


Lecture Notes in Computer Science 5451
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Feng Bao Hui Li Guilin Wang (Eds.)

Information Security
Practice
and Experience

5th International Conference, ISPEC 2009
Xi’an, China, April 13-15, 2009
Proceedings

13



Volume Editors

Feng Bao
Institute for Infocomm Research (I2R)
1 Fusionopolis Way, 19-01 Connexis (South Tower)
Singapore 138632, Singapore
E-mail: baofeng@i2r.a-star.edu.sg

Hui Li
Xidian University
School of Telecommunications Engineering
2 South Taibai Road, Xi’an, Shaanxi 710071, China
E-mail: xd.lihui@gmail.com

Guilin Wang
University of Birmingham
School of Computer Science
Birmingham, B15 2TT, UK
E-mail: g.wang@cs.bham.ac.uk
http://www.cs.bham.ac.uk/˜gzw/

Library of Congress Control Number: Applied for

CR Subject Classification (1998): E.3, D.4.6, C.2.0, H.2.0, K.6.5, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-00842-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00842-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12642663 06/3180 5 4 3 2 1 0



Preface

The 5th International Conference on Information Security Practice and Experi-
ence (ISPEC 2009) was held in Xi’an, China, April 13–15, 2009.

The ISPEC conference series is an established forum that brings together re-
searchers and practitioners to provide a confluence of new information security
technologies, including their applications and their integration with IT systems
in various vertical sectors. In previous years, ISPEC has taken place in Singa-
pore (2005), Hangzhou, China (2006), Hong Kong, China (2007), and Sydney,
Australia (2008). For all sessions, as this one, the conference proceedings were
published by Springer in the Lecture Notes in Computer Science series.

In total, 147 papers from 26 countries were submitted to ISPEC 2009, and
34 were finally selected for inclusion in the proceedings (acceptance rate 23%).
The accepted papers cover multiple topics of information security and applied
cryptography. Each submission was anonymously reviewed by at least three re-
viewers. We are grateful to the Program Committee, which was composed of
more than 40 well-known security experts from 15 countries; we heartily thank
them as well as all external reviewers for their time and valued contributions to
the tough and time-consuming reviewing process.

In addition to the regular paper presentations, the program also featured four
invited talks by Yupu Hu, from Xidian University, China; Youki Kadobayashi,
from Nara Institute of Science and Technology, Japan; Mark Ryan, from the
University of Birmingham, UK; and Gene Tsudik, from the University of Cal-
ifornia at Irvine, USA. We are grateful to them for accepting our invitation to
speak at the conference.

The conference was organized and sponsored by Xidian University, China,
co-organized by the School of Telecommunications Engineering, Xidian Univer-
sity, China; the Key Laboratory of Computer Networks and Information Secu-
rity, Ministry of Education, China; and the National 111 Program of Introducing
Talents of Discipline to Universities on Fundamental Theory and Technology of
Modern Wireless Information Networks, China.

Special thanks are due to Ying Qiu for managing the review system, Libin
Zhao for maintaining the conference website, and the Organizing Committee for
dealing with local issues.

Last but not least, we would like to thank all the authors who submitted
their papers to ISPEC 2009, and all the attendees from all over the world.

April 2009 Feng Bao
Hui Li

Guilin Wang
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Efficient and Provable Secure Ciphertext-Policy
Attribute-Based Encryption Schemes

Luan Ibraimi1, Qiang Tang1, Pieter Hartel1, and Willem Jonker1,2

1 Faculty of EEMCS, University of Twente, the Netherlands
2 Philips Research, the Netherlands

Abstract. With a Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) scheme, a user’s private key is associated with a set of attributes
and the data is encrypted under an access policy defined by the mes-
sage sender. A user can decrypt a ciphertext if and only if her attributes
satisfy the access policy. In CP-ABE, since the message sender enforces
the access policy during the encryption phase, the policy moves with the
encrypted data. In this paper, we provide an efficient CP-ABE scheme
which can express any access policy represented by a formula involving
the and (∧) and or (∨) operators. The scheme is secure under Decision
Bilinear Diffie-Hellman (DBDH) assumption. Furthermore, we extend
the expressiveness of the scheme by including the of operator in addi-
tion to ∧ and ∨. We provide a comparison with some existing CP-ABE
schemes and show that our schemes are more efficient.

1 Introduction

Public-key encryption is an asymmetric primitive which uses a pair of keys,
where a private key which is kept secret and a public key which is widely dis-
tributed. If Alice wants to send a confidential message to Bob, she can encrypt
the message with the public key of Bob and only Bob can decrypt the message
using his private key. With a Public-Key Infrastructure (PKI), a public key must
be obtained from, or at least be certified by the Trusted Third Party (TTP) of
the PKI. With an Identity-Based Encryption (IBE) scheme [6,10,19], any string
can be used to generate a public key without the involvement of the TTP. IBE
thus creates a degree of flexibility that a PKI cannot offer. However, if Alice does
not know the identity of her party, but instead she only knows certain attributes
of the recipient, then the above solutions will not work.

The solution to this problem is provided by Attribute-Based Encryption
(ABE) which identifies a user with a set of attributes [17]. In the seminal paper,
Sahai and Waters use biometric measurements as attributes in the following way.
A private key, associated with a set of attributes ω, can decrypt a ciphertext en-
crypted with a public key, associated with a set of attributes ω′, only if the sets ω
and ω′ overlap sufficiently as determined by a threshold value t. We refer to the
scheme, proposed by Sahai and Waters, as the SW scheme. A more general policy
to decide which attributes are required to decrypt a message is provided by an
access tree. For example the access tree τ = class1978∧mycollege∨myteacher

F. Bao, H. Li, and G. Wang (Eds.): ISPEC 2009, LNCS 5451, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 L. Ibraimi et al.

states that all students with the attribute class1978 who studied at mycollege as
well as the teacher possessing the attribute myteacher would satisfy the policy.

There are two variants of ABE, namely Key-Policy based ABE (KP-ABE)
[12] and Ciphertext-Policy based ABE (CP-ABE)[3,9]. In KP-ABE, the cipher-
text is associated with a set of attributes and the private key is associated with
the access tree. The message sender does not define the privacy policy and has
no control over who has access to the data, except for defining the set of de-
scriptive attributes necessary to decrypt the ciphertext. The trusted authority
who generates user’s private key defines the combination of attributes for which
the private key can be used. In CP-ABE, the idea is reversed: the ciphertext is
associated with the access tree and the message sender determines the policy
under which the data can be decrypted, while the private key is associated with
a set of attributes.

Pirreti et al. [16] give a construction and implementation of a modified SW
scheme, which, compared to the original scheme, reduces computational over-
head during the encryption and the key generation phases. Goyal et al. [12]
introduce the idea of KP-ABE and propose a new scheme. In their scheme,
when a user makes a secret key request, the trusted authority determines which
combination of attributes must appear in the ciphertext for the user to decrypt.
In essence, this scheme is an extension of the SW scheme, where, instead of using
the Shamir [18] secret sharing technique in the private key, the trusted author-
ity uses a more generalized form of secret sharing to enforce a monotonic access
tree. Chase [8] constructs a multi-authority ABE scheme, which allows multi-
ple independent authorities to monitor attributes and distribute secret keys. A
related work to KP-ABE is a predicate encryption paradigm or searching on
encrypted data [1,5,7,14]. Predicate encryption has the advantages of providing
ciphertext anonymity by hiding the access structures, however, the system is
less expressive compared to schemes which leave the access structures in the
clear. Smart [20] gives an access control data scheme which encrypts data to
an arbitrary collection of identities using a variant of the Boneh-Franklin IBE
scheme.

The first CP-ABE scheme proposed by Bethencourt et al. [3] uses threshold
secret sharing to enforce the policy during the encryption phase. We refer to this
scheme as the BSW scheme. The main drawback of the BSW scheme is that it
requires polynomial interpolation to reconstruct the secret, thus many expensive
pairing and exponentiation operations are required in the decryption phase. The
scheme is secure in the generic group model, which provides evidence to the
hardness of the problem, without giving security proof which reduces the prob-
lem of breaking the scheme to a well-studied complexity-theoretic problem. The
CP-ABE scheme, proposed by Cheung and Newport [9], does not use threshold
secret sharing but uses random elements to enforce the policy during the en-
cryption phase. We refer to this scheme as the CN scheme. The CN scheme has
two drawbacks. Firstly, it is not sufficiently expressive because it supports only
policies with logical conjunction. Secondly, the size of the ciphertext and secret
key increases linearly with the total number of attributes in the system. This
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makes the CN scheme inefficient. Goyal et al. [11] give a “bounded” CP-ABE
construction. The disadvantage of their scheme is that the depth of the access
trees d under which messages can be encrypted is defined in the setup phase.
Thus, the message sender is restricted to use only an access tree which has the
depth d′ ≤ d.

Contribution. In this paper we aim at designing efficient CP-ABE schemes,
which can be proven based on standard complexity-theoretic assumptions. More
specifically, our contribution is twofold:

– We present a new technique for realizing CP-ABE without using Shamir’s
threshold secret sharing. We first show such a construction which is referred
to as as the basic CP-ABE scheme. In this scheme, the message sender defines
the privacy policy through an access tree which is n-ary tree represented by
∧ and ∨ nodes. Note that, realizing a scheme, which does not use threshold
secret sharing, is important for resource constraint devices since calculating
polynomial interpolations to construct the secret is computationally expen-
sive. Compared to the CN scheme, our scheme requires fewer computations
during the encryption, key generation and decryption phases.

– Next, we extend the basic CP-ABE scheme and provide a second CP-ABE
scheme which uses Shamir’s threshold secret sharing technique [18]. The
access tree is an n-ary tree represented by ∧, ∨ and of nodes. We compare
the efficiency of our scheme with the BSW scheme and show that our scheme
requires less computations in the key generation, encryption and decryption
phases.

Organization. The rest of this paper is organized as follows. In Section 2 we
review concepts of the access structure, secret sharing, CP-ABE, and bilinear
pairing. In Section 3 we introduce the basic CP-ABE scheme which is secure
under DBDH assumption in the selective-attribute model. In Section 4 we pro-
vide an extension to the basic CP-ABE scheme by including the of operator in
addition to ∧ and ∨. In the last section we conclude the paper.

2 Background Knowledge

In this section we introduce the notions related to access structure, secret shar-
ing, the security definition of CP-ABE, and bilinear maps.

2.1 Access Structure

We restate the definition of Access Structure in [2].

Definition 1. (Access Structure). Let {P1, P2, · · · , Pn} be a set of parties. A
collection A ⊆ 2{P1,P2,··· ,Pn} is monotone if ∀B, C: if B ∈ A and B ⊆ C then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, P2, · · · , Pn},
i.e., A ⊆ 2{P1,P2,··· ,Pn} \ {∅}. The sets in A are called the authorized sets, and
the sets not in A are called the unauthorized sets.
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2.2 Secret Sharing Schemes

In designing our CP-ABE schemes we will make use of two different secret-
sharing schemes: unanimous consent control by modular addition scheme and
the Shamir secret sharing scheme.

Unanimous Consent Control by Modular Addition Scheme. In a unanimous con-
sent control by modular addition scheme [15], there is a dealer who splits a secret
s into t shares in a such way that all shares are required to reconstruct the secret
s. To share the secret s, 0 ≤ s ≤ p − 1 for some integer p, the dealer generates
a t − 1 random numbers si such that 1 ≤ si ≤ p − 1, 1 ≤ i ≤ t − 1 and
st = s −

∑t−1
i=1 si mod p. The secret s is recovered by: s =

∑t
i=1 si. Shares si,

1 ≤ i ≤ t are distributed to parties Pi, 1 ≤ i ≤ t. For each party Pi, 1 ≤ i ≤ t,
the shares are random numbers between 0 and p − 1, thus no party has any
information about s except the dealer.

Shamir’s Secret Sharing Scheme. In Shamir’s secret sharing technique [18] a
secret s is divided into n shares in a such way that any subset of t shares,
where t ≤ n, can together reconstruct the secret; no subset smaller than t can
reconstruct the secret. The technique is based on polynomial interpolation where
a polynomial y = f(x) of degree t − 1 is uniquely defined by t points (xi, yi).
The details of the scheme are as follows:

1. Setup. The dealer D wants to distribute the secret s > 0 among t users.
1)D chooses a prime p > max(s, n), and defines a0 = s.
2)D selects t− 1 random coefficients a1, ...., at−1, 0 ≤ aj ≤ p− 1, and defines
the random polynomial over Zp, f(x) = Σt−1

j=0ajx
j .

3)D computes si = f(i) mod p, and sends securely the share si to user pi

together with the public index i.
2. Pooling of shares. Any group of t or more users pool their distinct shares

(x, y) = (i, si) allowing computation of the coefficients aj of f(x) by La-
grange interpolation, f(x) = Σt−1

i=0 lj(x) where lj(x) = Π1≤j≤t,j �=i
x−xj

xi−xj
. The

secret is f(0) = a0 = s.

2.3 Ciphertext-Policy ABE

According to the definition given in [3], a CP-ABE schemes consist of four poly-
nomial time algorithms:

– Setup(k). The setup algorithm takes as input a security parameter k and
outputs the public parameters pk and a master key mk.

– Keygen(ω, mk). The algorithm takes as input the master key mk and a set
of attributes ω. The algorithm outputs a secret key skω associated with ω.

– Encrypt(m, τ, pk). The encryption algorithm takes as input a message m, an
access tree τ representing an access structure, and the public key pk. The
algorithm will return the ciphertext cτ such that only users who have the
secret key generated from the attributes that satisfy the access tree will be
able to decrypt the message.
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– Decrypt(cτ , skω). The decryption algorithm takes as input a ciphertext cτ ,
a secret key skω associated with ω, and it outputs a message m or an error
symbol ⊥.

The semantic security against chosen-plaintext attack (CPA) is modeled in
the selective-attribute (sAtt) model, where the adversary must provide the chal-
lenge access tree he wishes to attack before he receives the public parameters
from the challenger. Suppose, that the adversary in the Init phase chooses the
challenge access tree τ∗ = (A∧B)∨C. In Phase1, the adversary can make secret
key requests to Keygen oracle for any attribute set ω with the restriction that
attributes A, B, C 
∈ ω. The selective-attribute (sAtt) model can be considered
to be analogous to the selective-ID model [4] used in identity-based encryption
schemes, in which the adversary commits ahead of time the ID∗ it will attack,
and where the adversary can make secret key requests to Keygen oracle for any
ID such that ID 
= ID∗.

The game is carried out between a challenger and an adversary A, where
the challenger simulates the protocol execution and answers queries from A.
Specifically, the game is as follows:

1. Init. The adversary chooses the challenge access tree τ∗ and gives it to the
challenger.

2. Setup. The challenger runs Setup to generate (pk, mk) and gives the public
key pk to the adversary A.

3. Phase1. A makes a secret key request to the Keygen oracle for any attribute
set ω = {aj|aj ∈ Ω}, with the restriction that aj 
∈ τ∗. The challenger
returns Keygen(ω, mk).

4. Challenge. A sends to the challenger two messages m0, m1.The challenger
picks a random bit b ∈ {0, 1} and returns cb = Encrypt(mb, τ

∗, pk).
5. Phase2. A can continue querying Keygen with the same restriction as during

Phase1.
6. Guess. A outputs a guess b′ ∈ {0, 1}.

Definition 2. A CP-ABE scheme is said to be secure against an adaptive
chosen-plaintext attack (CPA) if any polynomial-time adversary has only a neg-
ligible advantage in the IND-sAtt-CPA game, where the advantage is defined to
be ε = |Pr[b′ = b]− 1

2 |.

2.4 Review of Pairing

We briefly review the basis of bilinear pairing. A pairing (or, bilinear map)
satisfies the following properties:

1. G0 and G1 are two multiplicative groups of prime order p.
2. g is a generator of G0.
3. ê : G0×G0 → G1 is an efficiently-computable bilinear map with the following

properties:
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– Bilinear: for all u, v ∈ G0 and a, b ∈ Zp, we have ê(ua, vb) = ê(u, v)ab.
– Non-degenerate: ê(g, g) 
= 1.

G0 is said to be a bilinear group if the group operation in G0 can be computed
efficiently and if there exists a group G1 and an efficiently-computable bilinear
map ê as defined above.

The Decision Bilinear Diffie-Hellman (DBDH) problem is defined as follows.
Given g, ga, gb, gc ∈ G0 as input, the adversary must distinguish a valid tuple
â(g, g)abc ∈ G1 from the random element Z ∈ G1. An algorithmA has advantage
ε in solving the Decision Bilinear Diffie-Hellman (DBDH) problem in G0 if:

|Pr[A(g, ga, gb, gc, ê(g, g)abc) = 0]− Pr[A(g, ga, gb, gc, Z) = 0]| ≥ ε.

Here the probability is over the random choice of a, b, c ∈ Zp, the random choice
of Z ∈ G1, and the random bits of A (the adversary is a nondeterministic
algorithm).

Definition 3. We say that the (t, ε)-DBDH assumption holds if no t-time algo-
rithm has advantage at least ε in solving the DBDH problem in G0.

3 The Basic CP-ABE Construction

In this paper, the access tree is a n-ary tree, in which leaves are attributes and
inner nodes are ∧ and ∨ boolean operators. Intuitively, the access tree is a policy
which specifies which combination of attributes can decrypt the ciphertext. Con-
sider the following example where a patient wants to specify access restrictions
on his medical data. The patient can enforce the access policy in the encryption
phase. Each member from the medical staff who has enough attributes should
be able to decrypt the encrypted message. For instance, a patient wants to allow
his data to be seen by Doctor A who works at Department A or by Doctor B
who works at Department B. Using boolean operators the patient defines the
following access policy: τData = (Doc.A ∧Dep.A) ∨ (Doc.B ∧Dep.B).

To decrypt the ciphertext which is encrypted according to the τData access
tree, the decryptor must possess a private key, which is associated with the
attribute set which satisfies τData. To determine whether or not an access tree
is satisfied, we interpret each attribute as a logical variable. Possession of the
secret key for the corresponding attribute makes the logical variable true. If the
decryptor does not possess the attribute, the variable is false. For the policy
above there are several different sets of attributes that can satisfy the access
tree, such as the secret key associating with the attribute set {Doc.A, Dep.A},
the secret key associating with the attribute set {Doc.B, Dep.B}, or the secret
key associating with all attributes defined in the access tree.

3.1 Description of the Basic Scheme

The polynomial time algorithms of the basic CP-ABE scheme are defined as
follows.
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1. Setup(k) : On input of the security parameter k, this algorithm generates
the following.

(a) Generate a bilinear group G0 of prime order p with a generator g and
bilinear map ê : G0 ×G0 → G1

(b) Generate the attribute set Ω = {a1, a2, . . .an}, for some integer n, and
random elements α, t1, t2 . . . tn ∈ Zp.

Let y = ê(g, g)α and Tj = gtj (1 ≤ j ≤ n). The public key is pk =
(ê, g, y, Tj (1 ≤ j ≤ n)) and the master secret key is mk = (α, tj (1 ≤ j ≤ n)).

2. Keygen(ω, mk) : The algorithm performs as follows.

(a) Select a random value r ∈ Zp and compute d0 = gα−r.
(b) For each attribute aj in ω, compute dj = grt−1

j .
(c) Return the secret key skω = (d0, ∀aj ∈ ω : dj)

3. Encrypt(m, τ, pk) : To encrypt a message m ∈ G1 the algorithm proceeds as
follows:

(a) First level encryption: Select a random element s ∈ Zp and compute
c0 = gs and

c1 = m · ys = m · ê(g, g)αs

(b) Second level encryption: Set the value of the root node of τ to be s,
mark all child nodes as un-assigned, and mark the root node assigned.
Recursively, for each un-assigned non-leaf node, do the following:
– If the symbol is ∧ and its child nodes are marked un-assigned, we use

a unanimous consent control by modular addition scheme to assign
a value to each child node. To do that, for each child node except
the last one, assign a random value si where 1 ≤ si ≤ p− 1, and to
the last child node assign the value st = s −

∑t−1
i=1 si mod p. Mark

this node assigned.
– If the symbol is ∨, set the values of each child node to be s. Mark

this node assigned.
Values of the leaves of τ are used to produce ciphertext components.

(c) For each leaf attribute aj,i ∈ τ , compute cj,i = T si

j where i denotes the
index of the attribute in the access tree. The index values are uniquely
assigned to leave nodes in an ordering manner for a given access struc-
ture.

(d) Return the ciphertext cτ = (τ, c0, c1, ∀aj,i ∈ τ : cj,i).
In the following figure, we show an example of assigning secret shares si to

the access tree τ = (T1 ∧ T2) ∨ (T3 ∨ T4).

∨s

s

������������
s

������������

∧

s2=s−s1 mod p

��

s1∈RZ∗
p

�������������� ∨

s3=s

��

s4=s

��������������

cj,1 = gt1s1 cj,2 = gt2s2 cj,3 = gt3s3 cj,4 = gt4s4
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4. Decrypt(cτ , skω) : If ω does not satisfy τ , return ⊥, otherwise the algorithm
chooses the smallest set ω′ ⊆ ω (we assume that this can be computed
efficiently by the decryptor) that satisfies τ and performs as follows:

(a) For every attribute aj ∈ ω′, compute

∏
aj∈ω′

ê(cj,i, dj) =
∏

aj∈ω′
ê(T si

j , grt−1
j )

=
∏

aj∈ω′
ê(gtjsi , grt−1

j )

= ê(g, g)rs

(b) Compute

ê(c0, d0) · ê(g, g)rs = ê(gs, gα−r) · ê(g, g)rs

= ê(gs, gα)

(c) Return m′, where

m′ =
c1

ê(gs, gα)

=
m · ê(g, g)αs

ê(gs, gα)
= m

3.2 Security and Efficiency Analysis

The proposed scheme is proven IND-sAtt-CPA secure under the DBDH assump-
tion. For more details of the proof, the reader can refer to the full version of this
paper [13].

The number of calculations in the Encryption algorithm depends on the num-
ber of attributes in the access tree τ . The encryption requires |τ | + 1 exponen-
tiations in G0 and one exponentiation in G1. The number of calculations in the
KeyGen algorithm depends on the number of attributes in the set ω that the
user has, namely |ω| + 1 exponentiations in G0. The number of calculations in
the decryption algorithm depends on the number of attributes in the attribute
set ω′. The decryption requires |ω′|+ 1 pairing operations, |ω′| multiplications,
but no exponentiations in G1.

In Table 1, we compare our CP-ABE scheme with the CN scheme. We count
the number of calculations in the encryption, key generation, and decryption
phases. Compared to the CN scheme, our scheme requires fewer computations
in the encryption, key generation and decryption phase.
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Table 1. The Comparison with the CN Scheme

Our Scheme The CN Scheme
Exp.(G0) Exp.(G1) Pairing Exp.(G0) Exp.(G1) Pairing

Encrypt |τ |+1 1 / |Ω|+1 1 /
Keygen |ω|+1 / / |Ω|+1 / /
Decrypt / / |ω′|+1 / / |Ω|+1

Ω is the set of all attributes defined in the Setup phase
τ is the access tree
ω is the set of attributes the user has, ω ⊆ Ω
ω′ the set of attributes satisfying the access tree, ω′ ⊆ ω

4 Extension of the Expressiveness

In the basic scheme, the access tree is a n-ary tree represented by ∧ and ∨
nodes, which allows the user who performs encryption to express any privacy
policy using boolean formulas. Similar to the BSW scheme, we would like to
have an n-ary access tree which supports the of operator. The essential idea
is to allow the encryptor to define the minimum number of attributes from a
given list of attributes that the decryptor has to posses in order to decrypt
the message. For instance, to decrypt the ciphertext encrypted under the policy
τ =2 of (class1978, mycollege, myteacher), the decryptor must have at least two
out of three attributes. We extend the basic CP-ABE scheme to support the of
operator as follows:

1. Setup and KeyGen are the same as in basic CP-ABE scheme.
2. Encrypt(m, τ, pk) : To encrypt a message m ∈ G1 the algorithm proceeds as

follows:

(a) First level encryption: Select a random element s ∈ Zp and compute
c0 = gs and

c1 = m · ys

= m · ê(g, g)αs

(b) Second level encryption: Set the value of the root node to be s, mark all
child nodes as un-assigned, and mark the root node assigned. Recursively,
for each un-assigned non-leaf node, do the following:

– If the symbol is of (threshold operator), and its child nodes are
marked un-assigned, the secret s is divided using (t, n) Shamir’s se-
cret sharing technique where t 
= n, and n is the total number of child
nodes and t is the number of child nodes necessary to reconstruct
the secret. To each child node a share secret si = f(i) is assigned.
Mark this node assigned.

– If the symbol is ∧, and its child nodes are marked un-assigned, the se-
cret s is divided using (t, n) Shamir’s secret sharing technique where
t = n, and n is the number of the child nodes. To each child node a
share secret si = f(i) is assigned. Mark this node assigned.



10 L. Ibraimi et al.

– If the symbol is ∨, and its child nodes are marked un-assigned, the se-
cret s is divided using (t, n) Shamir’s secret sharing technique where
t = 1 and n is the number of the child nodes. To each child node a
share secret si = f(i) is assigned. Mark this node assigned.

Values of the leaves of τ are used to produce ciphertext components.
(c) For each leaf attribute aj,i ∈ τ , compute cj,i = T si

j , where i denotes the
index of the attribute in the access tree.

(d) Return the ciphertext: cτ = (τ, c0, c1, ∀aj,i ∈ τ : cj,i).

In the following figure, we show an example of assigning secret shares si to
the access tree τ = (T1 ∧ T2) ∨ 2 of (T3, T4, T5).

∨s

si

����������������
si

���������������

∧

s2

��

s1

�������������� of

s3

��������������
s4

��

s5

��������������

cj,1 = gt1s1 cj,2 = gt2s2 cj,3 = gt3s3 cj,4 = gt4s4 cj,5 = gt5s5

3. Decrypt(cτ , skω) : If ω does not satisfy τ , return ⊥, otherwise the algorithm
chooses the smallest set ω′ ⊆ ω that satisfies τ and performs as follows:

(a) For every attribute aj ∈ ω′, compute

∏
aj∈ω′

ê(cj,i, dj)li(0) = ê(T si

j , grt−1
j )li(0)

=
∏

aj∈ω′
ê(gtjsi , grt−1

j )li(0)

=
∏

aj∈ω′
ê(g, g)rsili(0)

= ê(g, g)rs

li(0) is a Lagrange coefficient and can be computed by everyone who
knows the index of the attribute in the access tree.

(b) Compute

ê(c0, d0) · ê(g, g)rs = ê(gs, gα−r) · ê(g, g)rs

= ê(gs, gα)

(c) Return m′, where

m′ =
c1

ê(gs, gα)
=

m · ê(g, g)αs

ê(gs, gα)
= m
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Table 2. The Comparison with the BSW scheme

Our Scheme The BSW Scheme
Exp.(G) Exp.(G1) Pairing Exp.(G) Exp.(G1) Pairing

Encrypt |τ |+1 1 / 2|τ |+1 1 /
KeyGen |ω|+1 / / 2|ω|+1 / /
Decrypt / |ω′| |ω′|+1 / |ω′| 2|ω′|
(Note:) Ω is the set of all attributes defined in the Setup phase

τ is the access tree
ω is the set of attributes the user has, ω ⊆ Ω
ω′ the set of attributes satisfying the access tree, ω′ ⊆ ω

The proposed scheme is proven IND-sAtt-CPA secure under the DBDH as-
sumption as shown in the full version of this paper [13]. In Table 2, we give
a comparison of the efficiency of our extended CP-ABE scheme with the BSW
scheme. Compared to the BSW scheme, our scheme requires fewer computations
in the encryption, key generation and decryption phases.

5 Conclusion and Future Work

We have shown how to improve the efficiency of a CP-ABE scheme. Firstly, we
presented a new technique to construct a CP-ABE scheme which does not use
threshold secret sharing. The encryptor specifies the policy in the encryption
phase using an n-ary tree which consists from ∨ and ∧ nodes. Secondly, we
presented a modified scheme which is more expressive compared to the basic
scheme. In the modified scheme, the policy can be expressed as an n-ary access
tree which consists of ∨, ∧ and of nodes. We have shown that these schemes
require less computations than some other similar schemes.
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Abstract. An Attribute-Based Encryption (ABE) is an encryption
scheme, where users with some attributes can decrypt ciphertexts as-
sociated with these attributes. However, the length of the ciphertext
depends on the number of attributes in previous ABE schemes. In this
paper, we propose a new Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) with constant ciphertext length. Moreover, the number of
pairing computations is also constant.

Keywords: Attribute-based encryption, Ciphertext-Policy, Constant
Ciphertext Length.

1 Introduction

A user identity (such as the name, e-mail address and so on) can be used for
accessing control of some resources. For example, in Identity-Based Encryption
(IBE) schemes such as [4,6], an encryptor can restrict a decryptor to indicate
the identity of the decryptor. An Attribute-Based Encryption (ABE) is an en-
cryption scheme, where users with some attributes can decrypt the ciphertext
associated with these attributes. The first ABE scheme has been proposed in [13],
which is inspired by IBE. Although IBE schemes have a restriction such that an
encryptor only indicates a single decryptor, in ABE schemes, an encryptor can
indicate many decryptors by assigning common attributes of these decryptors
such as gender, age, affiliation and so on. There are two kinds of ABE, Key-
Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). KP-ABE [9,13]
are schemes such that each private key is associated with an access structure. CP-
ABE [2,7,8,12,14] are schemes such that each ciphertext is associated with an ac-
cess structure. This means that an encryptor can decide who should or should not
be allowed to decrypt. However, in all previous ABE schemes [2,7,8,9,12,13,14],

F. Bao, H. Li, and G. Wang (Eds.): ISPEC 2009, LNCS 5451, pp. 13–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the length of the ciphertext depends on the number of attributes. Also, the
number of pairing computations depends on the number of attributes. A Predi-
cate Encryption Scheme (PES), where secret keys correspond to predicates, and
where ciphertexts are associated with attributes, has been proposed in [5,10].
It is shown that PES can be regarded as a kind of CP-ABE (see Appendix A
and B in [12] for details). However, both the [5] and [10] schemes also have the
same problems, in that the length of the ciphertext and the number of pairing
computations are not constant.

Contribution. In this paper, for the first time we propose a CP-ABE with
constant length of ciphertext and constant length of the number of pairing com-
putations. The access structure used in our CP-ABE is constructed by AND-
gates on multi-valued attributes. This is a subset of the access structures used
in [7,12]. Although previous CP-ABE schemes [2,7,8,12,14] can complement our
access structures, the length of the ciphertext depends on the number of at-
tributes. This means that, until our work, to the best of our knowledge, there
has been no scheme that enables a constant ciphertext length with AND-gates
on multi-valued attributes.

Organization: The paper is organized as follows: Some definitions are presented
in Section 2. The previous scheme is introduced in Section 3. Our scheme is
described in Section 4. The security proof is presented in Section 5. Efficiency
comparisons are made in Section 6.

2 Preliminary

In this section, some definitions are presented. Note that x ∈R S means x is
randomly chosen for a set S.

2.1 Bilinear Groups and Complexity Assumption

Definition 1 (Bilinear Groups). Bilinear groups and a bilinear map are de-
fined as follows:

1. G1 and GT are cyclic groups of prime order p.
2. g1 is a generator of G1.
3. e is an efficiently computable bilinear map e : G1 × G1 → GT with the

following properties.
– Bilinearity : for all u, u′, v, v′ ∈ G1, e(uu′, v) = e(u, v)e(u′, v) and

e(u, vv′) = e(u, v)e(u, v′).
– Non-degeneracy : e(g1, g1) 
= 1GT (1GT is the GT ’s unit).

Definition 2 (DBDH assumption). The Decision Bilinear Diffie-Hellman
(DBDH) problem in G1 is a problem, for input of a tuple (g1, g

a
1 , gb

1, g
c
1, Z) ∈ G4

1×
GT to decide Z = e(g1, g1)abc or not. An algorithm A has advantage ε in solving
DBDH problem in G1 if AdvDBDH(A) := |Pr[A(g1, g

a
1 , gb

1, g
c
1, e(g1, g1)abc) = 0]−

Pr[A(g1, g
a
1 , gb

1, g
c
1, e(g1, g1)z) = 0]| ≥ ε(κ), where e(g1, g1)z ∈ GT \{e(g1, g1)abc}.

We say that the DBDH assumption holds in G1 if no PPT algorithm has an ad-
vantage of at least ε in solving the DBDH problem in G1.
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2.2 Definition of Access Structures

Several access structures such as the threshold structure [13], the tree-based
access structure [2,8], AND-gates on positive and negative attributes with wild-
cards [7], AND-gates on multi-valued attributes with wildcards [12], and the
linear access structure [14] are used in previous ABE schemes. In our scheme,
the sum of master keys are used to achieve the constant ciphertext length. There-
fore, we use AND-gates on multi-valued attributes (which can be represented by
using the sum of master keys) as follows:

Definition 3. Let U = {att1, . . . , attn} be a set of attributes. For atti ∈ U ,
Si = {vi,1, vi,2, . . . , vi,ni} is a set of possible values, where ni is the number of
possible values for atti. Let L = [L1, L2, . . . , Ln], Li ∈ Si be an attribute list
for a user, and W = [W1, W2, . . . , Wn], Wi ∈ Si be an access structure. The
notation L |= W expresses that an attribute list L satisfies an access structure
W , namely, Li = Wi (i = 1, 2, . . . , n).

The number of access structures is
∏n

i=1 ni. For each atti, an encryptor has to
explicitly indicate a status vi,∗ from Si = {vi,1, vi,2, . . . , vi,ni}.

Differences between the previous AND-gate structures [7,12] and ours
If ni = 2 (i = 1, 2, . . . , n), then our structure is the same as the access struc-
tures [7] excluding wildcards. In [12], an access structure W is defined as W =
[W1, W2, . . . , Wn] for Wi ⊆ Si, and L |= W is defined as Li ∈Wi (i = 1, 2, . . . , n).
This means that our access structure is a subset of these in [7,12]. However, even
if previous CP-ABE schemes [7,12] use our access structure, then the length of
the ciphertext depends on the number of attributes.

2.3 Ciphertext-Policy Attribute-Based Encryption Scheme
(CP-ABE)

CP-ABE is described using four algorithms, Setup, KeyGen, Encrypt and De-
crypt [7].

Definition 4. CP-ABE

Setup: This algorithm takes as input the security parameter κ, and returns a
public key PK and a master secret key MK.

KeyGen: This algorithm takes as input PK, MK and a set of attributes L, and
returns a secret key SKL associated with L.

Encrypt: This algorithm takes as input PK, a message M and an access struc-
ture W . It returns a ciphertext C with the property that a user with SKL

can decrypt C if and only if L |= W .
Decrypt: This algorithm takes as input PK, C which was encrypted by W , and

SKL. It returns M if SKL is associated with L |= W .
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2.4 Selective Game for CP-ABE

We use the definition of “Selective Game” for CP-ABE [7]. This CP-ABE game
captures the indistinguishability of messages and the collusion-resistance of se-
cret keys, namely, attackers cannot generate a new secret key by combining their
secret keys. To capture the collusion-resistance, multiple secret key queries can
be issued by the adversary A after the challenge phase. This means that A can
issue the KeyGen queries L1 and L2 such as (L1 
|= W ∗) ∧ (L2 
|= W ∗) and
(L1 ∪L2) |= W ∗. This collusion-resistance is an important property of CP-ABE
scheme, which has not been considered in the Hierarchical IBE (HIBE) scheme
such as [3].

Definition 5. Selective Game for CP-ABE

Init: The adversary A sends the challenge access structure W ∗ to the challenger.
Setup: The challenger runs Setup and KeyGen, and gives PK to A.
Phase 1: A sends an attribute list L to the challenger for a KeyGen query, where

L 
|= W ∗. The challenger answers with a secret key for these attributes. Note
that these queries can be repeated adaptively.

Challenge: A sends two equal-length messages M0 and M1 to the challenger. The
challenger chooses μ ∈R {0, 1}, and runs C∗ = Encrypt(PK, Mμ, W ∗). The
challenger gives the challenge ciphertext C∗ to A.

Phase 2: Same as Phase 1. A sends L to the challenger for a KeyGen query. The
challenger answers with a secret key for these attributes. Note that L 
|= W ∗,
and these queries can be repeated adaptively.

Guess: A outputs a guess μ′ ∈ {0, 1}.

The advantage of A is defined as Adv(A) := |Pr(μ′ = μ)− 1
2 |.

3 The Previous CP-ABE

In this section,we summarize thepreviousCP-ABE [7]. Let Ū ={¬att1, . . . ,¬attn}
a set of negative attributes for a set of attributes U . We refer to attributes atti ∈ U
and their negations ¬atti as literals. Let W =

∧
atti∈I

¯atti be an access structure,
where I ⊆ U and ¯atti is either atti or¬atti. The public key elements Ti, Tn+i, T2n+i

correspond to the three properties of atti, namely, positive, negative and don’t care.

Protocol 1. CP-ABE [CN07] [7]

Setup(1κ): A trusted authority TA chooses a prime number p, a bilinear group G1
with order p, a generator g1 ∈ G1, y ∈R Zp and ti ∈R Zp (i = 1, 2, . . . , 3n),
and computes Y = e(g1, g1)y and Ti = gti

1 (i = 1, 2, . . . , 3n). TA outputs
PK = (e, g1, Y, T1, . . . , T3n) and MK = (y, t1, . . . , t3n).
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KeyGen(PK, MK, S): Every atti 
∈ S is implicitly considered to be a negative
attribute. TA chooses ri ∈R Zp (i = 1, 2, . . . , n), sets r =

∑n
i=1 ri, and

computes D̂ = gy−r
1 . TA computes Di and Fi as follows:

Di =

⎧⎨⎩ g
ri
ti
1 (atti ∈ S)

g
ri

tn+i

1 (atti 
∈ S)
, Fi = g

ri
t2n+i

1 (atti ∈ U)

TA outputs SK = (D̂, {Di, Fi}i∈[1,n]).
Encrypt(PK, M, W ): Let W =

∧
atti∈I

¯atti. An encryptor chooses s ∈R Zp, and
computes C̃ = M · Y s and Ĉ = gs

1. The encryptor computes Ci as follows:

Ci =

⎧⎨⎩
T s

i ( ¯atti = atti)
T s

n+i ( ¯atti = ¬atti)
T s

2n+i (atti ∈ U \ I)

The encryptor outputs C = (W, C̃, Ĉ, {Ci}i∈[1,n]).
Decrypt(PK, C, SK): A decryptor computes the pairing e(Ci, Di) (atti ∈ I) and

e(Ci, Fi) (atti 
∈ I) as follows:

e(Ci, Di) =

⎧⎨⎩e(gti·s
1 , g

ri
ti
1 ) ( ¯atti = atti)

e(gtn+i·s, g
ri

tn+i

1 ) ( ¯atti = ¬atti)

⎫⎬⎭ = e(g1, g1)ri·s (atti ∈ I)

e(Ci, Fi) = e(gt2n+i·s
1 , g

ri
t2n+i

1 ) = e(g, g)ri·s (atti 
∈ I)

Then C̃/(e(Ĉ, D̂)
∏n

i=1 e(g1, g1)ri·s)=M ·e(g1, g1)sy/e(g1, g1)s(y−r)e(g1, g1)sr

= M holds.

To compute e(g1, g1)sr, the decryptor has to compute either e(Ci, Di) or e(Ci, Fi)
for each i. This means that all Ci are included in a ciphertext, and thus the
length of a ciphertext depends on the number of attributes. This scheme does
not provide for adding new attributes after Setup. If some attributes are added
after Setup, then some users who have already obtained the secret key can de-
crypt a ciphertext which one must not be able to decrypt. For example, let U =
{att1, att2}, and assume that a user U has secret keys of att1 and att2, and that a
ciphertext C is associated with W = att1∧att2. Then, U can decrypt a ciphertext
associated with att1∧att2∧att3 without a secret key of att3. Concretely, U ignores
a part of the ciphertext for att3. CP-ABE schemes which enable the addition of
new attributes after Setup have been proposed in BSW07 [2] and NYO08 [12]
(which is the second construction of the NYO08 paper). If a user wants to decrypt
a ciphertext with an access structure including newly added attributes, then the
user must obtain a new secret key (including newly added attributes) from the
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trusted authority again. However, the security proof of both schemes contains
no reduction, namely, it is proven under the generic group heuristic.

4 Our Construction

In this section, we propose a constant ciphertext length CP-ABE with a function
of adding new attributes after Setup. Let G1 and GT be cyclic groups of prime
order p and e : G1 × G1 → GT be a bilinear map. Let U = {att1, . . . , attn}
be a set of attributes; Si = {vi,1, vi,2, . . . , vi,ni} be a set of possible values with
ni = |Si|; L = [L1, L2, . . . , Ln] (Li ∈ Si) be an attribute list for a user; and
W = [W1, W2, . . . , Wn] (Wi ∈ Si) be an access structure.

4.1 Proposed Scheme

Protocol 2. Our CP-ABE Scheme with Constant Ciphertext Length

Setup(1κ): A trusted authority TA chooses a prime number p, a bilinear group
(G1, GT ) with order p, a generator g1 ∈ G1, h ∈ G1, y ∈R Zp and ti,j ∈R

Zp (i ∈ [1, n], j ∈ [1, ni]). TA computes Y = e(g1, h)y and Ti,j = g
ti,j

1
(i ∈ [1, n], j ∈ [1, ni]). TA outputs PK = (e, g1, h, Y, {Ti,j}i∈[1,n],j∈[1,ni]) and
MK = (y, {ti,j}i∈[1,n],j∈[1,ni]). Note that ∀L, L′ (L 
= L′),

∑
vi,j∈L ti,j 
=∑

vi,j∈L′ ti,j is assumed

KeyGen(PK, MK, L): TA chooses r ∈R Zp, outputs SKL = (hy(g
∑

vi,j∈L ti,j

1 )r,
gr
1), and gives SKL to a user with L.

Encrypt(PK, M, W ): An encryptor chooses s ∈R Zp, and computes C1 =M ·Y s,
C2 =gs

1 and C3 =(
∏

vi,j∈W Ti,j)s. The encryptor outputs C =(W, C1, C2, C3).

Decrypt(PK, C, SKL): A decryptor computes what follows:

C1 · e(C3, g
r
1)

e(C2, hy(g
∑

vi,j∈L ti,j

1 )r)
=

M · e(g, h)sye(g1, g1)
sr
∑

vi,j∈W ti,j

e(g1, h)sye(g1, g1)
sr
∑

vi,j∈L ti,j
= M

4.2 Construction of Secret Keys ti,j

In our scheme,
∑

vi,j∈L ti,j 
=
∑

vi,j∈L′ ti,j is assumed. If there exist L and L′

(L 
= L′) such that
∑

vi,j∈L ti,j =
∑

vi,j∈L′ ti,j , a user with the attribute list L′

can decrypt a ciphertext associated with W , where L′ 
|= W and L |= W . Remark
that the assumption holds with overwhelming probability p(p−1)···(p−(N−1))

pN >
(p−(N−1))N

pN = (1− N−1
p )N > 1− N(N−1)

p > 1− N2

p , where N :=
∏n

i=1 ni. There-
fore, if each secret key ti,j is chosen at random from Zp, then our assumption is
natural.
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5 Security Analysis

Theorem 1. Our scheme satisfies the indistinguishability of messages under the
DBDH assumption.

Proof. We suppose that the adversary A wins the selective game for CP-ABE
with the advantage ε. Then we can construct an algorithm B that breaks the
DBDH assumption with the advantage ε

2 (1 − N2

p ), where N :=
∏n

i=1 ni is the
number of expressed access structures. The DBDH challenger selects a, b, c, z ∈R

Zp, ν ∈R {0, 1}, and g1, where 〈g1〉 = G1. If ν = 0, then Z = e(g1, g1)abc.
Otherwise, if ν = 1, then Z = e(g1, g1)z. The DBDH challenger gives the DBDH
instance (g1, g

a
1 , gb

1, g
c
1, Z) ∈ G4

1×GT to B. First, B is given the challenge access
structure W ∗ from A. Let W ∗ = [W ∗

1 , . . . , W ∗
n ]. B selects u ∈R Z∗

p, and sets
h = gu

1 and Y = e(ga
1 , (gb

1)
u) = e(g1, h)ab. Moreover, B selects t′i,j ∈R Zp (i ∈

[1, n], j ∈ [1, ni]), and sets ti,j = t′i,j (in the case where vi,j = W ∗
i ) and ti,j = bt′i,j

(in the case where vi,j 
= W ∗
i ), and computes public keys Ti,j (i ∈ [1, n], j ∈

[1, ni]) as follows:

Ti,j = g
ti,j

1 =

{
g

t′i,j

1 (vi,j = W ∗
i )

(gb
1)

t′i,j (vi,j 
= W ∗
i )

B gives PK = (e, g1, h, Y, {Ti,j}i∈[1,n],j∈[1,ni]) to A. For KeyGen query L, there
exists vi,� such that vi,� = Li∧ vi,� 
= W ∗

i , since L 
|= W ∗. Therefore,
∑

vi,j∈L ti,j
can be represented as

∑
vi,j∈L ti,j = T1 + bT2, where T1, T2 ∈ Zp. Note that

both T1 and T2 are represented by the sum of t′i,j . Therefore, B can com-
pute T1 and T2. B chooses β ∈R Zp, sets r := β−ua

T2
, and computes SKL =

((gb
1)

βg
T1
T2

β

1 (ga
1 )−

T1u
T2 , g

β
T2
1 (ga

1 )−
u

T2 ). We show that SKL is a valid secret key as
follows:

(gb
1)

βg
T1
T2

β

1 (ga
1 )−

T1u
T2 = guab

1 · g−uab
1 (gb

1)
βg

T1
T2

β

1 (ga
1 )−

T1u
T2

= guab
1 · g

T1
T2

(β−ua)
1 · gb(β−ua)

1

= guab
1 (gT1

1 · gbT2
1 )

β−ua
T2

= guab
1 (gT1+bT2

1 )
β−ua

T2

= hy(g
∑

vi,j∈L ti,j

1 )r,

and

g
β

T2
1 (ga

1 )−
u

T2 = g
β−ua

T2
1 = gr

1

If T2 = 0 mod p, then B aborts. If T2 = 0 mod p holds, then there exists L
such that

∑
vi,j∈L ti,j =

∑
vi,j∈W∗ ti,j holds. Therefore, this probability is at

most N2

p . See Section 4.2 for details. For the challenge ciphertext, B chooses
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Table 1. Size of each value

PK MK SK Ciphertext
SW05 [13] n|G1| + |GT | (n + 1)|Zp| r2|G1| r1|G1| + |GT |

GPSW06 [9] n|G1| + |GT | (n + 1)|Zp| r2|G1| r1|G1| + |GT |
CN07 [7] (3n + 1)|G1| + |GT | (3n + 1)|Zp| (2n + 1)|G1| (n + 1)|G1| + |GT |

BSW07 [2] 3|G1| + |GT | |Zp| + |G| (2n + 1)|G1| (2r2 + 1)|G1| + |GT |
NYO08 [12] (2N ′ + 1)|G1| + |GT | (2N ′ + 1)|Zp| (3n + 1)|G1| (2N ′ + 1)|G1| + |GT |
W08 [14] 2|G1| + |GT | |G1| (1 + n + r2)|G1| (1 + r1n)|G1| + |GT |

Our scheme (2N ′ + 3)|G1| + |GT | (N ′ + 1)|Zp| 2|G1| 2|G1| + |GT |

Table 2. Computational time of each algorithm

Enc. Dec.
SW05 [13] r1G1 + 2GT r1Ce + (r1 + 1)GT

GPSW06 [9] r1G1 + 2GT r1Ce + (r1 + 1)GT

CN07 [7] (n + 1)G1 + 2GT (n + 1)Ce + (n + 1)GT

BSW07 [2] (2r1 + 1)G1 + 2GT 2r1Ce + (2r1 + 2)GT

NYO08 [12] (2N ′ + 1)G1 + 2GT (3n + 1)Ce + (3n + 1)GT

W08 [14] (1 + 3r1n)G1 + 2GT (1 + n + r1)Ce + (3r1 − 1)G1 + 3GT

Our scheme (n + 1)G1 + 2GT 2Ce + 2GT

μ ∈R {0, 1}, computes C∗
1 = Mμ · Zu, C∗

2 = gc
1 and C∗

3 = (gc
1)
∑

vi,j∈W∗ t′i,j ,
and sends (C∗

1 , C∗
2 , C∗

3 ) to A. Finally, A outputs μ′ ∈ {0, 1}. B outputs 1 if
μ′ = μ, or outputs 0 if μ′ 
= μ. If Z = e(g1, g1)abc, then (C∗

1 , C∗
2 , C∗

3 ) is a
valid ciphertext associated with W ∗. Therefore, A has the advantage ε. Hence,
Pr[B → 1|Z = e(g1, g1)abc] = Pr[μ′ = μ|Z = e(g1, g1)abc] = 1

2 + ε. Otherwise, if
Z = e(g1, g1)z , A has no advantage to distinguish a bit μ, since all parts of the
challenge ciphertext when μ = 0 and when μ = 1 have the same distributions.
Hence, Pr[B → 0|Z = e(g1, g1)z ] = Pr[μ′ 
= μ|Z = e(g1, g1)z] = 1

2 . It follows that
B’s advantage in the DBDH game is ε

2 (1− N2

p ). ��

Although a symmetric bilinear map is required in this proof, our scheme can be
proven with an asymmetric bilinear map such as the Weil or Tate pairing e :
G1×G2 → GT over MNT curves [11], where G1 and G2 are distinct groups. Then
the indistinguishability of messages can be proven under the DBDH assumption
over G2 [1].

6 Comparison

Let PK, MK, SK and Ciphertext be the size of the public key, of the master
key, of the secret key, and the ciphertext length excluding the access structure,
respectively. Moreover, Enc. and Dec. are the computational times of encryp-
tion and decryption, respectively. We use the terms DBDH, DMBDH [13] and
D-Linear [12] to refer to the Decision Bilinear Diffie-Hellman assumption, the



A CP-ABE Scheme with Constant Ciphertext Length 21

Table 3. Some properties of ABE schemes

Policy Recipient Anonymity Assumption
SW05 [13] Key No DMBDH

GPSW06 [9] Key No DBDH
CN07 [7] Ciphertext No DBDH

BSW07 [2] Ciphertext No Generic Group Model
NYO08 [12] Ciphertext Yes DBDH, D-Linear
W08 [14] Ciphertext No DBDH

Our scheme Ciphertext No DBDH

Table 4. Expressiveness of policy

SW05 [13] Threshold Structure
GPSW06 [9] Tree-based Structure

CN07 [7] AND-gates on positive and negative attributes with wildcards
BSW07 [2] Tree-Based Structure
W08 [14] Linear Structure

NYO08 [12] AND-gates on multi-valued attributes with wildcards
Our scheme AND-gates on multi-valued attributes

Table 5. Performance Results for n = 3

Enc. Time Dec. Time
CN07 [7] 0.028sec 0.031sec

NYO08 [12] 0.032sec 0.078sec
Our scheme 0.015sec 0.015sec

Decision Modified Bilinear Diffie-Hellman assumption and the Decision Linear
assumption, respectively. The notation |G| is the bit-length of the element which
belongs to G. Let the notations kG and kCe (where k ∈ Z>0) be the k-times cal-
culation over the group G and pairing, respectively. Let U = {att1, att2, . . . , attn}
be the set of attributes. Let γ1 (|γ1| = r1) be a set of attributes associated with
the ciphertext, and γ2 (|γ2| = r2) a set of attributes associated with the secret
key. Actually, γ2 is different for each user. Let N ′ :=

∑n
i=1 ni be the total number

of possible statements of attributes. The computational time over Zp is ignored
as usual.

Our scheme is efficient in that the ciphertext length and the costs of de-
cryption do not depend on the number of attributes. Especially, the number of
pairing computations is constant. No previous schemes provide these properties.
An access structure is constructed by AND-gates on multi-valued attributes de-
fined in section 2.2, which is a subset of the access structures in [12]. Although
previous CP-ABE schemes [2,7,8,12,14] can complement our access structures,
the length of the ciphertext depends on the number of attributes. To the best of
our knowledge, our scheme is the first constant ciphertext length CP-ABE with
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AND-gates on multi-valued attributes. In future work, we plan to construct a
CP-ABE with both a constant ciphertext length and more flexible structures,
such as linear structures.

Our scheme does not provide recipient anonymity. Some parts of a ciphertext

for attributes (C2, C3) = (gs
1, g

s
∑

vi,j∈W ti,j

1 ) is a DDH (Decision Diffie-Hellman)-
tuple. Therefore, some information about attributes is exposed. Concretely, for
an access structure W ′, an attacker can run the DDH test e(C2,

∏
vi,j∈W ′ Ti,j)

?=
e(C3, g1). Then, the attacker can determine whether an encryptor used the policy
W ′ or not. We expect that our scheme will enable the property of the hidden
encryptor-specified policies when a DDH-hard bilinear group is applied. However,
we could not give the proof of security. Added to this, our scheme is inefficient
in that the size of public key grows linearly with the number of attributes. There
are rooms for argument on these points.

The CN07 scheme [7], the NYO08 scheme [12] and ours are implemented with
the same access structure {v1,1, v2,1, v3,1}, by using the Pairing-Based Cryptog-
raphy (PBC) Library ver. 0.4.18 [15]. The performance results are shown in Table
5. Our experiment was performed by using a PC with an Intel(R) Core(TM)2
Duo CPU P8400 2.26GHz Windows Vista Home Premium Edition Service Pack
1. The execution of our scheme takes a very small amount of time, which is quite
feasible for practical implementation. When n = 3, our decryption algorithm is
approximately twice as fast as that of the CN07 scheme, and approximately five
times faster than that of the NYO08 scheme.

7 Conclusion

In this paper, we propose a constant ciphertext length CP-ABE with AND-gates
on multi-valued attributes. Moreover, the number of pairing computations is also
constant. To the best of our knowledge, this is the first such construction.
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Abstract. Certificateless Public Key Cryptography was first introduced
by Al-Riyami and Paterson in order to eliminate the inherent key-escrow
problem of Identity-Based Cryptography. In this paper, we present a
new practical construction of certificateless public key encryption scheme
without paring. Our scheme is, in the random oracle model, provably
secure under the assumption that the RSA problem is intractable.
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1 Introduction

In order to solve the key escrow problem that is inherent in identity-based cryp-
tography (IBC) [20], while at the same time, eliminate the use of certificates
in the traditional public key cryptography (PKC), Al-Riyami and Paterson [1]
introduced the concept of certificateless public key cryptography (CL-PKC). Dif-
ferent from IBC, a user’s public key in CL-PKC is no longer an arbitrary string;
instead, the public key is generated by the user based the user’s secret infor-
mation as well as a partial private key obtained from a trusted authority called
Key Generation Center (KGC). As such, public keys in CL-PKC do not need to
be explicitly certified. Note here that the KGC does not know the user’s private
keys since they contain secret information generated by the users themselves,
thereby removing the escrow problem in IBC.

Since the introduction of CL-PKC [1], many concrete constructions of cer-
tificateless public key encryption (CL-PKE) schemes have been proposed. The
schemes in [3,6,21,22] were proven secure in the random oracle model [4] while
the schemes in [14] and [18] are secure without the random oracles.

F. Bao, H. Li, and G. Wang (Eds.): ISPEC 2009, LNCS 5451, pp. 24–34, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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There were also efforts to construct generic CL-PKC schemes. The first generic
CL-PKE scheme was proposed in [23] and was later shown in [16] to be inse-
cure under the model of [1]. In [5], the authors extended the concept of key
encapsulation mechanism to IBE and CL-PKE, and built generic constructions
of identity-based key encapsulation mechanism and certificateless public key en-
capsulation mechanism.

One notable feature in the research of CL-PKE has been the development
of a number of alternative security models that are substantially weaker than
the original model of [1]. These different models are summarized by Dent [7].
Moreover, Dent et al. [8] presents a generic construction as well as a concrete con-
struction for certificateless encryption schemes that are provably secure against
strong adversaries in the standard model.

Au et al. [2] pointed out the weakness of the previous security models and
analyzed some previous schemes under an enhanced malicious KGC model. They
showed that the CL-PKE scheme in [16] is secure against malicious KGC attacks
under random oracle assumption. Hwang and Liu [13] proposed a new CL-PKE
scheme which is secure against malicious KGC attacks. Its security is proven
in the standard model. In addition, Huang and Wong [12] proposed a generic
construction of certificateless encryption which is proven secure against malicious
KGC attacks in the standard model.

Other Related Work. Gentry [10] introduced a different but related concept
named certificate based encryption (CBE). This approach is closer to the context
of a traditional PKI model as it involves a certification authority (CA) providing
an implicit certification service for clients’ public keys. Liu et al. proposed the
first self-generated-certificate public key encryption (SGC-PKE) scheme in [14],
which defends the DoD attack that exists in CL-PKE. Lai and Kou [15] proposed
a SGC-PKE scheme without using pairing.

Contribution. In spite of the recent advances in implementation technique, the
paring computation is still considered as expensive compared with the “stan-
dard” operations such as modular exponentiations in finite fields. Baek et al. [3]
proposed the first CL-PKE scheme without pairing, which was related to the
early works on the self-certified keys [11,19].

In this paper, inspired by the identity-based key agreement protocol proposed
by Okamoto and Tanaka [17] and whose security relies on the RSA problem, we
present a new CL-PKE scheme without paring. Due to the extensive deployment
of RSA, our scheme is better off in compatibility with the existing cryptosystems.
In addition, in [3], the Type I adversary is not allowed to replace the challenge
identity’s public key, which is the main attacking means of Type I adversary.
Compared with the scheme in [3], our scheme does not have this limitation.

Organization. The rest of the paper is organized as follow. We give some related
definitions in Section 2. The model of CL-PKE is also reviewed in this section.
The proposed CL-PKE scheme and its security analysis is presented in Section
3. Finally concluding remarks are given in Section 4.
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2 Preliminaries

2.1 Computational Problems

Definition 1. The RSA problem is, given a randomly generated RSA modulus
n, an exponent e and a random z, to find y ∈ Z∗

n such that ye = z.

Definition 2. The Computational Diffie-Hellman (CDH) problem in Z
∗
n is,

given p,q,n (where p = 2p′+1, q = 2q′+1, n = pq with p′, q′ being two equal-length
large primes), g ∈ Z∗

n of order p′q′, ga and gb for uniformly chosen a, b ∈ Z∗
n, to

compute gab.

2.2 Certificateless Public Key Encryption

A generic CL-PKE is a tuple of algorithm described as follows [3]:

Setup: Takes as input a security parameter κ and outputs a common parameter
params and a master secret msk.

PartialKeyExtract: Takes as input params, msk and an identity ID. It outputs a
partial private key dID.

SetSecretValue: Takes as input params and an identity ID. It outputs a secret
value sID.

SetPrivateKey: Takes as input params, dID and sID. It outputs a private key
SKID.

SetPublicKey: Takes as input params, dID and sID. It outputs a public key PKID.
Enc: Takes as input params, a message m, a receiver’s identity ID and PKID. It

outputs a ciphertext c.
Dec: Takes as input params, SKID and a ciphertext c. It outputs a message m

or the failure symbol ⊥.

We insist that CL-PKE satisfies the obvious correctness requirement that de-
capsulation “undoes” encapsulation.

Note that, the above model of CL-PKE is slightly weaker than the original
one given in [1] as a user must authenticate herself to the KGC in order to obtain
a partial private key to create a public key, while the original CL-PKE model
does not require a user to contact the KGC to setup her public keys. However,
as argued in [3], this modified model preserves the unique property of CL-PKE
that no certificates are required in order to guarantee the authenticity of public
keys, which is the main motivation of CL-PKE.

Security Model. There are two types of adversaries [1]. Type I adversary models
an “outsider” adversary, who does not have the KGC’s master secret key but
it can replace public keys of arbitrary identities with other public keys of its
own choices. It can also obtain partial and full secret keys of arbitrary identities.
Type II adversary models an “honest-but-curious” KGC, who knows the master
secret key (hence it can compute partial secret key by itself). It is still allowed to
obtain full secret key for arbitrary identities but is not allowed to replace public
keys at any time.
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Security in CL-PKE is defined using the following game between an attack
algorithm A and a challenger.

Setup. The challenger runs the Setup algorithm and gives A the resulting
system parameter params. If A is of Type I, the challenger keeps the master
secret key msk to itself; otherwise, it gives msk to A.

Query phase 1 The adversary A adaptively issues the following queries:

– Public-Key-Request query: On input an identity ID, the challenger
runs SetPublicKey(params, dID, sID), where the partial private key dID

and the secret value sID of the identity ID are obtained from PartialKeyEx-
tract and SetSecretValue, respectively, and forwards the result to the ad-
versary.

– Partial-Key-Extract query: On input an identity ID, the challenger
runs PartialKeyExtract(params, msk, ID) and returns the result to A.
Note that it is only useful to Type I adversary.

– Private-Key-Request query: On input an identity ID, the challenger
runs SetPrivateKey(params, dID, sID), where the partial private key dID

and the secret value sID of the identity ID are obtained from PartialKeyEx-
tract and SetSecretValue, respectively, and forwards the result to the ad-
versary. It outputs ⊥ if the uesr’s public key has been replaced in the
case of Type I adversary.

– Public-Key-Replace query (for Type I adversary only): On input an
identity and a valid public key, it replaces the associated user’s public
key with the new one.

– Dec query: On input a ciphertext and an identity, returns the decrypted
message using the private key corresponding to the current value of the
public key associated with the identity of the user.

Challenge query: After making a polynomial number of queries, A outputs
two messages m0, m1 and an identity ID∗. The challenger picks a random bit
β ∈ {0, 1}, sets c∗ = Enc(parmas, mβ , ID∗, PKID∗) and sends c∗ to A.

Query phase 2 A makes a new sequence of queries.
Guess A outputs a bit β

′
. It wins the game if β

′
= β under the following

conditions:

– At any time, ID∗ has not been submitted to the Private-Key-Request
query.

– (c∗, ID∗, PKID∗) have not been submitted to the Dec query.
– If it is Type I adversary, ID∗ cannot be equal to an identity for which

both the public key has been replaced and the partial private key has
been extracted.

We define A’s advantage in attacking the certificateless public key encryption
CL-PKE as

AdvCL-PKE
A = |Pr[β = β

′
]− 1

2
|.
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Definition 3. We say that a certificateless public key encryption CL-PKE is
(t, qpub, qpar, qprv, qd, ε)-IND-CCA secure against Type I (resp. Type II) adver-
sary AI (resp. AII), if for all t-time algorithms AI (resp. AII) making at most
qpub Public-Key-Request queries, qpar Partial-Key-Extract queries, qprv

Private-Key-Request queries and qd Dec queries, have advantage at most ε
in winning the above game.

IND-CPA security is defined similarly, but with the restriction that the adversary
cannot make Dec queries.

Definition 4. We say that a certificateless public key encryption CL-PKE is
(t, qpub, qpar, qprv, ε)-IND-CPA secure, if it is (t, qpub, qpar, qprv, 0, ε)-IND-CCA se-
cure.

3 Our Scheme

Our CL-PKE scheme is inspired by the RSA-based key agreement protocol [17]
introduced by Okamoto and Tanaka. We first present our scheme and then show
that it is IND-CPA secure. However, it is easy to turn our IND-CPA secure CL-
PKE scheme into an IND-CCA secure CL-PKE scheme using the technique pro-
posed by Fujisaki and Okamoto [9], as did in [3].

Setup(κ) Given a security parameter κ, a RSA group < n, p, q, e, d, g > is gen-
erated, where p′, q′ are κ-bit prime numbers, p = 2p′ + 1, q = 2q′ + 1, n =
pq, e < φ(n), gcd(e, φ(n)) = 1, ed ≡ 1(mod φ(n)), and φ denotes the Euler
totient function. Chooses two cryptographic hash functions H : {0, 1}∗ →
Z∗

n, H2 : Z∗
n → {0, 1}l, where l is the length of the plaintext message.

The master secret key is defined as msk = d. The common parameter is
params = (n, e, H, H2).

PartialKeyExtract(params, msk, ID) Given params, msk = d and an identity
ID ∈ {0, 1}∗, outputs the partial private key

dID = H(ID)d.

SetSecretValue(params, ID) Given params and an identity ID, randomly chooses
xID ∈ Z∗

n and outputs
sID = xID.

SetPrivateKey(params, dID, sID) Given params, the partial private key dID and
the secret value sID = xID of an identity ID, outputs

SKID = xID.

SetPublicKey(params, dID, sID) Given params, the partial private key dID =
H(ID)d and the secret value sID = xID of an identity ID, outputs

PKID = H(ID)d+xID .



RSA-Based Certificateless Public Key Encryption 29

Enc(params, m, ID, PKID) Given params, a message m and the public key PKID

of an identity ID, randomly chooses r ∈ Z∗
n and computes

c1 = H(ID)er, c2 = H2(PKID
erH(ID)−r)⊕m,

then outputs c = (c1, c2).
Dec(params, SKID, c) Given params, the private key SKID of an identity ID, and

a ciphertext c = (c1, c2), outputs

m = H2(cSKID
1 )⊕ c2.

It can be easily seen that the above decryption algorithm is consistent, i. e.,

PKID
erH(ID)−r = H(ID)(d+xID)erH(ID)−r

= H(ID)rH(ID)erxIDH(ID)−r

= cxID
1 = cSKID

1 .

We now prove the security of the scheme by two theorems.

Theorem 1. Assume the hash functions H, H2 are random oracles and
the RSA problem is (t, ε)-intractable. Then, the above CL-PKE scheme is
(t′, qpub, qpar, qprv, ε

′)IND-CPA secure against Type I adversary AI for

t > t′ + tex(qH + qpub), ε >
2ε′

qH2τ(qpar + qprv + 1)
,

where tex denotes the time for computing exponentiation in Z∗
n, τ denotes the

base of the natural logarithm and qH (resp. qH2) denotes the number of H (resp.
H2) queries by the adversary.

Proof. Let AI be a Type I adversary that (t′, qpub, qpar, qprv, ε
′)-breaks the IND-

CPA security of the certificateless public key encryption scheme described above.
We construct an algorithm B, that solves the RSA problem, as follows. B is given
an instance of the RSA problem, which consists of (n, e, z). B’s goal is to find
y ∈ Z∗

n such that ye = z. It interacts with AI as follows.

Setup B maintains three lists H-List,H2-List and KeyList. Initially the lists are
empty. The common parameter params = (n, e) is sent to AI . The master
secret key msk = d, where ed ≡ 1(mod φ(n)), is unknown to B.

Query phase 1 AI adaptively issues H, H2, Public-Key-Request, Partial-
Key-Extract, Private-Key-Request and Public-Key-Replace queries.
B answers them as follows:

– H query on ID: If a record (ID, hID, fID, coin) appears in the H-List, sends
hID to AI ; otherwise, B picks coin ∈ {0, 1} at random such that Pr[coin =
0] = ρ. (ρ will be determined later.) Then, randomly chooses fID ∈ Z∗

n.
Finally, the record (ID, hID = zcoin · fe

ID, fID, coin) is added to the H-List
and hID is sent to AI .
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– H2 query on ω: If a record (ω, k) appears in the H2-List, sends k to AI ;
otherwise, picks k ∈ {0, 1}l at random, adds the record (ω, k) to H2-List
and sends k to AI .

– Public-Key-Request query on ID: Randomly chooses xID ∈ Z∗
n and

searches H-List for a record (ID, hID, fID, coin). Then, adds the record
(ID, PKID = fIDhxID

ID , SKID = xID, coin) to KeyList and sends PKID to AI .
– Partial-Key-Extract query on ID: Searches H-List for a record (ID, hID,

fID, coin). If coin = 0, sends fID to AI ; otherwise, aborts and terminates.
– Private-Key-Extract query on ID: Searches KeyList for a record (ID,

PKID, SKID, coin). If coin = 0, sends SKID to AI ; otherwise, aborts and
terminates.

– Public-Key-Replace query on (ID, PK′
ID): Replaces PKID with PK′

ID.
Challenge AI submits two messages m0, m1 and an identity ID∗ with the public

key PKID∗ . B searches H-List for a record (ID∗, hID∗ , fID∗ , coin). If coin = 0, it
aborts and terminates; otherwise, B picks r ∈ Z∗

n at random. Let r∗ = d+ r,
which is unknown to B. Then B randomly chooses c∗2 ∈ {0, 1}l and computes

c∗1 = H(ID∗)er∗
= H(ID∗)e(d+r) = h1+er

ID∗ .

Finally, it sends c∗ = (c∗1, c
∗
2) to AI .

Query phase 2 AI makes a new sequence of queries, and B responds as in
Query phase 1.

Guess: Finally, the adversary AI outputs a bit β′. B picks a tuple (ω, k) from

H2-List at random and outputs PK1+er
ID∗

ωhr
ID∗fID∗ as the solution to the RSA problem.

Probability Analysis: Let AskH∗
2 denotes the event that PKer∗

ID∗H(ID∗)−r∗
has

been queried to H2. Note that,

PKer∗
ID∗H(ID∗)−r∗

= PK
e(d+r)
ID∗ H(ID∗)−d−r

= PK1+er
ID∗ h−d

ID∗h−r
ID∗

= PK1+er
ID∗ (zfe

ID∗)−dh−r
ID∗

= PK1+er
ID∗ z−df−1

ID∗h−r
ID∗ .

If the event AskH∗
2 happens, then B will be able to solve the RSA problem by

choosing a tuple (ω, k) from the H2-List and computing PK1+er
ID∗

ωhr
ID∗fID∗ with the prob-

ability at least 1
qH2

, where qH2 is the number of H2 queries by the adversary. If
the event AskH∗

2 does not happen, B’s simulations are perfect and are identically
distributed as the real one from the construction.

We observe that the probability that B does not abort during the simulation
is given by ρqpar+qprv (1− ρ) which is maximized at ρ = 1− 1/(qpar + qprv + 1).
Hence the probability that B does not abort is at most 1

τ(qpar+qprv+1) , where τ

denotes the base of the natural logarithm.
Now, the event AskH∗

2|¬Abort denoted by Good, where Abort denotes the event
that B aborts during the simulation. If Good dose not happen, it is clear that
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the adversary does not gain any advantage greater than 1/2 to guess β. Namely,
we have Pr[β′ = β|¬Good] ≤ 1/2. Hence, by splitting Pr[β′ = β], we obtain
|Pr[β′ = β]− 1

2 | ≤
1
2Pr[Good]. To sum up, we have ε > 2ε′

qH2 τ(qpar+qprv+1) .

Time Complexity. In the simulation, B’s overhead is dominated by the ex-
ponentiation computation in response to AI ’s H and Public-Key-Request
queries. So, we have t > t′ + tex(qH + qpub), where tex denotes the time for
computing exponentiation in Z∗

n.
This concludes the proof of Theorem 1.

Theorem 2. Assume the hash functions H and H2 are random oracles and the
CDH problem is (t, ε)-intractable. Then, the above CL-PKE scheme is (t′, qpub,
qpar, qprv, ε

′)IND-CPA secure against Type II adversary AII for

t > t′ + tex(qH + qpub), ε >
2ε′

qH2τ(qprv + 1)
,

where tex denotes the time for computing exponentiation in Z∗
n, τ denotes the

base of the natural logarithm and qH (resp. qH2) denotes the number of H (resp.
H2) queries by the adversary.

Proof. Let AII be a Type II adversary that (t′, qpub, qpar, qprv, ε′)-breaks the
IND-CPA security of the CL-PKE scheme described above. We construct an
algorithm B, that solves the CDH problem, as follows. B is given an instance
of the CDH problem, which consists of (n, p, q, g, ga, gb). B’s goal is to compute
gab. It interacts with AII as follows.

Setup B maintains three lists H-List, H2-List and KeyList. Initially the lists are
empty. Then B picks e < φ(n), gcd(e, φ(n)) = 1 at random and computes d
such that ed ≡ 1(mod φ(n)), where φ denotes the Euler totient function. (It
can be computed by p, q.) Finally, it sends the common parameter params =
(n, e) and the master secret key msk = d to AII .

Query phase 1 AII adaptively issues H, H2, Public-Key-Request and
Private-Key-Request queries. B answers them in the following way:

– H query on ID: If a record (ID, hID, tID) appears in the H-List, B sends
hID to AI ; otherwise, B randomly chooses tID such that tID < φ(n),
gcd(tID, φ(n)) = 1, adds the record (ID, hID = gtID , tID) to H-List and
sends hID to AII .

– H2 query on ω: If a record (ω, k) appears in the H2-List, B sends k to
AI : otherwise, B picks k ∈ {0, 1}l at random, adds the record (ω, k) to
H2-List and sends k to AII .

– Public-Key-Request query on ID: B searches H-List for a record (ID,
hID, tID). Then, it picks coin ∈ {0, 1} at random such that Pr[coin = 0] =
ρ (ρ will be determined later). Finally, it randomly chooses xID ∈ Z∗

n,
adds the record (ID, PKID = hd+xID

ID · (ga)tID·coin = hd+a·coin+xID

ID , SKID =
xID, coin) to KeyList and sends PKID to AII .
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– Private-Key-Extract query on ID: B searches KeyList for a record
(ID, PKID, SKID, coin). If coin = 0, it sends the SKID to AII ; otherwise,
it aborts and terminates.

Challenge AII submits two messages m0, m1 and an identity ID∗ with the
public key PKID∗ . B searches H-List for a record (ID∗, hID∗ , tID∗) and KeyList
for a record (ID∗, PKID∗ , SKID∗ = xID∗ , coin). If coin = 0, it aborts and
terminates; otherwise, B randomly chooses c∗2 ∈ {0, 1}l. Let r∗ = b, which is
unknown to B. Then B computes

c∗1 = (gb)etID∗ = (gtID∗ )er∗
= her∗

ID∗ = H(ID∗)er∗
.

and sends c∗ = (c∗1, c
∗
2) to AII .

Query phase 2 AII makes a new sequence of queries, and B responds as in
Query phase 1.

Guess Finally, the adversary AII outputs a bit β′. B picks a tuple (ω, k) from

H2-List at random and outputs ω
dt

−1
ID∗

(gb)xID∗ as the solution to the CDH problem.
Note that, B knows p, q, so t−1

ID∗ can be computed.

Probability Analysis: Let AskH∗
2 denotes the event that PKer∗

ID∗H(ID∗)−r∗
has

been queried to H2. Note that,

PKer∗
ID∗H(ID∗)−r∗

= PKeb
ID∗H(ID∗)−b

= h
eb(d+a+xID∗ )
ID∗ h−b

ID∗

= h
eb(a+xID∗ )
ID∗

= (gab)etID∗ (gb)etID∗xID∗ .

If the event AskH∗
2 happens, then B will be able to solve the CDH problem by

choosing a tuple (ω, k) from the H2-List and computing ω
dt

−1
ID∗

(gb)xID∗ with the proba-
bility at least 1

qH2
, where qH2 is the number of H2 queries by the adversary. If

the event AskH∗
2 does not happen, B’s simulations are perfect and are identically

distributed as the real one form the construction.
We observe that the probability that B does not abort during the simulation

is given by ρqprv (1 − ρ) which is maximized at ρ = 1− 1/(qprv + 1). Hence, the
probability that B does not abort is at most 1

τ(qprv+1) , where τ denotes the base
of the natural logarithm.

Now, the event AskH∗
2|¬Abort denoted by Good, where Abort denotes the event

that B aborts during the simulation. If Good dose not happen, it is clear that
the adversary does not gain any advantage greater than 1/2 to guess β. Namely,
we have Pr[β′ = β|¬Good] ≤ 1/2. Hence, by splitting Pr[β′ = β], we obtain
|Pr[β′ = β]− 1

2 | ≤
1
2Pr[Good]. To sum up, we have ε > 2ε′

qH2 τ(qprv+1) .

Time Complexity. In the simulation, B’s overhead is dominated by the ex-
ponentiation computation in response to AII ’s H and Public-Key-Request
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query. So, we have t > t′ + tex(qH + qpub), where tex denotes the time for com-
puting exponentiation in Z∗

n.
This concludes the proof of Theorem 2.

4 Conclusion

We have presented a new practical CL-PKE scheme that does not depend on the
paring. We have proven that our scheme is, in the random oracle model, secure
under the assumption that the RSA problem is intractable.

However, the model of our scheme is slightly weaker than the original model
[1]. It is still an open problem to design a CL-PKE scheme without paring in the
original model [1] that is IND-CCA secure, even relies on the random oracles.
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Abstract. In this paper, we construct a strongly unforgeable ID-based
signature scheme without random oracles. The signature size of our
scheme is smaller than that of other schemes based on varieties of the
Diffie–Hellman problem or the discrete logarithm problem. The security
of the scheme relies on the difficulty to solve three problems related to
the Diffie–Hellman problem and a one-way isomorphism.

Keywords: Digital signatures, ID-based signatures, Strong unforgeabil-
ity, Standard models.

1 Introduction

In 1984, Shamir [19] introduced the concept of ID-based cryptosystems, in which
the private key of an entity was generated from his identity information (e.g. an
e-mail address, a telephone number, etc.) and a master key of a trusted third
party called a Private Key Generator (PKG). The advantage of this cryptosys-
tem is that certificates as used in a traditional public key infrastructure can be
eliminated. The first ID-based signature (IBS) scheme was proposed by Shamir
[19]. Later, many IBS schemes were presented in [7,12,15,18].

For (ID-based) signatures [3,5,6,8,11,16,21,20] or ID-based encryptions [2,20],
constructing schemes whose security can be proved without random oracles is
one of the most important themes of study, since commonly used hash functions
such as MD5 or SHA-1 are not random oracles.

It is known that strongly unforgeable IBS schemes can be constructed with
the approach of attaching certificates to strongly unforgeable (non-ID-based)
signatures. This approach is mentioned in passing within several papers [9,1,10].
We can construct strongly unforgeable IBS schemes without random oracles by
applying the approach to strongly unforgeable signature schemes without ran-
dom oracles such as the Boneh–Boyen [3], the Zhang–Chen–Susilo–Mu [21], the

F. Bao, H. Li, and G. Wang (Eds.): ISPEC 2009, LNCS 5451, pp. 35–46, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Camenisch–Lysyanskaya [6], the Okamoto [14] or the Boneh–Shen–Waters [5].
However, these constructions need at least six signature parameters to include
a public key of the signer and two ordinary signatures.

Also, Huang–Wong–Zhao [13] proposed a general method to transform
(weakly) unforgeable IBS schemes into strongly unforgeable ones by attaching
strong one-time signatures. Therefore, this enables us to construct strongly un-
forgeable IBS schemes without random oracles by applying it on them to any
unforgeable ones such as the Paterson–Schuldt [16]. However, in this transfor-
mation, signature sizes of the IBS scheme depend on the public key size and
signature size of the underlying strong one-time signature scheme. Almost all
the current one-time signature schemes suffer from a drawback that these sig-
nature sizes are quite large in practice. Note that a strongly unforgeable sig-
nature scheme (in the sense of Definition 2 in [13]) is also a strong one-time
signature scheme (Definition 3 in [13]). However, by using a strongly unforge-
able signature scheme such as [3,21,6,14,5] instead of the one-time signature,
these constructions also need at least six signature parameters.

In this paper, we propose a strongly unforgeable IBS scheme without random
oracles, with five signature parameters. The security of the scheme relies on the
difficulty to solve three problems related to the Diffie–Hellman (DH) problem,
and a one-way isomorphism that no PPT adversary can find the inverse one.
The signature size of our scheme is smaller than that of other schemes based
on varieties of the DH problem or the discrete logarithm problem.1 One of the
reasons why the number of parameters can be reduced from six to five is that
our scheme is directly constructed without applying [9,1,10] or [13].

The paper is organized in the following way. In Section 2, we prepare for the
construction of our scheme, along with its proof of security. In Section 3, we will
provide two new assumptions related to the DH problem, and make a proposal
for our ID-based signature scheme. We prove our scheme satisfying security of
strong unforgeability in Section 4, and discuss efficiency in Section 5. We provide
conclusions in Section 6.

2 Preliminaries

The aim of this section is to define a one-way isomorphism, a bilinear map, the co-
Diffie–Hellman (co-DH) problem, an IBS scheme and the strong unforgeability.

2.1 One-Way Isomorphism and Bilinear Map

The following definitions are due to [17,4]. We assume that
1 Currently, the most practical strongly unforgeable signature schemes [11,8] without

random oracles are constructed based on the Strong RSA assumption. It is known
that each component in the parameters of the signature and the public key generated
by these schemes needs to be at least 1024-bits in size. On the other hand, it is suf-
ficient to be 160-bits in size for signature schemes constructed based on the discrete
logarithm problem (including varieties of the DH problem) over elliptic curves. In
this paper, we only consider such schemes.
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– G1, G2 and GT are multiplicative cyclic groups of prime order p;
– g2 is a generator of G2;
– f : G2 → G1 is a one-way isomorphism satisfying f(gx

2 ) = gx
1 , where x ∈ Zp

and g1 is a generator of G1;
– e : G1×G2 → GT is the cryptographic bilinear map satisfying the following

properties:
Bilinearity: e(ua, vb) = e(u, v)ab for any u ∈ G1, v ∈ G2 and any a, b ∈ Z.
Non-degenerate: e(g1, g2) 
= 1GT for 〈g1〉 = G1 and 〈g2〉 = G2.
Computable: There is an efficient algorithm to compute e(u, v) for any
u ∈ G1 and any v ∈ G2.

2.2 The Co-Diffie–Hellman Problem

We provide the co-DH problem in (G2, G1) as follows. Given

(g1, g2, g
x
2 , gy

2)

as input for random generators g1 ∈R G1, g2 ∈R G2 and random numbers x, y ∈R
Z∗

p, compute gxy
1 . We say that algorithm A has an advantage ε in solving the

co-DH problem in (G2, G1) if

Pr [A (g1, g2, g
x
2 , gy

2) = gxy
1 ] ≥ ε ,

where the probability is over the choice g1 ∈R G1, g2 ∈R G2, x, y ∈R Z∗
p and the

random bits of A.

Assumption 1. The (t, ε)-co-Diffie–Hellman (co-DH) Assumption holds in
(G2, G1) if no t-time adversary has an advantage of at least ε in solving the
co-DH problem in (G2, G1).

Notice that, if we set g1 := f(g2) ∈ G1 for the one-way isomorphism f : G2 → G1
and the random generator g2 ∈R G2, then the generator g1 is not random.

2.3 ID-Based Signature Schemes

The definition of the IBS scheme in this section is due to [16].
An IBS scheme consists of four phases: Setup, Extract, Sign and Verify as

follows.

Setup: A security parameter is taken as input and returns params (system pa-
rameters) and master-key. The system parameters include a decision of a
finite message space M, and a decision of a finite signature space S. Intu-
itively, the system parameters will be publicly known, while the master-key
will be known only to the Private Key Generator (PKG).

Extract: The output from Setup (params, master-key) is taken along with an
arbitrary ID ∈ {0, 1}∗ as input, and returns a private key d. Here ID is an
arbitrary string that will be used as a public key, and d is the corresponding
private sign key. The Extract phase extracts a private key from the given
public key, and is performed by the PKG.
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Sign: A message M ∈ M, a private key d and params are taken as input. It
returns a signature σ ∈ S.

Verify: A message M ∈M, σ ∈ S, ID and params are taken as input. It returns
valid or invalid.

The parameters in Sign and Verify are used in a different order later on. These
four phases must satisfy the standard consistency constraint, namely when d is
the private key generated by phase Extract when it is given ID as the public key,
then

∀M ∈M, ∀σ := Sign(params, d, M) : Pr[Verify(params, ID, M, σ) = valid] = 1.

2.4 Strong Unforgeability

The definition of the strong unforgeability in this section is due to [3,5,16].
In particular, Paterson–Schuldt [16] defined the unforgeability and the strong
unforgeability. However, their construction of the IBS scheme satisfied only the
unforgeability.

Strong unforgeability is defined using the following game between a challenger
B and an adversary A:

Setup: The challenger B takes a security parameter k and runs the Setup phase
of the IBS scheme. It gives the adversary A the resulting system parameters
params. It keeps the master-key to itself.

Queries: The adversary A adaptively makes a number of different queries to
the challenger B. Each query can be one of the following.

– Extract Queries (IDi): The challenger B responds by running phase Ex-
tract to generate the private key di corresponding to the public key IDi

issued by A. It sends di to the adversary A.
– Signature Queries (IDi, Mi,j): For each query (IDi, Mi,j) issued by A the

challenger B responds by first running Extract to obtain the private key di

of IDi, and then running Sign to generate a signature σi,j of (IDi, Mi,j), and
sending σi,j to A.

Output: Finally A outputs a pair (ID∗, M∗, σ∗). If σ∗ is a valid signature
of (ID∗, M∗) according to Verify, ID∗ 
∈ {IDi} for Extract Queries and
(ID∗, M∗, σ∗) 
∈ {(IDi, Mi,j, σi,j)} for Signature Queries, then A wins.

We define AdvSigA to be the probability that A wins the above game, taken
over the coin tosses made by B and A.

Definition 1. An adversary A (qe, qs, t, ε)-breaks an ID-based signature (IBS)
scheme if A runs in a time of at most t, A makes at most qe Extract Queries,
at most qs Signature Queries, and AdvSigA is at least ε. An IBS scheme is
(qe, qs, t, ε)-strongly existential unforgeable under an adaptive chosen message
attack, strongly unforgeable, if no adversary (qe, qs, t, ε)-breaks it.
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3 Our Scheme

In this section, we provide two new assumptions and propose an IBS scheme.

3.1 Underlying Proposed Problems

We provide Assumptions 2 and 3 related to the DH problem.
The first problem is defined as follows. Given(

g1, g2, g
x
1 , gri

2 , g
x+1/ri

2

∣∣∣ i = 1, . . . , q
)

as input for random generators g1 ∈R G1, g2 ∈R G2 and random numbers x,

r1, . . . , rq ∈R Z∗
p, compute

(
gr∗
1 , g

x+1/r∗
2

)
for some r∗ ∈ Z∗

p and r∗ /∈ {r1, . . . , rq}.
Note that the index x + 1/ri means x + (1/ri). We say that algorithm A has an
advantage ε in solving the first problem if

Pr
[
A
(
g1, g2, g

x
1 , gri

2 , g
x+1/ri

2

∣∣∣ i = 1, . . . , q
)

=
(
gr∗
1 , g

x+1/r∗
2

)]
≥ ε ,

where the probability is over the choice g1 ∈R G1, g2 ∈R G2, x, r1, . . . , rq ∈R Z∗
p,

some r∗ ∈ Z∗
p, r∗ /∈ {r1, . . . , rq} and the random bits of A.

Assumption 2. A (q, t, ε)-Assumption II holds if no t-time adversary has an
advantage of at least ε in solving the first problem.

The second problem is defined as follows. Given(
g1, g2, g

x
1 , g

1/x
2 , gri

2 , gxri
2 , g

x+1/ri

2

∣∣∣ i = 1, . . . , q
)

as input for random generators g1 ∈R G1, g2 ∈R G2 and random numbers
x, r1, . . . , rq ∈R Z∗

p, compute
(
gr∗
2 , gxr∗

2 , g
x+1/r∗
2

)
for some r∗ ∈ Z∗

p and r∗ /∈
{r1, . . . , rq}. We say that algorithm A has an advantage ε in solving the second
problem if

Pr
[
A
(
g1, g2, g

x
1 , g

1/x
2 , gri

2 , gxri
2 , g

x+1/ri

2

∣∣∣ i = 1, . . . , q
)

=
(
gr∗
2 , gxr∗

2 , g
x+1/r∗
2

)]
≥ ε ,

where the probability is over the choice g1 ∈R G1, g2 ∈R G2, x, r1, . . . , rq ∈R Z∗
p,

some r∗ ∈ Z∗
p, r∗ /∈ {r1, . . . , rq} and the random bits of A.

Assumption 3. A (q, t, ε)-Assumption III holds if no t-time adversary has an
advantage of at least ε in solving the second problem.

If we set g1 := f(g2) ∈ G1 for the one-way isomorphism f : G2 → G1 and
the random generator g2 ∈R G2, then the generator g1 is not random in the
two assumptions. The existence of f was proved by Saito–Hoshino–Uchiyama–
Kobayashi [17], on multiplicative cyclic groups constructed on non-supersingular
elliptic curves. Security of our scheme is essentially based on the co-DH assump-
tion, our proposed two assumptions, and the isomorphism f . In particular, our
proposed two assumptions which are defined in a rigorous manner contribute to
prove the security of strong unforgeability for our scheme.
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3.2 Scheme

We shall give an IBS scheme. This scheme consists of four phases: Setup, Ex-
tract, Sign and Verify. For the moment we shall assume that the identity ID
are elements in {0, 1}n1, but the domain can be extended to all of {0, 1}∗ using
a collision-resistant hash function H : {0, 1}∗ → {0, 1}n1. Similarly, we shall
assume that the signature message M to be signed are elements in {0, 1}n2.

Setup: The PKG chooses multiplicative cyclic groups G1, G2 and GT of suffi-
ciently large prime order p, a random generator g2 of G2, the one-way isomor-
phism f : G2 → G1 with g1 := f(g2), and the cryptographic bilinear map
e : G1 × G2 → GT . He generates MK := gα

2 ∈ G2 from a random number
α ∈R Z∗

p, and calculates A1 := f(MK) (= gα
1 ) ∈ G1.

Z∗
p −→ G2

f−→ G1

α �−→MK := gα
2 �−→ A1 := f(MK) (= gα

1 )

Also he generates u′ := gx′
2 ∈ G2, U = (u1, . . . , un1) := (gx1

2 , . . . , g
xn1
2 ) ∈

G
n1
2 , v′ := gy′

2 ∈ G2, and V = (v1, . . . , vn2) := (gy1
2 , . . . , g

yn2
2 ) ∈ G

n2
2 for random

numbers x′, x1, . . . , xn1 , y
′, y1, . . . , yn2 ∈R Z∗

p. The master secret master-key is
MK and the public parameter are

params := (G1, G2, GT , p, e, f, g1, g2, A1, u
′, U, v′, V ) .

Extract: Let ID be an n1-bit identity and idk (k = 1, . . . , n1) denote the kth
bit of ID. To generate a private key dID for ID ∈ {0, 1}n1, the PKG picks a
random number s ∈R Z∗

p, and computes

dID = (d1, d2) :=

⎛⎝gs
2, g

α
2 ·
(

u′
n1∏

k=1

uidk

k

)1/s
⎞⎠ ∈ G

2
2 .

Sign: Let M be an n2-bit signature message to be signed and mk (k = 1, . . . , n2)
denote the kth bit of M . A signature σ := (σ1, . . . , σ5) of (ID, M) is generated
as follows.

(σ1, σ2, σ3, σ4, σ5) :=

⎛⎝f(d1), gr
2, d

r
1 , d2, d1 ·

(
v′

n2∏
k=1

vmk

k

)1/r
⎞⎠

=

⎛⎝gs
1, g

r
2 , g

sr
2 , gα

2 ·
(

u′
n1∏

k=1

uidk

k

)1/s

, gs
2 ·
(

v′
n2∏

k=1

vmk

k

)1/r
⎞⎠

for a random number r ∈ Z∗
p.
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Verify: Given params, (ID, M) and σ = (σ1, . . . σ5), verify

e(σ1, σ2) = e(g1, σ3) ,

e
(
A−1

1 · f(σ4), σ3
)

= e

(
f(σ2), u′

n1∏
k=1

uidk

k

)
and

e
(
σ−1

1 · f(σ5), σ2
)

= e

(
g1, v

′
n2∏

k=1

vmk

k

)
.

If the equalities hold the result is valid; otherwise the result is invalid.
If an entity with identity ID constructs a signature σ = (σ1, . . . , σ5) on a

message M as described in the Sign phase above, it is easy to see that σ will be
accepted by a verifier. Thus the scheme is correct.

4 Security Proof

Theorem 1. Suppose that the (t0, ε0)-co-DH Assumption in (G2, G1),
(q1, t1, ε1)-Assumption II and (q2, t2, ε2)-Assumption III hold with g1 := f(g2).
Then the proposed ID-based signature scheme is (qe, qs, t, ε)-strongly unforge-
able, provided that qe ≤ q1, qs ≤ q2, t ≤ min(t0, t1, t2) − O((qe + qs)T ) and
ε (1− 2(qe + qs)/p) ≥ ε0 + ε1 + ε2, where T is the maximum time for an expo-
nentiation in G2.

An outline of our proof is as follows. Suppose that there exists an adversary,
A, who breaks our IBS scheme in Section 3, and a challenger, B, takes the
Assumption II challenge. After A and B execute the strongly unforgeable game,
A outputs a valid tuple for an identity, a message and a signature. Then B will
compute the Assumption II response which is valid. The tuple from A must
not contradict the co-DH assumption and the Assumption III .

Proof. Suppose that there exists an adversary, A, who (qe, qs, t, ε)-breaks our
IBS scheme. We construct a simulator, B, to play the Assumption II game. The
simulator B will take the Assumption II challenge(

g1, g2, g
α
1 , gsi

2 , g
α+1/si

2

∣∣∣ i = 1, . . . , q1

)
for α, s1, . . . , sq1 ∈R Z∗

p, and run A executing the following steps.

4.1 Simulator Description

Setup: The simulator B generates u′ := gx′
2 ∈ G2, U = (u1, . . . , un1) :=

(gx1
2 , . . . , g

xn1
2 ) ∈ G

n1
2 , v′ := gy′

2 ∈ G2, and V = (v1, . . . , vn2) := (gy1
2 , . . . , g

yn2
2 ) ∈

G
n2
2 for random numbers x′, x1, . . . , xn1 , y

′, y1, . . . , yn2 ∈R Z∗
p, and sends

(G1, G2, GT , p, e, f, g1, g2, g
α
1 , u′, U, v′, V )

to A.
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Queries: The adversary A adaptively makes a number of different queries to
the challenger B.

Assume that Ue is the subscript set of identities in Extract Queries, Us is that
of identities in Signature Queries, U := Ue ∪ Us, and Mi

s is that of messages in
Signature Queries for the IDi (i ∈ Us).

Each query can be one of the following.

– Extract Queries: The adversaryA adaptively issues Extract Queries IDi (i ∈
Ue). Assume that

Xi := x′ +
n1∑

k=1

idi,k xk , (1)

where IDi := (idi,1, . . . , idi,n1) ∈ {0, 1}n1.
(4.1-E1) If Xi ≡ 0 (mod p), B aborts this game.
(4.1-E2) Otherwise (i.e. Xi 
≡ 0 (mod p)), B does not abort the game, and
generates di = (di,1, di,2) of IDi:

(di,1, di,2) :=
(
(gsi

2 )Xi , g
α+1/si

2

)
(2)

=

⎛⎝gsi
2 , gα

2 ·
(

u′
n1∏

k=1

u
idi,k

k

)1/si
⎞⎠ (3)

and sends it to A. Here si := siXi mod p (i ∈ Ue). (Notice that, by eliminating
all si ∈R Z

∗
p in (2), we can regard all si ∈R Z

∗
p as random numbers in (3).)

– Signature Queries: The adversary A adaptively issues Signature Queries
(IDi, Mi,j)

(
i ∈ Us, j ∈Mi

s
)
. Assume that Xi is from (1) for i ∈ Us and

Yi,j := y′ +
n2∑

k=1

mi,j,k yk , (4)

where Mi,j := (mi,j,1, . . . , mi,j,n2) ∈ {0, 1}n2.
(4.1-S1) If Xi ≡ 0 (mod p) or Yi,j ≡ 0 (mod p), B aborts this game.
(4.1-S2) Otherwise (i.e. Xi 
≡ 0 (mod p) and Yi,j 
≡ 0 (mod p)), B does not
abort the game, and generates σi,j = (σi,j,1, . . . , σi,j,5) of (IDi, Mi,j):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σi,j,1 := (gsi

1 )Xi = gsi

1

σi,j,2 := (g2)
ri,jYi,j/Xi = g

ri,j

2

σi,j,3 := (gsi
2 )ri,jYi,j = g

si ri,j

2

σi,j,4 := g
α+1/si

2 = gα
2 ·
(
gXi
2

)1/si

= gα
2 ·
(

u′
n1∏

k=1

u
idi,k

k

)1/si

σi,j,5 :=
(
g

si+1/ri,j

2

)Xi

= gsi
2 ·

(
g

Yi,j

2

)1/ri,j

= gsi
2 ·

(
v′

n2∏
k=1

v
mi,j,k

k

)1/ri,j
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and sends it to A. Here si := siXi mod p (i ∈ Us) and ri,j := ri,jYi,j/Xi mod
p
(
i ∈ Us, j ∈ Mi

s
)
. (Notice that, by eliminating all si, ri,j ∈R Z∗

p, we can regard
all si, ri,j ∈R Z∗

p as random numbers.)

Output: The adversary A outputs (ID∗, M∗, σ∗) such that σ∗ = (σ∗,1, . . . , σ∗,5)
∈ G5

2 is a valid signature of (ID∗, M∗), ID∗ 
∈ {IDi | i ∈ Ue} and (ID∗, M∗, σ∗) 
∈{
(IDi, Mi,j, σi,j) | i ∈ Us, j ∈Mi

s
}
.

Artificial Abort: Assume that

X∗ := x′ +
n1∑

k=1

id∗,k xk and Y∗ := y′ +
n2∑

k=1

m∗,k yk , (5)

where ID∗ := (id∗,1, . . . , id∗,n1) ∈ {0, 1}n1 and M∗ := (m∗,1, . . . , m∗,n2) ∈
{0, 1}n2. If ID∗ 
= IDi and X∗ ≡ Xi (mod p) for some i ∈ U , or if M∗ 
= Mi,j

and Y∗ ≡ Yi,j (mod p) for some i ∈ Us and j ∈ Mi
s, then B aborts this game.

4.2 Analysis

The adversary A cannot distinguish the above game from Simulator Description
with the abort when Xi ≡ 0 (mod p) and Yi,j 
≡ 0 (mod p) or Xi 
≡ 0 (mod p)
and Yi,j ≡ 0 (mod p), and the strongly unforgeable game without this abort,
since

Pr

⎡⎢⎣⋃
i∈U

Xi ≡ 0 (mod p) ∪
⋃

i∈Us,

j∈Mi
s

Yi,j ≡ 0 (mod p)

⎤⎥⎦ ≤ qe + qs

p

and this probability is negligible when qe + qs � p. Thus we shall consider only
the game from Simulator Description.

Since σ∗ is valid, we assume that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ∗,1 := gs∗
1

σ∗,2 := gr∗
2

σ∗,3 := gs∗ r∗
2

σ∗,4 := gα
2 ·
(

u′
n1∏

k=1

u
id∗,k

k

)1/s∗

= g
α+X∗/s∗
2

σ∗,5 := gs∗
2 ·

(
v′

n2∏
k=1

v
m∗,k

k

)1/r∗

= g
s∗+Y∗/r∗
2

where s∗, r∗ ∈ Z∗
p.

(4.2-1) If X∗ ≡ 0 (mod p), σ∗,4 = gα
2 . Then B generates

(
gs∗
1 , g

α+1/s∗
2

)
for

some s∗ ∈ Z∗
p and s∗ /∈ {s1, . . . , sq}, which is a valid output of the Assumption

II challenge.

(4.2-2) Otherwise (i.e. X∗ 
≡ 0 (mod p)).
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(4.2-2.1) Suppose that ID∗ /∈ {IDi | i ∈ Ue} (which is an assumption of the
strong unforgeability) and (ID∗, s∗) 
∈ {(IDi, si) | i ∈ Us}. Then, it is sufficient
to consider

Pr
[
A
(
g1, g2, g

α
1 , gx′

2 , gx1
2 , . . . , g

xn1
2 , gy′

2 , gy1
2 , . . . , g

yn2
2 ,

gXi
2 , g

Yi,j

2 , gsi
2 , g

ri,j

2 , g
si ri,j

2 , g
α+Xi/si

2 , g
si+Yi,j/ri,j

2

∣∣∣ i ∈ Us, j ∈ Mi
s

)
=
(
gX∗
2 , gY∗

2 , gs∗
1 , gr∗

2 , gs∗ r∗
2 , g

α+X∗/s∗
2 , g

s∗+Y∗/r∗
2

)]
, (6)

in the case that A knows all gsi
2 (= di,1). This means that U = Ue = Us. Suppose

that the probability (6) ≥ ε′ for some ε′ ≤ ε.
Then the probability (6) can be reduced to a contradiction of either the co-DH

assumption or Assumption II .
(4.2-2.2) Otherwise (i.e. ID∗ /∈ {IDi | i ∈ Ue} and (ID∗, s∗) = (IDl, sl) for some
l ∈ Us), then X∗ = Xl. It is sufficient to consider

Pr
[
A
(
g1, g2, g

y′
2 , gy1

2 , . . . , g
yn2
2 , g

Yl,j

2 , gsl
1 , g

1/sl

2 , g
rl,j

2 , g
sl rl,j

2 , g
sl+Yl,j/rl,j

2

∣∣∣ j ∈Ml
s

)
=
(
gY∗
2 , gr∗

2 , gsl r∗
2 , g

sl+Y∗/r∗
2

)]
(7)

in the case that A knows x′, x1, . . . , xn1 and gα
2 . Suppose that the probability

(7) ≥ ε′′ for ε′ + ε′′ = ε.
Then the probability (7) can be reduced to a contradiction of either the co-DH

assumption or Assumption III .

We omit the proof of the limited range of values (qe, qs, t, ε).
Therefore, we proved Theorem 1. ��

5 Efficiency

In this section, we consider efficiency of strongly unforgeable IBS schemes with-
out random oracles.

Huang–Wong–Zhao [13] proposed a general method to transform unforgeable
IBS schemes into strongly unforgeable ones by attaching strong one-time sig-
natures. Table 1 shows efficiency of IBS schemes from the Huang–Wong–Zhao
[13]. For (xr, yr) of the row in the table, xr represents the number of signature
parameters and yr that of the bilinear maps. For (xc; yc) of the column, xc the

Table 1. Efficiency of IBS schemes from the transformation in Huang–Wong–Zhao [13]

Strong one-time signatures [3] [21] [6] [14] [5]
Unforgeable IBS schemes (4; 1) (4; 2) (5; 4) (4; 2) (4; 2)

Paterson–Schuldt [16] (3, 3) 7/4 7/5 8/7 7/5 7/5
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Table 2. Efficiency of IBS schemes from the transformation in [1,9,10]

Signature schemes S ′ [3] [21] [6] [14] [5]
Certificates (signature) schemes S (4; 1) (4; 2) (5; 4) (4; 2) (4; 2)

Boneh–Boyen [3] (2, 1) 6/2 6/3 7/5 6/3 6/3
Zhang–Chen–Susilo–Mu [21] (2, 2) 6/3 6/4 7/6 6/4 6/4

Camenisch–Lysyanskaya ver.A [6] (3, 4) 7/5 7/6 8/8 7/6 7/6
Okamoto [14] (3, 2) 7/3 7/4 8/6 7/4 7/4

Boneh–Shen–Waters [5] (3, 2) 7/3 7/4 8/6 7/4 7/4

number of signature parameters and public keys, and yc that of the bilinear
maps. For xt/yt in the table, xt (= xc +xr) the number of signature parameters
for each strongly unforgeable IBS scheme; and yt (= yc + yr) that of the bilinear
maps. Notice that we count the number of the signature parameters to be small.
However, these constructions need at least six signature parameters.

Also, it is known that strongly unforgeable IBS schemes can be constructed
with the approach of attaching certificates to strongly unforgeable (non-ID-
based) signatures. Table 2 shows efficiency of IBS schemes from this construction
in [1,9,10].

All these constructions need at least six signature parameters. In our scheme of
Section 3.2, it is sufficient to be five. On the other hand, our scheme is inefficient
since the bilinear map is used six times during one iteration of verification in the
scheme.

6 Conclusions

In this paper, we proposed a strongly unforgeable IBS scheme without random
oracles, with five signature parameters, based on three problems related to the
DH problem and a one-way isomorphism. However, our scheme is inefficient since
the bilinear map (the pairing) is used six times during one iteration of verification
in the scheme. Our next step is to propose more efficient schemes with the same
security (or we have a possibility that the six times have not been a problem by
a future study of the computation process rate of the bilinear map).
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Abstract. In traditional public key signature, the public key of a signer
is essentially a random string selected from a given set. It is infeasible to
prove that a party is indeed the signer for a given signature. In general,
the public key of a user needs a management authority to authenticate
it. It results in that traditional public key cryptosystem (PKC) requires
high maintenance cost for certificate management. Although, identity
based cryptosystem (IBC) reduces the overhead of management, it suf-
fers from the drawback of key escrow. Certificate-based cryptosystem
combines the advantage of both PKC and IBC as it avoids the usage of
certificates and does not suffer from key escrow. Recently, Liu et.al pro-
posed an efficient Certificate-based signature and showed that the scheme
was secure in the random oracles. Unfortunately, this paper shows that
the scheme is insecure and discusses the flaws in their security proof.
Then the corresponding attacks are given. To overcome the flaws, an
improved scheme is proposed and the result shows that the scheme is
provable secure against two game attacks of certificate-based signature
in the random oracle model. The security is closely related to the com-
putational Diffie-Hellman problem.

Keywords: Security analysis, attack, improved scheme, the CDH prob-
lem, certificate-based signature.

1 Introduction

In traditional public key signature (PKS)[11], a user Alice signs a message using
her private key. A verifier Bob verifies the signature using Alice’s public key.
However, generally speaking, Alice’s public key is a random string selected from
a given set. Therefore, it is infeasible to prove that a party is indeed the signer
for a given signature. This problem can be solved by incorporating a certificate
generated a trusted party called the Certification Authority (CA) which provides
an unforgeable and trusted link between a public key and the identity of a
signer. This hierarchical framework is referred to as the Public Key Infrastructure
(PKI). In general, the signer registers its own public key with its identity in
certificate server and anyone wishing to obtain the signer’s public key needs to
request it by sending the server the identity of the signer and gets it. When
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verifying a signature using the signer’s public key, a verifier must obtain the
signer’s certification status of public key, hence in general the verifier makes
a query on the signer’s certificate status to the CA. In the point of view of a
verifier, it takes two verification steps to verify a signature on a message. This
approach seems to be inefficient, in particular, when the number of users is very
large. And it also increases burden of the CA’s certificate management.

To simplify certificate management of traditional PKI, Shamir [13] introduced
Identity-based cryptology (IBC). It can solve the aforementioned problem by
using Alice’s identity or IP address as her public key while the corresponding
private key is a result of some mathematical operation that takes as input the
user’s identity and the master secret key of a trusted authority, referred to as
Private Key Generator (PKG). The main practical benefit of IBC lies in
greatly reduction of need for public key certification. The PKG can generate the
private key of all its users, so Private Key Escrow becomes an inherent problem
in IBC. It results in unconditional trust to PKG for a user. Furthermore, the
produced private key must be sent over secure channel, which makes secret key
distribution a daunting task[2]. Certificate is implicitly provided in IBC and the
explicit authentication of public key is no longer required.

To fill the gap between traditional cryptology and identity-based cryptology,
Gentry[2] introduced the notion of certificate-based encryption (CBE), which
combines public-key encryption (PKE) and IBE while preserving their merits.
In CBE, each user generates his own private key and public key and request
a certificate from the CA while the CA uses the key generation algorithm of
an identity based encryption (IBE) scheme to the certificate. In this way, the
certificate is implicitly used as the private key of the users as the signing key.
Here CA is equivalent to PKG in the IBC. Although the CA knows the certificate
of a user, it also cannot produce a signature in the name of user, since it does
not have the user’s private key. In addition to CBE, the notion of certificate
based signature (CBS) was first suggested by Kang et.al [9]. Unfortunately, one
of their schemes was found insecure against key replacement attack[11] which
was pointed our by Li et.al [8]. And Li et.al also gave a novel certificate-based
signature scheme. In ISPEC 2007, Au et.al [1] proposed a certificate-based ring
signature scheme. In 2007, Wang et.al [14] proposed a certificate-based proxy
cryptosystem with revocable proxy decryption power. Recently, J.K.Liu et.al [10]
proposed an efficient certificate-based signature scheme as the scheme did not
require any pairing operations, which is regards costly operations compared to
other operation. And they claimed that the scheme was provably secure in the
random oracle model and can be against two attack games of certificate-based
signature.

Our contribution: In this paper, we first analyze the security of the first one
of Liu et.al ’s schemes which were proven secure against two attack games of
certificate-based signature in [10]. Then we show that the scheme is insecure
and it cannot be against either attack game of certificate-based signature. Fur-
thermore, we give the corresponding two attacks on the schemes and pinpoint
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the reason accounting for the insecurity . Finally, to overcome the above attacks,
we give an improved schemes and prove that the scheme is secure in the random
oracle model.

The rest of this paper is organized as follows. We describe security and adver-
sarial model of CBS in section 2. After we review Liu et.al ’s signature scheme in
section 3, we give the corresponding attack in section 4. In section 5, an improved
scheme is given and the security of the improved scheme is analyzed. Finally, we
conclude the paper in section 6.

2 Security Model

The certificate-based signature is a compromise between ID-based signature and
PKI-based signature. It inherits merits of ID-based signature and PKI-based
signature.

In the following, we reviews the definition of a certificate-based signature
scheme. It consists of the six algorithms :

– Setup is a probabilistic algorithm taking a security parameter k as input. It
outputs the certifier’s master key msk and public parameters param. The
algorithm is run by private key generator (PKG).

– UserKeyGen is probabilistic algorithm which takes as input param and is
run by the user. It outputs a public key PK and a secret key usk.

– Certify is probabilistic algorithm that takes as input master secret msk,
public parameters param, the user’s public key PK and identity ID and a
time period t. It returns Cert′t to user. It is run by PKG. The aim is to issue
a certificate in the phase.

– Consolidate is deterministic certificate consolidation algorithm taking as in-
put (param, t, Cert′t) and optionally Certt−1. It outputs certificate Certt
which is used by a user in time period t.

– Sign is a probabilistic algorithm which takes as input (param, t, Certt,
usk, m) and outputs a signature δ.

– Verify is deterministic algorithm which takes as input (param, t, PK, ID, δ).
If δ is valid, it outputs 1. Otherwise, it outputs ⊥.

Note that in a concrete certificate-based signature scheme, it may not involve
certificate consolidate phase. In such situation, Consolidate algorithm will out-
put Certt = Cert′t. For simplicity, we will omit Conslidate and the time t in the
rest of the paper.

2.1 Unforgeability

Unforgeability is a primitive property of a signature scheme. Intuitively, an ad-
versary should not be able to forge a valid signature in a secure certificate-based
signature (CBS) scheme which can be against adaptively chosen message at-
tack [7]. Certificate-based signature is a combination of public-key signature
and ID-based signature, where the signer needs both its personal secret key and
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a certificate from PKG. Thus, the security of a certificate-based signature re-
quires that the signer can generate a valid signature under the public key PK
and identity ID if and only if he has Cert and usk. Only with one of those, the
signer cannot generate a valid signature.

According to an adversary is in possession of the secret key of which entity, we
divide the adversary into two types. One type is an uncertified entity which can
randomly choose a pair key (PK, usk) which is not certified by PKG or replace a
user’s public key PK to produce a forgery. This attack scenarios is looked upon
a malicious user. The other type is an adversary which is be in possession of
the master key msk to attack a fixed entity’s public key. Such attack scenarios
is looked upon a malicious PKG. In the following, we use the enhanced model
by Li et.al [8] which captures key replacement attack in the security of the first
attack type.

CBS Game 1 Existential Unforgeability. The challenger runs Setup, gives
param to the adversary A and keeps msk secret. The adversary A issues the
following queries:

– On user-key-gen query (ID), if ID has already been created, then PKID is re-
turned. Otherwise, the challenger runs the algorithm User-Key-Gen to pro-
duce a secret/public key pair (uskID, PKID) and added (ID, uskID, PKID)
to the list L. Then PKID is returned.

– On corruption query (ID). The challenger checks the list L and returns the
secret key uskID.

– On certification query (ID). The challenger run Certify algorithm and re-
turns the certificate CertID to A. Note that CertID is the certificate of the
pair (ID, PKID) where PKID is the public key returned from User-Key-
Gen query.

– On signing query (ID, PKID, m). The challenger runs the Sign algorithm
and returns the signature δ.

Here, we can replace any user’s public key with his own choice, but once it has
replaced the public key, it cannot obtain the certificate of the false public key
from the challenger.

– Output. Finally, A outputs a forge (m∗, δ∗, ID∗, PK∗). We say A wins the
game if

• δ∗ is a valid signature on the message m∗ under the public key PKID∗

with identity ID∗. Here PKID∗ is chosen byA and might not be returned
from the User-Key-Gen oracle.

• ID∗ has never been submitted as one of Certify queries.
• (ID∗, m∗) has never been submitted as one of Sign queries.

We define A’s advantage in this game to be Adv(A) = Pr[A wins].
In the second attack, the adversary A is in possession of the master key of

PKG and wants to generate a valid signature under the public key PK∗ without
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the knowledge of the corresponding secret key. The security of this type attack
is denied by the following game between A and the challenger C.

CBS Game 2 Existential Unforgeability. The challenger runs Setup, gives
param and msk to the adversary A. The adversary A can adaptively submit
queries to User-Key-Gen oracle, corruption oracle and signing oracle as Game
1. But different from Game 1,the adversary is not allowed to replace any user’s
public key. At last, A outputs a signature δ∗ on message m∗ under public key
PKID∗ and identity ID∗. The adversary win the game if

– δ∗ is a valid signature on message m∗ under public key PK∗ and the PKG’s
public key msk where PKID∗ is the public key output from the User-Key-
Gen query ID∗.

– ID∗ has never been submitted to corruption oracle.
– (m∗, PK∗, ID∗) has never been submitted as one of Sign queries.

The adversary’s advantage in the game is defined as Adv(A)=P[A wins]

3 Reviews of Liu et.al ’s Certificate-Based Signature
Scheme without Pairings

[Setup of System Parameters:] Let G be a multiplicative group with order q.
The PKG randomly chooses a generator g ∈ G and x ∈ Zq to compute X = gx as
public key. Let H : {0, 1}∗ → Z∗

q be a cryptographic hash function. The system
parameters param and master secret key msk are as follows:

param = (G, q, g, X, H), msk = x

[UserKeyGen:] A user picks u ∈ Zq as his secret key usk at random, and com-
putes the corresponding public key PK as (gu, Xu, τu) where τu is the following
non-interactive proof-of-knowledge (PoK)

PK{(u) : U1 = gu ∧ U2 = Xu}

[Certify:] Let h̃ = H(PK, ID) for user with public key PK and binary string
ID which is used to identity the user. To produce a certificate for the user the
CA randomly selects r ∈R Z∗

q , compute

R = gr s = r−1(h̃− xR) mod q

The certificate is (R, s). Note that a correctly generated certificate should fulfill
the following equality:

RsXR = gh̃ (1)

[Sign:] To produce a signature on message m ∈ {0, 1}∗, the signer with public
key PK, the certificate (R, s) and the secret key u computes as follows:

1. randomly choose y ∈R Z∗
q .
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2. compute Y = R−y, h = H(Y, R, m) and z = y + hsu mod q
3. the resultant signature is δ = (Y, R, z).

[Verify:] Given a signature δ = (Y, R, z) on message m under the public key
PK, a verifier first checks whether τu is a valid PoK. If not, output ⊥. Otherwise,
compute h = H(Y, R, m) and h̃ = H(PK, ID), then checks whether

(gu)hh̃ ?= RzY (Xu)hR (2)

Output valid if it holds, otherwise, output ⊥.

4 Attack on Liu et.al ’s Certificate-Based Signature
Scheme without Pairings

In [10],Liu et.al claimed that their scheme is secure against the certifier’s attack
in which an adversary in possession of the master key msk attacks a fixed entity’s
public key and a uncertified entity’ attack in which an adversary can replace an
user’s public key while the master key is unknown for him. Then they give
the corresponding security proof of the scheme in the random oracle models,
respectively. Unfortunately, we show that the scheme is insecure by analyzing
security of the scheme.

4.1 Attack 1

Given a signature δ = (Y, R, z, τu) under the public key PK and the identity
ID, a certifier with the master key x can attack as follows:

1. First, compute h̃′ = H(PK, ID).
2. then, compute R′ = x−1h̃′, where x is master secret key.
3. randomly choose r ∈ Z∗

q to set z′ = r and compute Y = (R′z′
)−1.

4. the forged signature on message m′ is δ′ = (τu = τ ′
u, R′, z′, Y ′).

For an user, after certificated, the user’s public key PK is fixed. Thus, the corre-
sponding non-interactive proof-of-knowledge τu of public key is fixed. Obviously,
the above forging δ′ = (τu = τ ′

u, R′, z′, Y ′) can be accepted. Since

R′z′
Y ′(Xu)hR′

= R′z′
(R′z′

)−1(Xu)hR′

= (Xu)hR′

= (Xu)hx−1h̃′

= (gu)hh̃′

h̃′ = H(PK, ID)

According to the above verification procedure, we know the above equations
hold; Hence, it indicates that our attack is successful. And in the whole forgery
process, we find that, the signed message is not used in R′, z′ and Y ′. It means
that the forgery attack is valid for any message-signature .
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4.2 Attack on Security Proof of the Scheme

In the following, we show that security proof of Liu et.al ’s signature scheme in
the unforgeability against Game 2 Adversary has the flaws. In the signing
quering phase of security proof, when A queries the signing oracle for a message
m and a public key (gu, Xu, τu) with identity ID, the authors thought that the
challenger C responded as follows:

1. first check whether proof-of-knowledge for (gu, Xu) is valid.
2. then check whether PK, ID, has been queried for the H() random oracle or

extraction oracle before. If yes, it retrieves (R, s, H(PK, ID), PK, ID). Let

h̃ = H(PK, ID) and randomly chooses h, z ∈R Zq to set Y = (gu)hh̃

Rz(Xu)hR

3. Finally, let h = H(Y, R, m) as the response to the random oracle H(Y, R, m).

But, in fact, the challenger C can respond not like the above steps, but as follow:

1. First, compute h̃ = H(PK, ID).
2. then, compute R = x−1h̃′, where x is master secret key, it is known to the

challenger C.
3. randomly choose r ∈ Z∗

q to set z = r and compute Y = (Rz)−1.
4. set h = H(R, Y, m)
5. the simulated signature on message m is δ = (τu, R, z, Y ).

After such signing query response is used, the challenger C cannot apply rewind
technique to the point it just queries H(Y, R, m). Hash function H() cannot play
a role of random oracle. Thus, the discrete logarithm problem in the security
proof can be solved. It means that the security proof exits the flaws.

4.3 Attack3

In the following, we show that the scheme is not against an uncertified entity
attack. That is to say, an uncertified entity can produce a forgeable signature
without a certificate which is issued by CA. The attack is as follows:

1. randomly choose r ∈ Zq to compute R = gr

2. randomly choose a ∈ Zq to compute Y = X−aR.
3. randomly select a signed message m to compute h = H(R, Y, m).
4. compute u = a

h as the secret key of an user, and set PK = (gu, Xu) as the
public key of the user.

5. compute h̃ = H(PK, ID) to set z = ah̃
r , where ID is the identity of the

user.
6. produce a non-interactive proof-of-knowledge πu by the secret key u.

πu = PK{(u) : U1 = gu ∧ U2 = Xu}

The forged signature on message m under the public key PK = (gu, Xu) and
identity ID is δ = (R, Y, z).
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To verify the validity of the forged signature, we only check whether the forged
signature δ = (R, Y, z) satisfies verification equation.

RzY (Xu)hR = RzX−aR(Xu)hR

= RzX−aR(X)
a
h hR

= (gr)
ah̃
r

= gah̃ = (g
a
h )hh̃

= (gu)hh̃

According to the above verification, we find that the forged signature δ on
message m satisfies verification equation. It denotes that our attack is successful.
And it show that the scheme is not against an uncertified entity attack.

5 Its Improved Scheme

In the section, to overcome the attacks above, we give an improved certificate-
based signature scheme. To clarify our scheme, we first review preliminaries.

5.1 Bilinear Maps

In the following, we recall the notations related to bilinear groups [4,5]. Let
G1, G2 be bilinear groups as follows:

1. G1 and G2 are two cyclic multiplicative groups of prime order p, where
possible G1 = G2

2. g1 is a generator of G1 and g2 is a generator of G2 .
3. e is a non-degenerate bilinear map e : G1 × G2 → GT , where |G1| = |G2| =
|GT | = p
(a) Bilinear: for all u, v ∈ G1 and a, b ∈ Zp, e(ua, vb) = e(u, v)ab;
(b) Non-degenerate: e(g, g) 
= 1;

4. e and the group action in G1, G2 can been computed efficiently.

5.2 Security Assumption

Here we first review the definition of the strong Diffie-Hellman (SDH) assumption
introduced in [4], on which the security of our signature is based, and then
extend it into a new security assumption, the extended strong Diffie-Hellman
assumption, on which the security of a variant of our signature scheme is based.

Strong Diffie-Hellman Assumption: Let G1, G2 be bilinear groups as shown
the above section. The q−SDH problem in (G1, G2) is defined as follows: given
g1 ∈ G1, and the (q + 1)−tuple (g2, g

x
2 , · · · , gxq

2 ) ∈ G
q+1
2 as input, output a

pair (g
1

x+c

1 , c) where c ∈ Zp. Algorithm A has advantage, AdvSDH(q), in solving
q − SDH in (G1, G2) if

AdvSDH(q) → Pr[A(g1, g2, g
x
2 , · · · , gxq

2 )] = (g
1

x+c

1 , c)
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Where the probability is taken over the random choice of g2 ∈ G2, x ∈ Z∗
p , and

the coin tosses of A.

Definition 1. Adversary A (t, ε)−breaks the q−SDH problem if A runs in time
at most t and AdvSDH(q) is at leat ε. The (q, t, ε)−SDH assumption holds if no
adversary A (t, ε)−breaks the q−SDH problem.

Definition 2 (Computational Diffie-Hellman (CDH) Assumption). .
Let G be a CDH parameter generator. We say an algorithm A has advantage
ε(k) in solving the CDH problem for G1 if for a sufficiently large k,

AdvG,A(t) = Pr[A(p, G1, g
x, gy) = gxy | (p, G1) ← Gk, P ← G1, x, y ← Zp]

We say that G1 satisfies the CDH assumption if for any randomized polynomial
time in t algorithm A we have the AdvG1,A(t) is negligible function.
q−SDH+CDH Assumption: The q−SDH+CDH problem in G1 is defined as
follows: give q + 1-tuple (g1, g

α
1 , · · · , gαq

1 ) and a random pair (g1, g
r
1) of group

G1 as inputs, output (ρ ← (g1)
r

(α+c) , c), where g1 is a generator of group G1,
c, r ∈R Z∗

p . Note that α and r are unknown numbers. AlgorithmA has advantage,
AdvSDH(q), in solving q-SDH+CDH in G1 if

Advq−SDH+CDH(q) ← Pr[A(g1, g
α
1 , · · · , gαq

1 , gr
1) = (g

r
(α+c)
1 , c)]

Where the probability is taken over the random choices of g1 ∈ G1, α, r ∈ Z∗
p ,

and the coin tosses of A.

Definition 3. Adversary A (t, ε)−breaks the q−SDH+CDH problem if A runs
in time at most t and Advq−SDH+CDH(q) is at least ε. The (q, t, ε)-SDH+CDH
assumption holds if no adversary A (t, ε)-breaks the q-SDH+CDH problem.

Definition 4. (Discrete Logarithm Assumption).Given a group G of prime or-
der q with generator g and elements A ∈ G, the discrete logarithm problem in G
is to output x ∈ Zq such that A = gx.

An adversary B has at least an ε advantage if

Pr[B(g, A) = x|A = gx] ≥ ε

We say that the (ε, t)-DL assumption holds in a group G if no algorithm running
in time at most t can solve that DL problem in G with advantage at least ε.

5.3 Our Improved Scheme

In the following, our improved scheme is proposed, the detail steps are shown as
follows:

[Setup of System Parameters:] Let G be a multiplicative group with order q,
g ∈ G is a generator of group G. The PKG randomly chooses α ∈ Zq as master
secret key and compute X = gα as public key. Note that PKG is responsible
for issuing certificate. h1, h2 ∈ G1 were randomly chosen and H(·), H1(·), H0(·)
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are three one-way hash functions which satisfy H : G2
1 × {0, 1}∗ → Zq, H1 :

G1 × {0, 1}∗ → Zq and H0 : G2
1 × {0, 1}∗ → G1.The system parameters param

and master secret key msk are as follows:

param = (g, h1, h2, e, H(·), H0(·), H1(·), X), msk = x

[UserKeyGen:] A user picks u ∈ Zq as his secret key usk at random, and
computes the corresponding public key PK as (gu, τu) where τu is the following
non-interactive proof-of-knowledge (PoK)

PK{(u) : U1 = gu}
[Certify:]To certify for user with public key PK and binary string ID which is
used to identity the user. The PKG computes h0 = H0(X, ID, U1) and

d = (h0)
1

α−H1(U1,ID)

The certificate is d. Note that a correctly generated certificate should fulfill
the following equality:

e(d, X · g−H1(U1,ID)) = e(h0, g)

[Sign:] To produce a signature on message M ∈ {0, 1}∗, the signer with public
key PK, the certificate d and the secret key u computes as follows:

1. randomly choose s ∈R Z∗
q .

2. compute δ = (δ1, δ2), where

δ1 = du · (h2h
H1(ID,U1)
1 )sm, δ2 = (XgH1(ID,U1))s

and m = H(δ2, M, U1).
3. the resultant signature on message M is δ = (δ1, δ2).

According to the above signing phase, we know that the size of our signature is
more shorter than that of Liu et.al ’s signature.
[Verify:] Upon receiving the signature δ = (δ1, δ2) on message M , a verifier

computes as follows:
1. compute m = H(δ2, M, U1) and h0 = H0(X, ID, U1);
2. verify

e(Xg−H1(ID,U1), δ1) = e(h0, U1)e(δ2, (h2h
H1(ID,U1)
1 )m)

Correctness. It is easy to see that the improved signature scheme is correct. It
is shown as follows: If a signature δ = (δ1, δ2) is valid, then the signature δ must
pass the verification equation. Because

e(Xg−H1(ID,U1), δ1)

= e(Xg−H1(ID,U1), du · (h2h
H1(ID,U1)
1 )sm)

= e(Xg−H1(ID,U1), (hu
0 )

1
α−H1(ID,U1) · (h2h

H1(ID,U1)
1 )sm)

= e(U1, h0)e(Xg−H1(ID,U1), (h2h
H1(ID,U1)
1 )sm)

= e(U1, h0)e(δ2, (h2h
H1(ID,U1)
1 )m)

where m = H(δ2, M, U1) and h0 = H0(, U1, ID) .



On the Security of a Certificate-Based Signature Scheme 57

6 Security Analysis

To demonstrate that our improved scheme is secure, we must prove that the
scheme can be against game 1 adversary and game 2 adversary which are dis-
cussed.

Theorem 1 (Unforgeability against Game 1 Adversary). If there exists
a game1 adversary A which breaks our improved scheme with advantage at
most ε and runs in times at most t, then the q−SDH+CDH problem can be
(ε′, t′)-solved.

Theorem 2 (Unforgeability against Game 2 Adversary). If there exists a
game 2 adversary A which breaks our improved scheme with advantage at most
ε and runs in times at most t, then the Computational Diffie-Hellman problem
in group G can be (ε′, t′)-solved.

7 Conclusion

Certificate-based cryptosystem is an important public key cryptology system.
Recently, Liu et.al proposed an efficient Certificate-based signature scheme and
showed that the scheme was secure against two game attack of certificate-based
signature scheme in the random oracles. Unfortunately, Our analysis show that
the first one of the certificate-based signature schemes proposed by Liu et.al is
insecure, namely, a malicious PKG can forge a signature on arbitrary message in
name of any user’s identity and a uncertified user is also able to forge a message-
signature. And we discuss the flaw in their proof and the corresponding attack
ways. To overcome the flaws, an improved scheme is proposed and the scheme
is proven to secure against two game attacks of certificate-based signature. The
security is closely related to the computational diffie-hellman problem.
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model and efficient construction. In: López, J., Samarati, P., Ferrer, J.L. (eds.)
EuroPKI 2007. LNCS, vol. 4582, pp. 110–125. Springer, Heidelberg (2007)

9. Kang, B.G., Park, J.H., Hahn, S.G.: A certificate-based signature scheme. In:
Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 99–111. Springer, Hei-
delberg (2004)

10. Liu, J.K., Baek, J., Susilo, W., Zhou, J.: Cettificate-based Signature Scheme with-
out Pairings or Random oracles. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T.
(eds.) ISC 2008. LNCS, vol. 5222, pp. 285–297. Springer, Heidelberg (2008)

11. Nyberg, K., Rueppel, R.A.: Message recovery for signature schemes based on the
discrete logarithm problem. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS,
vol. 950, pp. 182–193. Springer, Heidelberg (1995)

12. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

13. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

14. Wang, L.H., Shao, J., Cao, Z.-F., Mambo, M., Yamamura, A.: A certificate-based
proxy cryptosystem with revocable proxy decryption power. In: Srinathan, K.,
Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 297–311.
Springer, Heidelberg (2007)

15. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

16. Zheng, Y.: Identification, Signature and Signcryption using High Order Residues
Modulo an RSA Composite. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp.
48–63. Springer, Heidelberg (2001)

17. Zheng, Y.: Signcryption and its applications in efficient public key solutions. In:
Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 291–312. Springer, Heidelberg
(1998)

http://eprint.iacr.org/2004/245


An Empirical Investigation into the Security of
Phone Features in SIP-Based VoIP Systems

Ruishan Zhang,1 Xinyuan Wang,1 Xiaohui Yang,1 Ryan Farley,1

and Xuxian Jiang2

1 George Mason University, Fairfax, VA 22030, USA
zhangruishan@gmail.edu, {xwangc,xyang3,rfarley3}@gmu.edu

2 N.C. State University, Raleigh, NC 27606, USA
jiang@cs.ncsu.edu

Abstract. Phone features, e.g., 911 call, voicemail, and Do Not Disturb,
are critical and necessary for all deployed VoIP systems. In this paper,
we empirically investigate the security of these phone features. We have
implemented a number of attacks and experimented with VoIP services
by leading VoIP service providers Vonage, AT&T and Gizmo. Our ex-
perimental results demonstrate that a man-in-the-middle or remote at-
tacker could transparently 1) hijack selected E911 calls and impersonate
the Public Safety Answering Point (PSAP); and 2) spoof the voicemail
servers of both the caller and the callee of selected VoIP calls; and 3)
make spam calls to VoIP subscribers even if Do Not Disturb is enabled.
These empirical results confirm that leading deployed SIP-based VoIP
systems have serious security vulnerabilities.

Keywords: VoIP security, SIP, voicemail fraud, 911 hijacking, voice
spam.

1 Introduction

In addition to the basic function of making and receiving a call, VoIP systems
generally offer many phone features, e.g., 911 call, voicemail, and Do Not Dis-
turb. Phone features are critical and necessary for all deployed Public Switched
Telephone Network (PSTN) and VoIP systems.

Among all phone features, 911 emergency call is perhaps the most critical one.
Recognizing that proper function of 911 call could impact the “life or death for
millions of customers that subscribe to VoIP service” [1], the Federal Commu-
nications Commission (FCC) requires that all the interconnected VoIP services
must support Enhanced 911 (E911) call and automatically report the caller ID
and the registered location of E911 calls. On the other hand, voicemail is one of
the most frequently used features of VoIP service. It is estimated [2] that 60∼70%
of phone calls will be answered by voicemail rather than human. Given that a
voice message often contains personal and sensitive information, any compro-
mise of voicemail would violate the privacy of both the sender and the receiver
of the voice message. Do Not Disturb allows VoIP users to temporarily block all
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incoming phone calls and have some quiet time. When Do Not Disturb fails to
work, spam phone calls might continually annoy VoIP users.

Signaling channel and voice channel are two most important components of
VoIP systems. In current deployed systems, the Session Initiation Protocol (SIP)
[3] and the Real Time Transport Protocol (RTP) [4] are the most dominant
signaling and voice transport protocol, and being widely used.

Although the VoIP features are intuitively expected as trustworthy and reli-
able as those in the traditional PSTN, the open architecture of VoIP has enabled
many attacks on voice communication that were not possible in the traditional
PSTN. In this paper, we empirically investigate and evaluate the security of
phone features in currently deployed SIP-based VoIP systems in the U.S., e.g.,
Vonage [5], AT&T’s CallVantage [6] and Gizmo [7]. Specifically, we focus on the
trustworthiness of E911 call, voicemail, and Do Not Disturb.

Assuming there exists a man-in-the-middle (MITM) in between the VoIP
phones and the VoIP servers or a remote attacker on the Internet, we imple-
ment a number of MITM and remote attacks on the investigated voice services.
Specifically, the MITM can transparently hijack selected 911 emergence calls and
impersonate the PSAP. The MITM could also launch various voicemail fraud at-
tacks against selected VoIP subscribers. When a VoIP phone makes a call to a
PSTN phone or receives a call from a PSTN phone, the MITM can impersonate
the callee’s voicemail server and ask the caller to leave a voice message or call
another phone number. In addition, the MITM can impersonate the voicemail
server when the caller accesses voicemail. This would allow the attacker to gen-
erate arbitrary fake voice messages to the caller. Finally, a remote attacker,not
necessarily a MITM, can circumvent Do Not Disturb and make arbitrary calls
to Vonage and AT&T VoIP phones. Our experiments confirm that currently
deployed VoIP systems are far from secure and trustworthy.

The rest of this paper is organized as follows. Section 2 briefly overviews SIP
and SIP security mechanisms. Section 3 introduces our exploitation methodol-
ogy. Section 4 describes our experiments on E911, voicemail and Do Not Disturb.
Section 5 discusses the root causes of the vulnerabilities in deployed VoIP sys-
tems, and proposes some approaches to mitigate potential threats. Section 6
introduces related work. Finally, section 7 concludes the paper.

2 SIP Overview

Session Initiation Protocol (SIP) [3], is a HTTP-like, application layer signal-
ing protocol used for creating, modifying, and terminating multimedia sessions
(e.g. VoIP calls) among Internet endpoints. SIP signaling involves various compo-
nents: user agents (UA), proxy servers, redirect servers, registrar servers,location
servers. An UA represents an endpoint of the communication (i.e., a SIP phone).
The proxy server is the intermediate server that acts on behalf of UA to forward
the SIP messages to its destination.

The SIP specification [3] recommends using TLS or IPSec to protect SIP
signaling messages. It also suggests using S/MIME to protect the integrity and
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Fig. 1. An Example of Message Flow of SIP Authentication for INVITE and BYE
Messages

confidentiality of SIP message bodies. However, most deployed SIP VoIP systems
only utilize SIP authentication to protect SIP messages. Fig. 1 shows the typical
SIP authentication of call setup and termination.

The SIP authentication of currently deployed VoIP systems has the following
weaknesses [3][8]:

– It only protects a few important SIP messages.
– It only protects a few SIP fields.
– It only authenticates SIP messages from SIP phones to the SIP servers.

3 Investigation Approach

Our approach of the security investigation is from the perspective of VoIP cus-
tomers rather than VoIP service providers. Consequently, we leave aside the
attacks on the VoIP service provider’s servers and instead focus on those attacks
that directly target the VoIP users. We choose to experiment with the residen-
tial VoIP services by Vonage, AT&T, who are the No.1 and No.2 [9] in U.S.
VoIP market share. In addition, we experiment with Gizmo’s popular softphone
that has been used by millions of people. Note all the attacks we experiment are
against our own accounts and phones only.

The key technique used in our empirical investigation is the MITM who can
monitor, modify and forge VoIP traffic to or from selected VoIP users. Since
most VoIP phones are many hops away from the VoIP servers, attackers have
many opportunities to play MITM attack on existing deployed VoIP services.
In fact, Zhang et al [10] have shown that a remote attacker from anywhere on
the Internet, who is not originally in between the targeted VoIP phone and its
VoIP servers, can become a MITM within a few minutes by exploiting some
implementation flaws in the VoIP phone.

The MITM is used to verify the weaknesses in E911 and voicemail. To cir-
cumvent Do Not Disturb, the MITM is not required. A remote attacker can
successfully make spam calls to defeat this feature.
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4 Experiments with Deployed VoIP Services

To empirically investigate the security of deployed VoIP systems, we build a
testbed that consists of the MITM, Vonage, AT&T SIP phones and Gizmo’s
softphone. Fig. 2 illustrates the network setup of our testbed. All the SIP phones
are within a private network 192.168.1.x, where the Gizmo softphone runs on
a Windows XP virtual machine. The MITM runs on a FreeBSD 5.4 virtual
machine, which acts as the Network Address Translation (NAT) router for the
private network. Specifically, the natd runs on the external interface lnc0 of the
FreeBSD virtual machine, and our MITM intercepts, manipulates the network
traffic at the internal interface lnc1 via divert socket. Note the MITM does not
need to be directly connected to the VoIP phones, and it could be at anywhere
along the path of VoIP traffic.

Fig. 2. Testbed Setup of MITM Attacks

4.1 911 Call Hijacking

When a VoIP user dials 911, the call is supposed to be routed to a geographically
appropriate PSAP by the VoIP service provider. However, our experiments show
that the MITM could hijack the selected 911 call from either Vonage or AT&T
SIP phone, divert it to any third party and let the third party impersonate the
PSAP. In this case, the 911 call is never routed to the VoIP service provider,
and yet it appears to the 911 caller that the 911 call is successfully connected to
the appropriate PSAP.

Fig. 3 illustrates the message flows of the 911 call hijacking experiments.
Specifically, the left and the right parts show the message flows of 911 calls from
the Vonage phone and the AT&T phone respectively. Depending on the service
provider’s implementation, the signaling path and the RTP stream path could
be different. All SIP and RTP packets are transferred on UDP. We use SIP/RTP
server(s) to denote the SIP server and the RTP server which handle the signaling
messages and the RTP streams respectively.
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Fig. 3. Message Flow of Hijacking 911 Calls

When we dial 911 from the Vonage (or the AT&T) SIP phone1, the caller’s SIP
phone sends an INVITE sip:911 message to the SIP server in step (1) or (1’).
Our MITM intercepts the INVITE message, pretends to be the SIP server and
responds with a spoofed 200 OK message in step (2) or (2’). In the spoofed 200
OK message, the MITM sets its own IP address and port number (e.g., 12345) as
the RTP stream termination point, which asks the caller’s SIP phone to establish
the voice stream to the MITM instead of the service provider’s server. Although
Vonage and AT&T’s SIP server normally challenges the INVITE message with
407 proxy-authentication required as shown in Fig. 1, we find that both
Vonage and AT&T SIP phones actually accept the spoofed 200 OK message
directly, and they respond with an ACK message to the SIP server in step (3) or
(3’). The MITM intercepts the ACK message so that it won’t reach the service
provider’s SIP server. At this point, the three way handshake for the VoIP call
setup is finished, and the 911 call between the caller and the MITM has been
established. Then at step (4) or (4’), the caller talks to the MITM, who pretends
to be the PSAP.

Traditionally, 911 calls can only be terminated by the PSAP. We find that
the Vonage SIP phone actually allows the 911 caller to terminate the 911 call.
Specifically, the Vonage SIP phone sends out a BYE message to the Vonage’s
SIP server once the 911 caller hangs up in step (5). Then the MITM simply
responds with a fake 200 OK message. On the other hand, the AT&T SIP phone
prevents the 911 caller from terminating the call until it is reset. Specifically, if
the 911 caller hangs up the AT&T SIP phone, it starts and keeps ringing until
the handset is picked up or the phone adapter is reset. This behavior conforms
to the specification of traditional 911 call in the PSTN. At step (5’), the MITM
pretends the PSAP and sends the AT&T SIP phone a fake BYE message. The
AT&T SIP phone responds with a 200 OK message which would terminate the
911 call completely.

Despite the 911 call implementation differences between Vonage and AT&T
SIP phones, our MITM is able to transparently hijack selected 911 calls and pre-
tend to be the PSAP. Our experiments demonstrate that 911 calls from existing
deployed Vonage and AT&T VoIP services are not trustworthy.

1 Note we block our experimental 911 calls at our border router so that they will not
interfere with any real 911 calls.
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4.2 Fake Voicemail Attacks

Voicemail is intended for the caller to leave a voice message when the callee is not
available. Once the caller hears the voicemail prompt after dialing the callee’s
phone number, he would expect it is the callee’s voicemail. In addition, when
someone wants to check his voicemail and dials his voicemail access number, he
would expect to reach his own voicemail. In this section, we show that the MITM
can compromise the trust of voicemail by spoofing both the caller’s voicemail
and callee’s voicemail.

Fig. 4. Message Flows of Fake Callee’s Voicemail at Caller’s and Callee’s Sides

Fake Callee’s Voicemail Attack. When the caller places a call, the MITM
intercepts the call and spoofs the callee’s voicemail to prompt the caller to leave
a voice message or call some other phone number. In this case, the caller is
tricked into believing that the callee is not available even if the callee is actually
available. Note the fake callee’s voicemail attack can be launched by the MITM
at either the caller’s or callee’s side. Therefore, the fake callee’s voicemail attack
is possible even if one communication party (caller or callee) uses a PSTN phone.

Fake callee’s voicemail at the caller’s side. We use our Vonage and AT&T
SIP phones to call a PSTN phone. The left part of Fig. 4 illustrates the corre-
sponding message flow. After dialing the callee’s phone number, the caller’s SIP
phone sends the corresponding INVITE message to the SIP server of its service
provider. The MITM intercepts the INVITE message in step (1), and replies with
a fake 200 OK message in step (2). The caller’s SIP phone is tricked by the fake
200 OK message and sends back an ACK message in step (3). This establishes
the voice RTP session between the caller’s SIP phone and the MITM. In step
(4), the MITM sends the crafted RTP stream to the caller’s SIP phone and the
caller hears bogus voice greeting “xxx can not take your call, please leave a brief
message or call 1-xxx-xxx-xxx”. Then the MITM starts to record the RTP stream
from the caller’s SIP phone. Once the caller hangs up, his SIP phone sends a BYE
message to the MITM in step (5), the MITM replies with a 200 OK message to
the caller’s SIP phone in step (6), which terminates the call.

When we use the Gizmo softphone to call the PSTN phone, the Gizmo soft-
phone does not respond with an ACK message to the MITM after receiving the
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200 OK message from the MITM in step (2). After further investigation, we find
that the Gizmo phone does not follow the SIP specification [3] exactly:

– The IP address and the port number of the RTP server are specified by the
Gizmo softphone in the INVITE message in step (1), rather than by the SIP
server in the 200 OK message in step (3).

– Gizmo softphone uses some proprietary protocol, running on TCP port 443,
to exchange some signaling information with Gizmo RTP server in step (G1)
and (G2). Step (G1) is necessary for establishing the SIP call, and if packets
in step (G1) are dropped by the MITM, the Gizmo softphone will not proceed
to step (3). Once the MITM allows the traffic in step (G1), the the Gizmo
softphone proceeds to establish the call with its SIP server. Step (G2) is used
to terminate the SIP call.

After implementing these special handling, the MITM is able to spoof the
callee’s voicemail to calls from the Gizmo softphone.

Fake callee’s voicemail at the callee’s side. In this experiment, we use a
PSTN phone to call our Vonage and AT&T SIP phones. The right part of Fig.
4 illustrates the corresponding message flow. After the caller dials the phone
number of a SIP phone from a PSTN phone, the SIP server sends an INVITE
message to the SIP phone in step (1’). The MITM intercept the INVITE message
and responds with a 200 OK message in step (2’). The SIP server thinks it is
from the SIP phone and sends an ACK message in step (3’). Now the voice RTP
session between the SIP server and the MITM is established, and the MITM
sends the RTP server crafted RTP stream in step (4’). As a result, the caller
from the PSTN phone hears the bogus voice greeting “XXX can not take your
call, please leave a brief message or call 1-xxx-xxx-xxx”. Then the MITM starts to
record the RTP stream from the RTP server. Once the caller hangs up, the SIP
server sends a BYE message to the MITM in step (5’). Finally, the MITM replies
with a 200 OK message to the SIP server in step (6’), which terminates the call.

Fake Caller’s Voicemail Attack. When a caller wants to check his voicemail,
he usually dials some voicemail access number (e.g., *123 for Vonage, *** for
AT&T, 611 for Gizmo) and authenticates himself with a voicemail PIN. Again,
the MITM can intercept the call and spoof the caller’s voicemail. This not only
allows the attacker to trick the caller with bogus voicemail messages but also let
the attacker capture the caller’s voicemail PIN.

Table 1. Differences between the Voicemail Services by Vonage, AT&T and Gizmo

Service Provider Voicemail Access Number Codec for voice Payload Type for Event
Vonage *123 G.711 PCMU(0) 101
AT&T *** G.721(2) 100
Gizmo 611 iLBC(102) 106
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We have experimented the fake caller’s voicemail attack with Vonage, AT&T
and Gizmo SIP phones. The SIP message flow is similar to the left part of Fig. 4.
The MITM first spoofs the SIP server and establishes a RTP voice session with
the voicemail caller. Then the MITM spoofs the voicemail service and interacts
with the voicemail caller. In our implementation, we record the RTP stream from
the real voicemail server and replay the recorded RTP stream to the voicemail
caller. Therefore, what the voicemail caller hears is exactly the same as that
from the real voicemail server. After the MITM prompts the voicemail caller, it
waits for responses (e.g., PIN, functional choice) from the caller and responds
accordingly.

We find that Vonage, AT&T and Gizmo use different codecs and RTP payload
types for their voicemail traffic. Table 1 summarizes their differences in the codec
and RTP payload type used. Specifically, the codecs for the RTP voice are G.711
PCMU, G.721 and iLBC respectively, and the payload types for the RTP event
are 101, 100 and 106 respectively. Despite these differences in the voicemail
implementation by Vonage, AT&T and Gizmo, our MITM is able to spoof the
voicemail for all of them.

In summary, the MITM can spoof both the caller’s and the callee’s voicemail
even if one side of the voice call uses a PSTN phone. Eventually, the caller is
deceived to leave a voicemail or call another number while the callee does not
even know he has been called. Meanwhile, the MITM can read the voicemail
left by the caller and trick the voicemail caller with bogus voicemail messages.
Furthermore, the MITM could obtain the voicemail PIN entered by the caller.

4.3 Circumventing Do Not Disturb

Do Not Disturb enables VoIP users to block all incoming phone calls during a
short time, e.g., 30 minutes. When we used a PSTN phone to call a Vonage or
an AT&T VoIP phone with Do Not Disturb enabled, the call was forwarded to
the voicemail system. This indicates Do Not Disturb is effective if the call goes
through SIP servers. However, we can circumvent Do Not Disturb by calling the
Vonage or the AT&T phone directly.

Fig. 5 shows the network setup of circumventing Do Not Disturb. Note unlike
previous experiment, this experiment only requires a remote attacker. Fig. 6
depicts the message flow of circumventing Do Not Disturb attacks on the Vonage
phone and AT&T phone.

In step (1) and (1’), the remote attacker sends an INVITE message to the SIP
phone. Note to make the INVITE message accepted by the SIP phone, the IP
address should be spoofed as that of a real SIP server. Otherwise, the SIP
phone would omit this INVITE message. In the INVITE message, the IP address
and port number for the RTP stream on the caller side are set to the remote
attacker’s IP address and 12345 respectively. Since the SIP specification does
not require to authenticate SIP messages from SIP servers, the SIP phone will
accept this INVITE message. Then in step (2-3) or (2’-3’), the SIP phone sends
back Trying,Ringing messages to the real SIP server, and begins to ring. At
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Fig. 5. Testbed Setup of Circumventing Do Not Disturb

Fig. 6. Message Flow of Circumventing Do Not Disturb

this point, the called party begins to hear annoying ring tone. Consequently, Do
Not Disturb is bypassed.

Actually, the attacker can even successfully establish a SIP call with these
phones and send voice spam by exploiting some implementation flaws. After the
receiver picks up the phone, the SIP phone responds with a 200 OK message to
its real SIP server. According to the SIP specification, to establish a SIP call, the
remote attacker needs to send an ACK message to complete an INVITE/200OK/ACK
three-way handshake. Since the 200 OK message is sent to the real SIP server,
the remote attacker does not know the time when the receiver picks up the
phone. To solve this problem, The remote attacker can guess the time interval
between the INVITE message and the 200 OK message, e.g., 5 seconds. Then 5
seconds after sending the INVITE message, the remote attacker sends an ACK
message with a spoofed source IP address to the SIP phone. In addition, to
ensure the correctness, the callee should check whether the Tag value in the To
field of the ACK message is the exactly same as that in the 200 OK message.
Since the remote attacker can not see the 200 OK sent to the SIP server, the
remote attacker can not craft an ACK SIP message with an correct Tag value.
After further investigation, we find:
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– The Vonage phone does not check the Tag value, and accepts an ACK message
with a random Tag value.

– The AT&T phone does not need a complete INVITE/200OK/ACK three-way
handshake before sending RTP stream. As soon as the receiver picks up the
phone, the AT&T phone begins to send RTP stream to the remote attacker.

Consequently, the remote attacker can exploit these implementation flaws to
talk to both the Vonage and AT&T phone.

5 Discussion

We have demonstrated that a MITM or remote attacker, could successfully
launch many attacks on phone features in deployed SIP-based VoIP systems.
These attacks exploit the inherent vulnerabilities in current deployed VoIP sys-
tems.

– Only SIP authentication mechanism is employed to protect SIP messages.
Due to the weaknesses in SIP authentication, an attacker can freely craft
unprotected SIP messages (e.g., Trying, Ringing, 200 OK, ACK), and SIP
messages from a SIP server to a SIP phone. In addition, the attacker can
also modify unprotected SIP fields (e.g., SIP message body, From, To).

– Since RTP voice stream is unencrypted and unauthenticated, the attack can
easily capture voice traffic, generate bogus RTP stream and talk to VoIP
phones.

Leveraging these weaknesses in SIP and RTP, the attacker can seamless spoof
the SIP and RTP server when talking to the caller, and seamless spoof the callee
when talking to the SIP server and RTP server. Accordingly, the attacker can
readily hijack 911 calls, spoof the caller’s and the callee’s voicemail, and make
a call to the selected phone number. Note during an attack, both a VoIP phone
and the PSTN or cell phone communicating with the VoIP phone are potential
victims. In addition to the features that we have investigated in this paper, we
believe other phone features, e.g., 411, all have similar exploitable vulnerabilities.

Since our attacks target VoIP end users, intrusion defense measures deployed
on VoIP servers side are ineffective to mitigate the attacks. To defeat or minimize
these attacks, the best solution is to provide privacy, integrity and authentication
protection for SIP signaling messages and RTP voice streams. For example, SIP
over TLS and Secure Real-time Transport Protocol (SRTP) could be deployed
to protect SIP messages and RTP voice streams. Unfortunately, we still have not
widely seen such a deployment. Considering Vonage and AT&T Callvangtage’s
VoIP phones are being utilized to replace traditional PSTN phones, and millions
of VoIP subscribers are using their VoIP phones to perform many security critical
activities, e.g, phone banking and 911 calls, the current state of VoIP security is
not optimistic.
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6 Related Work

Most previous work is on the defense side. Arkko et al [11] proposed a scheme to
negotiate the security mechanism used between a SIP phone and and its next-
hop SIP entity. Baugher et al [12] proposed SRTP to protect the RTP traffic.
However, none of them are widely being used. Reynolds et al [13] proposed
multi-protocol protection against flood-based DoS attacks on VoIP networks.
Wu et al [14] described a cross protocol intrusion detection architecture for VoIP
environments. Sengar et al [15] proposed an intrusion detection system based on
interactive protocol state machines. The above intrusion detection systems or
methods are deployed on VoIP servers side, and ineffective to defend against the
attacks we proposed.

Mintz-Habib et al [16] proposed a VoIP emergence service architecture and
developed a prototype system. Zhang et al [8] [10] implemented four billing
attacks on deployed VoIP systems, and demonstrated a remote attacker can
become a MITM by exploiting some implementation flaws in a VoIP phone.
Wang et al [17] systematically investigated the trust issue of SIP-based VoIP and
identified the voice pharming attack on VoIP systems. McGann and Sicker [18]
analyzed detection capability of several VoIP security tools: SiVuS,PROTOCOS
[19], SIP Forum Test Framework [20], and some commercial products. They
showed that there exists a large gap between known VoIP security vulnerabilities
and the tool’s detection capability.

7 Conclusion

In this paper, we empirically investigated the trustworthiness of phone features
in leading deployed SIP-based VoIP systems. We demonstrated that the MITM
could transparently hijack E911 calls and spoof the PSAP. In addition, it can
spoof voicemail and use it for many potential voicemail related frauds. Finally, a
remote attacker can circumvent Do Not Disturb and make annoying phone calls.

We hope our work can raise the awareness of millions of VoIP subscribers that
the currently deployed VoIP phone features are not as trustworthy and reliable
as expected. Before VoIP service providers employ SIP over SSL and SRTP to
protect SIP signaling messages and RTP voice streams, a VoIP subscriber should
be aware of the risk associated with current VoIP services.
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Abstract. DLLs (Dynamic Link Libraries) are usually protected by var-
ious anti-reversing engineering techniques. One technique commonly used
is code packing as packed DLLs hinder static code analysis such as disas-
sembly. In this paper, we propose a technique to reconstruct a binary file
for static analysis by loading a DLL and triggering and monitoring the
execution of the entry-point function and exported functions of packed
DLLs. By monitoring all memory operations and control transfer instruc-
tions, our approach extracts the original hidden code which is written
into the memory at run-time and constructs a binary based on the orig-
inal DLL, the codes extracted and the records of control transfers. To
demonstrate its effectiveness, we implemented our prototype ReconPD
based on QEMU. The experiments show that ReconPD is able to analyze
the packed DLLs, yet practical in terms of performance. Moreover, the
reconstructed binary files can be successfully analyzed by static analysis
tools, such as IDA Pro.

Keywords: Security Analysis, Malware Analysis, Binary Reconstruct-
ing, Dynamic Analysis, Static Analysis.

1 Introduction

Reverse engineering becomes a prevalent technique to analyze malware. To make
the analysis more difficult, malware writers usually protect their programs in-
cluding executables and DLLs by various anti-reverse engineering techniques.
One of the most popular anti-reverse engineering methods is binary code pack-
ing [18,20]. It is impossible to do static analysis on packed malware because of
the inaccuracy of disassembler. This paper focuses on identifying and extract-
ing the hidden code generated using binary code packing and reconstructing a
binary for static analysis.

To identify and extract the hidden code in packed binary programs various tools
have been developed. However, most of commonly known tools such as PEiD [4]
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are only valid for some special known packing algorithms applied on the packed
executables; what is more, they are usually unable to analyze packed DLLs.

DLL is commonly used in the malware. Windows makes certain features avail-
able only to DLLs. For example, you can install certain hooks (set using SetWin-
dowsHookEx and SetWinEventHook ) only if the hook notification function
is contained in a DLL. As a number of critical technologies and codes are packed in
DLL, it is becoming one important target of anti-reverse engineering protection.

By now, the difficulty of statically analyzing a packed binary program is how
to correctly disassemble them. One of approaches to solve this problem is to re-
versely analyze the packing algorithm and develop specific automatic unpacking
tools. But this method is only valid for known packing tools(such as UPX). In
fact, it is easy for malware writers to implement new anti-reverse engineering
algorithms and tricks. Dynamic analysis is a promising solution to the problem
of hidden code extraction because it does not depend on signatures. The original
code or its equivalent must eventually be restored in memory and get executed at
some point at run-time regardless of what packing algorithms might be applied
[20]. By taking advantage of this intrinsic nature of packed binary programs, we
could potentially extract the original hidden binary code or its equivalent and
reconstruct a binary for static analysis by patching the extracted code on the
original packed binary program. Most of the work to date on identification and
extraction of the original hidden code has focused on executables. This paper,
by contrast, focuses on the DLL.

In this paper, we present a fully dynamic approach for automatically identify-
ing packed DLLs, and extracting the original hidden code which is dynamically
generated and executed at run-time and additional information useful for re-
constructing of the packed binary. Finally we reconstruct a binary which can
be directly analyzed by static analysis tools, such as IDA Pro. This method is
valid for unknown packing algorithms without the complex reverse analysis. In
summary, the contributions of this paper are as follows:

1. Propose a general and fully dynamic approach for identifying and
extracting the original hidden code of packed DLLs: Previous work
relies on either heuristics of known packing tools or the accuracy of the
disassembler and is only valid for packed executables. In this paper, we
present a binary extraction technique which is applicable to packed DLLs.
This method is fully dynamic and thus does not depend on the program
disassembly or the known signatures of packing algorithms. It triggers the
execution of entry-point function and exported functions of a DLL, monitors
the execution and records related memory operations by shadow memory
and extracts the content of the memory which is dynamically generated and
executed.

2. Provide a method to reconstruct a DLL binary file based on the
execution trace: By patching the extracted code on an original packed DLL
binary file, we reconstruct a binary file which can be directly disassembled.

3. Implement and evaluate ReconPD, an automated framework for
extracting hidden code and reconstructing binary files. Applying
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our proposed technique, we build a framework for automatically examining
DLL binaries, extracting their original hidden code and reconstructing a
binary file based on the extracted code and additional information. The
reconstructed binary file can be successfully analyzed by static techniques.
Based on the prototype, we have successfully done a series of experiments
on the analyses of packed DLL binary files. We also present the evaluation
results of ReconPD, demonstrating that it is applicable to analyze packed
DLL binary.

The rest of the paper is organized as follows: In Section 2 we review the re-
lated work. Section 3 presents the problem definition and describes the proposed
method. In Section 4 we provide details of the technique and the prototype imple-
mentation. Section 5 shows the experimental results. Finally, Section 6 concludes
the paper.

2 Related Work

Static analysis is one of the most popular software analysis methods nowadays,
it is widely used in software reverse engineering [1] and software security analysis
[2,3]. Static analysis tools can analyze intermediate binary code that is unable
to run, since they don’t need to really execute the code at all. And they have
a good global view sight of the whole binary code and can figure out the entire
program logic before running it.

To protect the privacy of software and prevent reverse engineering, software
writers usually have their programs heavy-armored with various anti-reverse en-
gineering techniques [7,8]. Such techniques include SMC (Self-Modifying Code)
[9,10], encryption [11,12], binary and source code obfuscation [14,15], control-
flow obfuscation [13], instruction virtualization [5,6], and binary code packing
[18]. The development of anti-reverse technology makes static analysis more and
more difficult. Although dynamic analysis can compensate static analysis for its
effectiveness and accuracy to a certain extent, static analysis has some advan-
tages that dynamic analysis doesn’t have such as the more comprehensive view
of a program’s behavior.

Currently, extracting and re-building the original program from a protected
binary has been one of the major challenges for software reverse engineers and
security community.

Identifying and extracting the original hidden code
PolyUnpack [18] is a general approach for extracting the original hidden code
without any heuristic assumptions. As a pre-analysis step, PolyUnpack disas-
sembles the packed executable to partition it into the code and data sections,
and then it executes the binary instruction by instruction, checking whether the
instructions are in the code section or not. However, in terms of performance,
disassembling binary executables as being done in [18] and [19] is an arduous task
and correctly disassembling a binary program is challenging and error-prone, as
demonstrated in [19]. In Addition, PolyUnpack can not extract the hidden code
inside the DLL.
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Min Gyung Kang et al. proposed a fully dynamic method Renovo [20] which
monitors currently-executed instructions and memory writes at run-time. This
approach inserts a kernel module into the emulated system and registers several
call-back functions, by observing the program execution. Compared with it, our
approach doesn’t need touch anything in GusetOS and is completely transparent
to analysis target; moreover, our method is applicable to a packed DLL binary
and we can reconstruct a binary file for static analysis by monitoring the control
transfers.

Re-building the original program
PEiD [4] is a tool for identifying compressed Windows PE binaries. Using the
database of the signatures for known compression and encryption techniques, it
identifies the packing method employed and suggests which unpacker tool can be
applied. However, despite their ability to perfectly restore the original program,
executables packed with unknown or modified methods are beyond the scope of
this approach.

Christodorescu et al. proposed several normalization techniques that trans-
form obfuscated malware into a normalized form to help malware analysis [16].
Their unpacking normalization is similar to our approach. Its basic idea is to de-
tect the execution of newly-generated code by monitoring memory writes after
the program starts. Our approach goes further; we identify and monitor mem-
ory modification and execution in all code, data, stack and heaps, and also our
approach can tackle dynamic code generation inside the packed DLL binary.

3 Problem Statement

One of the most popular anti-reverse engineering methods is binary code packing
which is usually used to protect binary program against reverse engineering and
other attacks. Code packing transforms a program into a packed program by
encrypting or compressing the original code and data into packed data and
associating it with a restoration routine [20]. It is impossible to analyze the
packed binary program using static techniques, thus, the target of our work is
to identify them and extract the original hidden code in packed binary files. We
generate a binary file which can be successfully analyzed by static techniques
by patching a packed binary file with extracted code and restoring its control
transfers.

The protecting procedure can be expressed as below:

dummyi = HRi(targeti, keyi)

A hiding routine HRi is a set of instructions which camouflage a target instruc-
tion targeti with a dummy instruction dummyi based on encrypt key keyi. The
key may be null or an invariant if the hiding routine is just a transformer.

A restoring routine RRi is a set of instructions which un-camouflage an orig-
inal target instruction hidden by a dummy instruction based on the decrypt key
keyi. RRi can be viewed as a set of instructions that replaces dummyi with
targeti at run-time [9]. Fig.1 shows how a packed program works [20].
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Fig. 1. How a packed program works

The restoring procedure during execution can be described as below:

targeti = RRi(dummyi, keyi)

RRi is a reverse procedure of HRi. In an analysis, HRi is unavailable usually, so
we can only analyze RRi. But it’s difficult and time-consuming to analyze RRi

directly, so we observe the execution of RRi in order to identify and extract the
hidden code it releases.

In the following discussion, we assume there is a valid key, and also we assume
that at least a part of dynamically released code will be executed at run-time.

RRi may be only used to release the code, or used to release both code and
data. In the procedure of reconstructing a binary, we must disable the RRi

code generation but retain its data generation. Otherwise, it may disturb the
reconstructed binary’s execution.

In the procedure of restoring code, the memory used to store code may be
used to store one block of code or blocks of code iteratively. That is, there may
be several dummyi. We suppose that one of them is dummyi whose address is
Ai

d, and the related code released is targeti, whose address is Ai
t. There are two

different models:

1. for any i, j > 0 , and Ai
d 
= Aj

d, there is Ai
t 
= Aj

t ;
2. there exist 0 < i < j, making Ai

t = Aj
t ,but Ai

d 
= Aj
d;

In the first model, each restored code block is stored in different memory regions,
that is, they do not overlap with each other. In the second, there are at least
two released blocks stored in the same memory region, resulting in some newly-
generated code overlapping with each other. For the second model, we need to
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transform the addresses because of the address confliction when we reconstruct
the binary. The details will be discussed in Section 4.

4 System Design and Implementation

To demonstrate the effectiveness of our approach, we design and implement a
system, ReconPD, to automatically identify packed DLLs and extract their origi-
nal hidden code. Fig.2 depicts an overview of ReconPD. The prototype ReconPD
is a subsystem of WooKoo, a malware dynamic binary analysis platform, which
was developed by us based on QEMU [22]. We modified QEMU to monitor the
dynamic execution of a target executed in the Guest OS.

Fig. 2. The Framework of ReconPD

ReconPD extended QEMU Translator by adding the module of Instruction
Structure Extractor and extended QEMU Virtual CPU by adding the module
of Operand Extractor. It also extended the data structure of TB (Translation
Block) to store the information of the instruction structure and added a new
data structure of shadow memory. When analyzing a DLL, we run it in an
emulated environment. Execution Flow Controller loads a DLL and triggers the
entry-point function and exported functions. Hidden Code Extractor observes its
execution, consults the shadow memory, and determines if any hidden code is
currently executed. If so, it extracts the hidden code and other data. Finally,
Binary File Re-builder reconstructs a binary file based on the original DLL and
the data collected by Hidden Code Extractor. We will present these components
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and provide some implementation details in turn, and discuss the limitations of
the current implementation of ReconPD.

4.1 Recognizing and Extracting the Hidden Code

No matter what packing methods are applied and where the hidden code is
restored, the original program code and data should eventually be present in
memory to be executed, and also the instruction pointer should jump to the
OEP of the restored program code which has been written in memory at run-
time [20]. Taking advantage of this inevitable nature of packed DLLs, we propose
a technique to dynamically extract the hidden original code from the packed
DLLs by examining whether the current instruction is newly-generated after the
DLL is loaded.

Execution Flow Controller. Before an application (or another DLL) can
call functions in a DLL, the DLL’s file image must be mapped into the calling
process’ address space. Normally, when a DLL is mapped into a process’ address
space, the system calls a special function in the DLL (we call it the entry-point
function, usually DllMain) which is used to initialize the DLL. Usually the
restoration of the hidden code and data is a part of the initialization process for
packed DLL.

Windows is unable to launch DLL directly, so in this paper we make use of
a DLL loader named LoadDLL.exe for loading a DLL by calling Windows API
LoadLibraryEx. In order to monitor the execution of the entry-point function
of a DLL, we set dwF lags to DONT RESOLVE DLL REFERENCES to
prevent the operation system from calling the entry-point function to initialize
the DLL. To obtain a comprehensive analysis of the DLL as the entry-point
function is executed, we control the execution flow and trigger all exported func-
tions of the DLL. As the return instruction of the entry-point function is “RET
0C”, we take it as a sign of the end of the execution of the entry-point func-
tion. An exported function is typically allowed to run until it exits normally or
crashes.

Considering that determining whether a program has hidden code or not is
an un-decidable problem [18], we introduce a configurable time-out parameter
into the system. We terminate the extraction procedure if we do not observe any
hidden code being executed within this time-out. In the experiments, we set this
parameter to be 30 minutes.

Shadow Memory. Based on the above inevitable instinct nature of packed
DLLs, shadow memory is introduced to record every memory modification. Ac-
cording to whether the written content is executed or not, we can determinate
whether it is code or data. Thus, we need to record the following information
for each byte of memory:

1. EIPM : The instruction modifying this byte.
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2. EIPC : The instruction referring this byte, such as directly jumping to this
memory by JMP and JNZ, or calling the function whose entry point is this
memory.

3. State: The state of this byte, there are three possible states, clean, dirty,
and executed. Fig.3 shows how the states transfer.

Fig. 3. How a memory state transfers

We just need to pay attention to the state dirty and clean in order to recognize
and extract the original hidden code. In ReconPD, we assign a block of shadow
memory for each monitored memory region (including static region and dynamic
region such as stack and heaps allocated during execution) of the DLL-calling
process (LoadDll.exe).

In order to reconstruct the control flow, we record control transfer instruc-
tions, such as JNZ and CALL, which will change the execution flow. During the
reconstruction of a binary file, we modify their destination address if the target
code is reassigned.

Single-Step Monitoring. Our monitoring on the execution needs to intercept
each instruction to get the real values of operands, so we make the monitored
code execute in single-step mode and each TB contain one instruction in QEMU.

In QEMU, there is a flag of virtual CPU for single-step execution mode. If
the flag is set, the code of both operation system and applications is executed
in single-step mode. Furthermore, the flag is perceptible for applications in the
GuestOS, and the analyzed object may detect it and destroy itself or stay inactive
if it found the flag is set. In ReconPD, an additional flag, TSingleStep, was
introduced, which is transparent for applications. When TSingleStep is set, the
translator makes sure that there is only one instruction in each TB of the target
process, and instructions of other process are executed as normal.

By the method above, we not only keep the analysis transparent for the target
process but also improve the analysis efficiency by avoiding the whole system
running in single-step mode.

Instruction Interception. During monitoring the execution, we intercept the
following two classes of instructions:
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Memory Modifications: including MOV, MOVS, STOSB and so on. These
operations are used to write dynamic code into memory. The stack operations
such as POP are not included, which are rarely used to generate code.

Control Transfers: including direct jumps/calls, indirect jumps/calls, and re-
turn instructions, which determine the control flow of the execution.

ReconPD firstly records the structure of instruction during the translation
and extracts the real values of operands during run-time.

4.2 Reconstructing Binary Files

In this phrase, we patch the hidden code exacted on the packed DLL binary
file and restore the control transfers to generate a binary file for static analysis.
There are two parts of work during this phrase.

Patch the original hidden code extracted on the packed DLL binary
file

1. The code is released in code region and covers the original protected code
just as showed in Fig2(a). We write the dynamic code into the binary file
where this block is mapped from the binary file.

2. The code is released in reserved empty memory of code region without cov-
ering the original code just as showed in Fig2(b), we set SizeOfRawData
of the code section to V irtualSize, then we write the dynamic code into the
revised binary file where this block is mapped from the binary file.

3. The code is released in data region, such as stack and heap just as showed
in Fig2(c,d), we expand a new section into the PE binary and the code is
written into the expanded section. It’s a mature technique to expand the PE
binaries, thus, we do not discuss it in this paper.

4. There are two or blocks written into the same memory being covered each
other, the first block write into the binary file where this block is mapped
from, and the rest are written into the expanded section in the binary file.

In the restoration process, we should modify dest of the control transfer to
the correct address where the instruction is reassigned in a binary file. New
value of dest can be easily got by address mapping. But sometimes, we can
not directly update it. For example, some branch instructions like “jmp ebx;”
may transfer control to different dynamic generated code blocks at different
conditions. For this case, we make the branch instruction transfer control to a
dispatch routine, which will mimic the original branch conditions to call different
dynamic generated code blocks at different time. By this way, though we can
not completely rebuild the original logic of the execution, we can still provide
all possible control transfers, which is much helpful for static analysis.

Disable the restoration, preventing it from modifying the patched
code. When releaser’s code generation behavior is disabled, we should consider
whether the releaser dynamically modifies code only or both code and data. If a
releaser only modifies code, we could disable it simply by replacing it with NOP
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instruction. Or else, to keep the original program logic, we have to reserve its
function of modifying data and prevent it from modifying code. So we replace the
releaser with a unconditional jump, which transfers control to a judge function in
the new code section, and the judge function is an encapsulation of the releaser,
which behaves just like the releaser if the modification’s target is data but does
nothing if the target is code.

5 Evaluation

The experiments are finished on the WooKoo Platform, based on Fedora Core
3 Linux 2.6.9-1.667smp and QEMU 0.8.2. The experiments are all finished with
GuestOS of Windows XP Professional SP2. In this section, we describe two
experiments and present the evaluation results, demonstrating that ReconPD
is an accurate and practical solution for extracting the original hidden code of
packed DLLs and the reconstructed binaries can be successfully analyzed by
static analysis tools such as IDA pro.

5.1 Synthetic Samples

Because of the difficulty of collecting wild samples, we have to develop some
samples. To verify that ReconPD generates accurate results, we have tested
ReconPD against the synthetic sample programs generated by using a packing
tool developed by us. The packing tool applies different packing techniques as
well as encryption, code obfuscation to thwart reverse engineering.

We use some DLLs belong to Microsoft Windows Operating System as the
original binary to generate synthetic packed program samples. With the knowl-
edge that the packing tool usually restore and execute the original binary instruc-
tions at run-time, we could verify the correctness of our extraction technique by
comparing the extracted hidden code regions with the .text section of the original
binary.

Table 1. The Experimental Results of Packed DLLs

Files
Size of
Packed
Files(KB)

Size of Shadow
Memory(KB)

Time with-
out moni-
tor(Seconds)

Time un-
der monitor
(Seconds)

Reconstructed
Binary

rasapi32.dll 234 2928 54 62 Loadable
jscript.dll 444 5376 38 45 Loadable
mfc42.dll 1008 12240 32 39 Loadable
msi.dll 2792 33744 22 25 Loadable
shell32.dll 8112 97728 674 681 Loadable

As shown in Table 1, ReconPD fully extracted the original binaries processed
by our packing tools. And the reconstructed DLL binary files could be loaded
and disassembled by IDA Pro properly. From the experimental results, we found
the size of shadow memory is almost 12 times of DLLs.
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5.2 Performance Overhead

We evaluated the performance by running the samples with and without monitor
in single step mode. From the results shown in Table 1, we found that the monitor
decreased the performance about 18.9%. Without the monitor, we also compared
the performance of running in single step mode with that of running in normal
mode. We found that the performance decreased greatly by single step mode even
we have optimized it by only keeping the target process in single-step mode but
not the whole system as QEMU. Considering that ReconPD is aiming to provide
hidden code extraction environment for malware analysis which usually takes sev-
eral hours to days, this degree of slowdown in initial execution time is tolerable.

5.3 Limitations

Just as discussed above, there are some limitations of ReconPD.
Some exported functions crash at run-time because of the improper parame-

ters provided by us. We are able to analyze the number of parameters of exported
functions but not recognize the data type of parameters. We may patch both
the data and code to reconstruct complete binary while there may be no com-
prehensive solution to this problem. We have intercepted typical memory write
instructions. However, there is a method to evade the monitor by replacing some
instructions. For example, “XOR EAX,EAX; ADD EAX,EBX” can replace the
instruction “MOV EAX,EBX;”. In the future, we will make it support much
more instructions.

Finally, some of the reconstructed binary are unable to be loaded because
ReconPD does not patch the data. It just monitors and restores both the original
hidden code and control transfers.

6 Conclusion

We proposed a technique to reconstruct a binary file for static analysis by moni-
toring the executions of packed DLLs. This method is valid for unknown protec-
tion algorithms without the complex reverse analysis. To demonstrate the idea,
we have implemented ReconPD based on QEMU. By triggering the execution
of entry-point function and exported functions of a DLL, and monitoring all the
memory operations and control transfer instructions, it identifies and extracts
the code which is written into the memory during execution and constructs a
binary file based on the original binary, the codes extracted and the records of
control transfers. We show that ReconPD can successfully analyze packed DLLs
and the reconstructed binary can be successfully analyzed by static analysis
tools, such as IDA Pro.
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Abstract. Security labels of subjects and objects are crucial for some security 
policies and are an essential part of the TrustedBSD MAC framework. We find 
that security labels not being destroyed properly will result in memory leaks. 
This paper analyzes the security labels management of the TrustedBSD MAC 
framework and presents a path-sensitive static analysis approach to detect po-
tential memory leaks caused by the security label management. This approach 
verifies complete destruction of security labels through compiler-integrated 
checking rules at compile-time. It achieves complete coverage of execution 
paths and has low false positive rate. 

Keywords: static analysis, memory leak, TrustedBSD MAC framework, secu-
rity label, mygcc. 

1   Introduction 

The TrustedBSD MAC (Mandatory Access Control) framework (hereinafter referred 
to as the MAC framework) is a group of hooks inserted in OS (Operating System) 
kernel to support different security policies [1]. While some security policies employ 
existing subject and object information (such as UNIX credential data and file per-
missions) most of the mandatory access control policies require additional informa-
tion. For example, the BLP [2] confidentiality security policy makes decision based 
on subject and object sensitivity labels: subjects are assigned clearances, and objects 
are assigned classifications. Consequently, the MAC framework includes a number of 
hooks to manage security labels of subjects and objects. 

At present, the hooks of the MAC framework are manually inserted into the OS 
kernel. Although the developers of the MAC framework are highly skilled and ex-
perienced hackers, errors are unavoidable when they deal with the highly complex OS 
kernel (millions of code lines) manually. For example, Figure 2 depicts an improper 
placement of the security label hooks found in our work on implementing a FreeBSD 
based trusted operating system. Consequently, the correctness of the hooks placement 
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and the National High-Tech Research and Development Plan of China under Grant No. 
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needs to be carefully analyzed. Furthermore, most of the OS kernels are still in the 
course of development, and more components are being added to them. So, the MAC 
framework needs to add new hooks or/and revise existing hooks to address the newly 
added components. This is an error-prone process because the framework developer 
may not fully understand the impact of the newly added components upon the OS 
kernel and the MAC framework. Therefore, we need an automatic approach to ana-
lyze the correctness of the hooks placement. 

The first study on the correctness of the hooks placement is taken by the research-
ers of the IBM T.J.Waston Research Center. They analyze the authorization hooks 
placement of the LSM (Linux Security Module) framework [3] using both the dy-
namic approach and the static approach and successfully find some placement errors 
[4] [5]. While the efficiency of the dynamic approaches is higher than that of the 
static approaches, the execution paths coverage rate of the dynamic approach is poor. 
So, we decide to use the static approach. Zhang et al use the CQUAL [6] to imple-
ment the static analysis of hooks placement. However, the CQUAL is flow-
insensitive, and cannot implement path-sensitive analysis. Therefore, using the 
CQUAL cannot find the error in Figure 1. This paper presents a path-sensitive static 
analysis approach to the correctness verification of the hooks placement related to 
security labels. This approach is based on Mygcc [7] which can execute user-defined 
checking rules at compile-time automatically.  

The rest of the paper is organized as follows. Section 2 introduces the security la-
bel management of the MAC framework. Section 3 describes the extensions to the 
Mygcc. Section 4 gives result of the static analysis of the MAC framework. Section 5 
discusses the related work, and Section 6 concludes the paper. 

2   Security Label Management 

First of all, we give the definition of controlled objects and controlled operations. 
Then, we analyze the security label management of the MAC framework and depict 
the memory leak problem resulting from the security label management. 

2.1   Controlled Objects and Controlled Operations 

A controlled object, also called a protected object, is the object that needs the protec-
tion provided by the MAC framework, such as file, inode, task, socket and shared 
memory etc. 

A controlled operation is the system operation that performs on the controlled ob-
jects and may result in security-sensitive events, such as the read operation and the 
write operation. Though some operations perform on the controlled objects, they are 
not the controlled operation if they do not cause an information-flow, such as the lock 
operation and unlock operation of the inode. 

2.2   Hooks Related to Security Labels 

The MAC framework supports security labels through a policy-agnostic labeling 
primitive, which permits security policies to tag controlled objects with security labels 
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for decision-making. Security labels are initialized, allocated, and destroyed along 
with their objects [8]: 

Security label initialization occurs when the data structure for a controlled object is 
initialized, which permits security policies to allocate and initialize memory for the 
object. 

Security label association or creation occurs when an initialized kernel structure is 
associated with an actual controlled object, such as a file or a process. 

Security label destruction occurs when the controlled object is released by the ker-
nel service implementing it. The MAC framework is given the opportunity to release 
storage for the security label, which permits security policies to free any allocated 
storage or references associated with that security label. 

The security label structure stored in kernel data structures is maintained by the 
MAC framework: based on the life cycle of the data structure, the MAC framework 
provides per-object hooks for memory initialization, object allocation, and object 
destruction, as shown in Figure 1. 

 

Fig. 1. Hooks related to security labels 

2.3   Complete Destruction of Security Labels 

As shown in Figure 1, the memory space of a security label must be freed before its 
host object is freed. Otherwise, there exists a potential memory leak. In the OS kernel, 
for a specific controlled object there may be many paths to its destruction point. 
Therefore, we need to ensure that at each path to the controlled object destruction 
point there is a security label destruction hook. We call this the complete destruction 
problem. For example, in Figure 2, if the execution follows the path from Line 201 to 
227, the inp will be freed without its security label being freed. This violates the com-
plete destruction rule of security labels and results in a memory leak. 
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/*$FreeBSD:src/sys/netinet/in_pcb.c,v1.197 $*/ 
175  int 
176  in_pcballoc(struct socket *so, ...) 
177  { 
... 
189  #ifdef MAC 
190  error = mac_inpcb_init(inp, M_NOWAIT); 
191  if (error != 0) 
192      goto out; 
193  SOCK_LOCK(so); 
194  mac_inpcb_create(so, inp); 
195  SOCK_UNLOCK(so); 
196  #endif 
197 
198  #ifdef IPSEC 
199  error = ipsec_init_policy(so, &inp->inp_sp); 
200  if (error != 0) 
201     goto out; 
... 
224  #if defined(IPSEC) || defined(MAC) 
225  out: 
226  if (error != 0) 
227     uma_zfree(pcbinfo->ipi_zone, inp); 
228  #endif 
229  return (error); 
230  } 

Fig. 2. Example of a memory leak 

3   Extensions to Mygcc 

The original Mygcc mainly focuses on the general errors in the OS kernel, so we need 
to extend it to perform the static analysis of the memory leaks related to security la-
bels. First, we introduce the features of Mygcc. Then, we depict the extensions to 
Mygcc. 

3.1   Features of Mygcc 

After evaluating various analysis tools that may be suitable for the complete destruc-
tion analysis of the MAC framework, we choose the GCC compiler based Mygcc as 
our basic tool for further extension. Because Mygcc has the following features: 

(1) Mygcc supports path-sensitive checking rules.  
The complete destruction analysis depends on the path information. For example, 

though there exists the complete destruction problem in the code fragment in Figure 2, 
a path-insensitive tool can’t find this error. 

(2) Mygcc is an intra-procedure analysis tool. 
In the OS kernels equipped with the MAC framework, most hooks and controlled 

operations are in the same function, which is suitable for Mygcc. 
(3) Mygcc uses a configuration file to guide checking. 
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Tools like the CQUAL and SPLINT [9] are based on code annotation, which gives 
heavy burden to the developers. Furthermore, the annotation process may introduce 
new errors. However, Mygcc uses a single configuration file to guide checking, and 
the checking is executed in the compile process. 

However, the original Mygcc mainly focuses on the general errors in the OS ker-
nel, such as deadlock and null pointer reference etc. So, we need to extend it to ad-
dress specific requirements of the complete destruction analysis. 

3.2   Extensions to Mygcc  

Based on the analysis of the MAC framework, we extend Mygcc to address three 
requirements: to execute checks from the function entry, to match the types of place-
holders and to relate one placeholder to another one. 

(1) Executing checks from the function entry 
The original Mygcc must have a specific matching node as the starting point, and 

then traverse the abstract syntax tree until it encounters the avoid pattern (success), or 
another controlled operation (warning). However, the MAC framework needs only to 
match one controlled operation. So, we extend Mygcc to implement executing checks 
from the function entry.  

The algorithm of the function entry checking is as follows: 

proc check_entry(CFG, condate) 
  substs ← ø; 

  foreach node t ∈ CFG do 
    global_store ← ø; 
    if condate.from.format spec = “entry” 
    then if match(t, condate.to) 
      then 

        substs ← substs ∪ {global_store}; 
  fi // match(t, condate.to) 
    fi //condate.from.format spec = “entry” 
  end //for 
  for subst ← substs do 
    global_store ← subst; 
    list ← []; 
    if condate.from.format_spec = “entry” 
    then 

  foreach node t ∈ CFG.entry.succs do 
    list ← [t|list]; 
  end 
    fi //condate.from.format_spec = “entry” 
   Do depth first check starting from the element of list 
   along the edges of control flow edge; 
  end //for 
end //proc 

The basic analysis procedure is shown in Figure 3. 
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init

%X ← so
%Y← inp

so = inp→inp_socket
sbappendaddr_locked(so→so_rcv, )

entry mac_inpcb_check_deliver(inp, )

pass

check

sbappendaddr_locked(so→so_rcv , )

other statements

warn
 

Fig. 3. Basic analysis procedure 

(2) Matching the type of the placeholder 
The original Mygcc doesn’t match the type of the placeholder. However, in the 

MAC framework, static analysis needs to match the types. For example, in Figure 2, 
as to the function uma_zfree, identifying the controlled operation depends on the 
second parameter. Namely, if the type of the second parameter is a structure pointer 
of type inpcb, it matches the controlled operations related to inpcb. The algorithm is 
as follows: 

proc match(t,pattern) 
  arglist ← ø 
  parmlist ← ø 

  foreach arg ∈ t.args do 
    arglist ← [arg|arglist] 
  end //for 

  foreach parm ∈ pattern.parms do 
    arglist = [arg|rest] 
    arglist ← rest 
    if parm.type = arg.type 
    then global_store ← [global_store|parm←arg] 
    else goto fail; 
    fi 
  end //for 
  goto out; 
  fail: 
    global_store ← ø; 
  out: 
end //proc 
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(3) Relating one placeholder to another 
In the MAC framework, the parameters of some access authorization are not the 

controlled objects themselves. Therefore, in order to match access authorization con-
texts and controlled objects, we need to create the relationship between them. The 
following is the depth-first checking algorithm based on placeholders matching.  

proc check_match(CFG, condate) 
  for subst ← substs do 
    global_store ← subst 
    match_store ← global_to_match[subst] 
    list ← construct the depth first check starting node list 
    while list = [t|rest] do 
      list ← rest 
      if ¬ visited(t) 
      then 
        visited(t) ← true 
        if matched(t,condate.to, global_store) 
        then warning “reached t” 
        else foreach edge e = t← t’  do 
            if ¬ matched(e,avoid, match_store) 
            then list ←  [t’|list] 
            fi 
          end//for 
        fi // matched(t,condate.to, global_store) 
      fi // ¬ visited(t) 
    end //while 
  end //for 
end //proc 

Besides the extensions described above, we also accomplish some other extensions 
to Mygcc to satisfy the static analysis requirements of the MAC framework, and we 
have issued them as a patch of Mygcc-1.0.01. 

4   Static Analysis of Memory Leaks 

In addition to extending the Mygcc, another important work is to write checking rules 
of the static analysis. First, we describe some typical checking rules of the static 
analysis of the MAC framework. Then, we give the analysis results. 

4.1   Rules of Static Analysis 

To enforce static analysis of the MAC framework, we write 32 checking rules based 
on the extended Mygcc condate, and they cover the major modules of the FreeBSD 
kernel. Here, we give two examples of the condate rules. 

                                                           
1
 http://wiki.freebsd.org/ZhouyiZHOU?action=AttachFile&do=get&target= mygcc.patch 
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Figure 4 gives the checking rule of the inpcb destruction. Line 1 is the name of the 
rule, Line 2 matches the type of the placeholder and Line 3 indicates the depth-first 
traverse starting from the function entry. Line 4 gives conditions of warnings and 
indicates to execute function uma_zfree for the controlled destruction operation. Line 
5 gives the conditions that the rule doesn’t throw warnings as follows: 

• In the execution path, the controlled operation uma_zfree is ahead of the destruc-
tion hook mac_inpcb_destroy. 

• The initialization hook of the MAC framework fails. Because the security label 
hasn’t been allocated, it needs not to be destroyed. 

1  condate inpcb_destory { 
2  types "%X struct_inpcb *" 
3  from "entry" 
4  to "uma_zfree(%_,%X)" 
5  avoid "mac_inpcb_destroy(%X)" or 
6  +"%w = mac_inpcb_init (%X,%_);%w != 0" 
7  } warning("mac_inpcb_destory needed"); 

Fig. 4. Example of destruction hook checking rules 

Figure 5 gives the checking rule of the security label initialization. After the con-
trolled operation m_gethdr or m_getcl creates an mbuf (Line 3 and 4), on the execu-
tion path there is a security label initialization hook mac_inpcb_create_mbuf (Line 7) 
ahead of a controlled operation on this mbuf (Line 5 and 6). 

1  condate mbuf_create { 
2  types "%X struct mbuf *" 
3  from "%X = m_gethdr(%_,%_)" or 
4  "%X = m_getcl(%_,%_,%_)" 
5  to "ip_output(%X,%_,%_,%_,%_,%_)" or 
6  "ip6_output(%X,%_,%_,%_,%_,%_)" 
7  avoid "mac_inpcb_create_mbuf(%_,%X)"  
8  }warning("uninitialized mbuf send"); 

Fig. 5. Example of initialization hook checking rules 

4.2   Result of Static Analysis 

We have analyzed 320 C files based on the standard kernel configuration, and the tool 
throws 27 warnings. After these warnings are evaluated manually and discussed in the 
TrustedBSD mail list, 8 of them are confirmed by the FreeBSD community and the 
other 19 are false positive. 5 of the confirmed warnings are related to NFS and FI-
FOFS, and they may be used to guide the improvement of these subsystems. 3 of the 
confirmed warnings are related to IPv4 and IPv6 network protocol stack, and they 
have been corrected in the FreeBSD CVS.  
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Our experiment shows the false positive rate of the verification is 70.4%, which 
partially results from the imperfect of the checking rules and the algorithms. How-
ever, compared to other tools (e.g. in [10] it is 95%), the false positive rate is rela-
tively low. 

5   Related Work 

[4] proposes a static analysis approach, which leads off the researches on the static 
analysis of hooks placement. At first, they use the modified GCC to output the loca-
tions of controlled operations. Then they use a perl script to annotate the kernel source 
code with the type information needed by CQUAL. At last, they use CQUAL to per-
form inter-procedural analysis. Because CQUAL is flow-insensitive, they cannot 
enforce path-sensitive analysis. 

[5] presents a run-time verification tool, which is simpler than that in [4], to verify 
LSM hooks placement. Their approach begins with logging system call en-
try/exit/arguments, function entry/exits, controlled operations and authorizations. 
Then they filter the logging results using filtering rules defined by a rule language. 
Finally they manually examine authorization graph generated from the filtered results. 
[5] is not suitable for complete destruction verification because its coverage rate is 
low and cannot enforce verification automatically. 

[11] puts forward a novel approach to automatically inserting authorization hooks 
into the Linux kernel. Their approach is not suitable for analyzing the MAC frame-
work because of its path-insensitive nature. 

There are also a number of general purpose static analysis tools for C programs 
[12]. After thorough investigation, we find that Mygcc is more suitable for the analy-
sis of the MAC Framework, because it is open-source, path-sensitive and has parsing 
power of an integrated compiler. 

6   Conclusion 

We analyze a class of memory leaks resulting from the security label management in 
the MAC framework. In order to detect potential memory leaks in the MAC frame-
work, we design and implement a static analysis approach based on the extended 
Mygcc. This approach can cover all execution paths of a specific controlled object to 
check whether the destruction hook is properly placed. Our work can help the frame-
work developers to improve the correctness of the hooks placement. 
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Abstract. In [16], Pass generalized the definition of zero knowledge
proof and defined nO(σ(n))-simulatable proof which can be simulated by
a simulator in nO(σ(n)) time. Assuming the existence of one-way permu-
tation secure against sub-exponential circuits and 2-round perfect hiding
commitment scheme, an efficient 4-round perfect npoly(log n)-simulatable
argument of knowledge was presented there.

In this paper, we construct an efficient concurrent npoly(log n)-
simulatable argument of knowledge under more general assumption. The
new scheme is 5-round and is based on the existence of one-way permu-
tation secure against sub-exponential circuits. However, for the scheme
in [16], if using ordinary Σ-protocol for the corresponding statement
as sub-protocol, instead of Σ-protocol with honest verifier perfect zero
knowledge, the resulting protocol is not necessarily closed under concur-
rent composition.

Keywords: straight-line npoly(log n)-simulatable, argument of knowl-
edge, Σ-protocol.

1 Introduction

Zero knowledge (short for ZK)proof, brought out by Goldwasser,Micali and Rack-
off [11], is a protocol between two parties: prover and verifier, in which prover can
convince verifier the validity of a statement but revealsnothing. Since its invention,
ZK proof has attracted much attention and a great deal of work has been done on
it. One of the most fundamental results achieved is that every language inNP has
a ZK proof [12]. Nowadays, ZK proof has played a central role in study of crypto-
graphic protocols. For example, it can be used in multi-party computation [8,9] to
have the parties prove the correctness of their computations.

The definition of ZK proof is formalized through simulation paradigm. That
is, for every probabilistic polynomial time verifier, there exists a probabilistic
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polynomial time simulator such that what the simulator outputs is indistin-
guishable from the real interaction. Although ZK proof is very useful in the
design of increasingly complex cryptographic tasks, many limitations are known
[10,13,14]. As a result, general protocols, whose security requirements are for-
malized by simulation paradigm of ZK proof, inherit these limitations. For ex-
ample, recently several limitations have been shown concerning the concurrent
composition [6] of secure two-party and multi-party protocols [14,15]. In order
to overcome some of these limitations, some relaxed notions which are good
enough for applications are brought out. A first step in this direction is the
definition of witness indistinguishability [7]. Recently, Pass [16] defined another
relaxed notion—nO(σ(n))-simulatable proof (argument). It was pointed out that
nO(σ(n))-simulatable argument can be used as a sub-protocol to construct uni-
versal composable secure protocols.

nO(σ(n))-simulatable argument is that for every probabilistic polynomial time
verifier, there exists a simulator with running time nO(σ(n)) which can simu-
late the real conversation. From definition of ZK argument, it is concluded
that ZK argument is nO(1)-simulatable argument. Therefore, nO(σ(n))-
simulatable argument is a generalization of definition of ZK argument. Fur-
thermore, nO(σ(n))-simulatable argument is witness indistinguishable. Therefore,
nO(σ(n))-simulatable argument is a notion between ZK and witness indistin-
guishability.

In [16], based on the assumption that there exist one-way permutation se-
cure against sub-exponential circuits and 2-round perfect hiding commitment
scheme, an efficient 4-round concurrent perfect npoly(log n)-simulatable argument
of knowledge was constructed. Honest verifier perfect ZK property of Σ-protocol
contributes to the “perfect” property of the construction, which in turn results
in its closeness under concurrent composition. However, if using ordinary Σ-
protocol instead of Σ-protocol with honest verifier perfect ZK property as a tool,
the resulting scheme is not necessarily closed under concurrent composition.

In this paper, using ordinary Σ-protocol as a tool, we give an efficient concur-
rent npoly(log n)-simulatable argument of knowledge under more general assump-
tion. The scheme is 5-round and is based on the existence of one-way permutation
secure against sub-exponential circuits.

It is organized as follows. In section 2, some related notions and definitions
are given. In section 3, we present the 5-round concurrent npoly(log n)-simulatable
argument of knowledge and gives the corresponding proofs.

2 Preliminaries

A function f(n) is called negligible, if for every positive polynomial q(n), there
exists N such that for all n ≥ N , we have f(n) ≤ 1/q(n).

Definition 1. (one-way function secure against sub-exponential circuits [16])
f : {0, 1}� → {0, 1}� is called one-way function secure against 2nk

adversary, if
the following conditions hold:
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(1) There exists a polynomial time algorithm A, such that A(x) = f(x);
(2) For any probabilistic algorithm B with running time 2nk

, any positive poly-
nomial p(·) and all sufficiently large n, any auxiliary input z ∈ {0, 1}poly(n),
we have

Pr[B (f (Un) , z) ∈ f−1 (f(Un)] < 2−nk

; . (1)

where Un is a random variable uniformly distributed in {0, 1}n.

f is called one-way function secure against sub-exponential circuits iff there exists
a constant 0 < k < 1 such that f is secure against 2nk

adversary.

Definition 2. (Argument of knowledge [9]) Let R be a binary relation, proba-
bilistic polynomial time machine V is called knowledge verifier for language L
with relation R, if the following conditions hold:

(1) (non-triviality) There exists a probabilistic polynomial time machine P , such
that for every (x, y) ∈ R all possible interaction of P with V on common
input x and auxiliary input y is accepting;

(2) (knowledge soundness) There exists a probabilistic polynomial time oracle
machine K such that for every polynomial time machine P � and every
x, y, r ∈ {0, 1}�, machine K satisfies the following condition: Let p(x, y, r) be
the probability that P �

x,y,r convinces V . If p(x, y, r) > u(|x|) where u(|x|) is
a negligible function, then machine K can output s ∈ R(x) with probability
at least 1− u(|x|) in polynomial time.

If V is a knowledge verifier for language L with relation R and P is a machine
satisfying non-triviality condition, (P, V ) is called argument of knowledge for
language L. K is called knowledge extractor.

Definition 3. (straight-line nO(σ(n))-simulatable argument of knowledge [16])
Let (P, V ) be an argument of knowledge for language L ∈ NP with relation R.
(P, V ) is called straight-line nO(σ(n))-simulatable argument of knowledge, if for
every probabilistic polynomial time machine V �, there exists a simulator S with
running time nO(σ(n)) such that the following two ensembles are computational
indistinguishable:

(a) {< P (y), V �(z) > (x)}z∈{0,1}�,x∈L, where y ∈ R(x);
(b) {< S, V �(z) > (x)}z∈{0,1}�,x∈L.

Definition 4. (straight-line concurrent nO(σ(n)))-simulatable argument of
knowledge [16]) Let (P, V ) be an argument of knowledge for language L ∈ NP
with relation R. (P, V ) is called straight-line concurrent nO(σ(n))-simulatable ar-
gument of knowledge, if for every probabilistic polynomial time oracle machine A
that is not allowed to rewind the oracle it has access to, for any positive polyno-
mial g(n), there exists a simulator S(i, x) with running time nO(σ(n)) such that
the following two ensembles are computational indistinguishable:
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(a) {AP (x1,y1),···,P (xg(n),yg(n))(z, x1, · · · , xg(n))}z∈{0,1}�,x1,···,xg(n)∈L, where yi ∈
R(xi) for i = 1, · · · , g(n);

(b) {AS(1,x1),···,S(g(n),xg(n))(z, x1, · · · , xg(n))}z∈{0,1}�,x1,···,xg(n)∈L.

Σ-Protocol ([5]): Σ-protocol is a special 3-move witness indistinguishable proof
(argument) of knowledge. Let the conversation in the interaction be (a, e, z). Σ-
protocol for language L ∈ NP with relation R is required to satisfy the following
conditions:

(a) (special soundness) For common input x, from any pair of accepting con-
versations (a, e, z) and (a, e′, z′) where e 
= e′, one can efficiently compute w
such that (x, w) ∈ R;

(b) (special honest verifier computational zero knowledge) There exists a simu-
lator M such that on input x and the challenge e, M can output an conver-
sation which is computational indistinguishable from the real interaction.

Commitment Schemes: A Commitment scheme is a two-party interactive
protocol consisting of two phases. S and R are polynomial time machines. In
the first phase, sender S computes a commitment c to value m and sends c to
receiver R; In the second phase, S reveals the value m along with the random
coins used to R and R checks the validity of the commitment c. A commitment
scheme is required to satisfy the following property:

(a) Hiding: two commitments to different values are computational indistin-
guishable; If the two commitments to different values are identically dis-
tributed, the commitment scheme is perfectly hiding;

(b) Binding: Once having sent the commitment c to m, except for negligible
probability, S cannot reveal a different value m′ 
= m such that c is also a
valid commitment to m′.
If for m′ 
= m, the two sets Com(m) and Com(m′) is disjoint, it is called
perfectly binding, where Com(m) and Com(m′) are sets of all possible com-
mitments to m and m′ respectively.

3 Concurrent npoly(log n)-Simulatable Argument of
Knowledge

In this section, using ordinary Σ-protocol as a tool, an efficient 5-round
npoly(log n)-simulatable argument of knowledge which is closed under concurrent
composition is presented.

It was pointed out that npoly(log n)-simulatable argument of knowledge is not
necessarily closed under concurrent composition [16]. In the construction of [16],
if using ordinary Σ-protocol as a sub-protocol, instead of Σ-protocol with honest
verifier perfect ZK property, the reduction used to prove concurrency fails. The
reason is that when using hybrid argument to reduce concurrency to stand-alone
circumstances, some oracle queries to the simulator are required to be answered
by polynomial time algorithm, not by oracles. However, the simulator can only
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compute these answers in npoly(log n) time. To solve this problem, the new scheme
works in the following way: first, V executes a Σ-protocol to prove statement
s ∈ L1∨t ∈ L2. Then, P executes another Σ-protocol to prove x ∈ L∨(s, t) ∈ L3.
Because witness for t ∈ L2 is also a witness for (t, c) ∈ L3, by special soundness
of Σ-protocol, we can extract a witness for t ∈ L2 from V �. With the witness,
the queries can be computed efficiently. Thus, the reduction works.

Let f : φ : {0, 1}� → {0, 1}� be one-way permutation secure against 2nk

adversary, where the constant 0 < k < 1. Suppose Com(·) be a perfectly binding
commitment scheme and G be a pseudo-random generator stretching strings of
length n to 2n. Three Languages are defined respectively as follows: L1 = {s :
∃m, a, s.t.s = Com(m, a))}, L2 = {t : ∃r, s.t.t = f(r)}, L3 = {(t, c) : ∃r, s.t.t =
f(r) ∧ c = G(r)}.
Construction of Protocol Π
Common Input: x ∈ L, where the length of x is n.
Auxiliary Input of Prover P : y ∈ R(x).

(P1): P randomly chooses m, then he computes s = Com(m) and sends s to V ;
(V1): V randomly picks r ∈ {0, 1}(logn)m

, computes t = f(r) and sends t to P ,
where m = 1+ 1

k . At the same time, V uses Σ-protocol to prove statement
s ∈ L1 ∨ t ∈ L2 and sends the first round message a1 to P ;

(P2): P produces a random challenge e1 for message a1 and sends it to V .
Also, he randomly picks c ∈ {0, 1}2(logn)m

and uses Σ-protocol to prove
statement x ∈ L ∨ (t, c) ∈ L3. He sends c and the first round message a2
of Σ-protocol to V ;

(V2): V produces a random challenge e2 for message a2 and computes message
z1 to answer challenge e1. He sends e2, z1 to P ;

(P3): If (a1, e1, z1) is an accepting conversation of statement s ∈ L1 ∨ t ∈ L2, P
produces message z2 and sends it to V to answer challenge e2; Otherwise,
P aborts;

(V3): If (a2, e2, z2) is an accepting conversation of statement x ∈ L∨ (t, c) ∈ L3,
V output 1. Otherwise, he outputs 0.

Lemma 1. If there exists one-way permutation secure against sub-exponential
circuits, then protocol Π is straight-line npoly(log n)-simulatable argument of
knowledge.

Proof. First, Completeness of protocol Π comes from completeness of Σ-protocol
for statement x ∈ L ∨ (t, c) ∈ L3. For x ∈ L, P can use y ∈ R(x) to prove the
statement x ∈ L ∨ (t, c) ∈ L3.

Second, we prove knowledge soundness of protocol Π . For any probabilistic
polynomial time machine P � satisfying that Pr[< P �, V > (x)] = p is non-
negligible in |x|, there exists a probabilistic polynomial time oracle machine
K such that K can extract witness for statement x ∈ L ∨ (t, c) ∈ L3 with
probability at least 1 − u(|x|), where u(|x|) is a negligible function. For these
accepting transcripts produced by P �, assume that there exists non-negligible
fraction of (s, t), such that K can extract witnesses of (t, c) ∈ L3 with non-
negligible probability from the transcripts containing (s, t). For such (s, t), we



98 G. Huang, D. Lin, and Y. Zhang

can construct a malicious verifier V �� by incorporating algorithm P � such that
V �� can distinguish the witnesses for statement s ∈ L1 ∨ t ∈ L2.

Algorithm V �� is constructed as follows: On input (s, t) and auxiliary input
x, V �� runs algorithm P � in the following way:

(1) For statement s ∈ L1 ∨ t ∈ L2, V �� interacts with prover externally to
prove the statement. When receiving messages, V �� gives the messages
to P �; When is required to send messages, he reads messages from the
communication-tape of P � and sends them to prover.

(2) For statement x ∈ L ∨ (t, c) ∈ L3, V �� acts as honest verifier to interact
with P � internally. Then, V �� runs knowledge extractor for statement x ∈
L∨(t, c) ∈ L3 to output a witness w. If w is a witness for x ∈ L, V �� outputs
0. If w is a witness for (t, c) ∈ L3, V �� outputs 1.

From the construction of V ��, when prover uses a witness for t ∈ L2 to interact
with V ��, the probability that V �� outputs 1 is non-negligible. When prover
uses a witness for s ∈ L1 to interact with V ��, the view of V �� is independent
of witness of (t, c) ∈ L3. So in this case the probability that V �� outputs 1
is negligible. Hence, V �� can distinguish the witnesses for statement s ∈ L1 ∨
t ∈ L2, which contradicts with witness indistinguishability. Therefore, except
for negligible probability, what K extracts from an accepting conversation is a
witness for x ∈ L. That is, knowledge soundness of protocol Π holds.

At last, we prove that Π is straight-line npoly(log n)-simulatable. For any prob-
abilistic polynomial time verifier V �, simulator S is constructed as follows: First,
he randonly chooses a value m and computes s = Com(m). Then, on receiving
message (t, a1) from V �, S performs exhaustive search to find r ∈ {0, 1}(logn)m

such that f(r) = t. Then, S uses r to compute c = G(r) and takes r as a witness
for statement x ∈ L ∨ (t, c) ∈ L3 to interact with V �. The running time of S is

poly(2(log n)m

) = poly(n(log n)
1
k ). By witness indistinguishability of Σ-protocol,

the distribution produced by simulator is computational indistinguishable from
the real interaction of P and V �.

From above, we can conclude that protocol Π is straight-line npoly(log n)-
simulatable argument of knowledge. ��

Lemma 2. In protocol Π, for any probabilistic polynomial time V �, if he can
convince P the statement s ∈ L1 ∨ t ∈ L2 with non-negligible probability, then
except for negligible probability, what the extractor K1 extracts from V � is a
witness for t ∈ L2.

Proof. Assume that there exists a probabilistic polynomial time V � who can con-
vince P the statement s ∈ L1 ∨ t ∈ L2 with non-negligible probability, the prob-
ability that K1 outputs a witness for s ∈ L1 is non-negligible. we can construct
a polynomial time algorithm B to break the hiding property of commitment
scheme.

Algorithm B can be constructed as follows: On input sb, m0, m1, where sb is a
commitment to m0 or m1, B runs the knowledge extractor K1 for sb ∈ L1 ∨ t ∈
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L2. When K1 fails or outputs a witness for t ∈ L2, B aborts. Otherwise, suppose
K1 output m. If m = m0, B outputs 0, else B outputs 1.

Hence, B can distinguish the commitment of m0 and m1 with non-negligible
probability, which contradicts with the hiding property of commitment scheme.
Therefore, except for negligible probability, what K1 extracts is a witness for
t ∈ L2. ��
Lemma 3. If there exists one-way permutation secure against sub-exponential
circuits, then protocol Π is straight-line concurrent npoly(log n)-simulatable.

Proof. For any probabilistic polynomial time oracle machine A that is not al-
lowed to rewind the oracle it has access to, for any positive polynomial g(n), let
S(i, x) = S(x) where S(x) is the simulator constructed in Lemma 1. It is suffi-
cient to prove the following two ensembles are computational indistinguishable:

(a) {AP (x1,y1),···,P (xg(n),yg(n))(z, x1, · · · , xg(n))}z∈{0,1}�,x1,···,xg(n)∈L, where yi ∈
R(xi) for i = 1, · · · , g(n);

(b) {AS(1,x1),···,S(g(n),xg(n))(z, x1, · · · , xg(n))}z∈{0,1}�,x1,···,xg(n)∈L.

We use hybrid argument to prove it. Assume that there exists an polynomial
time oracle machine A and z ∈ {0, 1}�, such that for infinitely many n, the
above two ensembles are distinguishable by a probabilistic polynomial time dis-
tinguisher D. The distinguishing gap is 1

q(n) , where q(n) is a positive polynomial.
For i = 0, 1, 2, · · · , g, experiment Hi is defined in the following way: For the first
i sessions, P (xi, yi) acts as the oracle to answer queries of A. For the subse-
quent sessions, S(j, x) is taken as the oracle to return answers to A’s queries,
where j = i + 1, · · · , g. It is seen that experiment H0 corresponds to ensemble
(b) and experiment Hg corresponds to ensemble (a). Then, there must exist
i ∈ {0, 1, · · · , g} such that D can distinguish Hi and Hi+1 with distinguishing
gap 1

g(n)q(n) .
Using algorithm A, we can construct an probabilistic polynomial time oracle

machine A1: On input xi+1 and auxiliary input z′ = z ◦ x1 ◦ · · · ◦ xi ◦ xi+2 ◦ · · · ◦
xg(n) ◦ y1 ◦ · · · ◦ yi ◦ yi+2 ◦ · · · ◦ yg(n), A1 runs algorithm A(x1, · · · , xg(n), z) in the
following way:

(1) For j = 1, 2, · · · , i, when A queries for the j-th session, A1 runs algorithm
P (xj , yj) to provide answers to A;

(2) For j = i + 2, · · · , g, when A queries for the j-th session, A1 invokes the
extractor K1 for statement sj ∈ L1∨tj ∈ L2 to get a witness rj for statement
tj ∈ L2 (by lemma 2). Then, A1 uses rj as a witness to compute messages
to answer A;

(3) For the i + 1-th session, A1 provides answers to A by access to oracle
P (xi+1, yi+1) or S(i + 1, xi+1). At last, A1 outputs what A outputs.

From the construction of algorithm A1, it is seen that D can distinguish
A

P (xi+1,yi+1)
1 and A

S(i+1,xi+1)
1 , which contradicts with the fact that Π is straight-

line npoly(log n)-simulatable. Therefore, ensembles (a) and (b) are computational
indistinguishable. That is, protocol Π is straight-line concurrent npoly(log n)-
simulatable. ��
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From above three lemmas, we conclude that Π is straight-line concurrent
npoly(log n)-simulatable arguments of knowledge. Therefore, we have

Theorem 1. If there exists one-way permutation secure against sub-exponential
circuits, then every language L ∈ NP has an efficient 5-round straight-line con-
current npoly(log n)-simulatable argument of knowledge.

4 Conclusion

nO(σ(n))-simulatable argument of knowledge is a generalization of definition of
ZK argument of knowledge and is very useful in constructing multi-party secure
computation schemes and universal composable secure protocols. Under the as-
sumption that there exists one-way permutation secure against sub-exponential
circuits, using ordinary Σ-protocol as a tool, we construct an efficient 5-round
npoly(log n)-simulatable argument of knowledge. The new scheme is closed under
concurrent composition.

Acknowledgments. We thank anonymous referees for the helpful suggestions
to improve this paper.
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Abstract. This paper proposes a novel construction of reusable and
non-erasure commitment schemes in the common reference string model.
We show that our implementation is secure in the universally compos-
able paradigm assuming that the decisional Diffie-Hellman problem over
a squared composite modulus of the form N =pq is hard. Our method-
ology relies on state-of-the-art double trap-door public-key encryption
protocols so that a simulator in charge of a common reference string can
extract messages of cipher-text rather than the equivocability of under-
lying cryptographic systems. As a result, our method differs from those
presented in [2] and [7]. The double trap-door mechanism is of great ben-
efit to an ideal-world simulator since no modifications will be charged to
unopened commitments in case that the participants who generated these
commitments are corrupted, and thus enables us to implement efficient
simulators in the ideal-world.

Keywords: Non-erasure, reusability, simulator, universally composable
commitment.

1 Introduction

Universally composable (UC) commitments guarantee that commitment proto-
cols behave like an ideal commitment service, even when concurrently composed
with an arbitrary set of protocols. A commitment protocol with UC-security
implies that it is non-malleable not only respect to other copies of the same
protocol but even with respect to other protocols. To prove security of a com-
mitment scheme in the UC model, one must construct an ideal-world adversary
such that an adversary’s view of a real-life execution of a commitment protocol
can be simulated given just the data the adversary is entitled to.

Considering a scenario where a commitment protocol execution between a
corrupted committer Pi and an honest receiver Pj is performed, and a dummy
adversary is assumed to merely send messages that are generated by an environ-
ment Z, and relay to the messages sent to Pi. Assume that the environment Z
secretly picks a random bit b ∈ {0, 1} at the beginning of the commitment pro-
tocol execution and generates the messages for Pi by running the protocol of the
honest committer for b and Pj ’s answers. To simulate this adversarial behavior,
an ideal world simulator S must first extract input bit b from the messages gen-
erated by Z on the tape of the ideal-world uncorrupted party P̃i and then copies

F. Bao, H. Li, and G. Wang (Eds.): ISPEC 2009, LNCS 5451, pp. 102–111, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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this extracted bit b to the functionality Fcom. If the commitment scheme allows
the simulator to successfully extract the committed bit, then the commitment
is not secure since the successful simulator must come up with the true bit b at
the commitment step which contradicts the security of a commitment protocol.

To simulate the adversarial behavior above, Canetti and Fischlin [2] have
proposed two methods sketched below for constructing an ideal world simulator:
1) one-time-usable common reference string model: a fresh common ref-
erence string σ must be generated for each committed bit in this model. The
common reference string σ is constructed from Crescenzo, Ishai and Ostrovsky’s
protocol with a specified trap-door pseudo-random generator which guarantees
the required equivocability and thus allows a simulator to adapt committed
values of unopened commitment in case that the participants who generated
these commitments are corrupted. We remark that the computation complexity
of their basic construction is heavy since the commitment scheme uses one-time
common reference string, and each generation of a common reference string costs
at least 3n computations of the underlying one-way permutation, where n is a
security parameter for the underlying pseudo-random generator stretching n-bit
inputs to 4n-bit outputs.
2) reusable common reference string model: a common reference string in
this model is constructed from claw-free trap-door permutation pairs and a pub-
lic key encryption scheme to guarantee that a simulator can produce a correct
cipher-text and a fake random string suggesting that the cipher-text has been
obtained by the oblivious sampling procedure. This common reference string
can be reused for committing multi-bit. To prove the security of the commit-
ment schemes in this model, Canetti and Fischlin first assume that a committer
generates a cipher-text of a committer’s identity and then erases the random-
ness used for the encryption of (0n, Pi) before the commitment message is sent.
Assuming the existence of obliviously sample encryption schemes, Canetti and
Fischlin further proposed an improved construction such that the unpleasant
assumption of erasure of randomness used for the encryption is eliminated.

The security proof of commitment schemes in the one-time-usable common
reference string model relies on the equivocable bit commitment of Crescenzo,
Ishai and Ostrovsky [8] which in turn is a modification of Naor’s commitment
scheme [10]. The security proof of commitment schemes in the reusable common
reference string model relies on oblivious sample property of the underlying
encryption scheme (constructed from Cramer and Shoup’s encryption scheme
[5]) such that one cipher-text is open while the remaining cipher-text is never
opened.

1.1 Recent Work

At Crypto 2008, Dodis, Shoup and Walfish [7] proposed an efficient construc-
tions of composable commitments based on Ω protocols. An Ω-protocol first
introduced and formalized by Garay, MacKenzie and Yang [9] in the context of
zero-knowledge proof system, is similar with the notion of a Σ-protocol, with an
extra property that one can generate a public parameter σ of a system together



104 H. Zhu

with a trap-door information τ , such that the knowledge of τ allows one to ex-
tract the witness from any valid conversation between a prover and sender. They
use the same technique of Canetti and Fischlin [2] in the sense that the proof
of security relies on the equivocability of the underlying cryptographic systems
(e.g., Crescenzo, Ishai and Ostrovsky’s bit commitment scheme, Canetti and
Fischlin’s equivocable encryption scheme, and Garay, MacKenzie and Yang’s
Ω-protocol) such that a simulator can extract inputs of corrupted parties.

1.2 This Work

In this paper, we propose a novel construction of reusable, non-erasure commit-
ment protocols and show that:

Theorem. Our protocol (described in Section 4) is universally composable in
the common reference string model assuming that the decisional Diffie-Hellman
problem over a squared composite modulus of the form N =pq is hard.

The technique: The novelty of this paper is that an ideal-world simulator does
not rely on the equivocability of underlying cryptographic systems but on the
existence of double trapdoor public-key encryption schemes, (the existence of
semantically secure double trap-door encryption scheme is not a problem, see
Section 3 for more details). That is, a simulator in our model is allowed to
generate a public-key/secret key pair (pkS , skS) while a simulated participant
Pi is allowed to generate its own public-key (pki, ski) . The double trap-door
mechanism ensures that any cipher-text generated by the encryption scheme
Epki(m, rm) can be correctly decrypted with the help of trap-door string skS ,
where m ∈ Mpki and Mpki is the message space specified by the public-key pki.
Notice that if Bresson, Catalano and Pointcheval’s public-key encryption scheme
is applied, then Mpki = MpkS (throughout the paper, we simply abbreviate the
notation Mpki as M). Furthermore, we are able to show that the proposed
commitment scheme enjoys the following nice features:

1) Simulatability: In our model, a public key pkS is a common reference
string that will be used for constructing universally composable commitments. To
simulate the scenario where the environment Z secretly picks a random element
m ∈M at the beginning of the protocol execution and generates the messages for
Pi by running the protocol of the honest committer for m and Pj ’s answers, we
simply allow a simulator S to decrypt the delivered cipher-text Epki (m, rm) and
obtain the exact value m ∈M; The simulator S then instructs P̃i to forward the
extracted string m ∈ M the functionality. Consequently, the simulator S works
if it holds the auxiliary string skS .

Non-erasure: A protocol is called non-erasure if all random strings used for
generating cipher-text by a corrupted participant is revealed to the adversary. It
will be clear that any participant in our model is forced to provide its randomness
to the adversary once it is corrupted (see Section 4 for more details).

Reusability: Any public-key and secret-key pair (pki, ski) (including the com-
mon reference string pkS) of a double trap-door public-key encryption scheme



New Constructions for Reusable, Non-erasure and UC Commitments 105

generated by a real-world participant Pi is reusable in our model (see Section 4
for more details).

1.3 Why Our Methodology Is Interesting?

It is important to evident why our methodology is interesting. Two evidences
are due to the following observations:

– efficient constructions of simulators: consider a scenario where a simu-
lated real-world adversary A demands to corrupt a real-world party Pi. To
simulate this situation, an ideal-world simulator S must corrupt the corre-
sponding party P̃i (a dummy party of Pi) in the ideal model and learns all
internal information of the party. To deal with such an active corruption,
the technique presented in [2] and [7] must instruct S to modify all decom-
mitment information about the unopened commitment of this party Pi to
match the received data and hands this modified internal information to A.
A simulator S in our model, however needs not to adapt possible decommit-
ment information about a previous given but yet unopened commitment of
this party since the trap-door information skp allows to S to decrypt a valid
cipher-text generated by Pi. As a result, the double-trap-door public-key en-
cryption based construction allows us to implement an efficient ideal-world
simulator S corresponding to the real-world adversary A.

– concise of common reference string: a common reference string used in
our commitment scheme is a public key pkS of a simulator (pkS =N , if Bres-
son, Catalano and Pointcheval’s public-key encryption scheme is applied).
The common reference strings used in [2] consists of two parts: a string
describing two claw-free permutations and a string describing a public key
encryption scheme; The common reference string used in [7] consists of two
parts: a string describing an identity of a participant and a string describing
Ω-protocol. As a result, the common reference string used in this paper is
much more concise than that used in [2] and [7].

Road map: The rest of this paper is organized as follows: In Section 2, prelim-
inaries including the notions of UC security and notions of functionalities are
briefly sketched; In Section 3, a double trap-door encryption scheme due to Bres-
son, Catalano and Pointcheval is sketched. The proposed commitment protocol
is described and analyzed in Section 4. We conclude our work in Section 5.

2 Preliminaries

We work in the standard universally composable framework, where all partic-
ipants are modeled as probabilistic polynomial time (PPT) Turing machines.
Security of protocols is defined by comparing the protocol execution to an ideal
process for carrying out the desired task. Namely, the process of executing a
protocol in the presence of an adversary and in a given computational environ-
ment is first formalized. Next an ideal processing for carrying out the task at
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hand is formalized. In the ideal processing the parties do not communicate with
each other; instead they have access to an ideal functionality which is essen-
tially an incorruptible trust party that is programmed to capture the desired
requirements from the task at hand. A protocol is said to securely realize a
task if the processing of running the protocol emulates the ideal process of that
task. We assume the reader is familiar with the standard notion of UC security.
The detailed descriptions of the executions, and definitions of IDEALF ,S,Z and
REALπ,A,Z are omitted and refer to the reader [3] for more details.

2.1 The Common Reference String Model

The functionality of common reference strings (crs) model described in Fig.1.
assumes that all participants have access to a common string that is drawn from
some specified distribution D.

Functionality FD
crs

FD
crs proceeds as follows, when parameterized by a distribution D.

– when receiving a message (sid, Pi, Pj) from Pi, let crs ← D(1n) and send (sid, crs)
to Pi, and send (crs, sid, Pi, Pj) to the adversary, where sid is a session identity.
Next when receiving (sid, Pi, Pj) from Pj (and only from Pj), send (sid, crs) to
pj and to the adversary, and halt.

Fig. 1. Functionality FD
crs (due to [2])

The common reference string model Fcrs produces a string with a distribution
that can be sampled by a PPT algorithm D.

2.2 The Commitment Functionalities

The ideal functionality of a commitment scheme is described in Fig.2.

To capture the notion of reusability, we must define the functionality of multi
commitment, de-commitment processes (see Fig.3. for more details).

Definition 1. Let F com be a functionality. A protocol π is said to universally
composable realize F com if for any adversary A, there exists a simulator S such
that for all environments Z, the ensemble IDEALFcom,S,Z is computationally
indistinguishable with the ensemble REALπ,A,Z .

Definition 2. If the protocol securely realizes the functionality Fmcom, then it is
called a reusable common reference string and universally composable commit-
ment protocol.
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Functionality Fcom

Fcom proceeds as follows, running with parties P1, . . . , Pn and an adversary S

– Upon receiving a value (commit, sid, Pi, Pj , m ∈ M), record the value m, send
the message (receipt, sid, Pi, Pj) to Pj and S , and ignore any sequent commit
messages, where sid is a session identity.

– Upon receiving a value (open, sid, Pi, Pj) from Pj , proceed the following compu-
tations: if some value m was previously recorded, then send the message (open,
sid, Pi, Pj , m) to Pj and S and halt; otherwise halt

Fig. 2. Functionality Fcom (due to [2])

Functionality Fmcom

Fmcom proceeds as follows, running with parties P1, . . . , Pn and an adversary S

– Upon receiving a value (commit, sid, cid, Pi, Pj , m ∈ M, record the tuple (cid,
Pi, Pj , m), send the message (receipt, sid, cid, Pi, Pj) to Pj and S , and ignore any
subsequent (commit, sid, cid, Pi, Pj , . . . ) messages, where sid is a session identity,
and cid is a commitment identity.

– Upon receiving a value (open, sid, cid, Pi, Pj) from Pj , proceed the following
computations: if the tuple (sid, cid, Pi, Pj , m ∈ M) was previously recorded,
then send the message (open, sid, cid, Pi, Pj , m ∈ M) to Pj and S and halt;
otherwise halt

Fig. 3. Functionality Fmcom (due to [2])

3 Building Blocks

Paillier’s encryption scheme and its variations will be used as building blocks
for implementing reusable, non-erasure and universally composable commitment
schemes.

3.1 Paillier’s Encryption Scheme

Paillier investigated a novel computational problem called the composite resid-
uosity class problem (CRS), and its applications to public key cryptography in
[11].

Decisional composite residuosity class problems: Let N = pq, where p
and q are two large safe prime numbers. A number z is said to be a N -th residue
modulo N2, if there exists a number y ∈ Z∗

N2 such that z = yN mod N2. The
decisional composite residuosity class problem states the following thing: given
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z ∈r Z∗
N2 deciding whether z is N -th residue or non N -th residue. The decisional

composite residuosity class assumption means that there exists no polynomial
time distinguisher for N -th residues modulo N2.

Paillier’s encryption scheme: The public key is a 2k-bit RSA modulus N=pq,
where p, q are two large safe primes with length k and the secret key is (p, q). The
plain-text space is ZN and the cipher-text space is Z∗

N2 . To encrypt a message
m ∈ ZN , one chooses r ∈ Z∗

N uniformly at random and computes the cipher-text
as EPK(m, r) = gmrN mod N2, where g = (1 + N) has order N in Z∗

N2 . The
private key is (p, q). It is straightforward to verify that given c =(1 + N)mrN

mod N2, and the trapdoor information (p, q), one can first compute c1=c mod N ,
and then compute r from the equation r=c

N−1modφ(N)
1 mod N ; Finally, one can

compute m from the equation cr−N mod N2 =1+mN . The encryption function
is homomorphic, i.e., EPK(m1, r1) × EPK(m2, r2) mod N2 = EPK(m1 + m2
mod N , r1× r2 mod N). Paillier’s scheme is semantically secure if the decisional
composite residuosity class problem is hard.

3.2 Bresson-Catalano-Pointcheval Cryptosystem

At Asiacrypt’03, Bresson, Catalano and Pointcheval [1] presented a double en-
cryption scheme based on the hardness assumption that inverting RSA[N, N ]
(i.e., RSA with public exponent set to N , a variant of Paillier’s encryption scheme
[11]) which is sketched below:

– Key generation algorithm KG: On input a security parameter n, KG pro-
duces composite modulus of the form N = pq that is a product of two safe
primes p and q, and g that is an element of order λ(N) in Z∗

N2 , where λ(·)
is Carmichael function. KG randomly chooses z ∈ [0, N2/2] and sets h = gz

mod N2 (we remark that g can be an element of order p′q′ as well, see [4]
for more details). The outputs KG is a pair of public/secret keys (pk, sk),
where pk =(N, g, h), sk=(z, p, q).

– Encryption algorithm E: to encrypt a message m ∈ ZN , one chooses a ran-
dom value r ∈ [0, N/4], and computes the cipher-text (u, v) where u = gr

mod N2 and v =hr(1 + N)m mod N2.
– Decryption algorithm D: to decrypt a cipher-text (u, v), two methods are

possible: 1) computing (1+mN) as v/uz with the help of the trapdoor string
z; 2) computing vλ(N) =1 + mλ(N)N with the help of the trap-door string
(p, q).

Assuming that the decisional Diffie-Hellman problem is hard over a squared com-
posite modulus of the form N = pq, Bresson-Catalano-Pointcheval cryptosystem
is semantically secure (see [1] for more details).

4 The Protocols

In this section, we propose an implementation of reusable, non-erasure and uni-
versally composable commitment schemes described in Fig.4. The idea behind of
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our construction is that an ideal-world simulator is allowed to generate a public-
key/secret key pair (pkS , skS) while a simulated participant Pi is allowed to gen-
erate its own public-key (pki, ski) such that any valid cipher-text Epki(m, rm)
generated by the underlying public-key encryption scheme can be correctly de-
crypted with the help of trap-door string skS . To prevent a corrupted committer
from copying a commitment generated by an uncorrupted party, a session identity
sid and a commitment identity cid must be included in the encryption scheme.

The description of protocol π

Common reference string generator: On input a security parameter k, a common
reference string generator Gcrs produces a composite modulus of the form N =pq that
is a product of two safe primes p and q, where |p| =q =k, p =2p′ +1, q =2q′ + 1. The
common reference string σ is N .

Public key/secret key generation algorithm: Let L ⊆ Z∗
N2 be a cyclic of order

2NN ′, and G be a subgroup of Nth powers of L, where N=pq, N ′ =p′q′, p =2p′ + 1
and q =2q′ + 1. It is clear that G ⊆ L is a cyclic group of order 2N ′. Pi chooses
zi ∈ Z∗

N2 uniformly at random, and computes gi = −z4N
i mod N2. As a result,

< gi > is a subgroup of G such that | < gi > | =N ′ with overwhelming probability
[4]. Pi then randomly chooses a secret key xi ∈ [0, N2/2] and sets hi =gxi

i mod N2.
The public key is (N, gi, hi) and the secret key is xi.

Commitment: Commitment for a random string m ∈ ZN with a session id sid and
a commitment cid:

– computing c =Epki(sid, cid, Pi, Pj , m, rm), where Epki(·) is Bresson, Catalano
and Pointcheval’s cryptosystem defined over Gi, Gi =< gi >;

– sending (commit, sid, cid, Pi, Pj , c) to the receiver Pj .

De-commitment De-commitment for (sid, cid, Pi, Pj , c)

– The committer Pi sends (sid, cid, Pi, Pj , m, rm) to Pj ;
– Pj checks the valid of the equation c =Epki(sid, cid, Pi, Pj , m, rm). If the check

is valid, then output accept, otherwise output reject;

Fig. 4. Reusable, Non-erasure and Universally Composable Commitments

4.1 The Proof of Security

Theorem 1. The protocol described above is reusable, non-erasure and univer-
sally composable in the common reference string model assuming that the deci-
sional Diffie-Hellman problem over a squared composite modulus of the form N
=pq is hard.

Proof. Given a real-world adversary A, we describe an ideal-world adver-
sary S corresponding to A such that for all environments Z, the ensemble
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IDEALFmcom,S,Z is computationally indistinguishable with the ensemble
REALπ,A,Z . Simulator S produces a composite modulus of the form N= pq
that is a product of two safe primes p and q; Let pkS =N , and skS =(p, q),
and let N be a common reference string; For the given common reference string
N , Pi chooses zi ∈ Z∗

N2 uniformly at random and sets gi =−z4N
i mod N2. Pi

randomly chooses a secret key xi ∈ [0, N2/2] and sets hi =gxi

i mod N2. The
public key is (N, gi, hi); the secret key is xi. We then consider five cases below:

– Case 1 : at some point in the protocol execution Z secretly picks a random
string m ∈ ZN and generates a cipher-text c for a corrupted party Pi by
running the protocol of the honest committer for m and Pj ’s answers, then
instructs a dummy adversary A to inform the corrupted party Pi sending c
to Pj ; To simulate this case, S first decrypts c with the help of trap-door
information skS to obtain the exact value m ∈ ZN , then instructs P̃i to
send the message (commit, sid, cid, Pi, Pj , m) to Fmcom. The commitment
functionality Fmcom sends a reply message (receipt, sid, cid, Pi, Pj) to Pj and
S, and ignores any subsequent (commit, sid, cid, Pi, Pj) messages.

– Case 2 : at some point in the protocol execution Z instructs an uncorrupted
party Pi to send a commitment c of a message m ∈ ZN to Pj . To simulate this
case, S first decrypts c with the help of trap-door information skS to obtain
the exact value m ∈ ZN , then instructs P̃i sending the message (commit,
sid, cid, Pi, Pj , m) to Fmcom. The functionality Fmcom sends the message
(receipt, sid, cid, Pi, Pj) to Pj and S, and ignores any subsequent (commit,
sid, cid, Pi, Pj) messages.

– Case 3 : at some point in the execution A instructs a corrupted party Pi to
send a commitment of a message m to Pj . To simulate this case, S obtains m

and instructs P̃i to send the message (commit, sid, cid, Pi, Pj , m) to Fmcom.
The functionality Fmcom sends the message (receipt, sid, cid, Pi, Pj) to Pj

and S if m ∈ ZN , otherwise, Fmcom sends ⊥ to Pi and S. Fmcom ignores any
subsequent (commit, sid, cid, Pi, Pj) messages.

– Case 4 : at some point in the protocol execution A tells a corrupted party Pi

to open a valid commitment c correctly with the string m ∈ ZN . To simulate
this case, S compares m with the previously extracted bit and stops if they
differ; otherwise S sends (open, sid, cid, Pi, Pj) in the name of the party of
the functionality Fmcom.

– Case 5 : Whenever the simulated A demands to corrupt a party, S corrupts
this party in the ideal model and learns all internal information of the party.
Notice that S needs not to adapt possible decommitment information about a
previous given but yet unopened commitment of this party since the trap-door
information skS allows to S to decrypt a valid cipher-text generated by Pi.

According to the simulator described above, we know that pkS is the common
reference string that serves as a global security parameter of the proposed com-
mitment scheme and skS is only used for decryption of a submitted cipher-text
c. It follows that all commitments/decommitments whether submitted by cor-
rupted parities or honest parties can be simulated by S; Notice that individual
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commitment c for a string m ∈ ZN is computationally hiding and statistically
binding assuming that the underlying Bresson, Catalano and Pointcheval public-
key encryption scheme is semantically secure which is true assuming that the
decisional Diffie-Hellman problem over a squared composite modulus of the form
N =pq is hard (i.e., a semantically secure public-key encryption scheme is a com-
putationally hiding and statistically binding commitment, but the UC-security
is not claimed at all). Consequently, the environment’s output in the real-life
model is indistinguishable from its output in the ideal-process.

5 Conclusion

In this paper, an simulation efficient reusable and non-erasure commitment
schemes has been proposed and analyzed. Under the assumption that the deci-
sional Diffie-Hellman problem over a squared composite modulus N is hard, we
have shown that the proposed commitment scheme is secure in the universally
composable model within the common reference model.
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Abstract. Signcryption is a cryptographic primitive that fulfills both
the functions of digital signature and public key encryption simultane-
ously, at a cost significantly lower than that required by the traditional
signature-then-encryption approach. In this paper, we address a ques-
tion whether it is possible to construct a hybrid signcryption scheme
in the certificateless setting. This question seems to have never been
addressed in the literature. We answer the question positively in this
paper. In particular, we extend the concept of signcryption tag-KEM
to the certificateless setting. We show how to construct a certificateless
signcryption scheme using certificateless signcryption tag-KEM. We also
give an example of certificateless signcryption tag-KEM.

Keywords: Certificateless signcryption, hybrid signcryption, signcryp-
tion tag-KEM, DEM.

1 Introduction

Confidentiality, integrity, non-repudiation and authentication are the important
requirements for many cryptographic applications. A traditional approach to
achieve these requirements is to sign-then-encrypt the message. Signcryption,
first proposed by Zheng [13], is a cryptographic primitive that fulfills both the
functions of digital signature and public key encryption simultaneously, at a
cost significantly lower than that required by the traditional signature-then-
encryption approach. In Zheng’s scheme, the public key of a user is essentially a
random bit string picked from a given set. So, the signcryption does not provide
the authorization of the user by itself. This problem can be solved via a certificate
which provides an unforgeable and trusted link between the public key and the
identity of the user by the signature of a certificate authority (CA), and there is a
hierarchical framework that is called public key infrastructure (PKI) to issue and
manage certificates. However, the certificates management including revocation,
storage, distribution and the computational cost of certificates verification is the
main difficulty against traditional PKI.
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To simplify key management procedures of traditional PKI, Shamir [11] pro-
posed the concept of identity-based cryptography (IBC) in 1984. The idea of
IBC is to get rid of certificates by allowing the user’s public key to be any bi-
nary string that uniquely identifies the user. Examples of such strings include
email addresses and IP addresses. The main practical benefit of IBC is in greatly
reducing the need for the public key certificates. But IBC uses a trusted third
party called private key generator (PKG). The PKG generates the secret keys
of all of its users, so a user can decrypt only if the PKG has given a secret
key to it (so, certification is implicit), hence reduces the amount of storage and
computation. On the other hand, the dependence on the PKG who can generate
all users’ private keys inevitably causes the key escrow problem to the IBC.

To solve the key escrow problem in the IBC, Al-Riyami and Paterson [2] in-
troduced a new paradigm called certificateless cryptography. The certificateless
cryptography does not require the use of certificates and yet does not have the
built-in key escrow feature of IBC. It is a model for the use of public key cryp-
tography that is intermediate between traditional PKI and IBC. A certificateless
system still makes use of a trusted third party which is called the key generating
center (KGC). By way of contrast to the PKG in the IBC, the KGC does not
have access to the user’s private key. Instead, the KGC supplies a user with a
partial private key that the KGC computes from the user’s identity and a master
key. The user then combines the partial private key with some secret information
to generate the actual private key. The system is not identity-based, because the
public key is no longer computable from a user’s identity. When Alice wants to
send a message to Bob in a certificateless system, she must obtain Bob’s public
key. However, no authentication of Bob’s public key is necessary and no cer-
tificate is required. In 2008, Barbosa and Farshim [4] introduced the notion of
certificateless signcryption (CLSC) and proposed an efficient scheme.

The practical way to perform secrecy communication for large messages is
to use hybrid encryption that separates the encryption into two parts: one part
uses public key techniques to encrypt a one-time symmetric key; the other part
uses the symmetric key to encrypt the actual message. In such a construction,
the public key part of the algorithm is known as the key encapsulation mecha-
nism (KEM) while the symmetric key part is known as the data encapsulation
mechanism (DEM). A formal treatment of this paradigm originates in the work
of Cramer and Shoup [7]. The resulting KEM-DEM hybrid encryption paradigm
has received much attention in recent years. It is very attractive as it gives a
clear separation between the various parts of the cipher allowing for modular
design. In [1], Abe, Gennaro, and Kurosawa introduced tag-KEM which takes
as input a tag in KEM. Bentahar et al. [5] extended KEM into identity-based
and certificateless settings and gave generic constructions of identity-based KEM
(IB-KEM) and certificateless KEM (CL-KEM).

The use of hybrid techniques to build signcryption schemes has been stud-
ied by Dent [8,9]. He generalized KEM to signcryption KEM which includes
an authentication in KEM. However, he only consider the insider security for
authenticity. That is, if the sender’s private key is exposed, an attacker is able
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to recover the key generated by signcryption KEM. The full insider security [3]
means that (a) if the sender’s private key is exposed, an attacker is still not able
to recover the message from the ciphertext and (b) if the receiver’s private key
is exposed, an attacker is still not able to forge a ciphertext. In 2006, Bjørstad
and Dent [6] showed how to built signcryption schemes using tag-KEM. How-
ever, they also only consider the insider security for authenticity and not for
confidentiality. In 2008, Tan [12] proposed full insider secure signcryption KEM
and tag-KEM in the standard model. Tan’s schemes are insider secure for both
authenticity and confidentiality. Note that the using of tag-KEM yields simpler
scheme descriptions and better generic security reductions.

All the above hybrid signcryption schemes [6,8,9,12] are not in the certifi-
cateless setting. In this paper, we address a question whether it is possible to
construct a hybrid signcryption scheme in the certificateless setting. This ques-
tion seems to have never been addressed in the literature. We answer the ques-
tion positively in this paper. In particular, we extend the concept of signcryption
tag-KEM to the certificateless setting. We show that a CLSC scheme can be con-
structed by using a certificateless signcryption tag-KEM (CLSC-TKEM) and a
DEM. We also give an example of CLSC-TKEM. Our scheme is insider secure
for both authenticity and confidentiality.

2 Preliminaries

2.1 Certificateless Signcryption (CLSC)

A generic CLSC scheme consists of the following six algorithms.

– Setup: This algorithm takes as input the security parameter 1k and returns
the KGC’s master secret key msk and system parameters params including
a master public key mpk and descriptions of message space M, ciphertext
space C and randomness space R. This algorithm is executed by the KGC,
which publishes params.

– Extract-Partial-Private-Key: This algorithm takes as input params,
msk and a user’s identity ID ∈ {0, 1}∗, and returns a partial private key
DID. This algorithm is run by the KGC, after verifying the user’s identity.

– Generate-User-Keys: This algorithm takes as input params and an iden-
tity ID, and outputs a secret value xID and a public key PKID. This algo-
rithm is run by a user to obtain a public key and a secret value which can
be used to construct a full private key. The public key is published without
certification.

– Set-Private-Key: This algorithm takes as input a partial private key DID

and a secret value xID, and returns the full private key SID. Again, this
algorithm is run by a user to construct the full private key.

– Signcrypt: This algorithm takes as input params, a plaintext message
m ∈ M, the sender’s full private key SIDs , identity IDs and public key
PKIDs , and the receiver’s identity IDr and public key PKIDr , and outputs
a ciphertext σ ∈ C.
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– Unsigncrypt: This algorithm takes as input params, a ciphertext σ, the
sender’s identity IDs and public key PKIDs , and the receiver’s full private
key SIDr , identity IDr and public key PKIDr , and outputs a plaintext m
or a failure symbol ⊥ if σ is an invalid ciphertext.

Barbosa and Farshim [4] defines the security notions for CLSC schemes. A
CLSC scheme should satisfy confidentiality (indistinguishability against adaptive
chosen ciphertext attacks (IND-CCA2)) and unforgeability (existential unforge-
ability against adaptive chosen messages attacks (UF-CMA)). For the stronger
notion of insider security, we use the notion of strong existential unforgeability
(sUF-CMA). The strong existential unforgeability means that an adversary wins
if it outputs a valid message/signcryption pair (m, σ) for identities IDs and IDr

and the signcryption σ was not returned by the signcryption oracle when queried
on the message m. As in [4], we do not consider attacks targeting signcryptions
where the identities of the sender and receiver are the same. That is, we disallow
such queries to relevant oracles and do not accept this type of signcryption as a
valid forgery. Please see the full version of this paper for details [10].

2.2 Date Encapsulation Mechanism (DEM)

A DEM is a symmetric encryption scheme which consists of the following two
algorithms.

– Enc: This algorithm takes as input 1k, a key K and a message m ∈ {0, 1}∗,
and outputs a ciphertext c ∈ {0, 1}∗, where K ∈ KDEM is a key in the
given key space, and m is a bit string of arbitrary length. We denote this as
c ← Enc(K, m).

– Dec: This algorithm takes as input a key K and a ciphertext c, and outputs
the message m ∈ {0, 1}∗ or a symbol ⊥ to indicate that the ciphertext is
invalid.

For the purposes of this paper, it is only required that a DEM is secure with
respect to indistinguishability against passive attackers (IND-PA).

3 Certificateless Signcryption Tag-KEM (CLSC-TKEM)

In this section, we extend the concept of signcryption tag-KEM to the certifi-
cateless setting. We give the formal definition for certificateless signcryption
tag-KEM (CLSC-TKEM).

3.1 Generic Scheme

A generic CLSC-TKEM consists of the following seven algorithms.

– Setup: Same to CLSC described in Section 2.
– Partial-Private-Key-Extract: Same to CLSC described in Section 2.
– Generate-User-Keys: Same to CLSC described in Section 2.
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– Set-Private-Key: Same to CLSC described in Section 2.
– Sym: This is symmetric key generation algorithm which takes as in-

put the params, the sender’s full private key SIDs , identity IDs and
public key PKIDs , the receiver’s identity IDr and public key PKIDr ,
and outputs a symmetric key K together with internal state informa-
tion ω. Here K ∈ KCLSC−TKEM is a key in the space of possible
session keys at a given security level. We denote this as (K, ω) ←
Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr ).

– Encap: This is key encapsulation algorithm which takes as input the state
information ω and an arbitrary tag τ , and returns an encapsulation ψ ∈
ECLSC−TKEM. We denote this as ψ ← Encap(ω, τ).

– Decap: This is decapsulation algorithm which takes as input the params, an
encapsulation ψ, a tag τ , the sender’s identity IDs and public key PKIDs ,
the receiver’s full private key SIDr , identity IDr and public key PKIDr , and
outputs a key K or a special symbol ⊥ indicating invalid encapsulation. We
denote this as K ← Decap(params, ψ, τ, IDs, PKIDs , SIDr , IDr, PKIDr).

We make the consistency constraint that if

(K, ω)← Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr) and ψ ← Encap(ω, τ),

then
K ← Decap(params, ψ, τ, IDs, PKIDs , SIDr , IDr, PKIDr).

3.2 Security Notions

A CLSC-TKEM should satisfy confidentiality and unforgeability. To define the
security notions for CLSC-TKEM, we simply adapt the security notions of CLSC
into the TKEM framework. There are two types of adversary against a CLSC-
TKEM: Type I and Type II. A Type I adversary models an attacker which is a
common user of the system and is not in possession of the KGC’s master secret
key. But it is able to adaptively replace users’public keys with (valid) public
keys of its choice. A Type II adversary models an honest-but-curious KGC who
knows the KGC’s master secret key. But it cannot replace users’ public keys.

For confidentiality, we consider two games “IND-CCA2-I” and “IND-CCA2-II”
where a Type I adversary AI and a Type II adversary AII interact with their
“challenger” in these two games, respectively. Note that the challenger keeps a
history of “query-answer” while interacting with the attackers. Now we describe
the two games.

IND-CCA2-I: This is the game in which AI interacts with the “challenger”:
Initial: The challenger runs (params, msk)← Setup(1k) and gives params

to AI . The challenger keeps master secret key msk to itself.
Phase 1: The adversary AI can perform a polynomially bounded number of

queries in an adaptive manner.

– Extract partial private key:AI chooses an identity ID. The challenger
computes DID ←Extract-Partial-Private-Key(params, msk, ID) and
sends DID to AI .
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– Extract private key:AI chooses an identity ID. The challenger first com-
putes DID ←Extract-Partial-Private-Key(params, msk, ID) and then
(xID, PKID) ←Generate-User-Keys(params, ID). Finally, it sends the re-
sult of SID ←Set-Private-Key(xID, DID) to AI . The adversary is not al-
lowed to query any identity for which the corresponding public key has been
replaced. This restriction is imposed due to the fact that it is unreasonable
to expect that the challenger is able to provide a full private key for a user
for which it does not know the secret value.

– Request public key: AI chooses an identity ID. The challenger computes
(xID, PKID) ←Generate-User-Keys(params, ID) and sends PKID to AI .

– Replace public key: AI may replace a public key PKID with a value
chosen by it.

– Symmetric key generation queries:AI chooses a sender’s identity IDs and
a receiver’s identity IDr. The challenger finds SIDs from its “query-answer”
list and runs (K, ω) ← Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr). The
challenger then stores the value ω (hidden from the view of the adversary, and
overwriting any previously stored values), and sends the symmetric key K to
AI . Note that, it is possible that the challenger is not aware of the sender’s
secret value, if the associated public key has been replaced. In this case, we
require the adversary to provide it. We disallow queries where IDs = IDr.

– Key encapsulation queries: AI produces an arbitrary tag τ . The chal-
lenger checks whether there exists a stored value ω. If not, it returns ⊥
and terminates. Otherwise it erases the value from storage and returns
ψ ← Encap(ω, τ) to AI .

– Key decapsulation queries: The adversary AI chooses a sender’s iden-
tity IDs, a receiver’s identity IDr, an encapsulation ψ, and a tag τ . The
challenger finds SIDr from its “query-answer” list and sends the result of
Decap(params, ψ, τ, IDs, PKIDs , SIDr , IDr, PKIDr) to AI . Note that, it is
possible that the challenger is not aware of the receiver’s secret value, if
the associated public key has been replaced. In this case, we require the
adversary to provide it. We also disallow queries where IDs = IDr.

Challenge: The adversary AI decides when Phase 1 ends. AI generates a
sender’s identity ID∗

s and a receiver’s identity ID∗
r on which it wishes to be

challenged. Note that ID∗
r should not be queried to extract a private key in Phase

1. Note also that ID∗
r cannot be equal to an identity for which both the public key

has been replaced and the partial private key has been extracted. The challenger
computes (K1, ω

∗) ← Sym(params, SID∗
s
, ID∗

s , PKID∗
s
, ID∗

r , PKID∗
r
). Then the

challenger chooses K0 ← KCLSC−TKEM and a bit b ∈ {0, 1} randomly, and sends
Kb to AI . When AI receives Kb, it may ask the same queries as previously. Then
AI generates a tag τ∗. The challenger computes ψ∗ ← Encap(ω∗, τ∗) and sends
it to AI as a challenge encapsulation.

Phase 2: The adversary AI can ask a polynomially bounded number of
queries adaptively again as in Phase 1. The same rule is applied here: AI cannot
extract the private key for ID∗

r . AI cannot extract the partial private key for
ID∗

r if the public key of this identity has been replaced before the challenge
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phase. In addition, AI cannot make a decapsulation query on (Kb, ψ
∗) under

ID∗
s and ID∗

r , unless the public key PKID∗
s

or PKID∗
r

has been replaced after
the challenge phase.

Guess: The adversary AI produces a bit b′ and wins the game if b′ = b.
The advantage of AI is defined to be

AdvIND−CCA2−I
CLSC−TKEM(AI) = |2Pr[b′ = b]− 1|,

where Pr[b′ = b] denotes the probability that b′ = b.
IND-CCA2-II: This is the game in which AII interacts with the “challenger”:
Initial: The challenger runs (params, msk) ← Setup(1k) and gives both

params and msk to AII .
Phase 1: The adversary AII can perform a polynomially bounded number

of queries in an adaptive manner. Note that we do not need Extract partial
private key since AII can computes partial private keys by itself.

– Extract private key: Same to CLSC-TKEM’s IND-CCA2-I game.
– Request public key: Same to CLSC-TKEM’s IND-CCA2-I game.
– Symmetric key generation queries: Same to CLSC-TKEM’s

IND-CCA2-I game.
– Key encapsulation queries: Same to CLSC-TKEM’s IND-CCA2-I game.
– Key decapsulation queries: Same to CLSC-TKEM’s IND-CCA2-I game.

Challenge: The adversary AII decides when Phase 1 ends. AII generates a
sender’s identity ID∗

s and a receiver’s identity ID∗
r on which it wishes to be chal-

lenged. Note that ID∗
r should not be queried to extract a private key in Phase 1.

The challenger runs (K1, ω
∗) ← Sym(params, SID∗

s
, ID∗

s , PKID∗
s
, ID∗

r , PKID∗
r
).

Then the challenger chooses K0 ← KCLSC−TKEM and a bit b ∈ {0, 1} ran-
domly, and sends Kb to AI . When AII receives Kb, it may ask the same
queries as previously. Then AII generates a tag τ∗. The challenger computes
ψ∗ ← Encap(ω∗, τ∗) and sends it to AII as a challenge encapsulation.

Phase 2: The adversary AII can ask a polynomially bounded number of
queries adaptively again as in Phase 1. AII cannot extract the private key for
ID∗

r . In addition, AII cannot make a decapsulation query on (Kb, ψ
∗) under

ID∗
s and ID∗

r , unless the public key PKID∗
s

or PKID∗
r

has been replaced after
the challenge phase.

Guess: The adversary AII produces a bit b′ and wins the game if b′ = b.
The advantage of AII is defined to be

AdvIND−CCA2−II
CLSC−TKEM (AII) = |2Pr[b′ = b]− 1|,

where Pr[b′ = b] denotes the probability that b′ = b.

Definition 1. A CLSC-TKEM scheme is said to be IND-CCA2-I secure (resp.
IND-CCA2-II secure) if there is no PPT adversary AI (resp. AII) which
wins IND-CCA2-I (resp. IND-CCA2-II) with non-negligible advantage. A CLSC-
TKEM scheme is said to be IND-CCA2 secure if it is both IND-CCA2-I secure
and IND-CCA2-II secure.
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Notice that the adversary is allowed to extract the private key of ID∗
s in the

IND-CCA2-I and IND-CCA2-II games. This condition corresponds to the strin-
gent requirement of insider security for confidentiality of signcryption [3].

For the strong existential unforgeability, we consider two games “sUF-CMA-I”
and “sUF-CMA-II” where a Type I adversary FI and a Type II adversary FII

interact with their “challenger” in these two games, respectively. Note that the
challenger keeps a history of “query-answer” while interacting with the attackers.
Now we describe the two games.

sUF-CMA-I: This is the game in which FI interacts with the “challenger”:
Initial: The challenger runs (params, msk)← Setup(1k) and gives params

to FI . The challenger keeps master secret key msk to itself.
Attack: The adversary FI performs a polynomially bounded number of

queries just like in the CLSC-TKEM’s IND-CCA2-I game.
Forgery: FI produces a quadruple (τ∗, ψ∗, ID∗

s , ID∗
r). Note that ID∗

s should
not be queried to extract a private key. Note also that ID∗

s cannot be equal
to an identity for which both the public key has been replaced and the partial
private key has been extracted. In addition, ψ∗ was not returned by the key
encapsulation oracle on the input (τ∗, ID∗

s , ID∗
r ) during Attack stage. FI wins

the game if the result of Decap(params, ψ∗, τ∗, ID∗
s , PKID∗

s
, SID∗

r
, ID∗

r , PKID∗
r
)

is not the ⊥ symbol.
The advantage of FI is defined as the probability that it wins.
sUF-CMA-II: This is the game in which FII interacts with the “challenger”:
Initial: The challenger runs (params, msk) ← Setup(1k) and gives both

params and msk to FII .
Attack: The adversary FII performs a polynomially bounded number of

queries just like in the CLSC-TKEM’s IND-CCA2-II game.
Forgery: FII produces a quadruple (τ∗, ψ∗, ID∗

s , ID∗
r). ID∗

s should not be
queried to extract a private key. In addition, ψ∗ was not returned by the key
encapsulation oracle on the input (τ∗, ID∗

s , ID∗
r ) during Attack stage. FII wins

the game if the result of Decap(params, ψ∗, τ∗, ID∗
s , PKID∗

s
, SID∗

r
, ID∗

r , PKID∗
r
)

is not the ⊥ symbol.
The advantage of FII is defined as the probability that it wins.

Definition 2. A CLSC-TKEM scheme is said to be sUF-CMA-I secure (resp.
sUF-CMA-II secure) if there is no PPT adversary FI (resp. FII) which wins
sUF-CMA-I (resp. sUF-CMA-II) with non-negligible advantage. A CLSC-TKEM
scheme is said to be sUF-CMA secure if it is both sUF-CMA-I secure and sUF-
CMA-II secure.

Note that the adversary is allowed to extract the private key of ID∗
r in the

above definition. Again, this condition corresponds to the stringent requirement
of insider security for signcryption [3].

4 Certificateless Hybrid Signcryption

We can combine a CLSC-TKEM with a DEM to form a CLSC scheme. We
describe it in Figure 1. Note that the tag is the ciphertext output by the DEM.
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Such construction yields simpler scheme descriptions and better generic security
reductions.

We give the security results for such construction in Theorems 1 and 2.

Theorem 1. Let CLSC be a certificateless hybrid signcryption scheme con-
structed from a CLSC-TKEM and a DEM. If the CLSC-TKEM is IND-CCA2
secure and the DEM is IND-PA secure, then CLSC is IND-CCA2 secure. In
particular, we have

AdvIND−CCA2−i
CLSC (A) ≤ 2AdvIND−CCA2−i

CLSC−TKEM(B1) + AdvIND−PA
DEM (B2),

where i ∈ {I, II}, AdvIND−CCA2−i
CLSC (A) is the advantage of the IND-CCA2 ad-

versary against CLSC, AdvIND−CCA2−i
CLSC−TKEM(B1) is the advantage of the IND-CCA2

adversary against CLSC-TKEM, and AdvIND−PA
DEM (B2) is the advantage of the

IND-PA adversary against DEM.

Proof. See the full version of this paper [10]. ��

Theorem 2. Let CLSC be a certificateless hybrid signcryption scheme con-
structed from a CLSC-TKEM and a DEM. If the CLSC-TKEM is sUF-CMA
secure, then CLSC is sUF-CMA secure. In particular, we have

AdvsUF−CMA−i
CLSC (F) ≤ AdvsUF−CMA−i

CLSC−TKEM(B),

where i ∈ {I, II}, AdvsUF−CMA−i
CLSC (F) is the advantage of the sUF-CMA adver-

sary against CLSC, and AdvsUF−CMA−i
CLSC−TKEM(B) is the advantage of the resulting

sUF-CMA adversary against CLSC-TKEM.

Proof. See the full version of this paper [10]. ��

5 An Example of CLSC-TKEM

The Barbosa-Farshim CLSC scheme [4] fits the new generic framework. Here we
give an example of CLSC-TKEM based on the Barbosa-Farshim scheme. If we
combine the CLSC-TKEM with a DEM as Figure 1, we can get a scheme that
is very similar to the Barbosa-Farshim scheme.

The CLSC-TKEM consists of the following seven algorithms.

– Setup: Let G1 be a cyclic additive group generated by P , whose order
is a prime q, and G2 be a cyclic multiplicative group of the same order
q. ê : G1 × G1 → G2 is a pairing. Let H1, H2, H3, and H4 be four
cryptographic hash functions where H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ →
{0, 1}n, H3 : {0, 1}∗ → G1, and H4 : {0, 1}∗ → G1. Here n is the key
length of a DEM. The PKG chooses a master secret key s ∈ Z∗

q ran-
domly and computes Ppub ← sP . The PKG publishes system parameters
{G1, G2, n, ê, P, Ppub, H1, H2, H3, H4} and keeps the master key s secret.
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CLSC.Setup: On input 1k:

1. (params, msk) ← CLSC-TKEM.Setup(1k)

2. Output the system parameters params and the master secret key msk

CLSC.Partial-Private-Key-Extract: On input the params, msk, and an identity

ID ∈ {0, 1}∗:
1. DID ← CLSC-TKEM.Partial-Private-Key-Extract(params, msk, ID)

2. Output the partial private key DID of the identity ID

CLSC.Generate-User-Keys: On input the params and an identity ID ∈ {0, 1}∗:
1. (xID, PKID) ← CLSC-TKEM.Generate-User-Keys(params, ID)

2. Output the secret value xID and the public key PKID of the identity ID

CLSC.Set-Private-Key: On input the partial private key DID and the secret

value xID:

1. SID ← CLSC-TKEM.Set-Private-Key(DID, xID)

2. Output the full private key SID

CLSC.Signcrypt: On input the params, a message m ∈ {0, 1}∗, the sender’s full

private key SIDs , identity IDs and public key PKIDs , the receiver’s identity

IDr and public key PKIDr :

1. (K, ω) ← CLSC-TKEM.Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr )

2. c ← DEM.Enc(K, m)

3. ψ ← CLSC-TKEM.Encap(ω, c)

4. Output the ciphertext σ ← (ψ, c)

CLSC.Unsigncrypt: On input the params, a ciphertext σ, the sender’s identity

IDs and public key PKIDs , the receiver’s full private key SIDr , identity IDr and

public key PKIDr :

1. K ←CLSC-TKEM.Decap(params, ψ, c, IDs, PKIDs , SIDr , IDr, PKIDr )

2. If K = ⊥, then output ⊥ and stop

3. m ←DEM.Dec(K, c)

4. Output the message m

Fig. 1. Certificateless hybrid signcryption
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– Partial-Private-Key-Extract: Given an identity ID ∈ {0, 1}∗, the PKG
computes QID ← H1(ID) and returns the partial private key DID ← sQID.

– Generate-User-Keys: A user with identity ID chooses a random element
xID from Zq as the secret value, and sets PKID ← xIDP as the public key.

– Set-Private-Key: Given a partial private key DID and a secret value xID,
this algorithm returns the full private key SID ← (xID, DID).

– Sym: Given the sender’s full private key SIDs , identity IDs and public key
PKIDs , the receiver’s identity IDr and public key PKIDr , this algorithm
works as follows.
1. Choose r ∈ Z∗

q randomly.
2. Compute U = rP and T ← ê(Ppub, QIDr )r.
3. Compute K ← H2(U, T, rPKIDr , IDr, PKIDr).
4. Output K and set ω ← (r, U, SIDs , IDs, PKIDs , IDr, PKIDr).

– Encap: Given the state information ω and an arbitrary tag τ , this algorithm
works as follows.
1. Compute H ← H3(U, τ, IDs, PKIDs).
2. Compute H ′ ← H4(U, τ, IDs, PKIDs).
3. Compute W ← DIDs + rH + xIDsH

′.
4. Output ψ ← (U, W ).

– Decap: Given the the sender’s identity IDs and public key PKIDs , the
receiver’s full private key SIDr , identity IDr and public key PKIDr , an
encapsulation ψ and a tag τ , this algorithm works as follows.
1. Compute H ← H3(U, τ, IDs, PKIDs).
2. Compute H ′ ← H4(U, τ, IDs, PKIDs).
3. If ê(Ppub, QIDs)ê(U, H)ê(PKIDs , H

′) = ê(P, W ), compute T =
ê(DIDr , U) and output the K ← H2(U, T, xIDrU, IDr, PKIDr). Oth-
erwise, output symbol ⊥.

We give the security results for the CLSC-TKEM in Theorems 3 and 4.

Theorem 3. In the random oracle model, the above CLSC-TKEM is IND-
CCA2 secure under the assumption that the gap bilinear Diffie-Hellman problem
is intractable.

Proof. See the full version of this paper [10]. ��

Theorem 4. In the random oracle model, the above CLSC-TKEM is sUF-CMA
secure under the assumption that the GDH′ problem is intractable.

Proof. See the full version of this paper [10]. ��

6 Conclusions

In this paper, we extended the concept of signcryption tag-KEM to the cer-
tificateless setting. We showed that a certificateless signcryption scheme can be
constructed by combining a certificateless signcryption tag-KEM with a DEM.
To show that our framework is reasonable, we also gave an example of cer-
tificateless signcryption tag-KEM based on the Barbosa-Farshim certificateless
signcryption scheme.
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Abstract. The characterization of the access structures of ideal secret sharing 
schemes is one of the main open problems in secret sharing and has important 
connections with matroid theory. Because of its difficulty, it has been studied 
for several particular families of access structures. Multipartite access struc-
tures, in which the set of participants is divided into several parts and all par-
ticipants in the same part play an equivalent role, have been studied in seminal 
works on secret sharing by Shamir, Simmons, and Brickell, and also recently by 
several authors.. In the EUROCRYPT’07, Farras made a important contribution 
to this work: By using discrete polymatroids, they obtained a necessary condi-
tion and a sufficient condition for a multipartite access structure to be ideal re-
spectively. In particular, they further gave a very difficult open problem, that is, 
characterizing the representable discrete polymatroids, i.e., which discrete po-
lymatroids are representable and which ones are non-representable. In this pa-
per, by dealing with a family of matroids derived from the Vamos matroid, 
which was the first matroid that was proved to be non-representable, we obtain 
a family of non-representable matroids. As a consequence, we extend it to the 
general case and obtain a sufficient condition for a discrete polymatroid to be 
non-representable, which is a new contribution to the open problem given by 
Farras.  

Keywords: Ideal secret sharing schemes, Ideal access structures, Multipartite 
access structures, Discrete polymatroids, Vamos matroid. 

1   Introduction 

Secret sharing schemes were introduced independently by Shamir [2] and Blakley [1] 
in 1979. In a secret sharing scheme, every participant receives a share of a secret value. 
Only the qualified sets of participants, which form the access structure of the scheme, 
can recover the secret value from their shares. This paper deals exclusively with un-
conditionally secure perfect secret sharing schemes, that is, the shares of the partici-
pants in a non-qualified set do not provide any information about the secret value. 

The length of the shares is the main measure of the complexity of secret sharing 
schemes. In general, the shares must be much larger than the secret. An access struc-
ture is said to be ideal if it admits an ideal secret sharing scheme. The characterization 
                                                           
∗ Corresponding author. 
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of ideal access structures is one of the main open problems in secret sharing and has 
important connections with matroid theory. 

A necessary condition for an access structure to be ideal was given by Brickell and 
Davenport [4], who proved that every ideal access structure is matroid-related. Ma-
troids that are obtained from ideal secret sharing schemes are said to be secret sharing 
representable (or ss-representable for short). Vamos matroid was the first matroid that 
was proved to be non-ss-representable. Nevertheless, as a consequence of the results 
in [3], all representable matroids (that is, matroid that can be represented by a matrix 
over some finite field)  are ss-representable. This implies a sufficient condition for an 
access structure to be ideal. Namely, an access structure is ideal if it is related to a 
representable matroid. 

Due to the difficulty of finding general results, the characterization of ideal access 
structures has been studied for several particular classes of access structures. Multi-
partite access structure, informally, is that the set of participants can be divided into 
several parts in such a way that all participants in the same part play an equivalent 
role in the structure. Since we can always consider as many parts as participants, 
every access structure is multipartite. More accurately, we can consider in any access 
structure the partition that is derived from a suitable equivalence relation on the set of 
participants. Because of its practical interest, secret sharing for multipartite access 
structures has been studied by several authors[2,3,5,6,7,8].  

Recently, in the EUROCRYPT’07, Farras[9] made a important contribution to this 
work by using discrete polymatroids. In particular, for solving the main open prob-
lems in secret sharing, they further gave a very difficult open problem, that is, charac-
terizing the representable discrete polymatroids, i.e., which discrete polymatroids are 
representable and which ones are non-representable. In this paper, by dealing with a 
family of matroids derived from the Vamos matroid, which was the first matroid that 
was proved to be non-representable, we obtain a family of non-representable ma-
troids. As a consequence, we extend it to the general case and obtain a sufficient con-
dition for a discrete polymatroid to be non-representable, which is a new contribution 
to the open problem given by Farras.  

2   Definitions and Preliminaries 

In this section we review some basic definitions and notations that will be used 
through the paper.  

2.1   Matroids and Ideal Secret Sharing  

The reader is referred to [12] for an introduction to secret sharing and to [10, 11] for 
general references on Matroid Theory. 

A matroid ( , )=M Q I  is formed by a finite set Q  together with a family 

( )⊆I P Q  ( ( )P Q  is the power set of the set Q .) such that 

1. φ ∈ I , and 

2. if 1I ∈I  and 2 1I I⊆ , then 2I ∈ I , and 
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3. if 1 2,I I ∈I  and 1 2| | | |I I< , then there exists 2 1x I I∈ −  such that 

{ }1 xI ∈∪ I . 

The set Q  is the ground set of the matroid M  and the elements of I  are called 

the independent sets of M . The bases of the matroid are the maximally independent 

sets. The family B  of the bases determines the matroid. Moreover, by [10, Theorem 

1.2.5], ( )⊆B P Q  is the family of bases of a matroid on Q  if and only if 

1. B  is nonempty, and 

2. for every 1 2,B B ∈B  and 1 2x B B∈ − , there exists 2 1y B B∈ −  such that 

{ } { }1( )x yB − ∪  is in B . 

All bases have the same number of elements, which is the rank of M  and is denoted 

( )r M . The dependent sets are those that are not independent. A circuit is a mini-

mally dependent subset. A matroid is said to be connected if, for every two points 
,x y ∈Q , there exists a circuit C  with ,x y C∈ . The rank of X ⊆Q , which is 

denoted ( )r X , is the maximum cardinality of the subsets of X  that are independ-

ent. Observe that the rank of Q  is the rank of the matroid M  that was defined 

before. The rank function : ( )r →P Q  of a matroid satisfies 

1. 0 ( ) | |r X X≤ ≤  for every X ⊆Q , and 

2. r  is monotone increasing: if X Y⊆ ⊆Q , then ( ) ( )r X r Y≤ , and 

3. r  is submodular: ( ) ( ) ( ) ( )r X Y r X Y r X r Y+ ≤ +∩ ∪  for every 

,X Y ⊆Q . 

Let K  be a field. A matroid ( , )=M Q I  is K -representable (or represent-

able for short) if there exists a matrix M  over K  whose columns are indexed by the 

elements of Q  such that a subset { }1,..., kI i i= ⊆Q  is independent if and only if 

the corresponding columns of M  are independent. In this situation, we say that the 
matrix M  is a K -representation of the matroid M . 

Let K  be a finite field and let ( , )=M Q I  be a K -representable matroid. Let 

0p ∈Q  be special participant called dealer.and { }0P p= ∪Q . For every 

1)(k n +×  matrix M  representing M  over K , let E  be a vector space of finite 

dimention dim E k=  over K . For every i ∈Q , we define a surjective linear 

mapping: :i Eπ → K , and the i -th column of M  corresponds to the linear form 

iπ . In that situation, for every random choice of an element x E∈ , we can obtain 

( )i is xπ= ∈K is the share of the participant i P∈  and 
0
( )ps xπ= ∈K  is the 

shared secret value. Hence, by the columns of M , we define an ideal secret sharing 
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scheme with access structure 
0
( )pΓ M . Therefore, the access structures that are 

related to representable matroids are ideal. 

2.2   Multipartite Access Structures and Multipartite Matroids 

We write ( )PP  for the power set of the set P . An m -partition { }1,..., mP PΠ =  

of a set P  is a disjoint family of m  nonempty subsets of P  with 1 ... mP P P= ∪ ∪ . 

Let ( )PΛ ⊆P  be a family of subsets of P . For a permutation σ  on P , we de-

fine { }( ) ( ) : ( )A A Pσ σΛ = ∈ Λ ⊆P . A family of subsets ( )PΛ ⊆P  is said to 

be Π -partite if ( )σ Λ = Λ  for every permutation σ  such that ( )i iP Pσ =  for 

every iP ∈Π . We say that Λ  is m -partite if it is Π -partite for some m -partition 

Π . These concepts can be applied to access structures, which are actually families of 
subsets, and they can be applied as well to the family of independent sets of a ma-
troid. A matroid ( , )=M Q I  is Π -partite if ( )⊆I P Q  is Π -partite. 

Let ( , )=M Q I  be a connected matroid and, for a point 0p ∈Q , let 

{ }1,..., mP PΠ =  and { }{ }0 0 1, ,..., mp P PΠ =  be partitions of the sets 

{ }0P p= −Q  and Q  respectively. Then the access structure 
0
( )pΓ = Γ M  is 

Π -partite if and only if the matroid M  is 0Π -partite. 

The partition 'Π  is a refinement of the partition Π  if every set in 'Π  is a subset 
of some set in Π . Clearly, if ( )PΛ ⊆P  is Π -partite and 'Π  is a refinement of 

Π , then Λ  is 'Π -partite. Among all partitions Π  for which a family of subsets 

( )PΛ ⊆P  is Π -partite, there exists a partition ΛΠ  that is not a refinement of any 

other such partition. Following [13], we consider the following equivalence relation: 
two elements ,p q P∈  are said to be equivalent according to Λ  if the transposition 

pqτ  satisfies ( )pqτ Λ = Λ . The partition ΛΠ  is the one defined by this equivalence 

relation. It is not difficult to check that Λ  is Π -partite if and only if Π  is a refine-

ment of ΛΠ . 

For every integer 1m ≥ , we consider the set { }1,...,mJ m= . Let m
+Z  denote the 

set of vectors ( )1,..., m
mu u u= ∈Z  with 0iu ≥  for every mi J∈ . For a partition 

{ }1,..., mP PΠ =  of a set P  and for every A P⊆  and mi J∈ , we define 

( ) | |i iA A PΠ = ∩ . Then the partition Π  defines a mapping : ( ) mP +Π → ZP  by 

considering ( )1( ) ( ),..., ( )mA A AΠ = Π Π . If ( )PΛ ⊆P  is Π -partite, then 
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A∈ Λ  if and only if ( ) ( )AΠ ∈Π Λ . That is, Λ  is completely determined by the 

partition Π  and the set of vectors ( ) m
+Π Λ ⊂ Z .  

Discrete polymatroids, a combinatorial object introduced by Herzog and Hibi [13], 
are closely related to multipartite matroids and, because of that, they play an impor-
tant role in the characterization of ideal multipartite access structures. Before giving 
the definition of discrete polymatroid, we need to introduce some notation. If 

, mu v +∈Z , we write u v≤  if i iu v≤  for every mi J∈ , and we write u v<  if 

u v≤  and u v≠ . The vector w u v= ∨  is defined by max( , )i i iw u v= . The 

modulus of a vector mu +∈Z  is 1| | mu u u= + ⋅⋅⋅ + . For every subset mX J⊆ , we 

write | |( ) ( ) X
i i Xu X u ∈ += ∈Z  and | ( ) | ii X

u X u
∈

=∑  

A discrete polymatroid on the ground set mJ  is a nonempty finite set of vectors 

mD +⊂ Z  satisfying: 

1. if u D∈  and mv +∈Z  is such that v u≤ , then v D∈ , and 

2. for every pair of vectors ,u v D∈  with | | | |u v< , there exists w D∈  with 

u w u v< ≤ ∨ . 

The next proposition, which is easily proved from the axioms of the independent 
sets of a matroid, shows the relation between multipartite matroids and discrete poly-
matroids. 

Proposition 2.1. Let Π  be a partition of a set Q  and let ( )⊆I P Q  be a Π -

partite family of subsets. Then I  is the family of the independent sets of a Π -partite 

matroid ( , )=M Q I  if and only if ( ) m
+Π ⊂ ZI  is a discrete polymatroid. 

A basis of a discrete polymatroid D  is a maximal element in D , that is, a vector 
u D∈  such that there does not exist any v D∈  with u v< . Similarly to matroids, 
a discrete polymatroid is determined by its bases. Specifically, the following result is 
proved in [13, Theorem 2.3]. 

Proposition 2.2. A nonempty subset m
+⊂ ZB  is the family of bases of a discrete 

polymatroid if and only if it satisfies: 

1. all elements in B  have the same modulus, and 

2. for every u ∈B  and v ∈B  with i iu v> , there exists mj J∈  such that 

j ju v<  and i ju e e− + ∈B , where ie  denotes the i -th vector of the canoni-

cal basis of mZ . 
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The rank function of a discrete polymatroid D  with ground set mJ  is the function 

: ( )mh J →ZP  defined by { }( ) max | ( ) |:h X u X u D= ∈ . The next proposi-

tion is a consequence of [13, Theorem 3.4]. 

Proposition 2.3. A function : ( )mh J →ZP  is the rank function of a discrete po-

lymatroid with ground set mJ  if and only if it satisfies 

1. ( ) 0h φ = , and 

2. h  is monotone increasing: if mX Y J⊆ ⊆ , then ( ) ( )h X h Y≤ , and 

3. h  is submodular: if , mX Y J⊆ , then ( ) ( ) ( ) ( )h X Y h X Y h X h Y+ ≤ +∪ ∩ . 

Moreover, a polymatroid D  is completely determined by its rank function. Spe-

cifically, { }:  | ( ) | ( ) for all m
mD u u X h X X J+= ∈ ≤ ⊆Z . 

For a discrete polymatroid D  with ground set mJ  and for every mX J⊆  , we 

define the discrete polymatroid ( )D X  with ground set X  by 

{ } | |( ) ( ) : XD X u X u D += ∈ ⊂ Z . This concept will be very useful in this paper. 

Let K  be a field, E  a K -vector space, and 1,..., mV V  subspaces of E . It is not 

difficult to check that the mapping : ( )mh J →ZP  defined by 

( ) dim( )ii X
h X V∈= ∑  is the rank function of a discrete polymatroid mD +⊂ Z . In 

this situation, we say that D  is K -representable and the subspaces 1,..., mV V  are a 

K -representation of D . The next proposition is proved in [9, Theorem 7.1]. 

Proposition 2.4. Let ( , )=M Q I  be a Π -partite matroid and let ( )D = Π I  

be its associated discrete polymatroid. If M  is K -representable, then so is D . In 

addition, if D  is K -representable, then M  is representable over some finite exten-
sion of K . 

3   A Family of Non-representable Secret Sharing Matroids 

In this section, we give a family of non-representable matroids derived from the Va-
mos matroid. Firstly, we introduce the Vamos matroid and give the proof of Vamos 
matroid being a non-representable multipartite matroid. Afterwards, through combin-
ing the partition of the ground set of Vamos matroid, we construct three “matroids”, 
which are proved to be non-representable. However, according to the definition of 
matroid, we obtain these three “matroids” are pseudo matroids. Finally, from the 
concept of ( )D X  defined above, a family of non-representable matroids derived 

from the Vamos matroid is obtained, which we call Vamos Family.  
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3.1   Vamos Matroid 

The definition of Vamos matroid is as follows: 

Definition 3.1. The Vamos matroid is defined on { }1, 2,3,4,5,6,7,8=Q  with 

bases all 4-sets except the five 4-sets which are: { }1,2,3,4 ， { }1,2,5,6 , 

{ }1,2,7,8 ,{ }3, 4,5,6 ,{ }3, 4,7,8 . 

The following proposition gives a new proof of the Vamos matroid being a non-
representable multipartite matroid. 

Proposition 3.1. The Vamos matroid is non-representable. 

Proof. For a partition { }0 1 2 3 4, , ,P P P PΠ =  

( { } { } { } { }1 2 3 41, 2 , 3, 4 , 5,6, , 7,8P P P P= = = = ) of the ground set Q , the parti-

tion 0Π  defines a mapping 4
0 : ( ) +Π →P Q . For every non-basis 4-set A , we com-

pute 0 ( )AΠ and obtain (2,2,0,0), (2,0,2,0), (2,0,0,2), (0,2,2,0), (0, 2,0,2) . 

Similarly, for every basis B , we compute 0 ( )BΠ  and obtain 

(1,1,1,1), (1,1,2,0), (1,1,0,2), (1,2,1,0), (1, 2,0,1), (1,0,1, 2), (1,0,2,1),  

(0,1,1,2), (0,1,2,1), (0, 2,1,1), (2,1,0,1), (2,1,1,0), (2,0,1,1), (0,0, 2, 2) . We 

can verify that for every 3-set C , there must exist a basis B  such that 0 0( ) ( )C BΠ < Π  

and C B⊂ . Therefore, all 3-sets are independent.  
Suppose that over some finite field K  there exists a matrix M  which is a repre-

sentation of the Vamos matroid, and every element i ∈Q  correspond to the column 

vector iv  of M . Apparently, all vectors of M  are non-zero vectors. Arbitrary four 

column vectors of M  are linearly independent except 

1 2 3 4( , , , )v v v v , 1 2 5 6( , , , )v v v v , 1 2 7 8( , , , )v v v v , 3 4 5 6( , , , )v v v v , 3 4 7 8( , , , )v v v v . 

Because all 3-sets are independent, for every one of these five vector groups, its rank 
is 3 and every vector in it can be uniquely represented by the other three vectors over 
K . The following operations are over the finite field K : 

For the vector group 1 2 7 8( , , , )v v v v , let 8 1 1 2 2 7 7v a v a v a v= + +                     (1) 

For the vector group 3 4 7 8( , , , )v v v v , let 8 3 3 4 4 7 7'v a v a v a v= + + .                (2) 

where 1 2 7 3 4 7, , , , , 'a a a a a a ∈K  and 1 2 7 3 4 7, , , , , ' 0a a a a a a ≠ . 

Simultaneous equations (1)(2), then  

7 7 7 1 1 2 2 3 3 4 4( ' )a a v a v a v a v a v− = + − −                                     (3) 

 



 On Non-representable Secret Sharing Matroids 131 

For the vector group 1 2 3 4( , , , )v v v v , let 4 1 1 2 2 3 3v b v b v b v= + +                      (4) 

where 1 2 3, ,b b b ∈K  and 1 2 3, , 0b b b ≠ . 

If 7 7( ' ) 0a a− ≠ , then simultaneous equations (3)(4) and we obtain 

1 2 3 7( , , , )v v v v  are linearly dependent. Since { }1,2,3,7  is a basis of the Vamos 

matroid, a contradiction. Hence, there must be 7 7( ' ) 0a a− = , that is 7 7'a a= , then 

from equation (3) we obtain: 

                                              1 1 2 2 3 3 4 4a v a v a v a v+ = +                                          (5) 

For the vector group 1 2 5 6( , , , )v v v v , let 6 1 1 2 2 5 5v c v c v c v= + +                       (6) 

For the vector group 3 4 5 6( , , , )v v v v , let 6 3 3 4 4 5 5'v c v c v c v= + +                   (7) 

Similarly, we can obtain 5 5 'c c=  and 1 1 2 2 3 3 4 4c v c v c v c v+ = +                      (8) 

Computing equation 1 1(5) (8)c a− , then: 

          2 1 1 2 2 3 1 1 3 3 4 1 1 4 4( ) ( ) ( )a c a c v a c a c v a c a c v− = − + −                    (9) 

Because 2 3 4( , , )v v v  are linearly independent, then 2 1 1 2 0a c a c− =                (10) 

Computing equation 1 1(1) (6)c a− , then: 

                 1 8 1 6 2 1 1 2 2 7 1 7 1 5 5( )c v a v a c a c v a c v a c v− = − + −                 (11) 

Simultaneous equations (10)(11), then 1 8 1 6 7 1 7 1 5 5c v a v a c v a c v− = −             (12) 

Due to 1 1 7 5, , , 0a c a c ≠ , from equation (12) we can obtain 5 6 7 8( , , , )v v v v  are 

linearly dependent. Since { }5,6,7,8 is a basis of the Vamos matroid, a contradic-

tion. Therefore, it is impossible that there exists a matrix M  over some finite field 
K  which is a representation of the Vamos matroid, that is, the Vamos matroid is 
non-representable. 

3.2   Three Non-representable Pseudo Matroids 

Through combining the partition of the ground set of Vamos matroid, we construct 
three “matroids” as follow: 

Definition 3.2. The Pseudo-1 matroid is defined on { }1, 2,3,4,5,6,7,8=Q  with 

bases all 4-sets except the thirteen 4-sets which are: { }1,2,3,4 ，

{ }1,2,5,6 , { }1,2,5,7 , { }1,2,5,8 , { }1,2,6,7 , { }1,2,6,8 , { }1,2,7,8 ,

{ }3, 4,5,6 ,{ }3, 4,5,7 ,{ }3, 4,5,8 ,{ }3, 4,6,7 ,{ }3, 4,6,8 ,{ }3, 4,7,8 . 
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Definition 3.3. The Pseudo-2 matroid is defined on { }1, 2,3,4,5,6,7,8=Q  with 

bases all 4-sets except the thirteen 4-sets which are: { }1,2,3,4 ， { }1,2,5,6 , 

{ }1,3,5,6 , { }1,4,5,6 , { }2,3,5,6 , { }2, 4,5,6 , { }3, 4,5,6 , { }1,2,7,8 ,

{ }1,3,7,8 ,{ }1,4,7,8 ,{ }2,3,7,8 ,{ }2, 4,7,8 ,{ }3, 4,7,8 . 

Definition 3.4. The Pseudo-3 matroid is defined on { }1, 2,3,4,5,6,7,8=Q  with bases 

all 4-sets except the thirty-seven 4-sets which are: { }1,2,3,4 ，{ }1,2,5,6 , { }1,3,5,6 , 

{ }1,4,5,6 , { }2,3,5,6 , { }2, 4,5,6 , { }3, 4,5,6 , { }1,2,5,7 , { }1,3,5,7 ,

{ }1,4,5,7 , { }2,3,5,7 , { }2, 4,5,7 , { }3, 4,5,7 , { }1,2,5,8 , { }1,3,5,8 ,

{ }1,4,5,8 , { }2,3,5,8 , { }2, 4,5,8 , { }3, 4,5,8 , { }1,2,6,7 , { }1,3,6,7 ,

{ }1,4,6,7 , { }2,3,6,7 , { }2, 4,6,7 , { }3, 4,6,7 , { }1,2,6,8 , { }1,3,6,8 ,

{ }1,4,6,8 , { }2,3,6,8 , { }2, 4,6,8 , { }3, 4,6,8 , { }1,2,7,8 , { }1,3,7,8 ,

{ }1,4,7,8 ,{ }2,3,7,8 ,{ }2, 4,7,8 ,{ }3, 4,7,8 . 

In the following propositions, we prove that these three “matroids” stated above are 
all non-representable. 

Proposition 3.2. The Pseudo-1 matroid is non-representable. 

Proof. For a partition { }1 1 2 3, ,P P PΠ = ( { } { } { }1 2 31, 2 , 3, 4 , 5,6,7,8P P P= = = ) 

of the ground set Q , the partition 1Π  defines a mapping 3
1 : ( ) +Π →P Q . For 

every non-basis 4-set A , we compute 1( )AΠ  and obtain (2, 2,0), (2,0,2), (0,2,2) . 

Similarly, for every basis B , we compute 1( )BΠ  and obtain 

(1,1, 2), (1, 2,1), (1,0,3), (0,1,3), (2,1,1), (0,0,4) . We can verify that for every 3-

set C , there must exist a basis B  such that 1 1( ) ( )C BΠ < Π  and C B⊂ . Therefore, 

all 3-sets are independent.  
Suppose that over some finite field K  there exists a matrix M  which is a repre-

sentation of the Pseudo-1 matroid, and every element i ∈Q  correspond to the col-

umn vector iv  of M . Apparently, all vectors of M  are non-zero vectors. Arbitrary 

four column vectors of M  are linearly independent except 1 2 3 4( , , , )v v v v ，

1 2 5 6( , , , )v v v v ， 1 2 5 7( , , , )v v v v ， 1 2 5 8( , , , )v v v v ， 1 2 6 7( , , , )v v v v ，

1 2 6 8( , , , )v v v v ， 1 2 7 8( , , , )v v v v ， 3 4 5 6( , , , )v v v v ， 3 4 5 7( , , , )v v v v ，

3 4 5 8( , , , )v v v v ， 3 4 6 7( , , , )v v v v ， 3 4 6 8( , , , )v v v v ， 3 4 7 8( , , , )v v v v . Because all 



 On Non-representable Secret Sharing Matroids 133 

3-sets are independent, for every one of these thirteen vector groups, its rank is 3 and 
every vector in it can be uniquely represented by the other three vectors over K . The 
following proof is the same to the proof of Proposion 3.1. 

Proposition 3.3. The Pseudo-2 matroid is non-representable. 

Proof. For a partition { }2 1 2 3, ,P P PΠ =  ( { } { } { }1 2 31, 2,3, 4 , 5,6 , 7,8P P P= = = ) 

of the ground set Q , the partition 2Π  defines a mapping 3
2 : ( ) +Π →P Q . For 

every non-basis 4-set A , we compute 2 ( )AΠ  and obtain (4,0,0), (2,0,2), (2,2,0) . 

Similarly, for every basis B , we compute 2 ( )BΠ  and obtain 

(2,1,1), (3,1,0), (3,0,1), (1,1, 2), (1, 2,1), (0, 2, 2) . We can verify that for every 3-set 

C , there must exist a basis B  such that 2 2( ) ( )C BΠ < Π  and C B⊂ . Therefore, all 

3-sets are independent. The following proof is the same to the proof of Proposion 3.1. 

Proposition 3.4. The Pseudo-3 matroid is non-representable. 

Proof. For a partition { }3 1 2,P PΠ = ( { } { }1 21, 2,3, 4 , 5,6,7,8P P= = ) of the 

ground set Q , the partition 3Π  defines a mapping 2
3 : ( ) +Π →P Q . For every 

non-basis 4-set A , we compute 3( )AΠ  and obtain (4,0), (2, 2) . Similarly, for 

every basis B , we compute 3( )BΠ  and obtain (1,3), (3,1), (0,4) . We can verify 

that for every 3-set C , there must exist a basis B  such that 3 3( ) ( )C BΠ < Π  and 

C B⊂ . Therefore, all 3-sets are independent. The following proof is the same to the 
proof of Proposion 3.1. 

If these three non-representable “matroids” accord with the definition of matroid, it 
means there exist non-representable bipartite and tripartite matroids. However, we 
will show these three non-representable “matroids” are pseudo matroids. 

From Proposition 2.2, for every u ∈B  and v ∈B  with i iu v> , there exists 

mj J∈  such that j ju v<  and i ju e e− + ∈B , where ie  denotes the i -th vector 

of the canonical basis of mZ . In Pseudo-1 matroid, for (2,1,1)u =  and 

(0,0, 4)v =  with 2 2u v> , there only exists 3 3u v<  but (2,0,2)  is not a basis. 

Therefore, Pseudo-1 matroid is not a matroid, namely, a pseudo matroid. Similarly, in 

Pseudo-2 matroid, for (1,2,1)u =  and (3,1,0)v =  with 3 3u v> , there only exists 

1 1u v<  but (2, 2,0)  is not a basis. Therefore, Pseudo-2 matroid is a pseudo matroid. 

In Pseudo-3 matroid, for (3,1)u =  and (0, 4)v =  with 1 1u v> , there only exists 

2 2u v<  but (2,2)  is not a basis. Therefore, Pseudo-3 matroid is a pseudo matroid. 

As a consequence, these three non-representable “matroids” are all pseudo matroids. 
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3.3   Vamos Family 

For the Vamos matroid ( , )=M Q I , there exists a partition 

{ }0 1 2 3 4, , ,P P P PΠ =  ( { } { } { } { }1 2 3 41, 2 , 3, 4 , 5,6, , 7,8P P P P= = = = ) of the 

ground set Q , and the partition 0Π  defines a mapping 4
0 : ( ) +Π →P Q  and, 

hence, we obtain a discrete polymatroid 0 ( )VD = Π I  corresponding to the Vamos 

matroid.  

Proposition 3.5. For a discrete polymatroid D  with ground set mJ , if there exists 

mX J⊆ , where | | 4X = , such that ( ) VD X D= , then D  must be a non-

representable discrete polymatroid, and hence, the multipartite matroid corresponding 
to D  must be non-representable. All of these discrete polymatroids construct a fam-
ily of non-representable matroids, that is,  

{ }:  ( ) , | | 4
V

m
D V mF D D X D X J X+= ⊂ = ⊂ =且Z , which we call Vamos 

Family.  
The proof of Proposition 3.5 is very simple, which is a special case of the proof of 

Theorem 4.1. Suppose a discrete polymatroid D  in Vamos Family is representable. 
We will obtain the Vamos matroid is representable, contradiction. Therefore, the 
discrete polymatroids in Vamos Family is non-representable. 

4   A Sufficient Condition for a Discrete Polymatroid to Be  
Non-representable 

In this section, we extend the Vamos Family to the general case and obtain a suffi-
cient condition for a discrete polymatroid to be non-representable. 

Theorem 4.1. Let mD +⊂ Z  be a discrete polymatroid with ground set mJ , if there 

exists mX J⊆  such that { } | |( ) ( ) : XD X u X u D += ∈ ⊂ Z  is a non-representable 

discrete polymatroid, then D  must be a non-representable discrete polymatroid and, 
hence, the multipartite matroid corresponding to D  must be non-representable. 

Proof. Let mD +⊂ Z  be a discrete polymatroid with ground set mJ . There exists 

mX J⊆  such that { } | |( ) ( ) : XD X u X u D += ∈ ⊂ Z  is a non-representable dis-

crete polymatroid. Suppose D  is representable over some finite field K , i.e., there 

exists a vector space sE = K  over K , where ( )ms h J= , such that m  subspaces 

1,..., mV V  of E  are a K -representation of D . Let { }1,..., rX x x= , where 

X r=  and, hence, the subspaces corresponding to the elements of mX J⊆  are 
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1
,...,

rx xV V . Since { } | |( ) ( ) : XD X u X u D += ∈ ⊂ Z , it means r  subspaces 

1
,...,

rx xV V  of sE = K  are a K -representation of ( )D X , namely, ( )D X  is a K -

representable discrete polymatroid, contradiction. Therefore, D  is a non-
representable discrete polymatroid and, hence, the multipartite matroid corresponding 
to D  must be non-representable. 

As a consequence, Theorem 4.1 gives a sufficient condition for a discrete polyma-
troid to be non-representable. 

5   Conclusion 

In this paper, by dealing with a family of matroids derived from the Vamos matroid, 
which was the first matroid that was proved to be non-representable, we obtain a 
family of non-representable matroids. As a consequence, we extend it to the general 
case and obtain a sufficient condition for a discrete polymatroid to be non-
representable, which is a new contribution to the open problem given by Farras.  
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Abstract. In this paper, we proposed a novel watermarking scheme based on 
adaptive quantization index modulation and singular value decomposition in the 
hybrid discrete wavelet transform (DWT) and discrete cosine transform (DCT). 
The secret watermark bits are embedded on the singular values vector of blocks 
within low frequency subband in host image hybrid DWT-DCT domain. To 
embed watermark imperceptibly, robustly and securely, we model the adaptive 
quantization steps by utilizing human visual system (HVS) characteristics and 
particle swarm optimization (PSO) algorithm. Experimental results demonstrate 
that the proposed scheme is robust to variety of image processing attacks. In the 
proposed algorithm the quantized embedding strategy is adopted, so no host 
image is needed for blind extraction of watermarking image. 

Keywords: quantization index modulation, singular value decomposition, hu-
man visual system, particle swarm optimization, blind extraction.  

1   Introduction 

With the development and popularization of multimedia technology and computer 
network technology, various multimedia products such as image, audio, video and 
three-dimensional model are increasingly vulnerable to illegal possession, reproduc-
tion and dissemination. How to effectively protect the copyright and content integrity 
of multimedia information has been attached importance to by more and more re-
searchers. Digital watermarking has emerged as a leading technique that could solve 
the fundamental problem of legal ownership and content authentication for digital 
multimedia data. In general, the watermarking scheme shall satisfy two properties. 
First, the watermark should not affect the quality of the host media and be impercep-
tible to human eyes. Second, if watermark is used for Internet applications such as 
transmitting data through a noisy channel or compressing data, the watermark must 
survive under those situations [1]. 

In accordance with embedded position, watermarking algorithm can be divided 
into two categories: space domain and transform domain. The transform domain algo-
rithm robustness is better than the space domain algorithm generally. The common 
transform includes Discrete Cosine Transform (DCT), Discrete Fourier Transform 
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(DFT) and Discrete Wavelet Transform (DWT) and so on. Image matrix singular 
value decomposition (SVD) reflects the internal image characteristics and has good 
stability if image processing is performed. Therefore many watermarking schemes 
that are combined different transforms with SVD have been proposed lately. For ex-
ample, Tsai and Yang [2] proposed an approach emphasized that watermark message 
bit is embedded on the blocks of the DCT coefficient’s singular value within an origi-
nal color image. Bao and Ma [3] described a hybrid DWT-SVD watermarking algo-
rithm that watermark bits are embedded on the singular value of the blocks within 
wavelet subband of the original image. However, most of these hybrid transform 
methods are non-adaptive or may not exploit the HVS features for more effectively 
embedding robust and secure watermark. 

Recently, many researchers focus on adaptive determination of the quantization pa-
rameters for SVD-based watermarking. They consider to solving this problem using 
adopting artificial intelligence techniques or analyzing statistical model of each block 
in the image. Aslantas [4][5] respectively utilized the genetic algorithm (GA) and 
particle swarm optimization algorithm (PSO) for optimizing the quantization steps. 
Lai et al. [6] choose the micro-genetic algorithm (micro-GA) for optimization quanti-
zation steps. However, these methods are all non-blinding algorithm so that the secu-
rity and practicality of these algorithms are not robust. Qi et al. [7] applied a grid 
search algorithm to find the effective pairs for a set of training images covering a 
variety of textures ranging from high, medium, low, to extremely low textures. The 
quantization steps are determined to be adaptive to the statistical model of the block, 
but this approach is not incorporate with the human visual system for improving the 
adaptive capability of the watermarking system. 

In this paper, we design a novel adaptive watermarking scheme by combing the 
HVS and PSO. The watermark bits are embedded on singular value vector of each 
embedding block within low frequency subband in the hybrid DWT-DCT domain. 
One quantization parameter is determined by exploiting the characteristics of HVS, 
the other quantization parameter is optimized through PSO algorithm. These two 
quantization parameters are combined for ensuring the final adaptive quantization 
steps are optimal for all embedding blocks and reaching better trade off between the 
imperceptibility and robustness of the digital watermarking system. Experimental 
results show that the proposed scheme not only has good visual quality irrespective of 
the nature of the images chosen but also is robust to image processing attacks. 

The rest of the paper is structured as follows. In section 2, we present the basic idea 
and key techniques of PSO algorithm. In section 3, the proposed watermarking 
scheme combining with human visual masking and particle swarm optimization algo-
rithm in the hybrid DWT-DCT is described. The performance analysis for the pro-
posed watermarking scheme and comparisons with other designs are presented in 
section 4. Finally, the paper ends with a brief conclusion. 

2   Particle Swarm Optimization 

PSO is a population-based stochastic optimization method introduced first by Ken-
nedy and Eberhart [8], derived by the social behavior of bird flocking and fish school-
ing. The population is called a swarm consisted of different particles, which have a 
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position and a velocity and change their positions in multi-dimensional search space 
over time. Each particle represents a possible solution to the optimization problems in 
the multi-dimensional problem space. These particles start at a random initial position 
and search for the minimum or maximum of a given objective function by moving 
through the search space. After each iteration process in the search space, each parti-
cle records its own personal best solution as well as the discovered global best posi-
tion. The movement of each particle depends only on its velocity and the location 
where good solutions have already been found by the particle itself or in neighboring 
particles. When a particle’s neighborhood is defined as the whole swarm, the PSO is 
called the global version, otherwise it is called the local version [8].In the following 
parts global version will be discussed.  

Let a swarm include different particles ( 1,2,..., )iX i m= and the ith particle in a d-

dimensional space be represented as 1 2( , ,..., )i i i idX x x x= .The best previous position 

of the ith particle ipbest is denoted by 1 2( , ,..., )i i i idP p p p= .The best global location is 

represented gpbest among all the particles. The velocity for the ith particle is repre-

sented as 1 2( , ,..., )i i i idV v v v= .During each iteration process, each particle in the swarm 

is updated the velocity and location towards its ipbest and gpbest locations each itera-

tion according to following two equations respectively: 

                             ( ) ( )1 2i i i i i g iV w v c pbest X c pbest Xξ η= + − + −  (1) 

                                                       i i iX X V= +  (2) 

where ξ andη are random variables drawn from a uniform distribution in the range 

[0,1] so as to provide a stochastic weighting of the different components participating 
in the particle velocity definition. 1c and 2c are two acceleration constants and called as 

cognitive acceleration and social acceleration respectively. They are factors regulating 
the particle relative velocities with respect to the best global and local positions re-
spectively. The inertia weight iw is used to decide a tradeoff between the global and 

local exploration capabilities of the swarm. Typical implementations of the PSO adapt 
the value of linearly decreasing it from 1.0 to near 0 over the execution. In general, 
the inertia weight iw is set according to the following equation [9]: 

            max min
i max

max

w w
w w iter

iter

−
= − ×  (3) 

where maxiter is the maximum number of iterations, and iter is the current number of 

iterations. 

3   Proposed Watermarking Scheme 

In our image watermarking scheme, the watermark can be embedded into the host 
image by three steps. First, DWT is performed on the host image. Second, the low 
frequency component is segmented into non-overlapping blocks and these blocks are 
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performed on DCT. Then a set of final quantization steps are modeled both the char-
acteristics of the DCT domain human visual masking and particle swarm optimization 
of each block to ensure a high perceptual quality of watermarked image and a low bit 
error rate of the detected watermark. Finally, watermark is embedded into the singular 
values vector of each block by adaptive and optimized quantization steps. A diagram 
of our image watermark embedding scheme is shown in Fig.1. 

 

Fig. 1. Watermark embedding scheme 

3.1   Watermarking Embedding Scheme  

Suppose the host image is 0I with m×n that is decomposed in j levels DWT, we obtain 

the low frequency subband jLL and three high frequency subbands , ,j j jHL LH HH .To 

take the advantage of low frequency coefficients which have a higher energy value 
and robustness against various signal processing, the DCT is only performed on low 
frequency coefficient jLL .The embedding procedure can be described as follows 

steps: 

Step 1: Segment the jLL into non-overlapping blocks iA of 

size w w× , 1, 2,...,i M= ,where M is the number of the blocks. 
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Step 2: Each block iA is individually transformed to a frequency coefficient using 

DCT transform, and then compute the singular values vector of each frequency coef-
ficient block iA by SVD according to the following equation. 

( ) T
i i i iDCT A U V= ∑  (4) 

Step 3: Compute 1s
i iN s= + and quantize it by adaptive quantization step iδ that 

represents the quantization level for s
iN corresponds to the frequency coefficient 

block iA according to the following equation. 

( )
s

i
i

i

NN i 1,2,...Mδ
⎢ ⎥= =⎢ ⎥⎣ ⎦

 (5) 

where 1 2( , ,..., )i i i iws σ σ σ= , is denotes a vector formed by the singular values of the fre-

quency coefficient block iA . 

Step 4:Embed each watermark bit by modifying integer number iN , according to the 

following equation. 
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Step 5: Compute the value 1( )2
s

iw i iwN Nδ= × + and the modified singular values. 
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Step 6: Compute the watermarked block iA′ with modified singular values. The wa-

termarked low frequency subband jLL′ is reshaped through iA′ performed on Inverse 

Discrete Cosine Transform (IDCT), then the watermarked image 0I ′ is obtained utiliz-

ing Inverse Discrete Wavelet Transform (IDWT). 

3.2   Adaptive Quantization Steps 

The embedding strength is more or less proportional to the perceptual sensitivity to 
distortions for using adaptive quantization step size. In order to resist the normal sig-
nal processing and other different attacks, we wish the quantization step to be as high 
as possible. However, because the watermark directly affects the host image, it is 
obvious that the higher the quantization step, the lower the quality of the watermarked 
image will be. In other words, the robustness and the imperceptibility of the water-
mark are contradictory to each other. In this section, we propose a novel model for  
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determining the adaptive quantization steps combining with the characteristics of the 
HVS and PSO in order to guarantee robustness and transparency of watermark. 

3.2.1   Human Visual Masking 
HVS is one of the most complex biological systems which include three stages: en-
coding, representation and interpretation [10]. Many factors cause human vision to 
have a limited sensitivity. For example, the surface of the cornea causes the refrac-
tion; the circular entrance of the pupil causes the diffraction; the optical lens has the 
chromatic aberration effects, and the mosaic of photo-receptors only does the spatial 
sampling process [10]. Human vision perceptive redundancy gives us a good oppor-
tunity to choose proper quantization step for embedding watermark in the image.  

According to the Watson model [11] that is designed in DCT domain, the brighter 
the background, the higher the visibility threshold (luminance masking), the back-
ground texture more complex, the higher the visibility threshold (texture mask-
ing).We determine the luminance masking and texture masking based on the image 
features in DCT domain, and then combine these two masking together to get a com-
prehensive final masking. The main steps of the proposed HVS model can be de-
scribed as follows: 

Step 1: Segment the jLL into non-overlapping blocks iA of size w w× , 1,2,...,i M= , 

where M is the number of the blocks. 

Step 2: Calculate luminance masking L
iM  

The reason to use luminance is that the darkness and brightness in the image is re-
flected by luminance. The visibility of luminance threshold in the DCT domain de-
pends on background luminance that is expressed by the Direct Current (DC) compo-
nents. We can compute a luminance masking value L

iM for each block iA . 

   (0,0)L
i iM D=  (8) 

where (0,0)iD is the DC coefficient of iA that performed on DCT domain. 

Step3:Calculate texture masking T
iM  

As for texture masking, the simplest method is to use the block variance.  
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where iD is average value of each block iA DCT coefficients  . 

Step 4: Calculate quantization step iδ for each block iA . 0iδ is the basic step of each 

block that will be obtained by utilizing PSO for achieving optimal watermarking 
performance depending on both the transparency and the robustness factors. 
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3.2.2   Optimal Basic Step  
This section illustrates how to use PSO help search proper basic step of each block in 
order to optimize watermark embedding process. It is a difficult for determining the 
proper values of multiple basic quantization steps. In some cases, the choice of them 
may be based on some general assumption [12]. Therefore, an efficient and optimal 
algorithm is required for achieving both invisibility and robustness. Here we use PSO 
to automatically determine these values without making any assumption. In the appli-
cation of PSO, we should consider three essential components: 

(1)Solution representation and Initialization 
The representation scheme determines how the problem is structured, as well as the 

iteration operators that can be used [6].Each particle in the swarm represents a possi-
ble solution to the problem and hence consists of a set of basic step of each block. 
Meanwhile we randomly generate each particle value the in the initial swarm. 

(2) Fitness function 
The watermarked image transparency and robustness should be measured in order 

to formulate a proper fitness function. We adopt the same fitness function as used in 
[4], that is: 

1
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where iNC denotes the two-dimensional normalized correlation, and m represents the 

number of attacking methods. 
(3) PSO training operation 
The similar PSO based watermarking algorithm proposed by Aslantas et al [5] is 

adopted. A diagram of PSO optimization training is shown in Fig.2. 
1).Define the swarm size, particle size, cognitive acceleration and social accel-

eration and set the inertia weight of the swarm equation. 
2).Generate the initial swarm, initial velocity, and initial fitness function value 

randomly. 
3).Produce watermarked images utilizing the solutions in the swarm by means of 

embedding scheme combing with HVS. 
4).Calculate the NC values between the host image and watermarked images. 
5).Apply the attacks upon the watermarked images one by one. 
6).Extract out watermarks from the attacked images using the extraction scheme. 
7).Calculate the NC values between the watermark and the extracted ones. 
8).Calculate the value of each particle, feedback optimal values to the PSO and 

obtain new particle value. 
9).Repeat Steps 3-8 until the predefined termination criterion is satisfied. 
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Fig. 2. Diagram of PSO training 

3.3   Watermarking Extracting Scheme 

The watermark extracting scheme is the inverse of embedding procedure that neither 
needs the host image signal nor any other side information. Suppose the watermarked 
image is 0I ′ that is decomposed in j levels DWT, we obtain low frequency sub-

band jLL′ . The extracting procedure is given as follows: 

Step 1: Segment the jLL′ into non-overlapping blocks iA′ of size w w× 1,2,...,i M= , 

where M is the number of the blocks. 
Step 2: Transform each block iA′ to the frequency coefficient by DCT, then com-

pute 1s
i iN s′ ′= + and quantize it by optimal final quantization step iδ , 

where 1 2( , ,..., )i i i iws σ σ σ′ ′ ′ ′= , is′ denotes a vector formed by the singular values of the 

frequency coefficient block iA′ . 
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Step 3: Extract watermark bits according to the following equation. 
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Step 4: Reshape the original binary watermark image by performing inverse extended 
Arnolded scrambling on watermark image according to the extracted watermark bits. 

4   Experimental Results 

The performance of the proposed watermarking scheme is tested on a large number of 
experiments. Here the results are presented for grayscale 8-bit different texture im-
ages of size 512×512.The logo used for watermark image is the binary image of size 
32×32. For 1-level wavelet decomposition Haar filter coefficients are used. In the 
PSO training process, 1c and 2c are set as 1.2 and 1.8 respectively, the number of parti-

cles are chosen as 20 and the number of total iterations is set as 20. At the same time, 
the experiments compare the performance of proposed scheme with Qi’s scheme that 
is a novel watermarking based on adaptive quantization steps determined by the sta-
tistical model of the block in the image. 

Fig.3 (a) and (b) are the host image and the watermarked image. In subjective, it 
seems difficult to distinguish the difference between the host and the watermarked 
images by the human eye.  

           
(a)                       (b) 

Fig. 3. Host image and watermarked image 

In objective, The Peak Signal to Noise Ratio (PSNR) is used efficiently measure of 
visual fidelity between the host image and the watermarked image. It is found that the 
image quality measured by PSNR among the watermarked image is greater than 
43dB. This indicates that the proposed watermarking scheme has good visual fidelity. 
Meanwhile Tab.1 simultaneity compares in terms of PSNR for evaluating the visual 
fidelity performance of our scheme with Qi’s scheme. 

Table 1. The values of PSNR 

Proposed Scheme Qi’ Scheme Image 
PSNR(dB) PSNR(dB) 

Lena 43.94 43.67 
Peppers 44.63 44.26 
Baboon 44.83 44.54 

The watermarking scheme should be robust to signal processing which could be in-
tentional or unintentional. Normalized Correlation (NC) and Bit Error Ratio (BER) 
that are defined as following equation are adopted for evaluating the robustness of the 
watermarking scheme. Without any image attacks, the NC value is 1 and the BER 
value is 0. In other words, the watermark can be completely extracted. 
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Tab. 2. illustrates results after various attacks on the watermarked image including 
noise addition, low pass filtering, scaling and cropping.  

Table 2. Experiment results after different attacks 

Attack NC BER 

Gauss noise(var 0.1%) 0.9689 2.54 
Pepper&Salt nosie(density 0.1%) 0.9963 0.29 
Gaussian filtering 0.9804 1.56 
Median filtering 0.9038 7.71 
Scaling 50% 0.9766 0.98 
Cropping 25% 0.8569 15.38 

Then, we test the robustness by JPEG compression that is one of the most impor-
tant attacks with different quality factors (QF). Related results are shown in Tab.3.for 
the BER versus JPEG compression. Compared with Qi’s scheme, it is observed that 
there is higher robustness to JPEG compression with proposed scheme. 

Table 3. Experiment results comparison under JPEG compression 

QF Proposed scheme’s BER(%) Qi’s scheme BER(%) 

40 0.18 0.2 

30 0.78 1.25 

20 8.49 8.98 

10 43.45 45.13 

5   Conclusion 

In this paper, we propose a novel adaptive watermarking scheme based on HVS and 
PSO in hybrid DWT-DCT transform. After decomposing the host image by DWT and 
DCT, watermark bits are embedded into the singular values of the embedded blocks 
within low frequency coefficients subband of the host image. The quantization steps 
of watermarking are modeled based on HVS characteristics and PSO. For adopting 
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the quantization steps, the embedded information can be extracted without host im-
age. The experimental results show that the proposed scheme preserves not only the 
high perceptual quality, but also is robust against many different types of attacks. 
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Abstract. A trace and revoke scheme is an encryption scheme for se-
cure content distribution so that only authorized users can access the
copyrighted content. When a clone device is recovered, the ”trace” com-
ponent detects the pirate users that have compromised the secret keys in
their devices and participated in the construction of the clone device. The
”revoke” component excludes the pirate users from accessing the future
content. The state-of-art trace-revoke scheme is the very efficient subset
difference based NNL scheme [11] which is also deployed in AACS [1],
the industry new content protection standard for high definition DVDs.
While its revocation and tracing are both very efficient, as pointed out
by Kiayias and Pehlivanoglu from Crypto 2007, in its deployment NNL
scheme may suffer from a new attack called pirate evolution attack. In
this attack attackers reveal the compromised secret keys to the clone
decoder very slowly through a number of generations of pirate decoders
that will take long time to disable them all. They showed in a system
with N users, the attacker can produce up to t ∗ logN generations of pi-
rate decoders given t sets of keys. In AACS context, that means a pirate
can produce more than 300 generations of decoders by compromising
only 10 devices. If this happens, it will indeed be a nightmare.

In this paper we are interested in practical solutions that can defend
well against the pirate evolution attack in practice. In particular we
devise an easy and efficient approach for the subset difference based
NNL scheme [11] to defend well against the potential pirate evolution
attack. Indeed it takes as small as 2 generations to detect and disable a
traitor in a coalition. This can be achieved by only negligibly increasing
the cipher text header size in an application like AACS. The simplicity,
efficiency and practicality of our approach has made AACS to adopt it
to defend against the pirate evolution attack.

Keywords: Traitor Tracing, Broadcast Encryption, Pirate Evolution
Attack.

1 Introduction

In this paper we are concerned with content protection for copyrighted materials
when distributed to large number of users (receivers or devices), for example, a
system for distributing physical media, like DVDs. Broadcast encryption schemes
have been used to enable a set of privileged users to access content but exclude
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another set of revoked users from accessing it. In a broadcast encryption system,
each user is assigned a set of secret keys, sometimes termed as device keys. The
broadcaster broadcasts header information and body to a group of users. The
header carries information of a session key, with which the body is encrypted.
To be more concrete, a session key (sometimes termed a media key K) is indi-
rectly used to encrypt the content in the body. The header contains a structure
sometimes called a MKB (media key block), which is basically the media key en-
crypted with secret device keys from privileged users and only privileged users.
It may contain some random string (garbage) encrypted by device keys from
revoked users. In this way, each privileged user can use his secret device keys to
process the MKB differently but get the same valid media key. In contrast, all
the revoked users will process the MKB and get garbage.

Traitor tracing is another important technology used in content protection
to detect the non-compliant users (denoted as traitors) who are involved in
pirate attacks. A particular pirate attack in a broadcast encryption scheme is
when some of the legitimate users circumvent the devices and extract secret
device keys out of the boxes. They collude to build a pirate decoder using the
extracted device keys and sell it to illegitimate users for commercial interest. For
example, pirate decoders enable illegitimate users to make permanent copies of
DVD movies that they rented. When a pirate decoder is found, a traitor tracing
scheme detects the traitorous devices’ keys inside the clone decoder.

When future content is distributed, the license agency will construct and dis-
tribute new MKBs together with the new content. In the new MKBs, those newly
compromised device keys detected by the ”tracing” component will be revoked.
As a result, the clone decoder who has the newly revoked device keys in it will
not be able to decrypt the new MKB successfully and play back new content.
The clone device and all the guilty device keys in it are therefore “revoked” by
the new MKB. Figure 1 shows the high level architecture of a content protection
system using a trace-revoke scheme. While step 0 is only done once, step 1, 2 and
3 (trace and revoke) are repeated throughout the lifetime of a content protection
system.

Note that the MKB is distributed together with the content, for example, on
a DVD. This enables revocation to happen in off line mode which is essential for
protecting content on consumer electronics devices.

In the literature broadcast encryption was first introduced by [3]. Both
symmetric-key-based [11] and asymmetric-key-based broadcast encryption
schemes [4] were studied further. Traitor tracing for the clone attack has also
been studied extensively [6,8,9] since its introduction in [5]. Furthermore, trace
and revoke schemes that combine these two functionalities have been studied in
[7,11,12] for the pirate decoder attack. A trace-revoke scheme on another type
of attack, namely the anonymous attack, has also appeared in [10].

The current state-of-art symmetric-key-based broadcast encryption scheme,
the subset difference based “NNL scheme” [11], is adopted in the new indus-
try content protection standard “Advanced Access Content System”, AACS in
short [1], for next generation high definition DVDs.



Defending against the Pirate Evolution Attack 149

Dev
ic

e 
Key

s Media Key 

Block

Content distributor Consumer device

Licensing agency

2: revoke

3:traitor 0

1

Device key 
assignment

Create MKBs based 
on revocation info

0

Traitor tracing
from recovered
clone device tracing

Fig. 1. A content protection system using a trace-revoke scheme

1.1 Trace-Revoke in NNL Scheme [11] for Clone Attack

Naor, et. al [11] present a broadcast encryption framework using subset covers.
In this section we will briefly overview its revocation and tracing mechanism.
Let D be the set of devices and K be the set of device keys. Every device d ∈ D
owns a subset of keys, denoted by Kd. Similarly, associated with every key k ∈ K
is a set of users Dk = {d ∈ D : k ∈ Kd}.

Suppose we want to broadcast some media M , which, for all intent and pur-
pose, is a binary string. We would like to encrypt M in such a way that a set of
legitimate devices L ⊆ D is able to decrypt and view the media. The first step
is to encrypt M with some media key K. We will use the term key without a
qualifier to refer to device keys. We then find a subset of device keys C such that
all legitimate devices are covered. That is, C is chosen such that

⋂
k∈C Dk = L.

Now, for every k ∈ C we separately encrypt the media key, giving us Ek(K).
These items together 〈Ek1 (K), Ek2(K), . . . , Ek|C|(K)〉 are referred to as a media
key block (MKB). Every device d ∈ L will own a key used in the MKB and every
device r ∈ D/L will own none. Hence, they cannot recover the content.

When a clone decoder built from compromised device keys is discovered and
brought to the forensic lab, the goal of the NNL tracing algorithm is either
identify a traitor by detecting its compromised device keys, or create a MKB that
the clone device cannot decrypt (i.e., the clone decoder is disabled). In a black
box tracing algorithm, the only means to diagnosis traitors is to submit tests,
termed as forensic MKBs, to the clone and observe its response. In this context,
a subset cover is also called a Frontier. When constructing a forensic MKB at
frontier F , we intentionally enable certain keys by using them to encrypt a valid
media key and disable certain keys (not necessary traitorous) by encrypting a
random bit string instead of the media key. The tracing agency feeds encrypted
content together with a forensic MKB to the clone. Based on the keys inside
the clone, the clone may or may not decrypt/play the content. If all of the keys
in a clone are enabled then it will play. If none of the keys are enabled then it
cannot play. If some keys are enabled and some are not, the clone will play with
some probability. Suppose we construct forensic MKBs that enable a subset T
keys and disable keys in F/T . We feed this type of MKBs to the clone multiple
times. Let pT be the probability that the clone plays. Since the clone is assumed
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stateless, NNL treats the response of the clone as a Bernoulli random variable. If
the probability of playing two different MKBs, (enabling T and T ′ respectively),
are not equal then it must be case that the clone owns a key in the exclusive-or
of T and T ′. This is the essence of the subset tracing procedure that can identify
a key in F owned by the clone. The overall clone tracing relies on two things:

1. Bifurcation property: for every key k ∈ K such that |Dk| > 1, there exists
keys k1 and k2 such that Dk1 ∪Dk2 = Dk and Dk1 ∩Dk2 = ∅. With this, we
can replace k with k1 and k2 and still cover the same set of devices.

2. subset tracing procedure: finds at least one key in current frontier F owned by
the clone device. This is used as a subroutine in the clone tracing algorithm.

The tracing algorithm starts from an initial frontier F and proceeds by repeat-
edly using the subset tracing procedure to identify a compromised key k ∈ F ,
removing it, and adding to F k1 and k2 satisfying the bifurcation property. If
|Dk| = 1 then the single device in Dk is a traitor. This process is reiterated until
the detected compromised key is at the lowest level of the frontier and cannot
split further, or the clone box is unable to play the MKB associated with F .
Figure 2 illustrates this process. The efficiency of this type of tracing is mainly
measured by how many forensic MKBs are totally needed to complete tracing.
That number for NNL tracing is O(T 3logT ) where T is the number of colluding
traitors involved in clone attack.

subset tracing on the clone

S1 S2 Sm

Sj1S1 S2 Sj2 Sm

subset tracing on the clone 

Si

S1 S2 Si1 Si2 Sm

not decrypting current MKB 
or a lowest level 
compromised key used in 
the clone is detected - done

subset tracing on the clone

forensic MKBs

forensic MKBs

forensic MKBs

Sj

Fig. 2. Dynamic Clone Tracing algorithm using forensic MKBs (in the lab)

1.2 Pirate Evolution Attack

The pirate evolution attack is a newly described attack in [2] that particularly
targets on trace-and-revoke schemes. In this attack, after the attacker succeeds
in circumventing devices and extracts their device keys, they reveal those keys
slowly to the decoders. They will build and release a first pirate decoder. After
this decoder and the device keys in it are detected by the tracing agency and
then disabled by the new updated MKB, they roll out a second version of the
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pirate decoder. This step is repeated. Using this evolving strategy, the pirates
will only evolve a new version of the decoder after the current generation of the
decoder is disabled by an updated MKB.

In particular they studied the pirate evolution attack on the NNL scheme [11].
The t attackers compromised t set of device keys. But each set of keys are released
to clones one at a time. In other words, the keys are drizzled. Only when the
revealed key gets revoked will the attacker release the next key in the next clone.
In fact, it takes the entire height of the tree number of iterations (i.e., logN) to
identify the hacked device (traitor) at a leaf node. So in general it could take up
to t ∗ logN generations of clone decoders to detect and disable t traitors. In a
system like AACS that supports billion devices, there are 30 levels in the tree. A
pirate can produce more than 300 pirate decoder generations by compromising
only 10 devices. It could take 30 generations (iterations)’ battle with attackers
before the license agency can revoke all the keys one guilty device revealed. In
reality this converts to years of time to stop one hacked device. This is certainly
unacceptable. It is highly desirable to be able to quickly respond to this attack.

In this paper we will present our efficient approach that can make the NNL
scheme [11] defend well against the pirate evolution attack without sacrificing
much of the efficiency of the scheme. We know forensic MKBs intentionally
choose which keys to enable/disable; they are not operational and only serve
for forensic purpose. In our approach to defend against pirate evolution attack,
we introduce a special type of forensic MKBs that are also operational. We will
illustrate how to construct such type of MKBs and show why this enables the
trace-revoke scheme [11] to defend against pirate evolution attacks. In AACS
context it will take as small as 2 generations to detect and disable traitors.

The rest of the paper is organized as follows. In Section 2 we will present
our approach to defend well against pirate evolution attack using a special type
of MKBs. In section 2.1, we will illustrate how to construct the special type of
MKBs for the efficient subset-difference method in NNL scheme. In Section 3,
we will analyze the efficiency of our approach and the overhead incurred in our
approach. We will conclude in Section 4.

2 Defending against Pirate Evolution Attack

In an evolution attack, the attackers exploit the fact that each device owns a set
of device keys, one at each level, to release only one key from each compromised
device at a time. A new version of the clone is not generated until its previous
version (keys) are disabled. That evolving strategy is important to slow down
the license agency to disable/revoke a set of traitors.

Our idea is simple. In order to shut down this attack quickly, we will disable
the attackers’ possibility of releasing their keys one at a time. We will force
them to use their device keys at a deeper level when they create each of their
evolving clone decoders. In this way we can reduce the number of clone decoder
generations that the attackers can produce from the sets of device keys they
compromised. In our approach, the tracing relies on two things:
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1. dynamic clone tracing: given a clone that was generated when the lowest
level frontier is F , finds at least one key k in F owned by the clone device.
This is the original NNL dynamic tracing algorithm as illustrated in Figure 2.

2. split i levels down: for every key k ∈ K such that |Dk| > 1, there exists keys
k1, k2, . . . , k2i such that Dk1 ∪Dk2 · · ·∪Dk2i = Dk and Dk1 ∩Dk2 · · ·∩Dk2i =
∅. With this, we can replace k with k1, k2, . . . , k2i at the ith level down and
still cover the same set of devices.

Similar to the original subset-based trace-revoke scheme, our tracing algorithm
also starts from an initial frontier F . Given a recovered clone decoder that builds
upon current frontier F , the algorithm identifies a compromised key k ∈ F in
current clone. This is done at a forensic lab using forensic MKBs exactly as
shown in Figure 2. Once a compromised key k ∈ F is detected, our algorithm
removes it, and adds to F k1, k2, . . . , k2i . If |Dk| = 1 then the single device in
Dk is a traitor. This process is reiterated with the new frontier F until it reaches
the leaf level and no more clone decoder can be built, or the attackers are not
able to play the MKB associated with F . Figure 3 illustrates this process.

Dynamic Tracing on  clone1 
as shown in Figure 1

S1 S2 Sm

Sj1S1 S2 Sj2 Sjk Sm

Dynamic Tracing on  clone2 
as shown in Figure 1

Si

SikS1 S2 Si3 Si1 Si2 Sm

all compromised keys are 
disabled, i.e.,no more clone
can be generated- done

Dynamic Tracing on  clone i 
as shown in Figure 1

a special type of MKB

a special type of MKB

a sepcial type of MKB

Sj

-- trace clone 1 in the lab

-revoke in the fiel

--- trace clone 2 in the lab

---revoke in the field

Fig. 3. Our Trace-revoke Approach for Evolution Attacks

There are some subtleties here. First of all, when a traitorous key in the
current generation of the clone is detected, it must always be possible to find keys
k1, k2, . . . , k2i such that Dk1 ∪Dk2 · · · ∪Dk2i

= Dk and Dk1 ∩Dk2 · · · ∩Dk2i
= ∅.

The choice of i depends on how quickly one wants to shut down the attack
(refer to Theorem 1 in Section 3). Second, the original clone tracing algorithm
shown in Figure 2 is now only a procedure of our trace-revoke approach. Keep
in mind the original clone tracing occurs only when a clone decoder is found and
brought to a forensic lab where forensic MKBs can be created to probe the clone.
More concretely, for a frontier F , a forensic MKB is constructed in a way that
intentionally chooses to enable some keys in F and disable other keys in F . It
does not necessary enable all compliant device keys and disable all non-compliant
device keys. For that reason a forensic MKB is almost always non-operational.
However, a pirate evolution attack is an on-going evolving attack in the field.
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Our goal is to reduce the number of generations of clone decoders the attackers
can build given the sets of compromised device keys. In order to achieve this
goal, we need to build a type of MKB that is both operational and forensic.

Creating this type of special MKB is very different from creating a normal
operational MKB. There the creation of the MKB is driven by revocations, and
the algorithm generates the fewest possible subsets that cover the nodes that
are not revoked. In our special MKBs that also serve the forensic purpose we
intentionally want to cover some of the enabled nodes with a larger number of
subsets at a much lower level, so that each subset covers far fewer devices. Note
that each device needs to use one of its keys enabled in the MKB in order to
process the MKB. In a normal MKB, with fewer subsets, an attacker uses a key
shared by many devices. In our special MKB, the attacker is forced to use a key
shared by far fewer devices, so he has to identify himself more quickly.

In order to create a special type of MKB for our tracing, we will start from
an operational MKB that uses the fewest subsets to enable/disable the right
sets of devices, in other words, enable all compliant devices and disable all non-
compliant devices. We will then recursively perform the splitting operation to
the next level based on the bifurcation property until we reach the desired ith
level down. It is easy to see the recursive splitting operations based on bifurcation
property guarantee that for a key k it is always possible to find keys k1, k2, . . . , k2i

such that Dk1 ∪ Dk2 · · · ∪ Dk2i = Dk and Dk1 ∩Dk2 · · · ∩Dk2i = ∅.
The recursive approach also guarantees that it is possible to construct MKBs

that are at a much deeper level but are still operational. This works for two
reasons. First of all, the split subsets after splitting operation enable the same
set of devices as the original subset. Second, the splitting operations always make
progress to the next level, so the recursion will eventually terminate. Therefore
it is always possible to split a subset any levels down. Next we will show how to
construct this special type of MKB for the subset-difference NNL scheme.

2.1 Creating Special Type of MKBs for Subset-Difference
Method[11]

Each device in NNL scheme is associated with a leaf of the tree. Each node (rep-
resenting a subset) in the tree is associated with a key. In a subset-difference NNL
tree, a device is given every key in the tree except the keys between its leaf and
the root. In a subset-difference method, a subset is not a simple subset, it is ac-
tually the difference between two simple subsets, thus called a subset-difference.
As shown in Figure 4, a subset difference Sij is defined as all the leaf nodes in
the subtree rooted at node Vi but not in the subtree rooted at Vj . The subset-
difference method contains a mechanism to find a subset cover given a revoked
node list R. A sample subset cover is illustrated in Figure 5. The MKB for the
subset-difference method represents the revocation information by the subset dif-
ferences in the cover set. Each subset difference represents the set Vi minus Vj .

Furthermore, NNL does not just have a single system of keys; it has literally
billions of systems of keys. In fact, every subtree in the master tree defines a
completely independent system of keys. For example, one level down from the
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Fig. 4. Subset Difference Definition

Fig. 5. Subset Cover of non-revoked devices

root of the tree, there are two subtrees, each with one billion devices in them.
Each of these subtrees has its own system of keys, in addition to the system of
keys in the master tree. Likewise, the next level down there are four subtrees of
size one-half billion devices, and each have independent systems of keys, and so
on. Eventually, at the bottom, every pair of sibling leaf devices also defines its
own system of keys. A device has a whole set of device keys in every subtree that
it belongs to, 31 independent subtree systems per device if there are 31 levels
in the tree. Of course NNL tree needs a mechanism (refer to NNL [11])so that
the device does not have to store billions of keys. Now, with all these different
key systems based on subtrees, NNL tree provides a mechanism to revoke all
possible combinations of revoked devices. On average, there are 1.28 encryptions
per revocation in NNL tree. It has the most concise expression of revocations.

In our approach, to create the special type of MKB, we must subdivide sub-
trees deep down but without adding any revocations. We will first show how
to split a subset and go down just one level. There are three primitive splitting
operations.

Splitting a subset without any revocation, see Figure 6
In this case, the subset difference excludes the left most leaf, but it is not a
real revocation. It can be split into two mutually excluding subsets. The split
subsets do not exclude the left most leaf. The original subset is replaced by two
new subsets. The new subsets enable/disable the exact same set of devices.

Splitting a subset with an excluded child, see Figure 7
The enabled child is split into two subsets, each with an excluded child. Again
these two subsets are mutually excluding. The original excluded child disappears
from the list of subsets, unless some previously existing subset enables it.
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Fig. 6. Splitting a subset without any revocation

Fig. 7. Splitting a subset with an excluded child

Splitting a subset with an excluded descendant of a child
As illustrated in Figure 8, one subset enables the included child. The other subset
enables the child with an excluded descendant. The descendant is still excluded;
it may be a child in the new subset, or a descendant of a child.

Now that we have shown how to split a subset to one level down, to descend
further, it is necessary to apply the same operations recursively. In general,
because the special MKB has to be fully operational, we have to start with a cover
set that incorporates the existing revocations, and then subdivide the existing
subset differences using the above described splitting operations recursively so
that the (suspect) subtree is covered by a large number of subset differences.

We will use an example to illustrate how we can expand and subdivide the
existing subset differences into more subset differences. In a tree of height 22 with
no revocations, Figure 9 (part 1) shows how we can expand the fourth eighth
of the tree with more subset differences. Using the above described primitive
splitting operations, we first split the height 22 tree in two; then the first half of
it in two again, then the second quarter in two. The fourth eighth of the tree will
be of height 19. Again, by recursively performing splitting operations we finely
subdivide the fourth eighth into 210 = 1024 small subtrees of uniform height at
9th level. The 1024 subtrees are enlarged and shown in part 2 of the Figure 9.

During splitting operation, to enable devices, the subset differences covering
the small subtrees are encoded in mutually excluding sibling pairs, as shown in
Figure 6 and re-shown as part 3 of the Figure 9. The original subset difference,
which covered all the devices in the height 22 subtree, is replaced by 1027 new
subset differences. Each of the 1024 subset differences will cover subtrees of
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Fig. 8. Splitting a subset with an excluded descendant of a child

Fig. 9. Splitting a subset into multiple subsets without adding revocations

height 19 − 10 = 9, each containing only 29 = 512 devices. As a result, if the
attacker reveals a key that can be used to process this MKB, it will be a key
shared with only 512 devices, much more identifying than a key shared by 4
million devices with the original MKB.

3 Discussion

As one can imagine, in our approach expanding into more subsets will increase
the MKB size which is used to measure the efficiency of the trace-revoke scheme.
There is a tradeoff between the number of iterations the license agency is willing
to spend and the MKB size. This tradeoff is shown in the following theorem.

Theorem 1. If the tracing algorithm wants to detect and disable a traitor in
only b generations of pirate decoder, then the MKB size is O(N1/b).

Proof. Suppose every time when a primitive splitting function is performed, a
subset is split into j subsets. We know the devices/users are arranged as the
leaf nodes. The height of the subset structure is therefore logjN . If the tracing
wants to identify a traitor at the leaf node in b generations, it means for each
generation of the special MKB (clone decoder), the splitting dives i = logj N

b
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levels down on average. In other words, the primitive splitting function needs
to perform logj N

b times. So a subset is expanded into j
logj N

b = N1/b subsets.
Therefore the MKB size is O(N1/b).

The above theorem shows a tradeoff between immunity to evolution attack and
revocation efficiency. Different applications may need different tradeoffs between
these two aspects. Based on the above theorem, in order to reduce the number of
generations of clone decoder to 2, our approach will dive 11 levels down each time
to build and distribute a special type of MKB that is of size O(

√
N). However

in practice, that MKB size does not convert to big numbers. For example, in
a tree of height 22 an optimally-sized MKBs (i.e. using the fewest number of
subsets based on NNL scheme) are less than 16KB. Using our approach we first
create multiple subsets at 11th level then again multiple subsets at the leaf (22th)
level. That dive would increase the size of an MKB by only 46KB. In AACS, disc
replicators allocate 1MB space for the MKB, and even that is negligible overhead
on a blue-ray disc that can store at least 25GB. There is plenty of room to store
our special type of MKBs. Therefore our approach is very feasible for AACS to
quickly shut down the pirate evolution attack. For this reason, AACS adopts
our approach to defend against the evolution attack.

Our approach is applicable to any subset-based broadcast encryption scheme.
At a high level, a subset-based scheme organizes the devices into many over-
lapping subsets, with each subset associated with a key. Each device belongs to
many different subsets and knows the key for every subset it is a member of. In
face of pirate evolution attack, from the minimal sets of subsets that cover all
and only innocent devices, one needs to intentionally split a subset into multiple
subsets with each subset covering fewer devices and construct a special type of
MKB that is both operational and forensic. This type of MKB will force the
attackers to reveal keys that are much more identifying.

4 Conclusion

In this paper we are concerned with the pirate evolution attack (introduced in
[2]) on trace-revoke schemes where, during deployment, the pirate users reveal
the compromised keys slowly into pirate decoders trying to stay ahead of the
revocation. In this paper we are interested in a practical approach that can
defend well against this attack in practice.

In particular, we are interested in the subset-difference-based NNL scheme
that is very efficient in revocation and is deployed by AACS in practice, but was
pointed out in [2] that it can suffer very badly from the evolution attack. We
devise an easy and efficient approach for the NNL scheme to defend well against
the evolution attack while maintaining very reasonable revocation efficiency. For
example in the AACS context our approach only takes as small as 2 iterations
to detect and disable a traitor. And achieving this only increases the ciphertext
size by a negligible 46KB in a 25GB disc space. The simplicity, efficiency and
practicality of our approach caused its adoption by AACS to use to defend
against the evolution attack.
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As future work we would like to formalize our approach more so as to guide
the future design of trace-revoke schemes that can achieve balances between
immunity to evolution attack and revocation efficiency.
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Abstract. Digital Right Management (DRM) can be used to prohibit
illegal reproduction, and redistribution of digital content, to protect
copyrights. However, current DRM systems are incompatible and lack
of interoperability which exchange of data, different platform, designed
and protected by different content providers. To overcome these draw-
backs, three ways of interoperability are full-formation interoperability,
connected interoperability, configuration-driven interoperability, allow-
ing consumers to use the purchased content in their equipments of choice.
In this paper, we study on the security specification of configuration-
driven interoperability for heterogeneous DRM systems, using the Com-
mon Criteria. Then, we study security boundary, security environment,
security objectives, and rationale of an CTHDS PP(Conversion Tech-
nologies of Heterogeneous DRM Systems Protection Profile) to find im-
portant security features. The CTHDS PP gives a discussion covered the
current security problems to conversion technologies and lists threats to
solve those problems. Moreover, this CTHDS PP can be used for po-
tential developers and system integrators, and reviewed and assessed by
evaluators.

Keywords: Digital rights management(DRM), Common Criteria(CC),
Protection Profile(PP), Interoperability.

1 Introduction

Nowadays, wireless mobile device not only be everywhere but also owned by
the majority of the people. Business and technology trends indicate an expo-
nential growth in the potential sales of content through mobile devices. The
protection of content used to prohibit illegal reproduction or redistribution of
digital content, is achieved by technology that protects the copyrights of digi-
tal content. This is called Digital Rights Management (DRM) system. Various
DRM systems exist, e.g., Windows Media DRM[1], Apple iTunes’ Fairplay[2], the
Open Mobile Alliance’s(OMA) DRM scheme[12], PachyDRM[3], Secure Digital
Container(SDC)[4], etc.
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However, the incompatibility and the lack of interoperability between current
DRM technologies heavily restricts the rights of end-users, such as private re-
production. For example, once any contents are made under one specific DRM
system, those can not be used under the other DRM systems because system
and data of different type designed and produced by a different providers.

Therefore, many researchers study interoperability technology for heteroge-
neous DRM systems such as Open DRM platforms[19], EXIM(EXport and
IMport)[9], Networked Environment for Media Orchestration(NEMO)[18], etc.
Full interoperability can be categorized into three ways[17][16]:

– Full− formation interoperability: All protected content conforms to some
globally standardized format.

– Connected interoperability: On-line third parties are used to translate op-
erations from one DRM regime to another.

– Configuration− driven interoperability: End-user device can acquire the
ability to process content protected by any DRM regime by downloading
appropriate ”tools”.

In this paper, we focus on configuration-driven interoperability such as Motion
Picture Exports Group(MPEG)[20] and EXIM[9][10]. And we will describe us-
ing EXIM approached configuration-driven interoperability. Recently, EXIM is
planing the commercial service in South Korea. This paper proposes the security
specification for conversion technologies of heterogeneous DRM systems, using
standardized CC methodology, syntax, and notation. A security specification
for configuration-driven interoperability do not exist. As a result, EXIM needs
acceptable international terms and standards for security protection, such as by
employing a Protection Profile. This protection profile is hereafter referred to
as the CTHDS PP(Conversion Technologies of Heterogeneous DRM Protection
Profile). The CTHDS PP is a stated security environment that includes assump-
tions, potential threats, organizational security policies, and security objectives
to uphold counter potential threats, enforce organizational security policies, and
assumptions[5].

The remainder of this paper is organized as follows. Section 2 reviews related
works, Section 3 presents the security specification for CTHDS PP. Section 4
provides an rationale of the CTHDS PP. Finally, section 5 concludes the paper.

2 Related Works

2.1 Overview of the Common Criteria

The Common Criteria (CC)[5] is an internationally approved set of security
standards, providing a clear and reliable evaluation of the security capabilities
of Information Technology products. The CC is useful as a guide for the develop-
ment of products or systems with IT security functions and for the procurement
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Fig. 1. Basic EXIM Architecture Model

of commercial products and systems with such functions. This is the belief be-
hind the ISO/IEC standard 15408, CC for IT Security Evaluations[5][6][7]. It
represents the outcome of efforts to develop criteria for evaluation of IT security,
and is widely applicable internationally. The CC defines a set of IT requirements
of known validity, which can be used in establishing security requirements for
prospective products and systems [5]. The CC also defines the Protection Profile
(PP) construct, which allows prospective consumers or developers to create stan-
dardized sets of security requirements. Moreover, consumers state their security
functional and assurance requirements in a PP[8].

These profiles form the basis for Common Criteria evaluation. By listing re-
quired security features for product families, the Common Criteria allows prod-
ucts to state conformity to a relevant PP. Follows are TOE steps to derive IT
security requirements. During Common Criteria evaluation, the product is tested
against a specific protection profile, providing reliable verification of the security
capabilities of the product [13]. A PP is intended to be reusable and to define
requirements which are known to be useful and effective in meeting the identified
objectives [5][14][15].

2.2 EXIM Based Configuration-Driven Interoperability

DRM provides a method to prevent digital content from being copied and dis-
tributed, and manages the circulation and use of digital content[12]. However,
there is no standard DRM system, though many content providers create DRM
systems. These digital content providers operate in a competitive market. As
a result, each content provider creates its own DRM system, and their DRM
systems are not interoperable with each other, heterogeneous DRM systems.
This is a common problem between provider and user. The problem is that the
providers cannot sell their digital content to users who do not have a suitable
device to use their content, and users can only use certain digital content because
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each format is different. The user needs to purchase same content two or more
times if he wants to play digital content on his/her various devices. EXIM (EX-
port and IMport)[10] is a technique developed by the ETRI(Electronics and
Telecommunications Research Institute, in South Korea), to solve the DRM sys-
tems’ tack of interoperability based configuration-driven interoperability. EXIM
is not a kind of DRM system, but a technique that guarantees secure translation
of digital content among the different DRM systems. The architecture of EXIM
is illustrated in Fig. 1.

For example, in Fig. 1, contents in a DRM system can be freely played a device
having a DRM system A. To play a content of the DRM system A to a device
of DRM system B, DRM system or device in DRM system A send a converted a
EXIM format content through EXIM to the device of DRM system B. After the
device of the DRM system B convert the EXIM format content into a content
of the DRM system B through EXIM, then can freely play the content.

3 The Security Specification for CTHDS PP

This section consists of TOE (Target Of Evaluation) description, identification
of the TOE, TOE security Environment, and security object of the CTHDS PP.
It is designed to provide potential threats, organizational security policies, as-
sumptions, and security objectives of the CTHDS PP to compatible services.
We regards that as now, conversion technologies for heterogeneous DRM system
is only one, EXIM, and so we study CTHDS PP based on the EXIM.

3.1 TOE Description

The property for security of TOE is content, TOE and important data (security
and TOE security function data) in TOE, when each other DRM device trans-
fers content. In addition, TOE of CTHDS PP protects the content user rights
object and user information from various threats. The Fig. 2 illustrates CTHDS
scenarios for content distribution.

TOE Environment

– Content Mall: This is similar to a content provider. A user connects to a
content mall through source DRM agent(it is explained in a next subsection)
and then selects her preferred content. After payment of chosen content by
the user, the content mall sends user’s Rights Object about the content to
a content storage server.

– DRM Clearing House: The DRM clearing house is an entity that assigns
permissions and control to DRM content, and generated Rights Objects. Af-
ter the DRM clearing house receives a Right Object Token from the source
DRM agent, the DRM clearing house issues a Rights Object information to
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Fig. 3. TOE

the source DRM agent. The Rights Object information is the ”Right status”
of using the content, with an expiration date, number of times accessed, etc.

TOE Components

– DRM Agent: In source device or target device, a DRM agent can nego-
tiate the delivery of content, services, and Rights Object with suppliers.
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The DRM agent may need to access to the content mall, content stor-
age server, DRM clearing house, DRM unpackager or packager, and EXIM
interface.

– DRM Unpackager or Packager: A DRM unpackager converts a pack-
aged(encrypted) content into unpackaged(decrypted) content. The DRM
packager is its opposite. The DRM unpackager sends the unpackaged DRM
content to the EXIM packager or the DRM packager sends the packaged
DRM to the target DRM agent.

– EXIM Packager or Unpackager: The EXIM packager converts the unpack-
aged DRM content into the EXIM content format, that consists of the en-
crypted content is metadata(identifier, title, creator, contributor,etc.), rights
expression(valid date, valid times, rights permission, etc.), resource, etc. The
EXIM unpackager unpacks the content in EXIM content format.

– EXIM Interface: The EXIM source interface exchanges the content of the
EXIM content format with the EXIM target interface.

– Content Storage Server: The content storage server stores content, and
may be located in the content mall or user’s device, for example in network
storage, a PC, on removable media, etc.

3.2 TOE Security Environment

The TOE security environment describes the security aspects of the environment
in which the TOE is intended to be used and the manner in which it is expected to
be employed. The TOE security environment consists of threats, organizational
security politics, and assumptions of the security of the TOE environment.

Threats. This subsection characterizes potential threats, including accidental
and malicious attempts, and any known or presumed threats to the assets against
which protection will be required, either by the TOE or by its environment[11].
The potential threats of TOE are as follows, Table 1. Label of Threats started
with letter ’T’.

Organizational Security Policies. This subsection relates to the TOE. It in-
cludes Information flow control rules, Access control rules, policies regarding the
use of encryption, security audit policies and procedures, and Policies regarding
use of a standardized IT base. Label of Polices started with letter ’P’. Table 2
shows the organizational security policies.

Assumptions. The assumptions regarding secure usage of the TOE are made
when defining the security function requirements and security assumption re-
quirements. Label of Assumption started with letter ’A’. Table 3 shows the
assumptions.
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Table 1. The Threats

Threat Lable Description

T.P Replace Physical Replace: Physical replacement of any component of the TOE.
T.P Damage Physical Damage: Physical damage to any part of the TOE.
T.Permit Access: An attacker may access information or services without having

permission from the rightful owner, service mall, or rights issuer.
T.Trans Transmission to others: After the Source User delivers content to the

Target User, the Target User may pass the content to an unauthenti-
cated user.

T.Residual Residual content in reallocated resources: An authorized user may ac-
cess content or service that he is not entitled to access, or does not have
permission to access, through reallocation of TOE resources. This oc-
curs when the reallocated resources contain residual content or access
permissions from another user or process, gained through legitimate
access.

T.Illegal Access Resource consumption: An authorized user may extremely consume
resource, through legitimate access, in Content Mall or DRM Clearing
House, which ensure other authorized users do not access information
or services.

T.Damage Damage to other resources: An authorized user may access information
or services in a way that result in damage or discloses other information
or services.

T.Install Installation of new functionality: An authorized user may install a mali-
cious program or new functionality into the TOE that has the capability
to damage or disclose TOE resources.

T.Intro Introduction of new functionality: An authorized user may create or
introduce new functionality into the TOE that has the capability to
damage or disclose TOE resources.

T.Permit Permission of access: An authorized user may permit access permissions
to others that do not have a legitimate need to access the resources.

T.Deny User deny of service: An authorized user may send the content to a
target user, and then the target user may deny having participated in
the transaction.

T.Delet Deletion of audit information: Particular information of the authorized
user may be damaged or destroyed. Audit information should only be
destroyed in accordance with security policy.

T.Deny Service Denial of illegal access: An attacker may deny authorized users legiti-
mate access to services or information e.g. through resource exhaustion,
or by causing legitimate users to be blocked out from access.

T.TSF Block Access blacked by TSF modification: An attacker may modify TOE se-
curity functionality so that subsequently authorized users can no longer
access services or information that they are authorized to access.

T.Disguise Disguise of authorized user using stolen authentication data: An at-
tacker may masquerade as a legitimate user by presenting authentica-
tion data of an authorized user.

T.TOE Error Insecure TOE after system error: While a source user sends information
or content to a target user, if the TOE security state becomes incorrect
or inconsistent, following a system error, TOE security functionality
may not operate correctly.
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Table 1. (Continued)

T.TOE Change Insecure TOE after TOE changes: Changes to the TOE may disable or
corrupt security functionality. Very few systems remain in their original,
delivered configuration. Even small maintenance actions may disrupt or
disable security.

T.Sys Error System Error in TOE: Content, information, or service protected by the
TOE may occur due to system error such as user error, hardware errors,
transmission error, and failure to allocate adequate external resources.

T.Env Failure Environmental failure: Environmental failure, such as human error or
failure of software, hardware or power supply, may result in unexpected
interruption of TOE operations, causing damage or loss to information
or service.

T.Env Stress Stress by environment factor: Environmental factors may obstruct TOE
services (e.g. electrical power, temperature, humidity).

T.Eavesdrop Information eavesdropping from TOE: Content or information may be
disclosed from the TOE, and an attacker may be able to connect to
legal users of the network in a trusted zone.

Table 2. The Organizational Security Policies

Policy Lable Description

P.Audit Audit : The TOE must audit recognizing, recoding, and storing infor-
mation related to security relevant activities.

P.S Update Update TOE service software : When a device accesses a Content Mall,
if EXIM software is updated for DRM service, the device must au-
tomatically download the software. This allows the Agent to convert
content to another DRM device.

P.Guide Guide for User : A Content Mall must provide guide lines demonstrating
how a user can use service.

P.Sec Mang Secure Management: An authenticated manager must manage the TOE
with the safe method.

P.Auth Crypt Authenticated Cryptographic Algorithm : Using cryptographic algo-
rithms, such as RSA, AES, SHA-1, and DES, must be authenticated
by ISO.

P.Ident Chk Identity Check : Devices must check the identity each other through
trusted Certification Authority(CA).

Table 3. The Assumptions

Assumption
Lable

Description

A.See Ch Secure Channels : Each component is connected through secure chan-
nels.

A.User SIM User security owner of SIM Card: SIM Card is securely issued to user.
A.Data Protec Data Protection: User’s right and content are securely encrypted and

stored in a content mall, content storage server, and DRM clearing
house.

A.SIM Lose Lose SIM Card: If a user loses the SIM Card, which is subsequently
gained by an attacker, the attacker cannot retrieve the user’s private
information.
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Table 4. The Security Objectives

Name Description

O.Sec Ch Secure Channels: TSF must provide secure channels.
O.Issu SIM Issue of SIM Card: SIM Card must be securely issued to users.
O.Data Prot Data Protection: The TOE must support cryptographic functions in a

secure manner.
O.S Udate Software Update: The TOE must regularly update DRM service soft-

ware.
O.Guide Guide: The TOE must provide guidelines for users consuming the con-

tent.
O. Auth Fail Authentication fail of Password: TSF must detect repeated authenti-

cation failures in the user authentication system.
O.Auth User Authentication: The TOE must be accessed by authenticated

Users.
O.Data Prot Data Protection: The TOE must protect exposure, modification, and

deletion of the recoded data.
O.Flow Cont Flow Control: The TOE must control the flow of unauthenticated data

through security policy
O.Install Installation: The TOE must be installed by unauthenticated software.
O.TSF Sec Protect of TSF data: The TOE must protect the recoded TSF data in

the TOE from unauthenticated exposure, modification, and delete.
O.Audit Audit: The TOE must have audit information and digital signature

function.
O.Test Test: TSF must prove the integrity of data(Metadata, Rights, Resource,

etc.) in the TOE.
O.Update Update: The TOE must be reinstalled or updated when becoming aware

of the system error.
OE.Phy Prot Physical Protection: The TOE must be located in a safe environment
OE.Secu Manag Security Function Management: TSF must be restricted within the au-

thenticated manager who has the capability to modify and delete se-
curely.

OE.Sec Maintain Security Maintain: When the TOE or network service suffers an un-
predicted fault, the TOE must provide identical service to the previous
state.

3.3 Security Object

This section provides the security object is traced back to the Security Envi-
ronment (threats, organizational security policies, assumptions). Each security
object is traced back to at least one threat or organizational security policy. In
other words, a threat or organizational security policy is addressed entirely by
one or more security objectives. Table 4 shows the security objectives.
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4 Rationale

This section contains the security objectives rationale. It demonstrates that
the CTHDS PP is complete, correct, consistent, and coherent, with Assurance,
Threat, and Policy, and suitable to counter the identified threats to security. In
other words, this subsection proves that the security objectives uphold counter
all threats, enforce all organizational security policies, and all assumptions. The
Table 5 shows mapping between threat, and policy and objectives, assurance.

Table 5. Mapping Security Objectives to Threats, Policies, and Assumptions
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Table 5. (Continued)

*T.Eavesdrop

*T.Env_Stress

*T.Env_Failure

*T.Sys_Error

*T.TOE_Change

*T.TOE_Error

*T.Pretend_User

*T.Disguise

*T.TSF_Block

*T.Deny_Service

*T.Delet

**T.Deny

5 Conclusion

For protection of content, DRM can be used to prohibit illegal reproduction or
redistribution of digital content, enabling the protection of copyrights. However,
the incompatibility and lack of interoperability of the current DRM technolo-
gies heavily restricts the right of end-users, such as private reproduction. To
address these problems, EXIM was developed by ETRI. In this paper, we stud-
ied the security specification for conversion technologies of heterogeneous DRM
system, using the CC that meets specific consumer needs. The CTHDS PP is a
stated security environment that includes potential threats, and organizational
security policies assumptions and security objectives, in order to uphold counter
potential threats, and enforce organizational security policies, assumptions. The
CTHDS PP can be used to communicate these security requirements to potential
developers, and provides a foundation from which a Security Target (ST) can be
developed and formal evaluation can be conducted. Furthermore, a PP of similar
security requirements can reuse all or part of existing PP or the CTHDS PP.
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Abstract. Many protocols running over the Internet are neither for-
malised, nor formally analysed. The amount of documentation for tele-
communication protocols used in real-life applications is huge, while the
available analysis methods and tools require precise and clear-cut pro-
tocol clauses. A manual formalisation of the Session Initiation Protocol
(SIP) used in Voice over IP (VoIP) applications is not feasible. Therefore,
by combining the information retrieved from the specification documents
published by the IETF, and traces of real world SIP traffic we craft a
formal specification of the protocol in addition to an implementation
of the protocol. In the course of our work we detected several weak-
nesses, both of SIP call setup and in the Asterisk implementation of the
protocol. These weaknesses could be exploited and pose as a threat for
authentication and non-repudiation of VoIP calls.

1 Introduction

Voice over IP (VoIP) is widely used, and is about to replace the traditional,
public switched telephone networks (PSTN) for two main reasons: (1) Providers
and customers experience cost savings, especially for long distance calls. Since
VoIP uses the Internet as carrier, the cost of setting up a phone call needs no
more effort than sending an email. (2) Added functionality and flexibility. The
VoIP protocols are capable of providing a number of additional services like
instant messaging, presence, conferencing, events notification, video calls and
other multimedia transmissions and location independence (mobility).

VoIP services cannot rely their security on the telecommunication infras-
tructure, dedicated lines, physically protected switches, and certified telephony
equipment. VoIP services have to be secured by cryptographic techniques. There-
fore, the employed protoscols and their implementations must undergo a thor-
ough formal crypto-analysis.

A common combination in VoIP is to use the Session Initiation Protocol (SIP)
[14] for signalling, e.g., setting up and tearing down calls, and specific protocols
for the actual media transfer. The designers of SIP focused on functionality for
� This research is funded by the EUX2010SEC project in the VERDIKT framework
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providing specific services rather than security features [15]. However, security
issues have been recognised to be an area of further investigation and improve-
ment [1,6,4,10]. Discussions about potential weaknesses and attacks on SIP have,
in most cases, been kept on an informal level [16,4,13,18,17,12].

Our goal has been to use formal modelling of SIP in order to (1) verify whether
the Asterisk implementation of SIP follow the specifications; and (2) perform at-
tacks exploiting weaknesses in the protocol definition, and its implementations.
This work is based on previous work [9] where we analysed digest access authen-
tication in the SIP registration process. The same authentication mechanism is
used in the call-setup explained in this paper.

There have been other works that analyse SIP and its security configurations
formally [7,2], and the work of the AVISPA project1. However, they consider the
authentication and registration sub-protocol in combination with the Diameter
protocol, rather than the call-setup protocol as presented here.

The rest of the paper is organised as follows: In Section 2, we give a high
level overview of SIP, and the tool PROSA that we have used to analyse the
call setup. In Section 3, the formal specification of digest access authentication
and call setup is described. After discussing whether Asterisk implements the
SIP protocol correctly (Section 3.4), we show that a vicious attack on the call
setup specification can be performed using the specification obtained previously
is presented (Section 4). Finally, in Section 5, we evaluate the approach and
point out future extensions of the PROSA tool.

2 Background

SIP is an application layer signalling protocol developed by the IETF. The core
functionality of SIP is specified in RFC3261 [14], additional functionality is spec-
ified in over 40 RFCs, and nearly 30 pending SIP-related drafts2. SIP is used
to establish, maintain and tear down multimedia sessions between two or more
participants. A session can be an ordinary call between two participants, or an
advanced multimedia conference session with several participants. More specific,
SIP set up the session context, but does not carry multimedia content.

We illustrate the operation of SIP with a scenario where Alice calls Bob. A
session including call setup and tear down is shown in Fig. 1. While a session
generally may traverse several SIP proxies, we restrict our scenario to only one
SIP proxy. The SIP proxy has three roles: (i) it acts as registration server, (ii)
handles call setup, and (iii) routes the SIP messages and in some cases the media
stream. In the call setup Alice calls Bob sending an ‘INVITE’ message (1, 2).
A receipt for each such hop is returned by the ‘Trying’ message (3, 4). If Bob’s
phone is connected then it starts to ring and propagates the ‘Ringing’ message
back to Alice (5, 6). When Bob answers the call, he sends an ‘OK’ message
1 Automated Validation of Internet Security Protocols and Applications (AVISPA)

project: http://avispa-project.org/library/sip.html
2 IETF Session Initiation Protocol Charter:
http://www.ietf.org/html.charters/sip-charter.html

http://avispa-project.org/library/sip.html
http://www.ietf.org/html.charters/sip-charter.html
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Fig. 1. Flow graph showing successful session establishment and termination using SIP

routed back to Alice through proxy S. Bob answers the phone in message (7),
and the call content (voice) is transferred using the Real-time Transport Protocol
(11). Alice terminates the call (12) and a ‘BYE’ message is sent. Before the
‘INVITE’ message (1) is sent, a SIP proxy may challenge Alice to authenticate,
as formalised in Section 3.1.

For the purpose of this paper we restrict our work to how the widely used
open source telephony platform Asterisk3 [11] implements SIP. Asterisk is a
private branch exchanges (PBX), whose functionality is to connect phone calls.
Asterisk also supports a range of other common telephony services like voice
mail, conference calls and telephone menus.

2.1 The Method

In order to gain initial knowledge of the behaviour of the SIP implementation
in Asterisk, we record traces from real phone traffic going through the Asterisk
server on a real-world Asterisk configuration. This is done by using the network
monitoring tool Wireshark4. Traces retrieved from Wireshark can be presented
both textually and as interaction diagrams. The process of obtaining a formal
specification of SIP was roughly as follows: From the core IETF standards we de-
rived an as accurate descriptions of SIP as possible. These resulting specifications
were typically incomplete, interaction diagrams showing the transmissions and
message content were lacking. Traces of the call setup with real softphones were
then used to supplement the incomplete specifications, with details of message
3 Asterisk homepage: http://www.asterisk.org/
4 Wireshark homepage: http://www.wireshark.org

http://www.asterisk.org/
http://www.wireshark.org
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Fig. 2. Workflow for analysis of implementations

credentials. Hence, based on the Asterisk traces and SIP standard we constructed
the formal models manually, and analysed the specifications in the the protocol
analyser PROSA [8].

The analysis process is depicted in Fig. 2. In this process both IETF documen-
tation and the traces are used to obtain a formal description (1) which typically
enhances the understanding of the implementation (4). The formal specifica-
tion is then validated by PROSA (2). If there are any errors or unreasonable
elements found at this stage, the formal specification is revised (3). A correct
protocol specification will then be subject to hand-crafted or automatically gen-
erated attacks. The correctness of manually constructed attacks will then be
checked by validation in a similar way as for non-compromised protocol spec-
ifications, thereafter simulated in PROSA. Finally, the output of the analysis
is a report that either confirms the initial security requirements or points at
weaknesses that break some security goals (5). If no attacks are found then the
protocol is considered preliminary secure (6). If an attack is found then the pro-
tocol is not secure and a revision is made (7). Since the formal specifications
are derived from a concrete implementation, the report gives feedback onto the
implementation (8).

2.2 The Protocol Analyser PROSA

PROSA [8] is a tool developed for the specification, static analysis and simulation
of security protocols. PROSA consists of three main modules: (a) a specification
language based on temporal epistemic logic; (b) a static analysis module; (c) a
simulator for executing intended protocols and attacks on protocols.

The static analysis module consists of algorithms for automated refinement of
both protocol specifications and attack descriptions. The automated refinement
results in an explicit specification that contains local assumptions, i.e. pre- and
postconditions, for each transmission clause. Refined specifications can then be
validated. The validation process of a trace specification is performed in two
steps in PROSA: First, a tool-supported refinement of the specification is gener-
ated. This will always give a longer specification that contains information about
the agents beliefs and construction of credentials, like the generation of nonces,
timestamps, assumptions about keys, and cryptographic operation like encryp-
tion, decryption and hashing. Secondly, the refined specification is validated to



Analysing Protocol Implementations 175

check whether a participant in the protocol setting possesses any beliefs that
have not been legally obtained through communication or cryptography.

3 Formal Specification of SIP Call-Setup

SIP defines distinct functionality for registration, call setup and modification,
call control and mid-call signalling. We refer to these parts as ‘sub-protocols’
since each of these parts requires its own sequence of message exchanges. We
take a closer look at the sub-protocols digest access authentication, call setup
and call teardown. Call teardown denotes the explicit event of terminating a call,
specified by message 12-15 in Fig. 1. These are specified in a form commonly
used in the literature. A protocol clause where “agent A sends a message M to
the agent B” is of the form:

(P ) A −→ B : M

Messages in the protocols consist of basic entities as follows:

A, B, C, D, T , S, I, I(A) agent terms
KAB symmetric key shared by A and B
NA nonce generated by A
WY

A string containing the text Y related to A
XA miscellaneous entities related to A

We use three composition operators in the notation: concatenation of message
content denoted by “,” (comma), hashing H[M ], and encryption denoted by
E(K : M), where K denotes a key and M a message content. The particu-
lar agent term I(A) reads that “the intruder I impersonates as A”.

3.1 Authentication

According to RFC3261 [14], there are three ways to configure SIP authentication:
plain-text authentication, weak authentication, and strong authentication. Plain-
text authentication sends the authentication credentials unprotected. Weak au-
thentication is an adaptation of the HTTP digest access authentication [5] that
requires a shared secret between the two participants. Strong authentication uses
certificates in the same way as web browsers and servers use them. Weak authen-
tication using a digest is by far the most common method. A typical application
of digest access authentication is given by a challenger S requesting a client A
to authenticate as described in the following protocol skeleton:

(D1) S −→ A : NS

(D2) A −→ S : W uname
A , W realm, NS , WURI

A , Xnc, NA, W qop,

H[H[W uname
A , W realm, Kpwd

AS ], NS , Xnc, NA, W qop, H[Wmeth, WURI
A ]]

Agents A and S share the symmetric key Kpwd
AS . Initially, the challenger S sends

a nonce NS to the client A. The client responds by sending the basic entities
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in plain text, except the password, and then the response itself. The entities
involved in digest access authentication are as follows:

W uname
A username of A

W realm a protective domain
Kpwd

AS shared password between A and S
Wmeth main method of message (like HTTP)
WURI

A Digest URI for client A
NS nonce of the challenger S
Xnc nonce counter
NA A’s nonce
W qop quality of protection

The authentication is one-way: A is authenticated to S, guaranteed by the
secrecy of the shared key Kpwd

AS . Agent S can be certain that the message comes
from A, since A is the only agent except S who possesses the key. Integrity of
the message entities involved is provided by the fact that the hash could only
be generated by A and freshness of the message is provided by the challenger
nonce NS .

3.2 The Teardown Sub-protocol

The trace described in Fig. 1 is one out many possible traces. Teardown of
sessions can be performed at any stage in the session. Therefore the final four
messages 12-15 in Fig. 1 and (T14 − T17) in Fig. 4, can be considered as a
teardown sub-protocol run by three agents. Instances of the teardown protocol
might be running in parallel with the call setup protocol, which implies that a
‘BYE’ message received to any participant causes the host session of the call
setup to be terminated. A SIP compliant specification where SIP methods are
propagated correctly results in the following specification of teardown, extracted
from the Wireshark protocol dump:

(TD1) C −→ T : WBYE, D, WURI
D , WContact

C , WURI
C , N callid

C

(TD2) T −→ D : WBYE, C, WURI
C , N callid

D

(TD3) D −→ T : WOK, WContact
D , WURI

D , N callid
D

(TD4) T −→ C : WOK, WContact
D , WURI

D , N callid
C

where C denotes the role of the agent initiating the teardown, D denotes the
responder agent, while T denotes the proxy server. Instances of the teardown
protocol are started by the call setup protocol, while the call-setup is terminated
by the teardown protocol.

3.3 Formalising Call Setup Permitting Arbitrary Teardown

Since we do not know which of the agents actively closes a session, we model that
each agent starts a passive session of the teardown sub-protocol. In the example
shown in Fig. 1 Alice actively closes the session, why she plays the role of B of
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(Q0) A : start(teardown, Role(B, C), Role(A, D), Role(S, T ))
(P1) A −→ S : W INVITE, A, B, W Contact

A , W URI
A , Ncallid

A

(Q1) S : start(teardown, Role(A,C), Role(B, D), Role(S, T ))
(Q2) S : start(teardown, Role(B, C), Role(A, D), Role(S, T ))
(P2) S −→ A : W PAR, W uname

A , W realm, NS, A,B, Ncallid
A

(P3) A −→ S : W ACK, B, W Contact
A , W URI

A , Ncallid
A

(P4) A −→ S : W INVITE, A, B, NS, W Contact
A , W URI

A , Xnc, N
′
A, W qop, Ncallid

A

H[H[W uname
A , W realm, Kpwd

AS ], N ′
A, Xnc, NS , W qop, H[W INVITE, W URI

B ]]
(P5) S −→ A : W Trying, W Contact

B , W URI
B , Ncallid

A

(P6) S −→ B : W INVITE, A, B, W Contact
A , W URI

A , Ncallid
B

(Q3) B : start(teardown, Role(B, D), Role(A,C), Role(S, T ))
(P7) B −→ S : W Trying, W Contact

B , W URI
B , Ncallid

B

(P8) B −→ S : W Ringing, W Contact
B , W URI

B , Ncallid
B

(P9) S −→ A : W Ringing, W Contact
B , W URI

B , Ncallid
A

(P10) B −→ S : W OK, W Contact
B , W URI

B , Ncallid
B

(P11) S −→ A : W OK, W Contact
B , W URI

B , Ncallid
A

(P12) A −→ S : W ACK, W Contact
A , W URI

A , Ncallid
A

(P13) S −→ B : W ACK, W Contact
A , W URI

A , Ncallid
B

A ←→ B : Media session

Fig. 3. Call setup with flexible teardown based on RFC 3261

the teardown sub-protocol. Consequently, the Asterisk server acts in the role of
S. Generally, both Alice and Bob might actively tear down a session by starting
an instance of teardown in the role of A.

Combining the Wireshark protocol dump with the SIP specification we get
Fig. 3. In order to model this we go beyond standard protocol notation and
introduce the clauses (Q0 − Q3), as seen in Fig. 3. The call setup involves the
additional SIP methods and primitives:

W INVITE The INVITE method that indicates a request for phone call
WACK An acknowledgement method
WPAR Proxy Authentication Required
WTrying 100 Trying, receipt to a previous SIP message
WOK 200 OK method notifies successful registration
WRinging The responder’s phone is ringing
WBYE Tearing down session (hang up phone)
N callid

A , N callid
B Call identifiers for A (and S) and B (and S) respectively

Clause (Q0) reads “agent A locally starts a session of the teardown protocol,
such that agent A plays the responder role D, agent B plays the initiator role C,
and the server S plays the server role”. The notation Role(A, C) means that the
agent A plays the C role in the given protocol, similar to procedure calls with
parameter substitution in ordinary programming languages. The first local clause
(Q0) then says that A initially starts listening for a possible ‘BYE’ message from
B. The server propagates the ‘BYE’ and ‘OK’ methods involved in the teardown
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sub-protocol. There are two cases: Clause (Q1) starts a session where the server
S is waiting for a ‘BYE’ from A, while in (Q2), the server starts a similar session
waiting for B sending a ‘BYE’-message.

3.4 Deviations from the SIP Specification

The trace in Fig. 4 shows that the Asterisk implementation of SIP diverges from
the specification described in Fig. 3 in three ways:

1. Alice’s phone starts to ring (message T7) before Bob is authenticated to the
server. The meaning of an incoming ‘Ringing’ message received by Alice is
that Bob has received an ‘INVITE’ message, and she is ready to start a call
if Bob answers the call. Hence, in order to follow the SIP RFCs message
(T9) should come before message (T7). Hence Alice is fooled to believe that
Bob’s phone is ringing, which is not the case. Therefore we simulated scenar-
ios where the responder Bob was disconnected from the network just after
receiving the ‘INVITE’ message. Alice still received a Ringing message. This
behaviour is also confirmed in experiments using soft phones.

2. The acknowledgement received by Bob in message (T11) arrives before Alice
sends the message in clause (T13). However, at this point Bob is mislead to
believe that Alice has acknowledged the Ringing request from Bob.

3. After teardown initiated by Alice (T14), the ‘OK’ message from S to Alice
(T15) is sent before the related ‘OK’ message is sent from Bob. This breaks
the specification, since (T15) would implicate that Bob has received the
‘BYE’ message, which is not the case in the implementation.

(T1) A −→ S : W INVITE, A, B, W Contact
A , W URI

A , Ncallid
A

(T2) S −→ A : W PAR, W uname
A , W realm, NS , A, B, Ncallid

A

(T3) A −→ S : W ACK, B, W Contact
A , W URI

A , Ncallid
A

(T4) A −→ S : W INVITE, A, B, NS , W Contact
A , W URI

A , Xnc, N
′
A, W qop, Ncallid

A

H[H[W uname
A , W realm, Kpwd

AS ], N ′
A, Xnc, NS, W qop, H[W INVITE, W URI

B ]]
(T5) S −→ A : W Trying, W Contact

B , W URI
B , Ncallid

A

(T6) S −→ B : W INVITE, A, B, W Contact
A , W URI

A , Ncallid
B

(T7) S −→ A : W Ringing, W Contact
B , W URI

B , Ncallid
A

(T8) B −→ S : W Trying, W Contact
B , W URI

B , Ncallid
B

(T9) B −→ S : W Ringing, W Contact
B , W URI

B , Ncallid
B

(T10) B −→ S : W OK, W Contact
B , W URI

B , Ncallid
B

(T11) S −→ B : W ACK, W Contact
A , W URI

A , Ncallid
B

(T12) S −→ A : W OK, W Contact
B , W URI

B , Ncallid
A

(T13) A −→ S : W ACK, W Contact
A , W URI

A , Ncallid
A

A ←→ B Media session (RTP or SRTP)
(T14) A −→ S : W BYE, B, W URI

B , W Contact
A , W URI

A , Ncallid
A

(T15) S −→ A : W OK, W Contact
B , W URI

B , Ncallid
A

(T16) S −→ B : W BYE, A,W URI
A , Ncallid

B

(T17) B −→ S : W OK, W Contact
B , W URI

B , Ncallid
B

Fig. 4. A trace of call setup and teardown using Asterisk as server S
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This implementation can lead to unexpected results: An obvious attack targets
the Ringing method: An intruder I could act as an eavesdropper until clause
(T7), then take over Bob’s session entirely, kick Bob out of the call, and for the
rest of the trace masquerade as Bob. Persons that are used to the particularly
quick response (immediate ringing) from Asterisk based VoIP would not be
alerted when the intruder I impersonates as Bob later in the session.

4 Attack on the Call Setup

An attack on the registration protocol of SIP has been found recently [9], yet
in the following, we consider attacks that do not rely on successful registration

Fig. 5. Hijacking the initiator and the responder
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attacks. We assume that the attacker I is as powerful as the Dolev Yao attacker
[3] who controls the entire network, can intercept any message, impersonate as
any other agent, and inject whatever entity it knows into SIP messages. Cryp-
tography is assumed to be perfect, no brute force attacks on the underlying
cryptographic algorithms are considered in this paper.

In the following we describe how it is possible for an attacker to hijack both the
initiator and responder roles. In the initial part of the attack, described in Fig. 6,
the intruder only passively listens in the authentication sub-protocol. In the
protocol clauses (P1.1.a) through (P1.4.b) the intruder acts as a passive man-in-
the-middle, obtaining information from plain text entities. From the knowledge
gained during the initial eavesdropping, an attacker can perform a combined
attack on both the caller and the callee.

In the attack, as shown in Fig. 5, the attacker Ivory (denoted I in Fig. 6)
begins by eavesdropping the initial four messages concerned with establishing

P1.1.a A I S : W INVITE, A, B, WContact
A , WURI

A , Ncallid
A

P1.1.b I A S : W INVITE, A, B, WContact
A , WURI

A , Ncallid
A

P1.2.a S I A : WPAR, W uname
A , W realm, NS , A, B, Ncallid

A

P1.2.b I S A : WPAR, W uname
A , W realm, NS , A, B, Ncallid

A

P1.3.a A I S : WACK, B, WContact
A , WURI

A , Ncallid
A

P1.3.b I A S : WACK, B, WContact
A , WURI

A , Ncallid
A

P1.4.a A I S : W INVITE, A, B, NS , WContact
A , WURI

A , Xnc, NA, W qop, Ncallid
A

H H W uname
A , W realm, Kpwd

AS , NA, Xnc, NS , W qop, H W INVITE, WURI
B

P1.4.b I A S : W INVITE, A, B, NS , WContact
A , WURI

A , Xnc, NA, W qop, Ncallid
A

H H W uname
A , W realm, Kpwd

AS , NA, Xnc, NS , W qop, H W INVITE, WURI
B

T2.3.2 I S A : WBYE, B, WURI
B , Ncallid

A

T2.3.3 A I S : WOK, WContact
A , WURI

A , Ncallid
A

P2.5 S I A : WTrying, WContact
B , WURI

B , Ncallid
A

P2.6.a S I B : W INVITE, A, B, WContact
A , WURI

A , Ncallid
B

P2.6.b I S B : W INVITE, A, B, WContact
A , WURI

A , Ncallid
B

P2.7.a B I S : WTrying, WContact
B , WURI

B , Ncallid
B

P2.7.b I B S : WTrying, WContact
B , WURI

B , Ncallid
B

P2.8.a B I S : WRinging, WContact
B , WURI

B , Ncallid
B

P2.8.b I B S : WRinging, WContact
B , WURI

B , Ncallid
B

T2.4.2 I S B : WBYE, A, WURI
A , Ncallid

B

T2.4.3 B I S : WOK, WContact
B , WURI

B , Ncallid
B

P2.9 S I A : WRinging, WContact
B , WURI

B , Ncallid
A

P2.10 I B S : WOK, WContact
B , WURI

B , Ncallid
B

P2.11 S I A : WOK, WContact
B , WURI

B , Ncallid
A

P2.12 I A S : WACK, WContact
A , WURI

A , Ncallid
A

P2.13 S I B : WACK, WContact
A , WURI

A , Ncallid
B

I A F B : Media session
T2.2.1 I A S : WBYE, B, WURI

B , WContact
A , WURI

A , Ncallid
A

T2.5.2 S I B : WBYE, A, WURI
A , Ncallid

B

T2.2.3 I B S : WOK, WContact
B , WURI

B , Ncallid
D

T2.2.4 S I A : WOK, WContact
B , WURI

B , Ncallid
A

Fig. 6. Formal attack when hijacking the initiator and the responder
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the call and authenticating the caller Alice to the server. Then Ivory tears down
Alice’s session prematurely by using a ‘BYE’ message, and thereafter terminates
Bob’s session before he has entered the media session. Before the media session,
the attacker has taken over the call, and can start a conversation with agent
Frank (denoted F in Fig. 6).

The attacker tears down the session after pretending to be Alice. The server
S cannot discover that the two local sessions at each calling party are teared
down. The attack effectively breaks the authenticity of the participants, and
therefore results in an identity management problem. The consequence could be
that the intruder I could set up an arbitrary call, that Alice is billed for. Another
consequence of this attack could be that the logs, that telephony providers are
obliged to carry out by legislation, are incorrect. Hence, the attack shows that
non-repudiation is broken as well.

5 Discussion and Conclusions

Our method reveals concrete attacks that indicate where improvements in the
protocol are necessary. We discovered that the well-known SIP implementation
Asterisk deviates from the SIP specification, and found a severe call hijack attack,
where intruders can completely take over a phone call.

Our work provides the designers of VoIP protocols with a set of tools for pro-
tocol analysis. The PROSA language and framework can be used to formally
specify and analyse protocols and their specific implementations in a rigorous
way. The use of traces, and the analysis with PROSA, can help to detect dif-
ferences between protocol specification and implementation. The behaviour of
implementations is therefore analysed, and treated as specification for a vari-
ant of the employed protocols. Attacks could be designed and tested rapidly
compared to the traditional approaches as described in [13] and [4].
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Abstract. Some systems offer probabilistic anonymity. The degree of
anonymity is considered and defined by Reiter and Rubin [1]. In this
paper metrics are proposed to measure anonymity of probabilistic sys-
tems. The metric induces a topology on probabilistic applied π processes,
which are used to model anonymous systems. The degree of anonymity is
formally defined, and as an illustrating example, Crowds – an anonymous
system for web transaction – is analyzed.

Keywords: Probabilistic applied π calculus, anonymity, metric, Crowds.

1 Introduction

The importance of anonymity has increased over the past few years. Various sys-
tems have been proposed to implement anonymity for various kinds of network
communication, such as FOO electronic voting protocol [2], untraceable elec-
tronic cash protocol [3] and so on. Some formal methods are applied to analyze
their anonymity property, for example, Chothia analyzed the MUTE anonymous
file-sharing system using the π calculus in [4].

At the same time, some probabilistic anonymous systems, which extend non-
probabilistic anonymous systems with probability, have been proposed, such as
Crowds [1] and some variants of DCP [5]. Crowds is a system developed by
Reiter and Rubin [1] for protecting users’ anonymity on the world-wide-web.
It operates by grouping users into a large group called crowd. When the web
server receives a request, neither web server nor collaborating crowd members
can learn the true source of this request.

Many formal methods are built to analyze the anonymity of probabilistic pro-
tocols or systems, there are two groups of frameworks for analyzing anonymity:

– Logic + Model checking. Shmatikov uses PCTL to model Crowds system
and applies PRISM to automatically check the anonymity in [6]; Halpern [7]
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also gives the definition of anonymity in the probabilistic way, and some are
corresponding to the definitions by Reiter in [1].

– Shannon’s entropy. Diaz et al [8] give a measure system for the anonymity
with Shannon’s definition of entropy. However, the analysis cannot be auto-
mated and the capability of the attacker is limited.

The framework in this paper is not included in above two groups. We model
anonymous systems in process calculi and use metrics to define anonymity. Pro-
cess calculi provide a tool for the high-level description of interactions and com-
munications between agents or processes. Using process calculi to analyze se-
curity protocols was first studied by Lowe in [9] with CSP. Later on the spi
calculus [10] was proposed by extending the π calculus with cryptographic prim-
itives, such as encryption and decryption. In [11] Abadi and Fournet introduced
the applied π calculus, which is a simple extension of the π calculus with value
passing, primitive functions and equations among terms. It has been used to
model security protocols like Just Fast Keying [12]. Verification of authentica-
tion using the applied π calculus has been studied in [13,14]. It is natural and
convenient to model protocols in process calculi.

In this paper, we use the probabilistic applied π calculus (PAπ for short)
proposed by Goubault-Larrecq et al [15] as the framework for analyzing prob-
abilistic anonymous systems. PAπ extends the applied π calculus with proba-
bilistic choice(⊕). Instead of bisimulation, we use pseudo-metric to measure the
difference between two processes. A pseudo-metric is a function which defines a
distance between elements of a set, and the calculation can be automatically car-
ried out. Some pioneering work about metrics on process calculi include [16,17]
and [18]. The main contributions of this paper can be summarized as follows:

– We define pseudo-metric on pairs of processes. It equals to 0 if and only
if two processes are strongly bisimilar. We first replace weak bisimilarity
with strong one in analyzing security protocols because we found that the
protocol and its specification behave very similarly to each other. We need
not consider weak bisimilarity for its complicated definition in probabilistic
process calculi. More discussions can be found in Section 3.

– According to the pseudo-metric, we give the formal definitions of beyond
suspicion, probable innocence and possible innocence – three degrees of
anonymity from strong to weak in [1].

– We model Crowds and analyze the anonymity degree. We study how the
number of participants and the probability of forwarding influence the degree
of anonymity.

The rest of the paper is organized as follows. Section 2 briefly introduces
the probabilistic applied π calculus. Section 3 defines pseudo-metric between
two probabilistic applied π processes, and demonstrates the correctness of the
metric by showing when two processes are strongly bisimilar the metric is 0.
Section 4 defines the degree of anonymity based on pseudo-metric. Section 5
analyzes Crowds system. Finally, we conclude in Section 6.
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2 Probabilistic Applied π Calculus

This section covers the necessary background materials on PAπ. More details
are referred to [15].

Given a signature Σ = {(f1, a1), · · · , (fn, an)} consisting of a finite set of
function symbols fi each with an arity ai, terms, plain processes and extended
processes are defined by the following grammar:

M, N ::= a, b, c, · · · | x, y, z, · · · | f(M1, · · · , Ml)(Terms)
P, Q ::= 0 | ū〈M〉.P | u(x).P | P + Q | P ⊕p Q(Plain Process)

| P |Q | !P | ν n.P | if M = N then P else Q

A, B ::= P | {M/x} | A |B | ν n.A | ν x.A(Extended Process)

We use (p1)P1+(1−p1)P2 to denote P1⊕p1P2, so process Σi∈I(pi)Pi represents
for (p1)P1+(p2)P2+· · ·+(pn)Pn with Σi∈Ipi = 1. Πi∈{1,2,··· ,n}Ai is abbreviation
for A1 |A2 | · · · |An, and ν l̃.A for ν l1.ν l2. · · · .ν ln.A where l̃ = {l1, l2, · · · , ln}.
We use Act denotes the set of all possible actions in the labeled rules.

We write fv(A), bv(A), fn(A), and bn(A) for free and bound variables, free
and bound names of A. The set of names and variables that occur in A is denoted
as n(A) def= bn(A) ∪ fn(A) and v(A) def= bv(A) ∪ fv(A).

Equational theory which consists of a set of equations plays an important role
in PAπ. For every signature Σ, we equip it with an equational theory E. We use
Σ � M =E N to denote terms M, N are equivalent in E. Sometimes we simply
write M = N if there is no ambiguity.

A frame is an extended process built up from 0 and active substitutions
by parallel composition and restriction. The frame of an extended process A,
denoted by φA, can be written in the form of φA

def= ν ñ.{M̃/x̃} where ñ ⊆ n(M̃).
If M̃ = 〈M1, M2, · · · , Mn〉 and x̃ = 〈x1, x2, · · · , xn〉, then

φA ≡ ν ñ.({M1/x1} | {M2/x2} | · · · | {Mn/xn}).

Every extended process can be mapped to a frame. We write dom(φ) for the
domain of φ, a set of variables which appear in active substitutions in φ but not
under a variable restriction. The domain of an extended process is the domain
of its frame.

Static equivalence is an equivalence relation built on closed extended pro-
cesses, which depicts the indistinguishability of their frames. The following def-
initions were firstly introduced in [11].

Definition 1. We say that two terms M and N are equal in the frame φ, and
write (M = N)φ, if and only if φ ≡ ν ñ.σ, Mσ = Nσ, and {ñ} ∩ (fn(M) ∪
fn(N)) = ∅ for some names ñ and substitution σ.

Definition 2. We say that two closed frame φ and ψ are statically equivalent,
and write φ ≈s ψ, when dom(φ) = dom(ψ) and when, for all terms M and N ,
we have (M = N)φ if and only if (M = N)ψ.
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Definition 3 (Static equivalence). (≈s) We say that two closed extended
processes are statically equivalent, and write A ≈s B, when their frames are
statically equivalent.

To denote a discrete probability distribution over a set X , we use a function μ :
2X −→ [0, 1] with the following properties: μ(X) = 1 and μ(∪iXi) = Σiμ(Xi).
We use δx to denote the dirac measure on x, and we define μ = μ1 +p μ2 as
μ(Y ) = p ·μ1(Y )+ (1−p)μ2(Y ). Bisimulation is a binary relation between state
transition systems, associating systems which behave in the same way in the
sense that one system simulates the other and vice-versa. It is very important in
process calculi. Let A be a closed extended process, C be a set of closed extended
processes, the probability of A performing action α and evolving into a process
in set C is defined as follows:

ProbA(α, C) =
∑
A′∈C

μ(A′), where A
α−→ μ

We now give the definition of strong bisimulation.

Definition 4 (Strong bisimulation). Strong bisimulation (∼) is the largest
symmetric relation R between closed extended processes with the same domain
such that ARB implies:

– A ≈s B;
– for any α, and any classes C ∈ A/R, ProbA(α, C) = ProbB(α, C).

3 Metric

As bisimulation is not a robust concept in PAπ model, a pseudo-metric analogue
of strong bisimulation is developed in this section.

3.1 Pseudo-metric

In mathematics, a metric or distance function is a function which defines a
distance between elements of a set. A set with a metric is called a metric space.
A metric induces a topology on a set but not all topologies can be generated by
a metric.

Definition 5 (Metric). A c-bound metric on a set X is a function (called the
distance function or simply distance) m : X × X → [0, c]. For all x, y, z in X,
this function is required to satisfy the following conditions:

1. m(x, y) ≥ 0;
2. m(x, y) = 0 if and only if x = y;
3. m(x, y) = m(y, x);
4. m(x, z) ≤ m(x, y) + m(y, z).
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In this paper, we only consider 1-bound metrics. If the second requirement is
dropped, the function is called a pseudo-metric. Let the metric space X = A, we
define a pre-order on all 1-bound pseudo-metrics of the set of all closed extended
processes.

Definition 6. M is the class of 1-bounded pseudo-metrics on extended processes
with the ordering:

m1 � m2 if (∀A, B ∈ A)[m1(A, B) ≥ m2(A, B)].

We use  to denote the top element ∀A, B. (A, B) = 0; the bottom element is
given by ⊥(A, B) = 1 if A 
= B otherwise 0. One can easily get that (M,�) is
a complete lattice.

Since the labeled transition system of PAπ is an LCMC (labeled concurrent
Markov chain), every process evolves into a distribution on processes after a
probabilistic transition. We lift the metric to the set of distributions.

Definition 7. Suppose m ∈M, and μ, μ′ be distributions on extended processes,
then m(μ, μ′) is given by the solution of the following linear program:

Σi(μ(Ai)− μ′(Ai))(ai − aK)max:
∀i.0 ≤ ai, aK ≤ 1, ∀i, j.ai − aj ≤ m(Ai, Aj)subject to:

Definition 8. For closed extended processes A and B. The action set of A cor-
responding to B, denoted L(A, B), is the set:

{α | α ∈ Act ∧ fv(α) ⊆ dom(A) ∧ bn(α) ∩ fn(B) = ∅}

L(A, B) is the set of actions A can perform and the bound names in these actions
should be renamed in order not to clash with the free names of B. We now define
a function F on M that closely resembles strong bisimulation.

Definition 9. Given two closed extended processes A and B, a function F on
M is defined as follows:

– if A 
≈s B, then F (m)(A, B) = 1;
– if A ≈s B, F (m)(A, B) =

max( max
α∈L(A,B)

sup
A

α−→μ

inf
B

α−→μ′
m(μ, μ′), max

α∈L(B,A)
sup

B
α−→μ′

inf
A

α−→μ

m(μ, μ′))

where inf ∅ = 1, sup ∅ = 0.

We can easily get that F is monotone on M, so F has a maximum fixed point
which is given by mmax = �imi where m0 =  and mi+1 = F (mi). In the rest
paper, we mean mmax(A, B) when we say “the metric between A, B”.

We give some examples about how to calculate the metric between two pro-
cesses. In each example, we use the following equational theory:

fst((x, y)) = x

snd((x, y)) = y

dec(enc(x, y), y) = x
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Example 1. m(P | {m/x}, Q | {n/x}) = 1.

Since P, Q are plain processes, and we have x{m/x} = m but x{n/x} 
= m, so
the two processes are not statically equivalent.

Example 2.

A
def= (c̄〈m〉+ d̄〈n〉)⊕0.5 d̄〈n〉

B
def= c̄〈m〉 ⊕0.25 d̄〈n〉

We have A ≈s B, therefore m(A, B) is the maximum fixed point of F (m):

F (m) = max(maxα∈L(A,B) sup
A

α−→μ
inf

B
α−→μ′m(μ, μ′),

maxα∈L(B,A) sup
B

α−→μ′ inf
A

α−→μ
m(μ, μ′))

= max(m(μ, μ′), m(μ′, μ))
= m(μ, μ′)

where α = τ , μ = (c̄〈m〉+ d̄〈n〉) : 0.5, d̄〈n〉 : 0.5 and μ′ = c̄〈m〉 : 0.25, d̄〈n〉 : 0.75.
m(μ, μ′) is the solution to the following linear program:

max[(0.5− 0)(a1 − aK) + (0.5− 0.75)
(a2 − aK) + (0− 0.25)(a3 − aK)]
subject to : 0 ≤ a1, a2, a3, aK ≤ 1

|a1 − a2| ≤ m(c̄〈m〉+ d̄〈n〉, d̄〈n〉) = 1
|a1 − a3| ≤ m(c̄〈m〉+ d̄〈n〉, c̄〈m〉) = 1
|a2 − a3| ≤ m(c̄〈m〉, d̄〈n〉) = 1

We can finally get that mmax(A, B) = 0.5.

This example gives us the institution that nondeterminism choice is different
from the probabilistic one. If we apply the uniform distribution on the nonde-
terministic choice and get A′ def= (c̄〈m〉 ⊕0.5 d̄〈n〉) ⊕0.5 d̄〈n〉, then m(A′, B) = 0.
Another important observation is that A 
∼ B and A′ ∼ B by the definition of
strong bisimulation.

Example 3.

A
def= ν m, k.ā〈enc(m, k)〉.b̄〈m〉

B
def= ν m, n, k.(ā〈enc(m, k)〉.b̄〈n〉 ⊕0.5 ā〈enc(n, k)〉.b̄〈n〉)

We can get mmax(A, B) = 0 though they look quite different.

The point of this example is that

ν k, m.{enc(m, k)/x, m/y} ≈s ν k, m, n.{enc(m, k)/x, n/y},
ν k, m.{enc(m, k)/x, m/y} ≈s ν k, m, n.{enc(n, k)/x, n/y}.

The following theorem demonstrates the correctness of the definition of metric.

Theorem 1. A ∼ B iff mmax(A, B) = 0.
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3.2 Strong Bisimulation v.s. Weak Bisimulation

When analyzing security protocols with process calculi, we usually use obser-
vational equivalence to denote that the environment cannot distinguish two in-
stances of a protocol (anonymity), or cannot tell the difference between the
protocol and its specification (secrecy, authenticity). As observable equivalence
coincides with weak bisimulation in process calculi such as π, Applied π and
PAπ, weak bisimulation is used instead of observational equivalence for its con-
venience in proof. However, the proof of weak bisimulation is much more com-
plicated than that of strong bisimulation. We know that strong bisimulation
implies weak bisimulation, so can we replace weak bisimulation with strong one
in analysis of security protocols?

To our best knowledge, the specification and the protocol itself behaves very
similar in the definitions of most security properties. In [10] Abadi and Gordon
define the authenticity and secrecy security protocol as follows:

Inst(M) ! Instspec(M), for anyM ;Authenticity:
Inst(M) ! Inst(M ′) if F (M) ! F (M ′), for any M, M ′.Secrecy:

where ! is testing equivalence in Spi calculus and Instspec is the specifica-
tion of Inst. In all the given example of [10], process Instspec only changes
some messages of Inst. It is easy to get that Inst(M) ≈ Instspec(M) if and
only if Inst(M) ∼ Instspeic(M) in applied π calculus. The secrecy is simi-
lar. We find the same result in the definition of anonymity (non-probabilistic
anonymity) [19,14]. So we can use strong bisimulation to eliminate the complex-
ity caused by τ actions in weak bisimulation.

4 Anonymity Degree

Anonymity is a general concept, which can be refined into more precise defini-
tions. In [20], three types of anonymous communication properties are proposed:
sender anonymity, receiver anonymity and unlinkability of sender and receiver.
Sender anonymity means that the identity of the party who sent a message is
hidden, while the identity of the receiver might not be. Receiver anonymity sim-
ilarly means that the identity of the receiver is hidden. Unlinkability of sender
and receiver means that though the sender and receiver can each be identified,
but the relation between them cannot be identified.

For each type of anonymity, Reiter and Rubin defined six degrees of anonymity
in [1]. Three of them attracted more attention. Take sender anonymity as an
example:

– Beyond suspicion: if though the attacker can see evidence of a sent message,
the sender appears no more likely to be the originator of that message than
any other potential sender in the system.

– Probable innocence: if from the attacker’s point of view the sender appears
no more likely to be the originator than to not be the originator.
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– Possible innocence: if from the attacker’s point of view, there is a nontrivial
probability that the real sender is someone else.

Probable innocence is weaker than beyond suspicion because the attacker may
have reason to expect that the sender is more likely to be responsible than any
other potential sender, but it still appears at least as likely that the sender is
not responsible. Possible innocence is even weaker because the sender is almost
exposed. But it is still not exactly exposed, that is to say, the probability of
someone to be the actual sender is strictly less than 1.

For anonymous systems, global adversary can make the so called “intersection
attack”. Because not all users are active all the time, the owner of the initial
message can be detected by global adversary. As a result of it, recently people
add dummy traffic [21] into anonymous systems to prevent such attacks. In this
paper we will not consider global attackers, but think about the local corrupted
parties each of which is a local active attacker.

Suppose A is a probabilistic anonymous system, then A(s, r) denotes an in-
stance of A that the sender is s and receiver is r. Let k̃i denote the private
knowledge of some participant i, such as the private keys, newly generated ran-
dom numbers and etc. Chni denotes the set of all the channels related to i. For
a set of corrupted participants T , we write AT (s, r) for the instance in which the
protocol A(s, r) runs with all the private knowledge of corrupted parties in T
being revealed to the environment and all the private channels being under the
control of the environment. In other words, these collaborated participants have
become attackers. By applying the structural rules, we have A(s, r) ≡ νñ.A′(s, r)
where ñ = fn(A(s, r)). Let K̃ = ∪i∈T ki,

AT (s, r) def= ν ñ′.(A′(s, r) | {k̃/x̃j})

where ñ′ = ñ \ (∪i∈T Chni). Now we are ready to give the formal definition of
the degree of anonymity.

Let dT
s denotes the maximum metric between two instances with different

senders and same receivers with the set of corrupted parties T , and let dT
r means

the maximum metric between two instances with same senders and different
receivers with the set of corrupted parties T . Formally,

dT
s

def= max
r∈R

max
s,s′∈S\T

{mmax(AT (s, r), AT (s′, r))}

dT
r

def= max
s∈S

max
r,r′∈R\T

{mmax(AT (s, r), AT (s, r′))}

Definition 10. For any anonymous system A, whose possible sender set is S,
the possible receiver set is R, we say A satisfies,

– beyond suspicion sender anonymity under corrupted parties T , if dT
s = 0,

– probable innocence sender anonymity under corrupted parties T , if dT
s < 0.5,

– possible innocence sender anonymity under corrupted parties T , if dT
s < 1;

– Similarly, we use dT
r to replace dT

s in above statements to define the degree
of receiver anonymity.
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5 Analysis of Crowds

In this section, we first briefly introduce Crowds system; then we model crowds
and analyze its anonymity.

5.1 Crowds

Crowd is a system developed by Reiter and Rubin [1] for protecting users’
anonymity on the world-wide-web. It groups users into a large group called
crowd. A user is represented in a crowd by a process on his/her computer called
a jondo. All communication between any two jondos is encrypted using the sym-
metric key between them. A request will be sent to the destination with the
following steps:

– When receiving the request from the browser, the proxy jondo, say I picks
a jondo, say A1 (possibly himself) at random, and forwards the request to
it.

– When A1 receives the request, it flips a biased coin to determine whether or
not to forward the request to another jondo. The coin indicates to forward
with probability pf .

– If the result is to forward, then the jondo selects a random jondo and forward
the request to it, otherwise, submits the request to the destined server.

5.2 Modeling

In this paper, we only consider the sender anonymity of Crowds. To simplify
the analysis, we assume there is one server, denoted by r, who wants to find the
identity of the real sender. Since we do not consider the global attacker, we may
assume the channels are private and the messages may not be encrypted. The
environment only can listen to the channels of corrupted parties.

Assume there are n jondos in this Crowd. We use J = {1, 2, · · · , n} to denote
the set of jondos, and use cij with i < j to express the channel between jondo i
and j. We write CJ =

⋃
i,j∈J and i<j{cij} for the set of channels between jondos,

CR =
⋃

i∈J{cir} for the channels between a jondo and the server r. CJ ∪CR is
denoted by C. We use the process Crowds(s, r) in Figure 1 to model an instance
of Crowd system where the sender is the jondo s.

A jondo is either an Initiator(the real sender) or a NonInitiator. The
Initiator only can Forward the request, while the NonInitiator can forward
the request with probability pf or submit it with (1− pf). When forwarding the
request, there are three possibilities: first, the jondo chose another jondo whose
index number smaller than his; second,the jondo chose another jondo whose in-
dex number larger than his; and third the jondo chose himself. Because choices
are made uniformly random, so we model these three possibilities in the process
Forward with uniform distribution. Jondos in Crowds can initiate and forward
the requests many times, which may happen in parallel, and this is the reason
why we use the replication operator ! in the processes in Figure 1.
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Forward(i, req) def= Σj∈J,i<j( 1
n
)cij〈req〉 + Σj∈J,j<i( 1

n
)cji〈req〉 + ( 1

n
)SmtOrFwd(i, req)

SmtOrFwd(i, req) def= (pf )Forward(i, req) + (1 − pf )cir〈req〉
Initator(i, s) def= ν req.Forward(i, req)
NonInitiator(i) def= !(Πj∈J,i<jcji(x).SmtOrFwd(i, x) |Πj∈J,j<icji(x).SmtOrFwd(i, x))
Server(r) def= Πi∈Jcir(x)
Crowds(s, r) def= ν C.(Initiator(s) |Πi∈JNonInitiator(i) |Server(r))

Fig. 1. The Crowds system in Probabilistic Applied π calculus

5.3 Analyzing

We first consider the simplest case: two jondos (s1, s2). In this case the only
corrupted party is the server because if one of the two jondos is an attacker,
the sender must be another one. As the server is the attacker, we publicize the
channels in CR:

Crowdsr(s, r) def= ν CJ.(Initiator(s) |Πi∈JNonInitiator(i) |Server(r))

The sender anonymity degree dr
s equals to m(Crowdsr(s1, r), Crowdsr(s2, r).

Theorem 2. When there are only two senders, dr
s = 0 for any pf ∈ [0, 1],

which means in such situation Crowds system satisfies beyond suspicion sender
anonymity.

Theorem 3. If all the senders are honest, then Crowds system satisfies beyond
suspicion sender anonymity for any pf ∈ [0, 1].

This may go against our intuition that pf should influence the anonymity of
crowds. However, in Crowds when an initiator gets a request, he will first choose
one jondo with the probability 1/n and forward to him. So it is not difficult to
interpret such phenomenon.

Let us consider there are n jondos (s1, · · · , sn) and part of them are corrupted
parties, w.l.o.g. we may assume the corrupted parties T = {s1, · · · , sc, r}. We
write CK to denote the channels of s1, · · · , sc, let C′ = CJ \ CK, then an
instance CrowdsT (s, r) is of the following form

ν C′.(Initiator(s) |Πi∈JNonInitiator(i) |Server(r))

We get some data in Table 1 where n denotes the number of jondos, and c the
number of corrupted parties.

We found that for any n ≥ 3 and c ≥ 1, if pf ≤ 0.5, then the degree dT
s > 0.5,

which means Crowds system satisfies possible innocence sender anonymity. If
pf > 0.5 and n is large enough, it satisfies probable innocence (dT

s < 0.5). For
the same pf and c, the larger n is, the more anonymous Crowds system is.
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Table 1. Seder anonymity of Crowds

Jondos n Corrupted jondos c Forwarding probability pf Degree dT
s

3 1 0.5 0.833
3 1 1 0.667
6 1 0.8 0.467
10 2 0.8 0.44
20 2 0.8 0.32

6 Conclusion

In this paper we propose a metric on pairs of processes to measure the degree
of difference between them under the framework of PAπ. It decreases to 0 when
the two processes are strongly bisimilar. Based on metric, the anonymity degree
is defined in PAπ framework. We then analyze the Crowds system.

As to the future work, we will consider applying our approach to analyze some
other probabilistic anonymous systems such as some electronic cash, electronic
voting protocols. We would also like to develop an automatic tool to calculate
metric between any two closed PAπ processes.
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20. Pfitzmann, A., Köhntopp, M.: Anonymity, Unobservability, and Pseudonymity -
A Proposal for Terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001)

21. Berthold, O., Langos, H.: Dummy traffic against long term intersection attacks.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 110–128.
Springer, Heidelberg (2003)



A Hybrid E-Voting Scheme

Kun Peng

Institute for Infocomm Research, Singapore
dr.kun.peng@gmail.com

Abstract. There are two existing solutions to secure e-voting: homo-
morphic tallying and shuffling, each of which has its own advantages
and disadvantages. The former supports efficient tallying but depends
on costly vote validity check and does not support complex elections.
The latter supports complex elections and dose not need vote validity
check but depends on costly shuffling operations in the tallying oper-
ation. In this paper, the two techniques are combined to exploit their
advantages and avoid their disadvantages. The resulting e-voting scheme
is called hybrid e-voting, which supports complex elections, employs effi-
cient vote validity check and only needs shuffling with a very small scale.
So it is more efficient than the existing e-voting schemes, especially in
complex elections.

1 Introduction

There are two main solutions to secure electronic voting. The first one is ho-
momorphic tallying, which does not decrypt the encrypted votes separately but
exploit homomorphism of the employed encryption algorithm to collectively open
the encrypted votes using a small number of decryptions. There are two kinds of
homomorphic tallying: additive homomorphic tallying and multiplicative homo-
morphic tallying. The former [1,16,7,17,18,12] employs an additive homomorphic
encryption algorithm1 like Paillier encryption and recovers the sum of the voters’
selections. The latter [21] employs an multiplicative homomorphic encryption
algorithm2 like ElGamal encryption and recovers the product of the voters’ se-
lections. With homomorphic tallying, each vote must be in a special format, so
that the number of every possible selection can be counted. More precisely, with
additive homomorphic tallying every vote contains one or more selections (each
corresponding to a candidate or a possible choice) and every selection must be
one of two pre-defined integers (e.g. 0 and 1), each representing support or re-
jection of a candidate or choice; with multiplicative homomorphic tallying every
vote contains only one selection, which corresponds to the chosen candidate or
preferred choice and must be one of a few pre-defined integers (1 or e.g. small
primes), each representing a candidate or choice. With such special vote formats,
1 An encryption algorithm with decryption function D() is additive homomorphic if

D(c1) + D(c2) = D(c1c2) for any ciphertexts c1 and c2.
2 An encryption algorithm with decryption function D() is multiplicative homomor-

phic if D(c1)D(c2) = D(c1c2) for any ciphertexts c1 and c2.

F. Bao, H. Li, and G. Wang (Eds.): ISPEC 2009, LNCS 5451, pp. 195–206, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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usually the election rule is not complex with homomorphic tallying. When the
number of candidates or possible choices is large, additive homomorphic tallying
needs a large number of selections in a vote and thus compromises efficiency
while the multiplicative homomorphic tallying must use large integers to rep-
resent the selections and thus the product of the selections easily overflows the
multiplicative modulus. For example, in many political elections (e.g. in Aus-
tralia) there are multiple candidates and each vote must indicate a complete
preferential order of all the candidates. In such preferential voting applications,
the existing homomorphic tallying solutions are impractical. Another drawback
of homomorphic tallying is also caused by special vote format: each vote must
be publicly checked to be valid (in a certain special format). Vote validity check
usually depends on costly zero knowledge proof operations and corresponding
verification operations.

In this paper, we are more interested in multiplicative homomorphic tallying
[21], which is much less well-known than additive homomorphic tallying but has
much simpler vote format. Besides simpler vote format and therefore more ef-
ficient vote sealing, multiplicative homomorphic tallying has another advantage
over additive homomorphic tallying: it employs encryption algorithms depend-
ing on hardness of discrete logarithm problem like ElGamal encryption instead
of the encryption algorithms depending on hardness of factorization problem.
More precisely, there is no efficient method to implement key generation in a
distributed way for any practical additive homomorphic encryption algorithm
(e.g. Paillier encryption, all of which use factorization problem as a trapdoor)
while centralized key generation for them through a trusted dealer [10] requires
too strong a trust and is impractical in applications like e-voting. Note that
although a modified ElGamal encryption in [18] is additive homomorphic, it
is not practical in most applications as it does not support efficient decryption.
There exist some distributed key generation mechanisms for RSA [3,23,8], which
is also factorization based. However, they (especially [3,23]) are inefficient. [8]
improves efficiency to some extent by loosening the requirements on the param-
eters and using additional security assumptions, but is still inefficient compared
to distributed key generation of DL based encryption algorithms like ElGamal
[9]. So they cannot provide an efficient solution to distributed key generation
for additive homomorphic encryption, not to mention the relatively more effi-
cient mechanism among them may not satisfy the parameter requirements with
reasonable security assumptions when applied to additive homomorphic encryp-
tion based e-voting. In comparison, distributed key generation for multiplicative
homomorphic encryption (e.g. ElGamal encryption) can be implemented very
efficiently using the technique in [9].

With multiplicative homomorphic tallying, the vote space contains 1 and some
small primes and each vote contains one integer in the vote space. In the tallying
phase, product of all the votes are recovered and then factorized to re-construct
the votes. A key point is that the product cannot overflow the multiplicative
modulus, otherwise factorization fails. For example, when there are 10 possible
choices in the election, even if the vote space contains 1 and the nine smallest
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primes, a vote selection can still be as large as 23. In the current security stan-
dard, the multiplicative modulus is usually 1024 bits long when ElGamal encryp-
tion is employed. That means even if there are only several hundred voters the
product of their votes will probably overflow the multiplicative modulus. There
are two countermeasures in [21] to avoid the overflow. Firstly, the election must
be simple and thus the vote space only contains very small primes. For example,
the election application in [21] only support YES/NO election and thus the vote
space only contains 1 and 2. Secondly, the votes are divided into multiple groups
and the size of the groups are so small that the product of the votes in each
group will not overflow the multiplicative modulus. A factorization is needed in
each group to reconstruct the votes. There are two concerns in the existing mul-
tiplicative homomorphic tallying [21]. Firstly, the supported election rule is too
simple and not suitable for many election applications. Secondly, its grouping
mechanism weakens privacy of e-voting as each voter is known to have cast one of
the recovered votes in his group. Unlike other e-voting schemes (which hide every
voter’s choice among all the recovered votes), the multiplicative-homomorphic-
tallying-based e-voting scheme in [21] only achieves weaker and incomplete
privacy.

Due to the drawbacks of homomorphic tallying, shuffling [11,19,14,22,15,20,13]
is often employed in e-voting when complex election rules like preferential elec-
tion is used. A shuffling operation re-encrypts (or partially decrypts) the en-
crypted votes and re-orders them. Multiple shuffling operations are employed
and each of them is performed by a different tallier such that the votes are un-
traceable if at least one tallier is honest. Finally, the repeatedly shuffled votes
are decrypted to recover all the votes. Even if one of the most efficient shuffling
primitives with satisfactory security [11,15,20,13] is employed, in every shuffling
operation for each vote several exponentiations are needed for re-encryption and
several exponentiations are needed for public proof of validity of shuffling. So the
shuffling operations in e-voting are costly, especially when the number of voters
is large.

In this paper, multiplicative homomorphic tallying and shuffling are modified
respectively so that they can be combined to exploit their advantages and avoid
their disadvantages. On one hand, the vote space of multiplicative homomorphic
tallying is enlarged to hold all the possible choices for a voter even in a complex
election. For example, when there are several candidates and preferential election
is used, there are several hundred possible choices for a voter. In this case, we can
use the 10-bit primes and with a 1024-bit multiplicative modulus each group for
factorization operation can contain around 100 votes. With this modification,
each vote only contains one integer even if preferential election is used and
only one decryption is needed in each group to recover the votes. On the other
hand, to prevent the grouping mechanism with small group size from weakening
privacy a modified shuffling mechanism is employed to shuffle the groups (instead
of the votes). Any existing shuffling protocol supporting ElGamal encryption
can be employed on the conditions that it is properly modified to suit the new
application. Firstly, it only shuffles the groups. Secondly, as shown in Section 4.1,
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recovery of the shuffled messages in the end of the shuffling and analysis of
soundness needs adjusting. As the number of groups is much smaller than the
number of votes (e.g. the former may be 1% of the latter), the modified shuffling
is very efficient. In the new e-voting scheme, vote validity check is still needed
to guarantee that every vote is in the vote space such that the factorization
operations can recover the votes. As the group size is not very small, vote validity
check is costly if existing techniques are employed to implement it. To solve
this problem, a new vote validity check technique is designed for the voters to
efficiently prove validity of their votes.

The resulting e-voting scheme is called hybrid e-voting, which supports simple
vote format, efficient vote sealing, complex elections and efficient distributed key
generation, employs efficient vote validity check and only needs shuffling with a
very small scale. So it is more efficient than existing e-voting schemes, especially
in complex elections. A property sometimes desired in e-voting, receipt-freeness
(or called coercion-resistance in some literature), is not the focus of this paper, so
is not discussed in detail. Either of the two existing solutions to receipt-freeness,
deniable encryption [4] and re-encryption with untransferable zero knowledge
proof of correctness by a third party (in the form of a trusted authority or a
tamper-resistent hardware) [18] can be employed to achieve it if needed.

2 Parameters and Denotions

The symbols and notations to be used in this paper are listed as follows and in
Table 1.

Table 1. Notations

P the prover in a proof protocol.
V the verifier in a proof protocol.
a ∈R S a is a integer randomly chosen from set S.
	x
 the largest integer no larger than x.
�x� the smallest integer no smaller than x.
E(), RE() and D() encryption, re-encryption and decryption respectively.
P [ x1, x2, . . . , xn | A(x1, x2, . . . , xn) ] the probability of event A distributed over variants

x1, x2, . . . , xn.

For simplicity, it is supposed that when ElGamal encryption is employed it is
as follows.

– Parameter setting
A security parameter K is chosen (e.g. set to be 1024) and a K-bit prime p
is chosen such that p−1 = 2q and q is a large prime. G is the cyclic subgroup
in Zp with order q and g is a generator of G.

– Key setting
The private key is an integer x in Zq. It is generated in a distributed way
using the key generation technique in [9] such that it is shared by multiple
parties (e.g talliers in e-voting). x can be reconstructed only if the number
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of cooperating share holders is over a certain threshold. The public key is
y = gx mod p.

– Encryption
A message M is encrypted into E(M) = (a, b) = (gr mod p, Myr mod p)
where r is randomly chosen from Zq.

– Re-encryption
A ciphertext u = (a, b) is re-encrypted into RE(u) = (a′, b′) = (agr′

mod
p, byr′

mod p) where r′ is randomly chosen from Zq.
– Decryption

When the the number of cooperating share holders is over the threshold,
given a ciphertext u = (a, b), they cooperate to calculate D(u) = b/ax mod p.

– Product of ciphertexts
u1u2 = (a1a2, b1, b2) where u1 = (a1, b1) and u2 = (a2, b2).

3 Background

Important cryptographic primitives in existing e-voting schemes are recalled in
this paper. In comparison with them, more advanced and efficient designs will
be employed in this paper.

3.1 Shuffling in E-Voting

In a shuffling protocol, a shuffling node re-encrypts and reorders multiple input
ciphertexts to some output ciphertexts such that the messages encrypted in the
output ciphertexts are a permutation of the messages encrypted in the input
ciphertexts. The shuffling node has to publicly prove validity of its shuffling.
Shuffling is usually employed to build up anonymous communication channels
and its most important application is e-voting. Suppose the input cipher-
texts are u1, u2, . . . , un are inputs to a shuffling node, who outputs ciphertexts
u′

1, u
′
2, . . . , u

′
n where u′

i = RE(uπ(i)) and π() is a secret permutation of 1, 2, . . . , n.
The shuffling node has to publicly prove that D(u′

1), D(u′
2), . . . , D(u′

n) is a per-
mutation of D(u1), D(u2), . . . , D(un) without revealing π().

Even in the most computationally efficient shuffling protocols [20,13], re-
encryption of each ciphertext costs several exponentiations and zero knowledge
proof of validity of shuffling of n ciphertexts cost O(n) exponentiations. When
n is large, it is a high cost, not to mention multiple instances of shuffling are
needed in e-voting.

3.2 Vote Validity Check

Suppose the vote space is S = {p1, p2, . . . , pm} and a voter submits an ElGamal
ciphertext u = (a, b) = (gr mod p, Myr mod p) as his encrypted vote, he has to
publicly prove that D(u) is in S without revealing it. The normal technique to
implement this proof is a special zero knowledge proof primitive called “proofs
of partial knowledge” [6] detailed in Figure 1.
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For simplicity, suppose D(u) = pm.

1. P → V : ai = gwiaci mod p for i = 1, 2, . . . , m − 1
bi = ywi(b/pi)ci mod p for i = 1, 2, . . . , m − 1
am = gs mod p
bm = ys mod p

where ci ∈R Zq for i = 1, 2, . . . , m − 1, wi ∈R Zq for i = 1, 2, . . . , m − 1 and
s ∈R Zq .

2. V → P : c ∈R Zq

3. P → V : c1, c2, . . . , cm, w1, w2, . . . , wm

where wm = s − cmr mod q and cm = c −∑m−1
i=1 ci mod q.

Verification: ai = gwiaci mod p for i = 1, 2, . . . , m
bi = ywi(b/pi)ci mod p for i = 1, 2, . . . , m

c =
∑m

i=1 ci mod q

Fig. 1. ZK proof and verification of a vote encrypted with ElGamal

This solution is highly inefficient. It costs O(m) full-length exponentiations.
When it is applied to vote validity check in an e-voting with n voters, the cost
for vote validity check is O(nm). In a large scale election with a large number of
voters and a larger number of choices for them, it is a very high cost. Especially, it
is too costly for the common people to verify validity of the votes and correctness
of the election result.

4 The New Solution

The new solution is a hybrid technique, which modifies and combines multi-
plicative homomorphic tallying and shuffling to exploit their advantages and
avoid their disadvantages. Moreover, an efficient vote validity check mechanism
is proposed to improve efficiency.

4.1 Combination of Multiplicative Homomorphic Tallying and
Shuffling

Multiplicative homomorphic tallying and shuffling are modified and combined
to design a new e-voting scheme as follows.

1. Determining the vote space
According to the election rule, the number of possible choices for a voter is
calculated. For example, in a preferential election with l candidates, there
are l! possible choices. When l = 5 or 6 as in many practical preferential elec-
tions, there are several hundred possible choices. Suppose there are m pos-
sible choices in the election application, the vote space S = {p1, p2, . . . , pm}
contains 1 and the m− 1 smallest odd primes, each standing for a choice.
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2. Vote submission
Suppose there are n voters. Each voter chooses his vote vi from S and submit
ui = (ai, bi) = (gri , viy

ri) where ri is randomly chosen from Zq. Each voter
proves validity of his vote using batch proof and verification.

3. Grouping the encrypted votes
Suppose p1 = 1 and pj is the j − 1th smallest odd primes in S. The size
of each group is α =

⌊
logpm

p
⌋
, so that the product of the votes in any

group will not overflow p. The n encrypted votes are divided into β = "n/α#
groups, while ui is in the ($i/α%+ 1)th group.

4. Shuffling the groups
The β groups are denoted as G1, G2, . . . , Gβ. For j = 1, 2, . . . , β, the talliers
calculate Uj = (Aj , Bj) = (

∏
ui∈Gj

ai,
∏

ui∈Gj
bi). U1, U2, . . . , Uβ are re-

peatedly shuffled by multiple talliers and the last shuffling operation outputs
U ′

1, U
′
2, . . . , U

′
β . Any efficient shuffling protocol supporting ElGamal encryp-

tion (e.g. [14,13]) can be employed to shuffle the groups as follows.
(a) After a shuffling tallier receives ciphertexts W1, W2, . . . , Wβ , each rep-

resenting a group shuffled by the last shuffling tallier, he re-encrypts
and re-orders them and output ciphertexts W ′

1, W
′
2, . . . , W

′
β such that

W ′
j = RE(Wπ(j)) for j = 1, 2, . . . , β where π() is a permutation of

1, 2, . . . , β chosen by the tallier.
(b) After W ′

1, W
′
2, . . . , W

′
β are published, random θ-bit challenges

t1, t2, . . . , tβ are chosen (e.g. by pseudo-random functions like hash
function or by multiple parties with a threshold trust on them) where
2θ ≤ q.

(c) The shuffling tallier proves that∏β
j=1 W

tj

j =
∏β

j=1 W ′tπ(j)
j mod p (1)

and the permutation π() is committed and unchanged using a zero knowl-
edge protocol (see [13] for more details).

(d) A verifier verifies the proof of (1) and is convinced that the shuffling is
valid if and only if (1) is proved to be satisfied. Unfortunately, in the
existing shuffling protocols employing this idea (e.g [14,13]) it is not for-
mally explained why (1) guarantees that D(W ′

1), D(W ′
2), . . . , D(W ′

β) is a
permutation of D(W1), D(W2), . . . , D(Wβ). When ElGamal encryption
is employed like in our application, (1) actually implies that∏β

j=1 D(Wj)tj =
∏β

j=1 D(W ′
j)tπ(j) mod p. (2)

Although according to the formal security analysis in
[20] D(W ′

1), D(W ′
2), . . . , D(W ′

β) must be a permutation of
D(W1), D(W2), . . . , D(Wβ) when

∑β
j=1 D(Wj)tj =

∑β
j=1 D(W ′

j)tπ(j)
is satisfied, it only covers shuffling employing additive homomor-
phic encryption algorithms like Paillier encryption. As multiplicative
homomorphic tallying is exploited in the new e-voting scheme,
multiplicative homomorphic encryption algorithms like ElGamal
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encryption must be employed and only (2) can be guaranteed by
the shuffling protocol. To the best of our knowledge, there is no
existing formal analysis (in [14,13] or other schemes) to guarantee
that (2) implies correctness of shuffling. Actually, satisfaction of (2)
cannot guarantee that D(W ′

1), D(W ′
2), . . . , D(W ′

β) is a permutation
of D(W1), D(W2), . . . , D(Wβ). As formally illustrated in Theorem 1,
satisfaction of (2) only guarantees that |D(W ′

1)|, |D(W ′
2))|, . . . , |D(W ′

β)|
is a permutation of D(W1), D(W2), . . . , D(Wβ) where function | | is
defined as follows.

Definition 1. For an integer x in Zp, |x| = x if x is factorized into α
primes in the vote space where α is the group size; otherwise, |x| = p−x.

5. Decryption and factorization
The talliers cooperate to decrypt U ′

1, U
′
2, . . . , U

′
β. For j = 1, 2, . . . , β, Vj =

D(U ′
j). Each participating tallier proves that his part of decryption is cor-

rect using zero knowledge proof of equality of discrete logarithms [5]. Then
V1, V2, . . . , Vβ are factorized as follows.
(a) Factorize each group represented by Vj for j = 1, 2, . . . , β. According

to Theorem 1, either Vj or p − Vj should be factorized. Suppose α is
the group size. If Vj is factorized into α primes in the vote space, Vj

is the product of the votes in a shuffled group and the factorization is
accepted. Otherwise, the product of the votes in a shuffled group should
be recovered as p − Vj , which is then factorized. As p is an odd prime,
it is impossible that both Vj and p− Vj are factorized into only the odd
primes in the vote space, so the factorization function is decisional.

(b) The number of votes choosing p2 is counted as the number of p2 found
in the β factorizations; the number of votes choosing p3 is counted as the
number of p3 found in the β factorizations; . . . . . .; the number of votes
choosing pm is counted as the number of pm found in the β factorizations.
The number of votes choosing p1 is counted as n minus the sum of other
choices.

Theorem 1. Suppose x1, x2, . . . , xβ are integers in Z∗
p and y1, y2, . . . , yβ are

primes in Z∗
p and t1, t2, . . . , tβ are θ-bit integers. If

∏β
j=1 x

tj

j =
∏β

j=1 y
tπ(j)
j mod p

with a probability larger than 2−θ and π() is a committed and unchanged permu-
tation of 1, 2, . . . , β, then there is a choice of implementation of [ ] for each [xj ]
such that [x1], [x2], . . . , [xβ ] is a permutation of y1, y2, . . . , yβ where [xj ] = xj or
p− xj .

Proof. Given any integer γ in {1, 2, . . . , β}, there must exist integers
t1, t2, . . . , tγ−1, tγ+1, . . . , tn in {0, 1, . . . , 2θ− 1} and two different integers tγ and
t̂γ in {0, 1, . . . , 2θ − 1} such that the following two equations are correct.∏β

j=1 x
tj

j =
∏β

j=1 y
tπ(j)
j mod p (3)∏γ−1

j=1 x
tj

j + x
t̂γ
γ +

∏β
j=γ+1 x

tj

j =
∏γ−1

j=1 y
tπ(j)
j + y

t̂π(γ)
γ +

∏β
j=γ+1 y

tπ(j)
j mod p (4)
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Otherwise, for any combination of t1, t2, . . . , tγ−1, tγ+1, . . . , tβ there is at most
one tγ to satisfy equation

∏β
j=1 x

tj

j =
∏β

j=1 y
tπ(j)
j mod p. This deduction implies

that among the 2βθ possible combinations of t1, t2, . . . , tβ , equation
∏β

j=1 x
tj

j =∏β
j=1 y

tπ(j)
j mod p is correct for at most 2(β−1)θ combinations. This conclusion

leads to a contradiction: given random integers tj from {0, 1, . . . , 2θ − 1} for j =
1, 2, . . . , β and π(), a committed and unchanged permutation of j = 1, 2, . . . , β,
equation

∏β
j=1 x

tj

j =
∏β

j=1 y
tπ(j)
j mod p is correct with a probability no larger

than 2−β.
(3) and (4) respectively implies

∏β
j=1 x

tj

j =
∏β

j=1 y
tj

π−1(j) mod p (5)

∏γ−1
j=1 x

tj

j + x
t̂γ
γ +

∏β
j=γ+1 x

tj

j =
∏γ−1

j=1 y
tj

π−1(j) + y
ˆtγ

π−1(γ) +
∏β

j=γ+1y
tj

π−1(j) modp
(6)

(5) divided by (6) yields

xtγ−t̂γ
γ = y

tγ−t̂γ

π−1(γ) mod p

Namely
(xγ/yπ−1(γ))tγ−t̂γ = 1 mod p

As xγ and yπ−1(γ) are in Z∗
p , xγ/yπ−1(γ) is in Z∗

p as well. As t1, t2, . . . , tβ are
θ-bit integers and 2θ ≤ q, the absolute value of tγ − t̂γ is smaller than q. So, as
p− 1 has only two dividers, 2 and q,

xγ/yπ−1(γ) = ±1 mod p

Namely,
xγ = ±yπ−1(γ) mod p

Note that γ can be any integer in {1, 2, . . . , β}. Therefore, there is a choice of
implementation of [ ] for each [xj ] such that [x1], [x2], . . . , [xβ ] is a permutation
of y1, y2, . . . , yβ. �

Theorem 1 guarantees that any valid vote can be correctly recovered, while
the privacy functionality of the shuffling guarantees that no matter how small
the group size is the grouping mechanism does not compromise privacy of the
e-voting scheme.

5 Properties and Comparison

In the new e-voting scheme, both homomorphic tallying and shuffling are em-
ployed. However, both techniques are optimised. In homomorphic tallying, ef-
ficiency of vote validity check is improved. When L is 40, soundness is strong
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enough and only a small constant number of full length exponentiations are
needed. Bellare et al [2] have illustrated that an exponentiation with a 40-bit
exponent is much more efficient than a full length exponentiation. So a satisfac-
tory trade-off between security and efficiency is achieved. Although shuffling is
employed in the new e-voting scheme, it is in a much smaller scale than in the
existing application of shuffling to e-voting. For example, in a normal case the
number of possible choices is no more than several hundred in an election. In this
case, the primes in the vote space are no larger than a couple of thousand and
with a 1024-bit multiplicative modulus each group for factorization operation
can contain around 100 votes. So usually the number of groups is much smaller
than the number of votes (e.g. the former may be 1% of the latter). As the cost
of shuffling operation (including re-encryption and proof or validity) is linear in
the number of shuffled objects, the the modified shuffling mechanism is much
more efficient than the existing shuffling protocols in e-voting.

Although a grouping mechanism is employed in the new e-voting scheme, it
does not compromise privacy of the election as all the groups are shuffled before
the votes in them are recovered through collective decryption and factorization.
If at lease one of the shuffling talliers is honest, the groups are untraceable
and no vote is known to be in any group. As semantically secure encryption is
used and the employed shuffling protocol and the vote validity check mechanism
achieve zero knowledge privacy, privacy of the new e-voting scheme is strong.
The advantages of the new e-voting scheme over the existing e-voting schemes
are demonstrated in Table 2. It is clearly illustrated that the new e-voting scheme
is secure, rule-flexible and more efficient.

Table 2. Comparison of e-voting schemes

e-voting election rule distributed key vote vote validity shuffling
generation sealing check

additive simple rule inefficient inefficient inefficient no need
homomorphic only
multiplicative simple rule efficient efficient inefficient no need
homomorphic only

shuffling supporting can be efficient efficient no need inefficient
based complex rule

new hybrid supporting efficient efficient efficient efficient
scheme complex rule

6 Conclusion

The new e-voting scheme proposed in this paper is a hybrid solution combining
multiplicative homomorphic tallying and shuffling. It exploits advantages of the
two techniques and avoids their disadvantages. As a result, it has a lot of mer-
its. It supports simple vote format, efficient vote sealing, complex elections and
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efficient distributed key generation. It employs efficient vote validity check and
only needs shuffling with a very small scale. So it is more efficient than existing
e-voting schemes, especially in complex elections.
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Abstract. We first introduce the new notion of the so-called target-
independent smooth projective hashing (TISPHash) based on computa-
tionally-hiding commitments. Based on it and a class of pseudo-random
functions (PRFs), we propose a framework for (PKI-based) authenti-
cated key exchange protocols without random oracles and prove it to
be secure in the (currently) strongest security definition, the extended
Canetti-Krawczyk security definition. Our protocol is actually an ab-
straction of the efficient key exchange protocol of T. Okamoto. The
abstracted protocol enjoys efficient instantiations from any secure en-
cryption scheme that admits an efficient construction of TISPHash and
allows a simple and intuitive understanding of its security. In some sense,
our construction generalizes the design of T. Okamoto.

Keywords: authenticated key exchange, Standard Model.

1 Introduction

A central problem in cryptography is that of enabling parties to communicate
secretly and reliably in the presence of an adversary. This is often achieved by
having the parties run a protocol for generating a mutual and secret session
key (authenticated key exchange). During the last decades, the design of 2-party
authenticated key exchange(AKE) has been explored intensively. Although some
efficient two-pass AKE protocols such as HMQV[1], NAXOS and CMQV[2] were
presented in the literature, they usually achieved provable security in the random
oracle model. In this model, all parties are assumed to have oracle access to
a totally random (universal) function [3]. The common interpretation of such
results is that security is likely to hold even if the random oracle is replaced by
a (“reasonable”) concrete function known explicitly to all parties (e.g., SHA-2).
However, it has been shown that it is impossible to replace the random oracle
in a generic manner with any concrete function [4]. Thus, the proofs of security
of these protocols are actually heuristic in nature. Therefore designing provably
secure AKE without random oracles get much attention in the current research.
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Most recently, T. Okamoto presented a new paradigm to realize AKE without
random oracles under three assumptions: the decisional Diffie-Hellman (DDH)
assumption, target collision resistant (TCR) hash functions and a class of pseudo-
random functions (PRFs), πPRFs ( PRFs with pairwise-independent random
sources )[5]. They proposed a (PKI-based) AKE protocol that was compara-
bly as efficient as the existing most efficient protocols like MQV[6] and that
was secure without random oracles (under these assumptions). Moreover, their
protocol achieved provable security in the (currently) strongest security defini-
tion, the extended Canetti-Krawczyk (eCK) security definition introduced by
LaMacchia, Lauter and Mityagin[7].

In this paper, we first introduce the new notion of the so-called target-
independent smooth projective hashing(TISPHash) based on computationally-
hiding commitments. Based on it and πPRF, we propose a framework for
(PKI-based) AKE protocols without random oracles and prove it to be secure
in the (currently) strongest security definition, the extended Canetti-Krawczyk
(eCK) security definition. Our protocol is actually an abstraction of the key
exchange protocol of T. Okamoto[5]. The abstracted protocol enjoys efficient
instantiations from any secure encryption scheme that admits an efficient con-
struction of TISPHash and allows a simple and intuitive understanding of its
security. In some sense, our construction generalizes the design of [5]. Finally,
to provide the reader with an idea of how efficient target-independent smooth
projective hash functions are, we give an example of TISPHash based on the
El-Gamal encryption scheme. A protocol that is almost identical to that of [5]
can be derived when our protocol is instantiated with it.

2 Extended Canetti-Krawczyk Security Definition [5]

This section outlines the extended Canetti-Krawczyk (eCK) security definition
for two pass PKI-based AKE protocols that was introduced by LaMacchia,
Lauter and Mityagin [7], and follows the description in [2,5].

In the eCK definition, we suppose there are n parties which are modeled as
probabilistic polynomial-time Turing machines.We assume that some agreement
on the common parameters in the AKE protocol has been made among the
parties before starting the protocol. The mechanism by which these parameters
are selected is out of scope of the AKE protocol and the (eCK) security model.

Each party has a static public-private key pair together with a certificate that
binds the public key to that party. Â(B̂) denotes the static public key A(B) of
party A(B) together with a certificate. We do not assume that the certifying
authority (CA) requires parties to prove possession of their static private keys,
but we require that the CA verifies that the static public key of a party belongs
to the domain of public keys.

Here, two parties exchange static public keys A, B and ephemeral public keys
X, Y ; the session key is obtained by combining A, B, X, Y and possibly session
identities. A party A can be activated to execute an instance of the protocol
called a session. Activation is made via an incoming message that has one of the
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following forms: (Â, B̂) or (B̂, Â, X). If A was activated with (Â, B̂), then A is
called the session initiator, otherwise the session responder. Session initiator A
creates ephemeral public-private key pair, (X, x) and sends (B̂, Â, X) to session
responder B. B then creates ephemeral public-private key pair, (Y, y) and sends
(Â, B̂, X, Y ) to A.

The session of initiator A with responder B is identified via session identifier
(Â, B̂, X, Y ), where A is said the owner of the session, and B the peer of the
session. The session of responder B with initiator A is identified as (B̂, Â, Y, X),
where B is the owner, and A is the peer. Session (B̂, Â, Y, X) is said a matching
session of (Â, B̂, X, Y ). We say that a session is completed if its owner computes
a session key.

The adversary M is modeled as a probabilistic polynomial-time Turing ma-
chine and controls all communications. Parties submit outgoing messages to the
adversary, who makes decisions about their delivery. The adversary presents
parties with incoming messages via Send(message), thereby controlling the ac-
tivation of sessions. In order to capture possible leakage of private information,
adversary M is allowed the following queries:

– EphemeralKeyReveal(sid) The adversary obtains the ephemeral private key
associated with session sid.

– SessionKeyReveal(sid) The adversary obtains the session key for session sid,
provided that the session holds a session key.

– StaticKeyReveal(pid) The adversary learns the static private key of party
pid.

– EstablishParty(pid) This query allows the adversary to register a static pub-
lic key on behalf of party. In this way the adversary totally controls that
party.

If party pid is established by EstablishParty(pid) query issued by adversary
M, then we call the party dishonest. If party is not dishonest, we call the party
honest.

The aim of adversary M is to distinguish a session key from a random key.
Formally, the adversary is allowed to make a special query Test(sid∗), where sid∗

is called the target session. The adversary is then given with equal probability
either the session key held by sid∗ or a random key of equal length. The adversary
wins the game if he guesses correctly whether the key is random or not. To define
the game, we need the notion of fresh session as follows:

Definition 1. (fresh session) Let sid be the session identifier of a completed
session, owned by an honest party A with peer B, who is also honest. Let sid be
the session identifier of the matching session of sid, if it exists. Define session
sid to be fresh if none of the following conditions hold:

– M issues a SessionKeyReveal(sid) query or a SessionKeyReveal(sid) query
(if sid exists),

– sid exists and M makes either of the following queries:
both StaticKeyReveal(A) and EphemeralKeyReveal(sid), or
both StaticKeyReveal(B) and EphemeralKeyReveal(sid),
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– sid does not exist and M makes either of the following queries:
both StaticKeyReveal(A) and EphemeralKeyReveal(sid), or
StaticKeyReveal(B).

We are now ready to present the eCK security notion.

Definition 2. (eCK security) Let sk∗ be a session key of the target session sid∗

that should be “fresh”, and b∗ is a bit chosen uniformly at random in {0, 1}. As
a reply to Test(sid∗) query by M, sk∗ is given to M if b∗ = 0; a random key of
the same size is given otherwise. Finally M guesses the bit b∗ and outputs this
guess b. We define AdvAKEM(l) = 2

∣∣Pr[b = b∗]− 1
2

∣∣.
A key exchange protocol is secure if the following conditions hold:

– If two honest parties complete matching sessions, then they both compute the
same session key (or both output indication of protocol failure).

– For any probabilistic polynomial-time adversary M, AdvAKEM(l) is negli-
gible in l.

This security definition is stronger than CK-security [8] and it simultaneously
captures all the known desirable security properties for authenticated key ex-
change including resistance to key-compromise impersonation attacks, weak per-
fect forward secrecy, and resilience to the leakage of ephemeral private keys.

3 Decisional Diffie-Hellman Assumption-DDH

Let G be a large cyclic group of prime order p. We consider the following two
distributions:

– Given a Diffie-Hellman quadruple g, gx, gy and gxy, where x, y ∈ Zp, are
random strings chosen uniformly at random;

– Given a random quadruple g, gx, gy and gr, where x, y, r ∈ Zp, are random
strings chosen uniformly at random.

An algorithm that solves the Decisional Diffie-Hellman problem is a statistical
test that can efficiently distinguish these two distributions. Decisional Diffie-
Hellman assumption means that there is no such a polynomial statistical test.

4 Basic Tools

The design of our protocol mainly builds on three basic tools: πPRFs, compu-
tationally-hiding commitments and TISPHash, where the so-called TISPHash
is first introduced by us and is a specific class of smooth projective hashing
recently introduced by Cramer and Shoup [9]. Our usage of these tools is to a
large extent inherited from [10]. In this section we review the main definitions
and results necessary for the sequel.
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4.1 Computationally-Hiding Commitments

The first essential component of Gennaro and Lindell’s construction[10] and of
our proposal are non-interactive computationally-hiding commitment schemes
[11]. In this section we will describe such schemes, as well as a subtle issue that
arises regarding these schemes.

Roughly speaking, they should fulfill the following requirement: A commit-
ment c to a value m is of no help in gaining any information about m for any
chosen-plaintext adversary of computationally-bounded resources(i. e., Computa-
tionally-hiding under CPA). In this paper, we simply call it computa- tionally-
hiding.

Let C be a non-interactive computationally-hiding commitment scheme as
above; such schemes are known to exist in the common reference string model[11].
Any public-key encryption scheme that is semantically secure under chosen plain-
text attack can be used as a non-interactive computationally-hiding scheme in
the common reference string model[11].

We denote by Cρ(m; r) a commitment to m using random-coins r and com-
mon reference string ρ. Such a commitment scheme is the basis for our hard
problem. Let Cρ denote the space of all strings that may be output by the com-
mitment scheme C when the CRS is ρ, and let M denote the message space.
We note that actually, Cρ and M must be supersets of these spaces that are
efficiently recognizable; the actual definition of the supersets depends on the
specific commitment scheme used. Next, define the following sets:

– Xρ = Cρ ×M .
– Lρ = {(c, m)|∃ r(called a witness): c = Cρ(m; r)}

Furthermore, define the partitioning of Xρ to be by index m (i.e., consider
Xρ(m) = Cρ × m and Lρ(m) = {(c, m)|∃ r : c = Cρ(m; r)} (i.e., Lρ(m) is
the language of all commitments to m using ρ). The distribution D(Lρ(m)) is
defined by choosing a random r and outputting (Cρ(m; r), m). In contrast, the
distribution D(Xρ(m)\Lρ(m)) is defined by choosing a random r and outputting
(Cρ(0|m|; r), m). Clearly, by the hiding property of C, it holds that for every m,
random elements chosen from D(Lρ(m)) are computationally indistinguishable
from random elements chosen from D(Xρ(m)\Lρ(m)). This therefore consti-
tutes a hard partitioned subset membership problem. We refer to [10] for more
information about it.

4.2 Smooth Projective Hashing

We briefly recall Gennaro and Lindell’s proposal for constructing smooth pro-
jective hash families[10], given a suitable commitment scheme as above C, and
then introduce the new notion of TISPHash.

We are interested in a smooth projective hash function family defined with
respect to (Xρ, Lρ). Loosely speaking a smooth projective hash function is a
function with two keys. The first key maps the entire set Xρ(m) to some set G.
The second key (called the projection key) is such that it can be used to correctly
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compute the mapping of Lρ to G. However, it gives no information about the
mapping of Xρ\Lρ to G. In fact, given the projection key, the distribution over
the mapping of Xρ\Lρ to G is statistically close to uniform (or “smooth”). We
now present the formal definition. A family of smooth projective hash functions
HASH = (α, SmthHash, ProjHash) associated with Cρ consists of three algo-
rithms. Let K be the key space, and k be a key chosen at random uniformly in
K. We call k a hash key. Via s ← α(k), the key projection algorithm produces
projected hash keys s ∈ S for a hash key k, where S is the space of projected
hash keys. Via g ← SmthHash(k, c, m), the hashing algorithm computes the
hash value g ∈ G of (c, m) using the hash key k. Via g ← ProjHash(s, c, m, r),
the projected hashing algorithm computes the hash value g ∈ G of (c, m) using
the projected hash key s and a witness r (i.e. c = Cρ(m, r)). Formally, the above
system defines a smooth projective hash system if the following conditions are
satisfied:

– For all (c, m) ∈ Lρ and k ∈ K, the hash values SmthHash(k, c, m) and
ProjHash(α(k), c, m, r) are the same(Projective);

– For all (c, m) ∈ Xρ\Lρ and k ∈ K, the hash value g = SmthHash(k, c,
m) is statistically close to uniform in G and independent of the values
(α(k), c, m)(Smooth).

The usual smooth projective hash function actually does not suffice for our
application. Now, we define a new notion— target-independent smooth projec-
tive hashing (TISPHash). We say a smooth projective hash function family is
target-independent if one more condition is satisfied:

– For (c, m) ← D(Xρ\Lρ) (where an appropriate witness r is not known), no
ppt adversary can find a different pair of (c

′
, m

′
) such that the value

SmthHash(k, c, m) is dependent on the value SmthHash(k, c
′
, m

′
) with non-

negligible probability, given the projection α(k)(Target-Independent).

The so-called target-independent smooth projective hashing is just a specific
smooth projective hash function. Actually, the example given in [10] based on
the El-Gamal encryption scheme is smooth projective hashing but not target-
independent.

4.3 Pseudo-Random Function (PRF)

The concept of a pseudo-random function (PRF) is defined in [12] by Goldreich,
Goldwasser and Micali.

Let l ∈ N be a security parameter. A pseudo-random function (PRF) family
F associated with {Σl}l∈N , {Dl}l∈N and {Rl}l∈N specifies a family of pseudo-
random functions indexed by l, where each such function F l

σ takes a random
seed drawn by σ uniformly distributed over Σl and then maps an element of Dl

to an element of Rl.
Let M be a probabilistic polynomial-time machine with oracle access to O(

output an element in R with an element in D). For all l, we define two ex-
periments, ExpF

l (M) and ExpR
l (M), where O is answered with F l

σ in the first
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experiment while it is answered with a truly random function RF : Dl → Rl in
the other experiment. F is a pseudo-random function (PRF) family if there is no
such probabilistic polynomialtime adversary M that can efficiently distinguish
the above two experiments.

πPRFs, firstly introduced in [5], is a specific class of PRFs with pairwise-
independent random sources. Let (σ0, σ1, · · · , σt(l)) be random variables uni-
formly distributed over Σl and σ0 be pairwisely independent from other variable,
where t(l) is a polynomial of l.

Let M be a probabilistic polynomial-time machine with oracle access to
(O0, · · · ,Ot(l)). For all l, we define two experiments, ExpF

l (M) and ExpR
l (M),

where Oj is answered respectively with F l
σj

for j = 1, · · · , t(l) in the both experi-
ments and the onlydifference is thatO0 is answeredwithF l

σ0
in the first experiment

while it is answered with a truly random function RF : Dl → Rl in the second
experiment. F is a πPRF family if there is no such probabilistic polynomialtime
adversaryM that can efficiently distinguish the above two experiments.

5 The Proposed Framework for AKE

The idea of our framework is inspired in that of the Gennaro-Lindell protocol[10],
which itself is an abstraction of the password-based key exchange protocol of
Katz, Ostrovsky, and Yung [13,14]. Our protocol is also an abstraction of the
AKE protocol of T. Okamoto [5]. Our protocol builds on three basic tools: PRFs
including πPRFs, non-interactive computationally-hiding commitment scheme C
and target-independent smooth projective hash family HASH. The last two can
be implemented in the common reference string (CRS) model.

For a pictorial description of our protocol, please refer to Fig. 1. For the
sake of readability, we do not explicitly refer to instances of users. The protocol
description below omits many implementation details which are important for
the proof of security to hold. Most important is for both parties to perform
a “validity check” on the messages they receive. Let e

U←− E denote that e is
uniformly selected from a set E. The formal description follows.

Description. Let Cρ(m, r) denote a commitment to the message m using
random coin tosses r and the CRS ρ, where m can be simply set to be 1 in
our protocol. Let HASH = (α, SmthHash, ProjHash) be a family target-
independent smooth projective hash functions based on Cρ. In particular, we
assume the image of the hash functions SmthHash and ProjHash to be con-
tained in a finite abelian group G with g1 as its generator. Recall that the key
projection function α is defined as a function of K. Let F̂ and F̃ be PRF fam-
ilies and F a family of πPRFs. The corresponding Σ, D and R can be inferred
based on the description below and thus are omitted here. F̂ , F̃ and F are the
member functions of them respectively with respect to the security parameter l.
Our protocol has a total of two rounds of communication and works as follows.

Initialization. Party A chooses uniformly at random a value a ∈ K as its
static private key, computes its static public key A via α with a as input and
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A B
a

U←− K b
U←− K

A ← α(a) B ← α(b)

(x1, x2)
U←− {0, 1}l × {0, 1}l

(x, x3) ← F̂x1(1l) + F̃a(x2)
X ← Cρ(m, x)

X3 ← gx3
1

(B̂,Â,X,X3)−−−−−−−−→
(y1, y2)

U←− {0, 1}l × {0, 1}l

(y, y3) ← F̂y1(1
l) + F̃b(y2)

Y ← Cρ(m,y)
(Â,B̂,X,X3,Y,Y3)←−−−−−−−−−−− Y3 ← gy3

1

σ ← SmthHash(a,Y )× σ ← SmthHash(b,X)×
ProjHash(B,X, x) × Y x3

3 ProjHash(A,Y, y) × Xy3
3

sk ← Fσ(sid) sk ← Fσ(sid)

Here, sid ← (Â, B̂, X, X3, Y, Y3), and (A, B) is confirmed indirectly through the cer-
tificates.

Fig. 1. The Proposed Framework for AKE

then register A = α(a) to CA. Similarly, Party B generates its static private key
b and computes its static public key B and then register B = α(b) to CA.

Round 1. Party A selects an ephemeral private key (x1, x2)
U←− {0, 1}l×{0, 1}l

and computes (x, x3) ← F̂x1(1l) + F̃a(x2), X ← Cρ(m, x) and X3 ← gx3
1 . Then

A erase (x, x3) and the whole computation history of the ephemeral public key
and Send (B̂, Â, X, X3) to B.

Round 2. Upon receiving the message from A, Party B selects an ephemeral
private key (y1, y2)

U←− {0, 1}l×{0, 1}l and computes (y, y3)← F̂y1(1l)+ F̃b(y2),
X ← Cρ(m, y) and Y3 ← gy3

1 . Then B erases (y, y3) and the whole computation
history of the ephemeral public key and Send (Â, B̂, X, X3, Y, Y3) to A.

Finalization. To compute the session key, A(B) computes σ ← SmthHash(a,
Y )×ProjHash(B, X, x)×Y x3

3 (resp. σ ← SmthHash(b, X)×ProjHash(A, Y, y)
×Xy3

3 ) and derives the session key sk ←Fσ(sid), where sid=(Â, B̂, X, X3, Y, Y3).
Correctness. The correctness follows from the fact that, in an honest ex-

ecution of the protocol, Y x3
3 = Xy3

3 , SmthHash(a, Y ) = ProjHash(A, Y, y),
SmthHash(b, X) = ProjHash(B, X, x). It is easy to verify that both parties in
the protocol will terminate by accepting and computing the same values for σ,
sid, and sk = Fσ(sid).

Rationale. One might wonder why the two parties have to construct X3
and Y3 and include them in the derivation function of σ. This is motivated by
the following passive attack on the protocol deriving the value of σ simply from
SmthHash(a, Y ) × SmthHash(b, X), that allows to break the security of the
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protocol: The adversary eavesdrops an honest execution of the protocol between
A and B, where a pair of matchable sessions (sid, sid) are established. When
the execution is completed, the adversary queries StaticKeyReveal on the two
participants, giving him the static private keys a and b, computes σ and thus
easily learns the session key sk. Note, both the session sid and its matching
session sid are still fresh since the adversary never queries EphemeralKeyReveal
on either sid or sid. Therefore, the adversary is allowed to Test on sid or sid.
Through this attack, the adversary could correctly guesses the bit b involved in
the Test query with probability 1 and thus the protocol would not fulfill the
security in Definition 2.

One might also wonder why the ephemeral private keys can not be imme-
diately used to compute the ephemeral public key, e.g., X ← Cρ(m, x1) and
X3 ← gx2

1 . Instead they are derived from another pair of value (x, x3) output by
F̂ and F̃ . Note that the value of (x, x3) can only be computed in a computation
process with the knowledge of ephemeral and static private keys. Reconsider
the above attack where the adversary queries EphemeralKeyReveal on the two
sessions sid and sid but never queries StaticKeyReveal on any of the two partic-
ipants instead. He can break the security of the protocol if the ephemeral private
keys are immediately used to compute the ephemeral public key in the protocol.

Security. The intuition behind the security of our protocol is quite simple. We
assume sid∗ is the target session chosen by adversary. Let us remember the condi-
tions of a fresh session (i.e., restrictions on sid∗). If the adversary mounts a passive
attack on sid∗ in which he eavesdrops on the honest execution among the partici-
pants, i.e., there exists a matching session, sid∗ of target session sid∗, σ∗ involved
in sid∗ would be uniform and independent for him due to the hardness of the DDH
problem in G. If the adversary mounts an active attacks on sid∗ in which he inter-
acts with an honest party to establish session sid∗, i.e., there exists no matching
session of target session sid∗, σ∗ involved in sid∗ would be pairwisely independent
from any other σ involved in whichever session (not equivalent to session sid∗) the
attacker can establish with an honest party due to the target-independence of the
smooth projective hashing from computationally-hiding commitment in use. As
long as the security notion of PRFs and πPRFs in use is met, an honest party
is able to implicitly authenticate his partner and safely share a session key with
him. As the following theorem shows, the protocol described in Fig. 1 is a secure
authenticated key exchange protocol without random oracles.

Theorem 1. Let F̂ and F̃ be PRF families and F a family of πPRFs, let C be
a non-interactive computationally-hiding commitment scheme and HASH be a
family of target-independent smooth projective hash functions associated with C.
Then, the proposed AKE protocol is secure (in the sense of Definition 2) if the
DDH assumption holds over G.

Due to the limitation of the paper length, the complete proof is omitted here.
Note the commitment scheme in our framework is just a basis for the hard

problem upon which we can build a family of target-independent smooth pro-
jective hash functions HASH. Therefore, non-malleability is not needed in our
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construction. As a result, a public-key encryption scheme that is semantically
secure under chosen plaintext attack can be used to instantiate the commitment
scheme and m can be simply set to be 1 in our protocol. The intuition behind
that is quite simple. Let us assume the adversary impersonates A to interact
with B. He sends a correct commitment X with a known x and thus knows
ProjHash(B, X, x) but he can never knows SmthHash(a, Y ), where a is A’s
static private key(the corresponding public key is A, which is included in A’s
certificate, and its validness can be checked in a usual way in PKI-based system)
and Y is honestly generated by B. So he can gain no information of the session
key. This is true even when the adversary replays the message Y in another
session since HASH in use is a family of target-independent smooth projective
hash functions.

6 An Example for Efficient Constructions

To provide the reader with an idea of how efficient target-independent smooth
projective hash functions are, we give an example based on the El-Gamal encryp-
tion scheme [10]. Note a non-interactive computationally-hiding commitment
scheme can be constructed from the El-Gamal encryption encryption scheme.
Our example is a little similar to that given in [5] based on the El-Gamal en-
cryption scheme but the latter is not target-independent.

The El-Gamal scheme works as follows. Let G be a cyclic group of prime
order p where p is large, and let g1 be a generator g1 of G. The key generation
algorithm chooses a random z ∈ Zp with z 
= 0. The secret-key is then defined to
be z and the public-key is defined to be g2 = gz

1 . To encrypt m ∈ G, a random
x ∈ Zp is chosen and the ciphertext is defined to be X = (X1, X2) = (gx

1 , gx
2 ·m).

Upon input X , decryption is carried out by computing m = X2/Xz
1 . It is well

known that under the Decisional Diffie-Hellman Assumption over G, the El-
Gamal scheme is semantically secure against chosen-plaintext attacks.

The smooth projective hashing for the El-Gamal encryption scheme is then
defined as follows. The key space is defined by K = Z4

p (i.e., a key is a tuple
a = (a1, a2, a3, a4), with ai ∈ Zp). The key projection function α is defined
by α(a) = A = (A1, A2) = (ga1

1 ga2
2 , ga3

1 ga4
2 ). The hash function SmthHash on

input (a, X, m) outputs σ = Xa1+ca3
1 (X2/m)a2+ca4 , and the projective hash

function ProjHash on input (A, X, m, x) simply outputs σ = Ax
1Acx

2 , where
c = H(X) and H is a TCR hash function. Projectiveness follows from the
fact that SmthHash(a, X, m) = ProjHash(A, X, m, x) holds for all X ∈ L. We
now prove the smoothness property. Consider X = (X1, X2) = (gx

1 , gx
′

2 ·m) 
= L.
Then this implies that x 
= x

′
. Then (A, σ) are expressed by the following three

equations:

logg1A1 = a1 + za2 mod p (1)
logg1A2 = a3 + za4 mod p (2)
logg1σ = x(a1 + ca3) + zx

′
(a2 + ca4) mod p (3)

Since logg1σ is linearly independent from logg1A1 and logg1A2 when x 
= x
′
, i.e.,
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for every choice of A and σ, there exists a tuple a = (a1, a2, a3, a4) that fulfills
the above equations, σ is uniformly distributed over G, given A. We conclude
that the projective hash function is smooth.

It now remains to prove the target-independence property. Consider any

such Y = (Y1, Y2) = (gy
1 , gy

′

2 · m) 
= X . Then δ = SmthHash(a, Y, m) =
Y a1+da3

1 (Y2
m )a2+da4 is expressed by the following equation:

logg1δ = y(a1 + ca3) + zy
′
(a2 + da4) mod p (4)

where d = H(Y ). If Y ∈ L, i.e. y = y
′
, the value of σ is (information theoreti-

cally) independent from δ since, given δ and A, σ is still uniformly distributed
in G if a2, a4 is chosen uniformly at random in Z2

p . Then, we consider the case
that Y 
∈ L, i.e. y 
= y

′
. We hereafter assume c 
= d mod p. We can safely do so

because H is a TCR hash function. We can show the value of σ is (information
theoretically) independent from δ since z2(x− x

′
)(y− y

′
)(c− d) 
= 0 mod p and

thus the following matrix: ⎡⎢⎢⎣
1 z 0 0
0 0 1 z

x zx
′
cx zcx

′

y zy
′
dy zdy

′

⎤⎥⎥⎦
is regular. Actually, for every choice of A, σ and δ, there exists a tuple a =
(a1, a2, a3, a4) that fulfills the above equations (1)-(4). Therefore, σ is uniformly
distributed over G, given A and δ. We conclude that the projective hash function
is target-independent.

We remark that a protocol that is almost identical to that of [5] can be derived
when our protocol is instantiated with the El-Gamal encryption scheme based
on the DDH assumption, combined with the above construction of a target-
independent smooth projective hash function (which is thus implicit in the work
of [5]). As it is the case with Gennaro and Lindell’s construction[10], our protocol
enjoys efficient instantiations based on the decisional Diffie-Hellman, quadratic
residuosity, and N-residuosity assumptions (see [10]).

7 Conclusion

We have proposed a framework for (PKI-based) authenticated key exchange
protocols without random oracles and proved it to be secure in the (currently)
strongest security definition. An example of efficient instantiations of our pro-
tocol also is given and and the resulting protocol is almost identical to that of
T. Okamoto, which is quite efficient [5]. Our protocol is actually an abstraction
of the key exchange protocol of T. Okamoto. The abstracted protocol not only
inherits all its attractive features(including in efficiency) but also enjoys efficient
instantiations from any secure encryption scheme that admits an efficient con-
struction of TISPHash and allows a simple and intuitive understanding of its
security. In some sense, our construction generalizes the design of T. Okamoto.
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Abstract. Secret handshake allows two members in the same group to
authenticate each other secretly. In previous works of secret handshake
schemes, two types of anonymities against the group authority (GA) of
a group G are discussed: 1)Even GA cannot identify members, namely
nobody can identify them (No-Traceability), 2)Only GA can identify
members (Traceability). In this paper, first the necessity of tracing of
the identification is shown. Second, we classify abilities of GA into the
ability of identifying players and that of issuing the certificate to mem-
bers. We introduce two anonymities Co-Traceability and Strong Detector
Resistance. When a more strict anonymity is required ever for GA, the
case 2) is unfavorable for members. Then, we introduce Co-Traceability
where even if A has GA’s ability of identifying members or issuing the
certificate, A cannot trace members identification. However, if a scheme
satisfies Co-Traceability, GA may be able to judge whether handshake
players belong to the own group. Then, we introduce Strong Detector
Resistance where even if an adversary A has GA’s ability of identifying
members, A cannot make judgments whether a handshaking player be-
longs to G. Additionally, we propose a secret handshake scheme which
satisfies previous security requirements and our proposed anonymity re-
quirements by using group signature scheme with message recovery.

Keywords: Secret handshake, anonymity, traceability, privacy.

1 Introduction

1.1 Background

A secret handshake scheme (SHS), introduced by Balfanz et al. [3], allows two
members of the same group to authenticate each other secretly, in the sense that
each party reveals his affiliation information to the other only if the other party
belongs to the same group. For example scenario: a CIA agent Alice wants to
authenticate to Bob, but only if Bob is also a CIA agent. In addition, if Bob
is not a CIA agent, Alice does not want to reveal her affiliation information,
whether Alice is a CIA agent or not, for Bob.
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Balfanz, et al. [3] constructed a 2-party SHS by adapting the key agreement
protocol of Sakai, et al. [10]. Its security rests on the hardness of the Bilinear
Diffie Hellman (BDH) problem. Subsequently, Castelluccia, et al. [6] developed a
more efficient 2-party SHS through the use of so-called CA-oblivious encryption.
It is secure under Computational Diffie Hellman (CDH) assumption.

Both previous works satisfy the basic security properties of secret handshake
system; correctness, impersonator resistance, and detector resistance. Recently,
the unlinkability is added to the basic security requirement. Unlinkability means
that two occurrences of handshaking by the same party cannot be linked with
each other by anyone. In [3,6], however, the member sends one’s ID information
in a handshake protocol. Thus, the construction of [3,6] does not satisfy unlinka-
bility unless members use one-time certificate (i.e. member change IDs whenever
members execute handshake protocol).

Xu and Yung [11] constructed a secret handshake scheme which achieves
weaker unlinkability “k-anonymity” with reusable certificate, instead of one-time
certificates. Members can reuse their certificate because they always authenticate
as someone among k users.

The work of [1] presented the first construction of SHS with unlinkability us-
ing reusable certificate in the standard model. The scheme in [1] allows each
participant to specify the role and group of the other party and thus add flexi-
bility to the authentication rules. Moreover, they achieve attribute-based secret
handshakes using fuzzy identity-based-encryption.

1.2 Anonymity against Group Authority

Motivation: Let us consider the case in which whistle-blowing the system of
company is troublesome. In this case the GA is a manager of company and
the members are employees of the company and the authorized persons of the
company (e.g. lawyer). When the employee uses this system, he executes a secret
handshake with the lawyer in order to pass on the whistle-blowing. The employee
wants to tell to only his company’s lawyer about exposure. The lawyer should
only know the fact that the employee belongs to his company. In above scenario,
a secret handshake scheme is very useful.

However, if previous secret handshake schemes are used as above whistle-
blowing system, there is a problem. In previous secret handshake schemes, GA
can identify handshake players (player’s names, IDs, etc). In this scenario, the
employees, who want to exposure, want to execute a secret handshake to remain
anonymous. If an employee is not guaranteed anonymity, he will not blow the
whistle in the fear of the dismissal etc. However, for example in [6], a handshake
player must send own ID to a handshake partner. IDs are registered to GA,
when a member joins to the group. So, GA can identify handshake players by
referring ID list and watching the transcript of handshake.

From the above reason, the previous schemes are not applicable to this case. So
in this paper, we will define new security requirements about anonymities against
GA. We introduce two new anonymities Co-Traceability and Strong Detector
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Resistance. Strong Detector Resistance means that even if an adversary A, who
does not belong to G, has GA’s ability of identifying members, A cannot make
judgments whether a handshaking player belongs to G. Co-Traceability means
that GA alone cannot reveal members identification.

Co-Traceability can never be satisfied against GA with all of abilities, since
if U belongs to G, U might be revealed identification executing a handshake
protocol with a dummy member D whom GA creates using an ability to issue
a user. Then, GA can identify U by using the information of D and the ability
of identifying members. Also, Strong Detector Resistance can never be satisfied
against GA with all of the abilities. The reason is that if U belongs to G, U
outputs accept certainly executing a handshake protocol with a dummy member
D whom GA creates using an ability to issue a user.

Therefore, in order to discuss the anonymity against GA, we split the role of
GA into the two; issue authority and trace authority. The issue authority (IA)
issues the certificate to users. The trace authority (TA) has an ability to identify
a member. Co-Traceability is defined against an adversary who has an ability
of either TA or IA. Strong Detector Resistance is defined against an adversary
who has an ability of TA.

Co-Traceability: If a secret handshake scheme adopt whistle-blowing, handshake
players do not want to reveal own identification against even GA. However, trac-
ing of handshake players is useful for the handshake player in case the evidence
of handshaking is required.

So, we introduce new security requirement Co-Traceability. Intuitively, Co-
Traceability means that TA alone cannot identify handshake players, but TA
can identify players by cooperating with another. In our proposed secret hand-
shake scheme, another is a handshake player. If Alice and Bob execute a secret
handshake, TA alone cannot identify Alice and Bob, but if TA cooperates with
Alice, TA could identify Bob.

At the same time, in this paper, we will define this algorithm ”SHS.Co-Trace”.
This new algorithm is useful in the situation which a handshake player wants to
know the other handshake partner when the output of the protocol is accept. In
previous secret handshake schemes, identifications of handshake players always
reveal against everyone. By using SHS.Co-Trace, a handshake player can execute
a handshake protocol hiding own identification and can know the identification
of the other handshake player by revealing own identification to TA.

Strong Detector Resistance: In previous works, in Secret Handshake system,
information about the group of the player must not be leaked, if players does
not belong to the same group. There are the cases that a player wants to hide
the information of his own group from TA as well as members and users. If TA
can know whether a handshake player belongs to his own group G or not, GA
might examine the frequency that a member of group G executes a handshake
protocol. This consideration leads to the new security property, Strong Detector
Resistance.
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Table 1. Levels of trust in authorities for each of security requirements

Previous Security Issuer Authority Trace Authority
Impersonator Resistance Uncorrupted Uncorrupted

Detector Resistance Uncorrupted Uncorrupted
Unlinkability Uncorrupted Uncorrupted

Proposed Security Issuer Authority Trace Authority
Co-Traceability (against TA) Uncorrupted Corrupted
Co-Traceability (against IA) Corrupted Uncorrupted
Strong Detector Resistance Uncorrupted Corrupted

In this paper, we discuss the anonymity and groups which members belong
to in the case TA or IA is corrupted. Here, “TA (IA) is corrupted” means that
an adversary A can get a secret key of TA (IA). The levels of trust for each
authority for each requirement are summarized in Table1.

In order to realize Strong Detector Resistance and Co-Traceability, we intro-
duce a new algorithm SHS.Co-Trace. SHS.Co-Trace, given a group public key, a
group authority secret key, and “an internal information of a player”, outputs
ID of the other player. Concretely, we realize SHS.Co-Trace and Co-Traceability
with a secret key to execute SHS.Co-Trace separately by GA and a handshake
player.

2 Definition of Secret Handshake

2.1 Entity

In SHS, there exist three entities in the group G as follows.

User: the entity which does not belong to the group. A /∈ G means that the
user A does not belong to the group G.

Member: the entity which is made belong to the group, by the Group Author-
ity. A ∈ G means that the member A belongs to the group G.

GA (Group Authority): the manager of a group. GA is responsible for
adding users into the group he manages. GA maintains a list L, which in-
cludes certificates and registration data of all members.

2.2 The Model of Secret Handshake

A secret handshake scheme SHS consists of the following five algorithms:

SHS.Setup: generates the public parameters param which is common to all
groups.

SHS.CreateGroup: generates a key pair gpk (group public key) and gsk (private
key for GA), using param. SHS.CreateGroup is run by GA.
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SHS.AddMember: is executed between a player U and a GA of some group. In-
puts of SHS.AddMember are gsk, param, and gpk, and outputs are a mem-
bership certificate (certU ) and a secret key (skU )

SHS.Handshake: is the authentication protocol executed between U and V , based
on the public input param. The group public keys (gpkU , gpkV ) and certifi-
cates ((certU , skU ), (certV , skV )) of U and V are input to handshake pro-
tocol. The result of the algorithm is either reject or accept. U

Handshake←→ V
means the above situation.

SHS.Trace: , given gpk, gsk and a transcript T of the handshaking of U and V ,
outputs the member U (or V ).

2.3 Security Properties of SHS Scheme

A secret handshake protocol must satisfy the following basic security properties:
Correctness, Impersonator Resistance, Detector Resistance, Unlinka-
bility [6].

Correctness: If honest members U ,V of the same group run handshake proto-
col, then both players always output “accept”.

Impersonator Resistance (IR): IR demands that the adversary A, who does
not belong to a group G, is not able to authenticate an honest who belongs
to G.

Detector Resistance (DR): DR demands that the adversary A, who does not
belong to a group G, is not able to distinguish whether some honest is a
member of some group G.

Unlinkability (Unlink): Unlink demands that the adversary A, who does not
belong to a group G, is not able to decried whether two executions of the
handshake protocol were performed by the same party or not, even if both
of them were successful.

3 Anonymity against Group Authority

In previous works of secret handshake schemes, anonymities against GA have not
been discussed. In this section we will define two new anonymity requirements
against GA, Co-Traceability and Strong Detector Resistance of secret handshake
schemes.

3.1 Issue Authority and Trace Authority

In this subsection, let us classify the GA from the view point of abilities. GA has
the two abilities. First ability is to issue the certificate to users. Second ability is
to trace handshake players. We call the authority with the former ability Issue
authority (IA). and the authority with the latter ability Trace authority (TA).
IA has a public and secret key (ipk, isk) and TA has a public and secret key
(tpk, tsk)1

1 In previous definition, gpk = (ipk, tpk), gsk = (isk, tsk).
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3.2 Co-traceability

In previous works of secret handshake schemes, two types of anonymities against
the GA are discussed from the view point of revealing the identification of hand-
shake players: 1)Even GA cannot identify players, namely nobody can identify
them, 2)Only GA can identify players.

Tracing of handshake players is useful for the handshake player in case the
evidence of handshaking is required. However when the anonymity is preferred
as the case of prosecution from inside, a more strict anonymity is required ever
for GA.

In the way of SHS.Trace, members except TA cannot join SHS.Trace process.
From the view point of power of TA, this situation could be troublesome for
members. Then, we introduce a new security requirement Co-Traceability. Intu-
itively, Co-traceability means that TA alone cannot identify handshake players.

Co-Traceability can never be satisfied against GA with all abilities, since if U
belongs to G, U might be revealed identification executing a handshake protocol
with a dummy member D who GA creates using an ability to issue a user. So, two
different types of adversarys, AT and AI , should be concerned. The difference
between AT and AI is the input. The input of AT is param, gpk and tsk. The
input of AI is param, gpk and isk. The formal definition of Co-traceability is
as follow:

Definition 1 (Co-Traceability). Co-Traceability (Co-Trace) means that an
adversary A who has all GA’s secret key (isk, tsk) cannot identify the player
which execute SHS.Handshake even though A is not a member of G. Formally,
we say that SHS guarantees Co-Trace if the following function AdvCo−Trace

A (k)is
negligible. Let a member which executes according to the protocol be honest.
We consider a PPT adversary A that can access to the following oracles O.

Formally, we say that SHS guarantees Co-Trace if the following function
AdvCo−Trace

A (k) is negligible for any PPT adversary A = (AT ,AI).

AdvCo−Trace
A (k) = Pr[ExpCo−Trace

A (k) = 1]

Experiment ExpCo−Trace
A (k)

param ← SHS.Setup(k)
(ipk, tpk, isk, tsk)←SHS.CreateGroup(param);
(certU , skU ) ← SHS.AddMember(param, ipk, tpk, isk, U)
honest(param, gpk, skU , certU ) Handshake←→ AO

U ′ ← AO

If U = U ′, outputs 1. Otherwise outputs 0.

3.3 Strong Detector Resistance

If a secret handshake scheme satisfies Co-Traceability, TA alone cannot identify
handshake players. However, GA may be able to identify whether handshake
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players belong to the own group. Then, GA can know the frequency that mem-
bers of own group execute handshake. In order to achieve high anonymity against
GA, even the frequency of handshake should be hidden for GA.

We then introduce the concept of Strong Detector Resistance in order to cope
with this requirement. Intuitively, Strong Detector Resistance means that even
if an adversary A /∈ G has all the ability of revealing the identity of members,
A cannot make judgment whether a handshaking player belongs to G or not.

Strong Detector Resistance never satisfies against IA, since if U belongs to
G, U outputs accept executing a handshake protocol with a dummy member
who GA creates using an ability to issue a user. The formal definition of Strong
Detector Resistance is as follow:

Definition 2 (Strong Detector Resistance). Strong Detector Resistance
(SDR) demand that an adversary A who have “the all ability of revealing the
identity of members” (e.g. trace key, member-list L) cannot distinguish whether
some honest player, who is a member of group G, even though A is not a member
of G. SDR is easier security goal than SDR for an adversary A.

Formally, we say that SHS guarantees SDR if the following function AdvSDR
A (k)

is negligible for any polynomially-bounded adversary A.

AdvSDR
A (k) =

∣∣∣Pr[ExpSDR
A (1, k) = 1]− Pr[ExpSDR

A (0, k) = 1]
∣∣∣

SDR has a close relationship to the SHS.Trace algorithm. If GA can reveal
an identify ID of a member [6,3], an adversary can break SDR by executing
SHS.Trace. On the other hand, if SHS does not have algorithm revealing an
identify [1], SDR is equivalent to DR.

Experiment ExpSDR
A (b, k)

param ← SHS.Setup(k)
(ipk, tpk, isk, tsk)←SHS.CreateGroup(param);
(certU , skU ) ← SHS.AddMember(param, ipk, tpk, isk, U)
playerb := honest(param, gpk, skU , certU );
player1−b := SIM(param)

player0
Handshake←→ AO(param, gpk, tsk)

player1
Handshake←→ AO(param, gpk, tsk)

b′ ← AO(param, gpk, tsk) Return b′

4 Proposed Scheme

4.1 Group Signature with Message Recovery (GSMR) [12]

Our proposed SHS, including SHS.Co-Trace algorithm and satisfied Co-
Traceability and Strong Detector Resistance, is based on the SHS using GSMR
(Group Signature with Message Recovery) [12].
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A group signature, first introduce by Chaum and van Heyst [7] and followed
by [2,8], allows a member which belong to a group to sign messages on behalf of
the group without a member reveal own identity. In group signature system, as
the same secret handshake systems, there exists a manager (authority) of group.
A manager, in the case of a dispute, can reveal an identity of any group signature
make valid group signatures A standard group signature scheme involves consists
of five algorithms GS.KeyGen, GS.Join, GS.Sign, GS.Verify, GS.Open. GS.KeyGen
,is a key generation algorithm, is given security parameter and outputs a group
public key gpk and a group manager secret key gmsk. GS.Join, given gmsk
and a member secret key sk, outputs membership certificate. GS.Sign, given
gpk, a member secret key sk and a message m, outputs a group signature σ.
GS.Verify, given gpk, m, and σ, outputs accept if σ is valid for m with respect
to gpk. GS.Open, given m, σ, and gmsk, outputs signer’s identity. The security
requirements of a group signature scheme are traceability, anonymity, and non-
frameability[4].

Intuitively, [12] achieve Unlink by using group signature (more precisely,
anonymity of group signatures) and realized SHS.Trace by SHS.Open. In [12],
a group signature with message recovery (GSMR) is constructed from the stan-
dard group signature[2]. In order to apply GSMR to SHS, GSMR can be forged a
signature corresponding to an arbitrary message using a valid signature and gpk.
If GSMR does not this property, anyone can be convinced of handshake players’
groups by carrying out GS.Verify.

4.2 Construction of Proposed Scheme

We show the construction of proposed SHS scheme. Our GSMR scheme is based
on [8]. We assume that G1 = 〈G1〉, G2 = 〈G2〉 of prime order p that have a
bilinear map e and e(G1, G2) generates GT . Here, (G1, G2) is bilinear groups.

SHS.Setup: Given a security parameter k, generates (p, G1, G2, GT , G1, G2, e)
and chooses hash functions H : {0, 1}∗ → G1 and G : {0, 1}∗ → Zp.

SHS.CreateGroup: First, IA chooses w ←R Zp and H ←R G1 and generates
W = wG2. IA outputs isk = w, ipk = (H, W ). Next, TA chooses (t, s) ←R (Zp)2

and generates T, S such that H = sS = tT . TA outputs tsk = (t, s), tpk = (T, S).

SHS.AddMember: First, user U , who wants to join to the group, chooses
(x′, z) ←R (Zp)2 and generates H ′ = x′H + zG1. U sends H ′ to IA. Next, IA
chooses (x′′, z′) ←R (Zp)2 and sends (x′′, z′) to U . U generates xU = x′x′′ + z′

and HU = xUH . U sends HU to IA. U proves in zeroknowlege to IA the knowl-
edge of xU and x′′z satisfying HU = xUH and x′′H ′ + z′H − HU = x′′zG1.
Finally, IA chooses yU ←R Zp and generates AU = 1

w+yU
(G1 −HU ). IA sends

(AU , yU ) to U . IA adds (U, AU , yU ) to the group member-list L.
GSMR(param, gpk, sk, cert, m)→ σ:

1. U chooses s′, t′, S′, T ′, H ′ s.t. s′S′ = t′T ′ = H ′ ((s′, t′) ∈ (Zp)2,
(S′, T ′, H ′) ∈ (G1)3). If U will want to execute SHS.Co-Trace, U has to
memorize their parameters.
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2. U chooses (α, β, α′, β′) ←R Z∗
p and generates R1 = αT, R2 = βS, R3 =

α′T ′, R4 = β′S′ and R5 = (α + β)H + (α′ + β′)H ′ + AU

3. U chooses (rx, ry, rα, rβ , ryα, ryβ , rα′ , rβ′ , ryα′ , ryβ′)←R (Z∗
p)10 and generate

R′
1 = rαT, R′

2 = rβS, R′
3 = rα′T ′, R′

4 = rβ′S′,
R′

5 = e(R5, G2)rye(H, W )−(rα+rβ)e(H ′, W )−(rα′+rβ′)e(H, G2)−(ryα+ryβ)+rx

e(H ′, G2)−(ryα′+ryβ′ ), R′
6 = ryR1 − ryαT, R′

7 = ryR2 − ryβS, R′
8 = ryR3 −

ryα′T ′ and R′
9 = ryR4 − ryβ′S′

4. U generates c′ = H(param, gpk, R1, R2, R3, R4, R5, R
′
1, R

′
2, R

′
3, R

′
4, R

′
5,

R′
6, R

′
7, R

′
8, R

′
9) and c = c′ ⊕m.

5. U generates sx := rx+cxU , sy := ry +cyU , sα := rα +cα, sβ := rβ +cβsyα :=
ryα + c(yα), syβ := ryβ + c(yβ), sα′ := rα′ + cα′, sβ′ := rβ′ + cβ′, syα′ :=
ryα′ + c(yα′) and syβ′ := ryβ′ + c(yβ′)

6. U outputs σ=(R1, R2, R3, R4, R5, sx, sy, sα, sβ , syα, syβ, sα′ , sβ′ , syα′ , syβ′ , c)

MR:(param, gpk, σ)→ m

1. V is given param, gpk, and σ.
2. V generates R′

1 = sαT − cR1, R
′
2 = sβS − cR2, R

′
3 = sαT ′ − cR3, R

′
4 =

sβS′ − cR4, R
′
5 = e(R5, G2)sy e(H, W )−(sα+sβ)e(H, G2)−(syα+syβ )+sx

e(H ′, W )−(sα′+sβ′ )e(H, G2)−(syα′+syβ′ )
(

e(R5,G2)
e(G1,G2)

)c

, R′
6 = syR1 − syαT,

R′
7 = syR2 − syβS, R′

8 = syR3 − syα′T ′, and R′
9 = syR4 − syβ′S′

3. V generates c′ = H(param, gpk, R1, R2, R3, R4, R5, R
′
1, R

′
2, R

′
3, R

′
4, R

′
5,

R′
6, R

′
7, R

′
8, R

′
9) and m = c⊕ c′. V outputs m.

SHS.Handshake: Suppose the member U with certificate certU = (AU , yU ) and
secret key skU = xU , and the member V with certificate certV = (AV , yV ) and
secret key skV = xV , engage in handshake protocol.

1. U and V generates (s′U , t′U , S′
U , T ′

U , H ′
U ), (s′V , t′V , S′

V , T ′
V , H ′

V )
s.t. s′USU = t′UT = H ′

U , s′V SV = t′V T = H ′
V

(s′U , t′U , s′V , t′V ∈ (Zp)4, S′
U , T ′

U , H ′
U , S′

V , T ′
V , H ′

V ∈ G1).
2. U chooses rU ←R Z∗

p and generates mU := rUG1 and
σU←GSMR(param, gpkU , skU , certU , mU ). U send σU to V D

3. V chooses rV ←R Z
∗
p and generates mV := rV G1,

σV←GSMR(param, gpkV , skV certV , mV ) and m′
U←MR(param, gpkV ,

σU ). V send σV to UD
4. U generates m′

V←MR(param, gpkU , σV ) and respU := G(rUm′
V , mU ) and

send respU to V .
5. V generates respV := G(rV m′

U , mV ). If respU = G(rV m′
U , m′

U ), V outputs
accept and send respV to U . Otherwise V outputs reject.

6. If respV = G(rU m′
V , m′

V ), U outputs accept. Otherwise U outputs reject.

SHS.Co-Trace: Suppose the member U with certU = (AU , yU ), secret key skU =
xU , and the parameters (s′U , t′U , S′

U , T ′
U , H ′

U ) used in SHS.Handshake.

1. TA is given certU = (AU , yU ), skU = xU from U .
If e(A, W )e(H, G2)xe(A, G2)y = e(G1, G2), TA executes the following. Oth-
erwise TA outputs ⊥.
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Table 2. Comparison among SHS

Scheme [3] [6] [1] Proposed Scheme
Underlying Assumption CBDH CDH SXDH and BDH DL and DLDH

Number of rounds 3 4 2 4
Communication complexity (bits) 640 8512 684 5804

IR security Yes Yes Yes Yes
DR security Yes Yes Yes Yes

Unlink security No No Yes Yes
SDR security No No Yes Yes

Co-Trace security No No No Yes
SHS.Trace algorithm Yes Yes No No

SHS.Co-Trace algorithm No No No Yes

2. TA is given σV (= RV 1, RV 2, RV 3, RV 4, RV 5, sV x, sV y, sV α, sV β , sV yα,
sV yβ , sV α′ , sV β′ , sV yα′ , sV yβ′ , cV ) (in the transcript of SHS.Handshake) and
computes RV 5 − (tRV 1sRV 2 + t′RV 3s

′RV 4) = AV and outputs V such that
(V, AV , yV ) ∈ L.

Among SHS, we show the comparisons with respect to important factors in
Table2. [3], [1] and proposed scheme use bilinear maps. We assume that G1 
= G2
such that the representation of G1 can be a 172-bit prime when |p| = 171. Also,
we assume that [6] are instantiated on a 160-bits prime order subgroup of a
prime finite field of 1024 bits. In [3], [6] and proposed scheme, a member has
own ID. On the other hand, in [1], a member does not have ID, so [1] can not
include both SHS.Trace and SHS.Co-Trace.

Our proposed scheme is secure under discrete logarithm assumption and De-
cisional Linear Diffie-Hellman (DLDH) assumption[5]. Proofs of the following
theorems are given in [9].

Theorem 1. The proposed scheme has Impersonator Resistance property, if the
discrete logarithm problem is hard to solve.

Theorem 2. The proposed scheme has Strong Detector Resistance, Unlinkabil-
ity and Co-Traceability property, if the Decisional Linear Diffie-Hellman (DLDH)
problem is hard to solve.
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Abstract. Identification, authentication and key agreement protocol of UMTS 
networks have some weaknesses to provide DoS-attack resistance, mutual 
freshness, and efficient bandwidth consumption. In this article we consider 
UMTS AKA and some other proposed schemes. Then we explain the known 
weaknesses in the previous frameworks suggested for UMTS AKA protocol. 
After that we propose a new UMTS AKA protocol (called EAKAP) for UMTS 
mobile network that combines identification stage and AKA stage of UMTS 
AKA protocol as well as eliminating disadvantages of related works and bring-
ing some new features to improve the UMTS AKA mechanism such as reduc-
ing the interactive rounds of the UMTS AKA protocol.  

Keywords: Identification, Authentication and Key Agreement, UMTS, Mobile 
Network, Security Protocol. 

1   Introduction 

The wireless communications advances cause the ease of access to wireless services 
for individuals. Because of the air interface between the user and the network, the 
physical security of users’ media is in serious danger with respect to the wired infra-
structure. Physical layer security like spread spectrum methods for commercial usages 
is so expensive, hence wireless providers try to secure higher layers to obtain privacy 
and confidentiality features for their subscribers. 

The most commonly used wireless communications are cellular communications. 
In the first-generation (1G) analog systems, security services were not addressed. 
Proper authentication of subscribers is an important feature for operators to charge 
them correctly. So in the second-generation (2G) digital cellular systems, the GSM 
communications, authentication and also confidentiality were taken into account and 
security measures were designed for these goals in 2G. 

Some of the GSM security weaknesses are active attack by fake BTS, no secure 
communication between BTS and BSC and also between BSC and MSC, no data 
integrity check and weak stream cipher algorithm (A5/1,2) for confidentiality. These 
weaknesses were concentrated in the security design phase of UMTS, a major stan-
dard for the third-generation (3G). So, an enhanced authentication and key agreement 
protocol was considered for UMTS and integrity was added as well as using strong 
algorithms.  
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 MS 

2. “Initial L3 message” with user identity, KSI etc.

VLR/SGSN 

3. Authentication and key generation

1. Storage of HFNs START values and UE security capability

4 Decide allowed UIAs and UEAs 

SRNC

1. RRC connection establishment including
transfer of the HFNs START values and the
UE security capability from MS to SRNC

5. Security mode command (UIAs, IK, UEAs, CK, etc.) 

6. Select UIA and UEA, generate FRESH
Start integrity

7. Security mode command (CN domain, UIA, FRESH,
UE security capability, UEA, MAC-I, etc.)

10. Verify received message

9. Security mode complete (MAC-I, etc.)

11. Security mode complete (selected UEA and UIA) 

8. Control of UE security capability, Verify
message, Start of integrity 

“UE security capability” indicates UIAs and UEAs supported by MS

Start ciphering/deciphering Start ciphering/deciphering

 

Fig. 1. The UMTS Identification and AKA procedure [1] 

Between features mentioned above, the authentication and key agreement protocol 
has vital importance which the most prominent security features are based on. In this 
protocol, other than authentication, user and network agree on the cipher and integrity 
keys CK and IK respectively. If existence of any vulnerability in this protocol, other 
than these keys, the subscriber secret key K may be compromised and so, we focus on 
this protocol for the purpose of improving it.  

This paper is organized as follows; in section II we explain the UMTS authentica-
tion and key agreement (AKA) procedure. Section III outlines related challenges to 
improve the security and performance of the UMTS AKA protocol. In section IV the 
new proposed protocol is described that covers the previous known weaknesses. In 
section V the EAKAP is analyzed and evaluated from the security point of view. We 
conclude the paper in section VI. The descriptions of abbreviations are given in  
appendix. 
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K

SQN
RAND

f1 f2 f3 f4 f5

MAC XRES CK IK AK

AUTN := SQN ⊕ AK || AMF || MAC

AV := RAND || XRES || CK || IK || AUTN

Generate SQN

Generate RAND

AMF

 

Fig. 2. Generation of Authentication Vectors [1] 

2   UMTS AKA Description  

The purpose of UMTS AKA is to authenticate the user and network to each other and 
also establish a new pair of cipher and integrity keys between the VLR/SGSN and the 
USIM [1]. MS, VLR/SGSN, and HLR/AuC (HE) are involved in UMTS AKA proto-
col. At identification stage, MS sends its identity to VLR/SGSN via SRNC.  

The secret key (K) and cryptographic Algorithms including f1, f1
*, f2, f3, f4, f5, and 

f5
*, shared between MS and HE, are used for UMTS AKA process. Furthermore HE 

and MS track the value of a counter (SQNHE) and (SQNMS) respectively. These se-
quence numbers are used for the purpose of freshness checking of the received mes-
sages. As shown in figure1, UMTS Identification, distribution of authentication data, 
and AKA procedure are performed as follows. 

Identification 
1- The MS sends the initial L3 message including its TIMSI and the KSI to 
VLR/SGSN via SRNC. By this message, the MS requests for services like Location 
Update, CM Service and Routing Area Update. 
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K

SQN

RAND

f1 f2 f3 f4

f5

XMAC RES CK IK

AK

SQN ⊕ AK AMF MAC

AUTN

Verify MAC = XMAC

Verify that SQN is in the correct range

⊕

 

Fig. 3. User Authentication Function in the MS [1] 

Distribution of Authentication Data 
2- VLR/SGSN identifies MS by its TMSI and then sends the authentication data re-
quest including IMSI and requesting node type (PS or CS) to the HE. 
3- Upon the receipt of the authentication data request, the HE sends an authentication 
data response back to the VLR/SGSN which contains an ordered array of n authenti-
cation vectors AV (1...n). Each AV includes parameters RAND, XRES, CK, IK, and 
AUTN. Generation of AV is shown in figure2. 

Authentication and Key Management 
4- The VLR/SGSN chooses the next unused AV from the ordered array of AVs in the 
VLR/SGSN database on the basis of first-in/first-out. Then the VLR/SGSN sends to 
the MS the random challenge (RAND) and an authentication token (AUTN) from the 
chosen AV. 
5- When the MS receives RAND||AUTN, it proceeds as illustrated in figure3. The MS 
first computes the anonymity key AK=f5K(RAND) and retrieves the sequence number. 
Then the MS computes XMAC=f1K(SQN||RAND||AMF) and compares it with MAC 
included in AUTN. If they are the same, the MS verifies if the SQN is in the correct 
range. Then, the MS calculates RES=f2K(RAND) and sends it to the VLR/SGSN. The 
VLR/SGSN compares the received RES with XRES. If they match, then the authenti-
cation process of the MS is successfully completed.  
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3   Related Works 

In this section we consider the security analysis of UMTS AKA Protocols. Many 
protocols have been suggested for UMTS AKA improvement, but we choose some 
protocols that have novelty in their design and use symmetric algorithms. Neverthe-
less they have some security or performance weaknesses in their structure that we try 
to explain. 

The UMTS X-AKA protocol [7] applies a temporary key mechanism with time-
stamp instead of the sequence number. The function f5 is used for generating tempo-
rary keys. The UMTS X-AKA protocol consists of two procedures. First, the user 
registers on HN and then HN distributes temporary key (TK) and authentication in-
formation to SN. Second, the authentication and key agreement procedure is executed 
between SN and MS. The SN uses TK and authentication information to carry out the 
mutual authentication between SN and MS and then an agreed key and a cipher key 
are provided. The UMTS X-AKA protocol uses timestamp to manage freshness of the 
messages. The timestamp usage needs a robust time synchronization infrastructure. 
Time synchronization structure of the network has no security feature, so the usage of 
an independent structure with no security to refresh the exchanged messages is haz-
ardous. Also the HN could not recognize the shared session keys between MS and 
SN, because SN generates the pseudo-random number needed to construct the session 
keys. 

In [8] an AKA protocol with robust user privacy protection has been proposed. In 
this scheme, temporary key mechanism to authenticate MS and prevent the location 
privacy attack is used. In addition, it has lower overhead on VLR. Since MS can easily 
compute the temporary key through the shared secret key, VLR can be authenticated 
by MS successfully. In this protocol, the VLR initiates the authentication process by 
sending a nonce to the MS without any MAC, so DoS attack is probable to be imposed 
on the MS. Also the protocol has seven steps without identification and security mode 
set-up stages. 

J. Al-Saraireh and S. Yousef proposed an AKA protocol [9] in which, the MS gen-
erates the AVs sending to the network. They provided an efficient bandwidth consum-
ing framework with minimal ways for the AKA procedure, but the proposed protocol 
doesn’t support mutual authentication i.e. only the network authenticates the MS. The 
protocol has 3 steps. The man in the middle attack scenario on interworking of UMTS 
and GSM [10] could be applied on this protocol [9], because the MS doesn’t recog-
nize the validity of the network. Furthermore, the DoS attack on the MS is possible, 
because the MS could only verify the network until a MAC is received from the net-
work. With some modification in this protocol, it will be mutual. If the VLR/SGSN 
sends the RES received from the HE to the MS, the mutual authentication would be 
satisfied by checking the XRES and RES in the MS side. 

The security of the wireless network access has been enhanced by Harn and Hsin 
[11] that uses timestamp and hash chain to provide non-repudiation and freshness. As 
mentioned earlier, using the timestamp needs independent secure infrastructure. Also 
the hash chain construction consumes much computation load at the end user side. 
Furthermore, the number of the protocol ways is six and the protocol doesn’t contain 
the identification and security mode set-up stages. 
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An extension of UMTS AKA protocol has been proposed by J. Al-Saraireh and S. 
Yousef in [12] that provides mutual freshness of the MS and the HE but it doesn’t use 
sequence number mechanism and instead, both the MS and HE generates random 
numbers. So verifying the freshness of the messages could be done by searching in a 
large database that contains all of the previous random numbers generated by the 
parties. Applying such a huge database is more expensive and complex than using 
sequence number method. Besides, the power of DoS attack diminishes when the 
parties can check the integrity and freshness of the messages faster. 

M. Zhang and Y. Fang enhanced the security of the 3GPP AKA by a protocol 
called AP-AKA. They have projected a special scenario of the redirection attack that 
UMTS AKA is weak towards it and AP-AKA is robust against it. But the MS traffic 
redirection by a virtual relay to the neighbor VLR could charge the MS more than 
usual because the location of the MS has been virtually changed. The first step of the 
AP-AKA has not integrity protection, so it could be forged. Also the attack [10] can 
be executed on AP-AKA while interworking with GSM because the VLR initiates the 
AKA procedure without integrity check. Furthermore, the identification and security 
mode set-up stages are not considered to provide a better performance for the six-way 
AP-AKA protocol. 

4   UMTS Extended AKA Protocol 

In this section, we propose a new authentication protocol of UMTS mobile networks. 
The stages of the proposed protocol are illustrated in figure4 and figure5. UMTS 
AKA has some weaknesses to provide simple DoS-attack resistance. Also previous 
proposed schemes (described in section III) do not provide strong mutual freshness. 
Furthermore, the steps of the pre-proposed protocols could be reduced to save band-
width consumption.  

The new proposed UMTS AKA protocol, named EAKAP, combines identification 
stage and AKA stage with security mode set-up of described UMTS protocol. 
EAKAP is done by a 5-way handshake protocol between the MS, the VLR/SGSN, 
and the HE. Most of the previous schemes were done by a 5-way handshake in the 
phase of AKA without security mode set-up, so we could enhance bandwidth effi-
ciency. The EAKAP applies the secret key (K) and the cryptographic algorithms that 
are used in UMTS AKA protocol shared between the MS and the VLR/SGSN. But 
the usage of the f2 algorithm in EAKAP is not necessary because EAKAP does not 
generate the RES or the XRES.  

Both the MS and the HE have sequence number and random number generator to 
provide complete freshness of their messages. On the basis of the f5 structure [2], we 
could improve the confidentiality of the SQN by changing its encryption method. To 
protect VLR/SGSN against DoS attack, we assume some security capabilities at 
VLR/SGSN side. These security features contain the shared cryptographic algorithms 
(fc and fi) between MS and VLR/SGSN. The fc algorithm is used for ciphering and 
the fi algorithm is used to generate integrity check. The EAKAP procedure works as 
follows (shown in figure4). 
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MS HEVLR/SGSN

Compute
TAK=f5K(IMSI||RANDMS)
Con(SQNMS)=fcTAK(SQNMS)
MACMS,K=f1K(IMSI||RANDMS||SQNMS)

Compute
TAK=f5K(IMSI||RANDMS)
SQNMS=fcTAK

-1(Con(SQNMS))
XMACHE,K=f1K(IMSI||RANDMS||SQNMS)
Compare MACMS,K and XMACHE,K
Compute
NCK=f3K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE)
NIK=f4K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE)
AK=f5K(IMSI||RANDMS|| RANDHE)
Con(SQNHE)=fcAK(SQNHE)
MACHE,K=f1K(IMSI||RANDMS||RANDHE||SQNMS||SQNHE)

1
AREQ=IMSI||RANDMS||Con(SQNMS)||MACMS,K 2

IMSI||RANDMS,||Con(SQNMS)||MACMS,K

3
AV=IMSI||RANDHE||NCK||NIK

||Con(SQNHE)||AMF||MACHE,K

4
AREP=IMSI||RANDHE||fcNCK(UEAs||UIAs)

||Con(SQNHE)||MACVLR,NIK||MACHE,K

5
SMCM=IMSI||FRESH||Con(UEA||UIA)||MACMS,NIK

Compute
AK=f5K(IMSI||RANDMS|| RANDHE)
Con(SQNHE)=fcAK(SQNHE)
MACVLR,NIK=fiNIK(IMSI||RANDMS||RANDHE||UEAs||UIAs

||Con(SQNMS)||Con(SQNHE)))
MACHE,K=f1K(IMSI||RANDMS||RANDHE||SQNMS||SQNHE)

AK=f5K(IMSI||RANDMS|| RANDHE)
SQNHE=fcAK

-1(Con(SQNHE))
NCK=f3K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE)
NIK=f4K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE)
XMACMS,K=f1K(IMSI||RANDMS||RANDHE||SQNMS||SQNHE)
XMACMS,NIK=fiNIK(IMSI||RANDMS||RANDHE||UEAs||UIAs

||Con(SQNMS)||Con(SQNHE))
Con(UEA||UIA)=fcNCK(FRESH+UEA||UIA)
MACMS,NIK=fiNIK(IMSI||FRESH||UEA||UIA)

UEA||UIA=fcNCK
-1(Con(UEA||UIA))+FRESH

XMACVLR,NIK=fiNIK(IMSI||FRESH||UEA||UIA)

 

Fig. 4. EAKAP Structure when MS meets a new VLR/SGSN 

Authentication Request 
1- If no TMSI was set before, the MS generates the AREQ message as follows: 

AREQ=IMSI||RANDMS||Con(SQNMS)||MACMS,K (1) 

Where 

TAK=f5K(IMSI||RANDMS) (2) 

Con(SQNMS)=fcTAK(SQNMS) (3) 

MACMS,K=f1K(IMSI||RANDMS||SQNMS) (4) 

If the VLR/SGSN has allocated a TMSI encrypted by previous CK (OCK) paired 
with previous IK (OIK) to the MS, the MS would generate the AREQ message as 
follows: 



 An Extended Authentication and Key Agreement Protocol of UMTS 237 

MS HEVLR/SGSN

Compute
TAK=f5K(IMSI||RANDMS)
Con(SQNMS)=fcTAK(SQNMS)
MACMS,OIK=fiOIK(TMSI||RANDMS||Con(SQNMS))
MACMS,K=f1K(IMSI||RANDMS||SQNMS)

Compute
XMACVLR,OIK=fiOIK(TMSI||RANDMS||Con(SQNMS))
Compare XMACVLR,OIK and MACMS,OIK

Compute
TAK=f5K(IMSI||RANDMS)
SQNMS=fcTAK

-1(Con(SQNMS))
XMACHE,K=f1K(IMSI||RANDMS||SQNMS)
Compare MACMS,K and XMACHE,K
Compute
NCK=f3K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE)
NIK=f4K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE)
AK=f5K(IMSI||RANDMS|| RANDHE)
Con(SQNHE)=fcAK(SQNHE)
MACHE,K=f1K(IMSI||RANDMS||RANDHE||SQNMS||SQNHE)

1
AREQ=TMSI||RANDMS||Con(SQNMS)||MACMS,OIK||MACMS,K

2
IMSI||RANDMS,||Con(SQNMS)||MACMS,K

3
AV=IMSI||RANDHE||NCK||NIK

||Con(SQNHE)||AMF||MACHE,K

4
AREP=TMSI||RANDHE||fcNCK(UEAs||UIAs)

||Con(SQNHE)||MACVLR,NIK||MACHE,K

5
SMCM=TMSI||FRESH||Con(UEA||UIA)||MACMS,NIK

Compute
MACVLR,NIK=fiNIK(TMSI||RANDMS||RANDHE||UEAs||UIAs

||Con(SQNMS)||Con(SQNHE)))

AK=f5K(IMSI||RANDMS|| RANDHE)
SQNHE=fcAK

-1(Con(SQNHE))
NCK=f3K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE)
NIK=f4K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE)
XMACMS,K=f1K(IMSI||RANDMS||RANDHE||SQNMS||SQNHE)
XMACMS,NIK=fiNIK(TMSI||RANDMS||RANDHE||UEAs||UIAs

||Con(SQNMS)||Con(SQNHE))
Con(UEA||UIA)=fcNCK(FRESH+UEA||UIA)
MACMS,NIK=fiNIK(TMSI||FRESH||UEA||UIA)

UEA||UIA=fcNCK
-1(Con(UEA||UIA))+FRESH

XMACVLR,NIK=fiNIK(TMSI||FRESH||UEA||UIA)

 

Fig. 5. EAKAP Structure when MS meets an old VLR/SGSN 

AREQ=TMSI||RANDMS||Con(SQNMS)||MACMS,OIK||MACMS,K (5) 

Where 

TAK=f5K(IMSI||RANDMS) (6) 

Con(SQNMS)=fcTAK(SQNMS) (7) 

MACMS,OIK=fiOIK(TMSI||RANDMS||Con(SQNMS)) (8) 

MACMS,K=f1K(IMSI||RANDMS||SQNMS) (9) 

Then the MS sends the calculated AREQ to the VLR/SGSN. 

Distribution of Authentication Data 
2- The VLR/SGSN identifies the MS by its sent IMSI via HE or TMSI via old 
VLR/SGSN. If TMSI related to current VLR/SGSN is sent, the VLR/SGSN computes 
the XMACVLR,OIK (as given below) and compares this with  XMACMS,OIK which is in-
cluded in AREQ. 
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XMACVLR,OIK=fiOIK(TMSI||RANDMS||Con(SQNMS)) (10) 

If they are different, VLR/SGSN does not distribute the authentication data request 
for HE and AKA process fails. Otherwise, VLR/SGSN sends the authentication data 
request included IMSI, RANDMS, Con(SQNMS) and MACMS,K to HE. 

3- When the HE receives the authentication data request from the VLR/SGSN, it 
first retrieves sequence number of the MS as follows. 

TAK=f5K(IMSI||RANDMS) (11) 

SQNMS=fcTAK
-1(Con(SQNMS)) (12) 

Then the HE computes the XMACHE,K (as given below) and compares it with 
MACMS,K which is included in the VLR/SGSN’s authentication data request.  

XMACHE,K=f1K(IMSI||RANDMS||SQNMS) (13) 

If the MACMS,K and the XMACHE,K are different, the HE detects the MS as a fraud 
user and does not generate any AV. If they are the same, the HE verifies the SQN is in 
the correct range. If the SQNMS is considered to be in the correct range, the HE sends 
an authentication data response back to the VLR/SGSN that contains an authentica-
tion vector (AV). The generated AV included IMSI, RANDHE, new CK (NCK), new IK 
(NIK), Con(SQNHE), AMF, and MACHE,K as shown in figure5. 

AV=IMSI||RANDHE||NCK||NIK||Con(SQNHE)||AMF||MACHE,K (14) 

Where 

NCK=f3K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE) (15) 

NIK=f4K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE) (16) 

AK=f5K(IMSI||RANDMS|| RANDHE) (17) 

Con(SQNHE)=fcAK(SQNHE) (18) 

MACHE,K=f1K(IMSI||RANDMS||RANDHE||SQNMS||SQNHE) (19) 

Authentication Reply 
4- Upon the receipt of the AV from the HE, the VLR/SGSN computes the AREP for 
the MS. The VLR/SGSN determines which UIAs and UEAs that are allowed to be 
used in order of preference. If no TMSI was set before, the VLR/SGSN generates the 
AREP message as follows: 
 

AREP=IMSI||RANDHE||fcNCK(UEAs||UIAs) 
||Con(SQNHE)||MACVLR,NIK||MACHE,K (20) 
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Where 

AK=f5K(IMSI||RANDMS|| RANDHE) (21) 

Con(SQNHE)=fcAK(SQNHE) (22) 

MACVLR,NIK=fiNIK(IMSI||RANDMS||RANDHE 

||UEAs||UIAs||Con(SQNMS)||Con(SQNHE))) (23) 

MACHE,K=f1K(IMSI||RANDMS||RANDHE||SQNMS||SQNHE) (24) 

If the VLR/SGSN allocates a TMSI encrypted by previous CK (OCK) paired with 
old IK (OIK) to the MS, it would generate the AREP message as follows: 
 

AREP=TIMSI||RANDHE||fcNCK(UEAs||UIAs) 
||Con(SQNHE)||MACVLR,NIK||MACHE,K (25) 

Where 
MACVLR,NIK=fiNIK(TIMSI||RANDMS||RANDHE 

||UEAs||UIAs||Con(SQNMS)||Con(SQNHE)) 
 

(26) 

5- Upon the receipt of the AREP message, the MS proceeds as illustrated in figure4 
and figure5. If the MS has a TMSI, allocated by the VLR/SGSN, it first retrieves the 
HE’s sequence number as follows. 

AK=f5K(IMSI||RANDMS|| RANDHE) (27) 

SQNHE=fcAK
-1(Con(SQNHE)) (28) 

If the SQN is considered to be in the correct range, the MS calculates the new pair 
key, the new cipher key (NCK) and the new integrity key (NIK), as follows: 

NCK=f3K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE) (29) 

NIK=f4K(IMSI+RANDMS+RANDHE+SQNMS+SQNHE) (30) 

Then the MS calculates the XMACMS,K (as given below) and checks the correspon-
dence of the MACHE,K and the XMACMS,K. 

XMACMS,K=f1K(IMSI||RANDMS||RANDHE||SQNMS||SQNHE) (31) 

If they are the same, the MS decrypts the fcNCK(UEAs||UIAs) and gets the cryptog-
raphy capabilities of the VLR/SGSN in order of preference. Then the MS computes 
XMACMS,NIK (as given below) with regard to the allocated TMSI. 

 

XMACMS,NIK=fiNIK(TMSI||RANDMS||RANDHE 
||UEAs||UIAs||Con(SQNMS)||Con(SQNHE)) (32) 
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If no TMSI was allocated, the XMACMS,NIK would be as follows: 
 

XMACMS,NIK=fiNIK(IMSI||RANDMS||RANDHE 
||UEAs||UIAs||Con(SQNMS)||Con(SQNHE)) (33) 

 

The MS compares XMACMS,NIK with MACVLR,NIK included in the received AREP 
message. If they are different, the MS does not continue authentication process and 
terminate the connection. Otherwise, the MS generates the security mode complete 
message (SMCM) as follows: 

SMCM=TIMSI||FRESH||Con(UEA||UIA)||MACMS,NIK (34) 

Where 

Con(UEA||UIA)=fcNCK(FRESH+UEA||UIA) (35) 

MACMS,NIK=fiNIK(TMSI||FRESH||UEA||UIA) (36) 

The MS sends the SMCM to the VLR/SGSN and the VLR/SGSN decrypts the 
Con(UEA||UIA) by the new shared cipher key (NCK) to get preferred UEA and UIA. 
UEA||UIA=fcNCK

-1(Con(UEA||UIA))+FRESH 
Then the VLR/SGSN verifies the integrity of the SMCM by generating the 

XMACVLR,NIK with regard to the chosen UEA and UIA by the MS and comparing it 
with the MACMS,NIK. 

XMACVLR,NIK=fiNIK(TMSI||FRESH||UEA||UIA) (37) 

Consequently the IAKA (Identification and AKA) process with security mode 
setup is complete i.e. the parties authenticate each other mutually and the preferred 
algorithms for ciphering and integrity checking are chosen by them. 

5   Security and Performance Features of the Proposed Protocol 

In this section, we analyze the security features of the new proposed protocol explained 
in previous section and then we evaluate the performance of the suggested protocol 
relatively. The EAKAP provides the main security services issued in literature like 
authentication, confidentiality and integrity [3]. Furthermore, the EAKAP is more 
robust than the UMTS AKA and the previously suggested protocols against the DoS 
attack so with using the EAKAP, availability service would be provided properly. 

Performance Evaluation towards Previous Works 
In the EAKAP, three sections of the UMTS protocol including identification, AKA 
and security mode set-up are combined to set-up connection. In EAKAP, security 
mode setup is performed after key establishment so the attacker has no information 
about the shared algorithms for ciphering and integrity check. The EAKAP is com-
pleted after five-way interactions. Previous works do not consider the identification 
and security mode set-up steps. Furthermore, if we consider the whole protocol, the 
number of interactions has been reduced largely. So the load of the network signaling 
is reduced and performance of the IAKA procedure grows efficiently. 
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Confidentiality, Integrity, and Authentication 
As described in previous section, the only shared secret between the MS and the HE 
is a private key (K). Sometimes the old session pair keys (OCK, OIK) are shared be-
tween MS and VLR/SGSN if the MS has visited the area of the VLR/SGSN already. 
After the IAKA process, the MS and the VLR/SGSN share the new session pair key 
(NCK, NIK). These keys are hidden from the sight of adversary and we show that they 
could not be guessed or eavesdropped easily. 

The TMSI/IMSI fields are sent public without any encryption because anonymity 
service is out of the scope of the article. Also RAND fields are sent as plain text be-
cause they are needed for the other side to generate necessary fields. The sequence 
numbers, UEA, and UIA fields are encrypted by the shared keys (K or NCK). So the 
confidentiality service is provided properly. Also MAC fields are protected by the 
shared keys (K, OIK or NIK) and hence the integrity service is afforded appropriately. 

The HE could authenticate the identity (IMSI) of the MS by verifying the integrity 
of the MACMS,K generated by the MS. The MS could confirm the identity of its home 
network by checking the MACHE,K calculated by the HE. So two parties authenticate 
each other suitably referred to mutual authentication. Besides, the MS and the 
VLR/SGSN could authenticate each other by verifying the MACMS,OIK, MACMS,NIK and 
MACVLR,NIK, as the session keys (OIK, NIK) could be computed or available in both 
sides (MS side and VLR/HE side). So the mutual authentication with security mode 
set-up is done by the EAKAP. 

Sequence Number Protection vs. Private Key Derivation 
MS increments the SQNMS for every IAKA procedure and HE runs the SQNHE for 
every generated AV. MS and HE use sequence number and random number generator 
to achieve strong freshness of their messages. However pseudo-random numbers 
could provide the freshness of the ways of the EAKAP, but both MS and HE need a 
large directory to save used random numbers in it. Also to avoid the usage of the 
repeated random numbers they have to search in their directory or sort and update the 
directory for every procedure that it consumes a large amount of energy and memory.  

In the EAKAP, anonymity protection of the sequence number is higher than the 
UMTS AKA because the sequence number of the UMTS AKA is XOR-ed by ano-
nymity key derived from nonce and the private key [2] like stream ciphers. As  
sequence number value is guessable because it starts from zero and changes incre-
mentally slowly, the known plaintext attack is imaginable on the f5 algorithm to get 
private key (K). However the core of the f5 algorithm is based on Advanced Encryp-
tion Standard (AES) [4] that the recent proposed attacks are not practical on it [5]. In 
the EAKAP, the sequence number is encrypted by a block cipher algorithm called fc 
with derived key from f5 algorithm and so the privacy of the sequence number is 
strongly established.  

Availability (Robustness against DoS Attack) 
If the MS enters area of a new VLR/SGSN, it won’t have a TMSI allocated by 
VLR/SGSN. So the MS must use its IMSI to initiate the procedure. In this situation, 
the MS actually aims its HE not VLR/SGSN. In fact SRNC and VLR/SGSN role as 
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relays to forward the MS messages to the HE. Here we don’t struggle with the privacy 
establishment of the MS.  

First, we consider the condition that no TMSI was set before. The MS and the 
VLR/SGSN have no shared key before and so, as mentioned in step1 of the previous 
section, the AREQ message has been sent to the HE via the intermediate SRNC and 
VLR/SGSN. As mentioned in step3, the HE could check the integrity of the MACMS,K, 
so the spam messages generated by spurious users are discarded by the HE. Further-
more, the DoS attack organized by unauthentic MS at the first step, could be detected 
at the HE side and no more traffic would be procreated in the network. 

Second, we consider the situation where the VLR/SGSN has allocated the MS a 
TMSI so the MS and the VLR/SGSN have shared a pair key (OCK and OIK) with 
each other. Consequently, as explained in step2, the VLR/SGSN checks the integrity 
of the MACMS,OIK and rejects the forged messages. Furthermore, with the usage of the 
pre-shared information of the MS, the network could prevent DoS attack of first step 
at the VLR/SGSN side. 

In the other steps of the EAKAP, by using MAC mechanism, the vulnerability to-
wards DoS attack is reduced as mentioned above. Although in some cases, the SQN 
should be computed before the MAC so the computation load would be increased. 
But no further signaling load would be injected to the network and the elements of the 
network could decide about the genuineness of the message by verifying the MAC 
integrity.  

Mutual Freshness and Unguessable Keys 
The SQNMS is encrypted by temporary anonymity key (TAK) derived from the output 
of the f5 algorithm by a high entropy seed which is IMSI||RANDMS. The SQNHE is 
protected by anonymity key (AK) derived from the f5 algorithm by concatenation of 
the IMSI, RANDMS and RANDHE that is an entropic seed to generate a fresh key. The 
seed entropy of the f5 algorithm depends on two random numbers RANDMS and 
RANDHE and hence is improbable to be guessed by adversary. So the sequence num-
bers could not be revealed. Also if an anonymity key is compromised at a session, no 
next-generated keys will be concealed i.e. our scheme supports forward security to-
wards session key compromising. The MAC fields like the SQN fields are fresh. The 
entropic seed of the MAC fields is derived from the pseudo random numbers as well 
as IMSI and sequence number.  

6   Conclusion 

Most of the proposed protocols do not consider the previous and next stages of the 
UMTS AKA protocol and they try to improve the UMTS AKA protocol solely. Our 
proposed protocol, so called EAKAP, merges all of the stages in five ways so it im-
proves performance by reducing the load of the network signaling. Also EAKAP 
support mutual freshness and is more robust against DoS attack by applying MAC 
mechanism between the MS and the network. 
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APPENDIX (Abbreviations) 

3GPP  Third-Generation Partnership Project 
AK  Anonymity Key 
AKA  Authentication and Key Agreement 
AMF  Authentication Management Field 
AREP  Authentication Reply 
AREQ  Authentication Request 
AuC  Authentication Center 
AUTN  Authentication Token 
AV  Authentication Vector 
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BSC  Base Station Controller 
BTS  Base Transceiver Station 
CK  Cipher Key 
CM  Connection Management 
CS  Circuit Switched 
DoS  Denial of Service 
EAKAP  Extended AKA Protocol 
FRESH  Pseudo-Random Number Generated by MS  
GSM  Global System for Mobile 
HE  Home Environment included HLR and AuC 
HLR  Home Location Register 
HN  Home Network 
IAKA  Identification and AKA 
IK  Integrity Key 
IMSI  International Mobile Subscriber Identity 
KSI  Key Set Identifier 
MAC  Message Authentication Code 
MAC-I  Message Authentication Code for Integrity 
MS  Mobile Station 
MSC  Mobile Switching Center 
PS  Packet Switched 
RANDX  Pseudo-Random Number Generated by X 
RES  Response 
SGSN  Serving GPRS Support Node 
SMCM  Security Mode Complete Message 
SQN  Sequence Number 
SRNC  Serving Radio Network Controller 
TAK  Temporary Anonymity Key 
TIMSI  TMSI or IMSI 
TMSI  Temporary Mobile Subscriber Identity 
UEA  UMTS Encryption Algorithm 
UIA  UMTS Integrity Algorithm 
UMTS  Universal Mobile Telecommunications System 
USIM  Universal Subscriber Identity Module 
VLR  Visitor Location Register 
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Abstract. We propose two symmetric-key management schemes for the
encryption of scalable compressed video content. The schemes are appli-
cable to MPEG-4 Fine Grain Scalability video coding. Our construc-
tions make only use of hash functions and achieve the optimal bound
regarding the minimum number of keys and the time complexity in
computing all the decryption keys. We also formalize new security no-
tions about collusion-resistance. Unlike prior key management schemes,
our second scheme resists to certain collusion attacks. The collusion-
resistance achieved is practical and hence sufficient for encryption of
scalable video streams.

Keywords: symmetric-key encryption, key management, MPEG-4 Fine
Grain Scalability.

1 Introduction

Scalability has become a fundamental feature in video coding. It allows one to
encode a video once and to send it to many users with different usage profiles
and capabilities (high-end PCs, high-definition displays, cell phones,...). Each
user has access to a particular portion or quality of the content. Efficient access
control methods are required in scalable video transmission in order to grant
access only to authorized users for the video quality they purchased for.

In scalable video coding, the compressed bitstream is composed of two layers:
a non scalable part called base layer and a scalable part containing many en-
hancement layers. If only the base layer is decoded, this will result in low quality
version of the original content. If the enhancement layers are decoded, combined
with the base layer, this produces an improved quality of the video, propor-
tional to the Enhancement portion decoded. MPEG-4 Fine Grain Scalability
(MPEG4-FGS) [4] provides flexibility in supporting:

– PSNR scalability by defining different quality bitplanes;
– Bitrate scalability by arbitrary bitplanes truncation.

Scalable compressed video is particularly adapted to flexible services provided
by DRM (Digital Rights Management) technologies [1,5]. Scalable encryption

F. Bao, H. Li, and G. Wang (Eds.): ISPEC 2009, LNCS 5451, pp. 245–256, 2009.
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techniques if combined with a suitable key management scheme enables to im-
prove access control processes as proposed for MPEG4-FGS [8].

To enforce a scalable access control, a typical approach is to encrypt the
different portions in the enhancement layers with a different encryption key. The
keys will be distributed selectively to legitimate users who should access only
the keys that render the authorized video quality. In other words, the scalable
access control problem for the video content is transformed into scalable access
control on the encryption key.

In this paper, we focus on a layered access control scheme called Scalable
Multi-Layer FGS Encryption (SMLFE) [8,10] that supports both PSNR and
bit-rate scalability for the MPEG4-FGS coding. In SMLFE, the enhancement
layers are encrypted into a single stream with multiple quality layers divided
according to PSNR values and bit-rates. Enhancement layers for each frame are
partitioned into n bit-rates and t PSNR layers independently.

Background and Related Works. In the trivial scheme [8], each segment
Si,j(1 ≤ i ≤ n, 1 ≤ j ≤ t), is at the intersection of one bit-rate and one PSNR
layer and is encrypted with a different segment encryption key. Therefore, n · t
segment keys are randomly generated to encrypt all the segments. The protected
content is next transferred to an appropriate server (distribution server) for the
distribution while the n · t segment keys are stored in a license server. When the
user receives the protected MPEG4-FGS content he requests for a license. The
license server generates it according to the quality and/or resolution requested.
For instance, if a user acquires the rights for the full quality of the video, license
server sends all the n · t segment decryption keys. In this trivial scheme, the
license server has to securely store all the n · t segment keys.

Another method based on the Diffie-Hellman key agreement protocol is de-
scribed in [9]. In this scheme, only two secret keys are maintained by the license
server (instead of n · t). for the full content quality, n public keys sent along

Fig. 1. Segments in the Enhancement Layers
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Table 1. Comparing Key Management Schemes Efficiency

Schemes Number of Keys Time-complexity

Symmetric Key server user length hashes exponentiations
Trivial n · t n · t 128 bits 0 0

Basic Scheme 1 1 128 bits n + t − 2 0
Enhanced Scheme 2 2 128 bits n + t + 2n−1 + 2t−1 − 4 0

Asymmetric Key server user length hashes exponentiations
ZFL 2 n + 1 256 bits n + t − 2 n · t

with the protected content plus one secret key, sent in the license, are needed to
compute all the segment keys. This system makes use of the hybrid encryption
method where the asymmetric algorithm helps in computing a symmetric key
used for segments encryption.

Notation. A 2l-bit integer x is an integer such that 22l−1 ≤ x < 22l. By $x% we
mean the highest integer less than or equal to x, i.e. $x% = max {n ∈ IN | n ≤ x}.
The l most significant bits of x are noted {x}L and l least significant bits {x}R,
i.e x = {x}L‖{x}R and could be written {x}L2l+{x}R. To ease the presentation,
we do not distinguish between an integer and its representation.
For a set S, we denote by |S| the number of elements in S.

Our contribution. In this work, we describe two symmetric-key management
schemes for scalable multilayer fine grain scalability encryption. In the proposed
schemes, we consider that a user having access to a given high resolution should
access all lowest resolutions, and similarly if he has access to a given quality he
should also have access to lowest qualities.

The “basic” scheme is the simplest construction that satisfies the SMLFE
architecture. It is the most efficient in terms of number of keys sent to user and
time complexity in recovering the segment decryption keys. The basic scheme
is however vulnerable to some collusion attacks. We therefore propose the “en-
hanced” scheme to address the collusion problem.

Table 1 compares our schemes with the previous proposal in terms of number
of keys maintained by the license server, number of keys and time complexity
needed at user side to recover all the segment keys. We do not distinguish be-
tween secret keys and public keys sent along with the content. We consider the
symmetric-key trivial scheme proposed by Yuan et al. [8] as well as the public-key
scheme ZFL proposed by Zhu et al. [9]. Regarding the key lengths, asymmetric
algorithm keys must be longer for equivalent resistance to attack than symmet-
ric keys. To compare systems with roughly the same level of security, 128 bits
for the symmetric-key schemes are compared with 256 bits for ZFL public key
scheme using elliptic curves [6].

2 Basic Scheme

In this section, we propose a basic key management scheme. The scheme design
is based on an iterative application of a one-way function. The one-way chain
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idea has been earlier proposed by Lamport in [3] to construct a one-time pass-
word scheme. [2] generalizes the idea behind Lamport’s scheme through the use
of several one-way functions.

Definition 1. A key scheme respecting the SMLFE architecture is said simply
secure if the knowledge of any secret key ki,j associated to Si,j does not permit
to get the secret key of any higher segment Sk,l such that k > i or l > j.

The defintion here tells that the access to a given low quality of the video content
should not lead to the access of a higher quality of this video.

Let us consider that there are n · t different segments in the enhancement
layers. Then each different segment will be encrypted with a different key. More
precisely, the content provider generates at random a 2l-bit master encryption
key K. This key encrypts the segment Sn,t that is in the higher quality level
for both parameters PSNR and bit-rate. Segment keys ki,j , which encrypt lower
quality are computed recursively as follow:

ki,j = h(n−i)({K}L)
∥∥ h(t−j)({K}R) , (1)

where h : {0, 1}l → {0, 1}l is a one-way (hash) function. h(n)(x) denotes the
result after applying n times the one-way function h to x.
The master key K is sent to the license server and encrypted content to distri-
bution server.

At the other end of the process, a user acquires a given quality of the video.
Let us consider that the requested quality is obtained by accessing segments
below PSNR level s and below bit-rate r. Then, the license server computes
using formula (1)

Kr,s = h(n−r)({K}L)
∥∥ h(t−s)({K}R) ,

and sends it to user in a license. From this key, the user is able to compute the
r · s keys of lower quality segments.

Proposition 1. The basic scheme is simply secure.

Proof. This immediately follows from the one-wayness of h. If an attacker knows
a key ki,j , finding kx,y for some x > i or some y > j requires the inversion of the
one-way function h which is assumed to be computationally infeasible. ��

We now discuss about the complexity of the scheme. From equation (1) we can see
that it requires for a user at most n + t− 2 calls to a one-way function to compute
all the segment keys. It also requires for the license server to maintain one key and
whatever the quality of the scalable content to transmit only one key to user.

Another advantage of the basic scheme is the possibility to derive from one se-
cret value two orthogonal segment decryption keys. The license server have then
the possibility to use both parameters PSNR and bit-rate to answer a requested
quality. In the ZFL scheme, public keys are distributed with the encrypted con-
tent, then the license server can later only use one parameter (i.e. PSNR) for
varying the quality of the content.
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A security concern in SMLFE is the collusion-resistance. A user could pur-
chase different low quality versions of a video and combine the encryption keys
in order to compromise the full quality of the video. Encryption keys should
then be constructed to protect high quality keys from collusions of low quality
encryption keys. The basic scheme is not resistant to such collusion attacks.

3 Collusion Resistance

We now formalize the model of a collusive attack against a key management
scheme for SMLFE.

Definition 2 (Basis). A basis of a set U , containing different segment keys
of the enhancement layers, is the minimal set of segment keys that permits to
compute all other segment keys in U .

Remark 1. A basis may contain one single key. Any set U can be then represented
by its basis (k1, k2, . . . , km).

Definition 3 (Collusion-Resistance). A key management scheme is called
collusion-resistant (CR) to any set C containing low quality segments (PSNR or
Bit-rate), if for every high quality segment Si,j /∈ C, the knowledge of all secrets
associated to segments in C does not permit to obtain the secret associated to Si,j .

The definition states that if a coalition of users has the keys associated to seg-
ments in C = {S1, S2, . . . , Sk} then the sharing of secrets by a coalition should
not permit to get an advantage of knowing segment keys that are not in C.
Definition 4 (Orthogonality). Two different segment Si,j and Sx,y are or-
thogonal when the right to access one of the two segments does not necessarily
give the right access the other and vice-versa. A sequence of k different segments
is said orthogonal if any two different segments in the k-sequence are orthogonal.

Definition 5 (Orthogonal Collusion-Resistance). The collusion-resistance
is orthogonal (OCR) if the colluders set keys is generated by at least 2 keys and
the knowledge of any couple (ki,j , ku,v) in the basis does not permit to obtain the
secrets associated to any segment in S, with

S =
{
{Sx,y | i < x ≤ n or j < y ≤ t)} ∩ {Sx,y | u < x ≤ n or v < y ≤ t}

}
.

A scheme is called k-OCR if it is collusion-resistant to any set C generated by
at most k orthogonal segments. Out of these general definitions about collusion-
resistance we will only consider in this paper collusion with 2 orthogonal segment
decryption keys.

The scheme described in previous section is not 2-OCR since knowing any two
orthogonal keys permits to compute a higher quality segment key. For instance,
if an adversary query two orthogonal decryption keys of the form

kn,j = {K}L

∥∥ h(t−j)({K}R), ki,t = h(n−i)({K}L)
∥∥ {K}R
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Fig. 2. Orthogonality and Orthogonal Collusion-Resistance

Fig. 3. Non 2-OCR Segments in Basic and Enhanced Scheme

he is able to reconstruct the key K = {K}L

∥∥ {K}R and to access all segments
in the enhancement layers.

The segments that do not resist to a collusion set generated by (ki,j , ku,v) is
the rectangle Ra,b(C) containing the segments {Sa,b} such that

min(i, u) < a ≤ max(i, u); min(j, v) < b ≤ max(j, v).

There are then
(
max(i, u)−min(i, u)

)
·
(
max(j, v)−min(j, v)

)
segments that are

vulnerable to the collusion. All other segments not in C and outside the rectangle
Ra,b(C) remain resistant to the collusion. Figure 4 illustrates an example where
C = (k3,6, k5,2).

The maximum number of the non collusion-resistant segments is reached
for C = (kn,1, k1,t) where there are (n − 1) · (t − 1) non collusion-resistant
segments keys. In the next section we proposes a scheme that better resists
to a 2-orthogonal collusion by reducing the number of non collusion-resistant
segments.
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Fig. 4. Non Collusion-Resistant Set

4 Enhanced Scheme

In this section, we propose an enhanced key management scheme. We brought
some modifications to the basic scheme to get better collusion-resistance
properties.

The content provider generates randomly two 2l-bits master encryption keysK1
and K2. K1⊕K2 is the key that encrypts the segment Sn,t and the values of n and
t are made public. Segment keys ki,j are computed by the license server as follows:

– compute k1
i,j from K1 using equation (1),

– compute next z(i, j):

z(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if n− i = 0 and t− j = 0 ,

2n−i − 1 if t− j = 0 and n− i 
= 0 ,

2t−j − 1 if n− i = 0 and t− j 
= 0 ,

2n−i + 2t−j − 2 for 1 ≤ i < n and 1 ≤ j < t .

(2)

– compute k2
i,j from K2:

k2
i,j = h

(z(i,j))
2 (K2) where h2 : {0, 1}2l → {0, 1}2l ,

– segment key ki,j is calculated by generating ki,j = k1
i,j ⊕ k2

i,j .

For the quality corresponding to PSNR level s and bit-rate level r, license
server delivers to user two keys K1

r,s and K2
r,s such that:

K1
r,s = h

(n−r)
1 ({K1}L)

∥∥ h
(t−s)
1 ({K1}R) , K2

r,s = h
(z(r,s))
2 (K2) ,

where z(r, s) is calculated using formula (2).

From these two keys, the user is able to compute all necessary r · s segment
decryption keys. Let us suppose that the user want to compute a lower-segment
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key kα,β . From k1
α,β , it is easy for the user to guess the number of times that the

one-way function h1 should be applied to the K1
r,s knowing α, β, r and s. Indeed,

k1
α,β = h

(r−α)
1 ({K1

r,s}L)
∥∥ h

(s−β)
1 ({K1

r,s}R) .

However, it is not as easy for the second part of the key k2
α,β . The formula (2)

gives the method to compute the value of z(α, β) in case the derivation is done
using the master key K2. The derivation process can also be performed in a
relative way, i.e from a key K2

r,s where K2
r,s is not necessarily the second master

key. Let Δ(r,s)z(α, β) an integer that depends on the distance between Sr,s and
Sα,β , the key k2

α,β is calculated as follow:

– compute z(r, s) for K2
r,s using formula (2), e.g. z(r, s) = 2n−r + 2t−s − 2 ,

– compute z(α, β) for k2
α,β using formula (2), e.g. z(α, β) = 2n−α − 1 ,

– compute Δ(r,s)z(α, β) = z(α, β)− z(r, s) ,
– generate k2

α,β = h
(Δ(r,s)z(α,β))
2 (K2

r,s) .

The user needs to know n and t (public values) to compute each lower segment
key k2

α,β . Finally, kα,β is calculated by generating kα,β = k1
α,β ⊕ k2

α,β .
In this scheme, the user needs at most n+ t+2n−r +2t−s−4 calls to one-way

functions for the computation of all the segment keys. In addition, all segment
keys are derived recursively from two common master keys, thus the license
server maintains two keys and whatever the quality requested by user only two
keys are transmitted. A use case example is given in the Appendix A.

We figure out that there are particular cases where the enhanced scheme is
2-OCR. These are cases where all the segment keys that should not be acces-
sible remain resistant to a 2-orthogonal collusion attack. This is formalized by
proposition 2.

Proposition 2. Enhanced scheme is 2-OCR for any set C = (ki,j , ku,v) such
that n− i 
= t− j and either n− i = t− v or t− j = n− u.

Proof. See Appendix A. ��
Proposition 2 states that the enhanced scheme is 2-orthogonal collusion-resistant
in the case n − i = t − v or t− j = n − u. There are no other cases where this
scheme is 2-orthogonal collusion-resistance. To compare it with the basic scheme,
we studied the number of segments keys that are not 2-OCR in the general case,
i.e when n−i 
= t−v and t−j 
= n−u. Proposition 3 gives the maximum number
of the non 2-OCR segments keys and figure 3 illustrates an example where non
2-OCR segments are filled with black.

Proposition 3. For all (n > 1, t > 1), the number of segments keys that are
not resistant to any 2-orthogonal collusion is bounded by $ t

2%
2 if n ≤ t or $n

2 %
2

if n > t .

Proof. See Appendix A. ��
In proposition 3 the number of non resistant segments keys is bounded by a
smaller value. Enhanced scheme has therefore better collusion-resistance prop-
erties than basic scheme.
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5 Conclusion

We have proposed two symmetric-key management schemes for protecting a
multilayer scalable part of an MPEG4-FGS video content. Compared to previous
work, our schemes reduces the number of keys managed by a license server and
the number of keys needed by the user to access the protected scalable video. On
the top of requiring less computational resources, symmetric algorithms permit
to handle short keys as well, which makes the proposed schemes attractive and
practical.

Besides, we focused on collusion-resistance and enhanced scheme has interest-
ing collusion-resistance property. An open problem is the design of a symmetric-
key system that is at least as efficient as the enhanced scheme and which remains
fully secure no matter how many orthogonal segment keys are at the disposal of
the attacker.

Acknowledgments. We thank Alain Durand, Marc Joye and Davide Alessio
for valuable discussions and suggestions. We also thank Eric Diehl for helpful
comments.
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A Appendix

A.1 Enhanced Scheme Example

In this section, we give an example for the enhanced scheme where n = 5 and
t = 4. The content provider generates two random 128-bit keys K1 and K2, which
are delivered to license server. K1 ⊕ K2 is the key that encrypts the segment
S5,4. Segment Si,j , where 1 ≤ i ≤ 5 and 1 ≤ j ≤ 4, is encrypted with a key that
results from a XOR between K1

i,j and K2
i,j . Table 2 illustrates how these values

are computed.

Table 2. Segment Decryption Keys

Computation of K1
i,j

h4
1(L)‖R ← h3

1(L)‖R ← h2
1(L)‖R ← h1(L)‖R ← K1 = L‖R

↓ ↓ ↓ ↓ ↓
h4
1(L)‖h1(R) ← h3

1(L)‖h1(R) ← h2
1(L)‖h1(R) ← h1(L)‖h1(R) ← L‖h1(R)

↓ ↓ ↓ ↓ ↓
h4
1(L)‖h2

1(R) ← h3
1(L)‖h2

1(R) ← h2
1(L)‖h2

1(R) ← h1(L)‖h2
1(R) ← L‖h2

1(R)
↓ ↓ ↓ ↓ ↓

h4
1(L)‖h3

1(R) ← h3
1(L)‖h3

1(R) ← h2
1(L)‖h3

1(R) ← h1(L)‖h3
1(R) ← L‖h3

1(R)

Computation of K2
i,j

h15
2 (K2) ← h7

2(K2) ← h3
2(K2) ← h2(K2) ← K2

↓ ↓ ↓ ↓ ↓
h16
2 (K2) ← h8

2(K2) ← h4
2(K2) ← h2

2(K2) ← h2(K2)
↓ ↓ ↓ ↓ ↓

h18
2 (K2) ← h10

2 (K2) ← h6
2(K2) ← h4

2(K2) ← h3
2(K2)

↓ ↓ ↓ ↓ ↓
h22
2 (K2) ← h14

2 (K2) ← h10
2 (K2) ← h8

2(K2) ← h7
2(K2)

One way functions h1 and h2 can use MD5 [7], which provides 128-bit ouput
size1. Computing all the segment encryption keys will then require 41 MD5
hashes and 20 XOR operations.

For the quality associated to PSNR level 3 and bit-rate level 2, license server
delivers to user two keys: K1

2,3 = h3
1(L)

∥∥ h1(R) and K2
2,3 = h8

2(K2). The user
is next able to compute K1

2,2, K1
2,1, K1

1,3, K1
1,2 and K1

1,1 by applying h1 to K1
2,3

as illustrated in the table 2. Knowing the value of n and t and the coordinates
of S2,3 i.e. (2, 3), the user finds the number of times the one-way function h2
is applied to K2

2,3 and obtains the other keys K2
2,2, K2

2,1, K2
1,3, K2

1,2 and K2
1,1.

Finally, segment decryption keys are calculated by generating Ki,j = K1
i,j⊕K2

i,j

with 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. In this example, the user performs 19 MD5 hashes
and 6 XOR operations.

1 Given that a smaller input/output size is needed for h1, we can apply the hash
function to 64 bits part of the key to be hashed and the resulting output is truncated
by selecting leftmost 64 bits and discarding the rightmost 64 bits output.
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A.2 Proof of Proposition 2

Since ki,j and ku,v are orthogonal either i < n or j < t. Let suppose that i < n.
If n− i = t− v and t− j = n− u then from (2) we have

k2
i,j = k2

u,v =

{
h
(2n−i−1)
2 (K2), if t− j = 0

h
(2n−i+2t−j−2)
2 (K2), otherwise .

(3)

If n− i 
= t− v or t− j 
= n−u then ∃(m1, m2) ∈ {1, . . . , 2n−1 + 2t−1− 2}2 such
that k2

i,j = h
(m1)
2 (K2) and k2

u,v = h
(m2)
2 (K2) with either m1 < m2 or m1 > m2.

The knowledge of one key enables to compute the other one. It is then sufficient
to consider k2

i,j by supposing m1 < m2.
k1

i,j and k1
u,v do not reveal the keys that are outside Ra,b. It suffices then

to find the keys in Ra,b that can be computed when k2
i,j is known. In the case

n− i = t− v or t− j = n− u, Ra,b contains the segment Sa,b such that

min(i, j) < a, b ≤ max(i, j)

'

min(n− i, t− j) ≤ n− a, t− b < max(n− i, t− j) .

Consider that n− i = max(n − i, t− j). The segment key {ka′,b′}2 ∈ Ra,b that
has the greatest hash exponent verifies (n− a′, t− b′) = (n− i− 1, n− i− 1)

{ka′,b′}2 =

{
K2, if n− i− 1 = 0

h
(2n−i−2)
2 (K2), otherwise .

(4)

From (3) and (4) we have then {ki,j}2 = h
(x)
2 (K2) and {ka′,b′}2 = h

(y)
2 (K2)

with y < x. Since h2 is non-invertible ⇒ NCRSC = ∅. ��

A.3 Proof of Proposition 3

Collusion set is C = (ki,j , ku,v) . k1
i,j and k1

u,v reveal first part of the keys in
Ra,b(C). Let k2

a,b s.t. (a, b) ∈ {1, . . . , n} × {1, . . . , t} that can be computed from

k2
i,j = h

(2n−i+2t−j−2)
2 (K2). We have then

2n−i + 2t−j ≤ 2n−a + 2t−b. (5)

Let suppose that n− i ≤ t− j, therefore three cases are possible:

– if max(n−a, t− b) > t− j, (5) has always a solution (because
k∑

i=0
2i < 2k+1),

– if max(n−a, t− b) = t− j, (5) has a solution only if min(n−a, t− b) ≥ n− i,
– if max(n− a, t− b) < t− j, (5) has no solution.
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The solution set verifies then

max(n− a, t− b) > max(n− i, t− j)
or(

max(n−a, t−b) = max(n−i, t−j) and min(n− a, t− b) ≥ min(n− i, t− j)
)

.

The keys that can be computed from k2
ij and k2

uv are associated to the seg-
ments in Wa,b where

Wa,b =
{

Sa,b /∈ C
∣∣∣(max(n− a, t− b) > max(n− i, t− j)

)
or

(
max(n−a, t−b) = max(n−i, t−j) and min(n−a, t−b) ≥ min(n−i, t−j)

)}
,

and non collusion-resistant set NCRSC = Ra,b ∩Wa,b . We now give the bound
NCRSC in the worst case.

– if n ≥ t, ∃ j ∈ {1, t− 1} s.t. NCRSC has maximum size for C′ = (Sn,j , S1,t),
– if n < t, ∃ i ∈ {1, n− 1} s.t. NCRSC has maximum size for C′ = (Sn,1, Si,t),

⇒ |NCRSC′ | ≤

⎧⎨⎩
t−1
max
j=1

(
(n− t + j − 1) · (t− j)

)
, if t = min(n, t),

n−1
max
i=1

(
(t− n + i− 1) · (n− i)

)
, if n = min(n, t).

Let n = max(n, t), then
t−1
max
j=1

(
(n− t+ j−1) · (t− j)

)
= k · (k−1) ≤ k2 if n is even

(i.e. n = 2k); or
t−1
max
j=1

(
(n− t + j − 1) · (t− j)

)
= k2 if n is odd (i.e. n = 2k + 1).

This implies
t−1
max
j=1

(
(n− t + j − 1) · (t − j)

)
≤ k2 = $n

2 %
2. The same result holds

for t when t = max(n, t)⇒ ∀C, |NCRSC| ≤ max($n
2 %

2
, $ t

2%
2). ��
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Abstract. In this paper we present Twister, a new framework for hash
functions. Twister incorporates the ideas of wide pipe and sponge func-
tions. The core of this framework is a – very easy to analyze – Mini-Round

providing both extremely fast diffusion as well as collision-freeness for
one Mini-Round. The total security level is claimed to be not below 2n/2

for collision attacks and 2n for 2nd pre-image attacks. Twister instan-
tiations are secure against all known generic attacks. We also propose
three instances Twister-n for hash output sizes n = 224, 256, 384, 512.
These instantiations are highly optimized for 64-bit architectures and
run very fast in hardware and software, e.g Twister-256 is faster than
SHA2-256 on 64-bit platforms and Twister-512 is faster than SHA2-512
on 32-bit platforms. Furthermore, Twister scales very well on low-end
platforms.

Keywords: Hash Function, Sponge Function, AES, HAIFA, Wide pipe,
Randomized Hashing.

1 Introduction

One of the most used primitives in modern cryptography are hash functions.
A hash function H : {0, 1}∗ → {0, 1}n takes an input of arbitrary size and
computes an n-bit fingerprint out of it. Established security requirements for
cryptographic hash functions are collision-, pre-image and 2nd pre-image resis-
tance – but ideally, cryptographers expect a good hash function to behave like
a random function. Nearly all iterative hash functions are designed using the
Merkle-Damgård construction [16, 31]. A Merkle-Damgård hash func-
tion is an iterated hash function that uses a fixed length compression func-
tion C : {0, 1}nc × {0, 1}m → {0, 1}nc where nc is the size of the chaining
value and m the size of a message block. We have n = nc for hash func-
tions using the Merkle-Damgård construction. By assuming a padded mes-
sage M = (M1, . . . , Ml), |Mi| = m, 1 ≤ i ≤ l and an internal chaining value
hi ∈ {0, 1}nc (h0 is called the initial value) the computation of the hash value
hl for such a message M is as follows: hi = C(hi−1, Mi), i = 1, . . . , l.

F. Bao, H. Li, and G. Wang (Eds.): ISPEC 2009, LNCS 5451, pp. 257–273, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The main benefit of the Merkle-Damgård transformation is that it pre-
serves collision resistance: if the compression function C is collision resistant,
then so is the hash function. Unfortunately, this result does not extend to pre-
and 2nd preimage resistance. Recent results highlight some intrinsic limitations
of the Merkle-Damgård approach. This includes being vulnerable to multi-
collision attacks [22], long 2nd preimage attacks [24], and herding [23]. Even
though the practical relevance of these attacks is unclear, they highlight some
security issues which designers are well advised to avoid or take care of.

Related Work. Most popular hash functions such as MD5 [38], SHA-0 [34] or
SHA-1 [33] have weaknesses in their design, leading to a huge amount of attacks
[6, 7, 13, 18, 37, 40, 41, 42]. But also most new hash functions [2, 21, 25, 26]
which try to take care for weaknesses in the Merkle-Damgård -construction
itself were broken soon after their publications [29, 36, 35, 30, 20].

The concept of sponge functions [4] uses for example a big internal state that
absorbs a message of arbitrary length and that later squeezes out a hash value
of variable size. RadioGatún [3] with XOR sponges and Grindahl [26] with
truncate-overwrite sponges are the first hash function that use this framework.
Grindahl was shown to be vulnerable to several attacks [35, 20].

Our contribution. The design of secure and practical hash functions is of great
interest since most hash functions have been broken. Due to the SHA-3 [32]
competition many new proposals for hash function primitives will be published
in the next months. In this paper we present a new hash function framework
called Twister. Our proposal is based on a sponge construction [5] as well as
on an wide pipe approach [27]. It also includes randomized hashing as proposed
in the HAIFA framework [8]. The main goal of our approach is to present a fast,
secure hash function which is flexible and simple to analyze. We can show that
one cannot find a collision after one so called Mini-Round and that we obtain
full diffusion after two application of a Mini-Round.

More precise, it uses XOR-sponges with a big internal state as proposed in
[27]. The randomized hashing is built in via a salt value - a method proposed in
the HAIFA framework [8]. In some sense we learn from the Grindahl design
[26], but our approach is different in many ways. We take advantage of the well
studied basic operations of AES [15] and adopt several of them, including some
optimization techniques.

Due to recent breakdowns of many proposed hash functions we analyze the
resistance of Twister against all known generic attacks on hash functions. We
find, that the Twister framework resists all of them if the size of the internal
chaining value is at least double the size of the hash output.

Outline. In Section 2 we present an informal description of the Twister hash
function family. Then, in Section 3, we give an detailed description of the general
Twister framework and we propose three instances: Twister-256, 384 and 512
for 256, 384 and 512 bit hash sizes. In Section 4 we discuss some security issues
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of Twister. Finally, we conclude our paper in Section 5. Some performance
aspects of Twister are presented in Appendix A.

2 An Informal Description of the Twister Framework

In this section, we give a general description of the Twister hash function family
and its building blocks. For a complete description of Twister, see the formal
specifications in Section 3. Twister follows a very simple and clear design goal.
It consists of an iterated compression function and of an output function.

2.1 The Compression Function

The compression function of Twister consists of building blocks called Mini-
Rounds which are grouped into Maxi-Rounds. Each Mini-Round is a combination
of well studied primitives, which are easy to analyze and fast to implement in
software and hardware. The instances of the Twister hash function family differ
only in their construction of a Maxi-Round. We will give an informal description
of these principles below.

A Mini-Round consists of the following primitives:

– MessageInjection inserts a 64-bit message block into the last row of the state
matrix,

– SubBytes applies a non-linear S-box table look up on each byte of the state
matrix in parallel,

– AddTwistCounter XOR’s a round dependent counter into the second column
of the state matrix,

– ShiftRows rotates row i by i− 1 positions to the left,
– MixColumns applies a linear diffusion on each column of the state matrix in

parallel

A visualization of a mini round is shown in Appendix B.

A Maxi-Round contains between three and four Mini- Rounds and zero or one
blank rounds. A blank round is a Mini-Round with no message input, which
is equivalent to the all zero message block. Each Maxi-Round uses also a feed
forward operation, i.e., the state before a Maxi-Round is feed forwarded with the
state after a Maxi-Round. Figure 1 gives a high level description of a Maxi-Round.

2.2 The Output Function

The Output-Round of Twister contains a global feed forwards as well as some
Mini-Rounds depending on the size of the hash output. First a Mini-Round is
applied on the state Hi−1, then the resulting state is XOR’ed with Hi−1 another
Mini-Rounds is applied which gives the state Hi. Let Hf be the final state after
the last compression function call. A 64-bit output stream outi is then obtained



260 E. Fleischmann et al.

Fig. 1. Left: A Maxi-Round Right: An Output-Round

by XORing the first column of Hi with the first column of Hf . This procedure
takes place until the needed amount of output bits are obtained. The last output
stream can be varied between 32 bits and 64 bits by taking only the first half
of outi. This allows to vary the output size for a huge amount of applications.
Figure 1 gives a high level description of a Output-Round.

3 Specification: The Twister Hash Function Family

In this section we present our hash function. We start off with a description
of the general design strategy. The design is based on a block cipher that is
iterated using the Davies-Meyer (DM) mode of operation [10]. Twister is a
byte-oriented framework that operates on a square state matrix. The building
block of the block cipher is called Mini-Round. It takes a sub portion of the
message and processes it into the state S whereas S is a N × N byte-matrix,
N ∈ N. N should be at least of size 4 to obtain a valuable structure at all.
After two Mini-Rounds, the state is guaranteed to have full diffusion. Also, two
subsequent iterations of the Mini-Round is can be proved to be collision free.
See Section 4 for a detailed discussion on our security issues.

After processing the padded message (i.e. the message is completely absorbed
by the state S), the output follows. This technique follows the design ideas of the
sponge function [4] by not presenting the complete internal state to the attacker
at once but slice by slice.

The following notations are used in the following:

S = (Si,j)1≤i,j≤N internal state matrix
C = (Ci,j)1≤i,j≤N internal checksum matrix
N number of rows and columns of the internal state

matrix
msgsize size of unpadded message (in bits)
Rtotal number of total Mini-Rounds per compression

function
Rmsg number of N-byte blocks processed per compression

function
m size of the padded message, measured in

N ·Rmsg -byte blocks, i.e. the number of compression
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function calls needed to absorb the message into the
state S

M = (M1, . . . , Mm) padded message to be handled by the Twister hash
function

Munpad unpadded message
out size of the hash value measured in N -byte blocks, i.e.

out = n/(8 ·N)
n size of the hash value in bits, i.e. n = out · 8 ·N ,

where n ≤ (8 ·N)2

H = (H1, . . . , Hout) number of N -byte blocks of the hash output
φ TwistCounter

3.1 Twister Components

This section describes in detail the Twister components.

The State S. Twister operates on a square state matrix S = (Si,j), 1 ≤
i, j ≤ N , consisting out of N rows and columns, where each cell Si,j represents
one byte.

S1,1 S1,2 ... S1,N

S2,1 S2,2 ... S2,N

...
...

. . .
...

SN,1 SN,2 ... SN,N

Notation: S(i→) := (Si,1, . . . , Si,N ) denotes the i-th row vector and S(j ↓) :=

(S1,j , . . . , SN,j) the j-th column vector.

Checksum C. The checksum enlarges the state of Twister-384 and Twister-
512 to stick to our wide pipe design [27] decision. In other words: using the
checksum we can double the internals state.

The checksum is as the state S a square checksum matrix C = (Ci,j), 1 ≤
i, j ≤ N , consisting out of N rows and columns, where each cell Ci,j represents
one byte.

C1,1 C1,2 ... C1,N

C2,1 C2,2 ... C2,N

...
...

. . .
...

CN,1 CN,2 ... CN,N

TwistCounter φ. The TwistCounter φ is a unsigned 64 bit integer that is
added and decreased within a Mini-Round to prevent slide attacks.
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3.2 The Compression Function

The Twister-hash function calls the compression function using the DM mode
of operation. After the message is absorbed in the internal state the output
function is called for every N bytes of output.

Recall that the compression function of Twister consists of building blocks
called Mini-Rounds which are grouped into Maxi-Rounds. The instances of the
Twister hash function family differ only in their construction of a Maxi-Round.

The compression function takes a 512-bit block and processes them into the
internal state matrix S. As a Maxi-Round only indicates the position of the
local feed forward XOR-operation we will normally only discuss a compression
function as a set of Mini-Rounds. The local feed-forward operation is an optional
security feature and is discussed in Section 4. More general, the compression
function works as follows. Let R be the number of Mini-Rounds in a compression
function. (Note: In Figure 2 we have R = 9.)

Twister-224 and Twister-256. The Twister-224 and Twister-256 com-
pression function consists of three Maxi-Rounds. Each Maxi-Rounds is followed
by a feed-forward XOR-operation. The first and second Maxi-Round consist of
three Mini-Rounds. The last Maxi-Round consists of two Mini-Rounds and one
blank round. Figure 2 illustrates the compression function.

Fig. 2. The compression function of Twister-224 and Twister-256

Twister-384 and Twister-512. The Twister-384 and Twister-512 com-
pression function consists of three Maxi-Rounds, too. The first Maxi-Rounds con-
sists of three Mini-Rounds. The second Maxi-Rounds consists of a Mini-Round
followed by a blank round and an other Mini-Round. The last Maxi-Rounds
consists of three Mini-Rounds followed by a blank round. Figure 3 illustrates
the compression function.

Mini-Round. The Mini-Round is the underlying building-block of any Twister

hash function. It’s main purpose is to inject the message (Message-Injection) and
to take care for the diffusion of the state matrix S. It is visualized in Figure 5.
Twister can handle at most 264 Mini-Rounds. This limitation causes by the Add-
TwistCounter operation where a 64-bit counter is added. Each Mini-Round can
process 64 bit of message data. Therefore, with a native usage of a Mini-Round it
is possible to process up to 264 · 64 message bits. If this limitation became in the
future a real world issue it is possible to increase the size of the TwistCounter
to 128 bit with almost no performance loss.
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Fig. 3. The compression function of Twister-384 and Twister-512

Message injection. A 64 bit message block m is inserted (via XOR ⊕) into the
last row. By using the notation m = (m[1], . . . , m[N ]) whereas the length of
m[N ] is one byte, and

S(→ j) ⊕m := (S1,j ⊕m[1], . . . , SN,j ⊕m[N ])

we define the message injection process by

S(→ 1) = S(→N) ⊕m.

AddTwistCounter. The TwistCounter φ is a unsigned 64 bit integer. The initial
state is the maximum value (0xFFFFFFFFFFFFFFFF). By using the notation φ =
(φ[1], . . . , φ[N ]) whereas the length of φ[N ] is one byte, and φ[1] is the most
significant byte of φ. The counter is added byte by byte - via the XOR operation
- into the second column of the state S.

S2,↓ ⊕ φ := S2,1 ⊕ φ[1], . . . , S2,N ⊕ φ[N ])

We define the TwistCounter addition by

S = S2,↓ ⊕ φ

After the addition φ is decreased by one.

SubBytes. The function is defined as an bijection

SubBytes : {0, 1}8 −→ {0, 1}8

and is used as an S-box for each byte. It should, among other properties, be
highly non-linear. A discussion on how to obtain such cryptographically strong
S-boxes (for 8x8 S-boxes) can be found in [43]. Twister uses the well known
and studied AES S-box. It can be found in [15].

We define the SubBytes operation by

Si,j = SB(Si,j) ∀i, j.

ShiftRows. ShiftRows is a cyclic left shift similar to the ShiftRows operation of
AES. It rotates row j by (j − 1) mod N bytes to the left.

We define the ShiftRows operation by

S(i,j−1) := S(i,j) ∀i, j.



264 E. Fleischmann et al.

MixColumns. The MixColumn step is a permutation operation on the state.
It applies a N × N -MDS A (a maximum distance separable matrix as defined
below) to each column, i.e. performs the operation A · S(j ↓).

Definition 1. An [n,k,d] code with generator matrix

G = [Ik×k Ak×(n−k)]

is an MDS code if every square submatrix of A is non singular. The matrix A is
called a MDS-matrix.

Our chosen MDS matrix is cyclic, i.e., its i-th row can be obtained by a cyclic
right rotation of (02 01 01 05 07 08 06 01) by i entries. It has a branch number of
9 meaning that if two 8 byte input vectors differ in 1 ≤ k ≤ 8 bytes, the output
of MixColumns differs in at least 9 − k bytes. The 8 × 8-MDS matrix used for
all proposed instances of Twister is:

MDS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

02 01 01 05 07 08 06 01
01 02 01 01 05 07 08 06
06 01 02 01 01 05 07 08
08 06 01 02 01 01 05 07
07 08 06 01 02 01 01 05
05 07 08 06 01 02 01 01
01 05 07 08 06 01 02 01
01 01 05 07 08 06 01 02

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
All of the byte entries are considered to be elements of F28 . An element∑7

i=0 aix
i ∈ F28 is represented by

∑7
i=0 ai2i. The reduction polynomial m(x) of

F28 is defined as

m(x) = x8 + x6 + x3 + x2 + 1. (1)

Properties of MDS matrices/codes can be found e.g. in [28]. A discussion on
how to obtain suitable MDS matrices can be found in the full version of the
paper.

Maxi-Round. A Maxi-Round contains of several Mini-Rounds, blank round
and a optional checksum updates. We defined a checksum update operation as

C(i,↓) = C(i,↓) ⊕ C(i+1,↓) � S(i,↓)

Maxi-Rounds use also a feed forward operation where the state before a Maxi-
Round Sk is feed forwarded with the state after a Maxi-Round Sk+1. We defined
the feed forward operation as

S(i,j) := Sk
(i,j) ⊕ Sk+1

(i,j) ∀i, j.

Figure 1 illustrates a Maxi-Round.
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3.3 Postprocessing

This section describes the Twister finalization process.
Postprocessing shall take place after the message processed by the compression

function. This post processing consists of two steps:

1. Padding the message M
2. Message digest computation

Padding. The message, M, shall be padded before hash computation begins.
For the padding, the well known 10-padding rule is applied (see e.g. [33])

Message digest computation. The Output-Round computes the message di-
gest. It contains a global feed forwards as well as some Mini-Rounds depending
on the size of the hash output. For every 64 message digest bits Mini-Round is
applied on the state S, then the resulting state is XOR’ed with Sk−1 another
Mini-Rounds is applied which gives the state Sk. Let Sf be the final state after
the last compression function call. A 64-bit output stream outi is then obtained
by XORing the first column of Sk with the first column of Sk−1. This procedure
takes place until the needed amount of message digest bits are obtained. The
last output stream can be varied between 32 bits and 64 bits by taking only
the first half of outi. This allows to vary the output size for a huge amount of
applications. Figure 1 illustrates the Output-Round.

4 Security

In this section we analyze the security of Twister and show that it is resistant
to all known generic attacks.

4.1 Generic Attacks

Length-Extension Attacks. Given an Merkle-Damgård based hash function
H . If one can find a collision for two messages M, M ′ with M 
= M ′, such
that H(M) and H(M ′) collide, then one can apply a length extension attack.
For any message N one can easily produce a collision for M ||N and M ′||N as
H(M ||N) = H(M ′||N). Our padding rule avoids such type of attacks since we
concatenate the length of the message to the message itself. Another attack can
be as follows. For a known hash value H(M) one can compute the hash value
H(M ||X ||N) for any suffix N , if the length of an unknown message M is known
as well as the padding X of M . We prevent Twister to this kind of attack by
two countermeasures: (i) By knowing only the hash value an attacker can not
easily determine the state S after the last compression function call as he has
only access to the result of the final() function. This function squeezes out
some bits of the state applying output transformation and squeezes out some
bits again. The bits of a squeezing process do not leave enough information to
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recover the internal state. (ii) The multiple feed-forward does also prevent any
attacker to successfully gain any knowledge of prior state information. In each
squeezing process the one feed forward takes place.

Multi-Collision Attacks. Joux [22] found that when iterative hash functions are
used, finding a set of 2k messages all colliding on the same hash value (a 2k-
multi-collision) is as easy as finding k single collision for the hash function.
Finding a collision in the compression function, i.e., a single block collision one
can find k of such collisions each starting from the chaining value produced by
the previous one-block collision. In other words, one have to find two messages
blocks Mi and M ′

i 
= Mi with C(hi−1, Mi) = C(hi−1, M
′
i), where C(·) repre-

sents the compression function and hi the chaining value. Then it is possible
to construct 2k messages with the same hash value by choosing for block i ei-
ther the message block Mi or M ′

i . Joux also showed that the concatenation of
two different hash functions is not more secure against collision attacks than
the strongest one. This attack can find 2k-way internal multi-collisions with a
complexity of k · 2nc/2. An instance of Twister fully resists the multi-collision
attack if 8 · N2 ≥ 2nc, since the complexity is determined by k · 2(8·N2)/2. All
instances of Twister have this feature, although the state of Twister-384 and
Twister-512 is not big enough to prevent this attack alone, including the check
sum can be viewed as an enlarging of the state, which then guarantees to prevent
for this attack.

Herding Attacks. The herding attack [23] works as follows. An attacker takes
2k chaining values which are fixed or randomly chosen. Then he chooses
O(2nc/2−k/2) message blocks. He computes the output of the compression func-
tion for each chaining value and each block. It is expected that for each chaining
value there exists another chaining value, such that both collide to the same
value. The attacker stores the message block that leads to such a collision in
a table and repeats this process again with the newly found chaining values.
Once the attacker has only one chaining value, it is used to compute the hash
value to be published. To find a message whose chaining value is among the
2k original values, the attacker has to perform O(2nc−k) operations. For such a
message the attacker can retrieve from the stored messages the message blocks
that would lead to the desired hash value. The time complexity of this attack is
about O(2nc/2+k/2) operations for the first step and O(2nc−k) operations for the
second step. The whole attack on an n-bit hash function requires approximately
2(2nc−5)/3 work. For Twister we have nc = 8 ·N2 and with 8 ·N2 ≥ (3nc +5)/2
the attack has the same complexity as for for a (second) pre-image attack on
a random oracle. The complexity of this attack decreases with increased size of
the message. If the message is of size about 2t, then the complexity of the attack
is 2(2nc−5)/3−t. One has to choose N such that the hash function is protected
against this kind of attack for a given upper bound. All of our proposed instances
of Twister resist this kind of attack.
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Long 2nd pre-image Attacks. Dean [17] found that fix-points in the compres-
sion function can be used for a second-pre-image attack against long messages
in time O(nc · 2nc/2) and memory O(nc · 2nc/2), where nc = 8 · N2 is the size
of the internal state (which is equal to the size of the hash output for a plain
Merkle-Damgård constructions). Kelsey and Schneier [24] extend this result
and provide an attack to find a 2nd pre-image on a Merkle-Damgård con-
struction with Merkle-Damgård strengthening much faster than the expected
workload of 2nc . The complexity of the attack is determined by the complexity
of finding expandable messages. These are messages of varying sizes such that all
these messages collide internally for a given IV. Expandable message can either
be found using internal collisions or fixed points between a one-block message
and an α-block message for varying values of α. The complexity of the generic at-
tack to find a 2nd pre-image for a 2k-message block is about k ·2nc/2+1+2nc−k+1

compression function calls.
Long 2nd preimage attacks in this form cannot be applied to the Twister

framework for three reasons. First, we include the twist counter which does
not allow to find expandable messages. Second, we make use of multiple feed-
forwards and, third, the internal chaining value is in general much larger than
n. This make it harder to find collisions and fix points since we essentially have
a constructions similar to the wide pipe design [27].

Andreeva et al. [1] have shown that a combination of the attacks from [17, 24,
23] can be mounted to dithered hash functions, which gives the attacker more
control on the second-pre-image, since he can choose about the first half of the
message in an arbitrary way. This attack can be done in time 2nc/2+k/2+2+2nc−k.
Although it is more expensive than the attack of Kelsey and Schneier [24], it
works even when an additional input to the compression function (dithering) is
given. One have to make the dithering as huge as possible, such that there are no
small cycles. Twister includes the twist counter φ which is very large, i.e., the
twist counter is of size of the maximal message length. The larger this counter
is the longer cycles we have, which increases the protection against this type of
attack.

Slide Attacks. Slide attacks are common in block cipher cryptanalysis, but they
also applicable to hash functions. Given a hash function H and two messages
M and M ′ where M is a prefix of M ′, one can find a slid pair of messages
(M, M ′) such that the the last message input block of the longer message M ′

performs only an additional blank round, e.g. for sponge constructions. These
two messages are then slid by one blank round. This attack allows to recover the
internal state of a slid pair of messages an even backward computation as shown
in [20]. The twist counter φ avoids the possibility of slide attacks, since XOR-ing
a different value in each Mini-Round into the state matrix does not allow to find
slid pairs of messages. Furthermore, the last inserted message block cannot be
the all zero block due to the padding rules. Thus slide attacks are unavailable
for Twister.
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Differential Attacks. The essential idea of differential attack on hash functions
[12], as used to break MD5 and SHA-0/1, is to exploit a high-probability in-
put/output differential over some component of the hash function, e.g. under
the form of a ”perturb-and-correct” strategy for the latter functions, exploiting
high probability linear/non-linear characteristics. In the design of the Twister

framework, we applied the following countermeasures against differential attacks:

– High-Speed-Diffusion. The strong diffusion capabilities of the Mini-Round in
combination with the non-linear S-box make the exploit of linear approxi-
mations highly implausible. As it is impossible to find a collision after one
Mini-Round, any attacker has to trail presumably very long paths to be able
to find a collision.

– Nested feed-forward. The internal feed-forward operations aim at strength-
ening the function against differential paths.

– Optional internal wide pipe. this makes internal collision unlikely, and the
output-rounds make the differences much harder to predict in the hash value.

– Using different operators (e.g. � and ⊕) highly complicates the computation
of good differential paths.

4.2 Security Proofs for Twister

Twister was designed such that a single Mini-Round is proven to be collision
free. This is expressed by the following lemma.

Lemma 1. From any state hi−1 one cannot find input message blocks M , M ′ 
=
M such that

Mini-Round(hi−1, M) = Mini-Round(hi−1, M
′)

for all M , M ′ 
= M .

Proof. Assume that hM
i is the state after inserting the message block M and

hM ′
i is the state after inserting M ′. Then, if M and M ′ are different in byte j

the states hM
i and hM ′

i are different in column j in at least 9 − k bytes. This
is due to the MDS property of our diffusion layer, which has a branch number
of 9. �

We can also show that Twister offers full diffusion after two input blocks.

Lemma 2. Given an internal state hi−1 and two input blocks M1 and M ′
1 where

M1 
= M ′
1. Then, we have full diffusion of the state after two Mini-Rounds.

Proof. The message distribution process is visualized in Figure 4. Two messages
M1 and M ′

1 
= M1 are different in at least one byte. Due to the diffusion of
MixColumns at least one state column differs in 8 bytes. The ShiftRows of the
following Mini-Round with no message input will distribute the all difference
column into a one byte difference in each state column. After that MixColumns
generates a difference in all state bytes. Which leads to full diffusion. �
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Fig. 4. Visualization of the diffusion of a message after two Mini-Rounds

5 Conclusion

In this paper we proposed a family of hash functions which overcome several
identified weaknesses of the commonly used MDx family of hash functions (MD4,
MD5, SHA-X). The weaknesses are addressed by several methods. By using some
of the well analyzed building blocks and ideas of Rijndael we obtain a design for
which we claim that no efficient differential collision structures exist. In addition,
we limit access to the internal structure and take care that any possible difference
quickly diffuses into the internal state. Furthermore it is highly scalable as there
are – as proposed in e.g. in Twister-256 and Twister-512 – many possible
ways to adopt our main building block, the Mini-Round.

We proposed three instantiations of the Twister framework, Twister-n,
where n = 256, 384, 512. The claimed security level for Twister-256 with re-
spect to collision resistance is 2128 and with respect to (2nd) pre-image resistance
2256. For Twister-384, we claim a collision resistance of 2192 and a (2nd) pre-
image resistance of 2384. For Twister-512, the claimed security level for collision
resistance is 2256 and for (2nd) pre-image resistance 2512. The Twister family
of hash functions exploits mathematical structures (i.e. MDS matrices) and, at
the same time, having comparable speed as the SHA-2 family. Thus, instances
of the Twister framework are suitable for a huge range of applications from
low-end 8-bit platforms up to high-end 64-bit architectures.

Twister is submitted to the NIST SHA-3 competition. A new slightly mod-
ified version of Twister as well as the full submission document can be found
on www.twister-hash.com.

References

[1] Andreeva, E., Bouillaguet, C., Fouque, P.-A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second Preimage Attacks on Dithered Hash Functions. In: Smart [39],
pp. 270–288 (2008)



270 E. Fleischmann et al.

[2] Aumasson, J.-P., Meier, W., Phan, R.C.-W.: The Hash Function Family LAKE.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 36–53. Springer, Heidelberg
(2008)

[3] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Radiogatun, a belt-and-
mill hash function. Presented at Second Cryptographic Hash Workshop, Santa
Barbara (August 24-25, 2006) (2006), http://radiogatun.noekeon.org/

[4] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge Functions. Ecrypt
Hash Workshop (2007),
http://gva.noekeon.org/papers/bdpv07.html

[5] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart [39], pp. 181–197 (2008)

[6] Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin [19], pp. 290–305
(2004)

[7] Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions
of SHA-0 and Reduced SHA-1. In: Cramer [14], pp. 36–57 (2005)

[8] Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007)

[9] Biryukov, A. (ed.): FSE 2007. LNCS, vol. 4593. Springer, Heidelberg (2007)
[10] Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-

based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

[11] Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
[12] De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results

and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

[13] Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

[14] Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

[15] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

[16] Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard [11], pp. 416–427
(1989)

[17] Deam, R.D.: Formal Aspects of Mobile Code Security. Ph.D. dissertation, Prince-
ton University (1999)

[18] Dobbertin, H.: Cryptanalysis of MD4. J. Cryptology 11(4), 253–271 (1998)
[19] Franklin, M. K. (ed.): CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg

(2004)
[20] Gorski, M., Lucks, S., Peyrin, T.: Slide Attacks on Hash Functions. In: Pieprzyk,

J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143–160. Springer, Heidelberg
(2008)

[21] Hong, D., Chang, D., Sung, J., Lee, S.-J., Hong, S.H., Lee, J.S., Moon, D., Chee,
S.: A New Dedicated 256-Bit Hash Function: FORK-256. In: Robshaw, M.J.B.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 195–209. Springer, Heidelberg (2006)

[22] Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In: Franklin [19], pp. 306–316 (2004)

[23] Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

[24] Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer [14], pp. 474–490 (2005)

http://radiogatun.noekeon.org/
http://gva.noekeon.org/papers/bdpv07.html


Twister – A Framework for Secure and Fast Hash Functions 271

[25] Knudsen, L.R.: SMASH - A Cryptographic Hash Function. In: Gilbert, H., Hand-
schuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 228–242. Springer, Heidelberg
(2005)

[26] Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl Hash Functions. In:
Biryukov [9], pp. 39–57 (2007)

[27] Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

[28] MacWilliams, F.I., Sloane, N.J.A.: The Theory of Error-Correcting Codes (1977)
[29] Matusiewicz, K., Peyrin, T., Billet, O., Contini, S., Pieprzyk, J.: Cryptanalysis of

FORK-256. In: Biryukov [9], pp. 19–38 (2007)
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A Performance

Twister was especially designed with 64-platforms in mind by making it possi-
ble to aggregate 8 times an 8-bit table lookup into one single 64-bit table lookup.
The following performance measurements were conducted on:

Processor: Core2Duo T 7300
Clock Speed: 2000 MHz
Memory: 2048 MB
Operating System: Linux, GNU Debian Lenny, Kernel 2.6.26-1 x64
Compiler: GCC 4.3, Optimization settings: -Os

For comparison, performance measurement results for SHA-2 on the this plat-
form are given in Table 1.

Table 1. Performance comparison of Twister and SHA-2

Output Size

Algorithm Platform 224/256 384/512

SHA-2 64 20.1 13.1
Twister 64 15.8 17.5
SHA-2 32 29.3 55.2
Twister 32 35.8 39.6
Twister 8 200 220

All value are measured in cycles per byte.
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B Visualization of a Mini-Round
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Abstract. RIPEMD is a cryptographic hash function devised in the
framework of the RIPE project (RACE Integrity Primitives Evaluation,
1988-1992). It consists of two parallel lines, and each line is identical
to MD4 except for some internal constants. It has been broken by the
collision attack, but no preimage attack was given. In this paper, we give
a preimage attack on the compression function of the 26-step reduced
RIPEMD with complexity 2110 compression function computations, and
we extend the attack on the compression function to an attack on the
26-step reduced RIPEMD with complexity 2115.2 instead of 2128. Then
we extend the attack on 26 steps to the attack on 29 steps with the same
complexity. Moreover, we can reduce the complexity of the preimage
attack on the full RIPEMD without the padding rule by 1 bit compared
with the brute-force attack.

Keywords: hash function, RIPEMD, cryptanalysis, preimage attack.

1 Introduction

Hash function is defined as a mapping h : {0, 1}∗ −→ {0, 1}n, where {0, 1}∗
denotes the set of bit strings of arbitrary length, and {0, 1}n denotes the set of
strings of n-bit length.

From the security perspective, a hash function h with inputs x, x
′
and outputs

y, y
′
should satisfy some or all of the properties. For the formal definition of them

we refer to [1].

– Preimage Resistance: for any output y, it is computationally infeasible to
get an input x such that h(x) = y.

– Second-preimage Resistance: for any input x, it is computationally infeasible
to get another input x

′
(
= x) such that h(x) = h(x

′
).
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– Collision Resistance: it is computationally infeasible to get any two distinct
inputs x, x

′
such that h(x) = h(x

′
).

Now most attacks on hash functions focus on finding collisions, and the most
well-known generic attack to find collisions is the birthday attack. By a reason-
ing similar to the birthday paradox, there is a good chance to find a collision if
we compute hash values of about 2

n
2 messages, where the hash value is n-bit.

While finding preimage is relatively harder, and the only generic attacks to find
second preimage or preimage are the brute-force which both have the complexity
of 2n.

A hash function with n-bit hash value is considered academically broken if it
is possible to find collisions, second preimage or preimage in less than 2

n
2 , 2n or

2n hash computations respectively.
There has been a great progress in finding the collision of hash functions

in recent years. Wang et al. [3,4,5,6,7], Biham et al. [8] and Mendel et al. [9]
found collisions of many hash functions based on MD4, such as HAVAL, MD5,
RIPEMD, SHA-0 and SHA-1 etc.. These hash functions are considered not secure
now. However, some of them are still widespread used when collision resistance
is not required.

Preimage resistance is a weaker security notion than collision resistance. In
some applications, collision resistance is unimportant, but preimage resistance
is needed. The work on preimage attacks is much less than collision attacks in
the cryptanalysis of hash functions. [10] showed that preimages of the first 2-
round MD4 can be found, which was improved by [11]. They found the preimage
of 2 rounds and 7 steps of MD4. [12] presented a preimage attack on the full
MD4. [13] gave an example of the preimage attack against MD2. This work was
improved in [14]. In [15], they presented preimage attacks on 3-pass HAVAL and
47-step MD5. [20] gave preimage attacks on 3, 4, and 5-pass HAVAL.

RIPEMD [2] was developed in the European RIPE project (RACE Integrity
Primitives Evaluation, 1988-1992). Its compression function consists of two par-
allel lines of MD4 [17] compression function. In this paper, we present an in-
version of the compression function of the 26-step reduced RIPEMD with the
complexity of 2110 compression function computations. Then the preimage at-
tack on the compression function is extended to a preimage attack on the 26-step
reduced RIPEMD with complexity 2115.2 and memory requirement of 223 bytes.
The attack on 26-step reduced RIPEMD can be extended to 29 steps with the
same complexity. Moreover, we present a preimage attack on the full RIPEMD
without the padding rule with complexity 2127, which optimizes the complexity
order for brute-force attack.

The rest of the paper is organized as follows. Section 2 describes the RIPEMD
algorithm. In Section 3, we show how to invert the compression function of the
26-step reduced RIPEMD and extend the preimage attack on the compression
function to the preimage attack on hash function. Moreover, we extend the attack
on 26-step reduced RIPEMD to 29-step reduced RIPEMD. Section 4 shows the
preimage attack on the full RIPEMD without the padding rule by speeding up
the brute force attack. Finally, we summarize the paper in Section 5.
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2 Description of RIPEMD

The hash function RIPEMD compresses any arbitrary length message into a mes-
sage with the length of 128 bits. Firstly, RIPEMD pads any given message into
a message with the length of 512 bits multiple. For each 512-bit message block,
RIPEMD compresses it into a 128-bit hash value by a compression function.

The initial value of RIPEMD is:

(a0, b0, c0, d0) = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476)

The compression function of RIPEMD consists of two parallel lines of MD4,
which are denoted by Line1 operation and Line2 operation respectively. Each
operation is identical to MD4 except for some internal constants. The nonlinear
functions in each round are as follows:

F (X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z)
G(X, Y, Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z)
H(X, Y, Z) = X ⊕ Y ⊕ Z

Here X , Y , Z are 32-bit words. The operations of the three functions are all
bitwise. ∧, ⊕ and ∨ are bitwise AND, XOR and OR respectively. ¬ represents the
bitwise complement of X. Each round of the compression function is composed
of 16-step operations.

In the following descriptions, � si(i = 1, · · · , 48) represents the circular shift
si-bit positions to the left. + denotes addition modulo 232, - denotes subtract
modulo 232.

Line 1 operation process. For a 512-bit block M , M = (m0, m1, . . . , m15),
Line1 operation process is as follows:

1. Let (aa0, bb0, cc0, dd0) be the input of Line1 process for M . If M is the first
block to be hashed, (aa0, bb0, cc0, dd0) is the initial value. Otherwise it is the
output of the previous block compressing.

2. Perform the following 48 steps (three rounds):
(a) For i = 1, · · · , 16, do the following 16 operations:

aai = ddi−1

bbi = (aai−1 + F (bbi−1, cci−1, ddi−1) + mσ(i))� si

cci = bbi−1

ddi = cci−1

(b) For i = 17, · · · , 32, do the following 16 operations:

aai = ddi−1

bbi = (aai−1 + G(bbi−1, cci−1, ddi−1) + mσ(i) + 0x5a827999)� si

cci = bbi−1

ddi = cci−1
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(c) For i = 33, · · · , 48, do the following 16 operations:

aai = ddi−1

bbi = (aai−1 + H(bbi−1, cci−1, ddi−1) + mσ(i) + 0x6ed9eba1)� si

cci = bbi−1

ddi = cci−1

The orders of message words can be seen in Table 1. The details of the shift
positions can be seen in Table 2.

Line 2 operation process. For a 512-bit block M , M = (m0, m1, . . . , m15),
Line2 operation process is as follows:

1. Let (aaa0, bbb0, ccc0, ddd0) be the input of Line2 process for M . If M is the
first block to be hashed, (aaa0, bbb0, ccc0, ddd0) is the initial value. Otherwise
it is the output of the previous block compressing.

2. Perform the following 48 steps (three rounds) :
(a) For i = 1, · · · , 16, do the following 16 operations:

aaai = dddi−1

bbbi = (aaai−1 + F (bbbi−1, ccci−1, dddi−1) + mσ(i) + 0x50a28be6)� si

ccci = bbbi−1

dddi = ccci−1

(b) For i = 17, · · · , 32, do the following 16 operations:

aaai = dddi−1

bbbi = (aaai−1 + G(bbbi−1, ccci−1, dddi−1) + mσ(i)) � si

ccci = bbbi−1

dddi = ccci−1

(c) For i = 33, · · · , 48, do the following 16 operations:

aaai = dddi−1

bbbi = (aaai−1 + H(bbbi−1, ccci−1, dddi−1) + mσ(i) + 0x5c4dd124)� si

ccci = bbbi−1

dddi = ccci−1

The orders of message words can be seen in Table 1. The details of the shift
positions can be seen in Table 2.

Add the output of Line1 to the output of Line2.

H0 = b0 + cc48 + ddd48

H1 = c0 + dd48 + aaa48
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H2 = d0 + aa48 + bbb48

H3 = a0 + bb48 + ccc48

If M is the last message block of the message MM , then H(MM) = H0 ∗
H1 ∗ H2 ∗ H3 is the hash value for the message MM , where ∗ denotes the
bit concatenation. Otherwise take (H0, H1, H2, H3) as inputs, and repeat the
compression process for the next 512-bit message block.

Table 1. Word Processing Orders

round1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
round2 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
round3 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Table 2. Shift positions

round1 3 7 11 19 3 7 11 19 3 7 11 19 3 7 11 19
round2 3 5 9 13 3 5 9 13 3 5 9 13 3 5 9 13
round3 3 9 11 15 3 9 11 15 3 9 11 15 3 9 11 15

3 Preimage Attack on the 26-Step Compression Function

In this section, first, we will recall some nice properties of the Boolean function
F, then, we will describe our preimage attack on the compression function of
the 26-step reduced RIPEMD, which is denoted by CRIPEMD. We can invert
CRIPEMD by using the strategy of [12,15] and exploiting the nice properties
of Boolean function F and the order of the message words. A preimage attack
against CRIPEMD is given with the complexity of 2110 CRIPEMD computa-
tions. Then we extend the preimage attack on CRIPEMD to an preimage attack
on the 26-step reduced RIPEMD with complexity 2115.2.

3.1 Some Basic Propositions

In this section we will recall some popular used properties of the nonlinear func-
tion F in our attack. These properties were presented in [10,16,3] etc.. We can
use these key properties to absorb some difference.

Proposition. For the nonlinear function F (X, Y, Z) = (X ∧Y )∨ (¬X ∧ Z), the
following properties hold:

1. F (x, y, z) = F (x,¬y, z) if and only if x = 0.

2. F (x, y, z) = F (x, y,¬z) if and only if x = 0xffffffff.
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3.2 Preimage Attack on CRIPEMD

The key tricks used in our attack are the absorption of changes in c0 and the
exploitation of the order of the message words. We will give the following obser-
vations.

Observation 1. From the algorithm of RIPEMD, it is easy to get the following
conclusions about Line1 operation and Line2 operation:

1. At each step i (1 ≤ i ≤ 48), only the chaining variable bi is renewed, and
bi = ci+1 = di+2 = ai+3 (0 ≤ i ≤ 45), b46 = c47 = d48, b47 = c48.

2. At each step i (1 ≤ i ≤ 48), from the chaining variables ai, bi, ci, di and
message word mσ(i), we can compute ai−1, bi−1, ci−1, di−1.

Observation 2. From the order of the message words in Table 1, we know that
m2 is used at Step 3 (the very beginning of CRIPEMD) and Step 25 (the very
end of CRIPEMD). Therefore, we can modify m2 to alter cc26 (and don’t alter
ddd26), so that H0 = b0 + cc26 + ddd26 is equal to H∗

0 . Then according to the
Proposition, we know that F can ”absorb” the change in c0 at Step 1 and Step
2 if the conditions b0 = 0 and b1 = 0xffffffff are added respectively.

The general procedure of the attack is as follows. Firstly, we choose chaining
variables (a0, b0, c0, d0) with certain constraints. Secondly, we choose a 512-bit
message block M = (m0, · · · , m15) with certain constraints. Thirdly, we modify
the message word m2 such that cc26 is changed (and ddd26 isn’t changed) to
ensure that H0 = b0 + cc26 + ddd26 is equal to H∗

0 . Fourthly, we correct c0
such that the change in m2 doesn’t change b1, b2, b3, b4, so doesn’t change the
subsequent chaining variables.

Description of the Attack. Suppose we want to get the output of CRIPEMD
(H∗

0 , H∗
1 , H∗

2 , H∗
3 ), our goal is to find a 512-bit message block M and input

chaining variables (a0, b0, c0, d0) such that the compressing output is equal to
(H∗

0 , H∗
1 , H∗

2 , H∗
3 ), i. e. CRIPEMD((a0, b0, c0, d0), M) = (H∗

0 , H∗
1 , H∗

2 , H∗
3 ).

We will describe the attack in Algorithm 1. The algorithm first sets b0 = 0
and bbb1 = 0xffffffff to ensure that a change in c0 doesn’t affect bbb1 and
bbb2 of Line2 operation. If bbb1 = 0xffffffff holds, then the Hamming weight
(i. e. the number of ”1” bits in the binary sequence) of bb1 in Line1 operation
is 18, which will be proved below. Therefore, a change in c0 doesn’t affect bb2
of Line1 operation with the probability of 2−14. Obviously, the condition b0 = 0
ensure that a change in c0 doesn’t affect bb1. Then the algorithm will modify
m2 to ensure that H0 meets the requirement. Finally, c0 is corrected to ensure
that the change of m2 doesn’t affect bb3 and bbb3. So the modification of c0
is absorbed with probability 2−14, i. e. the probability of the forward stage
unchanged with the new m2 is 2−14. If the forward stage unchange, then the
32-bit of the 128-bit image is satisfied, and we can get the compressing values
(H0, H1, H2, H3) = (H∗

0 , H∗
1 , H∗

2 , H∗
3 ) by exhaustively search the remaining 96

bits values.
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Algorithm 1 Preimage Attack on CRIPEMD
Input: H∗

0 , b∗0 = 0.
Output: M = (m0, · · · ,m15) and (a0, b0, c0, d0) st. (H0,H1,H2,H3) = (H∗

0 ,H∗
1 ,H∗

2 ,H∗
3 ).

1. repeat
2. Pick an initial variable with b0 = 0 and a0, c0, d0 being arbitrary values.
3. Choose m0 such that bbb1 = 0xffffffff.
4. Choose arbitrary values for m1, · · · ,m15.
5. Do the Line1 operation to get aa26, bb26, cc26, dd26.
6. Do the Line2 operation to get aaa26, bbb26, ccc26, ddd26.
7. Modify m2 to change cc26, so that cc26 = H∗

0 − b0 − ddd26.
8. Correct c0 to keep bb3 and bbb3 unchanged.
9. Compute the final compressing value (H0,H1,H2,H3).
10. If (H0,H1,H2,H3) = (H∗

0 ,H∗
1 ,H∗

2 ,H∗
3 ), then return (a0, b0, c0, d0) and M = (m0, · · · ,m15).

Correctness of the Attack

1. In order to make Line 3 of Algorithm 1 feasible, we modify m0 as follows:

m0 ← (0xffffffff >>> 3)− a0 − F (b0, c0, d0)− 0x50a28be6

2. We will show that if bbb1 = 0xffffffff, then the Hamming weight of
bb1 in Line1 operation is 18. From the algorithm of RIPEMD, we can get
the equations (1) and (2), combined with the equation (3), we know that
bb1 = (0xffffffff− 0x50a28be6) � 3 = 0xaf5d7419 � 3 = 0x7aeba0cd.
Therefore, the Hamming weight of bb1 is 18.

bb1 = (a0 + F (b0, c0, d0) + m0) � 3 (1)
bbb1 = (a0 + F (b0, c0, d0) + m0 + 0x50a28be6)� 3 (2)
bbb1 = 0xffffffff (3)

3. For Line2 operation, according to Proposition 1, we know that the condition
b0 = 0 ensures the change of c0 results in no change in bbb1, and according
to Proposition 2, the condition bbb1 = 0xffffffff ensures that the change
of c0 results in no change in bbb2. Therefore, we can modify c0 to correct a
change in m2, and in the same time not alter the chaining variables b0 ,bbb1,
bbb2, bbb3, so not alter the subsequent chaining variables.

4. For Line1 operation, according to Proposition 1, we know that the condition
b0 = 0 ensures the change of c0 results in no change in bb1, and according to
Proposition 2, the condition bb1 = 0x7aeba0cd ensures that the change of c0
results in no change in bb2 with the probability of 2−14. Therefore, we can
modify c0 to correct a change in m2 without altering the chaining variables
b0, bb1, · · ·, bb26 with probability 2−14.

5. In the second round of Line1 operation, changing m2 results in altering cc26.
In the second round of Line2 operation, changing m2 doesn’t change ddd26.

H0 = b0 + cc26 + ddd26 (4)
cc26 = bb25 = (aa24 + G(bb24, cc24, dd24) + m2 + 0x5a827999)� 3 (5)
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Combined with equation (4) and equation (5), we can modify m2 as follows
in order to set H0 = H∗

0 .

m2 ← (H∗
0 − b0 − ddd26) >>> 3− aa24 −G(bb24, cc24, dd24)− 0x5a827999

6. We can change c0 in order to correct the change of m2 in Line1 operation,
i. e. to keep bb3 unchanged. c∗0,1 denotes the c0 after changed in Line1 op-
eration. Denote m

′
2 by the original message word before changed. m

′′
2 is the

message word after changed. From the algorithm of RIPEMD, we can get
the following equation (6) and equation (7):

bb3 = (aa2 + F (bb2, cc2, dd2) + m
′
2)� 11

= (c0 + F (bb2, bb1, b0) + m
′
2)� 11 (6)

bb3 = (c∗0,1 + F (bb2, bb1, b0) + m
′′
2 )� 11 (7)

From equation (6) and equation (7) we can get c0+m
′
2 = c∗0,1+m

′′
2 (8)

7. Similarly, we can change c0 to correct the change of m2 in Line2 operation,
i. e. to keep bbb3 unchanged. c∗0,2 denotes the c0 after changed in Line2
operation. From the algorithm of RIPEMD, we can get the following equation
(9) and equation (10):

bbb3 = (c0 + F (bbb2, bbb1, b0) + m
′
2) � 11 (9)

bbb3 = (c∗0,2 + F (bbb2, bbb1, b0) + m
′′
2 )� 11 (10)

From equation (9) and equation (10) we can get c0 + m
′
2 = c∗0,2 + m

′′
2 (11)

From equation (8) and equation (11), easily we get c∗0,1 = c∗0,2.
Therefore, the change in m2 can be corrected by changing c0 as follows:
c0 ← (bb3 >>> 11)−F (bb2, bb1, b0)−m

′′
2 = (bbb3 >>> 11)−F (bbb2, bbb1, b0)−m

′′
2−0x50a28be6

With the new value c0, the chaining variables bb3 in Line1 operation and
bbb3 in Line2 operation are not altered.

All in all, firstly, we modify m2 to get the output H∗
0 , then we alter c0 to

correct the change in m2 in Line2 operation, and to correct the change in m2 in
Line1 operation with probability 2−14. We can get the outputs H∗

1 , H∗
2 and H∗

3
by exhaustively search with 296 trials. Thus the total cost is 2110(= 296 × 214)
trials.

3.3 Preimage Attack on the 26-Step Reduced RIPEMD

In order to extend the preimage attack on CRIPEMD to the 26-step reduced
RIPEMD, we take into consideration of two aspects: one is the padding rule of
RIPEMD, and the other is the standard initial value. The padding rule only
forces some constraints on the last message words, and there aren’t any restric-
tions on the last message words in our attack. So the padding rule is not an
obstacle. However, the initial value is a problem, the initial value in our attack
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is different from the standard one in the RIPEMD algorithm. We use two ap-
proaches to extend our attack to the attack based on the standard initial value.
These approaches are also used in [15].

Basic Meet-in-the-Middle Approach. We will use the basic meet-in-the-
middle approach to turn the attack to the preimage attack on the 26-step reduced
RIPEMD. The approach is similar to the unbalanced meet-in-the-middle attack
in [18]. If the complexity of the attack on the compression function is 2x, then we
hash 2

n+x
2 random message blocks with the standard initial value, and compute

2
n−x

2 preimages for the targeting value H∗ by using the preimage attack on
the compression function. By the birthday paradox, we expect one match. The
complexity of the preimage attack on hash functions is 21+ n+x

2 .
In our attack, we have x = 110. We hash 2119 random message blocks with the

standard initial value with complexity 2119, and compute 29 preimages for the
targeting value H∗ with complexity 2119 = 29 × 2110. Therefore, the complexity
of our attack on 26-step reduced RIPEMD is about 2120 hash computations.

Tree Approach. This approach is the meet-in-the-middle approach combined
with a tree-based approach. The details of the approach can refer to [12] which
describes the approach exactly. [19] describes a similar approach. Firstly, we
compute 216 multi-block preimages of the targeting value H∗ by using the tree-
based approach, which costs 2115 = 16× 2111 computations. Then we hash 2112

random message blocks with the standard initial value, and we expect to find
one match according to the birthday paradox. Therefore, the preimage attack on
26-step reduced RIPEMD has the time complexity of about 2115.2(= 2115+2112),
and needs to store 217 message blocks (223 bytes).

Delayed-Start Attack. We can extend the attack to 29-step reduced RIPEMD,
which is from step 2 to 30 by using the message word m3 instead of m2. The
attack has the same complexity as the attack on 26 steps.

4 Preimage Attack on the Full RIPEMD

In this section, by the approach of speeding up the brute-force attack proposed
in [20], we can reduce the complexity of the preimage attack on the full RIPEMD
without the padding rule by 1 bit.

We will recall the speeding up approach as follows. Given the initial value IV
and hash value H, we want to find a message block such that the hash value is
equal to H under the initial value IV. Assume mi and mj form a local collision
in the first round, and mi, mj appear at steps i1, j1 (i1 < j1) in the second
round, then the values of the chaining variables from step 1 to i1 can be reused
with all mi and corresponding mj . Let mi, mj appear at steps i2, j2 (i2 < j2) in
the last round, then the results from step j2 to the last can be reused. Similarly,
if mi and mj form a local collision in the last round, then this technique can
also be achieved. The memory requirement of the attack is negligible.
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We make a local collision from step 12 to step 16 in Line2 operation. Then
the results from step 1 to 30 can be reused. Assume the initial value is IV and
the hash value is H = (H0H1H2H3). We use the speeding up approach to invert
the full RIPEMD in the following steps.

1. Randomly choose the message words mi (i=0,...,9), and compute the chain-
ing variables aaai, bbbi, ccci and dddi (i=1,...,10).

2. Choose m10 such that bbb11 = bbb10, i. e. ccc12 = ddd12.
3. Randomly choose m11. Choose m12 such that bbb13 = 0. Choose m13 such

that bbb14 = 1.
4. Randomly choose other message words. Compute aai, bbi, cci and ddi

(i=1,...,11). Compute aaai, bbbi, ccci and dddi (i=1,...,30). Store the val-
ues aaa30, bbb30, ccc30 and ddd30 in a table.

5. For all 232 m11, compute the corresponding m15 such that bbb16 doesn’t
change. Compute aai, bbi, cci and ddi for i = 12, ..., 48.

6. Let aaa48 = H0 − aa48, bbb48 = H1 − bb48, ccc48 = H2 − cc48 and ddd48 =
H3−dd48, compute aaai, bbbi, ccci and dddi in the reverse direction and get
the value aaa33. Check whether aaa33 = bbb30 is in the table or not. If it is in
the table, compute bbb32, bbb31 and bbb30 and check all values are matched.
Otherwise, choose m11 and repeat the process.

The complexity of the attack is 2127 = 296 × 231. The reason is that the
complexity of the above procedure is about 231 = 232× (48−11)+(48−33)

48+48 , and the
success probability is 2−96 = 2−128 × 232.

5 Conclusion

In this paper, firstly, we present an inversion of the compression function of the
26-step reduced RIPEMD with complexity 2110, and extend the preimage at-
tack on the compression function to a preimage attack on the 26-step reduced
RIPEMD with complexity 2115.2 and memory requirement of 223 bytes. Then we
extend the attack on 26-step reduced RIPEMD to 29 steps with the same com-
plexity. In the last, we give a preimage on the full RIPEMD without the padding
rule and reduce the complexity by 1 bit compared with the brute-force attack.
Though the attacks require very large number of compression function evalua-
tions, they are successful attacks on reduced RIPEMD theoretically. Moreover,
it shows that the hash functions composed of two parallel lines are not secure as
we expected. As far as we know, this is the first preimage attack on RIPEMD.
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Abstract. In this paper, we give the full key-recovery attacks on the
HMAC/NMAC instantiated with 3 and 4-Pass HAVAL using our new
differential paths. The complexity to recover the inner key is about 2103

MAC queries for the 3-Pass HAVAL and 2123 MAC queries for the 4-
Pass HAVAL. The complexity to recover the outer key is about 269

MAC queries and 2198 offline computations for the 3-Pass HAVAL based
HMAC/NMAC. For the 4-Pass HAVAL case, the number of MAC queries
for outer key-recovery is about 2103 and the offline work is about 2180

4-Pass HAVAL computations.

Keywords: HMAC, NMAC, key-recovery, 3-Pass HAVAL, 4-Pass
HAVAL.

1 Introduction

Recently the analysis of the MACs based on hash functions have attracted ex-
tensive attention in the field of cryptographic analysis. A message authentication
code(MAC) is a function which takes a message and a secret key as inputs and
produces an output called an authentication tag. HMAC [2] is a standardized
hash-based MAC algorithm which is widely used as a MAC algorithm and a
pseudorandom function generator. NMAC [2] is a generalized version of HMAC.
They are proven secure under the assumption that the compression function
of the underlying hash function is a pseudorandom function [1]. However, the
attacks on hash functions [8,9,10,11,12,13] have shown that the prevailing hash
functions such as MD4, HAVAL, MD5, SHA-0, SHA-1 are not collision resis-
tant. Therefore research on the HMAC/NMAC based on those hash functions
has become a hot topic. There are three kinds of attacks on HMAC/NMAC: dis-
tinguishing attack, forgery attack and key-recovery attack. We focus on the key-
recovery attack by trying to recover the inner and outer key of HMAC/NMAC
instantiated by 3 and 4-Pass HAVAL.

At Asiacrypt’06, Contini and Yin [3] used collision techniques to obtain
forgery and partial key-recovery attacks on HMAC/NMAC instantiated with
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MD4, MD5, SHA-0 and reduced SHA-1. At SCN 2006, Kim et.al [5] give distin-
guishing, forgery and partial key-recovery attacks on the HMAC/NMAC based
on full or reduced HAVAL, MD4, MD5, SHA-0 and SHA-1. At FC 2007, Rech-
berger and Rijmen [7] proposed a full key-recovery attack in the related-key
setting on NMAC with full MD5 and 34-step SHA-1. At Crypto 2007, Fouque
et.al presented the first full key-recovery attacks on HMAC/NMAC based on
MD4 using the IV-dependent collision differential path. Their attack can derive
bits of outer key k1 by observing whether or not collisions occurred for the outer
MD4. At Eurocrypt 2008, Wang et.al [14] gave a new outer key-recovery attack
on HMAC/NMAC-MD4 by using the near-collision differential path. They also
extended the attack of [3] into a full key-recovery attack on NMAC-MD5 in the
related-key setting. In FSE 2008 [6], Lee et.al found a 3-Pass HAVAL collision
differential path with probability 2−114, and that allowed to inner key-recovery
attack on HMAC/NMAC based on 3-Pass HAVAL with 2122 MAC queries and
296 offline computations.

In this paper, we extend the technique of Contini-Yin [3] to recover the in-
ner key for the HMAC/NMAC based on 3 and 4-Pass HAVAL using our new
differential paths. For the outer key-recovery, we joint the IV-dependent tech-
nique in [4] and the near-collision technique in [14] together to recover more key
bits by using our new IV-dependent near-collision differential path. Our inner
key-recovery attack on HMAC/NMAC based on 3-Pass HAVAL is more efficient
than that of Lee et.al ’s [6]. According to our knowledge, this is the first full
key-recovery attack for the HMAC/NMAC based on 3 and 4-Pass HAVAL. The
main results of this paper are listed in Table 1.

Table 1. Summary of our key-recovery attacks on HAVAL-based HMAC/NMAC

Hash type Probability of Online queries Offline computations
functions differentials

3-Pass HAVAL Inner K. 2−96 2103 270

4-Pass HAVAL Inner K. 2−121 2123 239

3-Pass HAVAL Outer K. 2−64 269 2198

4-Pass HAVAL Outer K. 2−98 2103 2180

This paper is organized as follows. In section 2, we describe the algorithms
of HAVAL and HMAC/NMAC briefly. In section 3, we introduce our inner key-
recovery attack on the HMAC and NMAC based on 3 and 4-Pass HAVAL. In
section 4, we give the outer key-recovery attack on the HMAC/NMAC based on
3 and 4-Pass HAVAL. Finally we conclude this paper in section 5.

2 Algorithm Description

2.1 Description of 3 and 4-Pass HAVAL

The original description of the HAVAL algorithm can be found in [15]. In this
section, we only describe the compression functions for the 3 and 4-Pass HAVAL
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for our purpose of attacks. The compression function of HAVAL takes a 1024-bit
message M = (m0, m1, ..., m31) and a 256-bit initial value hin = (a0, b0, ..., h0)
as inputs, and produces a 256-bit hash value hi+1 as output. The compression
function is defined in the case of 3 and 4-Pass as follows:

– Initialize chaining variables (a, b, ..., h) as (a0, b0, ..., h0).
– Perform the following 32 × 3 (or 4):

For i=0 to 2 (or 3)
For j = 0 to 31

p := fi+1(g, f, e, d, c, b, a)
r := (p ≫ 7) + (h ≫ 11) + mord(i,j) + ki,j

(a, b, c, d, e, f, g, h):=(r, a, b, c, d, e, f, g)
The constant ki,j and the order of the messages words in each pass can be
found in [15]. The Boolean functions (round functions) involved in the 3 and
4-Pass HAVAL are defined in Table 4.

– Output the 256-bit value hout := (a + a0, b + b0, ..., h + h0).

Some main properties of the round function f1 of 3-Pass HAVAL that are used
to find differential paths are listed in Tables 5 of Appendix. It is easy to deduce the
similar properties of the other round functions for the 3 and 4-Pass HAVAL.

2.2 Description of NMAC and HMAC

HMAC and NMAC are both hash based MACs. Let H be the underlying hash
function and f be the compression function. The basic design approach for
NMAC is to replace the fixed IV in H with a secret key. Using the notations
of the paper [2], let fk(x) = f(k, x) denote the keyed compression function and
Hk(x) = H(k, x) denote the keyed hash function. Let (k1, k2) be a pair of in-
dependent keys, the NMAC algorithm, on input message M and the secret key
(k1, k2), is defined as :

NMAC(k1,k2)(M) = Hk1(Hk2 (M)).

HMAC is a variant of NMAC that uses a fixed IV so that it can be implemented
by simply calling the existing hash functions. The function HMAC works on an
arbitrary length input message M and a fixed length random string k as its keys:

HMACk(M) = H(k ⊕ opad||H((k ⊕ ipad)||M)),

where k is the key k padded to full b-bit block size by appending zero bits. ipad
and opad are two b-bit constants. Let k1 = f(k ⊕ opad) and k2 = f(k ⊕ ipad),
then HMAC can be seen as a special case of NMAC. So in the following attacks,
we only focus on the key-recovery attack on the NMAC and it is also applicable to
HMAC.

3 Inner Key-Recovery on NMAC Based on 3 and 4-Pass
HAVAL

In this section, we extend Contini-Yin’s inner key-recovery technique [3] on
NMAC to the 3 and 4-Pass HAVAL.
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3.1 Inner Key-Recovery on NMAC Based on 3-Pass HAVAL

In this section, we find five differential paths with almost the same probability
2−98 for inner key-recovery attack on NMAC based on 3-Pass HAVAL. The
message difference ΔM = (Δmi)(0≤i≤31) selected for these paths is

Δmi =
{

230, i = 20
0, 0 ≤ i ≤ 31, i �= 20.

The five differential paths and their precise probabilities are shown in Table
6. The total probability of the differential paths in Table 6 is 2−96, i.e, for any
random message M , the message pair (M , M +ΔM) obeys one of the five paths
with probability 2−96.

For a reasonable success rate, we need 22 × 296 = 298 chosen message pairs
to get the collide messages (M , M + ΔM), and they obey one of the five paths
in Table 6. No matter which path they obey, some variable conditions generated
by M are determined. If we can recover the values of successive eight chaining
variables ai to ai+7 generated by M , the inner key k2 can be recovered by
backward computation. Let Pr is the probability of the differential path from
step r to the last step. In order to carry out our work, we list the sufficient and
necessary conditions in the chaining variables a20 to a27 and the corresponding
probability Pr in Table 2.

Utilizing the conditions in a20, a21, a22, a23, a25 and a27, we can recover the
least significant 31 bits in these chaining variables by changing the corresponding
bit in m19. For a reasonable success rate, it needs about 23

Pri+1
message pairs

(M∗, M∗ + ΔM) to recover one bit of ai. The structure of the message M∗ and
the detail bit-recovery technique can be referred to [3]. The recovered bits in a20
to a27 and the corresponding data complexity are also given in Table 2.

The total number of recovered bits in the eight successive chaining variables
a20 to a27 is 31 × 6 = 186. We guess the unknown 256 − 186 = 70 bits and
compute backward to get the input k2. The right key k2 will result to Hk2(M) =
Hk2(M + ΔM).

The data complexity of this attack includes two parts: searching the collision
message pairs and recovering the chaining variables. Adding two parts, we get a
complexity about 2103. The success rate of recovering a single bit in Table 2 is
1 − 1

e3 , which is very close to 1. In total, the success rate for recovering all 186
bits is about 0.94. The attack does not require any storage, its time complexity
is only the time required to compute the MAC values for the chosen messages.

3.2 Inner Key-Recovery on NMAC Based on 4-Pass HAVAL

For 4-Pass HAVAL, we select the message difference Δm5 = 219 and construct
the 4-Pass differential paths. The paths are composed of two inner collisions,
step 6 to 33 and step 95 to 123. The two inner collisions are shown in Tables
7 and 8. The first inner collision includes two paths and each of them has the
probability 2−59. The second inner collision from step 95-123 includes six paths
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Table 2. Recovered bits from a20 to a27 for inner key-recovery attack on NMAC based
on 3-Pass HAVAL

step Output Condition on relevant bit Pr Recovered bit Data complexity
20 a20 a20,30 = a19,30 P21 = 2−93.26 least significant 31 bits 2102.16

21 a21 a21,30 = 0 P22 = 2−92.26 least significant 31 bits 2101.16

22 a22 a22,30 = 0 P23 = 2−91.26 least significant 31 bits 2100.16

23 a23 a23,19 = 0, a23,30 = 1 P24 = 2−89.26 least significant 31 bits 298.16

24 a24 No conditions 0
25 a25 a25,19 = 0, a25,30 = 0 P26 = 2−87.26 least significant 31 bits 296.16

26 a26 No conditions 0
27 a27 a27,19 = 0, a27,30 = 0 P28 = 2−85.26 least significant 31 bits 294.16

Table 3. Recovered bits on a22 to a29 for inner key-recovery attack on HMAC based
on 4-Pass HAVAL

step Output Condition on relevant bit Pr Recovered bit Data complexity
22 a22 a22,30 = 1 P23 = 2−69.27 least significant 31 bits 278.17

23 a23 a23,30 = 0 P24 = 2−68.27 least significant 31 bits 277.17

24 a24 a24,30 = 0 P25 = 2−67.27 least significant 31 bits 276.17

25 a25 a25,30 = 1 P26 = 2−66.27 least significant 31 bits 275.17

26 a26 a26,30 = 0 P27 = 2−65.27 least significant 31 bits 274.17

27 a27 a27,30 = 0 P28 = 2−64.27 least significant 31 bits 273.17

28 a28 a28,30 = 0 P29 = 2−63.27 least significant 31 bits 272.17

29 a29 No conditions 0

that contribute a total probability of 2−63.23. So the probability for the entire
4-Pass HAVAL differential paths is about 2−121.

The first step for the inner key-recovery attack is to find a pair of collided
messages (M, M + ΔM) and this step has a data complexity about O(2123)
according to the differential paths in Table 7 and 8. Using the Boolean function
properties of 4-Pass HAVAL, we can deduce a set of sufficient and necessary
conditions on the eight chaining variables (a22, a23, ..., a29). Then we can give
the recovered bits in Table 3.

Now we have recovered 31×7 = 217 bits of variables and the remaining 39 bits
can be exhaustively searched. The data complexity is determined by searching
the collision message pairs as for the case of the 4-Pass HAVAL. The success
rate of this attack is about 0.93.

4 Outer Key-Recovery on NMAC Based on 3 and 4-Pass
HAVAL

In this section, we find the new near-collision differential paths for 3 and 4-Pass
HAVAL. Combining the IV-dependent technique in [4] and the near-collision
technique in [14], we give the first outer key recovery attack on NMAC based on
3 and 4-Pass HAVAL using our new differentials.
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4.1 Outer Key-Recovery on NMAC Based on 3-Pass HAVAL

Suppose that the inner key k2 of NMAC based on 3-Pass HAVAL is known
and we want to recover the outer key k1, which will be decomposed as eight
32-bit variables ka, kb, kc, kd, ke, kf , kg and kh. Because HAVAL uses the
Davies-Meyer mode, the 256-bit output of NMAC based on 3-Pass HAVAL is
(ka +a96, kb +a95, kc +a94, kd +a93, ke +a92, kf +a91, kg +a90, kh +a89), denoted
as (ha, hb, hc, hd, he, hf , hg, hh). Here, a96 down to a89 are the final values of the
eight 32-bit chaining variables.

Select the message difference Δm5 = 2i, we can find eight IV-dependent near-
collision differential paths named DP1, DP2, ..., DP8 orderly in Table 9, and they
are all based on a local collision from step 6 to 33. The message word m5 occurs
at step 6, 33 and 95. The differential paths DP1, DP2, DP3 and DP4 work for
the cases i = 0 ∼ 2, 6 ∼ 9, 11 ∼ 14, 18 ∼ 30. And the differential paths DP5,
DP6, DP7 and DP8 work for the cases i = 0 ∼ 9, 11 ∼ 13, 17 ∼ 24, 28 ∼ 31. The
other values of i fail because of bit expansion. Each of the local collision path
holds with probability about 2−67. So the message pair (M, M + ΔM) obey one
of the eight paths with probability 2−64. These paths are all dependent with ka

of IV. The outer key-recovery attack on NMAC based on 3-Pass HAVAL can be
divided into the following process.

Recovering the key ka: According to the properties of the 3-Pass HAVAL
round functions listed in Table 5, we know that any one-block message pair
(M, M +ΔM) with Δm5 = 2i (i �= 10, 15, 16) will obey one of the eight paths in
Table 9 and cause the collision in (hc, hd, he, hf , hg, hh) with probability about
2−61 when ka,i+1 = 0, otherwise when ka,i+1 �= 0, M and M + ΔM consist of a
collision on the six output values with probability lower than 2−69.

So for each i of the message difference Δm5 = 2i where i runs from 0 to 31
and i �= 10, 15, 16, we can recover one bit on ka of IV using the technique in [4]
as follows:

1. Generate pairs of message satisfying Hk2(M ′) = Hk2(M) + ΔM where ΔM
is Δm5 = 2i.

2. Send M and M ′ to the NMAC based on 3-Pass HAVAL oracle. Once
roughly 261 pairs of messages (M, M ′) are queried, if a collision of
(hc, hd, he, hf , hg, hh) is obtained, we judge the outer key bit ka,i = 0, oth-
erwise we tell ka,i = 1. So with 262 queries, we will recover one bit of ka.

3. Change i, and repeat step 1 and 2 until all values of i are used.

In this way, we can recover 29 bits of ka.

Detecting the bits in a95 and a92: For those i that result to the i-th bit of ka

equal to zero, we use the near-collision technique in [14] to recover ke and kb as
follows:

1. Generate the message pairs which make Hk2(M ′) = Hk2(M) + ΔM where
ΔM is Δm5 = 2i.
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2. Send such messages M and M ′ to the NMAC based on 3-Pass HAVAL oracle
to obtain each of the following two kinds of near-collisions:
– Pairs (M i

e, M
i′
e ): such that Δha = 0, Δhb = 2i, Δhc = 0,..., Δhh = 0.

– Pairs (M i
b, M

i′
b ): such that Δha = ±2i+1−7, Δhb = 2i, Δhc = 0,...,

Δhh = 0.
3. Change i, and repeat step 1 and 2 until all values of i that result to the i-th

of ka = 0 are used.

Once we obtain the pairs (M i
e, M

i′
e ), according to Boolean function properties

of 3-Pass HAVAL, we can tell a92,i = 1. If we get the pairs (M i
b, M

i′
b ), we can

judge a95,i = 1.
In total, the number of the message pairs (M i

e, M
i′
e ) and (M i

b , M
i′
b ) that we

have obtained such that a92,i = 1 and a95,i = 1 is about 29.
Recovering the key kb and ke: We can recover the key kb and ke by the
offline work using the technique in [14]. The methods to recover kb and ke are
the same. We only pick kb as an example.

1. Guess the bits kb,10, kb,15, kb,16, and the bits kb,i corresponding to ka,i = 1 that
we fail obtaining M i

b. On average, the total number of possibilities is about 217.
2. Calculate other bits of kb from the least significant to the most significant

bit using M i
b. Suppose we have get the first t bits of kb, the (t+1)-th bit of kb

will be calculated using the obtained M t+1
b . Compare kb,t∼0 with hb,t∼0. If

kb,t∼0 > hb,t∼0, there exists a carry from bit t to t+1 during the computation
of kb + a95. Otherwise, there will be no carry from bit t to t + 1 during the
computation of kb +a95. Since a95,t+1 = 1, the carry influence is known, and
the value hb,t+1 is known, so the value kb,t+1 can be calculated.

Complexity computation: As explained in section 4.1 , the key number we
can obtain on average is 29 + 29 = 58 by online work, and the remaining keys
can be search exhaustively. So the complexity of the offline exhaustive search
needs 2198 3-Pass HAVAL computations.

Now we only need to analyze the complexity of online work. To recover ka,
we need 29 × 261 message pairs. The message (M i

b, M
i′
b ) can be obtained with

the probability 2−61×2−2 = 2−63. The message (M i
e, M

i′
e ) can be obtained with

the probability 2−61 × 2−3 = 2−64. In this way, the total number of message
pairs required to recover the 58 key bits is about 29 × 264 < 269. The cost of
the message generation is the offline work because we have known k2. Using the
birthday attack, it need about 2163 3-Pass HAVAL computations to get the 269

message pairs needed in the outer functions.
Overall, the complexity to recover the outer key of NMAC based on 3-Pass

HAVAL is about 269 online MAC queries and 2198 offline operations.

4.2 Outer Key-Recovery on NMAC Based on 4-Pass HAVAL

Let the 256-bit output value of HMAC/NMAC based on 4-Pass HAVAL be
(ha, hb, hc, hd, he, hf , hg, hh), where ha = ka+a128, hb = kb+a127, hc = kc+a126,
hd = kd + a125, he = ke + a124, hf = kf + a124, hg = kg + a122, hh = kh + a121.
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In the case of 4-Pass HAVAL, we use the near-collision differential path in Table
10 to recover theoutkeysk1of theNMAC.Themessagedifference isΔm5 = 2i.The
near-collisiondifferentialpath canbedivided into twoparts.Thefirst local collision
path is from step 6 to 33 which include two path and each have a probability 2−59.
And the second near collision is from step 95 to 128.

According to the Boolean functions properties of 4-Pass HAVAL, the near-
collision differential paths in Table 10 is independent with the IV. We can recover
the keys according to the shape of the near-collision.

Extracting the bit values a122, a125, a126 and a127 : For each 0 ≤ i ≤ 31,
i �= 10, 15, 16, the key recovery processor as follows:

1. Generate pairs of message satisfying Hk2(M ′) = Hk2(M) + ΔM where ΔM
is Δm5 = 2i.

2. Send such messages M and M ′ to the NMAC based on 4-Pass HAVAL oracle
to obtain the following near-collisions shape:
– (Mi, M

′
i): Δha = ±2i−18, Δhb = 2i−12, Δhc = 0, Δhd = 0, Δhe = 0,

Δhf = 2i, Δhg = 0, Δhh = 0.
3. Change i, and repeat step 1 and 2 until all values of i are used.

Once we obtain the pair (Mi, M
′
i), we can judge that a122,i = 1, a125,i = a123,i,

a126,i+1 = 1, a127,i−12 = 1. So it easy to recover the 29 key bits of kb, kc, kd and
kg utilizing the technique described in section 4.1.

Thus, we can recover 29×4 = 116 key bits by the online work. The left 140 bits
can be obtained by exhaustive search. The probability to obtain a pair (Mi, M

′
i)

is about 2−58×2−40 = 2−98, where 2−58 is the probability of local collision from
6 to 33 and 2−40 is the near-collision probability from step 95 to 128. So the
total online complexity to recover the 116 key bits is about 29 × 298 ≈ 2103. In
order to obtain the 2103 online message pairs, it needs about 2180 offline 4-Pass
HAVAL computations.

5 Conclusion

This paper give the full key recovery attack on the HMAC/NMAC based on
the 3 and 4-Pass HAVAL. Our main contribution is to find series of collision
and near-collision differential paths which is appropriate to attack the HMAC/
NMAC based on 3 and 4-Pass HAVAL utilizing the recent technique [3,4,14].
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Appendix

Table 4. Round functions of 3 and 4-Pass HAVAL

Pass Round functions

3-Pass f1(g, f, e, d, c, b, a) = cd ⊕ ag ⊕ bf ⊕ ce ⊕ e
f2(g, f, e, d, c, b, a) = adf ⊕ bcf ⊕ ef ⊕ ef ⊕ ac ⊕ df ⊕ bd ⊕ bc ⊕ fg ⊕ g
f3(g, f, e, d, c, b, a) = def ⊕ cf ⊕ be ⊕ dg ⊕ ad ⊕ a

4-Pass f1(g, f, e, d, c, b, a) = bd ⊕ fg ⊕ ce ⊕ ad ⊕ a
f2(g, f, e, d, c, b, a) = abg ⊕ bcf ⊕ bg ⊕ cg ⊕ bd ⊕ af ⊕ cf ⊕ be ⊕ e
f3(g, f, e, d, c, b, a) = acg ⊕ cd ⊕ ae ⊕ bg ⊕ fg ⊕ f
f4(g, f, e, d, c, b, a) = bcf ⊕ ace ⊕ afg ⊕ ab ⊕ cg ⊕ af ⊕ ef ⊕ fg ⊕ ae ⊕ ag ⊕ ad ⊕ d
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Table 5. Some properties for the first round function f1 of the 3-Pass HAVAL

Δa Δb Δc Δd Δe Δf Δg Δf1 = 0 Δf1 = 1 Δf1 = −1
0 0 0 0 0 0 0 1 – –
1 0 0 0 0 0 0 g = 0 g = 1, cd ⊕ bf ⊕ ce ⊕ e = 0 g = 1, cd ⊕ bf ⊕ ce ⊕ e = 1
-1 0 0 0 0 0 0 g = 0 g = 1, cd ⊕ bf ⊕ ce ⊕ e = 1 g = 1, cd ⊕ bf ⊕ ce ⊕ e = 0
0 1 0 0 0 0 0 f = 0 f = 1, cd ⊕ ag ⊕ ce ⊕ e = 0 f = 1, cd ⊕ ag ⊕ ce ⊕ e = 1
0 -1 0 0 0 0 0 f = 0 f = 1,cd ⊕ ag ⊕ ce ⊕ e = 1 f = 1, cd ⊕ ag ⊕ ce ⊕ e = 0
0 0 1 0 0 0 0 e = d e �= d, ag ⊕ bf ⊕ e = 0 e �= d, ag ⊕ bf ⊕ e = 1
0 0 -1 0 0 0 0 e = d e �= d, ag ⊕ bf ⊕ e = 1 e �= d, ag ⊕ bf ⊕ e = 0
0 0 0 1 0 0 0 c = 0 c = 1, ag ⊕ bf ⊕ ce ⊕ e = 0 c = 1, ag ⊕ bf ⊕ ce ⊕ e = 1
0 0 0 -1 0 0 0 c = 0 c = 1, ag ⊕ bf ⊕ ce ⊕ e = 1 c = 1, ag ⊕ bf ⊕ ce ⊕ e = 0
0 0 0 0 1 0 0 c = 1 c = 0, cd ⊕ ag ⊕ bf = 0 c = 0, cd ⊕ ag ⊕ bf = 1
0 0 0 0 -1 0 0 c = 1 c = 0, cd ⊕ ag ⊕ bf = 1 c = 0, cd ⊕ ag ⊕ bf = 0
0 0 0 0 0 1 0 b = 0 b = 1, cd ⊕ ag ⊕ ce ⊕ e = 0 b = 1, cd ⊕ ag ⊕ ce ⊕ e = 1
0 0 0 0 0 -1 0 b = 0 b = 1, cd ⊕ ag ⊕ ce ⊕ e = 1 b = 1, cd ⊕ ag ⊕ ce ⊕ e = 0
0 0 0 0 0 0 1 a = 0 a = 1, cd ⊕ bf ⊕ ce ⊕ e = 0 a = 1, cd ⊕ bf ⊕ ce ⊕ e = 1
0 0 0 0 0 0 -1 a = 0 a = 1, cd ⊕ bf ⊕ ce ⊕ e = 1 a = 1, cd ⊕ bf ⊕ ce ⊕ e = 0

Table 6. Collision differential paths for HMAC based on 3-Pass HAVAL with proba-
bility 2−96.26

Step mi−1 Δmi DP1 DP2 DP3 DP4 DP5
21 m20 230 a21[30] a21[30] a21[30] a21[30] a21[30]
22 m21 a22 a22 a22 a22 a22
23 m22 a23 a23 a23 a23 a23
24 m23 a24 a24 a24 a24 a24
25 m24 a25 a25 a25 a25 a25
26 m25 a26 a26 a26 a26 a26
27 m26 a27 a27 a27 a27 a27
28 m27 a28 a28 a28 a28 a28
29 m28 a29[19] a29[19] a29[19] a29[19] a29[19]
30 m29 a30 a30 a30 a30 a30
31 m30 a31 a31 a31 a31 a31
32 m31 a32 a32 a32 a32 a32
33 m5 a33 a33 a33 a33 a33
34 m14 a34 a34 a34 a34 a34
35 m26 a35 a35 a35 a35 a35
36 m18 a36 a36 a36 a36 a36
37 m11 a37[−8, −9, 10] a37[−8, −9, 10] a37[−8, −9, 10] a37[−8, −9, 10] a37[−8, −9, 10]
38 m28 a38[3, 4, 5, −6] a38 a38 a38 a38
39 m7 a39 a39[3, 4, 5, −6] a39 a39 a39
40 m16 a40 a40 a40[3, 4, 5, 6]∗ a40 a40
41 m0 a41 a41 a41 a41[3, 4, 5, 6]∗ a41
42 m23 a42 a42 a42 a42 a42[3, 4, 5, 6]∗
43 m20 230 a43 a43 a43 a43 a43
44 m22 a44[−31] a44[−31] a44[−31] a44[−31] a44[−31]
45 m1 a45 a45 a45 a45 a45
46 m10 a46 a46 a46 a46 a46
47 m4 a47 a47 a47 a47 a47
48 m8 a48 a48 a48 a48 a48
49 m30 a49 a49 a49 a49 a49
50 m3 a50 a50 a50 a50 a50
51 m21 a51 a51 a51 a51 a51
52 m9 a52[−20] a52[−20] a52[−20] a52[−20] a52[−20]
53 m17 a53 a53 a53 a53 a53
54 m24 a54 a54 a54 a54 a54
55 m29 a55 a55 a55 a55 a55
56 m6 a56 a56 a56 a56 a56
57 m19 a57 a57 a57 a57 a57
58 m12 a58 a58 a58 a58 a58
59 m15 a59 a59 a59 a59 a59
60 m13 a60[−9] a60[−9] a60[−9] a60[−9] a60[−9]
61 m2 a61 a61 a61 a61 a61
62 m25 a62 a62 a62 a62 a62
63 m31 a63 a63 a63 a63 a63
64 m27 a64 a64 a64 a64 a64
65 m19 a65 a65 a65 a65 a65
66 m9 a66 a66 a66 a66 a66
67 m4 a67 a67 a67 a67 a67
68 m20 230 a68 a68 a68 a68 a68

pr=2−98.96 pr=2−98.96 pr=2−97.21 pr=2−99.21 pr=2−100.52
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Table 7. First inner collision differential path(step 6-33) for NMAC based on 4-Pass
HAVAL with probability 2−58

step mi Δmi DP1 DP2
6 m5 219 a6[−19, 20] a6[19]
7 m6 a7 a7
8 m7 a8 a8
9 m8 a9 a9
10 m9 a10[13, 14, 15, −16] a9
11 m10 a11 a11
12 m11 a12 a12
13 m12 a13 a13
14 m13 a14 a14[−8, 9]
15 m14 a15 a15
16 m15 a16 a16
17 m16 a17[−9] a17
18 m17 a18 a18[2, 3, 4, −5]
19 m18 a19 a19
20 m19 a20 a20
21 m20 a21 a21
22 m21 a22 a22
23 m22 a23 a23
24 m23 a24 a24
25 m24 a25[−30] a25[−30]
26 m25 a26 a26
27 m26 a27 a27
28 m27 a28 a28
29 m28 a29 a29
30 m29 a30 a30
31 m30 a31 a31
32 m31 a32 a32
33 m5 219 a33 a33

pr = 2−59 pr = 2−59

Table 8. Second inner collision differential path(step 95-123) for NMAC based on
4-Pass HAVAL with probability 2−63.27

step mi Δmi DP1 DP2 DP3 DP4 DP5 DP6
95 m5 219 a95[−19, 20] a95[−19, 20] a95[−19, 20] a95[19] a95[19] a95[19]
96 m2 a96 a96 a96 a96 a96 a96
97 m24 a97 a97 a97 a97 a97 a97
98 m4 a98 a98 a98 a98 a98 a98
99 m0 a99 a99 a99 a99 a99 a99
100 m14 a100[13, 14, 15, 16]∗ a100 a100 a100 a100 a100
101 m2 a101 a101[13, 14, 15, 16]∗ a101 a101 a101 a101
102 m7 a102 a102 a102[13, 14, 15, 16]∗ a102 a102 a102
103 m28 a103 a103 a103 a103[−8, 9] a103[−8, 9] a103[−8, 9]
104 m23 a104 a104 a104 a104 a104 a104
105 m26 a105 a105 a105 a105 a105 a105
106 m6 a106 a106 a106 a106 a106 a106
107 m30 a107[−9] a107[−9] a107[−9] a107 a107 a107
108 m20 a108 a108 a108 a108[2, 3, 4, 5]∗ a108 a108
109 m18 a109 a109 a109 a109 a109[2, 3, 4, 5]∗ a109
110 m25 a110 a110 a110 a110 a110 a110[2, 3, 4, 5]∗
111 m19 a111 a111 a111 a111 a111 a111
112 m3 a112 a112 a112 a112 a112 a112
113 m22 a113 a113 a113 a113 a113 a113
114 m11 a114 a114 a114 a114 a114 a114
115 m31 a115[−30] a115[−30] a115[−30] a115[−30] a115[−30] a115[−30]
116 m21 a116 a116 a116 a116 a116 a116
117 m8 a117 a117 a117 a117 a117 a117
118 m27 a118 a118 a118 a118 a118 a118
119 m12 a119 a119 a119 a119 a119 a119
120 m9 a120 a120 a120 a120 a120 a120
121 m1 a121 a121 a121 a121 a121 a121
122 m29 a122 a122 a122 a122 a122 a122
123 m5 219 a123 a123 a123 a123 a123 a123

pr = 2−64.99 pr = 2−67.47 pr = 2−65.19 pr = 2−65.77 pr = 2−68.05 pr = 2−65.77
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Table 9. The near-collision differential path of NMAC based on 3-Pass HAVAL with
probability 2−64

Step mi Δmi DP1 DP2 DP3 DP4
6 m5 2i a6[−i, i + 1] a6[−i, i + 1] a6[−i, i + 1] a6[−i, i + 1]
7 m6 a7 a7 a7 a7
8 m7 a8 a8 a8 a8
9 m8 a9 a9 a9 a9
10 m9 a10[i − 6, i − 5, a10 a10 a10

i − 4, −(i − 3)]
11 m10 a11 a11[i − 6, i − 5, a11 a11

i − 4, −(i − 3)]
12 m11 a12 a12 a12[i − 6, i − 5, a12

i − 4, −(i − 3)]
13 m12 a13 a13 a13 a13[i − 6, i − 5,

i − 4, −(i − 3)]
14 m13 a14 a14 a14 a14
15 m14 a15 a15 a15 a15
16 m15 a16 a16 a16 a16
17 m16 a17[−(i − 10)] a17[−(i − 10)] a17[−(i − 10)] a17[−(i − 10)]
18 m17 a18 a18 a18 a18
19 m18 a19 a19 a19 a19
20 m19 a20 a20 a20 a20
21 m20 a21 a21 a21 a21
22 m21 a22 a22 a22 a22
23 m22 a23 a23 a23 a23
24 m23 a24 a24 a24 a24
25 m24 a25[−(i − 21)] a25[−(i − 21)] a25[−(i − 21)] a25[−(i − 21)]
26 m25 a26 a26 a26 a26
27 m26 a27 a27 a27 a27
28 m27 a28 a28 a28 a28
29 m28 a29 a29 a29 a29
30 m29 a30 a30 a30 a30
31 m30 a31 a31 a31 a31
32 m31 a32 a32 a32 a32
33 m5 2i a33 a33 a33 a33
... ...
95 m5 2i a95[i] a95[i] a95[i] a95[i]
96 m2 a96 a96 a96 a96

Step mi Δmi DP5 DP6 DP7 DP8
6 m5 2i a6[i] a6[i] a6[i] a6[i]
7 m6 a7 a7 a7 a7
8 m7 a8 a8 a8 a8
9 m8 a9 a9 a9 a9
10 m9 a10 a10 a10 a10
11 m10 a11 a11 a11 a11
12 m11 a12 a12 a12 a12
13 m12 a13 a13 a13 a13
14 m13 a14[−(i − 11), i − 10] a14[−(i − 11), i − 10] a14[−(i − 11), i − 10] a14[−(i − 11), i − 10]
15 m14 a15 a15 a15 a15
16 m15 a16 a16 a16 a16
17 m16 a17 a17 a17 a17
18 m17 a18[i − 17, i − 16, a18 a18 a18

i − 15, −(i − 14)]
19 m18 a19 a19[i − 17, i − 16, a19 a19

i − 15, −(i − 14)]
20 m19 a20 a20 a20[i − 17, i − 16, a20

i − 15, −(i − 14)]
21 m20 a21 a21 a21 a21[i − 17, i − 16,

i − 15, −(i − 14)]
22 m21 a22 a22 a22 a22
23 m22 a23 a23 a23 a23
24 m23 a24 a24 a24 a24
25 m24 a25[−(i − 21)] a25[−(i − 21)] a25[−(i − 21)] a25[−(i − 21)]
26 m25 a26 a26 a26 a26
27 m26 a27 a27 a27 a27
28 m27 a28 a28 a28 a28
29 m28 a29 a29 a29 a29
30 m29 a30 a30 a30 a30
31 m30 a31 a31 a31 a31
32 m31 a32 a32 a32 a32
33 m5 2i a33 a33 a33 a33
95 m5 2i a95[i] a95[i] a95[i] a95[i]
96 m2 a96 a96 a96 a96
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Table 10. The near-collision differential path of NMAC based on 4-Pass HAVAL with
probability 2−98

step mi Δmi DP1 DP2
6 m5 2i a6[−i, i + 1] a6[i]
7 m6 a7 a7
8 m7 a8 a8
9 m8 a9 a9
10 m9 a10[i − 6, i − 5, i − 4, −(i − 3)] a10
11 m10 a11 a11
12 m11 a12 a12
13 m12 a13 a13
14 m13 a14 a14[−(i − 11), i − 10]
15 m14 a15 a15
16 m15 a16 a16
17 m16 a17[−(i − 10)] a17
18 m17 a18 a18[i − 17, i − 16, i − 15, −(i − 14)]
19 m18 a19 a19
20 m19 a20 a20
21 m20 a21 a21
22 m21 a22 a22
23 m22 a23 a23
24 m23 a24 a24
25 m24 a25[−(i − 21)] a25[−(i − 21)]
26 m25 a26 a26
27 m26 a27 a27
28 m27 a28 a28
29 m28 a29 a29
30 m29 a30 a30
31 m30 a31 a31
32 m31 a32 a32
33 m5 2i a33 a33
... ...
95 m5 2i a95[i] a95[i]
96 m2 a96 a96
97 m24 a97 a97
98 m4 a98 a98
99 m0 a99 a99
100 m14 a100 a100
101 m2 a101 a101
102 m7 a102 a102
103 m28 a103[i − 11] a103[i − 11]
104 m23 a104 a104
105 m26 a105 a105
106 m6 a106 a106
107 m30 a107 a107
108 m20 a108 a108
109 m18 a109 a109
110 m25 a110 a110
111 m19 a111[i − 22] a111[i − 22]
112 m3 a112 a112
113 m22 a113 a113
114 m11 a114 a114
115 m31 a115 a115
116 m21 a116 a116
117 m8 a117 a117
118 m27 a118 a118
119 m12 a119[i − 1] a119[i − 1]
120 m9 a120 a120
121 m1 a121 a121
122 m29 a122 a122
123 m5 2i a123[i] a123[i]
124 m15 a124 a124
125 m17 a125 a125
126 m10 a126 a126
127 m16 a127[i − 12] a127[i − 12]
128 m13 a128 a128
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Abstract. In this paper we present the first attack on the full 24 round
internal block cipher of Tiger [1]. Tiger is a hash function proposed by
Biham and Anderson at FSE’96. It takes about ten years until the first
cryptanalytic result was presented by Kelsey and Lucks [10] at FSE’06.
Up to now, the best known attack on the internal block cipher of Tiger
is able to break 22 rounds. Our attack on the full 24 rounds of the
Tiger block cipher has a data complexity of 23.5 chosen plaintexts and
ciphertexts, which can be called memoryless. This is since we do not
have to store all the data generated in our attack. The time complexity
is about 2259.5 24-round Tiger encryptions. Moreover, we have further
reduced the time complexity using a bit fixing technique to 2195.5 24-
round encryptions.

Keywords: differential cryptanalysis, related-key boomerang attack,
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1 Introduction

Tiger [1] is a 160-bit hash function based on Merkle-Damgård [13, 6], which
operates on 512-bit message blocks.

The first cryptanalytic result for Tiger was a collision attack on 17 of 24 rounds
of Tiger proposed by Kelsey and Lucks [10] using 249 compression function calls.
They also presented a near-collision attack on 20-round Tiger with complexity
249. Mendel et al. [11] found a collision attack on 19-round Tiger with complexity
262 and also a pseudo-near-collision for 22-round Tiger which needs about 244

compression function calls. At AsiaCrypt’07 Mendel and Rijmen [12] improved
the previous results and presented a pseudo-near-collision attack on the full
24-round Tiger hash function with complexity 247 and a pseudo collision with
the same complexity. Indesteege and Preneel [9] proposed a pre-image attack on
12 and 13 round Tiger and also a (2nd) pre-image attack on Tiger reduced to
12 rounds. The best cryptanalytic result on the Tiger block cipher is a 22-round
related-key boomerang and rectangle attack [7].

In this paper we present the first attack that can break the full 24-round
Tiger encryption mode. We use a related-key boomerang attack which has a
data complexity of 23.5 chosen plaintexts and ciphertexts. The time complexity
is about 2259.5 24-round Tiger encryptions. Moreover we have reduced the time
complexity using a bit fixing technique to 2195.5 24-round Tiger encryptions.
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The paper is organized as follows: In Section 2 we give a brief description of
the Tiger encryption mode. In Section 3 we describe the related-key boomerang
attack. In Section 4, we present our related-key boomerang attack on the full
Tiger encryption mode. Section 5 concludes the paper.

2 Description of the Tiger Block Cipher

The following notations are used in this paper:

� : addition modulo 264 operation
� : subtraction modulo 264 operation
� : multiplication modulo 264 operation
X � i : shift of word X by i bits to the left
X 	 i : shift of word X by i bits to the right

Tiger’s compression function is based on applying an internal “block cipher like”
function, which takes a 192-bit “plaintext” and a 512 bit key to compute a 192-bit
“ciphertext”. The “block cipher like” function is applied according to the Davies-
Meyer construction: a 512-bit message block is basically used as a key to encrypt
the 192-bit chaining value, and then the input chaining value is fed forward to
make the whole thing non-invertible. In the remainder of this section, we will
describe Tiger in sufficient detail to follow the course of our attack; for a more
detailed description of the hash function and its design rationale, the reader is
referred to [1]. If, for a given input chaining value, we generate two different keys
with the same output chaining value, then we have found a collision for Tiger.

Tiger has been designed with 64-bit architectures in mind. Accordingly, we
will denote a 64-bit unsigned integer as a “word”. We will represent a word
as a hexadecimal number. Tiger uses arithmetic operations (addition, subtrac-
tion and multiplication by small constants), bit-wise XOR, NOT, logical shift
operations and S-Box applications. The arithmetic operations over words are
modulo 264. The chaining value is represented internally as three 64-bit words,
the message block as eight 64-bit words.

2.1 The Tiger Round Function

In the terminology of [14], Tiger’s block cipher like function is a “target-heavy
unbalanced Feistel cipher”. The block is broken into three words, labeled A, B,
and C. Each round, a message word X is XORed into C:

C := C ⊕ X.

Then A and B are modified:

A := A � even(C),
B := B � odd(C),
B := B � (const),
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Fig. 1. The round function of Tiger

with a round-dependent constant (const) ∈ {5, 7, 9}. The results are then shifted
around, so that A,B,C becomes B,C,A. See Figure 1. For the definition of even
and odd, consider the word C being split into eight bytes C0,. . . , C7, with C0
as the most significant byte. The functions even and odd employ four S-Boxes
T1, . . . , T4 : {0, 1}8 → {0, 1}64 as follows:

even(C) := T1[C0] ⊕ T2[C2] ⊕ T3[C4] ⊕ T4[C6],

odd(C) := T1[C7] ⊕ T2[C5] ⊕ T3[C3] ⊕ T4[C1].

We will refer to C0, C2, C4, and C6 as the “even bytes of C”.
The round function spreads changes around very quickly. A one-bit difference

introduced into C in the first round will change about half the bits of the block
by the end of the third round.

2.2 The Key Schedule

Tiger consists of 24 rounds. Each round uses one message word Xi as its round
key. The first eight round keys X0, . . . , X7 are identical to the 512-bit cipher
key (or rather, to the 512-bit message block). The remaining 16 round keys are
generated by applying the key schedule function:

(X8, . . . , X15) := KeySchedule(X0, . . . , X7)
(X16, . . . , X23) := KeySchedule(X8, . . . , X15)

The key schedule function uses logical shifts on words, denoted by � and 	.
E.g.,

1111 5555 9999 FFFF � 5 = 222AAAB3 333F FFE0 and
222AAAB3 333F FFE0 	 9 = 0011 1555 5999 9FFF.
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Further, it uses the bit-wise NOT function, e.g. for X = EEEEAAAA 66660000,
the negation X of X is X = 11115555 9999FFFF. The key schedule modifies its
input (x0, . . . , x7) in two passes:

first pass second pass
1. x0 := x0 � (x7 ⊕ Const1) 9. x0 := x0 � x7
2. x1 := x1 ⊕ X0 10. x1 := x1 � (x0 ⊕ (x7 � 19))
3. x2 := x2 � X1 11. x2 := x2 ⊕ x1
4. x3 := x3 � (x2 ⊕ (x1 � 19)) 12. x3 := x3 � x2
5. x4 := x4 ⊕ x3 13. x4 := x4 � (x3 ⊕ x2 	 23))
6. x5 := x5 � x4 14. x5 := x5 ⊕ x4
7. x6 := x6 � (x5 ⊕ (x4 	 23)) 15. x6 := x6 � x5
8. x7 := x7 ⊕ x6 16. x7 := x7 � (x6 ⊕ Const2)

The final values (x0, . . . , x7) are used as the key schedule output. The constants
are Const1 = A5A5 . . . A5A5 and Const2 = 0123 . . . CDEF.

3 The Related-Key Boomerang Attack

The related-key boomerang attack was first published in [3]. It is a combination
of the related-key attack [2] and the boomerang attack [15].

Related-key attacks consider the information that can be extracted from en-
cryptions using related but unknown keys. Such ciphers with a weak key schedule
are vulnerable to this kind of attack. The key scheduling algorithms of many block
ciphers inherit obvious relationships between keys, which are called related-keys.

The boomerang attack is an extension to differential cryptanalysis [4] using
adaptive chosen plaintexts and ciphertexts to attack block ciphers. An attacker
can only apply a chosen plain- and ciphertext attack while choosing the relation
between related, but unknown, keys.

We now describe the related-key boomerang attack in more detail. But first,
we have to give some definitions.

Definition 1. Let P, P ′ be two bit strings of the same length. The bit-wise XOR
of P and P ′, P ⊕ P ′, is called the difference of P, P ′.

Definition 2. α → β is called a differential if α is the plaintext difference P⊕P ′

before some non-linear operation f(·) and β is the difference after applying these
operation, i.e, f(P ) ⊕ f(P ′). The probability p is linked on a differential saying
that an α difference turns into a β difference with probability p.

Theorem 1. ([15, Sec. 6].) Let α → β be a differential with probability p as
in Definition 2. Then the backward direction of this differential β → α has also
probability p.

Two texts (P, P ′) are called a pair, while two pairs (P, P ′, O, O′) are called a
quartet. Differential cryptanalysis exploits high probability differentials α → β
between the first and a later round of a cipher. In general, an attacker tries to
find high probability differentials over the first N − 1 out of N rounds to exploit
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some subkey bits of the last (i.e. N’th) round. An attacker first computes the
expected output of the N −1-th round differential and then guesses some subkey
bits of the last round. He decrypts some ciphertexts under the guessed key bits
one round and compares the resulting difference with the output difference of
the N − 1 round differential. For every matching he increases a counter to the
used key bits and takes the key bits with the highest counter as the ’correct’
one. If the differential is well chosen, i.e., its probability is high enough, these
subkey bits can be computed much faster than applying exhaustive search.

The related-key boomerang attack extends differential cryptanalysis. The ci-
pher is split into two sub-ciphers and the attacker tries to exploit a differential
for each sub-cipher. These two differentials alone only cover a few rounds but
together the whole cipher. Regularly, the differential probability decreases the
more rounds are included. Therefore two short differential covering only a few
rounds each will be used instead of a long one covering the whole cipher. In this
way key bits can be computed with much fewer plaintexts than compared to
classic differential cryptanalysis, since the differential probabilities are normally
higher. Related-keys are used to exploit some weaknesses of the key schedule to
enhance the probability of the differentials being used. We call such differentials
related-key differentials, since different but related keys are used for encryption
and decryption. We split the related-key boomerang attack into two steps. The
related-key boomerang distinguisher step and the key recovery step. The related-
key boomerang distinguisher is used to find all plaintexts sharing a desired dif-
ference that depends on the choice of the differential. These plaintexts are used
in the key recovery step afterwards to recover subkey bits for the initial round
key.

Distinguisher Step. During the distinguisher step we assume that the cipher
can be treated as a cascade of two sub-ciphers EK(P ) = E1K(E0K(P )), where
K is the key used for encryption and decryption. We assume that the related-key
differential α → β for E0 occurs with the probability p, while the related-key
differential γ → δ for E1 occurs with probability q, where α, β, γ and δ are differ-
ences. The backward direction E0−1 and E1−1 of the related-key differential for
E0 and E1 are denoted by α ← β and γ ← δ and occur, because of Theorem 1,
with probability p and q respectively. The related-key boomerang distinguisher
involves four or more unknown but related keys

ΔK ′ = Ka ⊕ Kb = Kc ⊕ Kd,

ΔK∗ = Ka ⊕ Kc = Kb ⊕ Kd,

where ΔK ′ and ΔK∗ are a known key differences. The attack works as follows:

• For i = 1, 2, . . . , s do
1. Choose plaintext P a

0,i and plaintext P b
0,i = P a

0,i ⊕ α, where the subindex
0 defines the plaintext.

2. Ask for the encryption of P a
0,i under Ka, i.e., P a

n,i = EKa(P a
0,i) and P b

0,i

under Kb, i.e., P b
n,i = EKb(P b

0,i).
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3. Compute the new ciphertexts P c
n,i = P a

n,i ⊕ δ and P d
n,i = P b

n,i ⊕ δ.
4. Ask for decryption of P c

n,i under Kc, i.e., P c
0,i = E−1

Kc(P c
n,i) and P d

n,i

under Kd, i.e., P d
0,i = E−1

Kd(P d
n,i).

5. If P c
0,i ⊕ P d

0,i = α store the quartet (P a
0,i, P

b
0,i, P

c
0,i, P

d
0,i) in the set Θ.

Assume that a pair (P a
0,i, P

b
0,i), i ∈ {1, . . . , s} with the difference α satisfies the

differential α → β with the probability p. Let 0 < b < n ≤ N be an intermediate
round, where N denotes the final round. Subcipher E0 covers rounds 1 to b and
subcipher E1 rounds b + 1 to N . The output of E0 is P a

b,i and P b
b,i, i.e., P a

b,i =
E0Ka(P a

0,i) and P b
b,i = E0Kb(P b

0,i). P a
n,i and P b

n,i have a difference β = P a
b,i⊕P b

b,i

with probability p. Using the ciphertexts P a
n,i and P b

n,i (encrypted via EKa and
EKb) we can compute the new ciphertexts P c

n,i = P a
n,i ⊕ δ and P d

n,i = P b
n,i ⊕ δ.

Let P c
b,i = E1−1

Kc(P c
n,i) and P d

b,i = E1−1
Kd(P d

n,i) be the decryption of P c
n,i and

P d
n,i under E1. A difference δ turns into a difference γ after passing E1−1 with

probability q. Since δ = P a
n,i ⊕ P c

n,i = P b
n,i ⊕ P d

n,i we know that P a
b,i ⊕ P c

b,i = γ

and P b
b,i ⊕ P d

b,i = γ with probability q2. As we know that P a
b,i ⊕ P b

b,i = β with
probability p, it follows that (P c

b,i ⊕ P d
b,i) = (P c

b,i ⊕ P a
b,i) ⊕ (P a

b,i ⊕ P b
b,i) ⊕ (P b

b,i ⊕
P d

b,i) = γ ⊕ β ⊕ γ = β holds with probability pq2. A β difference turns into an
α difference after passing the differential E0−1 with probability p. Thus, a pair
of ciphertexts (P a

0,i, P
b
0,i) with P a

0,i ⊕ P b
0,i = α generates a new pair of plaintexts

(P c
0,i, P

d
0,i) where P c

0,i ⊕ P d
0,i = α with probability (pq)2. A quartet containing

these two pairs is defined as:

Definition 3. A quartet (P a
0,i, P

b
0,i, P

c
0,i, P

d
0,i) which satisfies

P a
0,i ⊕ P b

0,i = P c
0,i ⊕ P d

0,i = α,

P a
b,i ⊕ P b

b,i = P c
b,i ⊕ P d

b,i = β,

P a
b,i ⊕ P c

b,i = P b
b,i ⊕ P d

b,i = γ,

P a
n,i ⊕ P c

n,i = P b
n,i ⊕ P d

n,i = δ,

is called a correct related-key boomerang quartet which occurs with probability
Prc = (pq)2. A quartet (P a

0,i, P
b
0,i, P

c
0,i, P

d
0,i) which only satisfies the condition

P a
0,i ⊕ P b

0,i = α = P c
0,i ⊕ P d

0,i is called a false related-key boomerang quartet.

Figure 2 displays the structure of the related-key boomerang distinguisher step.

Any attacker that applies a related-key boomerang distinguisher does not
know the internal states P a

b,i, P
b
b,i, P

c
b,i, P

d
b,i, and since he can only apply a chosen

plaintext and ciphertext attack on the cipher. The set Θ, which is the output
of the related-key boomerang distinguisher, therefore contains correct and false
related-key boomerang quartets. It is impossible to form another distinguisher
which separates the correct and the false related-key boomerang quartets, since
the interior differences β and γ cannot be computed.
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P a
0,i

P a
n,i

P b
0,i

P b
n,i

P c
0,i

P c
n,i

P d
0,i

P d
n,i

αα

ββ
γ

γ

δ

δ

E0Ka

E1Ka

E0Kb

E1Kb

E0Kc

E1Kc

E0Kd

E1Kd

P a
b,i

P b
b,i

P c
b,i

P d
b,i

Fig. 2. The related-key boomerang distinguisher

Key Recovery Step. The second step of the related-key boomerang attack is
the key recovery step. From now on, an attacker operates on the set Θ that was
stored by the related-key boomerang distinguisher. Let Ka

0 , Kb
0, K

c
0, K

d
0 be the

0-th round keys derived from the master keys Ka, Kb, Kc, Kd. Let encKi
0
(P ) be

the one round partial encryption of P under the round key Ki
0, i ∈ {a, b, c, d}.

The round keys are related as

ΔK ′
0 = Ka

0 ⊕ Kb
0 = Kc

0 ⊕ Kd
0 ,

ΔK∗
0 = Ka

0 ⊕ Kc
0 = Kb

0 ⊕ Kd
0 ,

where ΔKi
0, i ∈ {a, b, c, d} is the key difference of the 0-th round keys. The key

recovery step works as follows:

- For each key-bit combination of Ka
0 , Kb

0, K
c
0 and Kd

0
1. Initialize a counter with zero.
- For all quartets (P a

0,i, P
b
0,i, P

c
0,i, P

d
0,i) stored in Θ

2. Encrypt the plaintext quartet (P a
0,i, P

b
0,i, P

c
0,i, P

d
0,i) one round un-

der the guessed round keys Ka
0 , Kb

0, K
c
0 and Kd

0 respectively, i.e.,
P a

1,i = encKa
0
(P a

0,i), P
b
1,i = encKb

0
(P b

0,i), P
c
1,i = encKc

0
(P c

0,i) and P d
1,i =

encKd
0
(P d

0,i).
3. Test whether the differences P a

1,i ⊕P b
1,i and P c

1,i ⊕P d
1,i have a desired

difference an attacker would expect depending on the related-key
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differential being used. Increase a counter for the used key-bits if the
difference is fulfilled in both pairs.

4. Output the round keys Ka
0 , Kb

0, K
c
0 and Kd

0 with the highest counter as the
correct one.

In Step 3, four cases can be distinguished, since Θ contains correct and false
related-key boomerang quartets and the round keys Ka

0 , Kb
0, K

c
0 and Kd

0 can
either be correct or false. A correct related-key boomerang quartet encrypted
using the correct round key will have the desired difference needed to pass the
test in Step 3. Hence, the counter for the correct round key is increased.

The other three cases are: a correct related-key boomerang quartet is used
with a false round key (PrcKf

), a false related-key boomerang quartet is used
with a correct round key (PrfKc) or a false related-key boomerang quartet is
used with a false round key (PrfKf

). We assume that the cipher acts like a
random permutation. In these case we can assume that

PrcKf
= PrfKc = PrfKf

=: Prfilter.

The probability that a quartet in one of the three undesirable cases is counted
for a certain round key is Prfilter. The related-key differentials have to be chosen
such that the counter for the correct round key is significantly higher than the
counter for each false round key. If the differentials have a high probability the
key recovery step outputs the correct round key in Step 4 with a high probability
much faster than exhaustive key search.

4 A Memoryless Related-Key Boomerang Attack on the
Full Tiger Block Cipher

In this section, we propose a 22-round related-key boomerang distinguisher,
which is used for our memoryless related-key boomerang attack on the full
24-round Tiger encryption mode. We make extensive use of the following prop-
erty in our attack.

Property 1. Switching between an additive and an XOR difference holds with
some probablitiy. e.g., if X − Y = 2i mod 264, then Pr[X ⊕ Y = 2i] = 2−1.
If i = 63, however, we have Pr[X ⊕ Y = 2i] = 1. I.e., switching between the
additive difference I = 263 and the XOR-difference I is for free.

4.1 A 22-Round Related-Key Boomerang Distinguisher

Let K be a master key which can be written as K = x0, x1, . . . , x7, where xi is
a 64-bit word. We use four different but related master keys Ka, Kb, Kc and Kd

to mount our related-key rectangle attack on the full Tiger encryption mode.
The master key differences are as follows:

ΔK ′ = Ka ⊕ Kb = Kc ⊕ Kd = (I, I, 0, 0, 0, I, 0, 0),
ΔK∗ = Ka ⊕ Kc = Kb ⊕ Kd = (0, 0, 0, I, 0, 0, 0, I)
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Since the key schedule of Tiger offers a high degree of linearity we can determine
most of the round key differences derived from the master key differences ΔK ′

and ΔK∗ respectively. Using the above key schedule we can derive the round
key differences from the master key differences ΔK ′ and ΔK∗. The round key
differences for E0 propagate as:1

(I, I, 0, 0, 0, I, 0, 0) −→ (0, 0, 0, 0, 0, I, 0, I) −→ (I, 0, I, 0, ?, ?, ?, ?)

The ? indicates an unknown value of a key difference. We obtain the round key
differences for E1 as:2

(0, 0, 0, I, 0, 0, 0, I) −→ (0, I, 0, 0, 0, 0, 0, I) −→ (0, 0, 0, 0, 0, 0, 0, I)

For our attack we use an 11-round related-key differential from round 1 to 12 for
E0 (α → β) using the master key difference ΔK ′. The related-key differential
is:

(0, 0 � odd(I), I) → (0, 0, 0)

The differential for E0−1 (β → α) is the differential for E0 in reverse direction.
The related-key differential E0 and E0−1 are shown in Table 1. We exploit

Table 1. The Related-Key Differentials E0 and E0−1 in reverse order

Round(i) ΔAi ΔBi ΔCi Δki Prob.
1 0 0 � odd(I) I – 2−32

2 0 I 0 0 1
3 I 0 0 0 1
4 0 0 I 0 1
5 0 0 0 I 1
6 0 0 0 0 1
...

...
...

...
...

...
12 0 0 0 0 –

another 11 rounds related-key differential for E1−1 (δ → γ) that covers round
23 to 12 using the master key difference ΔK∗. The related-key differential is:

(odd(I), I, 0) → (0, I, 0)

The related-key differential E1−1 is shown in Table 2. Our 22-round related-key
boomerang distinguisher holds with probability 2−128, since we have p = 2−32

and q = 2−32 which leads to (p · q)2 = 2−128.

1 This related keys were also used in the attack on the Tiger encryption mode from
[7].

2 The same master key differential was used by pseudo-collision attack of Mendel and
Rijmen [12].
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Table 2. The Related-Key Differential E1−1

Round(i) ΔAi ΔBi ΔCi Δki Prob.
23 odd(I) I 0 – 2−32

22 0 0 0 I 1
21 0 0 0 0 1
...

...
...

...
...

...
16 0 0 0 0 1
15 0 0 0 0 1
14 0 0 I I 1
13 I 0 0 0 1
12 0 I 0 0 –

4.2 The Attack

The attack works as follows:

1. Guess two 64-bit round keys ka
0 , ka

1 and compute ki
0, k

i
1, i ∈ {b, c, d} using the

known round key differences ΔK ′ and ΔK∗.
• For i = 1, 2, . . . , 2129.5 do

2. Set A = odd(I). Choose a plaintext P a
1,i uniformly at random and

compute P b
1,i = P a

1,i⊕α, where α = (0, 0�A, I). Decrypt P a
1,i and P b

1,i

under ka
1 , ka

0 and kb
1, k

b
0 respectively and obtain the plaintexts P a

−1,i and

P b
−1,i. With a chosen plaintext attack scenario, encrypt the plaintexts

P a
−1,i and P b

−1,i under Ka and Kb respectively to obtain the ciphertexts

P a
23,i and P b

23,i.

3. Compute the ciphertexts P c
23,i = P a

23,i ⊕ δ and P d
23,i = P b

23,i ⊕ δ, δ =
(A, I, 0). With a chosen ciphertext scenario, decrypt the ciphertexts
P c

23,i, P
d
23,i under Kc and Kd respectively and obtain the plaintexts

P c
−1,i and P d

−1,i.

4. Partially encrypt P c
−1,i, P

d
−1,i under kc

0, k
c
1 and kd

0 , kd
1 respectively and

obtain P c
1,i and P d

1,i. Check if P c
1,i ⊕P d

1,i = α. If true, store the quartet

(P a
1,i, P

b
1,i, P

c
1,i, P

d
1,i) in Θ.

5. If the number of quartets in Θ is at least two, record the round keys ki
0, k

i
1

(i ∈ {a, b, c, d}) and go to Step 6. Otherwise, go to Step 1 with another key
candidates.

6. For a suggested (ka
0 , ka

1 ), do an exhaustive search for the remaining 512−3·64 =
384 key bits by trial encryption. If a 512-bit key is suggested, output it as the
master key Ka of the full Tiger encryption mode (as well as Kb = Ka ⊕ K ′,
Kc = Ka ⊕ K∗ and Kd = Ka ⊕ K ′ ⊕ K∗). Otherwise restart the algorithm.

4.3 Analysis of the Attack

From #Q = 2129.5 boomerang quartets we expect about #C = 2129.5 · 2−128 ≈
3 correct boomerang quartets in Θ, since the probability of the related-key
boomerang distinguisher is 2−128. A random permutation of a difference P c

1,i ⊕
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P d
1,i has difference α with probability Prf = 2−192. We expect that #F =

#Q ·Prf = 2129.5 ·2−192 = 2−62.5 false related-key boomerang quartets will pass
the test in Step 4.

The data complexity of Step 1 to 4 is about 22 · 21.5 = 23.5 chosen plain- and
ciphertexts, since we expect to have only 21.5 quartets stored in Θ that satisfy
the condition in Step 4, not 2129.5 as one might respect since we do not have to
store all the quartets. Step 1 will be applied 2128 times in the worst case. The
time complexity of Step 2 is determined by two 24-round Tiger encryptions. The
time complexity of Step 3 is negligible, while the time complexity of Step 4 is
the same as for Step 3. Step 1 to 4 will be computed 2129.5 times. And thus the
overall time complexity is bounded by 2128 · 2129.5 · 22 = 2259.5.

A false combination of quartets is counted in Step 6 with probability Prfilter =
2−2·192. At least #cKc ≈ 3 correct related-key boomerang quartets and ad-
ditionally #fKc = #F · Prfilter = 2−62.5 · 2−384 = 2−446.5 false related-key
boomerang quartets are counted with the correct key bits. Note that a correct
boomerang quartet is always counted with probability one for a correct round
key. We double the filtering since we can filter on both pairs of a quartet. About
#cKc + #fKc ≈ 3 + 2−446.5 ≈ 3 quartets are counted for the correct key bits.

About #cKf = #C · Prfilter ≈ 3 · 2−384 = 2−382.5 correct related-key boome-
rang quartets and #FKf = #F ·Prfilter = 2−62.5 · 2−384 = 2−446.5 false related-
key boomerang quartets are counted with a false round key, which are approxi-
mately #cKf + #fKf ≈ 2−382.5 + 2−446.5 ≈ 2−382.5 counts for each false round
key.

Using the Poisson distribution we can compute the success rate of our attack.
The probability that the number of remaining quartets for each false round key
combination is larger than 1 is Y ∼ Poisson(μ = 2−446.5), Pr(Y ≥ 2) ≈ 0,
since the expected number of quartets counted with a false round key is 2−446.5.
We expect to have a count of at least 3 quartets for the correct key bits. The
probability that the number of quartets counted for the correct round keys is
at least 2 is Z ∼ Poisson(μ = 3), Pr(Z ≥ 2) ≈ 0.8. The data complexity of
our attack is 23.5 chosen plaintexts and ciphertexts, while the time complexity
is about 2259.5 24-round Tiger encryptions. The attack has a success rate of 0.8.

4.4 Further Improvements

The time complexity of our attack can be reduced using the following techniques.
One can fix some of the plaintext bits that form an α difference. This will lead
to a probability one differential for E0. The complexity can be reduced by a
factor of about 264 in this way. The time complexity of the improved attack is
therefore bounded by 2195.5 24-round Tiger encryptions.

5 Conclusion

In this paper we present the first cryptographic attack on the full 24-round
Tiger encryption mode. Our related-key boomerang attack uses less memory,
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which is of about 23.5 chosen plaintexts and ciphertexts. The time complexity
of our attack is 2259.5 24-round Tiger encryptions. Moreover we shown how time
complexity of the attack can be reduced to 2195.5 encryptions by fixing some of
the plaintext bits.

Our result shows that Tiger used as a block cipher can be distinguished from
an ideal cipher. Nevertheless, we point out that Tiger used as a hash function
offers some weaknesses, which should be considered.
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Abstract. SHACAL-2 is a 64-round block cipher based on the compres-
sion function of the hash function standard SHA-256. It has a 256-bit
block size and a variable length key of up to 512 bits. Up to now, all
attacks on more than 37 rounds require at least 2235 bytes of memory.
Obviously such attacks will never become of practical interest due to this
high amount of space. In this paper we adopt the relate-key boomerang
attack and present the first memoryless attack on 39-round SHACAL-2.
Our attack only employs 28.5 bytes of memory and thus improves the
data complexity of comparable attacks up to a factor of at least 2230,
which is a substantial improvement. We do not need to store all the data
which gives this low data complexity. The related-key boomerang attack
presented in this paper can also be seen as a starting point for more
advanced attacks on SHACAL-2. The main advantage of our new attack
is that we can proceed the data sequentially instead of parallel as needed
for other attacks, which reduces the memory requirements dramatically.

Keywords: SHACAL-2, block cipher, differential cryptanalysis, related-
key boomerang attack, memoryless attacks.

1 Introduction

SHACAL-2 [4] is a 256-bit block cipher with 512-bit keys which is based on the
compression function of the hash function standard SHA-256 [15]. SHACAL-2
as well as SHACAL-1, which is based one SHA-1 [14], were submitted to the
NESSIE (New European Schemes for Signatures, Integrity and Encryption)
project [13] . SHACAL-2 was recommended to be one of the NESSIE projec-
tion selections, while SHACAL-1 was not selected, because of some concerns of
the key schedule of SHACAL-1.

SHACAL-2 has 64-rounds and supports key lengths from 128 up to 512 bits.
For key lengths below 512 bit, the key gets simply padded with zeros. The first
cryptanalytic result on SHACAL-2 is an impossible differential attack [5] on a
30-round reduced version of SHACAL-2. A differential-nonlinear attack [16] and
a square-nonlinear attack [16] were introduced in the following which are able to
break up to 32 and 28 rounds. Including related keys leads to an improved attack
of up to 37 rounds which was called the related-key differential-nonlinear attack
[9]. The best cryptanalytic results one SHACAL-2 are the related-key rectangle
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c© Springer-Verlag Berlin Heidelberg 2009



Memoryless Related-Key Boomerang Attack on 39-Round SHACAL-2 311

attacks on 42 rounds by Lu et al. [12] and a 43-round attack by Wang [18].
The disadvantage of this attacks is the huge memory requirements which we will
address in this paper. We present the first memoryless attack on SHACAL-2
which can break up to 39 rounds using two related keys. For our results we
use the related-key boomerang attack, which improves the data complexity of
comparable attacks by a factor of at least 2226.5. This new technique allows
to proceed the data sequentially and thus reduces the memory requirements.
This is also the main advantage of our related-key boomerang attack, since all
other attacks have to store a huge amount of data so that the attack will work.
Table 1 summarizes the results known from literature and our new results on
SHACAL-2.

Table 1. Comparison of attacks on SHACAL-2

Attack # Rounds Data Time Memory Source

Square-Nonlinear 28 463 · 232 CP 2494.1 245.9 [16]

Impossible Differential 30 744 CP 2495.1 214.5 [5]

Differential-Nonlinear 32 243.4 CP 2504.2 248.4 [16]

RK Differential-Nonlinear 35 242.32 RK-CP 2452.10 247.32 [9]

RK Rectangle 37 2235.16 RK-CP 2486.95 2240.16 [9]

RK Boomerang 39 23.5 RK-CPCC 2483.5 28.5 Sec. 4

RK Rectangle 40 2243.38 RK-CP 2448.43 2247.38 [12]

RK Rectangle 42 2243.38 RK-CP 2488.37 2247.38 [12]

RK Rectangle† 43 2240.38 RK-CP 2480.4 2245.38 [18]

RK Rectangle 44 2233 RK-CP 2497.2 2238 [11]

RK: Related-Key, CP: Chosen Plaintexts, CC: Chosen Ciphertexts.

† : The attack has a flaw pointed out in [11].

Boomerang Attack. The boomerang attack [17] is a strong extension to differ-
ential cryptanalysis for breaking more rounds than differential attacks can do,
since the cipher is treated as a cascade of two sub-ciphers, using short differen-
tials in each sub-cipher. These differentials are combined in an adaptive chosen
plaintext and ciphertext attack to exploit properties of the cipher that have a
high probability.

Related-Key Attack. The related-key attack [1, 10] applies differential cryptanal-
ysis to the cipher with different, but related, keys and considers the information
that can be extracted from encryptions using these keys. Ciphers with a weak key
schedule are vulnerable to this kind of attack. The idea of related-key differen-
tials was presented in [7], while two encryptions under two related-keys are used.
Several combinations of related-key and differential attacks were introduced in
the following.
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Related-Key Boomerang and Rectangle Attack. The related-key boomerang and
rectangle attack was published first in [2, 6, 8]. The related-key boomerang attack
utilizes the fact, that the boomerang attack uses short differentials and so the
lower diffusion in the differences of the round keys can be better exploited than
in the original related-key differential attack. The attack combines features of
the boomerang and the related-key attack.

Outline. In Section 2 we briefly describe the SHACAL-2 block cipher. In Sec-
tion 3 we introduce the related-key boomerang attack, which is used in Section 4
to break 39 rounds of SHACAL-2 without using any noteworthy amount of mem-
ory. Finally, we conclude our paper in Section 5.

2 Description of SHACAL-2

SHACAL-2 is composed out of 64 rounds using a variable key length of at least
128 bits and up to 512 bits. For keys smaller than 512 bits zeros are padded
until the key length reaches 512 bits. A 256-bit plaintext

P0 = A0||B0||C0||D0||E0||F0||G0||H0

is divided into eight 32-bit words A0, B0, C0, D0, E0, F0, G0, H0. The correspond-
ing ciphertext P64 is denoted by

P64 = A64||B64||C64||D64||E64||F64||G64||H64.

The following notations are used in this paper:

⊕ : bitwise XOR operation
∧ : bitwise AND operation
+ : addition modulo 232 operation
¬ : bitwise complement operation
ei : a 32-bit word with zeros in all positions except for bit i, (0 ≤ i ≤ 31)
ei1,...,il

: ei1 ⊕ · · · ⊕ eil

The round function of round i can be described as follows:

T 1
i+1 = Ki + Σ1(Ei) + Ch(Ei, Fi, Gi) + Hi + Wi,

T 2
i+1 = Σ0(Ai) + Maj(Ai, Bi, Ci),

Hi+1 = Gi,

Gi+1 = Fi,

Fi+1 = Ei,

Ei+1 = Di + T 1
i+1,

Di+1 = Ci,

Ci+1 = Bi,

Bi+1 = Ai,

Ai+1 = T 1
i+1 + T 2

i+1,
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where Ki is the i-th round key and Wi is the i-th round constant. The four
functions in the encryption algorithm are defined as follows:

Ch(X, Y, Z) = (X ∧ Y ) ⊕ (¬X ∧ Z),
Maj(X, Y, Z) = (X ∧ Y ) ⊕ (X ∧ Z) ⊕ (Y ∧ Z),

Σ0(X) = S2(X) ⊕ S13(X) ⊕ S22(X),
Σ1(X) = S6(X) ⊕ S11(X) ⊕ S25(X),

where Sj(X) represents the right rotation of X by j bits. The bit positions of
a 32-bit word are labeled as 31, 30, . . . , 1, 0, where bit 31 is the most significant
bit and bit 0 is the least significant bit.

The key schedule algorithm of SHACAL-2 takes as input a 512-bit master
key. As stated above, as many zeros as necessary will be padded to get a full
512-bit master key. The 512-bit master key K is divided into sixteen 32-bit words
K0, K1, . . . , K15. These are the round keys for the first 16 rounds. The i-th round
key (16 ≤ i ≤ 63) is computed as

Ki = σ1(Ki−2) + Ki−7 + σ0(Ki−15) + Ki−16,

σ0(X) = S7(X) ⊕ S18(X) ⊕ R3(X),
σ1(X) = S17(X) ⊕ S19(X) ⊕ R10(X),

where Rj(X) represents right shift of X by j bits.
In the following we present some basic properties of the Ch(·) and Maj(·)

functions which will be needed in our attack.

Proposition 1. (from [18]) For the nonlinear function Ch(X, Y, Z) = (X ∧
Y ) ⊕ (¬X ∧ Z), there are the following properties:

1. Ch(x, y, z) = Ch(¬x, y, z) if and only if y = z.
Ch(0, y, z) = 0 and Ch(1, y, z) = 1 if and only if y = 1 and z = 0.
Ch(0, y, z) = 1 and CH(1, y, z) = 0 if and only if y = 0 and z = 1.

2. Ch(x, y, z) = Ch(x,¬y, z) if and only if x = 0.
Ch(x, 0, z) = 0 and Ch(x, 1, z) = 1 if and only if x = 1.

3. Ch(x, y, z) = Ch(x, y,¬z) if and only if x = 1.
Ch(x, y, 0) = 0 and Ch(x, y, 1) = 1 if and only if x = 0.

Proposition 2. (from [18]) For the nonlinear function
Maj(X, Y, Z) = (X ∧ Y ) ⊕ (X ∧ Z) ⊕ (Y ∧ Z), there are the following proper-
ties:

1. Maj(x, y, z) = Maj(¬x, y, z) if and only if y = z.
Maj(0, y, z) = 0 and Maj(1, y, z) = 1 if and only if y = ¬z.

2. Maj(x, y, z) = Maj(x,¬y, z) if and only if x = z.
Maj(x, 0, z) = 0 and Maj(x, 1, z) = 1 if and only if x = ¬z.

3. Maj(x, y, z) = Maj(x, y,¬z) if and only if x = y.
Maj(x, y, 0) = 0 and Maj(x, y, 1) = 1 if and only if x = ¬y.
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3 The Related-Key Boomerang Attack

Recall that the related-key boomerang attack was first published in [2]. It is a
combination of the related-key attack [1] and the boomerang attack [17].

Related-key attacks consider the information that can be extracted from en-
cryptions using related but unknown keys. Such ciphers with a weak key schedule
are vulnerable to this kind of attack. The key scheduling algorithms of many block
ciphers inherit obvious relationships between keys, which are called related-keys.

The boomerang attack is an extension to differential cryptanalysis [3] using
adaptive chosen plaintexts and ciphertexts to attack block ciphers. An attacker
can only apply a chosen plain- and ciphertext attack while choosing the relation
between related, but unknown, keys.

We now describe the related-key boomerang attack in more detail. But first,
we have to give some definitions.

Definition 1. Let P, P ′ be two bit strings of the same length. The bit-wise XOR
of P and P ′, P ⊕ P ′, is called the difference of P, P ′.

Definition 2. α → β is called a differential if α is the plaintext difference P⊕P ′

before some non-linear operation f(·) and β is the difference after applying these
operation, i.e, f(P ) ⊕ f(P ′). The probability p is linked on a differential saying
that an α difference turns into a β difference with probability p.

Theorem 1. ([17, Sec. 6].) Let α → β be a differential with probability p as
in Definition 2. Then the backward direction of this differential β → α has also
probability p.

Two texts (P, P ′) are called a pair, while two pairs (P, P ′, O, O′) are called a
quartet. Differential cryptanalysis exploits high probability differentials α → β
between the first and a later round of a cipher. In general, an attacker tries to
find high probability differentials over the first N − 1 out of N rounds to exploit
some subkey bits of the last (i.e. N’th) round. An attacker first computes the
expected output of the N −1-th round differential and then guesses some subkey
bits of the last round. He decrypts some ciphertexts under the guessed key bits
one round and compares the resulting difference with the output difference of
the N − 1 round differential. For every matching he increases a counter to the
used key bits and takes the key bits with the highest counter as the ’correct’
one. If the differential is well chosen, i.e., its probability is high enough, these
subkey bits can be computed much faster than applying exhaustive search.

The related-key boomerang attack extends differential cryptanalysis. The ci-
pher is split into two sub-ciphers and the attacker tries to exploit a differential
for each sub-cipher. These two differentials alone only cover a few rounds but
together the whole cipher. Regularly, the differential probability decreases the
more rounds are included. Therefore two short differential covering only a few
rounds each will be used instead of a long one covering the whole cipher. In this
way key bits can be computed with much fewer plaintexts than compared to
classic differential cryptanalysis, since the differential probabilities are normally
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higher. Related-keys are used to exploit some weaknesses of the key schedule to
enhance the probability of the differentials being used. We call such differentials
related-key differentials, since different but related keys are used for encryption
and decryption. We split the related-key boomerang attack into two steps. The
related-key boomerang distinguisher step and the key recovery step. The related-
key boomerang distinguisher is used to find all plaintexts sharing a desired dif-
ference that depends on the choice of the differential. These plaintexts are used
in the key recovery step afterwards to recover subkey bits for the initial round
key.

Distinguisher Step. During the distinguisher step we assume that the cipher
can be treated as a cascade of two sub-ciphers EK(P ) = E1K(E0K(P )), where
K is the key used for encryption and decryption. We assume that the related-key
differential α → β for E0 occurs with the probability p, while the related-key
differential γ → δ for E1 occurs with probability q, where α, β, γ and δ are differ-
ences. The backward direction E0−1 and E1−1 of the related-key differential for
E0 and E1 are denoted by α ← β and γ ← δ and occur, because of Theorem 1,
with probability p and q respectively. The related-key boomerang distinguisher
involves two different unknown – but related – keys K, K∗ = K ⊕ ΔK, where
ΔK is a known key differences. The attack works as follows:

• For i = 1, 2, . . . , s do
1. Choose plaintext P 1

0,i and plaintext P 2
0,i = P 1

0,i ⊕ α, where the subindex
0 defines the plaintext.

2. Ask for the encryption of P 1
0,i under K, i.e., P 1

n,i = EK(P 1
0,i) and P 2

0,i

under K∗, i.e., P 2
n,i = EK∗(P 2

0,i).
3. Compute the new ciphertexts P 3

n,i = P 1
n,i ⊕ δ and P 4

n,i = P 2
n,i ⊕ δ.

4. Ask for decryption of P 3
n,i under K, i.e., P 3

0,i = E−1
K (P 3

n,i) and P 4
n,i under

K∗, i.e., P 4
0,i = E−1

K∗(P 4
n,i).

5. If P 3
0,i ⊕ P 4

0,i = α store the quartet (P 1
0,i, P

2
0,i, P

3
0,i, P

4
0,i) in the set Θ.

Assume that a pair (P 1
0,i, P

2
0,i), i ∈ {1, . . . , s} with the difference α satisfies the

differential α → β with the probability p. Let 0 < b < n ≤ N be an intermediate
round, where N denotes the final round. Subcipher E0 covers rounds 1 to b and
subcipber E1 rounds b + 1 to N . The output of E0 is P 1

b,i and P 2
b,i, i.e., P 1

b,i =
E0K(P 1

0,i) and P 2
b,i = E0K∗(P 2

0,i). P 1
n,i and P 2

n,i have a difference β = P 1
b,i ⊕P 1

b,i

with probability p. Using the ciphertexts P 1
n,i and P 2

n,i (encrypted via EK and
EK∗) we can compute the new ciphertexts P 3

n,i = P 1
n,i ⊕ δ and P 4

n,i = P 2
n,i ⊕ δ.

Let P 3
b,i = E1−1

K (P 3
n,i) and P 4

b,i = E1−1
K∗(P 4

n,i) be the decryption of P 3
n,i and

P 4
n,i under E1. A difference δ turns into a difference γ after passing E1−1 with

probability q. Since δ = P 1
n,i ⊕ P 3

n,i = P 2
n,i ⊕ P 4

n,i we know that P 1
b,i ⊕ P 3

b,i = γ

and P 2
b,i ⊕ P 4

b,i = γ with probability q2. As we know that P 1
b,i ⊕ P 2

b,i = β with
probability p, it follows that (P 3

b,i ⊕ P 4
b,i) = (P 3

b,i ⊕ P 1
b,i) ⊕ (P 1

b,i ⊕ P 2
b,i) ⊕ (P 2

b,i ⊕
P 4

b,i) = γ ⊕ β ⊕ γ = β holds with probability pq2. A β difference turns into an
α difference after passing the differential E0−1 with probability p. Thus, a pair
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of ciphertexts (P 1
0,i, P

2
0,i) with P 1

0,i ⊕ P 2
0,i = α generates a new pair of plaintexts

(P 3
0,i, P

4
0,i) where P 3

0,i ⊕ P 4
0,i = α with probability (pq)2. A quartet containing

these two pairs is defined as:

Definition 3. A quartet (P 1
0,i, P

2
0,i, P

3
0,i, P

4
0,i) which satisfies

P 1
0,i ⊕ P 2

0,i = P 3
0,i ⊕ P 4

0,i = α,

P 1
b,i ⊕ P 2

b,i = P 3
b,i ⊕ P 4

b,i = β,

P 1
b,i ⊕ P 3

b,i = P 2
b,i ⊕ P 4

b,i = γ,

P 1
n,i ⊕ P 3

n,i = P 2
n,i ⊕ P 4

n,i = δ,

is called a correct related-key boomerang quartet which occurs with probability
Prc = (pq)2. A quartet (P 1

0,i, P
2
0,i, P

3
0,i, P

4
0,i) which only satisfies the condition

P 1
0,i⊕2

0,i = α = P 3
0,i ⊕ P 4

0,i is called a false related-key boomerang quartet.

Figure 1 displays the structure of the related-key boomerang distinguisher step.
Any attacker that applies a related-key boomerang distinguisher does not

know the internal states P 1
b,i, P

2
b,i, P

3
b,i, P

4
b,i, and since he can only apply a chosen

plaintext and ciphertext attack on the cipher. The set Θ, which is the output
of the related-key boomerang distinguisher, therefore contains correct and false
related-key boomerang quartets. It is impossible to form another distinguisher
which separates the correct and the false related-key boomerang quartets, since
the interior differences β and γ cannot be computed.

Key Recovery Step. The second step of the related-key boomerang attack
is the key recovery step. From now on, an attacker operates on the set Θ that
was stored by the related-key boomerang distinguisher. Let K0, K

∗
0 be the 0-th

round keys derived from the master keys K, K∗. Let encK0(P ) be the one round
partial encryption of P under the round key K0. The round keys are related as
K∗

0 = K0 ⊕ ΔK0, where ΔK0 is the key difference of the 0-th round keys. The
key recovery step works as follows:

- For each key-bit combination of K0 and K∗
0

1. Initialize a counter with zero.
- For all quartets (P 1

0,i, P
2
0,i, P

3
0,i, P

4
0,i) stored in Θ

2. Encrypt the plaintext quartet (P 1
0,i, P

2
0,i, P

3
0,i, P

4
0,i) one round un-

der the guessed round keys K0 and K∗
0 respectively, i.e., P 1

1,i =
encK0(P 1

0,i), P
2
1,i = encK∗

0
(P 2

0,i),
P 3

1,i = encK0(P
3
0,i) and P 4

1,i = encK∗
0
(P 4

0,i).
3. Test whether the differences P 1

1,i ⊕P 2
1,i and P 3

1,i ⊕P 4
1,i have a desired

difference an attacker would expect depending on the related-key
differential being used. Increase a counter for the used key-bits if the
difference is fulfilled in both pairs.
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P 1
0,i

P 1
n,i

P 2
0,i

P 2
n,i

P 3
0,i

P 3
n,i

P 4
0,i

P 4
n,i

αα

ββ
γ

γ

δ

δ

E0KE0K

E1KE1K

E0K∗E0K∗

E1K∗E1K∗

P 1
b,i

P 2
b,i

P 3
b,i

P 4
b,i

Fig. 1. The related-key boomerang distinguisher

4. Output the round keys K0 and K∗
0 with the highest counter as the correct

one.

In Step 3, four cases can be distinguished, since Θ contains correct and false
related-key boomerang quartets and the round keys K0, K

∗
0 can either be correct

or false. A correct related-key boomerang quartet encrypted using the correct
round key will have the desired difference needed to pass the test in Step 3.
Hence, the counter for the correct round key is increased.

The other three cases are: a correct related-key boomerang quartet is used
with a false round key (PrcKf

), a false related-key boomerang quartet is used
with a correct round key (PrfKc) or a false related-key boomerang quartet is
used with a false round key (PrfKf

). We assume that the cipher acts like a
random permutation. In these case we can assume that

PrcKf
= PrfKc = PrfKf

=: Prfilter.

The probability that a quartet in one of the three undesirable cases is counted
for a certain round key is Prfilter. The related-key differentials have to be chosen
such that the counter for the correct round key is significantly higher than the
counter for each false round key. If the differentials have a high probability the
key recovery step outputs the correct round key in Step 4 with a high probability
much faster than exhaustive key search.
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4 Memoryless Related-Key Boomerang Attack on
39-Round SHACAL-2

In this section we propose a 39-round memoryless related-key boomerang attack
on SHACAL-2 using two related keys. The cipher E can be treated as a cascade of
two sub-ciphers E = E1 ◦ E0, E0 is a sub-cipher containing rounds 1 to 25 while
the sub-cipher E1 covers rounds 25 to 35. Our related-key differentials are based
on the differentials used in [18]. We use these differentials to build a 35-round
related-key boomerang distinguisher, which can be used in a memoryless attack
to break 39 rounds of SHACAL-2. The main advantage of our attack is that
we do not need to store all the quartets as in the related-key rectangle attack
of [9, 12, 18, 11]. Thus, we only require a very small amount of memory to
successfully mount our attack.

The notations used in the attack will be as follows:

– K, K∗ master keys (512 bit).
– Ki, K

∗
i round keys of round i, where i ∈ {0, 1, 2, . . . , 38} (32 bit).

– ΔK is the master key difference, ΔK = (e31, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0,
0, 0, 0).

– ΔKi is the i-th round key difference derived from ΔK

In the following we will describe the related-key differentials used during our
attack.

4.1 The Related-Key Differential E0 and E0−1

The related-key differential for E0 covers rounds 1 to 25, which is

(e6,9,18,20,25,29, e31, 0, 0, e6,20,25, e31, 0, 0) → (0, 0, eM , e31, 0, e9,13,19, e18,29, e31),

where M = {6, 9, 18, 20, 25, 29} and Σ1(E0 ⊕ e9,13,19) − Σ1(E0) + ΔH = 0,
where ΔH is a 32-bit word that is needed to satisfy the equation. The key
schedule of SHACAL-2 has a low difference propagation for the first several
rounds. Thus, if two master keys K and K∗ are different in only two round
keys in the first 16 rounds, i.e. ΔK0 = e31 and ΔK9 = e31, we get a zero
difference up to ΔK23. Wang [18] improves the 25-round differential charac-
teristic introduced by Lu et al. [12] such that one does not have to guess the
first round keys K0 and K∗

0 . This can be done by using Proposition 1 and
Proposition 2 and fixing 16-bit conditions in the plaintexts to obtain a proba-
bility of 1 for the first round of the related-key differential. The bit conditions
are presented in Table 2. The overall differential probability increases but due
to the reduced costs of round key guessing one can improve a distinguisher
using the new differential. We assume that the master keys K and K∗ are re-
lated as ΔK = (e31, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0). The related-key differ-
ential E0 is shown in Table 3. Since we do not deal with truncated differentials,
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Table 2. The fixed plaintext bits for SHACAL-2

A1
0,i B1

0,i E1
0,i F 1

0,i

a1
31 = b1

31, a1
k = c1

k b1
k = ¬f1

k (k = 19, 30) e1
31 = 0, e1

k = 0 f1
k = g1

k

(k = 6, 9, 18, 20, 25, 29) b1
9 = e1

9 (k = 18, 29) (k = 9, 13, 19)

a1
k, b1

k, c1
k, e1

k, f1
k , g1

k are the k-th bits of A1
0,i, B

1
0,i, C

1
0,i, E

1
0,i, F

1
0,i, G

1
0,i.

Table 3. The Related-Key Differential E0 and E0−1 in reverse order

i ΔAi ΔBi ΔCi ΔDi ΔEi ΔFi ΔGi ΔHi ΔKi Prob.
0 0 eM e31 0 e9,13,19 e18,29 e31 ΔH e31 1
1 0 0 eM e31 0 e9,13,19 e18,29 0 0 2−11

2 e31 0 0 eM 0 0 e9,13,19 e18,29 0 2−10

3 0 e31 0 0 e6,20,29 0 0 e9,13,19 0 2−7

4 0 0 e31 0 0 e6,20,25 0 0 0 2−4

5 0 0 0 e31 0 0 e6,20,25 0 0 2−3

6 0 0 0 0 e31 0 0 e6,20,25 0 2−4

7 0 0 0 0 0 e31 0 0 0 2−1

8 0 0 0 0 0 0 e31 0 0 2−1

9 0 0 0 0 0 0 0 e31 e31 1
10 0 0 0 0 0 0 0 0 0 1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
23 0 0 0 0 0 0 0 0 0 1
24 0 0 0 0 0 0 0 0 · 2−6

25 e13,24,28 0 0 0 e13,24,28 0 0 0 · –

M = {6, 9, 18, 20, 25, 29}, Σ1(E0 ⊕ e9,13,19) − Σ1(E0) + ΔH = 0.

we can assume that the probability for a differential remains the same if it runs
in backward direction (Theorem 1). Thus, Pr(α → β) = Pr(α ← β) always holds
for the related-key differential E0 and E0−1

. Thus, Table 3 also represents the
related-key differential E0

−1
, which is starts from the bottom of the table (round

25) and goes up to the top (round 1). The related-key differential E0 occurs with
probability Pr(α → β) = 2−47 and therefore the related-key differential E0−1

occurs also with probability Pr(α ← β) = 2−47 too.

4.2 The Related-Key Differential E1−1

Our related key differential E1−1 covers rounds 35 to 25, which can be written
as

(e6,9,18,20,25,29, e31, 0, 0, e6,20,25, e31, 0, 0) → (e31, e31, eM ′ , 0, 0, e9,13,19, e18,29,31, 0).

The related-key differential E1−1 occurs with probability Pr(γ ← δ) = 2−65 and
can be found in Table 4.
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Table 4. The Related-Key Differential E1−1

i ΔAi ΔBi ΔCi ΔDi ΔEi ΔFi ΔGi ΔHi Prob.
35 e6,9,18,20,25,29 e31 0 0 e6,20,25 e31 0 0 2−11

34 e31 0 0 0 e31 0 0 0 1
33 0 0 0 0 0 0 0 e31 2−1

32 0 0 0 0 0 0 e31 e31 1
31 0 0 0 0 0 e31 e31 e31 2−4

30 0 0 0 0 e31 e31 e31 e6,20,25 2−7

29 0 0 0 e31 e31 e31 e6,20,25 0 2−8

28 0 0 e31 e31 e31 e6,20,25 0 0 2−7

27 0 e31 e31 e31 e6,20,25 0 0 e9,13,19 2−12

26 e31 e31 e31 eM′ 0 0 e9,13,19 e18,29,31 2−15

25 e31 e31 eM′ 0 0 e9,13,19 e18,29,31 0 –

M ′ = {6, 9, 18, 20, 25, 29, 31}.

4.3 The Attack

The attack works as follows:

• For i = 1, 2, . . . , 2225.5 do
• Guess two 128-bit round keys (K38, K37, K36, K35) and (K∗

38, K
∗
37, K

∗
36,

K∗
35) and do the following:

1. Choose plaintext P 1
0,i and ΔHi, such that the 16 bit conditions pre-

sented in Table 2 and the condition Σ1(E0⊕e9,13,19)−Σ1(E0)+ΔHi =
0 are satisfied. Ask for encryption of P 1

0,i under K to obtain the plaintext

P 1
39,i.

2. Compute the intermediate value P 1
35,i by decrypting P 1

39,i under (K38,
K37, K36, K35).

3. Compute the intermediate value P 3
35,i = P 1

35,i ⊕ δ, where

δ = (e6,9,18,20,25,29, e31, 0, 0, e6,20,25, e31, 0, 0). Compute P 3
39,i by en-

crypting P 3
35,i using (K35, K36, K37, K38).

4. Ask for decryption of P 3
39,i under K and obtain P 3

0,i.

5. Now, use the previously chosen P 1
0,i and the difference

αi = (0, eM , e31, 0, e9,13,19, e18,29, e31, ΔHi), M =
{6, 9, 18, 20, 25, 29}, to compute P 2

0,i = P 1
0,i ⊕ αi. Ask for encryption

of P 2
0,i under K∗ to obtain P 2

39,i.

6. Compute the intermediate value P 2
35,i by decrypting P 2

39,i under (K∗
38,

K∗
37, K

∗
36, K

∗
35) respectively.

7. Compute the intermediate value P 4
35,i = P 2

35,i ⊕ δ. Compute P 4
39,i by

encrypting P 4
35,i with keys (K∗

35, K
∗
36, K

∗
37, K

∗
38).

8. Ask for decryption of P 4
39,i under K∗ to obtain P 4

0,i.

9. Check if P 3
0,i ⊕P 4

0,i = αi. If true, store the quartet (P 1
0,i, P

2
0,i, P

3
0,i, P

4
0,i)

in Θ as well as the used partial keys K0, K35, K36, K37, K38.

• For all 64-bit round keys (K0, K∗
0 ) do
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10. Set counter = 0.
• For all quartets (P 1

0,i, P
2
0,i, P

3
0,i, P

4
0,i) in Θ

11. Encrypt (P 1
0,i, P

2
0,i, P

3
0,i, P

4
0,i) one round with K0 and K∗

0 respectively.

12. Check if P 1
1,i ⊕ P 2

1,i = P 3
1,i ⊕ P 4

1,i = τ , where τ = (0, 0, eM , e31, 0,
e9,13,19, e18,29, 0). If true, increase the counter by one.

13. Take the guess of K0 and K∗
0 with counter ≥ 2 as the correct round

key pair.
14. For a suggested (K0, K35, K36, K37, K38) (as also saved in Θ for every quartet),

do an exhaustive search for the remaining 512 − 5 · 32 = 352 key bits by trial
encryption. If a 512-bit key is suggested, output it as the master key of the
39-round SHACAL-2. Otherwise restart the algorithm.

4.4 Analysis of the Attack

A correct related-key boomerang quartet occurs with probability

Prc = Pr(α → β) · (Pr(γ ← δ))2 · Pr(α ← β)
= 2−47 · (2−65)2 · 2−47 = 2−224,

since all related-key differential conditions are fulfilled. A random permutation
of a difference P 3

0,i ⊕ P 4
0,i has difference α with probability Prf = 2−256. Let

#Q = 2225.5 be the number of initially chosen quartets and #C be the number
of correct quartets as tested in Step 9. We expect that #C = #Q · Prc =
2225.5 · 2−224 = 21.5 ≈ 3 correct quartets are found and that #F = #Q · Prf =
2225.5 · 2−256 = 2−30.5 false quartets are found. The data complexity of Step 1
to 9 is about 22 · 21.5 = 23.5 chosen plain– and ciphertexts, since we expect to
have about #C = 21.5 correct quartets and #F = 2−30.5 false quartets stored in
Θ. This amount occurs since we have a 256-bit filtering condition on one side of
the boomerang. The time complexity is determined by 22 · 2225.5 · 28·32 = 2483.5

39-round SHACAL-2 encryptions.
A false combination of quartets and key bits is counted in Step 12 with prob-

ability Prfilter = 2−2·32. At least #cKc ≈ 3 correct related-key boomerang
quartets and additionally #fKc = #F · Prfilter = 2−30.5 · 2−128 = 2−158.5

false related-key boomerang quartets are counted with the correct key bits.
We double the filtering since we can filter on both pairs of a quartet. About
#cKc + #fKc ≈ 3 + 2−158.5 ≈ 3 quartets are counted for the correct key bits.
Note that we need only Θ ≈ 21.5 quartets for our key recovery step, since Θ
contains only correct quartets. This means that the correct key bits alway get a
count of 21.5 which will distinguish them from all false key bit combinations.

About #cKf = #C ·Prfilter ≈ 3·2−64 = 2−62.5 correct related-key boomerang
quartets and #FKf = #F · Prfilter = 2−30.5 · 2−64 = 2−94.5 false related-key
boomerang quartets are counted with the false key bits, which are approximately
#cKf + #fKf ≈ 2−62.5 + 2−94.5 ≈ 2−62.5 counts for each false key bit combi-
nation. Step 13 takes the correct key bits since we expect about 2−62.5 counts for
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each false key bit combination and about 3 counts for the correct key bits. The
time complexity of Steps 10 to 13 is negligible small under these circumstances.
(≈ 264).

Using the Poisson distribution we can compute the success rate of our attack.
The probability that the number of remaining quartets for each false key bit
combination is larger than 1 is Y ∼ Poisson(μ = 2−62.5), Pr(Y ≥ 2) ≈ 0, since
the expected number of quartets counted with a false key bit combination is
2−62.5. We expect to have a count of at least 3 quartets for the correct key bits.
The probability that the number of quartets counted for the correct key bits is
at least 2 is Z ∼ Poisson(μ = 3), Pr(Z ≥ 2) ≈ 0.8. The data complexity of our
attack is 23.5 chosen plaintexts and ciphertexts, while the time complexity time
complexity is about 2483.5 39-round SHACAL-2 encryptions. Our attack has a
success rate of 0.8.

5 Conclusion

In this paper we present the first memoryless attack on SHACAL-2. Using
a related-key boomerang distinguisher we can mount an attack on 39-round
SHACAL-2. This improves the memory requirements of existing attacks by a fac-
tor of about 2235. Furthermore our attack can be seen as a starting point/building
block to form new attacks on SHACAL-2 using the related-key boomerang tech-
nique. This is the first application of the related-key boomerang attack used as
a memoryless variant on a block cipher. The main advantage of our attack is
that the data can be proceeded sequentially instead of parallel as needed for all
the other attacks.

Further research. An improvement of our attack would be the following scenario:
Instead of using one differential for E0 and E1 one could try to use all possible
differentials which have the same input and output difference. This will decrease
the time complexity but does not lead to attack more rounds. Another improve-
ment might be to use more than two related keys which may give somewhat
better differentials.
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Abstract. SMS4 is a 128-bit block cipher used in the WAPI standard in
wireless networks in China. The cipher has attracted much attention in
the past two years. This paper consists of two parts. The first part is on
the design of the linear diffusion layer L of SMS4. Some new observations
on L are present, which open out the design rationales of L and such
class functions to a great extent. The second part is on the differential
attack against SMS4. A class of 18-round differential characteristics with
a higher probability is given. Then a simple differential attack on 22-
round SMS4 is present, which is an improvement of the previous work,
thus our attack becomes the best known one on SMS4. Furthermore,
we make a remark on the construction of differential characteristics of
SMS4.

Keywords: WAPI, Block Cipher, SMS4, Diffusion Transformation,
Differential Cryptanalysis.

1 Introduction

WAPI (WLAN Authentication and Privacy Infrastructure) is the Chinese na-
tional standard for WLANs ( Wireless Local Area Networks ) products. SMS4
is the underlying block cipher used in the WAPI standard. WAPI has been
submitted to ISO for recognition as an international standard, but rejected in
March 2006, partially because of uncertainties regarding the security of the un-
revealed SMS4 cipher. However, the WAPI standard continues to be widely used
in Chinese industries.

Chinese government released the SMS4 [1] cipher in January 2006 in a Chinese
version, and [3] presented an English translation of [1]. SMS4 has a 128-bit block
size, a 128-bit user key, and a total of 32 rounds. It employs a kind of general-
ized Feistel network structure, and only 32 bits are modified in each round. The
main part of its round function (i.e., T function) is composed of 3 steps, firstly the
subkey XOR-addition, next 4 S-boxes in parallel, lastly a linear transformation L.

Since its introduction, the SMS4 cipher has attracted much attention from
cryptanalytic researchers, due to its simplicity and Chinese standard prominence.
There are several public papers on SMS4 in the past two years. The first open
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analysis [10] uncovers the origin of its S-box, and presents an integral attack
on 13-round SMS4. Next, some properties on a class of linear transformations
based on cyclic-shift and Xor operations are presented [12], the results can be
directly applied to the diffusion layer of SMS41. Then, a rectangle attack on 14
rounds and an impossible differential attack on 16 rounds are presented [11].
Later, a differential attack on 21 rounds [14] and a linear attack on 22 rounds [5]
are respectively revealed. Recently, a linear attack and a differential attack both
on 22-round SMS4 [9] are presented based on the work of [14]. Other papers on
SMS4 include [4,7,15]. The previous best known attack are due to [5] and [9].

This paper consists of two parts. The first part is on the design of the linear
transformation L of SMS4. L is very simple, composed of only 5 left rotations
and 4 XORs. For all we know, the analogous modules only appeared in the hash
standard SHA-256, namely σi and Σi (i = 0, 1) functions of SHA-256, which are
all composed of 3 right rotations (or right shifts) and 2 XORs. In the following,
we will present 3 observations on the linear transformation L of SMS4, which
provides some insight into the design rationales of L and such class functions.

The second part is on the differential cryptanalysis of SMS4. We will show that
there are 12 18-round differential characteristics for SMS4 each with a higher
probability of 2−114, which are the best differential characteristics for SMS4 so
far. Then we present a simple differential attack on 22-round SMS4 based on any
one of the 12 differential characteristics, which improves the previous best known
attacks due to J. Etrog and M.Robshaw[5] and T.Kim et.al.[9] with regard to
attack complexity, thus our attack becomes the best one so far. Finally, we make
a remark on constructing differential characteristics of SMS4.

2 Description of SMS4

SMS4 is a 32-round block cipher with a 128-bit block size and a 128-bit key size.
Its overall structure is a kind of generalized Feistel network, thus the encryption
and decryption have the same procedure except that the round subkeys for
decryption are used in the reverse order.

2.1 Notation

The following notations are used throughout this paper.
− Z32

2 : the set of 32-bit words; Z8
2 : the set of 8-bit bytes; Z2 = {0, 1}.

− ≪ i: left rotation by i bits; ≫ i: right rotation by i bits.
− For any U ∈ Z32

2 , let U = (U0, U1, U2, U3) ∈ (Z8
2 )4.

− Ki: the 32-bit subkey in Round i, Ki = (Ki,0, Ki,1, Ki,2, Ki,3) ∈ (Z8
2 )4,

(i = 0, 1, . . . , 31).
− ProbF (α → β) : the probability that output difference of function F is β given

input difference is α, F can be omitted when the context is clear.
1 Actually, Theorem 3.1 in this paper can be directly obtained from Theorem 1 of [12].

We know this after we have obtained Theorem 3.1 and Theorem 3.2. Whereas the
proof of Theorem 1 is not presented in [12], we remain Theorem 3.1 and its proof in
this paper.
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2.2 Encryption Procedure of SMS4

Let (X0, X1, X2, X3) ∈ (Z32
2 )4 and (Y0, Y1, Y2, Y3) ∈ (Z32

2 )4 denote the 128-bit
plaintext and ciphertext respectively. Let Ki ∈ Z32

2 (i = 0, 1, 2, . . .31) denote
the round subkeys.

The encryption procedure of SMS4 is as follows:

Xi+4 = Xi ⊕ T (Xi+1 ⊕ Xi+2 ⊕ Xi+3 ⊕ Ki), for i = 0, 1, . . . , 31

(Y0, Y1, Y2, Y3) = (X35, X34, X33, X32).

where the function T : Z32
2 �→ Z32

2 is composed of a non-linear transformation τ
and a linear transformation L, i.e., T (·) = L(τ(·)).

Fig.1 depicts one round of the encryption procedure of SMS4.

Xi Xi+1 Xi+2 Xi+3

Xi+1 Xi+2 Xi+3 Xi+4

Ki

T

T = L ◦ τ

Fig. 1. The i-th round of SMS4

τ applies 4 S-boxes in parallel. Let A = (a0, a1, a2, a3) ∈ (Z8
2 )4 be the input,

where each ai is a byte. Then the output B = τ(A) = (b0, b1, b2, b3) ∈ (Z8
2 )4 is

given by

(b0, b1, b2, b3) = (Sbox(a0), Sbox(a1), Sbox(a2), Sbox(a3))

where Sbox is a 8 × 8 S-box.
The 32-bit output B of τ will be the input of the linear transformation L.

The output C = L(B) ∈ (Z2)32 is given by

C = L(B) = B ⊕ (B ≪ 2) ⊕ (B ≪ 10) ⊕ (B ≪ 18) ⊕ (B ≪ 24).

3 Observations on the Linear Transformation L

In this section, we will present 3 observations on the linear transformation L.
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3.1 Optimality of L

Branch number introduced by J.Daemen [2] has now become a widely-accepted
concept for measuring the diffusion effect of a transformation (usually a linear
transformation).

The following gives the definition of the branch number of L.

Definition 3.1. (Branch number) Let W (·) denote the byte weight function, i.e.,
the number of nonzero bytes. The branch number of a function F : Z32

2 → Z32
2

is defined by
β(F ) = min

X �=0,X∈Z32
2

(W (X) + W (F (X))).

It is easy to know that β(F ) � 5. As a rule, the larger the branch number,
the better its diffusion effect. When β(F ) reaches the maximum 5, we call F
maximal.

For the linear transformation L of SMS4, the branch number reaches the
maximum 5, which can be easily verified by a computer program.

For a diffusion transformation of a block cipher or a hash function, the imple-
mentation is another important factor besides its branch number. L is composed
of 5 left-rotations and 4 XORs. The question posed here is : can we use less left-
rotations and XORs to get a transformation whose branch number is also the
best possible 5? In the following, we will show that the answer is “NO”.

Let F (X, k, r1, . . . , rk) =
k⊕

i=1
(X ≪ ri), where X ∈ Z32

2 , k is a natural number

and 0 � r1 < r2 < . . . < rk−1 < rk � 31. That is, F (X, k, r1, . . . , rk) is
composed of k left rotations and (k − 1) XORs, and the rotations are specified
by (r1, . . . , rk).

Theorem 3.1. If F (X, k, r1, . . . , rk) is maximal for some value of (k, r1, . . . , rk),
then k 	 5.

Proof. Let X = (x31, x30, . . . , x1, x0) ∈ Z32
2 , its bit index 31, 30, . . . , 1, 0 can

be divided into 4 subsections of one byte each: 31 . . .24, 23 . . .16, 15 . . . 8 and
7 . . . 0, we call them byte-index subsections.

Let X ∈ Z32
2 and Y = X ≪ r, then the ith bit of Y is yi = x(i−r)mod 32 (i =

0, 1, . . . , 31). Let ei be the 32-bit string whose i-th bit equals to 1 and the other
31 bits all equal to 0, then we can get the value of F (ei, k, r1, . . . , rk): the (i +
r1)th, (i + r2)th, . . . , (i + rk)th bits equal to 1 and the other (32 − k) bits
equal to 0. Therefore, if F (X, k, r1, . . . , rk) is maximal, then it must require
W (F (ei, k, r1, . . . , rk)) = 4 as W (ei) = 1. That is to say, for each of the 4 byte-
index subsections, at least one element of {r1, . . . , rk} is falling into it (when
considering e0), which also means k 	 4.

On the other hand, it’s easy to see that

F (0xffffffff, k, r1, . . . , rk) =
{

0xffffffff if k is odd
0 if k is even

Thus, the branch number of F (X, k, r1, . . . , rk) is not more than 4 if k is even.
Therefore, it must require k 	 5 for a maximal F (X, k, r1, . . . , rk). 
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According to Theorem 3.1, we can know that the selection of the linear trans-
formation L of SMS4 is optimal between the branch number and the number of
rotations. Furthermore, we will show that there are few maximal F (X, k, r1, . . . ,
rk) when k = 5.

Let F (X, k, r1, . . . , rk) ≪ h denote the function (
k⊕

i=1
(X ≪ ri)) ≪ h, it is

easy to see that:

F (X, k, r1, . . . , rk) ≪ h =
k⊕

i=1
(X ≪ (ri + h))

where “+” denotes addition modulo 32.
Firstly, we give the following property:

Property 3.1. For each value of k and each value of (r1, . . . , rk), the branch
number of F (X, k, r1, . . . , rk) ≪ 8, F (X, k, r1, . . . , rk) ≪ 16 and F (X, k, r1,
. . . , rk) ≪ 24 are all equal to the branch number of F (X, k, r1, . . . , rk).

The reason of Property 3.1 is that the output of each of the three functions
is just a byte - permutation of the output of F (X, k, r1, . . . , rk) given the same
input X , so the branch number is unchanged.

When k = 5, there are 5 parameters r1, r2, r3, r4, r5. If F (X, 5, r1, . . . , r5) is
maximal, then it must be that 2 parameters lie in a same byte-index subsection,
and the other 3 parameters lie in the other three byte-index subsections each.

According to Property 3.1, we will assume:
0 � r1 < r2 � 7, 8 � r3 � 15, 16 � r4 � 23, 24 � r5 � 31
Thus, there are 8×7

2 × 8× 8× 8 = 14336 different transformations F (X, 5, r1,
. . . , r5) in all in the sense of Property 3.1. An experiment is made to test which
are maximal among all the 14336 transformations, which spent several days on
two computers. The result is as follows:

Theorem 3.2. Among all of the 14336 transformations F (X, 5, r1, . . . , r5), only
two are maximal, one is L, the other is :

L∗(X) = X ⊕ (X ≪ 6) ⊕ (X ≪ 14) ⊕ (X ≪ 22)⊕ (X ≪ 24)
L∗(X) and L(X) are related in the following way: substitute “≫” for “≪”

in L∗(X), we have
R∗(X) = X ⊕ (X ≫ 6) ⊕ (X ≫ 14) ⊕ (X ≫ 22) ⊕ (X ≫ 24)

= L(X) ≪ 24

It’s easy to know R∗(X) and L∗(X) have the same branch number. Also L(X)
and L(X) ≪ 24 have the same branch number. Hence, our experimental result
shows that the linear transformation L of SMS4 is the unique maximal one in
essence among all the transformations F (X, 5, r1, . . . , r5), in view of Property
3.1 and diffusion effect.

3.2 Bijectivity of F (X, k, r1, . . . , rk) Function

In [6], the authors proved that Σi (i = 0, 1) functions of SHA-256 are all one
to one, their proof need the specific parameters of the two functions. In the
following, we will present a more general result, which makes the above result
in [6] a simple corollary.
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Theorem 3.3 Let X be a 32-bit variable. For any (r1, . . . , rk), satisfying 0 �
r1 < r2 < . . . < rk−1 < rk � 31, F (X, k, r1, . . . , rk) is bijective if k is odd, and
non-bijective if k is even.

Proof. Let f n(·) denote the n-th iteration of f(·), i.e., f n+1 = f ◦ f n, where
f ◦ g denotes function composition, that is, (f ◦ g)(x) = f(g(x)).

We have

F 2(X, k, r1, . . . , rk) =
k⊕

j=1

((
k⊕

i=1

(X ≪ ri)) ≪ rj) =
k⊕

i,j=1

(X ≪ (ri + rj))

=
k⊕

i=1

(X ≪ (2 × ri))

(1)

where “+” denotes addition modulo 32 and “×” multiplication modulo 32.
Because X is a 32-bit variable, it is easy to see that X ≪ 32 = X holds. Then,

we can get the following equation by repeatedly using equation (1) 5 times:

F 32(X, k, r1, . . . , rk) =
k⊕

i=1

(X ≪ (32 × ri)) =
k⊕

i=1

X =
{

X if k is odd
0 if k is even

Hence, if k is odd, then the inverse function of F (X, k, r1, . . . , rk) is F 31(X, k,
r1, . . . , rk), thus F function must be a bijection. If k is even, then F must be
non-bijective. 


Theorem 3.3 suggests that k must be odd when F (X, k, r1, . . . , rk) is used as a
function of cryptographic ciphers, such as block ciphers and hash functions.

3.3 Distribution of Input-Output Patterns of L

Let x be a byte, define the function δ(x) as:

δ(x) =
{

1 if x �= 0
0 if x = 0

Let X = (x0, x1, x2, x3) ∈ (Z8
2 )4, the pattern of X is defined by Pattern(X) =

(δ(x0), δ(x1), δ(x2), δ(x3)), i.e., Pattern(X) specifies the active and passive byte
positions of X . It’s easy to see that there are 15 possible patterns for a non-zero X .

Table 1 gives the distribution of input pattern and output pattern of Y =
L(X), where the first column denotes the 15 possible input patterns of X ,
the first row denotes the 15 output patterns of Y , the element at position
(i, j)(i, j ∈ {0001, 0010, . . .1111}) denotes the probability of Pattern(Y ) = j
given Pattern(X) = i, where

ε1 = 1
255 , ε2 = 251

255 ,

ε3 = 1
65025 , ε4 = 251

65025 , ε5 = 64015
65025 ,

ε6 = 1
16581375 , ε7 = 251

16581375 , ε8 = 64015
16581375 , ε9 = 16323805

16581375 .
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Table 1. Distribution of Input-Output Patterns of L

0001 0010 0100 1000 0011 0101 0110 1001 1010 1100 0111 1011 1101 1110 1111
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0011 0 0 0 0 0 0 0 0 0 0 ε1 ε1 ε1 ε1 ε2

0101 0 0 0 0 0 0 0 0 0 0 ε1 ε1 ε1 ε1 ε2

0110 0 0 0 0 0 0 0 0 0 0 ε1 ε1 ε1 ε1 ε2

1001 0 0 0 0 0 0 0 0 0 0 ε1 ε1 ε1 ε1 ε2

1010 0 0 0 0 0 0 0 0 0 0 ε1 ε1 ε1 ε1 ε2

1100 0 0 0 0 0 0 0 0 0 0 ε1 ε1 ε1 ε1 ε2

0111 0 0 0 0 ε3 ε3 ε3 ε3 ε3 ε3 ε4 ε4 ε4 ε4 ε5

1011 0 0 0 0 ε3 ε3 ε3 ε3 ε3 ε3 ε4 ε4 ε4 ε4 ε5

1101 0 0 0 0 ε3 ε3 ε3 ε3 ε3 ε3 ε4 ε4 ε4 ε4 ε5

1110 0 0 0 0 ε3 ε3 ε3 ε3 ε3 ε3 ε4 ε4 ε4 ε4 ε5

1111 ε6 ε6 ε6 ε6 ε7 ε7 ε7 ε7 ε7 ε7 ε8 ε8 ε8 ε8 ε9

The concept of branch number only roughly reflect the diffusion effect of a
transformation. Whereas a distribution table as Table 1 reflect the diffusion effect
more comprehensively. Such a distribution table may be very helpful in analyzing
a cipher against differential, truncated differential or linear cryptanalysis,etc. For
example, Zhang etc. [14] have used the pattern of Pattern(X) = Pattern(Y ) =
(0, 1, 1, 1) in their differential attack on 21-round SMS4.

Phan [13] has presented the distribution of input-output patterns of the Mix-
Column transformation of AES, we have also experimentally verified this distri-
bution. It’s interesting to find that the distribution of input-output patterns of
L of SMS4 is the same as that of the MixColumn transformation of AES. Hence,
we can say that the diffusion effect of L is the same with that of the MixColumn
transformation of AES.

4 A Simple Differential Attack on 22-Round SMS4

In [14], a class of 5-round iterative differential characteristics of SMS4 ( the
amount is 7905) is presented, with an average probability of 2−42 each. Then,
a class of 18-round differential characteristics are easily derived by simply it-
erating the 5-round iterative differentials, with an average probability of 2−126

each. Eventually, the authors present a differential attack on 21-round SMS4,
which uses all of the 7905 18-round differential characteristics. It’s worth noting
that there are a few 5-round iterative differential characteristics with a higher
probability of 2−38 each, as the authors of [14] have also pointed out and used
one to construct a 14-round rectangle distinguisher.

In this section, we will show that there are 3 out of 7905 5-round differential
characteristics, which have a probability of 2−38 each. Then 18-round differential
characteristics are easily derived, with a probability of 2−114 each. Using any of
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these 3 18-round differential characteristics, we can present a simple differential
attack on 22-round SMS4.

4.1 18-Round Differential Characteristics with a Probability of
2−114 Each

The 5-round iterative differential characteristics are as follows [14]:

(α, α, α, 0) 5 Rounds−−−−−−−−→ (α, α, α, 0)

with a probability of (ProbT (α → α))2.
Because the branch number of L is 5, so it require that H(α) 	 3 in order for

ProbT (α → α) �= 0. It’s obvious that ProbT (α → α) is larger when H(α) = 3. In
[14], the authors show that there are 7905 candidates for α when Pattern(α) =
(0, 1, 1, 1). One can refer to [14] for more details.

Through an experiment, we find that there are only 3 out of the 7905 can-
didates for α, which make ProbT (α → α) reach the maximal value 2−19. The
three values are: 0x002cf5cd, 0x00d2c822 and 00c30290. Furthermore, let Y be
one of the three values, i.e., Y ∈ {0x002cf5cd, 0x00d2c822, 00c30290}. Then,
when α = (Y ≪ 8) or α = (Y ≪ 16) or α = (Y ≪ 24), the corresponding
5-round iterative differential characteristic also holds with a probability of 2−38,
which is also verified by a computer program.

Iterating a 5-round differential characteristic three and a half times, then
a 18-round differential characteristic is derived. Hence, there are 12 18-round
differentials in total, with a probability of 2−38∗3 = 2−114 each, which are the
best distinguishers for SMS4 so far.

4.2 A Differential Attack on 22-Round SMS4

In this section, we fix α as any of the three values: 0x002cf5cd, 0x00d2c822 or
00c30290. Then, we have the following 18-round differential characteristic:

(α, α, α, 0) 18 Rounds−−−−−−−−→ (0, α, α, α)

with a probability of 2−114.

Attack Procedure. We use Round 0, Round1, . . . , Round 21 to number
the rounds of the 22-round SMS4. Applying the above 18-round differential at
Rounds 0 ∼ 17. If the output difference of Round 17 is (0, α, α, α), then the
input difference of T function in Round 18 equals to α. For the S-box of SMS4,
there are 127 possible output differences for any nonzero input difference, thus
the output difference of T in Round 18 has only about 27∗3 = 221 possible values.
Let Λ denote the set of these 221 possible values, then the output difference of
Round 18 must belong to (α, α, α, Λ). Similarly, the output difference of Round
19 must belong to (α, α, Λ, ?), the output difference of Round 20 must belong
to (α, Λ, ?, ?), and the output difference of Round 21 must belong to (Λ, ?, ?, ?),
where ? denotes an unknown word.
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The attack procedure is as follows.

1. Let (P, P ∗) denote a plaintext pair, and (C, C∗) the corresponding ciphertext
pair. Select 2m plaintext pairs, satisfying P

⊕
P ∗ = (α, α, α, 0) for each pair.

2. For each ciphertext pair (C, C∗), check if the first word of the ciphertext
difference belongs to the set Λ. If not, discard the pair. Store the filtered
ciphertext pairs in a table, about 2m−11 ciphertext pairs are expected to be
stored after this test.

3. For every guess of the 0th byte of K21, i.e., K21,0, do as follows:

(a) For each remaining ciphertext pair (C, C∗), let C = (C0, C1, C2, C3) ∈
(Z32

2 )4 , C∗ = (C∗
0 , C∗

1 , C∗
2 , C∗

3 ) ∈ (Z32
2 )4, partially decrypt to get the

output difference of the 0th Sbox in Round 21: γ = Sbox((C0 ⊕ C1 ⊕
C2)0 ⊕ K21,0) ⊕ Sbox((C∗

0 ⊕ C∗
1 ⊕ C∗

2 )0 ⊕ K21,0), and compute δ =
(L−1(C3 ⊕ C∗

3 ⊕ α))0. If the guess of K21,0 is correct, then it must be
γ = δ for right pairs. If this is not the case, discard the pair. About
2m−19 ciphertext pairs are expected to remain after this test.

(b) For each of the other 3 bytes of K21, the 4 bytes of K20 and the 4 bytes
of K19, continue making a guess, then compute γ and δ with the guessed
subkey byte. Similar to step 3.a, discard the disqualified ciphertext pairs.
About 2m−107 ciphertext pairs are expected to remain after these tests.

(c) Guess K18,0, do similarly to step 3.a. But a probability of about 1
2 pairs

are already discarded because of the selection of the set Λ, hence about
2m−107−7 = 2m−114 ciphertext pairs are expected to remain after this test.

(d) For each of the other three bytes of K18, make a guess and do simi-
larly to step 3.a. About 2m−135 ciphertext pairs are expected to remain
after these tests. If m = 116, thus the expectation of the remaining ci-
phertext pairs for a wrong key guess is about 2116−135 = 2−19, and the
expectation of the remaining ciphertext pairs for the right key guess is
about 2116−114 = 22. Hence, if the number of the remaining ciphertext
pairs is larger than 2, then keep the guess of K21, K20, K19, K18 as the
candidates of the right subkeys.

(e) For the survived candidates of the right subkeys in step 3.c, compute
the seed key K using the key schedule of SMS4. Then, do an exhaustive
search to find the unique right seed key.

The data complexity of the above attack is about 2117 chosen plaintexts, and
the memory complexity is about 2110 bytes.

By the Poisson distribution, X ∼ Poi(λ = 2−19), Prob[X > 2] ≈ 2−59.5, thus
the expectation of subkey candidates suggested in step 3.e is about 2128−59.5 =
268.5. By the Poisson distribution, X ∼ Poi(λ = 22), Prob[X > 2] ≈ 76.2%, so
the success rate of the above attack is about 76.2%.

The time complexity is dominated by step 3.a - 3.d. In step 3.a, 2105 ci-
phertext pairs are treated with 28 subkey candidates for K21,0, so the time
complexity is about 2105+8+1 × 1

22 × 1
4 ≈ 2107.54 22-round SMS4 encryptions.

Similarly, the time complexity of step 3.b is about 2107.54 × 11, the time com-
plexity of step 3.c is about 2107.54, and the time complexity of step 3.d is about
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Table 2. Comparison of Some Previous Attacks with Our New Attack

Source Number of Data Time Attack
Rounds Complexity Complexity Type

Ref.[10] 13 216 CP 2114 Integral

Ref.[11]∗ 14 2121.82 CP 2116.66 Rectangle
16 2105CP 2107 Imp.Diff

Ref.[4] 14 2106.89 CP 287.97 Rectangle
16 2117.06CP 295.09 Imp.Diff

Ref.[14] 16 2125 CP 2116 Rectangle
21 2118CP 2126.6 Differential

Ref.[5] 22 2118.4 KP 2117 Linear

Ref.[9] 18 2120 ACPS 2116.83 Boomerang
18 2124CP 2128 Rectangle
22 2117KP 2109.86Enc. + 2120.39A.O. Linear
22 2118CP 2123 Differential

This paper 22 2117 KP 2112.3 Differential

CP – Chosen plaintext, KP – Known plaintext.
ACPS – Adaptive Chosen Plaintext and Ciphertext.
A.O. – Arithmetic operation.
Time complexity is measured in encryption units (Enc.).

(22+112+1 + 2−5+120+1 + 2−12+128+1)× 1
22 ×

1
4 . Hence, the total time complexity

is about 2112.3 22-round SMS4 encryptions.
We summarize our attack along with the previously known ones against SMS4

in Table 2. Notice that our attack is based on the work of [14] and [9]. The key
point is that we exploit a single differential characteristic with a much higher
probability, which also makes the attack more effective and more clear. Whereas
a class of 7905 differential characteristics are exploited in [14] and [9], with a
much lower average probability.

5 A Remark on Constructing Differential Characteristics
of SMS4

Zhang etc. [14] present the following 5-round iterative differential characteristics

(α, α, α, 0) 5 Rounds−−−−−−−−→ (α, α, α, 0)

In fact, let Δ = {(χ0, χ1, χ2, χ3)|χi = 0 or χi = α for each 0 � i � 3}. For
each of the non-zero elements (χ0, χ1, χ2, χ3) ∈ Δ, we can get the following 5-
round iterative differential characteristic by restricting the output difference of
T function is α when its input difference is α:

(χ0, χ1, χ2, χ3)
5 Rounds−−−−−−−−→ (χ0, χ1, χ2, χ3)
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There are 15 non-zero elements in Δ, thus 15 different 5-round iterative dif-
ferential characteristics. Through a calculation, we find there are 10 differentials
with a probability of (ProbT (α → α))2 each, the other 5 with a lower probability.

For the 10 differentials, there are two best ones when we consider iterating
them for more rounds, corresponding respectively to (χ0, χ1, χ2, χ3) = (α, α, α, 0)
and (χ0, χ1, χ2, χ3) = (0, α, α, α). This is because the first 3-round differential
holds with probability 1 when (χ0, χ1, χ2, χ3) = (α, α, α, 0), and the last 3-round
differential holds with probability 1 when (χ0, χ1, χ2, χ3) = (0, α, α, α), thus we
can add 3 rounds for free (one in the end, the other in the beginning).

Moreover, it is easy to show that there exists no 4-round differential charac-
teristic with probability 1.

We have tried to construct other differential characteristics of SMS4, but no
more than 18 rounds, and the 18-round differentials presented in section 4.1 are
the best.

In [8], the authors present the upper bounds of the maximum differential
and linear characteristic probabilities of Camellia, which would inspire a similar
study on SMS4. But the overall structure of SMS4 makes the study so complex,
the workload is so huge, we can’t achieve this goal at present.

6 Summary

In the first part, we present 3 observations on the design of the linear trans-
formation L of SMS4. Firstly, we prove that L is optimal between the branch
number and the number of rotations, furthermore we show there are essentially
only two transformations whose branch number reaches the maximum 5 if using
only 5 rotations and 4 XORs. Secondly, we present a sufficient and necessary
condition for such class functions to be bijective. Thirdly, we show that L has
the same diffusion effect as the MixColumn transformation of AES, by compar-
ing their distributions of input-output patterns. These observations reveal the
design rationales of L and such class functions to a great extent, and also helpful
in analyzing the security of ciphers using such functions.

In the second part, firstly we show that there are 12 18-round differential
characteristics for SMS4, each with a higher probability of 2−114, which are
the best differential characteristics for SMS4 so far. Then, we present a simple
differential attack on 22-round SMS4. Compared with the attack complexity of
the 22-round attacks in [5,9], ours is better, hence our attack is the best known
one on SMS4 in the literature so far. Furthermore, we make a remark on the
construction of differential characteristics of SMS4, which shows that the class
of 18-round differential characteristics presented in section 4.1 ( the amount is
12) with a probability of 2−114 each maybe the best effective ones. Finally, we
stress that the full 32-round SMS4 provides a sufficient safety margin against
differential cryptanalysis, since the best attack can only reach 22 rounds so far.
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Abstract. Side-channel attacks are a very powerful cryptanalytic tech-
nique. Li and Gu [ProvSec’07] proposed an approach against side-channel
attacks, which states that a symmetric encryption scheme is IND-secure
in side-channel model, if it is IND-secure in black-box model and there
is no adversary who can recover the whole key of the scheme computa-
tionally in side-channel model, i.e. WKR-SCA ∧ IND → IND-SCA. Our
researches show that it is not the case. We analyze notions of security
against key recovery attacks and security against distinguishing attacks,
and then construct a scheme which is WKR-SCA-secure and IND-secure,
but not IND-SCA-secure in the same side-channel environment. Further-
more, even if the scheme is secure again partial key recovery attacks in
side-channel model, this approach still does not hold true.

Keywords: Provable security, Side-channel attack, Symmetric
encryption.

1 Introduction

In traditional cryptanalysis, an adversary has only black-box access to cryp-
tographic algorithms, i.e. the adversary can query the keyed cryptographic al-
gorithm with input of its choice and get the corresponding output, but it can
not get any other information of what’s going on during the computation of
the output. Unfortunately, in physical implementations, this kind of informa-
tion sometimes can be easily obtained, such as timing information [8], power
consumption [7], electromagnetic leakage [4], etc. We call the attacks based on
this leaked information side-channel attacks. The researches in the last decade
show that side-channel attacks are a very powerful cryptanalytic technique. The
security of some cryptographic algorithms may collapse suddenly given some
tiny side-channel information, even though they are very secure in traditional
cryptanalysis.

The black-box model illustrates a theoretical world in which we focus on
design in the level of algorithm, on the other hand the side-channel model il-
lustrates a practical world in which we have to face the leaked information in
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implementations. We have millions of experiences on designing secure crypto-
graphic algorithms in black-box model. But how to guarantee the security of the
algorithms in side-channel model?

Let’s first look at some notions of security. The minimal security requirement
is the privacy of the secret key. Key recovery attacks are often used to analyze
the security of cryptographic primitives such as block cipher both in black-
box model [2,3] and side-channel model [6]. Recently the researches on how to
establish a unified framework to evaluate the implementation security also focus
on key recovery attacks [10,11,12]. If no adversary can recover the whole key
computationally, we say it is WKR-secure (in black-box mode) or WKR-SCA-
secure (in side-channel model)1. If no adversary can recover any part of key
computationally, we say it is PKR-secure (in black-box mode) or PKR-SCA-
secure (in side-channel model).

But as to a concrete cryptographic scheme, we need a corresponding security
notion. For example, an encryption scheme requires the privacy of the plaintext,
i.e. any adversary can not learn any information of the plaintext (except the
length) computationally given a challenge ciphertext. This notion was firstly
defined by Goldwasser and Micali as semantic security [5], which is equivalent to
indistinguishability of the ciphertexts [5,1]. If no information about the plaintext
(except the length) is revealed computationally by the ciphertext, we say the
scheme is IND-secure (in black-box mode) or IND-SCA-secure (in side-channel
model).

Li and Gu proposed an approach against side-channel attacks in ProvSec
2007 [9], which states that if a symmetric encryption scheme is both WKR-SCA-
secure and IND-secure, then it is IND-SCA-secure. In other words, in order to
guarantee the practically security of the scheme, we only need to guarantee the
theoretically security of the scheme and there is no adversary who can recover
the whole key of the scheme computationally in the practical world.

Unfortunately, it is not the case.
Our results are based on the following two basic observations:

– The notion of WKR (WKR-SCA) is much weaker than the notion of IND
(IND-SCA).

– The security of the scheme in side-channel model is closely related to the
leaked information.

Our Contributions. We first analyze the relations among PKR, WKR and
IND both in black-box model and side-channel model. Please see Figure 1 and
Figure 2, which show that WKR is the weakest notion, and PKR and IND are
incomparable. We give proofs for all the implications of the notions and construct
concrete examples for all the separations of the notions.

We then explore the security of notion combination. Our results show that
WKR-SCA ∧ IND does not imply IND-SCA. Given a symmetric encryption
scheme which is IND-secure, we can construct a scheme which is both

1 The notion of WKR is the same as the notion of UB in [9], which means “unbreak-
ability of the key”.
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IND-secure and WKR-SCA-secure, but not IND-SCA-secure in the same side-
channel environment.

Furthermore, we show that even the scheme is PKR-SCA-secure and IND-
secure, this approach still does not hold. Based on a symmetric encryption
scheme which is both PKR-secure and IND-secure, we construct a new scheme
which is both PKR-SCA-secure and IND-secure, but not IND-SCA-secure in the
same side-channel environment.

2 Preliminaries

Notations. We write s
$←− S to denote choosing a random element s from a

set S by uniform distribution. An adversary is an (randomized) algorithm with
access to one or more oracles which are written as superscripts. We write the
adversary A with oracle O outputing a bit b as AO ⇒ b. AdvGGG

SSS (A) denotes
the advantage of A attacking a scheme “SSS” with a goal of “GGG”.

A → B means any scheme meeting notion A also meets notion B and B � A
means there exists a scheme meeting notion B but do not meets notion A.

Symmetric Encryption Scheme. A symmetric encryption scheme SE =
(K, E ,D) consists of three algorithms. The randomized key generation algorithm
K generates a key K, denoted as K ← K. The randomized or stateful encryption
algorithm E takes the key K and a plaintext M to return a ciphertext C, denoted
as C ← EK(M). The deterministic and sateless decryption algorithm D takes the
key K and a string C to return the corresponding plaintext M or the symbol ⊥,
denoted as x ← D, where x ∈ {0, 1}∗ ∪ {⊥}. We require that DK(EK(M)) = M
for any plaintext M .

In this paper, we focus on the security of symmetric encryption scheme under
chosen plaintext attacks.

Side-Channel Leakage Function. In side-channel attacks, the adversary not
only can query the encryption oracle EK and get the corresponding ciphertext,
but also can get some side-channel information during the computation of the
ciphertext. We notice that the side-channel information is relevant to the key K
and the queried plaintext M , so we treat it as a function L(K, M) and call it
a leakage function. We define a new oracle E+

K(M) = (EK(M), L(K, M)) which
returns both the ciphertext and the leaked information. Therefore in side-channel
attacks, the adversary has actually oracle access to E+

K(·)2.

Security against Key Recovery Attacks. Key recovery attacks aim to re-
cover the whole or partial key of the cryptographic algorithm. We define two
kinds of security of symmetric encryption scheme against key recovery attacks
2 In [9], the adversary has oracle access to EK(·) and S∗

K(·) in side-channel model,
where the input to S∗

K(·) is the side-channel information and the output of S∗
K(·)

is a key K′ ∈ {0, 1}∗ ∪ {⊥}. This formalization conceals where the side-channel
information comes from, and brings about confusions in subsequent discussions.
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both in black-box model and in side-channel model. In whole key recovery at-
tacks, the adversary tries to recovery the full key.

Definition 1 (WKR and WKR-SCA). Let SE = (K, E ,D) be a symmetric
encryption scheme. Consider following two advantages:

AdvWKR
SE (A) = Pr[K ← K,AEK(·) ⇒ K ′ : K = K ′],

AdvWKR-SCA
SE (A) = Pr[K ← K,AE+

K(·) ⇒ K ′ : K = K ′].

We say that SE is secure against whole key recovery attacks in black-box model
(in side-channel model), or WKR-secure (WKR-SCA-secure), if the advantage
AdvWKR

SE (A) (AdvWKR
SE (A)) is negligible for any adversary A with feasible re-

sources.

In partial key recovery attacks, the adversary tries to recover any information of
the key. We adopt a simulator-based definition, in which we use a function f(K)
to represent the targeted information of the key and define the security against
partial key recovery attacks as whatever an adversary A with oracle EK (E+

K)
can do, a simulator S without oracle also can do.

Definition 2 (PKR and PKR-SCA). Let SE = (K, E ,D) be a symmetric
encryption scheme. Consider following two advantages:

AdvPKR
SE (A,S)

=Pr[K ← K,AEK(·) ⇒ b : f(K) = b] − Pr[K ← K,S ⇒ b : f(K) = b],

AdvPKR-SCA
SE (A,S)

=Pr[K ← K,AE+
K(·) ⇒ b : f(K) = b] − Pr[K ← K,S ⇒ b : f(K) = b],

where f : {0, 1}∗ → {0, 1}∗ is a function. We say that SE is secure against partial
key recovery attacks in black-box model (in side-channel model), or PKR-secure
(PKR-SCA-secure), if for any function f and any adversary A with feasible
resources, there exists an algorithm S (we often call it a simulator) with feasi-
ble resources, such that the advantage AdvPKR

SE (A,S) (AdvPKR-SCA
SE (A,S)) is

negligible.

Security against Distinguishing Attacks. We adopt the security definition
of Real-Or-Random in [1] for symmetric encryptions, which define the security
as indistinguishability of ciphertexts of required plaintexts and ciphertexts of
random strings.

Definition 3 (IND and IND-SCA). Let SE = (K, E ,D) be a symmetric
encryption scheme. Consider following two advantages:

AdvIND
SE (A) = Pr[K ← K,AEK(·) ⇒ 1] − Pr[K ← K,AEK($(·)) ⇒ 1],

AdvIND
SE (A) = Pr[K ← K,AE+

K(·) ⇒ 1] − Pr[K ← K,AE+
K($(·)) ⇒ 1],
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where $(·) returns a random string with the same length of the input. We say
that SE is secure against distinguishing attacks in black-box model (in side-
channel model), or IND-secure (IND-SCA-secure), if the advantage AdvIND

SE (A)
(AdvIND-SCA

SE (A)) is negligible for any adversary A with feasible resources.

3 KR vs. IND in Block-Box Model

In this section, we elaborate the implications or separations of the notions sum-
marized in Figure 1.

PKR WKR

IND

Fig. 1. Relations among PKR, WKR and IND

Theorem 1 (PKR → WKR). Let SE be an encryption scheme. If SE is
PKR-secure, then it is WKR-secure as well.

Proof. If A is an adversary against WKR-security, we construct an adversary
B against PKR-security: run A and get K ′, then return K ′. We set f = ID
where ID is the identical transformation, then for any simulator S, we have
AdvPKR

SE (B,S) ≥ AdvPKR
SE (A) − 1/2k, where k is the length of the key. ��

Theorem 2 (IND → WKR). Let SE be a symmetric encryption scheme. If
SE is IND-secure, then it is WKR-secure as well.

Proof. If A is an adversary against WKR-security, we construct an adversary
B against IND-security: run A and get K ′, then query M ∈ {0, 1}n and get
C, if EK′(M) = C, then return 1, else return 0. We have that AdvIND

SE (B) ≥
AdvWKR

SE (A) − 1/2n. ��

Proposition 1 (PKR � IND). There exists a symmetric encryption scheme
which is PKR-secure, but not PKR-secure.

Proof. We construct a symmetric encryption scheme SE = (K, E ,D), where
EK(M) = M , i.e. the encryption algorithm is an identical transformation and
has nothing to do with the key K. Hence no matter how the adversary queries
the encryption oracle, no information about K is obtained. More specifically, for
any function f and adversary A against PKR-security, the simulator S just runs



On the Correctness of an Approach against Side-Channel Attacks 341

AID(·) and returns whatever A returns, where ID(·) is the identical transfor-
mation. Then AdvPKR

SE (A,S) = 0.
Furthermore, the identical transformation reveals all the information about

the plaintext. More specifically, the adversary B just queries M ∈ {0, 1}n, if the
answer is M then return 1, else return 0. We have AdvIND

SE (B) = 1 − 1/2n. ��

Proposition 2 (IND � PKR). Given a symmetric encryption scheme SE
which is IND-secure, we can construct a symmetric encryption scheme SE ′ which
is also IND-secure, but not PKR-secure.

Proof. Suppose SE = (K, E ,D) is IND-secure. We construct SE ′ = (K′, E ′,D′)
as follows:

SE SE ′

Key generation K ← K K1 ← K, K2
$←− {0, 1}n

Encryption EK(M) E ′
K1K2(M) = EK1(M)||K2

Decryption DK(C) D′
K1K2(C) = DK1(C)

The new encryption scheme SE ′ generates an extra key K2 ∈ {0, 1}n, but re-
veals it in the ciphertext. If SE is IND-secure, then SE ′ is also IND-secure. More
specifically, for any adversary A attacking SE ′, we construct adversary BO at-
tacking SE : K2

$←− {0, 1}n, run A, when A queries M , answer it with O(M)||K2,
and return whatever A returns. We have AdvIND

SE (B) = AdvIND
SE′ (A).

Furthermore, the ciphertext reveals the partial key of the SE ′, so it is not
PKR-secure. More specifically, given the function f(K1K2) = K2 and the ad-
versary A which returns K2 after arbitrary one query, any simulator S has no
information about K2, therefore AdvPKR

SE′ (A,S) ≥ 1 − 1/2n. ��

Corollary 1 (WKR � IND). There exists a symmetric encryption scheme
SE which is WKR-secure, but not IND-secure.

Proof. We have PKR → WKR by Theorem 1. If WKR → IND, then PKR →
IND. That contradicts Proposition 1. ��

Corollary 2 (WKR � PKR). There exists a symmetric encryption scheme
SE which is WKR-secure, but not PKR-secure.

Proof. We have IND → WKR by Theorem 2. If WKR → PKR, then IND →
PKR. That contradicts Proposition 2. ��

4 KR vs. IND in Side-Channel Model

Attacks in black-box model can be regarded as special attacks in side-channel
model when the leakage function returns nothing. Therefore the separations of
the notions still hold in side-channel model. It is easy to verify the implications
of the notions also hold in side-channel model. We summarize these results in
Figure 2.
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PKR-SCA WKR-SCA

IND-SCA

Fig. 2. Relations among PKR-SCA, WKR-SCA and IND-SCA

5 Failing Combination of Notions

From the above section, we know that the notion of WKR-SCA is much weaker
than the notion of IND-SCA. Even if we combine the notion of WKR-SCA with
that of IND, we can not get the notion of IND-SCA. Therefore we actually
overturn the main result in [9].

Proposition 3 (WKR-SCA ∧ IND � IND-SCA). Given a symmetric en-
cryption scheme SE which is IND-secure, we can construct a symmetric en-
cryption scheme SE ′ which is both IND-secure and WKR-SCA-secure for some
leakage function, but not IND-SCA-secure for the same leakage function.

Proof. Suppose SE = (K, E ,D) which is IND-secure. We construct SE ′ =
(K′, E ′,D′) as follows:

SE SE ′

Key generation K ← K K1 ← K, K2
$←− {0, 1}n

Encryption EK(M) E ′
K1K2(M) = EK1(M)

Decryption DK(C) D′
K1K2(C) = DK1(C)

The new encryption scheme SE ′ generates an extra K2
$←− {0, 1}n, but does

not used in the encryption. The encryption algorithms of SE and SE ′ are the
same, so SE ′ is also IND-secure.

Now we consider the security of SE ′ in side-channel model, given that the
leakage function is L(K1K2, M) = K1.

The encryption algorithm of SE ′ does not use the key K2, which is also not
revealed by the leakage function, so it is WKR-SCA-secure. More specifically,
for any adversary A, AdvWKR-SCA

SE′ (A) ≤ 1/2n.
Furthermore, the key K1 used in the encryption algorithm is revealed by the

leakage function, so SE ′ is not IND-SCA-secure. More specifically, the adversary
B makes arbitrary query and gets K1 through the leakage function, and then
queries M ∈ {0, 1}n, gets C. If C = E ′

K1(M), then return 1, else return 0. We
have AdvIND-SCA

SE (A) = 1 − 1/2n. ��
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Moreover, we show that even the scheme is PKR-SCA-secure and IND-secure,
the approach in [9] still does not hold.

Proposition 4 (PKR-SCA ∧ IND � IND-SCA). Given a symmetric en-
cryption scheme SE which is both PKR-secure and IND-secure, we can construct
a symmetric encryption scheme SE ′ which is both PKR-SCA-secure and IND-
secure for some leakage function, but not IND-SCA-secure for the same leakage
function.

Proof. Suppose SE = (K, E ,D) is both PKR-secure and IND-secure.
Now we consider the security of SE in side-channel model, given that the

leakage function is L(K, M) = M .
The leakage function does not reveal any information about the key K, so SE

is PKR-SCA-secure.
The leakage function reveals the queried plaintext, so SE is not IND-SCA-

secure. More specifically, the adversary A just queries M ∈ {0, 1}n and gets
(C, M ′). If M = M ′ then return 1, else return 0. We have AdvIND-SCA

SE (A) =
1 − 1/2n. ��

6 Conclusion

This paper gives implications or separations among the notions of IND, PKR
and WKR both in black-box model and side-channel model, which show that
the notion of WKR is much weaker than the notion of IND. Then we construct
a concrete scheme to show that the approach against side-channel attacks pro-
posed in [9] is flawed. The security against key recovery attacks does not help
much for a practically cryptographic requirement. We note that the results are
not limited to the security of symmetric encryption scheme, as to the security
of the other cryptographic algorithms, such as block ciphers or authenticated
encryption schemes, the corresponding results still hold true.
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Abstract. Network security analysis based on attack graphs has been applied
extensively in recent years. The ranking of nodes in an attack graph is an impor-
tant step towards analyzing network security. This paper proposes an alternative
attack graph ranking scheme based on a recent approach to machine learning in
a structured graph domain, namely, Graph Neural Networks (GNNs). Evidence
is presented in this paper that the GNN is suitable for the task of ranking attack
graphs by learning a ranking function from examples and generalizes the function
to unseen possibly noisy data, thus showing that the GNN provides an effective
alternative ranking method for attack graphs.

1 Introduction

A large computer system is built upon multiple platforms, runs different software pack-
ages and has complex connections to other systems. Despite the best efforts by system
designers and architects, there will exist vulnerabilities resulting from bugs or design
flaws, allowing an adversary (attacker) to gain a level of access to systems or informa-
tion not desired by the system owners. The act of taking advantages of an individual
vulnerability is referred to as an “atomic attack” or an “exploit”. A vulnerability is of-
ten exploited by feeding a specially crafted chunk of data or sequence of commands
to a piece of defective software resulting in unintended or unanticipated behaviour of
the system such as gaining control of a computer system or allowing privilege escala-
tion. Although an exploit may have only insignificant impact on the system by itself, an
adversary may be able to construct a system intrusion that combines several atomic at-
tacks, each taking the adversary from one system state to another, until attaining some
state of interest, such as access to customer credit card data. To evaluate the security
level of a large computer system, an administrator must not only take into account the
effects of exploiting each individual vulnerability, but also considers global intrusion
scenario where an adversary may combine several exploits possibly in a multi-stage
attack to compromise the system.

In order to provide a global view on multi-stage attacks by combining several indi-
vidual vulnerabilities, Sheyner et al. proposed the use of attack graphs [11]. An attack
graph is a graph that consists of a set of nodes and edges, where each node represents a
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reachable system state and each edge represents an atomic attack that takes the system
from one state to another. However, as the size and complexity of an attack graph usu-
ally greatly exceeds the human ability to visualize, understand and analyze, a scheme
is required to identify important portions of attack graphs (which may be vulnerable to
external attacks). Recently, Mehta et al. [15] proposed to rank states of an attack graph
by their importance using PageRank [10], an algorithm used by the Google web search
engine. This is possible since the class of attack graphs is a subset of a web graph with
nodes representing web pages, and edges representing hyperlinks among the web pages.
The PageRank algorithm would rank the importance of web pages based on its hyper-
link structure only [10]. In other words, Mehta et al. demonstrated that the PageRank
algorithm when applied to attack graphs allow the color coding of nodes in the graphs
so as to highlight its important portions.

Questions such as “what happens if a particular vulnerability is patched” or “what
happens if a firewall rule is altered, added or removed” are often raised in an organi-
zation before any planned network structural change takes place. Being able to answer
such questions (without actually carrying the reconfiguration) is necessary for the net-
work administrator to evaluate the results of the planned network changes. Clues to an-
swering such questions can be obtained from analyzing the attack graph resulted from
situation changes in the modeled system. However, the PageRank algorithm [10] is not
of linear time complexity and thus it may be difficult to rank many attack graphs, each
resulting from one of many possible changes in the modeled system.

In this paper, we consider an alternative scheme to estimate ranks of attack graphs
based on the Graph Neural Network (GNN) [3], a new neural network model capable of
processing graph structures. The applications of GNN have been successful in a number
of areas where objects are naturally represented by a graph structure, the most notable
example being the ranking of web pages [13]. In [13] it is shown that the GNN can
be trained to simulate the PageRank function by using a relatively small set of training
samples. Once trained, the GNN can rank large sets of web pages efficiently due to
its ability to generalize over unseen data. In other words, the GNN learns the ranking
function (whether explicit, as in the case of PageRank, or implicit) of web pages from
a small number of training samples, and can then generalize over unseen examples,
possibly contaminated by noise.

Because of the above stated properties, GNN may be considered suitable for the task
of ranking attack graphs. Moreover, [12] provides a universal approximation theorem
that the GNN is capable of learning to approximate any “reasonable” problem, reason-
able in the sense that the problem is not a pathological problem, to any arbitrary degree
of desired precision. The universal approximation theorem further justifies the suitabil-
ity of ranking attach graphs using GNN. However on the other hand, some properties of
attack graphs differ fundamentally from those of the web graph. The web graph is a sin-
gle very large graph with a recursive link structure (web pages referring to themselves)
whereas attack graphs can be numerous, are relatively small, and may be of strictly tree
structured. This together with the observation that PageRank is a link based algorithm
whereas the GNN is a node based approach in that it processes nodes more effectively
than links, whether the GNN is suitable for the task of ranking attack graphs is un-
known. One of the key questions that this paper wishes to answer is the suitability of
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GNN for the purpose of ranking attack graphs. There were numerous prior approaches
to the processing of attack graphs and similar poli-instantiation problems. Research in
this area was particularly active in the 1980s and early 1990s (see for example [8]).
Most of these work were of an automated proof nature, desiring to show if an attack
graph is vulnerable or not. Such automated proof concept can be expressed in terms of
graph structured data [5]. However, any attempts to use a machine learning approaches
required the pre-processing of the graph structured data to “squash” the graph struc-
ture into a vectorial form as most popular machine learning approaches, e.g. multilayer
perceptrons, self organizing maps [6], take vectorial inputs rather than graph structured
inputs. Such pre-processing step can result in the loss of contextual information between
atomic components of the data. The GNN is a relatively recent development of a super-
vised machine learning approach which allows the processing of generic graphs without
first requiring the “squashing” of graph structured data into vectorial form. It is shown
in [12] that the GNN algorithm is guaranteed to converge, and that it can model any set
of graphs to any arbitrary degree of precision. Hence, to the best of our knowledge, this
paper is the first reported work on ranking attack graphs (without pre-processing) using
a machine learning approach.

Training a GNN can take a considerable period of time. It is shown in [3] that
the computational burden of the training procedure can be quadratic. However, once
trained, a GNN is able to produce output in linear time. This is an improvement over
O(N log 1

ε ), the computational complexity of PageRank, where N is the number of links
and ε is the expected precision [10]. Moreover, GNN is able to learn the ranking scheme
from a small number of training examples and then generalize to other unseen attack
graphs. For reasons stated above, using GNN may be more suitable than the PageRank
algorithm in the case where it requires ranking many attack graphs, each resulting from
one of many possible changes in the modeled system.

The contributions of this paper include: (a) an alternative attack graph ranking
method based on a supervised machine learning approach, viz., GNN is proposed, and
(b) both the PageRank-based and the GNN-based ranking approaches are implemented
and their results are compared. This provides an insight into the suitability of applying
GNN to rank attack graphs.

The paper is organized as follows. Section 2 provides a brief review of relevant back-
ground. The proposed alternative ranking scheme is presented in Section 3. Section 4
provides the experimental results to show the effectiveness of the proposed scheme, and
Section 5 concludes the paper.

2 Background

To evaluate the security condition of a computer system built upon multiple platforms,
runs different software packages and has complex connections to other systems, a net-
work administrator needs to consider not only the damages that can be done by exploiting
individual vulnerabilities on the system, but also investigates the global effect on what an
intruder can achieve by combining several vulnerabilities possibly in multi-stages which
by themselves only have insignificant impact on the system. This requires an appropri-
ate modeling of the system that takes into account information such as vulnerabilities
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and connectivity of components in the system, and is able to model a global intrusion
scenario where an intruder combines several vulnerabilities to attack the system.

Sheyner et al. first formally defined the notion of attack graph to provide such a
modeling of the system [11]. An attack graph describes security related attributes of
the attacker and the modeled system using graph representations. States of a system
such as the attacker’s privilege level on individual system components are encapsu-
lated in graph nodes, and actions taken by the attacker which lead to a change in the
state of the system are represented by transition between nodes, i.e. edges of the graph.
The root node of an attack graph denotes the starting state of the system where the
attacker has not been able to compromise the system but is only looking for an entry
point to the system. Consider an attack on a computer network as an example: a state
may encapsulate attributes such as the privilege level of the attacker, the services being
provided, access privileges of users, network connectivity and trust relations. The tran-
sitions correspond to actions taken by the attacker such as exploiting vulnerabilities to
attain elevated privileges. The negation of an attacker’s goal against the modeled sys-
tem can be used as security properties that the system must satisfy in a secure state. An
example of a security property in computer networks would be “the intruder cannot log
in onto the central server”. Nodes in an attack graph where the security properties are
not satisfied are referred to as error states. A path from the root node to an error state
indicates how an intruder exploits several vulnerabilities, each corresponding to one
of the edges on the path, to finally reach a state where the system is considered com-
promised. An attack graph as a whole represents all the intrusion scenarios where an
intruder can compromise the system by combining multiple individual vulnerabilities.
Following these descriptions, an attack graph is formally defined as follows

Let AP be a set of atomic propositions. An Attack Graph is a finite automaton G =
(S, τ , s0, Ss, l), where S is a set of states in relation to a computer system, τ ⊆ S × S
is the transition relation, s0 ∈ S is the initial state, Ss ⊆ S is the set of error states
in relation to the security properties specified for the system, and l : S → 2AP is a
labeling of states with the set of propositions true in that state.

In other words, an attack graph is a tree structured graph where the root is the starting
state, leaf nodes are final states denoting an intruder having reached a targeted system,
and intermediate nodes are the intermediate states that a system can have during an
attack. Typically, for mid- and large-sized organizations, an attack graph consists of
several hundred or thousand nodes. Several attack graphs are formed to reflect the nu-
merous various subnets or security configurations of a network.

Given a system and the related information such as vulnerabilities in the system,
connectivity of components and security properties, model checking techniques can be
used to generate attack graphs automatically [11].

2.1 Multi-layer Perceptron Neural Networks

The application of neural networks [6] for pattern recognition and data classification
has gained acceptance in the past. In this paper, supervised neural networks based on
layered structures are considered. Multilayer perceptrons (MLPs) are perhaps the most
well known form of supervised neural networks [6]. MLPs gained considerable accep-
tance among practitioners from the fact that a single-hidden-layer MLP has a universal
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Fig. 1. An example of a multi-layered perceptron neural network, where F1, and F2 form the
input layer, F3 and F4 form the hidden layer, while F5 forms the output layer

approximation property [7], in that it can approximate a non-pathological nonlinear
function to any arbitrary degree of precision.

The basic computation unit in a neural network is referred to as a neuron [6]. It gener-
ates the output value through a parameterized function called a transfer function f . An
MLP can consist of several layers of neurons. The neuron layer that accepts external in-
put is called the input layer. The dimension of the input layer is identical to the dimension
of the data on which an MLP is trained. The layer that generates the output of the network
is called the output layer. Its dimension is identical to the dimension of the target values.
A layer between the input layer and the output layer is known as a hidden layer. There
may be more than one hidden layer but here for simplicity we will only consider the case
of a single hidden layer. Each layer is fully connected to the layer above or below1. The
input to each hidden layer neuron and the output layer neuron is the weighted sum from
the previous layer, parameterized by the connecting weights, known as synaptic weights.
The multiple layered structure described here has given MLP its name.

Figure 1 illustrates an example of a single-hidden-layered MLP. The transfer func-
tion associated with each of the neurons is Fj = f(

∑n
i=0 wjixi), where n is the total

number of neurons in the previous layer, x0 = 1, xi is the i−th input (either a sensory
input or the output Fj from a previous layer), and wji is a real valued weight connecting
neuron (or input) i with neuron j. The transfer function f(·) often takes the shape of
a hyperbolic tangent function. The MLP processes data in a forward fashion starting
from the input layer towards the output layer.

Training an MLP [6] is performed through a backward phase known as error back
propagation, starting from the output layer. It is known that an MLP can approximate a
given unknown continuously differentiable function 2 g(x1, . . . xn) by learning from a
training data set {xi1, . . . xin, ti}, 1 ≤ i ≤ r where ti = g(xi1, . . . xin). It computes
the output for each input Xi = {xi1, xi2 . . . xin} and compares the output with the tar-
get ti. Weights are then adjusted using the gradient descent algorithm based on the error
towards the best approximation of the target ti. The forward and the backward phases
are repeated a number of times until a given prescribed accuracy (stopping criterion) is
met e.g. the output is “sufficiently” close to the target.

Once the stopping criterion is met, the learning stage is finished. The MLP is then
said to emulate the unknown nonlinear function g(·, . . . , ·). Given any input Xi with

1 Fully connected layers are the most commonly studied and used architectures. There are some
neural network architectures which are connected differently.

2 The function does not need to be continuously differentiable. However for our purpose in this
paper, we will assume this simplified case.
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unknown target ti, it will be able to produce an output from g or it is said to be able to
generalize from the training set to the unseen input Xi.

The application of MLP networks has been successful in many areas [3,13,6]. The
inputs to the MLP would need to be in vectorial form, and as such, it cannot be applied
to graph structured inputs or inputs which relate to one another.

2.2 Graph Neural Network

In several applications including attack graphs and web page ranking, objects and their
relations can be represented by a graph structure such as a tree or a directed acyclic
graph. Each node in the graph structure represents an object in the problem domain,
and each edge represents relations between objects. For example, an attack graph node
represents a particular system state, and an edge represents that the attacker can reach
one state from the other. Graph Neural Network (GNN) is a recently proposed neural
network model for graphical-based learning environments [3]. It is capable of learning
topological dependence of information representing an object such as its rank relative to
its neighbors, i.e. information representing neighboring objects and the relation between
the object and its neighboring objects. The use of GNN for determining information on
objects represented as nodes in a graph structure has been successfully shown in several
applications [13,4].

The GNN is a complex model. A detailed description of the model and its associated
training method cannot be described in this paper due to page limits, and hence, this
section only summarizes the key ideas behind the approach as far as it is necessary to
understand the method. The interested reader is referred to [3].

In order to encapsulate information on objects, a vector sn ∈ Rs referred to as state3,
which represents information on the object denoted by the node, is attached to each
node n. This information is dependent on the information of neighboring nodes and the
edges connecting to its neighbors. For example, in the case of page rank determinations,
the state of a node (page) is the rank of the page. Similarly, a vector eij may also be
attached to the edge between node ni and nj representing attributes of the edge 4. The
state of a node n is determined by states of its neighbors and the labels of edges that
connect it to one of its neighbors. Consider the GNN shown in Figure 2, the state of
node n1 can be specified by Equation (1).

s1 = fw(s2, s3, s5, e21, e13, e51) (1)

More generally, let S(n) denote the set of nodes connected to node n and fw1 be
a function parameterized by w1 that expresses the dependence of information repre-
senting a node on its neighborhood, then the state sn is defined by Equation (2) where

3 For historical reasons this is called a “state”, which carries slightly different meaning to the
meaning of “state” in the attack graph literature. However, there should not be any risk of
confusion as this concept of “state” in GNN is used in the training of the GNN model.

4 GNN can also accept labels on nodes; however this will not be used in this paper and is omitted
here.
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Fig. 2. The dependence of state s1 on neighborhood information

w1 ∈ R is the parameter set of function f which is usually implemented as an MLP
described in Section 2.1.

sn = fw1(su, exy), u ∈ S(n), x = n ∨ y = n (2)

The state sn is then put through a parameterized output network gw2 , which is usually
also implemented as an MLP parameterized by w2, to produce an output (e.g. a rank) on

on = gw2(sn) (3)

Equations (2) and (3) define a function ϕw(G, n) = on parameterized by weights
w1, and w2 that produces an output for the given graph G. The parameter sets w1 and
w2 are adapted during the training stage such that the output ϕ is the best approximation
of the data in the learning data set L = {(ni, oi)|1 ≤ i ≤ q}, where ni is a node and ti
is the desired target for ni.

2.3 Existing Attack Graph Ranking Schemes

The PageRank algorithm [10] is used by Google to determine the relative importance of
web pages in the World Wide Web. The PageRank is based on the behavioural model of
a random surfer in a web graph. It assumes that a random surfer starts at a random page
and keeps navigating by following hyperlinks, but eventually gets bored and starts on
another random page. To capture the notion that a random surfer might get bored and
restart from another random page, a damping factor d is introduced, where 0 < d < 1.
The transition probability from a state is divided into two parts: d and 1−d. The d mass
is divided equally among the state’s successors. Random transitions are added from that
state to all other states with the residual probability 1−d equally divided amongst them,
modeling that if a random surfer arrives at a dangling page where no links are available,
he is assumed to pick another page at random and continues surfing from that page. The
computed rank of a page is the probability of a random surfer reaching that page, i.e.,
consider a web graph with N pages linked to each other by hyperlinks, the PageRank
xp of page (node) p can be represented by Equation (4) where pa[p] denotes the set of
nodes (pages) pointing to node (page) p
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xp = d
∑

q∈pa[p]

xq

hq
+

1 − d

N
(4)

When stacking all the xp into a vector x, and using iterative expressions, this can be
represented as

x(t) = dWx(t − 1) +
1
N

(1 − d)ΠN (5)

The computation of the PageRank can be considered a Markov process, as can be
observed from Eq. (5). It has been shown hat after multiple iterations, Eq. (5) will
converge to a stationary state where each xp represents the probability of the random
surfer reaching page p [15]. Time complexity required by PageRank is N log 1

ε where
N is the number of hyperlinks and ε is the expected precision [10].

Based on the PageRank algorithm, Mehta et al. proposed a ranking scheme for attack
graphs as follows [15]: given an attack graph G = (S, τ , s0, Ss, l), the transition prob-
ability from each state is divided into d and 1 − d, modeling respectively an attacker
is discovered and isolated from the system, or that the attacker remains undetected and
proceeds to the next state with the intrusion. Similar to PageRank, the rank of a state in
an attack graph is defined as the probability of the system being taken to that state by a
sequence of exploits. The ranks of all states are computed using Equation (5). Breadth
first search starting from the initial system state s0 is then performed for each atomic
attack in τ to construct the transition matrix W . The adjustment from PageRank, where
a transition from each state pointing to all other states with probability 1 − d equally
divided amongst all other states, is that a transition from each state pointing back to the
initial state with probability 1 − d is added to model the situation where an attacker is
discovered and has to restart the intrusion from the initial state. The rationale behind
the use of the PageRank algorithm to rank attack graphs is based on the possibility of a
hacker pursuing the hacking. In other words, a hacker being successful in obtaining root
status may not be fully satisfied until further (or all possible) routes to obtaining root
status are explored, and hence, may restart at any system state for further attempts to
find vulnerabilities leading to a root status. Note that PageRank helps to find nodes that
can more easily be reached by chance from one of the starting states. This describes the
blind probing behavior of attackers. In practice, a human attacker is more likely to have
some intuition that, say, getting root access on the mail server is more preferable than
getting root access on one user’s machine inside the network. In other words, PageRank
is most likely to lead to states which are easiest to reach, and least likely to reach states
which are less likely to be reached. There is work which modifies the PageRank algo-
rithm slightly to allow control of the importance of some states. In the literature, this is
refered to as “personalization” achieved through replacing the 1-vector ΠN in Eq. (5)
by a parameterized vector (e.g. [14]). It is shown in [13] that the GNN can successfully
encode the personalized PageRank algorithm, and hence, this paper does not attempt to
explicitly show this aspect in the context of ranking attack graphs.

3 Ranking Attack Graph Using GNNs

The use of GNN for determining information on objects represented as nodes in a graph
structure has been shown in several applications such as ranking web pages. In this
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paper, we develop an implementation of the GNN model as described in Section 2.2
applied to ranking attack graphs. For attack graphs, nodes represent computer system
states and edges represent the transition relations between system states. Hence, the
state of a node is determined by states and outgoing links of its parent nodes. Symbolic
values 0 or 1 are also assigned to edge labels to distinguish between incoming and
outgoing links. The function fw1 that expresses the dependence of the state sn of node
n on its neighbors can be represented by Equation (6) where S(n) denotes the set of
nodes connected to node n,

sn = fw1(su, euv), u ∈ S(n) (6)

The output function gw2 with input from the states produces the rank of node n.

on = gw2(sn) (7)

The two computing units fw1 and gw2 are implemented by MLPs [1]. Inputs to
the MLPs are the variables in Eqs. (6) and (7), i.e. states of neighboring nodes and
labels of connecting edges. We use the sigmoid function [1] as the transfer function
of fw1 . The sigmoid function is commonly used in back-propagation networks. The
transfer function of the output network gw2 is a linear transfer function that stretches
the output from fw1 to the desired target. fw1 and gw2 are thus parameterized by weight
sets w1 and w2 of the underlying MLPs. The adaption of weights sets for the best
approximation of training data is through a back-propagation process [1].

It is known that the computational complexity of the forward phase of MLP is O(n),
where n is the number of inputs [2]. When considering that the functions fw1 and gw2

can be implemented as MLPs, it becomes clear that the computational complexity of the
forward phase of GNN is also O(n). Note that a direct comparison of the computational
complexity of PageRank is difficult since the computational complexity of PageRank
depends on the number of links rather than on the number of nodes.

The GNN implemented is initialized by assigning random weights to the underlying
MLPs. The training data is generated using Mehta et al.’s ranking scheme on a set of
attack graphs. The trained GNN can take as input an attack graph and output through
the trained network ranks of each node.

4 Experiments and Results

The objectives of the experiments are to verify the effectiveness of the proposed ranking
approach: (1) if GNN can learn a ranking scheme applied to attack graphs, and (2) if
it can generalize the results to unseen data. In particular we consider the PageRank
scheme used by Mehta et al. to rank attack graphs.

It has been shown that GNN can learn PageRank on very large graphs [4,13]. Our
objective is to ascertain if it can learn the ranking scheme when applied to attack graphs.
We note that the WWW is a single very large graph and the aim of learning has been
to generalize the results to this large graph by learning from selected small sub-graphs
of WWW. However, in the case of ranking attack graphs, many small graphs of various
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sizes exist. For a small network with few vulnerabilities, it can be a small graph with few
nodes and edges, while for more complex networks, it can have hundreds of nodes and
edges. One question is: what type/size of graph should be used for training? It would
be ideal to train GNN with a set of attack graphs generated from networks of various
complexity. However, while attack graphs can be generated quite easily from real net-
works, generation of realistic attack graphs of artificial examples requires significant
manual labor as well as computational effort [11]. It is, in general, difficult to generate
a large number of real attack graphs on artificial examples as training samples. To solve
this problem, we experiment with training GNN with a set of automatically generated
pseudo attack graphs that have similar shapes and node connection patterns to those of
manually generated real attack graphs. Details for pseudo attack graph generation are
provided in Section 4.3.

Note that it is time consuming to generate artificial attack graphs which resemble the
type of attack graphs one would encounter in the real world. Real world attack graphs
can be easily generated (the process may even be automated). However, due to a lack of
access to large scale distributed system we were unable to obtain real world attack graphs.
Instead we use the time consuming task of generating artificial data. We did not attempt
to simulate attack graphs for small systems since the resulting graphs would be rather
small. Existing approaches to ranking attack graphs are sufficient for small scale systems
whereas the advantage of the proposed approach is most pronounced on larger graphs.

A related question is how we determine the effectiveness of the proposed ranking
approach. GNN output produces a set of ranks for nodes of an attack graph. There are
many ways to define the “accuracy” of a set of ranks compared to the set of ranks that
is calculated by another scheme. In particular one may use the average distances of the
sets, or the maximum distance over all elements of the set. For our particular application
we use Relative Position Diagram (RPD) and Position Pair Coupling Error (PPCE) as
described in Section 4.1. The PPCE measure the agreement between the proposed ap-
proach and the ordering imposed on the nodes in an attack graph by PageRank. Hence,
this ordering compares the proposed approach with an existing approach. No attempt is
made to assess whether the PageRank order by itself makes sense.

4.1 Performance Measure

A ranking scheme can be denoted as a function that takes as input an attack graph (AG)
and outputs the ranks, i.e. f(AG) = R where R is a real vector of the same size as the
number of nodes in AG. A naive performance measure is to compare the output ranks by
GNN fG(AG) = RG and that produced by Mehta’s ranking scheme fM (AG) = RM .
However, as ranks are used to identify important portions of an attack graph, ordering
of ranks are considered more important than their actual numerical values. We therefore
devised two performance measures to evaluate how well rank orderings are preserved.
Relative Position Diagram (RPD): This visually illustrates how well rank
orders are preserved, and is obtained by sorting RM and RG and plotting the order of
each node in RM against that in RG. The X-axis and Y-axis represent the order of ranks
in RM and RG respectively. Therefore, nodes that have the same rank orders by both
schemes are plotted along the diagonal.
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Position Pair Coupling Error: An RPD only intuitively shows how well
rank orders are preserved. We also provide a quantitative measure on rank order preser-
vation as follows. Let rM

i and rG
i denote the i-th element in RM and RG respectively.

For each pair of nodes, if rM
i and rM

j are not in the same order as rG
i and rG

j , then a
position-pair-coupling-error (PPCE) is found. Performance of the GNN ranking scheme
can therefore be quantitatively measured by the PPCE rate.

4.2 Experimental Results

We found that the computational demand of the attack graph generation method in [11]
is high. The generation of a single real world attack graph took several hours, and hence,
we were not able to produce more than 14 graphs within a reasonable time frame for the
experiments. The 14 attack graphs were generated using the same computer network ex-
ample as in a previous work [9], with variations created by adding, removing, or varying
vulnerabilities or network configurations. Eight of the attack graphs were randomly se-
lected to form the training data set of the GNN. The remaining six attack graphs are used
as the testing data set so as to examine the GNN’s generalization ability in different situa-
tions. The GNN used for our experiments consists of two hidden layers, and each hidden
layer has 5 neurons. The number of external inputs is also set to 5. Such a GNN has been
shown to be successful when applied to ranking web pages [4,13], and it produces a suf-
ficiently small network that allows for a fast processing of the data. However, this GNN
was used successfully on a problem involving much larger number of nodes, and hence,
it may be possible to use a somewhat smaller network when dealing with attack graphs.
This is not attempted in this paper and may be considered as a topic for future work.

We varied the number of training epochs from 500 to 20,000 and repeated the exper-
iment 6 times with randomized initial weights of the underlying MLPs. The PPCE rate
results are plotted in Fig. 3. It can be observed that when trained for a sufficiently large
number of epochs (around 10,000) the PPCE rate reduces asymptotically to an optimal
value. Improvement by further training can be observed but is not significant. Hence
the number of training epochs is fixed to be 10,000 in the rest of the experiments for
an appropriate effort/time tradeoff. However when applied to ranking attack graphs in
practice the training epoch can be set to 20,000 or larger for more accurate results.
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From the above experimental results, it can be observed that the average PPCE rate
can be reduced to around 10% when GNN is trained with sufficient number of training
examples and training epochs. That being the case on an average the proposed GNN-
based ranking scheme sacrificed around 10% accuracy in terms of relative position
preservation. However, once trained, a GNN can produce output at an O(N ) time com-
plexity where N is the size of input. This may be an improvement compared with the
O(N log1

ε ) computational complexity required by PageRank. Moreover, the generaliza-
tion ability of GNN allows us to train GNN on only a small number of attack graphs
and apply the results to unseen attack graphs.

Figure 4 plots the RPDs resulting from ranking graphs from the testing data set with
GNN to visualize the effectiveness of relative position preservation. Each subgraph rep-
resents the resulting RPD for one of the 6 attack graphs in the testing data set, and hence
it is of different scale to other subgraphs. It can be observed that the order of ranks
are preserved to a reasonable degree. Although only a relatively small portion of nodes
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remains at exactly the same position as the PageRank scheme, most nodes remain cen-
tered around the diagonal and as a result important nodes remain important and unim-
portant nodes remain unimportant. The GNN-based ranking scheme therefore allows a
system administrator to focus on most of the important nodes in an attack graph.

Finally, we experimented with reducing the number of training samples. The num-
ber of training attack graphs in the training data set is reduced from 8 to 2. The effect
on reducing the number of attack graphs used in the training data set is plotted in Fig-
ure 5. It can be observed that the number of attack graphs in the training data set has a
significant impact on the accuracy in terms of relative positions on the training results.
Sufficient attack graphs must be provided in the training data set to simulate the ranking
scheme effectively.

4.3 Training with Pseudo Attack Graphs

Generating a large number of attack graphs for the training data set is difficult due to
significant manual labor and computational effort that it requires [11]. In the following,
we provided an alternative scheme for automated training set generation, and train GNN
with automatically generated pseudo attack graphs that have similar shapes and node
connection patterns to those of manually generated realistic attack graphs.

That attack graphs are non-cyclic, tree shaped graphs resulting from a procedure as
follows: at the initial system state, the intruder looks for an entry point and reaches the
first layer of nodes in the attack graph by exploiting one of the vulnerabilities appli-
cable to the initial state. With the escalated privilege by the initial exploit, the intruder
obtains more intrusion options for the next intrusion step. This procedure repeats and
keeps expanding the attack graph until the intruder can reach the intrusion goal. Leaf
nodes in the attack graph are thus produced, and the attack graph begins to contract
until all attack paths reach the intrusion goal. We generate pseudo attack graphs by
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Table 1. Position Pair Coupling Error

AG-1 AG-2 AG-3 AG-4 AG-5 AG-6 Avg
Min PPCE 0.16 0.11 0.14 0.12 0.12 0.11 0.12
Max PPCE 0.21 0.15 0.19 0.17 0.15 0.15 0.16

simulating this procedure. A pseudo attack graph begins with the root node represent-
ing the initial state. It then expands with increasing number of nodes at each layer to
simulate the expanding process of realistic attack graphs. This repeats until presumably
the intruder begins to reach his goal. Then the pseudo attack graph contracts till all
paths are terminated at a leaf node.

We repeat the experiments on the same 6 testing attack graphs but using pseudo
attack graphs generated by the above procedure as the training data set. In total, 40
pseudo attack graphs are included in the training data set, and GNN is trained for
10,000 epochs for the asymptotic optimal result. The resulting Relative Position Di-
agrams are as shown in Figure 6. It can be observed that orders of ranks are preserved
also to a reasonable degree, but these results are not as accurate as those obtained when
using real attack graphs in the training data set. Table 1 lists maximum and minimum
PPCE rate by repeating each experiment 3 times. The average PPCE is between 12% to
16%, indicating that on an average the proposed GNN-based ranking scheme sacrificed
around 12% to 16% accuracy in terms of relative position preservation. Therefore, us-
ing pseudo attack graphs decreases the accuracy by around 2% to 4% compared with
using real attack graphs for training, but on the other hand it significantly reduces the
effort required to generate real attack graphs.

5 Conclusions

This paper produced evidence that the GNN model is suitable for the task of ranking
attack graphs. GNN learns a ranking function by training on examples and generalizes
the function to unseen data. It thus provides an alternative and time-efficient ranking
scheme for attack graphs. The training stage for GNN, which is required only once, may
take a relatively long period of time compared with e.g. PageRank scheme. However,
once trained the GNN may compute ranks faster than that required by the PageRank
scheme.

Another advantage of using a machine learning approach is their insensitivity to
noise in a dataset. This is a known property of GNN which is based on the MLP archi-
tecture. Existing numeric approaches such as PageRank or rule based approaches are
known to be sensitive to noise in the data.

The GNN provides much more flexible means for ranking attack graphs. A GNN
can encode labels that may be attached to nodes or links, and hence, is able to consider
additional features such as the cost of an attack or time required for an exploit. This is
not possible with the PageRank scheme which is strictly limited to considerations of the
topology features of a graph. We plan to investigate how the ability to encode additional
information can help to rank attack graphs in the future.

Despite the proven ability of the GNN to optimally encode any useful graph struc-
ture [12], the result in this paper showed that the performance of the GNN has a potential



Ranking Attack Graphs with Graph Neural Networks 359

for improvements. We suspect that this may be due to the choice of training parameters,
or the chosen configuration of the GNN. A more careful analysis into this issue is left
as a future task.
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Abstract. Intrusion Detection System (IDS) management is an impor-
tant component for most distributed IDS solutions. One of the main
requirements is extensibility, which enables the integration of different
types of IDS sensors as well as the deployment in different kinds of envi-
ronments. Lock-Keeper is a simple implementation of the high level se-
curity idea, ”Physical Separation”. It works as a sluice to exchange data
between two networks without having to establish a direct and physical
connection. To enhance the security of the Lock-Keeper system itself,
it is necessary to deploy IDS sensors on Lock-Keeper components. This
paper proposes an extensible IDS management architecture, which can
be easily integrated on the special hardware platform of Lock-Keeper.
Unified interface and communication between different integrated IDS
sensors are designed using the known IDS standard, IDMEF, and real-
ized as several kinds of plugins, such as handlers, receivers, and senders.
A prototype of implementation is presented and some practical experi-
ments are carried out to show the extensibility and applicability of the
proposed architecture.

1 Introduction

Intrusion detection systems (IDS) have been commonly used in practice for iden-
tifying malicious behaviors against protected hosts or network environments. An
effective IDS should be capable of detecting various types of attacks and all the
possible variants of a certain type of attack. Nowadays, a large number of com-
mercial and open source IDS implementations have emerged, such as Snort [1],
Samhain [2], Bro [3], F-Secure Linux Security [4] and Prelude [5]. Besides, many
research works have been done or are being carried out around various topics,
such as proposing new detection models for specific applications [6], accelerating
efficiency of alert analysis [7], and improving precision of detection methods [8].

Based on the protected objective, IDS can be classified into host-based in-
trusion detection system (HIDS) and network-based intrusion detection system
(NIDS) [9]. Another widely accepted classification is according to the used de-
tection model, e.g., misuse detection [10] or anomaly detection [11]. Different
detection models result in different design and implementation of IDS sensors.
Therefore, it makes sense to provide integrated IDS solutions, which make it
possible for users to simultaneously benefit from advantages of various kinds of
IDS sensors. For this purpose, many distributed IDS (DIDS) solutions, which
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consists of multiple IDS sensors located in a loosely coupled environment, as
well as hybrid IDS solutions, which contain both HIDS and NIDS, have been
developed. The Intrusion Detection Message Exchange Format (IDMEF) [12],
has been proposed as a standard to provide interoperability among different IDS
approaches, including commercial, open source, and research systems. However,
due to the highly heterogeneous architecture of these IDS implementations and
poor acceptance of the IDMEF standard, integrating different types of IDS into
a unified architecture remains to be a big challenge.

As an important implementation of the security concept, Physical Separa-
tion, Lock-Keeper has been offered as an efficient approach to separate private
networks or sensitive hosts at any levels and permit secure data exchange si-
multaneously ([13], [14], and [15]). A Lock-Keeper system consists of three inde-
pendent Single Board Computers (SBC): INNER, OUTER, and GATE, which
are connected using a patented switch unit. The connection inside Lock-Keeper
are restricted on the hardware layer by the switch unit that GATE can just be
connected with only one partner, either INNER or OUTER. Since the OUTER
component has to expose itself to the external world for providing Lock-Keeper
supported services, the security of OUTER needs to be enhanced. Furthermore,
normal operating system and application modules running on each Lock-Keeper
component are another vulnerable points for being misused or even intentionally
attacked. Deploying feasible IDS solutions on the main Lock-Keeper components
is expected.

Therefore, we are motivated to combine the software based IDS solution with
the hardware based Lock-Keeper system. An extensible IDS management archi-
tecture, which can easily aligned on the Lock-Keeper, is proposed in this paper.
It includes several IDS sensors and a central management unit. A new design of
the Event Gatherer for the management unit is provided through several plu-
gins, i.e., Sender, Receiver, and Handler, which provide high flexibility in IDS
deployment and support multiple types of communications, e.g., the file-based
communication, network-based communication, etc. The IDMEF standard is
implemented to represent and exchange the alarms. A standardized interface is
designed to provide a unified view of alert reports. A prototype is implemented
and practically deployed on the Lock-Keeper system.

The rest of the paper is organized as follows. Section 2 introduces some related
works. Section 3 describes the proposed Lock-Keeper based IDS management ar-
chitecture. Section 4 presents some experiments. Section 5 gives a short summary
of our contributions and a brief outlook for the future work.

2 Related Works

In this section, we provide a short overview of existing works on IDS manage-
ment. A practical IDS management system, called Prelude [5], is described as
an example. The IDMEF standard is briefly introduced. Furthermore, a review
of the high level security concept, Physical Separation, and its Lock-Keeper im-
plementation is provided as well.
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2.1 Overview of IDS Management

There are many previous works focusing on IDS management. In [16], a multi-
agent based approach is described, which uses SOAP-based Web Services for
communications. The system is based on a layered architecture and aims to in-
crease the readiness of information as well as decrease the time of information
access. The system described in [17] is proposed to integrate wireless sensors. It is
capable of analyzing data with data mining techniques, such as rule-based classi-
fiers, spatial data mining and clustering methods, as well as decision tree models.
The decentralized approach described in [18] consists of a so-called distributed
hash table architecture and focuses on identifying large scale distributed attacks,
such as scanning, worms, or Denial-of-Service (DoS) attacks. TRINETR [19] is an
intrusion detection alert management system, which provides alert aggregation,
knowledge-based alert evaluation and correlation. The correlation procedure is
supported by several knowledge bases (KB), such as vulnerability KB, network
and host asset KB, etc.

Prelude is a distributed IDS product, which is capable of connecting other
separate IDS sensors. It can be used to collect, normalize, sort, aggregate, cor-
relate and report most of security-related events. Although Prelude is relatively
robust and can ensure high performance, it reveals several problems concerning
extensibility. The interface to the Prelude management system is built based on
the Prelude library. The change of source code of the target IDS sensor is always
required for any kinds of extensions. Additionally, the connection between the
management system and the sensors requires a stable TCP connection. That
means it is not suitable for deploying in loosely coupled environment, where
connections are not so reliable, e.g., in wireless network.

As a new standard, Intrusion Detection Message Exchange Format (IDMEF )
provides a unified format for communications between IDS sensors, response
systems and management units. It specifies a data model to represent the ex-
change data in XML files. There are two basic message types defined in IDMEF :
Alert and Heartbeat. The alert message is used to represent and exchange se-
curity related events, such as a detected attack. The heartbeat message is used
to inform the management system that a sensor is still active, i.e., it is used
for maintenance of the sensors. By offering such a convenient communication
channel, IDMEF has been accepted by the IDS community. However, there are
still several existing IDS implementations, which do not support this standard.

2.2 Physical Separation and Lock-Keeper

Based on the intuitive principle that ”the ultimate method to secure a network is
to disconnect it”, the Lock-Keeper technology has been accepted as an efficient
approach to guarantee the high-level security and prevent online network attacks
by physically separating the protected hosts or networks ([13], [15]). Because of
its simple idea and extensible architecture, the Lock-Keeper system can be easily
and seamlessly integrated with any other security methods or solutions to pro-
vide thorough protection for most actual network-based applications. Currently,
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Fig. 1. Conceptual Architecture of the SingleGate Lock-Keeper

there are a lot of different ”Physical Separation” implementations, such as Mi-
crosoft e-GAP-based Intelligent Application Gateway (IAG) [20], NRL Pump
technology offered by U.S. Naval Research Laboratory [21], and DualDiode from
Owl Computing Technologies [22], etc.

Lock-Keeper works as a sluice on the border of the protected network [15].
Because of such physical network separation, it can be guaranteed that hackers
and malign data have no opportunities to break into the internal network by any
means of online attacks. Currently, the commercial version of Lock-Keeper has
already been developed and is now under the marketing extension by Siemens
[14]. Here, we use a SingleGate Lock-Keeper system as an example to briefly
explain what the Lock-Keeper is and how it works.

As shown in Fig. 1, a SingleGate Lock-Keeper system consists of three inde-
pendent SBCs: INNER, OUTER and GATE. A patented switch unit, realized
on a Printed Circuit Board (PCB), is used to autonomously control connections
so that GATE can just be connected with only one partner, either INNER or
OUTER. There are no ways to directly establish the connection between INNER
and OUTER at any time. Besides these hardware components, there are also
Lock-Keeper Secure Data Exchange (LK-SDE) software running in the Lock-
Keeper system. LK-SDE software includes several application modules located
on INNER and OUTER, which work as interfaces and provide popular network
services to outside users, e.g., File eXchange (File-X) Module, Mail eXchange
(Mail-X) Module, Database Replication (DB-Rep) Module and Web Services
(WS) Module. Normal communication protocols, such as SMTP, HTTP, FTP,
etc., are stopped and analyzed respectively by these application modules. Then,
standard file-based Lock-Keeper Message Containers (LKMC) can be created to
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carry the data for respective services. These LKMCs will be transferred by ”Basic
Data Exchange Module” [15], which works based on the ”Pull-and-Push” prin-
ciple to avoid running any kinds of servers or server-similar programs on GATE
so that there are no possibilities for outside hosts (even INNER and OUTER)
to actively establish connection to GATE. In particular, because GATE is also
a normal PC, it is possible to integrate Third-Party security software, e.g., virus
scanning software, mail analysis tools, or content filtering methods, etc., into LK-
SDE architecture, which help to check data traffic and prevent offline attacks,
e.g., virus, malicious codes, etc.

3 Lock-Keeper IDS Management Architecture

To improve the accuracy of the intrusion detection effort, users need to use alerts
from different audit sources. Therefore, it is necessary to propose an efficient
management architecture, which can flexibly integrate different types of IDS sen-
sors and automatically synthesize alerts. On the other hand, to enhance security
of Lock-Keeper system, especially its main components, INNER and OUTER,
a feasible distributed IDS solution is required. In this section, we present a new
IDS Management architecture using the Lock-Keeper as the hardware base.

3.1 IDS Management: Architecture

As shown in Fig. 2, the proposed IDS Management Architecture consists of sev-
eral IDS Sensors and an IDS Management Unit. The IDS Management Unit
consists of four active components: Event Database, Analysis Component, Re-
mote Controller and Event Gatherer.

IDS Sensors are responsible for detecting and reporting malicious behaviors.
They are configured through the Remote Controller, which is responsible for

Fig. 2. IDS Management: Architecture
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Fig. 3. IDS Management: Implementation

remotely configure and control all connected IDS Sensors. The Remote Con-
troller can be a remote controlling and monitoring interface, where Users have
possibilities to directly access the IDS Management Unit. The control can also be
realized by changing configuration files of the core components. Event Database is
a passive storage that holds information on all received events. All the events are
made persistent in the Event Database storage and can be accessed through the
Analysis Component, which is responsible for representing the gathered events
as well as analyzing these events, e.g., correlating multiple events in complex
attack scenarios. Such an analysis component might be the front end to the
database within the IDS management unit. The Event Gatherer is an important
component for collecting and unifying all events generated from connected IDS
Sensors. Similarly, the Event Gatherer can be configured by Users through its
configuration file.

Based on the proposed theoretical model of IDS management, we make a
detailed design of the IDS management as shown in Fig. 3. A new Event Gath-
erer component is introduced on the IDS Sensor side. This gatherer is used to
standardize the outputs from different sensors, which solves the problem of non-
standardized sensor output. Furthermore, it realizes the logical communication
between the sensor and the management component.

3.2 IDS Management: Implementation

Fig. 4 shows a detailed view on the architecture of the Event Gatherer. The
gatherer is the core component of the event flow. It is a plugin engine capable of
loading several Event Receivers and one Event Sender. A receiver processes a cer-
tain output, creates standardized events in IDMEF format and writes all events
into a queue for further processing. Possible receivers are Snort CSV Receiver,
Samhain Syslog Receiver or IDMEF Tcp Receiver. A sender reads standard-
ized events from the queue and forwards them to a specific channel or storage,
e.g., to a defined host and port via TCP connection or to a database with a
certain schema. Possible senders are the MySQL Database Sender or the ID-
MEF Tcp Sender. To connect Event Gatherers, there are pairs of senders and
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Fig. 4. Event Gatherer

receivers required, which can communicate with each other. This means that
the sender creates output the receiver can process and understand. Possible
pairs are the IDMEF Tcp Sender and Receiver or the IDMEF File Sender and
Receiver. The senders and receivers are independent threads loaded at start up
into the gatherer process. The gatherer can be configured to load several differ-
ent receivers. This allows high flexibility in deployment and building intrusion
detection scenarios.

3.3 A Lock-Keeper Based IDS Management Architecture

As shown in Figure 5, the proposed IDS management architecture is practically
implemented on the Lock-Keeper system. We integrate Samhain and Snort on
the OUTER and INNER component. On GATE, the Samhain and F-Secure
Linux Security are deployed. The HIDS implementation Sambain is used to
oversee the working state of each host. The NIDS snort is used to monitor
network connections, which INNER/OUTER exposes to both sides. F-Secure
Linux Security is used to do the application layer checking on the passing traffic,
i.e., LKMC. Such known offline attacks as virus, worms, and other malicious
codes, should be detected here.

There is an Event Gatherer running on each Lock-Keeper component to collect
alerts from the connected sensors. The gatherer on OUTER includes the plug-
ins: Samhain receiver, snort receiver, and IDMEF sender. The gatherer on GATE
consists of the plugins: Samhain receiver, F-Secure receiver and IDMEF sender.
The gatherer on INNER is running through the plugins: Samhain receiver, Snort
receiver, IDMEF receiver, and SQL sender. The IDMEF sender on OUTER and
GATE writes all alerts to a specified directory which is the interface to the
Lock-Keeper SDE software. On INNER, the IDMEF receiver is listening on a
specified directory where the alerts from OUTER and GATE will be put by the
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Fig. 5. Lock-Keeper based IDS Management Architecture

Lock-Keeper SDE software. The SQL sender is configured to write all the in-
coming alerts to a database for further processing.

As the host of the central IDS management unit, INNER has two additional
important components: Analyzer and Event Database. The analyzer works on
the event storage to provide simple event analysis and a unified view to end users.
The database provides an easy way to store, query and process huge amounts of
incoming alerts. Nevertheless, alerts can also be stored in other ways according
to the practical requirements or environments, e.g., in a single XML file or in a
specified directory with multiple alert files. A web application is built to connect
Analyzer and Event Database as well as provide a user interface for displaying
the unified view of events.

4 Experiment Results

As mentioned previously, we have two overall objectives: 1) improving the exten-
sibility of IDS deployment and management, 2) enhancing the security of Lock-
Keeper system. To evaluate the proposed Lock-Keeper based IDS management
architecture and its implementation, we construct an experiment environment,
as shown in Fig. 6. To test the functionality of each single integrated IDS sensor,
e.g., Samhain, Snort, and F-Secure Linux Security, several simple attacks are
executed within this environment.

A port scan towards the Lock-Keeper OUTER is executed from the Attacker
by connecting to a port range of 1-1000. This port scan was performed using
Nmap [23]. Similarly, this attack could also be carried out from inside towards
INNER. The NIDS sensor, Snort, is supposed to detect this kind of attack.

Since Lock-Keeper also provides normal Email service, there are SMTP ports
opened on OUTER. Therefore, attackers have the possibility to perform the
SYN Flood DoS attack [24] towards OUTER. Snort on OUTER is responsible
for recognizing this attack based on the preset threshold of the number of received
SYN packets.
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Fig. 6. Experiment: Testing Setup

To test the HIDS, we attempt to access and modify files in the sensitive
directory on INNER, which is configured as ”Read-Only”. The deployed HIDS,
Samhain, is used to identify such attacks.

To test the functionality of the F-Secure Linux Server Security running on
GATE, which is used as an IDS sensor to find and prevent application layer
attacks, we create a scenario by sending an Email from the Attacker side to
Lock-Keeper. Within this test Email, we attached the eicar Anti-Virus Test File
[25]. The Lock-Keeper Mail-X module handles the Email and passes it to GATE.
On GATE, the integrated F-Secure virus scanner is triggered by the malicious
Email message. An alert is created in the format of IDMEF and later sent to
the management system on INNER.

As shown on Fig. 7, F-Secure Linux Security on GATE detects the Email
with the eicar file (see alert [1]), Snort on OUTER identifies the port scan and
SYN Flooding (see alerts [2], [3] and [4]). The port scan is identified as well
on INNER (see alert [5]). Besides, the Samhain on INNER also successfully
detects the illegal access to the protected file ”/etc/passwd” (see alert [6]). The

Fig. 7. Experiment: Screenshot
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Fig. 8. Experiment: IDMEF Message of Alert Nr. 6

proposed Event Gatherer transforms the output of different IDS sensors into the
standard IDMEF messages, e.g., the alert [6] shown in the Fig. 8. With the help
of respective sender plugins and receiver plugins as well as the Lock-Keeper SDE
software, alerts generated on OUTER and GATE are transferred to the central
management unit on INNER and displayed on the end user interface.

The experiments have shown that our system works well, which exactly sup-
ports the claimed benefits on both improving extensibility of IDS management
and enhancing Security of Lock-Keeper. Different types of IDS implementations,
e.g., Snort, Samhain and F-Secure Linux Security, are seamlessly integrated
into a loosely coupled environment with several distributed hosts. Standardized
events are correctly created, transferred, analyzed and reported using the central
IDS management unit. On the other hand, the deployed IDS sensors strongly
increase the security level of Lock-Keeper, especially on detecting and preventing
the network attacks on INNER/OUTER and application layer attacks towards
the internal users.

5 Conclusion

The paper proposes an extensible architecture for deploying different types of
IDS on the Lock-Keeper system. A central management unit for adding, config-
uring, operating and removing the different IDS sensors, is designed and deployed
on the Lock-Keeper components. A high amount of security related events pro-
duced by all the integrated sensors could be synchronized, unified, analyzed and
reported in the distributed platform. The known IDS standard, IDMEF, is real-
ized in several kinds of plugins, e.g., Handler, Sender and Receiver, for storage
and communication between the involved IDS sensors and the central manage-
ment unit. The possibility to connect Event Gatherers in the architecture pro-
vides a high flexibility in deployment. A prototype implementation is presented
and testified by experiments. The architecture is developed with focus on flex-
ibility, extensibility and portability. However, there are still many open issues.
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More assistant parts of the architecture need to be realized and integrated, e.g.,
an extended analysis of events. The analysis component should enable different
modules and approaches for event correlation as well as extended management of
events, such as sorting, filtering, tagging, etc. The number of available receivers
and senders should be enriched. Performance is another important issue, which
needs to be considered due to the complex integration and communication of
heterogenous components. It is necessary to handle a certain amount of events
within a tolerant time.
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Abstract. While RFID technology has greatly facilitated the supply
chain management, designing a secure, visible, and efficient RFID-
enabled supply chain system is still a challenge since the three equally im-
portant requirements (i.e., security, visibility, and efficiency) may conflict
to each other. Few research works have been conducted to address these
issues simultaneously. In this paper, we observe the different security re-
quirements in RFID-enabled supply chain environments and differentiate
the simplified model into two security levels. Accordingly, dual security
modes are properly defined in our RFID setting. In the relatively secure
environment, our system is set to the weak security mode, the tagged
products can be processed in a highly efficient way. When in the strong
security mode, our system guarantees a high level of security, while its
efficiency is lower than that in the weak security mode. A set of RFID
tag/reader protocols to facilitate the duel security modes are presented.
Their security, visibility and efficiency are analyzed and compared with
the relevant works.

1 Introduction

RFID systems consist of two main components: tags and readers. Tags are radio
transponders attached to physical objects, while radio transceivers, or readers,
query these tags for identifying information about the objects to which tags
are attached. RFID technology, when combined with internet and networking
technology, enables product information to be collected, integrated, shared, and
queried at various levels (e.g., item, pallet, case, and container) in real time in
a supply chain. RFID technology has been widely envisioned to have significant
impact on the economy world-wide as an inevitable replacement of barcodes in
the near future, which may facilitate the creation of secure, visible, and efficient
supply chains. As a result, EPCglobal Network [2] is being formed to provide
an open and standard interface to process RFID information in supply chain
management.

The current EPCglobal Network standards depend entirely on honest supply
chain partners to realize supply chain visibility. Few security mechanisms have
been developed to ensure that the tracking services are confidential, verifiable,
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and accountable in the presence of realistic and malicious attacks, especially
those coming from corrupted supply chain partners. Most of RFID technologies
have focused on protecting a single RFID channel [5, 6, 7, 8, 9, 10, 11] without
considering the relationship among supply chain parties. Such techniques cannot
be directly used to protect the sharing of information among supply chain parties.

We develop a new security solution for RFID-enabled supply chain systems.
In our solution, even a valid supply chain party, if not authorized, cannot track
RFID tags after the ownership handover of the tags to other supply chain par-
ties. On the other hand, an authorized party can have full supply chain visibility
to track a tagged item in a supply chain. A root secret, shared between a trusted
authority and each tag, is used to guarantee the anti-track and track/visibility
properties. To achieve better efficiency, we classify the supply chain environ-
ments into two security levels. In an environment where insiders or outsiders
can actively interact with a tag for the purpose of tracking, we set the system to
strong security mode so as to maintain high security. In an environment where
active attacks are not possible (e.g., within the territory of a supply chain party),
we can set the system to weak security mode to achieve high processing speed.
We use a binary switch on the tag to control the security modes. A set of RFID
tag/reader protocols like tag reading protocol, security mode switching protocol
and secret updating protocol, to facilitate the duel security modes are presented.
We analyze the schemes in terms of security, visibility and efficiency. At last, our
solution is compared with the relevant works.

The rest of this paper is organized as follows. In Section 2, we introduce
a simplified system model and architecture for RFID-enabled supply chains.
In Section 3, we present our protocols to protect RFID-enabled supply chain
systems. In Section 4, we analyze our protocols in terms of security, visibility,
and efficiency. In Section 5, we discuss the related works. Finally, Section 6
concludes this paper.

2 Model

Assumptions. In this paper, we focus on the attacks conducted on the wireless
communications between RFID readers and tags. The adversaries can be either
supply chain outsiders or insiders (i.e., dishonest supply chain parties). The ad-
versaries are assumed to have the power to listen in communication channels,
counterfeit as a valid supply chain party, to initiate, delete, modify, or trans-
fer messages between RFID tags and readers. We do not consider the physical
attacks, denial of service attacks, and side-channel attacks. We further assume
that the communications between a supply chain partner and its RFID readers,
and the communications between supply chain parties are secure, which can be
protected by standard security techniques without limitation of resources.

Requirements. As discussed in existing RFID literatures, common security re-
quirements of RFID tags include unlinkability, confidentiality, etc, nonetheless,
applying RFID tags in supply chain environments introduces some unique needs
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such as supply chain visibility and extra efficiency. In the following, we list the
details of the requirements for RFID system when deployed in the supply chain.

The security requirements of RFID-enabled supply chain are summarized
in [12]. We increment the requirements to include forward and backward secrecy
and de-synchronization resilience. The list of security requirements is given be-
low: (i) Authoritative access: Only legitimate readers of an authorized party
are allowed to identify and update a tag. (ii) Authenticity of tags: In a sup-
ply chain link, only legitimate RFID tags delivered by previous party will be
accepted by the next party. (iii) Unlinkability: Weak unlinkability and strong
unlinkability can be used to describe the security level of anti-tracking. Weak
unlinkability requires that an unauthorized reader cannot link the responses of a
tag interrogated before and after it is processed by an authorized party. Strong
unlinkability requires that an unauthorized reader cannot link any two replies
to the same tag. (iv) Forward and backward secrecy: If the communication be-
tween a tag and a party is compromised, it will not affect the security of the
communication between the tag and any other party in the supply chain. (v)
De-synchronization resilience: RFID communication protocol is resilient to the
attacks that are targeted towards de-synchronizing a tag and a reader.

Besides security, supply chain visibility must be maintained in supply chain
management. It means that the manager of the supply chain or any authorized
party should be able to track the movement of RFID tags. The enhancement
on supply chain visibility is the most attractive feature that RFID technology
brings to the traditional supply chain management. It allows companies to track
and monitor the progress of material flow without inefficient bar code scanning.

Due to mass product exchanging, the efficiency of RFID technology is cru-
cial in supply chain management. Without incorporating security and visibility
features, hundreds of read operations can be performed per second between a
reader and tags. The processing speed should not be delayed by adding security
and visibility features.

We stress that the three requirements (i.e., security, visibility, and efficiency)
are equally important in supply chain environments. Our goal is to propose a
practical solution for RFID-based supply chain systems under the three require-
ments with the lowest possible cost.

Architecture. Our solution involves four types of entities as shown in Figure 1: (i)
a supply chain manager which is a trusted authority, denoted by TA; (ii) indepen-
dent supply chain parties denoted by Pi; (iii) RFID readers inside a partner, which
are collectively referred to as Ri controlled by its corresponding party Pi, and a
back-end database referred to as Di; (iv) RFID tags denoted by Tj .

The architecture we proposed is suitable for various types of supply chain
structures [3] and compatible with contemporary EPCglobal network architec-
ture [2]. In a third-party logistics (3PL) supply chain, TA can be the shipping
company, which is specialized in handling the shipping issues in the supply chain.
In the vendor managed inventory (VMI) supply chains, the vendor manages all
the delivering of products; thus, it is straightforward for the vendor to take
the role of TA. For the collaborative planning, forecasting, and replenishment
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Fig. 1. A simplified RFID system architecture

(CPFR) supply chains, a supply chain hub is TA, which coordinates real-time
sharing of supply chain information among supply chain parties. Finally, in sup-
ply network (SN), the situation is similar but more complex than in CPFR
supply chains, where TA can be an existing supply chain hub or a dominant
supply chain party.

3 Protocols

Since RFID tags will be used in vast numbers in supply chains, it is desired
that the security design of the tags should be as cheap as possible. To achieve
this goal, our protocols are designed to use passive tags that are equipped with
pseudo-random number generators, standard XOR ⊕ and hash H(·) calculations.

A database is initialized by TA and sent to each supply chain party before the
party can identify a batch of tags. With the help of the database, a supply chain
party can switch security modes of RFID tags multiple times. Before a supply
chain party sends a batch of tags to the next party in ownership handover, the
current party needs to update the secret information in each tag. After ownership
handover, the party can no longer identify the tags or track their movement.

3.1 Initialization

Tag initialization. Before the first supply chain party P1 starts processing tagged
products, TA will initiate three values (αj , β1↔j , switch) and embed them in
each tag Tj in a secure manner.

– αj is the tag root secret of length �, which is fixed and shared between TA
and the tag. The root secret is used to identify the tag uniquely.

– βi↔j is a temporary secret of length �, which is shared between supply chain
party Pi and tag Tj . The two parameters i and j of βi↔j denote the identity
number of the supply chain party and the tag separately. This secret is
initiated by TA to be β1↔j . The temporal secret βi↔j will be updated by
Pi to βi+1↔j before ownership handover to Pi+1.
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– switch is a binary value used to indicate the security mode of a tag. This
value is initiated to be ‘on’ for a strong security mode and it can be subse-
quently switched to ‘off’ for a weak security mode.

Database Initialization. Each party Pi maintains a database Di in its local stor-
age where each tuple in the database corresponds to a tag. Di contains all RFID
information with respect to a batch of tags except for tag root secrets α. Di

consists of five attributes (β, x, p, s, switch), where (β, switch) are defined the
same as in tag initialization, (x, p, s) are defined below.

– Tag response x: Tag response to be received from the corresponding RFID
tag (in weak security mode). When the tag is on strong security mode, the
value of this attribute is set to NULL.

– Pointer p: An octet string containing an address where the business infor-
mation relevant to the tag is stored. An alternative approach is to store
information in this field directly. Obviously, it trades the storage cost for
communication efficiency.

– Status s: Binary bit; s = 1 means that the corresponding RFID tag has been
processed; otherwise not. We call an entry is unmarked if its value is zero.

Reader initialization. When the Pi is to handover a batch of tagged products
to Pi+1, it updates the tag temporal secrets and informs TA that Pi+1 is the
next party. Then TA will distribute the database Di+1 to Pi+1 through a secure
channel (e.g., SSL).

3.2 Tag Reading

Upon receiving Di from TA and the tagged products from Pi−1, supply chain
partner Pi can read any tag Tj in either the strong security mode if switch is on
or in the weak security mode if switch is off.

1. Ri → Tj : r1, where r1 is a random number of length � generated by the
reader.

2. Tj → Ri: On receiving r1, the tag sends the reply (r2, x) to the reader, where
x = H(r1||r2||βi↔j) and r2 is a number of length �. If the tag is in strong
security mode, r2 is a fresh random number generated by the tag; otherwise,
r2 = 0.

The tag reading protocol is illustrated in Figure 2. In the weak security
mode, Ri can pre-compute the response of each tag xj and store them in
Di. On receiving a response x , Ri identifies the tag if it can find a record
dj = 〈βi↔j , xj , sj , switchj〉 in Di such that xj = x and sj = 0. In the strong
security mode, however, the response of each tag cannot be pre-computed due
to the use of fresh tag random number; the value of x is set to NULL in each
tuple of Di in this case. Given a response (r2, x), the reader identifies a tag
by searching all of the unmarked(s = 0) tuples in Di until it finds a tuple dj
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Reader Ri Tag Tj

[Di] [βi↔j ]

Chooses r1 ∈ R. r1

r2, x

Sets r2 = 0 if Tj is in the weak
security mode, else chooses r2 ∈ R;
computes x = H(r1‖r2‖βi↔j).

Searches a value of β in Di

that H(r1‖r2‖β) = x.
if found, then tag is identified;
else, the identification falis.

Fig. 2. Tag reading protocol

which satisfies x = H(r1||r2||βi↔j). For each identified tag Tj , the reader sets
its status sj = 1. If pj is not empty, the reader can also obtain relevant product
information following the pointer pj.

The above reading process can be performed multiple times by supply chain
partner Pi if necessary.

3.3 Security Mode Switching

Once the party Pi receives Di from TA, it can change the security mode of
its tags in different environments. Although the strong security mode is secure
against both active attacks and passive attacks, the RFID tags can be processed
more efficiently in the weak security mode in an environment where the active
attacks are impossible. We design a security mode switching protocol below.

1. Ri → Tj : To update the security mode of tag Tj , the reader chooses a fresh
random number r3 and computes a = βi↔j ⊕ r3, and b = H(switch0||a||r3),
where switch0 is the new value of switch. The reader then sends the triple
(switch0, a, b) to the tag.

2. Tj → Ri: When tag Tj receives (switch0, a, b), it computes r3 = βi↔j ⊕ a,
and checks whether b = H(switch0||a||r3) holds; if so, it updates switch =
switch0. After update of switch value, the tag Tj will send a confirmation
(r2, x) back to the reader, where r2 is generated based on the switch value
and x = H(r2||r3||βi↔j).

3. Ri: Upon receiving (r2, x), the reader Ri confirms the update of switch by
checking whether x = H(r2||r3||βi↔j).

The protocol is also illustrated in Figure 3. Since a tag will send a confirmation
to the reader after security mode update, any failure can be detected by the
reader.
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Reader Ri Tag Tj

[Di] [βi↔j ]

Chooses r3 ∈ R,
computes a = βi↔j ⊕ r3,
b = H(switch0‖a‖r3)

switch0, a, b

r2, x

Computes r3 = a ⊕ βi↔j ;
if b = H(switch0‖a‖r3),
switch ← switch0,
choose r2 ∈ R,
computes x = H(βi↔j‖r2‖r3),

If x = H(βi↔j‖r2‖r3),
the security mode switching secesses;
else, it fails.

Fig. 3. Security mode switching protocol

3.4 Ownership Handover

Ownership handover is performed between two supply chain parties Pi and Pi+1
with RFID tags in weak security mode without TA’s active involvement. Before
the handover, Pi will update the temporal secrets of its tags and informs TA,
who will send Di+1 to Pi+1 in a secure manner. Note that the database Di+1 is
not needed during the handover process.

In order to prevent the tagged products from being tracked by party Pi af-
ter ownership handover, the tag’s temporary secret must be updated from βi↔j

to βi+1↔j . This updating process is performed by Pi before handover. With-
out being appropriately updated, a tag will not be accepted by Pi+1 in the
handover process (see below). The update of tag temporal secrets guarantees
that only Pi+1 can access the tags although the update is conducted by Pi.
This is under the assumption that Pi cannot get access to tag root secrets
nor the new database Di+1. The temporary secret updating protocol is shown
in Figure 4. During ownership handover, both parties need to agree upon a
list of the tagged products and report the agreed list to TA for supply chain
visibility.

Reader Ri Tag Tj

[Di] [βi↔j ]

Chooses r3 ∈ R,
computes a = βi↔j ⊕ r3,
b = H(a‖r3).

a, b
Computes r3 = a ⊕ βi↔j ;
if b = H(a‖r3),
computes βi+1↔j = H(αj‖βi↔j).

Fig. 4. Temporary secret updating protocol
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During ownership handover, both parties need to agree upon a list of the
tagged products and report the agreed list to TA for supply chain visibility.

1. For a batch of tagged products to be handed over to Pi+1, Pi performs
tag reading protocol with the same random number r1 of length � and
records a list L of responses xj from all tags in the batch, where xj =
H(r1||r2||βi+1↔j), r2 = 0. Then, Pi sends r1 to Pi+1.

2. Upon receiving r1, Pi+1 performs the reading protocol with the same random
number r1 and records a list L′ of all responses x′

j from all tags in the batch,
where x′

j = H(r1||r2||βi+1↔j).
3. Pi and Pi+1 compares the two list L and L′. If the lists match, then both

sign on the matched list with the current time-stamp and keep a copy of the
signed list. Party Pi sends the signed list to the TA for supply chain visibility.
If the two lists do not match, the two parties will settle the disagreement
till they reach an agreement. After the handover process, Pi+1 should switch
the tags into the strong security mode if Pi is still around.

The ownership handover process is illustrated in Figure 5. Note that Pi is
responsible to report to TA since it is for Pi’s interest to finalize the handover
process as early as possible. TA is responsible to coordinate the handover process
and manage the supply chain visibility accordingly. Our system remains secure
even the tags are set to the weak security mode in the ownership handover pro-
cess. The reason is that the tagged products remain static in this process; there
is no point to track tags while they are not moving. After ownership handover,
the tags are in Pi+1’s control, who will keep the tags secure by switching to ap-
propriate security modes. If Pi has not updated some tags appropriately before
ownership handover due to de-synchronization attacks or communication errors,
both parties will detect the mismatch; Pi can re-update the tags to facilitate the
handover. Therefore, our solution has the de-synchronization resilience property.

Fig. 5. Ownership handover process between Pi and Pi+1
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4 Analysis

In this section, we analyze our protocols with respect to the requirements of
security, visibility, and efficiency. We summarize our analysis results in the form
of statements. Proofs and explanations of the statements will be given in the full
version of this paper.

STATEMENT 4.1 (Authoritative access to RFID tags). Only a valid reader
with a tag’s temporary secret authorized by TA is able to conduct reading and
updating on the tag successfully.

STATEMENT 4.2 (Authenticity of tags).Given two numbers r1 and r2, the
probability for an adversary without the knowledge of βi↔j to find a valid response
x such that x = H(r1||r2||βi↔j) holds is 1

2� , where � is the length of βi↔j .
STATEMENT 4.3 (Weak unlinkability). Given a response x1 from a tag

prior to being processed by party Pi and a response x2 from a tag after being
processed by Pi, it is computationally infeasible for a rogue reader to determine
whether x1 and x2 is from the same tag.

STATEMENT 4.4 (Strong unlinkability). A tag is strong unlinkable in the
strong security mode. It is also strong unlinkable in the weak security mode in
an environment of no active attacks.

STATEMENT 4.5 (Forward and backward secrecy). If the protocol com-
munication between a tag and a reader is compromised in certain party, it will
not affect the security of the protocol communication between the tag and the
reader in any other parties.

STATEMENT 4.6 (De-synchronization resilience). The temporary secret
updating protocol and the security mode switching protocol in our security solu-
tion are resilient to de-synchronization attacks.

STATEMENT 4.7 (Visibility). While unauthorized entities are prevented
from tracking the movement of material flow, authorized entities have access to
the information about where and when a tag is processed.

STATEMENT 4.8 (Efficiency). In the weak security mode, the time com-
plexity for an authorized reader to identify a batch of n tags is O(n log n). In the
strong security mode, the time complexity is O(n2).

The bottleneck of most RFID-enabled supply chain systems including ours
is the process of identifying a large number of tags by each reader. According
to [16,17], we roughly estimate that it takes about 210 CPU cycles of a Pentium
CPU to perform a hash function (e.g., SHA-1) for digesting a 128-bit message and
about 40 CPU cycles per sort operation for merge-sort or quick-sort algorithms.
We assume that there are 220 tags in each batch, and a 1-GHz Pentium machine
is used in each reader’s servant computer. In the weak security mode, it requires
about 800ns in database search for identifying each tag. In the strong security
mode, however, the batch size is better below 104 so that a reader can identify
about 500 tags per second. Since an RFID reader usually can perform about 100
times reading, the speed of searching tags in database is sufficiently fast enough
as it is higher than 100 tags per second.
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5 Related Work

A bundle of research papers addressing RFID security and privacy problems
have been published (refer to [4] for a detailed literature survey) in recent years.
Among them, tens of (privacy enhanced) tag/reader mutual authentication pro-
tocols have been proposed in the literature such as the HB family of RFID
protocols [5,6], symmetric cipher based protocols [7,8, 9], and lightweight prim-
itive based protocols [10, 11]. Unfortunately, all of these RFID protocols have
focused on protecting tag to reader communication in a single domain, where
no cross-domain relationship is considered among various supply chain parties.
Therefore, their techniques cannot be directly used to ensure the information
sharing protocols interacting multiple supply chain parties.

In this section, we compare our solution with the most related works [12,14,13]
on RFID authentication protocols in supply chain environments. We realize that
these works might have been attacked in some way [15], their original ideas are
still meritable and worth being reviewed. A summary of our comparison is given
in Table 1.

In [12], Li and Ding proposed a de-centralized solution for secure RFID com-
munications in supply chains. In their solution, an access key is shared between
each tag and each supply chain party. The access key of a tag can be updated
by the current supply chain party before the tag is handed over to the next
supply chain party. Since the updated access key is shared between the current
supply chain party and the next supply chain party, their solution is vulnerable
to insider attacks without backward or forward secrecy. Their solution is similar
to our solution in the weak security mode in a sense that only weak unlinkability
is provided. The time complexity of their solution is also similar to our solution
in the weak security mode, which is O(n log n) for processing each batch of tags.
Since there is no trusted authority involved in their solution, the supply chain
visibility should be maintained by each party’s database in a distributed manner.

Juels, Pappu, and Parno proposed an interesting solution for secure RFID-
enabled supply chains [13]. In their work, a secret sharing method is used to
break a secret key to multiple shares, with each share stored in a single tag
along with the cipher of the tag id encrypted with the secret key. An authorized
supply chain party, which is supposed to get access to a large number of tags
can collect enough shares to recover the secret key, and thus decrypt the tags’
IDs. An adversary is assumed to have limited access to the tags; thus, he or
she cannot recover the secret key nor decrypt any tags’ IDs. It is clear that this
solution does not have any unlinkability feature. Anyone can track the movement
of a tag even if it is encrypted. The advantage of this solution is that it can be
directly used with the current EPC Gen2 tags [1] without any cryptographic
extensions; therefore, the cost of tags is apparently lower than other solutions
which have to incorporate hash and random number generation computations
in tags.

Song proposed an RFID ownership transfer protocol recently [14]. In her so-
lution, a supply chain party and a tag share a couple of secrets (t, s), where
t = h(s). The tag stores the value t, and the reader authorizes itself to the tag
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Table 1. Comparison of our solution with three other solutions

Unlinkability Visibility Efficiency Cost
(anti-tracking) (handover) (tag search) (tag)

[12] Weak Distributed Batch process Moderate
[13] Null Distributed Decryption Low
[14] Strong Distributed Tag by tag Moderate

Our solution Strong Centralized Switch Moderate

by proving its possession of s. In ownership handover, the current party must be
online to help the next party to identify a tag; then, the current party will send
the tag secret to the next party, which will use the secret information to update
the tag secret to a new value. To provide strong unlinkability, each tag will gen-
erate its reply based on a fresh random number, which is similar to our solution
in the strong security mode. The weakness of this solution is its low efficiency,
especially in the handover process which takes O(n2) time for processing n tags
one by one.

Comparing to the above works, our proposal solution is the only solution that
involves a trusted authority. Therefore the supply chain visibility can be easily
maintained in a centralized manner. On the one hand, our solution provides
strong unlinkability under the assumption that the weak security mode is used
in a relative secure environment of no active attacks. On the other hand, it
can switch to the weak security mode for higher efficiency in tag reading. It
thus provides higher efficiency in certain environment without downgrading the
security features. In terms of tag cost, our solution is similar to [12, 14] as it
involves random number generation and hash computations in tags. Note that
our solution is suitable for the RFID tags of cost around US$0.5 and RFID reader
of cost around US$1000. Such RFID readers and tags are currently available
in the market and their costs are affordable in supply chain management at
container, pallet, or case level (probably not at the item level).

6 Conclusion

In this paper, we investigate the security, visibility, and efficiency issues for
RFID-enabled supply chain systems. High efficiency is particularly desirable in
RFID-enabled supply chains since a large quantity of tagged products are rou-
tinely processed and exchanged among multiple supply chain parties such as
suppliers, manufacturers, distributors, and retailers. In order to enhance the ef-
ficiency of a RFID-enabled supply chain system without sacrificing its security,
we distinguish the environments into two secure levels. In a relatively secure
environment with no active attacks, our RFID system can be set to the weak
security mode so as to provide high processing speed. While in a relatively less
secure environment that is exposed to active attacks, our RFID system can be
switched to the strong security mode so as to maintain strong unlinkability. In
the future, we are interested in investigating the scalability of our solution and
verifying its practicality in real EPCglobal network or simulated environments.
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Abstract. A wireless sensor network (WSN) is an ad-hoc wireless net-
work composed of small sensor nodes deployed in large numbers. Sensor
nodes are usually severely resource limited and power constrained. Se-
curity enforcement in WSNs is thus a challenging task. In this paper we
propose a clustered heterogeneous architecture for WSNs, where high-
end cluster heads are incorporated, and they are further equipped with
trusted computing technology (TC). As such, the cluster heads act as
trusted parties, and are expected to help effectively address privacy is-
sues in WSNs. As concrete examples, we discuss in details how user query
privacy and source location privacy can be better protected.

1 Introduction

A WSN consists of a large number of sensor nodes collecting environmental data.
The nodes are usually severely constrained in computation, storage, communi-
cation and power resources. When deployed in critical applications, mechanisms
must be in place to secure a WSN. Security issues associated with WSNs can be
categorized into two broad classes [24]: content-related security, and contextual
security. Content-related security deals with security issues related to the con-
tent of data traversing the sensor network such as data secrecy, integrity, and
key exchange. Numerous efforts have recently been dedicated to content-related
security issues, such as secure routing [16,17,22,32], key management and estab-
lishment [5,8,10,25,26,34,37], and data aggregation [6,15,27,33]. In many cases, it
does not suffice to just address the content-related security issues. Suppose a sen-
sitive event triggers a packet being sent over the network; while the content of the
packet is encrypted, knowing which node sends the packet reveals the location
where the event occurs. Contextual security is thus concerned with protecting
such contextual information associated with data collection and transmission.

It is commonly acknowledged that the resource-constrained nature of sensor
nodes makes security enforcement in WSNs a challenging task. The majority of
the above mentioned efforts attempted to solve security issues in homogeneous
WSNs where all sensor nodes have the same capabilities. However, both theo-
retical and empirical studies have concluded that homogeneous WSNs are not
scalable. Through a theoretical analysis it is shown in [12] that the through-
put of each sensor node decreases rapidly as the numbers of nodes increases; in
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addition, it is demonstrated via simulations in [9] that, as the traffic becomes
heavy, the overhead due to routing and control consumes a large portion of the
available bandwidth.

Our Contribution. To improve the effectiveness of security enforcement, we
present a trusted computing (TC)-enabled clustered heterogeneous WSN ar-
chitecture, composed of not only resource constrained sensor nodes, but also a
number of more powerful high-end devices acting as cluster heads. Compared
to sensor nodes, a high-end cluster head has higher computation capability,
larger storage, longer power supply, and longer radio transmission range, and
it thus does not suffer from the resource scarceness problem as much as a sensor
node does. A distinct feature of our heterogeneous architecture is that cluster
heads are equipped with trusted computing (TC) technology, and in particular
a TCG-compliant TPM (Trusted Platform Module) [35] is embedded into each
cluster head. The TC-enabled cluster heads act as online trusted parties; security
enforcement is thus expected to be substantially simplified and improved. We
further substantiate the above assertion by demonstrating how trusted cluster
heads help to provide elegant solutions for two important contextual security
problems, user query privacy [7] and source location privacy [24,28,29,31].

2 TC-Enabled Heterogeneous Architecture for WSNs

We partition a WSN into a number of clusters. A high-end device is placed into
each cluster, acting as the cluster head. In contrast to sensor nodes, high-end
cluster heads have relatively higher computation capability, larger storage size,
and longer radio range. They also have longer power supply, and in some cir-
cumstances they can even be line-powered. Therefore unlike sensor nodes, cluster
heads do not drastically suffer from the resource scarceness problem. Depend-
ing on applications, hardware capabilities of cluster head may vary from that
comparable to a bluetooth device to that of a high end PDA. The introduction
of high-end cluster heads into a WSN makes the once homogeneous network
heterogeneous. The general heterogeneous architecture is depicted in Figure 1.

Downlink communication (from base station to sensor nodes) and uplink com-
munication (from senor nodes to base station) in the architecture are asymmet-
ric. Messages broadcast by the base station can directly reach sensor nodes,
whereas messages sent by a sensor node need to be forwarded by its correspond-
ing cluster head. As a result, uplink communication follows a hierarchical manner
and consists of intra-cluster and inter-cluster communications, respectively. At
the level of intra-cluster communication, a cluster head acts as a gateway for
the sensor nodes within the cluster; a sensor node can reach the cluster head
directly, or through a short multi-hop channel. Inter-cluster communication is
concerned with communication among cluster heads and the base station. Since
inter-cluster communication does not suffer from the limits upon sensor nodes,
it can utilize more advanced communication infrastructure, e.g. 802.11. Conse-
quently, the heterogeneous architecture is expected to enormously improves the
overall system performance and lifetime of the network.
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Base StatioCluster HeadSensor Node

Fig. 1. Heterogeneous Wireless Sensor Network

A feature distinguishing our architecture from other similar heterogeneous
ones (e.g., [18,19,36]) is that we equip each cluster head with a TPM, so as to
simplify and improve security enforcement in WSNs. The rationale is that under
the auspices of TPM, cluster heads can act as online trusted parties in enforcing
security mechanisms. Relevant entities, e.g., the base station or users who query
the network (see Section 4.1), can ascertain the trustfulness of cluster heads
by means of attestation. We notice that the authors of [13,21] also discussed
the idea of applying trusted computing technology to equipping more powerful
cluster heads within WSNs, and there should be no distinction in the network
architecture between ours and theirs. However, in their proposals, sensor nodes
are responsible for verifying the platform state of the cluster heads through at-
testation, whereas our proposal is that sensor nodes never challenge their cluster
heads for attestation (we believe they actually do not afford to do so), and they
simply trust their respective cluster heads. Our argument relies on the fact that
it is the end users (or the owner) of the network who should be concerned with
the trustfulness of the cluster heads and the network.

3 Addressing Privacy Issues in WSNs

To show the effect of the trusted cluster heads on security enforcement, we
present solutions to two important contextual security problems in WSNs: user
query privacy and source location privacy. Compared to existing solutions in
[7,24,28,29,31], our schemes achieve better privacy and higher efficiency.

Adversary Model. For the schemes presented below, we assume a global eaves-
dropper who eavesdrops on the entire network. In particular, the adversary is
able to watch all the traffic traversing the sensor network. An adversary of this
nature poses a great threat, especially to contextual security in WSNs. The
global adversary in our consideration is much stronger than the local eavesdrop-
per assumed by other work such as [7,24,29,31]. A local eavesdropper only has
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knowledge on the sensor node it stays with, and it can only trace communi-
cation hop by hop. We must stress that the privacy offered by the schemes in
[7,24,29,31] is immediately broken under the global adversary, because through
global eavesdropping the adversary can always know which node(s) initiates the
targeted data transmission.

3.1 Achieving User Query Privacy

Problem Statement. WSNs are often deployed to provide services to other
users than the network owner [7]. Users are allowed to query a network to get
sensed data from particular areas. In such a scenario, a user may wish to protect
her “areas of interest” from being disclosed to other users or even the network
owner. User query privacy is thus concerned with the following problem: suppose
a user queries the network, intending to get the sensed data in cluster ci, a user
query privacy scheme ensures that the user ends up getting the desired data,
but the adversary does not learn ci by observing the communication.

Our Algorithm

Network Model. We support roaming users querying a wireless sensor network.
The network follows the heterogeneous architecture proposed earlier: the whole
network is partitioned into a set of n clusters, c1, c2, ..., cn, where ci is the
identifier of the ith cluster; each cluster is grouped around a TC-enabled cluster
head and we denote chi the cluster head in ci. A user who desires to query the
network first contacts the nearest cluster head within her proximity, through
which she will issue queries. This cluster head is called access point. Taking
Figure 2 as an example, ch1 of c1 is the access point for the user. Once the access
point is determined, all the other cluster heads need to dynamically establish
routing pathes to the access point. The single-path routing in [24] can achieve
this objective. The single-path routing uses a greedy algorithm where each node

User

C1

C2

C3

C4

C5

C6

C7

C8

C9

Fig. 2. User Querying Scenario
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chooses one of its neighboring nodes that is nearest to the sink (i.e., the access
point in our case) as its forwarding node in data transmission, and the node
itself is a dependent node of the forwarding node. As a result, the routing pathes
form a tree rooted at the access point. In Figure 2, the routing pathes are shown
in dotted lines. After the routing pathes are formed, every cluster head knows
which node is its forwarding node, and which nodes are its dependent nodes.

Assumption. To obtain services from a WSN, a user is assumed to have a cer-
tain means to authenticate to the WSN. Also, a TC-enabled cluster head can
authenticate to users using the AIK of its embedded TPM/MTM. Therefore,
the access point and the querying user can accomplish mutual authentication,
based on which we assume the two entities share a secret key for semantic se-
cure symmetric encryption. Further, it is also easy for each cluster head to get
this secret key from the access point, since they can clearly authenticate each
other with the help of their respective AIKs. We denote Echi(.) and Dchi() the
encryption and decryption, respectively, by chi using this secret key. We also
assume each cluster head shares a secret cluster key (for semantic secure sym-
metric encryption) with all sensor nodes in its cluster. Several well studied key
exchange schemes [26] can achieve this objective. CEci(.) and CDci() denote the
encryption and decryption, respectively, using the cluster key of ci.

Algorithm Overview. A straightforward way to achieve query privacy is that
every cluster head sends encrypted data to the access point, who then forwards
only the data desired by the user. This however unnecessarily wastes communi-
cation bandwidth among cluster heads. Even for this straightforward method,
we should still be very cautious not to leak information about the queried cluster
from the size of the data returned to the user. More specifically, clusters nor-
mally have different number of sensor nodes, so data from different clusters are
likely to have different lengthes. Let us suppose the data from each sensor node
forms a packet for simplicity. The total number of packets from a cluster equals
the number of sensor nodes. Without privacy treatment, the number of packets
eventually returned to the user by the access point would clearly indicate the
cluster from which the data originates. A method to fix this problem is that
regardless of which cluster is queried, the access point returns a fixed-number
of packets, corresponding to the biggest cluster size. We use l to denote this
number thereafter. For a cluster whose size is smaller than l, dummy packets are
generated.

The basic idea of our approach is to only transmit packets from the queried
cluster to the access point. However, to hide the target cluster, all the remaining
clusters have to generate fake data transmission of the same pattern as that of the
queried cluster. To better convey our idea, let us continue to use Figure 2 as an
example. Suppose c6 is the target queried cluster. The data transmission starts
with ch9, ch8, ch5 and ch4, who are the tails of the respective routing pathes. Let
us however only explain the transmission involving the target cluster c6, as oth-
ers follow the same manner. The cluster head ch9 generates and sends l dummy
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packets E l
ch9

(dummy data) to ch6. We use E l
ci

(data) to denote l packets of en-
cryption of data by chi. ch6 knows that its cluster is being queried, so he
discards the data from ch9, and generates and passes E l

ch6
(sensed data) to

ch3. At this point of time, ch3 may have already received E l
ch5

(dummy data)
and E l

ch4
(dummy data) from its dependent nodes ch5 and ch4, respectively. If

not, ch3 waits until it gets the data from all its dependent nodes. The rea-
son why a node does not proceed until receives from all its dependent nodes
is to avoid disclosure of information from timing patterns. Then ch3 decrypts
E l

ch6
(sensed data) and re-encrypts sensed date to yield E l

ch3
(sensed data), it

then passes the data to the access point ch1. The access point ch1 waits until
it gets data from all other routing pathes, and then decrypts E l

ch3
(sensed data)

and re-encrypts sensed date to yield E l
ch1

(sensed data). Finally, ch1 sends E l
ch1

(sensed data) to the querying user as the query result. In our approach, every
cluster head sends out l packets. Due to the semantic security of encryption,
re-encryptions of the same data are not distinguishable. Therefore, the adver-
sary watching the network cannot tell if the l packets sent out by a cluster head
originate from the cluster head itself or from its dependent nodes.

Algorithm Details. A complete description of the algorithm in pseudo codes is
shown in Algorithm 1, where u denotes the querying user and ap denotes the
access point.

To start, the user contacts the access point by sending a hello message, in-
cluding a nounce that will be used in the ensuing attestation process (Step 1).
The access point then informs all the other cluster heads to form routing pathes
using the method described earlier (Step 2). Before sending a query, the user
must have assurance of the trustfulness of the cluster heads. This is achieved by
means of attestation (Step 3). Note that it is unnecessary for the user to check
the status of all cluster heads, which is quite expensive; it suffices to adopt the
strategy of “chained attestation” along the established routing pathes. In par-
ticular, referring to Figure 2, u only verifies the access point: ch9 is verified by
ch6; ch4, ch5 and ch6 are verified by ch3; ch8 is verified by ch7 who is in return
verified by ch2; ch2 and ch3 are verified by the access point. Once attestation is
successful, the user sends to the access point the query eu, which is the encryp-
tion of the identifier c of the target cluster using the shared secret key (Step 4).
The access point broadcasts the query to all other cluster heads (Step 5), each
decrypting the query and knowing which cluster the user is querying (Step 7).
Each cluster head then collects sensed data (encrypted using the cluster key)
from the sensor nodes of its cluster (Step 8).

Before sending out l packets of data to its forwarding node (Step 29), a cluster
head must wait until it receives packets from all its dependent nodes (Step 9).
Afterwards, if the cluster itself is the target cluster (Step 10-13), the cluster
head simply ignores the packets from its dependent nodes, and encrypts the
sensed data from its cluster. Note that every set of l packets consists of head and
content, where the head is used to inform cluster heads enroute the origin of the l
packets while without decrypting the content. For a cluster that is not the target
one (Step 14-27), the cluster head checks whether one of its dependent nodes
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Algorithm 1. Achieving User Query Privacy.
1: u → ap: hello
2: ap ↔ {chi}i: establish routing pathes.
3: u ↔ ap: attestation
4: u → ap: eu = Eu(c) /*c is the identifier of the target cluster*/
5: ap → {chi}i: eu

6: for EACH chi do
7: c = Dchi(eu)
8: {sensor} → chi: dataci = {CEci(sensed data)}
9: {dependent node} → chi: {packets} /*chi waits until gets packets from all its

dependent nodes*/
10: if chi ∈ c then
11: /*if chi is cluster head of the target cluster c */
12: packets = CDci(dataci)
13: packets = head||content = Ec(c)||E l

chi
(packets)

14: else
15: foundqueriedcluster = FALSE
16: for packets from EACH dependent node do
17: c′ = Dchi(head)
18: if c′ == c then
19: content′ = Dchi(content)
20: packets = head||content = Echi(c)||E l

chi
(content′)

21: foundqueriedcluster = TRUE
22: break
23: end if
24: end for
25: if foundqueriedcluster == FALSE then
26: packets = head||content = Echi(ci)||E l

chi
(dummy date)

27: end if
28: end if
29: chi → forward node: packets
30: end for
31: ap → u: packets

sends in the data of the target cluster. If yes, the cluster head re-encrypts the
data (Step 16-22); otherwise, the cluster head generates l dummy packets (Step
25-27). Eventually, the access point passes the l packets of the target cluster to
the querying user (Step 31).

Improvement. In the above scheme, to answer a user query all the sensor
nodes are asked to send data to their respective cluster heads. This may shorten
the lifetime of the network because of excess energy consumption. To mitigate
this problem, We can alternatively trade off data freshness for energy efficiency,
especially when queries come in at a high rate. In particular, sensor nodes peri-
odically provide the sensed data to their respective cluster heads, who cache the
data. The cluster heads then handle user queries using the cached data rather
than collecting realtime data from the sensor nodes.
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Table 1. Comparison Results

Adversary
model

Sensor stor-
age

Sensor com-
putation

Sensor com-
munication

User regis-
tration

Our scheme Global eaves-
dropper

Constant Constant Constant No

Scheme in [7] Local eaves-
dropper

Linear to the
total number
of users

Related to
routing path

Related to
routing path

yes

Comparison. The only earlier work we are aware of studying user query privacy
is [7]. The two-server approach in [7] uses a routing scheme for data transmission
similar to onion routing [14]. The routing path is constructed dynamically among
the sensor nodes for each query. We list the comparison results between our
approach and that in [7] in Table 1. To be more specific, our scheme assumes a
global eavesdropper, so achieving better privacy. A sensor node in our scheme
only needs to store a secret cluster key, while each sensor in [7] is required to
store secret data linear to the total number of users authorized to query the
network. On computation and communication, each sensor node in our scheme
needs to encrypt its sensed data and sends to its cluster head, or is required to
relay data from other nodes in the same cluster; as the routing pathes must be
short within a cluster, the computation and communication are thus constant.
In contrast, computation and communication for a sensor node in [7] depend
on the routing path from the target cluster to the querying user. Finally, in [7]
every authorized user is required to register to the servers, which in turn store
secret data for the user’s virtual name on each sensor node; sensor nodes in our
scheme on the contrary have nothing to do with user registration. To conclude,
the comparison results show that our scheme outperforms [7] in all aspects.

3.2 Achieving Source Location Privacy

Source location privacy is concerned with not letting the adversary know which
sensor node sends data to a sink (the base station). Most existing approaches,
e.g., [24,29,31], consider local eavesdroppers who can only trace transmission
hop by hop. An exception is [28], which assumes a global eavesdropper. The
commonly used methods for achieving source location privacy are random walk,
source simulation, or a combination of the two. The random walk method gen-
erates a random routing path from the source node to the sink for each trans-
mission, while the source simulation method generates a number of fake source
nodes simulating the actual source sensor, so as to confuse the adversary.

It appears that the random walk method is not effective under the global
adversary overseeing the entire network, since the adversary always knows from
which node packets originated. Our heterogeneous network architecture facili-
tates a much more efficient implementation of source simulation. In particular, to
simulate the actual source node sending a packet to its cluster head, every other
cluster head randomly chooses a sensor node in its cluster to send a fake packet.
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Afterwards, cluster heads send their packets to the sink. Intuitively, source lo-
cation privacy can be considered as a special case of user query privacy in our
architecture. In order to keep the paper compact, we omit the details of the
scheme, but it should not be difficult to specify, given the earlier scheme for user
query privacy.

Source simulation in our architecture is more efficient than that in [28], due
to the shortened routing pathes and reduced control messages resulting from the
use of high-end cluster heads.

4 Related Work

Partitioning a WSN into clusters were proposed by several authors for achieving
scalability and better performance [2,3,11,20]. In these schemes, one or more
sensor nodes within a cluster are chosen as cluster head (i.e., homogeneous clus-
tered WSNs). On the other hand, considering the limited capabilities of sensor
nodes, studies from both the research community and the industry sector have
tried to enhance network performance by incorporating a number of more pow-
erful nodes in WSNs (i.e., heterogeneous clustered WSNs). A detailed theoretical
analysis on the effect of adding powerful nodes to WSNs was given in [36]. It is
concluded that only a modest number of reliable, long-range backhaul links and
line-powered nodes are required to have a significant effect, and if properly de-
ployed, heterogeneity can triple the average delivery rate and a 5-fold increase in
the lifetime of a large battery-powered sensor networks. Intel has an on-going ex-
perimental effort [19] to incorporate Intel XScale� based nodes into WSNs. The
experiment indicated that data traversing across a network are routed biased
towards the XScale� nodes over simple sensor nodes, thereby indeed enhancing
the overall system performance. [30,36] are among the work to study security
issues in the homogeneous or heterogeneous clustered WSNs.

Our study of TC-enabled WSNs is motivated by the above idea of network
clustering and heterogeneity, and TCG’s trusted computing technology. The
heterogeneous architecture we proposed differs from the existing heterogeneous
networks such as [4,19,30,36] in that the high-end cluster heads in our WSNs
are TC-enabled. This makes our WSNs not only have improved network perfor-
mance, but also greatly facilitate security enforcement, as we have demonstrated
earlier.

We realized that we are not the first to propose the idea of equipping some
more powerful cluster heads in a WSN with trusted computing technology.
[13,21] also discussed similar ideas. More specifically, [21] proposed lightweight
attestation techniques that can help regular sensor nodes to check the status
of a TC-enabled cluster head’s platform, and [13] studied key establishment
and management between sensor nodes and the base station, with the help of
TC-enabled cluster heads. There seems no essential difference in the network
architecture between our proposal and that of [13,21]. However, the techniques
proposed in [13,21] are intended for the sensor nodes to perform attestation so as
to check the platform state of the cluster heads. In contrast, in our architecture
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the sensor nodes never attempt to check the trustfulness of the cluster heads,
and they simply trust their respective cluster heads. Our justification for this is
that it is the responsibility of the end users of the network to concern about the
trustfulness of the cluster heads. Other difference between our work and [13,21]
is that different security issues in WSNs were addressed.

In this work, we focused on privacy protection in WSNs, and provided better
solutions to two important privacy issues than existing proposals [7,24,28,29,31].
Another privacy issue in WSNs discussed in the literature is temporal privacy
[23], which is concerned with the fact that an adversary, by simply monitoring
the arrival of packets at the sink, can infer the temporal patterns of interested
events. While we did not address the temporal privacy issue for lack of space,
we believe our TC-enabled heterogeneous architecture is in a better position to
solve the problem, because the trusted cluster heads should be able to perform
timing synchronization more reliably and easily.

5 Conclusion and Future Work

Due to stringent resource limitations of sensor nodes, security enforcement is
extremely challenging in wireless sensor networks. To solve this problem, we
proposed to render a wireless sensor network heterogeneous, by incorporating
TC-equipped high-end devices into clusters of the network, acting as cluster
heads. We demonstrated how the TC-enabled cluster heads can effectively ad-
dress privacy issues in WSNs.

This study is still in the preliminary stage. We are preparing to implement
proof-of-the-concept TC-enabled WSN architecture, and further experiment
with the architecture in certain real world wireless sensor network settings.

Acknowledgement

This work is partially funded by the A*STAR project SEDS-0721330047, and
also supported in part by the Office of Research, Singapore Management Uni-
versity.

References

1. Arnold, T., Doorn, L.V.: The IBM PCIXCC: A New Cryptographic Coprocessor
for the IBM EServer. IBM Journal of Research and Development 48 (May 2004)

2. Banerjee, S., Khuller, S.: A Clustering Scheme for Hierarchical Control in Multi-
hop Wireless Networks. In: Proc. IEEE INFOCOM 2001 (2001)

3. Basagni, S.: Distributed Clustering Algorithm for Ad-Hoc Networks. In: Proc. In-
ternational Symposium on Parallel Architectures, Algorithms, and Networks (1999)

4. Bohge, M., Trappe, W.: An Authentication Framework for Hierarchical Ad Hoc
Sensor Networks. In: Proc. ACM workshop on Wireless security, WiSE 2003, pp.
79–87 (2003)



394 Y. Yang et al.

5. Chan, H., Perrig, A., Song, D.: Random Key Pre-distribution Schemes for Sensor
Networks. In: Proc. IEEE Symposium on Security and Privacy, pp. 197–213 (2003)

6. Chan, H., Perrig, A., Song, D.: Secure Hierarchical In-Network Aggregation in
Sensor Networks. In: Proc. ACM Conference on Computer and Communications
Security, CCS 2006 (2006)

7. Carbunar, B., Yu, Y., Shi, L., Pearce, M., Vasudevan, V.: Query Privacy in Wireless
Sensor Networks. In: Proc. 4th Annual IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2007, pp.
203–212 (2007)

8. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A Pairwise Key Pre-distribution
Scheme for Wireless Sensor Networks. In: Proc. ACM Conference on Computer
and Communication Security, CCS 2003, pp. 42–51 (2003)

9. Das, S., Perkins, C., Royer, E.: Performance Comparison of Two On-demand Rout-
ing Procotols for Ad Hoc Networks. In: Proc. of IEEE INFOCOM 2000, vol. 1, pp.
3–12. IEEE Press, Los Alamitos (2000)

10. Eschenauer, L., Gligor, V.D.: A Key-Management Scheme for Distributed Sensor
Networks. In: Proc. ACM Conference on Computer and Communication Security,
CCS 2002 (2002)

11. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next Century Challenges:
Scalable Coordination in Sensor Networks. In: Proc. ACM/IEEE International
Conference on Mobile Computing and Networking, MOBICOM 1999 (1999)

12. Gupta, P., Kumar, P.: The Capacity of Wireless Networks. IEEE Transactions on
Information Theory 46(2), 388–404 (2000)

13. Ganeriwal, S., Ravi, S., Raghunathan, A.: Trusted Platform Based Key Establish-
ment and Management for Sensor Networks (Under Review)

14. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding Routing Information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg
(1996)

15. Hu, L., Evans, D.: Secure Aggregation for Wireless Networks. In: Proc. 2003 Sym-
posium on Applications and the Internet Workshops, SAINT 2003, pp. 384–394
(2003)

16. Hu, Y., Johnson, D., Perrig, A.: SEAD: Secure Efficient Distance Vector Routing
for Mobile Wireless Ad Hoc Networks. Ad Hoc Networks Journal 1(1), 175–192
(2003)

17. Hu, Y., Perrig, A., Johnson, D.: Ariadne: A Secure On-Demand Routing Protocol
for Ad Hoc Networks. Wireless Networks Journal 11(1) (2005)

18. Ibriq, J., Mahgoub, I.: A Hierarchical Key Establishment Scheme for Wireless
Sensor Networks. In: Proc. 21st International Conference on Advanced Networking
and Application, AINA 2007 (2007)

19. http://www.intel.com/research/exploratory/heterogeneous.htm

20. Jain, N., Agrawal, D.P.: Current Trends in Wireless Sensor Network Design. Inter-
national Journal of Distributed Sensor Networks 1(1), 101–122 (2005)

21. Krauß, C., Stumpf, F., Eckert, C.: Detecting node compromise in hybrid wireless
sensor networks using attestation techniques. In: Stajano, F., Meadows, C., Cap-
kun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 203–217. Springer,
Heidelberg (2007)

22. Karlof, C., Wagner, D.: Secure Routing in Wireless Sensor Networks: Attacks and
Countermeasurements. In: Proc. 1st IEEE International Workshop on Sensor Net-
work Protocols and Applications (2003)

http://www.intel.com/research/exploratory/heterogeneous.htm


Achieving Better Privacy Protection in Wireless Sensor Networks 395

23. Kamat, P., Xu, W., Trappe, W., Zhang, Y.: Temporal Privacy in Wireless Sen-
sor Networks. In: Proc. 27th International Conference on Distributed Computing
Systems, ICDCS 2007, pp. 23–30 (2007)

24. Kamat, P., Zhang, Y., Trappe, W., Ozturk, C.: Enhancing Source-Location Pri-
vacy in Sensor Network Routing. In: Proc. 25th IEEE International Conference on
Distributed Computing Systems, ICDCS 2005, pp. 599–608 (2005)

25. Liu, D., Ning, P.: Location-based Pairwise Key Establishement for Relatively Static
Sensor Networks. In: Proc. ACM Workshop on Security of Ad hoc and Sensor
Networks (2003)

26. Liu, D., Ning, P., Sun, K.: Efficient Self-Healing Group Key Distribution with re-
vocation Capability. In: Proc. ACM Conference on Computer and Communication
Security, CCS 2003 (2003)

27. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A Tiny AGgre-
gation Service for Ad-Hoc Sensor Networks. In: Proc. 5th Annual Symposium on
Operating Systems Design and Implementation, OSDI 2002 (2002)

28. Mehta, K., Liu, D., Wright, M.: Location Privacy in Sensor Networks Against a
Global Eavesdropper. In: Proc. IEEE International Conference on Network Proto-
cols, ICNP 2007, pp. 314–323 (2007)

29. Ouyang, Y., Le, Z., Chen, G., Ford, J., Makedon, F.: Entrapping Adversaries for
Source Protection in Sensor Networks. In: Proc. International Symposium on World
of Wireless, Mobile and Multimedia Network, WoWMoM 2006, pp. 23–34 (2006)

30. Oliveira, L.B., Wong, H.C., Loureiro, A.A.: LHA-SP: Secure Protocols for Hierar-
chical Wireless Sensor Networks. In: Proc. IFIP/IEEE International Symposium
on Integrated Network Management, pp. 31–44 (2005)

31. Ozturk, C., Zhang, Y., Trappe, W.: Source-location Privacy in Energy-contained
Sensor Network Routing. In: Proc. 2nd ACM Workshop on Security of Ad Hoc and
Sensor Networks, SASN 2004, pp. 88–93 (2004)

32. Patwardhan, A., Parker, J., Joshi, A., Iorga, M., Karygiannis, T.: Secure Routing
and Intrusion Detection in Ad Hoc Networks. In: Proc. 3rd International Confer-
ence on Pervasive Computing and Communications. IEEE, Los Alamitos (2005)

33. Przydatek, B., Song, D., Perrig, A.: SIA: Secure Information Aggregation in Sensor
Networks. In: Proc. ACM SenSys (2003)

34. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.D.: SPINS: Security Pro-
tocols for Sensor Networks. Wireless Networks Journal (WINE) (September 2002)

35. Trusted Computing Group, www.trustedcomputinggroup.org
36. Yarvis, M., et al.: Exploiting Heterogeneity in Sensor Networks. In: Proc. IEEE

INFOCOM 2005 (2005)
37. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient Security Mechanisms for Large-

scale Distributed Sensor Networks. In: Proc. ACM Conferenc on Computer and
Communication Security, CCS 2003, pp. 62–72 (2003)

www.trustedcomputinggroup.org


Trusted Privacy Domains – Challenges for
Trusted Computing in Privacy-Protecting

Information Sharing

Hans Löhr1, Ahmad-Reza Sadeghi1, Claire Vishik2, and Marcel Winandy1

1 Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

{hans.loehr,ahmad.sadeghi,marcel.winandy}@trust.rub.de
2 Intel Corporation

claire.vishik@intel.com

Abstract. With the growing use of the Internet, users need to reveal
an increasing amount of private information when accessing online ser-
vices, and, with growing integration, this information is shared among
services. Although progress was achieved in acknowledging the need to
design privacy-friendly systems and protocols, there are still no satis-
factory technical privacy-protecting solutions that reliably enforce user-
defined flexible privacy policies. Today, the users can assess and analyze
privacy policies of data controllers, but they cannot control access to and
usage of their private data beyond their own computing environment.
In this paper, we propose a conceptual framework for user-controlled
formal privacy policies and examine elements of its design and imple-
mentation. In our vision, a Trusted Personal Information Wallet man-
ages private data according to a user-defined privacy policies. We build
on Trusted Virtual Domains (TVDs), leveraging trusted computing and
virtualization to construct privacy domains for enforcing the user’s pol-
icy. We present protocols for establishing these domains, and describe the
implementation of the building blocks of our framework. Additionally, a
simple privacy policy for trusted privacy domains functioning between
different organizations and entities across networks is described as an
example. Finally, we identify future research challenges in this area.

1 Introduction

Global connectivity and easy access to distributed applications and digital ser-
vices over the Internet changed the paradigm of both business and consumer
use of information. The Internet offers new opportunities to individuals, e.g., e-
commerce and social network services. In addition to personal computers, mobile
devices, such as smart phones, allow users to access numerous services through
mobile networks from any location.

Together with the new opportunities, new security threats also developed,
rapidly growing in number and sophistication. Some security threats, such as
identity theft, one of the fastest growing crimes on the Internet, also can cause
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privacy violations [1,2]. But privacy issues are much broader: individuals fre-
quently generate and reveal a significant amount of personal and sensitive in-
formation when they use a service such as online shopping or social networking.
Even if a transaction is not personalized, it always leaves a trail that can be
aggregated with other information and analyzed, potentially leading to privacy
leaks. Also, as devices access networks and services, information about these
accesses can be recorded.1 The users have to trust the application provider to
treat their personal data in an appropriate manner, e.g., according to best prac-
tices and regulatory requirements reflected in privacy policies. The users can
read statements about privacy policies on websites, but the policies do not allow
for flexibility in disclosing data necessary to access the service. There are few2

technical means to support this kind of enforcement. Ideally, the users should
be able to grant access to their sensitive information only when the systems are
trustworthy and should be allowed to revoke this permission.

Technical measures in the areas of modern IT security and cryptography pro-
vide only partial solutions. Because of the inherent vulnerabilities resulting from
high complexity of systems, common computing platforms require careful and at-
tentive system administration skills, and complete protections against execution
of malicious code and tampering is impossible.

In this paper, we propose a conceptual framework for user-controlled privacy
policies and examine first elements of its design and implementation. The goal
is to improve the current status of data and privacy protection by supporting
legal measures with novel technical solutions based on Trusted Computing (TC)
as described below:

– We outline a general approach to creating privacy domains, in which a
guardian agent (Trusted Personal Information Wallet) manages private data
according to a user-defined privacy policy (Section 2). The agent can migrate
to other platforms, but only in approved trusted domains.

– We describe a simple policy that requires trusted privacy domains between
different organizations and entities. We build on the idea of Trusted Vir-
tual Domains (TVDs), leveraging trusted computing and virtualization to
automatically construct privacy domains for enforcing the user’s policy. We
describe protocols for establishing these domains and the implementation of
the building blocks of the framework (Section 3).

– Finally, we address future research challenges, analyzing currently available
policy languages that cannot yet support full solutions for the reliable en-
forcement of user controlled privacy (Section 4).

1 Revealing private information is sometimes necessary or unavoidable outside of the
Internet (e.g., in supermarkets, due to surveillance, etc.). Although we do not study
these methods to gain information about individuals, we note that the revealed
information inside and outside the Internet can potentially be linked.

2 Auditing and certification are examples for at least some technology-related methods,
e.g., product evaluation according to Common Criteria or certification according to
ISO 27001/27002 for information security management systems in enterprises.
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Fig. 1. Basic idea of the overall architecture

2 Framework for Privacy Domains

We propose to support the enforcement of privacy policies by establishing trusted
domains. These policies enable the user (individual or organization) to specify
fine-grained instructions for the use of private information. As the level of online
activities increases and entities or organizations with complex rules interoperate,
the policies may become very complex and benefit from automatic enforcement.

The proposed architecture provides mechanisms to protect sensitive and pri-
vate information across IT domains and systems. The deployment of Trusted
Computing technologies for privacy protection can help achieve this goal. To
ensure that private information is not re-distributed to unauthorized parties, it
needs to be technically bound to only those receivers that are known to com-
ply with the policies. Communication endpoints need to attest reliably to their
compliance to specified policies.

To enforce policies, we propose a “guardian agent” for the user: a Trusted Per-
sonal Information Wallet that is transferable between platforms and performs
“verification” of the trustworthiness of a remote IT system, i.e., compliance to a
specified policy. The verification helps guarantee the enforcement of the user’s
privacy policy when sensitive information is transmitted. Figure 1 shows an ab-
stract illustration of the proposed concept.

In order to achieve technical enforcement of the security and privacy policies,
we develop a security architecture that allows the user to share sensitive infor-
mation between computing platforms while ensuring the participating platforms
have technical means to comply with the policies.

Figure 2 shows a high-level view of the process of policy enforcement. A pri-
vacy policy in a machine-readable format is incorporated into the wallet. (step 1).
The wallet interprets the policy and configures security and privacy services of
the underlying computing platform (step 2). The security services enforce the
policy by controlling communication between applications in different domains
(step 3). To reliably enforce the policy, trusted security & privacy services have
to run on all participating platforms, e.g., based on a security-enhanced hypervi-
sor [3], which allows the system owners to use legacy applications and operating
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Fig. 2. Envisioned architecture for policy enforcement

systems in virtual machines, eliminating the need for new client and server side
applications.

For data transmission, we propose new protocols based on existing attestation
schemes of TC technology. When a user or application agent of another plat-
form requests to access sensitive information (step 4), the security services of
the source platform first verify the trustworthiness of the target platform using
attestation mechanisms (step 5) to ensure the destination provides the required
security mechanisms to enforce the policy. After successful verification, the wal-
let migrates to the destination platform (step 6) in order to act as policy decision
module and to configure the security services of the target to enforce the defined
policy. Service providers do not need to implement additional functionality on
their server side (except for the underlying security layer) to interpret the policy
or a clearinghouse for the policy interpretation. The wallet will interpret the
policy and use the underlying security services of each platform to enforce it.

3 Experience with Trusted Virtual Domains

As a first step towards realizing privacy domains and policy enforcement as de-
scribed before, we employ the concept of Trusted Virtual Domains (TVDs) [4,5].
In this section, we briefly review this concept and describe its novel application
as privacy policy enforcement as well as our implementation of TVDs.

3.1 Concept of TVDs

A Trusted Virtual Domain (TVD) is a coalition of virtual and/or physical ma-
chines that can trust each other based on a security policy that is uniformly
enforced independently of the boundaries of physical computing resources. It
leverages the combination of TC and virtualization techniques in order to pro-
vide confinement boundaries for an isolated execution environment — a domain
— hosted by several physical platforms.

A TVD-enforcing system supports the creation of virtual networks on physical
or virtual systems. Members of a TVD can “see” and access other TVD mem-
bers, but it is closed to non-members. Different instances of several TVDs can
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Fig. 3. Conceptual view of trusted virtual domains (TVDs)

execute on the same physical platform because the underlying virtual machine
monitor isolates virtual machines of different TVDs in separate compartments
and isolated virtual networks.

Figure 3 shows an example of three TVDs (identified by colors) distributed
over different physical machines. The decision whether a virtual or real machine is
allowed to join the TVD is enforced based on a TVD policy. A special node in the
TVD ( TVD Master), e.g., implemented as a central server, controls the access
to the TVD by following the admission control rules specified in the TVD policy.
These rules include integrity measurements of the platforms and virtual machines
that are allowed to join the domain. TC technology is used to establish trust
in the reported measurements, e.g., following the Trusted Computing Group
(TCG) approach, hash values of the software boot stack (BIOS, bootloader,
virtualization layer as well as loaded virtual machines) are stored in and signed
by a Trusted Platform Module (TPM) [6] and reported to the TVD Master
during attestation. The TVD Master can reliably verify whether the reported
values comply with the TVD policy and whether it can rely on the enforcement
mechanisms of the local platforms.3

TVDs were first proposed by Griffin et al. [4] and Bussani et al. [5]. Recent re-
search describes secure network virtualization [7], and discusses the management
of TVDs in data centers [8]. The OpenTC project4 has addressed some areas of
implementing TVDs in the context of enterprise rights management and man-
aging virtual data centers. A major issue is how the domain can be managed
securely: individual machines must be able to join a domain only if they fulfill
the requirements for joining, and the procedures for a platform to leave a domain
must be securely constructed. These aspects of TVDs have not been studied in
details yet. We describe the TVD establishment and join protocols and how TC
functionality is used (see Section 3.3). The idea of applying the TVD concept to
secure information sharing has been addressed by Katsuno et al. [9]. We extend
this idea to privacy policy enforcement.

3 The definition of the required integrity measurement values in the TVD policy pre-
supposes the knowledge about the security properties of the corresponding software.
In practice, trust can be achieved via independent trusted third parties that evaluate
and certify IT products according to standards like Common Criteria.

4 See http://www.opentc.net

http://www.opentc.net
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3.2 Realizing a Simple Privacy Policy with TVD

Let us consider a very simple privacy policy: only members of a particular TVD
have access to the private information. The TVD policy expresses the require-
ments for virtual machines to join the TVD and to access this information. The
TVD policy is used to implement the privacy policy, and the TVD infrastructure
provides the policy enforcement for the wallet.

The wallet can act as TVD Master. In this case, it is directly responsible for
policy enforcement. All parties that want to access the information have to join
the TVD first. As they request to join, the wallet verifies the security properties
of the joining parties using attestation. If the verification succeeds, the joining
party becomes a member of the TVD and can then access sensitive information.
The wallet can specify a set of “good” values for the platform configuration that
are necessary to access the data.

Application scenarios for the case where the wallet is the TVD Master include
those where the private information of one user is distributed to “homogeneous”
data consumers, e.g., in an e-health scenario, the medical data and health records
of patients are only accessible to computing platforms of medical personnel, but
not to systems used by other departments.

In other classes of scenarios, where users belonging to a group want to ex-
change private data, it is unrealistic to have a virtual domain managed by a
user’s wallet. In these cases, a trusted party could provide a TVD Master re-
sponsible for policy enforcement for the group. The wallet of a user who wishes
to exchange information within a group could attest the responsible TVD Mas-
ter (e.g., using TCG attestation) before joining. If this attestation includes both
the platform configuration of the TVD Master and the TVD policy, the wallet
can ensure that information is only distributed within a TVD, where the master
enforces a TVD policy that complies to the user’s own privacy policy. The wallet
can migrate to any node in the TVD (using conventional VM migration), and
the required verification of the security properties of the destination is handled
by the TVD establishment.

3.3 Implementation

Our prototype is based on the idea that a local proxy of the corresponding TVD
Master, the TVD Proxy, is running on each physical platform that is supposed
to execute virtual machines as part of a TVD. The TVD Proxy is responsible
for the local enforcement of the TVD policy and performs the admission control
for joining virtual machines. Since instances of multiple TVDs should be able to
run isolated on one computing platform, there can be several TVD Proxies (one
for each corresponding TVD) on one platform.

The main components of the trusted virtualization layer are as follows (see
also Figure 4):

– TVD-Proxy-Factory: service that creates and manages TVD Proxies. During
the establishment of the TVD, the TVD Master deploys the policy P and
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Fig. 4. TVD implementation architecture

corresponding credentials S (cryptographic keys and certificates for, e.g.,
network encryption) to the TVD-Proxy-Factory. To “verify” the trustworthi-
ness of the platform and its virtualization layer, the TVD Master requests a
remote attestation of the integrity measurements, using trusted computing
functionality of a TPM [6].

– CompartmentManager : service responsible for starting and terminating vir-
tual machines (compartments) and taking integrity measurements of the
virtual machines on start-up. This service also defines access rights for com-
munication between active compartments.

– TrustManager : service providing an interface to the underlying TPM and
used to create new binding keys, generate certificates for these keys, and
unbind data encrypted with a binding key. The binding key is protected
by the TPM and bound to the integrity measurements of the underlying
platform and its trusted virtualization layer. The certificate includes these
integrity measurements and permits a remote party to establish a trusted
channel to the platform, i.e., a secure channel (providing confidentiality and
integrity) bound to the integrity of the endpoint(s).

We have implemented this design based on an existing security kernel, Tu-
raya5, which comprises two layers: a hypervisor layer based on an L4 microkernel
and resource management services (memory management, I/O drivers), and a
trusted software layer providing security services, e.g., secure storage, virtualized
network, compartment management, and trusted channel establishment.

The L4 microkernel ensures isolation of processes and controls inter-process
communication (IPC). Compartments can be native L4 tasks or para-virtualized
Linux instances (L4Linux). Communication between compartments can be al-
lowed or denied by applying access rights to their IPC interfaces. The microkernel
enforces the IPC access control.

To support wallet functionality, it is necessary to establish a TVD and attach
a virtual machine to the TVD. A TVD is established in two phases:

5 http://www.emscb.com/content/pages/turaya.htm

http://www.emscb.com/content/pages/turaya.htm
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Fig. 5. TVD deployment protocol

1. Deploy TVD : First, the local TVD infrastructure must be set up, including
the deployment of the TVD policy and TVD credentials from the TVD
Master to the trusted virtualization layer of the local platform.

2. Join TVD : When policy and credentials are deployed, the local TVD Proxy
enforces the policy and determines if local VMs are allowed to join the TVD.

Staged establishment of the TVD was selected to avoid a central admission con-
trol that would result in considerable performance trade-offs. In this approach,
the TVD policy enforcement is partially delegated to the local platforms, but the
TVD Master must verify the trustworthiness (integrity state) of the platforms
to establish if they can be trusted. This is done during the deployment phase.

Deploy TVD. When TVD-Proxy-Factory receives a request to deploy a TVD,
TrustManager generates a binding certificate cert := (PKBind, CTCB). The
TrustManager uses the TPM to generate a new binding key pair (SKBind,
PKBind), where the secret key part is protected by the TPM and bound to the
integrity measurement of the trusted virtualization layer (CTCB). The TVD-
Proxy-Factory requests deployment from the TVD Master of the desired TVD
and sends the binding certificate, including the binding key PKBind.

The TVD Master checks whether the integrity measurement of the platform
matches the TVD policy. If it does, the TVD Master encrypts the TVD policy
P and the corresponding TVD credentials S with the binding key PKBind, and
sends the encrypted data to the local TVD-Proxy-Factory. See Figure 5.

The TVD-Proxy-Factory requests the TrustManager to unbind the data and
retrieves the TVD policy and credentials (P, S). It creates a new TVD Proxy,
passes the TVD policy P to it and configures the underlying resource manage-
ment services (e.g., virtual network switch) with the credentials S. Now the TVD
infrastructure is set up locally and ready to join virtual machines.

Join TVD. The user creates the VM using the CompartmentManager. The
CompartmentManager measures the integrity of the VM image (i.e., hashing
the image file), stores the measurement for future requests (during runtime),
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Fig. 6. TVD join protocol

starts the VM in a compartment, and returns a compartment identifier (unique
during runtime of the platform). The user can request to join the compartment
to the TVD by passing the compartment ID to the TVD Proxy.

The TVD Proxy obtains the integrity measurement m of the given compart-
ment ID from the CompartmentManager. If the value m is listed in the TVD
policy P as allowed to join, the TVD Proxy configures the underlying resource
management to connect the compartment to the virtual resources of the TVD,
e.g., “plugging” a virtual network connector to the VM.6

4 Remaining Challenges and Related Work

Privacy policy languages are designed to translate the privacy policies for users
and organizations into statements that can be interpreted by IT systems. In
[10] the authors give an overview of common policy languages. W3C’s Platform
for Privacy Preferences (P3P) was designed to express website privacy policies
in machine-readable format [11], and P3P Preference Exchange Language (AP-
PEL) is used to express privacy preferences of an individual and to query the
P3P data[12,13]. CPExchange was developed to facilitate business-to-business
communication about privacy policies [14]. For internal privacy policies of or-
ganizations, IBM proposed Enterprise Privacy Authorization Language (EPAL)
[15]. Another language for describing both privacy and security policies in a
machine readable format is the eXtensible Access Control Markup Language
(XACML) [16]. Other initiatives, such as DPAL [17], and XPref [18], addressed
various aspects of expressing privacy requirements and related concepts. Due to
the growth of services that require the transfer of context sensitive information
(e.g., time and location), the Internet Engineering Task Force (IETF) initiative
started work on Geopriv, a language that can express policies for granting access
on the basis of presence and location information [17].

6 The details of the resource isolation and realization of TVDs on this level are out of
scope for this paper. Cabuk et al. [7] show how to realize network isolation based on
VLAN tagging.
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In addition to the earlier work on access control policies and (privacy) lan-
guages, recent research has analyzed and developed methodologies for evaluating
actual policies to compare them with the policies the users desired to use, e.g.,
Bauer et al. [19] conducted user study of access control policies. Cornwell et
al. [20] have analyzed policy management in different applications in mobile
computing and developed applications where users can define policies to control
the usage of private information, e.g., location-based or contextual information.
Sadeh et al. [21] analyzed user interfaces for policy definition and mechanisms
for auditing the disclosure of private information.

We conclude that, while the need to ensure user control and enforcement of
privacy policies was recognized, most research so far focuses on formal languages
defining privacy and related policies in various contexts, user requirements for
such policies, and approaches for applications to incorporate user controlled flex-
ible policies. However, little attention was given to the mechanisms to support
automatic enforcement and interpretation of these policies. In this paper, we
propose an approach to policy enforcement that takes into consideration the re-
sults of earlier research, including user requirements and design of formal policy
languages. The new framework offers a realistic approach to the control and en-
forcement of privacy policies in a variety of contexts. We think that TVDs can
help construct the privacy domains to support privacy protection of sensitive
data that need to be shared. The process to build domains where the protection
of sensitive data is governed by privacy policies determined by users still needs
to be defined. Policy management for privacy domains remains a major chal-
lenge as complex privacy policies need to be enforced within a domain, when a
machine joins or leaves the domain, and for inter-domain communication.

The idea of the Trusted Personal Information Wallet is derived from previous
work [22], which uses a password wallet as authentication agent to access web
sites. It protects private data (credentials) of a user during the authentication
to a remote server. This approach uses Trusted Computing technology to ensure
that the wallet is executed in a trusted environment. In addition to protecting
the credentials, SpyBlock [23] protects against the unintentional disclosure of
sensitive information (like credit card numbers, name, address, etc.) as a result
of malicious transactions [24].

Since the Trusted Personal Information Wallet acts as an agent for the user’s
private data and it can migrate to other platforms, it is comparable to mobile
agents. Wilhelm et al. [25] propose to use a tamper-resistant hardware to provide
a secure execution environment for mobile agent code. Balfe and Gallery [26]
outline how attestation can be used to ensure that an agent only visits host
platforms behaving in an expected manner and that access to the private agent
data complies to the desired security policies. In [27], the main approach is the
protection of an agent’s private cryptographic key by binding the key to a TPM.
In contrast, the wallet (agent) in the framework proposed here does not directly
use the TPM, but relies on the TVD infrastructure to (automatically) deploy a
trusted execution environment and enforce privacy policies.
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5 Conclusion

In this paper, we proposed a conceptual framework for privacy policy manage-
ment and enforcement to ensure security and trust for sharing of private or sen-
sitive information. We believe that Trusted Computing technology, in particular
the concept of trusted virtual domains (TVDs), can efficiently support privacy
policy enforcement. We think that future research will lead to the development
of trusted privacy-enhancing architectures that will be applicable to several use
cases, e.g., e-commerce, enterprise rights management, e-health, and other areas.
Here we outline only the first steps towards the definition of such architectures.
In addition, the definition and enforcement of more complex privacy policies will
be a subject of future work.

Acknowledgment. This work has been partially funded by the European Com-
mission as part of the OpenTC project (http://www.opentc.net).
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