103. In these figures, Tr is used to represent the
transmissive coefficient between the porous and fissured continua so that Tr = χ

in this subsection. The numerical results shown in the left columns are obtained
from the porous continuum, which is used to represent the porous block, while
the numerical results shown in the right columns are obtained from the fissured
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Fig. 8.10 Effects of leakages on dimensionless contaminant distributions in the fractured porous
medium (t = 100 days)

continuum, which is used to represent the fissured network of the fractured porous
medium. As the strength of the leakage between the porous block and the fissured
network can be represented by the value of the transmissive coefficient, the related
numerical results indicate that the strength of the leakage has a significant effect on
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Fig. 8.11 Effects of leakages on dimensionless contaminant distributions in the fractured porous
medium (t = 400 days)

the dimensionless concentration distribution of contaminant in the fractured porous
medium. With an increase in the value of the transmissive coefficient, Tr, the maxi-
mum value of the dimensionless contaminant concentration increases in the porous
block, but decreases in the fissured network. With t = 100 days taken as an example,
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the maximum values of the dimensionless contaminant concentration in the case of
no leakage (i.e. Tr = 0) between the two continua are 1.86 for both the porous block
and the fissured network. However, the corresponding maximum values for Tr =
0.01(1/s) are 4.29 and 1.26 for the porous block and the fissured network, respec-
tively. This indicates that a higher concentration may appear in the porous block
because the porosity of the porous block is smaller than that of the fissured network
in the computational model. Since advective pore-fluid flow is considered in the x
direction only, both advection and dispersion take place in this direction, so that
the contaminant transport speed in the x direction is much faster than that in the y
direction.

With the increase of time, the maximum values of the dimensionless contam-
inant concentration in both the porous block and the fissured network decrease
because the contaminant spreads over a broad area due to the development of
solute advection and dispersion in the fractured porous medium. For instance, when
Tr = 0.01(1/s), the maximum values of the dimensionless contaminant concentra-
tion are 4.29 and 1.26 at t = 100 days for the porous block and the fissured network,
respectively, while they are 1.41 and 0.35 at t = 400 days for the porous block and
the fissured network. The numerical results also indicate that the proposed coupled
model of upwind finite elements and transient infinite elements reflects the mass
conservation law very well during contaminant transport in the fractured porous
medium. Since the contaminant has reached the right boundary of the upwind finite
elements (at x = 100 m) in the x direction but only reached about one-third of the
near field (at y = 30 m) in the y direction when t = 400 days, it can be concluded
that pore-fluid flow advection plays an important role in the contaminant transport
processes in fractured porous media of infinite domains. Although the transmissive
coefficient between the porous block and the fissured network has a significant influ-
ence on the contaminant concentration distribution in the fractured porous medium,
it has little effect on the contaminant transport speed in the coupled computational
model of upwind finite elements and transient infinite elements.

Figures 8.12 and 8.13 show the dimensionless contaminant concentration versus
time at six observation points in the computational model of the fractured porous
medium. In these figures, the unit of time is day. Similarly, the results shown in
the left columns are obtained for the porous continuum, while the results shown
in the right columns are obtained for the fissured continuum. These results clearly
indicate that the contaminant arrives at different observation points with different
times. For example, the first arrival time of the contaminant at the observation point
of x = 20 m and y = 0 m is about 20 days, while the corresponding arrival times
at the other two observation points, namely (x = 60 m, y = 0 m) and (x =–20 m,
y = 0 m), are about 100 and 35 days, respectively. Since the three observation points
are located on the x axis and the contaminant source is located at the origin of
the coordinate system when t = 0, both advection and dispersion take place at the
three observation points in the fractured porous medium. Owing to the effect of a
dispersion process, the contaminant arrives at the upstream observation point of
x = –20 m and y = 0 m after it arrives at the downstream observation point of
x = 20 m and y = 0 m. Through comparing the arrival time of the contaminant at an
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Fig. 8.12 Time-history distributions of dimensionless contaminant concentration due to different
transmissive coefficients

observation point in the x axis with that at similar observation point, which is of the
same distance from the origin of the coordinate system but is located in the y axis, it
has been found that the contaminant travels much faster in the x direction than in the
y direction. The first arrival time of the contaminant is 20 days for the observation
point of x = 20 m and y = 0 m, while it is 200 days for the observation point of x
= 0 m and y = 20 m. Since only dispersion takes place in the y direction, the first
arrival time of the contaminant is identical for the three observation points shown
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Fig. 8.13 Time-history distributions of dimensionless contaminant concentration due to different
transmissive coefficients

in Fig. 8.13. These three observation points have the same y coordinates (i.e. y =
20 m) but different x coordinates (i.e. x = 0, 20 and 60 m, respectively). Owing to
the advection effect, the first arrival time of the contaminant is different for a pair of
symmetric observation points at the x axis, as can be seen from the two observation
points at x = 20 m and x = –20 m at the x axis of the coordinate system.

In terms of the leakage effect between the porous block and the fissured net-
work on the contaminant transport process in the fractured porous medium, it
has been recognized that when the transmissive coefficient, Tr, is within a range
between 0 and 0.005 s–1, any small change in its value can have a profound influ-
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ence on the dimensionless contaminant concentration distribution in the fractured
porous medium. However, when the transmissive coefficient becomes greater, an
increase in its value has only some effects on the dimensionless contaminant con-
centration distribution in a limited adjacent region around the input contaminant
source during the early period of time. This means that if the leakage effect between
the porous block and the fissured network is weak, great caution should be taken for
determining the value of the transmissive coefficient because it is very sensitive to
the contaminant concentration distribution in both the near field and the far field of
the system. On the other hand, if the leakage effect between the porous block and
the fissured network is strong, any variation in the value of the transmissive coeffi-
cient has only a short-term effect on the contaminant concentration distribution in
the near field of the system.

8.2.2 Effects of Medium Porosities on Contaminant Concentration
Distributions in the Porous Block and Fissured Network

To investigate the effects of the porosities of the medium in both the porous
block and the fissured network on contaminant transport processes in fractured
porous media of infinite domains, the same fundamental problem as considered in
Sect. 8.2.1 is simulated by the coupled computational model of upwind finite ele-
ments and transient infinite elements in this subsection. The following parameters
are used in the coupled computational model. For the porous continuum, both the
average linear velocities of pore-fluid flow and the dispersion coefficients in the x
and y directions are exactly the same as those used in Sect. 8.2.1. For the fissured
continuum, the average linear velocities of pore-fluid flow and the dispersion coef-
ficients in the x and y directions are assumed to be the same as those used for the
porous continuum. The transmissive coefficient between the porous and fissured
continua is 0.01 (1/s). The porosity of the porous continuum (i.e. φ1) is 0.05. Five
different porosity ratios of the fissured continuum to the porous continuum, namely
φ2/φ1=1, 2, 4, 6 and 10, are considered to investigate the effects of medium porosi-
ties on the contaminant concentration distribution in the fractured porous medium.

Figures 8.14 and 8.15 show the dimensionless concentration distribution of the
contaminant in the near field of the first quadrant of the fractured porous medium
at two different time instants. In these figures, n2, is used to represent the poros-
ity ratio of the fissured medium to the porous medium, φ2/φ1, so that n2 = φ2/φ1
in this subsection. Clearly, the porosity ratio of the fissured medium to the porous
medium has a significant influence on the dimensionless concentration distribution
of the contaminant in the computational model of the fractured porous medium. The
greater the porosity ratio of the fissured medium to the porous medium, the greater
the dimensionless contaminant concentration in the near field of the porous medium
is. Owing to the mass conservation of the contaminant, the greater the porosity
ratio, the smaller the dimensionless contaminant concentration in the fissured
medium is.

With an increase in the porosity ratio of the fissured medium to the porous
medium, the maximum value of the dimensionless contaminant concentration
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( 22 =n )

( 62 =n )

( 42 =n )

Fig. 8.14 Effects of porosity ratios on dimensionless contaminant distributions in the fractured
porous medium (t = 100 days)

increases in the porous block but decreases in the fissured network. For example,
the maximum values of the dimensionless contaminant concentration in the case of
n2 = φ2/φ1=2 are 1.575 and 0.795 for the porous block and the fissured network,
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( 22 =n )

( 42 =n )

( 62 =n )

Fig. 8.15 Effects of porosity ratios on dimensionless contaminant distributions in the fractured
porous medium (t = 400 days)
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respectively, while the corresponding maximum values in the case of n2= 6 are
3.469 and 0.624, indicating that more contaminant may reside in the porous block
when the porosity of the porous block is smaller than that of the fissured network.
Since pore-fluid flow is considered in the x direction only, both advection and dis-
persion takes place in this direction, so that the contaminant transport speed in the x
direction is faster than that in the y direction of the computational model. With the
increase of time, the maximum value of the dimensionless contaminant concentra-
tion for both the porous medium and the fissured medium decreases as a result of
the wide spread of the contaminant. Since the average linear velocity of the pore-
fluid flow in the x direction is constant in the computational model, a change in
the porosity ratio of the fissured medium to the porous medium has little effect on
the contaminant transport speed in the computational model, even though it has a
significant influence on the contaminant concentration distribution in the fractured
porous medium.

Figures 8.16 and 8.17 show the dimensionless contaminant concentration versus
time at several observation points of the computational model. Due to the consider-
ation of a point contaminant source acting at the origin of the coordinate system at
t = 0, the contaminant arrives at different observation points with different times,
indicating that the contaminant concentration distribution is dependent on both
space and time. Since the porosity ratio of the fissured medium to the porous
medium and the transmissive coefficient between the porous medium and the fis-
sured medium play similar roles in the contaminant transport process for the dou-
ble porosity model of a fractured porous medium, the same conclusions as those
obtained in Sect. 8.2.1 can be made on the first arrival time of the contaminant at
a given observation point in the coupled computational model of upwind finite ele-
ments and transient infinite elements.

Regarding the effects of the porosity ratio of the fissured medium to the porous
medium on the contaminant concentration distribution in the fractured porous
medium, the related numerical results (in Figs. 8.16 and 8.17) indicate that within
the parameter range studied, a slight change in the value of the porosity ratio can
have a significant effect on both the short-term and the long-term contaminant
concentration distributions in the fractured porous medium of infinite domain. For
example, in the case of x = 20 m and y = 0 m, the dimensionless contaminant con-
centrations of the porous block at t = 100 days are 1.51, 2.16, 3.47, 4.77 and 7.38
for n2 = φ2/φ1=1, 2, 4, 6 and 10, respectively, while the corresponding dimension-
less contaminant concentrations at t = 500 days are 0.30, 0.45, 0.74, 1.04 and 1.63
for n2 = φ2/φ1=1, 2, 4, 6 and 10. Although the dimensionless contaminant con-
centrations in both the porous block and the fissured network at each observation
point vary as time goes on, their change rates are considerably different for different
porosity ratios of the fissured medium to the porous medium in the fractured porous
medium. This indicates that great caution should be taken for determining the value
of the porosity ratio of the fissured network to the porous block because it can sig-
nificantly affect the contaminant concentration distribution in both the near field and
the far field of a fractured porous medium.
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Fig. 8.16 Time-history distributions of dimensionless contaminant concentration due to different
porosity ratios

8.2.3 Effects of Pore-Fluid Advection on Contaminant
Concentration Distributions in the Porous Block
and Fissured Network

The main purpose of this subsection is to investigate the effects of pore-fluid advec-
tion on contaminant concentration distributions in the porous block and fissured net-
work of a fractured porous medium. For this purpose, a fundamental mass transport
problem with an initial point contaminant source at the centre of a horizontal infi-
nite plane consisting of a fractured porous medium is simulated using the coupled
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Fig. 8.17 Time-history distributions of dimensionless contaminant concentration due to different
porosity ratios

computational method of upwind finite elements and transient infinite elements.
With the porosity ratio, the dispersion coefficient and the transmissive coefficient
kept constant, several different average linear velocities of pore-fluid flow are con-
sidered to examine the effects of pore-fluid advection on contaminant concentration
distributions in the porous block and fissured network of a fractured porous medium.

The following parameters are used in the coupled computational model of the
fractured porous medium. For the porous continuum, the dispersion coefficients are
1 m2d−1 and 0.1 m2d−1 in the x and y directions, respectively; the average linear
velocity of the pore-fluid flow in the x direction (i.e. V1x) is 0.05 m d–1 when the
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average linear velocity of the pore-fluid flow in the y direction (i.e. V1y) is equal to
either 0 or 0.05 m d–1. For the fissured continuum, the dispersion coefficients are
1 m2d−1 and 0.1 m2d−1 in the x and y directions, respectively; four different average
linear velocities of the pore-fluid flow in the x direction, namely V2x=0.05, 0.1, 0.2
and 0.5 m d–1, are considered in the case of V2y=0 m d–1, while the average linear
velocity of the pore-fluid flow in the x direction is 0.1 m d–1 in the case of V2y=0.1
m d–1; the porosity ratio of the fissured continuum to the porous continuum is 4; the
porosity of the continuum (i.e. φ1) is 0.05; the transmissive coefficient between the
porous block and the fissured network is 0.01 s–1.

Figure 8.18 shows the effects of pore-fluid advection on the dimensionless con-
centration distribution of the contaminant in the near field of the first quadrant of the
fractured porous medium at t = 100 days. In this figure, the numerical results asso-
ciated with V2x= 0.05, 0.1 and 0.5 are obtained when the average linear velocities
in the x and y directions are 0.05 m d–1 and 0 m d–1 in the porous continuum, but the
average linear velocity in the y direction is 0 m d–1 in the fissured continuum. These
results indicate that for three different values of the average linear velocity in the x
direction within the fissured network, the distribution patterns of the dimensionless
contaminant concentration are significantly different, implying that the average lin-
ear velocity of the pore-fluid flow has a remarkable influence on the dimensionless
concentration distribution of the contaminant in the coupled computational model
of the fractured porous medium.

Figures 8.19 and 8.20 show the dimensionless contaminant concentration dis-
tribution versus time at several observation points of the computational model. In
these two figures, the numerical results marked by V2x= 0.05, 0.1, 0.2 and 0.5 are
obtained when the average linear velocities in the x and the y directions are 0.05
m d–1 and 0 m d–1 in the porous continuum, but the average linear velocity in the
y direction is 0 m d–1 in the fissured continuum. In contrast, the numerical results
marked by V2x= 0.1 and V2y= 0.1 are obtained when the average linear velocities
in both the x and the y directions are 0.05 m d–1 in the porous continuum. Obviously,
the pore-fluid advection, which is represented by a different set of pore-fluid veloc-
ities, has a profound effect on the contaminant transport speed in the computational
model of the fractured porous medium. The greater the average liner velocity of
pore-fluid flow, the greater the contaminant transport speed in the fractured porous
medium is.

For a given observation point, the average linear velocity of the pore-fluid flow
affects not only the time-history distribution pattern, but also the maximum value
of the dimensionless contaminant concentration in the fractured porous medium.
With the three observation points (in Fig. 8.19) at the x axis taken as an example,
the maximum value of the dimensionless contaminant concentration in the case of
V1x = V1y=0.05 m d–1 and V2x = V2y=0.1 m d–1 is smaller than that in the other
four cases. However, for the three observation points beyond the x axis (in Fig. 8.20),
the maximum value of the dimensionless contaminant concentration in the case of
V1x = V1y= 0.05 m d–1 and V2x = V2y=0.1 m d–1 is greater than that in the other
four cases. This phenomenon is due to the fact that the contaminant can spread a
broader area when advection takes place in both the x and y directions, compared
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Fig. 8.18 Effects of pore-fluid advection on dimensionless contaminant distributions in the frac-
tured porous medium (t = 100 days)

with when it takes place in the x direction only. Since the average linear velocity
of pore-fluid flow affects both the contaminant transport speed and the maximum
value of the contaminant concentration in a fractured porous medium, it should
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Fig. 8.19 Time-history distributions of dimensionless contaminant concentration due to different
pore-fluid flow velocities

be determined carefully for the computational simulation of transient contaminant
transport problems in fractured porous media of infinite domains.
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Fig. 8.20 Time-history distributions of dimensionless contaminant concentration due to different
pore-fluid flow velocities

8.2.4 Effects of Solute Dispersion on Contaminant Concentration
Distributions in the Porous Block and Fissured Network

To investigate the effects of solute dispersion in both the porous block and the fis-
sured network on contaminant transport processes in fractured porous media of infi-
nite domains, the same fundamental mass transport problem as that considered in the
previous subsections is simulated by the coupled computational model of upwind
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finite elements and transient infinite elements in this subsection. Through keeping
the porosity ratio, the average linear velocity of pore-fluid flow and the transmis-
sive coefficient constant, several different dispersion coefficients are considered to
examine the effects of solute dispersion in both the porous block and the fissured
network on contaminant transport processes in fractured porous media of infinite
domains.

The following parameters are used in the coupled computational model. For the
porous continuum, the average linear velocity of pore-fluid flow is 0.1 m d–1 in the x
direction and zero in the y direction; the dispersion coefficient in the x direction (i.e.
D1x) is 1 m2 d–1 when the dispersion coefficient in the y direction (i.e. D1y) is equal
to either 0.1 m2 d–1 or 0.05 m2 d–1. For the fissured continuum, the average linear
velocity of pore-fluid flow is 0.1 m d–1 in the x direction and zero in the y direction;
four different dispersion coefficients in the x direction, namely D2x= 0.2, 0.5, 0.7
and 1.0 m2d–1, are considered when the dispersion coefficient in the y direction (i.e.
D2y) is equal to 0.1 m2 d–1; while only the dispersion coefficient of 0.2 m2 d–1 in the
x direction is considered when the dispersion coefficient in the y direction is equal to
0.2 m2 d–1; the porosity ratio of the fissured continuum to the porous continuum is
4; the porosity of the porous continuum (i.e. φ1) is 0.05; the transmissive coefficient
between the porous block and the fissured network is 0.01 s–1.

Figure 8.21 shows the effects of solute dispersion on the dimensionless concen-
tration distribution of the contaminant in the near field of the first quadrant of the
fractured porous medium at t = 100 days. In this figure, the numerical results asso-
ciated with D2x= 0.2, 0.5 and 1.0 are obtained when the dispersion coefficient of
the porous continuum are 1.0 and 0.1 m2 d–1 in the x and y directions, respectively,
while the dispersion coefficient of the fissured continuum (i.e. D2y) is 0.1 m2 d–1 in
the y direction. These results indicate that for the three different dispersion coef-
ficients of the fissured network in the x direction, the distribution patterns of the
dimensionless contaminant concentration are significantly different, implying that
the solute dispersion has a remarkable influence on the dimensionless concentration
distribution of the contaminant in the coupled computational model of the fractured
porous medium.

Figures 8.22 and 8.23 show the dimensionless contaminant concentration dis-
tribution versus time at several observation points of the computational model. In
these two figures, the numerical results marked with D2x= 0.2, 0.5, 0.7 and 1.0 are
obtained when the dispersion coefficients of the porous continuum are 1.0 and 0.1
m2 d–1 in the x and y directions, while the dispersion coefficients of the fissured
continuum is 0.1 m2 d–1 in the y direction. On the other hand, the numerical results
marked with D2x= 0.2 and D2y= 0.2 are obtained when the dispersion coefficients
of the porous continuum are equal to 1.0 m2 d–1 in both the x and y directions.
Clearly, the solute dispersion, which is represented by a different set of dispersion
coefficients in this study, has a profound effect on the contaminant transport speed
in the computational model of the fractured porous medium. The greater the disper-
sion coefficient, the greater the contaminant transport speed in the fractured porous
medium is.

Similarly, for a given observation point, the solute advection affects not only the
time-history distribution pattern, but also the maximum value of the dimensionless
contaminant concentration in the fractured porous medium. For the three observa-
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Fig. 8.21 Effects of solute dispersion on dimensionless contaminant distributions in the fractured
porous medium (t = 100 days)

tion points (in Fig. 8.22) at the x axis, the maximum value of the dimensionless
contaminant concentration in the case of D1x = D1y=1.0 m2 d–1 and D2x = D2y=
0.2 m2 d–1 is smaller than that in the other four cases. However, for the three obser-
vation points beyond the x axis (in Fig. 8.23), the maximum value of the dimen-
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Fig. 8.22 Time-history distributions of dimensionless contaminant concentration due to different
dispersion coefficients

sionless contaminant concentration in the case of D1x = D1y=1.0 m2 d–1 and
D2x = D2y=0.2 m2 d–1 is greater than that in the other four cases. Since disper-
sion coefficients can affect both the contaminant transport speed and the maximum
value of the contaminant concentration in a fractured porous medium, they should
be determined carefully in the coupled computational model of upwind finite ele-
ments and transient infinite elements for simulating transient contaminant transport
problems in fractured porous media of infinite domains.
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Fig. 8.23 Time-history distributions of dimensionless contaminant concentration due to different
dispersion coefficients

In summary, the leakage between the porous block and the fissured network has
a significant influence on the distributions of the contaminant concentration in frac-
tured porous media. Generally, the maximum value of the contamination concen-
tration increases in the porous block, but it decreases in the fissured network as a
result of the leakage between the porous block and the fissured network. This indi-
cates that more contaminant resides in the porous block. With the increase of time,
the maximum values of the contaminant concentration in both the porous block
and the fissured network decrease as the contaminant spreads over a broad area.
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The transmissive coefficient between the porous block and the fissured network has
little effect on the transport speed of the contaminant, even though it has a signifi-
cant influence on the values of the contaminant concentration in a fractured porous
medium.

Considering the effect of the porosities of the fractured porous medium, a larger
porosity of the fissured network results in a greater value of the contaminant con-
centration in the near field of the porous block, whereas it results in a smaller value
in the near field of the fissured network. With an increase in the porosity of the fis-
sured network, the maximum value of the contaminant concentration increases in
the porous block but decreases in the fissured network.

The average linear velocity (representing the advection) of pore-fluid flow has a
significant influence on both the concentration distribution pattern and the transport
speed of the contaminant in the fractured porous medium. The larger the average
linear velocity of the pore-fluid flow is, the greater will be the transport speed of the
contaminant in both the porous block and the fissured network. The same conclusion
can be made when the effect of the dispersion is considered in the fractured porous
medium.
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In this monograph, the coupled computational method of finite elements and
dynamic/transient infinite elements has been presented for dealing with geophysical,
geotechnical and geoenvironmental engineering problems in infinite domains. For
a given wave propagation problem, the near field of the problem is simulated using
finite elements so that complicated geometries and complex material properties can
be considered in the coupled computational method. The far field of the problem
is simulated using dynamic infinite elements so that waves can be propagated from
the near field to the far field without causing spurious reflection and refraction at the
interface between finite elements and dynamic infinite elements in the coupled com-
putational model. By taking advantages of both finite elements and dynamic infinite
elements, the coupled computational method of finite elements and dynamic infinite
elements provides a powerful simulation tool for dealing with a wide range of prac-
tical problems, such as the distributions of the free-field motion during earthquakes,
the seismic responses of dam–reservoir water–sediment–foundation systems and the
dynamic analyses of civil structure–foundation interactions. To simulate transient
pore-fluid flow, heat transfer and mass transport problems in fluid-saturated porous
media of infinite domains, the coupled computational method of finite elements and
transient infinite elements is also presented. As an application example, this coupled
method has been used to investigate the effects of several key factors on contaminant
transport processes in fractured porous media of infinite domains. The following
inferences have been drawn from the related theoretical and numerical results.

(1) Owing to the characteristics of propagating waves from the near field to the
far field of a system, the wave propagation function of a dynamic infinite element
plays a key role in the formulation of the element. Since the wave propagation func-
tion explicitly depends on frequency, the coupled computational method of finite
elements and dynamic infinite elements can be directly used to solve linear wave
propagation problems in the frequency domain, while it can be only used to deal
with nonlinear wave propagation problems in the hybrid frequency–time domain.

(2) For a two-dimensional dynamic infinite element, the corresponding wave
propagation function has two independent wavenumbers so that it can be used to
simulate explicitly both P-wave and SV-wave propagation in the far field of a sys-
tem. Similarly, for a three-dimensional dynamic infinite element, the corresponding
wave propagation function has three independent wavenumbers so that it is capable
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of simulating simultaneously P-wave, SV-wave and R-wave propagation in the far
field of a system. Based on the wave propagation concept, the detailed formulations
associated with both two-and three-dimensional dynamic infinite elements are pre-
sented. Since a common side is shared at the interface between a finite element and
a dynamic infinite element, the mass and stiffness matrices of a dynamic infinite ele-
ment can be straightforwardly assembled into the global mass and stiffness matrices
of the system.

(3) The coupled computational method of finite elements and dynamic infinite
elements can be used to solve both wave scattering and wave radiation problems in
infinite domains. When dealing with wave scattering problems, a wave input proce-
dure, which can be easily applied to the coupled computational model of finite ele-
ments and dynamic infinite elements, is presented to transform an incident wave into
equivalent nodal loads at a wave input boundary located within the coupled com-
putational model. The related numerical results from several benchmark problems
have demonstrated the correctness and usefulness of both the coupled computational
method and the wave input procedure.

(4) For the application of dynamic infinite elements to dam engineering prob-
lems, the coupled computational method of two-dimensional finite elements and
dynamic infinite elements is used to simulate the dynamic responses of both a
gravity dam–water–sediment–foundation system and an embankment dam–water–
sediment–foundation system. For a gravity dam, the related numerical results have
indicated that the reservoir bottom sediment has a remarkable effect on the dynamic
response of the dam, while for an embankment dam, the corresponding results have
demonstrated that both the type and the location of impervious members within the
dam have significant influences on the dynamic response of the embankment dam.

(5) As an application, the coupled computational method of two-dimensional
finite elements and dynamic infinite elements is used to investigate the effects of
canyon topographical and geological conditions on the distributions of the free-field
motion during an earthquake. The related numerical results have demonstrated that
both topographical and geological conditions have significant influences on seismic
acceleration distributions along the surface of a canyon, implying that structures
located on softer soils may be subjected to stronger seismic loads than those located
on stiffer rocks.

(6) The coupled computational model of three-dimensional finite elements
and dynamic infinite elements is used to solve dynamic framed structure–raft
foundation–underlying medium interaction problems. The related numerical results
have demonstrated that, since the radiation damping of an underlying medium plays
a predominant role in determining the total damping of the underlying medium, the
dynamic response of a three-dimensional framed structure on a layered medium is
much stronger than that on a homogeneous medium, as a result of wave reflection
and refraction within the soft layer.

(7) To construct transient infinite elements for simulating pore-fluid flow and heat
transfer problems in fluid-saturated orthotropic porous media of infinite domains,
both the hydraulic head distribution function and the heat transfer function are pre-
sented for deriving the corresponding formulations of the transient infinite elements.
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Since these functions explicitly depend on time, the coupled computational method
of finite elements and transient infinite elements can be straightforwardly used for
solving transient pore-fluid flow and heat transfer problems in the time domain.

(8) Based on the mass transport function concept, the formulations of transient
infinite elements are derived for simulating the far fields of mass transport problems
in fractured porous media of infinite domains. With the use of the double porosity
continuum approach, the porous block and fissured network in a fractured porous
medium are treated as an equivalent medium consisting of two overlapping con-
tinua. This enables the coupled computational method of finite elements and tran-
sient infinite elements to be used for investigating the effects of various key factors
on contaminant transport processes in fractured porous media of infinite domains.
The related numerical results have demonstrated that the leakage between the porous
block and the fissure network, the porosity ratio of the fissured network to the porous
block, pore-fluid advection and solute dispersion have significant effects on contam-
inant concentration distributions in fractured porous media of infinite domains.

(9) One of the important values of this monograph is to provide an effective and
efficient way for simulating the far field of an infinite domain so that computational
resources can be focused not only on the simulation of complicated geometries and
complex material distributions in the near field of a problem, but also on the simu-
lation of multiple-process and multiple-scale aspects of the problem. As boundary
conditions may have a conspicuous effect on the solution of a set of partial dif-
ferential equations, the far field of a geoscience problem needs to be appropriately
simulated so as to obtain meaningful numerical solutions. Because of the effective
and efficient simulation of the far field, the coupled computational method of finite
elements and dynamic (or transient) infinite elements provides a powerful tool for
solving not only a wide range of engineering problems, but a broad range of geo-
science problems as well. From this point of view, dynamic and transient infinite
elements may play an important role in the further development of the emerging
computational geoscience discipline.

(10) Although transient infinite elements have been systematically presented in
this monograph, there is much work to be done in future. For instance, the present
theory of the transient infinite element needs to be extended to (i) the simulation
of three-dimensional pore-fluid flow, heat transfer and mass transport problems in
fluid-saturated porous media of infinite domains; (ii) the consideration of fluid-
saturated and unsaturated porous media of general anisotropy; and (iii) the simula-
tion of coupled problems involving pore-fluid flow, heat transfer and mass transport
processes.
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