
Bridging the Gap Between Model-Based

Development and Model Checking�

Steven P. Miller

Rockwell Collins, Cedar Rapids IA 52498, USA
spmiller@rockwellcollins.com

Abstract. The growing power of model checking is making it feasible
to use formal verification for important classes of software systems. How-
ever, for this to be practical it is necessary to bridge the gap between the
commercial modeling tools industrial developers prefer to use and the
input languages of the formal verification tools. This paper describes a
translator framework that makes it possible to use several popular for-
mal verification tools with commercial modeling tools. The practicality of
this approach is illustrated by four case studies in which model checking
was successfully used in the development of avionics software.

1 Introduction

Great strides have been made in the development of model checking tools over the
last few years. However, there have been relatively few instances reported of their
successful application to industrial problems outside of the realm of hardware
engineering. In fact, software and system engineers are often completely unaware
of the opportunities these tools offer.

One of the main reasons for this has been the difficulty of producing software
or system design models that can be analyzed by these tools. Typically, users
of a model checker must first create a separate model in the input language
of the model checker that they believe replicates the behavior of the original
design. Besides introducing significant cost and delay, this also undermines the
developer’s confidence in the analysis since it is not performed on the actual
code or design.

This situation is rapidly changing with the growing popularity of Model-Based
Development (MBD) for the design of embedded systems. Tools such as MAT-
LAB Simulink R© [1] and Esterel Technologies SCADE SuiteTM [2] are achieving
widespread use in the avionics and automotive industry. The graphical models
produced by these tools provide a formal, or nearly formal, specification that is
often amenable to formal analysis.

� This work was supported in part by the NASA Langley Research Center under
contract NCC-01001 of the Aviation Safety Program (AvSP) and the Air Force
Research Lab under contract FA8650-05-C-3564 of the Certification Technologies
for Advanced Flight Control Systems program (CerTA FCS) 88ABW-2009-0146.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 443–453, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

444 S.P. Miller

This paper describes a translator framework developed by Rockwell Collins
and the Critical Systems Research Group at the University of Minnesota that
bridges this gap and allows production Simulink and SCADE models to be auto-
matically translated to a variety of popular model checkers and theorem provers.
Four case studies are presented in which model checking was used to find errors
in early requirements and design models, sometimes years before the final code
could be integrated and tested on a system rig.

2 Background

The value proposition for formal verification is changing due to the convergence of
two trends, the growing popularity of Model-Based Development for the develop-
ment of embedded systems and the growing power of model checkers. This section
provides a brief introduction to Model-Based Development and to model checking.

2.1 Model-Based Development

Model-Based Development refers to the use of domain specific, graphical mod-
eling languages that can be executed and analyzed before the actual system is
built. MBD allows developers to create a model of a system, execute it on their
desktop, analyze it with automated tools for the required behavior, and use it
to automatically generate code and test cases. In the automotive and avionics
industry, MBD generally refers to the use of synchronous data flow languages
such as MATLAB Simulink or Esterel Technologies SCADE Suite. Synchronous
languages latch their inputs at the start of a computation step, compute their
outputs and the next system state as a single atomic step, and communicate
between components using data flow signals. This differs from the more general
class of modeling notations that include support for asynchronous execution of
components and communication using message passing.

2.2 Model Checking

Model checkers are formal verification tools that evaluate an input model to
determine if it satisfies a given set of properties [3]. A model checker will consider
every possible combination of inputs and state, making the verification equivalent
to exhaustive testing of the model. If a property is not true, the model checker
will produce a counterexample showing how the property can be falsified. While
model checkers cannot be used to verify as large a class of models as theorem
provers, they are often easier to use and in many cases can provide results in
seconds or minutes. This makes them very attractive for use in industrial settings
where software designers may not have the expertise or the time to complete a
proof using a mechanical theorem prover.

There are many types of model checkers, each with their own strengths and
weaknesses. Explicit state model checkers such as SPIN [4] construct a search-
able representation of the design model and store a representation of each state
visited. Implicit state (symbolic) model checkers such NuSMV [5] use compact

Bridging the Gap Between Model-Based Development and Model Checking 445

representations (such as Binary Decision Diagrams) of sets of states to describe
regions of the model state space that satisfy the properties being evaluated. This
often allows them to handle much larger state spaces than explicit state model
checkers. Satisfiability modulo theories (SMT) model checkers such as SAL [6]
and Prover R© Plug-In [7] use a form of induction to reason about models contain-
ing real numbers and unbounded arrays. While SMT-based model checkers can
deal with infinite state systems, their properties need to written in such a way
that they can be proven by induction over an unfolding of the state transition
relationship. For this reason, they tend to be more difficult to use than explicit
and implicit state model checkers.

3 The Translator Framework

To bridge the gap between industrial modeling tools and some of the more
popular model checkers and theorem provers, Rockwell Collins and the Critical
Systems Research Group at the University of Minnesota developed a product
family of translators [8] as part of the NASA Aviation Safety Program. An
overview of this translator framework is shown in figure 1.

SCADE

Lustre

 NuSMV

 PVS
Safe State
Machines

 SAL Symbolic
 Model Checker

SAL

Simulink Simulink
Gateway

StateFlow

Reactis ACL2

 Prover

Simulink
Gateway

 C, Ada

 SAL Infinite
 Model Checker

 SAL Bounded
 Model Checker

Rockwell Collins/U of Minnesota

MathWorks

SRI International
Reactive Systems

Esterel Technologies

Fig. 1. Translator Framework

The translators work primarily with the Lustre formal specification language
[9], but this is hidden from the tool users. The typical user first creates a model
in Simulink, StateFlow, or SCADE Suite. Since Lustre is the underlying speci-
fication language of SCADE, the initial translation into Lustre is immediate for
SCADE models. Simulink and StateFlow users can translate their models into
Lustre using either the Simulink Gateway provided by Esterel Technologies or by
importing their models into the Reactis R© [10] test case generator developed by
Reactive Systems and using a translator developed by Rockwell Collins. While
Simulink does not have a full, formal semantics, developers of safety-critical

446 S.P. Miller

systems routinely restrict themselves to a safe subset of the language and it is
usually possible to assign a formal semantics to this subset.

Once in Lustre, the specification is read into an abstract syntax tree (AST)
and a number of transformation passes are applied to it. Each transformation
pass produces a valid Lustre AST that is syntactically closer to the target specifi-
cation language and preserves the semantics of the original Lustre specification.
This allows all Lustre type checking and analysis tools to be used after each
transformation pass. When the AST is sufficiently close to the target language,
a pretty printer is used to output the target specification.

The translator framework is actually a product family of translators in that
many transformation passes are reused in the translators for each target lan-
guage. Pre-conditions for each transformation specify the properties a Lustre
specification must satisfy for the translation to be valid and post-conditions de-
fine the properties of the generated specification. Reuse of the transformation
passes makes it much easier to support a variety of target languages and allows
new translators to be developed in a matter of days. The number of transforma-
tion passes depends on how similar the source and target languages are and on
how many optimizations need to be made. Currently, the number of transforma-
tion passes ranges from a dozen for a simple C code generator to over sixty for
an optimized translation to NuSMV.

The translators produce highly optimized models appropriate for the target
language. For example, when translating to the NuSMV model checker, the
translator produces a specification that is difficult for a human to read, but
very efficient for model checking. When translating to the PVS theorem prover,
the specification is optimized for readability and to support the development of
proofs in PVS. When generating executable C code, the translation is optimized
for execution speed on the target processor. Many of these optimizations can have
a dramatic effect on the target analysis tools. For example, optimization passes
incorporated into the NuSMV translator reduce the time required for NuSMV
to check one model from over 29 hours to less than a second, an improvement
of over five orders of magnitude.

Tools have also been developed to present the counter examples produced by
the model checkers into two formats that are easier to understand. The first is a
simple spreadsheet format that shows the inputs and outputs of the model for
each step of the counter example. The second is a test script that can be used
to step the Reactis tool forward and backward through the counter example.
As shown in figure 1, the translator framework currently supports input models
written in MATLAB Simulink and Stateflow and Esterel Technologies SCADE
Suite and generates models for the NuSMV, SAL, and PROVER model-checkers,
the PVS and ACL2 theorem provers, and C and Ada source code.

4 Case Studies

This section describes four case studies in which model checking was used to find
errors in early requirements and design models. The use of industrial models has
proven invaluable in selecting the features to be added to the translator framework.

Bridging the Gap Between Model-Based Development and Model Checking 447

4.1 FCS 5000 Mode Logic

The first application of model checking to an actual product at Rockwell Collins
was to the mode logic of the FCS 5000 Flight Control System [11]. The FCS 5000
is a family of Flight Control Systems (FCS) developed by Rockwell Collins for
use in business and regional jet aircraft. The Flight Guidance System (FGS) is a
component of the FCS that compares the measured state of an aircraft (position,
speed, and attitude) to the desired state and generates pitch and roll guidance
commands to minimize the difference between the measured and desired state.
The mode logic is a component of the FGS that determines which lateral and
vertical flight modes are armed and active at any time.

While inherently complex and difficult to get right, the mode logic consists
almost entirely of Boolean and enumerated types. As described in [11], Rockwell
Collins developed an in-house format that produces a very compact specification
of the mode logic that can be directly implemented in Simulink. This made the
FCS 5000 mode logic ideally suited for analysis using the translator framework
and a symbolic model checker such as NuSMV.

The mode logic analyzed consisted of five mode transitions diagrams with a
total of 36 modes, 172 events, and 488 transitions. Changes in the state of each
mode diagram affect at least one, and often more, of the other mode diagrams.
While each individual diagram is straightforward to understand, grasping all
the interactions between them can be difficult. In fact, the most interesting
requirements to be checked defined relationships to be maintained between the
mode machines, for example, ensuring that the active vertical flight mode was
not “Approach” unless the active lateral flight mode was already “Approach”.

Analysis of a very early specification of the FCS 5000 mode logic with NuSMV
found 26 errors in the mode logic. Seventeen of these were found by the model
checker, six were found in the process of translating the informal requirements
into the Simulink model, and three were found during inspections performed to
develop the properties to be checked. Of the 17 errors found using the model
checker, 13 were classified as being possible to be missed by traditional verifica-
tion techniques such as testing and inspections, and one was classified as being
likely to be missed by traditional techniques.

One of the main advantages of this analysis was that it could be done early in
the development process when the requirements were still under development.
Finding and correcting errors at this stage is far more cost effective than waiting
until executable code is ready for unit and integration testing.

4.2 ADGS-2100 Window Manager

One of the largest and most successful applications of model checking at Rockwell
Collins was to the ADGS-2100 Adaptive Display and Guidance System Window
Manager [12]. In modern aircraft, the primary way that aircraft status is provided
to the pilots is through computerized display panels in the cockpit. These panels
replace the dozens of mechanical switches and dials found in earlier aircraft and
present a unified interface to critical flight information.

448 S.P. Miller

The ADGS-2100 is a Rockwell Collins product that provides the heads-down
and heads-up displays and display management software for next generation
commercial aircraft. The pilots can switch each panel between several differ-
ent displays of information such as primary flight displays, navigational maps,
aircraft system status, and flight checklists. However, some information is con-
sidered critically important and must always be displayed. For this reason, the
ADGS-2100 provides redundant implementations of all its critical functions.

The Window Manager (WM) ensures that data from the different displays
applications is routed to the correct display panel. In normal operation, the
WM determines which applications are being displayed in response to the pi-
lot selections. However, in the case of a component failure, the WM decides
which information is most critical and routes this information from one of the
redundant sources to the most appropriate display panel. The WM is essential
to the safe flight of the aircraft. If the WM contains logic errors, critical flight
information could be made unavailable to the flight crew.

Like the FCS 5000 mode logic, the WM is specified in Simulink using only
Booleans and enumerated types, but it is surprisingly complex. The WM is com-
posed of five main components that can be analyzed independently. As shown in
table 1, these five components contain a total of 16,117 primitive Simulink blocks
that are grouped into 4,295 instances of Simulink subsystems. The reachable state
space of the five components ranges from 9.8 × 109 to 1.5 × 1037 states.

Table 1. Window Manager Analysis Results

Subsystem Basic Reachable Number of Errors
Component Instances Blocks State Space Properties Found

GG 2,831 10,699 9.8 × 109 43 56
PS 144 398 4.6 × 1023 152 10
CM 139 1,009 1.2 × 1017 169 10
DUF 879 2,941 1.5 × 1037 115 8
MFD 301 1,100 6.8 × 1031 84 14

Totals 4,295 16,117 563 98

To begin the analysis, a set of properties that formally state the WM re-
quirements were develped in CTL, one of the property specification languages of
NuSMV. Developing the properties to be checked was a gradual process of study-
ing the WM requirements and talking with the WM developers. Some properties
were straightforward to write. For example, in a simplified version of the WM
with only two Display Units (DU), the requirement

If a DU is available, then it shall display some application.

would be stated as the two CTL properties

AG(LEFT DU AVAILABLE -> LEFT DU APPLICATION != BLANK)

AG(RIGHT DU AVAILABLE -> RIGHT DU APPLICATION != BLANK)

Bridging the Gap Between Model-Based Development and Model Checking 449

Other properties required discussion with the WM developers to clarify nu-
ances or resolve the ambiguity inherent in English textual requirements.

At the start of the project, the translator chain did not work with the ver-
sion of Simulink being used by the development team and the models required
several hours of hand tweaking before they could be translated from Simulink
to NuSMV. As a result, the early analysis was done entirely by the model
checking team.

However, as the project progressed, improvements were made to the tool chain
so that the translation only took a few minutes and was completely automated.
Also, optimizations to the translator reduced the time required for NuSMV to
check each property to roughly 20 seconds. Gradually, the developers began to see
that model checking could find errors faster, more easily, and more thoroughly
than testing or reviews. This motivated them to start writing and checking
CTL properties on their own. Eventually, the developers completely took over
the model checking and began relying on the model checking team only for
consultation and tool improvements.

Ultimately, 563 properties about the WM were developed and checked, and
98 design errors in the model were found and corrected (see table 1). As with
the FGS mode logic, this verification was done early in the design process as
the design and the requirements were still evolving. In fact, by the end of the
project, the WM developers were checking the properties several times each day,
usually after each design change.

4.3 CerTA FCS Phase I

The third case study was sponsored by the Air Force Researh Labs (AFRL)
Wright Patterson RD Directorate under the Certification Technologies for Ad-
vanced Flight Control Systems (CerTA FCS) program [13]. In this study, the
translation framework and model checking tools were applied to the Opera-
tional Flight Program (OFP) for an Unmanned Aerial Vehicle (UAV) created
by Lockheed Martin Aero. The OFP is an adaptive flight control system that
modifies its behavior in response to flight conditions.

Phase I of the project focused on investigating the roles of testing and formal
verification, and in particular, determining if formal verification could be used to
replace some tesing. To this end, two verification teams were set up. One team,
based at Lockheed Martin, focused on traditional testing of the OFP. The other
team, based at Rockwell Collins, focused on the use of model checking. Neither
team communicated directly with the other team and both teams started with
identical models and specifications of the requirements.

To ensure the effectiveness of testing was being compared to a mature formal
verification technology, the model checking in Phase I was restricted to the Re-
dundancy Management (RM) logic of the OFP. Like the FCS 5000 mode logic
and the ADGS-2100 WM, the RM logic is based almost entirely on Boolean and
enumerated types. This makes it ideal for analysis with a BDD-based model
checker such as NuSMV. However, the RM logic also contained several model
constructs that had not been encountered in the FCS 5000 mode logic and the

450 S.P. Miller

ADGS-2100 WM, including Stateflow models and truth tables. Extensions to
the translator framework to support these features took about two thirds of the
total time spent model checking the RM logic. However, the Lockheed Martin
team also made comparable investments in enhancing their testing environment.
These one time, non-recurring costs were factored out of the final comparison of
the effectiveness of testing and model checking.

Like the ADGS-2100 WM, the RM logic is organized into three components
that could be analyzed individually (see table 2). While these components are
smaller than those in the ADGS-2100 WM, they are replicated once for each of
the ten control surfaces on the aircraft and collectively represent a significant
portion of the OFP logic.

Table 2. OFP Redundancy Manager Analysis Results

Charts/
Subsystem Basic Transitions/ Reachable Number of Errors

Component Instances Blocks TT Cells State Space Properties Found

Triplex Voter 10 96 3/35/198 6.0 × 1013 43 5
Failure Processing 7 42 0/0/0 2.1 × 104 6 3
Reset Manager 6 31 2/26/0 1.3 × 1011 8 4

Totals 23 169 5/61/198 62 12

To compare the effectiveness of model checking and testing at discovering
errors, the formal verification team developed a total of 62 properties from the
OFP requirements. While these properties only partially specifed the required
behavior of the RM logic, checking them with the model checker uncovered 12
errors in the RM logic. Of these 12 errors, four were classified as severity 3 (only
severity 1 and 2 can affect the safety of flight), two were classified as severity
4, two resulted in requirements changes, one was redundant, and three resulted
from requirements that had not yet been implemented in that release of the
software.

In similar fashion, the testing team developed a series of tests from the same
OFP requirements. Even though the testing team invested almost half again as
much time in testing as the formal verification team spent in model checking,
testing failed to find any errors, including those found through model checking.
The conclusion of both teams was that in this case, model checking was more
effective than testing in finding design errors.

4.4 CerTA FCS Phase II

The purpose of Phase II of the CerTA FCS project was to investigate whether
model checking could be used to verify large, numerically intensive models. In
this study, the translation framework and model checking tools were used to
verify important properties of the Effector Blender (EB) logic of an OFP for
a UAV similar to that verified in Phase I. The EB is a central component of
the OFP that generates the actuator commands for the aircraft’s six control

Bridging the Gap Between Model-Based Development and Model Checking 451

surfaces. It is a large, complex piece of logic that repeatedly manipulates a
3 × 6 matrix of floating point numbers. It inputs 32 floating point inputs and a
3 × 6 matrix of floating point numbers and outputs a 1 × 6 matrix of floating
point numbers. It contains over 2,000 basic Simpulink blocks organized into 166
Simulink subsystems, many of which are Stateflow models.

Because of its extensive use of floating point numbers and enormous state space,
the EB cannot be verified using a BDD-based model checker such as NuSMV. In-
stead, the EB was analyzed using the Prover SMT-solver from Prover Technolo-
gies. Even with the additional capabilities of Prover, several new issues had to be
addressed in Phase II, the hardest being dealing with floating point numbers.

While Prover has powerful decision procedures for linear arithmetic with real
numbers and bit-level decision procedures for integers, it does not have decision
procedures for floating point numbers. Translating the floating point numbers
into real numbers was rejected since much of the arithmetic in the EB is in-
herently non-linear. Also, the use of real numbers would mask floating point
arithmetic errors such as overflow and underflow.

Instead, the translator framework was extended to convert floating point num-
bers to fixed point numbers using a scaling factor provided by the OFP designers.
The fixed point numbers were then converted to integers using bit-shifting to
preserve their magnitude. While this allowed the EB to be verifed using Prover’s
bit-level integer decision procedures, the results were unsound due to the loss of
precision. Even so, if errors were found in the verified model, it was very likely
that they would also be found in the original model. This allowed the verification
to be used as a highly effective debugging step, even though it did not guarantee
correctness.

Determining what properties to verify was also a difficult problem. The require-
ments for the EB are actually specified for the combination of the EB and the
aircraft model, but checking both the EB and the aircraft model exceeded the ca-
pabilities of the Prover model checker. After extensive consultation with the OFP
designers, the verification team decided to verify whether the six actuator com-
mands would always be within a dynamically computed upper and lower limit.
Violation of these properties would indicate a design error in the EB logic.

Even with these adjustments, the EB logic was large enough that it had to be
decomposed into a hierarchy of components several levels deep. The leaf nodes of
this hierarchy were then verified using Prover and their composition was manu-
ally verified using through simple manual proofs. This approach also ensured that
unsoundness could not be introduced through circular reasoning since Simulink
enforces the absence of cyclic dependencies between atomic subsystems.

Ultimately, five errors in the EB design logic were discovered and corrected
through verification of these properties. In addition, several potential errors that
were being masked by defensive design practices were found and corrected.

5 Conclusions and Future Directions

The case studies described in this paper demonstrate that model checking can
be effectively used to find errors early in the development process for many

452 S.P. Miller

classes of models. In particular, even very complex models can be verified with
BDD-based model checkers if they consist primarily of Boolean and enumerated
types. Every industrial system we have studied contains large portions of logic
that either meet this constraint or that can be made to meet it with some
alteration.

For this class of models, the tools are simple enough for developers to use
them routinely and without extensive training. In our experience, a single day of
training and a low level of ongoing mentoring is usually sufficient. This also makes
it practical to perform model checking early in the development process while
a model is still changing. Running a set of properties after each model revision
is a quick and easy way to see if anything has been broken. We encourage our
developers to “check your models early and check them often.” The time spent
model checking is recovered several times over by avoiding rework during unit
and integration testing.

Since model checking examines every possible combination of input and state,
it is also far more effective at finding design errors than testing, which can only
check a small fraction of the possible inputs and states. When combined with the
ease of use discussed above, this makes it very cost effective approch to defect
detection. As demonstrated by the CerTA FCS Phase I case study, it can be
more cost effective than testing.

However, there are still many areas for further research. As illustrated in the
CerTA FCS Phase II study, numerically intensive models still pose a challenge
for model checking. In fact, even a handful of integers can render BDD-based
model checking ineffective. SMT-based model checkers hold great promise for
verification of these systems, but the need to write properties that can be verified
through induction over the state transition relation make them more difficult for
developers to use. More work is needed to make them simpler and more intuitive.

Most industrial models used to generate code make extensive use of floating
point numbers. As discussed in the CerTA FCS Phase II study, simply using real
numbers instead of floating point numbers may not be acceptable, either because
of the inherent non-linearity of the system or because of the masking of floating
point arithmetic errors. Other models, particularly those that deal with spacial
relationships such as navigation, make extensive use of trigonometric and other
transcendental functions. A simple way of model checking such systems would
be very helpful.

It can also be difficult to determine how many properties need to be checked.
Our experience has been that checking even a few properties will find errors,
but that checking more properties will find more errors. Unlike testing for which
many objective coverage criteria have been developed [14], completeness criteria
for properties do not seem to exist. Techniques for developing or measuring the
adequacy of a set of properties would be very helpful, particularly when seeking
certification credit for the use of formal methods.

As discussed in the CerTA FCS Phase II case study, the verification of very
large models may be achieved by using model checking on subsystems and more
traditional reasoning to compose the subsystems. Combining model checking and

Bridging the Gap Between Model-Based Development and Model Checking 453

theorem proving in this way could be a very effective approach, but introducing
even this limited use of theorem proving into an industrial development process
poses many challenges unless it can be made quicker and more intuitive.

Finally, most safety critical systems must be designed using redundancy to
meet their reliability requirements. These systems are typically implemented as
globally asynchronous/locally synchronous systems in which synchronous com-
ponents, each with their own clock, communicate asynchronously with each
other. Verification of such quasi-synchronous systems [15] pose many challenges
to model checking. However, these are also precisely the type of systems that
would benefit the most from a formal approach to verification.

References

1. The Mathworks, Simulink Product Description, http://www.mathworks.com
2. Esterel Technologies, SCADE Suite Product Description,

http://www.estereltechnolgies.com

3. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge
(2001)

4. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, Reading (2003)

5. The NuSMV Model Checker, http://nusmv.irst.itc.it
6. SRI International, Symbolic Analysis Laboratory, http://sal.csl.sri.com
7. Prover Technology, Prover Plug-In Product Description, http://www.prover.com
8. Miller, S., Tribble, A., Whalen, M., Heimdahl, M.: Proving the Shalls. International

Journal on Software Tools for Technology Transfer (STTT) 8(4-5), 303–319 (2006)
9. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The Synchronous Dataflow

Programming Language Lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)
10. Model-Based Testing and Validation with Reactis,

http://www.reactive-systems.com

11. Miller, S., Anderson, E., Wagner, L., Whalen, M., Heimdahl, M.: Formal Verifica-
tion of Flight Critical Software. In: Proceedings of the AIAA Guidance, Naviga-
tion and Control Conference and Exhibit, AIAA-2005-6431. American Institute of
Aeronautics and Astronautics (2005)

12. Whalen, M., Innis, J., Miller, S., Wagner, L.: ADGS-2100 Adaptive Display &
Guidance System Window Manager Analysis. NASA Contractor Report CR-2006-
213952 (2006), http://shemesh.larc.nasa.gov/fm/fm-collins-pubs.html

13. Whalen, M., Cofer, D., Miller, S., Krogh, B., Storm, W.: Integration of Formal
Analysis into a Model-Based Software Development Process. In: Leue, S., Merino,
P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 68–84. Springer, Heidelberg (2008)

14. Chilenski, J., Miller, S.: Applicability of Modified Condition/Decision Coverage to
Software Testing. IEE Software Engineering Journal 9(5), 193–200 (1994)

15. Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincent, A., Caspi, P., Di
Natale, M.: Implementing Synchronous Models on Loosely Time Triggered Archi-
tectures. IEEE Transactions on Computers 57(10), 1300–1314 (2008)

http://www.mathworks.com
http://www.estereltechnolgies.com
http://nusmv.irst.itc.it
http://sal.csl.sri.com
http://www.prover.com
http://www.reactive-systems.com
http://shemesh.larc.nasa.gov/fm/fm-collins-pubs.html

	Bridging the Gap Between Model-Based Development and Model Checking
	Introduction
	Background
	Model-Based Development
	Model Checking

	The Translator Framework
	Case Studies
	FCS 5000 Mode Logic
	ADGS-2100 Window Manager
	CerTA FCS Phase I
	CerTA FCS Phase II

	Conclusions and Future Directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

