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Preface

These are the proceedings of the Third International Symposium on Quantum
Interaction (QI-2009), held at the German Research Centre for Artificial Intel-
ligence (DFKI), Saarbrücken during March 25-27, 2009.
Quantum theory (QT) is being applied to domains such as artificial intelligence,
human language, cognition, information retrieval, biology, political science, eco-
nomics, organizations, and social interaction. After highly successful meetings at
Stanford (QI-2007) and Oxford (QI-2008), QI-2009 brought together researchers
interested in advancing and applying the methods and structures of QT to these
and other domains outside of quantum physics:

– Advancement of theory and experimentation for applying quantum theory
to non-quantum domains

– Use of quantum algorithms to address, or to more efficiently solve, problems
in non-quantum domains (including contrasts between classical vs. quantum
methods)

– Practical applications to quantum domains, such as implementation of AI,
or information retrieval (IR) techniques

The proceedings include 21 long papers and 3 position papers. Each paper was
thoroughly reviewed by at least two members of the international Program Com-
mittee. The proceedings highlight the cross-disciplinary nature of quantum in-
teraction with papers covering topics such as computation, cognition, decision
theory, information retrieval, information systems, social interaction, computa-
tional linguistics and finance. In addition, we were honored to receive a keynote
presentation by Dagmar Bruss (Institute for Theoretical Physics, University of
Düsseldorf). We gratefully acknowledge the support of Earl Research and Kirsty
Kitto for helping prepare these proceedings.

January 2009
Peter Bruza

Donald Sofge
William Lawless

Keith van Rijsbergen
Matthias Klusch
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Introduction to Quantum Probability for Social
and Behavioral Scientists

Jerome R. Busemeyer

Indiana University

1 Introduction to Quantum Probability for Social and
Behavioral Scientists

There are two related purposes of this tutorial. One is to generate interest in
a new and fascinating approach to understanding behavioral measures based
on quantum probability principles. The second is to introduce and provide a
tutorial of the basic ideas in a manner that is interesting and easy for social and
behavioral scientists to understand.

It is important to point out from the beginning that in this tutorial, quantum
probability theory is viewed simply as an alternative mathematical approach for
generating probability models. Quantum probability may be viewed as a general-
ization of classic probability. No assumptions about the biological substrates are
made. Instead this is an exploration into new conceptual tools for constructing
social and behavioral science theories. Why should one even consider this idea?
The answer is simply this (cf., Khrennikov, 2007). Humans as well as groups and
societies are extremely complex systems that have a tremendously large number
of unobservable states, and we are severely limited in our ability to measure all
of these states. Also human and social systems are highly sensitive to context
and they are easily disturbed and disrupted by our measurements. Finally, the
measurements that we obtain from the human and social systems are very noisy
and filled with uncertainty. It turns out that classical logic, classic probability,
and classic information processing force highly restrictive assumptions on the
representation of these complex systems. Quantum information processing the-
ory provides principles that are more general and powerful for representing and
analyzing complex systems of this type.

Although the field is still in a nascent stage, applications of quantum probabil-
ity theory have already begun to appear in areas including information retrieval,
language, concepts, decision making, economics, and game theory (see Bruza,
Lawless, van Rijsbergen, and Sofge, 2007; Bruza, Lawless, van Rijsbergen, and
Sofge, 2008; also see the Special Issue on Quantum Cognition and Decision to
appear in Journal of Mathematical Psychology in 2008).

The tutorial is organized as follows. First we describe a hypothetical yet typ-
ical type of behavioral experiment to provide a concrete setting for introduc-
ing the basic concepts. Second, we introduce the basic principles of quantum
logic and quantum probability theory. Third we discuss basic quantum concepts

P. Bruza et al. (Eds.): QI 2009, LNAI 5494, pp. 1–2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 J.R. Busemeyer

including compatible and incompatible measurements, superposition, measure-
ment and collapse of state vectors. Classic probability and quantum probability
will be compared, side by side, so that we can see exactly where these theo-
ries agree and disagree. All of the material can be downloaded from my web site
http://mypage.iu.edu/ jbusemey/quantum/Quantum%20Cognition%20Notes.
htm.



Revealing Quantum Entanglement via Locally
Noneffective Operations

Dagmar Bruß1, Sevag Gharibian2, and Hermann Kampermann1

1 Institut für Theoretische Physik III,
Heinrich-Heine-Universität Düsseldorf,

Düsseldorf, Germany
{bruss,kampermann}@thphy.uni-duesseldorf.de

2 School of Computer Science and Institute for Quantum Computing,
University of Waterloo,

Waterloo, Canada
sggharib@cs.uwaterloo.ca

Abstract. Quantum entanglement is at the heart of quantum informa-
tion processing. Various methods for the detection of entanglement have
been developed. Here, we will explain an approach that uses locally non-
effective unitary operations which, however, do cause a change of the
global density matrix - an indication for the existence of correlations.
We investigate whether this method can distinguish between classical
and quantum correlations.

Revealing Quantum Entanglement via Locally Noneffective
Operations

Composite quantum systems can exhibit the property of being entangled, i.e.
the subsystems are correlated “stronger” than any classical correlation allows.
Inspite of being intensively studied over the last two decades [1], entanglement
is not yet fully understood. In particular, no complete constructive method to
answer the following question is known: “given a quantum state �, is it entangled
or separable?” For mixed bipartite quantum states (i.e. quantum systems com-
posed of two subsystems), entanglement is defined as follows. Let � be a state
acting on the Hilbert space HM ⊗ HN , where M and N denote the respective
dimensions of the subspaces, and N ≤M without loss of generality. If � can be
written in the form

� =
n∑

k=1

pk|ak〉〈ak| ⊗ |bk〉〈bk|, (1)

for pk ∈ R
+,

∑n
k=1 pk = 1, n ≥ 1, and normalised vectors |ak〉 ∈ HM , |bk〉 ∈

HN , then � is separable [2], otherwise � is entangled. In this talk, we will focus
on a particular theme for bipartite states: we will study the global action of
certain locally noneffective operations, and try to use them as a tool to detect
entanglement. Locally noneffective unitary operations have been introduced by

P. Bruza et al. (Eds.): QI 2009, LNAI 5494, pp. 3–5, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



4 D. Bruß, S. Gharibian, and H. Kampermann

Fu [3], under the name of “local cyclic operations”. Given �, acting onHM⊗HN ,
a locally noneffective (or cyclic) unitary operation UB is defined by the condition

UB�BUB†
= �B , (2)

where �B = TrA(�) is the reduced density matrix of the second subsystem. The
above condition is equivalent to [�B, UB] = 0. Although UB has no effect on the
reduced density matrix �B, the action of (1l⊗UB) may change the global density
matrix �. We denote the final global density matrix as �f = (1l⊗UB)�(1l⊗UB†).
The distance d(�, UB) between the original global state and the transformed one
is given by

d(�, UB) :=
1√
2
||�− �f ||, (3)

which we call the Fu distance [3]. We use the norm ||A|| = √
Tr(A†A). We have

investigated whether the maximal Fu distance dmax(�),

dmax(�) := max
loc.noneff.UB

d(�, UB), (4)

i.e. the maximal possible global distance achieved under any locally noneffective
unitary operation, can indicate the existence of entanglement[4]. There is an
upper bound [3] for the maximal Fu distance in the case of a classically correlated
state �cc:

dmax(�cc) ≤
√

2(M − 1)(N − 1)
MN

. (5)

Thus, any Fu distance which is larger than this threshold reveals the existence
of entanglement. A summary of our results [4] is as follows:

1) For a so-called pseudopure state �, acting on HM ⊗HN , defined as

� = ε|ψ〉〈ψ|+ 1l− ε

MN
I, (6)

with 0 < ε ≤ 1, the maximal Fu distance is

dmax(�) =

{
ε if a2

m ≤ 1
2 ,

2ε am

√
1− a2

m otherwise.
(7)

Here, am is the maximal coefficient in the Schmidt decomposition |ψ〉 =∑N−1
k=0 ak|k〉A⊗|k〉B, where ak are non-negative real numbers (Schmidt coef-

ficients), i.e. am = maxk ak. In connection with eq. (5) one finds a condition
for am as function of ε that allows to detect entanglement of pseudopure
states.

2) For a Werner state �W , acting on HD ⊗HD with D ≥ 2, defined as [2]:

�W = p
2

D2 + D
Psym + (1− p)

2
D2 −D

Pas, (8)
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with P =
∑

ij |i〉〈j| ⊗ |j〉〈i| and Psym = 1
2 (1lD2 + P ) and Pas = 1

2 (1lD2 − P ),
where 1lD2 is the D2-dimensional identity matrix and 0 ≤ p ≤ 1, we find the
maximal Fu distance

dmax(�W ) =
|2pD −D − 1|

D2 − 1
, (9)

obtained using any traceless D×D choice of unitary UB. Together with eq.
(5) one can again find a condition for p that allows to detect the entanglement
of a Werner state.

3) We have also studied three different types of bound entangled states (namely,
two families of two-qutrit Horodecki states and bound entangled states from
unextendible product bases); however, we did not find any possibility to
detect bound entanglement via locally noneffective unitaries. But we did not
find a proof that no bound entangled state can be detected in this way.

Regarding the search for an interpretation of the Fu distance, let us point out
that it cannot be used as an entanglement measure (there exist entangled states
with different degree of entanglement, leading to the same maximal Fu distance;
in addition, some non-maximally entangled states can achieve a maximal Fu
distance). It is also no non-locality measure, as purely classically correlated states
can achieve a non-zero Fu distance. There does exist a connection of the Fu
distance to the CHSH inequality [5] in the two-qubit case, namely both the
CHSH inequality and the maximal Fu distance detect the same entangled Werner
states of two qubits. A full understanding of the Fu distance is still missing at
the moment.

References
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Fractals and the Fock-Bargmann Representation
of Coherent States

Giuseppe Vitiello

Dipartimento di Matematica e Informatica and INFN
Università di Salerno, I-84100 Salerno, Italy

vitiello@sa.infn.it

http://www.sa.infn.it/giuseppe.vitiello

Abstract. The self-similarity property of deterministic fractals is stud-
ied in the framework of the theory of entire analytical functions. The
functional realization of fractals in terms of the q-deformed algebra of
coherent states is presented. This sheds some light on the dynamical for-
mation of fractals and provides some insight into the geometrical prop-
erties of coherent states. The global nature of fractals appears to emerge
from coherent local deformation processes.

Much attention has been devoted to the study of fractals due to their relevance
in science, from physics to biology, medical sciences, earth science, clustering of
galaxies, etc. [1]. In this paper I focus my attention on self-similarity, which is a
characterizing properties of a large class of fractals (in some sense self-similarity
is the most important property of fractals (p. 150 in ref. [2])). In particular, I
discuss the functional realization of fractals in the framework of the theory of
the entire analytical functions and their relation with the deformed algebra of
(Glauber) coherent states [3,4] (the existence of such a relation was conjectured
in ref. [5]). This sheds some light on the dynamical formation of fractals and at
the same time, from the perspective of coherent states, provides insights into the
geometrical (fractal) properties of coherent states. The global nature of fractals
appears to emerge from the coherence of local deformation processes.

In the present paper I will not discuss the measure of lengths in fractals,
the Hausdorff measure, the fractal “mass”, random fractals, and other fractal
properties. My discussion is limited to the self-similarity property of fractals
which are generated iteratively according to a prescribed recipe, the so-called
deterministic fractals. In the following I will closely follow refs.[4].

Let me consider the example of the Koch curve (Fig. 1). In the step, or stage, of
order n = 0, the one-dimensional (d = 1) segment u0 of unit length L0, called the
initiator [1], is divided by the reducing factor s = 3, and the rescaled unit length
L1 = 1

3L0 is adopted to construct the new “deformed segment” u1, called the
generator [1], made of α = 4 units L1 (step of order n = 1). The “deformation”
of the u0 segment is only possible provided the one dimensional constraint d = 1
is relaxed. The u1 segment “shape” lives in some d 	= 1 dimensions and thus we
write u1,q(α) ≡ q α u0, q = 1

3d , d 	= 1 to be determined. The index q has been
introduced in the notation of the deformed segment u1.

P. Bruza et al. (Eds.): QI 2009, LNAI 5494, pp. 6–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Fractals and the Fock-Bargmann Representation of Coherent States 7

Fig. 1. The first five stages of Koch curve

In general, denoting by H(L0) lengths, surfaces or volumes, one has

H(λL0) = λdH(L0) (1)

under the scale transformation: L0 → λL0. A square S of side L0 scales to 1
22 S

when L0 → λL0 with λ = 1
2 . A cube V of same side with same rescaling of L0

scales to 1
23 V . Thus d = 2 and d = 3 for surfaces and volumes, respectively. Note

that S( 1
2 L0)

S(L0)
= p = 1

4 and V ( 1
2 L0)

V (L0)
= p = 1

8 , respectively, so that in both cases
p = λd. For the length L0 it is p = 1

2 ; 1
2d = λd and p = λd gives d = 1.

In the case of any other “ipervolume” H one considers the ratio

H(λL0)
H(L0)

= p , (2)

and Eq. (1) is assumed to be still valid. Then,

p H(L0) = λdH(L0) , (3)

i.e. p = λd. For the Koch curve, setting α = 1
p = 4 and q = λd = 1

3d , the relation
p = λd gives

qα = 1 , where α = 4, q =
1
3d

, (4)

i.e.
d =

ln 4
ln 3
≈ 1.2619 . (5)

The non-integer d is called the fractal dimension, or the self-similarity dimension
[2]. It is the dimension of the deformed space that ensures the existence of
a solution of the relation 1

α = 1
4 = 1

3d = q. In this sense d is a measure of
the “deformation” of the u1,q-space with respect to the u0-space. Note that
the meaning of Eq. (4) is that the measure of the deformed segment u1,q with
respect to the undeformed segment u0 be 1: u1,q

u0
= 1, i.e. αq = 4

3d = 1. In some
sense, it expresses the invariance of the lengths under the deformations we are
performing. In the following, for brevity I will set u0 = 1.
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Since the deformation of u0 into u1,q is performed by varying the number α
of the component segments from 3 to 4, we expect that α and d

dα play a rôle in
the fractal structure. We will see that (α, d

dα ) play indeed the rôle of conjugate
variables (cf. Eq. (10)).

Steps of higher order n, n = 2, 3, 4, ..∞, can be obtained by iteration of the
deformation process keeping q = 1

3d and α = 4 . For example, in the step n = 2,
u2,q(α) ≡ q α u1,q(α) = (q α)2 u0, and so on. For the nth order deformation:

un,q(α) ≡ (q α)un−1,q(α) , n = 1, 2, 3, ... (6)

i.e., for any n

un,q(α) = (q α)n u0 . (7)

By iteration, or, equivalently, by requiring that un,q(α)
u0

be 1 for any n, gives
(q α)n = 1 and Eq. (5) is again obtained. It should be stressed that the fractal
is mathematically defined in the limit of infinite iterations of the deformation
process, n→∞: in this sense, the fractal is the limit of the deformation process
for n → ∞. The definition of fractal dimension is indeed more rigorously given
starting from (qα)n = 1 in the n → ∞ limit [1,6]. As a matter of fact, self-
similarity is defined only in the n→∞ limit (self-similarity does not hold when
considering only a finite number n of iterations). Since Ln → 0 for n→∞, the
Koch fractal is a curve which is everywhere non-differentiable [2].

Eqs. (6) and (7) express, in the n → ∞ limit, the self-similarity property of
a large class of fractals (the Sierpinski gasket and carpet, the Cantor set, etc.)
[1,6]. I also recall that invariance (always in the limit of n→∞ iterations) only
under anisotropic magnification is called self-affinity. The discussion below can
be extended to self-affine fractals.

I now observe that, by considering in full generality the complex α-plane, the
functions

un(α) =
αn

√
n!

, u0(α) = 1 , n ∈ N+ , α ∈ C , (8)

form in the space F of the entire analytic functions a basis which is orthonormal

under the gaussian measure dμ(α) =
1
π

e−|α|2dαdᾱ. In Eq. (8) the factor 1√
n!

ensures the normalization condition with respect to the gaussian measure.
The functions un,q(α)|q→1 in Eq. (7) (for the factor q 	= 1 see the discussion

below), are thus immediately recognized to be nothing but the restriction to real
α of the functions in Eq. (8), apart the normalization factor 1√

n!
. The study of

the fractal properties may be thus carried on in the space F of the entire analytic
functions, by restricting, at the end, the conclusions to real α, α→ Re(α). Since
in Eq. (7) it is q 	= 1 (q < 1), actually one needs to consider the “q-deformed”
algebraic structure of which the space F provides a representation.

To that aim, let me start by observing that the space F is a vector space
which provides the so-called Fock-Bargmann representation (FBR) [7] of the
Weyl–Heisenberg algebra
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[a, a†] = 1 , [N, a†] = a† , [N, a] = −a , (9)

where N ≡ a†a, with the identification:

N → α
d

dα
, a† → α , a→ d

dα
. (10)

The un(α) (Eq. (8)) are easily seen to be eigenkets of N with integer (positive
and zero) eigenvalues. The FBR is the Hilbert space K generated by the un(α),
i.e. the whole space F of entire analytic functions. Any vector |ψ〉 in K is as-
sociated, in a one-to-one correspondence, with a function ψ(α) ∈ F and is thus
described by the set {cn; cn ∈ C,

∑∞
n=0 |cn|2 = 1} defined by its expansion in

the complete orthonormal set of eigenkets {|n〉} of N :

|ψ〉 =
∞∑

n=0

cn|n〉 → ψ(α) =
∞∑

n=0

cnun(α), (11)

〈ψ|ψ〉 =
∞∑

n=0

|cn|2 =
∫
|ψ(α)|2dμ(α) = ||ψ||2 = 1, (12)

|n〉 =
1√
n!

(a†)n|0〉 , (13)

where |0〉 denotes the vacuum vector, a|0〉 = 0, 〈0|0〉 = 1. The series expressing
ψ(α) in Eq. (11) converges uniformly in any compact domain of the α-plane due
to the condition

∑∞
n=0 |cn|2 = 1 (cf. Eq. (12)), confirming that ψ(α) is an entire

analytic function. In view of the correspondence K → F ( |n〉 → un(α)) we
have

a† un(α) =
√

n + 1 un+1(α) , a un(α) =
√

n un−1(α) , (14)

N un(α) = a†a un(α) = α
d

dα
un(α) = n un(α) , (15)

which establish the mutual conjugation of a and a† in the FBR, with respect to
the measure dμ(z).

The Fock–Bargmann representation is known [7,8] to provide an useful frame
to describe the (Glauber) coherent states (CS) |α〉:

|α〉 = exp
(
−|α|

2

2

) ∞∑
n=0

αn

√
n!
|n〉 = exp

(
−|α|

2

2

) ∞∑
n=0

un(α)|n〉. (16)

These are generated by the action on the vacuum state |0〉 of the unitary
displacement operator D(α) given by:

D(α) = exp
(
αa† − ᾱa

)
= exp

(
−|α|

2

2

)
exp

(
αa†) exp

(−ᾱ a
)

, (17)

|α〉 = D(α)|0〉 , a|α〉 = α|α〉 , α ∈ C . (18)

We also have
D−1(α) a D(α) = a + α . (19)
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The explicit relation between the CS and the entire analytic function basis
{un(α)} (Eq. (8)) is:

un(α) = e
1
2 |α|2〈n|α〉 . (20)

The operator D(α) is a bounded operator defined on the whole K. It provides
a representation of the Weyl–Heisenberg group [7]. The set {|α〉} is an over-
complete set of states. A complete set can be extracted by introducing in the
complex α-plane a regular lattice L, called the von Neumann lattice [7].

I now introduce the deformation parameter q = eζ , ζ ∈ C and recall that
the operator qN acts on the whole F as [9]

qNf(α) = f(qα) , f(α) ∈ F . (21)

which follows from the analysis of the q-deformation of the Weyl-Heisenberg
algebra. See ref. [9] for details. Use of this relation gives qNun(α) = un(qα) and
thus for the coherent state functional (16) we have

qN |α〉 = |qα〉 = exp
(
−|qα|

2

2

) ∞∑
n=0

(qα)n

√
n!
|n〉 . (22)

Since qα ∈ C, from Eq. (18),

a |qα〉 = qα |qα〉 , qα ∈ C . (23)

Eq. (7), with u0 set equal to 1, is obtained by projecting out the nth compo-
nent of |qα〉 and restricting to real qα, qα→ Re(qα):

un,q(α) = (qα)n =
√

n! exp
( |qα|2

2

)
〈n|qα〉, for any n, qα→ Re(qα), (24)

which, taking into account that 〈n| = 〈0| (a)n

√
n!

, gives

un,q(α) = (qα)n = exp
( |qα|2

2

)
〈0|(a)n|qα〉, for any n, qα→ Re(qα). (25)

The operator (a)n thus acts as a “magnifying” lens [1]: the nth iteration of the
fractal can be “seen” by applying (a)n to |qα〉 and restricting to real qα:

〈qα|(a)n|qα〉 = (qα)n = un,q(α), qα→ Re(qα). (26)

Summarizing, the nth fractal stage of iteration, with n = 0, 1, 2, ..,∞, is
represented, in a one-to-one correspondence, by the nth term in the coherent
state series Eq. (22). The operator qN applied to |α〉 (Eq. (22)) “produces” the
fractal in the functional form of the coherent state |qα〉. I call qN the fractal
operator.

Note that Eq. (23) expresses the invariance of the coherent state under the
action of the operator 1

qαa and allows to consider the coherent functional ψ(qα)
as an “attractor” in F . This reminds us of the fixed point equation W (A) = A,
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where W is the Hutchinson operator [1], characterizing the iteration process for
the fractal A in the n→∞ limit.

The connection between fractals and the (q-deformed) algebra of the coherent
states is formally established by Eqs. (24), (25) and (26).

I finally observe that the fractal operator qN can be realized in F as:

qNψ(α) =
1√
q

exp
(

ζ

2
(
c2 − c†

2))
ψ(α) ≡ 1√

q
Ŝ(ζ)ψ(α) ≡ 1√

q
ψs(α) , (27)

where q = eζ (for simplicity, assumed to be real), N = α d
dα and

c =
1√
2

(
α +

d

dα

)
, c† =

1√
2

(
α− d

dα

)
, [c, c†] = 1 . (28)

In F , c† is the conjugate of c [7,9]. It is convenient to set α ≡ x + iy,
x and y denoting the real and the imaginary part of α, respectively. In the
limit α → Re(α), i.e. y → 0, c and c† turn into the conventional annihilation
and creator operators associated with x and px in the canonical configuration
representation, respectively.

Eq. (27) shows that qN acts in F , as well as in the configuration representation
in the limit y → 0, as the squeezing operator Ŝ(ζ) (well known in quantum
optics [9,10,11]) up to the numerical factor 1√

q . ζ = ln q is called the squeezing
parameter. In (27) ψs(α) denotes the squeezed states in FBR. The q-deformation
process, which we have seen is associated to the fractal generation process, is
equivalent to the squeezing transformation.

In the y → 0 limit, we have

Ŝ−1(ζ) α Ŝ(ζ) =
1
q
α→ 1

q
x , (29)

Ŝ−1(ζ) pα Ŝ(ζ) = qpα → qpx , (30)

where pα ≡ −i d
dα . Eq. (29) shows that α→ 1

q α under squeezing transformation,
which, in view of the fact that q−1 = α (cf. Eq. (4)), means that α → α2, i.e.
under squeezing we proceed further in the fractal iteration process. Thus, the
fractal iteration process can be described in terms of the coherent state squeezing
transformation.

Due to the holomorphy conditions holding for f(α) ∈ F ,

d

dα
f(α) =

d

dx
f(α) = −i

d

dy
f(α) , (31)

in the y → 0 limit we get form (28)

c→ 1√
2

(
x + ipx

) ≡ ẑ , c† → 1√
2

(
x− ipx

) ≡ ẑ† , [ẑ, ẑ†] = 1 , (32)

where px = −i d
dx . ẑ† and ẑ are the usual creation and annihilation operators in

the configuration representation. Under the action of the squeezing transforma-
tion, use of (29) and (30) leads to
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ẑq =
1

q
√

2

(
x + iq2px

)
, ẑ†q =

1
q
√

2

(
x− iq2px

)
, [ẑq, ẑ

†
q ] = 1 . (33)

Let x1 ≡ x and x2 ≡ q2px be the coordinates in the “deformed” phase space.
Such coordinates do not commute:

[x1, x2] = iq2 . (34)

We thus recognize that q-deformation introduces non-commutative geometry in
the (x1, x2)-space. The distance D in such a space is given by the noncommuta-
tive Pythagoras theorem:

D2 = x2
1 + x2

2 = 2q2(ẑ†q ẑq +
1
2
)

. (35)

Form the known properties of creation and annihilation operators we then get
in F , in the y → 0 limit,

D2
n = 2q2(n +

1
2
)

, n = 0, 1, 2, 3... , (36)

i.e. in the space (x1, x2) associated to the coherent state fractal representation,
the (x1, x2)-distance is quantized according to the unit scale set by q. Eq. (36)
shows that in the space (x1, x2) we have quantized “disks” of squared radius
vector D2

n. The “smallest” of such disks has non-zero radius given by the de-
formation parameter q (recall that q = 1

3d when Koch fractal is considered).
Recalling the expression of the energy spectrum of the harmonic oscillator, one
could write Eq. (36) as 1

2D2
n = q2

(
n + 1

2

) ≡ En, n = 0, 1, 2, 3..., where En might
be thought as the “energy” associated to the fractal n-stage.

Let me close the paper with a couple of comments. Certainly, connecting
fractal self-similarity and coherent states opens the way to a series of possi-
ble theoretical developments and practical applications in a number of research
sectors, including the field of complex dynamical systems. From the theoretical
point of view, embedding the fractal study in the framework of the entire analyti-
cal functions may contribute to the treatment of fractal properties which present
non-trivial difficulties due to the lack of a tractable mathematical representation;
for example, the Koch curve is known to be everywhere non-differentiable [2],
which makes it greatly interesting, but also difficult to deal with. From the stand-
point of coherent states, there might be interesting applications in laser physics
and quantum optics, where Glauber coherent states play a dominant role. Since
coherent states always emerge as a result of boson condensation (see, e.g., Eq.
(19), which describes indeed the (coherent) condensation transformation of the
mode a in the vacuum |0〉), recognizing their fractal structure may contribute
to the understanding of physical properties and behaviors in condensed matter
systems endowed with a condensed ground state. Here, of course, the perspective
opens towards the large class of phenomena based on the mechanism of spon-
taneous breakdown of symmetry. There the physical meaning of the process of
coherent condensation of Nambu-Goldstone modes is the one of the appearance
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of long range correlation in the system, namely of the dynamical formation of
ordered patterns in the ground state. Perhaps the common feature underlying
fractal formation and ordered pattern formation is indeed in the dynamical emer-
gence of long range correlation modes. We know that this is certainly the case in
Quantum Field Theory systems characterized by ordered patterns in the ground
state. The discussion presented above seems to suggest that this might be also
the case for fractals. If so, this would provide an interesting example of interplay
between the mesoscopic/macroscopic dimension of fractals and the microscopic
dynamics out of which they are formed. It also provides an interesting example
of a relation of global features (long range correlation at mesoscopic/macroscopic
level) with local deformation processes (i.e. dynamical properties at microscopic
level). On such a kind of relation is based our understanding of the forma-
tion of topologically non-trivial defects (also called extended objects), such as
vortices, domain walls, boundary defects, and other soliton-like defects in con-
densed matter physics and high energy physics [3,11,12]. These extended objects
behave as macroscopic classical objects, but are generated by the microscopic
(quantum) dynamics. On the basis of our discussion, now one might suspect that
perhaps the class of these extended objects might be enlarged so to include also
fractals.

The relation between fractal self-similarity and squeezing is also interesting
since it is known that squeezed coherent states are also related with
dissipative systems [9,13,14]. Thus a link might be established between dissi-
pation, which plays a relevant role in complex dynamical systems, and fractal
studies.

Of course, a large field of applications might be offered by biological sys-
tems. An interesting example in such a direction is provided by brain studies
[4,15]. Self-similarity is in fact observed to characterize the brain background
activity. Measurements of the durations, recurrence intervals and diameters of
neocortical EEG phase patterns have power-law distributions with no detectable
minima. The power spectral densities in time and space of ECoGs from surface
arrays conform to power-law distributions [16,17,18,19,20]. The activity pat-
terns generated by neocortical neuropil appear to be scale-free [21,22] with self-
similarity in ECoGs patterns over distances ranging from hypercolumns to an
entire cerebral hemisphere (which might explain the similarity of neocortical
dynamics in mammals, from mouse [23] to whale [24], differing in brain size
by 4 orders of magnitude, which contrasts strikingly with the relatively small
range of size of avian, reptilian and dinosaur brains lacking neocortex) [25]. In
the dissipative model of brain squeezed coherent states describe the brain back-
ground activity [26]. According to the result of the present paper they provide the
functional representation of self-similarity observed in neuro-phenomenological
data. The dissipative model of brain thus accounts for the self-similarity in
brain background activity. An application of the relation between fractal self-
similarity and coherent squeezed states is thus found when studying the brain
dynamics [4].
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I recall that the Weyl-Heisenberg representations are labeled by the
q-parameter by means of the squeezing transformations [14]. In the infinite
volume limit (infinite degrees of freedom) representations labeled by different
values of the q-deformation parameter are unitarily inequivalent representations
[9]. Changes of the value of the q-parameter induce transitions through unitarily
inequivalent representations. The trajectories so induced over the space of the
representations can be shown to be, under quite general conditions, chaotic tra-
jectories [5]. One might consider also phase parameters and translation param-
eters (which characterize generalized coherent states, such as SU(2), SU(1, 1),
etc. coherent states), besides the scale parameter, and relate them to the defor-
mation q-parameter. By changing these parameters in a deterministic iterated
function process, also called multiple reproduction copy machine process [2], the
Koch curve may be then transformed into another fractal, e.g. into Barnsley’s
fern [2]. In the framework presented in this paper, these fractals are then de-
scribed by corresponding unitarily inequivalent representations in the limit of
infinitely many degrees of freedom (infinite volume limit) [3]. In this way one
might recover the richness of the variety of “different” fractal shapes obtainable
by changing the parameters of the fractal one starts with [2]. Work is in progress
along such a direction.

In conclusion, by limiting my discussion to fractals generated iteratively ac-
cording to a prescribed recipe (deterministic fractals), I have presented the func-
tional realization of fractal self-similarity in terms of the q-deformed algebra of
coherent states. Fractal study can be thus incorporated in the theory of entire
analytical functions. From the discussion it appears that the reverse is also true:
under convenient choice of the q-deformation parameter and by a suitable re-
striction to real α, coherent states exhibit fractal properties in the q-deformed
space of the entire analytical functions.

The relation here established between fractals and coherent states introduces
dynamical considerations in the study of fractals and of their origin, as well as
geometrical insight into the coherent states properties. Fractals appear to be
global systems arising from local deformation processes.
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Abstract. In this third Quantum Interaction (QI) meeting it is time to
examine our failures. One of the weakest elements of QI as a field, arises
in its continuing lack of models displaying proper evolutionary dynamics.
This paper presents an overview of the modern generalised approach to
the derivation of time evolution equations in physics, showing how the
notion of symmetry is essential to the extraction of operators in quantum
theory. The form that symmetry might take in non-physical models is
explored, with a number of viable avenues identified.

1 Quantum Interactions Are Not Evolving

As a field Quantum Interaction (QI) has progressed well in recent years [8, 10]. It is
clear that something is to be gained from applying the quantum formalism to the
description of systems not generally considered physical [1, 4, 14, 16, 23]. However,
despite this initial promise, there are many elements of quantum theory that have
yet to be properly applied within this framework. Perhaps most notably, it is clear
that time evolution has yet to be properly implemented (i.e. derived) for any of
these systems. This is a very significant weakness. Without an appreciation of how
an entangled quantum-like system might come about it becomes rather difficult
to justify the quantum collapse model that is very often leveraged in the quantum
interaction community. This paper will explore the notion of time evolution in
standard quantum theory (QT), sketching out the modern approach to extracting
Hamiltonians and unitary operators. We shall then utilise this approach to suggest
some interesting avenues that might be pursued in the future extraction of a fully-
fledged quantum-like theory capable of evolving, entangling and then collapsing.

There is no apriori reason to expect that the Schrödinger equation is the only
form of time evolution equation available in a quantum-like theory. This paper
will discuss the reasons lying behind this, and propose ways in which the QI
community might work to establish a new time dynamics, or to prove that the
application of Schrödinger dynamics is appropriate. Even if some justification
can be found for the application of the Schrödinger equation beyond the descrip-
tion of physical systems, it is highly unlikely that the common techniques used in
the extraction of a quantum description will work. This is because the standard
approach to constructing a quantum theory generally involves finding a descrip-
tion of the system of interest that bears resemblance to an existing quantum
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description and then making use of a perturbative approach to extract the new
quantum dynamics. Given that the systems modelled within the QI community
are not necessarily physical in origin we might expect that this method will prove
difficult to apply in this field.

It is worth emphasising at this point the necessity of these considerations.
While the problem of describing composite quantum systems is well understood,
there is no reason to expect that the systems described by the QI community will
behave identically to physical systems. While entanglement and measurement are
commonly used by QI models, almost none of them show how a quantum-like
system might evolve to the point where it could be measured. One of the most
commonly used techniques in the modelling of physical systems involves showing
an approximate equivalence with a system already modelled and then applying
that model to the new system. This may work for some QI models, but there is a
very real possibility that not all QI systems will have direct physical analogues.
This paper has been written in order to show those of the QI community who
do not have a background in physics how they might proceed in constructing an
evolving quantum-like theory if this becomes necessary.

2 Transformations in Quantum Theory

Time evolution is well understood in the standard quantum formalism, and the
choices made in creating a model generally have very compelling reasons behind
them. In this section we shall sketch out the modern approach to quantization,
showing how this can be used to extract Schrödinger dynamics. The full approach
can be found in any good modern text on QT [5, 21].

Physics has come a long way by assuming that the laws of nature are invari-
ant under certain space-time transformations. These can include displacements,
rotations and changes between frames of reference in uniform relative motion.
In quantum theory, transformations of both states |ψ〉 → |ψ′〉 and observables
Â → Â′ must be considered together, and this places restrictions on the form
that any transformation can take. Specifically, if A|φn〉 = an|φn〉, then we must
have A′|φ′

n〉 = an|φ′
n〉 after transformation. Thus the eigenvalues of observable

A cannot change under a transformation since the observable cannot be changed
by the way we are looking at it. It is also essential that |〈φn|ψ〉|2 = |〈φ′

n|ψ′〉|2,
which means that the probabilities for equivalent events in two different frames
of reference should be equivalent. This requirement leads to Wigner’s theorem
[21], which places a strong restriction on the form that such a transformation
can take, with only the above very minimal assumption about the nature of the
inner product. This theorem shows that any mapping of a vector space onto
itself that preserves the value of the inner product must be implemented by
an operator U that is either unitary and linear or anti-unitary and anti-linear
[25].1 Unitary operators are very widely used in QT, as they are the only ones
that can describe continuous transformations such as translations and rotations
1 A unitary transformation is one such that 〈φ′|ψ′〉 = 〈φ|ψ〉, whereas an anti-unitary

transformation satisfies 〈φ′|ψ′〉 = 〈φ|ψ〉∗.
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(since every continuous transformation must have a square root [5]). However,
anti-unitary transformations also play a part in the quantum formalism as they
are used in the description of discrete time reversal symmetries.

Together, these very minimal requirements place strong constraints upon the
form that transformation operators can take in a standard quantum theory. In
the particular case of continuous transformations, we find that while states must
transform according to

|ψ〉 → |ψ′〉 = U |ψ〉, (1)

observables must transform according to

Â→ A = UAU−1. (2)

Thus, with the assumption that the symmetries in quantum-like models will
be continuous, we find ourselves to be looking for unitary operators satisfying
equations (1) and (2).

In order to start sketching out the general form that such operators must take,
we shall consider a set of unitary matrices U(α1, α2, . . . ) which depend upon the
continuous parameters αj . With a good choice of parameters, we find that these
matrices are in a 1–1 correspondence with a continuous group of transformations,
GU . That is, we find that the matrices satisfy:

Closure: for every Ua, Ub ∈ GU , the product of the two matrices is in the group,
UaUb ∈ GU .

Associativity: for every Ua, Ub, Uc ∈ GU , Ua(UbUc) = (UaUb)Uc (note that this
property is automatically satisfied by matrices).

Identity element: there exists one, and only one, identity matrix in the group.
We customarily define this matrix such that U(0, 0, . . . ) = �.

Inverse element: every matrix Ua ∈ GU has a unique inverse also in the set.
That is, there exists a matrix U(β1, β2, . . . ) ∈ GU such that:

U(α1, α2, . . . )U(β1, β2, . . . ) = �

Any set of matrices satisfying these properties forms a symmetry group. This
is a remarkably important concept in modern physics. It is essential to realise
that symmetry groups can take many different forms, the one sketched above
for unitary matrices relies heavily upon multiplication, but the closure criterion
could be just as easily framed for addition, or even some other operator. For
example the Integers form a symmetry group under addition.

2.1 What Is a Symmetry?

The concept of symmetry has a very particular meaning in physics, where it
applies to any physical or mathematical feature of a system that is preserved,
or invariant, under some transformation. Thus, the concept is quite broad in
physics, compared to the common lay usage which generally refers to properties
of a more geometrical nature. Consider for example the following way in which
a symmetry group can be constructed for motion in one dimension.
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To appreciate the link between group theory and motion, imagine you are
standing on a straight road that goes on forever both in front and behind
you. Stand stock still; this is the identity of a group. Walk forwards a
little, then a little more. But you are now where you would have been
had you just walked further in the first place. So moving along a straight
line exhibits the closure property. Associativity can be demonstrated by
walking different distances forwards and backwards in different sequences
and noting that the end result is always the same. Finally, if you walk
forwards a bit then backwards to where you started you have discovered
the inverse. [24]

Thus, a symmetry is not necessarily something that looks the same along an
axis of view (like a mirror reflection symmetry), it has a much broader set of
connotations.

Any transformation that satisfies the above group structure is a symmetry.
Symmetries that commute with time evolution correspond to a conserved quan-
tity in physics via Noether’s theorem. This important theorem amounts to a
statement that for every physical system exhibiting symmetry under time evo-
lution there is some conserved physical property of that system, and conversely
that each conserved physical quantity has a corresponding symmetry. Thus, sym-
metries can have physical consequences in their own right.

2.2 Symmetries, Operators, and Hamiltonians

It can be shown that any unitary transformation that depends upon a single
parameter α (e.g. a rotation about a fixed axis by an angle α = θ) can be
expressed as an exponential of a Hermitian generator, G, that is independent of
α [5, 21]:

U(α) = e−iαG. (3)

The generators of transformations corresponding to symmetry properties often
have simple physical meanings (such as energy, momentum, electric charge etc.
in physics). It is important to realise that these symmetries often work together,
forming larger groups which describe all allowable transformations within that
space. Thus are the Gallilei, and Poincaré groups formed, as well as the larger
groups used in The Standard Model of modern particle physics.

The Galilei group arises in non-relativistic quantum mechanics. It consists of
a 10 dimensional representation of the symmetries of classical mechanics.2 This
group describes all of the rotations, displacements and transformations that can
occur between uniformly (and slowly) moving frames of reference. Thus, this
group describes all transformations of the form:

x→ x′ = Rx + a + vt (4)
t→ t′ = t + s. (5)

2 Maxwell’s equations do not satisfy this group and their inclusion in the group struc-
ture of modern physics led to the development of the Poincaré group which includes
the Lorentz transformations of special relativity.
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Here, R is a rotation (which can be thought of as a 3 × 3 matrix acting on a
3-vector x), a is a space displacement, v is the velocity of a moving coordinate
transformation and s is a small displacement of the time t.

Here, we are interested in the time evolution of a quantum system. In physics,
time evolution is a symmetry of spacetime given by

t→ t + s, x→ x, y → y, z → z (6)

with a conserved quantity that corresponds to the energy of the system. A system
with more energy will move faster as time passes, so this conservation law is
intuitively understandable. It is possible to derive Schrödinger’s equation3

d

dt
|ψ(x, t)〉 = −iH(x, t)|(x, t)〉 (7)

from considerations of the dynamics of a free particle invariant under the full
Galilei group of space-time transformations [5]. To do this, we make use of the
properties of the Galilei group. We start by considering two sets of transfor-
mations, τ1 followed by τ2, and an equivalent single transformation τ3. The
equivalence means that τ1τ2 = τ3, and since these transformations are the same
transformations we must require that U(τ2)U(τ1)|ψ〉 and U(τ3)|ψ〉 describe the
same state. They do not necessarily have to be the same vector, they can differ
up to a complex phase, which gives

U(τ3) = eiω(τ1,τ2)U(τ2)U(τ1). (8)

So symmetries must be relatable using some complex phase factor. Indeed, cor-
responding to the time displacement t → t′ = t + s, we find that the following
vector space transformation holds [5]:

|ψ(t)〉 → eisH |ψ(t)〉, (9)

but if we consider figure 1 we quickly see that this can be written equivalently
as |ψ(t − s)〉. We use this symmetry, by setting s = t, which gives |ψ(x)〉 =
e−itH |ψ(x)〉. Finally, we note that only an equation of form (7) can generate
this solution. ��

While finding the Schrödinger equation through the application of symmetry
information about time translations is the main point of this article, it will
most likely prove useful to the QI community to see how this technique extends
further. Indeed, it can be used to extract the full commutative structure of QT.
We shall not perform that analysis here, the interested reader can refer to [5].

2.3 How Do Commutation Relations Relate to Symmetry?

As was mentioned above, symmetries that commute with time evolution corre-
spond to conserved quantities via Noether’s theorem. However, the commutation
relations of QT have a wider set of relationships with the symmetry group of a
physical theory.
3 Here we have used natural units (which gives � = 1).
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Fig. 1. A unitary time translation of the function ψ(x), from a point around x = x0

to a point around x = x′
0 is equivalent to a change in coordinate frame; there is an

inverse relationhip between transformations on a function space and transformations on
coordinates. Representing the change in coordinates as τ , we find that ψ′(τx) = ψ(x),
and hence that U(τ )ψ(x) = ψ(τ−1x) [5].

In extracting the generators of a Galileian group describing a QT it is neces-
sary to couple the symmetry structure of the transformations in the group with
the unitary requirements of (1) and (2). In doing this we find that the standard
commutation relationships of QT must be satisfied [5].

Thus, it is possible to fully derive the structure of QT from a consideration
of symmetry and unitarity, and this is the modern approach to quantization.
It is likely that this approach will prove most effective in the construction of a
fully-fledged quantum-like theory.

3 Symmetry Groups for Quantum-Like Theories?

There is no reason to believe that the symmetry groups of a quantum-like theory
will be the same as for those of standard physics. Many of the relevant spaces
considered in the field are of a very high dimension, and they do not need to
satisfy the same set of physical conditions. Consider for example the very high
dimensional cognitive spaces that are being modelled using QT [3, 9]. We would
not immediately expect such systems to display the same symmetry behaviour
as a standard QT. This raises an intriguing question; what form of symmetry
could be satisfied by such models?

There are some early hints that we might explore in developing new symme-
tries, relevant to a much broader class of system. Some interesting avenues that
we feel hold promise include:

– The use of Quantum Field Theory (QFT) in the modelling of biological sys-
tems [17, 23] and the use of symmetry breaking techniques in the modelling of
dynamical emergence. This requires the identification of symmetry groups
beyond those standard to physics, and it appears possible that complete
groups might be identified as these theories develop; some of these might
point towards a temporal symmetry that might be leveraged in deriving
general time evolution equations in standard first quantized models.

– Some interesting work examining the concept of symmetry in object oriented
programming languages has been performed [13, 27]. Here, the use of inher-
itance in the extraction of symmetry relations suggests that if a symmetry
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group could be found for such systems then it should share some features
with any biological models that make use of intergenerational symmetries
(within the same species for example).

– A concept of superfractals has been coined [6] to describe the mathemat-
ics of natural imagery, art, and biology. Among the mathematics developed
here, it is possible to make use of iterated function systems to generate com-
plex landscape and biological images using a computer, which look similar
to a human observer. This conception of similarity holds promise, and the
mathematical nature of the theory leaves it ideal for extension to a theory
of symmetry with respect to human cognition. This idea will be explored
elsewhere.

– The different senses or meanings of a word might also be developed into a
group theory. Such a theory would probably leverage the intuition that even
when changing word senses you still have the same token. Thus, bat stands
for “furry flying mammal” or “sporting implement”. If a group denoting
this could be found then it might even fit into a larger group structure of
language, after all, the set of different languages still describes the same set
of senses, at least approximately.

All of these different avenues are currently under investigation, but the problem
of finding proper formalisations of what are generally quite vague arguments is
very difficult. We might wonder if perhaps there is a new generalised mathematics
of symmetry groups waiting to be found.

3.1 Towards a New Mathematics?

Group theory as it currently stands is concerned with relatively simple structures
and behaviour. It has been developed primarily for physical systems, and we
might wonder if the behaviour of quantum-like systems can be described by the
same sets of groups developed for physics. Some reasons to believe that this is
probably not the case will be briefly discussed in this section.

Many of the systems described by the QI community display complex be-
haviour [18], and as such they will have features such as internal structure,
hierarchical organisation, contingent dependency upon historical events, and an
evolving dynamics. This would lead us to suggest that their symmetries will be
far more difficult to extract, and in themselves far more complex, than those of
physical systems.

4 Towards Time Evolution in Quantum-Like Theories

In this section we shall summarise some recently developed ideas that we feel
hold sufficient promise for the future creation of a fully-fledged quantum-like
theory. Both of them have been generated through attempts to develop the idea
of a symmetry group of the system of interest, and in particular to find properties
of that system that are conserved under time evolution and so might be used to
generate some sort of quantum time evolution dynamics.
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4.1 Quantum Models of Biological Development

Symmetries play a vital role in models of biological development. In fact, it is
the breaking of symmetries that generates actual outcomes in terms of axial
orientation, and through this eventual cell differentiation. It will be instructive
to consider some of the issues involved in constructing a full description of the
dynamics involved in this process.

Let us consider a perfectly spherical egg. It is symmetrical under all rotations
and translations in space, and as such could be represented by the O(3) group.
Differentiation of the cell starts from the moment it is impregnated by a sperm
cell; a new axis of symmetry arises from the line joining the site of sperm pen-
etration with the centre of the egg. Once this event occurs the O(3) rotational
symmetry of the egg is lost, and developmental events will quickly lead to a loss
of more and more symmetry. However, over time, there is a sense of conserva-
tion; the organism remains the same organism, even if it gradually becomes very
different in form.

It is hoped that this idea might be leveraged in order to develop a quantum-
like model of biological development. Here we would see a situation where the
environment in which the fertilised egg is developing influences the eventual form
of the egg itself, however, there is every reason to suppose that a QFT would
prove most appropriate for such systems. This is because QFT’s allow for the
existence of unitarily inequivalent ground states [19, 22, 23], which allows for
a model of development that sees the organism as growing through a number
of different stable states. The alternative picture supplied by a first quantized
theory (such as is discussed in this paper) would see the developing through
a process of excitation, this is not feasible, after all, such a model would open
up the possibility that a fully developed organism might de-excite back to the
ground state!

Can we find a situation where a first quantized model is the most appropriate
approach?

4.2 Quantum Models of Semantic Structure

Cognitive scientists have produced a collection of models which have an encour-
aging, and at times impressive, track record of replicating human information
processing, such as word association norms. These are generally referred to as
semantic space models. As used here, the term “semantic” derives from the in-
tuition that the meaning of a word derives from the “company it keeps”, as
the linguist J.R. Firth (1890-1960) famously remarked. For example, the words
“mobile” and “cellular” would exhibit a strong association in semantic space
as the distribution of words with which they co-occur tends to be similar, even
though the two words almost never co-occur themselves. Although the details of
the various semantic space models differ, they all process a corpus of text and
“learn” representations of words in a high dimensional space.

There is already an existing body of work linking semantic space theory to QT
[2, 7, 11, 12, 26]. In one set of examples [11, 12], a semantic space Sw surrounding
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word w is constructed by collecting a corpus of traces centred around w. Such
matrices are square symmetric matrices and hence self-adjoint. For a given set of
words u, v and w we shall represent the corresponding matrices as Su, Sv and Sw.

We shall now sketch how a symmetry group might be developed for a seman-
tic space model, and perhaps eventually used to generate a model of semantic
dynamics.

The product SuSv can be interpreted as the the effect on the semantic rep-
resentation of u when seen in the context of word v. That is, how much of u’s
semantic representation project onto that of v. This product satisfies closure,
since the word itself is still in the combined semantic space. Combining semantic
representations using such a product is also associative: Su(SvSw) = (SuSv)Sw.
The identity operator can be easily identified as the word itself, it has the same
semantic representation as itself.

The question of an inverse S−1
w for Sw for an arbitrary word w in not a

straightforward issue. Intuitively we might expect the inverse to be something
that “undoes” the projection, hence removing a word from its context. However,
a word removed from its context is a highly artificial thing, and this is not
necessarily the best way to proceed. Perhaps instead a notion of inverse might
be developed that would produce a representation that is “orthogonal” to the
meaning of w. One possible candidate is the Householder reflection:

S−1
w = I − 2|w〉〈w|

This formula exploits the complementary representations Sw and |w〉 noted in [7].
Sw is a matrix representation for the word w, but also the unit vector |w〉 is a
prominent column vector in Sw. The above formula produces a self adjoint matrix
S−1

w which is a reflection in the hyperplane perpendicular to the vector |w〉. This
problem of the inverse is something that will be investigated in future work.

Obviously there are significant details to be worked out in such an approach.
Firstly the product SuSv is not guaranteed to be self adjoint. This is not nec-
essarily a problem, but it would be much cleaner if a product operation could
be defined which resulted in a self adjoint matrix. In addition, the above defi-
nition of an inverse only covers the inverses corresponding to individual words,
not compound representations, e.g., SuSw which are also elements of the group.
There is a whole avenue of research in relation to forming the semantic repre-
sentations of compounds, indeed, there has been some speculation that concepts
are entangled [3, 9] Finally, there is the question about what the interpretation
of invariance should be in relation to the a semantic representation. As semantic
space models are derived directly from an underlying corpus, the semantic rep-
resentations of the words change accordingly. That is, the meaning of the words
changes according how the company around them evolves [20]. As a consequence,
the strength of semantic association between words varies as the corpus evolves.
However, there will be a point where the semantic representations stabilise and
semantic associations will stabilise. The stabilisation of semantic association was
demonstrated recently in relation to the BEAGLE model [15]. In BEAGLE, rep-
resentations are primed initially by random vectors. So each time the model is
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run over a given corpus the actual semantic representations of words will be dif-
ferent. However the strength of semantic association is largely invariant across
different runs of the model.

5 Conclusions, and a Question for the Future

This article is obviously of a very exploratory nature. Here we shall ask a question
in the hope that others might be interested in considering it.

The symmetry groups of modern physics are, in a number of ways, boring.
The requirement to satisfy space-time symmetries is a very strong one, which
leads to some very profound restrictions upon the nature of physical reality. Such
restrictions do not necessarily apply in the high dimensional conceptual spaces
often considered in QI. This actually makes the derivation of group structures in
this field much more challenging as there are no clear restrictions to incorporate
into our models. However, as we have seen in sections 3 and 4.2, there are some
early intuitive ideas that might be investigated. More generally, there are many
of mathematically interesting ideas that could be considered. For example, the
structure of the unitary operators must be taken into account, many interest-
ing systems take a hierarchical form, and while the Standard Model does have
something of a nested structure, it was not necessary to consider any truly hier-
archical behaviour in the construction of this model. However, we can ask if there
might be a way of constructing a set of more general tensorial operators, ones
that could incorporate the complex and interrelated hierarchical symmetries of
biological systems. This is a problem that will be investigated in future work.

If QI is to truly come of age then it must start to develop complete theories.
These must include both time evolution and symmetry considerations. The en-
tanglement so often relied upon in the field must emerge from a truly evolving
quantum model, not just be assumed to exist at the outset. This paper has pre-
sented some ideas about how such models might be constructed, and pointed at
some of the possible avenues that might be pursued in the future. We hope that
these ideas might prove fruitful to any future investigations of dynamics in the
new field of quantum interaction..
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Abstract. The mathematical principles of quantum theory provide a general foun-
dation for assigning probabilities to events. This paper examines the application of 
these principles to the probabilistic inference problem in which hypotheses are 
evaluated on the basis of a sequence of evidence (observations). The probabilistic 
inference problem is usually addressed using Bayesian updating rules. Here we 
derive a quantum inference rule and compare it to the Bayesian rule. The primary 
difference between these two inference principles arises when evidence is pro-
vided by incompatible measures. Incompatibility refers to the case where one 
measure interferes or disturbs another measure, and so the order of measurement 
affects the probability of the observations. It is argued that incompatibility often 
occurs when evidence is obtained from human judgments.  

1   Introduction 

Quantum theory was originally invented by physicists to explain findings that seemed 
paradoxical from the classical physical view point. Later Dirac (1930) and Von Neu-
mann (1932) provided an axiomatic foundation for quantum theory, and by doing so, 
they discovered that it implied a new type of logic and probability theory. Conse-
quently, there are now at least two general theories for assigning probabilities to 
events: classic theory and quantum theory [7], [10], [16].  

An important application that should be addressed by any general probability the-
ory is the problem of inference – that is, the evaluation of hypotheses on the basis of 
evidence. Inference is a general problem that arises in many applications. For exam-
ple, a detective must infer the person who committed a crime on the basis of facts 
collected from the crime scene and testimony of witnesses. A physician must infer the 
cause of an illness based on medical symptoms and medical tests. A commander must 
infer the location of an enemy on the basis of sensory data and intelligence reports. 
According to classic probability theory, Bayes rule is used to model this kind of prob-
abilistic inference. Quantum probability theory provides an alternative model, and the 
purpose of this paper is to compare models of probabilistic inference based on Bayes-
ian versus quantum principles.  

The evidence used to make an inference is based on observations and measure-
ments. It is well known that the key point upon which Bayesian and quantum models 
differ is the concept of compatibility of the measures. If all the measures are compati-
ble, then Bayesian and quantum models always agree and the two models assign ex-
actly the same probabilities. Differences only arise when incompatible measures are 
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involved. It is argued that incompatibility can arise when measurements are based on 
human judgments which interfere with each other and change depending on order of 
presentation [3].  

There already exists a mature literature on hypothesis testing in the area of quan-
tum information theory [8], [9], [10]. This literature is concerned with the problem of 
determining which of several quantum states describe the true state of a quantum 
system by performing measurements. The main concern of this literature is designing 
tests and analyzing the probability of incorrectly deciding which quantum state is the 
true state. This differs from the present goal which is to describe the revision of a 
quantum state on the basis of new evidence.   

There is also a growing literature concerned with quantum networks that are com-
parable to Bayesian networks [13], [15], [17]. This literature is concerned with effi-
cient algorithms for computing quantum probabilities from graphical representations 
of relations. However, the present paper examines more directly the effect of employ-
ing sequences of compatible and incompatible measurements on revision of quantum 
probabilities.  

New research is beginning to appear on quantum models of human probability 
judgments [2], [6], [11]. This work focuses on explaining some paradoxical findings 
about the way humans make judgments. In contrast, the goal of this paper is to de-
velop a general model that uses human judgments as sources of evidence for making 
coherent and rational inferences.  

2   Probabilistic Inference Task 

To begin, we limit our discussion to finite sets (although the number of elements can 
be very large). The ideas can be extended to infinite sets, but the latter requires more 
careful handling of convergence and so it is simpler to start with the finite case.  

It is assumed that there is a finite set of m hypotheses labeled {h1, …, hi, …, hm}. 
For example, these might be suspects for a crime, or causes of an illness, or possible 
locations of an enemy, or intentions of an opponent.   

Evidence is obtained from a sequence of measurements that are taken across time, t 
= 1,2, …, T. Different types of measures may be selected at each time step. The nota-
tion X(t) = xt symbolizes that the measure selected at time t produced outcome xt. For 
example, a physician may first measure the patient’s temperature (producing a degree 
on a digital thermometer), then ask the patient to judge how much pain he or she ex-
periences (providing a rating on a one to ten scale), and finally ask the patient how 
long the pain lasts (evaluated in minutes).  Each measure is assumed to produce one 
of a finite set of outcomes.   

The task is to determine the probability of each hypothesis after observing a se-
quence of outcomes: 

p( hi | X(1) = x1, X(2) = x2, …, X(t) = xt) for i = 1,…,m; t = 1, …, T. (1) 

2.1   Classic Probability  

Classic probability theory [12] assigns probabilities to events defined as subsets of a 
sample space, S, which is the universal set. Suppose the cardinality of S equals N. 
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Then we can define N elementary events S = {z1, z2, …, zN}. Two elementary events 
can be joined by union to form a new set. Joining elementary events this way, one can 
generate a family of 2N sets (including the empty set).  This forms a Boolean algebra 
of sets. 

Classic probability postulates the existence of a probability function p that assigns 
a probability, 0 ≤ p(zi) ≤ 1 to each elementary event. The probability of an arbitrary A 
event is then defined by p(A) = ∑ i∈A  p(zi). Classic probabilities must satisfy p(S) = ∑ 
i ∈ S p(zi) = 1 for the universal event and p(∅) = 0 for the null event. 

For purposes of comparison, it is worthwhile to describe classic probability theory 
using vectors and projection operations. First, we can define an N × 1 vector |zj〉 corre-
sponding to elementary event zj that has all zeros except for a one in row j. Then we 
can define a projector for event zj as the outer product Pj = |zj〉〈zj|, which is an N × N 
matrix full of zeros except a one on the diagonal for row j. The projectors correspond-
ing to different elementary events are orthogonal, Pi⋅Pj = 0 for i ≠ j, and they are com-
plete in the sense that  ∑ j Pj = IN, where IN is the identity matrix. 

The projector for an arbitrary event A then equals P(A) = ∑ j∈ A Pj. We can repre-
sent the probability function by an N × 1 vector of probabilities 

π = ∑ j∈ S p(zi)⋅|zj〉 . (2) 

This vector π can be interpreted as the state of the classic probability system. This 
is called a mixed state. The probability of an event A is determined by the projection 
of the mixed state followed by a sum of the projection: 

p(A) =  1⋅P(A)⋅π, with 1 = [ 1 1 … 1] . (3) 

In particular, the probability of the event corresponding to elementary event |zj〉 is 
simply  

p(zj) = 1⋅Pjπ . (4) 

Also note that p(S) = 1⋅P(S)⋅π = 1⋅I⋅π = 1.0 and p(∅) = 1⋅P(0)⋅π = 1⋅0⋅π = 0.  

2.2   Quantum Probability 

Quantum probability theory [5] assigns probabilities to events defined as subspaces of 
a Hilbert space, H, which is the universal space. Suppose the dimensionality of H is 
N.  Then we can define N orthonormal basis vectors, {|z1〉, …, |zi〉, …, |zN〉} where 
each basis vector  represents a one dimensional subspace (corresponding to an ele-
mentary event). Two basis vectors can be joined to form a subspace that spans the two 
vectors. Joining basis vectors this way, one can form a family of 2N subspaces (includ-
ing the zero point).  As discussed in the concluding section, this forms a partial Boo-
lean algebra of events. 

In quantum theory, each basis vector |zj〉 corresponds to a projector Pj = |zj〉〈zj| that 
projects unit length vectors in H onto this basis vector. This forms a complete set of 
orthogonal projectors Pi⋅Pj = 0 for i ≠ j, and ∑ j Pj = IN.  The projector corresponding 
to the join of basis vector |zi〉 with basis vector |zj〉 equals Pi + Pj. This implies that 
each event A is also defined by a projector P(A) = ∑ j∈ A Pj. Note that the projector for 
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H is P(H) = ∑ j∈ H Pj = IN (the identity operator) and the projector for the null event is 
P(∅) = 0 (the zero operator). 

Quantum probability postulates the existence of a state vector, denoted here as |Z〉, 
which is a unit length vector in the Hilbert space.  This state vector can be expressed 
in terms of coordinates of the basis states as follows: 

|Z〉 = IN ⋅|Z〉 = (∑ j∈ H |zj〉〈zj|)⋅|Z〉 = ∑ 〈zj|Z〉|zj〉  = ∑ αj⋅|zj〉 . (5) 

The coefficient, αj = 〈zj|Z〉 is called probability amplitude corresponding to basis 
state |zj〉.  The state vector |Z〉 is a superposition of the basis states.  

The probability of an event A is determined by the squared length of the projection 
of the state vector onto the subspace that defines the event: q(A) = || P(A)|Z〉||2.  In 
particular, the probability of the event corresponding to basis state |zj〉 is simply  

q(zj) = || Pj|Z〉||
2 = ||(|zj〉〈zj|⋅|Z〉||2 = ||αj⋅|zj〉||

2 = ||αj||
2 . (6) 

The analogy between classic and quantum theory can be made even clearer if we 
work directly with the coordinates of the superposition state.  According to quantum 
theory, the coordinates of the state vector |Z〉 with respect to the |zi〉 basis forms an N 
× 1 complex vector α. Also with respect to this basis, the projector Pj = |zj〉〈zj| is sim-
ply an N × N matrix full of zeros except a one on the diagonal for row j. Finally, the 
probability for the event A is simply  

q(A) = || P(A)|Z〉||2 = ∑ j∈A ||αj||
2 . (7) 

2.3   Conditional Probabilities 

Both classic and quantum probabilities revise (collapse, reduce) the state after observ-
ing an event. First consider state revision given by the conditional probability rule of 
classical probability theory. Suppose the vector π describes the probability distribu-
tion across the elementary events prior to a measurement.  The probability distribution 
across the elementary events following an observation of event A equals the projec-
tion onto event A followed by normalization: 

π|A = (P(A)⋅π) / (1⋅P(A)⋅π) . (8) 

Normalization guarantees that the elements of the new state vector sum to unity. 
All subsequent conditional probabilities are then computed from projections on the 
new mixed state π|A. Specifically, the probability of a new event B given A is 

p(B|A) = 1⋅P(B)⋅(π|A) = 1⋅(P(B)⋅P(A)⋅π)/(1⋅P(A)⋅π) . (9) 

Next consider the state revision given by Luder’s rule [14] of quantum probability 
theory. Suppose the vector |Z〉 describes the superposition state prior to a measure-
ment.  The state following an observation of event A equals the projection onto event 
A followed by normalization: 

|Z|A〉 = P(A)|Z〉 / ||P(A)|Z〉|| . (10) 

Normalization guarantees that the new state vector has length equal to one. Prob-
abilities of new events, conditioned on already observing event A, are then computed 
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from projections on the new state vector |Z|A〉. The coefficients for this conditional 
state vector, with respect to the |zj〉 basis, are defined by  

α|A = P(A)⋅α / ||P(A)⋅α|| . (11) 

For example the probability of a new event B given A is 

q(B|A) = ||P(B)⋅(α|A)||2 = ||P(B)⋅P(A)α||2/||P(A)⋅α||2 . (12) 

2.4   Inference Based on a Single Measurement 

Suppose T=1 and one wishes to make an inference based on a single measure denoted 
X. Classic and quantum theories provide the same answers to this problem. First we 
present the classic Bayesian inference model (using projection operators), followed by 
the quantum inference model.  

Suppose the measure X can take n different values, with x representing an arbitrary 
outcome. When we combine each possible outcome x of X with each of the m possible 
hypotheses, we obtain N = m⋅n unique elementary joint events such as (hi ∧ x). (Later 
this number will change.)  The classic inference process starts with initial distribution 
over these N events represented by the N × 1 vector π. The prior probability is given 
by 

p(hi) =  1⋅P(hi)⋅π , (13) 

where P(hi) is a N × N matrix with ones on the diagonal corresponding to the rows 
matching hypothesis hi. 

The marginal probability equals 

p(X(1) = x) = 1⋅P(X(1) = x)⋅π , (14) 

where P(X(1)=x) is a N × N matrix with ones on the diagonal corresponding to the 
rows matching X(1)= x. The new state after observing X(1) = x becomes 

π|x = P(X(1) = x)⋅π / (1⋅P(X(1) = x)⋅π) . (15) 

If hypothesis hi is known to be true then the new state is 

π|hi = P(hi)⋅π / (1⋅P(hi)⋅π) . (16) 

Finally, the likelihood is then given by 

p(X(1) = x| hi) = 1⋅P(X(1) = x)⋅(π|hi) . (17) 

Bayes inference rule follows from the definition of conditional probability: 
 

p(hi | X(1) = x1) = 1⋅P(hi)⋅(π|x) 
 

= 1⋅P(hi)⋅P(X(1)=x)⋅π / (1⋅P(X(1)=x)⋅π) 

                  = 1⋅P(X(1)=x)⋅P(hi)⋅π / (1⋅P(X(1)=x)⋅π) . (18) 

Substituting π|hi = P(hi)⋅π / (1⋅P(hi)⋅π) into the above 
 

p(hi | X(1) = x1) = (1⋅P(hi)⋅π)⋅(1⋅P(X(1)=x)⋅(π|hi)) / (1⋅P(X(1)=x)⋅π) 
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                = p(hi)⋅[ p(X(1) = x | hi) / p(X(1)=x) ] . (19) 

Next we examine the quantum inference model for a single measure.  We begin 
with an initial state defined on an N dimensional Hilbert space. This Hilbert space can 
be represented by N = m⋅n basis vectors such as |hi ∧ x〉 representing the elementary 
event (hi ∧ x). (Later this dimension will change.) The initial state can be represented 
by the N × 1 coordinate vector α with respect to this basis.  

The prior probability of hypothesis hi equals 

q(hi) = ||P(hi)⋅α||2 . (20) 

The marginal probability of event X(1) = x is 

 q(X(1) = x) = ||P(X(1) = x)⋅α||2 . (21) 

After observing first observation, X(1)=x, the initial state α changes to a new state  

α|x = P(X(1)=x)⋅α / ||P(X(1) = x)⋅α||, and ||α|x|| = 1 . (22) 

Suppose we assume that hi is true. Then the conditional state given hi equals  

α|hi = P(hi)⋅α /||P(hi)⋅α || and ||α|hi|| = 1 .  (23) 

If we assume that hi is true, then the conditional probability of observing X(1) = x 
equals 

q(X(1) = x | hi) = ||P(X(1) = x)⋅(α|hi)||
2 . (24) 

Finally, quantum inference follows from Luder’s rule [14] 
 

q(hi | x)  = ||P(hi)⋅(α|x)||2  
 

= ||P(hi)P(X(1) = x)⋅α||2 / ||P(X(1) = x)⋅α||2  

= ||P(X(1) = x)P(hi)⋅α||2 / ||P(X(1) = x)⋅α||2 . (25) 

Substituting P(hi)⋅α = (α|hi)⋅||P(hi)⋅α|| yields 
 

q(hi | x)  = ||P(hi)⋅α||2⋅||P(X(1)=x)⋅(α|hi)||
2 /||P(X(1)=x)⋅α||2  

                            = q(hi) ⋅ [ q( X(1) = x | hi) / q( X(1) = x) ] . (26) 

This is identical to Bayes rule if the classic probability function p replaces the quan-
tum probability function q. 

3   Representation of Measurements 

3.1   Change of Basis Vectors  

A key issue arises from the idea of using a Hilbert space representation of events.  
One can choose different sets of basis vectors for spanning a Hilbert space. Two dif-
ferent sets of basis vectors are related by a unitary transformation, denoted U with 
UU† = U†U = IN : 
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                    {|z1〉 , …, |zi〉 , …, |zN〉} = {U|z’1〉 , …,U|z’i〉 , …, U|z’N〉} , 

{|z’1〉 , …, |z’i〉 , …, |z’N〉} = {U†|z1〉 , …,U†|zi〉 , …, U†|zN〉} . (27) 

A state vector can be expressed with respect to either one of these two sets of basis 
vectors: 

 

           |Z〉 = IN ⋅|Z〉 = (∑ j∈ H |zj〉〈zj|)⋅|Z〉 = ∑ 〈zj|Z〉|zj〉 = ∑ αj⋅|zj〉 ,   

     = IN ⋅|Z〉 = (∑ j∈ H |z’j〉〈z’j|)⋅|Z〉 = ∑ 〈z’j|Z〉|z’j〉 = ∑ βj⋅|z’j〉 . (28) 

The coordinates of the state vector |Z〉 with respect to the |zi〉 basis forms a N × 1 
complex vector α, and the probability of elementary event zi is ||αi||

2. The coordinates 
of |Z〉 with respect to the |z’i〉 basis forms a N × 1 complex vector denoted β, and the 
probability of elementary event zi is ||βi||

2. These coordinates are related by a unitary 
matrix U = [uij] = [〈z’i|zj 〉] = [〈zi|U|zj〉]:  β = U⋅α, and α = U†⋅β. 

By changing basis vectors, we change the nature of the set of elementary events 
under consideration. In particular, the |zi〉 basis is needed to define elementary events 
{z1, z2, …, zN}, and the projector |zj〉〈zj| defines event zj; but |z’i〉 is needed to define 
elementary events {z’1, z’2, …, z’N}, and the projector |z’j〉〈z’j| defines event z’j.  In 
other words, if we ask questions about the elementary events {z1, z2, …, zN}, then we 
need to use the α coordinates to compute probabilities, and ||αi||

2 determines the prob-
ability of elementary event zi; but if we ask questions about the elementary events 
{z’1, z’2, …, z’N}, then we need to use the β coordinates to compute probabilities and 
||βi||

2 determines the probability of elementary event z’i. 

3.2   Compatibility of Measures 

The concept of compatibility is unique to quantum theory.  It is concerns the possible 
disturbing effect of one measure, say X, on another measure, say Y. We could take 
these measurements in two different orders: X first followed by Y, or Y first followed 
by X.  If the probability of the two events produced by the two measurements does not 
depend on the order, then these two measures are compatible; otherwise they are 
incompatible [5].  Human judgments frequently exhibit order effects, hence the con-
cern for compatibility. 

One measure is labeled X and it yields an event such as A = (X=x) where x is one 
of the n possible outcomes produced by X.  We assume that these n(X) outcomes 
correspond to a set of n(X) orthogonal projectors {P(X = x1),…,P(X = x),…,P(X = 
xn(X))} operating on the N dimensional Hilbert space that forms a complete set so that   

P(X = x)⋅P(X=y) = 0 for x ≠y, ∑ x P(X = x) = IN .  (29) 

Suppose the A = (X=x) event uses the |zj〉 set of basis vectors for its definition and 
corresponds to the projector  

P(X = x) = ∑ j∈ A |zj〉〈zj| . (30) 

The other measure is labeled Y and it yields an event such as B = (Y = y) where y is 
one of the n(Y) possible outcomes produced by Y.  Again we assume that these n(Y) 
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outcomes correspond to a set of n(Y) orthogonal projectors {P(Y=y1),…,P(Y = 
y),…,P(Y = yn(Y))} that forms a complete set so that  

P(Y = x)⋅P(Y=y) = 0 for x ≠y, ∑ y P(Y = y) = IN . (31) 

The B = (Y=y) event requires the |z’j〉 set of basis vectors for its definition and corre-
sponds to the projector 

P(Y = y) = ∑ j∈ B |z’j〉〈z’j| = ∑ j∈ B U†|zj〉〈zj|U . (32) 

The probability of the A followed by B sequence is 

||P(Y = y) ⋅ P(X = x) ⋅ |Z〉||2 . (33) 

The probability of the opposite sequence of events is  

 ||P(X = x) ⋅ P(Y = y) ⋅ |Z〉||2 . (34) 

Two measures are said to be compatible if the probability distribution over the joint 
outcomes from the two measures does not depend on the order of measurement; oth-
erwise they are incompatible.   

These two sequences give the same probability for any arbitrary state vector |Z〉 
and any pair of outcomes x and y if and only if the commutator is always zero: 

[P(X = x) ⋅ P(Y = y) − P(Y = y) ⋅ P(X = x)] = 0 . (35) 

If the commutator is zero for all pairs of values that can be observed on the two meas-
ures, then the two measures are compatible; otherwise they are incompatible. The 
commutator is always zero when  

( |zj〉〈zj| )⋅ ( |z’k〉〈z’k| ) − ( |z’k〉〈z’k| )⋅ ( |zj〉〈zj| ) = 0 (36) 

for all pairs, which holds when 〈zj|z’k〉 = 0 for j ≠ k and 〈zj|z’j〉 = 1. This implies that  
U = IN, or in other words, the basis set |zj〉 = U⋅|z’j〉 used for X is identical to the basis 
set |z’j〉 used for Y.  If U ≠ IN then the measure X will be incompatible with the  
measure Y.  

If the measures are compatible, then we can define the joint event  

P(X=x∧Y=y) = P(X=x)⋅P(Y=y) = P(Y=y)⋅P(X=x) . (37) 

This forms a new complete set of n(X)⋅n(Y) orthogonal projectors {…, P(X=x∧Y=y), 
…} so that P(X=x∧Y=y)⋅P(X=u∧Y=v) = 0, x ≠ u or y ≠ v, ∑ x ∑ y P(X=x∧Y=y) = IN. 
These projectors are then used to define the joint probabilities for these two measures 

q(X=x∧Y=y) = ||P(X=x∧Y=y)|Z〉||2 . (38) 

Classic probability theory assumes that it is always possible to define these joint 
probabilities between measures. However, in quantum theory, this joint probability 
does not exist for incompatible measures.  

When two measures are compatible, then the first measure does not disturb or af-
fect the second measure, order of measurement does not matter, and both measures 
can be determined simultaneously. However, when two measures are incompatible, 
then determining the value of one measure necessarily makes the values of the other 
measure uncertain. To see how this uncertainty principle arises with incompatible 
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measures, suppose the inference state |Z〉 is placed at the following point after a mea-
surement:   

|Z|x〉 = P(X = x)|Z〉 / ||P(X = x)|Z〉|| . (39) 

We can express this state using the coordinates defined by |zj〉 as follows: 

(α|x) = P(X = x)⋅α / ||P(X = x)⋅α||, and so ||α|x||2 = 1 . (40) 

Here P(X = x) is the matrix representation of the projector with respect to the |zj〉 basis 
(it is simply a matrix with zeros everywhere except for ones on the diagonal in the 
rows corresponding to combinations that satisfy X = x).  Given this state, the outcome 
x is certain to occur again with measure X: 

 

    q( X = x) = ||P(X = x)⋅(α|x)||2 

= ||P(X = x)2⋅α||2 / ||P(X = x)⋅α||2 = 1 . (41) 

Now let us examine this same state using the coordinates defined by |z’j〉 : 
(β|x) = U⋅(α|x), and note that ||(β|x)||2 = ||U⋅(α|x)||2 = 1 because U is unitary. The prob-
ability of the outcome y for the measure Y is determined by  

q(Y = y) = ||P(Y = y)⋅(β|x)||2  (42) 

where P(Y = y) is the matrix representation with respect to the |z’j〉 basis. That is, it is a 
matrix with zeros everywhere except ones on the diagonal for rows that satisfy Y = y. 
Now we find that q(Y = y) = ||P(Y=y)⋅(β|x)||2 < 1because ||(β|x)||2 = 1 and P(Y=y) is a 
projection on a subspace of H. 

In other words, if X and Y are incompatible, and if we are certain about the outcome 
that X will produce, then we must be uncertain about the outcome produced by Y. 

3.3   Constructing a Hilbert Space Representation 

We construct our Hilbert space using the principles initially described by Dirac [5]. 
The dimension, N, of the Hilbert space used to represent all T measures is determined 
by a maximum number K ≤ T of mutually compatible measures. Incompatible meas-
ures, being unitary transformations of a set of compatible measures, remain within the 
same space, and so they do not increase the dimensionality of the Hilbert space.  

If all of the measures are compatible with each other, and K = T, then we can use 
the same set of basis vectors to represent events for all T of the measures.  This is 
exactly the key assumption of classical probability theory. In fact, quantum probabil-
ity assigns the same probabilities to all of the events as classical probability when all 
of the measures are compatible. 

Hereafter we will assume that there are only K ≤ T compatible measures labeled 
{X1,…,Xk,…,XK}. As described earlier, an incompatible measure Yk can be con-
structed from one of the compatible set Xk by a unitary transformation of the basis.  

Any given measure from the compatible set, say Xk, has n(k) possible outcomes 
{x1,x2,…,xk,…,xn(k)}. This produces a total of n = [n(1)⋅n(2)⋅…⋅n(k)⋅…⋅n(K)] combina-
tions of possible outcomes from all K compatible measures, such as zj = 
(X1=x1)∧…∧(Xk=xk)∧…∧(XK=xK). 
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To model inference, we also need to include the m possible hypotheses, {h1,…,hm}. 
We assume the hypotheses are compatible with all of the measures. Combining each 
hypothesis with each combination of measurement outcomes defines an elementary 
event, and so this produces a set of N = m⋅n elementary events, with typical element 
(hi ∧ zj) = hi∧(X1=x1)∧…∧(XK=xK).  These events are represented as subspaces (rays) 
of an N dimensional Hilbert space.  

The n(k) outcomes produced by Xk are represented by a complete set of n(k) or-
thogonal projectors {…,P(Xk=x),…}, P(Xk=x)⋅P(Xk=y)=0, x≠y, ∑ x P(Xk=x) = IN. 
There is one such set of projectors from each measure, and all K compatible measures 
are defined by the same basis. Finally, each hypothesis is represented by a set of or-
thogonal projectors {…,P(hi),…}, P(hi)⋅P(hj) = 0, i ≠ j,  ∑ i P(hi) = IN. The projectors 
for the hypotheses are defined by the same basis as the projectors for the compatible 
measures. 

The projectors for the outcomes of each measure can be combined to form a pro-
jector for each combination of outcomes. The projector for an elementary event (hi ∧ 
zj) is Pij = P(hi)⋅P(X1=x1)⋅…⋅P(Xk=xk)⋅…⋅P(XK=xK). This forms a complete set of N 
orthogonal projectors: {...,Pij…}, Pij⋅Pi’j’ = 0, ij ≠ i’j’, ∑ i ∑ j Pij = IN.  Each projector 
Pij for an elementary event has a single and unique (unit length) eigenvector 

|hi ∧ zi〉  = |hi ∧ (X1=x1)∧…∧(Xk=xk)∧…∧(XK=xK) 〉 . (43) 

These basis vectors span the N × 1 dimensional Hilbert space denoted H.  
It is useful to construct each basis vector |hi ∧ zj〉 of H from a tensor product of vec-

tors representing the K compatible measures and the hypotheses as follows. Consider 
the measure Xk that has n(k) possible values.  For this measure, we can define a set of 
n(k) orthonormal vectors  {|Xk=x1〉,…,|Xk=x〉,…,|Xk=xn(k)〉}, where each possible out-
come, say x, from the measure Xk corresponds to a normalized vector |Xk=x〉. The set 
of orthonormal vectors for Xk spans an n(k) × 1 subspace Hk. Then the tensor product 
of the individual measurement vectors produces a vector representing a combination 
of measurement outcomes:  

 

                      |zj〉 = |X1=x1〉⊗…⊗|Xk=xk〉⊗…⊗ |XK=xK〉  

= | (X1=x1)∧…∧(Xk=xk)∧…∧(XK=xK) 〉 . (44) 

There are total of n such vectors which form an orthonormal set that spans an n di-
mensional tensor product space H1⊗H2⊗…⊗Hk⊗…⊗HK. 

The hypotheses are represented by a set of orthonormal vectors {|h1〉, 
…,|hi〉,…,|hm〉}. This orthonormal set forms an m-dimensional Hilbert space denoted 
Hm. Then each basis vector of H can be constructed from a tensor product of vectors 
from each measure and hypothesis: 

 

  |hi ∧ zj〉 = |hi〉⊗|zj〉  
 

                        = |hi〉⊗|X1=x1〉⊗…⊗|Xk=xk〉⊗…⊗ |XK=xK〉 

= |hi ∧ (X1=x1)∧…∧(Xk=xk)∧…∧(XK=xK)〉 . (45) 
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This spans an N dimensional tensor product space H = Hm ⊗ H1⊗…⊗Hk⊗…⊗HK. 
Finally the state of the quantum system is defined as 

|ψ(t)〉 = ∑ ∑ ψij(t) ⋅ |hi〉⊗|zj〉 . (46) 

The N × 1 vector of coefficients, ψ(t), represents the state with respect to the basis 
formed by |hi〉⊗|zj〉. So if we wish to compute the joint probability that hypothesis hi is 
true and that elementary event zj occurs, then this is given by  

||P(hi∧zj)⋅ψ(t)||2 = ||ψij(t)||
2 , (47) 

where P(hj∧zj) is a N × N matrix with zeros everywhere except a one on the diagonal 
in the row corresponding to the event (hj∧zj). 

4   Quantum Inference 

4.1   Quantum Inference after the First Measurement 

The first measure to be selected is denoted X(1). If this is one of the measures in the 
compatible set {X1,…,Xk,…,XK} then we proceed by using the basis with vectors 
|zj(1)〉 = |X1=x1〉⊗…⊗|Xk=xk〉⊗…⊗ |XK=xK〉.  

If the first measure is incompatible with one of the measures in compatible the set 
{X1,…,Xk,…,XK}, then we need to change the basis by applying a unitary transforma-
tion. Suppose the first measure is Yk which is incompatible with Xk. Then the basis 
vectors for these elementary events are defined by  

 

     |zj(1)〉 = |X1=x1〉⊗…⊗|Yk=yk〉⊗…⊗ |XK=xK〉 

= |X1=x1〉⊗…⊗U†
k|Xk=xk〉⊗…⊗ |XK=xK〉 . (48) 

where we have replaced (Xk=xk) with (Yk=yk). In other words, we start with a basis 
|zj(1)〉 that is defined by the first measure. The initial state is represented by: 

|ψ(0)〉 = ∑ ∑ ψij(0) ⋅ |hi〉⊗|zj(1)〉 . (49) 

The m⋅N vector of coordinates ψ(0) represents the state with respect to this initial basis. 
In section 2.4, we calculated the quantum inference based on a single measure-

ment.  By letting α = ψ(0) in these calculations we have the inference after the first 
observation for the initial state ψ(0). 

4.2   Quantum Inference after a Second Measurement 

Suppose we take another measurement X(2) = x2 which defines our second event.  If it 
is compatible with the first measure, X(1), then we simply continue working with the 
same basis by setting ψ(1|x1) = α(1|x1), where α(1|x1)is the new state defined by 
Equation 22.  If it is incompatible with the first measure, then we need to change 
coordinates.  

Suppose the first measure was chosen to be X(1) = Xk and the coefficients for X(1) 
are initially expressed in terms of the |zj(1)〉 basis with coordinates α(1|x1) given by 
Equation 22. Now suppose the second measure is X(2) = Yk, which is incompatible 
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with Xk. So we need to change the coordinates from α which are defined by the  
|zj(1)〉 basis to β which are defined with respect to the new basis: 
β(1|x1) = (I⊗…⊗I⊗Uk⊗I⊗…I)⋅α(1|x1). Finally we set ψ(1|x1) = β(1|x1) and continue 
as before. The projector for P(X(2) = x2) is simply an N × N matrix with zeros every-
where except ones on the diagonals of the rows that correspond to the event X(2) = x2.  
P(hi) is simply an N × N matrix with zeros everywhere except ones on the diagonals 
of the rows that correspond to hypothesis hi. 

The prior after the first measure but before the second observation equals 

q(hi|x1) = ||P(hi)⋅ψ(1|x1)||
2 . (50) 

The probability of event X(2) = x2 given X(1)=x1 is 

q(X(2)=x2|X(1)=x1) = ||P(X(2) = x2)ψ(1|x1)||
2 . (51) 

After observing the second observation, X(2)=x2, the state ψ(1|x1) changes to a new 
state  

α(2|x1, x2) = P(X(2)=x2)ψ(1|x1)/||P(X(2) = x2)ψ(1|x1)|| (52) 

and ||α(2| x1, x2)|| = 1. 
Suppose we assume that hi is true. Then the conditional state given hi and X(1)=x1 

equals  

ψ(1|x1, hi) = P(hi)ψ(1|x1)/||P(hi)ψ(1|x1)|| (53) 

and ||ψ(1|x1, hi)|| = 1. 
If hi is true, and we already observed X(1) = x1, then the conditional probability 

given of observing X(2) = x2 equals 

q(X(2)=x2 |x1, hi) = ||P(X(2) = x2)ψ(1|x1, hi)||
2 . (54) 

Finally, our inference after the second observation equals 
 

q(hi | x1, x2) = ||P(hi)α(2|x1, x2)||
2  

 

          = ||P(hi)P(X(2)=x2)ψ(1|x1)||
2 / ||P(X(2)=x2)ψ(1|x1)||

2  
 

          = ||P(X(2)=x2)P(hi)ψ(1|x1)||
2 / ||P(X(2)=x2)ψ(1|x1)||

2  
 

          = ||P(hi)ψ(1|x1)||
2 × ||P(X(2)=x2)ψ(1|x1, hi)||

2 ÷ ||P(X(2)=x2)ψ(1|x1)||
2  

= q(hi|x1) ⋅ [q(X(2) = x2 |x1, hi) / q(X(2) = x2 | x1)] . (55) 

Once again, this corresponds with Bayes rule. 

4.3   Quantum Inference after Several Observations 

A new measure is denoted X(t+1). The process continues with the coefficients pro-
duced by the last measurement, α(t|x1, …,xt).  For example, if t+1=3, then we would 
start with Equation 52.  If X(t+1) is compatible with X(t) then we use the same basis 
states as used for the last measurement. That is, we continue using the same  
coordinates ψ(t|x1, …,xt) = α(t|x1, …,xt).  If X(t+1) = Yk is incompatible with X(t), 
then we transform the coordinates to the new basis for the new measure:  
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β(t|x1, …,xt) = (I⊗…⊗Uj⊗…⊗I)⋅α(t|x1, …,xt). In this case, we express the coordi-
nates of the current inference state as ψ(t|x1, …,xt) = β(t|x1, …,xt). 

The prior after the first measure but before the second observation equals 

q(hi|x1,…,xt) = ||P(hi)⋅ψ(t|x1,…,xt)||
2 . (56) 

The probability of event X(t+1) = xt+1 given the previous history is 

q(X(t+1)=xt+1|x1,…,xt) = ||P(X(2) = x2)ψ(t|x1,…,xt)||
2 . (57) 

After observing the next observation, X(t+1)=xt+1, the state ψ(t|x1,…,xt) changes to a 
new state  

α(t+1|x1, …,xt+1) = P(X(t+1)=xt+1)ψ(t|x1,…,xt) ÷ ||P(X(t+1)=xt+1)ψ(t|x1,…,xt)|| (58) 

and ||α(t+1| x1,…, xt+1)|| = 1. 
Suppose we assume that hi is true. Then the conditional state given hi and the past 

history equals  

ψ(t|x1, …,xt, hi) = P(hi)ψ(t|x1,…,xt)/||P(hi)ψ(t|x1,…,xt)||  (59) 

and ||ψ(t|x1,…,xt,  hi)|| = 1.  If hi is true, and we already observed a history of events, 
then the conditional probability of X(t+1) = xt+1 given hi and this history equals  

q( X(t+1)=xt+1|x1,…,xt,hi) = ||P(X(t+1)=xt+1)⋅ψ(t|x1,…,xt, hi)||
2 . (60) 

Finally, our inference after the next observation equals 
 

q(hi | x1, …,xt+1) = ||P(hi)α(t+1|x1,…, xt+1)||
2 

 

= ||P(hi)P(X(t+1)=xt+1)⋅ψ(t|x1,…,xt)||
2 ÷ ||P(X(t+1)=xt+1)ψ(t|x1,…,xt)||

2  
 

= ||P(X(t+1)=xt+1)P(hi)⋅ψ(t|x1,…,xt)||
2 ÷ ||P(X(t+1)=xt+1)⋅ψ(t|x1,…,xt)||

2  
 

= ||P(hi)ψ(t|x1,…,xt)||
2 × ||P(X(t+1)=xt+1)ψ(t|x1,…,xt,hi)||

2 
÷ ||P(X(t+1)=xt+1)⋅ψ(t|x1,…,xt)||

2  

     = q(hi|x1,…,xt) × [q(X(t+1)=xt+1|x1,…,xt,hi) ÷ q(X(t+1)=xt+1| x1,…,xt)] . (61) 

Again, this corresponds with Bayes rule if the classic probability function p replaces 
the quantum probability function q. 

5   Summary and Concluding Comments 

This paper began with the assumption that the abstract mathematical basis of quantum 
theory is not tied to physics per se, but rather it can be used as a generalized probabil-
ity theory with meaningful applications outside of physics. If so, it should be applica-
ble to probabilistic inference problems.  

If we do this, we find that quantum inferences are updated in manner that corre-
spond exactly to Bayesian updating except that the coordinates of the state must be 
transformed by unitary matrices to coordinates of a different a basis for changes be-
tween incompatible measurements. Determining the unitary matrices that transform 
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from one set of coordinates to another is a critical step that remains to be achieved for 
applications outside of physics. 

Quantum inference is identical to Bayesian inference when only compatible meas-
ures are involved. But quantum inference can depart dramatically from Bayesian 
inference when incompatible measurements are involved. In particular, one can start 
out certain about a particular value of a measure, but if this is followed later by an 
incompatible measure, then one will become uncertain again about the value of the 
earlier (certain) measure. This results from the disturbance of one incompatible meas-
ure on another. 

When all the measures are compatible, we have one set of elementary events and 
this forms a single Boolean algebra of events. When incompatible measures are in-
volved, we need to define different incompatible sets of elementary events, which 
correspond to different sets of basis vectors within the same Hilbert space. These sets 
of events cannot be combined into a single comprehensive set of events using Boo-
lean logic.1 Thus we are forced to work with a partial Boolean algebra of events. 

So the most crucial question is whether incompatible measurements occur outside 
of physics. There is clear evidence that one type of human judgment can disturb an-
other and the order of human judgments changes the probabilities [3]. This suggests 
that it may be fruitful to employ quantum probabilities when human judgments are 
involved.  

Cognitive psychologists have attempted to describe the disturbing effect of one 
judgment on another by building cognitive models that describe a separate probability 
distribution for each order. However, they have implicitly assumed a partial Boolean 
algebra to formulate these models, and thus these models are not really consistent 
with classic probability theory either.  An important empirical question is whether 
simpler yet more generalizable probabilistic models can be found using quantum 
probabilities. The success in physics suggests this may be the case. This remains to be 
seen outside of physics (but see, [1], [11]). 

Acknowledgments. This research was supported by NSF SES-0753164 and SES-
0753168. Thanks for the IU quantum group (Amr Sabry, Larry Moss, Andrew 
Hanson, Gerardo Ortiz, Michael Dunn) for discussions of the ideas described in this 
paper.  
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Abstract. The aim of this paper is to use a contextual probabilistic
model (in the spirit of Mackey, Gudder, Ballentine) to represent and to
generalize some results of quantum logic on macroscopic quantum-like
(QL) behaviour. The crucial point is that our model provides the QL-
representation of macroscopic configurations in terms of complex proba-
bility amplitudes – wave functions of such configurations. Thus, instead
of the language of propositions which is common in quantum logic, we
use the language of wave functions which common in the conventional
presentation of QM.

Keywords: Contextual probabilistic model, complex Hilbert space, hy-
perbolic Hilbert space, quantum-like representation.

1 Introduction

One should sharply distinguish QM as a physical theory and the mathematical
formalism of QM. In the same way as one should distinguish classical Newto-
nian mechanics and its mathematical formalism. Nobody is surprised that the
differential and integral calculi which are basic in Newtonian mechanics can be
fruitfully applied in other domains of science. Unfortunately, the situation with
the mathematical formalism of QM is essentially more complicated – some purely
mathematical features of QM are identified with features of quantum physical
systems. Although already Niels Bohr pointed to the possibility to apply the
mathematical formalism of QM outside of physics, prejudice based on the iden-
tification of mathematics and physics still survives, but cf., e.g., Accardi, Aerts
et al, Ballentine, Coecke, Czachor, D’Hooghe, De Muynck, Grib et al., Gudder,
Landé, Mackey, Pykacz et al., detailed bibliography can be found in new author’s
book [1]. We can point out to a few applications of the quantum formalism out-
side of physics, [2]. Here we discuss not reductionist models in that the quantum
description appears as a consequence of the evident fact that any physical sys-
tem, even living (for example, the brain), is composed of quantum particles, but
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really the possibility to use the mathematical formalism of QM without direct
coupling with quantum physics.

We remark that importance of mentioned separation between quantum physics
and quantum mathematics has been already well recognized in quantum logic. In
particular, an exiting possibility to apply quantum mathematics to macroscopic
systems is not surprising for quantum logicians.

Recently I developed so called contextual probability theory [1] which was
inspired essentially by quantum logic and quantum probability. The main dis-
tinguishing feature of the theory of contextual probabilities is a possibility to
derive the complex probability amplitude, the wave function, from probabilis-
tic data. Such an algorithm for transfer of probabilistic data into the complex
probability amplitude is presented in [1], quantum-like representation algorithm
– QLRA.

The aim of this paper is to use our contextual probabilistic model, the Växjö
model, to represent and to generalize some results of quantum logic on macro-
scopic quantum-like (QL) behaviour in terms of complex probability amplitudes.
On the one hand, it may be interesting for physicists, since some rather mystical
quantum features will be illustrated on the basis of behavior of macroscopic sys-
tems. On the other hand, the approach developed in this paper may be used e.g.
in biology, sociology, or psychology. Our example of a QL-representation of hid-
den macroscopic configurations can find natural applications in those domains
of science.

The basic example which we would like to generalize in the contextual prob-
abilistic framework is well known in quantum logic. This is “firefly in the box”.
It was proposed by Foulis who wanted to show that a macroscopic system, fire-
fly, can exhibit a QL-behavior which can be naturally represented in terms of
quantum logics, [3].

We can mention some consequences of our QL-representation of macroscopic
configurations for foundations of quantum physics. For such macroscopic models
the QL-description is not complete. Thus hidden variables exist, but they could
not be observed on the basis of available observables. Nevertheless, a kind of
“Einstein demon” can observe behavior of hidden variables.

2 Firefly in the Box

We recall the well known example [3] by emphasizing its probabilistic structure.
Let us consider a box which is divided into four sub-boxes. These small boxes
which are denoted by ω1, ω2, ω3, ω4 provides internal description. These elements
are available for a “Einstein demon”, but they are not available for some external
observable.

We consider the Kolmogorov probability space: Ω = {ω1, ω2, ω3, ω4}, the al-
gebra of all finite subsets F of Ω and a probability measure determined by
probabilities P(ωj) = pj , where 0 < pj < 1, p1 + ... + p4 = 1.

We now consider two different disjoint partitions of the set Ω :

Cα1 = {ω1, ω2}, Cα2 = {ω3, ω4},
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ω1 ω3

ω2 ω4

Fig. 1. Internal description

Cβ1 = {ω1, ω3}, Cβ2 = {ω2, ω4}.

We can obtain such partitions by dividing the box: a) into two equal parts by the
vertical line: the left-hand part gives Cα1 and the right-hand part Cα2 ; b) into
two equal parts by the horizontal line: the top part gives Cβ1 and the bottom
part Cβ2 .

We introduce two random variables corresponding to these partitions: ξa(ω) =
αi, if ω ∈ Cαi and ξb(ω) = βi ∈ if ω ∈ Cβi . Here αi and βi are arbitrary
labels. Suppose now that the external observer is able to measure only these
two variables, denote the corresponding observables by the symbols a and b.
We remark that there exist other random variables, they are available for the
“Einstein demon”, but not for the external observer. Roughly speaking elements
ωj are not visible for the latter observer. They are “hidden variables.”

Such a model was illustrated (from the viewpoint of quantum logic) by the
following example [3]. Let us consider a firefly in the box. It has definite position
in space. The firefly position can be seen by a “Einstein demon” living inside
this box.

Now we consider an external observer who has only two possibilities to observe
the firefly in the box:

Cα1 Cα2

�

Fig. 2. The a-observable

�

Cβ1

Cβ2

Fig. 3. The b-observable
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1) to open a small window at the point a which is located in such a way (the
bold dot in the middle of the bottom side of the box, Figure 2) that it is possible
to determine only either the firefly is in the section Cα1 or in the section Cα2 of
the box;

2) to open a small window at the point b which is located in such a way (the
bold dot in the middle of the right-hand side of the box, Figure 3) that it is
possible to determine only either the firefly is in the section Cβ1 or in the section
Cβ2 of the box.

In the first case such an external observer can determine in which part, Cα1 or
Cα2 , the firefly is located. In the second case he can only determine in which part,
Cβ1 or Cβ2 , the firefly is located. But he is not able to look into both windows
simultaneously. In such a situation the observables a and b are the only source
of information about the firefly (“reference observables”). The Kolmogorov de-
scription is meaningless for the external observer (although it is present in the
latent form).

Can one apply in such a situation the QL-description? The answer is to be
positive.

3 Contextual Probability

A general statistical model for observables based on the contextual viewpoint to
probability will be presented. It will be shown that classical as well as quantum
probabilistic models can be obtained as particular cases of our general contextual
model, the Växjö model, [1].

A physical, biological, social, mental, genetic, economic, or financial context
C is a complex of corresponding conditions.

Construction of any model M should be started with fixing the collection of
contexts of this model. Denote the collection of contexts by the symbol C (so the
family of contexts C is determined by the model M under consideration). In the
mathematical formalism C is an abstract set (of “labels” of contexts).

We remark that in some models it is possible to construct a set-theoretic
representation of contexts – as some family of subsets of a set Ω. For example,
Ω can be the set of all possible parameters (e.g., physical, or mental, or economic)
of the model. However, in general we do not assume the possibility to construct
a set-theoretic representation of contexts.

Another fundamental element of any contextual probabilistic model M is a set
of observables O : each observable a ∈ O can be measured under each complex
of conditions C ∈ C. For an observable a ∈ O, we denote the set of its possible
values (“spectrum”) by the symbol Xa.

Axiom 1. For any observable a ∈ O and its value α ∈ Xa, there are defined
contexts, say Cα, corresponding to [a = α]-selections: if we perform a measure-
ment of the observable a under the complex of physical conditions Cα, then we
obtain the value a = α with probability 1. We assume that the set of contexts C
contains Cα-selection contexts for all observables a ∈ O and α ∈ Xa.
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For example, let a be the observable corresponding to some question: a = +
(the answer “yes”) and a = − (the answer “no”). Then the C+-selection context
is the selection of those participants of the experiment who answering “yes” to
this question; in the same way we define the C−-selection context.

Axiom 2. There are defined contextual (conditional) probabilities pa
C(α) ≡ P

(a = α|C) for any context C ∈ C and any observable a ∈ O .

Thus, for any context C ∈ C and any observable a ∈ O , there is defined the
probability to observe the fixed value a = α under the complex of conditions C.

Especially important role will be played by “transition probabilities” pa|b

(α|β) ≡ P(a = α|Cβ), a, b ∈ O, α ∈ Xa, β ∈ Xb, where Cβ is the [b = β]-
selection context. By axiom 2 for any context C ∈ C, there is defined the set
of probabilities: {pa

C : a ∈ O}. We complete this probabilistic data for the con-
text C by transition probabilities. The corresponding collection of data D(O, C)
consists of contextual probabilities: pa|b(α|β), pb

C(β), pb|a(β|α), pa
C(α)..., where

a, b, ... ∈ O. Finally, we denote the family of probabilistic data D(O, C) for all
contexts C ∈ C by the symbol D(O, C)(≡ ∪C∈CD(O, C)).

Definition 1. (Växjö Model) A contextual probabilistic model of reality is a triple
M = (C,O,D(O, C)), where C is a set of contexts and O is a set of observables
which satisfy to axioms 1,2, and D(O, C) is probabilistic data about contexts C
obtained with the aid of observables belonging O.

We call observables belonging the set O ≡ O(M) reference of observables. Inside
of a model M observables belonging to the set O give the only possible references
about a context C ∈ C. In the definition of the Växjö Model we speak about
“reality.” In our approach it is reality of contexts.

In what follows we shall consider Växjö models with two dichotomous refer-
ence observables.

4 Quantum-Like Representation Algorithm – QLRA

In [1] we derived the following formula for interference of probabilities:

pb
C(β) =

∑
α

pa
C(α)pb|a(β|α) + 2λ(β|α, C)

√∏
α

pa
C(α)pb|a(β|α), (1)

where the coefficient of interference

λ(β|a, C) =
pb

C(β)−∑
α pa

C(α)pb|a(β|α)

2
√∏

α pa
C(α)pb|a(β|α)

. (2)

A similar representation we have for the a-probabilities. Such interference for-
mulas are valid for any collection of contextual probabilistic data satisfying the
conditions:

R1). Observables a and b are symmetrically conditioned1: pb|a(β|α)=pa|b(α|β).
1 This condition will induce symmetry of the scalar product.
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R2). Observables a and b are mutually nondegenerate2: pa|b(α|β) > 0, ; pb|a

(β|α) > 0.
R2a). Context C is nondegenerate with respect to both observables a and b :

pb
C(β) > 0, pa

C(α) > 0.
Suppose that also the following conditions hold:
R3). Coefficients of interference are bounded by one3:∣∣∣pb

C(β) −∑
α pa

C(α)pb|a(β|α)

2
√∏

α pa
C(α)pb|a(β|α)

∣∣∣ ≤ 1,

∣∣∣pa
C(α)−∑

β pb
C(β)pa|b(α|β)

2
√∏

α pb
C(β)pa|b(α|β)

∣∣∣ ≤ 1,

A context C such that R3) holds is called trigonometric, because in this case
we have the conventional formula of trigonometric interference:

pb
C(β) =

∑
α

pa
C(α)pb|a(β|α) + 2 cos θ(β|α, C)

√∏
α

pa
C(α)pb|a(β|α), (3)

where λ(β|a, C) = cos θ(β|a, C). Parameters θ(β|α, C) are said to be b|a-relative
phases with respect to the context C. We defined these phases purely on the
basis of probabilities. We have not started with any linear space; in contrast we
shall define geometry from probability.4

We denote the collection of all trigonometric contexts by the symbol Ctr.
By using the elementary formula: D = A+B +2

√
AB cos θ = |√A+eiθ

√
B|2,

for real numbers A, B > 0, θ ∈ [0, 2π], we can represent the probability pb
C(β) as

the square of the complex amplitude (Born’s rule):

pb
C(β) = |ψC(β)|2 . (4)

Here

ψ(β) ≡ ψC(β) =
√

pa
C(α1)pb|a(β|α1)+ eiθC(β)

√
pa

C(α2)pb|a(β|α2), β ∈ Xb, (5)

where θC(β) ≡ θ(β|α, C).

The formula (5) gives the quantum-like representation algorithm – QLRA.
For any trigonometric context C by starting with the probabilistic data

pb
C(β), pa

C(α), pb|a(β|α)

2 This condition will induce noncommutativity of operators â and b̂ representing these
observables.

3 This condition will induce representation of the context C in the complex Hilbert
space. Thus complex numbers appear due to this condition.

4 We remark that conditions R1) and R3) are also necessary.
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– QLRA produces the complex amplitude ψC . This algorithm can be used in
any domain of science to create the QL-representation of probabilistic data (for
a special class of contexts).

We point out that QLRA contains the reference observables as parameters.
Hence the complex amplitude give by (5) depends on a, b : ψC ≡ ψ

b|a
C .

We denote the space of functions: ϕ : Xb → C by the symbol Φ = Φ(Xb,C).
Since X = {β1, β2}, the Φ is the two dimensional complex linear space. By using
QLRA we construct the map

Jb|a : Ctr → Φ(X,C) (6)

which maps contexts (complexes of, e.g., physical conditions) into complex am-
plitudes. The complex amplitude ψC(x) can be called a wave function of the
complex of physical conditions (context) C or a (pure) state. We set eb

β(·) =
δ(β − ·) – Dirac delta-functions concentrated in points β = β1, β2. The Born’s
rule for complex amplitudes (4) can be rewritten in the following form: pb

C(β) =
|〈ψC , eb

β〉|2, where the scalar product in the space Φ(Xb, C) is defined by the
standard formula: 〈φ, ψ〉 =

∑
β∈Xb

φ(β)ψ̄(β). The system of functions {eb
β}β∈Xb

is an orthonormal basis in the Hilbert space Hab = (Φ, 〈·, ·〉).
Let Xb ⊂ R. By using the Hilbert space representation of the Born’s rule

we obtain the Hilbert space representation of the expectation of the observable
b: E(b|C) =

∑
β∈Xb

β|ψC(β)|2 =
∑

β∈Xb
β〈ψC , eb

β〉〈ψC , eb
β〉 = 〈b̂ψC , ψC〉, where

the (self-adjoint) operator b̂ : Hab → Hab is determined by its eigenvectors:
b̂eb

β = βeb
β , β ∈ Xb. This is the multiplication operator in the space of complex

functions Φ(Xb,C) : b̂ψ(β) = βψ(β). It is natural to represent the b-observable
(in the Hilbert space model) by the operator b̂.

We would like to have Born’s rule not only for the b-variable, but also for the
a-variable: pa

C(α) = |〈ϕ, ea
α〉|2 , α ∈ Xa.

How can we define the basis {ea
α} corresponding to the a-observable? Such

a basis can be found starting with interference of probabilities. We set ua
j =√

pa
C(αj), pij = p(βj |αi), uij = √pij , θj = θC(βj). We have:

ϕ = ua
1e

a
α1

+ ua
2e

a
α2

, (7)

where
ea

α1
= (u11, u12), ea

α2
= (eiθ1u21, eiθ2u22) (8)

The condition R1) implies that the system {ea
αi
} is an orthonormal basis iff the

probabilistic phases satisfy the constraint: θ2 − θ1 = π mod 2π, but, as we have
seen [1], we can always choose such phases (under the condition R1).

In this case the a-observable is represented by the operator â which is di-
agonal with eigenvalues α1, α2 in the basis {ea

αi
}. The conditional average of

the observable a coincides with the quantum Hilbert space average: E(a|C) =∑
α∈Xa

αpa
C(α) = 〈âψC , ψC〉.

If condition R3) is violated, non conventional QL-representations of proba-
bilistic data arise: for example, in the hyperbolic analogue of complex Hilbert
space [1].
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5 Flies in a Packet

We consider a metal box. Food (which is attractive for flies) is distributed at differ-
ent points inside this box. This distribution is not uniform: at some points food’s
concentration is higher, there are even domains without food. An external observer
(who is outside this box) has no idea about the real distribution of food in the box.
But the “Einstein demon” living inside this box knows well this distribution.

We put a population of flies, say Ω, inside this box. After a while they will
be distributed in space inside the box concentrating at sites with food.

The “Einstein demon” knows the probability distribution P(x, y, z) to find
a fly at the point with coordinates (x, y, z). It is assumed to be stationary (at
least for a while). (In principle, some flies can move between attractive points,
but statistically the number of flies at each site with food is stable.)

As in the example “firefly in the box”, one can divide this box in two ways:
a) by the vertical wall – a, see Figure 2; b) by horizontal wall – b, see Figure 3.
Here a(ω) = α1 if the “Einstein demon” finds a fly ω in the left-hand part and
a(ω) = α2 if he finds a fly ω in the right-hand part (e.g. α = ±1). We define b
in a similar way: b(ω) = β1 if the “Einstein demon” finds a fly ω in the top part
and b(ω) = β2 if he finds a fly ω in the bottom part (e.g. β = ±1). The “Einstein
demon” sets:

Ωα = {ω ∈ Ω : a(ω) = α}, Ωβ = {ω ∈ Ω : a(ω) = β}.
By assuming that P(Ωα),P(Ωβ) > 0, he can define transition probabilities:

pb|a(β|α) = P(Ωβ |Ωα) ≡ P(Ωβ ∩Ωα)
P(Aα)

and in the same way probabilities pa|b(α|β).
Let C be some domain inside the box. We shall consider it as a geometric-

context. The “Einstein demon” can be find (by using the Bayes’ formula) con-
ditional probability distribution:

PC(U) =
P(ΩU ∩ΩC)

P(ΩC)
, (9)

for any subset U of box (if we consider general distribution P (i.e., not discrete),
then we should take Borel sets). Here ΩC = {ω ∈ Ω : (xω , yω, zω) ∈ C} and ΩU

is defined in the same way.
This probability distribution PC provides the probabilistic representation of

the domain C. The “Einstein demon” encoded geometry by probability. Of course,
probability provides only rough images of geometric structures, since the map:

C → PC

is not one-to-one. Denote now by F some σ-algebra of subsets of the box such that
the probability P – flies’ distribution – can be defined on it. Denote also the set
of all probability measures on the F by the symbol P . Then we have the map:

J : F → P . (10)

This is the classical probabilistic representation of geometry (of distribution of
food). It is available for any internal observer (“Einstein demon”) who lives inside
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this box. In this mapping a lot of geometric information is neglected. However,
the whole probabilistic information is taken into account. This is the end of the
classical story!

Remark 5.1. (Food and flies version of fields and particles) This representation
has one interesting feature. Geometry of food distribution is represented by
ensembles of flies. We can make the following analogy: electromagnetic field
can be represented by photons. One can compare the food distribution with a
kind of a “food-field” and flies with particles representing this field. If we put
another type of insects into the box, they may be not interested in this sort
of food. They would not reproduce the distribution P(x, y, z). Thus we may
speak about various food-fields which are represented by corresponding types of
insects-particles. In some sense this picture reminds Bohmian mechanics.

Now we modify the previous framework. We have the same box with the same
distribution of fly-attractive food. But flies are put not directly in the box, but in
a plastic packet, say C. The geometric configuration is unknown for us – external
observers. Moreover, we are not able to find its configuration directly (even by
making a hole in the box), because packet’s surface is covered by a “B2-bomber
type” material. Thus we look inside the box, but we see nothing.5 Neverthe-
less, we (external observers) would like to get at least partial information about
this packet configuration by using flies distribution. The problem is even more
complicated, because we shall proceed under the assumption that any attempt
to open the metal box will induce destruction of the packet which in its turn
induces redistribution of flies in the space.

We do the following. As in the firefly-example we introduce fuzzy coordinates
a and b. We measure them in the following way. We assume that we can put very
quickly either vertical or horizontal wall into the box. Such a moving wall divides
(practically adulating, at least in comparing with fly’s velocity) the box into two
sub-boxes, but at the same time it destroys (of course) the plastic packet. It is
assumed that after this act we can open each sub-box and find numbers of flies
in each part of the box.

At the moment we consider nondisturbing measurements: walls do not change
food distributions in corresponding parts of the box (those walls are negligibly
thin and destruction of the packet does not change the distribution of food).
However, opening of any box induces a strong disturbing effect, flies are essen-
tially redistributed.

Thus first we do the a-measuring by using the vertical wall. It divides the
box into two parts, say Cα1 and Cα2 . In this way we get probabilities pa

C(α)
that a fly was located in the α-side of the box. Since the vertical wall moves
quickly relatively to fly’s velocity, the number of flies which were able to change
the left-hand part of the box to the right-hand part or vice versa is statistically
negligible. In principle, we might try to use the classical formula:

5 The “Einstein demon” also gets a problem, but he can still investigate packet’s
geometry just by moving over its surface. Of course, if the packet is disconnected,
so it has a few components, a few “Einstein demons” should be employed.
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pa
C(α) = PC(Ωα) ≡ P(Ωα ∩ΩC)

P(ΩC)
,

However, it is not useful for us, because we do not know the configuration C and
hence PC .

We point out that if we do not open sub-boxes Cα and if after while the
corresponding “Einstein demons” measure the b-coordinate of flies in each part
Cα of the box they will obtain the original transition probabilities pb|a(β|α),
since flies will again redistribute in the domain Cα according to the food-field.6

However, the original distribution of flies in the domain C ∩ Cα has been lost
for ever even for the “Einstein demons.” We (external observers) are not able
to find transition probabilities in this way, since opening of a box produces
redistribution of flies in it.

We also remark that trivially a(ω) = α on the α-part of the box.

Remark 5.2. (Reaction of “food-field” to space reconfiguration) At the moment
we proceed under the assumption that the “food-field” is not sensitive to the
disturbing effect of the moving wall (separating the box into two sub-boxes).
Moreover, the “food-field” is not sensitive to changes of the geometry of space
(“boundary conditions”). In principle, we can imagine the following situation.
The appearance of a separating wall does not induce a disturbing effect which
could move food in space. However, the wall by itself can have some physical
properties influencing the food distribution. For example, food is electrically
charged (in some way) and walls of the box (including walls used in separation
experiments) also carry electric charges. Thus even “mechanically peaceful ap-
pearance” of a separating wall will induce (after a while) redistribution of food
in the sub-box.

To construct the QL-representation of the context C by a complex probability
amplitude, we need also probabilities:

pb
C(β) = PC(Ωβ) ≡ P(Ωβ ∩ΩC)

P(ΩC)
,

However, since we do not know the configuration C, we are not able to apply
Bayes’ formula directly. We should repeat previous considerations, but by using
now the horizontal wall which separates quickly the box into top and bottom
parts, Cβ1 and Cβ2 . Then by opening these sub-boxes and counting flies in each
of them we find the probabilities pb

C(β).
Of course, we should have two boxes with the same configuration C, because

each falling wall destroys this configuration. Thus we should be able to make such
a preparation a few times. Moreover, if one wants to exclude effects of interaction
between flies (as one does in QM), there should be created an ensemble of boxes,
each box containing just one fly. It is assumed that flies would reproduce the
food distribution.

In particular, for C = Cα, i.e., the configuration C which coincides with the
α-part of the box we get: ΩCα = Ωα and

pb
Cα

(β) = pb|a(β|α).
6 Two “Einstein demons” should be involved – one for each sub-box.
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However, we do not know from the very beginning that a hidden geometric
configuration is the half-box Cα. Therefore this is not an experimental way to
find transition probabilities.

To find transition probabilities, we assume that each half-box Cα can be
divided by the horizontal wall (as in the original b-measurement in the whole
box) in two parts, say Cβ|α, β = β1, β2. By counting flies in each of these boxes
we find the transition probabilities. At the moment we proceed under the same
assumptions as before: by putting the horizontal walls in the box Cα we do not
change the distribution of food in it.

Now everything is prepared for application of QLRA. A necessary condition
is given by R2), since in QM matrices of transition probabilities are symmet-
rically conditioned. Thus from the very beginning one should assume that the
distribution of attracting sites in the box induces this condition. This happens
iff P(Ωα) = P(Ωβ) = 1/2.

The next condition is that variables are statistically conjugate, i.e., P(Ωα ∩
Ωβ) 	= 0 for all α and β.

Finally, the context C should be “large enough” with respect to both variables:
P(ΩC ∩Ωβ),P(ΩC ∩Ωα) > 0.

We also know that, besides a complex probability amplitude, some contexts
can be represented by hyperbolic amplitudes, thus to guarantee real QM-like
representation we should have |λ| ≤ 1 for the coefficient of interference.

Thus we represent all “trigonometric configurations” C by complex vectors
and the observables a and b by self-adjoint operators. The map:

Jb|a : Ctr → H

is a QL-analogue of the classical map J given by (10). Of course, the former map
is “better”. However, we are not able to use it in the situation with invisible
configuration C.

As was shown [1], for some contexts, hyperbolic ones, |λ| > 1. They are
mapped into hyperbolic amplitudes:

Jb|a : Chyp → Hhyp,

where Hhyp is the hyperbolic analogue of Hilbert space [1].

6 Quantum-Like Representation of Kolmogorov’s Model

In spite of the presence of the underlying Kolmogorov space, we constructed
the QL-representation of probabilistic data for macroscopic configurations (es-
sentially incomplete representation) which has all distinguishing features of the
conventional quantum representation of probabilistic data for a pair of incom-
patible observables: interference formula for probabilities, Born’s rule, represen-
tation of these observables by self-adjoint operators. As was mentioned, the map
Jb|a is not injective. We no ask: Is it surjective? Can one get any quantum state
ψ and any pair of quantum observables â and b̂ in such a way? The answer is
no. This is a consequence of Bell’s type inequality for transition probabilities.
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To apply conditional Bell’s inequality to our macroscopic situation, it is better
to consider a ball bounded by the metal sphere, instead of the box. We now can
divide this ball into parts with the aid of central planes. To simplify consider-
ations, we can consider a bundle of planes which are enumerated by the angle
φ. Then we shall obtain a family of observables aφ, say taking values ±. Parts
of the ball obtained by the φ-separation are Cφ,+ = {θ : φ ≤ θ < φ + π} and
Cφ,− = {θ : φ + π ≤ θ < φ}, respectively.

For each pair of them we find transition probabilities pφ1|φ2(ε1|ε2). For each
context C (a plastic packet with flies inside it; this packet is placed inside the
metal ball; any attempt to open the ball would destroy this packet) and any
φ-section, we find probabilities pφ

C(ε), ε = ±. If we choose a context C such that
pφ

C(+1) = pφ
C(−1) = 1/2 for all φ, then we can apply arguments of appendix and

we see that some types of transition probabilities could not be obtained from a
single Kolmogorov model.

One Kolmogorov space is too small to generate all quantum (or better to say
quantum-like) states and observables.

7 Disturbing Measurements

However, we can easily modify our example to destroy the (hidden) Kolmogorov
structure of the model. Suppose now that everything is as it was before with only
one difference: destruction of the packet by a wall (encoded by some φ-plane)
induces not only the possibility for flies to move outside the packet, but also
induces a redistribution of food sites, cf. Remark 5.2. The latter is determined
by the wall. Thus after e.g. the φ-plane separation of the ball the distribution
of sites with food in its parts Cφ,+1 and Cφ,−1 is not such as it was before
this separation. Therefore, for any successive φ′-separation of the sectors Cφ,ε

(which were produced by the previous φ-separation), the transition probabilities
pφ′|φ(ε′|ε) obtained by an external observer do not coincide with the transition
probabilities which would be obtained by the “Einstein demon” on the basis of
the original ensemble. Hence Bell’s type inequality for transition probabilities,
see appendix and [1], cannot be applied.

In fact, by using random generators we can simulate probabilities for any
complex probability amplitude and any pair of self-adjoint operators in the two
dimensional Hilbert space.

For example, suppose that we would like to simulate the transition proba-
bilities for successive measurement of spin projections as well as the uniform
probability distribution for the a and b measurements for the original context C
(state ψC). To provide the latter condition, we start with the uniform distribu-
tion of food. It would induce probabilities pa

C(α) = pb
C(β) = 1/2.

Now to simplify considerations, we consider not three dimensional configura-
tions, but just two dimensional, in particular, we consider a circle, instead of a
ball, and sections by central lines, instead of planes.

The disturbance induced by the aφ0 -measurement, 0 ≤ φ0 < π, induces redis-
tribution of food in the sectors and finally generates e.g. in the sector Cφ0,+ the
density of flies:
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ρ+
φ0

(r, θ) = sin(θ − φ0). (11)

(We assume that the circle has unit radius). Then we separate the sector Cφ0,+1
by the φ-plane, say φ > φ0. Then the probability

pφ|φ0(+|+) =
∫ 1

0
rdr

∫ φ0+π

φ

sin(θ − φ0)dθ = cos2
φ− φ0

2
,

pφ|φ0(−|+) =
∫ 1

0
rdr

∫ φ

φ0

sin(θ − φ0)dθ = sin2 φ− φ0

2
.

For the sector Cφ0,−, we choose the probability distribution

ρ−φ0
(r, θ) = − sin(θ − φ0). (12)

Here transition probabilities are given by

pφ|φ0(+|−) = −
∫ 1

0
rdr

∫ φ+π

φ0+π

sin(θ − φ0)dθ = sin2 φ− φ0

2
,

pφ|φ0(−|−) = −
∫ 1

0
rdr

∫ φ0+2π

φ+π

sin(θ − φ0)dθ = cos2
φ− φ0

2
.

Remark 7.1. (Complementarity or supplementarity?) Since we consider dis-
turbing measurements, we (external observers) are not able to measure two ob-
servables, aφ1 and aφ2 , simultaneously. Thus these are incompatible observables.
However, such measurement incompatibility does not exclude that an element
of reality can be assigned to each fly – the pair aφ1(ω), aφ2(ω). We recall that we
consider such separations that they do not induce redistribution of flies between
sectors: the φ-plane moves so quickly that flies are not able to change sectors (or
at least only statistically negligible number of flies could make such changes).
Moreover, only negligible number of flies can be killed by a moving-separating
plane. Thus the values of aφ1(ω) and aφ2(ω) which would be obtained by an
external observer coincide with the values which have been known by the “Ein-
stein demon” before measurements. Therefore complementarity (in the sense of
mutual exclusivity) is only external observer’s complementarity. The “Einstein
demon” still has supplementarity, in the sense on additional information (of
course, fuzzy) about fly’s location.

8 Classical Probabilistic Structure and Disturbance
Effects

By Bell’s inequality for transition probabilities, see appendix, it is impossible
to find a single underlying classical probabilistic space which would reproduce
all possible wave functions and pairs of self-adjoint noncommutative operators
in the contextual probabilistic framework. One can not find such a Kolmogorov
probability space that by choosing different pairs of reference observables a, b
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and corresponding families of trigonometric contexts Ctr(a, b) (represented by
sets from the σ-algebra of the Kolmogorov space) he would (by applying QLRA)
cover the whole unit sphere of Hilbert state space as well as obtain all pairs of
noncommutative self-adjoint operators. We showed that by considering disturb-
ing measurements we can reproduce all quantum structures. Can one approach
the same result without disturbance? In principle, yes!

8.1 Ensemble Fluctuations

Another important point is that we proceeded by using counterfactual argu-
ments. To be on really realistic ground, we should consider at least three differ-
ent balls and perform on them conditional measurements for pairs of observables
aφi , aφj . In principle, we cannot guarantee that we would be able to reproduce
statistically identical distributions of food in balls and identical hidden config-
urations. As was emphasized, the map, see (6), from the collection of trigono-
metric contexts into complex probability amplitudes is not injection, various
contexts can be mapped in the same complex probability amplitude. Even if
we are sure that we have the same QL-state given by the same complex proba-
bility amplitude, ψ, we could never be sure that contexts in different balls are
the same. Therefore we should work in multi-Kolmogorovian framework and the
Bell’s inequality for conditional probabilities can also be violated without any
disturbance.

9 ERP-Bohm Type Experiments with Flies

We have considered in very detail measurements (in fact, position-type mea-
surements) for ensembles of single flies. In principle, we could consider the real
EPR-Bohm type experiment for pairs of “entangled flies” which we put into dif-
ferent metal balls. One of technological problems is to produce such pairs of flies.
However, this is not the main point. The main point is that in the macroscopic
framework such experiments would not give so much more than experiments
with single flies. In contrast to photons or electrons, we have no doubts that flies
have objective properties, in particular, the position. Therefore the only conse-
quence of the EPR-Bohm type experiment with flies would be that disturbing
effects should be excluded.7

7 We remind that we consider not only mechanical disturbance by moving planes, but
also the field type disturbance. To exclude the latter type of disturbance, one should
be sure that the effect of the “food-field” (e.g. smell) from one ball would be not
able to propagate to another ball. If balls have small windows (or produced not of
metal, but of some less isolating material), then smell can propagate from one ball
to another. We recall that insects can find smell-traces on huge distances. Thus to
exclude completely disturbing effects, we should either isolate balls completely or to
make measurements on balls with a time-window such that a signal from one ball
would not be able to approach another during this time window.
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Thus as well as in the case of a single system we have tree choices: a) unfair
sampling; b) ensemble fluctuations; c) nonrelativistic communications between
flies.

The last condition cannot be completely rejected even for human beings, but
the EPR-type experiment could not be used to provide the crucial argument in
its favor.

Conclusion. We shown that macroscopic configurations can be naturally repre-
sented in the QL-way – by complex probability amplitudes. Classical probabilistic
structure can be violated. In particular, Bell’s type inequality can be violated.
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Appendix: Bell’s Inequality for Transition Probabilities

Theorem. Let a, b, c = ±1 be dichotomous uniformly distributed random vari-
ables on a single Kolmogorov space. Then the following inequality holds true:

P(a = +1|b = +1) + P(c = +1|b = −1) ≥ P(a = +1|c = +1) (13)

We underline again that the main distinguishing feature of (13) is the presence of
only transition probabilities. Transition probabilities can always be calculated
by using quantum formalism for noncomposite systems. In fact, we need not
consider pairs of particles.
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Abstract. We prove a theorem that shows that a collection of exper-
imental data of membership weights of items with respect to a pair of
concepts and its conjunction cannot be modeled within a classical mea-
sure theoretic weight structure in case the experimental data contain the
effect called overextension. Since the effect of overextension, analogue
to the well-known guppy effect for concept combinations, is abundant
in all experiments testing weights of items with respect to pairs of con-
cepts and their conjunctions, our theorem constitutes a no-go theorem
for classical measure structure for common data of membership weights
of items with respect to concepts and their combinations. We put for-
ward a simple geometric criterion that reveals the non classicality of the
membership weight structure and use experimentally measured member-
ship weights estimated by subjects in experiments from [26] to illustrate
our geometrical criterion. The violation of the classical weight structure
is similar to the violation of the well-known Bell inequalities studied in
quantum mechanics, and hence suggests that the quantum formalism and
hence the modeling by quantum membership weights, as for example in
[17], can accomplish what classical membership weights cannot do.

1 Introduction

Many branches of mathematics, such as geometry, complexity theory, and even
number theory, were originally conceived not as domains of mathematics, but as
describing a particular domain of physical reality. It was only much later that
they were conceived more abstractly, and their applicability to a wide range of
phenomena was realized. We believe this is also proving to be the case for the
mathematical formalisms originally developed to describe events observed in the
microworld: quantum mechanics.

Meanwhile the mathematical formalism of quantum mechanics has indeed
been used successfully to model situations pertaining to domains different from
the micro-world, for example, in economics [1, 2, 3], operations research and
management sciences [4, 5], psychology and cognition [6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17], and language and artificial intelligence [18, 19, 20, 21, 22, 23].
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More specifically, in [17] a quantum mechanical representation of experimental
data corresponding to membership weights of items with respect to pairs of
concepts and their conjunctions was elaborated. It was proven that these data
cannot be modelled by a classical theory of membership weights, i.e. a theory
where membership weights are represented within a measure theoretic structure
(see theorems 1, 2 and 3).

In the present paper we introduce a very simple geometrical criterion that
allows the identification of the classical or non-classical nature of membership
weight data gathered for pairs of concepts and their conjunctions, or more gen-
erally, collections of concepts and conjunctions of some of the pairs in these
collections. More specifically we determine for such a collection of concepts and
some of the conjunctions of these concepts a geometrical figure called a polytope
(which is the higher dimensional generalization of a polygon in a real vector
space) and a geometrical way of representing the measured membership weights
of this collection and its conjunctions by means of a vector in this real vector
space called a correlation vector. We prove that if this correlation vector is lo-
cated inside the polytope a classical measure theoretic model exists for these
data, while if the correlation vector is located outside of the polytope then such
a model does not exist.

2 Membership Weights on Pairs of Concepts and Their
Conjunctions

It has been shown that Guppy is neither a very typical example of Pet nor Fish
but is a very typical example of Pet-Fish [24]. Hence, the typicality of a specific
item with respect to the conjunction of concepts can behave in an unexpected
way. The problem is often referred to as the ‘pet-fish problem’ and the effect is
usually called the ‘guppy effect’. The guppy effect is abundant; it appears almost
in every situation where concepts combine. Meanwhile many experiments and
analyses of this effect and related to the problem of combining concepts have
been conducted [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

The guppy effect was not only identified for the typicality of items with respect
to concepts and their conjunctions but also for the membership weights of items
with respect to concepts and their conjunction [26]. For example,

Table 1. The list of pairs of concepts and their conjunction used in [26]

A1 A2 A1 and A2

Furniture Household Appliances Furniture and Household Appliances
Food Plant Food and Plant
Weapon Tool Weapon and Tool
Building Dwelling Building and Dwelling
Machine Vehicle Machine and Vehicle
Bird Pet Bird and Pet
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Table 2. Three of the pairs of concepts and items of experiment 4 in [26]. The non
classical items are labeled by q and the classical items by c.

μ(A1) μ(A2) μ(A1andA2) μ(A1) μ(A2) μ(A1andA2)
A1=Furniture, A2=Household Appliances A1=Building, A2=Dwelling

Filing Cabinet q 0.9744 0.3077 0.5263 Castle c 1 1 1
Clothes Washer q 0.15 1 0.725 Cave c 0.2821 0.95 0.2821
Vacuum Cleaner q 0.075 1 0.3846 Phone box c 0.2308 0.0526 0.02778
Hifi q 0.5789 0.7895 0.7895 Apartment Block q 0.9231 0.8718 0.9231
Heated Water Bed q 1 0.4872 0.775 Library q 0.95 0.175 0.3077
Sewing Chest q 0.8718 0.5 0.55 Trailer q 0.35 1 0.6154
Floor Mat q 0.5641 0.15 0.2051 Jeep q 0 0.05 0.05
Coffee Table q 1 0.15 0.3846 Palena q 0.975 1 1
Piano q 0.95 0.1282 0.3333 Igloo q 0.875 1 0.9
Rug q 0.5897 0.05128 0.1842 Synagogue c 0.925 0.4872 0.4474
Painting q 0.6154 0.0513 0.1053 Tent q 0.5 0.9 0.55
Chair q 0.975 0.175 0.3590 Bown q 0.9487 0.8205 0.8974
Fridge q 0.4103 1 0.775 Theatre q 0.95 0.1282 0.2821
Desk Lamp q 0.725 0.825 0.825 LogCabin c 1 1 1
Cooking Stove q 0.3333 1 0.825 House c 1 1 1
TV q 0.7 0.9 0.925 Tree House q 0.7692 0.8462 0.85
A=Food, B=Plant A=Machine, B=Vehicle

Garlic q 0.9487 0.7105 0.8514 Dog Sled q 0.1795 0.925 0.275
Toadstool q 0.1429 0.6061 0.2727 Dishwasher q 1 0.025 0
Steak c 1 0 0 Backpack c 0 0 0
Peppercorn q 0.875 0.6207 0.7586 Bicycle q 0.85 0.975 0.95
Potato q 1 0.7436 0.9 Sailboat c 0.5641 0.8 0.4211
Raisin q 1 0.3846 0.775 Roadroller q 0.9375 0.9063 0.9091
Mint q 0.8718 0.8056 0.8974 Raft c 0.2051 0.725 0.2
Sunflower q 0.7692 1 0.775 Elevator q 0.9744 0.6 0.7949
Seaweed q 0.825 0.9744 0.8684 Course liner q 0.875 0.875 0.95
Sponge q 0.0263 0.3421 0.0882 Automobile c 1 1 1
Bread q 1 0.0769 0.2051 Horsecart q 0.3846 0.95 0.2895
Cabbage q 1 0.9 1 Skateboard q 0.2821 0.8421 0.3421
Eucalyptus q 0.1622 0.8974 0.3243 Bus c 1 1 1
Poppy q 0.3784 0.8947 0.5405 Bulldozer q 1 0.925 0.95
Mushroom q 1 0.6667 0.9 Lawn-mower q 0.975 0.1053 0.2632
Lettuce q 1 0.925 1 Ski Lift q 1 0.5897 0.875
A=Weapon, B=Tool A=Bird, B=Pet

Ruler q 0.05 0.9 0.1538 Dog c 0 1 0
Toothbrush c 0 0.55 0 Cuckoo q 1 0.575 0.8421
Chisel q 0.4 0.975 0.6410 Parakeet c 1 1 1
Axe q 0.875 1 0.975 Cat c 0 1 0
Screwdriver q 0.3 1 0.625 Lark q 1 0.275 0.4872
Arrow q 1 0.225 0.575 Heron q 0.9412 0.1515 0.2581
Knife c 1 0.975 0.975 Peacock q 1 0.4 0.5789
Rifle q 1 0.35 0.5 Cow q 0 0.425 0.025
Whip q 0.875 0.2632 0.625 Toucan q 1 0.6154 0.8026
Hammer q 0.575 1 0.8 Parrot c 1 1 1
Scissors q 0.6053 0.9744 0.7692 Mynah Bird q 1 0.8710 0.8438
Spoon q 0 0.752 0.075 Raven q 1 0.2368 0.4
Spear q 1 0.275 0.7179 Elephant c 0 0.25 0
Chain-saw q 0.55 1 0.75 Goldfish c 0 1 0
Club q 1 0.3590 0.775 Homing Pigeon q 1 0.775 0.8974
Razor q 0.625 0.775 0.825 Canary c 1 1 1
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subjects rate Cuckoo a better member of the conjunction ‘Bird and Pet’ than of
the concept Pet on its own. This is a strange effect; if the conjunction of concepts
behaved like a conjunction of logical propositions the second should be at least
as great as the first. This deviation from what one would expect of a standard
classical interpretation of conjunctions of concepts is referred to as ‘overexten-
sion’ [26]. Table 1 gives the list of six pairs of concepts and their conjunction for
which in [26] the membership weights were measured with respect to different
items, and in Table 2 the outcomes of these measurements are given for each of
the items.

3 Classical and Non Classical Membership Weights

The behavior of a standard classical weight for a conjunction is described math-
ematically for the case of one pair of concepts and their conjunction in section
3 of [17]. Consider weights μ(A1), μ(A2) and μ(A1 and A2) of an item X with
respect to a pair of concepts A1 and A2 and their conjunction ‘A1 and A2’. We
say that they are ‘classical membership weights’ if and only if there exists a
normed measure space (Ω, σ(Ω), P ) and events EA1 , EA2 ∈ σ(Ω) of the events
algebra σ(Ω) such that

P (EA1) = μ(A1) P (EA2) = μ(A2) and P (EA1 ∩EA2 ) = μ(A1 and A2) (1)

A normed measure P is a function defined on a σ-algebra σ(Ω) over a set Ω
and taking values in the interval [0, 1] such that the following properties are
satisfied: (i) The empty set has measure zero, i.e. P (∅) = 0; (ii) Countable
additivity or σ-additivity: if E1, E2, E3, . . . is a countable sequence of pairwise
disjoint sets in σ(Ω), the measure of the union of all the Ei is equal to the
sum of the measures of each Ei, i.e. P (

⋃∞
i=1 Ei) =

∑∞
i=1 P (Ei); (iii) The total

measure is one, i.e. P (Ω) = 1. The triple (Ω, σ(Ω), P ) is called a normed measure
space, and the members of σ(Ω) are called measurable sets. A σ-algebra over
a set Ω is a nonempty collection σ(Ω) of subsets of Ω that is closed under
complementation and countable unions of its members. Measure spaces are the
most general structures devised by mathematicians and physicists to represent
weights.

We generalize this definition to the case of n concepts A1, A2, . . . , An with
weights μ(Ai) for each concept Ai, and weights μ(Ai and Aj) for the conjunction
of concepts Ai and Aj . It is not necessary that weights are measured with respect
to each one of the possible pairs of concepts. Hence, to describe this situation
formally, we consider a set S of pairs of indices S ⊆ {(i, j) | i < j; i, j =
1, 2, . . . , n} corresponding to those pairs of concepts for which the weights have
been measured with respect to the conjunction of these pairs. As a consequence,
the following set of weights have been experimentally determined

pi = μ(Ai) i = 1, 2, . . . , n pij = μ(Ai and Aj) (i, j) ∈ S (2)

We say that the set of weights in (2) is a ‘classical set of membership weights’ if
it has a normed measure representation, hence if there exists a normed measure
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space (Ω, σ(Ω), P ) with EA1 , EA2 , . . . , EAn ∈ σ(Ω) elements of the event alge-
bra, such that

pi = P (EAi) i = 1, 2, . . . , n pij = P (EAi ∩ EAj ) (i, j) ∈ S (3)

4 Geometrical Characterization of Membership Weights

We now introduce a geometric language that makes it possible to verify the
existence of a normed measure representation for the set of weights in (2), much
like the characterization of Kolmogorovian probability models in [36]. Following
[36], we first define an n + |S|-tuple, called the n + |S|-dimensional correlation
vector,

−→p = (p1, p2, . . . , pn, . . . , pij , . . .) (4)
where |S| is the cardinality of S. Denote R(n, S) = R

n+|S| the n+|S| dimensional
vector space over the real numbers. Let ε ∈ {0, 1}n be an arbitrary n-dimensional
vector consisting of 0′s and 1′s. For each ε we construct the following vector−→u ε ∈ R(n, S)

uε
i = εi i = 1, 2, . . . , n uε

ij = εiεj (i, j) ∈ S (5)

The set of convex linear combinations of the u′s is called the classical correlation
polytope

c(n, S) = {−→f ∈ R(n, S) | −→f =
∑

ε∈{0,1}n

λε
−→u ε; λε ≥ 0;

∑
ε∈{0,1}n

λε = 1} (6)

The following theorem can now be proven similar to what was done in [36] for
the case of Kolmogorovian probabilities
Theorem 1. The set of weights

pi = μ(Ai) i = 1, 2, . . . , n pij = μ(Ai and Aj) (i, j) ∈ S (7)

admits a normed measure space, and hence is a classical set of membership
weights, if and only if its correlation vector −→p belongs to the correlation polytope
c(n, S).
Proof: Suppose that (7) is a classical set of weights, and hence we have a normed
measure space (Ω, σ(Ω), P ) and events EAi ∈ σ(Ω) such that (2) are satisfied.
Let us show that in this case −→p ∈ c(n, S). For an arbitrary subset X ⊂ Ω we
define X1 = X and X0 = Ω\X . Consider ε = (ε1, . . . , εn) ∈ {0, 1}n and define
A(ε) = ∩εA

εi

i . Then we have that A(ε) ∩ A(ε′) = ∅ for ε 	= ε′, ∪εA(ε) = Ω, and
∪ε,εj=1A(ε) = Aj . We put now λε = P (A(ε)). Then we have λε ≥ 0 and

∑
ε λε =

1, and pi = P (Ai) =
∑

ε,εi=1 λε =
∑

ε λεεi. We also have pij = P (Ai ∩ Aj) =∑
ε,εi=1,εj=1 λε =

∑
ε λεεiεj . This means that −→p =

∑
ε λεu

ε, which shows that
−→p ∈ c(n, S). Conversely, suppose that −→p ∈ c(n, S). Then there exists numbers
λε ≥ 0 such that

∑
ε λε = 1 and −→p =

∑
ε λεu

ε. We define Ω = {0, 1}n and
σ(Ω) the power set of Ω. For X ⊂ Ω we define then P (X) =

∑
ε∈X λε. Then we

choose Ai = {ε, εi = 1} which gives that P (Ai) =
∑

ε λεεi =
∑

ε λεu
ε
i = pi and

P (Ai ∩ Aj) =
∑

ε λεεiεj =
∑

ε λεu
ε
ij = pij . This shows that we have a classical

set of weights.
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5 The Correlation Polytopes for Pairs of Concepts and
Their Conjunctions

In the case of two concepts A1, A2 and their conjunction ‘A1 and A2’ the set of
indices is S = {(1, 2)} and the correlation polytope c(2, S) is contained in the
2 + |S| = 3 dimensional euclidean space, i.e. R(2, {1, 2}) = R

3. Further we have
four vectors ε ∈ {0, 1}n, namely (0, 0), (0, 1), (1, 0) and (1, 1), and hence the four
vectors −→u ε ∈ R

3 which are the following

−→u (0,0) = (0, 0, 0) −→u (1,0) = (1, 0, 0) −→u (0,1) = (0, 1, 0) −→u (1,1) = (1, 1, 1) (8)

This means that the correlation polytope c(2, {1, 2}) is the convex region spanned
by the convex combinations of the vectors (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 1),
and the correlation vector is given by −→p = (μ(A1), μ(A2), μ(A1 and A2)). It is
well-known that every polytope admits two dual descriptions: one in terms of
convex combinations of its vertices, and one in terms of the inequalities that
define its boundaries [37]. For the polytope c(2, {1, 2}) the inequalities defining
its boundaries are 0 ≤ μ(A1 and A2); μ(A1 and A2) ≤ μ(A1); μ(A1 and A2) ≤
μ(A2) and μ(A1) + μ(A2)− μ(A1 and A2) ≤ 1.

In Figures 1, 2 and 3 we have represented this correlation polytope c(2, {1, 2})
and all the correlation vectors −→p for the different items (we have presented the
vectors as points not to overload the figure). If the point of the correlation vector
corresponding to the data of a specific item lies inside the polytope spanned by
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 1), it is a classical item, for which the mem-
bership weights can be represented within a normed measure space. If the point

Fig. 1. The polytopes for the concepts Furniture and Household Appliances and the
concepts Building and Dwelling. The classical items are Castle, Cave, Phone Box, Syn-
agogue, Log Cabin and House. The other items are non classical.
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Fig. 2. The polytopes for the concepts Food and Plant and the concepts Machine and
Vehicle. The classical item are Steak, Backpack, Automobile, Bus, Sailboat and Raft.
The other items are non classical.

Fig. 3. The polytopes for the concepts Weapon and Tool and the concepts Bird and
Pet. The classical item are Knife, Toothbrush, Elephant, Dog, Cat, Goldfish, Parakeet,
Parrot and Canary. The other items are non classical.

does not lie inside the polytope, the corresponding item is non-classical, indi-
cating that perhaps a quantum representation, for example the one presented in
[17], can be elaborated for its weights. Since the polytope is also given by the
inequalities defining its boundaries, points lying inside (or outside) the polytope
can be characterized by their coordinates satisfying (or violating) these inequal-
ities. The inequalities that define the boundaries of polytope c(2, {1, 2}) are a
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lower dimensional variant ([37] and [36]) of the well-known Bell inequalities,
studied in the foundations of quantum mechanics. This means that the violation
of these inequalities, such as it happens by the data corresponding to items for
which the points lie outside the polytope, has from a probabilistic perspective an
analogous meaning as the violation of Bell inequalities. Hence these violations
may indicate the presence of quantum structures in the domain where the data
is collected, which makes it plausible that a quantum model, such as for example
the one proposed in [17], can be used to model the data.

6 Conclusion

If two concepts are combined to form a conjunction we can measure the member-
ship weights of items with respect to each of these concepts and also with respect
to their conjunction. If the ‘conjunction of concepts’ behaved like a classical logical
conjunction of propositions does, we would expect that the membership weight of
an item with respect to the conjunction would never be bigger than the member-
ship weight of this item with respect to one of the concepts. Experiments show
that this is not the case, and this counterintuitive effect is referred to as both the
guppy effect [24] and overextension [26] in the literature. It has been shown else-
where that a quantum description can model this overextension while classical
measure theoretic structures cannot [17]. In this paper we have elaborated a sim-
ple geometric method to identify the membership weights of items with respect
to the conjunction of concepts that cannot be modeled within a classical measure
theoretic structure. We do this for the general situation of a set of n concepts and
a set of conjunctions between these concepts. The method consists of determin-
ing a convex polytope, and making each of the items correspond to a correlation
vector in the real vector space where also the polytope is defined. We prove that if
the correlation vector is contained in the polytope, the considered set of member-
ship weights can be modeled within a classical measure space, while if the correla-
tion vector is not contained in the polytope it cannot. We apply this geometrical
characterization method to the set of data collected in [26] and see that most of
the tested items have membership weights for which the correlation vector falls
outside of the polytope, and hence these membership weights cannot be modeled
within a classical measure space (see Figures 1, 2 and 3).

The experimental data for which we show in the present article by means of the
polytope criterion that they are non classical, i.e. cannot be represented within
a classical measure structure, are all ‘conjunction data’, meaning that they are
membership weights of items with respect to the conjunction of two concepts. The
phenomenon of structural non classicality that we put into evidence in this ar-
ticle is however much more general and does not only appear with membership
weights of conjunctions. For example, it appears in a very analogous way for dis-
junctions of concepts. as experimentally shown in [27] and theoretically analyzed
in [17], theorems 4, 5 and 6. Following our contextual theory of concepts developed
in [9, 10], we have good reason to believe that the effect appears whenever con-
cepts are combined. Unfortunately, the non-classical effect is difficult to identify
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for an arbitrary combination of concepts, since we do not have a simple mathe-
matical characterization, (like we have for conjunction and disjunction) of what
the classical structure of such an arbitrary combination would be. In [27] next to
the disjunction also the negation is investigated, and also there significant devia-
tions of what one would expect classically from the logical structure of a negation
are measured. We have not yet analyzed these effects on the negation with respect
to the quantum models developed in [13, 14, 17], but plan to do so in future work.
It would be interesting to make this type of experiments with the remaining not
yet tested simple logical connective which is called ‘the implication’. The appear-
ance of this type of non-classical weights is however not limited to the domain of
concepts and their combinations. In decision theory and in economics different
types of situations have been studied entailing a very similar type of non classical
weight structure than the one we consider in the present paper [38]. The disjunc-
tion effect [39] and the conjunction fallacy [40, 41] are the best known ones, and the
disjunction effect has been modeled by a quantum mechanical description in [12],
while the conjunction fallacy was analyzed with respect to quantum mechanical
modeling in [15]. In [42] a ‘disjunction fallacy’ is experimentally identified, by con-
sidering disjunctions that are not combinations of concepts but already received a
name of themselves, such as for example Natural Sciences being the disjunction of
Astronomy, Physics, Chemistry, Biology and Earth Sciences. The deviation from
how classically this type of disjunction should behave is shown in [42] to be very
big. Hence this demonstrates that the non classicality does not find its origin in a
kind of ‘wrong application of the combination rules’, a hypothesis put forward in
[43]. It shows that the effect is also present for disjunctions and conjunctions that
are single concepts and not combinations. From the perspective of the quantum
model developed in [13, 14, 17] we have put forward an explanation for the non
classicality, due to the fact that for combinations of concepts equally the single
new emergent concept as well as the combination as a logical connective play a
role in the influence provoked by the conceptual landscape surrounding the deci-
sion situation [38]. A similar simple criterion with polytopes can be worked out
for situations of non classicality of other combinations of concepts, and also for
the non classical phenomena identified in decision theory, such as the disjunction
effect and the conjunction fallacy. We plan to elaborate this in future work.

We note that have formulated all hypothesis and claims in the present article by
considering the notion of a ‘normed measure space’ and its elements representing
the membership weights of the items with respect to concepts. Alternatively, we
could equally well have considered ‘the probability for a specific subject to choose
in favor of membership’ in replacement of ‘the membership weight’ as central el-
ement. If we would have done so our theorem would become a theorem on prob-
ability models instead of a theorem on unitary measure spaces, and it would be
mathematically completely equivalent with Pitowsky’s main theorem in [36].

The geometrical identification presented here gives rise to a demarcation sim-
ilar to the violation of the well-known Bell inequalities in physics, which is gen-
erally regarded as experimental evidence for the need of a fundamental change
in the classical paradigm to describe the process under consideration. Hence,
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Hampton’s membership weight data giving rise to a situation equivalent to the
violation of Bell inequalities, constitutes a strong argument in favor of the fact
that quantum structure would be at work within the mechanism giving rise to
these data, hence within human cognition. If so, then these experiments consti-
tute a pioneering example of experimentally tested quantum structure in cogni-
tion performed by a psychologist in tempore non suspecto. It also would mean
that only a non classical description, for example one based on quantum me-
chanics eventually as the one elaborated in [17], is able to model the mechanism
giving rise to the data.
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Abstract. Following an early claim by Nelson & McEvoy [19] suggest-
ing that word associations can display ‘spooky action at a distance be-
haviour’, a serious investigation of the potentially quantum nature of
such associations is currently underway. This paper presents a simple
quantum model of a word association system. It is shown that a quantum
model of word entanglement can recover aspects of both the Spreading
Activation model and the Spooky model of word association experiments.

1 Modelling Words and Meaning

Human beings are adept and drawing context-sensitive associations and infer-
ences across a broad range of situations ranging from the mundane to the creative
inferences that lead to scientific discovery. Such reasoning has a strong pragmatic
character and is transacted with comparatively scarce cognitive assets. However,
despite our apparent proficiency at drawing inferences, and our ability to express
words in such a manner that other people can (usually) understand the meaning
that we are trying to convey, our theoretical understanding of how this process
occurs has been slow to develop.

The field of cognitive science has recently produced an ensemble of semantic
models which have an encouraging, and at times impressive track record of repli-
cating human information processing, such as human word associations norms
[16, 4, 14, 15, 11, 12, 24, 13, 25]. The term “semantic” derives from the intuition
that words seen in the context of a given word contribute to its meaning, or,
more colloquially expressed, the meaning of a word is derived from the “company
it keeps” [8]. In order to progress in our understanding of how meaning is gener-
ated from sets of words in a language we must understand the way in which the
mental lexicon of that language is generated during language acquisition, and
how it works once created in the mind of a specific individual.

1.1 The Mental Lexicon

The mental lexicon of a language refers to the words of a language, but its struc-
ture is represented by the associative links that bind this vocabulary together.

P. Bruza et al. (Eds.): QI 2009, LNAI 5494, pp. 71–83, 2009.
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Such links are acquired through experience and the vast and semi-random na-
ture of this experience ensures that words within this vocabulary are highly
interconnected, both directly and indirectly through other words. For example,
during childhood development and the associated acquisition of English, the
word planet becomes associated with earth, space, moon, and so on. Even within
this set, moon can itself become linked to earth and star etc. Words are so as-
sociatively interconnected with each other that they meet the qualifications of
a ‘small world’ network wherein it takes only a few associative steps to move
from any one word to any other in the lexicon [26]. Because of such connectivity
individual words are not represented in long-term memory as isolated entities
but as part of a network of related words. However, depending upon the context
in which they are used, words can take on a variety of different meanings and
this is very difficult to model [7].

Much evidence shows that for any individual, seeing or hearing a word ac-
tivates words related to it through prior learning. Understanding how such ac-
tivation affects memory requires a map of links among known words, and free
association provides one reliable means for constructing such a map [21]. In
free association experiments, words are presented to large samples of partici-
pants who produce the first associated word to come to mind. The probability
or strength of a pre-existing link between words is computed by dividing the
production frequency of a response word by its sample size. For example, the
probabilities that planet produces earth and mars are 0.61 and 0.10, respec-
tively, and we say that earth is a more likely or a stronger associate of planet
than mars.

Just like the nonlocality experiments of quantum theory, human memory ex-
periments require very careful preparation of the state to be tested. For ex-
ample, in extralist cuing, participants typically study a list of to-be-recalled
target words shown on a monitor for 3 seconds each (e.g., planet). The study
instructions ask them to read each word aloud when shown and to remem-
ber as many as possible, but participants are not told how they will be tested
until the last word is shown. The test instructions indicate that new words,
the test cues, will be shown and that each test cue is related to one of the
target words just studied (e.g., universe). These cues are not present during
study (hence, the name extralist cuing). As each cue is shown, participants at-
tempt to recall its associatively related word from the study list. In contrast,
during intralist cuing the word serving as the test cue is presented with its
target during study (e.g., universe planet). Participants are asked to learn the
pairing, but otherwise the two tasks are the same. It appears that more associate-
to-associate links benefit recall, and two competing explanations for this phe-
nomenon have been proposed: Spreading Activation, and Spooky Activation At a
Distance.

This paper will demonstrate an intriguing connection between these two expla-
nations, obtained by making the assumption that words can become entangled
in the human mental lexicon.
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1.2 Isn’t Entanglement Correlation?

Entanglement is a phenomenon unique to quantum behaviour. If a system con-
sisting of two components becomes entangled then it cannot be thought of as
separate anymore; a description of one component without reference to the other
will, in some cases, fail. Indeed, an entangled quantum system will generally
exhibit an intercomponent agreement with reference to any combination of mea-
surement settings. This is of particular importance for a system that becomes
spatially extended, as in the case where the two components are taken a long
way from each other. Here we find that quantum systems display correlation
instantaneously in response to what might even be a delayed choice of measure-
ment setting [1], and yet cannot be used to transmit information between two
observers, and thus does not actually violate Special Relativity [17]. This is in
contrast with classical scenarios of correlation. In a classical situation a system
is in a pre-existing state, and this is discovered through the process of measure-
ment. Not so with a quantum system, where the process of measurement can
actively influence the outcome itself. This fundamental difference between the
two types of system was first alluded to in the by now famous EPR1 debate,
but was only inescapably highlighted with the more subtle (and recent) results
surrounding the contextuality of quantum systems (see [10] or [2] for a good in-
troduction to these ideas). An entangled quantum system is very different from
a correlated classical system; no pre-existing elements of reality [6] have been
found that can explain the agreement that is obtained between distant measuring
devices that are set to determine the state of a quantum system.

To make these ideas more concrete, let us consider a specific example of clas-
sical correlation. If the same number is written on two pieces of paper, enclosed
in two envelopes, and sent to Alice and Bob at two distant ends of the Universe,
the information obtained upon opening of one of the envelopes will instantly
correlate with the state of the other envelope at the other end of the universe.
However, these correlated pieces of paper are not entangled. The number on the
two pieces of paper can be regarded as a hidden variable, or element of reality;
even before we open the envelope it exists, in both envelopes. Upon opening the
envelope at one end of the Universe we find out what that number is, and hence
know what number is already inscribed upon the other piece of paper. The quan-
tum analogue of this scenario would be far stranger. The situation most similar
to the nonlocal effects exhibited by entangled quantum systems would involve
Alice, at one end of the Universe choosing to write a number upon her blank
piece of paper when she opens her envelope, and then finding that Bob, upon
opening his envelope found exactly the same number upon his piece of paper at
the other end of the Universe. Obviously this does not happen.

However, we might ask if similar cases of intercomponent dependency, or
spooky-activation-at-a-distance, exist for systems beyond the field of physics.

We shall now look at the problem of modelling associate-to-associate links in
the human mental lexicon, before showing how the assumption that associates

1 Einstein–Podolsky–Rosen.
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might be entangled in a subject’s cognitive state can lead to a new model of
word associations.

2 Modelling Associate-to-Associate Links

Figure 1 shows a hypothetical target word having two target-to-associate links
in a subject’s cognitive state. There is also an associate-to-associate link between
Associates 1 and 2, and an associate-to-target link from Associate 2 to the Target
t. The values on the links indicate relative strengths estimated via free associa-
tion. Nelson et al. have investigated reasons for the more likely recall of words
having more associate-to-associate links [20]. Two competing explanations for
why associate-to-associate links benefit recall have been proposed.

Fig. 1. A hypothetical target with two associates and single associate-to-target and
associate-to-associate links. From Nelson, McEvoy, and Pointer ([20]).

The first is the Spreading Activation equation, which is based on the classic
idea that activation spreads through a fixed associative network, weakening with
conceptual distance (e.g., [5]):

S(t) =
n∑

i=1

StiSit +
n∑

i=1

n∑
j=1

StiSijSjt (1)

= (.10× .70) + (0.20× 0.60× 0.70) (2)
= 0.154 (3)

where n is the number of associates and i 	= j. S(t) denotes the strength
of implicit activation of target t due to study, Sti target-to-associate activa-
tion strength, Sit associate-to-target activation strength (resonance), and Sij

associate-to-associate activation strength (connectivity). Multiplying link
strengths produces the weakening effect. Activation ostensibly travels from the
target to and among its associates and back to the target in a continuous chain,
and the target is strengthened by activation that returns to it from pre-existing
connections involving two and three-step loops. More associate-to-associate links
create more three-step loops and theoretically benefit target recall by increasing
its activation strength in long-term memory. Importantly, note that the effects
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of associate-to-associate links are contingent on the number and strength of
associate-to-target links because they allow activation to return to the target. If
associate-to-target links were absent, even the maximum number of associate-
to-associate links would have no effect on recall because activation could not
return to the target.

In contrast, in the ‘Spooky Activation at a Distance’ equation, the target
activates its associative structure in synchrony:

S(t) =
n∑

i=1

Sti +
n∑

i=1

Sit +
n∑

i=1

n∑
j=1

Sij (4)

= 0.20 + 0.10 + 0.70 + 0.60 (5)
= 1.60 (6)

where i 	= j; Sti, target-to-associate i strength; Sit, associate i-to-target strength
(resonance); Sij , associate i-to-associate j strength (connectivity).

This equation assumes that each link in the associative set contributes addi-
tively to the target’s net strength. The beneficial effects of associate-to-associate
links are not contingent on associate-to-target links. Stronger target activation is
predicted when there are many associate-to-associate links even when associate-
to-target links are absent. In fact, associate-to-target links are not special in
any way. Target activation strength is solely determined by the sum of the link
strengths within the target’s associative set, regardless of origin or direction.

3 Entanglement of Words

How should we represent the combination of words in the human mental lexicon?
QT uses the tensor product, ⊗, to denote composite systems. Consider the case
of m = 2 study words: u and v presented to a group of subjects. Let us assume
that, when cued, the subjects recall neither target word. In this case we could
write:

|u〉 ⊗ |v〉 = |0〉 ⊗ |0〉 = |00〉 (7)

where the notation |00〉 is just shorthand for the tensor product state |0〉 ⊗ |0〉
describing the composite system of two negative outcomes. If word u alone was
recalled then we would write |u〉 ⊗ |v〉 = |10〉, whereas in the converse case we
would write |01〉 and finally, if both words were recalled then the tensor product
would yield the state |11〉.

However, this straightforward scenario is not the only form of situation pos-
sible in the quantum formalism. Superposition states can also occur, and these
are important as they can represent the situation where the words u and v may
be more likely to be recalled in one context than another. Assume that we can
represent one subject’s cognitive state with reference to the combined targets u
and v as a 2 q-bit register that refers to their states of ‘recalled’ and ‘not re-
called’ in combination. Thus, if we represent the target words using the standard
superpositions |u〉 = a0|0〉 + a1|1〉 and |v〉 = b0|0〉 + b1|1〉, (where a2

0 + a2
1 = 1
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and b2
0 + b2

1 = 1), then it is possible to denote the state of the combined system
by writing the tensor product

|u〉 ⊗ |v〉 = (a0|0〉+ a1|1〉)⊗ (b0|0〉+ b1|1〉) (8)
= a0b0|00〉+ a1b0|10〉+ a0b1|01〉+ a1b1|11〉, (9)

where |a0b0|2 + |a1b0|2 + |a0b1|2 + |a1b1|2 = 1. This is the most general state
possible. It represents a quantum combination of the above four possibilities,
obtained using a tensor multiplication between the states |u〉 and |v〉. In contrast
to the simple cases discussed above, here no state of recall is ‘the’ state, rather,
we must cue the subject and elicit a response from them before we can talk
about a word being ‘recalled’ or ‘not recalled’. Indeed, a different cue might
elicit a very different response, and the quantum formalism could deal with this
via a change of basis.

It is important to realise however, that (9) is not the only form of state that
can be obtained from combination of |u〉 and |v〉 in the quantum formalism.

The other form of state, an entangled state is one that it is impossible to write
as a product. As an example of an entangled state, we might consider the the
state ψ where the words u and v are either both recalled, or both not recalled in
relation to a cue q. One representation of this scenario is given by the following
state:

ψ =
1√
2
(|00〉+ |11〉). (10)

This seemingly innocuous state is one of the so-called Bell states in QT. It is
impossible to write as a product state, thus it differs markedly from (9). The fact
that entangled systems cannot be expressed as a product of the component states
makes them non-separable. More specifically, there are no coefficients which can
decompose equation (10) into a product state exemplified by equation (9) which
represents the two components of the system, u and v, as independent of one
another. For this reason ψ is not written as |u〉 ⊗ |v〉 as it can’t be represented
in terms of the component states |u〉 and |v〉.

4 An Analysis of Spooky-Activation-at-a-Distance in
Terms of Entanglement

Nelson and McEvoy have recently begun to consider the Spooky-activation-
at-a-distance formula in terms of quantum entanglement, claiming that “The
activation-at-a-distance rule assumes that the target is, in quantum terms, en-
tangled with its associates because of learning and practicing language in the
world. Associative entanglement causes the studied target word to simultane-
ously activate its associate structure” [19, p3]. The goal of this section is to
formalise this intuition. At the outset, it is important that the quantum for-
malism be able to cater for the set size and connectivity effects described else-
where [3]. Recall both set size and associative connectivity have demonstrated
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Table 1. Matrix corresponding to hypothetical target shown in Figure 1

t a1 a2

t 0.2 0.1
a1 0.6
a2 0.7

pt = 0.7 pa1 = 0.2 pa2 = 0.7

time and again robust effects on the probability of recall. Because the Spooky-
activation-at-a-distance formula sums link strengths irrespective of direction, it
encapsulates the idea that a target with a large number of highly interconnected
associates will generate a high activation level during study.

Table 1 is a matrix representation of the associative network of the hypo-
thetical target t shown in Figure 1. The last line of the matrix represents the
summation of free association probabilities for a given word. For example,

pa2 = Pr(a2|t) + Pr(a2|a1) (11)
= 0.1 + 0.6 (12)
= 0.7 (13)

These free association probabilities may be added as it is assumed that each
free association experiment is independent, that is associate a2 being recalled
in relation to cue t is assumed independent of it being recalled in relation to
the cue a1. Since free association experiments require a subject who has not
been primed in any way beyond that provided by the cue, this appears to be a
reasonable simplifying assumption.

Both Spreading Activation and Spooky-activation-at-a-distance approaches
assume that free association probabilities determine the strength of activation
of a word during study; they only differ in the way this activation strength is
computed. Viewing free association probabilities in this way allows the matrix
to be considered as a many bodied quantum system modelled by three qubits.
Figure 2 depicts the system, here, each word is in a superposed state of be-
ing activated |1〉, or not |0〉. Note how each summed column with a non-zero
probability leads to a qubit.

For ease of exposition in the following analysis, we shall change variables. The
probabilities depicted in table 1 are related to the probability densities of figure 2
by taking their square root: e.g. π2

t = pt. Using such a change of variables, the
state of the target word t would be written as:

|t〉 = √p̄t|0〉+√pt|1〉 = π̄t|0〉+ πt|1〉, (14)

where the probability of recall due to free association is pt = π2
t , and p̄t = 1−pt =

π̄t
2 represents the probability of a word not being recalled. Thus, the states of

the individual words are represented as follows in order to avoid cluttering the
analysis with square root signs:
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|a >1
|a >2

tπ a 1
π

2aπ

|0>

|1> |1> |1>

|0> |0>

|t>

Fig. 2. Three bodied quantum system of words

|t〉 = π̄t|0〉+ πt|1〉 (15)
|a1〉 = π̄a1 |0〉+ πa1 |1〉 (16)
|a2〉 = π̄a2 |0〉+ πa2 |1〉 (17)

where π̄t = 1− πt, π̄a1 = 1− πa1 and π̄a2 = 1− πa2 .
As detailed in the previous section, tensor products are used to model many

bodied quantum systems. The state ψt of the most general combined quantum
system is given by the tensor product of the individual states:

ψt =|t〉 ⊗ |a1〉 ⊗ |a2〉 (18)
=(π̄t|0〉+ πt|1〉)⊗ (π̄a1 |0〉+ πa1 |1〉)⊗ (π̄a2 |0〉+ πa2 |1〉) (19)

=π̄tπ̄a1 π̄a2 |000〉+ πtπ̄a1 π̄a2 |100〉+ π̄tπa1 π̄a2 |010〉+ πtπa1 π̄a2 |110〉
+ π̄tπ̄a1πa2 |001〉+ πtπ̄a1πa2 |101〉+ π̄tπa1πa2 |011〉+ πtπa1πa2 |111〉 (20)

The intuition behind this expression is an enumeration of the possibilities of the
states of the qubits. So, |111〉 represents the state in which all respective qubits
collapse onto their state |1〉. In other words, |111〉 denotes the state of the sys-
tem in which words t, a1 and a2 have all been activated due to study of target t.
The probability of observing this is given by the taking the square of the product
πtπa1πa2 . Conversely, the state |000〉 corresponds to the situation in which none
of the words have been activated.

The state ψt of the three-bodied system does not capture Nelson & McEvoy’s
intuition that the studied target word t simultaneously activates its associative
structure. Recall their suggestion that target t activates its associates in syn-
chrony: When target t is studied it activates all of its associates, or none at all.
Interestingly, this idea is quite easily captured by the assumption that the state
ψt evolves into a Bell entangled state ψ′

t of the form:

ψ′
t =
√

p0|000〉+√p1|111〉. (21)

This formula represents a superposed state in which the entire associative struc-
ture of a subject is in a state of potential activation (|111〉) or potential non-
activation (|000〉), with the probabilities of these states occurring given by p0
and p1 respectively.

How should we ascribe values to the probabilities p0 and p1? In QT these
values would be determined by the unitary dynamics evolving ψt into ψ′

t. As
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such dynamics are yet to be worked out for cognitive states, we are forced to
speculate. One approach is to assume the lack of activation of the target is
determined solely in terms of lack of recall of any of the associates. That is,

p0 = p̄tp̄a1 p̄a2 (22)

Consequently, the remaining probability mass contributes to the activation of the
associative structure as a whole. Thus, starting from the assumption of a Bell
entangled state, we find that the probability p1 expresses Nelson & McEvoy’s
intuition:

p1 = 1− p̄tp̄a1 p̄a2 (23)
= 1− (1− pt)(1 − pa1)(1 − pa2) (24)
= 1− (1− pt − pa1 + ptpa1 − pa2 + ptpa2 + pa1pa2 − ptpa1pa2) (25)
= pt + pa1 + pa2︸ ︷︷ ︸

A

+ ptpa1pa2︸ ︷︷ ︸
B

− (ptpa1 + ptpa2 + pa1pa2)︸ ︷︷ ︸
C

(26)

Term A corresponds to the summation of the free association probabilities in
the above matrix. In other words, term A corresponds exactly to the Spooky-
activation-at-a-distance formula (See equation 4). At such, the assumption of
a Bell entangled state provides partial support for the summation of free asso-
ciation probabilities which is embodied by the Spooky-activation-at-a-distance
equation. Ironically perhaps, term B corresponds to free association probabil-
ities multiplied according to the directional links in the associative structure.
This is expressed in the second term of the spreading activation formula (See
equation 1). In other words, departing from an assumption of entanglement leads
to an expression of activation strength which combines aspects of both Spooky-
activation-at-a-distance and Spreading Activation.

The third term C is more challenging to interpret. In a more complete model
capable of generating some form of evolutionary dynamics we might expect that
it would arise from the underlying structure of the Hilbert space used. Here, it
has arisen from apparently sensible assumptions about how probabilities should
be amassed in the the Bell entangled state. What significance can be drawn
from this term? The beginnings of an answer can be formulated by returning to
figure 1. When seen in the context of actual values, the term C has a significant
compensating effect, subtracting 0.77 from the summation of the Spooky term
with the spreading activation term:

p1 = A + B − C (27)

= (0.7 + 0.2 + 0.7) + (0.7× 0.2× 0.7)
− (0.7× 0.2 + 0.7× 0.7 + 0.2× 0.7)

(28)

= 0.928 (29)

Thus, according to this analysis, the strength of activation p1 lies somewhere
between Spreading Activation and Spooky-activation-at-a-distance. Based on a
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substantial body of empirical evidence, Nelson and McEvoy have argued persua-
sively spreading activation underestimates strength of activation [23]. Here we
have seen that when departing from an assumption that the associative structure
is Bell entangled, a cautious preliminary conclusion is that Spooky-activation-
at-a-distance overestimates the strength of activation and it is term C which
compensates for this.

We conclude this section with some remarks how the entanglement model
above assists in the explanation of some experimental results that have not been
well accounted for in current models of the mental lexicon. Attempts to map the
associative lexicon soon made it clear that some words produce more associates
than others. This feature is called ‘set size’ and it indexes a word’s associative
dimensionality [18, 22]. It was also revealed that the associates of some words
are more interconnected than others. Some words have many such connections
(e.g., moon-space, earth-planet), whereas some have none, and this feature is
called “connectivity” [20]. Thus, experiments have shown that in addition to
link strengths between words, the set size and connectivity of individual words
have powerful effects on word recall, which existing theories cannot generally
explain.

This is an interesting result for the model suggested here, as according to
the above analysis we might surmise that the more associates a target has,
the more qubits are needed to model it. When these are tensored the resulting
space will have a higher dimensionality. Therefore a large set size is catered
for by a tensor space of higher dimensionality. Conversely, interconnectivity is
catered for by larger probabilities in the initial superposed states of the respective
qubits. Consider once again the matrix in table 1. In the general case, when the
associative structure is highly interconnected the sums of probabilities in the last
row will tend to be higher. These will contribute to higher activation strength as
they are summed (as defined by probability p1) in the same way as in Spooky-
activation-at-a-distance. So it is possible to have a high activation strength even
though the tensor space has high dimensionality. When the associative structure
in not interconnected these probabilities will be low and hence lead to lower
strength of activation.

5 Conclusions and Future Directions

Obviously the model presented here is overly simple. The human mental lexicon
is a vast and highly interconnected network consisting of thousands of words, and
its associative structure is far more complex than the simple toy model in figure 1
could ever hope to represent. However, some promising initial results have been
obtained from this very simplified analysis. We have seen some evidence that a
quantum approach can model set size and connectivity effects, and a prediction
has been made that Spooky-activation-at-a-distance overestimates associative
behaviour by some factor. While equation (26) makes a very concrete suggestion
about how large this overestimation might be, it is unlikely that the situation
will prove this simple.
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Firstly, this is a very basic toy model, addressing the behaviour of only one
target and two associates. A fully developed theory would have to be stated in
terms of all the targets and all of their associates. It is very hard to extrapolate
from this model to a more realistic one. One possibility would involve applying
the apparatus of Statistical Mechanics in a density matrix approach to model
sets of targets and their associates, but no results have been obtained here to
date. A related issue surrounds the meaning of the term C in equation (26) as
more associative structure is added. Here, we would see C gaining more and
more terms (since A and B essentially correspond to the two extreme values
in the expansion of the bracketed term in (24)). This does not seem plausible,
and the way in which this term would act as it became larger is yet to be
established.

In addition to these immediate issues, much work remains to be done in this
area. Given the large amount of data collected about word association norms
[21] we might expect that experiments can be performed that might distinguish
between the varying predictions of the different models, and work is underway
to generate results here. A physically and cognitively motivated time evolution
equation capable of generating the Bell-type state (10) is essential before we can
consider this model to be truly quantum(like) and initial ruminations about how
this might be achieved are presented in [9].

Ending on a slightly more positive note, we consider the most important
result of this article to be the indication that a straight tensorial combination
of associate words in the mental lexicon is not particularly representative of the
intuition that words and their associates are activated in synchrony. Given that
a Bell-type entangled state provides a far more likely candidate for the behaviour
of word association networks this result thus provides some first steps towards
establishing evidence that human cognitive structures have some quantum(like)
behaviour.
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Quantum Amplitude Amplification Algorithm:
An Explanation of Availability Bias

Riccardo Franco

Abstract. In this article, I show that a recent family of quantum algo-
rithms, based on the quantum amplitude amplification algorithm, can be
used to describe a cognitive heuristic called availability bias. The ampli-
tude amplification algorithm is used to define quantitatively the ease of
a memory task, while the quantum amplitude estimation and the quan-
tum counting algorithms to describe cognitive tasks such as estimating
probability or approximate counting.

1 Introduction

The idea that human judgements and decision-making can evidence quantum
mechanics behaviour has a great deal of intuitive appeal, and it is at the basis
of a recent research topic, which can be called quantum cognition. A number of
authors have explored such idea, like [1] for decision making, or [2] and [3] for
human judgements. The quantum-like models there proposed seem to adequately
describe the experimental results: however, the potentialities of the quantum
formalism have not been fully explored in cognitive science, mainly for what
concerns the quantum parallelism and a characterization of quantum algorithms
in terms of human tasks.

In the present article, I propose to describe the experimental results concern-
ing the availability heuristic with the quantum amplitude amplification, quan-
tum amplitude estimation and quantum counting algorithms [8]: the first is a
recent generalization of Grover’s algorithm [9], while the other two algorithms
are applications of the amplitude amplification, followed by a quantum Fourier
transform. I show that these algorithms are able to model some important exper-
imental results of cognitive science relevant to availability heuristic: in particular,
the amplitude amplification algorithm gives a mathematical characterization of
the ease to recall items or concepts, while the amplitude estimation/counting
algorithms allow to introduce a formal connection between such ease and judge-
ments of probability/frequency about facts. Here I do not discuss about the
physical possibility for human mind to perform quantum algorithms: I only con-
sider from a formal point of view the problem of defining mathematically the
ease to remember.

Grover’s algorithm is an important quantum algorithm based on quantum
parallelism which allows to search in an unsorted database with high number of
items faster than any classical algorithm (quadratic speedup). One of the first
attempts to use such algorithm in cognitive science (more precisely a general-
ization [10]) has been done by Franco [11] to describe the influence of emotions
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on the ease to remember. The same quadratic speedup is provided by amplitude
amplification algorithm, based on quantum parallelism.

This article attempts to model within such quantum framework the availabil-
ity heuristic, a human cognitive bias that causes people to estimate frequency
or probability on the basis of how easily they can recall or imagine instances of
whatever it is they are trying to estimate. The article is structured as follows: in
section 2 I describe the main features of availability heuristic, while in sections
3, 4 and 5 I introduce the main features of the quantum algorithms based on
the amplitude amplification, and in section 6 I compare the model’s predictions
with the experimental data.

2 Availability Bias

Availability is a human cognitive bias that causes people to estimate the proba-
bility or the size of particular categories of items on the basis of how easily they
can recall or imagine them. Such heuristic, discovered in 1973 by psychologists
Amos Tversky and Daniel Kahneman (2002 Nobel Prize in Economics) [4], is
at the root of many other human biases and culture-level effects. Two impor-
tant examples of availability heuristic introduced by Tversky and Kanneman
[4], which I will discuss in a detailed way in section (6), are the word frequency
experiment, and the risk frequency experiment. In the word frequency exper-
iment, replicated and discussed later by Seldmeier et al. [5], subjects have to
estimate the likelihood of letter R in the first or in the third position of English
words. Even if the letter R in the English language appears more frequently in
the third than in the first position, the most part of participants judged the first
position to be more likely. In the risk frequency experiment, replicated and dis-
cussed later by Lichtenstein et al. [6] and Hertwig et al. [7], it is evidenced that
subjects assess the risk of heart attack among middle-aged people by recalling
such occurrences among ones acquaintances. Both experiments thus evidence
that judged frequencies are higher for categories which provide a better cue for
recalling instances of them.

Several researchers have pointed out that the notion of the availability heuris-
tic presented in [4] has been only vaguely sketched and is consistent with several
different mechanisms. In fact, within the availability heuristic two major mecha-
nisms have been identified, which seem to coexist and to play an important role:
1) the ease to remember, due for example to items’ vividness in memory, and 2)
the overestimation/underestimation of low/high frequencies respectively.

In the definition of the availability heuristic it is important to operationalize
the ease with which the memory processes are performed. In particular, two dif-
ferent definitions have been used widely in availability experiments, giving an ex-
perimental measure of the ease of the memory task: 1) the availability-by-number,
the produced number of good items in a fixed time, and 2) the availability-by-
speed, the retrieval time for a fixed number of good items. In general, the avail-
ability experiments involve two (sometimes different) groups of subjects: one
which performs the memory task, and one that performs the judgements about
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the probability/number of items. Thus the availability experiments verify a pos-
itive correlation between the measure of ease in the memory task (by using the
availability-by-number or the availability-by-speed) and the quantitative judge-
ments performed by the subjects. I will focus the attention on the following two
categories of experiments: judgements of probability, where subjects judge the
probability of events, like in the word frequency experiment of [4], and judge-
ments of number, where subjects judge the number of instances/occurrences of
an event, like in the risk frequency experiment [4] (where subjects estimate the
incidence of a disease in terms of number of ill persons in a year).

In the next sections, I will explore the correlation between availability-by-
number and the judgements of probability/number. The main idea is that sub-
jects, when perform their judgements, do not perform complete recalling tasks,
which seem to be required by the concept of availability-by-number. I will show
that that the amplitude estimation algorithm is based only on partial recall-
ing tasks, and thus can capture simultaneously the concepts of availability-by-
number and the overestimation/underestimation for low/high probabilities.

3 Amplitude Amplification Algorithm

The amplitude amplification algorithm, invented by Brassard et al. [8], is a
generalization of Grover’s algorithm, and it can be used for solving the following
problem: let us consider N items and a boolean function f : {0, 1, ..., N − 1} →
{0, 1}, which partitions the items into t good items (those for which f is equal
to 1), and N − t bad items (those for which f is equal to 0). It is evident that
such algorithm can be used to model the retrieval tasks in cognitive science.
For example, the experiment of Tversky and Kahneman [4] relevant to words
with letter R in first or third position can be represented as a partitioning of
English words in two categories: the good items (words with R at first position)
and the bad items (words with R at third position). Even if the mathematical
details of the algorithm are described in next subsection, I now present the main
features, reducing to the minimum the formalism. The intuitions here presented
are similar to those preliminarly exposed in Franco [11].

The quantum amplification algorithm is also called QSearch(A, f), where
the parameter f is the boolean function previously defined, while A is an opera-
tor, whose meaning is to define the initial weight a relevant to good items. Like
Grover’s algorithm, the algorithm is composed by three main parts:

1) The initial state, in which the N items are encoded into the elements of a
basis of a N -dimensional vector space. An important feature of the amplitude
amplification algorithm, which differences it from Grover’s algorithm, is that
the items within such initial state can have different weights: in particular, the
parameter a is the probability to measure a good item in such initial state. In
Grover’s algorithm we always have a = t/N . The initial state can be interpreted,
in the context of cognitive processes, as a guessing state, representing the initial
mental weights relevant to the items. If a > t/N , this means that the good items
have initially more relevance than the bad items. If the guessing state is a flat
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distribution over all the items (a = t/N), this means that the subjects have no
preliminar idea about good/bad items.

2) The amplification engine, which is an iterative process allowing to enhance
the weights of the good items: at each step the boolean function f is evalu-
ated simultaneously over all the items, and the weights of the good items are
enhanced through interference effects. Differently from Grover’s algorithm, the
efficiency of the amplification engine depends on the guessing state: the algo-
rithm succeeds after a number of iterations proportional to 1/

√
a. If a = t/N

the algorithm is equal to Grover’s algorithm, and the required number of steps
is proportional to

√
N/t. It is important to note that a classic algorithm would

imply a number of steps proportional to N/t, while Grover’s algorithm allows for
a quadratic speedup, that is a number of steps proportional to

√
N/t. The am-

plitude amplification algorithm allows for a further speedup when the guessing
state is such that a > t/N , because the number of required steps is proportional
to 1/

√
a <

√
N/t: the initial guessing state gives higher weight to the good items

than to the bad items, making faster the retrieval process.
The interpretation of such amplification engine in the context of cognitive

tasks is in terms of subconscious processes: they allow for parallelism in the
evaluation of the boolean function over all the items, but they need a number
of iterations proportional to 1/

√
a to amplify the probability of good items. In

other words, the subjects are able to apply f(x) on each item x (thus deciding if
each item is good or bad). The algorithm suggests that such decision procedure
is performed in a parallel and subconscious way, thus faster than in a serial way.

3) A measure on the final state. The algorithm modifies the initial guess state,
producing a final state which contains almost only good states. Thus a final
measure produces one of the good items, and the recall task is finished. This
fact represents in my description the conscious act of remembering.

The amplitude amplification algorithm gives a simple mathematical definition
of the ease to retrieve in terms of the availability-by-speed: the time required
to find a good item is proportional to 1/

√
a, where a is the initial guessing

parameter: a high value of a gives a short time to retrieve a good item. The
parameter a represents how vivid are the good items in memory before retrieving
them.

We finally note that the availability-by-number (the number of good items that
subjects can remember in a fixed time) is proportional, in our model, to

√
a.

In the word frequency experiment, where subjects have to write English words
with letter R in first or third position [4], the time to produce the word is lower
with R as first letter than as the third letter. Thus I assume that the guess state
contains a set of N items (the most common English words), and the weight for
the words beginning with R is higher than for those with R at third position.
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3.1 Mathematical Details for the Amplitude Amplification
Algorithm

In the quantum formalism, the partition of N items into good and bad items
leads to consider a N−dimensional Hilbert space, whose computational basis
is {|0〉, |1〉, ..., |N − 1〉}: each vector corresponds to a particular item. Thus the
function f introduces a partition of H into a good subspace (spanned by the
vectors |x〉 for which f(x) = 1) and a bad subspace (spanned by the vectors |x〉
for which f(x) = 0). Thus any superposition |s〉 =

∑
x ψ(x)|x〉 can be written

as |s〉 = |ψ0〉 + |ψ1〉, where |ψ1〉 is the superposition of good vectors (f(x) = 1)
and |ψ0〉 is the superposition of bad vectors (f(x) = 1).

The algorithm presents the following steps:

1) Initial state: prepare the vector A|0〉 = |ψ0〉 + |ψ1〉, where A is a quan-
tum algorithm which uses no measurement, and a = 〈ψ1|ψ1〉 is the probability
to measure a good state. If A is the quantum Fourier transform FN : |x〉 →
N−1/2 ∑N−1

y=0 e2πixy|y〉, we have a uniform superposition of vector states with
amplitude N−1/2, and a = t/N (as in standard Grover’s algorithm).

2) Amplification engine: apply the operator Q = −AS0A
−1Sf , where S0 and Sf

are conditional phase inversion operators (S0 changes the sign of the amplitude
if and only if the state is the zero state |0〉, while Sf conditionally changes the
sign of the amplitudes of the good states).

3) Measure the final state: obtain one of the search results, measuring the re-
sulting state in the computational basis.

It can be shown that after �π/4arcsin(
√

a)� iterations (where �x� is the rounding
of x) the measured outcome is good with probability at least max(a, 1 − a). If
we have a high number of items N and a � N , then the optimal number of
iterations is proportional to 1/

√
a. If A is the quantum Fourier transform the

optimal number of iterations is proportional to
√

N/t, which corresponds to the
speedup of Grover’s algorithm. If a > t/N , the number of iterations is lower
than

√
N/t.

4 The Quantum Amplitude Estimation Algorithm

The quantum amplitude estimation algorithm [8] allows to estimate the ampli-
tude of a quantum state by applying at different steps the amplitude amplifica-
tion algorithm. From a cognitive point of view, it allows to estimate with a good
precision the probability a to find a good item (according to the partitioning in-
troduced by function f) when the opinion state about the N items is the initial
guessing state. Even if the mathematical details of the algorithm are described
in next subsection, I now present its main features, reducing to the minimum
the formalism. The algorithm can be decomposed in three parts:

1) Initial state: it is composed by the guessing state, as described before.
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2) Parallel amplifications : different instances of the amplification engine are ap-
plied in a parallel way, with different numbers of iterations. Thus we have a
double level of parallelism: in each step of the amplification engine the function
f(x) is applied simultaneously to the items, and this works simultaneously for
each instance of the amplification engine.

3) Analysis of the different amplifications: since the efficiency of each amplifica-
tion engine depends on the parameter a, the analysis of different instances of the
amplification process with different number of iterations allows to estimate a,
with a few standard deviations, after a number of evaluations of f proportional
to 1/

√
a.

This algorithm is particularly important for the study of cognitive processes,
because it allows to describe the tasks where subjects produce subjective prob-
abilities relevant to events. In this sense, it provides the formal link between a
quantum-like approach describing choices (for example, [1]) and a quantum-like
approach describing subjective probabilities (for example, [2]): choices are the
effect of simple measurements on quantum states, while the subjective probabil-
ities are the result of a quantum amplitude estimation algorithm applied on the
same state. In the context of availability heuristic, the present algorithm can be
used to describe the experiment of [4] presented in the introduction about the
likelihood of letter R in the first or in the third position of English words (word
frequency experiment). The retrieve process for words with R in first or third
position involves two different partitioning of English words and two different
amplification processes with parameters a and a′. In other words, we assume
that subjects’ mental state (the guess state) involves N words, and that the
weight in such state relevant to words with R in first and third position is a and
a′ respectively. According to our model, the ease to recall words with R in first
position can be described by the availability-by-number and is proportional to√

a, and the estimated probability to recall words with R in first position is near
to a. Thus if subjects recall more words with R in first position than in third
(
√

a >
√

a′), then the estimated probability to find a word with letter R in first
position is higher than the estimated probability to find words with R in third
position (a > a′).

Like for the amplitude amplification algorithm, also in this case the produced
estimated probability can be described as the result of subconscious amplification
processes (with evaluations of function f) and a final analysis and measure.

4.1 Mathematical Description of Amplitude Estimation Algorithm

The amplitude estimation algorithm, called Est Amp(A, f, M), is able to esti-
mate the amplitude of |ψ1〉 (good states superposition) in A|0〉. It is based on
the amplitude amplification algorithm. In particular:

1) Initial state: prepare the vector FM |0〉A|0〉, formed by two distinct registers:
the first has dimension M , while the second has dimension N . We recall that
FM is the quantum Fourier transform FM : |x〉 →M−1/2 ∑M−1

y=0 e2πixy|y〉.
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2) Parallel amplifications : apply the operator ΛM (Q), defined by |j〉|z〉→ |j〉Qj |z〉
with 0 ≤ j ≤ M , where Q = −AS0A

−1Sf is the standard amplitude amplifica-
tion engine. In other words, operator ΛM (Q) applies in a parallel way different
degrees of amplification, from 0 to M , to the guess state A|0〉.
3) Find the period of the wave function: apply F−1

M to the first register and mea-
sure it, obtaining an integer y. The estimated amplitude is then ã = sin2(πy/M):
the accuracy of such estimate is given in Theorem 12 in [8], where it is shown
that the difference between the real and the estimated probabilities is at least

|ã− a| = Δ(a, M) ≤ 2π

√
a(1− a)

M
+

π2

M2 (1)

In particular, to obtain a probability estimate with a few standard deviations,
we have to choose M = �1/

√
a�. As we will study in section 6, in case of a � 1,

the error can only reduce the estimate from a to a−Δ(a, M). Analogously, when
a � 0, the error can only increase the estimate from a to a + Δ(a, M). We will
call these effects overestimation and underestimation of low/high probabilities
respectively.

5 The Quantum Counting Algorithm

The quantum counting algorithm [8] allows, given a boolean function f defined
on a set X of N items, to estimate the number of elements of X for which the
function f is true t = |{x ∈ X |f(x) = 1|. In other words, the algorithm allows to
estimate the size of the subset of good items (those for which f(x) = 1). The best
classical strategy is to evaluate f on random elements of X : thus the number
of evaluations in order to have a good estimate of t is proportional to N . On
the contrary, the quantum counting algorithm produces good estimates for such
number in approximatively

√
N steps (quadratic speedup).

The quantum counting algorithm can be considered as an application of the
previous amplitude estimation algorithm. In fact, if the guessing state assigns
the same weight to all the items, then the estimated probability relevant to the
good items is near to t/N : the approximate number of good items can be ob-
tained by multiplying such estimated probability by N . I propose here a simple
generalization of the quantum counting algorithm, which I will discuss in math-
ematical details in the next subsection: if the guessing state assigns non-uniform
weights to the items, the probability relevant to good items is a 	= t/N . If for
example a > t/N , then the estimated number of items is near to aN > t: we
have an overestimation of the number of items, due to the guessing state in the
amplification process.

Such simple generalization allows to describe the risk frequency experiment
in [4] , where subjects were asked to judge the annual mortality (in the United
States) associated with a wide range of risks, including motor vehicle accidents,
poisoning by vitamins, and lung cancer. The experimental results show a positive
correlation between the annual estimated mortality rate of a disease and the
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number of recalled occurrences of the same disease in subjects’ social circle (i.e.,
family, friends, and acquaintances). In fact the same parameter a is involved
both in the recalling process and in the approximate counting process: thus the
ease to recall (proportional to

√
a) entails a higher estimated rate for the same

disease(aN).

5.1 Mathematical Description of Quantum Counting Algorithm

Given a boolean function f over a discrete set X with N elements, the quan-
tum counting algorithm Count(FN , f, M) can be written as a special case of
the amplitude estimation: t̃ = N × Est Amp(FN , f, M). If we use, instead of
the Fourier transform FN , a generic operator A, the quantum counting algo-
rithm Count(A, f, M) does not produce a correct estimate of t, the number of
good items. However, if a > t/N , the modified counting algorithm produces an
estimate t̃ > t, while if a < t/N , it produces an estimate t̃ < t.

6 Predictions of the Model and Experimental Results

Given a memory task, the availability-by-number can be mathematically defined
as the mean number RI of recalled items (in a fixed time) in the good class.
The main predictions of the quantum model based on the previously defined
algorithms are:

1) The availability-by-number RI (the mean number of recalled good items) is
approximatively proportional to the square root of the estimated number of good
items t̃ = Nã:

RI � g
√

t̃ = g
√

Nã. (2)

The proportionality constant g depends on the experimental variables (time to
recall/estimate, nature of items). In fact, since 1/

√
a is the number of steps

required to recall a good item, the number of recalled elements RI (in a fixed
time) is proportional to

√
a, and thus approximatively proportional to t̃ or to ã

(the output of the amplitude estimation algorithm Est Amp(A, f, M)).

2) The regression mechanism: the estimation algorithm Est Amp(A, f, M) is
subjected to precision errors, which change the estimate from probability a to
probability ã. The error |ã − a| = Δ(a, M) is defined as in equation (1) and it
is a descending function of precision M . However, for high probabilities (a � 1)
the final judgment is underestimated, since ã = a − Δ(a, M). On the other
side, for low probabilities (a � 0) the final judgment is overestimated, since
ã = a+Δ(a, M). In other words, the algorithm seems to be affected by problems
of underestimation/overestimation in the extreme cases. Even if this could seem
a weakness of the algorithm, in our case this is a nice feature, since it takes into
account in a natural way a well known and widely observed bias.

In the next subsections, I compare such predictions with the main experimental
results relevant to the availability heuristic.
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6.1 Word Frequency Experiment

The first class of experiments I consider here is the ”judgement of word fre-
quency”, invented by Tversky and Kahneman (1973) [4] and based on the fol-
lowing question: Consider the letter R: is R more likely to appear in the first
position or in the third position?. This experiment has been done with the con-
sonants (K, L, N, R, V), which in the English language appear more frequently
in the third than in the first position. The most part of participants (105 among
152) judged the first position to be more likely. The explanation given by Tver-
sky and Kahnemann is that people estimate the number of words based on the
ease with which they can recall them, which is the availability heuristic: the first
letter provides a better cue for recalling instances of words than does the third
letter.

Seldmeier et al. (1998) [5] repeated the experiment with German words and
with a more complete set of letters in first and second position. In particular,
the authors compared the actual and the judged proportions (estimated ratio of
words with the letter in first/second position) with some mathematical models
like the availability-by-number (defined in equation 2) and the regressed frequen-
cies. The regressed-frequencies hypothesis assumes that the mind keeps track of
the frequencies of individual letters in different positions. It further assumes
that low frequencies are overestimated and high frequencies are underestimated.
The amount of this ”regression” (toward the mean of all letter frequencies) is
assumed to be 70%, following Attneave’s (1953) results. Thus, given a letter, if
A(1) is the actual relative frequency of words in first position, the judged relative
frequency of words in first position is A(1) − 0.7[A(1) − 0.5]. For example, for
letter C we have an actual value of 13.5%, which produces a proportion of 39%.

Figure 2 in [5] represents the main results: similarly to Kahneman’s results,
for some consonants that are actually less frequent in the first position (C, R, N,
and L), subjects overestimated the proportion of words which present such letter
in first position. However, for other consonants that are actually more frequent in
the first position (S, F and G), subjects underestimated the proportion of words
which present such letter in first position. By analyzing figure 2, the authors
conclude that the regressed-frequencies mechanism is the model that best fits
the subjects judgements.

However, I present here two observations: 1) it is not clear how the subjects
know the actual proportions in order to compute the regressed frequencies, and 2)
the authors have regressed respect to 50% also the availability-by-number/speed,
which is not fully justified (since this is not the result of a judgement). On
the contrary, in the present work we do not regress the availability-by-number.
Moreover, we note that the estimated proportion of words with the letter in first
position relevant to those with the same letter in first or second position can be
written in our formalism as ã. Thus, equation (2) states that the square root of
the judged probability ã is approximatively proportional to the availability-by-
number RI . In table 1 we show that the normalized judged probability ã and the
normalized availability-by-number RI are approximately equal, mostly when the
actual proportions are far from 1. For the judged proportions which are near to 1,
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Table 1. Comparison of actual proportion, availability-by-number, estimated propor-
tion and square root of estimated proportion

Letter Actual proportion
Av.-by-number

RI

Estimated prop.
ã

Square root of est. prop.√
ã

C 0.1 0.53 0.28 0.53

R 0.21 0.6 0.47 0.69

N 0.32 0.68 0.42 0.65

L 0.43 0.65 0.48 0.69

B 0.73 0.62 0.62 0.79

S 0.85 0.65 0.6 0.77

F 0.91 0.55 0.68 0.82

G 0.99 0.77 0.7 0.84

instead, the prediction 1 is less well verified: this could be explained with higher
statistical errors, due to the very low number of words produced with the letter in
the third position. Moreover, according to prediction 2, the judged proportions
which are near to 1 should be corrected in order to take into account to the
regression mechanism: in particular, such proportions would be incremented,
producing an even bigger difference from the availability-by-number.

6.2 Risk Frequency Experiment

Tversky and Kahneman [4] exemplified the availability heuristic with the fact
that one may assess the risk of heart attack among middle-aged people by recall-
ing such occurrences among ones acquaintances. Lichtenstein et al. [6] explored
the judgments of risk frequency, by asking participants to judge the mortality
rate (in the United States) associated with a wide range of risks, including mo-
tor vehicle accidents, poisoning by vitamins, and lung cancer. The experiment
evidenced a confirm of the availability heuristic and of the regression mechanism
for high and low frequencies.

Hertwig et al. [7] replicated such experiments, in order to compare the re-
sults with different theoric models: subjects were asked to estimate the annual
mortality rate or the incidence rate of a particular disease, or to recall its oc-
currences in their social circle (i.e., family, friends, and acquaintances) and to
write down the number of instances they could retrieve. Two mechanisms, the
availability-by-number and the regressed frequency, conformed best to people’s
estimates of absolute risk frequencies. First of all we note that figure 1 in [7]
evidences clearly an underestimation or overestimation of estimated frequencies
relative to the real frequencies in the extreme cases, which is consistent with
formula (1). In order to compare the experimental data with prevision of my
model, I consider the data kindly sent by the authors of [7], calling t̃ the median
estimated frequencies relevant to a particular disease, and RI the number of
retrieved occurrences of that disease (availability-by-number). While the overes-
timation/underestimation of low/high frequencies are quite evident, the direct
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Fig. 1. Comparison of the rescaled availability-by-number RIg versus the square root
of the judged frequency

√
t̃ for different diseases

comparison of t̃ and RI evidences a positive correlation, but not a linear rela-
tion. However, according to prevision 1 of my model, the availability-by-number
RI should be proportional to

√
t̃, the square root of the non-regressed judged

annual incidence. Figure 1 evidences, for different diseases, that RIg is quite sim-
ilar to

√
t̃, with the constant coefficient g = 10, giving a preliminar evidence of

prevision 1 of my model.For high judged frequencies, we can also see an underes-
timation effect, which can be probably be imputed to the regression mechanism
of prediction 2.

7 Conclusions

In this article I show how three important quantum algorithms can model the
experimental results of availability heuristic. I introduce the amplitude amplifica-
tion algorithm to give a mathematical characterization of the ease to recall items
or concepts. Then I present the amplitude estimation/counting algorithm, estab-
lishing a connection between the ease to retrieve and the judgements of proba-
bility/frequency about facts. The quantum description of availability heuristic,
and in particular the use of quantum algorithms, has some advantages: 1) the
economy of a quantum description, which seems to be consistent with a large
number of cognitive heuristics (see for example [2], and [1]), while the classic
alternatives are ad-hoc models with a very weak mathematical apparatus. 2)
The ease of recall and the regression mechanism are naturally taken into ac-
count by the quantum model. 3) The quantum amplitude estimation and the
quantum counting algorithms involve partial searches, which is consistent with
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the availability-by-number measure. 4) The availability experiments presented
in this article describe judgements which involve in theory a great number of
computations. In the example of word frequency, the English language contains
about 500000 words, and the task previously described could reasonably involve
computations over a subset of about 25000 more common words. This consid-
erations make stronger the quantum-like point of view, since the quantum algo-
rithms here proposed manifest a quadratic speed up, and thus are faster than
any classic algorithm.

As noted by Manin [12], some human tasks, such as playing chess or speech
generation and perception, require a great number of computations per second,
as is evidenced by efficient chess playing software (based on classical algorithms).
Since the characteristic time of neuronal processing is about 10−3 seconds, it
seems difficult that a classical model could describe such tasks: in the word fre-
quency experiments [4], the set of words on which perform the computation is in
theory of 500000 elements, thus making a classic algorithm modelling the cogni-
tive processes more difficult to apply than fast quantum algorithms. Moreover,
the parallel use of quantum chips controlled by a classical computer, as well as
the possibility to perform quantum search by using parallel queries [13] makes
the quantum approach competitive also respect to the classic parallel computing.
However, in this article I do not explore in a detailed way such point of view: in
fact, this is a preliminar article showing a possible use of quantum algorithms
to provide a formal description of memory and estimation tasks. Perhaps, in
future we could find that other quantum algorithms are more suitable for such
description.

There are some questions which need further investigations: 1) How the am-
plitude estimation processes can be influenced by a change in the partitioning?
For example, we can choose to partition the items into two different ways. 2)
Availability heuristic is relevant not only with estimated probabilities or approx-
imate counting, but also with generic evaluations, like described in [14]. It should
be investigated if the algorithm used in the present algorithm can be generalized
also to generic evaluations (like for example course ratings). 3) Recent availabil-
ity experiments show that the judged probabilities can be modified by previous
tasks: thus a belief updating quantum model should be developed.
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Abstract. The primary objective of the paper is to demonstrate how the phe-
nomenal unity of consciousness, when interpreted as a result of integrative 
functions of the brain can be modeled in terms of algebraic properties of the 
quantum-mechanical formalism detached from its physical interpretation. The 
model proposed here is going one step beyond extracting the formal property of 
quantum coherence by making the transition from the lattice theoretic formal-
ism to more suitable and slightly more general framework of closure spaces, but 
this generalization is independent from the basic idea of using quantum-
mechanical formalism in the explanation of possibly non-quantum-mechanical 
processes in the brain. 
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1   Introduction 

The paper presents a general outline of the model of information integration in the 
brain using a formalism derived from the algebraic (lattice theoretic) formulation of 
quantum mechanics. Although the formal, algebraic characteristic of the quantum 
coherence plays a fundamental role in the model, there is no assumption made that the 
brain mechanisms considered as physical objects are actually quantum-mechanical 
systems. The model has a purely theoretical character and at this point no attempt has 
been made to identify specific functional elements in the brain responsible for its 
implementation in the cognitive functions. Naturally, the simplest candidates for such 
functional units would be neurons, but the model does not depend on such a choice.  

The primary objective of the paper is to demonstrate how the phenomenal unity of 
consciousness, when interpreted as a result of integrative functions of the brain can be 
modeled in terms of algebraic properties of the quantum-mechanical formalism de-
tached from its physical interpretation. In fact, the model proposed here is going one 
step beyond extracting the formal property of quantum coherence by making the tran-
sition from the lattice theoretic formalism to more suitable and slightly more general 
framework of closure spaces, but this generalization is independent from the basic 
idea of using quantum-mechanical formalism in the explanation of possibly non-
quantum-mechanical processes.  
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There is a natural question why quantum coherence has been selected as the fun-
damental characteristic for the model of consciousness. There is no doubt, that the 
challenge of going beyond what others (e.g. K. H. Pribram, S. R. Hameroff, R. Pen-
rose) [1,2,3] have managed to achieve in explaining the unity of consciousness by 
quantum-mechanical coherence of brain structures, without reaching the ultimate 
goal, makes the subject attractive. But there are more important reasons.  

The idea of the need for a new holistic conceptual and methodological framework 
for the study of phenomena occurring in complex systems (for instance biological or 
social) exhibiting properties different from those derived from its constituents, has 
never produced any formalism which could be used effectively in the description of 
the work of brain. There was a period of hope and excitement generated by Ludwig 
von Bertalanffy’s vision which declared the arrival of a new age of inquiry: “General 
system theory, therefore, is a general science of ‘wholeness’ which up till now was 
considered a vague, hazy, and semi-metaphysical concept. In elaborate form it would 
be a logico-mathematical discipline, in itself purely formal but applicable to various 
empirical sciences.”[4] But what was vague, hazy and semi-metaphysical has re-
mained such in the next forty years. The only instance, in the decades of attempts, for 
a successful formalization of the compounds which manifested unity going beyond 
association of mechanically interacting independent units has been achieved inde-
pendently in quantum mechanics. Thus, first argument could be simply the lack of 
alternatives. If not quantum-mechanical superposition of states, what else can be con-
sidered as a candidate for the integrative mechanisms in the brain?  

There are also other compelling arguments for looking in quantum-mechanical 
formalisms for mathematical models of brain mechanisms. The formalism of quantum 
mechanics, especially its lattice theoretic version of the so called quantum logic, in-
volves many concepts fundamental in several disciplines of mathematics which his-
torically have developed from the human inquiry of the physical reality. Actually, the 
concept of quantum logic is a direct generalization of the lattice theoretic formalism 
for projective geometry. There are similar links to topology, probability, and logic 
(which has been the reason for the name “quantum logic”.) Thus, the model of cogni-
tive functions in such terms offers a promising point of departure for more specific 
study of the conscious experience of geometric or topological relations on one hand, 
and of cognitive processes related to language or logical reasoning on the other.  

Finally, there is a good reason to consider in the context of consciousness studies 
the formalism of an empirical discipline such as quantum mechanics. Our conscious 
experience is an empirical process in which we are exploring our environment. Unless 
we believe that the consciousness is an accidental, purposeless side-product of the 
evolution, it is quite obvious that our perception of the surrounding world is a form of 
experimental procedure, and the most thorough analysis of such procedures has been 
made in the foundations of quantum mechanics. It is worth to notice, that the quantum 
mechanical description of the physical systems is inseparable from the consideration 
of the measuring apparatus, the characteristic which seems highly relevant for the 
analysis of brain’s exploration of the physical reality. 

As declared above, there is no intention in this paper to identify the functional ele-
ments in the brain which could be involved in the process of information integration. 
There is a legitimate question in what way such a purely theoretical model can be useful 
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in the study of consciousness. The answer requires a short exposition of the problem to 
be solved, which in more elaborate format has been presented elsewhere [5].  

Phenomenal unity has been recognized as a central feature of consciousness al-
ready by William James. The attempts to identify the mechanism producing this unity 
out of the variety of sensory inputs have been always employing some form of the 
infamous homunculus haunting all studies of consciousness. The most recent empiri-
cal research, although directed by the conviction that “subjective experience is  
integrated information” [6] which for the author of the present paper is the most 
promising approach to the study of consciousness, did not manage to escape the ho-
munculus fallacy. Experimental studies of information integration, such as research 
reported by Tononi and Edelman [7], assume that the integration must be manifested 
by simultaneity of neuronal excitation. Of course, this assumption is re-introducing a 
homunculus whose watch plays the role of an integrator. There is no reason to believe 
that the subjective unity is any way related to external time or space measurement.  

The brain is integrating sensory information not necessarily arriving simultane-
ously. For instance, a sequence of sounds is being integrated into a melody. Thus, the 
central question is what exactly information integration is. Only after we have a 
model of integration or integrated information, we can try to identify the functional 
units which implement the mechanism in the brain. The present paper is an attempt to 
use an algebraic property of quantum formalism corresponding to coherence to build 
such a model.   

2   Information and Information Integration 

Since the main objective of the paper is to develop a model of consciousness, we have 
to start from the clarification of its status. Consciousness is here considered a result of 
information integration, or simply it is integrated information. The reference to infor-
mation requires in turn a definition of this commonly used (and abused) term. The 
definition used here, based on the one-many relationship, has been presented in more 
elaborate form elsewhere [8]. Thus, in short information is understood as an identifi-
cation of a variety. Whenever there is a variety (“many”) and there is anything that 
gives unity to this variety (“one”,) it is information. There are two inseparable aspects 
of information, which determine the dominant characteristics of its manifestation. 
When the one is a result of a selection out of the many, the information can be charac-
terized as selective. When the many are unified into the one, for instance through 
internal interactions or an imposed structure, the information has structural manifesta-
tion. However, it is always possible to link one of the manifestations with the other.  

It is easy to recognize in the selective aspect of information the subject of Shan-
non’s information theory, in which a probability distribution of the selection is util-
ized to define the measure of information in terms of entropy. Kolmogorov-Chaitin 
algorithmic information approach is concerned more with the structural manifestation 
of information. Since either of the two aspects can be easily reinterpreted in terms of 
the other, information defined above has a well defined measure, although it is a mat-
ter of continuing discussion which of the multiple measures introduced in literature is 
most adequate [9].  
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For a physical system, information carried by it is closely associated with the con-
cept of a physical state considered in the context of the variety of all potential states, 
although typically the state is given epistemic status, while in this approach informa-
tion has ontological status.  

Information may be a subject of transformation, either in the sense of change of its 
manifestation, for instance from a selective form to structural. Also, information can 
be transferred from one variety to another. It is the latter case which in the case of the 
selective information was the subject of the classical Shannon’s analysis of communi-
cation. Finally, we can consider a qualitative transformation of information integra-
tion. The concept of information, as defined above has already integrative character, 
as information may be understood as that which unifies a variety, or which reduces it 
to unity. The measures of information reflect the range of the variety and the degree 
to which information is making it one. However the mutual relationships of the ele-
ments of the united variety escape the measurement. This aspect of information may 
in the future find quantitative expression, but at the moment it has been considered 
only as a structural characteristic.  

Now, we can proceed to the more specific presentation of the idea of information 
processing and integration. We will start from considering a very simple example of 
information processing in which the level or character of integration is not changed, 
but the manifestation of information is changing from the selective to structural. It is 
the Young-Helmholtz simplified mechanism of color vision. It has to be emphasized 
that this mechanism of color vision serves in this paper only as a familiar example of 
a model of information processing. The goal of this paper is very far from the analysis 
of what actually happens in the eye, as the present author is convinced that there are 
no processes occurring in the retina which could explain unity of consciousness.  

Recent research shows that the activation of receptors in the retina may involve 
quantum processes which could make the actual process not suitable for our purpose 
[10]. But, even without quantum effects, the process of color recognition is much 
more complicated by the involvement of relative intensities of the three basic colors, 
which in this paper is ignored to provide the simplest example of the process trans-
forming selective manifestation of information into structural one without any change 
in the level of information integration used as a point of departure for the analysis of 
more integrative transformations. Considering the more accurate model of vision 
would not have provided more insight into the process of information transformation, 
but would have obscured the underlying structures.  

We can think about this three-color mechanism as a gate with the eight input chan-
nels distinguished by the eight colors of incoming light, from black, through so called 
pure colors of violet, green and red, to yellow, pink and blue, and to white. The input 
light characterized by one of these colors (selective information) is activating an ap-
propriate combination of the three types of receptors (the pattern of activation is the 
information in the structural form.) If the incoming light is monochromatic, there is a 
bijective correspondence between the colors and the patterns of excited receptors.  

However, we can consider mixed light coming. Then, when the mix consists of red 
and green light, the resulting pattern is different from either of patterns corresponding 
to red or green. Instead, the excited receptors correspond to yellow color. But when 
we have a mix of red and yellow light, the pattern belongs to yellow color, too. It is 
easy to recognize that the mechanism of color detection is defining on the set of  
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colors a partial order. If the mix of two lights is coming and the resulting pattern of 
receptor excitation belongs to one of them, this element is greater. In the Young-
Helmholtz model this partial order is a Boolean algebra with three atoms of “pure 
colors” (violet, green, red) three of mixed colors (blue, yellow, pink,) black color as 
the least element and white as the greatest. Now we can generalize this form of a gate 
as a system consisting of an atomic Boolean algebra whose all elements are input 
channels (or connected to input channels) and whose atoms are output channels. Acti-
vation of each of input channels produces a pattern of responding activation of a set of 
atoms. This type of a gate has been called a Venn gate, as Venn diagrams provide a 
good illustration of its functioning [11]. 

Similar gate (or rather module) is well known in computer architecture as a priority 
encoder. [12] Here too, we have four (or more) input channels and two (or more) 
output channels, but the module is structured not by a Boolean algebra, but by a linear 
order of priority. Each input channel is encoded in a unique way as a combination of 
the output channels, but whenever two input channels are activated instead of one, the 
output corresponds to that of higher priority in the linear ordering imposed by the 
encoder. Thus, when two input channels are activated, the output configuration is 
always identical with the output configuration for one of incoming signals.  

There are of course many other possible gates of this type, each inducing different 
partial order on the incoming information while encoding the selection of the input 
channels in a unique way in form of a pattern of activated output channels. Thus, 
there is a natural question about the possible generalization (which has been called by 
the author a generalized Venn gate) in which the underlying structure does not have to 
be a Boolean algebra or linear order, but some partially ordered set. For instance we 
could substitute for the Boolean algebra its generalization in the form of quantum 
logic. This substitution is not as bizarre as it may seem at first moment. The explana-
tion of the Young-Helmholtz mechanism of color vision is not much different from 
the way how quantum logics are introduced in terms of yes-no experiments [13]. 

Summarizing, the central role in the model presented here is given to what has 
been called a generalized Venn gate in which the input selective information coming 
in multiple channels is transformed into the output structural information, with or 
without change in the level of information integration.  

In purely classical (disintegrated) case of simple Venn gate, the processing unit is 
modeled by an atomic Boolean algebra. Each of input channels is activating an ele-
ment of the Boolean algebra, which produces an activation of an appropriate combi-
nation of the atoms corresponding to the input element. This pattern of activation 
forms the structural output. The process can be understood as a form of “logarithmic 
set operation.” The reference to logarithm is justified by the fact that in the finite case 
to the 2n input channels (elements of the Boolean algebra) correspond n output chan-
nels (atoms of the algebra.) Thus, the process is exactly opposite to the formation of 
the “power set.” 

In the case of a purely quantum Venn gate, the processing unit is modeled by an ir-
reducible, atomistic, orthomodular, complete lattice (so called “quantum logic”) 
which is not distributive, and therefore not a Boolean algebra, but the process other-
wise is similar. Each of possible inputs is activating some combination of atoms of the 
lattice.  
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It is easy to identify underlying mathematical concepts. Generalized Venn gates at 
the first step of generalization can be defined as injective functions which map the 
elements of a complete atomistic lattice into subsets of atoms in such a way that the 
image of each element of the lattice is the set of atoms whose join is this element.  

It is worth to mention that no non-trivial quantum gate can be finite, so if we want 
to have a model of the brain with the finite number of functional units (e.g. neurons,) 
each with the finite number of states (e.g. on/off), we have to look for a different 
irreducible generalized Venn gate. This is a consequence of the fact that every quan-
tum logic of dimension higher than 2 (each element of the lattice is a join of at least 
three atoms) cannot be finite [14]. 

While other conditions defining quantum logic are simply generalizing the concept 
of a Boolean algebra, the condition of irreducibility is of the highest importance for 
us. In quantum mechanics, it is equivalent to the assumption that the Superposition 
Principle is completely unrestricted for all states of the system. In the description of 
actual physical systems, we have always the so called superselection rules which are 
limiting superposition. To the presence of superselection rules corresponds decompo-
sition of the quantum logic into purely quantum-theoretic indecomposable factors. In 
the case of a Boolean algebra (purely classical case) the decomposition is complete 
into the direct product of factors consisting of the trivial two-element (indecompos-
able) Boolean algebras.  

Thus, direct product irreducibility (indecomposability into a direct product) is the 
essence of the quantum character of the system, and at the same time a reflection of 
unlimited application of the Superposition Principle. This is the reason why in the 
model of the process of information integration in the brain presented here this prop-
erty has been considered fundamental. Now, direct product irreducibility is a basic 
property of algebraic systems which does not require specific concepts defining quan-
tum logics or any other association with quantum mechanics as a physical theory. It is 
applied here to the structures which model information processing to achieve informa-
tion integration in purely formal analogy to quantum mechanical superposition.  

Now, we can see that the particular choice of the quantum logic structure for the 
generalized Venn gate is not necessary in order to achieve some form of integration. 
The author proposed in the earlier papers to look for different structures to be used for 
generalized Venn gates among the lattices of closed subsets for a wider class of clo-
sure operators than the lattice of closed subspaces of a Hilbert space which appears in 
the standard quantum theory as quantum logic [11]. However, in such a case it may be 
necessary to consider for the output set, whose pattern of activation encodes the struc-
tural information, the elements which are not necessarily atoms of the lattice of closed 
subsets, as such a lattice may not even have atoms, or the set of atoms may not be 
sufficient to encode all input.  

There is quite extensive literature on the lattices in which join- and meet-
irreducible elements play the analogue role to that of the atoms in Boolean algebras or 
quantum logics as considered in the context of the lattice representation theory [15]. It 
turns out that modeling of information processing by Venn gates utilizing only partial 
order is essentially identical with the use of closure spaces in the simplest cases  
involving finite distributive lattices, not interesting for us due to direct product re-
ducibility. In general, there is a correspondence between partially ordered sets and 
closure spaces defined on the same set. However, there are many such spaces which 
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correspond to the same partial ordering. In the case of quantum Venn gates for in-
stance, it is the choice of orthocomplementation on the lattice that fixes one specific 
closure space out of many associated with the partial order [16]. We have to remem-
ber at this point that the traditional terminology may result in confusion. To be pre-
cise, we should say “orthomodular ortho-lattice” instead of “orthomodular lattice.” 
The same lattice can admit two different orthocomplementations producing non-
isomorphic structures, one orthomodular and the other not. Thus, it should not be a 
surprise that different orthocomplementations correspond to essentially different clo-
sure spaces. It is a little bit less obvious that once orthocomplementation is intro-
duced, the corresponding closure operation is unique.  

The ortho-lattice formalism has many formal advantages over that based on partial 
order only. But, there are instances in which the conceptual framework of lattices and 
orthocomplementations is still too narrow for the purpose of constructing generalized 
Venn gates. For instance, if we want to consider a generalized Venn gates processing 
information related to geometric relations within synthetic geometry (going beyond 
projective geometry) or to topological properties, the more general language of clo-
sure spaces has clear advantage [11]. This is the main (but not only) reason for devel-
oping the model of information integration in the framework of closure spaces, in 
which of course quantum mechanics can be, and actually is formulated as a special 
case.  

3   Closure Space Formulation of the Model 

This section presents a short outline of the mathematical formulation of the model of 
information integration going beyond the formulation in terms of partial order as 
described above. Someone familiar with the subject of closure spaces may find short 
introductory portion of this section redundant, but its inclusion makes the paper self-
contained.  

A closure operator on set S is a function f from the power set of S to itself such that 
for all A, B ⊆ S: A ⊆ f(A), A ⊆ B ⇒ f(A) ⊆ f(B), and  f(A) = f(f(A)).  

The set S with a closure operator f form a closure space <S, f>. We will use letter 
symbols (consisting of a capital letter or a sequence of small letters preceding capital 
letter) for the properties of closure operators, and when an operator f satisfies a condi-
tion indicated with for instance letters xY, we will write f∈xY(S) or simply f∈xY. 
The exceptions are symbols T

0
 and T

1
 with the long tradition in topology. 

Every closure operator on a set S is uniquely defined by the Moore family of its 
closed subsets f-Cl = {A ⊆ S: A = f(A)}, and every Moore family ℑ of subsets of S, 
i.e. family of sets which includes S and is closed with respect to arbitrary intersec-
tions, is a family of closed sets for the unique closure operator defined by f(A) = 
∩{B∈ℑ: A ⊆ B}. It is easy to see that for every closure operator its family of closed 
sets forms a complete lattice Lf with respect to the set inclusion.  

If a closure operator f is defined on a set S, it defines a closure operation g on 
every subset B of S called a restriction of f to B: ∀A ⊆ B: g(A)= f(A)∩B. If B∈f-Cl, 
then ∀A ⊆ B: g(A)= f(A) and the closure space <B,g> is called a subspace of <S,f>. 

As mentioned above, there is a bijective correspondence between finite partially 
ordered sets and finite closure spaces with closure operator f satisfying the following 
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three additional conditions, which illustrates the point of overlap of the concepts of 
gates in terms of partial ordering and in terms of closure spaces:  

(fA)  ∀A, B ⊆ S, f(A)∪f(B) = f(Α∪Β).   
(N)  f(∅)=∅ (f∈N(S)). 
(T

0
) ∀x, y∈X, x ∈ f({y}) ⇒ y ∈ f({x}).  

The correspondence is based on the relationship between the partial order and the 
topological closure on singleton sets: x ≤ y iff x ∈ f({y}) [15].  

There is a stronger condition than T
0
 known in topology as T

1
: 

(T
1
) ∀x∈S, f({x}) = {x}. 

Of course, for closure operators satisfying this condition the partial ordering gener-
ated as above is trivial, and usually the closure operation cannot be reconstructed 
from the ordering, i.e. from the closures of singleton sets. However, many closure 
spaces of special interest for our purpose, such as geometric or topological closure 
spaces satisfy this condition.  

In a closure space a subset A is called generating if f(A)=S, it is said to be generat-
ing for a set B, if f(A)=B. A subset A of S which is a minimal subset generating its 
own closure is called independent. The latter condition is usually formulated in an 
equivalent way: ∀x∈Α: x∉f(A\{x}). A generating and independent subset is called a 
base. The term “base” has been originally introduced in closure spaces as a generali-
zation of the concept of a base in the vector spaces. When we consider the closure 
operator defined by the Moore family of vector subspaces, the two concepts coincide. 
However, in general bases have very different properties. For instance, they do not 
have to be equicardinal, as the following example shows. 

Example 1. Let S be a set with two disjoint proper, nonempty subsets T and U, and 
let the closure operator f be defined by f(A)=S, if Τ⊆Α or U⊆Α, f(A)=A otherwise. 
Then, both T and U are bases. If they are not equicardinal, they provide example of 
bases of different cardinality in the same closure space.   

For the purpose of defining a generalized Venn gate in terms of closure spaces it is 
necessary to introduce a new concept of a frame for a closure space. Since the study 
of the properties of frames has not been published yet, the following text is presented 
in a more formal way. 

 
Definition 1. Let <S,f> be a closure space and B its subset (not necessarily proper). 
B is a frame for <S,f>, if ∀A⊆S ∃Β

Α
⊆Β: f(A)=f(Β

Α
). A frame is proper, if B is a 

proper subset of S; it is a minimal frame, if there is no proper subset of B which is a 
frame. The closure space is simple if it does not have proper frame.  

 
Proposition 1. The condition defining a frame is equivalent to the following: 
∀A⊆S: f(A)=f(Β∩f(A)), where the equality can be replaced by the inclusion ⊆ . 
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Proof: Obviously Β∩f(A) can be selected as Β
Α
, which shows that the condition is 

necessary. To show that it is sufficient, observe that f(A)=f(Β
Α
))⊆f(Β∩f(A))⊆f(A).  

Since all set S is always a (trivial) improper frame, each closure space has at least one 
frame. For simple spaces it is the only frame. Naturally, we are interested in the least 
possible subsets of closure spaces which are frames. It is obvious that B\f(∅) is al-
ways a frame, whenever B is a frame in <S,f>. 

Although, obviously in every finite closure space there exists a minimal frame, in 
infinite spaces there may be no minimal frames at all.   

We already have identified a convenient equivalent for the definition of a frame in 
Proposition 1. However, there are several other equivalent conditions for a subset B of 
the closure space <S,f> to be a frame.  

 
Proposition 2. The following conditions for a subset B of S are equivalent: 

a)  B is a frame for <S,f>, 
b) ∀A⊆S: A⊆f(Β∩f(A)),  
c) ∀x∈S: x∈f(Β∩f({x})),  
d) ∀x∈S: f({x})=f(Β∩f({x})),  
e) ∀C,D⊆S: f(C)∩Β=f(D)∩Β⇒f(C)=f(D), 
f) ∀C⊆S: C∈f-Cl⇒ f(Β∩C)=C. 

 
Proof: The equivalence of first two conditions is the subject of the preceding proposition.  

For the equivalence of the second and third condition, we have to show only one 
direction of the implication. Suppose that ∀x∈S: x∈f(Β∩f({x})), but some subset A 
of S is not a subset of f(Β∩f(A)). This means that there exists y in A, such that 
y∉f(Β∩f(A)), but f(Β∩f({y}))⊆f(Β∩f(A)), hence y∉f(Β∩f({y})), which contradicts 
the assumption.  

The equivalence of the third and fourth condition is straightforward. The necessity 
of the fifth condition for the subset B to be a frame is obvious.  

We will show the sufficiency of the transposition of the implication in the fifth 
condition for B to be a frame ∀C,D⊆S: f(C)≠f(D)⇒f(C)∩ Β≠f(D)∩Β. Suppose there 
exists a subset A of S, such that f(A)≠f(Β∩f(A)). Then by the assumption 
f(A)∩B≠f(Β∩f(A))∩B, which in this case must be a strict inclusion of f(Β∩f(A)) ∩B 
in f(A)∩B. But we have always the inclusions f(A)∩B⊆f(Β∩f(A)) and f(A)∩B⊆B, 
therefore f(A)∩B⊆f(Β∩f(A))∩B, a contradiction concluding the proof. 

The equivalence of the sixth condition with the condition from the preceding 
proposition for B to be a frame is obvious.  

Remark. As a consequence of the fourth condition, every T1 closure space <S,f> (in 
which every one-element subset, or singleton, is closed, and therefore the empty set is 
also closed) must be simple, as the only set intersecting with all singletons is all set S.  

Also, it is worth to mention that in the fifth condition the arbitrary subsets C and D 
cannot be replaced by singletons, as the following example shows.  
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Example 2. Let <S,f> be a closure space, T be a proper, nonempty subset of S, and f 
be defined for any subset A of S by: f(A) = A if A⊆T, and f(A)=S otherwise. Then, 
the set T satisfies the condition ∀x,y∈S: f({x})∩Τ=f({y})∩Τ⇒f({x})=f({y}), but T 
is not a frame for <S,f>.  

Although the correspondence between finite partially ordered sets and T0 closure 
spaces provides many examples where the concept of a frame can be considered 
purely in terms of the order relation, the need for more general concept of a frame in 
terms of closure spaces becomes clear in the structures build over infinite sets and for 
closure operators which are not bound by the T0 condition.  

Let’s return to the issue of the relationship between frames and bases in closure 
spaces. The concept of a base in a closure space has been studied thoroughly, but 
actually its usefulness is very limited. The main reason for the interest in bases results 
from the importance of the concept of a base in vector spaces. However, the construc-
tion of arbitrary element of the vector space from the elements of the base does not 
have any counterpart in the general case of closure spaces. We cannot even generate 
all subspaces of the vector space using closures of subsets of the base. The main mo-
tivation for the introduction of the concept of a frame was the fact that the structure of 
closed subsets can be recovered from the closure operation acting on a base. For this 
reason it is interesting to observe the relationship between the two concepts. 

Obviously, every frame B is a generating set (f(B)=S). However, it does not have 
to be an independent set, and therefore it does not have to be a base. Since independ-
ent sets are minimal sets generating their closure it follows that if a frame is a base, it 
has to be a minimal frame. However, Example 1 shows a case of a simple closure 
space (with only trivial frame of all set S) in which there exist proper subsets T and U 
which are bases. Thus the concepts of frames and of bases are essentially different, 
although not mutually exclusive. The following is a simple example of a frame which 
is a base. 

Example 3. Let {Si: i∈Ι} be a partition of S, and the closure operator f on S be de-
fined by f(A)= ∪{Si: i∈Ι and Si ∩A≠∅}. Then every subset B of S, such that ∀i∈Ι: 
|B∩Si|=1 is a minimal frame which also is a base.  

It is possible to characterize the subsets which are both frames and bases.  

Proposition 3. A frame B in a closure space <S,f> is a base iff the restriction g of the 
closure operation f to set B satisfies ∀A⊆B: g(A)=A.  

Proof: We need to show only that the condition for independence of a subset B is 
equivalent to ∀A⊆B: f(A)∩B=A. B is f-independent if ∀x∈Β: x∉f(B\{x}), or equiva-
lently, if it is a minimal set generating its closure f(B). Suppose B is independent, but 
there exists a subset of A of B which is a proper subset of f(A)∩B (obviously it must 
be a subset). Then, A is not generating its closure, and therefore A is not independent, 
which contradicts the fact that every subset of an independent set B must be inde-
pendent. This proves that our condition is necessary for the independence of B. It is 
also sufficient, as the negation of the defining condition ∃x∈Β: x∈f(B\{x}) contra-
dicts our condition applied to the set A= B\{x}.  
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We will finish the exposition of the concept of frames by considering the relationship 
between the lattices of closed subsets for <X,f> and <B,g>, where B is a frame and g 
is a restriction of the closure operator f to B . 

 
Proposition 4. Let Lf and Lg be the complete lattices of closed subsets in <S,f> and 
<B,g> respectively, and g be the restriction of f to a frame B in <S,f>. Then Lf and Lg 
are isomorphic.  

 
Proof: Let ϕ be a function from Lf and Lg defined for every f-closed subset C by 
ϕ(C)=Β∩C. Since B is a frame and C is f-closed, g(Β∩C)= f(Β∩f(C))∩B= f(C)∩B= 
B∩C, i.e. B∩C is g-closed. The function is surjective, as if C=g(C)⊆B, then 
f(C)∩B=C, and therefore ϕ(f(C))=f(C)∩B=C. That it is also injective follows directly 
from the fifth condition for frames in Proposition 2. Finally it is obviously isotone, 
and its inverse defined for every g-closed subset A by ϕ−1(A)=f(A) is also isotone. 
Thus, ϕ is a lattice isomorphism.   

 
Corollary. Let f1 and f2 be closure operators defined on the same set S, g1 and g2 be 
their respective restrictions to a subset B of S, which is a frame for both closure 
spaces <S,f1> and <S,f2>. Then, from the equality of the restrictions g1=g2 follows 
isomorphism of the lattice of f1-closed subsets of S and the lattice of f2-closed subsets 
of S. 

 
It is easy to see that whenever lattice Lf is atomistic, its atom space is isomorphic with 
a minimal frame for the closure space. For the closure space with algebraic lattice Lf, 
the set of join-irreducible elements assumes the role of minimal frame. However, in 
more general cases the choice of the frame may be arbitrary, as not always minimal 
frames exist. Also, for a large class of closure spaces there exists only trivial frame 
equal to all set S.  

Now we are ready to describe a generalized Venn gate in terms of a closure space 
<S,f>. Its input channels are elements of the set on which is defined the lattice Lf of 
all f-closed subsets, its output channels are elements of a frame B of <S,f>.  

 
Definition 2. Let f be a closure operator on set S and B be a frame of <S,f> A gener-
alized Venn gate is a function ϕ  which is mapping all elements of Lf , the lattice of all 
f-closed subsets of S, to the set of subsets of B, such that ∀ A∈Lf: f(ϕ (A))= A. The 
gate is integrating if the lattice Lf is (direct –product) irreducible.    

 
Thus, when one of the input channels represented by the elements of the lattice of 
closed subsets is activated, the elements of the frame which generate this closed sub-
set are activated. The lattice Lf can be considered the logic of the gate. 

Simple Venn gate corresponds to the trivial closure operator f on S, which to every 
subset A of S assigns as its closure itself, i.e. f(A)=A. In this case the lattice of closed 
subsets is the Boolean algebra of all subsets of S. 

Quantum Venn gate can be realized using as the closure space a complex Hilbert 
space with the Moore family of all its closed subspaces. The resulting lattice of closed 
subspaces is of course a quantum logic, and the frame consists of all elements of norm 
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one (quantum mechanical states), or the isomorphic space of one-dimensional sub-
spaces (atoms of the lattice of closed subspaces).  

As mentioned above, the generalized Venn gates defined by closure spaces give 
opportunity to link the model with mathematical formalisms of several disciplines 
relevant for the study of cognition. A few examples will be given to conclude the 
presentation of the outline of the model.  In each case the closure space will be identi-
fied by its defining properties.  

Logic is the discipline of natural special interest for the study of cognition, al-
though our model of information integration is intended for the study of the unity of 
consciousness, well below the level of logical inference. However, information inte-
gration may play an important role at all levels of cognition, as will be explained 
below. In logic, Tarski’s logical consequence closure operator requires only one de-
fining condition called “finite character”:  

(fC) ∀A⊆S∀x∈S:x∈f(A) ⇒ ∃ B∈Fin(A): x∈f(B), 

where Fin(A) indicates the set of all finite subsets of A.  
The gates for processing information related to topological properties of perceived 

environment are associated with the best known instance of the topological closure 
which satisfies conditions (fA) and (N) above and appropriate separation condition 
such as for instance T

0
, or T

1
.  

More complicated is the situation with constructing a gate processing geometric re-
lations, as the closure spaces studied in the context of geometry are related to specific 
aspects of geometric configurations. The oldest and the best known are closure spaces 
related to projective and affine geometries.  

The starting point to the study of geometric closure spaces is the selection of basic 
properties. It is always assumed that every geometry is defined as a closure space 
<S,f> in which f∈ΝT1(S), which means that the closure of the empty set is the empty 
set, and that the closure of point sets (sets with one element) is the same point set. In 
addition to that two additional conditions, more geometric are assumed. The first is 
the finite character property of Tarski, introduced above to define logical consequence 
operator and the “exchange property” (of Steinitz): 

(wE) ∀A⊆S∀x,y∈S: x∉f(A) & x∈f(Α∪{y}) ⇒  y∈f(A ∪ {x}) 

The agreement regarding the choice of axioms ends here. The formulation of pro-
jective or affine geometries in terms of closure operators splits into a wide range of 
different, sometimes non-equivalent theories.  

A projective geometry is frequently defined by only one additional condition for a 
geometry called the “projective law”: 

(pL) ∀A,B⊆S & A,B≠∅ ⇒  f(A∪B)={f({x,y}): x∈f(A) & y∈f(B)}.  

However, such geometry may have very strange properties contradicting our spa-
tial intuition (e.g. different lines intersecting in more than one point,) so other condi-
tions are sometimes added.  

In geometries defined as closure spaces (f∈NT1fCwE(S)) the additional condition 
making such a structure consistent with our intuition of spatial relations gives a spe-
cial role to the closures of pairs of points (lines):  



 Quantum Coherence without Quantum Mechanics 109 

∀A⊆S: [A=f(A) iff ∀x,y∈A: f({x,y})⊆A]. 

Thus, projective geometries are sometimes defined by the projective law and the 
condition of linearity (above).  

To maintain the usual relationship between projective and affine geometries, the 
definition of the latter includes the usual condition of Euclid’s “fifth postulate”: 

(fP) ∀x,y,z,p,q,r∈S: f({p,q}) ⊆ f({x,y,x}) & r∉f({p,q}) ⇒  

∃t,u∈ f({x,y,x}): t≠u & r∈f({t,u} & f({p,q}∩f({t,u})=∅  

and every other closure of two points satisfying this conditions is identical with 
f({t,u}). 

Also the condition called “strong planarity,” which is satisfied automatically by 
projective geometries, has to be assumed so in order to maintain the relationship be-
tween the two forms of geometry.  Strong planarity adds to the planarity:  

∀A⊆S: [A=f(A) iff ∀x,y,z∈A: f({x,y,x})⊆A] the condition:  

(sP) ∀Α⊆S∀p,q∈S∀r∈f(A): p∈f(A∪{q}) ⇒ ∃s∈f(A): p∈f({q,r,s}.  

This conceptual framework gives complete translation of projective and affine ge-
ometries into the language of closure spaces, but does not allow recovery of all ge-
ometry without going outside of it. All earlier or recent attempts to recover either 
Hilbert’s Axioms of Order or the concept of convexity are referring to external con-
cepts such as for instance concept of orientation.  

Considered as separate structures, convex geometries are defined as closure spaces 
<S,f> such that f∈NT1fC and that f satisfies the “anti-exchange” condition: 

(awE) ∀A⊆S∀x,y∈S: x≠y and x∉f(A) and x∈f(Α∪{y}) ⇒ y∉f(A ∪{x}). 

It is easy to see that the anti-exchange condition is a generalization of the basic prop-
erty of Hilbert’s “betweenness,” which also is related to exchange property. However, 
the connection of such convex geometries with projective and affine geometries on 
one hand, and synthetic geometry on the other is not as simple as could be expected, 
unless we assume some additional strong conditions.  

There is a natural question about properties common for both types of geometries. 
Of course, in both cases we have f∈NT1fC(S). Also, it is obvious that in both cases 
we have: 

(linearity) ∀A⊆S: [A=f(A) iff ∀x,y∈A: f({x,y})⊆A], or at least 

(planarity) ∀A⊆S: [A=f(A) iff ∀x,y,z∈A: f({x,y,x})⊆A]. 

Notice that Hilbert’s Axioms of Connection are related to the first of the conditions 
when f({x,y}) is interpreted as a line, and at the same time his Axioms of Order are 
used to define convexity by using the same condition when f({x,y}) is interpreted as a 
segment.   

Thus, we have two basic forms of closure spaces describing two aspects of spatial 
relations. All former attempts to construct a closure space combining abstract form of 
direction and abstract form of convexity have been going beyond closure space for-
malism making them not suitable for our purpose of looking for the characteristics of 
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the mechanisms integrating information about spatial relations. Also, in either case 
topological properties of point configurations are not considered. The problem of 
closure space formulation of synthetic geometry is still open. Any further work on 
constructing a generalized Venn gate for processing geometric information depends 
on its solution.  

4   Processing of Symbolic Information 

Quantum logics have been used extensively to analyze concept formation and concept 
structures [17]. The relationship between the present work and such an approach to 
cognitive studies is not obvious. In this paper, the study of information integration is 
focused on the issues related to information at the very basic level of the states of the 
environment, their correlates in the brain and the mechanisms which produce phe-
nomenal consciousness. However, it is possible to build the bridge between the two 
levels. In the following a brief outline of a speculative construction is provided. 

Concept formation is quite obviously related to the symbolic character of informa-
tion. The concept of a symbol has been a subject of long philosophical and linguistic 
disputes. From the point of view on information presented above, the symbolic repre-
sentation can be considered a process in which big volume of information is replaced 
in information processing by small one, as a result of the limited capacity of the brain 
mechanisms processing information. It is a well known fact that the brain is “chunk-
ing” information when the number of perceived items exceeds the “magical number 
seven.”  

We can expect that the concept formation is a process in which relatively small 
volume of information (symbol) is used to represent a bigger volume of integrated 
information (meaning). The fact that in our conscious experience objects identified by 
concepts have definite identity suggests that the process of information integration 
similar to that of total conscious experience has place. Further study is necessary to 
find out whether conceptual thinking requires introduction of some form of “superse-
lection rules” disintegrating perceived reality into conceptual components. Another 
possibility would be the parallel existence of two independent levels of integration, 
one of total conscious experience, the other of objects identified by concepts. In any 
case, the quantum properties of concepts identified in the literature of the subject may 
have explanation in the integration of information within concepts.  

5   Conclusion 

The attempts to identify brain mechanisms responsible for integration of information 
carried by neuro-psychologists have been thus far based on the assumption that inte-
gration is reflected by temporal or spatial coincidence of neural activity. However, the 
assumption that such simultaneity or spatial proximity is an indication of integration 
leads to a homunculus fallacy. Therefore, the fundamental question in the study of 
integrative functions of the brain is how to understand integration of information. 
Only after we have a model of information integration or integrated information, we 
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can try to identify the implementation of the mechanism. At present, we simply do not 
know what we are looking for.  

One of promising directions in the study of information integration was directed by 
the assumption that information integration is a result of quantum coherence of some 
regions of the brain. With time, the hope for identification of quantum mechanical 
cognitive processes faded away. However, there is possibility that the unity of con-
sciousness is not achieved by quantum mechanical coherence per se, but can be the 
outcome of a mechanism of similar characteristics as quantum coherence. Since quan-
tum coherence can be identified with irreducibility of quantum logic, this algebraic 
property can be extracted from the quantum mechanical formalism and applied to the 
structure modeling information integration. The structure presented in this paper is 
based on the formalism of closure spaces which in a special case can be identified 
with quantum logic. However, the formalism is much more general and can be used to 
define several structures of special interest in cognitive studies.  
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Abstract. In this paper we explore an extension of the Type Indeter-
minacy model of decision-making to strategic decision-making. A 2 × 2
game is investigated. We first show that in a one-shot simultaneous move
setting the TI-model is equivalent to the standard Bayes-Harsanyi model.
We then let the game be preceded by a cheap-talk promise game. We
show in an example that in the TI-model the promise stage can have
an impact on the next following behavior when the standard Bayes-
Harsanyi model predicts no impact whatsoever. The TI approach differs
from other behavioral approaches in identifying the source of the effect
of cheap-talk promises in the intrinsic indeterminacy of the players’ type.

Keywords: quantum indeterminacy, type, strategic decision-making,
game.

1 Introduction

This paper belongs to a very recent and rapidly growing literature where formal
tools of Quantum Mechanics are proposed to explain a variety of behavioral
anomalies in social sciences and in psychology (see e.g. [1,2,4,5,7,9,10,14,17,18]).

The use of quantum formalism in game theory was initiated by Eisert et al. [8]
who propose that models of quantum games can be used to study how the exten-
sion of classical moves to quantum ones can affect the analysis of a game.1 Another
example is La Mura [16] who investigates correlated equilibria with quantum sig-
nals in classical games. In this paper we introduce some features of an extension of
the Type Indeterminacy (TI) model of decision-making [15] from simple decisions
to strategic decisions. We study, in two different settings, a 2x2 game with options,
to cooperate and to defect and we refer to it as a Prisoner Dilemma, PD2. In the
first setting, the players move simultaneously and the game is played once. In the
second setting, the simultaneous move PD game is preceded by a promise exchange

1 From a game-theoretical point of view the approach consists in changing the strategy
spaces, and thus the interest of the results lies in the appeal of these changes.

2 This is for convenience, as we shall see that the game is not perceived as a true PD
by all possible types of a player.

P. Bruza et al. (Eds.): QI 2009, LNAI 5494, pp. 113–127, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



114 J.R. Busemeyer and A. Lambert-Mogiliansky

game. Our aim is to illustrate how the TI approach can provide an explanation as
to why cheap talk promises matter.3 There exists a substantial literature on cheap
talk communication games. The approach in this paper does not belong to the lit-
erature on communication games. The cheap talk promise exchange stage is used
to illustrate the possible impact of pre-play interaction. Various behavioral theo-
ries have also been proposed to explain the impact of cheap talk promises when
standard theory predicts that there is none. They most often rely on very spe-
cific assumptions amounting to adding ad-hoc elements to the utility function (a
moral cost for breaking promises) or emotional communication [11]. Our approach
provides an explanation relying on a fundamental structure of the model i.e., the
quantum indeterminacy of players’ type. An advantage of our approach is that the
type indeterminacy hypothesis also explains a variety of other so called behavioral
anomalies such as framing effects, cognitive dissonance [15], the disjunction effect
[3] or the inverse fallacy [10].

A main interest with TI-game is that the Type Indeterminacy hypothesis can
modify quite significantly the way we think about games. Indeed, a major impli-
cation of the TI-hypothesis is to extend the field of strategic interactions. This is
because actions impact not only on the payoffs but also on the profile of types,
i.e., on who the players are. In a TI-model, players do not have a deterministic
(exogenously given) type. The types change along the game together with the
chosen actions (which are modelled as measurements of the type). We provide
an example showing that an initially non-cooperative player can be (on average)
turned into a rather cooperative one by confronting him with a tough player in
a cheap talk promise exchange game.

Not surprisingly we find that there exists no distinction in terms of predic-
tions between the standard Bayesian and Type Indeterminacy approaches in
a simultaneous move context. The two models yield distinct predictions under
the following conditions: i. at least one player makes more than one move; ii.
those moves correspond to non-commuting Game Situations4; iii. a first-coming
move separates between ”potential” types that would otherwise interfere in the
determination of the outcome of a next-coming interaction. We show that under
those conditions a move with no informational content or payoff relevance still
impacts on the outcome of the game.

2 A TI-Model of Strategic Decision-Making

2.1 Generals

In the TI-model a simple decision situation is represented by an observable5

called a DS. A decision-maker is represented by his state or type. A type is a
vector |ti〉 in a Hilbert space. The measurement of the observable corresponds

3 Cheap talk promises are promises that can be broken at no cost.
4 A Game Situation is an operator that measures the type of a player, see below.
5 An observable is a linear operator.



An Exploration of Type Indeterminacy in Strategic Decision-Making 115

to the act of choosing. Its outcome, the chosen item, actualizes an eigentype6 of
the observable (or a superposition7 of eigentypes if the measurement is coarse).
It is information about the preferences (type) of the agent. For instance consider
a model where the agent has preferences over sets of three items, i.e. he can
rank any 3 items from the most preferred to the least preferred. Any choice
experiment involving three items is associated with six eigentypes corresponding
to the six possible rankings of the items. If the agent chooses a out of {a, b, c}
his type is projected onto some superposition of the rankings [a > b > c] and
[a > c > b] . The act of choosing is modelled as a measurement of the (preference)
type of the agent and it impacts on the type i.e., it changes it (for a detailed
exposition of the TI-model see [15]). How does this simple scheme change when
we are dealing with strategic decision-making?

We denote by GS (for Game Situation) an observable that measures the type
of an agent in a strategic situation, i.e. in a situation where the outcome of the
choice, in terms of the agent’s utility, depends on the choice of other agents as
well. The interpretation of the outcome of the measurement is that the chosen
action is a best reply against the opponents’ expected action. This interpretation
parallels the one in the simple decision context. There, we interpret the chosen
item as the preferred one in accordance with an underlying assumption of (basic)
rationality i.e., the agent maximizes his utility (i.e., chooses what he prefers). The
notion of revealed preferences and a fortiori of revealed best-reply is problematic
however. A main issue here is that a best reply is a response to an expected play.
When the expected play involves subjective beliefs there may be a problem as to
the measurability of the preferences. This is in particular so if subjective beliefs
are quantum properties.8 But in the context of maximal information games
(which means that the initial types are pure types)we are dealing objective
probabilities so it is warranted to talk about revealed best-reply.

TI-games are game with type indeterminate players, i.e., games characterized
by uncertainty. In particular, players do not know the payoff of other play-
ers. The standard (classical) approach to incomplete information in games is
due to Harsanyi. It amounts to transforming the game into a game of imper-
fect information where Nature moves at the beginning of the game and selects,
for each player, one among a multiplicity of possible types (payoff functions).
A player’s own type is his private information. But in a TI-game the players
may not even know their own payoff. This is true even in TI-game of maxi-
mal information where all players are represented by pure types.9 In this paper
we focus on TI-games of maximal information. Can the Harsanyi approach be
extended to TI-games? We shall argue that the TI-paradigm gives even more
content to Harsanyi’s approach. What is a fictitious Nature’s move in Harsanyi’s

6 The eigentypes are the types associate with the eigenvalues of the observable i.e.,
the possible outcomes of the measurement of the DS.

7 A superposition is a linear combination of the form
∑

λi |ti〉 ;
∑

λ2
i = 1.

8 If subjective beliefs and preferences are quantum properties that do not commute
then they cannot be measured them simultaneously.

9 For a discussion about pure and mixed types (states) see Section 3.2 in [5].
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setting becomes a real move (a measurement) with substantial implications. And
the theoretical multiplicity of types of a player becomes a real multiplicity of
”selves”.

Types and eigentypes
We use the term type to refer to a quantum pure state of a player. A pure
type is maximal information about the player i.e., about his payoff function.10

But because of (intrinsic) indeterminacy, the type is not complete information
about the payoff function in all games simultaneously not even to the player
himself.

In a TI-game we also speak about the eigentypes of any specific game M ,
these are complete information about the payoff functions in a specific static
game M . Any eigentype of a player knows his own M -game payoff function but
he may not know that of the other players. The eigentypes of a TI-game M are
identified with their payoff function in that game.

So we see that while the Harsanyi approach only uses a single concept, i.e., that
of type and it is identified both with the payoff function and with the player. In
any specific TI-game M we must distinguish between the type which is identified
with the player and the eigentype which is identified with the payoff function
in game M . A helpful analogy is with multiple-selves models (see e.g., [19] and
[12]). In multiple-selves models, we are most often dealing with two ”levels of
identity”. These two levels are identified with short-run impulsive selves on the
one side and a long-run ”rational self” on the other side. In our context we have
two levels as well: the level of the player (the type) and the level of the selves
(the eigentypes) which are to be viewed as potential incarnations of the player
in a specific game.11

A central assumption that we make is that the reasoning leading to the de-
termination of the best-reply is performed at the level of the eigentypes of the
game. This key assumption deserves some discussion. What we have in mind is
very much in line with quantum computing. What is happening in the head of a
player is some form of parallel reasoning, all the active (with non-zero coefficient
of superposition) eigentypes perform their own strategic thinking. Another way
to put it is that we assume that the player is able to reason from different per-
spectives. Note that this is not as demanding as it may at first appear. Indeed
we are used in standard game theory to the assumption that players are able to
put themselves ”in the skin” of other players to think out how those will play in
order to be able to best-respond to that.

As in the basic TI-model, the outcome of the act of choosing, here a move,
is information about the (actualized) type of the player. The act of choosing
changes the type from some initial type to the actualized one. We call GO or
Game Operator, a complete collection of (commuting) GS (each defined for
a specific opponent). The outcome of a GO is an eigentype of the game, it
gives information about how a player plays against any possible opponent in a

10 The payoff of a player is a function of all the players’ actions.
11 A superposition is a linear combination of the form

∑
λi |ti〉 ;

∑
λ2

i = 1.
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specific game. Each player is an independent system i.e., there is no entanglement
between players.12

We next investigate an example of a maximal information (see below for
precise definition) two-person game. The objective is to introduce some basic
features of TI-games in a simple context and to illustrate an equivalence and
some distinctions between the Bayesian approach and the TI-approach.

2.2 A Single Interaction

Consider a 2X2 symmetric game, M, and for concreteness we call the two possible
actions cooperate (C) and defect (D) (as in a Prisoner’s Dilemma game but as
we shall see below for certain types, it is a coordination game) and we define the
preference types of game M also called the M-eigentypes as follows:

θ1 : prefers to cooperate whatever he expects the opponent to do;
θ2 : prefers to cooperate if he expects the opponent to cooperate with proba-

bility p > q (for some q ≤ 1) otherwise he prefers to defect;
θ3 : prefers to defect whatever he expects the opponent to do.

An example of these types is in the payoff matrices below where we depict
the row player’s payoff:

θ1 :

⎛⎝ C D
C 10 5
D 0 0

⎞⎠ , θ2 :

⎛⎝ C D
C 10 0
D 6 8

⎞⎠ , θ2 :

⎛⎝ C D
C 0 0
D 10 5

⎞⎠
Note that these types are complete characterization in the sense that they

give the player’s payoff for any action of the opponent.
We shall now proceed to investigate this simultaneous move TI-game. We note

immediately that θ1 and θ3 are non-strategic while θ2 is, i.e., his best-reply will
depend on what he expects the opponent to do. The initial types are generally
not eigentypes of the game under consideration. Let player 1 be described by
the superposition:

|t1〉 = λ1 |θ1〉+ λ2 |θ2〉+ λ3 |θ3〉 ,
∑

λ2
i = 1.13 (1)

We shall first be interested in the optimal play of player 1 when he interacts
with a player 2 of different eigentypes. Suppose he interacts with a player 2
of eigentype θ1. Using the definitions of the eigentypes θi above and (1), we
know by Born’s rule14 that with probability λ2

1 + λ2
2 player 1 plays C (because

θ2’s best-reply to θ1 is C ) and he collapses on the (superposed) type |t′1〉 =
λ1√

λ2
1+λ2

2

|θ1〉+ λ2√
λ2
1+λ2

2

|θ2〉 . With probability λ2
3 he plays D and collapses on the

12 In future research we intend to investigate the possibility of entenglement between
players.

13 As in the original TI-model we use real numbers.
14 The calculus of probability in Quantum Mechanics is done according to Born’s rule

which defines the probability for the different eigentypes is given by the square of
the coefficients of superposition.
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eigentype |θ3〉 . If instead player 1 interacts with a player 2 of type |θ3〉 then with
probability λ2

1 he plays C and collapses on the eigentype |θ1〉 and since |θ2〉′ s
best-reply to |θ3〉 is D, with probability λ2

2 +λ2
3 he plays D and collapses on type

|t”1〉= λ2√
λ2
3+λ2

2

|θ2〉+ λ3√
λ2
3+λ2

2

|θ3〉 .
We note that the probabilities for player 1’s moves depends on the opponent’s

type and corresponding expected play - as usual. More interesting is that, as a
consequence, the resulting type of player 1 also depends on the type of the oppo-
nent. This is because in a TI-model the act of choice is a measurement of the own
type that changes it. We interpret the resulting type as the initial type modified
by the measurement. In a one-shot context, this is just an interpretation since
formally it cannot be distinguished from a classical informational interpretation
where the resulting type captures our revised beliefs about player 1.

We now consider a case when player 2 is indeterminate as well, it is given by

|t2〉 = γ1 |θ1〉+ γ2 |θ2〉+ γ3 |θ3〉 , .
∑

γ2
i = 1. (2)

From the point of view of the eigentypes of a player (the θi), the situation
can be analyzed as a standard situation of incomplete information. We consider
two examples:

Example 1. Let λ2
1 ≥ q, implying that the eigentype type θ2 of player 2 cooper-

ates and let γ2
1 + γ2

2 ≥ q so the eigentype θ2 of player 1 cooperates as well.

Example 2. Let λ2
1 ≥ q so the eigentype θ2 of player 2 cooperates but now let

γ2
1 + γ2

2 < q so here the eigentype θ2 of player 1 prefers to defect.

In Example 1 the types θ1 and θ2 of both players pool to cooperate. So in partic-
ular player 1’s resulting type is a superposition of |θ1〉 and |θ2〉 with probability(
λ2

1 + λ2
2
)

and it is the eigentype |θ3〉 with probability λ2
3. In Example 2, player

1’s type θ2 and θ3 pool to defect so player 1’s resulting type is a superposition
of |θ2〉 and |θ3〉 with probability λ2

2 + λ2
3 and |θ1〉 with probability λ2

1. So we see
again how the resulting type of player 1 varies with the initial (here superposed)
type of his opponent.

When both players play a best reply to each other we have an equilibrium
more precisely:

Definition
A static TI-equilibrium of a game M is

i. A profile of strategies that form a Nash equilibrium15 i.e., such that each
one of the M−eigentypes of each player maximizes his expected utility given the
(superposed) type of his opponent and the strategies played by the opponent’s
eigentypes.

ii. A corresponding profile of expected resulting types, one for each player.

15 A Nash equilibrium is a strategy profile such that each player’s strategy maximizes
his utility given the strategies of the other players.
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For concreteness we shall now solve for the TI-equilibrium of this game in a
numerical example. Suppose the initial types are

|t1〉 =
√

.7 |θ1〉+
√

.2 |θ2〉+
√

.1 |θ3〉 , (3)

|t2〉 =
√

.2 |θ1〉+
√

.6 |θ2〉+
√

.2 |θ3〉 . (4)

Given the payoff matrices above, the threshold probability q that rationalizes
the play of C for the eigentype θ2 is q = .666. For the ease of presentation, we
let q = .7. We know that the θ2 of player 2 cooperates since λ2

1 = .7 ≥ q and so
does the θ2 of player 1 since γ2

1+γ2
2 = .8 > q.

In the TI-equilibrium of this game player 1 plays C with probability .9 and
collapses on |t′1〉 =

√
.7√

.7+.2 |θ1〉+
√

.2√
.7+..2 |θ2〉 and with probability .1 player 1 plays

D and collapses on |θ3〉 . Player 2 plays C with probability .8 and collapses on
|t′2〉 =

√
.4√

.4+.4 |θ1〉+
√

.4√
.4+.4 |θ2〉 and with probability .2, he plays D and collapses

on |θ3〉 .
We note that the mixture actually played by player 1 (.9C, .1D) is not the

best reply of any of his eigentypes. The same holds for player 2. The eigentypes
are the ”real players” and they play pure strategies.

We end this section with a comparison of the TI-game approach with the
standard incomplete information treatment of this game where the square of
the coefficients of superposition in (1) and (2) are interpreted as players’ beliefs
about each other. The sole substantial distinction is that in the Bayes-Harsanyi
setting the players privately learn their own type before playing while in the
TI-model they learn it in the process of playing. A player is thus in the same
informational situation as his opponent with respect to his own play. However
under our assumption that all the reasoning is done by the eigentypes, the clas-
sical approach and the TI-approach are indistinguishable. They yield the same
equilibrium outcome. The distinctions are merely interpretational.

Statement 1
The TI-model of a simultaneous one-move game is equivalent to a Bayes-Harsanyi
model.

A formal proof of Statement 1 can be found in our companion paper ”TI-
game 2”.

This central equivalence result should be seen as an achievement which pro-
vides support for the hypotheses that we make to extend the basic TI-model to
strategic decision-making. Indeed, we do want the non-classical model to deliver
the same outcome in a simultaneous one-move context.16 We next move to a
setting where one of the players is involved in a sequence of moves. This is the
simplest setting in which to introduce the novelty brought about by the type
indeterminacy hypothesis.
16 Indeed we know that quantum indeterminacy cannot be distinguished from incom-

plete information in the case of a single measurement. A simultaneous one-move
game corresponds to two single measurements performed on two non-entangled
systems.
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2.3 A Multi-stage TI-game

In this section we introduce a new interaction involving player 1 and a third
player, a promise game. We assume that the GS representing the promise game
do not commute with the GS representing the game M (described in the previous
section).17 Player 1 and 3 play a promise game where they choose between
either making a non-binding promise to cooperate with each other in game M
or withholding from making such a promise. Our objective is to show that playing
a promise exchange game - with a third player - can increase the probability for
cooperation (decrease the probability for defection) between the player 1 and 2
in a next following game M. Such an impact of cheap-talk promises is related to
experimental evidence reported in Frank (1988).

We shall compare two situations called respectively protocol I and II. In pro-
tocol 1 player 1 and 2 play game M. In protocol II we add a third player, 3, and
we have the following sequence of events:

step 1 Player player 1 and 3 play a promises exchange game N , described
below.

step 2 Player 1 and 2 play M .
step 3 Player 1 and 3 play M .18

The promise exchange game
At step 1, player 1 and 3 have to select one of the two announcements: ”I promise
to play cooperate”, denoted, P, and ”I do not promise to play cooperate” denoted
no − P . The promises are cheap-talk i.e., breaking them in the next following
games has no implications for the payoffs i.e., at step 2 or step 3.

There exists three eigentypes in the promise exchange game:

τ1 : prefers to never make cheap-talk promises - let him be called the ”honest
type”;

τ2 : prefers to make a promise to cooperate if he believes the opponent co-
operates with probability p ≥ q (in which case he cooperates whenever he is of
type θ2 or θ1 or any superposition of the 2). Otherwise he makes no promises -
let him be called the ”sincere type”;

τ3 : prefers to promise that he will cooperate whatever he intends to do - he
can be viewed as the ”opportunistic type”.
Information assumptions
Before moving further to the analysis of the behavior in protocol II we have to
make clear the information that the players have at the different stages of the
game. Specifically we assume that:

i. All players know the statistical correlations (conditional probabilities) be-
tween the eigentypes of the two (non-commuting) games.19

17 To each game we associate a collection of GS each of which measures the best reply
a possible type of the opponent.

18 The reason why we have the interaction at step 3 is essentially to motivate the
promise exchange game. Our main interest will focus on the interaction at step 2.

19 So in particular they can compute the correlation between the plays in the different
games.
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ii. At step 2, player 2 knows that player 1 has interacted with player 3 but he
does not know the outcome of the interaction.

The classical model. We first establish that in the classical setting we have
the same outcome in protocol I and at step 2 of protocol II. We already know
from Statement 1 that the analysis of a TI model of game M is fully equiva-
lent with the classical Bayes-Harsanyi analysis of the corresponding incomplete
information game.

We investigate in turn how the interaction between player 1 and 3 at step 1
affects the incentives and/or the information of player 1 and 2 at step 2. Let
us first consider the case of player 1. In a classical setting, player 1 knows his
own type, so he learns nothing from the promise exchange stage. Moreover the
announcement he makes is not payoff relevant to his interaction with player 2.
So the promise game has no direct implication for his play with player 2. As
to player 2, the question is whether he has reason to update his beliefs about
player 1. Initially he knows |t1〉 from which he derives his beliefs about player
1’s equilibrium play in game M . By our informational assumption (i) he also
knows the statistical correlations between the eigentypes of the two games from
which he can derive the expected play conditional on the choice at the promise
stage. He can write the probability of e.g., the play of D using the conditional
probability formula:

p (D) = p (P ) p (D|P ) + p (no− P ) p (D|no− P ) . (5)

He knows that player 1 interacted with 3 but he does not know the outcome
of the interaction. Therefore he has no new element from which to update his
information about player 1. We conclude that the introduction of the interaction
with player 3 at step 1 leaves the payoffs and the information in the game M
unchanged. Hence, expected behavior at step 2 of protocol II is the same as in
protocol I.

The TI-model. Recall that the GS representing the promise game do not
commute with the GS representing the game M . We now write eq. (1) and (2)
in terms of the eigentypes of game N, i.e., of the promise stage eigentypes:

|t1〉 = λ′
1 |τ1〉+ λ′

2 |τ2〉+ λ′
3 |τ3〉 and |t3〉 = γ′

1 |τ1〉+ γ′
2 |τ2〉+ γ′

3 |τ3〉 .
Each one of the N−eigentype can in turn be expressed in terms of the eigentypes
of game M :

|τ1〉 = δ11 |θ1〉+ δ12 |θ2〉+ δ13 |θ3〉 (6)
|τ2〉 = δ21 |θ1〉+ δ22 |θ2〉+ δ23 |θ3〉
|τ3〉 = δ31 |θ1〉+ δ32 |θ2〉+ δ33 |θ3〉

where the δij are the elements of the basis transformation matrix (see the last
subsection below). Assume that player 3 is (initially) of type θ3 with probability
close to 1, we say he is a ”tough” type. We shall investigate the choice of between
P and no-P of player 1 i.e., the best response of the eigentypes τi of player 1.
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By definition of the τi type, we have that τ1 always plays no-P and τ3 always
play P. Now by assumption, player 3 is of type θ3 who never cooperates. There-
fore, by the definition of τ2, player 1 of type τ2 chooses not to promise to
cooperate, he plays no−P .

This means that at step 1 with probability λ′2
1 +λ′2

2 player 1 plays no−P and
collapses on

∣∣t̂1〉 = λ′
1√

(λ2′
1 +λ2′

2 )
|τ1〉 + λ′

2√
(λ2′

1 +λ2′
2 )
|τ2〉 . With probability λ′2

3 he

collapses on |τ3〉 .
We shall next compare player 1’s propensity to defect in protocol I with that

propensity in protocol II. For simplicity we shall assume the following correla-
tions: δ13 = δ31 = 0, meaning that the honest type τ1, never systematically
defects and that the opportunistic guy τ3 never systematically cooperate.

Player 1’s propensity to defect in protocol I
We shall consider the same numerical example as before i.e., given by (3) and
(4) so in particular we know that θ2 of player 1 cooperates so p (D ||t1〉 ) = λ2

3.
But our objective in this section is to account for the indeterminacy due to the
fact that in protocol I the promise game is not played. We have

|t1〉 = λ′
1 |τ1〉+ λ′

2 |τ2〉+ λ′
3 |τ3〉

and using the formulas in (6) we substitute for the |τi〉
|t1〉 = λ′

1 (δ11 |θ1〉+ δ12 |θ2〉+ δ13 |θ3〉) + λ′
2 (δ21 |θ1〉+ δ22 |θ2〉+ δ23 |θ3〉)

+λ′
3 (δ31 |θ1〉+ δ32 |θ2〉+ δ33 |θ3〉) .

Collecting the terms we obtain

|t1〉 = (λ′
1δ11 + λ′

2δ21 + λ′
3δ31) |θ1〉+ (λ′

1δ12 + λ′
2δ22 + λ′

3δ32) |θ2〉+
(λ′

13δ + λ′
2δ23 + λ′

3δ33) |θ3〉 .
We know from the preceding section that both |θ1〉 and |θ2〉 choose to cooperate
so

p (D ||t1〉 ) = p (|θ3〉 ||t1〉 ) .

Using δ13 = 0, we obtain the probability for player 1’s defection in protocol I:

p (D ||t1〉 )M = (λ′
2δ23 + λ′

3δ33)
2 = λ2′

2 δ2
23 + λ2′

3 δ2
33 + 2λ′

2δ23λ
′
3δ33. (7)

Player 1’s propensity to defect in protocol II
When the promise game is being played, i.e. the measurement N is performed,
we can (as in the classical setting) use the conditional probability formula to
compute the probability for the play of D

p (D ||t1〉 )MN = p (P ) p (D|P ) + p (no− P ) p (D|no− P ) . (8)

Let us consider the first term: p (P ) p (D|P ) . We know that p (P ) = p (|τ3〉) =
λ2′

3 . We are now interested in p (D|P ) or p (D |τ3〉) . |τ3〉 writes as a superposition
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of the θi with θ1 who never defects, θ3 who always defect while θ2’s propensity
to defect depends on what he expects player 2 to do. We cannot take for granted
that player 2 will play in protocol II as he plays in protocol I. Instead we assume
for now that eigentype θ2 of player 2 chooses to cooperate (as in protocol I)
because he expects player 1’s propensity to cooperate to be no less than in
protocol I. We below characterize the case when this expectation is correct. Now
if θ2 of player 2 chooses to cooperate so does θ2 of player 1 and p (D |τ3〉) = δ2

33 so

p (P ) p (D|P ) = λ2′
3 δ2

33

We next consider the second term of (8). The probability for p (no− P ) is(
λ2′

1 + λ2′
2
)

and the type of player 1 changes, he collapses on
∣∣t̂1〉= λ′

1√
(λ2′

1 +λ2′
2 )
|τ1〉+

λ′
2√

(λ2′
1 +λ2′

2 )
|τ2〉. Since we consider a case when θ2 of player 1 cooperates, the

probability for defection of type
∣∣t̂1〉 is

(
λ′
1√

(λ2′
1 +λ2′

2 )

)2

δ2
13 +

(
λ′
2√

(λ2′
1 +λ2′

2 )

)2

δ2
23.

Recalling that δ13 = 0, we obtain that p (no− P ) p (D|no− P ) is equal to

(
λ2′

1 + λ2′
2
)( λ′

2√
(λ2′

1 + λ2′
2 )

)2

δ2
23 = λ2′

2 δ2
23

which gives
p (D ||t1〉 )MN = λ2′

2 δ2
23 + λ2′

3 δ2
33 (9)

Comparing formulas in (7) and (9) :

p (D ||t1〉 )MN − p (D ||t1〉 )M = −2λ′
2δ23λ

′
3δ33 (10)

which can be negative or positive because the interference terms only involves
amplitudes of probability i.e., the square roots of probabilities. The probability
to play defect decreases (and thus the probability for cooperation increases)
when player 1 plays a promise stage whenever 2λ′

2δ23λ
′
3δ33 < 0. In that case the

expectations of player 2 are correct and we have that the θ2 type of both players
cooperate which we assumed in our calculation above.20

Result 1. When player 1 meets a tough player 3 at step 1, the probability for
playing defect in the next following M game is not the same as in the M game
alone, p (D ||t1〉 )M − p (D ||t1〉 )MN 	= 0.

It is interesting to note that p (D ||t1〉 )MN is the same as in the classical case,
it can be obtained from the same conditional probability formula.

In order to better understand our Result 1, we now consider a case when
player 1 meets with a ”soft” player 3, i.e., a θ1 type, at step 1.

20 For the case the best reply of the θ2 types changes with the performence of the
promise game, the comparison between the two protocols is less straightforward.
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The soft player 3 case
In this section we show that if the promise stage is an interaction with a soft
player 3 there is no effect of the promise stage on player 1’s propensity to defect
and thus no effect on the interaction at step 2.

Assume that player 3 is (initially) of type θ1 with probability close to 1. What
is the best reply of the N -eigentypes of player 1, i.e., how do they choose between
P and no-P? By definition we have that τ1 always plays no-P and τ3 always
play P. Now by the assumption we just made player 3 is of type θ1 who always
cooperates so player 1 of type τ2 chooses to promise to cooperate, he plays P .

This means that at t=1 with probability λ′2
1 he collapses on |τ1〉 and with

probability λ′2
2 + λ′2

3 player 1 plays P and collapses on
∣∣t̂1〉 = λ′

2√
λ2′
2 +λ2′

3

|τ2〉 +
λ′
3√

λ2′
2 +λ2′

3

|τ3〉 . We shall compute the probability to defect of that type.21 We first

the type vector
∣∣t̂1〉 in terms of the M -eigentypes,

∣∣t̂1〉 =

(
λ′

2√
λ′2

2 + λ′2
3

)
(δ21 |θ1〉+ δ22 |θ2〉+ δ23 |θ3〉)

+

(
λ′

3√
λ′2

2 + λ′23

)
(δ31 |θ1〉+ δ32 |θ2〉+ δ33 |θ3〉)

As we investigate player 1’s M -eigentypes’ best reply, we again have to make an
assumption about player 2’s expectation. And the assumption we make is that
he believes that player 1’s propensity to defect is unchanged, so as in protocol I
the θ2 of both players cooperate and only θ3 defects. We have

p
(
D
∣∣∣∣t̂1〉)MN

=

[
λ′

2√
λ′2

2 + λ′2
3

δ23 +
λ′

3√
λ′2

2 + λ′2
3

δ33

]2

p
(
D
∣∣∣∣t̂1〉)MN

=
1

λ2′
2 + λ2′

3

[
λ′22δ2

23 + λ′23δ2
33 + 2λ′

2λ
′
3δ23δ33

]
The probability for defection is thus

p (D ||t1〉 )MN = P (τ1) p (D ||τ1〉 ) + P
(
t̂1
)
p
(
D
∣∣∣∣t̂1〉) =

0+
(
λ2′

2 + λ2′
3
) 1

λ2′
2 + λ2′

3

[
λ2′

2 δ2
23 + λ2′

3 δ2
33 + 2λ′

2λ
′
3δ23δ33

]
= λ2′

2 δ2
23+λ2′

3 δ2
33+2λ′

2λ
′
3δ23δ33.

Comparing with eq. (7) of protocol I we see that here

p (D ||t1〉 )M = p (D ||t1〉 )MN

There is NO effect of the promise stage. This is because the interference effects
are still present. We note also that player 2 was correct in his expectation about
player 1’s propensity to defect.
21 Recall that τ1 never defects.
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Result 2. If player 1’s move at step 1 does not separate between the N-eigentypes
that would otherwise interfere in the determination of his play of D at step 2
then p (D ||t1〉 )M = p (D ||t1〉 )MN .

Let us try to provide an intuition for our two results. In the absence of a promise
stage (protocol I) both the sincere and opportunistic type coexist in the mind
of player 1. Both these two types have a positive propensity to defect. When
they coexist they interfere positively(negatively) to reinforce(weaken) player 1’s
propensity to defect. When playing the promise exchange game the two types
may either separate or not. They separate in the case of a tough player 3. Player
1 collapses either on a superposition of the honest and sincere type (and chooses
no-P) or on the opportunistic type (and chooses P). Since the sincere and the
opportunistic types are separated (by the first measurement, game N) there is no
more interference. In the case of a soft player 3 case, the play of the promise game
does not separate the sincere from the opportunistic guy, they both prefer P. As
a consequence the two N eigentypes interfere in the determination of outcome of
the next following M game as they do in protocol I.

In this example we demonstrated that in a TI-model of strategic interaction,
a promise stage does make a difference for players’ behavior in the next following
performance of game M. The promise stage makes a difference because it may
destroy interference effects that are present in protocol I.

Quite remarkably the distinction between the predictions of the classical and
the TI-game only appears in the absence of the play of a promise stage (with a
tough player). Indeed the probability formula that applies in the TI-model for
the case the agent undergoes the promise stage (9) is the same as the conditional
probability formula that applies in the standard classical setting.

A few words about the structure of the example. In the example above
we are dealing with a type space Θ which has six elements. These elements
go in two families corresponding to the two games i.e., M : {θ1, θ2, θ3} and the
promise game, N : {τ1, τ2, τ3} . So for instance the strategic type θ1 is defined
as a mapping from the simplex of the opponent possible types into actions θ1 :
Δ ({θ1, θ2, θ3})→ A where A is the set of actions, A = {C, D}. It is interpreted
as the best reply of player 1 against player 2 in the M game. Similarly τ1 is
defined by a mapping τ1 : Δ ({τ1, τ2, τ3}) → A′, where A′ = {P, no− P} is
interpreted as the best reply of player 1 to player 3 in the promise exchange
game. The corresponding GS are indexed by the type of the opponent.

Our type space is a three dimensional Hilbert space where, {|θ1〉 , |θ2〉 , |θ3〉}
and {|τ1〉 , |τ2〉 , |τ3〉} are two alternative basis. So in contrast with a standard
Harsanyi type space where all types are alternatives (orthogonal) to each other,
here |θ1〉 ⊥ |θ2〉 and |τ1〉 ⊥ |τ2〉 but |θi〉 is not orthogonal to |τi〉 , i = 1, 2, 3.
The two games are incompatible measurements of the type of a player. A basis
transformation matrix links the eigentypes of the two GO M and N :⎛⎝〈τ1| θ1〉 = δ11 〈τ1| θ2〉 = δ12 〈τ1| θ3〉 = δ13

〈τ2| θ1〉 = δ21 〈τ2| θ2〉 = δ22 〈τ2| θ3〉 = δ23
〈τ3| θ1〉 = δ31 〈τ3| θ2〉 = δ32 〈τ3| θ3〉 = δ33

⎞⎠ .
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Since there are three eigentypes and only two actions, two of the eigentypes
must pool in their choice. The corresponding GS are coarse measurements of
the type.

3 Concluding Remarks

In this paper we have explored an extension of the Type Indeterminacy model of
decision-making to strategic decision-making in a maximal information context.
We did that by means of an example of a 2X2 game that we investigate in
two different settings. In the first setting the game is played directly. In the
second setting the game is preceded by a promise exchange game. We first find
that in a one-shot setting the TI-model is equivalent to the standard Bayes-
Harsanyi approach to games of incomplete information. This is no longer true in
the sequential move setting. We give an example of circumstances under which
the predictions of the two models are not the same. We show that the TI-
model can provide an explanation for why a cheap-talk promises matter. The
promise game can separates between types and destroys interference effects that
otherwise contribute to the determination of the propensity to defect in the next
following game.

Last we want to emphasize the very explorative character of this paper. A
companion paper TI-game 2 develops the basic concepts and solutions of TI-
games. We believe that this avenue of research has a rich potential to explain a
variety of puzzles in (sequential) interactive situations and to give new impulses
to game theory.
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Abstract. Inspired by a quantum mechanical formalism to model con-
cepts and their disjunctions and conjunctions, we put forward in this
paper a specific hypothesis. Namely that within human thought two
superposed layers can be distinguished: (i) a layer given form by an un-
derlying classical deterministic process, incorporating essentially logical
thought and its indeterministic version modeled by classical probabil-
ity theory; (ii) a layer given form under influence of the totality of the
surrounding conceptual landscape, where the different concepts figure as
individual entities rather than (logical) combinations of others, with mea-
surable quantities such as ‘typicality’, ‘membership’, ‘representativeness’,
‘similarity’, ‘applicability’, ‘preference’ or ‘utility’ carrying the influences.
We call the process in this second layer ‘quantum conceptual thought’,
which is indeterministic in essence, and contains holistic aspects, but is
equally well, although very differently, organized than logical thought.
A substantial part of the ‘quantum conceptual thought process’ can be
modeled by quantum mechanical probabilistic and mathematical struc-
tures. We consider examples of three specific domains of research where
the effects of the presence of quantum conceptual thought and its de-
viations from classical logical thought have been noticed and studied,
i.e. economics, decision theory, and concept theories and which provide
experimental evidence for our hypothesis.

1 Introduction

We put forward in this paper a specific hypothesis. Namely that in human
thought as a process two specifically structured and superposed layers can be
identified:

(i) A first layer that we call the ‘classical logical’ layer. The thought process
within this layer is given form by an underlying classical logical conceptual pro-
cess [1]. The manifest process itself may be, and generally will be, indeterministic,
but the indeterminism is due to a lack of knowledge about the underlying deter-
ministic classical process. For this reason the process within the classical logical
layer can be modeled by using a classical Kolmogorovian probability description
[2], and eventually, in an idealized form, it could be modeled as a stochastic
process.

P. Bruza et al. (Eds.): QI 2009, LNAI 5494, pp. 128–142, 2009.
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(ii) A second layer that we call the ‘quantum conceptual’ layer. The thought
process within this layer is given form under influence of the totality of the sur-
rounding conceptual landscape, where the different concepts figure as individual
entities, also when they are combinations of other concepts, contrary to how this
is the case in the classical logical layer where combinations of concepts figure
as classical combinations of entities and not as individual entities. In this sense
one can speak of a phenomenon of ‘conceptual emergence’ taking place in this
quantum conceptual layer, certainly so for combinations of concepts. Quantum
conceptual thought has been identified in different domains of knowledge and
science related to different, often as paradoxically conceived, problems in these
domains. The sorts of measurable quantities being able to experimentally identify
quantum conceptual thought have been different in these different domains, de-
pending on which aspect of the conceptual landscape was most obvious or most
important for the identification of the deviation of classically expected values
of these quantities. For example, in a domain of cognitive science where repre-
sentations of concepts are studied, and hence where concepts and combinations
of concepts, and relations of items, exemplars, instances or features with con-
cepts are considered, measurable quantities such as ‘typicality’, ‘membership’,
‘similarity’ and ‘applicability’ have been studied and used to experimentally
put into evidence the deviation of what classically would be expected for the
values of these quantities [3,4,5,6,7,8,9,10,11,12,13]. In decision theory measur-
able quantities such as ‘representativeness’, ‘qualitative likelihood’ ‘similarity’
and ‘resemblance’ have played this role [14,15,16,17,18,19,20,21,22]. In a domain
such as economics one has considered measurable quantities such as ‘preference’,
‘utility’ and ‘presence of ambiguity’ to put into evidence the deviation of classi-
cal values of these quantities [23,24]. The quantum conceptual thought process
is indeterministic in essence, i.e. there is not necessarily an underlying deter-
ministic process independent of the context. Hence, if analyzed deeper with the
aim of finding more deterministic sub processes, unavoidably effects of context
will come into play. Since all concepts of the interconnected web that forms the
landscape of concepts and combinations of them attribute as individual entities
to the influences reigning in this landscape, and more so since this happens dy-
namically in an environment where they are all quantum entangled structurally
speaking, the nature of quantum conceptual thought contains aspects that we
strongly identify as holistic and synthetic. However, the quantum conceptual
thought process is not unorganized or irrational. Quantum conceptual thought
is as firmly structured as classical logical thought but in a very different way.
We believe that the reason why science has hardly uncovered the structure of
quantum conceptual thought is because it has been believed to be intuitive, as-
sociative, irrational, etc... meaning ‘rather unstructured’. As a consequence its
structure has not been sought for consistently since believed to be hardly exis-
tent. An important second hypothesis that we put forward in this paper is that
an idealized version of this quantum conceptual thought process, or a substantial
part of it, can be modeled as a quantum mechanical process. To indicate this
idealization or this part we have called it ‘quantum conceptual thought’. Hence
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we believe that important aspects of the basic structure of quantum conceptual
thought can be uncovered as a consequence of this quantum structure modeling.

The distinction of two modes of thought has been proposed by many and in
many different ways. Already Sigmund Freud in his seminal work ‘The inter-
pretation of dreams’ made the proposal of considering thought as consisting of
two processes, which he called primary and secondary [25], a distinction that
became popularized as conscious and subconscious. Somewhat later William
James introduced the idea of ‘two legs of thought’ where he specified one as
‘conceptual’, being exclusive, static, classical and following the rules of logic,
and the other one as ‘perceptual’, being intuitive and penetrating. He expressed
the opinion that ‘just as we need two legs to walk, we also need both conceptual
and perceptual modes to think’ [26]. Remark that James used the connotation
‘conceptual’ to indicate the classical logical mode, contrary to us using ‘con-
ceptual’ mainly with respect to the quantum structured mode. Jean Piaget, in
his study of child thought, introduced ‘directed or intelligent thought’ which is
conscious and follows the rules of logic and ‘autistic thought’ which is subcon-
scious and not adapted to reality in the sense that it creates a dream world [27].
More recently, Jerome Bruner introduced the ‘paradigmatic mode of thought’,
transcending particularities to achieve systematic categorical cognition where
propositions are linked by logical operators, and the ‘narrative mode thought’,
engaging in sequential, action-oriented, detail-driven thought, where thinking
takes the form of stories and ‘gripping drama’ [28]. One of the authors of the
present article has investigated aspects of different modes of thought and the
influence of their presence on human cognitive evolution [29].

There are some fundamental differences between earlier versions in the liter-
ature of different modes of thought and the hypothesis about different layers of
thought put forward in the present article. First of all, it is the specific mathe-
matical structure of the quantum model, elaborated by one of the authors for the
description of the combination of concepts in [30,31,32], that defines the struc-
tural aspects of the two layers of thought that we put forward in this article
and how they are intertwined. This means that the nature of this double layered
structure follows from a mathematical model for experimental data on the non
classical aspects of thought identified in these different domains. Secondly, and
directly related to the first difference, the double structure that we mention is
a complex quantum entanglement, technically meaning a ‘superposition of two
modes of thought’ rather than an individual or separated or eventually paral-
lel existence. In [30,31,32] this entangled structure is analyzed in great detail,
and it is shown that the presence of the two layers and the specific way they
are entangled follows from the quantum field nature of the model developed
in [31,32]. Also in the following of the present article we put forward some of
these details. We believe that the superposed layers of thought have connections
with the approaches of ‘two modes of thought’ that have been considered in
history [25,26,27,28,29], and are planning to find out more about the details of
such correspondences in future research. Actually we have worked mostly on the
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explanatory power for the specific examples in the different domains that we
mentioned, and the rest of this article will focus on this.

The effects of the presence of quantum conceptual thought are observed in sit-
uations where deviations of classical logical thought are apparent in a systematic
and intersubjective way, i.e. such that the effect can be measured and proven
to be not due to chance and be repeated quantitatively. In sections 2, 3 and 4
we give examples of three specific domains of research where the effects of the
presence of quantum conceptual thought and its deviations from classical logi-
cal thought have been noticed and studied, i.e. economics, decision theory, and
concept theories. In section 5 we illustrate in detail the functioning of the two
modes of thought on the specific example of the ‘disjunction of concepts’, since
it was indeed the quantum modeling of the disjunction of concepts in [30,31,32]
that made us propose the basic hypothesis of the presence of the two superposed
layers of classical logical thought and of quantum conceptual thought within the
human thought process as analyzed in the present article. There is a growing
research activity in applying quantum structures to domains of science such as
economics [33,34,35,36] and psychology and cognition [37,38,39,40,41,30,31,32]
and language and artificial intelligence [42,43,44,45,46,47], and the study of the
two layers of thought put forward in the present article is a contribution to this.

2 Quantum Conceptual Versus Classical Logical Thought
in Economics

Almost seven decades ago, John von Neumann and Oskar Morgenstern founded
a new branch of interdisciplinary research by applying game theory to economics
[48,49]. Expected utility functions are used to model the preferences of rational
agents over different ventures with random prospects, i.e. ‘betting preferences’
over what can be called lotteries. One of the basic principles of the von Neumann-
Morgenstern theory is Savage’s Sure-Thing Principle (STP) [50]. Savage intro-
duced this principle in the following story: A businessman contemplates buying
a certain piece of property. He considers the outcome of the next presidential
election relevant. So, to clarify the matter to himself, he asks whether he would
buy if he knew that the Democratic candidate were going to win, and decides
that he would. Similarly, he considers whether he would buy if he knew that the
Republican candidate were going to win, and again finds that he would. Seeing
that he would buy in either event, he decides that he should buy, even though he
does not know which event obtains, or will obtain, as we would ordinarily say.
This assumption is the independence axiom of expected utility theory: indepen-
dence means that if a person is indifferent between simple lotteries L1 and L2,
the agent is also indifferent between L1 mixed with an arbitrary simple lottery
L3 with probability p and L2 mixed with L3 with the same probability p.

Problems in economics such as Allais paradox [23] and Ellsberg paradox [24]
show an inconsistency with the predictions of the expected utility hypothesis,
namely a violation of the STP. As an illustration we consider the situation
put forward by Daniel Ellsberg [24] which was mostly meant to illustrate the
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so called ‘ambiguity aversion’: persons prefer ‘sure choices’ over ‘choices that
contain ambiguity’. Consider the following hypothetical experiment. Imagine an
urn known to contain 30 red balls and 60 black and yellow balls, the latter in
unknown proportion. One ball is to be drawn at random from the urn. To ‘bet
on Red’ will mean that you will receive a prize a (say $100) if you draw a red ball
(‘if Red occurs’) and a smaller amount b (say, $0) otherwise (‘if not-Red occurs’).
One considers the following 4 actions: (I) ‘a bet on red’, (II) ‘a bet on black’,
(III) ‘a bet on red or yellow’, (IV) ‘a bet on black or yellow’, and the pairs of
gambles (I, II), (III, IV). Ellsberg found that a very frequent pattern of response
is I preferred to II, and IV is preferred to III. Less frequent is: II preferred to
I, and III preferred to IV. Both of these violate the STP, which requires the
ordering of I to II to be preserved in III and IV (since the two pairs differ only
in the pay-off when a yellow ball is drawn, which is constant for each pair). The
first pattern, for example, implies that the subject prefers to bet ‘on’ red rather
than ‘on’ black; and he also prefers to bet ‘against’ red rather than ‘against’
black. This contradiction indicates that preferences of subjects are inconsistent
with the independence axiom of expected-utility theory.

Approaches have been developed, such as for example the ‘info-gap approach’,
where it is supposed that the considered person implicitly formulates ‘info-gap
models’ for the subjectively uncertain probabilities. The person then tries to
satisfy the expected utility and to maximize the robustness against uncertainty
in the imprecise probabilities. This robust-satisfying approach can be developed
explicitly to show that the choices of decision-makers should display precisely
the preference reversal which Ellsberg observed [51].

3 Effects of Quantum Conceptual Thought in Decision
Theory

The situation considered in Ellsberg paradox shows a great similarity to situa-
tions considered in decision theory with respect to what is called the disjunction
effect [52], where also STP is violated, and the conjunction fallacy [16,53]. The
disjunction effect occurs when decision makers prefer option x (versus y) when
knowing that event A occurs and also when knowing that event A does not oc-
cur, but they refuse x (or prefer y) when not knowing whether or not A occurs.
A well-known example of such disjunction effect is the so-called Hawaii problem,
in which following two situations are considered [52]:

1. Disjunctive Version
Imagine that you have just taken a tough qualifying examination. It is the end
of the fall quarter, you feel tired and run-down, and you are not sure that you
passed the exam. In case you failed you have to take the exam again in a couple
of months—after the Christmas holidays. You now have an opportunity to buy a
very attractive 5-day Christmas vacation package to Hawaii at an exceptionally
low price. The special offer expires tomorrow, while the exam grade will not be
available until the following day. Would you:
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x buy the vacation package
y not buy the vacation package
z pay a $5 non-refundable fee in order to retain the rights to buy the vacation
package at the same exceptional price the day after tomorrow—after you find out
whether or not you passed the exam.

2. Pass/Fail Version
Imagine that you have just taken a tough qualifying examination. It is the end of
the fall quarter, you feel tired and run-down, and you find out that you passed the
exam (failed the exam. You will have to take it again in a couple of month—after
the Christmas holidays). You now have an opportunity to buy a very attractive
5-day Christmas vacation package to Hawaii at an exceptionally low price. The
special offer expires tomorrow. Would you:
x buy the vacation package
y not buy the vacation package
z pay a $5 non-refundable fee in order to retain the rights to buy the vacation
package at the same exceptional price the day after tomorrow.

In the Hawaii problem, more than half of the subjects who know the outcome
of the exam (54% in the passed condition and 57% in the fail condition) choose
option x — buy the vacation package, but only 32% do it in the uncertain con-
dition of not knowing the outcome of the exam. This is a crucial demonstration
that Tversky and Shafir produced to show the disjunction effect. Here decision
makers prefer option x (to buy the vacation package) when they are in a certain
condition (passed exam) and they also prefer x when they are not in that condi-
tion (failed exam), but they refuse x (or prefer z) when they don’t know which
condition they are in (they don’t know the outcome of the exam).

Next to the disjunction effect in decision theory an effect called the conjunc-
tion fallacy was identified. This effect occurs when it is assumed that specific
conditions are more probable than a single general one. The most oft-cited exam-
ple of this fallacy originated with Amos Tversky and Daniel Kahneman [16,53]:
Linda is 31 years old, single, outspoken, and very bright. She majored in phi-
losophy. As a student, she was deeply concerned with issues of discrimination
and social justice, and also participated in anti-nuclear demonstrations. Which
is more probable? (1) Linda is a bank teller. (2) Linda is a bank teller and is
active in the feminist movement. 85% of those asked chose option (2). However,
if classical Kolmogorovian probability theory is applied, the probability of two
events occurring together (in ‘conjunction’) will always be less than or equal to
the probability of either one occurring alone.

4 The Guppy Effect in Concept Theories

Situations that can be compared with the foregoing described paradoxes, effects,
fallacies, in economics and decision theory have been studied in the field of
concepts representation. In [3] the concepts Pet and Fish and their conjunction
Pet-Fish are considered, and observed that an item such as Guppy turns out to
be a very typical example of Pet-Fish, while it is neither a very typical example



134 D. Aerts and B. D’Hooghe

of Pet nor of Fish. Hence, the typicality of a specific item with respect to the
conjunction of concepts can behave in an unexpected way. The problem is often
referred to as the ‘pet-fish problem’ and the effect is usually called the ‘guppy
effect’. The guppy effect is abundant and appears almost in every situation where
concepts are combined [3,4,5,6,7,8,9,10,11,12,13].

The guppy effect was not only identified for the typicality of items with re-
spect to concepts and their conjunctions but also for the membership weights
of items with respect to (i) concepts and their conjunction [6], (ii) concepts and
their disjunction [7]. For example, the concepts Home Furnishings and Furniture
and their disjunction Home Furnishings or Furniture was one of the pair of stud-
ied concepts. With respect to this pair, Hampton considered the item Ashtray.
Subjects estimated the membership weight of Ashtray for the concept Home
Furnishings to be 0.3 and the membership weight of the item Ashtray for the
concept Furniture to be 0.7. However, the membership weight of Ashtray with
respect to the disjunction Home Furnishings or Furniture was estimated only
0.25, less than both weights with respect to both concepts apart. This means
that subjects found Ashtray to be ‘less strongly a member of the disjunction
Home Furnishings or Furniture’ than they found it to be a member of the con-
cept Home Furnishings alone or a member of the concept Furniture alone. If one
thinks intuitively of the ‘logical’ meaning of a disjunction, this is an unexpected
result. Indeed, someone who finds that Ashtray belongs to Home Furnishings,
would be expected to also believe that Ashtray belongs to Home Furnishings or
Furniture. Equally so for someone who finds that Ashtray is a piece of Furniture.

This deviation from what one would expect of a standard classical interpre-
tation of the disjunction was called ‘underextension’ in [7]. Although the item
Ashtray with respect to the disjunction of the concepts Home Furnishings and
Furniture shows underextension, and hence the presence of the effect of under-
extension, could be interpreted as due to ‘ambiguity aversion’, also the inverse
effect occurs in many occasions. For example with respect to the pair of con-
cepts Fruits and Vegetables and their disjunction Fruits or Vegetables, for the
item Olive the membership weights with respect to Fruits, Vegetables and Fruits
or Vegetables were respectively 0.5, 0.1 and 0.8. This means that Olive is esti-
mated by subjects to belong ‘more’ to Fruits or Vegetables than to any one of
the concepts apart.

The examples in the different domains of science, economics, decision theory
and concept theories, that we gave in the foregoing sections illustrate the pres-
ence of the two layers of thought which we called the classical logical layer and
the quantum conceptual layer. In the next section we analyze the two layers of
thought in detail on a specific example from the domain of concept theory.

5 Classical Logical and Quantum Conceptual Thought

Let us analyze in detail the structure of the two layers of thought on the specific
example of the ‘disjunction of concepts’. It is indeed the quantum modeling of the
disjunction of concepts as elaborated in [30,31,32], and more specifically in [32],



Classical Logical Versus Quantum Conceptual Thought 135

section 7, that reveals the presence of the two superposed layers of classical logical
thought and of quantum conceptual thought for the situation of the disjunction
of two concepts. We will analyze the two layers in detail here now.

Consider the situation of a subject performing one of the experiments of Hamp-
ton [6,7], and more concretely the subject is estimating the membership weight of
an item X with respect to the disjunction ‘A or B’ of the two concepts A and
B. To make the situation even more concrete, consider as an example the item
Apple with respect to the pair of concepts Fruits and Vegetables and their dis-
junction ‘Fruits or Vegetables ’. A subject might go about more or less as follows:
‘An apple is certainly a fruit, but it is definitely not a vegetable. But hence it is
certainly also a ‘fruit or a vegetable’, since it is a fruit’. This ‘reasoning’ fits into
a classical Boolean scheme [1], indeed if one proposition is true then also the dis-
junction of this proposition with another proposition is true. Of course, in general
the membership weight which is an average over the yes/no attributions by the
individual subjects will not be equal to 1, as it is the case for the items Apple, but
will be between 0 and 1. Consider for example the item Pumpkin with respect to
the same pair of concepts. As has been measured in [7], and also to be found in
Table 1 of [32], the membership weights of this item with respect to the concepts
Fruits, Vegetables and their disjunction Fruits or Vegetables are respectively 0.7,
0.8 and 0.925. We prove in [32], section 2.2, that with these membership weights it
is possible for a deterministic logical underlying process to exist, such that these
weights are the results of the classical Kolmogorovian chance for a specific subject
to choose ‘for’ or ‘against’ membership of the item Pumpkin with respect to the
concepts Fruits, Vegetables and Fruits or Vegetables respectively. This means that
for the thought process that enrolls when a subject is deciding ‘for’ or ‘against’
membership of Pumpkin with respect to the pair of concepts Fruits, Vegetables
and Fruits or Vegetables it is possible to find an underlying process that is deter-
ministic and enrolls following classical logic. The manifest process measured in
[7] can as a consequence be modeled by means of a classical stochastic process,
where the probability, giving rise to the weights, is due to a lack of knowledge of
an underlying deterministic classical logic process.

Let us consider now a third item with respect to the same pair of concepts,
namely the item Olive. In [7] the following weights were measured, 0.5 with re-
spect to Fruits, 0.1 with respect to Vegetables and 0.8 with respect to Fruits or
Vegetables. Hence this is a case called overextension in [7]. We prove in [32], sec-
tion 2.2, that for these weights it is not possible to find a Kolmogorovian repre-
sentation. This means that these weights cannot be obtained by supposing that
subjects reasoned following classical logic and that the weights are the result of a
lack of knowledge about the exact outcomes given by each of the individual sub-
jects. Indeed, if 50% of the subjects has classified the item Olive belonging to
Fruits, and 10% has classified it as belonging to Vegetables than following a clas-
sical reasoning at most 60% of the subjects (corresponding with the set-theoretic
union of two mutually distinct sets of subjects) can classify it as belonging to
Fruits or Vegetables. Hence, this means that these weights arise in a distinct
way. Some individual subjects must have chosen Olive as a member of Fruits
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or Vegetables and ‘not as a member’ of Fruits and also ‘not as a member’ of
Vegetables, otherwise the weights 0.5, 0.1 and 0.8 cannot result. It is here that
the second layer of thought, namely quantum conceptual thought, comes into
play. Concretely this means that for the item Olive the subject does not reason
in a logical way, but rather directly wonders whether Olive is a member or not a
member of Fruits or Vegetables. In this quantum conceptual thought process the
subject considers Fruits or Vegetables as a new concept and not as a classical
logical disjunction of the two concepts Fruits and Vegetables apart. Hence the
subject gets influenced in his or her choice in favor or against membership of
Olive with respect to Fruits or Vegetables by the presence of the new concept
Fruits or Vegetables. This is the reason why we say that within the quantum
conceptual thought process it is the emergence of a new concept, i.e. the con-
cept Fruits or Vegetables within the landscape of existing concepts, i.e. Fruits,
Vegetables and Olive, that gives rise to the deviation of the membership weight
that would be expected following classical logic. And it is the probability to
decide for or against membership that is influenced by the presence of this new
concept within the landscape of existing concepts. Concretely, in this case, the
subject estimates whether Olive is characteristic for the new concept Fruits or
Vegetables, hence whether Olive is one of these items where indeed one can doubt
whether it is a Fruit or a Vegetable. And right so, for Olive this is typically the
case, which is the reason that its weight with respect to Fruits or Vegetables is
big, namely 0.8, as compared to rather small, 0.5 and 0.1 with respect to the
concepts Fruits and Vegetables apart, and most important ‘bigger than the sum
of both’ (0.8 is strictly bigger than 0.5+0.1), which makes a classical explana-
tion impossible, as we prove in [32]. The proof in [32] that the weights for the
item Olive with respect to the pair of concepts Fruits, Vegetables and Fruits
or Vegetables cannot be modeled within a Kolmogorovian probability structure,
has as a consequence that there cannot exist an underlying deterministic process
giving rise to these weights. Hence, it means that the conceptual thought process
that takes place when a subject decides ‘for’ or ‘against’ membership of the item
Olive with respect to the concepts Fruits, Vegetables and Fruits or Vegetables
is intrinsically indeterministic. In [32] we also show that the conceptual thought
process, hence the weights that it produces with respect to the different concep-
tual structures, when different possible decisions are considered, can be modeled
by means of a quantum mechanical probability structure.

6 Experimental Arguments for Quantum Conceptual
Thought

The disjunction effect, one of the effects where following our hypothesis ‘quantum
conceptual thought is present’, can be tested in various experimental settings.
We will show in this section that specific situations that have been investigated
demonstrate the presence of quantum conceptual thought. More concretely, the
experiments that we will describe in this section show that what is crucial to ex-
plain the effects measured is; (i) that the whole and overall conceptual landscape
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is relevant for the situation considered, and; (ii) that the concepts play a role
as individual entity, hence different from what this role would be if they were
just combinations, i.e. disjunctions or conjunctions, of existing concepts. This
is the reason why these experiments show the presence of what we have called
‘quantum conceptual thought’ in the situations typical of the disjunction effect.
This also explains why the often proposed explanation of ‘uncertainty aversion’,
although it can play a role, as long as it fits into the conceptual structure, is not
the main cause of the disjunction effect. Let us clarify this concretely by referring
to the examples of the foregoing section: Olive scores ‘higher’ than classically
expected with respect to Fruits or Vegetables, hence contrary to what the dis-
junction effect would provoke if it were caused by ‘uncertainty aversion’. Hence,
if one would reflect in terms of ‘uncertainty aversion’ as explanation of the dis-
junction effect, it would mean that Olive ‘likes’ uncertainty instead of disliking
it. Of course, what is really at work, as we explained in the foregoing section, is
that Olive is characteristic conceptually for items that are Fruits or Vegetables,
hence Olive indeed ‘likes’ uncertainty in this sense metaphorically speaking. In
the experiments that we consider in the following of this section, we will see
proofs of the fact that it is the overall conceptual landscape that is at the origin
of the effects, and such that ‘concepts influence as individual entities and not as
classical logical combinations of other existing concepts’ which is exactly what
we have called the ‘presence of quantum conceptual thought’.

In [21] Maya Bar-Hillel and Efrat Neter explored the possibility of extending
the conjunction fallacy [53] to a more general extension fallacy, using natural
disjunctive categories and including problems that involve no compound events,
which allowed to check whether the fallacy results from incorrect combination
rules. Students received brief case descriptions and ordered 7 categories according
to the criteria: (a) probability of membership, (b) willingness to bet on member-
ship. Let us give some examples to illustrate the type of test made. A detailed
description of a person is given: Danielle, sensitive and introspective. In high
school she wrote poetry secretly. Did her military service as a teacher. Though
beautiful, she has little social life, since she prefers to spend her time reading
quietly at home rather than partying. The question is: What does she study?
And then the alternatives to choose from are: Literature; Humanities; Physics or
Natural Sciences. The second person considered is: Oded: Did his military service
as a combat pilot. Was a brilliant high school student, whose teachers predicted
for him an academic career. Independent and original, diligent and honest. His
hobbies are shortwave radio and Astronomy. The question is again: What does
he study? The alternatives to choose from are again: Physics; Natural Sciences;
Literature or Humanities.

One of the basic rules of classical probability is violated in all cases tested
in [21]. Let us point out more in detail what happens. Consider the Danielle
case. Following the rules of classical logic, studying Literature implies studying
Humanities. This means that it is ‘always more probable that Danielle studies
Humanities than that Danielle studies Literature’. However, 82% of the sub-
jects indicated Literature and not Humanities as more probable, and 75% of the
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subject preferred to bet on Literature instead of Humanities. This effect is called
a ‘disjunction fallacy’ by the authors. The disjunction fallacy turned out much
less pronounced for the less probable choices. Concretely, 45% of the subjects
indicated Physics and not Natural Sciences as more probable for Danielle, and
27% of the subjects preferred to bet on Physics instead of Natural Sciences. A
very similar and even more pronounced result for the second example of Oded.
Subjects indicated Physics and not Natural Sciences as more probable, and pre-
ferred to bet on Physics instead of Natural Sciences. For the less probable choices
again the effect was less. Other but similar situations were tested and all revealed
the same disjunction fallacy. The results support the view that the disjunction
fallacy in probability judgments is due to representativeness, i.e. the degree of
correspondence between an instance and a concept. Concepts that are ‘more
representative’ are preferred, even if such a choice violates the rules of classical
probability and logic. More specifically, Literature is preferred to Humanities
for Danielle and Physics to Natural Sciences for Oded because as concepts they
represent better their respective personalities. On the contrary, Natural Sciences
is preferred to Physics for Danielle and Humanities is preferred to Literature for
Oded because as concepts both represent less badly their respective personali-
ties. The fact that this inversion of the effect takes place for ‘badly representing
concept’ shows that the effect is not due to some kind of overall preference for
basic concepts, which Literature and Physics are, as compared to superordinate
concepts, which Humanities and Natural Sciences are. Since stimuli used in the
experiments could not be judged by combination rules, these results also go
against claims that probability fallacies ‘stem primarily from the incorrect rules
people use to combine probabilities [20]’. We have mentioned earlier ‘represen-
tativeness’ as one of the measurable quantities that reveals the presence of what
we have called quantum conceptual thought, and this is what we see at play
here. The experiments in [21] show that a concept such as Humanities, although
originally conceived as the disjunction of Languages, Literature, History, Philos-
ophy, Religion, Visual and Performing Arts and Music, ‘does not behave as the
classical logical disjunction of these basic concepts’, exactly analogously with
the non classical logical behavior we have put forward in detail in the forego-
ing section of the present article for the disjunction Fruit or Vegetables of the
two concepts Fruits and Vegetables. Equally so for the concept Natural Sciences,
although originally being the disjunction of Astronomy, Physics, Chemistry, Bi-
ology and Earth Sciences, it does not behave as a concept in the way it should
when simply being the classical logical disjunction of the different natural sci-
ences. The quantum mechanical approach elaborated in [30,31,32] models this
non classical logical behavior.

Another set of experiments related to the disjunction effect was organized by
Maria Bagassi and Laura Macchi [22]. Their aim was to show that the disjunction
effect does not depend on the presence of uncertainty (pass or fail the exam) but
on the introduction into the text-problem of a non-relevant goal. This indicates
in a very explicit way that it is the overall conceptual landscape that gives form
to the disjunction effect. More specifically Bagassi and Macchi point out that,
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option z (‘pay a $5 non-refundable fee in order to retain the rights to buy the va-
cation package at the same exceptional price the day after tomorrow—after you
find out whether or not you passed the exam’) contains an unnecessary goal,
i.e. that one needs to ‘pay to know’, which is independent of the uncertainty
condition. In this sense, their hypothesis is that the choice of option z occurs as
a consequence of the construction of the discourse-problem itself ([22], p. 44).
Four experiments were performed in which various modifications with respect to
option z were considered, ranging from (1) eliminating from the text and option
z any connection between the ‘knowledge of the outcome’ and the ‘decision’;
(2) eliminating option z, limiting the decision to x (‘buy’) or y (‘not buy’); (3)
making option z more attractive; (4) render the procrastination option z more
onerous. The experimental results support the view that the disjunction effect
does not depend on the uncertainty condition itself, but on the insertion of the
misleading goal ‘paying to know’ in the text-problem. Eliminating it (but main-
taining the uncertainty condition) the disjunction effect vanishes (exp. 1 and
2). Also, if choice for z is sensible (exp. 3), most subjects choose it. If option
z is onerous (exp. 4), it is substantially ignored. In this sense, option z is not
a real alternative to x and y, but becomes an additional premise that conveys
information, which changes the decisional context. Hence the crucial factor is
the relevance of the discourse-problem of which z is one element, rather than
certainty versus uncertainty. These results support the view that the disjunc-
tion effect can be realized by applying a suitable decisional context rather than
an uncertain decisional context. If the suitable decision context, or in our ter-
minology ‘specific conceptual landscape surrounding the decision situation’, is
what lies at the origin of the disjunction effect, then this shows that what we
have called ‘quantum conceptual thought’ is taking place during the process that
gives rise to the disjunction effect. Following the experimental results of [22] one
can argument that ‘the specific conceptual landscape surrounding the decision
situation’ plays a principal role in shaping the disjunction effect.

7 Conclusions

Inspired by a quantum mechanical formalism to model concepts and their dis-
junctions and conjunctions, we put forward in this paper a specific hypothesis.
Namely that two superposed layers exist within human thought:

(i) A layer which we call the ‘classical logical layer’, and which is given form
by an underlying classical deterministic process, giving rise to classical logical
thought and its indeterministic manifestation modeled by classical probability
theory. We refer to thought in this layer as ‘classical logical thought’.

(ii) A layer which we call the ‘quantum conceptual layer’, and which is given
form by the influence and structure of the overall conceptual landscape, where
concepts and also all combinations of concepts exercise their influence on an
individual basis. This means that combinations of concepts emerge in this layer
as new individual concepts and not just logical combinations which is what they
are in the classical logical layer. In this quantum conceptual layer the global and
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holistic effects of the overall conceptual landscape can be experimentally detected
by measuring specific quantities that may be different depending on the domain
under consideration, and a substantial part of this layer can be modeled by
quantum mechanical probabilistic structures. The effects of the presence of con-
ceptual thought can be observed in situations where deviations of logical thought
are apparent in a systematic and intersubjective way, i.e. such that the effect
can be measured and proven to be not due to chance and be repeated quantita-
tively. We have considered examples of three specific domains of research where
the effects of the presence of conceptual thought and its deviations from logical
thought have been noticed and studied, i.e. economics, decision theory, and con-
cept theories. In concept theories quantities such as ‘typicality’, ‘membership’,
‘similarity’ and ‘applicability’ can be measured and shown to deviate from what
their values should be if thought would be classical logical. In decision theory this
role is played by quantities such as ‘representativeness’, ‘qualitative likelihood’
‘similarity’ ‘resemblance’, and in economics quantities like ‘preference’, ‘utility’
and ‘presence of ambiguity’ put into evidence the presence of quantum concep-
tual thought by deviating from their classical logical values. We have illustrated
in detail the functioning of the two layers of thought on the specific example of
the ‘disjunction of concepts’, and we analyze two experimental investigations on
the disjunction effect that put into evidence the presence of quantum conceptual
thought with respect to this disjunction effect.
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Abstract. In categorical quantum mechanics, classical structures char-
acterize the classical interfaces of quantum resources on one hand, while
on the other hand giving rise to some quantum phenomena. In the stan-
dard Hilbert space model of quantum theories, classical structures over a
space correspond to its orthonormal bases. In the present paper, we show
that classical structures in the category of relations correspond to direct
sums of abelian groups. Although relations are, of course, not an inter-
esting model of quantum computation, this result has some interesting
computational interpretations. If relations are viewed as denotations of
nondeterministic programs, it uncovers a wide variety of non-standard
quantum structures in this familiar area of classical computation. Iron-
ically, it also opens up a version of what in philosophy of quantum me-
chanics would be called an ontic-epistemic gap, as it provides no interface
to these nonstandard quantum structures.

1 Introduction

Classical structures came to be a useful algebraic tool for analyzing the con-
ceptual foundations of quantum computation [10,7,12]. They characterize the
classical interfaces of quantum resources on one hand, and generate entangle-
ment structures, and other essentially quantum phenomena on the other. In the
standard, Hilbert space model of quantum theories, classical structures over a
space exactly correspond to its orthonormal bases. In nonstandard models, how-
ever, they provide a generic conduit to the classical and the quantum features.

Categorical quantum mechanics, initiated in [2], axiomatizes some basic quan-
tum phenomena in the framework of dagger-compact categories. This remark-
ably rich yet succinct structure has arisen in part from the experience gathered
in semantics of programming languages. The most direct source are probably
Abramsky’s interaction categories [3,25], developed to capture the idea of con-
current programs as relations extended in time. As a consequence, categories of
relations, in all their various flavors arising from various resources [4,5,13,22,23],
provide models of categorical quantum mechanics, albeit degenerate because of
the trivial dagger structure. Nevertheless, the notion of a classical structure over
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relations is well defined. In the present paper, we provide a complete character-
ization of classical structures over relations.1

But what is the relevance and meaning of such a result? Although some re-
lationally based ”toy models” of certain quantum phenomena [27] have awaken
a lot of interest, a category of relations itself is a rather degenerate model of
quantum computation. Its duality and scalar structures in particular seem too
simple to accommodate the complex interactions between the quantum and the
classical phenomena. — It is therefore only more surprising that, even in this
simple framework, classical structures seem to have an interesting story to tell.

Outline of the Paper

In section 2, we summarize the definitions of classical and quantum structures,
recall their basic properties, and describe the standard, and some nonstandard
examples. In section 3, we describe a rich source of nonstandard examples of
classical structures in the category Rel of relations: every Abelian group gives
a nonstandard classical structure. In fact, these are exactly the indecomposable
classical structures. In section 4, we show that every classical structure in Rel
must arise as a direct product of indecomposables. This provides a complete
characterisation of classical structures in Rel. In section 5, we summarize the
meaning of this characterization, and discuss the questions that it raises.

Notation. To describe relations on finite sets, we often find it convenient to use
von Neumann’s representation of ordinals, where 0 = ∅ is the empty set, and
n = {0, 1, . . . , n− 1}. Moreover, the pairs 〈i, j〉 ∈ n× n are often abbreviated to
ij ∈ n× n.

2 Algebras for Abstraction and Duality

We begin by introducing classical structures as the classical interface of quantum
resources. To justify their algebraic content, we delve into a conceptual recon-
struction of their role. A reader only interested in their structure should skip the
next subsection.

2.1 Program Abstraction and Quantum Computation

Abstraction is the essence of programming. The first example of program ab-
straction are probably Gödel’s numberings of primitive recursive functions [14].
Gödel’s construction demonstrated that recursive programs, specifying entire
families of computations (of the values of a function for all its inputs), can be
stored as data. Von Neumann later explicated this as the fundamental principle
of computer architecture. Kleene, on the other side, refined the idea of program

1 Formally, we work with relations within a given universe of sets. Each of the relational
formalisms proposed in the above references will suffice for this.
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abstraction into the fundamental lemma of recursion theory: the s-m-n theo-
rem [16]. Church, finally2 proposed the formal operations of variable abstraction
and data application as the driving force of all computation [6]. This proposal
became the foundation of functional programming.

But what is variable abstraction? What is a variable? We use them so often
that it is sometimes hard to tell. A variable is adjoined to a ring, as an inde-
terminate element, to generate the ring of polynomials. A programmer denotes
by a variable a piece of data that will only be determined when the program
is run. The variable captures all the possible values of this piece of data that
may arise at run time. The operation of abstraction of a variable binds all of its
occurrences (within the declared scope) to the interface where its values will be
read, when given. The operation of application substitutes these values for the
variable.

A variable is thus a tool for propagating as-yet-unknown data through a pro-
gram (or through an algebraic structure, etc). The crucial capability of such a
tool is that it allows the data to be copied wherever they are needed, or deleted
where they are not needed. While the classical computation, as the above early
references show, was built upon this capability as its very foundation — it is a
fundamental property of quantum data that they generally cannot be copied or
deleted [29,11,20,1].

A classical structure formalizes this distinction: its first feature is a comonoid
X ⊗ X

Δ�� X
� �� I, where Δ can be used to copy and � to delete a piece

of data. A datum I
ψ �� X is classical if it can be copied, in the sense that

Δψ = ψ ⊗ ψ, and deleted, in the sense that �ψ = idI . This turns out to be
exactly what is needed to support variable abstraction in monoidal categories. In
the framework of dagger-monoidal categories, the requirement that abstraction
preserves the dagger induces the rest of classical structure [24,21].

2.2 Frobenius Algebras

Framework. Let (C,⊗, I) be a monoidal category. With no loss of generality, we
assume that the tensor is strictly associative and unitary, i.e. that the objects of
C form an ordinary monoid with respect to ⊗ and I. Every monoidal category is
equivalent to one which is strict in this sense. We call the arrows from I vectors,
and write C(X) = C(I, X).

Definition 2.1. The structure of a Frobenius algebra X in C consists of

– an internal monoid X ⊗X
∇ �� X

⊥�� I, and

– an internal comonoid X ⊗X
Δ�� X

� �� I,

2 Although Church’s paper appeared three years earlier than Kleene’s, Church’s pro-
posal is the final step in the conceptual development of function abstraction as the
foundation of computation.
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such that the following diagram commutes

X ⊗X

∇

������������

Δ⊗X

��

X⊗Δ �� X ⊗X ⊗X

∇⊗X

��

X
Δ

������������

X ⊗X ⊗X
X⊗∇

�� X ⊗X

(fro)

A Frobenius algebra (X,∇, Δ,⊥,�) is special if its monoid and comonoid struc-
tures are normalized, in the sense that the diagram

X ⊗X

∇

����
��

��
��

�

X
id

��

Δ

�����������
X

(spe)

also commutes.

Proposition 2.2. In every monoidal category, being a special Frobenius algebra
is a property of the monoid (X,∇,⊥). More precisely, if both (X,∇, Δ1,⊥,�1) and
(X,∇, Δ2,⊥,�2) are special Frobenius algebras, then Δ1 = Δ2 and �1 = �2.

Dually, being a special Frobenius algebra can be viewed as a property of the
comonoid (X, Δ,�).

The monoid part (X,∇,⊥) of a special Frobenius algebra is abelian if and only
if the corresponding comonoid part (X, Δ,�) is.

Much of the power of the Frobenius algebra structure arises from the way in
which it gives rise to dualities.

Duality. A duality in a monoidal category C consists of two objects and two
arrows, written (η, ε) : X � X∗, where

– the copairing I
η �� X∗ ⊗X and

– the pairing X ⊗X∗ ε �� I

are required to satisfy the equations

(ε⊗X)(X ⊗ η) = X (X∗ ⊗ ε)(η ⊗X∗) = X∗

If every object X ∈ C has a chosen dual X∗, then the duality can be extended

to a functor (−)∗ : Cop �� C, which maps A
f �� B to

f∗ : B∗ ηB∗
�� A∗AB∗ AfB∗

�� A∗BB∗ A∗ε �� A∗
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Frobenius algebras and dualities. Every Frobenius algebra X induces

– a pairing ε : X ⊗X
∇ �� X

� �� I, and

– a copairing η : I
⊥ �� X

Δ �� X ⊗X ,

which together make X into a self-dual object, with X∗ = X . Categorically,
this means that X is adjoint to itself at the same time on the left and on the
right, if the monoidal category C is viewed as a bicategory with a single 0-cell.
E.g., if this 0-cell is a category D and C = D

D is the category of endofunctors
F, G . . . : D �� D, with the natural transformations as the arrows between
them, and with the composition playing the role of the tensor F ⊗G = F ◦G,
then

– the monoid F ⊗ F
∇ �� F

⊥�� Id makes the functor F into a monad,

– the comonoid F ⊗ F
Δ�� F

� �� Id makes it into a comonad, and
– condition (fro) makes the pairingε :FF �� Id and copairingη :Id �� F

into an adjunction F � F .

This functorial setting was first described by Lawvere [18], who characterized it
by requiring the commutativity of the following diagrams of natural transforma-
tions

FFF

∇F

��

FF
FΔ�� ΔF ��

∇
��

FFF

F∇
��

FF

ΔF

��

F
⊥F�� F⊥ ��

Δ

��

FF

FΔ

��
FF �F

�� F FF
F�

�� FFF
F∇ �� FF FFF

∇F��

and attached the name of Frobenius to such structures. The equivalent but
simpler condition (fro) first appeared in Carboni and Walters’ work [5], charac-
terizing relations as a cartesian bicategory. The geometric meaning of (fro) in
the category of cobordisms brought the same condition to prominence in the
categorical version of Topological Quantum Field Theory [17]. Finally, its role
in supporting a generic form of abstraction, on which the interface between the
classical and the quantum computation turns out to be based [21], made it into
an important piece in categorical Quantum Mechanics [2,10].

2.3 Classical and Quantum Structures

Framework. Categorical quantum mechanics actually requires a slight extension
of monoidal categories: besides the monoidal structure, the category C should
come equipped with a functor (−)‡ : Cop �� C, which is identity on the objects,
and involutive on the arrows, i.e. satisfying f ‡‡ = f . The arrows u such that
u‡u = id and uu‡ = id are called unitary. All monoidal coherences in a dagger
monoidal category are required to be unitary. In the strict case, this boils down
to the requirement that the symmetries are unitary, since the other coherences
are already identities.
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The abstract structure of a symmetric dagger-monoidal category (C,⊗, I, ‡)
turns out to support the main constructions of quantum mechanics, normally
presented using Hilbert spaces [2,26,10].

Definition 2.3. A special Frobenius algebra (X,∇, Δ,⊥,�) in a symmetric
dagger-monoidal category C is called a classical structure if its monoid and its
comonoid parts are

– adjoint, i.e. ∇ = Δ
‡ and ⊥ = �‡

– abelian, i.e. ∇ ◦ (a⊗ b) = ∇ ◦ (b⊗ a).

Interpretation. In categorical quantum mechanics, classical structures can be
used to distinguish the classical resources from the quantum resources. On one
hand, each classical structure extracts the classical elements. On the other hand,
it supports the entanglement phenomena, implemented through quantum struc-
tures. We now recall these concepts from [10].

Definition 2.4. A quantum structure in a dagger-monoidal category is a pair
(X, η), such that η : I �� X ⊗X and η‡ : X ⊗X �� I make X self-dual,
i.e. (η, η‡) : X � X.

Proposition 2.5. Every classical structure induces a quantum structure, with

the pairing ε : X ⊗X
∇ �� X

� �� I, and the copairing η : I
⊥ �� X

Δ ��

X ⊗X.

Several classical structures may induce the same quantum structure. Some quan-
tum structures do not arise from a classical structure.

Definition 2.1. Classical elements3 for a classical structure X in C are the
arrows ϕ ∈ C(X) such that Δϕ = ϕ⊗ ϕ and �ϕ = idI .

Classical elements are thus just those vectors that can be copied and deleted. On
the other hand, the entanglement capability of quantum structures is obtained
by applying the copying facility of a classical structure to non-classical elements,
such as the monoid unit of the classical structure itself.

2.4 Examples

The trivial example of a classical structure, present in every monoidal category,
is the tensor unit I: the canonical isomorphisms I ⊗ I ∼= I make it into a special
Frobenius algebra. In the categories (FVec,⊗, K) of finitely dimensional vector
spaces and (FHilb,⊗, K) over any field K, a choice of base |0〉, |1〉, . . . |n〉 ∈ X
makes each space X into a classical structure, defined by the linear operators

Δ|i〉 = |ii〉 �|i〉 = 1

3 In the Hopf algebra theory, the elements that satisfy the same conditions are called
set-like.
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In the monoidal category (Rel,×, 1), every object comes with a similar classical
structure

Δ(i) = {ii} �(i) = 0

where ij abbreviates the pair 〈i, j〉 ∈ X × X , and 0 is the unique element of
1. Both of these families of classical structures are induced by the cartesian
structure of the category FSet of finite sets, canonically embedded in FVec and
FRel. We call them standard classical structures. They are characterized and
analyzed in detail in [5]. In [8], it has been shown that all classical structures
in FHilb are standard. Very recently [9], though, Bill Edwards and Bob Coecke

noticed a nonstandard classical structure 2× 2 |��� 2 |� �� 1 over the set 2 =
{0, 1}, defined as follows

�(0) = {00, 11} �(0) = {0}
�(1) = {01, 10} �(1) = 0

Note that both the standard classical structure 2 × 2 |Δ�� 2 |� �� 1 and the

nonstandard classical structure 2× 2 |��� 2 |� �� 1 induce the same quantum

structure 1 |
η �� 2 × 2, relating 0 with 00 and 11. But this turns out to be

an exception. E.g., a little trial and error leads to the following nonstandard

classical structure 3× 3 |��� 3 |� �� 1, where 3 = {0, 1, 2}
�(0) = {00, 12, 21} �(0) = {0}
�(1) = {22, 01, 10} �(1) = 0
�(2) = {11, 02, 20} �(2) = 0

The induced quantum structure 1 |
η �� 3× 3 now relates 0 with 00, 12 and 21,

whereas the standard one relates 0 with 00, 11 and 22. Soon we shall see how
this comes about.

2.5 Representations of Classical Structures

By definition 2.1, classical structures are given as internal algebras. They are
thus defined in any dagger monoidal category C. However, some parts of the
analysis of classical structures is simper with a more concrete representation.

According to proposition 2.2, a classical structure (X,∇, Δ,⊥,�) is completely
determined by the monoid part (X,∇,⊥). This internal monoid can be repre-
sented as a monoid of endomorphisms on X in C, as follows: proceeding as
follows:

– first externalize the internal monoid (X,∇,⊥) in C as an ordinary monoid
of vectors (C(X), ·,⊥), by setting

ϕ · ψ = ∇ ◦ (ϕ⊗ ψ)
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– then represent every vector ϕ ∈ C(X) as an action Υϕ over X , by

Υ : C(X) �� C(X, X)(
I

ϕ→ X
)

� ��
(
X

ϕ⊗X−→ X ⊗X
∇→ X

)
This second step can be viewed either as a generalization of Cayley’s group rep-
resentation to monoids, or as a special case of Yoneda’s embedding of categories.

Proposition 2.6. The monoid (C(X), ·,⊥) is isomorphic with the submonoid
of (C(X, X), ◦, id) which consists of the endomorphisms f : X → X such that
f ◦ (a · x) = (f ◦ a) · x holds for all a, x ∈ C(X).

This allows representing any monoid as a monoid of endomorphisms. But those
monoids that come from a classical structure carry more. As observed in [8],
and further explored in [28], the externalisation of every Frobenius algebra, and
hence every classical structure, is also a 	-algebra. The categorical presentations
[15,28] of the antilinear operation 	 involve the formal duals, as spelled out in
sec. 2.2.

Definition 2.7. An internal 	-monoid in a monoidal category C is a structure
(X, X∗,∇,⊥, 	) where

– (X,∇,⊥) is internal monoid
– X∗ is a dual of X, and
– 	 : X ∼= X∗ is an isomorphism (always unitary).

We write ϕ� = 	 ◦ ϕ ∈ C(X∗) for ϕ ∈ C(X).
A 	-monoid homomorphism f : X �� Y is a monoid homomorphism which

moreover preserves the 	, in the sense that

X∗ f∗ ��

�

��

Y ∗

�

��
X

f
�� Y

commutes.

Proposition 2.8. The monoid (C(X), ·,⊥) induced by a classical structure
(X,∇,⊥) comes with an involution

(−)� : C(X) �� C(X)(
I

ϕ→ X
)

� ��
(

I
η→ X ⊗X

ϕ‡⊗X−→ X

)
This involution is preserved by the representation Υ : C(X) �� C(X, X), in
the sense that Υ (ϕ�) = (Υϕ)‡ holds.
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3 Simple Classical Structures in Rel

In the rest of the paper, we explore and characterize classical structure in a
category Rel of sets and relations. Any of its formalizations (some mentioned
in the Introduction) will do. Computationally, relations are usually viewed as
denotations of nondeterministic programs: a binary relation R : A | �� B is
the input/output relation of a program, which may output b when given an
input a whenever aRb holds [19].

3.1 Meaning of (spe) in Rel

On the other hand, the isometry condition (spe) here means that the relation
∇ : X ×X | �� X is single-valued and surjective on X , i.e.

∀x, y, u, v ∈ X. x, y ∈ ∇(u, v) =⇒ x = y

∀x ∈ X∃uv ∈ X. x = ∇(y, z)

Equivalently, (spe) means that Δ = ∇op : X | �� X ×X injects X into parts of
X ×X and is total on X .

∀x, y ∈ X. Δ(x) ∩ Δ(y) 	= 0 =⇒ x = y

∀x ∈ X. Δ(x) 	= 0

3.2 Meaning of (fro) in Rel

In the monoidal category (Rel,×, 1), the monoid action ∇ : X ×X | �� X is a
relation, which assigns to every pair x, y ∈ X a set ∇(x, y) ⊆ X . The Frobenius
condition (fro) becomes

{〈x, y〉 | ∇(i, j) ∩ ∇(x, y) 	= 0} = {〈x,∇(y′, j)〉 | i ∈ ∇(x, y′)}
= {〈∇(i, x′), y〉 | j ∈ ∇(x′, y)}

This must be satisfied for all i, j ∈ X .

3.3 Meaning of (fro) ∧ (spe) in Rel

Notation. Since ∇(u, v), according to (spe), has at most one element, ∇ is a
partial operation. It is thus convenient to write it in the infix form whenever it
is defined, i.e. u∇v = ∇(u, v) 	= 0.

The condition ∇(i, j) ∩ ∇(x, y) 	= 0 now becomes i∇j = x∇y and i ∈ x∇y
means that i = x∇y. The Frobenius condition thus boils down to

{〈x, y〉 | i∇j = x∇y} = {〈x, y′∇j〉 | i = x∇y′} (1)
= {〈i∇x′, y〉 | j = x′∇y}

This characterisation provides a rich source of classical structures.

Proposition 3.1. Every abelian group (X,∇,⊥) in Set induces a classical struc-
ture in Rel.

Proof. If (X,∇,⊥) is a group, then (1) is satisfied by x′ = j∇y−1 and y′ =
x−1∇i. �
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Remark. The nonstandard classical structures described in section 2.4 are easily
seen to arise from the groups Z2 and Z3.

3.4 Simplicity

In general, an object in a category is said to be simple if it has no nontrivial
subobjects. All classical objects derived from abelian groups, along the lines of
proposition 3.1, turn out to be simple.

Proposition 3.2. A comonoid monomorphism between two classical structures,
induced in Rel by abelian groups, must be either the empty relation, or a group
isomorphism. Such classical structures are thus simple.

Towards an easy proof, note that a relation R : A | �� B is a monomorphism
in Rel if and only if Rop : B | �� A is a partial surjection.

Corollary 3.1. Classical structures induced in Rel by nontrivial4 abelian groups
do not have any classical elements.

4 Classification of Classical Structures in Rel

4.1 �-algebras in Rel

In section 2.5, we saw that every classical structure induces a 	-algebra. In
Rel, this restricts them to a very small family. The decomposition of Frobenius
algebras into simple subalgebras follows.

Proposition 4.1. The representation Υ : X �� Rel(X, X) maps the elements
of any classical structure X in Rel to partial bijections.

Proof. We saw in section 3 that classical structures in Rel are partial monoids,
in the sense that x∇y has at most one element. This means that for every y ∈ X
Υy : X | �� X is a partial map.

Since Υ : X �� Rel(X, X) is a 	-representation, Υ (y‡) = (Υy)op is also a
partial map. But a relation R ∈ Rel(X, X) such that both R and Rop are partial
maps

xRy ∧ xRy′ =⇒ y = y′

xRy ∧ x′Ry =⇒ x = x′

must be a partial bijection. In words, for every x there is at most one y such
that xRy; and for every y there is at most one x such that xRy. �

4 A group is said to be trivial if it has a single element.
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4.2 The Main Results

Proposition 4.2. Every special Frobenius algebra in Rel is a biproduct of special
Frobenius algebras where the unit is a singleton.

Terminology. The biproduct of sets A and B in Rel is simply their disjoint union
A+B. This means that it is at the same time their product, and their coproduct.

Proof of proposition 4.2. Let the unit ⊥ ∈ Rel(X) of the special Frobenius alge-
bra X be ⊥ = {φj}j∈J . We claim that there is a partition

X =
⋃
j∈J

Xj

such that

Xk ∩X� 	= 0 =⇒ k = �

and such that for every j ∈ J the partial bijection Υφj : X | �� X is just the
identity on Xj .

To prove this, note that

– Υ⊥ = idX ,
– Υφj ⊆ Υ⊥
– if a ∈ Xi ∩Xj , then aΥφj = a = aΥφk =⇒ j = k, because aΥ : X | �� X

must also be a partial bijection, as demonstrated in proposition 4.1.

Thus the domains of Υφj must cover X , and they must be disjoint.
Now we claim that (Xj ,∇j ,⊥j) is a submonoid of (X,∇,⊥). This means that

for every x ∈ Xj , the partial bijection Υx : X �� X restricts to a bijection
Υjx : Xj

�� Xj .
Suppose that for x, y ∈ Xj happens that x∇y ∈ Xk. That would mean that

y∇φk must be defined, because x∇y = (x∇y)∇φk = x∇(y∇φk). But then y =
y∇φk ∈ Xk, and we get y ∈ Xj ∩ Xk. We have seen above that this implies
j = k. �

Proposition 4.3. Suppose that (X, Δ,∇,�,⊥) is a classical structure in Rel,
such that the unit ⊥ : 1 �� X is a function, i.e. a single element of X. Then
the monoid (X,∇,⊥) must be an abelian group in Set.

Proof. We first show that the monoid part every classical structure X in Rel must
admit the inverses, as soon as it satisfies the assumptions of the proposition.
More precisely, the claim is that condition (1) from section 3.3, together with
the assumption that the unit is a singleton ⊥ ∈ X , implies that for every k ∈ X
there is k−1 ∈ X such that k∇k−1 = k−1∇k = ⊥.

First consider condition (1) for i = k and j = ⊥. For the pair 〈x, y〉 = 〈⊥, k〉,
the second equation gives x′ ∈ X such that ⊥ = x′∇k. Dually, (1) also holds for
i = ⊥ and j = k. For the pair 〈x, y〉 = 〈k,⊥〉, the first equation gives y′ ∈ X
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such that ⊥ = k∇y′. Since x′ = x′∇⊥ = x′∇(k∇y′) = (x′∇k)∇y′ = ⊥∇y′ = y′, we
can set k−1 = x′ = y′.

To see that (X,∇,⊥) is a group, it remains to be shown that the operation ∇
is total, i.e. that k∇� is defined for all k, � ∈ X . To see that this is the case, note
that in each of the equations � = (k−1∇k)∇� = k−1∇(k∇�), the left-hand side is
defined if and only if the right-hand side is defined. Hence k∇� must be defined.

Since the monoid operation ∇ : X × X �� X is total, and every element
k ∈ X has an inverse k−1, we conclude that (X,∇,⊥) is indeed a group. �

Given an arbitrary classical structure (X, Δ,∇,�,⊥) in Rel, we can now first
apply proposition 4.2 to decompose it as a biproduct

X =
∑
j∈J

Xj

of classical structures (Xj , Δj ,∇j ,�j ,⊥j) where each ⊥j is a singleton. By propo-
sition 4.3, each of these classical structures is a group. Hence the final result:

Theorem 4.4. Every special Frobenius algebra in Rel is a biproduct (disjoint
union) of groups. Every classical structure in Rel is a biproduct of abelian groups.

Using this result, we can now effectively enumerate all classical structures in Rel
with a given number of elements.

4.3 Examples of Classical Structures

Any classical structure over a set of n elements can thus be constructed by
choosing

– a partition n =
∑

j nj , where j ≥ 1,
– an abelian group Xj of order nj for each nj.

For n = 2, there are just two partitions: n = 1 + 1 and n = 2. Since there is just
one group with a single element, and just one group with 2 elements, these two
partitions each determine a unique classical structure. They were described in
section 2.4.

For n = 3, besides n = 1 + 1 + 1 and n = 3, we can also write n = 1 + 2.
The first two partitions give the classical structures described in section 2.4.
The nonstandard one comes from Z3. The third classical structure is the disjoint
union Z1 + Z2.

For n = 4 there are five partitions. It is easy to see the pattern: e.g., n = 2+2
induces the classical structure Z2 +Z2, whereas n = 1+3 induces Z1 +Z3. Since
there are two groups with 4 elements, Z4 and the Kleinian group D4 = Z2×Z2,
the trivial partition n = 4 induces two different classical structures. They both
have the same classical element, consisting of all of n = 4; but they induce
different quantum structures, entangling each element with its group inverse.
Since each element of D4 is its own inverse, its quantum structure coincides
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with the one induced by the standard classical structure Z1 + Z1 + Z1 + Z1. In
any case, there are exactly 6 different classical structures with 4 elements.

For n = 5, there are 7 different partitions, and they induce 8 different classical
structures. E.g., the partition n = 2 + 3 corresponds to the classical structure
Z2 + Z3, with the classical elements {0, 1} and {2, 3, 4}. The quantum structure
is η = {00, 11, 22, 34, 43}.

For n = 6, there are 11 partitions. There are 2 groups with 6 elements, but
only the cyclic one is abelian. . .

In all cases, the classical elements of a classical structure are just the underly-
ing sets of its constituent groups. They do not depend on the actual structure of
the groups. This structure is, however, reflected in the induced quantum struc-
ture, which entangles each element with its group inverse.

5 Conclusions and Future Work

We classified classical structures in Rel, and found that many are nonstandard.

They also induce many nonstandard quantum structures I
η �� X ×X in Rel.

If X is a group, then η entangles each a ∈ X with its inverse a−1. Moreover,
each of the nonstandard classical structures induces a nonstandard abstraction
operator κx, binding the variable x in the polynomial relations ϕ(x) ∈ Rel[x].
For monoidal categories in general, such operations and their meaning were an-
alyzed in [24]. In Rel in particular, the situation seems rather curious. While
the nonstandard classical structures support specifying relational polynomials,
as nondeterministic programs with nonstandard variables — corollary 3.1 says
that there are few classical elements to be substituted for these variables. The
distinctions of the elements belonging to the same group within a nonstandard
classical structure turn out to be classically indistinguishable. However, this in-
distinguishability, observed through a different classical structure, can be used
as a computational resource. Indeed, switching between the different classical
structures in order to use this resource is the essence of some of the most im-
portant quantum algorithms. The interesting structural repercussions of this
method within the relational view of nondeterministic computation need to be
further explored in future work.
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Abstract. Quantum computing is an extremely promising research
combining theoretical and experimental quan tum physics, mathematics,
quantum information theory and computer science. Classical simulation
of quantum computations will cover part of the gap between the theoret-
ical mathematical formulation of quantum mechanics and the realization
of quantum computers. One of the most important problems in “quan-
tum computer science” is the development of new symbolic languages
for quantum computing and the adaptation of existing symbolic lan-
guages for classical computing to quantum algorithms. The present paper
is devoted to the adaptation of the Mathematica symbolic language to
known quantum algorithms and corresponding simulation on the classical
computer. Concretely we shall represent in the Mathematica symbolic
language Simon’s algorithm, the Deutsch-Josza algorithm, Grover’s al-
gorithm, Shor’s algorithm and quantum error-correcting codes. We shall
see that the same framework can be used for all these algorithms. This
framework will contain the characteristic property of the symbolic lan-
guage representation of quantum computing and it will be a straightfor-
ward matter to include this framework in future algorithms.

Keywords: Deutsch-Josza algorithm, Grover’s algorithm, Quantum
computing, Quantum error-correcting, Shor’s algorithm, Simon’s algo-
rithm, Simulation of quantum algorithms.

1 Introduction

In [1] Richard Feynman pointed out that it is totally impossible to efficiently
simulate quantum mechanics on classical computers.1 Consider a system con-
sisting of N quantum particles. According to quantum formalism it is described
by the tensor product HN = H ⊗H ⊗ . . .⊗H of the N copies of the state space
H for a single particle. It is evident that the dimension of HN grows exponen-
tially with N. Feynman’s observation was the first step toward the creation of
quantum computers. Nowadays the main aim of the quantum computing is not
the simulation of quantum mechanical structures, but the execution of quantum
algorithms for solving NP problems in polynomial time.
1 Simulation is efficient if the execute time is in polynomial time.
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A number of quantum algorithms have been developed since David Deutsch
presented the first algorithm [2]. This algorithm determines whether a Boolean
function f : {0, 1} → {0, 1} is balanced or constant2. The Deutsch-Jozsa al-
gorithm [3] is the generalization of Deutsch’s algorithm to a Boolean function
f : {0, 1}n → {0, 1}. The well-known classical algorithm should query the func-
tion more than 2n−1 + 1 times, while the quantum algorithm needs only one
interaction with the oracle which implements the function.

Simon’s algorithm [4,5] is similar to the Deutsch-Jozsa algorithm, but, in-
stead of determining whether the Boolean function is balanced or constant, it
is designed to find the period of a Boolean function f : {0, 1}n → {0, 1}n. A
comparison with the well-known classical algorithm shows that the application
of Simon’s algorithm [4,5] (of course, on a quantum computer) would imply
exponential speedup.

These first quantum algorithms have no direct practical applications. How-
ever, their creation played an important role in quantum computing. It be-
came evident that quantum computers might increase the speed of calculations
tremendously.

Two algorithms with a greater potential for direct implementation to practical
application are Grover’s search algorithm [3] and Shor’s factorization algorithm
[6]. Grover’s algorithm is a quantum search algorithm which searches through an
unsorted list with square roots less queries than the most effective classical algo-
rithm. Shor’s algorithm factorizes integers exponentially faster than any known
classical algorithm. It has obvious applications to cryptography.

At the first stage of quantum computing research expectations of quick
progress dominated in the quantum community. However, it seems that such
high expectations were not totally justified. Numerous foundational and tech-
nological problems such as the decoherence of quantum bits and the instability
of quantum structures with an already sufficiently small number of registers in-
duced doubts about the quick elaboration of really working quantum computers.
Although it could not be denied that great progress had been made in quantum
technologies, it is clear that there is still a huge gap between the creation of toy
quantum computers with 10-15 quantum qubits and satisfying e.g. the technical
conditions of the project announced a few years ago in the Canadian [7]: 100
quantum qubits. It is also evident that difficulties increase nonlinearly with an
increase in the number of registers.

Therefore the simulation of quantum computations on classical computers
became an important part of the quantum computing. Of course, one could not
expect that quantum algorithms would help to solve NP problems for polynomial
time on classical computers. This is not at all the aim of classical simulation,
however. The classical simulation of quantum computations will cover part of
the gap between the theoretical mathematical formulation of quantum mechanics
and the realization of quantum computers. One of the most important problems
in “quantum computer science” is the development of new symbolic languages

2 A Boolean function f : {0, 1}n → {0, 1} is constant if f(x) = 1 or f(x) = 0 for all
inputs x and balanced if f(x) = 1 for half the inputs.
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for quantum computing and the adaptation of existing symbolic languages to
quantum algorithms.

The present paper is devoted to the adaptation of the Mathematica sym-
bolic language to known quantum algorithms and a corresponding simulation
on a classical computer. Concretely we shall represent in the Mathematica sym-
bolic language Simon’s algorithm, Deutsch-Josza’s algorithm, Grover’s algo-
rithm, Shor’s algorithm and quantum error-correcting codes.

We shall see that the same framework can be used for all these algorithms.
This framework will express the characteristic property of the symbolic language
representation of quantum computing. It will be a straightforward matter to
include this framework in future algorithms.

There are great numbers of results in simulations of quantum computing us-
ing wide numbers of classical programming languages to implement quantum
algorithms. These quantum programming languages will together cover a large
field of simulations. Generally, all quantum programming languages may be sepa-
rated into three group’s imperative, functional and other quantum programming
language.

The survey of quantum programming languages by Sofge [8] will give deeper
analysis of the quantum programming languages. One of the first [9] imperative
languages introduced Knill 1996 the QRAM model [10]. Two years later present
Ömer an imperative language the quantum computing language QCL and de-
velop it further [11,12,13]. Bettelli’s, Calarco’s and Serafini’s quantum comput-
ing language [14] is also an imperative language. Both this quantum computing
language written in C++ may be downloading and test in classical computers.
Juliá-Dı́az,Burdis and Tabakin developed imperative languages QDENSITY [15]
using Mathematica which shares some common points with the approach pre-
sented in this article. But still is QDENSITY different from this approach in
many ways and one of the essential different is that this language operators not
are represented as matrices.

The first functional quantum programming languages springs out from the
Lambda-Calculus and the QRAM model [16]. Moreover present Selinger [17]
also a programming language together with Valiron with is based on Valiron’s
Master’s thesis [18]. Altenkirch, and Grattage introduced linear logic functional
quantum programming language QML with contraction [19,20]. They are several
papers using Haskell to investigate quantum language [21,22,23,24,25].

2 Symbolic Language for Simulation

In this paper it will be demonstrated that the Mathematica symbolic language
can be used for all known quantum algorithms. This is a consequence of the re-
alization of all basis laws of quantum mechanics with the help of Mathematica:
the superposition of quantum states, the representation of the state of a com-
posite system in the tensor product of Hilbert spaces describing the states of the
components of the system, Schödinger’s unitary evolution and the measurement
process based on von Neumann’s projection postulate.
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Some blocks of the program code can be shared in all algorithms. The simu-
lation procedure will adhere to the following pattern:

(a) definition (the framework),
(b) the flow through the quantum circuit,
(c) the measurement of a specially chosen observable on the output state.

Thus we start with the formalization in the Mathematica symbolic language
of all basic elements of the mathematical formalism of quantum mechanics which
are used in quantum computing, e.g., qubits. Then we represent the quantum
circuits specific to the algorithm under investigation. At the end of the pro-
gramming of the algorithm we need the symbolic language representation of the
measurement.

Comingback to (a)wepointout that in the symbolic language the representation
corresponding to Dirac’s formalism with bra and ket vectors should be constructed
[26]. After this, superposition and tensor product, etc. are expressed in symbolic
Mathematica notations. Then, by moving to (b) we express quantum gates.

To be more precise, an arbitrary one-qubit quantum state

φ = c1 |0〉+ c2 |1〉
will be implemented as

c1 e[0] + c2 e[1],
where e[j], j = 0, 1, are symbolic Mathematica representations of the basis vec-
tors and cj , j = 0, 1 are complex numbers. An arbitrary one-qubit quantum
operator is symbolized as

U :={ e[0]→ c3 e[0] + c4 e[1], e[1]→ c5 e[0] + c6 e[1]}.
Thus:

U | (c1 e[0] + c2 e[1]) = (c1c3 + c2c5) e[0] + (c1c4 + c2c6) e[1]

3 The Simulation Framework

Let us introduce the part of the program that will be the framework for the simu-
lation of quantum algorithms and error correction. Several well-known quantum
algorithms have been implemented in this framework by the author. We will
point out that there is a symbolic similarity between our framework and the
mathematical foundation of quantum computing. For this reason we will repre-
sent the code by a simple modification of Dirac’s notation. A quantum state in
n dimensions can be represented by a linear combination of n numbers of ba-
sis vectors as { e[0], e[1], . . . , e[n]} = { e[0]⊗n, e[0]⊗n ⊗ e[1], . . . , e[1]⊗n}. In the
two-dimensional case a quantum state |φ〉 is represented as a superposition of
two basis vectors, say |0〉 and |1〉, known as computational basis (computational
basis, see [27,28]). In this basis a quantum state |φ〉 is represented as

|φ〉 = α|0〉+ β|1〉, (1)

where α and β are complex numbers such as |α|2 + |β|2 = 1. We will intro-
duce some new symbols for the states of the computational basis as follows:
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e[0] = |0〉 and e[1] = |1〉. This is the foundation for the structure of the
program code. For more than one qubit we will use the computational basis
states e[x1, . . . , xn] = |x1 . . . xn〉, where xj ∈ {0, 1} or the more compact no-
tation e[y] = |y〉, where y = xn20 + · · · + x12n−1. We will write the state φ
as e[φ] = αe[0] + βe[1], in analogy to (1). The operator A acts on the state
φ and is usually written as A|φ〉 in the quantum mechanical literature. To
match these symbols we will use the computational symbols A|e[φ] for this
operation. One might regard |x1 . . . |y1 . . . ym〉 . . . xn〉 as |x1 . . . y1 . . . ym . . . xn〉
in order to simplify the program code. This will be a computational prob-
lem, since Mathematica will distinguish between e[x1, . . . , e[y1, . . . , ym], . . . , xn]
and e[x1, . . . , y1, . . . , ym, . . . , xn]. The computer must regard these expressions as
equal even if the notations are not identical with each other. As an example the
expression e[0, e[1], 1] must be equal to e[0, 1, 1] in the code. We can bring in the
command e[0, e[1], 1] := e[0, 1, 1] or the more general e[a , e[b ], c ] := e[a, b, c]
to solve this problem. Moreover, the program code must be able to handle the
linearity of the tensor product. Let e[ . ] be vectors and α a complex number. We
define the tensor product as

α(e[v]⊗ e[w]) = (αe[v])⊗ e[w] = e[v]⊗ (αe[w]) (2)
(e[v1] + e[v2])⊗ e[w] = e[v1]⊗ e[w] + e[v2]⊗ e[w] (3)

e[v]⊗ (e[w1] + e[w2]) = e[v]⊗ e[w1] + e[v]⊗ e[w2]. (4)

Two short commands in the program code will implement this definition of the
tensor product. The command

e[a___ ,α_.e[x__],b___]:=αe[a,x,b]

will transform e[a]⊗αe[x]⊗e[c] into αe[a⊗x⊗b] = αe[a, x, b]. This command is the
computational dual to the tensor expression in Dirac’s notation |a〉⊗α|x〉⊗|b〉 =
α|a x b〉. The other command

e[a___ ,ξ_.(α_.e[x__]+β_.e[y__]),b___]:=
ξαe[a,x,b]+ξβe[a,y,b]

will transform e[a] ⊗ ξ(α e[x] + β e[y]) ⊗ e[b] to ξαe[a, x, b] + ξβe[a, y, b]. Let U
be an arbitrary unitary one-qubit quantum gate. Then U will transform a one-
qubit state e[φ], which is represented in the computational basis states as e[φ] =
a e[0]+b e[1], into the state U | e[φ]→ a(c1 e[0]+c2 e[1])+b(c3 e[0]+c4 e[1]), where
a, b, ci are complex numbers. We add the Mathematica gate U to the program
code as follows: U | e[0] → c1 e[0] + c2 e[1] and U | e[1] → c3 e[0] + c4 e[1]. For
example, the Hadamard gate H will be added in Mathematica as the command
H :={ e[0]→ 1/

√
2( e[0] + e[1]), e[1]→ 1/

√
2( e[0]− e[1])}. We will define a one-

qubit gate Oi as an operator which acts on the qubit in position i and leaves
the other qubits unchanged. The program code must be able to operate with a
gate on an arbitrary qubit. Consequently, we will define an operator Oi in the
Mathematica code. Defined the operator Oi as Oi = I⊗i−1 ⊗ U ⊗ I⊗n−i, which
acts on n-qubits where I is the one-qubit unit operator and U is an arbitrary
one-qubit operator. Then operator Oi is a function of Oi| e[v]→ e[ψ]. Similarly,
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we will define Oi,j as an operator which operates as the two-qubit operator
on the qubits in positions i, j and leaves the other qubits unchanged. Now we
have the tools to build the quantum circuit for quantum algorithms and error
correction. The definitions for quantum algorithms using one or two qubits will
be as in following listing 1.1 where we also define Hadamard gate

Listing 1.1. Definition of register and quantum gates in Mathematica

1 e[a___ ,α_.e[x__],b___]:=αe[a,x,b]
2 e[a___ ,ξ_.(α_.e[x__]+β_.e[y__]),b___]:=
3 ξαe[a,x,b]+ξβe[a,y,b]
4 O i |v_:=Chop[Expand[v/.
5 (e[x__]:→ReplacePart[e[x],e[{x}[[i]]]/.O,i])]]
6 O i ,j |v_:=Chop[Expand[v/.O[i,j]]
7 H:={e[0]:→ 1/

√
2(e[0]+e[1]),e[1]:→ 1/

√
2(e[0]-e[1])}

The definitions in listing 1.1 will be used in all simulations in this article and we
will assume this part as executed and omit it from now on. Before introducing
the simulations for the quantum algorithms, let us consider one simple example
of quantum circuit represented in the symbolic language. Defined the Pauli-X
gate in mathematica as

Listing 1.2. Pauli-X gate

1 X:={e[0]:→e[1],e[1]:→e[0]}

In general, one qubit state is represented in the symbolic language as

e[ψ] = α e[0] + β e[1],

where α and β are complex numbers in the way that the sum of squares of their
absolute values is equal to one. Here e[0] and e[1] are representations of Dirac’s
notations in Mathematica. Generalization to the case of multi-qubits is evident.
Let us regard the definitions part as executed as in listings 1.1 and 1.2, then
apply following quantum gates to a state e[00].

Consider the Pauli operator X = |1〉 〈0|+ |0〉 〈1| and the Hadamard operator
H = 1/

√
2(|0〉 〈0|+ |1〉 〈0|+ |0〉 〈1| − |1〉 〈1|) and the quantum circuit

e[0]
H⊗2 ��

���

e[0] X
��

���

↑ ↑ ↑ ↑
e[ψ0] e[ψ1] e[ψ2] e[ψ3]

Fig. 1. A quantum circuit example
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Let the initial state be e[00]. We apply X2, H1 and H2 to the first and second
qubit. Thus the new state will be

H1|H2|X2| e[00] = 1/2 ( e[00]− e[01] + e[10]− e[11])

where we leaving out the parentheses.
This is straightforward in simulation in Mathematica;

In[7] := H1| (H2| (X2| e[0, 0]))

The result is given by

Out[7] :=
1
2
e[0, 0]− 1

2
e[0, 1] +

1
2
e[1, 0]− 1

2
e[1, 1]

where In[7] and Out[7] denote input and output number 7.

4 Simulation of Shor’s Algorithm

Shor’s algorithm contains a part of classical algorithm and the quantum Fourier
transform (QFT). Let us focus on the quantum part. The QFT is a quantum
analogous to the classical discrete Fourier transform. QFT contains the following
quantum gates: Hadamard operator H , Controlled Not operator and Rotation
operator R. The implementation of QFT will follow from the QFT Circuit:

|j1〉 H R2 · · · Rn−1 Rn · · · · · ·
|j2〉 • · · · H R2 · · · Rn−1 · · ·

...
. . . · · · . . . · · · · · ·

|jn−1〉 · · · • · · · · · · H R2

|jn〉 · · · • · · · • H

Fig. 2. The QFT Circuit

where we omit the Controlled Not gates which swap the order of the qubits at
the end of the circuit. This circuit is directly implemented by the code

H1|R1,2| · · · |R1,n−1|R1,n|H2|R2,3| · · · |R2,n−1| · · · |Hn−1|Rn−1,n−2|Hn| e[ψ]

in this simulation language (leaving out the parentheses).

4.1 Mathematica Code for Simulation of Shor’s Algorithm

Let us introduce the Mathematica program code which implements Shor’s algo-
rithm in a classical computer. It is assumed that the reader already has some
familiarity with Shor’s algorithm (see[29,28,27,30]) We will follow the Mathe-
matica program code evolutions and compare this with Shor’s algorithm. The
program will try to find two factors to N , where N is an odd prime factorization
and has at least two different prime factors.
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Listing 1.3. Shor’s Algorithm in Mathematica

1 N=3*5;q=#Log[2,N^2]$;
2 Do[x=Random[Integer ,{2,N -1}];
3 If[GCD[x,N]==1, SecondStep;QFT;OutPrint ,
4 Print[′′Chosen x=′′,x,′′a multiplier of′′,GCD[x,N]],′′.′′;
5 ];,{#(160Log[Log[N]])/9$}]

The algorithm will choose q=
⌈
Log2(N2)

⌉
so that the algorithm will find a

factor with large probability, i.e. if it selects q to satisfy N2 ≤ 2q < 2N2, the
two factors will then be found with a probability of at least 9

160 log log N . The
program will choose a random integer x ∈ {2, 3, · · · , N − 1}.

Listing 1.4. Rotation and Swap gate in Mathematica

1 Rd :={e[1,1]:→ e
πi

2d e[1 ,1]}
2 Swap:={e[i_ , j_]:→e[j, i]}

3 SecondStep:=(Secstep[q_ ,x_ ,N_]:=Expand[ 1√
2q

c=0∑
2q−1

e[

4 Sequence@@IntegerDigits[c,2,q],Sequence@@
5 IntegerDigits[Mod[xc,N],2,q]]];u=Secstep[q_ ,x_ ,N_])

To compute QFT the algorithm requires three gates, Hadamard (H), Rotation
(R) and Swap (Swap), where the Hadamard gate already is defined in listing 1.1.
Secstep calculates xc (mod N) in the second register, where q is the number of
qubits.

Listing 1.5. Quantum Fourier transform

1 QFT:=
(
For[i=1,i≤q,i++,u=H2|u;For[j=i+1,j≤q,j++,

2 u=(R(j−i))i,j|u]];
3 For[i=1,i≤IntegerPart[q/2],i++,u=Swapi,q+1−i|u];
4 OutQFT =(u//.a_.e[y___]+b_.e[y___]:→
5 Together[(a+b)]e[y]);
6 Probability=List@@OutQFT/.α_.e[y___]→
7 {Abs[α]$^2$.,e[y]};
8 Probability=Probability/.{a_,e[y__]}→a;
9 b={ Probability[[1]]};

10 For[i=2,i@$\leq$@Length[Probability],i++,
11 b=AppendTo[b,b[[i -1]]+ Probability[[i]]]];
12 r=Random [];
13 For[i=1,i≤Length[b],i++,
14 If[r≤b[[i]],MeasureQFTStep=i;Break []]];
15 p=(List@@OutQFT/._.e[x__]:→
16 FromDigits[{ Sequence@@Take[{x},q]} ,2])

)
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The QFT will act on the state u by means of the three gates in the following or-
der: Hq(Rq,q−1Hq−1(· · · (Rq,2 · · ·R3,2H2(Rq,1 · · ·R2,1H1 e[u])))). The third line
in the program code will swap the qubits. All terms with identical computa-
tional basis states will be collected in the command OutQFT. Probability is
a list of the probabilities used to measure one of the terms in the register. One
of the terms will be randomly chosen taking into consideration of probability to
measure the state. The position of the chosen term will be saved in Measure-
QFTStep. Finally, the list p of decimal numbers is derived from the binary list
OutQFT.

1 OutPrint:=(CFD:= Denominator[
2 Convergents[p[[MeasureQFTStep]]/2q]];
3 Do[{If[Mod[x^CFD[[i]],N]==1&& EvenQ[CFD[[i]]]&&
4 Mod[x^(CFD[[i]]/2) ,N] 	=N-1,

5 Print[′′Factors a1=′′,GCD[N,xCFD[[i]]/2 + 1],′′

6 and′′,′′a2=′′,GCD[N,xCFD[[i]]/2 + 1],
7

′′ have been found.′′];]} ,{i,1, Length[CFD]}];)

The randomly chosen value in the register is in p[[MeasureQFTStep]]. In CFD
the program saves the denominator of convergents p[[MeasureQFTStep]]/2q.
From this we can select all even denominators, where xCFD ≡ 1 (mod N) and
x

CFD
2 	= N − 1 (mod N). If any of the denominators satisfies these three condi-

tions, it will give us two factors.
The entire simulation is present in [31].

5 Simulation of Deutsch-Jozsa Algorithm

The commission for Deutsch-Jozsa’s algorithm is easy: we need to decide whether
a Boolean function is balanced or constant. Our aim is to make a simulation of
this quantum algorithm in the symbolic language. The definition section contains
one gate and a so-called quantum oracle. A quantum oracle is an operator in a
black box defined as:

Uf |x〉⊗n|y〉 = |x〉⊗n|y ⊕ f(x)〉

Let us give a simplified picture of this task. Bob selects a balanced or constant
Boolean function and Alice’s task is to determine function property. Alice uses a
quantum computer to implement the algorithm by means of the quantum circuit:

|0〉⊗n / H
Uf

H
��

���

|1〉 H

.

Fig. 3. Deutsch-Jozsa algorithm circuit
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Alice prepares the initial state e[0, 0, 0, . . . , 1] and the quantum gate according
to the scheme in the circuit

Hn−1| . . . (H2|(H1|(Uf |(Hn| . . . (H2|(H1| e[0, 0, 0, . . . , 1])))))).

Finally, the measurement is performed. She should apply the oracle once, instead
of using the classical algorithm and query the function at least 2n−1 + 1 times.
The results of this simulation is presented in [32].

5.1 The Deutsch-Jozsa Algorithm in Mathematica

The Deutsch-Jozsa algorithm is implemented as follow. We will begin to define
characteristic properties of quantum computers in the program code.

Listing 1.6. Definition of register and quantum gates in mathematica

1 Uf:={e[i___ ,j_]:→e[i,Mod[j+f[i] ,2]]}
2 Enlarge[ψ_,i_]:=ψ/.ψ->(ψ/.e[x_]:→e[
3 Sequence@@Table[0,{i-1}],x])

The Deutsch- Jozsa algorithm only need to apply the two operators H and
Uf . The last line will enlarge a state of the one qubit e[1] to the n-qubit state
e[0, 0, 0, . . . , 1]. The operators, linearity, superposition and tensor products are
defined in listing 1.1. The implementation of the algorithm will follow from the
listing 1.7.

Listing 1.7. Deutsch-Jozsa algorithm in mathematica

1 q = 8; φ = Enlarge[e[1],q]; Do[φ =
2 (Hi | φ), {i,q}]; φ = Ufq−1,q | φ; φ = φ /. {f[1,
3 x__]:→0,f[0, x__]:→1}; Do[φ =
4 (Hi | φ), {i,q - 1}]; φ

There are certain advantages to compare this listing 1.7 with the circuit in figure
3. By using the command Enlarge on state e[1], defined in line 2, will the register
will be prepared in the q-qubit state e[0, 0, 0, . . . , 1]. At line 3-4 in listing 1.7 the
Hadamard operator and the unitary function are applied on all the qubits in the
register. In line 5 we will be able to choose the function property. In this example
we have chosen a balanced function. The algorithm will output the result when
the Hadamard operator have been applied on the q − 1 first qubits. The output
will contain zeros in q− 1 first qubits if and only if f is constant, otherwise it is
balanced.

6 Simulation of Simon’s Algorithm

The structure of this algorithm is similar to that of Deutsch-Jozsa’s algorithm.
It also contains an oracle. The essential difference is the function given by the
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oracle. Bob selects a periodic function and Alice’s task is to find the period.
Alice prepares the state e[0, 0, . . .], applies the quantum gates and the oracle
and finally, Alice performs the measurement. She continues by restarting the
algorithm until she obtains a sufficient number of values to solve a linear equation
giving the answer.

6.1 Simon’s Algorithm in Mathematica

The Simon’s algorithm is implemented as in Mathematica as following. The
First part of the program code is a framework for simulation of quantum algo-
rithms in Mathematica and this part define characteristic properties of quantum
computers.

Listing 1.8. Definition of quantum gates in mathematica

1 Uf:={e[i___ ,j_]:→e[e[x][[1;;i]],
2 e[Sequence@@Mod[List@@e[x][[i+1;;j]]
3 +f[Sequence@@e[x][[1;;i]]] ,2]]]}
4 Enlarge[ψ_,i_]:=ψ/.ψ->(ψ/.e[x_]:→e[
5 Sequence@@Table[0,{i-1}],x])

For Simon’s algorithm apply the two operators H and Uf. The last line will
enlarge a state of the one qubit e[0] to the n-qubit state e[0]⊗n. The implemen-
tation of the Simon’s algorithm will follow from the listing 1.9.

Listing 1.9. Simon’s algorithm in mathematica

1 q=5;Measure={};
2 While[Length[Union[Measure]]≤q,
3 φ=Enlarge[e[0],q];
4 Do[φ=(Hi | φ),{i,q}];
5 a={1 ,0 ,1 ,1 ,0};
6 f[0,x__]:=Mod[{0,x},2];
7 f[1,x__]:=Mod[{1,x}+a,2];
8 φ=Ufq,2q | φ;
9 Do[φ=(Hi | φ),{i,q}];

10 Probability=
11 List@@Expand[φ/.α_.e[y___]->Abs[α]^2;
12 Table[Probability[[i+1]]=
13 Plus@@Take[Probability ,{i,i+1}],
14 {i,1,Length[φ] -1}];r=Random [];
15 AppendTo[Measure ,Take[φ[[1+ LengthWhile[
16 Probability ,#<r&],2]],{1,q}]];]]
17 Union[Measure]
18

19 Out[11]={e[0,0,0,0,1],e[0,0,1,1,0],e[0,1,0,0,1],
20 e[0,1,1,1,0],e[1,0,1,0,0],e[1,0,1,0,1]}
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Numbers of qubits in the two registers will be selected and an empty list of
measured states creates in the first line. The algorithm iterates with use of a
while loop until it has measured q-number linearly independent states. The
command Enlarge applied on state e[0], defined in line 3, will prepare the two
register in q-qubit states e[0]⊗q. In line 4 the Hadamard operator are applied to
the first register. Take the unknown period a to be {1, 0, 1, 1, 0} in this example.
In this specific example will the function be defined as in line 6 and 7, here
must mention that it is conceivable too explicit defined every function value.
After that the code will apply Uf the both registers where the first register is the
control qubits and the second is targets qubits. Then apply the Hadamard gate
to the first register before measurement. Moreover will a measurement of the
first register means that one state of all the q-qubit states in superposition will
be randomly chosen where the measurement probability is equal to square of the
absolute value of the phase. Consequently, must the simulation of a measurement
depend on the phase. As a first step to make a measurement will line 10 to 14
create a list called Propability, with contains the probability to measure the
states. The algorithm chose a randomly r ∈ [0, 1]. This random r decides which
of the element (state) that will be measured in the list Propability. The end
of the while loop in line 15-16 will measure an element and add it to the list
Measure. Finally line 17 will output all measured elements in the list Measure.
It remains to solve the linear equation to find a, but since it will be done in a
classical computer will we leave this besides. We can easy verify that y · a = 0
for all measured states in the list of output(line 18-19).

7 Simulation of Grover’s Algorithm in Mathematica

Grover’s algorithm is a search algorithm for unsorted lists. This quantum algo-
rithm needs a O(

√
N) query as an alternative to O(N) for the classical algorithm,

where N is the number of elements in the list. Moreover, this algorithm uses an
oracle and, in fact, repeats the query of the oracle (Grover iteration) until the
probability to obtain the searched element approaches max.

We prepare the initial state e[0, 0, 0, . . . , 1], and then apply the Hadamard
gate to all qubits. After this, we repeat the Grover iteration and perform the
measurement. This flow for Grover’s algorithm is given by the following circuit:

e[0]
H⊗2 ��

���

e[0] X
��

���

↑ ↑ ↑ ↑
e[ψ0] e[ψ1] e[ψ2] e[ψ3]

Fig. 4. A quantum circuit example
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7.1 Grover’s Search Algorithm in the Simulation Framework

The Grover’s Search Algorithm algorithm is implemented as in Mathematica as
following. The first part (see the four first code lines in listing 1.1) of the program
code is a framework for simulation of quantum algorithms in Mathematica and
this part define characteristic properties of quantum computers. The follow code
lines in the listing 1.10 defined the operators X, Uf and U0. Notice that it is
straight forward to introduce new gates in this program from the mathematical
representation of gates.

Listing 1.10. Definition of quantum gates in mathematica

1 InitialState[q_]:=e[Sequence@@Table[0,{q}]]
2 X:={e[0]:→e[1],e[1]:→e[0]}
3 Uf[i_ ,j_]:={e[x__]:→e[e[x][[1;;i]],
4 e[Sequence@@Mod[List@@e[x][[i+1;;j]]
5 +f[Sequence@@e[x][[1;;i]]] ,2]]]}
6 U0[i_ ,j_]:={e[x__]:→e[e[x][[1;;i]],
7 e[Sequence@@Mod[List@@e[x][[i+1;;j]]
8 +g[Sequence@@e[x][[1;;i]]] ,2]]]}

Let us choose an example to describe the part of the program which represents
the quantum circuit for Grover algorithm. Assume that we will search for x0 in
a list of 120 element where x0 have four solutions 19, 29, 39, 79 (i.e. M = 4). The
register needs to contain q + 1 numbers of qubits where q = log2(N) = 7 and
N = 128 ≥ 120. In this special case will numbers of iterations be

k = round

(
arccos(

√
4/128)

2 arcsin(
√

4(128− 4)/128)

)
= 4.

In next part the register will be prepared in the initial state e[0]⊗q+1, then
algorithm will follow the circuit in figure 4 and apply the X gate and the other
gates. The last part of the program will simulate a measurement of the register
where probability to measure a basis state depends on its corresponding phase.

Listing 1.11. A search in a list of 120 elements

1 Clear[f,g]
2 q=Length[f[Sequence@@IntegerDigits [120 ,2]]]
3 f[Sequence@@IntegerDigits [79,2,q]]:=1;
4 f[Sequence@@IntegerDigits [39,2,q]]:=1;
5 f[Sequence@@IntegerDigits [19,2,q]]:=1;
6 f[Sequence@@IntegerDigits [29,2,q]]:=1;f[x__]:=0;
7 g[Sequence@@IntegerDigits[0,2,q]]:=1;g[x__]:=0;
8 M=4;N=2^q;
9 K[M_ ,N_]:=
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10 Round[ArcCos[Sqrt[M/N]]/( ArcSin [2Sqrt[M(N-M)]/N])];
11 Φ= InitialState[q+1];
12 Φ=(Hq+1|Φ);
13 Do[Φ=(Hi|Φ),{i,q+1}];
14 Do[Φ=(Ufq,q+1|Φ);
15 Do[Φ=(Hi|Φ),{i,q}];
16 Φ=(U0q,q+1|Φ);
17 Do[Φ=-(Hi|Φ);,{i,q}],
18 {j,K[M,N]}];
19 Φ=(Hq + 1|Φ);
20 Probability=List@@Expand[Φ]/.α_.
21 e[y___]->Abs[α]^2;
22 Table[Probability[[i+1]]= Plus@@Take[Probability ,
23 {i,i+1}] ,{i,1,Length[Φ] -1}];
24 r=Random [];
25 Take[Φ[[1+ LengthWhile[Probability ,#<r&] , -1]]]

8 Simulation of Quantum Error Correcting Code

Error correction will be necessary in quantum computing and quantum informa-
tion. We have also implement Shor code as an example of error corrections code,
this simulation language will be found in [33]. The Shor code is a development
of the classical error correcting code known as majority voting. There are some
great differences between quantum and classical error correcting. Measurements
destroy the quantum states and another problem in quantum computing is con-
tinuous errors. Moreover, it is impossible to clone an arbitrary quantum state. In
classical computing errors indicate that bits have flipped, but continuous errors
in quantum computing indicate that states phases flips or qubits flips or some
combination of this errors. Shor code will overcome these problems in quantum
computing.
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Abstract. I offer an alternative to Searle’s original Chinese Room argu-
ment which I call the Sanskrit Room argument (SRA). SRA distinguishes
between syntactic token and semantic symbol manipulations and shows
that both are involved in human language understanding. Within clas-
sical mechanics, which gives an adequate scientific account of token

manipulation, a symbol remains a subjective construct. I describe how
an objective, quantitative theory of semantic symbols could be developed
by applying the Schrodinger equation directly to macroscopic objects in-
dependent of Born’s rule and hence independent of current statistical
quantum mechanics. Such a macroscopic quantum mechanics opens the
possibility for developing a new theory of computing wherein the Uni-
versal Turing Machine (UTM) performs semantic symbol manipulation
and models macroscopic quantum computing.

Keywords: Artificial Intelligence, Chinese Room Argument, Symbol
Grounding Problem, Sanskrit Room Argument, Quantum theory, Uni-
versal Turing Machine, Topology, Exotic manifolds.

1 Introduction

This paper seeks to relate quantum mechanics to artificial intelligence, human
language, and cognition. It is a position paper, reporting some relevant details
of a long-term research program currently in progress.

In his justly famous Chinese Room Argument (CRA), Searle argued that
“we could not give the capacity to understand Chinese or English [that humans
evidently have] to a machine where the operation of the machine is solely defined
as the instantiation of a computer program.” ([1], p. 422) Searle avoided the need
to positively define ‘human understanding’ by relying on an operator (such as
himself) who does not understand Chinese in any sense. Skipping the details of
this well-known paper, Searle’s main conclusions were as follows:

1. At present, digital computers only perform symbol manipulation.
2. The CRA shows that symbol manipulation alone will never lead the

operator to understand Chinese; thus an equivalent digital computer
cannot be said to understand Chinese.
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3. Hence, the thesis of Strong AI is false. An appropriately programmed
digital computer may be able to simulate human thinking and intelli-
gence, but it cannot be said to literally possess cognitive states.

Searle identifies the Chinese language letters only in terms of their shape,
and refers to them as symbols. But the term “symbol” implies something more.
Henceforth I shall distinguish between syntactic tokens (letters qua shapes) and
semantic symbols (letters qua components of a language, generating meaning).1

Under this terminology, Searle’s argument is that computers, by virtue of
performing token manipulation alone, cannot demonstrate understanding of
Chinese.

I wish to show that the CRA does not preclude in any way a more general
form of the strong-AI thesis, namely that present digital computers can be said
to possess some portion of the abilities constituting human ‘understanding’. To
this end, without much ado, I offer an alternative to the CRA, which I shall call
the “Sanskrit Room argument”.

2 The Sanskrit Room Argument (SRA)

The Sanskrit Room is similar to the Chinese Room in all respects but two. The
language spoken is Sanskrit2, and the person inside (say, myself) understands
Sanskrit. There are now two possibilities:

Scenario 1: I ignore my ability to understand the questions, merely decomposing
the queries into a sequence of shapes. I then string together replies from baskets
containing a good supply of these same shapes, following a hypothetical program.
As with the CRA, let us say that I pass the Turing test in this mode without
difficulty.

Scenario 2: I discard the program, and use my Sanskrit skills to construct an
appropriate response from the store of language symbols. In this case I should
also pass the Turing test.

To an outsider, my behavior is the same in both cases. However, I hold it as
self-evident that I am doing something fundamentally different in each scenario.
In the first, I am mimicking Searle’s operator in the Chinese room (who doesn’t
know the language) and am doing solely token manipulation. In the second, I
understand the input and answer on my own (without reference to the program).

1
Tokens are also referred to in the literature as physical symbols.

2 Although for the purposes of this paper I could simply replace Searle by a native
Chinese speaker, I shift to Sanskrit for a reason. It is a well-discussed topic in the
field of natural language processing (NLP) that Panini’s grammar can generate se-
mantically valid sentences in Sanskrit to an extent that has so far been impossible for
other natural languages [2]. I expect the idea that the individual letters in Sanskrit
carry semantic content, in a manner possibly unique to that language, to become
relevant to the issue at hand in future publications.
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I am therefore manipulating semantic symbols. But I am also doing token ma-
nipulation at the level of physically stringing together letters. Thus, unlike the
CRA, the SRA gives some insight into the nature of human language processing.
It involves both token and symbol manipulation at the level of the subject.

I now turn to a key question: Are there any differences between token and
symbol manipulation at the objective level?

3 Tokens and Classical Physics

I shall assume metaphysical realism to start with, and refer to the external iden-
tity of objects I manipulate as the Kantian things-in-themselves (or things).
From this viewpoint, the terms token and symbol both refer to our subjective
conceptions of the thing. In standard philosophical parlance, tokens and sym-
bols are phenomenal objects given in our experience.

We objectify phenomenal tokens as res extensa in everyday thinking and in
physics. That is, we endow them with an absolute location, mass and derived
extensional attributes such as velocity, acceleration, etc. We believe that there is
an object out there with features that correspond in every detail to our concep-
tion of the phenomenal token. We might call this belief the classical version of
direct realism. Classical direct realism is referred to as naive realism in everyday
thinking, and as correspondence realism in physics.3

Let us refer to the phenomenal token objectified in classical realism as a to-

ken. It is a physical object defined entirely in terms of its primary physical
properties. On this basis, we could say that I am manipulating objective to-

kens in Scenario-1. Classical physics suffices to explain how I can recognize
and manipulate objects qua tokens. The operation of the digital computers is
presently understood in similar classical terms, rendering the computer a token
manipulating system.

From this perspective, any symbol manipulation (and thus ‘understanding’)
attributed to the computer (or, to the human operator in Scenario-1 of SRA)
becomes our interpretation of operations that objectively must be considered
solely syntactic. However, this is more a limitation of our classical point of view
than an intrinsic limitation of the computer (or the human operator). We must
find a way to overcome this limitation, since classical physics itself has been su-
perseded by quantum theory. This paper will propose that present-day comput-
ers can be understood as objectively performing, not just token manipulation

3 It is now recognized that a logical defense of scientific realism is highly problematic,
even with regard to pre-quantum theories. (See reference [[3]] for an easy intro-
duction to the topic.) The underdetermination of theory by data and pessimistic
meta-induction are but two reasons. Nevertheless, physicists maintain a realist view
of their theories based on pragmatic success. Likewise, it has been impossible to
logically justify naive version of direct realism in everyday thinking too. Yet this
viewpoint is embraced by all of us uncritically, again on pragmatic grounds. Physi-
cists too rely on naive realism, at the level of reporting their laboratory observations
using ordinary language.



Quantum Theory and Symbol Grounding 177

but also symbol manipulation, provided we apply the Schrodinger equation to
macroscopic objects in a new manner.4

To develop this proposal further, we need to move toward a direct realist
view of phenomenal symbols in everyday thinking and physics, one which is
complementary to our direct realist view of the phenomenal tokens. That is to
say, just as classical physics and its associated ordinary language-based thinking
link our sense experiences to objective tokens, phenomenal symbols can be
given objective counterparts in a new physics and its associated range of everyday
thinking. I call these objective counterparts symbols. I will now argue that the
quantum formalism, if properly applied to the macroscopic world, can serve as
the basis for a scientific theory of symbols in physics.

4 Symbols and Macroscopic Quantum Mechanics

Quantum theory arose out of the failure of classical physics to give an account
of certain phenomena (blackbody radiation, the photoelectric effect, and atomic
spectra). In statistical quantum mechanics, atomic objects acquire context sen-
sitive properties reminiscent of symbols. This feature suggests that quantum
mechanics, if it can be directly applied to the macroscopic world, could provide
a basis for physically treating phenomenal symbols on a non-classical footing,
i.e. as physical objects other than tokens.

Indeed, Schrodinger’s equation in principle applies to the world of tables and
chairs and measuring devices just as much as it applies to the world of atomic par-
ticles. The modern practice of statistical quantum mechanics (SQM), however,
presupposes the classicality of the everyday world in general, and our measure-
ment devices in particular. Although the quantum mechanical wave function, a
superposed state in the most general case, evolves as per the Schrodinger equa-
tion, Born’s rule is required to link the same function statistically to the classical
observed states of the measuring devices. Trying to extend SQM to obtain a quan-
tum description of the macro world is not just inconsistent but impossible; this is
one way of understanding the famous cat paradox of Schrodinger [5].

Quantum formalism does provide a basis for a physics of macroscopic objects;
it is just that SQM itself is not up to this task. Any successful quantum theory
of the macroscopic world would have to be logically independent of SQM. Let me
refer to this putative theory as macroscopic quantum mechanics (MQM). I shall
now argue that MQM can be our physics of macroscopic objects qua semantic
symbols.

4.1 Against ‘Position’

The central idea behind my vision of MQM is the following. In quantum mechan-
ics, we know that the classical idea of a determinate trajectory is lost. It seems
4 While it is true that present SQM has nothing to offer to neuroscience [see [4]],the

move being outlined here would be of significance to neuroscience, and for our sci-
entific understanding of symbol manipulation at the human level.
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inadvisable and contradictory to think of a quantum object as existing at succes-
sive classical locations in actual observations, while denying it a trajectory. We
would have a better chance of understanding the quantum nature of objects if
we could completely forego interpreting the x-observable in terms of the classical
kinematical notion of position. Ideally, such an approach would recover SQM as
a limiting case.

Why do we infer from a localized click experience that we observe an electron
at a definite position? There are two reasons. One is that that we think of the
electron as causing the click. The other reason is even more fundamental; we think
that our localized observation experience corresponds to a real detector which has
a localized position in the world and which clicked prior to our experience. This
latter notion is a consequence of our interpreting the observation experience in
terms of physical tokens in the real world. A main thrust of my research is that
such an interpretation is not necessary; we could also conceive the real detector
as a physical symbol.

It should be emphasized that renouncing the classical kinematical idea of posi-
tion to interpret the x-observable in a theory about symbols would require deny-
ing an even more visceral assumption: that our localized observation experiences
must be interpreted as occurring at absolute locations in the physical
world.

The reason is, as von Neumann pointed out, our direct sense experiences allow
us to make statements only of the type, ‘an observer has made a certain (subjec-
tive) observation’; never any like ‘a physical quantity has a certain value’ [6]. Thus,
there are generally three stages in the full development of a physical
theory.5

1. Design and conduct an experiment, then report the observations qua
our sense experiences using ordinary language.

2. Develop a theory along with its mathematical formalism that can ver-
ifiably predict these sense experiences.

3. Describe the physical content of the formalism, if possible, using ordi-
nary language words (and associated space-time pictures).

Ordinary language (OL) is invoked by physicists in stages 1 and 3. If the use of
OL creates serious problems in visualizing the physical content of a theory (stage-
3), as is the case with quantum mechanics, one can choose to discuss the physical
content of the theory in entirely abstract, mathematical terms. This is arguably
the preferred mode of thinking amongst quantum physicists [7].

We thus have a choice to invoke OL or not in stage-3. However, the use of OL
in stage 1 is mandatory and unavoidable.

Thus, the renunciation of position at the formal level within quantum theory
would require macroscopic objects to be identified, repeatedly observed and re-
ported using OL in a manner that does not involve their absolute locations in
stage-1. This is not a whimsical suggestion. Consider the case of a spin- 1

2 particle
being made to interact with a macroscopic apparatus in such a way that a meter
5 The first two stages can be interchanged.
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points to either +1 or –1 according to the particle’s observable eigenstate |↑〉 or
|↓〉. If SQM is extended to describe the joint electron + meter system, we obtain
the following quantum state, |J〉,prior to observation:

|J〉 =
1√
2

[|↑〉|+〉 + |↓〉|−〉]

Even according to the standard textbook interpretation, SQM formally rules
out the possibility that the macroscopic pointer has a determinate location prior
to and independent of an observation carried out on the joint state |J〉.

4.2 Symbol as a Relational Object

Clearly, to recover macroscopic realism, we need a different conception of the
macroscopic world which does not involve absolute location. Ideally, this concep-
tion should be complementary to the token-based view which has provided SQM
with much pragmatic success. To this end, I have argued elsewhere [5] that we al-
ready maintain two mutually exclusive conceptions of macroscopic entities in OL
and everyday thinking: generic tokens and specific kinds. The haecceity of a to-

ken is operationally defined in terms of an absolute location at any given time,
which any other object can occupy at a subsequent instant in time. Thus token

is a universal class to which all things belong.
Stone, paperweight, doorstop and weapon, on the other hand, are ex-

amples of kinds that correspond to the same token. Clearly, any token can
be classified under many different kinds; but no one kind can apply to all
tokens.

What is the difference between a token and a symbol at the physical level?
Where a token ultimately derives all its properties from its constituent matter,
a kind does not. A piece of wood and a piece of stone can both be paperweights.
There is at least one well-known kind that we can immediately connect to quan-
tum theory: the ‘blackbody’. A blackbody is of course a classical mechanical
object (a token), but it also has a distinctive observable property (its emission
spectrum) that is independent of its constituent classical matter. Quantum me-
chanics, the theory which accounts for this emission spectrum, therefore ought
to be taken as already treating the blackbody as a symbol. However, SQM ef-
fectively models the blackbody as a token because all the states of measuring
devices that interact with the blackbody are still interpreted classically (i.e., in-
volving absolute locations). The theory of MQM aims to reverse this course by
re-interpreting our sensory observations in relation to the state of macroscopic
devices qua symbols.

What would such a theory look like? A token is defined primarily in terms
of the absolute position it occupies. A kind’s identity, on the other hand, can
only be defined in terms of external referents. Thus, an object qua kind consists
essentially of relational properties. A kind then is a relational object.

Although kinds are generally identified by their relation to a conscious sub-
ject, this need not be always the case; a symbol is a particular kind defined
essentially by virtue of its properties in relation to another object. In other
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words, a symbol is defined in terms of a physical relation.6 For this reason, I
believe that symbols can be naturalized and dealt with scientifically. I envision
MQM as the theory of a particular set of kinds called symbols, which are to be
defined in terms of objective relational properties that describe their kinematics
as well as their dynamic interactions with other symbols.

5 Digital Computers as Semantic Symbol Manipulating
Systems

I have already noted that digital computers are seen as performing classical
computation. There is a fast developing alternative field known as quantum
computation, which is based on SQM. However, within its framework, a quan-
tum computer would have to be built from scratch using qubits. The design
and production of such a computer is not yet commercially feasible. There are
extreme practical difficulties in producing qubits that can be isolated from the
environment at room temperature.

Could the existing digital computer be re-interpreted as functioning according
to quantum mechanical principles without delving into SQM? An affirmative
response would clearly be of immense value, both theoretically and practically.
One might think this task impossible, since digital computers were designed and
developed without considering the quantum aspects of electronic chips. It would
seem more reasonable to develop quantum computers from scratch by building
qubits based on quantum physical principles, as is being currently attempted.

However, I believe it is equally reasonable to try to give current digital com-
puters two complementary (i.e. mutually exclusive) treatments: one based on the
classical theory of computing, and another based on MQM. An example of com-
plementary classical and quantum treatments given to the same physical system
can be found in optical polarizers. Consider a 45-degree polarized light incident
on an HV polarizer. Classically, the polarizer is understood as splitting the inci-
dent light into two equal parts that pass through both channels simultaneously.
After quantum theory was developed, the same polarizers received a second and
more fundamental treatment in terms of individual photons. Individual photons
are said to pass randomly through one or the other channel. These two ways of
speaking about the functioning of the polarizer are complementary, or mutually
exclusive. Similarly, if we are trying to understand token manipulation, the clas-
sical theory of computing is sufficient. To understand how a digital computer
can perform symbol manipulation, we shall have to invoke a quantum theory of
computing which I expect will be based on MQM.

6 In this regard, it is useful to note that Bohr differed from the Copenhagenists by
holding that the wave function describes the quantum system and the macroscopic
measuring device simultaneously, as a joint system. Feyerabend and Jammer have
pointed out that this idea implies that quantum mechanical observables correspond
to irreducible relations, not primary properties that acquire definite values just at
the point of measurement [8].
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What would a theory of computing based on MQM entail? The basic opera-
tions of an Universal Turing Machine (UTM) involve motion: a tape sliding in
either direction, a print head being raised or lowered onto the tape. Currently
we treat these basic operations in terms of classical mechanics. Our notion that
the UTM is carrying out computation is simply our interpretation of purely
mechanical or token-manipulating operations (as Searle and other opponents of
strong-AI rightly argue). This argument retains its force at the level of digital
computers, where the mechanical motions of the UTM are replaced by mechan-
ical motions of electrons.

Thus, to defend the strong-AI thesis, we need to go past the classical mechan-
ical view of the basic operations of the UTM.

Now, the Schrodinger equation is a non-classical equation of motion. Yet when
this equation is applied to the phenomenon of electron motion via SQM, we con-
tinue to invoke the classical kinematical notions of position and momentum. This
has led to deep, abiding conceptual problems in reconciling quantum dynamics
at the formal level with the very word “motion” as we understand it in everyday
thinking. We therefore cannot expect SQM to provide a non-classical theory of
motion at the macroscopic level.

I have suggested that a macroscopic quantum theory (MQM) can be developed
which would renounce the idea of absolute position (and hence classical motion)
starting from the level of observation itself. If successful, such an MQM would
form a suitable basis for interpreting the basic operations of the UTM in terms
of a quantum theory of macroscopic objects qua symbols.

This is the potential connection I see between MQM and a quantum theory of
computation. There are two complementary ways of thinking about macroscopic
motion: one (token manipulation) clearly related to classical physics and the
other (symbol manipulation) related to MQM.

6 Macroscopic Quantum Mechanics - The Road Ahead

We are now in a position to outline in broad strokes the stages by which I
envision such an MQM could be developed more fully.

1. Develop a range of ordinary language (OL)-based thinking that can serve
as the foundation for objective, physical notions of macroscopic objects as
symbols. To this end I have elsewhere developed a detailed set of argu-
ments distinguishing between the P-mode of OL (statements that describe
our sense experiences) and R-mode of OL (statements that describe a real-
world situation underlying our sense experiences) [9]. Most pertinently, given
the same P-mode statement, there will be one R-mode statement relating to
the usual token view of the real macroscopic world and a separate R-mode
statement relating to the symbol view. In related work I have introduced
the idea of “relational properties”, which occupy a middle ground between
primary and secondary properties [10].
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2. Use these notions to develop an alternative range of kinematical proper-
ties corresponding to the quantum observables. I expect this step to in-
volve the notion of objective semantic information, which I have yet to
publish.

3. Develop a mathematical framework for MQM based on the aforementioned
quantum kinematical concepts. Here, I am considering a line of attack involv-
ing “exotic manifolds” from 4-dimensional topology [11]. Exotic manifolds
feature alternate smoothness, and thus contain room for developing an al-
ternative calculus. This could permit the Schrodinger equation to provide
a quantum mechanical description of the observed (i.e., the phenomenal)
motion of macroscopic objects qua symbols that does not reduce to that
of classical physics. Instead of interpreting our observation experiences as
objective physical events in the standard 4-dimensional space-time, the idea
is to try and interpret the same observation experiences as objective physical
events in an alternative exotic 4-dimensional space-time.

Clearly, the development of MQM is a long-term program. Further details of
this ongoing research must await future publications.

7 Conclusion

The human ability to ‘understand’ has many facets: self-awareness, specific men-
tal capacities, intentionality, physical organs to sense the world and manipu-
late objects, etc. Among these myriad aspects, this paper has argued that our
ability to work with the objects of the world consists of at least two comple-
mentary physical processes: syntactic token manipulation and semantic symbol
manipulation.

The CRA is a negative argument. It demonstrates that token manipulation
alone cannot lead to human ‘understanding’, but does not provide any insight
into what such understanding actually involves. Thus, we cannot check to see
whether digital computers possess this capability. The SRA, on the other hand,
is a positive argument. It shows that at a minimum, human understanding
requires symbol manipulation in addition to token manipulation. This argu-
ment shifts the focus of the strong-AI project to finding a way to naturalize
symbols.

In this regard, I have tried to offer a well-posed practical motivation for de-
veloping a macroscopic version of quantum mechanics. Such a theory would
physically characterize macroscopic objects in terms of their relational prop-
erties, as symbols with semantic content. MQM would open up the possi-
bility for an alternative quantum theory of the UTM allowing even present
computers to be seen as performing symbol manipulation and thus demon-
strating human-like understanding to a limited extent. This is different from
the current approach to developing quantum computers from scratch, based on
SQM.
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Abstract. For many years, social scientists have struggled to make sense of the 
shift between individual and group perception, the difference between observa-
tion and action, and the meaning of interdependence. Interactions between these 
factors produce stable worldviews that contain more illusory than actual con-
nections to reality. We attribute these struggles to scientists embedded in the 
social fabric, the lack of a measurement theory, and the difficulty of testing new 
theory with human subjects, groups and organizations. Our work includes field 
research with observations of citizen organizations advising the Department of 
Energy (DOE) on its environmental cleanup; laboratory simulations of DOE 
field results; stock market data; and computational modeling (coupled differen-
tial equations, control theory, AI, Gaussian distributions, uncertainty models, 
Fourier transform pairs, continuous and discrete wavelets). Results from labora-
tory experiments and stock markets agree with our theory, but many questions 
remain, forming a high-risk research plan. Our objective is to incorporate inter-
dependent uncertainty into computational intelligence to better instantiate 
autonomy or decentralized control for mixed human-machine systems.  

Keywords: interdependence, uncertainty, observation-action conjugation, 
quantum model, autonomous systems, social interaction. 

1   Introduction 

Two obstacles confront researchers modeling the dynamics of behavior in homogenous 
or heterogeneous (mixed) groups and organizations composed of humans, machines or 
robots: human agent observations, known as self-reports, and interdependent uncertain-
ties in social interaction.  We have known for some time that observing human workers 
affects their performance — the Hawthorne effect (Roethlisberger & Dickson, 1939).  
And we know that collecting data directly from humans changes their responses (Car-
ley, 2002).  To overcome these obstacles to model mixed systems of human and virtual 
agents or robots requires a theory encompassing these effects under uncertainty, 
which we consider high-risk research. 
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1.1   Measurement 

Individuals. The primary obstacle to a successful computational model and applica-
tion of social interdependence for human and agent-based models (ABMs) has been 
the reliance by researchers on agent self-reports, a problem that persists in the new 
field of applying quantum models to human decision-making. Busemeyer and his 
team (2008) illustrate it with elegantly crafted mathematics that nonetheless rely on 
traditional self-reports, violating the central tenet of the quantum model: measurement 
disturbs what is measured. Evidence supporting theories of human self-reports and 
dynamic behavior is virtually non-existent. This evidence is lacking for self-reported 
preferences and actual choices in game theory (Kelley, 1992), in the very first (but not 
yet efficaciously (Sanfey, 2007)) mathematical model of interdependence (Von Neu-
mann & Morgenstern, 1953), and for decision-making by groups or organizations 
(Levine & Moreland, 1998) (this work has yet to be established theoretically (Pfeffer 
& Fong, 2005)).  And for self-reported self-esteem with actual academic or work 
performance, one of the most studied of psychological phenomena, Baumeister and 
his colleagues (2005) in a meta-analysis found only weak correlations, leaving Bau-
meister to conjecture that there were no other means to collect this data. In business 
management, Bloom and colleagues (2007) found only a weak correlation between 
self-assessments by managers and the performance of their firms. The likely cause in 
all of these cases is that self-reports are assumed to measure phenomena independent 
of human observers; however, a computer’s ability to capture the full knowledge of 
the social objects interacting in its virtual computational space, known as the “God’s 
eye” view displayed on monitors, recreates this obstacle for ABMs and robots (mov-
ing computational spaces) (Lawless et al., 2000).  The assumption that humans or 
ABMs can be exactly located on a psychological measure or other conceptual grid, 
even when the reliability of the measure is well-established, ignores the evidence that 
cognitive dissonance orders experience and illusions into stable worldviews which 
interact with the illusions and experiences of others to form bi-stable (conjugate) 
interdependent effects (Lawless et al., 2007).  
 
Groups and Organizations. The lack of a theory of measurement at the individual 
level is amplified at the group (Levine & Moreland, 1998), organization (Pfeffer & 
Fong, 2005), and virtual organization levels (Lawless et al., 2008d).  As Kohli and 
Hoadley (2006) conclude, this absence leads to ineffective metrics to improve organ-
izational performance and effectiveness or business redesign; i.e., currently, Business 
Process Restructuring (BPR) does not guarantee success (Sommer, 2004).  Smith and 
Tushman (2005) propose the need to maintain a state of tension between optimizing 
performance (mission) and adapting to change (vision).  We have been applying their 
idea with a web-based eIRB (Institutional Review Board) designed to better train 
military physicians in research methods (Wood et al., 2009). 

1.2   Interdependence  

According to Kenny and colleagues (1998), the general strategy of working with 
interdependence in social science creates confounds. The general goal for the analyses 
of social data becomes removal or control of the effects of interdependence in data. 
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Dawes and his colleagues (1989) found similarly that, compared to the estimates by 
experts, actuarial estimates of human behavior were less immune to the effects of 
interdependence; as a corrective, Dawes found that actuarial data were more reliable 
and valid than clinical or forensic (expert) diagnoses of human pathology. Nonethe-
less, our goal is the opposite: instead of controlling for observer dependencies, we 
plan to remove observer independencies to better establish the science of interdepend-
ence in organization, system and social processes.  For example, measuring deindi-
viduation among the citizens of Burma imposed by the reigning military dictatorship 
may indicate over time and geospatially the variability in the amounts of power ex-
pended to oppress Burmese citizens.  By a similar method, tradeoffs in the amount of 
energy expended and duration to coordinate a mixed system of human-robot-machine 
agents could indicate computationally the effectiveness of an organization's plan.  
And the interdependence in emergency responses, as with the fire that gutted the 
upper house of Egypt's Parliament (Slackman, 2008), should indicate for censorship, 
even when mathematically justified (May, 1973), the cost of dictatorship. 

1.3   Perturbations  

Financial interdependence may indicate the spread of market volatility.  Based on 
Fama’s (1964) random walk model, modern finance assumes that randomization 
among independent pricing events increases the value of distributing risk in diversi-
fied portfolios (Markowitz, 1952). Long-Term Capital Management’s rational options 
pricing model, built by the firm's two Nobel Laureates Merton and Scholes, the cor-
nerstone of modern finance, estimated random variations in the valuations of options 
that could be exploited.  However, these randomizations break down then as in 2008 
when economic stresses generate long-range interdependences characterized as corre-
lations (waves of panic generating waves of deleveraging) across a stock market (see 
news analysis by Lowenstein, 2008).   

Historically, during periods of normal corporate and financial activities, the spread 
between BAA and AAA bond interest rates has ranged randomly between 0.85 and 
0.95 interest points (Ranson, 2007).  Spreads over 1.15 points forecast perturbations 
across a market of impending GNP creating financial instability that threatens stock 
values (Figure 1; the collapse and merger of Countrywide Financial Corporation by 
Bank of America on July 1, 2008. Bear Sterns was taken over by J.P. Morgan Chase 
on 3/17/08 [#110 on x-axis]; IndyMac collapsed on July 17, 2008 [#198]; Fannie and 
Freddie went into receivership on September 5, 2008 [#234], producing a brief res-
pite; and on September 15, 2008, Lehman Brothers filed for bankruptcy, Merrill 
Lynch was taken over by Bank of America, and American International Group strug-
gled to recapitalize. The spread was 1.61 at end of the chart; on January 5, 2009, the 
spread was 3.35 points).  On October 23, 2008, the spread at 2.92 indicated significant 
new incoming waves of threats to corporations, motivating mergers to reduce the 
threats, thereby creating a measurement problem.  We believe that modeling perturba-
tions is essential to computing organizational dynamics in the stock market and, by 
extension, military organization dynamics or the dynamics of military effects on a 
target country (e.g., actions by the U.S. government on a target country to produce 
desired effects; in Lawless, 2008). For example, we have written that mergers  
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BAA-AAA Corporate interest rates, Fall 2007-2008
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Fig. 1. Daily BAA-AAA bond interest rate spreads from 10/16/07 to 9/11/08, http:// 
research.stlouisfed.org/fred2/categories/119 (retrieved 9/15/08) 

between business organizations, even terrorist organizations, can be better understood 
mathematically by considering uncertainty, producing the measurement problem 
(Lawless et al., 2007; see the computational example with Equation 2).  

From a self-report perspective of the measurement problem, in April 2008 Lehman 
Brothers’ Chief Financial Officer  E. Callan stated in an interview with CNBC that 
rumors by short-sellers had hurt the firm: "Unfortunately, we’re in a market where 
perception trumps reality" (news by Motley Fool, 2008). But after Lehman was suc-
cessful when its public offer of preferred convertible stock was oversubscribed, rais-
ing $4 billion in capital on April 1st, Callan reversed himself to conclude that Lehman 
had learned its lesson about the 1998 credit crunch (news by Bloomberg, 2008).  
However, illustrating the power of an illusion, since April the collapse in the value of 
Lehman’s stock held just by its employees alone had fallen by over $10 billion, sig-
naling that management had lost control: “Everyone knows that [Lehman] has been 
on the ropes since May” (interview of T. Truman (2008), former Fed official). Leh-
man filed for bankruptcy on September 15, 2008 (end of Figure 2).  

Our approach to the study of interdependence in measurement is not to ignore or 
replace self-reports, but to constrain them. Our overall goal is to predict computation-
ally the outcomes of an interaction, including for ABMs, which have been ruled 
unlikely (Bankes, 2002; Conzelman et al., 2004).  Instead of asking organizational 
responders ⎯ human and artificial ⎯ to report on their effectiveness, we want more 
objective measures combined with predictions of what will be self-reported to con-
strain the interpretations of agent reports (Lawless et al., 2007). Our view has impor-
tant ramifications for consensual constructs of situation awareness in military combat; 
e.g., the divergent views held in 2006 by General G. Casey on the "surge" in Iraq 
compared with those represented by W.J. Luti, reflected in a report by the American 
Enterprise Institute written by Gen. J. Keane and F.W. Kagan, and supported by Gen-
erals R. Odierno and D. Petraeus (http://www.washingtonpost.com/wp-dyn/content/ 
article/2006/12/26/AR2006122600773.html).  Despite extraordinary negative political 
fallout, the Keane and Kagan report led the White House to commit to a surge of 
American troops by concluding that "our center of gravity ⎯ public support ⎯ was in 
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jeopardy because of doubts that our Iraq efforts are on a trajectory leading to success 
…" (see news accounts by Gordon, 2008).  

2    Conservation of Information (COI)  

At the heart of the measurement problem exists interdependent uncertainties over 
space (geospatially) and time that conserve information based on the existence of bi-
stable perceptions in reality composed of variable exogenous and endogenous mix-
tures of facts and illusions about physical and social reality (Lawless et al., 2005).  
 
Bistability. Bistability is best explained with an example of a simple illusion (see 
Figure 2). It occurs when data produces mutually exclusive interpretations. When a 
entire data set is processed cognitively by an individual, two interpretations of a 
bistable illusion cannot be held in awareness simultaneously (Cacioppo et al., 1996). 
According to Bohr (1955), multiple interpretations support the existence of different 
cultures. Further, given the importance of feedback to social dynamics (Lawless et 
al., 2007), the possibility of shifts (jω, where j is the imaginary number √-1 and ω 
the discrete frequency in radians per second) between bistable interpretations  
increases uncertainty in the excluded interpretation which not only creates interpreta-
tion barriers between social groups (e.g., courtrooms, politics), but supports the  
existence of COI, characterized as tradeoffs between incommensurable views (e.g., 
between action and observation). We propose that measurements of bistable phe-
nomena collapse interdependence to produce the classical information found in self-
reports, decreasing uncertainty in the observed aspect of a bistable phenomenon 
while increasing uncertainty in its non-observed aspect (the insider-outsider minimal 
inter-group effect; Tajfel, 1970).  Figure 2 could reflect the electorate in the U.S. 
composed of liberals, conservatives and undecided neutrals, with the “faces” arbi-
trarily representing the incommensurable beliefs of liberals (or others, such as  
Shiite) and the “vase” arbitrarily representing those incommensurable beliefs of 
conservatives (or others, such as Sunni).   A winning plan occurs when neutrals are 
persuaded to endorse a belief, decreasing conflict (Kirk, 2003) by promoting com-
promise, but making it unlikely that a story can capture the original state of interde-
pendence (Lawless et al., 2008a). 

 

Fig. 2. An example of bistability. In viewing the simple two-faces vase illusion, an observer is 
incapable of holding both interpretations in awareness simultaneously. 
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2.1   Illusions  

The brain has two independent systems for action and observation (Rees et al., 1997). 
From Bohr (1955), observation and action form interdependent uncertainty tradeoffs 
between images constructed by the mind. With his gray square checker-shadow illu-
sion, Adelson (2000) concluded that if the eye system worked only as a signal detec-
tor, it could not distinguish a white surface in dim light from a dark surface in bright 
light, which humans accomplish easily ("lightness constancy").  Three brain processes 
combine and constrain signals to form a cognitive image: lower level image process-
ing (signals perceived), mid-level processing (Gestalt groupings), and high-level 
processing (experiences and worldview constructs).  Adelson illustrated that illusions 
are not based on random processes but constructed by combining signal perceptions, 
groupings, and experiences with the properties of objects to form a visual context. 
Statistical processes on signals from configurations map light reflectance to illuminate 
surfaces as an individual estimates the inverse transfer function imperfectly but adap-
tively with a subsystem that operates like a filter (convolution). Low-pass filters pro-
duce long-term signal averages in images, while high-pass filters add details (Lawless 
& Sofge, 2008c).   

Generalizing to social situations led us to predict and find with Citizen Advisory 
Boards advising the Department of Energy (DOE) on the cleanup of sites across its 
complex (Lawless et al., 2008a) that risk perceptions (illusions) abound unchallenged 
under cooperative decision strategies (consensus rules) compared to competitive 
strategies (majority rule).  In stark contrast to scientific peer review, we concluded 
that DOE managers acted as command decision-makers to force a consensus that 
created the widespread contamination of its sites by picking winners and losers in 
funding research programs. Consensus also reduces the likelihood of political com-
promises that accelerate action; e.g., DOE Hanford and its consensus Citizens Advi-
sory Board in Washington State are "gridlocked" (similarly with global warming 
negotiations, see Oppenheimer et al., 2007).  Moreover, under majority rule with 
significant numbers of neutrals among the deciders, conflict and ill-will are moder-
ated to promote compromises and what we have named, counterintuitively, an "action 
consensus" (Lawless et al., 2008a).  
 
Experimental Evidence. We have collected preliminary data from the laboratory with 
college students making recommendations to improve college experiences.  The re-
sults appear to have partially replicated the DOE CAB study (with triads, decision 
duration, but not decision quality; the latter improves as predicted with larger groups).  

2.2   The Mathematics of COI 

We propose the following mathematical relationships (Lawless & Sofge, 2008c). 
 
Geospatial Interdependence. Multitasking degrades performance at the individual 
level (Wickens, 1992). In contrast, the function of a group or organization is to multi-
task (Ambrose, 2001), underscoring the existence of interdependence in business mod-
els (Jervis, 1997), chains of command, and organizational centers of gravity (Arnold, 
2006). Multitasking coordinates one activity with several others, an interdependence 



190 W.F. Lawless, D.A. Sofge, and H.T. Goranson 

say between localizing an event, ∆xCOG, or the spatial frequencies of a chain of events, 
∆k, where k = 1/λ and λ is the distance between spatially controlled events, giving  

                          ∆xCOG ∆k > c                                                          (1) 

In support of Equation (1), the defensive pattern against suicide bombings in Jeru-
salem "is always a tradeoff between model accuracy and area reduction that we can 
describe for any given model" (Willis, 2007, p. 2).  Social interdependencies form 
geospatial wave patterns to transmit information, like traffic congestion occurring at a 
critical density when traffic is sufficiently interdependent to transmit waves (Helbing, 
2001).  Other examples are Wal-Mart's distribution system during the holidays; air-
traffic patterns at major airports during busy cycles; and the launch of military opera-
tions against Baghdad identified by General Tommy Franks as the center of gravity 
during Operation Iraqi Freedom (Arnold, 2006, p. 13). Table 1 illustrates geospatial 
reasoning by thieves in burglary frequencies collected over time across three contigu-
ous counties in Georgia and South Carolina. No information exists in the uniformly 
high correlations over time (columns). Geospatially (rows), the correlation between 
Richmond and Columbia, GA is negligible, and weak between Columbia and Aiken, 
SC.  The surprise found in the strong correlation between Richmond, GA, and Aiken, 
SC, is removed by interpreting that police do not chase thieves across state lines.  
These counties are across state lines separated by the Savannah River but connected 
by five bridges. It indicates that thieves are swapping territories and information to 
steal in different police jurisdictions and unload ill-gotten gains in their own states.  

Table 1. Burglary data from the Augusta Chronicle, 10/09/2008 

Burglaries by County in Georgia (GA) and South Carolina (SC), USA 
 2008 2007 2006 
Richmond, GA 340 222 244 
Columbia, GA 33 24 45 
Aiken, SC 116 79 74 
   
Correlating columns 1:2 0.99996783   
Correlating columns 1:3 0.991677525   
Correlating columns 2:3 0.990612918   
Correlating rows R:C 0.093784077   
Correlating rows R:A 0.95954857   
Correlating rows C:A -0.190311882   

 

 
Our research indicates that risk perceptions (illusions), as opposed to risk determi-

nations (science), interfere with achieving practical organizational decisions (Lawless 
et al., 2008a). We have found that illusions increase in number and virulence under 
enforced cooperative decision-making, but are better managed under a competition 
for the best among a series of ideas (Holmes, 1919).  But Adelson suggests the exis-
tence of a social cognitive "screen" where entangled constructive and destructive 
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interferences from competing ideas play out under consensus or competitive deci-
sions.  In the future, this new model may allow us to calculate the entropy shifts be-
tween mutually exclusive (classical) or entangled stories (illusions) or decisions and 
their execution (Lawless et al., 2007), where cognitive uncertainty in organizational 
stories or business models (∆BMCOG) and the conjugate uncertainty in executing these 
models, ∆v (see Lawless et al., 2007; Goranson & Cardier, 2007) gives:  

                                                        ∆BMCOG ∆v > c                                                    (2) 

Based on COI, Equation (1) can be reconfigured for energy, ∆E, time, ∆t:  

                                                           ∆E ∆t > c                                                          (3) 

Equation (3) agrees with findings for the brain: greater expenditures of energy 
(power) in the brain are associated with higher cognitive functions, leading to an 
increase in the ability to resolve mental maps of reality (Hagoort et al., 2004).  Words 
spoken in anger expend about twice the energy of regular voices (Lawless, 2002).  
When performing a complex military exercise, the brains of novices, compared to 
experts, light up like a Christmas tree, an increase in the energy wasted by novices 
(Milton et al., 2007).  The goal of the brain becomes to minimize wasted energy to 
maximize free energy, ∆A (Friston & Stephan, 2007), at a given temperature, T, and 
entropy S, and where   

                                                  – ∆A = ∆E – T∆S                                                       (4) 

Based on Equations (3) and (4), organizations attempt to increase free energy by re-
ducing waste and temperature (panic, excessive debate, emotional displays). Increas-
ing organizational size with mergers reduces the perturbations experienced (Andrade 
et al., 2001). From stock market data, volatility (beta) decreases with increased organ-
izational size (see Table 2 in Lawless et al., 2008b). The interpretation is two-fold: 
first, as mentioned before, organizations attempt to grow, organically or via mergers, 
to increase organizational stability; second, COI exists as a tradeoff between firm size 
relative to a market and volatility.  Moreover, innovation, while costly, increases free 
energy by reducing wasted efforts to better compete (Sood & Telles, 2008), including 
acquiring a smaller, more innovative firm that has developed break-though technol-
ogy (e.g., Oracle-BEA merger).  Mergers also reduce the energy expended from com-
peting in a market. 

Equation (2) exposes a hidden cognitive reason for the pursuit of mergers and stra-
tegic alliances, contradicting what is popularly considered to be a poor business deci-
sion.  Assuming the equality aspect of Equation (2) pertains gives 

∆1BMCOG ∆1v = ∆2BMCOG ∆2v  

Next, assume that organization #1 has ½ the uncertainty in its business model as or-
ganization #2, resulting in ∆1BMCOG = ½ ∆2BMCOG.  Merging gives ½ ∆2BMCOG ∆1v = 
∆2BMCOG ∆2v, then ½  ∆1v = ∆2v, and finally, ∆1v = 2 ∆2v. Thus, a reason to merge 
based on mathematics is being able to execute twice as fast, if and only if the new 
entity retains the same level of uncertainty in its business model (∆BM).  For exam-
ple, the 1989 merger between US Air and Piedmont degraded ∆BM for the merged 
firm (US Airways).  
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A different approach arises from assuming that information signals control behav-
ior at the individual, group or organizational levels, revising Equation (3):  

                                                              σf σt > ½,                                                        (5) 

where σf σt represents a Fourier transform pair, with σf as the standard deviation for 
frequency and σt for time.  See Cohen (1995) for the derivation of Equation (5). 
 
Applications of Equation (5). Among others, Cohen (1995) recognized tradeoffs in 
signal detection. Assuming a normalized signal with zero mean for duration, t, and 
bandwidth, f, Fourier transforms produce variances of σt

2 and σf
2 for duration and 

frequency (where ω = 2πf ), respectively, resulting in a Fourier pair of σt
 σf  > ½ (Ta-

ble 2).  COI means that a signal of “narrow waveform yields a wide spectrum and a 
wide waveform yields a narrow spectrum and that both the time waveform and fre-
quency spectrum cannot be made arbitrarily small simultaneously.”  It means that a 
limited duration signal produces a spectrum with indistinct, poorly-resolved frequen-
cies, a signal characterized by a spike in time yields a broad spectrum, and a signal 
which “rings” for a long duration (e.g., sine wave) yields a spectrum with only one 
distinct frequency.  

Table 2. An illustration of arbitrarily selected Gaussian distributions that form “Fourier pairs”. 
Notice that as σf increases, σF decreases; note also that σf σF is greater than 1/2 in all cases 
(from Lawless et al., 2008b). This represents COI.  

Function 
fσ  Fourier Transform 

Fσ  f Fσ σ  

22( ) tf t e−=  
0.558 21

82
F(s) = 

2

s
e

π −
 

5.013 2.806 

21

2( )
t

f t e
−

=  
1.583 21

2F(s) = 2
s

eπ
−

 
2.507 3.969 

2

8( )
t

f t e
−

=  

4.478 22F(s) = 2 2 seπ −  
1.253 5.612 

 

 
As an exercise with a Fourier transform and tradeoffs between Fourier pairs, as-

sume that a system, with pe`riod τ and amplitude A = 1, experiences a pulse P de-
scribed by the following forcing function f(t): 

 

    A, -τ/2 < t < τ/2 
f(t) = 

0, | τ | > τ/2 

The Fourier transform becomes: 

F(f(t)) =∫-∞
∞  f(t) e -iωt dt = - A e-iωt /ωt  |-τ/2

τ/2 = 2 A sin (ω τ/2)/ω = A τ sinc (ω τ/2) 

For each time pulse, letting τ = 8 and 2 for A = 1 produces the graphs in Figure 3.  
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Fig. 3. Sketches of F(f(t)) for τ = 8 s and 2 s with A = 1. Find ω = 0 Hz on the ω axis with 
l’Hôpital’s rule: limω ->0 τ sin θ/θ = τ cos θ/1, τ = 8.  The τ = 8 curve goes to zero on the F(ω) 
axis when 4ω = nπ to give ω ≈ 0.393 n, where n=1,2, ...  

Table 3. Standard deviations from the exercise above for f(t). Notice that the single duration 
signal pulses of widths 2 and 8 seconds do not conserve information. But by estimating a 
Gaussian distribution approximated by σf, COI is recovered.  

Function σf FT σF σfσF Est. GD 
σf 

Est. 
FT σf 

Rev. 
σfσF   

f(t) 2.31 F(ω) 2.10 4.86 2.0 2.2 4.4 

f(t) 18.48 F(ω) 8.99 166.23 17.69 .45 9 

    ≠ COI   ≈ COI 

 
From this exercise, as noted by Riefel (2007), despite the lack of a Gaussian distri-

bution, we conclude that as the time pulse shortens, the bandwidth broadens, but also 
the frequency amplitude decreases. In turn, as the period of the time-domain pulse 
broadens, the bandwidth narrows and frequency amplitude increases. But by estimat-
ing Gaussian distributions, we arrive at Fourier pairs as predicted by COI.  

Our research with multiple regressions has established that the value of mergers is 
that an increase in size decreases volatility from market threats.  While we believe that a 
mathematical model of mergers holds promise even among terrorist organizations (Law-
less et al., 2007), we have found support only with multiple regressions (Lawless et al., 
2008b), but not with Fourier transform pairs, possibly because we were using discrete 
rather than continuous transforms (Hubbard, 1998), and because we did not account for 
market volatility (Frieden, 2004).  Going forward, we plan Gaussian fits to distributions, 
along with semblance wavelet techniques to compare multiple time-series data sources 
(Cooper & Cowan, 2008).   

As a tentative test, we considered the merger of Washington Mutual (WAMU) on 
10/26/2008 by J.P. Morgan Chase (JPMC). We did not expect to find COI in the  
distributions because they were not Gaussian and had trends in them. But by using 
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volatility (beta) along with estimated Gaussian distributions, tentatively and encour-
agingly, we have confirmed the existence of COI in the tradeoffs between the two.  

2.3   Control  

To control an organization requires a reference baseline or goal.  Based on the control 
theory of Csete and Doyle (2002), we predict that cooperation will decrease variance 
with the worldview baseline based on an organization's effort to enforce a consensus 
worldview among its members (Lawless et al., 2008a), but making it less able to 
adapt compared to a baseline hammered out under competition. In the future, we plan 
to convert these metrics into four interrelated standard deviations (Wood et al., 2009). 
For example, duration data (t) is transformed into frequencies (ω) for which we can 
calculate energy (resources) and the standard deviations for both, where σtσω > ½. As 
we reported above, initial results are supportive: organizations make decisions regard-
ing mergers and acquisitions to gain stability.  We plan to work with coupled Lotka-
Volta equations where control of the contrasting consensus-competitive social images 
on a group's or organization's community “screen” is lost or gained (May, 1973). 

 
Technology's Effect on Free Energy. Organizational size limits are raised by tech-
nology (Mattick & Gagen, 2005); i.e., as size increases, competitiveness decreases, 
but that effect is countered by new technology (e.g., "back office" integration soft-
ware).  Technology helps to manage tradeoffs in performance, but they still remain 
(Csete & Doyle, 2002).  However, the value on the return on investment (ROI) for 
technology is subjective (Rouse & Boff, 2003).  But mergers often occur to acquire 
the technology of a firm owning an R&D breakthrough to maintain market leadership 
or to survive (Bell South's inability to upgrade its technology led to its takeover by 
AT&T).  Technology limits a business model (Carley, 2002). But technology integra-
tion can change a business model, which it did for J.P. Morgan Chase, to better man-
age costs and productivity and to better compete, as in our field research with training 
physicians in research methods for the Army.  Technology can produce its own 
shocks (Andrade et al., 2001) if new companies unexpectedly take the leadership to 
control a market (e.g., Google's leadership threatened Yahoo and Microsoft).  

2.4   Interdependent Information in State Merging 

To test computational models of interdependent uncertainty on alliances among or-
ganizations with mixed systems of human-machine-robot agents, we first review the 
correlation between subsystems in an interdependent state. Merging organizations 
(interdependent states) gains knowledge. Consider a merged system whose state space 
can be represented by the tensor product, I = IA ⊗ IB, with ρAB as the density matrix 
acting on I, giving Von Neumann entropy I (ρAB) = -Tr ρAB log ρAB. If |ψ> is in IA and 
|φ> in IB, the tensor product |ψφ> is the complex scalar ψ (x) = <x|ψ> = ce-ikx. This 
function allows us to cross between irreversible and cyclic Lotka-Volterra equations 
to the entropy of Gaussian distributions and the mathematics of interdependence bor-
rowed from joint quantum entropy (e.g., Horodecki et al., 2005). 

Lewin (1951) first proposed that the whole is greater than the sum of its parts; i.e., 
decohered subsystems have more entropy than the whole. To us this means that  
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having more information makes state mergers cheaper. In the case where a target, 
Organization B, has prior knowledge of Organization A, the acquiring organization, 
the partial information needed from A based on prior information by B is the condi-
tional entropy. In a classical two-player game or information network, the conditional 
entropy occurs with correlations between B with prior information Y merging with 
acquirer A holding the desired missing information X. In classical situations, this 
relatively insensitive Shannon partial information ranges from zero when all is known 
to maximum 1 when nothing is known, but is never negative.  

From Horodecki and his colleagues, we propose for interdependent situations that 
the missing information is Von Neumann entropy (-Tr ρ log ρ) having states with 
density operators ρA for the acquirer and ρB for the target with sensitive joint entropy 
ρAB.  Following the classical model, with I(A|B) as the interdependent conditional 
entropy and I(AB) the joint interdependent entropy:  

I(A|B) = I(AB) - I(B) 

where I(B) is the state of ρB and I(A) is that of ρA.  I(A|B) is not an entropy in the tradi-
tional sense; it is the meaning gained from preserving interdependence (e.g., "cul-
ture").  Interdependent entropy is positive, zero or negative. If positive, the sender 
must transmit the missing bits; if negative, receiver and sender gain full knowledge 
from classical knowledge alone at no extra cost by sharing pure maximally interde-
pendent states. Conditional negative entropy reflects excess knowledge held. With a 
maximally interdependent state like a Bell state, the total system is in a pure state of 
entropy 0 even when each subsystem is maximally mixed with entropy 1, giving (-
I(A|B)) EPR pairs (where each reduces entropy by 1 unit) to transmit interdependence 
using only classical information:  

½ ( | 00 > + | 11 > ) 

A maximally mixed state has maximum Von Neumann entropy; the pure state (a rank 
one projection) has zero Von Neumann entropy. We plan the following test: prior 
information makes state merging cheaper (similar cultures make merging easier as 
when HP and Compaq merged, versus Bank of America and Merrill Lynch). We plan 
to contrast measures of the classical information transferred with that actually trans-
ferred between poorly organized subsystems coordinating with each other (classical 
limits) and well-organized subsystems (interdependent limits).  

3    Summary 

For future research into COI, we plan to incorporate computational interdependent 
uncertainty into intelligent and mixed human-machine systems to more robustly in-
stantiate autonomy or to better decentralize mixed systems. Our plan to achieve this 
goal is to develop and test new theory, to produce computational models, and to 
search for evidence in the field and laboratory to accept or reject and then revise these 
models.  We have proposed that current social science models relied on by social 
scientists are flawed.  They often do not incorporate uncertainty, nor do they take a 
fundamental approach to the effects of interdependent (conjugate) uncertainties on the 
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basic collection of data reported by agents involved in interactions.  Our theory and 
research is a small step towards overcoming these obstacles.  

For COI we are considering Fourier models, wavelet models, and Gabor or short-
time windowed Fourier models, along with Gaussian fitting techniques to work with 
discrete data. In continuing Lewin’s (1951) research, we plan to model the propaga-
tion of elastic social wave fields with coupled partial differential equations to account 
for the virtual displacement of beliefs and their behavior velocity or social embedded-
ness and its geospatial wave numbers across two or three dimensions with computa-
tional intelligence based on evolutionary algorithms (Lawless & Sofge, 2008c).   
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Abstract. In this communication, we propose a tentative to set the
fundamental problem of measuring process done by a large structure on
a microscopic one. We consider the example of voting when an entire
society tries to measure globally opinions of all social actors in order to
elect a delegate. We present a quantum model to interpret an operational
voting system and propose an quantum approach for grading step of
Range Voting, developed by M. Balinski and R. Laraki in 2007.

[Quantum Interaction 2009, Saarbruecken, 25-27 March 2009].

Keywords: Fractaquantum hypothesis, Range Voting, Information Re-
trieval, Gleason theorem.

1 Measure Process between Different Scales

Matter is constituted by discrete quanta and this fact was empirically put in ev-
idence by E. Rutherford in the beginning of 20th century. Microscopic quanta as
classical atoms or photons are not directly perceptible by our senses, as pointed
out by M. Mugur-Schächter [MMS08]. In consequence, any possible knowledge
for a human observer of a microscopic quantum is founded on experimental
protocols. The mathematical framework constructed during the 20th century de-
scribes unitary “free evolution” through the Schrödinger equation and “reduction
of the wave packet” associated to measure process through a projection operator
in Hilbert space. We refer the reader e.g. to the book of C. Cohen-Tannoudji
et al [CDL77]. The philosophical consequences of this new vision of Nature are
still under construction; in some sense, an a priori or an external description
of Nature is not possible at quantum scale. We refer to B. D’Espagnat [DE02]
and M. Bitbol [Bi96]. Independently of the development of this renewed physics,
the importance of scale invariance have been recognized by various authors as
B. Mandelbrot [Ma82] and L. Nottale [No98]. The word “fractal” is devoted to
figures and properties that are self-similar whatever the refering scale.

We have suggested in 2002 the fractaquantum hypothesis [Du02], founded
on two remarks: Nature develops a scale invariance and quantum mechanics
is completely relevant for small scales. In order to express this hypothesis, we
have introduced (see e.g. [Du05, Du08a]) the notion of “atom”, in fact very
similar to the way of vision of Democrite and the ancient Greek philosophers
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(see e.g. J. Salem [Sa97]). To fix the ideas, an “atom” can be a classical atom,
or its nucleus, or a molecule, or a micro-organism like a cell, or an entire macro-
organism as a human being or till an entire society! If we divide an “atom” into
two parts, its qualitative properties change strongly at least in one of these parts.
With this framework, elementary components are supposed to exist in Nature at
different scales. A classical atom is a “micro state” relative to a Human observer.
In this particular case, a �ittle “atom” � is a classical atom and a Big “atom” B
is a human observer. More generally, two “atoms” � and B have different scales
when “atom” � is not directly perceptible to “atom” B. In other words, a direct
interaction between B and � can not be controlled by B himself. In this case, the
direct interaction between little “atom” � and big “atom” B can be neglected as
a first order approximation.

In this contribution, we suggest to revisit this classical quantum formalism
when little and big “atoms” are nonclassical ones. In fact, this research program
is tremendous! For similar programs, we refer e.g. to the works of G. Vitiello
[Vi01], P. Bruza et al [BKNE08], A. Khrennikov and E. Haven [KH07], P. La
Mura et al [LMS07]. The phenomenology of possible measurement interactions
should be reconstructed. What is a big “atom” B that can measure some quan-
tities on little “atom” �? Does the classical framework of quantum mechanics
operates without any modification? Of course all these questions motivate our
communication. Due to the lack of knowledge of what can be a measure done by
“atoms” at mesoscopic or microscopic scales, we restrict ourselves in this contri-
bution to measures done by human society considered as a whole on individual
human beings.

We consider here a particular example of the measurement process associated
with voting. In this case, “atom” � is a social actor and “atom” B is the en-
tire society. We first introduce the scientific problem of voting process and in
the following section, we present a preliminary quantum model for voting. In
the two following sections we describe with the help of fractaquantum hypoth-
esis the range voting procedure (“vote par valeurs”) developed independently
by M. Balinski and R. Laraki [BL07a] at Ecole Polytechnique (Paris) and by
W.D. Smith [Sm07, RS07] at the “Center of Range Voting” (Stony Brook, New
York).

2 On the Voting Process

We consider a macroscopic “atom” B composed by an entire social structure.
For example, B is a state like France to fix the ideas. The social actors of society
B are the little “atoms” � in our model. We write here

� ∈ B (1)

even if the expression (1) does not take precisely into account the detailed struc-
ture of society B. The numbers of such indistinguable individuals are quite
important (106 to 109 typically). The democratic life in society B suppose that
social responsabilities are taken by elected representants of social corpus. Thus a
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voting process has the objective to determine one particular social actor among
all for accepting social responsabilities. This kind of position is supposed to be
attractive and a set Γ of candidates γ among the entire set of “atoms” � is
supposed to be given in our framework.

The problem is to determine a single “elected” candidate γ1 among the family
Γ thanks to the synthesis of all opinions of different electors �. The social objec-
tive of society B is the determination of one candidate among others through a
social process managed by the entire society, modelized here as a macro “atom”
B. This problem is highly ill posed and we refer to the pioneering works of
J.C. de Borda [1781] and N. de Condorcet [1785] followed more recently by the
theorem of non existence of a social welfare function satisfying reasonable hy-
potheses, proved by K. Arrow [Ar51]. We describe this result in the following of
this section.

With K. Arrow, we suppose that each elector � determines some ordering
denoted by �σ�

(or simply by σ�) among the candidates γ ∈ Γ :

γσl(1) �σ�
γσl(2) �σ�

. . . γσl(i) �σ�
γσl(i+1) . . . �σ�

γσl(K) , � ∈ B.

We consider now the set σ of all orderings σl for all the electors �

σ = {σ�, σ� ordering of candidatesΓ, � ∈ B} .

A so-called social welfare function f determines a particular social ordering
σ∗ = f(σ) as a global synthesis of all orderings σ� in order to construct a
commun and socially coherent position. Some democratic properties are a priori
required for this function f :

(i) Unanimity
If everybody thinks that candidate γ is better than γ′ the social choice must
satisfy this property:

If (∀� ∈ B, γ �σ�
γ′ ) for some γ, γ′ ∈ Γ, then (γ �σ∗ γ′ ) . (2)

(ii) Independance of irrelevant alternatives
Consider two orderings σ and τ grading in a similar way the two candidates
γ and γ′ :

((γ �σ�
γ′) and (γ �τ�

γ′)) or ((γ ≺σ�
γ′) and (γ ≺τ�

γ′)) , ∀� ∈ B . (3)

Then the social orderings σ∗ = f(σ) and τ∗ = f(σ) must satisfy the corre-
sponding property:⎧⎪⎨⎪⎩

γ �σ∗ γ when ((γ �σ�
γ′) and (γ �τ�

γ′))
or

γ≺σ∗ γ when ((γ≺σ�
γ′) and (γ≺τ�

γ′)) .

(4)

The social welfare function depends only on the relative ranking and not on
the intermediate candidates.
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Then the Arrow impossibility theorem (proven elegantly by J. Geanakoplos
in [Ge01]) implies that under conditions (2) of unanimity and (3)-(4) of indepen-
dance of irrelevant alternatives, the social welfare function is simply a constant:

(iii) Dictatorship

∃ d ∈ Γ , f({σ�, � ∈ B}) ≡ σd (5)

and the result is a dictature! In other terms, it is impossible to construct a social
welfare function that has the two first properties of unanimity and independance
of irrelevant alternatives and the non-dictatorship property, obtained by negation
of (5).

3 A Preliminary Quantum Model for Voting

We describe in this Section a quantum model presented in [Du08b]. We restrict
here to the so-called “first tour” process as implemented in a lot of situations.
In this process, each elector � has to transmit the name of at most one candi-
date γ. Then an ordered list of candidates is obtained by counting the number
of expressed votes for each candidate. Introduce the space HΓ of candidates
generated formally by the finite family Γ of all candidates:

HΓ =
⊕
γ∈Γ

C | γ > (6)

where C denotes the field of complex numbers. This decomposition (6) is sup-
posed to be orthogonal:

< γ | γ′> =

{
0 if γ = γ′

1 if γ = γ′,
, γ, γ′ ∈ Γ.

The “wave function” associated with an elector � is represented by a state de-
noted by | �> in this space HΓ :

| �> =
∑
γ∈Γ

| γ > < � | γ > . (7)

The scalar product < � | γ > in relation (7) is the component of elector � relative
to each candidate γ. This number represents the political sympathy of elector �
relative to the candidate γ. We suppose here that the norm ‖ �‖ of state | �>
id est

‖�‖≡
√∑

γ∈Γ

|< � | γ >|2

is inferior or equal to unity. We follow the Born rule and suggest that the
probability for elector � to give its vote to candidate γ is equal to |< � | γ >|2 .
We suggest also that the probability to unswer by a vote “blank or null” is
1− ‖�‖2 in this framework.
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The interpretation of the projection process in the quantum measurement for
such a first tour of election process is quite clear. During the election, id est the
particular day where the measure process occurs, the elector � is obliged to
choose at most one candidate γ0. In consequence, all his political sensibility is
socially “reduced” to this particular candidate. We can write:

| �> = |γ0 >

to express the wave function collapse. This quantum interpretation of such voting
process clearly shows the violence of such king of decision making. Of course,
no elector has political opinions that are identical to one precise candidate and
this measurement process is a true mathematical projection. Nevertheless, the
operational social voting process imposes this projection in order to construct a
social choice. The disadvantage and dangers of such process have been clearly
demonstrated in France during the presidential election process in 2002 (see e.g.
[wiki]).

4 Range Voting (i): Quantum Approach for Grading Step

The voting process suggested by M. Balinski and R. Laraki [BL07a] is more
complex than the one studied in the previous section. The key point in order
to overcome the Arrow impossibility theorem is the fact that in this framework
the opinion of electors among the candidates are codified by society B through
a given set of so-called “grades”. These grades are a priori very similar to the
ones given by the scolar system, as integers between 0 and 20 in France with an
associated order

0 ≺ 1 ≺ . . . ≺ j ≺ j + 1 ≺ . . . ≺ 19 ≺ 20 ,

letters from A to F in the United States with an order

A � B � C � D � E � F ,

or numbers from 1 to 6 in Germany with the following (mathematically unusual!)
order

1 � 2 � 3 � 4 � 5 � 6 .

These grades can be also an ordered list of given words
“very good” � “good” � “not so bad” �

� “passable” � “insufficient” � “to be rejected”
as proposed by the previous authors [BL07b] in Orsay experiment for French
presidential election in 2007. These grades define an elementary common lan-
guage that is supposed to be endowed by all social actors � of society B. In
other terms, a common ordered set G of grades ν is supposed to be given:

ν1 � ν2 � . . . � νK , νj ∈ G . (8)
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As a consequence, an ordering of opinions explicitly refer to this particular set of
given grades and to an explicit ordering between these grades like in (8). Remind
that in Balinski-Laraki process [BL07a], the society B imposes a commun grading
referential to all electors.

The ranking process between the candidates proceeds by two steps. First each
elector gives a grade to each candidate. Secondly the candidates are arranged
in order through “majority ranking”. Each elector � has to express an opinion
relative to each candidate γ ∈ Γ through a grade g(γ, �) ∈ G. During the day
of the election as in [BL07b], each elector grades each candidate. We propose in
this section a quantum model for the first step of this processus. This first step
is a measure done by society B on each little “atom” � which constitutes it, as
suggested by relation (1). Observe now that each candidate γ has a published
political program, is giving radio and television interviews, has a blog, etc. We
introduce a “political Hilbert space” HP that refer to all this set of political
information, following modern approaches for Information Retrieval as suggested
by K. von Rijsbergen [vR04]. The family G of grades is imposed by the general
laws of society B. Nevertheless, the evaluation of the political program of all
candidates is done by the elector � himself in such a process! We suggest that
each elector � decomposes this Hilbert space HP into “grading” orthogonal
components E�

ν through his own internal process:

HP =
⊕
ν∈G

E�
ν , � ∈ B . (9)

The subspace E�
ν is the eigenspace giving the grade ν relative to the opinion of

elector �. If we denote by A� the quantum self-adjoint operator associated with
the grading process done by elector �, we have

A� • | ξ> = ν | ξ> , | ξ>∈ E�
ν ⊂ HP , ν ∈ G . (10)

In other words, we introduce the orthogonal projector P �
ν onto the closed space

E�
ν . Then these projectors commute

P �
ν P �

ν′ = P �
ν′ P �

ν , ν , ν′ ∈ G , � ∈ B

and generate a decomposition of the identity operator Id(HP ) in the political
Hilbert space HP : ∑

ν∈G

P �
ν ≡ Id(HP ) , � ∈ B . (11)

On a very concrete point of view, in front of each political idea, each elector has
the capability to give an opinion in the language suggested a priori by the set
G of grades. The examples of such sets given above show also that the way of
decomposition of political space HP through the grades is strongly influenced
by the social choice of the family G.

In some sense, via a particular choice of grading, the society B imposes some
filtering of space HP of all political data. Note that the precise way this filter
is done depends on each citizen �. In this model, society B imposes the set
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G of eigenvalues and each elector � fixes the eigenvectors as in (10). After the
elector has interpreted the grades ν in his own vocabulary, id est once he has
decomposed the space HP into orthogonal components, we suppose that the
grading process, id est the result of the measure is a priori obtained according to
the Born rule. Precisely, we introduce the “perception” ρ�

γ of political opinion of
candidate γ by the elector �. Mathematically speaking, the elector � measurates
the political ideas of the candidate γ in a quantum way relatively to the Hilbert
space HP . According to Gleason theorem [Gl57], such a quantum probability is
defined by a density matrix, id est a positive self-adjoint operator of unity-trace
that we denotes also by ρ�

γ :

ρ�
γ positive self-adjoint operator HP −→ HP , tr

(
ρ�

γ

)
= 1 .

Then, following A. Gleason [Gl57] and K. von Rijsbergen [vR04], the measure
μ�

γ associated with elector � and candidate γ of any closed subspace E ⊂ HP

is given in all generality according to

μ�
γ(E) = tr

(
ρ�

γ PE

)
, E ⊂ HP , � ∈ B , (12)

where PE is the orthogonal projector onto space E. Consider now the space
E = E�

ν introduced in (9). Then the (real!) number μ�
γ,ν defined by

μ�
γ,ν = μ�

γ(E�
ν) = tr

(
ρ�

γ P �
ν

)
(13)

represents the quantum probability for elector � to give the grade ν to candidate
γ. Of course, if we insert the identity operator Id(HP ) decomposed in (11) inside
relation (12), we have due to (13)∑

ν∈G

μ�
γ,ν = 1 , � ∈ B, γ ∈ Γ , (14)

and the sum of probabilities for all different grades is equal to unity.
Remark that two different ingredients are necessary to determine the previ-

ous probability μ�
γ,ν in (13). First the decomposition (9) of the political space

through the grades G. As usual in quantum mechanics, no detailed structure
of “atom” � is transmitted through the measure process. In this case, the or-
thogonal decomposition (9) is not known by the society. Second the “perception
operator” ρ�

γ which represents in some sense the particular “political knowl-
edge” that the elector � has constructed for himself about the candidate γ.
Remark that no direct interaction between the candidates occurs in the model.
According to Condorcet’s ideas [1795], each citizen is adult has make his own
opinion through his own way of thinking!

5 Range Voting (ii): Majority Ranking

After this first step of grading, the result of the vote of elector � is a list

g(γ, �) ∈ G , γ ∈ Γ , � ∈ B
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of grades ν = g(γ, �) given by elector � to each candidate γ. We give in this
section the major points introduced By Balinski and Laraki [BL07a] without any
modification. After summation, each candidate γ has a certain number nγ

ν ∈ IN
of opinions transmitted by the electors:

nγ
ν = Card { � ∈ B , g(γ, �) = ν } ∈ IN , γ ∈ Γ , ν ∈ G. (15)

The way of ranking such a list

nγ ≡ (nγ
ν1

, nγ
ν2

, . . . nγ
νK

) ∈ INK , γ ∈ Γ (16)

when the grades ν ∈ G are arranged in order without ambiguity by (8) can
be explicited with the so-called “majority ranking” introduced by Balinski and
Laraki [BL07a]. We give here some details of the algorithm, based on a successive
extraction of a median value from a list as the one described in (16) and refer
to [BL07a], [BL07b] and [PB06].

From an algorithmic point of view, the list nγ can also be written as a list
mγ of grades written in decreasing order to fix the ideas:

mγ =
(

ν1, . . . , ν1︸ ︷︷ ︸
nγ

ν1
times

, ν2, . . . , ν2︸ ︷︷ ︸
nγ

ν2
times

, . . . , νK , . . . , νK︸ ︷︷ ︸
nγ

νK
times

)
∈ IN|B| (17)

where | B |= Card(B) is the number of electors. Then a list mγ
1 can be con-

structed by omitting the grade νγ
j1

at the median position |B|
2 inside the list

(17). We obtain in this way a new list extracted from (17)

mγ
1 =

(
ν1, . . . , ν1︸ ︷︷ ︸
nγ

1, ν1
times

, ν2, . . . , ν2︸ ︷︷ ︸
nγ

1, ν2
times

, . . . , νK , . . . , νK︸ ︷︷ ︸
nγ

1, νK
times

)
∈ IN|B|−1 (18)

and the integers nγ
1, νi

are equal to the nγ
νi

except for index j1 for which we
have

nγ
1, νγ

j1
= nγ

νγ
j1

− 1 .

The grade νγ
j1

is the first “majority grade” of candidate γ in the majority

ranking algorithm of Balinski and Laraki. If νγ
j1

� νγ′
j1

then we have the relative

final position γ �γ′ between the candidates γ and γ′ . If νγ
j1

= νγ′
j1

we apply
the same step from (17) to (18) except that we start with the list (18). Doing this,
we extract a second grade νγ

j2
for each candidate γ . If νγ

j2
� νγ′

j2
or νγ

j2
≺ νγ′

j2
,

the conclusion is established. Otherwise the process is carried on until the two
majority grades at a certain step are distinct.

It is a main contribution of M. Balinski and R. Laraki [BL07a] to extract an
intrinsic order

γ1 � γ2 � . . . γj � γj+1 � . . . , γj ∈ Γ
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among the candidates Γ from the given double list (16) of integers nγ . The
important social fact is that the overdetermination of a favorite candidate essen-
tially does not influence the final majoritary ranking with this grading method!
The proof of this important fact is omitted here and we refer to [BL07a]. We
could also think that there is a contradiction between this positive result and
the Arrow impossibility theorem. In fact, as pointed in [BL07a], the hypotheses
of Arrow theorem are qualitative: each elector consider some ordering of the
candidates with his own sensibility. As we have intensively explained with the
orthogonal decomposition (9), the social choice of a given family of grades is
essential for the grading step and the majority ranking.

6 Conclusion

The very elaborated process initialized by M. Balinski and R. Laraki [BL07a] for
range voting has been studied in this contribution. The second step of “major-
ity ranking” has been described without adding any new idea to this beautiful
article. Concerning the first step of the algorithm devoted to the grading of each
candidate by each elector with a given list of grades, we have proposed a quan-
tum algorithm essentially based on modern quantum approaches for Information
Retrieval presented in K. von Rijsbergen’s book [vR04]. First an orthogonal de-
composition of the political Hilbert space supposes that each elector has the
capability to have a precise opinion for each political subject. Second, following
Gleason theorem [Gl57], we have introduced a “perception operator” that de-
scribes mathematically the way a given candidate is politically understood by
a given elector. In some sense, a psychological model is incorporated with this
description.

With these two ingredients, the computation of the probability for an elector
to give a particular grade to each candidate can be evaluated as a result of the
model. Of course, it is not actually clear which precise practical advantages has
this quantum approach in the description of the voting process. Moreover, we
want to find in future works some previsions of the quantum model, and try to
compare it with the previsions of a classic model.

In this contribution, we have also presented a first quantum model of a clas-
sical election. In this framework, the big scale (the society) imposes a direct
generalization of the measure process in quantum mechanics. All the character-
istics of the mathematical measure operator are controlled by the large scale.
We have noticed the violence of the multiscale interaction through such a the
measuring process.

Last but not least, this work is motivated by the fractaquatum hypothesis
[Du02]. The case of a voting process is an example of measuring process between
two different scales in Nature. If we suppose that the general concepts of quantum
mechanics have an extension to all “atoms” in Nature, the process of measuring
has to be re-visited to all pairs of “atoms” with different scales. This contribution
is a small step in this direction!
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[Bi96] Bitbol, M.: Mécanique quantique, une introduction philosophique.
Champs-Flammarion, Paris (1996)
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Abstract. According to recent studies in developmental psychology and
neuroscience, symbolic language is essentially intersubjective. Empatheti-
cally relating to others renders possible the acquisition of linguistic
constructs. Intersubjectivity develops in early ontogenetic life when inter-
actions between mother and infant mutually shape their relatedness. Em-
pirical findings suggest that the shared attention and intention involved
in those interactions is sustained as it becomes internalized and embod-
ied. Symbolic language is derivative and emerges from shared intentional-
ity. In this paper, we present a formalization of shared intentionality based
upon a quantum approach. From a phenomenological viewpoint, we inves-
tigate the nonseparable, dynamic and sustainable nature of social cogni-
tion and evaluate the appropriateness of quantum interaction formodelling
intersubjectivity.

1 Introduction

How do we relate to others and how do social interactions shape our world-
view? What are the processes underlying everyday social encounters and how do
these processes contribute to enculturation and our use of symbolic language?
Questions of this kind have been of considerable interest ever since the social
world became the object of investigation. More recently, studies in developmental
psychology and cognitive neuroscience have shed new light on how we interact
with each other and the world we inhabit. In conjunction with phenomenological
descriptions, potential scientific explanations of intersubjectivity emphasize the
role of social perception and the importance of sustained interactions between
social beings. From the earliest age, human infants relate to their mothers in an
embodied and imitative way which lays the foundation for them to grow into
social and cultural reality. The distinction of self and other as well as linguistic
abilities are claimed to emerge from an ongoing interaction with other humans
[1,2,3,4,5,6].

In adulthood, developmental perspectives also provide evidence of how we
are able to adopt a detached or third person view of the world. Experiencing
concrete categories like book or abstract concepts like democracy as distinct or
independent from us as observers, is like these objects being there for everyone
[7,8,9]. If we perceive others, for instance in a conversation, we do this by pre-
supposing our partners to be subjects like us, but in a way that transcends our
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subjectivity due to the other being there for, or accessible to, everyone else. It is
this presupposed intersubjectivity that facilitates a shared world of objects as the
foundation for enculturation including the development of symbolic language.

Language and the sense of self and other develop in early ontogenetic life
through an ongoing interaction between mother and infant. Even before the in-
fant develops a deliberate sense of self, there is a bodily pairing between mother
and infant that is characterized by an intermodal link between action, in partic-
ular motor behaviour, and perception of the mother [10,11]. It is this perceptual,
practical and self-enganging sense of other agents which is essentially not sep-
arable into ego and alter ego (self and other) and maintained throughout life.
There is always some degree of undifferentiated identification; self and other are
never fully distinguished [12].

In this paper, we want to make explicit this presuppositional sense of the
other by formalizing shared intentionality using notions borrowed from quantum
mechanics. Quantum formalisms lend themselves to model interactive, context-
dependent and emerging phenomena [13,14,15,16] and could provide considerable
help in developing a more precise understanding of intersubjectivity.

We proceed as follows. In the next section, we introduce intersubjectivity by
means of two important concepts. Firstly, social perception emphasizes the direct
or non-inferential character of social interaction. Secondly, the discovery of mir-
ror neurons in cognitive neuroscience supports social perception. Mirror neurons
provide an intermodal bridge between action and perception. Acting and per-
ceiving someone else performing are two nonseparable and intentional concepts
which we will formally introduce in Section 3. We will show that states involved
in mother-infant interactions are essentially nonseparable and that this can be
represented as a an entangled quantum state. The mutual anticipation of the
other’s reaction involves nonseparable states of an emerging interaction process.
In Section 4, we conclude that entangled states must derive from the nonsep-
arable time evolutions that govern the dynamic co-emergence [17] of shared
intentional states and intentional states of mother and infant. Departing from
our developed notion of shared intentionality, in Section 5, we discuss intersub-
jectivity from the perspective of phenomenology. We contrast intersubjectivity
as empathy with intersubjectivity as co-subjectivity and integrate both dimen-
sions under the umbrella of shared intentionality. Lastly, we give a conclusion
and outlook toward future work.

2 Intersubjectivity

In this section, we introduce intersubjectivity or shared intentionality according
to recent discussions in developmental psychology and neuroscience. In sharing
intentions, agents perceive each other based upon a multiplicity of states such as
emotions or somatic sensations [18]. Mirror neurons support the nonseparability
of such states as they link one’s own actions with perception of someone else’s
movements and actions.
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2.1 Social Perception

Classical theories of social cognition have been criticized for overintellectualiz-
ing social cognition by underestimating perception [10,19,20]. The two dominant
theories, Theory theory (TT) and simulation theory (ST), require subjects to
add extra inferential mechanisms in order to understand the other. However,
experiments reveal infants reacting with facial expressions or patterns of vocal-
ization and gestures to affordances such as movement or sounds without a need
for theory or models [19].

Once the child develops and acquires concepts, the initial smartness of early in-
fant perception (that is perception as inherently active, direct and non-inferential)
is maintained [10,11,21,22]. I still recognize my friend as being my friend without
necessarily attributing him with a certain attitude towards me. Hence, neither the
smartness nor the directness of perception is necessarily dependent on perceiv-
ing things under concepts or judgement [10]. Put another way, perception itself is
conceptual but not in the sense of explicit deliberate judgement [23]. Perception
essentially gets shaped or informed by the ongoing interaction between intention-
alities [20]. Of course, the role of perception does not rule out deliberation affecting
perception, however, in many social encounters the smartness of direct perception
mirrors our ability to skilfully interact with others.

Later in ontogenetic life, perception is also informed by the language and con-
cepts we learn. Empirical studies show that children acquire linguistic abilities
through language use [3,2,1] and thus through social interaction. Obviously, this
presupposes the social community the child is part of. Moreover, the commu-
nity itself embodies conventionalized conceptual structure derived from language
use. Learning words intersubjectively in early ontogenetic life is essentially a pro-
cess of extracting elements from the larger linguistic construction of adults. After
months of gestural and vocal interaction, most Western middle-class children be-
gin producing linguistic utterances in the months following the first birthday [1].
Such first expressions (holophrases), which are mainly declarative statements,
imperative requests and interrogative questions, are learned and used in the
same intentional context as for the perceptual or non-linguistic intentionalities
during the first year of their life. From there, more complex constructions de-
velop. For instance, conceptual integration, the formation of abstract concepts
accross episodes or the reflexive adoption of the perspective of the listener. It is
the latter which has only recently been taken seriously into account.

2.2 Mirror Neurons

A phenomenology of intersubjectivity reveals that social interaction is often
not inferential. Others have argued against explicit deliberate judgement or de-
ductive reasoning as the only form of sense-making [24,25,26]. When we are
absorbed in complementary communicative gestures, dance-like behaviours or
language games (in a Wittgensteinian sense), there is no need for detached
and deliberate reasoning. However, this does not deny complex processes on a
subpersonal or neural level. On a subpersonal or unconsciouss level, mirror
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neurons are activated both when an agent acts and when this agent perceives
someone else acting [27]. Mirror neurons integrate both motor and perceptual
properties, i.e. they tightly couple observed behaviour with one’s own perfor-
mance. For instance, in monkeys cells discharge when an experimenter places
food in front of the monkey and when the monkey reaches for it [28]. More
recently, mirror neurons have received much scientific interest since they do
not just mirror observed physical behaviour, but purposeful action. Hence, they
support understanding others to be like oneself. Furthermore, it was shown that
mirror neurons are not just receptive to the teleological structure of an action,
but also to the style or manner of the action in which the goal is achieved [29].
Although mirror neurons were first discovered in the brain area F5 of the ven-
tral premotor cortex of monkeys, there is strong evidence for their existence in
humans [28,29,30]. Even more striking is that area F5 in monkeys is homologous
to Broca’s area in humans, a part of the brain associated with linguistic ability
and verbal communication [29,31].

In mother-infant interactions, it has been argued that the mirror system is
a necessary though not sufficient condition for imitation [30]. From an early
age on children perceive intentions of their mother. In their ability to imitate
behaviour, an ability in which humans differ from monkeys and other primates
[19], children directly perceive the other without consciously inferring what the
mother’s goals are. Direct perception in social interaction is facilitated through
an intermodal bridge between observing the other and enacting what the other
does. Perception of others and motor action are nonseparably mapped through
the underlying mirror system [30,10].

3 Sharing Intentions

Infants responsiveness to facial expressions, gestures or sounds and their ability
to imitate is not based upon inference, analogy or simulation. It is the direct
perception of others and the intentional potentialities of their own body that
facilitates understanding others as animate beings like themselves [11]. Mirror
neurons are supportive of this view since they provide an intermodal and non-
separable link between action and perception. In the following, we develop a
formal model of the concepts introduced in the previous section. We start with
the notion of intentionality following the phenomenological tradition of Edmund
Husserl [32,9,33].

3.1 Intentionality

According to Husserl, human experience is intentional, i.e. it aims toward some-
thing beyond itself. This means that every experienced phenomenon is about,
or of something, i.e. it is directed. For instance, the infant’s perception of its
mother or the mother’s imagination of her child’s well being are intentionally
directed experiences. Moreover, intending something is always accompanied by
certain flavours such as bodily sensations or moods but also communal norms,
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conventions and historical traditions. For instance, the infant might be hungry
while perceiving its mother or the mother might be depressed while imagin-
ing her child being sick. Those constituents of experience are not directed and
thus open. According to Husserl, many of such presupposed meanings are tacitly
taken over from our culture and belong to the so-called lifeworld (Lebenswelt).

Directedness. Intentional experiences are directed though not necessarily to-
ward an object that is explicitely distinguished. For instance, the mother can
directly perceive her infant as being her child or she can deliberately reason
about the amount of time the child kept sleeping last night. No matter what
degree of awareness, directed experience is inherently temporal and has a cor-
relational structure. This structure inseparably connects intentional act (noesis)
and sense or appearance of an object (noema). Noemata correspond to all antic-
ipations we have about, or of, an object. For instance, in perceiving her infant
the mother presupposes it to be her child. She does not explicitely judge but
rather implicitly anticipates the senses which constitute the relationship to her
child. Noesis is the way or mode in which this anticipation takes place or unfolds.
It discloses the noemata of an object in time and so gives meaning to it. For
instance, if the mother sees her child crying, the mode, or way she anticipates
her child changes toward a stronger bodily tension [4].

Let B = {|0〉, |1〉} be the orthonormal basis of an intentional object. The
orthonormal basis generates a vector space. Each vector represents a possible
noema, sense or meaning in that space and can be written as a linear combination
of orthogonal vectors. Let an intentional object be:

|p〉 = a1|0〉 + a2|1〉 (1)

where |a1|2+ |a2|2 = 1. Noemata correspond to all anticipated senses of an inten-
tional object while being inseparably connected to the way an object is disclosed.
For instance, consider an infant’s awareness of its mother as a superposition or
anticipation of senses. The basis vector |0〉 stands for the primordial sense ‘do
not expect reaction’, whereas |1〉 represents ‘expect reaction’. As discussed in
the previous section, perceiving others is not believing, thinking or reasoning. It
is more to be drawn to do something, a tension that the body aims to reduce
and where we do not pay attention to the anticipation itself [11,21]. Let the
probability of noesis to disclose noemata be defined as:

P (|0〉) = |a1|2 and P (|1〉) = |a2|2 (2)

Noeses represent the degree of bodily tension or anticipation. For instance,
the infant can have a strong or weak bodily tension towards its mother. Acts
exhibit a certain probability P and unavoidably disturb the intentional object
leaving it in a state |0〉 or |1〉 determined by the outcome.

Openness. Open intentionality corresponds to Husserl’s lifeworld (Lebenswelt)
[9]. The lifeworld is always and already pregiven or presupposed and presents
directed experience in a certain light. For instance, bodily sensations such as
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pain, moods such as happiness, or absorbed skillful activities such as driving
and dancing are open, prepredicative and complement directed activities. They
only take on an object-directed structure in moments of breakdowns, e.g. I attend
to my hurting knee or the strange engine sound. Hence, open intentionality is
subpersonal but can potentially be brought to awareness. It forms the horizon or
ground of all our activities. Husserl considers intersubjectivity as crucial for the
generation and transformation of this presupposed horizon [9]. In the next section
we will formalize what happens if an infant’s directedness towards its mother
and vice versa becomes embodied or internalized and so a part of the lifeworld.
Anticipations can become entangled and thus they can not be separated into
directed intentionalities of either mother or infant.

3.2 Shared Intentionality

If mother and infant interact their intentionalities are directed towards each
other. Vector |p1〉 represents the mother’s awareness of her infant. |p2〉 represents
the infant’s awareness of its mother.

|p1〉 = a1|0〉 + a2|1〉 and |p2〉 = b1|0〉 + b2|1〉 (3)

where |a1|2 + |a2|2 = 1 and |b1|2 + |b2|2 = 1. Vectors |p1〉 and |p2〉 have a tension
towards each other. To make this clear, we define shared intentionality as a
larger combined vector space. Here, S = BM ⊗BI = {|00〉, |01〉, |10〉, |11〉} is the
basis of mother and infant. In this combined space, shared senses |ψ〉 can be
generated.

|ψ〉 = |p1〉 ⊗ |p2〉 (4)
= (a1|0〉 + a2|1〉) ⊗ (b1|0〉 + b2|1〉)
= a1b1|00〉 + a2b1|10〉 + a1b2|01〉 + a2b2|11〉

where |a1b1|2 + |a2b1|2 + |a1b2|2 + |a2b2|2 = 1. However, experiments have shown
that an infant’s anticipation of its mother is not the crucial point [5]. Infant
and mother rely on each other to behave responsively in order to sustain their
involvement in interaction [34,6]. Two-month-old infants are able to sustain in-
teraction with their mothers via a live double video link. However, when they
are shown recordings of their mothers, they do not coordinate with the unre-
sponsive recording but become distressed and removed. More important is the
ongoing anticipation of the mother. The infant performs some actions and an-
ticipates the mother’s reactions reflecting the infant’s actions and vice versa, i.e.
the mother’s anticipation of the infant’s reactions. Sustained social interactions
can only be established when these anticipations are mutual and dynamic [35].
Therefore, intentionalities of mother and infant can not be separated and should
be represented as an entangled or nonseparable state.

|ψ〉 = x|00〉 + y|11〉 (5)

If |ψ〉 is entangled, there is no |p1〉 and |p2〉 such that |ψ〉 = |p1〉⊗ |p2〉. Since |ψ〉
is not separable into directed intentionalities of mother and infant, it requires
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both having access to it and thus |ψ〉 is open. Anticipations of mother and infant
(4) evolve towards undirected intersubjectivity (5) which becomes part of the
presupposed lifeworld of mother and infant. Crucial is the ongoing interaction
that sustains mother’s and infant’s directedness toward each other. This process
does not only emerge from the mutual anticipation of mother and infant, it also
shapes the lifeworld of both as shared intentionality becomes internalized and
embodied. Hence, individual intentionalities can not be defined independently
of the emerging interaction process and the entangled social system can not
be defined independently of the single agents. Shared intentional states (5) and
directed intentional states of the individuals (1) co-emerge by co-enacting each
other [20,22]. Therefore, senses or appearances of an agent, so far represented as
state vectors, depend on shared intentional states as much as shared appearances
rely on senses of the individual agents. To make this more precise, we need to
have a look at shared intentionality evolving in time. Let the time evolution of
mother’s and infant’s directed intentionality be defined as:

UM = eiA1t and UI = eiA2t (6)

The time evolution consists of the exponentiation operation e, a self-adjoint
operator A and a time parameter t. Similar to intentional objects (4), time
evolutions of two or more agents can be combined by using the tensor product.
The only difference is that combined evolutions are products of tensor-product
evolutions and not superpositions of tensor-product evolutions [17].

UM+I = eiA1+2t

= ei(a1b1ρ1+a2b1ρ2+a1b2ρ3+a2b2ρ4)t (7)

= eia1b1ρ1teia2b1ρ2teia1b2ρ3teia2b2ρ4t

Since our claim is that agents evolve from the background of an always and
already pregiven intersubjective lifeworld, states or senses of intentional objects
are now represented as density operators ρ; senses are always and already inter-
subjective and thus combined1. The density operators ρ1−4 represent the basis
vectors in S and thus the state vectors or senses of BM and BI . The evolution
equation can be written as a product because the members of S, i.e. the basis
states of mother and infant, are mutually commuting. From a mathematical point
of view UM+I derives from the basis states in S. However, experiments reveal
that mother-infant interactions are mutual and dynamic. Therefore, time evo-
lutions UM and UI of the density operators representing mother and infant can
not be characterized independently of UM+I . For instance, consider the mother’s
awareness of her infant while perceiving her child as a density operator2:
1 In this way we can represent both experiences being intersubjectively open and

thus nonseparable (e.g. perceiving someone as being there for, or accessible to, me
and others) and intentional objects appearing as distinct and thus separable (e.g.
perceiving someone as being transcendent and thus distinct from me and others) [8].

2 Note that senses, now represented as density operators, derive from the dynamic
co-emergence [17]. Senses are transcendental or inexhaustible [36,22].
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ρ = Tr(ρ(t)) (8)

= a1(t)|0〉〈0| + a2(t)|1〉〈1|
where a1(t) = |〈0(t)0|ψ〉|2 and a2(t) = |〈1(t)1|ψ〉|2. If, from her first-person
perspective, the mother does not expect her infant to react at time t, then
|0(t)〉 = UM (t)|0〉 and if she expects a reaction, then |1(t)〉 = UM (t)|1〉. Al-
though social perceptions are intersubjective and thus open, agents are not al-
ways involved in sustained face-to-face interactions. If the mother perceives her
child sleeping, her directed experience does not rely on the infant reacting to
her perceptions. In this case, UM and UI are separated and perceiving her child
sleeping depends on the mother’s private experience at each instant of time
(a1(t) and a2(t)). Nevertheless, her experience is intersubjectively constituted
and thus there is a suppositional reference to nonseparable states |ψ〉. If the
unitary evolution of mother and infant is separable, ψ is presupposed and not
needed at each instant of time to describe their combined evolutions; there is no
mutual face-to-face encounter. However, as experiments have shown, if mother-
infant expectations are mutual and dynamic, UM+I(t) (7) is nonseparable, i.e.
it can not be factorized into the tensor product UM (t) ⊗ UI(t). Consequently,
nonseparable states dynamically emerge from mutual anticipations and can not
be defined independently of mother and infant. Hence, expectation values of
senses to be disclosed from the first-person perspective of mother and infant
also rely on shared senses at each instant of time. Therefore, a1(t) = |〈00|ψ(t)〉|2
and a2(t) = |〈11|ψ(t)〉|2. Compared to shared intentional states (5), the ongo-
ing interaction between mother and infant, i.e. the nonseparable time evolution,
provides a higher degree of nonseparability since the nonseparable state |ψ〉 is
needed at each instant of time to describe the evolution of mother’s and infant’s
directed intentionality towards each other. Shared intentional states emerge from
social interactions but also submerge or modulate individual agents. Subjectivi-
ties of both mother and infant move quite literally as a whole. In the remainder
we will consider the possibility of this nonseparability of shared intentionality
being not only relevant to face-to-face encounters but also to intentionality-to-
lifeworld relations in general.

4 Discussion

In this section we discuss shared intentionality from a phenomenological per-
spective. Intersubjectivity or shared intentionality is considered as a constitutive
aspect of phenomenal experience. An agent’s experience is analysed in terms of
conditions of possibility for manifestation. In other words, we examine the role
of intersubjectivity as a condition for animate beings and inanimate objects to
become manifest in experience. We divide our discussion of intersubjectivity in
two parts. Firstly, we look at face-to-face encounters like the mother-infant in-
teraction presented in the previous section (empathy). Secondly, we examine the
disclosure or manifestation of intentional objects precisely as being there for,
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or accessible, to others (co-subjectivity). We will argue that both dimensions of
intersubjectivity can be understood under the umbrella of shared intentionality
as developed in the previous section.

4.1 Empathy

One of the core problems of phenomenological intersubjectivity is the question
of how we can have access to other minds [37]. In particular, one of the most
intriguing questions is the relation between empathy, the experience of otherness,
and our existence in a common or shared world. We shall focus on empathy first.
Empathy is a form of social perception enacted in face-to-face encounters and
directed toward the experience of the other. Contrary to the argument from
analogy3, empathy is inherently active, direct and non-inferential (cf. section 2).
Therefore, perceiving others is not attributing internal mental states inferred
from observed external behaviour rather behaviour as perceived is expressive.
According to Scheler (1954), expressive behaviour is neither perceived as a mere
body nor as a hidden psyche but as a unified whole [12]. Furthermore, perceiving
others as animate beings is different from perceiving physical objects. The other
is given as bodily present or as a lived body (Leib) and not just as a transcendent
object (Körper).

As defined in section 3, empathy is an intentional act that is directed towards
the other’s lived experiences. In this dynamic process, subjectivity of the other is
disclosed from the second-person perspective. The second-person perspective is
one’s own open lived experience directed toward the open and directed lived ex-
perience of the other. Obviously, this nonseparability of first-person perspective
and second-person view is reminiscent of the nonseparability of shared intention-
ality as introduced in the previous section. Crucially, empathy is not a multi-
stage process where one observes mere external behaviour (behaviourism) and
then adopts a theoretical stance to infer or compute the internal mental state
of the other (cognitivism). As Heiddegger points out, grasping mental states of
others is the exception rather than the rule. Under normal circumstances we un-
derstand each other well enough through our shared engagement in the common
world [38]. This preflecitve otherness (alterity) accompanying everyday social
encounters is often called primary intersubjectivity [39].

Moreover, social interaction extends toward secondary intersubjectivity [40]
or the ability to share attention and intention. Here, interacting partners do
not only relate to each other but refer to objects and events around them. In
such triadic situations, agents learn to understand other’s intention by means of
other’s expressive and contextualized behaviour. For instance, gaze-monitoring
indicates that agents seek to verify the attention of the other towards the same
thing, e.g. a hammer lying on a table, as well as to validate whether their inten-
tion is understood and thus shared. Hence, intersubjectivity in social perceptions
is not always exclusively directed towards others but often mediated through the

3 According to the argument from analogy, I infer by analogy that observed behaviour
of foreign bodies is associated with experiences similar to those I have myself.
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pragmatic circumstances of our encounters. For instance, when perceiving a ham-
mer and nails, I see those tools as affordances or possible uses which were essen-
tially learned in an intersubjective and pragmatic context. Likewise, perceiving
other agents is pragmatic and context-dependent. Here, affordances are possible
intentions associated with the perception of the other embedded or situated in
pragmatic contexual situations, e.g. I perceive my friend as someone who is an
expert with tools like hammers and nails.

From a developmental perspective, Tomasello (1999) has proposed that we
gradually develop our understanding of others starting from (1) animate beings
(from birth onwards) over (2) intentional agents (9-12 months) to (3) mental
agents (4-5 years) [2]. In the first stage, children solely empathize by perceiv-
ing expressive behaviour and so they can distinguish animate from inanimate
beings. Approaching their first year of life, expressive behaviour is increasingly
experienced as goal-directed and context-dependent. Phenomena such as gaze-
following, joint attention, shared engagement and imitative learning are indi-
cators for children being able to see others as intentional agents. Apparently,
these stages correspond to primary intersubjectivity and secondary intersubjec-
tivity. The third stage essentially derives from social interactions in the previous
stages. To understand others as mental agents requires to understand that oth-
ers have beliefs and thoughts differing from one’s own thoughts and beliefs.
Children need to engage in discourses in which diverging perspectives emerge,
e.g. disagreements, misunderstandings or requests for clarification. Importantly,
understanding others as mental agents requires primary and secondary inter-
subjectivity upon which narrative competency and skilful practical reasoning
develops [41]. However, narrative and practical reasoning skills do not involve
reference to unobservable, abstract and general entities as postulated by some
kind of theory of mind, e.g. TT. Rather such skills are grounded in observable
events that take place in the world. The concrete and particular context is of
primary importance for the determination of meaning [42].

In summary, children flourish starting with undifferentiated self-other rela-
tions or empathetic face-to-face encounters. From there, they engage in triadic
communications laying the groundwork for experiencing others as situated and
intentional beings. Eventually, children derive belief systems from language-
use. Obviously, this presupposes the social community the child is a part of.
Moreover, the community itself embodies conventionalized conceptual structure
derived from language use. Therefore, even beyond our development in child-
hood, there is an always and already pregiven co-subjectivity, an anonynmous
being-with-others, that is characteristic of intersubjectivity though different from
empathy.

4.2 Co-subjectivity

Empathy can be considered as a subtle form of intersubjectivity according to
which an agent directly perceives expressive behaviour of other animate beings.
However, the other’s expressive behaviour is never isolated or separated. There
is always and already a shared or common ground that influences how behaviour
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is perceived. Therefore, empathetically relating to others never requires a the-
oretical understanding, or model, of someone else’s mind rather behaviour is
expressive in the sense that a common lifeworld affords me to perceive certain
shared aspects tuning the expressiveness of other’s behaviour. As Husserl points
out, I have been together with others for as long as I can remember, and my
understanding and interpretation are, therefore, structured in accordance with
intersubjectively handed-down forms of apperception [33]. Obviously, drawing
from communal norms, social conventions and historical traditions does not
only structure how we empathize and perceive other social beings but shapes
our intentional relation to the world, including inanimate things and abstract
objects alike. For instance, when visually perceiving an object, e.g. a glass of red
wine, the impoverished sense data on my retina does not cause me to internally
reconstruct or represent the external object. The object is actively explored as a
function of my body movement, a prereflective sensorimotor grasp, where quali-
ties like shape and color of the glass are directly perceived rather than internally
represented. We visually experience the world to be rich in detail not because we
must represent all that detail inside our heads at any given moment, but because
we have constant access to the presence and detail of the world, and we know
how to make use of this access [23]. In this way profiles hidden from view, e.g.
the backside of the glass, are brought to awareness. Phenomenologically speak-
ing, the glass is precisely given in experiences as being there for or accessible
to others. As Zahavi (2006) puts it, subjects intentionally direct toward objects
whose giveness in experience bears witness to their openness for other subjects
[37]. Husserl was quite clear about the intersubjective or co-subjective nature of
experience. According to his analysis, everything objective that stands before me
in experience and primarily in perception has an apperceptive horizon of possi-
ble experiences. Every appearance that I have is from the very beginning a part
of an open endless, but not explicitely realized totality of possible appearances
of the same, and the subjectivity belonging to this experience is open intersub-
jectivity [9]. Hence, appearances or senses are transcendental or inexhaustible
(cf. equation 8). Consequently, even prior to empathetic interactions with other
social beings, intersubjectivity is already present as co-subjectivity.

What is the relation between empathy and co-subjectivity? According to our
model as developed in the previous section, emapthy and co-subjectivity are
not separable. Empathy essentially refers to the co-directed intentionality that
entangles with the pregiven co-subjectivity of the lifeworld. The most obvious
form of empathetic relations is the sustained involvement in mutual anticipa-
tions. In our example, mother and infant empathize by continuously anticipat-
ing the other’s directed awareness. The nonseparable time evolution that governs
the co-emergence of the interaction and modulation process literally moves as a
whole when the mother’s co-subjectivity (i.e. her intersubjectively handed-down
forms of apperception) entangles with the subjectivity of the child. Presumably,
shared intentionality is an important ontogenetic and phylogenetic process that
shapes human consciousness. Neither empathy nor co-subjectivity derive from
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one another, rather empathy and co-subjectivity go hand-in-hand, they dynam-
ically co-emerge in time.

5 Conclusion and Future Work

Intersubjectivity is a necessary condition for self and language to unfold. It de-
velops in early ontogenetic life when interactions between mother and infant
mutually shape their relatedness. We presented a model of shared intentionality
that represents intersubjectivity as nonseparable or entangled states of an on-
going process of mutual anticipation. Entanglement is a phenomenon that only
arises in quantum mechanics. Hence, a quantum model is necessary. It is the
sustained involvement in interaction that leads to entangled and shared inten-
tional states. These states are not separable and thus they are not reducible to
directed intentionalities of either mother or infant. Moreover, it is the ongoing
interaction between mother and infant that is neither reducible to subjectivity
of mother nor to subjectivity of infant.

Generally, empathic skills facilitate the understanding of expressive behaviour
in others. In addition, empathic skills lay the groundwork for sharing attention
and intention and imitative learning, as well as linguistic abilities such as narra-
tive and practical reasoning competencies. Once internalized and embodied, the
shared intentional states involved in all of these social skills become essentially
part of the lifeworld. The already and always pregiven lifeworld presupposes how
objects including other subjects are disclosed in experience and in this way it
presupposes noemata co-constituted by other subjects.

Despite this not being obvious from a näıve realist point of view, closer phe-
nomenological examinations reveal experience including perception to be essen-
tially intersubjective. From a first-person perspective, all observed phenomena,
whether physical or not, are private. However, there are objects and events to
which there is public access. These public phenomena are not transcendent in
any subject-independent sense. They are objective precisely in the sense of open
intersubjectivity as introduced in this paper. Essentially, there is no necessity for
maintaining the dualism of subjectivity and objectivity since intersubjectivity
or shared intentionality mediates the latter and includes the former [8]. This
understanding of shared intentionality is further strengthened by recent findings
in developmental psychology and neuroscience.

Departing from our proposed notion of shared intentionality and its nonsep-
arable nature, future work will investigate how individual intentionalities are
transformed and even generated in social interactions. Furthermore, one of the
most interesting questions is how such an account deals with failures in everyday
social encounters. If breakdowns are mediated by the interaction process itself
what are the consequences for understanding miscommunication?
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Abstract. Semantic Space models, which provide a numerical repre-
sentation of words’ meaning extracted from corpus of documents, have
been formalized in terms of Hermitian operators over real valued Hilbert
spaces by Bruza et al. [1]. The collapse of a word into a particular mean-
ing has been investigated applying the notion of quantum collapse of
superpositional states [2]. While the semantic association between words
in a Semantic Space can be computed by means of the Minkowski dis-
tance [3] or the cosine of the angle between the vector representation of
each pair of words, a new procedure is needed in order to establish re-
lations between two or more Semantic Spaces. We address the question:
how can the distance between different1 Semantic Spaces be computed?
By representing each Semantic Space as a subspace of a more general
Hilbert space, the relationship between Semantic Spaces can be com-
puted by means of the subspace distance. Such distance needs to take
into account the difference in the dimensions between subspaces. The
availability of a distance for comparing different Semantic Subspaces
would enable to achieve a deeper understanding about the geometry of
Semantic Spaces which would possibly translate into better effectiveness
in Information Retrieval tasks.

1 Introduction

Semantic Space techniques map words in a high dimensional vector space [4].
The map is usually built by computing lexical co–occurrences between words
appearing in the same context where each vector is assigned to a word and
represents the co–occurrences between the word and others. In this work, we
consider a particular instance of a Semantic Space, the Hyperspace Analogue to
Language (HAL). The HAL space is created through the co–occurrence statistics
within a corpus of documents. This space has been used as a representation
model of semantic memory [5] and has been shown to be compatible with human
reasoning in cognitive science [6]. Within the area of Information Retrieval, HAL
has been used to perform information inference for query expansion [7].

1 We refer to different Spaces, not different instances of the same space, i. e. the same
space rescaled.

P. Bruza et al. (Eds.): QI 2009, LNAI 5494, pp. 225–236, 2009.
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In Semantic Spaces (like HAL) words (or concepts [8]) are represented by
points in a high dimensional vector space: their position in the space is related to
their meaning and inter–relationships. The former can be inferred by examining
the components of the high dimensional vector associated with a word, while the
latter can be exploited by a similarity measurement between word vectors. For
example, in [3] the authors propose adopting the Minkowski distance, defined
with respect to two vectors ui and vi of the Semantic Space as:

dM = r

√∑
(|ui − vi|)r (1)

Comparing the word vectors is one way to derive meaning from the Semantic
Space. An alternative is to compare subspaces of documents, or sets of docu-
ments. While Semantic Spaces provide a representation of knowledge generated
from a sample of text, a problem arises when we consider two or more Semantic
Spaces that have been generated from independent samples of text. Specifically,
how do we compare one Semantic Space with another? Once again, the simplest
solution is to consider the distance between the representation of the same word
vector in the two Semantic Spaces, using for example the Minkowski distance.
However, this näıve treatment may be inappropriate, because different words
used in the same sense will not be compared. For example, cat and kitten are se-
mantically related in the context of the concept feline, and thus we would expect
them to share the same vector representation. However, when computing the dis-
tance in a näıve way we do not take into account such relationships. Then, if in
document d1 we refer to the concept of feline with the common word cat, while in
d2 we refer to the close concept but using the term kitten, we might not capture
the semantic relationship between the two documents. To avoid such problem,
we propose to compute the distance between Semantic Spaces not relying on
word–representation similarity, but on the more general subspace distance. The
subspace correspondent to a document or to a set of documents conveys the
meaning expressed by the text traces; comparing subspaces then would provide
a distance based on the meaning/topic area associated to the set as opposed to
the word level.

The paper continues as follow. In Section 2 we illustrate a formalization of
Semantic Spaces in terms of Quantum Theory (QT) as it has been introduced
in [2]. Moreover, we briefly present how to derive a numeric representation of a
Semantic Space from a corpus of documents. In Section 3, several measures to
compute the distance between subspaces are illustrated, guiding the reader to
the definition of a metric which allows comparisons between Semantic Subspaces.
Section 4 illustrates and discusses the preliminary experiments using subspace
distance. The paper concludes providing a discussion of the distance between
Semantic Subspaces, stating the objects of future investigations (Section 5).

2 Semantic Spaces: A Hilbert Space Representation

In the following, the formalization of Semantic Space in terms of Hilbert
spaces [2] is presented. Consider a n–dimensional (real valued) Hilbert space
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H , in which the inner product is represented by the Euclidean scalar product.
In the following we limit our focus at real valued Hilbert spaces, discarding the
analysis of complex valued spaces. Such a limitation is driven by the fact that
the spaces are built from statistical data from texts, which uses only real values.
Nevertheless, it is clear that complex numbers plays an important role in the
description of states of a QT systems [9]. Each dimension of the Hilbert space H
corresponds to a word in the vocabulary of a corpus of documents. The global
Semantic Space, i.e. the Semantic Space derived considering the whole corpus, is
denoted by Ŝ. The Semantic Space derived from document d of the considered
corpus is represented by Sd. Similarly the Semantic Space associated to a word
w belonging to the vocabulary V of the corpus is denoted by Sw. It is clear
that Ŝ is a subspace of the Hilbert space H since its vectors are instances of
the vectors in H ; in particular, Ŝ is a n—dimensional subspace. Similarly Sd is
a m–dimensional subspace of H . Note that the subspace relationship Sd ⊆ Ŝ
always holds.

We briefly illustrate the procedure to form the high dimensional matrix which
corresponds to the HAL representation of the corpus of documents2. A window
of text is passed over each document in the collection in order to capture co–
occurrences of words. The length of the window is set to l: a typical value of
l is 10; different values capture different levels of relationship between words.
Words that co–occur into a window do so with a strength inversely proportional
to the distance between the two co–occurring words. A thorough study which
investigates the most effective function for encoding the inverse proportional
weighting can be found in [10, Chapter 8.5]. By sliding the window over the
whole collection and recording the co–occurrence values, a co–occurrence matrix
A can be created. Since in our approach, as well as in [1,2,7], we are not interested
in the order of the co–occurrences, in contrast with the work of Gärdenfors [8],
therefore we can compute a symmetric matrix by means of Ŝ = A + AT , and
then normalise the columns.

A symmetric matrix obtained by the illustrated procedure is associated to
each subspace and is denoted with the same symbol assigned to the subspace: it
is clear from the use if it refers to the subspace itself or to its symmetric HAL
matrix. Note that subspace Sd can be defined as the range, or the complement
of the range, of matrix Sd. The symmetric matrices Ŝ and each Sd, Sw are
Hermitian linear operators. The following relations between the previous linear
operators hold:

Ŝ =
∑
d∈C

Sd, (2)

Ŝ =
∑
w∈V

Sw (3)

where C is a corpus of documents. In the rest of this paper the focus will be on
subspaces referring to document or set of documents.

2 The interested reader should refer to [3] for a complete investigation of the procedure.
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3 A Distance Measure between (HAL) Spaces

We aim to define a distance measure between Semantic Spaces, in order to be
able to geometrically compare Semantic Spaces generated by different sources of
evidence, i.e. compare subspaces formed with different subsets of documents.

Consider the general case of comparing the subspaces Sa and Sb derived by
different sets of documents (a more particular case is when the set D associated
to Sd contains only one document). We can associate to each subspace a n × n
projector operator P . Then the inner product between two subspaces of H is
the trace inner product for projection matrices:

〈Sa, Sb〉 = tr(P ∗
a Pb) = tr(PaPb) (4)

The appropriate candidate as distance between Semantic Subspaces has to
satisfy several characteristics. Firstly, it would be desirable that the measure
turns to be a metric. The inner product between two subspaces is not a metric:
the inner product of Pa with itself is maximal rather then minimal. Nonethe-
less, it represents a measure of the similarity between the two subspaces: it is
matter of fact that the measure proposed at the end of this Section employs
the inner product between projectors of subspaces. An additional constraint to
the measure has to be added. When comparing Semantic Subspaces, obtained
for example from two documents, it is not guaranteed that they have the same
number of dimensions, on the contrary it is frequently the case that the basis
for such subspaces differ remarkably. Thus, a right candidate to measure the
distance between two Semantic Subspaces should be able to capture differences
in the dimensions of the basis of the Semantic Subspaces. The angle between
the vectors of the subspaces is a key factor not only for the inner product be-
tween projectors, but for a whole family of measures based on the principal
(or minimal) angles.

Definition 1. For nonzero subspaces Sa and Sb ⊆ S, the principal angle between
Sa and Sb is defined as the number 0 ≤ θ ≤ π

2 that satisfies

cos θ = max
a∈Sa,b∈Sb,‖a‖=‖b‖=1

aT b (5)

The principal angle θ is 0 if and only if Sa ∩ Sb = 0, while θ = π
2 if and only if

Sa ⊥ Sb. It is worthwhile to reformulate definition 1 in terms of projectors; this
leads to the following theorem (where the proof is shown in [11]).

Theorem 1. If Pa and Pb are the orthogonal projectors onto Sa and Sb respec-
tively, then

cos θ = ‖PaPb‖ = ‖PbPa‖ (6)

These principle angles are related to the eigenvalues of PaPb: in fact, the first m
(where m is the minimum between the subspace dimensions of Sa and Sb) eigen-
values of PaPb are cos2 θ1, . . . , cos2 θm. We are however interested in comparing
subspaces which have different dimensions, i.e. they do not have the same basis
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dimension. Unfortunately, the behaviour of a measure based on the principle
angles is quite controversial if the subspaces have a different dimension. In fact,
the principal angles are defined just for the minimum between the subspace di-
mensions: thus the measure does not take into consideration all the dimensions
of both subspaces. For example, consider two subspaces: Sa of dimension p, Sb

of dimension r such that r ≥ p. Subspace Sb is built such that its first p basis
vectors are the same of Sa, while the other r − p basis vectors are arbitrarily
constructed. Consider the geodesic distance [12] as measure based on principal
angles; the measure is defined by:

Definition 2. Let Sa and Sb be two subspaces and θ1, . . . , θm be the m principal
angles between Sa and Sb (where m is the dimension of the smallest subspace).
The geodesic distance between Sa and Sb is

dg(Sa, Sb) =
√

θ2
1 + . . . + θ2

m (7)

If Sa and Sb are constructed as illustrated before, then the geodesic distance
between Sa and itself will be 0 since each θi is zero implying that Sa ≡ Sa.
However, when measuring the distance between Sa and Sb based on principal
angles, we find that all the p angles that are computed are equal to the null angle
0, since Sb shares p basis vectors with Sa. Thus, the measure does not take into
account the r − p basis vectors of Sb that are not shared with Sa.

A distance measure based on the principal angles between subspaces, such
as the geodesic distance, is then significant if and only if the subspaces have
the same dimensions: this is unlikely to be the case when comparing different
Semantic Spaces. We refer to such problem as the Zero Distance Problem: the
bigger the difference in the number of dimensions of the two subspaces, the
greater the extent of the problem since the number of discarded dimensions in
the computation of the distance grows. Measures based on the principal angles,
such as the geodesic distance, are generally affected by the Zero Distance Prob-
lem: the solution to the problem passes through the chordal distance [13], a
monotonic function of the inner product.

Definition 3. The chordal Grassmannian distance between two subspaces Sa

and Sb is given by means of the associated projectors Pa and Pb by

dc(Pa, Pb) =
√

m − tr(PaPb) (8)

As for the previous measures, also in the case of the chordal distance a differ-
ence in the dimensionality of the subspaces Sa and Sb is only partially taken into
account: in fact the product PaPb depends on the degree of association (or sim-
ilarity) between the two subspaces, comparing each dimension, but the number
m in equation 8 refers to the dimension of the subspaces Sa and Sb, thus needing
to be of the same dimension. Anyway, the chordal distance opens the path to
the definition of a distance that is not restricted by the dimensionality of the
subspaces to be compared. The first step is to introduce the Hausdorff distance
which measures the distance between two compact subsets of the space. In our
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case, we consider the L2–Hausdorff distance between a vector ui and a subspace
V which is expressed by dH(ui, V ) = min||ui − v||, where v ∈ V and ||.|| is
the Euclidean norm. We now have to consider the subspace distance between
subspaces of the same dimension proposed in [14].

Definition 4. The subspace distance ds(Sa, Sb) for two p–dimensional sub-
spaces Sa and Sb is defined as

ds(Sa, Sb) =

√√√√ p∑
i=1

d2
H(ui, Sb) (9)

where

1. u1, . . . ,ui, . . . ,up is an orthonormal basis for Sa, and
2. dH(ui, Sb) is the Hausdorff distance from the end point of the basis vector

ui to subspace Sb.

Such distance has been extended to the case where the subspaces have different
dimensions. Let v1, . . . ,vi, . . . ,vr be an orthonormal basis for Sb, then

Definition 5. The subspace distance ds(Sa, Sb) between the p–dimensional sub-
spaces Sa and the r–dimensional subspace Sb is defined as

ds(Sa, Sb) =

√√√√max (p, r) −
p∑

i=1

r∑
j=1

(ui
T vj)2 (10)

The introduced distance has several properties. In primis, it is invariant to the
choice of the orthonormal basis for the subspaces Sa and Sb. Furthermore, it is
symmetric and not negative, in particular ds(Sa, Sb) = 0 if and only if Sa ≡ Sb.
The upper bound for the subspace distance is given by ds(Sa, Sb) ≤

√
max (p, r)

and corresponds to the orthogonality condition Sa ⊥ Sb. Finally, as proved in
[15], the subspace distance satisfies the triangle inequality, and thus it is a proper
metric defined on subspaces.

The next step is to express the subspace distance in terms of projector opera-
tors, and thus finding a relationship with the chordal distance. As demonstrated
in [16], equation 10 can be re-written as:

ds(Sa, Sb) =

√
1
2
tr
[
(Λp − Λr)2 + (SaST

a − SbST
b )2
]

(11)

where Λi = diag(1, . . . , 1, 0, . . . , 0) is a diagonal matrix with i 1’s and n − i 0’s
elements and Sa, Sb are the symmetric HAL matrices associated to the corre-
sponding subspaces. With some algebraic calculation and since the matrix prod-
ucts SaST

a and SbS
T
b are the projectors Pa and Pb respectively, the subspace

distance can be stated as:

ds(Sa, Sb) =
√

max (p, r) − tr(PaPb) (12)
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The proposed subspace distance might be employed to compute the distance
between Semantic Subspaces, aiming to obtain a more precise measurement of
separation than using a näıve distance based on comparison between single word
representations, e.g. the Minkowski distance.

Comparing equation 12 and 8, both formulating the chordal distance between
two subspaces, it appears clear the strong relationship between the two distances,
differing in taking into account the maximum of the subspace dimensions.

Each rank d projector represent a basis of a Hilbert subspace and can be
regarded as a d–(hyper)plane: this provides an embedding of the Grassmannian
of d–plane into a flat vector space. Thus, the rank d projector will sit on a sphere
in this flat space, more precisely it will be point on the surface of a sphere, and its
Euclidian distance provides us with a chordal distance between projectors. The
chordal distance has been successfully used to study the packing problems for
n–planes, where the aim is to find a set of hyper-planes such that the minimum
distance between each pair of planes in the set is as large as possible [17]. Since
the chordal distance provides a natural measure of the distance between bases of
the same rank in a Hilbert spaces, it has been used to detect Mutually Unbiased
Bases (MUB) [18], i.e. bases which spans planes totally orthogonal between them.
This condition is reached when the chordal distance between the two bases is
maximum.

Previous research in QT focused on the derivation of a suitable measure to
judge the distance between quantum states of different preparations. Such a mea-
sure can be used to characterize the degree of distinguishability between states
(and related preparations). In fact, because of the statistical error introduced
when measuring frequencies of possible outcomes for a finite ensemble of iden-
tically prepared systems, it is generally difficult to distinguish between prepara-
tions that slightly differ [19]. The measure thus is used to judge the degree of
separation between states. This is the underlying idea of the statistical distance
between quantum preparations presented in [19], and is determined entirely by
statistical fluctuations. However, it turns out that the statistical distance pro-
vides an identical result to the measure of the angle between rays in a Hilbert
space associated with the pure quantum states of the preparations. Comput-
ing the distance between Semantic Space representations of a word (in terms of
HAL subspaces) is similar to measuring the angle between the representative rays
spanned by the word in its Hilbert space representations. Another distance that
is related to the evaluation of the distinguishability of two quantum states is the
so called Bures distance [20]. It measures the distance of the associated density
operators ρ1 and ρ2 by the formula dB(ρ1, ρ2) =

√
2[1 − tr((ρ1/2

1 ρ2ρ
1/2
1 )1/2)]1/2.

The Bures distance has been interpreted as a generalization of transition prob-
abilities to mixed states [21].

4 Pilot Experiment

We conducted a pilot investigation in order to examine how well subspace
distance performs. In particular, we experimentally demonstrate that related
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documents are at a closer subspace distance between each other than not related
ones. As baseline for the comparison we employed the Minkowski distance with
r = 2 (Euclidian distance) between Semantic Space representations of words. In
the following we describe the details of the experiment, discussing how Semantic
Subspaces have been generated and in which terms we compare the subspace
distance against the baseline.

We employ a standard IR collection, namely WSJ 87–92, as source of docu-
ments used to generate the Semantic Subspaces. This collection has more than
170 thousand newspaper articles, containing over 226 thousand unique terms.
For the purpose of our pilot study we consider two subsets of document, R and
N . Set R contains only documents that have been judged relevant (by human
assessors) to a query q, while set N containing those documents judged as irrel-
evant to the same query, each query belonging to one of the TREC 1 topics. All
the documents have been processed through stop-word removal and stemming.

Two methods for generating the Semantic Spaces have been employed, both
inspired by the HAL paradigm. In both methods a window of text is passed over
the text. The window size is 11, 5 words on the left and 5 on the right of the target
word. We adopted an inverse proportional function to score the strength of co-
occurrences with the target word, i.e. closer the co-occurent term is to the target
word and higher is the score attributed to the pair. The only difference between
the two methods is represented by the text over which the window is passed.
The first method, which sticks to the definition of the generating procedure for
HAL, passes the window over all the text contained in a document. On the
contrary, the second method, which is partially inspired by [2] and [22], passes
the window over traces of text extracted from the document. Such traces are
extracted considering windows centered on target words. For each TREC 1 topic,
target words are extracted from the description of the topic itself. As well as the
documents, also the target words are pre-processed by matching against a stop-
word list and by stemming. From now on, we refer to this Semantic Subspace
generation method as HAL traces.

In tables 1 and 2, we report the preliminary results obtained by our study
using topic 51 of the WSJ 87–92 TREC collection. The values presented in ta-
ble 1 contains the average distance values obtained employing HAL traces, while
table 2 refers to the average distances calculated using the classic HAL represen-
tation. In both tables, the Euclidean distance has been calculated as the square
root of the squared difference between selected word representations associated
with two HAL spaces. The values obtained where then averaged among the
documents contained in the set and reported into the tables. Instead, for what
concern the subspace distance, the reported values refer to the average over the
correspondent set of documents of the following formula:

sims(Sa, Sb) = 1 −
√

max (p, r) −∑p
i=1
∑r

j=1(ui
T vj)2√

max (p, r)
(13)

which expresses the similarity (driven by the subspace distance) between sub-
spaces Sa and Sb. A value of this similarity close to 0 means that the two
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Table 1. Average distance between sets of relevant documents (R) and not relevant
documents (N) obtained by the subspace distance (Subspace in the table) and the
Euclidean distance (Euclidean) computed over subspaces generated by the HAL traces
paradigm

R N

Subspace Euclidean Subspace Euclidean
R 0.0376 ± 0.0116 9.3910 ± 4.6994 0.0182 ± 0.0072 6.7059 ± 5.5936
N 0.0182 ± 0.0072 6.7059 ± 5.5936 0.0386 ± 0.0093 3.3816 ± 2.0667

Table 2. Average distance between sets of relevant documents (R) and not relevant
documents (N) obtained by the subspace distance (Subspace in the table) and the
Euclidean distance (Euclidean) computed over subspaces generated by the traditional
HAL paradigm

R N

Subspace Euclidean Subspace Euclidean
R 0.1504 ± 0.0142 19.8121 ± 4.9445 0.0124 ± 0.0068 5.7710 ± 5.1289
N 0.0124 ± 0.0068 5.7710 ± 5.1289 0.1181 ± 0.0173 3.5376 ± 2.4407

subspaces are almost orthogonal, with sims(Sa, Sb) = 0 representing the case
Sa ⊥ Sb, while a value close to 1 represents high degree of similarity. Thus, the
two distances are not directly comparable. However, it is possible to understand
the behavior of the two measure in discriminating between relevant and not
relevant documents.

4.1 Discussion of the Preliminary Results

The results of the preliminary experiments reported in this paper refer to topic
51 of TREC 1. The results show that the subspace distance is able to discriminate
between subspaces associated with relevant documents and the ones generated
from non relevant documents. In fact, in accordance with the values reported for
the subspace distance, the degree of Semantic similarity between the non relevant
set of documents (labeled N) and the relevant set (labeled R) is lower (0.0182
for HAL traces, 0.0124 for classic HAL) than the similarity among occurrences
of relevant documents (HAL traces : 0.0376, classic HAL: 0.1504) or not relevant
documents (HAL traces : 0.0386, classic HAL: 0.1181). The same result is not
achieved by the Euclidean distance. For Semantic Subspaces generated by HAL
traces and by the traditional approach, the Euclidian distance between subspaces
belonging to R is higher than the accumulated average distance between R
subspaces and N ones.

From the tables is possible to evince that the subspace distance tends to
flatten the distance among subspaces to the range [0.9, 1.0], while the Euclidean
distance is able to provide a greater range of values, making easy to detect
significant differences between subspaces.
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Fig. 1. Frequencies distribution of pairwise subspace distances (a) and Euclidean dis-
tances (b) between subspaces belonging to the set of relevant documents (R) and the
non relevant (N) for topic 51. The subspace generation paradigm adopted is HAL
traces.

Fig. 1 illustrates the frequencies distribution of pairwise distance values (ob-
tained by the subspace distance (a) the Euclidean distance (b)) between Seman-
tic Subspaces generated using the paradigm HAL traces, although rather similar
figures are obtained when considering subspaces generated by the standard HAL
derivation. The figures can be interpreted as follow. Subspaces associated to rel-
evant documents (R) are on average at a closer subspace distance to each other
than to non relevant documents (N) (see Fig. 1 (a) ). using the Euclidean dis-
tance the separation between R and N is not as distinct. This suggests that the
subspace distance will be more effective in discriminating relevant documents
from non relevant.
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5 Conclusion and Future Work

In this work a distance based on the chordal distance has been introduced in
order to compare Semantic Subspaces constructed from subsets of a document
corpus. Our approach allows to compare directly two sets of documents though
their subspace distance, whereas [3] only deals with comparing a word and its
meaning. Geometrically, this corresponds in considering the projection of a sub-
space into another, rather than the intersection between two subspaces.

Future work will be directed towards applying the proposed measure in a
number of retrieval applications in order to determine its effectiveness.
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Abstract. An emerging topic in Quantuam Interaction is the use of lexical 
semantic spaces, as Hilbert spaces, to capture the meaning of words. There has 
been some initial evidence that the phenomenon of quantum entanglement 
exists in a semantic space and can potentially play a crucial role in determining 
the embeded semantics. In this paper, we propose to consider pure high-order 
entanglements that cannot be reduced to the compositional effect of lower-order 
ones, as an indicator of high-level semantic entities. To characterize the intrin-
sic order of entanglements and distinguish pure high-order entanglements from 
lower-order ones, we develop a set of methods in the framework of Information 
Geometry. Based on the developed methods, we propose an expanded vector 
space model that involves context-sensitive high-order information and aims at 
characterizing high-level retrieval contexts. Some initial ideas on applying the 
proposed methods in query expansion and text classification are also presented. 

Keywords: Information geometry, Pure high-order entanglement, Semantic 
emergence, Extended vector model. 

1   Introduction 

An emerging line of research in Quantum Interaction (QI) is on capturing the mean-
ing of words based on lexical semantic spaces (as Hilbert spaces) [13][14][17]. The 
intuition is that humans encountering a new concept often derive its meaning via  
the accumulative experience of contexts in which the concept appears. Therefore, the 
meaning of a word can be captured by examining its co-occurrence patterns with 
other words in the language use (e.g., a corpus of texts).  A typical semantic space 
model is the Hyperspace Analogue to Language (HAL) [15]. The semantic space 
models have demonstrated a cognitive compatibility with human information proc-
essing [15][16]. 

More formally, in this paper, we generalize a semantic space to a Hilbert space in-
duced by a set of words, in which all possible combinations of the words form  
the basis vectors. For example, given a word set W≡{Napoleon, invasion, Spain}, we 
have eight basis vectors 000 , 001 , , 111… , where the basis vector 001  stands for the 

occurrence of ‘Napoleon’ and the absence of ‘invasion’ and ‘Spain’. A pure state of 
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this semantic space can be written as 000 111000 111a a+ +… , where the linear combina-

tion coefficients ijka  meet the normalization condition 2 2

000 111 1a a+ + =… . In quantum 

mechanics, the squared norm of a linear combination coefficient is considered as the 
probability of the corresponding basis event observed. According to this interpreta-
tion, it is clear that we can readily recover the marginal probability of any word oc-
currence from a given pure state of the semantic space. For example, the marginal 
probability of the occurrence of the first word (Napoleon) can be given by 

2 2 2 2

100 101 110 111a a a a+ + + . In this sense, a pure state of the semantic space gives a more 

comprehensive description of the space than the conventional Vector Space Model 
(VSM or VM for short) [1]. 

A kind of quantum states of particular importance is the entangled state [2], in 
which the quantum states of two or more objects are dependent on each other so that 
one object can no longer be adequately described without a full mention of its coun-
terparts. Technically, several objects are entangled if the state of the compositional 
system cannot be expressed as the tensor of individual systems’ states. Recent study 
by Bruza el. al. revealed some initial evidence that the phenomenon of entanglement 
also exist in semantic spaces [12]. Then, the next fundamental research question arise: 
how to characterize and utilize the entanglements in semantic spaces? This is the very 
aim of this paper. We are particularly interested in the pure high-order1 entanglements 
in semantic spaces, i.e., high-order entanglements that cannot be reduced to the com-
positional effect of lower-order interactions, which often indicate the emergence of 
high-level semantic entities. 

For illustration, let us consider the example semantic space shown earlier. Given a 
pure state of this semantic space2,  

0.3296 000 0.0002 001 0.0900 010 0.0001 011ψ = + + +  

0.3000 100 0.0001 101 0.2000 110 0.0800 111+ + + +  

it is easy to check that ψ  cannot be expressed as the tensor of the pure state of its  

1-order subsystems, i.e., 

( ) ( ) ( )0 1 0 1 0 10 1 0 1 0 1x x y y z zψ ≠ + ⊗ + ⊗ +  

for arbitrary x0, x1, y0, y1, z0 and z1 meeting |x0|
2+|x1|

2=1, |y0|
2+|y1|

2=1 and |z0|
2+|z1|

2=1. 
Hence, we conclude that ψ  is an entangled state.  

In this paper, we focus on the pure high-order entanglement, i.e., the high-order en-
tanglement that cannot be expressed as the tensor of any lower-order systems that 
might be entangled too. For example, it is easy to check that the above ψ  cannot be 

expressed as the tensor of state vectors of any two subsystems, e.g., 

( ) ( )0 1 00 01 10 110 1 00 01 10 11u u v v v vψ = + ⊗ + + + , 

                                                           
1  In this paper, the “high-order entanglement” corresponds to the “multipartite entanglement” 

in Quantum Mechanics. 
2  Note that the coefficients of ψ  meet the normalization condition, i.e., 0.3296+0.0002+ 

0.0900+0.0001+0.3000+0.0001+0.2000+0.0800=1. 
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where |u0|
2+|u1|

2=1, |v00|
2+|v01|

2+|v10|
2+|v11|

2=1. In this case, we conclude that ψ  has a 

pure 3-order entanglement.  
The purpose of this paper is to characterize pure high-order entanglements and in-

vestigate their semantic implications in semantic spaces. To this end, there are two 
fundamental issues. One is how to measure entanglements, and the other is how to 
distinguish pure high-order entanglements from the compositional effect of lower-
order entanglements so that we can illuminate the semantic implication of pure high-
order entanglements by a computational method. 

For the first issue, there are several well-known statistics measuring 2-order  
entanglement of a pure state, e.g., Von Neumann entropy [2], relative entropy of en-
tanglement [3], robustness of entanglement [3] and squashed entanglement [3]. The 
measurement of high-order entanglement is more complicated. Some measures on 
high-order entanglement are derived by a direct generalization or a simple combina-
tion of 2-order measures, e.g., relative entropy of entanglement [3], robustness of 
entanglement [3] and global entanglement [3]. In addition, there are high-order entan-
glement measures that do not inherently depend on 2-order measures, e.g., Tangle [3] 
and Schmidt measure [3]. Although they are useful in general, most of the above 
statistics have some limitations in certain contexts. For example, many of these  
statistics cannot effectively distinguish pure high-order entanglements from the lower-
order ones. Although, based on the above statistics, a rather satisfactory understand-
ing has been achieved in the bipartite case, there is a certain degree of consensus that 
there is no universal way to define pure high-order entanglement, even in the simplest 
case of pure states [18, 19]. The existing pure high-order entanglement statistic often 
has to depend on some strong presupposition, e.g., symmetric Gaussianity [20]. 

The second issue requires a method which can not only measure pure high-order 
entanglements but also easily find or construct surrogate states so that we can investi-
gate their semantic implications exclusively. Here, a surrogate state refers to the state 
that shares the same (k-i)-order entanglements, where 0<i<k, with the original state 
but does not have pure k-order entanglement. Hence, by comparing the manifestation 
of the original state and the surrogate state in a proper context, e.g., information re-
trieval, we can evaluate the semantic implication of the pure k-order entanglement. In 
our opinion, the pure k-order entanglements are an important indicator of specific 
semantic entities. 

In this paper, we propose the use of Information Geometry (IG) [4][5] to character-
ize the pure high-order entanglements. IG provides useful tools and concepts for this 
purpose, including the orthogonality of coordinate parameters and the Pythagoras 
relation in the KL-divergence [6][7]. For example, based on parametric orthogonality, 
we can give a set of statistics and methods for analyzing word occurrence patterns by 
decomposing the word entanglements into various orders. As a result, pure 2-order, 3-
order, and higher-order entanglements are singled out.  

It should be emphasized that, owing to the lack of a proper quantum statistic, the 
proposed IG method in this paper is classical in itself. The usefulness of IG method in 
a quantum framework roots on the following observation: In a post-measurement 
configuration, the entanglement degenerates into the statistical dependence between 
the measurement results. Specifically, it can be shown that several objects are entan-
gled only if the corresponding random variables denoting the measurement results of 
these objects are statistically dependent on each other (see Subsection 2.1 for details). 
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Since the occurrence and co-occurrence patterns of words can be naturally explained 
as the measurement results of semantic spaces, we believe that the proposed IG 
method is sufficient for our purpose. 

2   Preliminaries of Information Geometry 

Information Geometry (IG) represents probabilistic distributions as parametric co-
ordinate systems, and hence could establish a connection between the properties of 
statistical distributions and some well-known notions in differential geometry to 
capture statistical dependencies from a geometric point of view. In this section, we 
will first discuss the connections between quantum entanglement and Information 
Geometry (IG), and then give a brief introduction to some relevant concepts and 
theorems from IG. Note that most theorems presented in Subsections 2.2, 2.3 and 
2.4 have been formally proved or implied by the pioneering work in IG, e.g., the 
work by Rao [8], Jeffreys [9] and Sun-Ichi Amari [4][5]. Here, we restate and inter-
pret them for our purpose in the context of semantic spaces, as their original expres-
sions are heavily dependent on the notions and symbols of differential geometry 
and are thus not easy to follow for readers without a strong mathematical  
background.  

2.1   On the Connection of Quantum Entanglements and Classical Dependences  

Although IG is expressed in a classical framework of probability theory and originally 
aims at characterizing classical interactions3, it can be naturally applied in the quan-
tum framework because of the intrinsic connection between quantum entanglements 
and statistical dependences. For illustration, let ψ  be a pure state of a two-qubit 

system A. Then ψ  can determine a joint distribution on the basis events of A. For 

instance, if 00 01 10 1100 01 10 11a a a aψ = + + + , then ψ  determines a joint distribution: 

{ }2 2 2 2

00 00 01 01 10 10 11 11, , ,P p a p a p a p aψ = = = = = . Let X|ψ> be the (classical) random vari-

able obeying the joint distribution P|ψ>. We call X|ψ> the denotative random variable 
induced from ψ , and denote the value of X|ψ> by xψ.  For example, if ψ = 10 , then 

xψ=10. The following proposition, which can be generalized to general cases of multi-
compositional systems, illuminates the equivalence between entanglements and statis-
tical dependences in the post-measurement configuration. 

Proposition 1. Let ψ  be a pure state of a quantum system A , { },B C  be a bipartition 

of A  such that A B C= ⊗ , and u  and v  be the pure states of B  and C respectively. 

Then, ( ) ( ) ( )Pr Pr Pru v u vu vu v iff X x x X x X xψψ = ⊗ = = = ⋅ =  where X ψ , uX  and 

vX  are denotative random variables induced from ψ , u  and v  respectively, and 

 stands for the conjunction of ux  and vx , e.g., if 01, 10u vx x= = , then 0110u vx x = . 

                                                           
3  In this paper, we use the term ‘interaction’ or ‘dependence’ to be the classical counterpart of 

the quantum entanglement. The connection between these notions is shown in Proposition 1. 
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Proof: Let 0...0 1...10...0 ... 1...1a aψ = + +  is a state vector of 2n-dimensional Hilbert 

space A , 0...0 1...10...0 ... 1...1u b b= + +  is a state vector of 'A s  2k-dimensional subspace 

B  and  0...0 1...10...0 ... 1...1v c c= + +  is a state vector of 'A s  2l-dimensional subspace A B− , 

where n k l= + .  

If u vψ = ⊗ , i.e.,  

0...0 1...10...0 ... 1...1a a+ + ( ) ( )0...0 1...1 0...0 1...10...0 ... 1...1 0...0 ... 1...1b b c c= + + ⊗ + +  

it turns out that 
1 1 1... ... ...n k k nx x x x x xa b c

+
= ⋅ for any { }1,..., 0,1nx x ∈ , i.e., the probability of a basis 

event 1,..., nx x  is equal to the product of probabilities of corresponding basis events in 

subsystems. Sufficiency follows directly from this observation.  
Assumes that denotative random variables induced by ψ , u  and v  satisfy 

( ) ( ) ( )Pr Pr Pru v u vu vX x x X x X xψ = = = ⋅ = . Based on the observation that 

( ) 2
Pr

u vu v x xX x x aψ = = , ( ) 2
Pr

uu xuX x b= =  and ( ) 2
Pr

vv xvX x c= = , it is easy to check the 

necessity. 
The main tenet of IG is that many important structures in probability theory and 

statistics can be treated as structures in differential geometry by regarding a space of 
probabilities as a differential manifold endowed with a Riemannian metric and a fam-
ily of affine connections [4]. In particular, IG provides a novel method to characterize 
pure high-order interactions among random variables. According to Proposition 1, IG 
is relevant to the task of entanglement identification in the post-measurement configu-
ration. Note that most current applications of semantic spaces are essentially in the 
post-measurement configuration. Hence we can directly investigate the entanglement 
in semantic spaces using IG. 

2.2   Statistical Manifold and Orthogonality 

We represent a co-occurrence pattern of words by a random vector with binary com-
ponents so that the joint distribution of co-occurrence can be exactly expanded by a 
log-linear model [10]. Let X≡[X1, X2,…, Xn]

T, Xi∈{0,1} be a n×1 random vector 
and let p≡p(x), x≡[x1, x2,…, xn]

T, xi∈{0,1} be its joint probability distribution. 
Each Xi indicates that the ith word is present (Xi =1) or absent (Xi =0).  

Each distribution p(x) is defined by 2n probabilities:  

{ } { }
1 11

1 1 , ,
Pr , , 0, 0,1 ,1 , 1

n nn
i i n n k i ii i

p X i X i i k n p≡ = = > ∈ ≤ ≤ =∑… ……
…  

Hence, the set of all distributions forms a (2n-1)-dimensional manifold Sn, where the 
subscript n of S denotes the number of random variables. Note that we require p(x)>0 for 
all x since the case of a various support set4 of p(x) poses rather significant difficulties for 
analysis. This requirement can be met by any common statistical smoothing method, e.g., 
Good-Turing estimator [11]. A direct coordinate system of Sn can be constructed by any 
2n-1 terms among p(x). We refer to this coordinate system as p-coordinates. 
                                                           
4  In mathematics, the support of a function is the set of points where the function is not zero, or 

the closure of that set. Here, the support set refers to the set of terms with nonzero probabilities. 



242 Y. Hou and D. Song 

Another coordinate system of Sn is given by the expectation parameters: 

[ ] [ ]12 1, 1, , ; ; ;i i ij i j n nE x i n E x x i j E x xη η η⎡ ⎤= = = < =⎣ ⎦… ，  (1) 

which have also 2n-1 components. This coordinate system is called η-coordinates. 
On the other hand, p(x) can be expanded by  

( ) 1 1log i i ij i j n ni i j
p x x x x xθ θ θ ψ

<
= + + + −∑ ∑x  (2) 

where ψ is the normalization term corresponding to ψ≡logp(0). It is easy to check that 
the formula (2) is an exact expansion since all xis are binary. In addition, if 
x=[0,…,0]T, we have logp(x)=logp(0). All θijks together have 2n-1 components and 
form the so-called θ-coordinates. 

To characterize pure high-order interactions, we first introduce Riemannian metric 
tensor which is derived from the Fisher information and orthogonality. We will first 
give their mathematical definitions in general and then illuminate their meaning in a 
specific context. 

Definition 1 (Fisher Information and Riemannian metric tensor). Given a prob-
ability distributions p(x;ξ) parameterized by ξ≡[ξ1,…,ξn]

T
∈Ξ, the Fisher information 

of two coordinate parameters ξi and ξj is defined by 

( ) ( ) ( ) ( ) ( ); ;ij i jg E l lξ ξ⎡ ⎤≡ ∂ ∂ ⋅ ∂ ∂⎣ ⎦ξ x ξ x ξ  (3) 

where l(x;ξ)≡logp(x;ξ) and E[•] denotes the expectation with respect to p(x;ξ). If 
Fisher information matrix G(ξ)≡(gij(ξ)) is nondegenerate for any ξ∈Ξ, the parameter-
ized family S≡{p(x;ξ)} is a Riemannian manifold, and G(ξ) is a Riemannian metric 
tensor. 

Definition 2 (Orthogonality). Two coordinate parameters ξi and ξj are orthogonal if 
the Fisher information of ξi and ξj vanishes for any ξ∈Ξ, i.e., 

( ) ( ) ( ) ( ); ; 0i iE l lξ ξ∂ ∂ ⋅ ∂ ∂ =⎡ ⎤⎣ ⎦x ξ x ξ  (4) 

We explain the meaning of Definition 2 by a 3-word example. Using three binary 
variables X1, X2 and X3 to denote the occurrence of the word w1, w2 and w3 respec-
tively, the joint distribution of X1, X2 and X3 is given by p(x)≡pijk=Pr{x1=i, x2=j, 
x3=k}>0, i, j, k∈{0,1}, where x=[x1, x2, x3]

T. It is clear that we need seven free pa-
rameters to characterize a distribution because of the constraint ∑ijkpijk=1. Hence, the 
p-coordinates (Note that the p-coordinates is not unique), η-coordinates and θ-
coordinates of this system can be given by:  

[ ] [ ] [ ]001 010 011 100 101 110 111 1 2 3 12 13 23 123 1 2 3 12 13 23 123, , , , , , , , , , , , , , , , , , , ,
T T T

p p p p p p p η η η η η η η θ θ θ θ θ θ θ≡ ≡ ≡p η θ . 

Given any p-coordinates of a distribution, the computation of η-coordinates is direct, 
and the θ-coordinates can be obtained by formula (2). For example, it is easy to check 
that ( ) ( ) ( )1 100 000 12 110 000 100 010 123 111 100 010 001 110 101 011 000log , log , logp p p p p p p p p p p p p pθ θ θ≡ ≡ ≡  etc. 

The components of η-coordinates, except the unary marginals, can reflect interactions 
of words. For example, η12 measures the co-occurrence between w1 and w2 in the 
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sense that the larger η12 is, the more frequent the co-occurrence between w1 and  
w2 is.  

The effect of an interaction can be evaluated with respect to a likelihood or log-
likelihood function. To be specific, given a η-coordinates η, η12 is natural measure of 
the interaction between w1 and w2. An increment Δη12 of η12 will result in increments 
of log-likelihood function at different xs. It is convenient to write these increments in 
the vector form Δl(Δη12)≡[Δl000(Δη12),…,Δl111(Δη12) ]T, where Δlijk(Δη12) ≡l([i, j, 
k]T,η’)-l([i, j, k]T,η), i, j, k∈{0,1}, and η’ is the same as η  except that the parameter 
η12 becomes η12+Δη12. A natural intuition is that, if another component ξ of η is ir-
relevant to the interaction between word w1 and w2, then the vector Δl(Δξ) should be 
orthogonal to the vector Δl(Δη12). It is easy to check that the parameter orthogonality 
given in Definition 2 is only a weighted generalization of the orthogonality between 
the above incremental vectors of the log-likelihood function, and hence shares the 
essentially identical meaning with the original one. It turns out that we have an intui-
tive reason to consider a parameter ξ independent of all 2-order interactions if ξ is 
orthogonal to all ηijs. More technically, this is summarized in Theorem 1. 

Theorem 1. Given a coordinate system ξ≡[ξ1… ξn]
T, if ξi is orthogonal to ξj, then the 

Maximum Likelihood Estimation (MLE) of ξi is independent of the value of ξj. 

Theorem 1 technically confirms our intuition on the independence between parame-
ters. It guarantees a nice property of orthogonal parameters, which remarkably simpli-
fies some common procedures of hypothesis test relevant to our purpose. We will 
revisit this issue in later. 

According to the above discussion, it is natural to require that any measure reflecting 
pure k-order interactions should be orthogonal to all parameters reflecting lower-order 
interactions. The requirement cannot be met by η-coordinates or θ-coordinates alone. 
For example, there might often be the dependence between η123 and η12. Hence η123 can 
not reflect the pure 3-order interaction. On the other hand, Information geometry assures 
that the η-coordinates and θ-coordinates are dually orthogonal coordinates.  

Theorem 2. Let the η-coordinates and θ-coordinates of Sn be η≡[η1,…,ηn]
T and  

θ≡[θ1,…, θn]
T respectively, where θ1≡[θ1,…, θn]

T, θ2≡[θ12, θ13,…, θ(n-1)n]
T and so on, 

and let ηk-≡[η1,…,ηk]
T and θk+≡[θk+1,…, θn]

T, then in the k-cut mixed coordinate 
ζk≡[ηk-,θk+], any θ parameter is orthogonal to all η parameters, and vice versa. 

Hence, we can construct the mixed-coordinates, e.g., ζ2≡[η1, η2, η3, η12, η13, η23, θ123]
T, 

such that θ123 is orthogonal to all ηi and ηij. It can also be shown that θ123 is orthogonal 
to other common interaction measures, e.g., covij≡ηij-ηiηj and the correlation coeffi-
cient ρij. Furthermore, it is easy to check that, if we generalize the definition of cov 
and ρ to the high-order case, e.g., covijk≡ηijk-ηiηjηk, the above claim still holds ac-
cordingly. Another important observation is that the independence of X1,…,Xk im-
plies θ1…k=05. Hence, θ1…k is a relevant measure of pure k-order interactions. By now, 
we are able to construct the proper coordinate system aiming at measuring pure  

                                                           
5  We should not require that the converse proposition holds, since θ1…k=0 does not entail the 

independence of X1, X2,…,Xk if there are lower-order dependences among them. 
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high-order interactions. In practice, the measuring procedure of pure high-order inter-
actions can follow two threads: one is directly parametric estimation of mixed coordi-
nates; the other is computing the KL-divergence between the original state and the 
surrogate state using the Pythagoras relation entailed by the dual orthogonality of 
mixed coordinates. 

2.3   Parametric Estimation of Mixed Coordinates 

It is natural to investigate the pure k-order interaction in the (k-1)-cut mixed coordi-
nate ζk-1≡[η(k-1)-,θ1…k]

T of Sk, since the dual orthogonality gives a simple form of the 
Fisher information metric, and hence simplifies the estimation procedure of θ1…k.  

Given [η(k-1)-,θ1…k]
T, let us consider a standard procedure of hypothesis test con-

cerning the null hypothesis H0: θ1…k=θ(0)
1…k against H1: θ1…k≠θ(0)

1…k. Let the log 
likelihood of models H0 and H1 be 

( ) ( )
( )( )

1

0
0 1 11max log , , ; ,

k N kkl p θ
− − − −= η x x η …… , 

( ) ( )( )111 , 1 11max log , , ; ,
kk N kkl pθ θ

− − − −= η x x η
… ……  

where N is the number of observations. 
The likelihood ratio test uses the test statistic λ≡2log(l1/l0). It can be shown that 

λ～χ2(1), where the degree of freedom in Chi-squared distribution is determined 
by the difference of the free parameter number between l0 and l1. Since the distribu-
tion of test statistics is known, we can obtain the estimated value of θ1…k. However, 
the free parameters of l1 and l0 are often considerably huge. As a consequence, the 
computational cost might be prohibitive for the coordinates without dual orthogonal-
ity. In the mixed coordinates with dual orthogonality, the likelihood maximization 
with respect to η(k-1)- and θ1…k can be performed independently, and hence we have 

( )
( )( )0

0 1 11log , , ; ,N kkl p θ−= x x η …… , ( )( )11 1 11max log , , ; ,
k N kkl pθ θ−= x x η

… ……  

where ( )1k−η  can be estimated independently and kept unchangeable for both l1 and l0. 

Hence, the parametric space is remarkably reduced and the likelihood ratio test be-
comes feasible. 

2.4   Kullback-Leibler Divergence and Pythagoras Relation 

The properties of dual orthogonal coordinates entail the generalized Pythagoras theo-
rem, which gives a decomposition of the Kullback-Leibler divergence (KL- divergence 
for short) such that we can examine different contributions in the discrepancy of two 
probability distributions, or contributions of different ordered interactions of words.  

The KL-divergence between two probabilities p(x) and q(x) is defined by 
D[p:q]≡∑x p(x)log[p(x)/ q(x)]. Given a distribution p∈Sk, let pm be the distribution 
that is the closest to p and without pure k-order interactions, We then have 

( ) ( ) [ ]
1 0arg min :

km qp D p q
− +∈= E , where E(i-1)+(0) is the set of all distributions having no k-order 

interactions, i.e., θ1…k=0. We refer to pm as the m-projection of p to E(i-1)+(0). Let the 
mixed coordinates of p be [η(k-1)-,θ1…k]

T, then the coordinates of pm is [η(k-1)-,0]T.  
An important result of Information Geometry guarantees that KL-divergence can 

been approximated subject to the Riemannian metric tensor derived from Fisher  
information: 
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( ) ( ) ( )2

,
2 ; : ;ij i ji j

ds g d d D p p dξ ξ= = +⎡ ⎤⎣ ⎦∑ ξ x ξ x ξ ξ  (5) 

This approximation would remarkably simplify the computation of KL-divergence 
between a distribution p and its m-projection pm. To explain the Pythagoras relation, 
we need the following definitions: 

Definition 3. A coordinate curve is called an e-geodesic if it is given by a linear func-
tion θ(t)=ta+b in the θ-coordinates, where a and b are constant vector. A coordinate 
curve is called a m-geodesic if it is given by a linear function η(t)=ta+b in the η-
coordinates, where a and b are constant vectors. 

Theorem 3 (Pythagoras relation). Let p, q and r be three distributions. If the m-
geodesic connecting p and q is orthogonal at q to the e-geodesic connecting q and r, 
then we have D[p:r] = D[p:q] + D[q:r]. 

Based on Theorem 3, given any p0 with the coordinate [η’(k-1)-,0]T, we have D[p:p0]= 
D[p:pm]+ D[pm:p0]. The first decomposing term of KL-divergence, i.e., D[p:pm] offers 
us another relevant statistic to quantitatively evaluate the level of high-order interac-
tions. Note that the D[p:pm] can be computed by formula (5). 

3   Characterizing High-Order Entanglements in Semantic Spaces 

3.1   On Semantic Implications of Pure High-Order Interactions 

In this section, we illustrate by two artificial examples the semantic implication of 
pure high-order entanglements in semantic spaces. Our fundamental idea is: If a set of 
words as a whole has a significant interaction that cannot be reduced to the composi-
tional effect of lower-order interactions, then this pure high-order interaction implies 
the emergence of some semantic entity. 

Example 1. Given a corpus related to the history of French wars, a word set 
{w1=revolution, w2=Waterloo, w3=Napoleon} and their occurrence/co-occurrence 
probabilities: 
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where ηi is the marginal occurrence probability of wi’s in all chunks (a chunk is a unit 
fragment of text, e.g., within a window, a paragraph, a section or a document.), ηij is 
the co-occurrence probability of wi and wj, η123 is the joint co-occurrence probability 
of w1, w2 and w3, ‘#chunk’ is the total number of chunks, #chunki is the number of 
chunks in which wi occurs, #chunkij is the number of chunks in which wi and wj co-
occur simultaneously and so on. 
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In example o1, there is a correlation between the occurrences of ‘revolution’ and 
‘Napoleon’ since the early life of Napoleon is closely related to the France revolution. 
There is also a correlation between the occurrences of ‘Waterloo’ and ‘Napoleon’ 
since the Waterloo battle ended the myth of Napoleon. Because both ‘revolution’ and 
‘Waterloo’ are correlated with ‘Napoleon’, there is also a significant interaction 
among these three words. We consider the interaction of these three words significant 
if η123>η1η2η3, e.g., the joint occurrence probability is significantly greater than the 
product of marginal occurrence probabilities. 

It is clear that the set {revolution, Napoleon, Waterloo} cannot be naturally 
mapped to a realistic event or a specifically semantic entity even if there is an obvious 
interaction among these three words. One may argue that the whole of these three 
words is still meaningful since both ‘revolution’ and ‘Waterloo’ are related to ‘Napo-
leon’, and hence the combination of ‘revolution’ and ‘Waterloo’ offers a more com-
plete picture on ‘Napoleon’. However, this 3-word correlation is not a pure 3-order 
correlation. Specifically, let us assume that we have already known there were two 
significant 2-word correlations, i.e., the correlation between ‘revolution’ and ‘Napo-
leon’ and the correlation between ‘Waterloo’ and ‘Napoleon’, then it is natural to 
consider that ‘Napoleon’ is related to ‘revolution’ and ‘Waterloo’ even if we have no 
any knowledge on the 3-word interaction. It turns out that the extra knowledge on the 
existence of a 3-word interaction offers nothing new for us. The above insight is con-
firmed by the observation of η123≈η13η23, which implies that the obvious interaction 
of w1, w2 and w3 can be explained by a coincidence of two pairwise events. Conse-
quently, in many applications, e.g., query expansion in information retrieval, the 3-
order correlation between {revolution, Napoleon, Waterloo} may not bring much 
added value then the consideration of the individual 2-order correlations, i.e., between 
‘revolution’ and ‘Napoleon’ and between ‘Waterloo’ and ‘Napoleon’. 

Example 2. Given the same corpus, another word set {w3=Napoleon, w4= invasion, 
w5= Spain} and the corresponding occurrence/co-occurrence probabilities: 
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The high-order interaction that makes better sense semantically is the pure high-order 
interaction. In 3-word cases, roughly speaking, a pure 3-order interaction should meet 
the condition η123>η12η23, η123>η13η23, η123>η12η13, η123>η1η2η3, η123>η1η23, η123>η2η13 
and η123>η3η12, i.e., the joint probability indicating a pure high-order interaction 
should be greater than any possible compositional effect of lower-order correlations. 
In Example 2, since Napoleon launched a series of famous invasions, there is a high 
correlation between ‘Napoleon’ and ‘invasion’. On the other hand, since Spain is not 
very important during Napoleon’s life except for a short period during Spain war, 
there is only a relatively low correlation between ‘Napoleon’ and ‘Spain’. However, 
η345 is approximately equal to η35 and η45 since Napoleon’s invasion to Spain is the 
most important event relating Napoleon to Spain. Hence we have η345>η34η35.  
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Furthermore, it is easy to check that we have η345>η34η45, η345>η35η45, η345>η3η4η5, 
η345>η3η45 and so on. Therefore, η345 is significant greater than any possibly composi-
tional effect of lower-order interactions. Hence, we can conclude that there exists a 
pure 3-order interaction of w3, w4 and w5, which cannot be explained by a coincidence 
of lower-order events and implies an emergence of a semantic entity corresponding to 
the event of Napoleon’s invasion to Spain. 

It should be noted that we can also define ηi to be consistent with the conventional 
vector model if the ηi is computed with respect to the chunk of a word. In this case, all 
the above discussions are essentially similar subject to a minor modification. 

The above discussion seems to imply a method identifying pure high-order interac-
tion, i.e., by checking whether η345-η3η4η5, η345-η35η45, η345-η34η45, and so on, are 
greater than zero. However, this naïve method is in general difficult to be applied. For 
illustration, let us consider the task of identifying k-order pure interactions by an 
exhaustive search. First, we have to check whether the k-order interaction is signifi-
cant than any possible bipartition coincidence. Hence we need to compare 

0
2

k i k
ki

C
=

=∑  

configurations. Second, we have to check whether the k-order interaction is signifi-
cant than any possible tri-partition coincidence. It turns out that we also have to check 
all possible l -partitions ( l k≤ ). In summary, the number of configurations that we 
need to check is given by the Bell number kB . Recall that the exponential generating 

function for Bell numbers is 1

0 !

zn en
n

B
z e

n

∞ −
=

=∑ , it is, in general, prohibitively complex. 

Furthermore, the difficulty of an exhaustive search strategy also lies in its intrinsic 
unstableness in practice, especially for small corpus since we can only control the 
search procedure by a set of ad-hoc thresholds, which is lack of theoretical guaran-
tees. On the other hand, by IG method, the measure of any k-order pure interaction 
can be given by a closed-form formula. In addition, we can perform some rigorously-
established estimation procedure, e.g., the likelihood ratio test introduced in Subsec-
tion 2.2, to quantitatively determine how significant our decision is. 

3.2   Characterizing Pure High-Order Interactions by Information Geometry 

Information Geometry offers a promising method to estimate pure high-order interac-
tions. The likelihood ratio test described in Subsection 2.3 can be directly applied to 
estimate the statistic θ1…k which measures pure k-order interactions. Moreover, as 
described in Subsection 2.4, we can measure the level of high-order interactions by 
decomposing the KL-divergence with respect to a proper m-projection. As a demon-
stration, we can directly derive θ-parameters from the p-coordinates as shown in the 
following. 

In Example 1, the η-coordinates is given. It is easy to obtain the p-coordinates from 
η-coordinates by solving a simple linear system. According to p-coordinates, its θ-
parameters are θ12=-0.0004, θ13=5.3932, θ23=11.264, θ123=-3.4584. The negative value 
of θ123 indicates that, although η123 is large in absolute value, there is no pure 3-order 
interaction among the corresponding words. Moreover, the interaction level among 
w1, w2 and w3 is lower than the compositional effect of lower-order interactions. In 
Example 2, the θ-parameter are θ34=0.8926, θ35=0.5991, θ45=0.6049 and θ345=6.4852. 
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The positive value of θ345 indicates that, although η345 is small in the absolute value, 
there is still a significant pure 3-order interaction among w3, w4 and w5. 

3.3   An Extended Vector Model with Pure High-Order Interactions 

To investigate semantic implications of high-order interactions, we extend the  
conventional vector model so that it can incorporate high-order interactions. Tradi-
tionally, the marginal distribution of words has acted as the language model in IR 
(Information Retrieval), MT (Machine Translation) and NLP (Natural Language 
Processing) because a general higher-order model is often computationally expensive 
even in the 2-order case. However, in many practical applications, it is unnecessary to 
construct a general high-order model involving all high-order interactions. On the 
other hand, it is often sufficient to comprise only a small proportion of high-order 
interactions in a context-sensitive way, e.g., the pure high-order interaction corre-
sponding to some specific subject. This idea is formalized in the following. 

Definition 4 (Vector Model). Given a word set {w1,…,wn} derived from a corpus C, 
a text’s (corpus’s) Vector Model (VM) with respect to {w1,…,wn} is the marginal 
distribution [p1,…,pn]

T of this text (corpus), where pi is the marginal probability of wi. 

Definition 5 (Extended Vector Model). Given a word set {w1,…,wn} derived from a 
corpus, a text’s (corpus’s) Extended Vector Model (EVM) is composed by the mar-
ginal distribution and some statistics measuring the pure high-order interaction, and 

has the following form: 
1 11 2

1, , , , ,
k k

T

n i i j jp p θ θ⎡ ⎤
⎣ ⎦… …… …  or 

1 11 2
1, , , , ,

k k

T

n i i j jp p D D⎡ ⎤
⎣ ⎦… …… … , where 

1 1k
i iθ …  is the θ parameter subject to the joint distribution of { }1 1

, ,
ki iw w… , 

1 1k
i iD …  is the KL-

divergence between p and pm subject to { }1 1
, ,

ki iw w…  (see Subsection 2.4), p1,…,pn is 

the marginal probability of w1,…,wn. 

3.4   Practical Applications in Text Classification and Query Expansion 

The remaining issue is to determine what θ or D should be included in an EVM. This 
issue can only be clarified in specific application backgrounds. We give two examples 
to explain this issue. 

In the task of supervised text classification, it is useful to extract a set of words for 
each class representing the class subject so that the classification model can be de-
signed accordingly. These sets of theme words can be obtained, in principle, by find-
ing out the word set having significantly pure high-order interactions with respect to 
the joint distribution of the corresponding class. This finding procedure can be effi-
cient by the aid of prior knowledge. For example, if a few initial theme words are 
given, it is natural to only search possible pure high-order interactions involving some 
of prior theme words. Even if there is no prior knowledge on class’ subjects, the pure 
high-order interactions relevant to a specific class can be found by checking, e.g., the 
mutual information between high-order interactions and class labels. Another method 
evaluating the relevance between pure k-order interactions and class subjects is to 
compare the class label of the original state and the surrogate state (see Section 1) 
with vanishing pure k-order interactions. The surrogate states can be obtained by 
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direct searching over the corpus or manual construction. In the latter case, the ficti-
tious class label of a surrogate state is determined by the classification model trained 
with respect to the EVM involving the pure k-order interactions. 

In query expansion tasks, it is desirable to mine the pure high-order interactions in-
volving some of query words so that the marginal language model can be expanded 
accordingly. We suggest that the pure high-order interaction involving query words 
would be an indication of relevance of the query theme. The following is a brief algo-
rithmic framework: 

1 Collect top ranked initial retrieval results into a set SI 
2 Search word subsets involving some query words and other words, and compute 

the pure high-order interactions. 
3 Construct SI’s EVM by incorporating the pure high-order interactions mined in 

step 2. 
4 Get new search results based on the derived EVM. There can be a number of 

ways to do that, for example, by using the EVM as a relevance language model to 
filter or re-rank SI or to expand the initial query using words with pure high-order 
interactions with query words; etc. 

4   Conclusions and Further Work 

Pure high-order entanglements in lexical semantic spaces indicate the emergence of 
high-level semantic entities. To characterize the intrinsic order of entanglements and 
distinguish pure high-order entanglements from lower-order ones, we develop a set of 
methods in the framework of Information Geometry. Based on the developed method, 
we present an expanded vector space model that involves context-sensitive high-order 
information and aims at characterizing high-level context. Several examples with 
specific application backgrounds, e.g., query expansion and text classification, are 
discussed, and an algorithmic framework incorporating our method in query expan-
sion are proposed. The further work is to carry out practical experiments and develop 
more efficient algorithms to implement the proposed framework. To this end, some 
nice properties of pure high-order correlations, e.g., sub-inheritance, can be used to 
improve the computational efficiency. 
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Abstract. This paper applies some recent methods involving semantic
vectors and their combination operations to some very traditional ques-
tions, including the discovery of similarities and differences between the
four Gospels, relationships between individuals, and the identification of
geopolitical regions and leaders in the ancient world. In the process, we
employ several methods from linear algebra and vector space models,
some of which are of particular importance in quantum mechanics and
quantum logic.

Our conclusions are in general positive: the vector methods do a good
job of capturing well-known facts about the Bible, its authors, and rela-
tionships between people and places mentioned in the Bible. On the more
specific topic of quantum as opposed to other approaches, our conclusions
are more mixed: on the whole, we do not find evidence for preferring vec-
tor methods that are directly associated with quantum mechanics over
vector methods developed independently of quantum mechanics. We sug-
gest that this argues for synthesis rather than division between classical
and quantum models for information processing.

1 Introduction

Semantic vector approaches have been used with considerable research success in
recent years. Applications have included information retrieval, automatic word
sense discrimination, ontology acquisition, and the creation of practical aids to
document annotation and translation.

During the recent period in which these tools have been developed, most
empirical research in computational linguistics has been devoted to large and
rapidly growing corpora. This is for very good reasons. Many current information
needs are greatest when dealing with the recent explosion in the scale of available
information. The rapidity with which information sources such as the World
Wide Web have developed has forced the adoption of new information search
and exploration strategies, some not previously possible or necessary.

At the same time, much cultural and literary scholarship focusses (appro-
priately) on comparatively small and well organized corpora — studying (for
example) works that have long been established as scriptures and classics. Re-
sources in the form of concordances, cross references, and commentaries, have
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been readily available in paper form for many of the scriptures and classics for
some centuries, and these information modalities are very much the prototypes
for today’s electronic indexes, hyperlinks, and commenting, tagging, annotation
and collaborative filtering systems.

This paper tries to take a step that may be considered retrograde, or at least
retrospective: to see what recent advances in empirical semantic vector analysis
may have to say on some simple issues in literary scholarship, particularly Bib-
lical scholarship. Naturally, our goal is not to discover something as yet unseen
in a field which has had many careful research lifetimes already devoted to it:
rather, it is to see if a very simple mathematical machine can retrieve any compa-
rable results, and to see if this sheds any useful light on techniques of automatic
information analysis more generally. In the process, we hope to demonstrate and
test some recent developments in semantic vector methodology, particularly with
regard to semantic combination and composition operations.

It is hoped that this latter aspect of the work presented will be of particular
interest to the quantum interaction community: specifically because some of the
vector combination techniques relate directly to operations used in quantum me-
chanics (in particular eigenvalue decomposition) and quantum logic (particularly
the non-distributive disjunction). At the same time, other techniques in vector
mathematics including permutation and clustering are also useful in semantic
analysis. If vector operations can be largely categorized as “quantum” or “non-
quantum”, there seems to be no experimental reason at this stage for preferring
the “quantum” over the “non-quantum” vector operations. This may help to
inform the investigation of questions about the developing focus of “quantum
interaction” as an area derived from quantum physics, or an area evolving at
least somewhat independently, and about how this field should be characterized.

2 Methods Used

The semantic vector methods used in this paper are descendants of the vector
model for information retrieval, and the subsequent development of latent seman-
tic analysis, which compresses the sparse information in the vector model’s term
by document matrix into a more condensed, lower-dimensional representation.
The relationship between these structures and the quantum logic of Birkhoff and
von Neumann [1] has been further recognized in recent years (see particularly
[2,3]).

Particular methods used from these models include:

– Vector sum for composition, from the earliest vector model search engines [4].
– Singular Value Decomposition for more compressed semantic representation,

from Latent Semantic Analysis [5].
– The use of subspaces as another more generalizing model for disjunction

[2,6,3].
– The use of orthogonality to model complementation and negation [3, Ch. 7].
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Other methods from the wider literature that are used particularly include:

– Clustering for finding more stable units (c.f., ‘quanta’) among observed re-
sults, as developed for word sense discrimination [7].

– Visualization of groups of word vectors using principal component
plotting [8].

– The recent permutation based construction of semantic vectors [9].
– Pathfinder link analysis, a graph construction and visualization method [10].

The data used in our experiments is principally the King James Bible, that is,
the translation into English of Jewish (Hebrew language) and Christian (Greek
language) scriptures, authorised under King James (VI of Scotland, I of Eng-
land), dated to 1611.

Nearly all of the software and corpora used in this paper is freely available and
relatively easy to use. The corpus is from Project Gutenberg (www.gutenberg.
org). Free software components are from Apache Lucene (lucene.apache.org),
the Semantic Vectors project (semanticvectors.googlecode.com), and the Java
Matrix Package (math.nist.gov/javanumerics/jama) used for singular value
decomposition.

3 Semantic Vectors and the Synoptic Gospels

This section describes our single most deliberate experiment: testing to see if
vector analysis discerns the similarity of the Synoptic Gospels. Since at least the
second century AD, the Christian writings gathered in the New Testament have
included four canonical accounts of the activities of Jesus of Nazareth (ca. 5BC -
30AD), and these writings, called the Gospels, have since the earliest times been
attributed to authors called Matthew, Mark, Luke, and John. A basic tenet of
New Testament scholarship is that Matthew, Mark and Luke are closely related,
with much material drawn from one another or at least from common sources.
For this reason, these three Gospels are referred to as the Synoptic (Greek,
“joined eye”) Gospels.

3.1 Vector Sum Similarity

In this experiment, we set out to discover whether a semantic vector model
built from the text of the King James Bible shared the view that Matthew,
Mark and Luke are similar and John is the odd one out. Semantic vectors for
terms (frequency > 10, stopwords removed) were produced using random pro-
jection (reduced dimension = 200) on the Lucene term-by-document matrix, as
implemented in the SemanticVectors package [11]. Random projection is a com-
putationally efficient variant of Latent Semantic Analysis: instead of computing
exactly orthogonal latent axes using Singular Value Decomposition, latent axes
are chosen randomly, based on the mathematical property that randomly cho-
sen axes can be demonstrated to be nearly orthogonal in a suitably quantifiable
sense [12].
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Table 1. Cosine similarities between the Gospels, whole Bible model

Matthew Mark Luke John
Matthew 1 0.995 0.998 0.990

Mark 1 0.996 0.987
Luke 1 0.989
John 1

Table 2. Cosine similarities between the Gospels, Gospels only model

Matthew Mark Luke John
Matthew 1 0.990 0.994 0.969

Mark 1 0.991 0.968
Luke 1 0.969
John 1

Document vectors for each chapter were produced using the (normalized)
weighted vector sum of term vectors, and combined vectors for each of the four
Gospels were computed as a normalized vector sum of the document vectors rep-
resenting the chapters of each book. (This latter sum is implemented on the fly
using a useful regular expression matching query builder applied to the filesys-
tem paths: this technique can be easily used for other potentially interesting
aggregate queries, such as producing query terms combining many morpholog-
ical variants of the same root.) Pairwise similarities between the four resulting
vectors were computed, and are shown in Table 1 and Table 2. The first table
shows similarities in a model computed using the entire King James Bible, the
second one shows similarities in a much smaller model computed using only the
Gospel texts themselves.

Two things are immediately apparent. Firstly, the similarities are on the whole
very high. Often nearest neighbour similarities in such models range from 0.3
to 0.7 (see the Tables later in this paper for a sample of reasonably typical
values), so any cosine similarity greater than 0.9 is very high. It appears that
the commonalities between the Gospels (e.g., use of frequent terms) outweigh
their differences by a long way. This may be due to the “bag of words” nature of
the creation of document vectors. In bag of words methods, the order of words
is not taken in to account — in this case, due to the commutative property of
vector addition. Thus if the Gospels share many common words with typical
frequencies, they will have similar document vectors. By comparison, average
similarities between the Gospels and earlier Old Testament works tend to be
in the range of 0.9 to 0.95 (see Table 3). It is reasonable that these are lower
similarities, though they are still high, and some statistical analysis of document
creation and term reuse may help to account for this.

Secondly, even within these very close results, John is clearly the odd one
out, having lower similarities with all of the other Gospels than are found in
between the three Synoptic Gospels. This is particularly apparent in the smaller
model, though this appears to be partly because the smaller model shows similar
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Table 3. Cosine similarities between the Gospels and a sample of Old Testament books

Matthew Mark Luke John
Exodus 0.945 0.932 0.946 0.921
1 Kings 0.949 0.942 0.956 0.926
Psalms 0.934 0.912 0.934 0.929

Jeremiah 0.950 0.931 0.950 0.934

comparisons but distributed across a wider range of scores. We note in passing
that these experiments were repeated several times with different dimensions
(ranging from 100 to 1000), with remarkably similar and often exactly the same
results.

3.2 Cluster Comparison of Chapters

Another way of analysing similarities and differences between the Gospels is to
cluster the individual chapter vectors (instead of summing them into combined
book vectors). Clustering chapters provides a much richer qualitative analysis,
at a greater computational cost. However, for a dataset the size of the Gospels
(89 chapter vectors), this cost is trivial in contemporary terms. The clusters in
our experiments are produced using the k-means algorithm: at each stage of
the algorithm, each vector is assigned to its nearest cluster centroid, and then
the centroids of the clusters are recomputed based on the new assignment. An
implementation of this algorithm is included in the SemanticVectors package.

The results with 20 clusters clearly demonstrate the distinctive nature of
John’s Gospel. The chapters of John’s Gospel tend to appear in tight clusters,
a majority of whose members are from the same Gospel: on the other hand,
if a cluster contains chapters from one of the Synoptic Gospels, it is far more
likely to include chapters from others of these Gospels. A simple quantitative
measure of the distinct nature of John’s Gospel can be obtained using conditional
probability: given that one chapter in a cluster is from a particular Gospel, what
is the probability that another chapter in the same cluster is from the same
Gospel? Typical results obtained in this experiment were:

John: 0.66 Matthew: 0.28 Luke: 0.24 Mark: 0.18.

Note that due to the random initialization of clusters, results from clustering
runs are not identical each time. In each of several runs, the score for John
was above 0.5, a threshold never breached by any of the other Gospels. This
shows that that the chapters in John’s Gospel have, on average, stronger mutual
similarities than those of the other three Gospels, which are much more easily
mixed together.

A further interesting experiment would be to extend the cluster analysis to
cover pairwise conditional probabilities, to see if these reflect the known patterns
of how the Synoptic Gospels borrowed from each other.
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It is interesting to note that authorship, though important, is only one variable
that influences similarity in our results. Sometimes describing similar content is
more clearly responsible for similarity: for example, the four element cluster
{Luke 23, Matthew 27, John 19, Mark 15} appears in several experimental runs,
and each of these four chapters contains the author’s account of the crucifixion.

We may conclude that, when asked “Which of the Gospels are similar?”,
the vector model answers “Matthew, Mark and Luke are similar, John is a bit
different”, but the model is also sensitive to factors other than authorship, that
sometimes produce stronger affinities between texts.

4 Visualization of Disjunctions

This section describes experiments in visualizing the effects of different combi-
nation operations on search results. Lists of related terms to the query “jesus
+ abraham + moses” were obtained using three different query building and
search ranking methods:
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Fig. 1. Neighbours of “Jesus”, “Moses” and “Abraham”, using Vector Sum
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1. Vector sum of the constituent vectors. (Figure 1.)
2. Quantum disjunction of the constituent vectors: that is, results are ranked

according to their proximity to the subspace spanned by the query vectors.
(Figure 2.)

3. Minimum distance (maximum similarity) to any one of the constituent vec-
tors. (Figure 3.)

The search results are projected down to 2 dimensions by computing the sin-
gular value decomposition (using the Jama package) and by plotting the vectors
according to the second and third coordinates of their reduced vectors (the first
component often mainly says “all the data is somewhere over here in the seman-
tic space” [8]). The plotting itself is performed using a small Java Swing utility
from SemanticVectors.

On analysis, the main distinction in the results is between the maximum
similarity method and the other two. The maximum similarity method produces,
as expected, several results that are similar to just one of the constituents, rather
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than their more general combination. For example, many of the close relatives
and associates of Abraham make it into the minimum distance results, whereas
only his wife Sarah is present in the other results.

While the other two results sets have much in common, including many more
general terms, there is a small suggestion that the disjunction similarity preserves
some of the close neighbours as well as the more general terms, for example,
Moses’ brother Aaron appears in the disjunction results and not the vector sum
results. This is something we should have expected, since with the quantum
disjunction, if an element is close to one of the generators of a subspace, it will
naturally be close to the subspace generated.

5 Permutation Similarity

Our final set of experiments uses the permutation indexing method developed
by Sahlgren et al [9], and demonstrates that this method is a powerful enhance-
ment over raw vector similarity at the task of extracting the names of ancient
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Table 4. Permutation and similarity results for geopolitical entities

Permutation query
“king of ?”

0.728 assyria
0.699 babylon
0.662 syria
0.647 zobah
0.604 persia
0.532 judah

Similarity query
“king”

1.000 king
0.441 province
0.408 reign
0.380 had
0.378 did
0.377 came

Similarity query
“assyria”

1.00 assyria
0.653 sennacherib
0.628 rabshakeh
0.626 hezekiah
0.575 hoshea
0.509 amoz

kingdoms from the Bible corpus. In essence, the permutation method works by
indexing each term not only as a sum of terms in the surrounding context, but as
a permuted sum, the permutation in coordinates being governed by the relative
positions of the words in question. (A more geometric interpretation can be ob-
tained by noting that many permutations of coordinates are effectively rotations
in the semantic space.)

Table 4 shows that, in these cases, results from the permutational query (left
hand column) are much more specific in their relationships than those of tra-
ditional similarity queries (center and right hand column). In the permutation
results, the query “king of ?” finds fillers for the target “?” based on cosine sim-
ilarity with the permuted vectors for “king” and “of”, and picks out purely the
names of geopolitical regions in the ancient world. By contrast, if we were to try
and construct such a list using traditional cosine similarity, either with a seed
example such as “assyria” or one of the same query terms, “king”, the results
are much less accurate.

Note that in the results presented here, the permutation model was built
without removing stopwords (which preserves the integrity of patterns based
on exact word order), whereas the similarity results were obtained by removing
stopwords as usual. From studying examples, we believe this choice is optimal
for each model so makes for a reasonably fair comparison.

As the “king of ?” permutation query illustrates, near neighbours in permuta-
tion derived spaces tend to be of the same semantic type (in this case, they are
all kingdoms). However, these neighbours need not be thematically related. For
example, a query for “adam” in a permutation-based space retrieves the cast of
(male) biblical characters in the left-hand column of Table 5. Several of these
characters neither appear together in the scripture, nor are they genealogically
related.

In contrast, the nearest neighbours of “adam” in a vector space constructed
using term-document statistics without regard for word order appear in the
right-hand column of Table 5. While these results do include biblical characters
(some of Adam’s descendants), other elements of the Story of the Fall are also
included.

These two types of indexing capture different types of relations between
terms. Moreover, it is possible to construct a vector space that combines these
relations by using trained (rather than random) term vectors as the basis for
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Table 5. Neighbours of “adam” in different semantic spaces

Permutation-based space
(word order encoded)

Term-document space
(word order ignored)

1.00 adam 1.00 adam
0.676 joseph 0.552 enoch
0.654 saul 0.518 garden
0.641 aaron 0.505 lamech
0.639 noah 0.444 eden
0.638 david 0.407 sixty

Table 6. Combining order-based and order-agnostic vectors

Search for “king ?” Search for “queen ?”
Random vector basis Term vector basis Random vector basis Term vector basis
0.756 ahasuerus 0.604 ahasuerus 0.187 desiring 0.332 vashti
0.643 agrippa 0.571 agrippa 0.184 exhort 0.314 ahasuerus
0.493 ahaz 0.465 rehoboam 0.181 whithersoever 0.302 agrippa
0.464 rehoboam 0.451 ahaz 0.172 vashti 0.288 absent
0.401 delighteth 0.450 delighteth 0.168 equity 0.287 darius

a permutation-based space. Each term is then indexed as the coordinate-based
permuted sum of a set of meaningful term vectors. This hybrid vector space
includes both thematic and order-based associations, supporting a simple sort
of inference: queries for “queen ?” retrieve the names of kings as well as queens
(see Table 6).

Another way to combine the strengths of these types of indexing procedures
is to use the associations generated with one indexing procedure to evaluate
relations between nearest neighbours generated in the other. This combination
allows for the construction of queries such as “what thing of the same semantic
type as ‘abraham’ is most strongly associated with him” (isaac 0.538).

Figure 4 illustrates the sort of information that can be extracted by combining
order-based and order-agnostic representations. The nodes in the network were
determined by finding the thirty nearest neighbours of the normalized sum of
the vectors for the terms “abraham” and “moses” in in a permutation-based
space (d=500, frequently occurring terms included). Nearest-neighbor searches
in permutation-based spaces tend to produce results of the same semantic type
as the search terms, in this case male biblical characters (aside from the cities
Ekron and Hazor). However, these neighbours are not necessarily thematically
related: many of these characters are not genealogically related, nor do they
appear together in any biblical stories.

In contrast, the links in Figure 4 were determined using an order-agnostic
vector space. Initially all nodes were linked according to the cosine similarity
between them. The most significant links were identified using Pathfinder net-
work scaling [10], which prunes networks such that no two nodes are linked
directly if there is a shorter pathway between them via other nodes. Scaling and
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Fig. 4. Linked search results seeded with “Abraham” and “Moses”

visualization were performed with a specially provided version of the Pathfinder
software package, presently under development by Roger Schvaneveldt (the dia-
gram has been redrawn by hand in Figure 4 for presentation in print). Pathfinder
has preserved several genealogical links, such as the subtree linking Abraham,
Isaac, Esau, Jacob and Joseph, and the link between Moses and Aaron. Other
personal relationships are also preserved. Elijah is linked to his disciple Elisha,
Saul is linked to his successor David, and Absalom is linked to his murderer,
Joab. The development of further methods to combine these types of vector
spaces is likely to be a fertile area for future research.

The connections from “pharaoh” to the terms “aaron” and “moses” on the
one hand and “joseph” on the other are of particular interest as it indicates that
the vector representation for the term “pharaoh” refers to at least two distinct
individuals. Two different Pharaohs, generations apart from one another, were
involved with these different characters. As is the case with ambiguous terms,
it is possible to use quantum negation [3, Ch 7] to isolate different senses of a
particular vector representation, as illustrated in Table 7. Initially (leftmost col-
umn), the vector representation for “pharaoh” is dominated by elements of the
biblical story in which Joseph averts famine in Egypt by interpreting the dreams
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Table 7. Teasing apart ambiguous pharaoh using quantum negation

pharaoh

1.000 pharaoh
0.626 egypt
0.616 favoured
0.562 kine
0.543 joseph
0.543 magicians
0.523 ill
0.504 dreamed
0.499 famine
0.452 food
0.439 dream
0.435 land
0.425 hardened
0.420 plenty
0.378 seven
0.368 egyptians
0.361 goshen
0.360 plenteous
0.340 river
0.327 interpreted

pharaoh NOT
joseph

0.839 pharaoh
0.501 magicians
0.492 hardened
0.488 egypt
0.442 kine
0.432 favoured
0.358 ill
0.347 egyptians
0.340 river
0.324 land
0.324 famine
0.315 plenteous
0.308 plenty
0.300 enchantments
0.296 flies
0.290 stretch
0.287 frogs
0.279 seven
0.273 dream
0.269 locusts

pharaoh NOT
joseph famine

0.783 pharaoh
0.514 hardened
0.497 magicians
0.419 egypt
0.362 egyptians
0.358 enchantments
0.333 flies
0.326 frogs
0.326 kine
0.317 river
0.307 favoured
0.305 intreat
0.290 stretch
0.252 rod
0.251 locusts
0.243 plenteous
0.242 dream
0.240 hail
0.237 houses
0.234 ill

of the Pharaoh. Subsequently (second column from the left) the component of
the vector representation of “pharaoh” that is orthogonal to the vector represen-
tation of “joseph” is isolated and normalized. In this representation, elements of
the story of the Exodus from Egypt such as plagues of “flies”, “frogs” and “lo-
custs” appear in the list of nearest neighbours. As further elements of Joseph’s
story are removed (rightmost columns), the terms related to the Exodus improve
their rankings in the list of near neighbours.

Other investigations in capturing word-order influences in semantic space
models include experiments using tensor products in the SemanticVectors system
[13] and convolution products using the BEAGLE system [14]. BEAGLE uses
convolution products to obtain representations to encode term position that are
close-to-orthogonal to the term vectors from which they are derived. They are
also reversible such that this information can be decoded. As shown by Sahlgren
et al [9], both of these conditions are also met by permutation of sparse random
vectors, though research comparing such approaches is still in its infancy.

The high quality of the permutation results raises the question of how they
compare to results obtainable by n-gram modelling [15, Ch 6]. The ability to
retrieve the names of kings as well as queens for the query “queen ?” suggest that
the vector permutation method generalizes slightly compared with raw n-grams,
and perhaps behaves more like a smoothed adaptation of the basic n-gram model.
The comparison between n-grams and vector permutations would be fruitful to
investigate further, especially since the tradeoffs between exact deduction and
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intelligent induction are central in discussing the relative usefulness of classical
versus quantum logic (see for example [6]).

6 The Relevance of This Work to Quantum Interaction

If our goal was to produce evidence that quantum mechanics and logic provides a
correct model for natural language semantics, and classical mechanics and logic
provides a flawed model, then it may be argued that these experiments are a
failure. We have not (for example) demonstrated that the vectors and similarities
used to model natural language violate Bell’s inequalities, or that the correct
combination techniques for vectors necessarily involve entanglement. While we
have used the quantum disjunction and eigenvalue decompositions to good effect,
there is as yet no solid ground for always preferring the quantum disjunction to
one of the other options, or for viewing the eigenvalue decomposition as the
single correct way to obtain distinct meanings corresponding to pure states.
Thus far, these appear to be useful tools, and other tools such as clustering and
permutation appear to be equally valuable, and sometimes more valuable, in
analysing semantic phenomena.

However, we do not believe that this is a failure: it is not our goal to demon-
strate that classical is wrong and quantum is right, any more than to demonstrate
that quantum is wrong and classical is right. What we believe these experiments
demonstrate is that a range of tools, drawn from the same mathematical sub-
stratum as those of quantum theory, can be usefully applied to provide relatively
simple models of semantic phenomena which, in spite of their simplicity, usefully
parallel the findings of human scholars. Natural language (and cognition in gen-
eral) is often very complex: however, we believe our results demonstrate that
some reasonable approximation to this subtlety can be obtained using math-
ematical tools whose history and development is closely intertwined with the
methods of quantum theory. If we accept the loose generalisation that classical
mechanics promotes deterministic rationalism and quantum mechanics promotes
probabilistic empiricism, then our experiments demonstrate that the quantum
family of approaches has much to offer, even in small and tightly encapsulated
domains such as the analysis of Biblical texts.

We do not think these experiments promote quantum models as a singularly
privileged path forward: rather, we think our work demonstrates that the tension
between classical and quantum methods is a useful dialectic that encourages
synthesis.

7 Conclusions

We have demonstrated that semantic vector methods, using the same underly-
ing mathematical models as those of quantum theory, produce reasonable results
when faced with very traditional literary tasks: in particular, analysing the re-
lationships between the Gospel writers, and identifying geopolitical entities in
the ancient world. While it is no surprise that this can be done (none of our
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findings are new), it is somewhat startling that it can be done based on such
simple mathematical assumptions.

As well as the dialectic between classical and quantum approaches to semantic
analysis, we believe our work highlights an often underappreciated potential for
communication between large scale empirical approaches to analysing informa-
tion (typified by new fields such as information retrieval and machine learning),
and the more traditional literary approach to small scale works that are deemed
to be particularly important. New developments in information retrieval and
machine learning will hopefully provide tools that promote fresh analysis of im-
portant texts: meanwhile, the tradition of literary scholarship may provide deep
knowledge, encouraging empirical researchers to ask more significant questions
with a richer sense of what sorts of relations may be analyzed.
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Abstract. A novel way to define Quantum like measurements for text is
through transformations called Selective Erasers. When applied to text,
an Eraser acts like a filter and preserves part of the information of the
document (tokens surrounding a central term) and erases the rest. In this
paper, we describe how inclusion relations between Erasers can be used to
construct an Eraser Lattice for relevant content. It is posited that given
a new piece of text, the application of elements of the Eraser Lattice,
will result in the destruction or preservation of the content depending
on the relevancy of the document. The paper provides the theoretical
derivations required to perform such transformations, along with some
example applications, before outlining directions and challenges of future
work.

1 Introduction

In [1], Selective Erasers were proposed as a means for the representation of
text documents in a quantum inspired Information Retrieval System. Selec-
tive Erasers provide a scheme for lexical measurements in documents, which
is analogous to physical measurements on quantum states. In this way, the rep-
resentation of the text is only known after measurements have been made, and
because the process of measuring may destroy parts of the text, the document is
characterised through erasure. A Selective Eraser (or simply Eraser) is a trans-
formation E(t, w) which erases every token that does not fall within any window
of w positions around an occurrence of term t in a text document. These Erasers
act as transformations on documents producing a modified document with some
erased tokens, much as projectors act on vectors or other operators. The count of
terms after the transformation is analogous to the formal property of norm, and
can be represented as such. Given the definition of an Eraser, different lexical
measurements can be defined based on it, for example:

1. Occurrence of a term t in document D: |E(t, 0)D|
2. Frequency of occurrence of a term t in document D: |E(t,0)D|

|D|
3. Co-occurrence frequency of terms t1 and t2 in document D with a minimum

distance w: |E(t2,0)E(t1,w)D|
|D|
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where |.| is a counting operation. While this constitutes a basis of representation
of text documents, a method is required in order to harness the analogy, that
is, to perform some higher level retrieval operation. In this paper, we extend
the formalisation of Selective Erasers to Selective Lattices, which are used to
performing ranking or classification based on the “quantum” representation of
documents. We posit that it is possible to define a set of compatible Erasers
which characterise relevancy, such that the application of these Erasers will ei-
ther preserve a document or destroy it. If a document is preserved (or largely
preserved) then this is indicative of its relevance, while if a document is destroyed
(or largely destroyed) then this is indicative of its non-relevance. Specifically, we
hypothesise that:

for a given query, the relations between a set of optimally chosen Erasers
will differ significantly in the subset of relevant documents and in the
subset of the non-relevant documents.

Thus, we believe that we can characterise the relevancy and non-relevancy
through erasure. The intuition is that the usage of language within relevant
documents will be similar and that the erasers will preserve this usage, while in
non relevant documents the usage of language will be different, even if the same
vocabulary is used, and thus be erased.

The remainder of this paper will be as follows: The next section will defined
the necessary order relations between erasers, i.e. strict ordering and orthogo-
nality. Section 3, will describe how the Eraser Lattice can be constructed using a
partially ordered set, before describing how to use the Eraser Lattice to classify
documents as either relevant or non relevant. Then, in Section 5, we perform an
empirical study on a standard IR test collection (AP88) where we demonstrate
the utility of the method and show how relevance information can be preserved
through optimally selected Erasers. Finally, we conclude with a discussion of this
work and directions for future work.

2 Erasers and Their Order Relations

As a strategy to catch the context in which words tend to occur, in this work we
propose to examine relations between Selective Erasers associated with the occur-
rence of different terms. Several relations can be defined between Selective Srasers
as acting on a certain document, but in this work we focus on two of them, orthog-
onality and strict ordering (others are also mentioned in appendix A):

– Orthogonality (Disjointedness): Two Erasers are orthogonal when there
is no common fractions of a document D they both preserve:

E1 ⊥D E2 ⇐⇒ ∀Di |E1[E2Di]| = 0 (1)

– Strict Ordering (Inclusion): An order relation exists when one Eraser
includes the other, that is, when everything one Eraser preserves in document
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D, the other preserves as well. A formal way of stating it for two Erasers E1
and E2 is that defined for projectors in [2]:

E1 �D E2 ⇐⇒ ∀Di E2 [E1Di] = E2Di (2)

These relations could also be defined within a subset of the documents, when
they hold for every document in subset s. This relation within a subset is rep-
resented with a subscript on the symbol of the relation. For example, for strict
inclusion, it would be

E1 �S E2 ⇐⇒ ∀Di ∈ S E2 [E1Di] = E2Di (3)

The number of possible Erasers for all the vocabulary in a collection is astronom-
ical, so the practical applicability of this criterion relies on a sensible scheme for
selecting Erasers and relations between them. Our approach to that problem is
based on the measurement of extremal (maximal or minimal) distances between
occurrences of terms.

2.1 Distances between Occurrences and Order Relations

Let us suppose that terms t1 and t2 occur in document D n1 = 0 times and
n2 = 0 times respectively. If dmin is the minimum number of tokens between
neighbour occurrences and dmax(t1,t2) is the maximum number of tokens between
any occurrence of t1 and the nearest occurrence of t2, two nontrivial relations
can be defined that are fulfilled within this document:

E(t1, dmin − δ1) ⊥D E(t2, δ1) (4)
E(t1, dmax(t1,t2) + δ2) �D E(t2, δ2 − δ3) (5)

Fig. 1. Relations between Erasers for maximum and minimum distances between
occurrences
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where δ1, δ2 and δ3 are natural numbers that can vary freely (as long as the
width factor remains equal or bigger than zero). Extremal distances show how
wide or narrow an Eraser have to be to include or avoid another, as is illustrated
in figure 1. The difference between dmax(t1,t2) and dmax(t2,t1) is also explicit in
the figure.

3 Computation of Eraser Lattices

Any set of Erasers forms, with their order relations, a Partially Ordered Set
(poset), since relation � is a proper order relation (reflexive, antisymmetric and
transitive). It is not a totally ordered set because there are not order relations
between every pair of Erasers [3]. Furthermore, to make it a lattice it is necessary
to augment it with an infimum, a transformation that erases everything, and a
supremum, a transformation that does not erase anything.

A lattice can be represented by a Hasse diagram, where the infimum is below,
the supremum is above, and the elements are in the middle connected with
vertical or diagonal lines whenever an order relation holds. In figure 2 the lattice
corresponding to the example in figure 1 is depicted.

Fig. 2. Hasse diagram representing a lattice

What is Quantum About This Scheme? A close inspection of figure 2
can reveal a very interesting feature of the lattices of Erasers: they are non-
distributive. Missing crossed relations between the four Erasers below the upper
point (supremum) produce 4 possible sub-lattices with the shape of a pentagon
called N5 (for the pentagon, see [3], and for non-distributive logics, [4]) which are
known to be a signature of non-boolean lattices. This is not just a mathematical
curiosity in the structure of order relations: it means that usual boolean relations
are restricted to hold within sets of compatible measurements, but they will
not hold between elements of two different (incompatible) sets. In Quantum
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Theory, sets of compatible observations are related to a particular experimental
or operational context; thus in this work, we suggest that sets of compatible
lexical measurements could also be related to some kind of context. In particular,
we explore the possibility to relate them to a topical context, therefore using the
contextual nature of Quantum Logics to explore topicality.

Relevancy-Sensitive Eraser Lattices. Relations between Erasers are deter-
mined in most cases by the usage of terms. A set of Erasers can be chosen, that
when applied to a set of relevant documents, possesses a lattice structure. It is
our hypothesis that such lattice would encode semantic information about the
topic the documents in the set are relevant to, and it could be used to define a
transformation that preserves as much as possible of relevant documents and as
least as possible of nonrelevant documents (a Topical Eraser).

The first approximation to a Topical Eraser is through a set of orthogonal
(disjoint) Erasers. Orthogonality tends to enforce a low window width (Erasers
with a width factor of 0 are all orthogonal to each other), so it is desirable to
choose them with maximally wide windows, to enhance document preservation in
the set of relevant documents. Thus, a set of orthogonal Erasers with maximum
window width are chosen for the set of relevant documents, and the Topical
Eraser can be defined as one that preserves what any of these preserve, that is,
their join (union):

Etopic =
⋃
i

E(ti, ni) (6)

The fraction X of a relevant document D ∈ topic preserved by this Topical
Eraser would be extremely easy to compute. Since they are orthogonal, the frac-
tion preserved by the join would be simply the sum of the individual preserved
fractions. And this fraction, in turn, would be approximately proportional to the
occurrence frequency of the terms, except for border effects (windows truncated
by the beginning or end of the document):

Xtopic(D) =
|EtopicD|

|D| =
|(⋃i E(ti, ni))D|

|D| =
∑

i

|E(ti, ni)D|
|D| ≈

∑
i

(2ni + 1)F (ti)

(7)

where F (ti) is the frequency of occurrence of term ti (the occurrence divided by
the length of the document) and ni is the window width parameter. This way,
we get something like a TF (Term Frequency) scoring with occurrence of terms
and weighting factors (widths) tuned with the set of Relevant Documents.

In a non-relevant document, on the other hand, the sum expression would not
be valid, since the Erasers would not be necessarily orthogonal, and the fraction
preserved by the join would be less than the sum of the fractions preserved by
the individual Erasers (since terms in overlaps are not counted twice).

The terms chosen for this set could still occur frequently in nonrelevant docu-
ments, producing high preserved fraction in nonrelevant documents, and there-
fore poor sensitivity to context. To avoid this, a further set of Erasers can be
used. With the data of maximal distances between occurrences, a set of Erasers
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can be defined such that each one of them includes one of the previous Erasers.
Since inclusion relation (5) tends to favour Erasers with wide windows, those
with minimal window width can be chosen to enhance sensitivity. For EDi being
one of the chosen maximal disjoint Erasers, and EIi the corresponding including
Eraser, the condition would be:

EIi = E(tj , nj) such that (EIi � EDi) ∧ (nk �=j > nj) (8)

On a relevant document, the consecutive application of the including Eraser and
the disjoint Eraser would produce the same result than just the application of the
disjoint Eraser, but would erase more than the disjoint Eraser in a nonrelevant
document, where the inclusion relation (8) does not necessarily hold.

4 Choice of Erasers

Central Terms: To choose the central terms for the Erasers, the ratio between
the average distance to occurrence of other terms and the average distance to
occurrences of itself can be used as a criterion to choose terms. Terms would be
ranked according to the following quantity:

R(ti) =

{ 〈d(ti,ti)〉
〈d(ti,tj �=i)

〉 when present

0 when absent
(9)

where 〈·〉 means average and d(ti,tj) is the distance between an occurrence of ti
and the nearest occurrence of tj . If the term is absent in a document, this would
count as a 0 in the averaging.

A term that tends to be evenly spaced in the text and occur relatively near
to everyone of the others would score high, and one that either occurs very
concentrated or does not occur much, will get a low score.

Window Widths: There are two possible criterion that we can use to assign
window widths both in disjoint and including Erasers:

1. Maximum preserved fraction: This criterion favours maximal window widths
for disjoint Erasers

2. Minimum overlap: This criterion favours minimal window widths for includ-
ing Erasers.

In different documents, the maximum widths compliant to orthogonality con-
dition (4) and the minimum widths compliant to inclusion condition (5) can
be different, so we maximise or minimise them, correspondingly, over the whole
set of documents. Minimum distance will then be minimum in all the set of
documents, and maxima will be also maxima on all the set.

5 A Practical Example in Collection AP88

To check to what extent semantic contents is encoded in the order relations
between Erasers, we chose 2 sets of 20 Erasers for the set of relevant documents
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Table 1. Erasers chosen for query 82 of AP88

Query 82: Genetic Engineering
term disjoint width disjoint term including width including

said 13 field 81
field 59 corn 36
new 13 said 25
year 46 genetically 144

s 22 scientists 144
t 33 s 36

used 34 test 81
research 30 t 121

tests 50 aids 81
test 55 disease 100

researchers 31 genetic 100
disease 46 research 100
gene 40 used 81

cancer 37 gene 81
scientists 21 researchers 100

corn 61 vaccine 36
aids 47 cancer 36

genetically 45 new 64
vaccine 46 tests 64
genetic 22 year 121

for different topics in the collection AP88, and for each topic compared the
relations holding in the set of relevant documents and those holding in a random
subset of nonrelevant documents.

Results are in table 1 for topic 82. Central terms are clearly related to the
topic. The fulfilment of an order relation can be approximately evaluated by
comparing the documents acted upon by both Erasers and only one of them, as
follows:

X(E1 �D E2) = sim(E2E1D, E2D) (10)

where sim(A, B) is a measurement of the similarity of documents A and B.
In figure 3 a part of the lattice for topic 58 is depicted. The most important
test for this scheme is the measure of the discrimination between relevant and

Table 2. Topics that were well characterised (easy) and poorly characterised (difficult).
The average number of documents and percentages of preservation of different kinds of
documents are presented. These values correspond to Topical Erasers with 20 central
terms.

Queries documents % relevants % nonrelevants % nonasessed
easy queries 42.7 ± 26.87 (72.36 ± 8.81)% (30.47 ± 12.87)% (9.64 ± 7.23)%

difficult queries 93.69 ± 33.15 (46.62 ± 8.33)% (70.31 ± 6.06)% (11.15 ± 9.48)%
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Fig. 3. Order relations between Erasers for topic 82 of TREC-1. Relations are obtained
from the list of including Erasers with formulas in appendix B.

Fig. 4. Average preserved percentage of relevant (R), non-relevant (N) and non-
assessed (X) documents for queries 51-100 of TREC-1, for different numbers of central
terms

nonrelevant documents. In figure 4 the results are shown for the percentages
preserved for queries 51 to 100 of TREC-1 [5] using different numbers of central
terms to build the Topical Eraser. Relevant documents were well characterised by
the Topical Eraser for most of the queries, but 13 of them had bigger preserved
percentage for nonrelevant than for relevant documents. In table 2, results of
preserved percentage are shown for the topics (queries) in two groups: the 13
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queries for which the results were anomalous (more non-relevant than relevant
preserved) and those for which the methodology worked as expected, preserving
more relevant than non-relevant.

6 Conclusions

In this paper, we have extended the notion of Selective Erasers to form higher
order constructs called selective lattices. Constructing lattices from a set of exam-
ple relevant documents is a novel way in which to capture the semantic relations
within the content. The application of transformations derived from elements
of the lattice, will either (mostly) destroy or preserve the relevant information
in a new unseen document, and provides a formal mechanism for classifying
documents. Examples with sets of documents of a standard IR test collection
were used to check the ability of this scheme to capture semantic contents, with
positive results.

Future work will be directed towards deriving the optimal set of Selective
Erasers, formulating a ranking algorithm and performing a large scale empirical
study of one of the first quantum inspired Information Retrieval System. It
could also be possible to check situations where incompatible observations exist,
like a possible incompatibility between topicality and relevancy mentioned in [4,
chapter 6].
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A More Relations between Erasers

1. Trace Ordering (does not rely on the identity between transformed docu-
ments but only between their preserved number of tokens).

E1 �(st,D) E2 ⇐⇒ |E2E1D| = |E2D| (11)

2. Weak Trace Ordering (this is rather trivial, and not very useful):

E1 �(wt,D) E2 ⇐⇒ |E1D| = |E2D| (12)

It can be easily shown that the three defined relations form a chain of im-
plication (3) ⇒ (13) ⇒ (12).

3. Compatibility
E1 ∼D E2 ⇐⇒ [E2E1]D = [E2E1]D (13)

This relation implies all the other relations defined in this paper, but is not
necessary.

B Deducing More Relations

Two relations are very useful to deduce more order relations from a list, like that
of narrow-window Erasers and wide-window Erasers:

1. Transitivity:

(E(A, wA)�E(B, wB))∧(E(B, wB)�E(C, wC ))⇒(E(A, wA) � E(C, wC))
(14)

2. Invariance under simultaneous widening:

∀α > 0, (E(A, wA) � E(B, wB)) ⇒ (E(A, (wA + α)) � E(B, (wB + α)))
(15)
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Abstract. Information systems are socio-technical systems. Their de-
sign, analysis and implementation requires appropriate languages for rep-
resenting social and technical concepts. However, many symbolic
modelling approaches fall into the trap of underemphasizing social as-
pects of information systems. This often leads to an inability of onto-
logical models to incorporate effects such as contextual dependence and
emergence. Moreover, as designers take the perspective of people living
with and alongside the information system to be modelled social inter-
action becomes a primary concern. Ontologies are too prescriptive and
do not account properly for social concepts. Based on State-Context-
Property (SCoP) systems we propose a quantum-inspired approach for
modelling information systems.

1 Introduction

The idea of capturing and representing real world knowledge in information sys-
tems has long been recognized in many fields (see [1] for an overview). However,
the problem of solidly grounding such knowledge is widely acknowledged. Philo-
sophical debates on the foundations of knowledge date back to ancient greek
thinkers. Since then, many western philosophers have agreed that experience
of particulars as it comes moment by moment through the senses is unreliable.
Many concluded that only stable, abstract, logical, universal categories can func-
tion as objects of reference for the meaning of concepts [2]. Nowadays, classical
and rule-based approaches to conceptual modelling still consider such predefini-
tions. They rely on ontological presuppositions according to what Husserl would
have called the natural attitude, a kind of näıve positing of the world as existing
independent of the observer [3].

In the light of Husserl’s natural attitude, the ontological approach raises on-
going questions of how to adequately represent and transform the cultural world
we inhabit. Information systems are cultural artefacts and meant to represent
socio-technical phenomena. Conceptual modelling lies at the heart of their de-
sign, analysis and implementation. Here, modelling grammars like data-, object-,
or process-oriented notations provide concepts for systems analysis and design.
However, such modelling notations are limited in their expressiveness. Firstly,
modelling emergent properties of composites runs into the problem of ambiguity
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so that there is no reasonable justification whether one should represent such
properties as associations or objects in their own right [4,5]. Furthermore, con-
ceptual structure changes whenever context causes it to change [6]. In predefining
(Cartesian) product spaces entities become inflexible with regard to their actual
usage [2]. For instance, the concept Chair has quite different meanings in relation
to its usage, e.g. sitting or standing on it. Secondly, formal ontologies tend to
claim the existence of things and properties (e.g [7]), however this leads to infi-
nite regress as it might be claimed that facts are meaningless and aggregation of
meaningless facts is hopeless unless their actual usage evokes relevance [8], e.g.
when disposing of a chair its affordance to sit on becomes meaningless. Even if
one aims at framing the scope, in order to distinguish what is relevant, one ends
up in infinite regress as many skills are embodied and subpersonal and thus not
accessible to deliberate distinctions. These problems have become particularly
bothersome in Artificial Intelligence (AI) where their different manifestations
are understood under the guise of the commonsense knowledge problem [8,9],
the frame problem [10] and the symbol grounding problem [11].

In this paper, we demonstrate that social concepts like Team, Group or
Department, can be modelled adequately beyond ontology or symbolic repre-
sentations. State-Context-Property (SCoP) systems [12,13,14,15] facilitate the
specification of interactions between individuals or agents in a quantum-like
manner. From the flow of mutual and directed acts states of composite concepts
like Team emerge. Such states are neither reducible to the agents from which
they emerge nor can they be specified independently from individuals. Generally,
states of concepts depend on the intent, or context, from which they arise.

This article is structured as follows: In the next section, problems of symbolic
representation are revisited. By means of an example we discuss the limitations
of formal ontology and the necessity of accounting for interaction, emergence
and context-sensitivity. In Section 3, we argue for the importance of social in-
teractions in socio-technical settings. Humans are intentional beings and relate
to each other quite differently from simple message exchange. Understanding
human communication requires to adopt different viewpoints, in particular the
intentional perspective of others. In Section 4, we formalize this understanding
of agent communication and show how to model contextual meaning as well
as emerging states of social concepts with SCoP. Lastly, in Section 5, we point
out the consequences of our approach, summarize what has been proposed and
provide an outlook towards future work.

2 Representational Modelling

In this section we briefly introduce some problems that arise within a represen-
tational approach. We will show that emergent properties arising out of contex-
tualized behaviour of interacting entities can not be modelled with traditional
modelling approaches. These difficulties have been well known in both AI and the
cognitive sciences for many years. Since they arise from the insistence of these
fields upon representation they will hold accordingly for information systems
building upon formal ontology, which is again a representational approach.
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2.1 General Problems of Formal Ontology

Problems of formal ontology or symbolic representations have been extensively
discussed in AI and the cognitive sciences, but solutions are yet to be found in
the current literature.

1. The commonsense knowledge problem [8,9] recognizes that implicit knowl-
edge is more or less taken for granted but, nevertheless, needs to be made
explicit in order to proceed with the representational project. Cumulative
aggregations of facts about the world, whether implicit or not, never solved
the problem. As Dreyfus (1991) puts it: ‘Facts and rules are, by themselves,
meaningless. To capture what Heidegger calls significance or involvement,
they must be assigned relevance’ [8]. However, such an assignment of rele-
vance just adds more meaningless facts, a problem that very quickly leads
to infinite regress.

2. The frame problem [10] is characterized by the challenge of limiting the scope
of propositions in the light of actions. Propositions represented in symbolic
terms must be updated with regard to all relevant effects caused by an action.
In order to frame the situation in hand meaningless facts must be ignored.
However, deciding relevance through reasoning on facts once again causes
the commonsense knowledge problem.

3. The symbol grounding problem [11] adds to the misery of representational-
ists in asking how the meanings of the meaningless symbol tokens can be
grounded in anything but other meaningless symbols.

4. Experiments in cognitive science have shown people generally rate guppy
neither as a good example or instance of the concept Fish nor of the con-
cept Pet, but as good example of the combined concept Pet Fish [13,14].
Hence, activiation of Pet or Fish alone does not cause activiation of guppy.
According to classical logic and set theory, joint entities are described by
means of the product state space, e.g. the Cartesian product space of Pet
and Fish. However, the conjunction of both concepts cannot describe the
situation wherein novelty (e.g. guppy) is generated.

Thus, there are some quite strong reasons to be wary of representations. In
the next section we shall focus upon some of the problems particular to social
concepts in information systems that arise within representational approaches.

2.2 Symbolic Representation of Composites

Most approaches to modelling information systems share ontological assump-
tions which determine the built-in terms offered and therefore their range of
applicability [16]. For instance, static languages provide concepts for existing
things, their attributes and interrelationships. Dynamic modelling grammars
cover temporal aspects like states, state transitions or processes. However, when
it comes to emerging or composite concepts they run into trouble. According
to Wand et al. (1999) the composite always gains at least one property that
did not exist previously [5]. For instance, consider the emergence of a team out
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Fig. 1. Representational modelling of socially emergent concepts is ambiguous. Com-
posites like Team can be represented as objects (entities) or associations (relationship
classes).

of a number of agents in Figure 1. According to Unified Modelling Language
(UML) [17] and Entity-Relationship Notation (ER) [18] composites can be rep-
resented as object classes (UML) or entity classes (ER): rectangles in 1a and 2a.
Furthermore, combined concepts can be symbolized as associations (UML) or
relationship classes (ER): connecting line in 1b and diamond in 2b. Obviously,
modelling combined concepts like Team is ambiguous. Generally, if a team had
not at least one property like number of agents it would not make sense to model
it. But how should one represent that property, as a relationship or an entity
in its own right? It was argued that if such emergent properties are represented
as relationship classes or associations between entities, the emergent property of
the composite cannot be represented [4]. Furthermore, there is no way to rep-
resent mutual properties between the composite concept and its components.
Features like the number of agents a team needs to exist, the assignment of
an agent to a team or the multiple roles an agent can occupy within a team,
are hardly represented with associations. In order to dissolve ambiguity, repre-
sentational approaches to information systems modelling suggest putting social
concepts like Team into separate ontological categories, i.e. object classes (UML)
or entity classes (ER) [4]. Thus 1a (and 2a respectively) as shown in Figure 1
should be the preferred representation. However, ontological emergence of inher-
ent high-level properties with causal powers is witnessed nowhere [19]. To claim
that social composites should be modelled ontologically as entities or objects
lacks any scientific evidence. Furthermore, irrespective of representing emergent
properties as entities or relationships, there is no chance to account for their dy-
namic nature. For instance, teams might emerge temporarily and spontaneously,
e.g. within a meeting for reasons of group work. Furthermore, a team might
modify team members and properties like purpose or duration but still remain
the same socially emergent entity with respect to its organisation, i.e. maintain
viability as a team. In summary, neither associations (UML) and relationship
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classes (ER) nor objects (UML) and entities (ER) are capable of representing
part-whole relationships of social concepts adequately. Emergent properties are
not intrinsic to the composite and mutual properties belonging to both Agent
and Team are as much transient as emerging properties. Furthermore, Team
is neither separable into agents nor should Agent be specified independently of
Team. Social concepts like Team and Agent co-emerge by co-enacting each other
[20,21]. In the following section we will discuss how agents relate to each other
intentionally and how the viewpoints involved in speech facilitate the emergence
of combined social concepts.

3 Shifting Viewpoints

As discussed in the previous section, representational modelling approaches fall
short of modelling social concepts adequately. One of their shortcomings is an
inability to represent composites like Team which emerge context-dependently
in the course of social interactions between agents. In this section, we introduce
a natural account of human communication.

3.1 Social Interaction as Message Exchange

Social interactions are inherently dynamic or active. In contrast to static mod-
elling notations like ER or UML class diagrams, dynamic modelling grammars
conceptualize interactions between agents in terms of states, state transitions and
input-output behaviour (e.g. [22]). For instance, Figure 2 shows the behaviour of
two interacting agents in terms of input-output relations or directed edges thus
leaving white-box behaviour opaque (left-side of Figure 2). Moreover, internal
behaviour is specified in terms of task dependencies between and within agents
(right-side of Figure 2). Sending tasks (outgoing edges) trigger receiving tasks
(incoming edges) whereas internal events (circles) denote transitions from re-
ceiving to sending tasks and vice versa. Agents and input-output symbols (Self,
Help) are denoted by nouns, whereas sending and receiving tasks (introduce,
request, provide) are labeled as verbs. For instance, Agent 1 sends a request for
help (s3) whereupon Agent 2 receives the request and replies informatively (s4).
Besides sequential behaviour as specified in Figure 2, logical operators facilitate
the modelling of more complex control-flow behaviour (cf. Figure 3). However, it
is obvious that rule-based behaviour is not the way human agents do naturally

Fig. 2. In social interactions agents actively relate to each other. Agents are concep-
tualized from an inside and outside view. The latter shows input-output behaviour
(left-side), whereas the former mirrors an agent’s internal behaviour (right-side).
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interact and using language is much more subtle than just following patterns of
acts like sending, receiving and processing. To make this clear we need a closer
look at the speech acts involved.

3.2 Social Interaction as Shared Intentionality

According to speech act theory [23,24], human agents are conceptualized as
inherently active, intentional and embodied beings situated within their back-
ground of cultural practices and purposes, that is their contextual situation.
Intentional aspects are formalized using the fourfold structure of speech acts.
Speech acts are composed of:

1. Utterance acts (the actual embodied expression) like gestures and vocaliza-
tions.

2. Illocutionary acts (the social intention) like informing, requesting or sharing
attitudes.

3. Propositional acts (the reference to some state of affairs) like pointing or
pantomiming.

4. Perlocutionary acts (the expectation of a listener’s response) like informing,
requesting or sharing attitudes.

Speaking is primarily an intentional act of relating to the world from a first-
person point of view. Moreover, agents develop and flourish in social environ-
ments in which they share intentional and attentional states with others [25].
During the lifetime of an agent, shared intentionality settles, becomes embodied
and shapes a common ground [26]. For instance, this common ground includes
the language spoken (e.g. English), communal norms (e.g. legal terms) and social
conventions (e.g. welcoming someone to a meeting). It is through such cultural
practices and purposes that agents assign meaning to symbols and understand
intentional acts of others including the significance of being part of a community
of other agents. From the perspective of speech act theory and shared intention-
ality, Figure 2 can be interpreted quite differently. Instead of sending, receiving
and processing symbols, agents interact by actively relating to each other. Agents
do not exchange symbols but actively interpret, or bring forth, propositional con-
tent based upon a common or shared background. Hence, agents mutually and
dynamically relate to each other by actively and directly anticipating each other.
They do this through:

1. Illocutionary acts: introduce (s1 and s2), request (s3) and provide (s4)
2. Propositional acts referring to content: Self, Help
3. Perlocutionary acts: introduce (s1 and s2), request (s3) and provide (s4)

Illocutionary acts mirror the social intention of an agent, whereas perlocutionary
acts represent the anticipation of the other’s reaction. Hence, an agent’s second-
person perspective and first-person view are inseparable. Due to their common
ground agents expect one another to (re-)act according to their shared cultural
practices and purposes. For instance, as shown in Figure 2, Agent 1 expects
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Agent 2 to provide support while asking for help. Similarily, agents presuppose
welcoming each other in a particular way, e.g. through hand-shaking, when they
meet. In the next section, we will formalize this understanding of human com-
munication using State-Context-Property systems (SCoP) [12,13,14,15]. We will
demonstrate that mutual anticipations based upon a common ground lead to
emerging states of composite concepts like Team which are neither reducible to
states of Agent nor can they be specified independently of Agent.

4 Conceptual Modelling Beyond Ontology

It has been argued that conceptual modelling of information systems should be
carried out as the coordination of social intentions [27,22]. Social agents actively
coordinate behaviour through intentional acts such as speech acts. Based upon
a common background, intentional acts (e.g. requesting, informing or sharing
attitudes) constitute the contextual situation that evokes the meaning of an
intentional object or concept. In the following we will formalize an understanding
of concepts as the coordination of intentional acts and argue for a quantum-like
structure in social interactions.

4.1 Example

Two agents introduce each other and talk about a venture they would like to
share. In Figure 3, Agent 1 proposes an option, whereas Agent 2 either accepts
the proposal or suggests an alternative. Once both have agreed upon a venture
a new concept, Team, emerges. Team is neither modelled a priori as an emer-
gent concept having predefined properties and domain nor is it separated from
agents. Rather a team is brought forth, or disclosed, by two socially coupled
agents in action. Intentional acts s are inseparably entangled with any concept

Fig. 3. Two agents talk about a venture they would like to share. Once both have
agreed the social concept Team emerges. Team is neither reducible to one or both of
the agents nor can it be specified independently of agents.
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they evoke including the emerging concept Team. Team is not ontological in
the sense of a property existing independently of an observer rather it emerges
context-dependently in the course of interactions. Compositions of intentional
acts (e.g. introduce, propose, agree etc.) constitute the context which evokes
the meaning of an intentional object or concept (e.g. Self, Venture, Team etc.).
Each agent is situated within its contextual situation from its first-person point
of view. As discussed in the previous section, the first-person perspective of an
agent is inseparably entangled with its second-person point of view, i.e. its an-
ticipation of the other’s reaction. Obviously, anticipating someone else’s reaction
to one’s own action requires a state of potentiality. Furthermore, such a state
of anticipation depends on earlier interaction dynamics, that is on previous illo-
cutionary acts and perlocutionary acts enacted from the respective first-person
perspective of the agents involved. To make this more precise, we formalize a
particular contextual situation e, shared by two or more agents, as a composition
of pathways, trajectories or sequences of intentional acts s1. Hence, contextual
situations e arise from interaction dynamics (cf. Figure 4). It is such a contextual
situation e which constitutes the meaning of a propositional content or concept
evoked by a given act s. In the following we will show that emerging concepts like
Team can be modelled adequately with SCoP. States of social concepts like Team
should neither be modelled independently from agents nor are they reducible to
one or both of the agents. Agents and Team, and more generally intentional
beings and their social understanding are mutually dependent [25].

4.2 State-Context-Property (SCoP) Systems

Let a social interaction be composed of agents and (propositional) objects each
represented as State-Context-Property (SCoP) concepts S [12,13,14,15]. A SCoP
concept S is a five tuple2.

S = (Σ, M, L, ν, μ) (1)

Σ is the set of states an agent or object can attain. M is a lattice structure of
context elements e. Likewise, L is a lattice structure of properties. Both context
elements and properties can be concepts. The function ν returns the probability
of a property typical of a concept under a given context. The probability that a
contextualized state changes to another state giving rise to a new context is de-
fined in μ. Let us have a closer look at each of the components. The state p ∈ Σ
of an agent or referential object is dependent on the context e ∈ M . Since so-
cial interactions are essentially composed of agents intending some propositional
content, e.g. SAgent intends proposing SV enture, intentional acts form part of
the context of propositional content. For instance, as soon as one of the agents
1 Theoretically, all conversational pathways could be modelled at once. Practically,

this is neither feasible nor desired. We will show that models as simple as Figure 3
already involve shared intentional states which can not be modelled adequately with
ontological approaches.

2 A translation of SCoP concepts into vector spaces can be found in [14].
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e1 = s1

e2 = s1 ∧ s2

e3 = s1 ∧ s2 ∧ s3

e4 = s1 ∧ s2 ∧ s3 ∧ s4

e5 = s1 ∧ s2 ∧ s3 ∧ s5

e6 = s1 ∧ s2 ∧ s3 ∧ s4 ∧ s6

e7 = s1 ∧ s2 ∧ s3 ∧ s5 ∧ s6

Fig. 4. Social interactions are context-dependent. A contextual situation e is composed
of interactive pathways. Interactive pathways are composed of sequences of speech acts
s enacted from the respective first-person perspective of the agents involved.

in Figure 3 has agreed on joining a venture (context e where s5 = true or s6 =
true), states are assigned to STeam. There are three types of states depending
on context or intentional acts.

– Theoretical states are unrelated to any context. Before agreement STeam is
essentially meaningless and not evoked by any intentional act.

– Eigenstates are actualized. p ∈ ΣV enture = ‘proposed’ is an eigenstate once
the related context (context e where s3 = true) is given.

– Superposition states afford to get actualized in relation to a specific context.
A state p ∈ ΣTeam in which SAgent has not yet decided whether to propose
an alternative (context e where s4 = true) or to agree with venture (context
e where s5 = true) is a superposition state.

Agents and objects have properties a ∈ L dependent on context. For instance,
the propositional object STeam may have properties like purpose and duration
dependent on a given speech act. If the intention is proposing (s3), then STeam

has not acquired these properties yet. It acquires them with dependence upon
state and context. The function ν takes a state, context and feature and returns
the applicability of the property. Hence, (p, e, a) �→ ν(p, e, a).

ν : Σ × M × L → [0, 1] (2)

For example, ν(p, e, a) could be the weight of a feature a = ‘purpose’ of the
concept SV enture in a state p = ‘confirmed’ under the context e where s6 =
true.

Similarly, the function μ describes the transition probability from one state to
another under the influence of a particular context. It takes a contextualized state
and returns the probability that it changes to another one. Hence, (f, q, e, p) �→
μ(f, q, e, p).

μ : Σ × M × Σ × M → [0, 1] (3)

For example, μ(f, q, e, p) could be the probability that state p ∈ ΣV enture =
‘proposed’ under the influence of context e changes to the state q ∈ ΣV enture =
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‘confirmed’, giving rise to the new context f . In the following we will have a
closer look at context elements e ∈ M .

Contextual structure in social interactions mirrors conversational progress
in terms of compositions of intentional acts. M is a complete and orthocom-
plemented lattice. Lattices are partially-ordered sets. A lattice is orthocomple-
mented if for each context element e there exists a complement e⊥. It is complete
if for each subset of M there exists both infimum (greatest lower bound) and
supremum (least upper bound). Hence, for all {ei}i∈I , ei ∈ M , there exists an
infimum and supremum. Infimum is the logical conjunction of context elements
ei ∈ M .

∀i ∈ I : ∧i∈Iei ∈ M (4)

The infimum requires a context f ∈ M : f ≤ ej such that ∀j ∈ I ⇒ f ≤ ∧i∈Iei.
For instance, take the situation as shown in Figure 3 where s6 = true. Here,
previous actions led to a state p ∈ ΣV enture = ‘confirmed’. Several paths could
have led to this contextual situation. For instance, Agent 2 might have had to
propose alternatives (s4) before the agreement could have been established. The
infimum is the logical conjunction of such pathways all leading to an eigenstate
in the conversation. Note that for any eigenstate under context e where s6 =
true, the actual pathway is decided in real time on the fly and thus it is not yet
determined. To make this clear we need to define the supremum. In contrast to
the infimum, supremum is the logical disjunction of context elements ei ∈ M .

∀i ∈ I : ∨i∈Iei ∈ M (5)

The supremum requires a context f ∈ M : f ≥ ej such that ∀j ∈ I ⇒ f ≥
∨i∈Iei. For instance, in situations where an agent has to make a decision in
relation to another agent who is expecting a response, the logical disjunction of
elements ei denotes a superposition context. Whether an agreement is established
without iterative negotiations beforehand (e7) or with preceding discussions (e6)
emerges on the fly in action.

Zero context elements (0) represent context for which there are no eigenstates,
e.g. motor behaviour in relation to some external state of affairs. Unit context
elements (1) mirror context for which every state is an eigenstate, e.g. self-
movement in relation to speech. For instance, for STeam the subset {0, 1, e6, e7} ∈
P (MTeam) returns the following infimum and supremum.

e6 ∧ e7 (Infimum)
e6 ∨ e7 (Supremum)

Contextual behaviour in social interactions relates infima and suprema to
states p ∈ Σ. Suprema relate to superposition states. When a superposition state
affords to get actualized under a given context e, it changes to an eigenstate in
this context. In speech, enacting or intending propositional content actualizes a
concept’s superposition state. It is defined as as a mapping λ.

λ : M → P (Σ) (6)
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The probability function λ takes a context e, maps it to a subset of Σ and returns
an eigenstate p under e. Hence, e �→ λ(e) where λ(e) = {p|μ(f, p, e, p) = 1}. The
probability that a state p ∈ Σ under a superposition context e ∈ M collapses to
an eigenstate under this context is not epistemological, i.e. due to an agent’s lack
of knowledge. From the background of a given contexual situation, actualizing
superposition states while negotiating depends on the agent’s freely performed
actions.

Generally, if for two contexts e and f , we find that e is stronger or equal
than f , then eigenstates under f include eigenstates under e. Hence, e ≤ f ⇔
λ(e) ⊂ λ(f). For instance, e1 ≤ e2 ⇔ λ(e1) ⊂ λ(e2). From (4) and (5) follows
that interaction dynamics can take different paths and thus conversations are
composed of several contextual elements ei. For infima, a state p under a context
e is only an eigenstate, if it is an eigenstate of each of the ei.

∩i∈Iλ(ei) = λ(∧i∈Iei) (7)

For instance, since λ(e6) ∩ λ(e7) = λ(e6 ∧ e7) it follows that p ∈ ΣTeam is an
eigenstate of both e6 and e7. A state p ∈ ΣTeam in which proposals were made
iteratively (s3 after s4) is an eigenstate. However, this does not hold for the
supremum which makes it quantum-like.

∪i∈Iλ(ei) ⊂ λ(∨i∈Iei) (8)

The context M of a concept evolves within λ(M) which is a closure space [12]. If
we add superposition context to the union of eigenstates then we get the closure
space λ(M) which makes a SCoP concept (agent or object) topological in the
sense that it covers all actual and possible states. Given a superposition context
e∨f , we add this context to the set λ(e)∪λ(f). Hence, for e, f ∈ M : λ(e) ∪ λ(f)
is the closure space of λ(e) ∪ λ(f). For instance, since λ(e6)∪ λ(e7) = λ(e6 ∨ e7)
(8) it follows that a state p ∈ ΣTeam under this context is a superposition state.
This is exactly the case if agents have to decide whether they want to proceed
negotiating or not. By adding the supremum e6∨ e7 to λ(e6)∪λ(e7) we gain the
closure space λ(e6) ∪ λ(e7) thus giving STeam a topological meaning. When not
in its ground state, p ∈ ΣTeam is either an eigenstate or superposition state. In
the latter case p ∈ λ(e6 ∨ e7). However, p /∈ λ(e6) ∪ λ(e7) and thus it is neither
an eigenstate of e6 nor an eigenstate of e7. Hence, the concept STeam acquires
meaning through a common background or shared intentional state p ∈ λ(e6∨e7)
composed of intentional acts or states of both agents. This nonseparability of
shared intentional states requires to adopt a second-person viewpoint where both
agents have to relate to their common proposition from the perspective of each
other. Agent 1 expects Agent 2 to agree while Agent 2 anticipates Agent 1 to
confirm venture. Obviously, such mutual expectations are at work during the
whole conversation. In our example as shown in Figure 3, it is the situation
where agents negotiate (s3 and s4) that mutual expectations and role-reversal
imitations [28] are explicitely visualized.
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5 Conclusion and Future Work

Representational modelling approaches are not capable of modelling social
concepts adequately. Putting concepts like Team or Group into ontological cat-
egories leads to an inability to incorporate effects such as contextual depen-
dence and emergence. However, as recent studies increasingly reveal, language
is context-dependent and emerges from social interactions [25]. Moreover, as
information systems are essentially socio-technical systems such effects gain im-
portance. In the end, both social and technical concepts acquire meaning through
their actual usage driven by cultural practices and purposes [28].

As a response to the lacks of expressiveness in representational approaches,
we presented a novel approach based on State-Context-Property (SCoP) sys-
tems. SCoP draws from quantum mechanics and incorporates effects such as
context, emergence and interaction. We adopted SCoP to social interactions, in
particular to social concepts which acquire relevance dependent on intentional
acts or context. Humans are intentional beings and their acquisition and usage
of linguistic constructs seems to be driven by something quantum-like. Superpo-
sition states involved in mutual expectations are not separable into individual
acts from which they emerged. Therefore, in SCoP concepts like Team gain a
structure where states involved in social interactions are neither ontological in
any agent-independent sense, nor are they reducible to agents from which their
significance evolved.

Future work will investigate how social interactions relate to machine commu-
nication. Many modelling approaches to information systems development derive
from machine languages. For instance, finite-state machines process symbols in
order to carry out context-free tasks as defined in a rule-based manner. An use-
ful method for systems analysis and design could support the identification of
automation potentials based upon domain models specified with SCoP.
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Abstract. Information Retrieval (IR) systems try to identify documents
relevant to user queries, which are representations of user information
needs. Interaction, context, and document structure are three important
and active themes in IR research. We present how we propose to model
the task of Structured IR (SIR) based on a QT inspired framework, with
a focus on how to exploit user contextual information and user interaction
in the search process.

1 Introduction

Information Retrieval (IR) aims at automatically matching a user’s query, usu-
ally a set of keywords typed by the user, with a set of relevant documents. Struc-
tured IR (SIR) breaks away from the traditional retrieval unit of a document
as a single large (text) block and aims at returning document fragments (e.g. a
chapter, a section, or a paragraph), instead of whole documents in response to
a user query. The structure of the document, whether explicitly provided by a
mark-up language (e.g. XML) or derived, is exploited to determine these most
relevant document fragments. In addition, SIR users may formulate queries with
constraints on the content and on the structure of the units to be retrieved. SIR
is believed to be of particular benefit for information repositories containing long
documents, or documents covering a wide variety of topics (e.g. books, user man-
uals, legal documents), where the user’s effort to locate relevant content within
a document can be reduced by directing them to the most relevant parts of the
document.

SIR has been extensively experimented within the INEX evaluation forum1.
Unfortunately, experimental results so far indicate that, contrary to expectation,
exploiting the structure in IR has not led to any significant increase in retrieval
performance. One reason seems that models developed for SIR have mainly been
adaptation of classical IR models. Even within standard IR, incrementally ex-
tending the classical IR models (e.g. adding pseudo/implicit relevance feedback
and query expansion components) and adjusting parameters have not led to
major improvement in retrieval performance [1].
1 http://www.inex.otago.ac.nz/
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One reason might be that the clues of relevance go beyond topical rele-
vance (i.e. a document is relevant to a query if it is about the topic of the
query), even when considering other aspects of the document content (e.g. the
document style). More importantly, the context (defining the user information
need) and the interaction (between the user and the IR system) are two impor-
tant facets that have to be integrated directly into IR models and experiments,
rather than being a controlled factor. With respect to SIR, structural context (of
a document fragment within a document) and interaction (how the user uses
structure to navigate within the document when searching) might play an even
more important role, perhaps, than in standard IR.

It has been argued that the Quantum Theory (QT) formalism provides new
tools for modeling the context and the interaction in IR. We also postulate
that QT will allow the modeling of these between the user and the system, and
between structured documents parts in SIR.

The paper follows a constructive approach to investigate the construction of
a model for (S)IR based on QT. In Section 2, we discuss related works, first the
different QT/IR approaches and then the use of structure in IR. In Section 3, we
discuss the factors that should be taken into account, and discuss how a suitable
model for SIR can be developed in Section 4.

2 Previous Works

2.1 QT and IR

In this section we focus on previous attempts of building IR models with the QT
formalism. We can distinguish three kind of works – not necessarily incompatible,
those (1) adapting an IR model to QT, (2) capturing the user-system interaction
and (3) trying to define an adequate space for IR.

Adapting IR models to QT is one of the most direct way to incorporate this
formalism into IR. It has two potential benefits. First, it shows that the QT
formalism is powerful enough to at least encompass those models. Secondly, it
might provide an insight on how to modify them in order to leverage the QT
“added power”. In [2], Van Rijsbergen shows that some classical IR models could
be easily translated within the QT formalism. For instance, the vector space
model can be easily expressed with the document defining the density and the
query as an observable (or vice-versa).

Interestingly, Widdows [3] extended the classical IR vector space model with
some concepts brought from QT. Two ideas where put forward. First, non-
relevance is equated to the orthogonality in a vector space, and this gives a
way to represent negation. Second, the disjunction of queries (q1 or q2) is mod-
eled by the subspace spanned by the two subspaces associated with the two
queries. Although this adaptation leads to nice results in particular with respect
to negation, it does not fundamentally depart from classical IR models.

More recently, Guido et al. adapted [4] the logical imaging formalism [5] to the
QT formalism. Logical imaging provides a way to compute a conditional proba-
bility (or an implication) through a non-uniform redistribution of the probability
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mass. In the classical case, p(·|A) implies that the initial mass associated to ¬A
is uniformly redistributed to the space of A. Transposed to IR, it allows for
the redistribution of a term probability to an associated term belonging to the
query (e.g. synonym). The interesting part of this formalism is the use of a
kinematic operator that is an alternative to the standard Shrödinger unitary
evolution, and that matches nicely the general imaging framework.

It can be interesting to develop from scratch a framework based on QT, hence
avoiding to be restricted by previous standard IR approaches. Such approaches
have been attempted in particular to model interaction. The latter has an in-
creasing importance in IR research, as shown by the development of new theoret-
ical frameworks for interaction in IR. Within QT, the work of [6, section 3.7.1.]
clearly states one possible operational definition of interaction: “The [IR system]
is a type of oracle which detects a user’s question with minimal ed required by
the user to express the question, and then provides an answer that maximally
satisfies the user” which in the case of an IR system poses the problem as how
to select a set of (part of) documents that satisfies as much as possible this
requirement. In this work, interaction is modeled as a unitary evolution. Oper-
ationalising this framework is still an open question even in the case of “simple”
flat documents. Nevertheless we support such a view where system and user are
separately modeled, which we discuss in Section 3.

A more practical approach to make use of user interaction was proposed by
Melucci [7], who makes the assumption that it is possible to define a Hilbert
subspace that contains relevant documents, and that this subspace2 can be built
through user interaction. The QT formalism is involved when, given a document
d, the model computes the probability that a document d is within the subspace
RS by p (RS|d) where RS is the constructed subspace.

Somehow orthogonal to the problem of building a model or a space is the
question of how to define a space. Usual vector space in IR are spaces where
each dimension is associated to one term. Building a concept space (as opposed
to a simple term space) might be a way to exploit the geometry of the space.
Many works [3,8,9,10] have suggested that QT might be adapted to represent
concepts. The reasons are two-fold. First, there are interesting connections be-
tween orthogonality in the space and the different senses of a word. Second,
contextual information could be captured by building up structures where word
senses are entangled. For example, knowing in which sense the term “bat” is used
might help to identify in which sense “cricket” is used (either animal or sport).
These works have the potential to define suitable conceptual spaces for IR.

Two QT based approaches try to build projectors lattices, which in turn can
be used to define a Hilbert space. The first one is related to disambiguating
words [11]. A lattice of projectors associated to contexts is built, where atomic
contexts (e.g. “the animal is a tiger”) completely determine the context leaving
no other possible interpretation for a word (here animal). The other work [12]
attempts to build a document space where co-occurrence is a central notion.

2 Melucci names it a context space, but we use this word differently so we do not use
his terminology here.
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The idea is to characterise texts through erasing projectors that only keep words
within a given window of a word. While it is not clear how to use these specific
frameworks in IR, these approaches are interesting since they define a part of the
Hilbert space structure (orthogonality relationships) by the possible observation
one could make on the systems represented into that space.

Overall, IR built upon QT foundations is still in an early stage and there
are no solid foundations upon which one could develop a sound framework. In
section 3 onwards, we discuss some points we deem important for (at least our)
future work in that field.

2.2 Structure, Psycholinguistics and IR

It is interesting to consider psycholinguistic studies since they might provide an
insight on how humans actually use structure. A good summary of current re-
search can be found in [13]. They report that the facilitatory effect of headings in
a text is reflected both in the fixations made during the first-pass reading as well
as in the later look-backs directed to the topic sentences. At the finer grained
level, sentences in the middle of a paragraph can be understood from the struc-
tural context of the previous sentence(s), which is not true of the first sentence
of a paragraph; transitions between paragraphs and sections thus require more
work from the reader. The effectiveness of headings lies in the fact that they pro-
vide a mental frame into which upcoming text information may be integrated.
At a coarser level, two common hypotheses on why structure facilitates compre-
hension are stated: (1) facilitate processing of the text topic structure during
reading, and (2) readers use text structure to guide text recall (going back to
some parts of the text). It hence appears that structure has semantics that could
be exploited in IR, because it provides a good way to organize information.

Within the IR community, the use of structure in IR has been extensively
studied and evaluated within INEX. Summarizing, structure in IR has been
used as a mean to (1) provide more focused material to the user (e.g. return a
section of a chapter instead of the whole chapter), (2) specify user constraints
on content and structure (e.g. return sections about wine within a chapter about
Chile) and (3) provide structural context to a given document part (e.g. a sec-
tion about jaguar within a book about cars is not the same as within a book
about animals). Note that the latter is one possible use of the psycho-linguistics
findings, and one that has been shown to improve significantly the performance
of SIR systems. Apart from these achievements, structure has not been shown
to enhance traditional IR search. We believe new models that use structural
context and interaction could make a difference, since they would complement
the lack of explicit information about what the user really wants.

3 Factors to Consider

To consider interaction in SIR using the QT formalism, our QT-based model
should be able to respond to the interaction between the user and the (S)IR
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system, which during a search session may include the queries typed and sub-
mitted to the system, the clicks users make on links returned by the system, and
if available more fine-grained information such as the seen elements (as obtained
through the use of an eye tracking tool, for instance). We stress that all inter-
actions, including the interaction with the list of results, have to be taken into
account in order to build a fully interactive SIR model.

Our QT-based model should also be able to integrate information related to
the context of the information need (e.g. previous searches, time, location). The
fact that different document fragments may be deemed relevant for a same set
of interactions, indicates that relevance is dependent on the search context. This
should be captured by the model. Such situations arise for example when the
typed query is ambiguous (e.g. “jaguar” as an animal or a car) or when the
expertise level of the users are different.

As pointed out in [2], at least two QT features are particularily important to
IR. First, the intertwinement of geometry and probabilities, where two distance-
wise close vectors representing system states generate almost the space prob-
ability distribution on the Hilbert space, and hence the same probabilities of
making a given measurement. An example of the usefulness of this principle,
is that close-by documents in a term space would imply close-by probabilities
of, say, relevance. The second important feature is that measures made on the
system might interact with each other in a non standard way, which might prove
useful for interactive IR, where for instance a series of observations on the user
might change the user state (if we assume that the user state lies in a Hilbert
space).

4 A Framework for SIR Based on QT Formalism

We discuss here which space we could be working with, and how it could be
constructed for modeling SIR. We first discuss the choice of the representation,
and propose to use an information need space. We then discuss how this repre-
sentation can be used to model interactive IR, and to which extent document
structure can be included in the model.

Among the different spaces we could be working with, various choices are
possible, but among the most straightforward choice is the topical space [2] – or
its approximation, the term space. In such a space, a document is represented
by the terms or concepts it contains. Whether this corresponds in QT to a su-
perposition (i.e. a document is a unique combination of terms) or to a mixture
of pure term-states is subject to debate, but in both cases a query (or rather the
relevance to a query) is an observable, and one can ask the question: “is this doc-
ument [system] relevant to this query [observable]?”. Another kind of questions
that can be asked are “is this document [system] about topic X [observable]?”.

While this seems to be an intuitive choice, we argue that from a theoretical
point of view it is not a sensible choice if we want to use the QT formalism, since
it does not exhibit proper quantum properties and does not seem to be adapted
to interactive IR.
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To uphold the former statement about quantum properties, let us imagine
that we have two observable TA and TB associated with the observation “this
document is about topic A (resp. B)”. It can be argued that the two observables
interact since the fact that a document is about one topic might influence the
fact that it is about another topic. We could even say if we measure TA, then TB

and eventually TA, the first measurement of TA can be different from the second
one because asking if the document is about topic B changed the topicality as
perceived by the user. However, continuing this series of measurement, that is
performing TATBTATBTATBTA . . ., one would expect that the observed values
remained the same for both observables TA and TB since no new information
is brought. This series of measurements cannot happen within QT if no inter-
action happens, which in this case stems from the fact that users are expected
to learn.

In our opinion, these remarks underline two things. First, document topicality
is constructive in the sense that any information adds up to previous ones, and
this does not match QT measurement in general, since, while measuring, a part
of the information is “destructed”. Second, we cannot hope to model directly
the user perception of topicality as an observable within a document topicality
space, since we believe it is a learning process that saturates (i.e. the opinion of
the user does not change with further interaction).

4.1 An Information Need Space

Instead we propose the use of an information need space where a state, and more
generally a density, corresponds to a user information need. Mixed states could
naturally be used to model ambiguous information needs, and context/interaction
would provide a way to specify what is the actual information need. The density
would be pure when the information need is completely determined, as for ex-
ample when the model can fully predict what are the relevant documents. For
an exploratory search (e.g. “I want to learn about Glasgow”), the need density is
mixed, whereas for a navigational search (e.g. “I want the University of Glasgow
home page”) the need density is pure. The relevance of a document (in IR) or doc-
ument fragment (in SIR) would then be modeled as an observable. This is different
from [7], where relevance is modeled as a yes/no observable within a space where
documents are the observed systems, and the corresponding subspace is expanded
through user interaction.

We think the information need space can model interactive IR since users
change their point of view during a search, and relevance, contrarily to topicality,
is expected to evolve within a search session [14]. The mechanisms of this change
are yet to be understood, but QT could possibly shed a new light on that matter,
since this process is not constructive as the document topicality is – users might
change their opinion on what they find relevant.

In more details, the information need space could be a tensor product of
smaller spaces, each one related to the different dimensions related to the rele-
vance of an information need. A non-exhaustive list of such dimensions would
be the topicality, the style (e.g. review, literature, FAQ, etc.), the position in the
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structure (e.g. is it a whole book, a section?) and the novelty of the document.
Please refer to [15] for a more complete analysis of relevance dimensions.

Without considering context, at the beginning of the search process, the in-
formation need space could be seen as a mixed density that corresponds to all
possible needs, weighed by their probability. What is nice about this is that we
could (in theory) provide a list of documents without any interaction and with-
out any information or interaction from the user, since it is possible to measure
to which extent a document fragment is relevant to an information need density.
The context of the search and each interaction would then be extra steps towards
the retrieval of relevant information.

Within the various dimensions of relevance, topical relevance is an aspect of
the information need that seem to be well adapted to a QT-based model. Let
us use an example to illustrate this fact. Consider a user who wants to plan his
holidays in Barcelona, and who will be searching for various informations rang-
ing from activities to hotels. Whereas one part of the information need remains
untouched (it is about Barcelona in Spain – and not in Venezuela or the Philip-
pines), the other part can drift (from leisure activities to hotels). Interaction
through measurement, as described in the next section, would be used to both
restrict the subspace to documents about Barcelona in Spain, and to follow the
user topical drift from activities to hotels.

4.2 Evolution: Interaction in Information Retrieval?

The evolution of a system is an important topic both in QT and interactive IR.
In this section, we study the various forms of evolutions in QT and relate them
to our (S)IR.

The first form is measurement. It would account for a partial collapse in the
corresponding information need subspaces. An example scenario of interaction
would be a user searching for a place to order pizza. At the beginning of the
search, the density associated with the information need is not determined and
could be a mixture of all possible information needs. The user then types “pizza”,
which restricts the information need to a given subset of densities and hence to a
given subspace of the whole information need space. Knowing that it is 8pm, and
that this person is living in a given city would further restrict the density to a
smaller subset of densities. More precisely, each new observation (e.g. typed key-
words, clicks, time, etc.) would correspond to a possible measurement/projector,
and hence to an observable. This integrates nicely within the IR model adapted
to QT in [2], since the simplest T would be a projector along the vector repre-
senting the keywords defined as in standard IR. In general, the more ambiguous
the keywords, the bigger the subspace associated to the projector T .

Note that typed keyword observations can influence more relevance dimen-
sions than the topical one. For instance, if a query contains “review of...” then
this is more related to the style of the relevant documents than to their topical-
ity. Linking interactions and measurements would be an iterative process where
past interactions could be analysed e.g. in order to compute the exact form of
the observables associated to some keywords.
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Another possible use of measurement would be to deal with novelty and the
related problem of result diversity (that is, how to select a set non redundant
pieces of information with respect to a given information need). Documents
would be associated to observables within a “knowledge” space for which a user
is the system under observation. When a document is read, then the user state
would be projected in a subspace that corresponds to a subspace of knowledge
where the read document information is known. This process, coupled with the
information need specification and drift discussed in 4.1, would be used to build
up a list of documents to return to the user.

The second form of evolution would be a unitary one, which describes the
evolution of the information need in the absence of interaction. This would be
particularly suited to the time observation, since time evolves in a non-interactive
manner. Similarly to physics, unitary evolution could also account for the natural
evolution of the user’s need in the absence of interaction. One possible use would
be for example to build up evolution operators using previous user interactions.
Again, we can use the holidays in Barcelona example: Users starting to be in-
terested by hotels would turn up to be interested by activities (and vice-versa),
leaving the geography-related dimensions untouched.

The third form is through interaction with the environment which in our
context is both the user interface and the user memory. This form of evolution
should be used when a measurement conducted twice gives two different results.
This is the case when, for example, the user interacts with the IR system, and
subsequently deems a document to be relevant and latter non relevant, since
the user has already read this document. Note that with respect to relevance, if
we assume that there is no interaction with the user (i.e. we could use an oracle
to tell us that the document is relevant for the current information need state),
then we would use standard QT measurement.

To handle the interaction between the user and the SIR system, we would
build a user behaviour model. We would define a system space, different from
the information need space, where we can represent the current state of the
IR system. The state would include information such as which document frag-
ments (or rather hyperlinks to these fragments) are displayed. We would then
make the entangled user and system states evolve, taking into account the fact
that the user inspects the result list and, in the case of SIR, the behaviour within
the document structure, so that to predict which parts of the document collection
would be explored by the user. Some part of the interaction would correspond
to observations like e.g. when a user clicks on an hyperlink. The result of the
interaction ρ can then be measured in this new space, and interaction specific
observations like clicks can then be taken into account. The new information
need density can be extracted using the partial trace operator, which is useful if
we want to reuse this density for new observations and/or predictions.

4.3 Structure

In this section, we discuss how the framework could integrate with structured
information.
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As discussed in Section 2.2 and in the INEX workshops, structure can help
to obtain a better representation of a fragment of text within the document
structure whether it be a topical representation, a style or other relevance related
dimensions. In our case, to build the topical relevance observable, we could use
structure to define the number of dimensions of the associated subspace – ideally,
one per topic. An oversimplified example would be to associate each paragraph
with a low dimensional subspace of the information need space, and then to
build the subspace associated with the section that contains those paragraphs
by joining all these subspaces.

Let us note that the bigger (in size) the structural part, the bigger the asso-
ciated subspace in the information need space, which in turn means that there
is a higher chance that a bigger document fragment covers an information need.
Consider two document fragments F1 and F2, F2 being included in F1 (e.g. a
paragraph in a section). The projector associated with the relevance of F1 would
“include” (in the sense of inclusion of the projector associated subspace) the
subspace associated with the relevance of F2 (i.e. F2 ≤ F1). Then, if we know
that F2 is relevant to a given query, this would imply that F1 is also relevant to
that query, since the density would be projected into the subspace defined by
the projector for F2, and this subspace is included into the one of the projector
for F1. Deciding which of F1 or F2 is better for the user is a matter of user
behaviour modeling, as discussed at the end of the previous section.

This nesting property of document fragments also implies that it is not only
necessary to find a fragment that covers (exhaustivity) the information need,
but this fragment has also to be specific to the information need. In order to
achieve this, we could build an observable who would measure the percentage of
the fragment that deals with the topic of interest. It is relatively easy to build
such an observable, since the subspace it spans corresponds to the subspace
spanned by the relevance observable associated to the document fragment, but
in this case the specificity is not a projection observable as the exhaustivity is.
Both exhaustivity and specificity dimensions are being used in INEX relevance
assessments done by human judges, and could be used to compare the output of
the algorithms producing the two observables with the values set by the judges.

5 Conclusion

In this paper, we have sketched how contextual and interactive SIR can be mod-
eled borrowing ideas from QT, by defining a space where the user information
needs would evolve according to their interactions with the retrieval system. We
proposed to use an information need space, as opposed to the standard topical
space, as it seems to be better adapted to both IR (allowing interaction) and
QT (leveraging a part of the QT framework potential). We briefly described
how our information need space, emphasising the fact that it should capture
various relevance dimensions beside topical relevance. We then discussed how
interaction could be modeled with this representation, and how it would be pos-
sible to model the document structure dimension (i.e. what document fragment
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granularity to return – a paragraph, a section, etc.). While there are still many
details to be set in order to get an operational system, we believe this path would
allow to capture faithfully the complexity of the search process in SIR.
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Abstract. It is argued that the vector space measures used to mea-
sure closeness of market prices to predictors for market prices are invalid
because of the observed metric of commodity space. An alternative rep-
resentation in Hilbert space within which such measures do apply is
proposed. It is shown that commodity exchanges can be modeled by the
application of unitary operators to this space.

1 Linear Price Models

The context of this paper is the empirical testing of linear models of eco-
nomic activity. Whilst these originated in an informal way in the work of
Adam Smith and Quesney, and were partially formalised by Marx in volume
3 of Capital, an adequate formal treatment had to wait for von Neuman[21]
and Kantorovich[9]. Both von Neumann and Kantorovich were mathematicians
rather than economists. Their contributions to economics were just one part of
a variety of research achievements. In both cases this included stints working on
early nuclear weapons programs, for the US and USSR[15] respectively. At least
in von Neumann’s case the connection of his economic work to atomic physics
was more than incidental. One of his great achievements was his mathematical
formalization of quantum mechanics[22] which unified the matrix mechanics of
Heisenberg with the wave mechanics of Schrodinger. His work on quantum me-
chanics coincided with the first draft of his economic growth model[21] given as a
lecture in Princeton in 1932. In both fields he employs vector spaces and matrix
operators over vector spaces, complex vector spaces in the quantum mechanical
case, and real vector spaces in the growth model. Kurz and Salvadori [11]argue
that his growth model has to be seen as a response to the prior work of the
mathematician Remak[14], who worked on ’superposed prices’.

Remak then constructs ‘superposed prices’ for an economic system
in stationary conditions in which there are as many single-product pro-
cesses of production as there are products, and each process or product
is represented by a different ‘person’ or rather activity or industry. The
amounts of the different commodities acquired by a person over a cer-
tain period of time in exchange for his or her own product are of course
the amounts needed as means of production to produce this product
and the amounts of consumption goods in support of the person (and
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his or her family), given the levels of sustenance. With an appropri-
ate choice of units, the resulting system of ‘superposed prices’ can be
written as

pT = pT C

where C is the augmented matrix of inputs per unit of output, and
p is the vector of exchange ratios. Discussing system Remak arrived
at the conclusion that there is a solution to it, which is semipositive
and unique except for a scale factor. The system refers to a kind of
ideal economy with independent producers, no wage labour and hence
no profits. However, in Remak’s view it can also be interpreted as a
socialist economic system [11].

With Remak the mathematical links to the then emerging matrix mechanics are
striking - the language of superposition, the use of a unitary matrix operator
C analogous to the Hermitian operators in quantum mechanics1. Remak shows
for the first time how, starting from an in-natura description of the conditions
of production, one can derive an equilibrium system of prices. This implies that
the in-natura system contains the information necessary for the prices and that
the prices are a projection of the in-natura system onto a lower dimensional
space2. If that is the case, then any calculations that can be done with the
information in the reduced system p could in principle be done, by some other
algorithmic procedure starting from C. Remak expresses confidence that with
the development of electric calculating machines, the required large systems of
linear equations will be solvable.

The weakness of Remak’s analysis is that it was limited to an economy in
steady state.Von Neumann took the analysis on in two distinct ways:

1. He models an economy in growth, not a static economy. He assumes an econ-
omy in uniform proportionate growth. He explicitly abjures considering the
effects of restricted natural resources or labour supply, assuming instead that
the labour supply can be extended to accommodate growth. This is perhaps
not unrealistic as a picture of an economy undergoing rapid industrialization
( for instance Soviet Russia at the time he was writing ).

2. He allows for there to be multiple techniques to produce any given good -
Remak only allowed one. These different possible productive techniques use
different mixtures of inputs, and only some of them will be viable.

von Neumann again uses the idea of a technology matrix introduced by Re-
mak, but now splits it into two matrices A which represents the goods con-
1 Like the Hermitian operators in quantum mechanics, Remak’s production operator

is unitary because pis an eigen vector of C and |p| is unchanged under the operation.
2 Suppose C is an n × n square matrix, and p an n dimensional vector. By applying

Iverson’s reshaping[8,7] operator ρ, we can map C to a vector of length n2 thus
c ← (n×n)ρC , and we thus see that the price system, having ndimensions involves
a massive dimension reduction from the n2 dimensional vector c.
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sumed in production, and B which represents the goods produced. So aij is the
amount of the j th product used in production process i, and bij the amount
of product j produced in process i. This formulation allows for joint produc-
tion, and he says that the depreciation of capital goods can be modeled in this
way, a production process uses up new machines and produces as a side ef-
fect older, worn machines. The number of processes does not need to equal the
number of distinct product types, so we are not necessarily dealing with square
matrices.

Like Remak he assumes that there exists a price vector y but also an intensity
vector x which measures the intensity with which any given production process is
operated. Later the same formulation was used by Kantorovich. Two remaining
variables β and α measure the interest rate and the rate of growth of the economy
respectively.

He makes two additional assumptions. First is that there are ’no profits’,
by which he means that all production processes with positive intensity return
exactly the rate of interest. He only counts as profit, earning a return above the
rate of interest. This also means that no processes are run at a loss ( returning
less than β ). His second assumption is that any product produced in excessive
quantity has a zero price.

He goes on to show that in this system there is an equilibrium state in which
there is a unique growth rate α = β and definite set of intensities and prices.
The intensities and prices are simultaneously determined.

Von Neumann’s work was influential in economic theory, spawing a number
of similar models, probably the most famous of which was Sraffa’s[18].

At the time that von Neumann was writing, despite Remak’s optimism, it
was not possible to empirically test different linear theories of prices because of
the problem of collecting the necessary data, and the problem of solving large
matrix equations. From the 1950s onwards though, the empirical problem of
obtaining the A and B matrices was reduced by the publication of national
input output tables. Since the ready availability of computers emprical testing
became possible.

In 1983 Farjoun and Machover published a seminal work applying statistical
mechanics to the dynamics of capitalist economies[6]. One of the predictions of
their book was that what they called vertically integrated labour coefficients
would be good predictors for market prices. One can view their price model
as being similar to that of Remak with added thermal noise. Their predictions
have largely been born out by subsequent empirical studies [2,19,12,3,13,17,4],
though there have been isolated studies questioning this [10,20]. There has been
some controversy as to what metric was appropriate for determining the close-
ness of market prices to integrated labour coefficients. In the recent literature
discussing this [10,13,16,20]it has been taken as given that the use of vector
space measures is appropriate. For example one measure proposed has been to
determine the angle between two price vectors. I wish to point out that this
approach is questionable.
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2 The Vector Space Problem

Vector spaces are a subclass of metric space. A metric space is characterized by
a positive real valued metric function δ(p, q) giving the distance between two
points, p, q. This distance function must satisfy the triangle inequality δ(p, q) ≤
δ(p, r) + δ(q, r). In vector spaces this metric takes the form:

δ(p,q) =
√∑

(pi − qi)
2 (1)

We have argued elsewhere[1] that the metric of commodity space does not
take this form. Let us recapitulate the argument.

Conjecture 1. Commodity space is a vector space.

Assume that we have a commodity space made up of two commodities, gold
and corn and that 1oz gold exchanges for 100 bushels of corn. We can represent
any agent’s holding of the two commodities by a 2 dimensional vector c with
c0 being their gold holding and c1 being their corn holding. Given the exchange
ratio above, we can assume that (1,0) and (0,100) are points of equal worth and
assuming that commodity space is a vector space thus

δ((0, 0), (1, 0)) = δ((0, 0), (0, 100)) (2)

This obviously does not meet equation 1 but if we re-normalise the corn axis
by dividing by its price in gold, we get a metric

δc(p,q) =

√
(p0 − q0)

2 + (
p1 − q1

100
)2 (3)

which meets the equation we want for our two extreme points:

δc((0, 0), (1, 0)) = δc((0, 0), (0, 1)) (4)

If this is our metric, then we can define a set of commodity holdings that are
the same distance from the origin as holding 1oz of gold. Let us term this U the
unit circle in commodity space:

U = {a ∈ U : δc((0, 0), a) = 1} (5)

Since these points are equidistant from the origin, where the agent holds
nothing, they must be positions of equal worth, and that movements along this
path must not alter the net worth of the agent. Let us consider a point on U,
where the agent holds 1√

2
oz gold and 100√

2
bushels of corn.

Would this in reality be a point of equal worth to holding 1 oz of gold?
No, since the agent could trade their 100√

2
bushels of corn for a further 1√

2
oz

gold and end up with
√

2oz> 1oz of gold. Thus there exists a point on U that
is not equidistant from the origin, hence equation 3 can not be the form of the
metric of commodity space and thus conjecture 1 falls, and commodity space is
not a vector space.
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3 The Metric of Commodity Space

The metric actually observed in the space of bundles of commodities is:

δb(p,q) =
∣∣∣∑αi [pi − qi]

∣∣∣ (6)

where p, q are vectors of commodities, and αi are relative values. The ’unit
circle’ in this space actually corresponds to a pair of parallel hyperplanes on
above and one below the origin. One such hyperplane is the set of all commodity
combinations of positive value 1 and the other, the set of all commodity combi-
nations of value -1. The latter corresponds to agents with negative worth, i.e.,
net debtors.

Because of its metric, this space is not a vector space and it is questionable
whether measures of similarity based on vector space metrics are appropriate
for it. However it is possible to posit an underlying linear vector space of which
commodity space is a representation.

4 Commodity Amplitude Space

We will now develop the concept of an underlying space, commodity amplitude
space, which can model commodity exchanges and the formation of debt. Unlike
commodity space itself, this space, is a true vector space whose evolution can
be modeled by the application of linear operators. The relationship between
commodity amplitude space and observed holdings of commodities by agents is
analogous to that between amplitudes and observables in quantum theory.

Let us consider a system of n agents and m commodities, and represent the
state of this system at an instance in time by a complex matrix A, where aij

represents the amplitude of agent i in commodity j. The actual value of the
holding of commodity j by agent i , we denote by hij an element of the holding
matrix H. This is related to aij by the equation aij =

√
hij .

4.1 Commodity Exchanges

We can represent the process of commodity exchange by the application of ro-
tation operators to A. An agent can change the amplitudes of their holdings of
different commodities by a rotation in amplitude space. Thus an initial ampli-
tude of 1 in gold space by an agent can be transformed into an amplitude of 1 in
corn space by a rotation of π

2 . Borrowing Dirac notation we can write these as
1—gold¿, and 1—corn¿. A rotation of π

4 on the other hand would move an agent
from a pure state 1—gold¿ to a superposition of states 1√

2
|gold> + 1√

2
|corn¿ .

Unlike rotation operators in commodity space this is value conserving since on
squaring we find their assets are now 1

2gold + 1
2corn.

The second conservation law that has to be maintained in exchange is con-
servation of the value of each individual commodity, there must be no more or
less of any commodity after the exchange than there was before. This can be
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modeled by constraining the evolution operators on commodity amplitude space
to be such that they simultaneously perform a rotation on rows and columns of
the matrix A.

Suppose we start in state:

A =
[
1 0
0 2

]
,H =

[
1 0
0 4

]
Where agent zero has 1 of gold and no corn, and agent one has no gold and

4 of corn. We can model the purchase of 1 of corn by agent zero from agent one
by the evolution of A to:

A2 =
[
0 1
1
√

3

]
which corresponds to final holdings of:

H2 =
[
0 1
1 3

]
Note that the operation on amplitude space is a length preserving rotation

on both the rows and the columns. The lengths of the row zero and column zero
in A2 are 1 the lengths of row and column one is 2 just as it was for A. This
operation can be effected by the application of an appropriate rotation matrix
so that A2 = M.A. A matrix which produces this particular set of rotations
is:

M =
[
0 1

2
1

√
3

2

]

4.2 Price Changes

Price movements are equivalent to the application of scaling operations which
can be modeled by the application of diagonal matrices. Thus a 50% fall in the
price of corn in our model would be represented by the application of the matrix
1 0
0 1√

2
to the current commodity amplitude matrix. Scaling operations are not

length preserving.
The reason for this is that if there is a change in prices an agent holding

a vector of physical commodities b will find that for most arbitrarily chosen
commodity vectors c, the quantity of c that they can exchange b for will have
changed. The length preserving rotations that we have assumed up to now have
amounted to assuming that there is no possibility of changing ones net worth
by commodity exchanges at a given set of relative prices. If the prices change
over time this is no longer the case, hence the introduction of non-conservative
operations.
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4.3 Modeling Debt

We specified in section 4 that the amplitude matrix must be complex valued.
This is required to model debt. Suppose that starting from holdings H agent
zero buys 2 of corn from agent one. Since agent zero only has 1 of gold to pay
for it, the transaction leaves the following holdings:

Agent gold corn
0 -1 2
1 2 2

The corresponding amplitude matrix is

A3 =
[

i
√

2√
2
√

2

]
It it interesting that this too is the result of applying a unitary rotation

operator to the original amplitude vector since the length of row zero |A30| =
i2 +(

√
2)2 = 1, likewise the lengths of all other rows and columns are preserved.

The linear operator required to create debts has itself to be complex valued, thus
if A3 = NA we have

N =

[
i 1√

2√
2 1√

2

]
Note that the operators here are not Hermitian. This would appear to preclude

the interesting possibility of simulating commodity exchanges on a future quan-
tum computer[5], though there may be renormalization techniques that could be
applied to get over this problem.

5 Implications for Similarity Measures

Steedman [20] has proposed that a suitable criterion for assessing similarity of
values to market prices is the angle between market price and value vectors, with
small angles indicating closeness. If m, v are market price and value vectors
respectively, the angle between them is given by:

ArcCos(−→m.−→v )

where v denotes the normalized value vector given by v = v
|v| .

If the argument in section 2 is accepted, we should consider using angles
between price and value amplitude vectors instead. If we denote the normalized
vectors in amplitude space by maand va, then the amplitude space angles are
given by:

ArcCos(−→ma.−→va
∗)

where x∗ is the conjugate of x.
What will be the properties of this measure?
In general it will show smaller angles between vectors. For example suppose

we have 3 commodities iron, corn, cotton as follows:
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amplitudes
value price value price

corn 1 1 1 1
iron 3 2

√
3

√
2

cotton 1 2 1
√

2
angle 30.2◦ 13.4◦

The fact that smaller angles are shown would be or little significance if the
relative sizes of angles in the two spaces was the same. But this need not be the
case. Consider the following example:

value price PP amplitudes
value price PP

corn 1 1 1 1 1 1
iron 1

2 -1 2 1√
2

i
√

2

cotton 0.02 1 1
√

2
10 1 1

θrelative to price in 74◦ 0 90◦ 54◦ 0 45◦

Here we are comparing three hypothetical vectors of values, prices and prices
of production (PP). If we treated commodity value space as a vector space, then
prices of production would be orthogonal to market prices, whereas in amplitude
space they are at 45◦ to market prices. In this example, when commodity space
is treated as a vector space, values appear closer to market prices than do prices
of production. When the assumption that commodity space is a vector space is
dropped, then prices of production are closer to market prices.

6 Conclusion

We have argued that commodity space can not be directly modeled by a vec-
tor space, because of the metric it observes, but that it can be treated as the
real valued representation or an underlying vector space. This complex vec-
tor space we have, following physics terminology, termed commodity amplitude
space. Observed holdings of commodities and money by agents are the squares of
corresponding commodity amplitudes. Commodity exchange relations, including
the formation of commercial debt can be modeled by unitary rotation matrices
operating on this amplitude space. The conceptual model presented borrows
extensively from quantum formalism.

It is thus at least arguable that the empirical relation between market prices
and labour values should be measured by the angles between their corresponding
vectors in commodity amplitude space. The latter space, unlike commodity space,
is a linear vector space within which angles of rotation have a clear meaning.
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Abstract. q-calculus, also known under the name of h-calculus, has found wide 
applications in many areas of mathematics. In this paper we provide for a basic 
financial option pricing application where we try to rationalize the use of a q-
derivative. We provide for a brief discussion on how the value of q can be an 
indicator of either the use (or not the use) of the risk free rate of interest in the 
option pricing partial differential equation.  

Keywords: q-calculus, h-calculus, stochastic differential equation, option pricing. 

1   Introduction 

q-calculus has had many applications in mathematics. Excellent sources which de-
velop this calculus (also known as quantum calculus) are Kac and Cheung [1] and 
Andrews [2][3]. We are concerned in this paper with showing how the q-derivative 
could have a financial interpretation in an option pricing framework. 

We define the q-derivative and Hilger delta time derivative in the next section. In 
the section following, we briefly expand on the link between q-derivatives and delta 
time derivatives. In section four we briefly argue how q-derivatives can enter Itô’s 
Lemma. In section five we consider how q-derivatives can enter standard financial 
option pricing methodology. We give financial meaning to the q derivative. In the last 
section of the paper we provide for a discussion on how quantum physics (via q-
derivatives) is linked to the application we propose in this paper.  

2   The q-Derivative and the Hilger Delta Time Derivative 

The q-derivative and h-derivative have a very simple definition. In definitions 1, 2, 3 
and 4, below, we follow Kac and Cheung [1] and we use their notation also.  

Definition 1. For an arbitrary function f(x), the q-differential is: 
)()()( xfqxfxfdq −= .  

Definition 2. For an arbitrary function f(x), the h-differential is: 
)()()( xfhxfxfdh −+= . 
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q-calculus and h-calculus are related. The relation heq =  or iheq = , where i  is a 

complex number, is often used. We will not use any h-calculus in this paper. 

Definition 3. The q-derivative of a function f(x) is: 

xqx

xfqxf

xd

xfd
xfD

q

q
q −

−== )()(
)(

)(
)( . 

Definition 4. The h-derivative of a function f(x) is 

( ) xhx

xfhxf

xd

xfd
xfD

h

h
h −+

−+== )()(
)(

)(
)( . 

Note that .
)(

)(lim)(lim 01 dx

xdf
xfDxfD hhqq == →→  

Let us now define the Hilger delta time derivative. The delta time derivative was 
developed out of the calculus of Hilger [4][5]. In definition 5 below, we follow 
Bohner and Peterson [6]. 

Definition 5. A time scale T is an arbitrary non-empty closed subset of the real numbers.  

As an example, the usual time derivative, 
st

sftf
st −

−
→

)()(
lim  is obtained when T is 

the set of real numbers. When T is the set of integers, one uses the forward difference 
operator: ).()1( tftf −+  We can informally define the Hilger delta time derivative as: 

( )
tt

tftf
tf

−
−=Δ

)(

)()(
)(

η
η

, where for T∈t , { }ts:Tinf)( >∈≡ stη . 

3   Link between )(xfDq and )(tf Δ  

The link between the q-derivative and the Hilger delta time derivative is straightfor-

ward. Setting qtt =)(η in )(tf Δ , we obtain a q-derivative in t. For T being the set of 

integers, one requires that 1=− tqt  wherefrom 1
1 +=
t

q . For the case where T is the 

set of real numbers, one requires 0=− tqt . Therefore, q=1 in that case. We note that 

henceforth we only use q-derivatives. 

4   Itô’s Lemma and q-Derivatives 

Financial derivative pricing uses the so called Itô Lemma [7]. This Lemma is essential 
in the derivation of the so called Black-Scholes partial differential equation (PDE) [8], 
from which one can calculate the value of so called option contracts. Such contracts, 
in their simplest expression, allow the buyer of such contract to either have the right 
to buy or sell an underlying asset (such as a stock) for a certain price at a certain time 



310 E. Haven 

in the future. The Black-Scholes PDE gives (under quite restrictive conditions) the 
price the seller of such contract should charge. 

We can formulate in heuristic terms Itô's Lemma as follows. Assume that tX  is a 

stochastic integral: 

tt vdBudtdX +=  , (1) 

where tB  is a one dimensional Brownian motion, u and v are respectively drift and 

diffusion factors and t is time.  
Consider now the discrete version: jjjjj BvtuX Δ+Δ=Δ . We can write the Taylor 

expansion: 

( ) ( ) ( )( ) jjjjjjj RXt
tX

g
t

t

g
X

X

g
t

t

g
X

X

g
g +ΔΔ

∂∂
∂+Δ

∂
∂+Δ

∂
∂+Δ

∂
∂+Δ

∂
∂=Δ

2
2

2

2
2

2

2

2

1

2

1
. (2) 

We can replace jjjjj BvtuX Δ+Δ=Δ into gΔ .  

The Itô Lemma can then be written as: 
 

( ) ( )jjjjjjj tv
X

g
t

t

g
Bvtu

X

g
g Δ

∂

∂
+Δ

∂
∂+Δ+Δ

∂
∂=Δ 2

2

2

2

1
. (3) 

 

For an excellent in-depth discussion, see Øksendal [9]. 
Now consider the introduction of q-derivatives (using definition 3) in this Taylor 

expansion. We could naively write: 
 

( )

( ) ( ) ( )( ) jjjjjj
qq

q
j

q

q
jjjj

q

q

j
q

q
jjjj

q

q
q
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t
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t
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∂

∂

+Δ
∂
∂
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∂
∂

=Δ

2
2

2

2
2

2

2

2

1

2

1
. (4) 

It can be shown that this expression is fraught with difficulties when considering q 
derivatives on time. We can not use such derivatives on time and therefore it is im-
possible to write out an Itô Lemma with q-derivatives on time. See Haven [10]. 

There only exists two ways out of this conundrum. Either: i) a q-derivative exists 
only on position X but not on time or ii) assume a q-derivative exists on both position 
and time but only first order terms in the Taylor expansion can be used. 

Therefore, we can notice two possibilities: 

• we assume a q-derivative exists only on position X but not on time 
• we assume a q-derivative exists on both position and time but only first order 

terms in the Taylor expansion can be used. 
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If we take the first option then we can write, as: 

( ) ( )jj
q

q
jjjjj

q

q
q tv

X

g
t

t

g
Bvtu

X

g
g Δ

∂

∂
+Δ

∂
∂+Δ+Δ

∂
∂

=Δ 2
2

2

2

1
. (5) 

Note the mixed use of derivatives in this expansion.  

5   q and Its Financial Meaning…. 

Consider the definition of a financial option.  

Definition 6. A financial option is a contract entitling the buyer of that contract to 
either having the right to buy or sell an asset (from the seller of that contract) at a 
certain price at a certain date in the future.  

A ‘European’ option can only be exercised on the maturity date of the option contract. 
An ‘American’ option can be exercised any time before or on the maturity date of the 
option contract. The intrinsic value (which is the value of the option at maturity) of a 
so called call option is: max{S-K, 0}, where K indicates the price at which the holder 
of a call option has the right to buy the underlying asset (a stock with price S in this 
case). The put option has as intrinsic value: max{K-S, 0}. K indicates the price at 
which the holder of a put option has the right to sell the underlying asset (a stock with 
price S in this case). 

For an excellent treatment on the subject of option pricing, please see Wilmott [11] 
or Baaquie [12].  

Let us consider an option with intrinsic value, { }0,max 2 KS −  for the call and 

{ }0,max 2SK −  for the put. McDonald [13] provides for a discussion, albeit without 

reference to q-derivatives, on claims other than S. 

The stochastic differential equation, with q-derivatives, for 2dS is: 

( ) ( ) ( ) dBSqdtSqSqdS 22222 11
2
1

1 σσμ ++⎟
⎠
⎞

⎜
⎝
⎛ +++= . (6) 

where 2S  is the squared stock price; μ is the drift rate of the stock price (this is the 

return of the stock) and σ is the standard deviation of the price (also called the vola-
tility of the price).  

We set up the usual Black-Scholes portfolio, whose value is, Π . Let ),( 2 tSf  be 

the option price. For the particular intrinsic value, we have here, we can write: 

2
2

dS
S

f
dfd

q

q

∂

∂
+−=Π , (7) 
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where df is defined as: 

( )22
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Substituting (6) in (8), one obtains: 
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S
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Note that we made use of ( ) dtdB =2 , and [2]=1+q. 

Substituting (9) and (6) into (7), we obtain: 

dtSq
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Equation (10) can be extended into equation: 
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From a financial perspective, the beauty of equation (11) resides in the fact that the 
risk free rate of interest, r can be used. The extreme left hand side of (11) indicates 
that the return on the portfolio per unit of time is equal to the risk free rate. Individ-
ual decision makers will require differing rates of return on risky investments de-
pending on their attitude towards risk. Hence, no unique rate of return exists on a 
risky asset. However, with the use of a risk free rate of return, the situation is  
drastically different. All decision makers can agree upon the rate of return on a risk 
free investment, such as a government bond (which normally is guaranteed by tax 
returns). 

Note that from a financial perspective, equation (11) will be valid if two necessary 
conditions are met: 

• there exists no arbitrage (this means there do not exist riskless profits) 
• q=1 (i.e. when we use ordinary derivatives) 

All two conditions are necessary so as to be able to write (11). Each condition, 
taken separately, is not sufficient to ensure the equalities in (11). As an example, it 
would be insufficient to assume that under no-arbitrage, (11) will hold. Since, when 

1≠q the extreme left hand side of (11) would be an ordinary derivative, while the 

right hand side would contain a q-derivative. Therefore, the value of q has financial 
meaning.   
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6   How Does Quantum Physics Enter into This Set Up? 

Accardi and Boukas [14] have indicated that “Segal and Segal [15] introduced quan-
tum effects into the Black-Scholes model in order to incorporate market features such 
as the impossibility of simultaneous measurement of prices and their instantaneous 
derivatives.” This clearly introduces the notion of some macroscopic equivalent of a 
Heisenberg uncertainty principle. Baaquie [12] also argues for the existence of such 
macroscopic principle. A discussion of possible macroscopic equivalences of Planck 
constants has already appeared in other papers. See  Khrennikov [16] and Choustova 
[17]. For more of a general overview of how quantum mechanical principles have 
been used in non-quantum environments, please see for instance: D’Hooghe, Aerts 
and Haven [18]. We do not expand it on here.  

Let us assume, for the sake of argument, we were to know such an equivalent con-
stant. As was remarked in John Baez [19], when using a q-derivative in the momen-
tum operator, the Heisenberg uncertainty relation changes into:  

iqQPPQ −=− . (12) 

where P is the momentum operator and Q is the position operator. The above uncer-
tainty relation (12), can be easily obtained as follows. For a generic function f(x), we 
write the Heisenberg uncertainty principle without q-derivatives as: 

)())(())(()()( xfixf
dx

d
ixxxf

dx

d
ixQPfxPQf −=−−−=− . The q-derivative of a 

product of two functions f(x) and g(x) (see Kac and Cheung [1]): 
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ciple with q-derivatives, we can then obtain: 
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have this expression to be equal to )(xfi− , we need to multiply the term 
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xd
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q

q ’ with q. This leads to the Heisenberg Uncertainty principle in (12).  

Assuming that we could think of h in heq =  (please see above definition 3 – sec-

tion 2) as the Planck constant then q=1 indeed occurs when h=0. I.e. we move from 
quantum mechanics to classical mechanics with q=1. As we have remarked above, 
the (non) unity of q has financial meaning. When q=1 the option price can be found 
and will be unique. The non-uniqueness of the option price occurs when q is not equal 
to one. By analogy this non-uniqueness of the option price (when q is not equal to 
one) would possibly then also call into existence a so called macroscopic uncertainty 

principle (we assume we can think of h (in heq = ) as some macro-scopic equivalent 

of the Planck constant) which has a similar form to (12).   
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7   Conclusion 

A central observation in this paper has been that with the use of q-derivatives the 
working of the Itô Lemma is impaired. The introduction of q-derivatives on position 
(but not on time) shows that we need both the no-arbitrage condition and the unitari-
ness of q so as to be able to use the risk free rate of interest. The wider link the exis-
tence of q-derivatives have with a (macroscopic) Heisenberg uncertainty principle can 
be used here.   
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