

Lecture Notes in Computer Science 5505
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefan Kowalewski Anna Philippou (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems

15th International Conference, TACAS 2009
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009
York, UK, March 22-29, 2009
Proceedings

13

Volume Editors

Stefan Kowalewski
RWTH Aachen, Embedded Software Laboratory
Ahornstr. 55, 52074, Aachen, Germany
E-mail: kowalewski@embedded.rwth-aachen.de

Anna Philippou
University of Cyprus, Department of Computer Science
1678 Nicosia, Cyprus
E-mail: annap@ucy.ac.cy

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2.2, D.2.4, F.3, F.1.3, F.4.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-00767-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00767-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12632459 06/3180 5 4 3 2 1 0

Foreword

ETAPS 2009 was the 12th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences. This
year it comprised five conferences (CC, ESOP, FASE, FOSSACS, TACAS), 22
satellite workshops (ACCAT, ARSPA-WITS, Bytecode, COCV, COMPASS,
FESCA, FInCo, FORMED, GaLoP, GT-VMT, HFL, LDTA, MBT, MLQA,
OpenCert, PLACES, QAPL, RC, SafeCert, TAASN, TERMGRAPH, and
WING), four tutorials, and seven invited lectures (excluding those that were spe-
cific to the satellite events). The five main conferences received 532 submissions
(including 30 tool demonstration papers), 141 of which were accepted (10 tool
demos), giving an overall acceptance rate of about 26%, with most of the con-
ferences at around 25%. Congratulations therefore to all the authors who made
it to the final programme! I hope that most of the other authors will still have
found a way of participating in this exciting event, and that you will all continue
submitting to ETAPS and contributing towards making it the best conference
on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2009 was organised by the University of York in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

VI Foreword

and with support from ERCIM, Microsoft Research, Rolls-Royce, Transitive,
and Yorkshire Forward.

The organising team comprised:

Chair Gerald Luettgen
Secretariat Ginny Wilson and Bob French
Finances Alan Wood
Satellite Events Jeremy Jacob and Simon O’Keefe
Publicity Colin Runciman and Richard Paige
Website Fiona Polack and Malihe Tabatabaie.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Luca de Alfaro (Santa Cruz), Roberto
Amadio (Paris), Giuseppe Castagna (Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (London), Hartmut Ehrig (Berlin), Javier Esparza (Munich), Jose
Fiadeiro (Leicester), Andrew Gordon (MSR Cambridge), Rajiv Gupta (Arizona),
Chris Hankin (London), Laurie Hendren (McGill), Mike Hinchey (NASA God-
dard), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen), Paul Klint
(Amsterdam), Stefan Kowalewski (Aachen), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Gerald Luettgen (York), Rupak Majumdar (Los Ange-
les), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa), Oege de Moor (Ox-
ford), Luke Ong (Oxford), Catuscia Palamidessi (Paris), George Papadopoulos
(Cyprus), Anna Philippou (Cyprus), David Rosenblum (London), Don Sannella
(Edinburgh), João Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita
Stevens (Edinburgh), Gabriel Taentzer (Marburg), Dániel Varró (Budapest),
and Martin Wirsing (Munich).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the Organising Chair of ETAPS 2009, Gerald
Luettgen, for arranging for us to hold ETAPS in the most beautiful city of York.

January 2009 Vladimiro Sassone, Chair
ETAPS Steering Committee

Preface

This volume contains the proceedings of the 15th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2009). TACAS 2009 took place in York, UK, 23–26 March, 2009, as part of the
12th European Joint Conferences on Theory and Practice of Software (ETAPS
2009), whose aims, organization, and history are presented in the foreword of
this volume by the ETAPS Steering Committee Chair, Vladimiro Sassone.

TACAS is a forum for researchers, developers, and users interested in rigor-
ously based tools and algorithms for the construction and analysis of systems.
The conference serves to bridge the gaps between different communities that
share common interests in tool development and its algorithmic foundations.
The research areas covered by such communities include, but are not limited to,
formal methods, software and hardware verification, static analysis, program-
ming languages, software engineering, real-time systems, and communications
protocols. The TACAS forum provides a venue for such communities at which
common problems, heuristics, algorithms, data structures and methodologies can
be discussed and explored. In doing so, TACAS aims to support researchers in
their quest to improve the utility, reliability, flexibility, and efficiency of tools
and algorithms for building systems.

The specific topics covered by the conference included but were not limited
to: specification and verification techniques for finite and infinite-state systems;
software and hardware verification; theorem-proving and model-checking; system
construction and transformation techniques; static and run-time analysis; ab-
straction techniques for modeling and validation; compositional and refinement-
based methodologies; testing and test-case generation; analytical techniques for
secure, real-time, hybrid, critical, biological or dependable systems; integration
of formal methods and static analysis in high-level hardware design or software
environments; tool environments and tool architectures; SAT solvers; and appli-
cations and case studies.

TACAS traditionally considers two types of papers: research papers and tool
demonstration papers. Research papers are full-length papers that contain novel
research on topics within the scope of the TACAS conference and have a clear rel-
evance for tool construction. Tool demonstration papers are shorter papers that
give an overview of a particular tool and its applications or evaluation. TACAS
2009 received a total of 131 submissions including 22 tool demonstration papers
and accepted 35 papers of which 8 papers were tool demonstration papers. Each
submission was evaluated by at least three reviewers. After a six-week reviewing
process, the program selection was carried out in a two-week electronic Pro-
gram Committee meeting. We believe that the committee deliberations resulted
in a strong technical program. The TACAS 2009 Program Committee selected
Steven Miller (Rockwell Collins, USA) as an invited speaker, who kindly agreed

VIII Preface

to give a talk entitled “Bridging the Gap Between Model-Based Development
and Model Checking”. The talk presented a translator framework that enables
the use of several popular model checkers with commercial modeling tools and
reported on its successful application in the development of avionics software.
An abstract of this talk is included in this volume.

As TACAS 2009 Program Committee Co-chairs we would like to thank the
authors of all submitted papers, the Program Committee members and all the
referees for their invaluable contribution in guaranteeing such a strong tech-
nical program. We also thank Frank Holzwarth and Martin Karusseit for their
prompt support with the Online Conference System used to manage the program
selection process and Dominique Gückel for creating the TACAS 2009 webpage
and helping with the preparation of the proceedings. Finally, we would like to
express our appreciation to the ETAPS Steering Committee and especially its
Chair, Vladimiro Sassone, as well as the Organizing Committee, chaired by Ger-
ald Lüttgen, for their efforts in making ETAPS 2009 such a successful event.

January 2009 Stefan Kowalewski
Anna Philippou

Organization

Steering Committee

Ed Brinksma ESI and University of Twente, The Netherlands
Rance Cleaveland University of Maryland and Fraunhofer USA

Inc., USA
Kim Larsen Aalborg University, Denmark
Bernhard Steffen University of Dortmund, Germany
Lenore Zuck University of Illinois, USA

Program Committee
Marco Bernardo University of Urbino, Italy
Ahmed Bouajjani University of Paris 7, France
Ed Brinksma ESI and University of Twente, The Netherlands
Alessandro Cimatti FBK-IRST, Italy
Rance Cleaveland University of Maryland and Fraunhofer USA

Inc., USA
Swarat Chaudhuri Pennsylvania State University, USA
Veronique Cortier CNRS-LORIA, Nancy, France
Patrice Godefroid Microsoft Research, Redmond, USA
Orna Grumberg Technion, Israel Institute of Technology, Israel
Aarti Gupta NEC Laboratories America Inc., USA
Nicolas Halbwachs Verimag/CNRS, Grenoble, France
Michael Huth Imperial College, UK
Kim Larsen Aalborg University, Denmark
Stefan Kowalewski RWTH Aachen, Germany
Thomas Kropf Robert Bosch AG, Germany
Marta Kwiatkowska University of Oxford, UK
Rupak Majumdar University of California, Los Angeles, USA
Panagiotis Manolios Northeastern University, USA
Radu Mateescu INRIA/VASY, France
Ken McMillan Cadence Berkeley Labs, USA
Anna Philippou University of Cyprus, Cyprus
Andreas Podelski University of Freiburg, Germany
C.R. Ramakrishnan Stony Brook University, USA
Natasha Sharygina University of Lugano, Switzerland
Oleg Sokolsky University of Pennsylvania, USA
Bernhard Steffen University of Dortmund, Germany
Frits Vaandrager Nijmegen University, The Netherlands
Carsten Weise RWTH Aachen, Germany
Lenore Zuck University of Illinois, USA

X Organization

Referees

Alessandro Aldini
Christophe Alias
Rajeev Alur
Eugene Asarin
Mohamed Faouzi Atig
Marco Bakera
Sebastien Bardin
Clark Barrett
Jasper Berendsen
Nathalie Bertrand
Nikolaj Bjorner
Bernard Boigelot
Benedikt Bollig
Edoardo Bontà
Götz Botterweck
Bouyer Patricia
Marco Bozzano
Aaron Bradley
Roberto Bruttomesso
Véronique Bruyère
Sebastian Burckhardt
Pavol Cerny
Krishnendu Chatterjee
Vivien Chinnapongse
Gianfranco Ciardo
Pedro R. D’Argenio
Alexandre David
Jed Davis
Leonardo de Moura
Stéphane Demri
Peter Dillinger
Nikhil Dinesh
Markus Doedt
Susanna Donatelli
Laurent Doyen
Constantin Enea
Ansgar Fehnker
Jeff Fischer
Pascal Fontaine
Anders Franzen
Pierre Ganty
Hubert Garavel
Amit Goel
Marco Gribaudo

Wolfgang Grieskamp
Alberto Griggio
Jan Friso Groote
Dominique Gückel
Peter Habermehl
Christine Hang
Faranak H. Dehkordi
Tamir Heyman
Radu Iosif
Franjo Ivancic
Himanshu Jain
Sven Jörges
Line Juhl
Yan Jurski
Vineet Kahlon
Joost-Pieter Katoen
Mark Kattenbelt
Katya Kisyova
Naoki Kobayashi
Piotr Kordy
Daniel Kroening
Shuvendu Lahiri
Anna-Lena Lamprecht
Frédéric Lang
Rom Langerak
Etienne Lantreibecq
Mikkel Larsen Pedersen
Jerome Leroux
Shuhao Li
Gavin Lowe
Maik Merten
Andrea Micheli
Marius Mikucionis
Ralf Mitsching
David Monniaux
Sergio Mover
Andrzej Murawski
Ralf Nagel
Wonhong Nam
K. Narayan Kumar
Johannes Neubauer
Thomas Noll
Gethin Norman
Ulrik Nyman

Petur Olsen
Luke Ong
Ghassan Oreiby
Ghassan Oreiby
Rotem Oshman
Luca Padovani
Paritosh Pandya
David Parker
Charles Pecheur
Edgar Pek
Knot Pipatsrisawat
Nir Piterman
Lorenzo Platania
Vinayak Prabhu
Polyvios Pratikakis
Shaz Qadeer
Harald Raffelt
Sylvain Rampacek
Arend Rensink
Thomas Reps
Pierre-Alain Reynier
Noam Rinetzky
Christophe Ringeissen
Marco Roveri
Oliver Rüthing
Theo Ruys
Vadim Ryvchin
Sriram

Sankaranarayanan
Bastian Schlich
John Schommer
Viktor Schuppan
Roberto Sebastiani
Olivier Serre
Wendelin Serwe
Sarai Sheinvald
Sharon Shoham
Mihaela Sighireanu
Nishant Sinha
Jeremy Sproston
Sudarshan Srinivasan
Jan Stoecker
Andrei Tchaltsev
Claus Thrane

Organization XI

Nick Tinnemeier
Ashish Tiwari
Stefano Tonetta
Tayssir Touili
Ashutosh Trivedi
Aliaksei Tsitovich
Aaron Turon
Viktor Vafeiadis

Arie van Deursen
Martin Vechev
Jacques Verriet
Yakir Vizel
Tomas Vojnar
Thomas Wahl
Michael Weber
Georg Weissenbacher

Anton Wijs
Thomas Wilk
Stephan Windmüller
Christoph Wintersteiger
Avi Yadgar
Karen Yorav
Nobuko Yoshida

Table of Contents

Model Checking I

Hierarchical Set Decision Diagrams and Regular Models 1
Yann Thierry-Mieg, Denis Poitrenaud, Alexandre Hamez, and
Fabrice Kordon

Büchi Complementation and Size-Change Termination 16
Seth Fogarty and Moshe Y. Vardi

Learning Minimal Separating DFA’s for Compositional Verification 31
Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke,
Yih-Kuen Tsay, and Bow-Yaw Wang

Tools I

RBAC-PAT: A Policy Analysis Tool for Role Based Access Control 46
Mikhail I. Gofman, Ruiqi Luo, Ayla C. Solomon, Yingbin Zhang,
Ping Yang, and Scott D. Stoller

ITPN-PerfBound: A Performance Bound Tool for Interval Time Petri
Nets . 50

Elina Pacini Naumovich, Simona Bernardi, and Marco Gribaudo

Romeo: A Parametric Model-Checker for Petri Nets with
Stopwatches . 54

Didier Lime, Olivier H. Roux, Charlotte Seidner, and
Louis-Marie Traonouez

Alpaga: A Tool for Solving Parity Games with Imperfect Information . . . 58
Dietmar Berwanger, Krishnendu Chatterjee, Martin De Wulf,
Laurent Doyen, and Thomas A. Henzinger

Game-Theoretic Approaches

Compositional Predicate Abstraction from Game Semantics 62
Adam Bakewell and Dan R. Ghica

Compositional Synthesis of Reactive Systems from Live Sequence Chart
Specifications . 77

Hillel Kugler and Itai Segall

Computing Weakest Strategies for Safety Games of Imperfect
Information . 92

Wouter Kuijper and Jaco van de Pol

XIV Table of Contents

Verification of Concurrent Programs

Context-Bounded Analysis for Concurrent Programs with Dynamic
Creation of Threads . 107

Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer

Semantic Reduction of Thread Interleavings in Concurrent Programs . . . 124
Vineet Kahlon, Sriram Sankaranarayanan, and Aarti Gupta

Inferring Synchronization under Limited Observability 139
Martin Vechev, Eran Yahav, and Greta Yorsh

The Complexity of Predicting Atomicity Violations 155
Azadeh Farzan and P. Madhusudan

Tools II

MoonWalker: Verification of .NET Programs . 170
Niels H.M. Aan de Brugh, Viet Yen Nguyen, and Theo C. Ruys

Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays 174
Robert Brummayer and Armin Biere

The Yogi Project: Software Property Checking via Static Analysis and
Testing . 178

Aditya V. Nori, Sriram K. Rajamani, SaiDeep Tetali, and
Aditya V. Thakur

TaPAS: The Talence Presburger Arithmetic Suite . 182
Jérôme Leroux and Gérald Point

Model Checking II

Transition-Based Directed Model Checking . 186
Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

Memoised Garbage Collection for Software Model Checking 201
Viet Yen Nguyen and Theo C. Ruys

Hierarchical Adaptive State Space Caching Based on Level Sampling . . . 215
Radu Mateescu and Anton Wijs

Parametric Analysis

Static Analysis Techniques for Parameterised Boolean Equation
Systems . 230

Simona Orzan, Wieger Wesselink, and Tim A.C. Willemse

Table of Contents XV

Parametric Trace Slicing and Monitoring . 246
Feng Chen and Grigore Roşu

Generative Approaches

From Tests to Proofs . 262
Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko

Test Input Generation for Programs with Pointers 277
Dries Vanoverberghe, Nikolai Tillmann, and Frank Piessens

Specification Mining with Few False Positives . 292
Claire Le Goues and Westley Weimer

Program Analysis

Path Feasibility Analysis for String-Manipulating Programs 307
Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov

Symbolic String Verification: Combining String Analysis and Size
Analysis . 322

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra

Iterating Octagons . 337
Marius Bozga, Codruţa Gı̂rlea, and Radu Iosif

Verifying Reference Counting Implementations . 352
Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak Majumdar

Hybrid Systems

Falsification of LTL Safety Properties in Hybrid Systems 368
Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi

Computing Optimized Representations for Non-convex Polyhedra by
Detection and Removal of Redundant Linear Constraints 383

Christoph Scholl, Stefan Disch, Florian Pigorsch, and
Stefan Kupferschmid

Decision Procedures and Theorem Proving

All-Termination(T) . 398
Panagiotis Manolios and Aaron Turon

Ground Interpolation for the Theory of Equality . 413
Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstić, and
Cesare Tinelli

XVI Table of Contents

Satisfiability Procedures for Combination of Theories Sharing Integer
Offsets . 428

Enrica Nicolini, Christophe Ringeissen, and Michaël Rusinowitch

Invited Contribution

Bridging the Gap Between Model-Based Development and Model
Checking . 443

Steven P. Miller

Author Index . 455

Hierarchical Set Decision Diagrams
and Regular Models�

Yann Thierry-Mieg, Denis Poitrenaud, Alexandre Hamez, and Fabrice Kordon

Université P. & M. Curie, LIP6 - CNRS UMR 7606 - 4 Place Jussieu, Paris, France
first.last@lip6.fr

Abstract. This paper presents algorithms and data structures that exploit a com-
positional and hierarchical specification to enable more efficient symbolic model-
checking. We encode the state space and transition relation using hierarchical Set
Decision Diagrams (SDD) [9]. In SDD, arcs of the structure are labeled with sets,
themselves stored as SDD.

To exploit the hierarchy of SDD, a structured model representation is needed.
We thus introduce a formalism integrating a simple notion of type and instance.
Complex composite behaviors are obtained using a synchronization mechanism
borrowed from process calculi. Using this relatively general framework, we in-
vestigate how to capture similarities in regular and concurrent models. Experi-
mental results are presented, showing that this approach can outperform in time
and memory previous work in this area.

1 Introduction

Model checking is a formal verification approach that suffers from the state-space ex-
plosion problem. One approach which has been successfully used to tackle this problem
is symbolic model-checking using binary decision diagrams [3].

Shared reduced ordered Binary Decision Diagrams (Binary DD or BDD) offer in
many cases a very compact representation of a binary function of n Boolean variables,
i.e. a function Bn �→B. BDD rely on a unique table to avoid creating nodes more than
once: the decision tree is built from the leaves (the terminals 0 and 1) up to the unique
root. This yields a canonical representation for a boolean function given an ordering of
its variables. Thus comparison of two BDD is of constant complexity. Using a cache,
it is possible to obtain algorithms in complexity polynomial to the number of nodes
in the data structure, rather than to the number of paths. For instance, union (or) and
intersection (and) of two BDD a and b has a complexity proportional to the product of
the number of nodes in the representation a and b.

Since their introduction, many extensions to BDD have been proposed. One family
of extensions consists in Multi-Terminal DD (MTBDD [5]) a.k.a. Algebraic DD [1]
which allow to represent functionsBn �→N, and by extension when the set of terminals
remains of manageable size Bn �→ R. This type of DD has been successfully used for
probabilistic model-checking [7], as well as being competitive with sparse representa-
tions for matrix computations [1].

� This work has been partially supported by the ModelPlex European integrated project FP6-IP
034081 (Modeling Solutions for Complex Systems).

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 Y. Thierry-Mieg et al.

Another family of extensions is Multiway DD [5], or Data DD [8] which allow to
store functions Nn �→ B, or even Nn �→ N when combining with multi-terminals. Al-
though comparable to binary encodings when variables are bounded, they allow to han-
dle a priori unbounded variables, and may provide more efficient solutions.

Finally, many dedicated data structures that use the same basic concepts of canoni-
cal representation and dynamic programming have emerged to tackle timed (e.g. Clock
Difference Diagrams CDD [2], Clock Region Diagrams CRD [12]) or probabilistic sys-
tems (e.g. MatriX Decision Diagrams MxD [7]).

In hierarchical Set Decision Diagrams (SDD [9]) arcs are labeled by a set of val-
ues rather than a single valuation. They represent assignment sequences of the form
ω1 ∈ s1; · · · ;ωn ∈ sn where ωi are variables and si are sets of values. Since sets are com-
pactly represented using decision diagrams, the arcs of the structure may be labeled by
SDD (or indeed any other variant of DD), introducing hierarchy in the data structure.
This produces a fundamental difference with other decision diagram types by allowing
similar subsystems of a larger specification to share their representation. In the case of
very regular systems, they may even provide an exponential compression factor with
respect to usual DD [11].

Contributions: In this paper we investigate how SDD can be used to provide an ef-
ficient representation of the state space of composite systems. We define a general
framework to express systems as a composition of smaller (possibly similar) subsystems
using a notion of type and instance. Subproblems are composed using an event-based
synchronization model borrowed from process calculi.

We investigate when gains from increased sharing can be expected from using SDD
and how to maximize the gain when applicable. For a standard benchmark set of para-
metric models borrowed from [5] we show that the SDD solution is more efficient in
both time and memory than the current state of the art in symbolic representations.

Outline: Section 2 defines SDD and formalizes operations over SDD as inductive ho-
momorphisms. Section 3 defines a general formalism that allows to closely match the
requirements of SDD based solutions. Section 4 then investigates diverse ways of en-
coding a problem. Finally, section 5 compares the different encodings proposed across
a benchmark of models.

2 Context

This section recalls the salient points of Hierarchical Set Decision Diagrams, a data
structure based on the principles of decision diagram technology (node uniqueness
thanks to a canonical representation, dynamic programming, ordering issues . . .). They
feature two main original aspects: the support of hierarchy in the representation (sec-
tion 2.1) and the definition of user operations through a mechanism called inductive
homomorphisms (section 2.2) which gives freedom and flexibility to the user. Usually,
the next state function of a system is encoded using one or more decision diagrams,
with two variables per variable of the state signature.

2.1 Set Decision Diagrams

Hierarchical Set Decision Diagrams (SDD) defined in [9], are shared decision diagrams
in which arcs are labeled by a set of values, instead of a single value. This set may itself

Hierarchical Set Decision Diagrams and Regular Models 3

be represented by an SDD, thus when labels are SDD, we think of them as hierarchical
decision diagrams. Definition 1 is taken practically verbatim from [11] where it was
adapted for more clarity from [9].

SDD are data structures for representing sets of sequences of assignments of the
form ω1 ∈ s1;ω2 ∈ s2; · · · ;ωn ∈ sn where ωi are variables and si are sets of values.

We assume no variable ordering, and the same variable can occur several times in
an assignment sequence. We define the terminal 1 to represent the empty assignment
sequence, that terminates any valid sequence. The terminal 0 represents the empty set
of assignment sequences. In the following, Var denotes a set of variables, and for any
ω in Var, Dom(ω) represents the domain of ω which may be infinite.

Definition 1 (Set Decision Diagram). δ ∈ S, the set of SDD, is inductively defined by:

– δ ∈ {0,1} or
– δ = 〈ω,π,α〉 with:
• ω ∈Var.
• π = s0∪·· ·∪ sn is a finite partition of Dom(ω), i.e. ∀i 	= j,si∩ s j = /0,si 	= /0,n

finite.
• α : π→ S, such that ∀i 	= j,α(si) 	= α(s j).

By convention, when it exists, the element of the partition π that maps to the SDD 0 is
not represented.

Despite its simplicity, this definition supports rich and complex data:

– SDD support domains of infinite size (e.g. Dom(ω) = R), provided that the parti-
tion size remains finite (e.g.]0..3],]3..+ ∞]). This feature could be used to model
clocks for instance (as in [12]). It also places the expressive power of SDD above
most variants of DD.

– SDD or other variants of decision diagrams can be used as the domain of variables,
introducing hierarchy in the data structure.

– SDD can handle paths of variable lengths, if care is taken when choosing the state
encoding to avoid creating so-called incompatible sequences (see [9]). This feature
is useful when representing dynamic structures such as queues, lists or variable size
arrays.

2.2 Operations and Homomorphisms

SDD support standard set theoretic operations (∪,∩,\). They also offer a concatenation
operation δ1 ·δ2 which replaces 1 terminal of δ1 by δ2. This corresponds to a cartesian
product. In addition, basic and inductive homomorphisms are introduced as a powerful
and flexible mechanism to define application specific operations. A detailed description
of homomorphisms including many examples can be found in [8].

A basic homomorphism is a mapping Φ : S �→ S satisfying Φ(0) = 0 and ∀δ,δ′ ∈
S,Φ(δ+δ′) = Φ(δ)+Φ(δ′). The sum + and the composition ◦ of two homomorphisms
are homomorphisms. For instance, the homomorphism δ · Id, where δ ∈ S and Id des-
ignates the identity homomorphism, permits to left concatenate sequences. We widely
use the left concatenation of a single assignment (ω ∈ s), noted ω s−→ Id. Many basic
homomorphisms are hard-coded.

4 Y. Thierry-Mieg et al.

Furthermore, application-specific mappings can be defined by inductive homomor-
phisms. An inductive homomorphism φ is defined by its evaluation on the 1 terminal
φ(1) ∈ S, and its evaluation Φ′ = φ(ω,s) for any ω ∈Var and any s⊆Dom(ω). The ex-
pression φ(ω,s) is itself a (possibly inductive) homomorphism, that will be applied on
the successor node α(s). The result of φ(〈ω,π,α〉) is then defined as ∑s∈π φ(ω,s)(α(s)),
where ∑ represents a union.

As an example, the local construction L allows to “carry” a homomorphism h to a
certain variable v, and apply h to the current state of v. Thus, it implements an operation
local to the variable v. This homomorphism will be used in section 3. It is defined by:

L(v,h)(ω,s) =

{
ω s−→ L(v,h) if ω 	= v

ω
h(s)−−→ Id else

L(v,h)(1) = 0

The transitive closure � unary operator allows to perform a least fixpoint compu-
tation. For any homomorphism h and any node δ ∈ S, h�(δ) is evaluated by repeating
δ← h(δ) until a fixpoint is reached. In other words, h�(δ) = hn(δ) where n is the small-
est integer such that hn(δ) = hn+1(δ). This operator is often applied to (Id + h) instead
of just h, allowing to accumulate newly computed assignment sequences in the result.

An important recent result is that we have defined a set of rewriting rules for homo-
morphisms [11], allowing to automatically make use of the decision diagram saturation
algorithms originally due to Ciardo [6]. When computing the least fixpoint of a tran-
sition relation over a set of states, this algorithm offers gains of one to three orders of
magnitude over classical BFS fixpoint algorithms.

For the user, these rewriting rules are transparent. Given a set of homomorphisms
{t1, . . . ,tn} that represent a partition of the transition relation of the system, the appli-
cation of (t1 + . . .+ tn + Id)� to a node automatically triggers the saturation algorithm
for the evaluation. Note that this is a central operation in any symbolic model-checking
problem since reachability is defined as a transitive closure over the full transition re-
lation. Futhermore a more complex CTL model-checker can then be constructed using
nested transitive closures over the transition relation or its reverse [4].

3 Instantiable Transition System

This section introduces a framework to define formalisms in a way that allows to take
advantage of the characteristics of SDD. Previous manual encoding of some particular
systems [11] has shown that a best case exponential compression factor can be reached
by SDD with respect to other DD. To generalize these results, we define Instantiable
Transition System (ITS), a minimal Labeled Transition System (LTS) style formalism
that makes use of the notions of type and instance to emphasize locality of actions. This
helps identify similar subproblems. The requirements we express through this formal-
ism on the input language are sufficiently wide to encompass many types of description
languages. Any formalism that can fit this generic description is likely to gain from
using SDD rather than other “flat” decision diagram types.

3.1 ITS Definition

Notations: Bag(A) denotes a multiset over a set A. Let ⊕ be a commutative operation
A×A �→ A. Let τ ∈ Bag(A), we note S =

⊕
a∈τ a where if an element a ∈ A occurs n

Hierarchical Set Decision Diagrams and Regular Models 5

times in τ it will be⊕-ed n times in S. We note tuple.X ,tuple.Y . . . the element X (resp.
Y . . .) of a tuple tuple = 〈X ,Y, · · ·〉.

The generic definition of an Instantiable Transition System (ITS) builds upon the
notion of model type and instance. It uses a composition mechanism based solely on
transition synchronization (no explicit shared memory or channel). Definition 2 sets an
abstract contract or interface that must be realized by concrete ITS types. The prin-
ciple is to build hierarchical models in which elementary bricks are homogeneous to
composite models, as they both conform to the notion of ITS type.

Definition 2 (ITS Concepts). An ITS type must provide a tuple
type = 〈S, InitStates,T,Locals,Succ〉:

– S is a set of states;
– InitStates⊆ S is a finite subset of designated initial states;
– T is a finite set of public transition labels;
– Locals : S �→ 2S is the local successors function.
– Succ : S×Bag(T) �→ 2S is the transition function satisfying ∀s∈ S,Succ(s, /0) = {s}.
Let Types denote a set of ITS types. An ITS instance i is defined by its ITS type, noted

type(i) ∈ Types. An ITS instance i may be associated to a state s ∈ type(i).S. We use the
terminology: “assign a state s to instance i”.

InitStates is introduced to avoid violating encapsulation: to initialize an instance we
need to be able to designate its initial configuration(s) without knowing the internal
structure of the instance.

Locals will typically return states reachable through occurrence of local events. It
represents transitions that may occur within an instance autonomously or independently
from the rest of the system.

The function Succ allows to obtain successors by explicitly synchronizing over a
multiset of public transition labels. Synchronizing on an empty multiset of transitions
leaves the state of the instance locally unchanged. Succ takes a multiset of transition
labels as argument, to resolve ambiguities that may occur when synchronizing several
labels of a given instance The definition of the Succ as returning a set of successors (and
not a single successor state) offers good generality, and allows in particular to capture
non-deterministic transition relations as we will show in section 3.4. This feature allows
a compact transition relation representation, as shown by the example of section 4.

Note that Succ is the only way to control the behavior of a (sub)system from outside.
Thus the transition relation of a full system can only be defined in terms of transition
synchronizations using Succ and of independent local behaviors. The definition of com-
position as a synchronization of independent effects on parts of a system (rather than
data or channel sharing) is favorable to using various verification algorithms that exploit
compositional verification [5,10] and locality of actions.

These functions will be used to define the semantics of a composite type below. To
encode a system using SDD, one must define an SDD encoding of a state s ∈ S, and a
homomorphism encoding of each of the two functions Locals and Succ.

As an example, consider the graphical type declaration of a process and buffer type
depicted in Fig. 1. This example taken from [5] describes a round robin protocol allow-
ing to share a single buffer to communicate among n processes. The buffer will initially

6 Y. Thierry-Mieg et al.

empty
get read

ProcessBuffer

give_token

Public transition labelswriteput get_token

active
passive

Type name

Initial States

Fig. 1. Two type declarations for a resource and a process. Encapsulation makes implementation
details irrelevant: only public transition labels (interface) and initial states are visible. The pro-
cesses (instances of the Process type) will be connected through “get_token” and “give_token”
to form a ring topology. The processes “get” (“read”) the message that was “put” (“write”) in the
buffer by another process.

be empty. Initially, a single process will be active (has the token), all others will be
passive. This round robin model will be used as a running example through the rest of
the paper.

A full system is defined by an instance of a particular type in a specific initial state.
As a full system is self-contained, the definition of reachability only depends on the
definition of Locals:

(Reachability). A state s′ is reachable by an instance i from the state s0 iff. ∃s1, . . .sn ∈
type(i).S s.t. s′ = sn∧∀1≤ i≤ n,si ∈ type(i).Locals(si−1).

3.2 A Composite Type

We now define a composite ITS type to offer support for the hierarchical composition
of ITS instances.

Notations: Let I designate a set of ITS instances. CSI designates the set of functions
that map instances i ∈ I to a state of type(i), i.e. cs ∈CSI =⇒ ∀i ∈ I,cs(i) ∈ type(i).S.
SyncsI designates the set of functions that map instances i ∈ I to a multiset of public
transition labels of type(i), i.e. t ∈ SyncsI =⇒ ∀i ∈ I, t(i) ∈ Bag(type(i).T). The sum
⊕ : SyncsI × SyncsI �→ SyncsI is defined as: t = t0 + t1 ⇐⇒ ∀i ∈ I, t(i) = t0(i)+ t1(i)
where + designates the standard sum of multisets.

Intuitively, CSI represents composite states, an element of SyncsI corresponds to a
synchronization of public labels of the set I of subcomponents. The sum⊕ represents an
operation cumulating the effect of two synchronizations. For instance, let I = {i0, i1}.
Let s0,s1 ∈ SyncsI , s0(i0) = t0 + 2′t1, s0(i1) = /0; s1(i0) = t0, s1(i1) = t3. Then s2 =
s0⊕ s1 =⇒ s2(i0) = 2′t0 + 2′t1, s2(i1) = t3.

We define the next state function NextI , which is used when defining Locals and Succ
below NextI : CSI×Bag(SyncsI) �→ 2CSI .∀s,s′ ∈CSI,∀τ ∈ Bag(SyncsI),

s′ ∈ NextI(s,τ)iff ∀i ∈ I,s′(i) ∈ type(i).Succ(s(i),(
⊕
t∈τ

t)(i)).

Definition 3 (Composite). A composite is a tuple C = 〈I, IS,ST,V〉:
– I is a finite set of ITS instances, said to be contained by C. We further require that

the type of each ITS instance preexists when defining these instances, in order to
prevent circular or recursive type definitions.

– IS ⊆ {s ∈ CSI | ∀i ∈ I,s(i) ∈ type(i).InitStates} is a finite set of designated initial
states

Hierarchical Set Decision Diagrams and Regular Models 7

– ST ⊂ SyncsI is the finite set of synchronizations;
– V : ST �→ {public,private} assigns a visibility to each synchronization

The ITS type corresponding to a composite, is defined as:

– S = CSI
– InitStates = IS
– T = {st ∈ ST |V (st) = public}
– Locals : S �→ 2S. ∀s,s′ ∈ S,s′ ∈ Locals(s) iff

∃i ∈ I,s′(i) ∈ type(i).Locals(s(i))∧∀ j ∈ I, j 	= i,s′(j) = s(j)
or ∃t ∈ ST,V (t) =private,s′ ∈ NextC.I(s,{t})

– Succ : S×Bag(T) �→ 2S. ∀s,s′ ∈ S,∀τ ∈ Bag(T),Succ(s,τ) = NextC.I(s,τ)

Definition 3 is a realization of the generic ITS type contract. It contains either ele-
mentary subcomponents (see section 3.3), or recursively other instances of composite
nature.

Locals is defined as states reachable through the occurrence of local transitions of
any nested component (without affecting the other subcomponents) or states reachable
through occurrence of any given private synchronization.

Succ is realized by “summing” the impact of the multiset of transitions given as its
argument using the ⊕ operator defined over SyncsI , and synchronously updating the
state of each subcomponent.

As an example consider in Fig. 2 a composite type built to represent the round robin
system with two processes.

Fig. 2. A composite type declaration, containing three instances and six private synchroniza-
tions. For instance, private synchronization link2 is read link2(p1) = get_token, link2(p2) =
give_token, link2(b) = /0.

Encoding: A state s ∈ CSI of a composite C will be represented by an SDD of |I|
variables, each representing the state of an instance i ∈ I. The domain of each variable
is determined by the type of the instance. The NextI function is defined using the L
homomorphism introduced in section 2.2. For any τ ∈ Bag(T):

NextI(τ) =©i∈IL(i,type(i).Succ((
⊕
t∈τ

t)(i)))

The homomorphisms representing Locals and Succ , ∀τ ∈ BagT , are encoded:

Locals = ∑i∈I L(i,type(i).Locals)+ ∑t∈ST,V (t)=private NextC.I({t})
Succ(τ) = NextC.I(τ)

8 Y. Thierry-Mieg et al.

3.3 An Elementary Type

To have a fully working model definition, we still need to define an elementary type.
We use here a labeled transition system as elementary brick, adapted to the ITS type
contract. In practice any finite state model is appropriate.

Definition 4. An elementary Labeled Transition System (LTS) is a tuple
LTS = 〈N,N0,L,E,V 〉:

– N is a finite set of nodes;
– N0 ⊆ N is a subset of designated initial states;
– L is a finite set of labels for transitions;
– E ⊆ N×L×N is a set of labeled edges;
– V : L �→ {public, private} is a function assigning a visibility to each label;

The ITS type which corresponds to an elementary LTS, is defined as:

– S = N
– InitStates = N0
– T = {l ∈ L |V (l) = public}
– Locals : S �→ 2S is defined as n′ ∈ Locals(n) iff ∃l ∈ L,V (l) =private∧〈n, l,n′〉 ∈ E;
– Succ : S×Bag(T) �→ 2S: Succ(n,τ) = /0 if τ contains more than one transition label.

Else, when τ = {l}, ∀n,n′ ∈ S,n′ ∈ Succ(n,{l}) iff 〈n, l,n′〉 ∈ E .

As an example, Fig. 3 represents an implementation of the Process type introduced
earlier (Fig. 1) using an LTS.

Fig. 3. An LTS representing an implementation of the Process type in the round robin protocol

Encoding: we index the states of LTS, and use an SDD with a single variable of integer
domain reflecting the current state. The transition relation is easily realized using a
precomputed transition function f : S×L �→ 2S such that f (n, l) = {n′ | 〈n, l,n′〉 ∈ E}.
Furthermore, for any set s⊆ S we define the set priv(s) =

⋃
x∈s
⋃

l∈L∧V (l)=private f (x, l).
Locals and Succ are defined using inductive homomorphisms. Note that as we have

a single variable in the encoding these homomorphisms do not need to propagate. Succ
is defined below when the argument τ ∈ Bag(T) contains a single transition label l.
Otherwise it returns the terminal 0.{

Locals(ω,s) = e
priv(s)−−−→ Id

Locals(1) = 1

{
Succ(l)(ω,s) = e

⋃
x∈s f (x,l)−−−−−−→ Id

Succ(l)(1) = 1

Hierarchical Set Decision Diagrams and Regular Models 9

3.4 An Extended Composite Type

The concepts introduced up to this point offer basic support for the definition of hierar-
chical models. Extending this definition is possible provided that the ITS type contract
is preserved. We consider here such an extension, which proposes an additional type of
synchronization to handle non-determinism.

This additional construct allows more compact modeling, and a more efficient en-
coding of the transition relation. An example using this extended composite definition
and illustrating its benefits is presented in section 4.

Notations: We define an additional operator to combine SyncsI . Let the product ⊗ :
2SyncsI ×2SyncsI �→ 2SyncsI be defined as:

∀A,B⊆ SyncsI ,A⊗B = {a⊕b | a ∈ A∧b ∈ B}
We then define a slightly more complex composite type :

Definition 5. A non-deterministic composite is a tuple NDC = 〈C,K〉:
– C is a composite type
– K : C.T �→ {AND,XOR} partitions transitions into basic AND kind synchroniza-

tions and non deterministic choice XOR kind synchronizations;

We define the determinize function Det : Bag(T) �→ 2SyncsI :

Det(τ) =
{{⊕{t∈τ|K(t)=AND} t}⊗⊗{t∈τ|K(t)=XOR} t if∃t ∈ τ,K(t) = XOR
{⊕{t∈τ|K(t)=AND} t} otherwise

Det allows to map the semantics of XOR synchronizations to a set of deterministic
AND synchronizations. To realize the ITS type definition, we define:

– S = C.S, InitStates = C.InitStates, T = C.T
– Locals : S �→ 2S. ∀s,s′ ∈ S,s′ ∈ Locals(s) iff{ ∃i ∈C.I,s′(i) ∈ type(i).Locals(s(i))∧∀ j ∈C.I, j 	= i,s′(j) = s(j)

or ∃θ ∈C.ST,C.V(θ) =private,∃t ∈Det(θ),s′ ∈ NextC.I(s,{t})
– Succ : S×Bag(T) �→ 2S. ∀s,s′ ∈ S,∀σ ∈ Bag(T), s′ ∈ Succ(s,σ) iff
∃τ ∈ Det(σ),s′ ∈ NextC.I(s,τ).

Note that an extended composite in which no disjunctive synchronizations are defined
is identical to definition 3. However, the extended definition introduces “exclusive or”
type synchronizations, in which only one of the transition labels that belong to the set
SyncsI is required to occur when the synchronization occurs. The transition label is
chosen arbitrarily. The function Det selects one transition label from each XOR syn-
chronization, and all transition labels from the AND transitions. Its output is a set of
SyncsI that can be used to define a Successors rule using the same Next function as
definition 3.

Encoding: The state encoding is the same as the encoding for a (basic) composite. The
homomorphisms representing Locals and Succ , ∀σ ∈ BagT , are encoded:

Locals = ∑i∈I L(i,type(i).Locals)+ ∑τ∈ST,V (τ)=private(∑t∈Det(τ) NextC.I({t}))
Succ(σ) = ∑τ∈Det(σ) NextC.I(τ)

10 Y. Thierry-Mieg et al.

4 Hierarchical Modeling Strategies

ITS allow to model a given system in a number of equivalent ways, depending on the
hierarchy of types that is defined. One way of seeing this is that ITS offer to parenthesize
a parallel composition of n processes. Flattening the representation is always possible,
yielding an equivalent composite ITS containing only instances of an elementary type.
This can be seen as removing parenthesis from the expression of the synchronization,
which does not affect the resulting semantics. However, a model’s hierarchy allows to
factorize description of similar structures and behaviors. This is exploited to provide a
more efficient SDD solution for model-checking.

For instance, to obtain an homogeneous representation of a chain of processes and a
single process, we can define a type ProcessGroup (Fig. 4) to contain a set of process
instances. This homogeneous representation is only possible thanks to the use of XOR
synchronizations; a simpler encoding using only AND synchronizations would require
that a process group containing n process instances make visible n versions of the write
and read transitions.

The process group is then identical to a process, from the ITS point of view that sees
only public transition labels and designated initial states. We will note such a composite
M2 = (P�P), where P represents an elementary process type, and � denotes a parallel
composition. This homogeneous representation of a set of processes allows to build
a larger process group by combining two process groups using the same schema. For
instance, we can define M4 = (M2 � M2) using two instances of the type defined in
Fig. 4 to represent 4 process.

Fig. 4. An extended composite ITS representing a group of Process in a manner homogeneous to
a single Process. This pattern can be generalized to contain k instances rather than just two.

We can then define (Fig. 5) a ProcessRing type that models the boundary synchro-
nizations necessary to close a process ring.

We compare here two approaches to encode a system of n process. The Recur-
sive(grain) approach consists in building process groups such that no process group
definition ever contains more than grain process group instances.

The Group(grain) approach consists in building a process group type containing
n/grain subgroups of sizes ranging from grain to grain+1. The subgroups are defined
in this approach as a simple composition of grain (or grain + 1) elementary Process
instances. The overall depth is thus two: the Process group composite contains subgroup
composite instances that contain elementary type instances.

Hierarchical Set Decision Diagrams and Regular Models 11

Fig. 5. A composite ITS representing the actions closing a Process ring and a full system as a
composite of a Buffer and a ProcessRing

For instance, let us compare for n = 18 the encodings of Robin(18). Recursive(2)
would yield M2 = (P�P),M4 = (M2�M2),M8 = (M4�M4),M16 = (M8�M8), and
finally M18 = (M16 �M2). Recursive(3) would yield M3 = (P �P �P),M9 = (M3 �
M3 � M3),M18 = (M9 � M9) with more shallow hierarchy. Group(4) would build a
model M4 = (P�P�P �P),M5 = (P�P �P�P�P),M18 = (M5�M5�M4�M4).

Comparing Strategies. The Recursive approach fixes the maximum number of vari-
ables in an SDD assignment sequence, and lets “depth” in the hierarchy grow with
loggrain(n). The Group approach fixes the depth at 2 and fixes the length of assignment
sequences in the “deeper” level to grain. The number of variables in the outer level thus
grows with n/grain.

We have run experiments with these strategies, for three examples taken from Smart
benchmarks [5]. Robin is the protocol we have used as running example in this paper.
Philosophers models Dijkstra’s classical dining philosophers. Slotted Ring describes
a ring communication protocol with one slot per participant. These three models are
regular, i.e. parametric in the number of participants in the protocol. They are thus all
appropriate to apply our encoding strategies.

We report performance for Robin using the XOR construct. Without it, locality of
events which is critical to saturation performance is broken. As a result, even if the final
state space representation size is the same, the poorer encoding of the transition relation
yields high degree polynomial complexity in n due to peaks in representation size.

Table 1 presents the results obtained with two of these regular models. In this exper-
iment we let the grain vary in both Recursive and Group approaches.

Our experiments shows on Robin and Philosophers that the Recursive strategy can
be extremely efficient w.r.t. to the Group strategy.

The results on Philosophers have been omitted due to space constraints, but per-
formance is sublinear O(n) in the Group approach (with larger grain yielding better
performance) and logarithmic O(ln(n)) in recursive approaches.

For Robin, the final state space representation size is O(ln(n)), like Philosophers.
However, the assymetry of the initial state enforces n iterations to cover all positions of
the token in the ring, yielding overall linear complexity in n.

However, the recursive encoding of the model description, even when it is possible
(i.e. the model is regular) does not ensure that the state-space computation will be easy,
as the Ring example shows. In this model the recursive approach does not yield a final
representation size in O(ln(n)). Although the system is regular, system-wide dependen-
cies between component states force a larger representation, in which most arcs bear a
single value. The increased depth in the data structure even introduces overhead in this
case, thus the Group approach is more effective.

12 Y. Thierry-Mieg et al.

Table 1. Compared performances of Recursive and Group approaches for a sampling of grain
parameter. “–” entries indicate failure due to exhaustion of memory.

Recursive Group
grain⇒ 3 5 1 5 10

Model States T. Mem. T. Mem. T. Mem. T. Mem. T. Mem.
Size # (s) (MB) (s) (MB) (s) (MB) (s) (MB) (s) (MB)

Slotted Ring
50 1.7×1052 4.9 59.7 2.2 48.1 2.5 112.7 1.9 55.9 2.5 50.2

100 2.6×10105 94.7 463.9 27.9 300.1 19.7 814.4 14.5 410.5 17.6 342.6
200 8.4×10211 - - 489.9 2285.2 - - - - 128.7 2735.7

Robin
100 2.8×1032 0.24 12.5 0.26 11.8 26.9 102.8 1.0 23.8 0.7 14.8
400 2.3×10123 1.0 45.4 1.2 43.8 998.2 1118.7 62.9 318.5 15.5 169.2
1000 2.4×10304 3.0 117.8 3.12 106.6 > 1000 > 2473.2 > 1000 > 1718.1 307.7 1006.5

The setting Group(1) closely mimics a flattened composition of processes of the
form (P � P � · · ·� P). Since this is the encoding other DD based tools would use (no
hierarchy), it is a good baseline comparison.

We can observe that using larger variable domains (i.e. increasing the grain) tends
to reduce complexity in both approaches. This trend is reversed when the grain is so
large that the depth is very shallow in Recursive, or the outer assignment sequence is
too short in Group.

5 Comparative Performance Analysis

This section presents performance comparisons of our tool that relies on ITS and SDD
to the tool Smart based on MDD [5]. To allow us to easily use Smart’s benchmark
models, our tool uses place transition nets as an elementary type rather than LTS.

Comparison to Smart is indicated as it is, to our knowledge, the only other symbolic
model-checker that uses a saturation algorithm. Comparisons to NuSMV were also per-
formed, but are not really comparable, as without saturation it cannot compete. In fact,
no answer in a reasonable time was given for the parameters we use in our benchmark.
This confirms the experimentations presented in [5].

Figure 6 presents the comparisons run for five parametric models taken from the
Smart’s own benchmark. These models were chosen as being representative of both
tools behavior, with extreme cases represented by Philo (SDD more efficient) and Ring
(MDD more efficient). Three of them are the regular models introduced in section 4.
In those models, the number of variables increases with n, while variable domains are
fixed and typically small (less than 20 values). We also included two parametric models
which are not regular, and could not be encoded using the approaches of the previous
section. FMS and Kanban model flexible manufacturing systems. Parameter n defines
the number of available resources rather than the size of the manufacturing plant. In
these models the number of variables is fixed, while variable domains evolve with n.

Both tools use the best available settings, and compute the full reachable state-space.
The state space size is in all cases exponential in the parameter n.

Philosophers: the Recursive approach (see section 4) is so successful that time and
memory are still negligible for the value n = 1000. The complexity is in O(n) in Smart,

Hierarchical Set Decision Diagrams and Regular Models 13

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000

ITS Time (s)

FMS
Kanban

Philosophers
Robin

Slotted Ring (Group)
Slotted Ring (Recursive)

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000

Smart Time (s)

FMS
Kanban

Philosophers
Robin

Slotted Ring

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000

ITS Memory (kB)

FMS
Kanban

Philosophers
Robin

Slotted Ring (Group)
Slotted Ring (Recursive)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000

Smart Memory (kB)

FMS
Kanban

Philosophers
Robin

Slotted Ring

Fig. 6. Compared performances of ITS/SDD (left) vs. Smart (right), using the best settings for
each tool. The x axis is the parameter n setting model’s complexity. The logarithmic y axis repre-
sents time in seconds (top) and memory in kilo-bytes (bottom).

thanks to saturation, but it is O(ln(n)) with SDD. For instance, we compute reachable
states of the Philosophers for n = 103000 in 36 seconds using 386 MB of RAM.

Robin: the complexity in Smart is high degree polynomial, where our Recursive solu-
tion is O(n).

Ring: We report here both the results of the Recursive strategy (with grain=3) and of
the Group strategy (with grain=10). Both strategies remain in high degree polynomial
complexity comparable to Smart.

In this model, many arcs carry a single value even when using SDD. Since the result-
ing tree structure is similar, the theoretical complexity of both solutions is comparable.
However, the lower memory footprint per node of MDD vs SDD factors up to give Smart
the advantage. It was able to compute Ring up to n = 250 when ITS failed above n = 200.

Kanban and FMS: the superiority of SDD over MDD is clearly affirmed when vari-
ables have a large domain. In these models, the number of variables is fixed, but the
variable domains grow in O(n). In both these models, the complexity in Smart is near
exponential where we obtain a low order polynomial.

For Kanban, in ITS/SDD we use the natural encoding that synchronizes four in-
stances of a single type, yielding 4 variables of domain O(n3). However, an alternate
flatter partitioning is used in Smart benchmarks, with 16 variables of domain size O(n).
This encoding limits the potential number of arcs per node, as the “rough” partition fails
past n≈ 50.

14 Y. Thierry-Mieg et al.

Papers by Ciardo et al. on Smart (e.g. [5]) that compare the performances of a
“rough” partition versus a “fine” one conclude that a fine partition is better for MDD. As
our experiments section 4 show, this is not the case for SDD. Smart is based on MDD,
which allow to represent integer domain variables rather than on SDD. Thus, when the
size of the set of local states of a component grows (i.e. the domain of variables is large),
performance is degraded.

This is due to the creation of MDD nodes having a large set of arcs. In contrast SDD
are resistant to large local state spaces, as arcs are fused when they lead to the same
successor node. Thus the number of arcs per node is not directly related to the number
of local states, but rather to the complexity of state dependencies between components.

6 Conclusion

This paper investigates how hierarchical Set Decision Diagrams (SDD) may provide
an efficient representation of the state space of composite systems. We have introduced
Instantiable Transition Systems (ITS) as a framework to define formalisms in a way that
allows to take advantage of the characteristics of SDD.

Our contributions are : 1) we have defined encoding strategies which allow take
advantage of the regularity of systems, 2) ITS allow to capture this regularity using the
notions of type and instance, 3) the definition of ITS is generic allowing to adapt it to
many formalisms.

Experimentation shows that our solution is competitive with existing symbolic so-
lutions such as SMART or NuSMV. In the case of very regular models, we can even
obtain a exponential compression factor in both time and memory.

Hierarchical Set Decision Diagrams are available as an open source C++ library
http://ddd.lip6.fr, which has already been used to build several efficient model-
checkers.

Definition of heuristics allowing to detect the regularity of a model and automatically
propose an appropriate encoding strategy is left to future work.

References

1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Al-
gebraic decision diagrams and their applications. Formal Methods in System Design 10(2/3),
171–206 (1997)

2. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reachability
analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

3. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions
on Computers 35(8), 677–691 (1986)

4. Burch, J.R., Clarke, E.M., McMillan, K.L.: Symbolic model checking: 1020 states and be-
yond. Information and Computation (Special issue for best papers from LICS90) 98(2), 153–
181 (1992)

5. Ciardo, G., Lüttgen, G., Miner, A.S.: Exploiting interleaving semantics in symbolic state-
space generation. Formal Methods in System Design 31(1), 63–100 (2007)

http://ddd.lip6.fr

Hierarchical Set Decision Diagrams and Regular Models 15

6. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H., Hatcliff,
J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg (2003)

7. Ciardo, G., Miner, A.S.: Implicit data structures for logic and stochastic systems analysis.
SIGMETRICS Perform. Eval. Rev. 32(4), 4–9 (2005)

8. Couvreur, J.-M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.-A.: Data De-
cision Diagrams for Petri Net Analysis. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002.
LNCS, vol. 2360, pp. 1–101. Springer, Heidelberg (2002)

9. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical Decision Diagrams to Exploit Model Struc-
ture. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer, Heidelberg
(2005)

10. Donatelli, S., Franceschinis, G.: The PSR Methodology: Integrating Hardware and Software
Models. In: Proceedings of the 17th International Conference on Application and Theory of
Petri Nets, London, UK, pp. 133–152. Springer, London (1996)

11. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Hierarchical Set Decision Diagrams and Automatic
Saturation. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 211–
230. Springer, Heidelberg (2008)

12. Wang, F.: Formal verification of timed systems: A survey and perspective. IEEE 92(8) (Au-
gust 2004)

Büchi Complementation and Size-Change Termination�

Seth Fogarty and Moshe Y. Vardi��

Department of Computer Science, Rice University, Houston, TX
{sfogarty,vardi}@cs.rice.edu

Abstract. Wecompare tools forcomplementingnondeterministicBüchi automata
with a recent termination-analysis algorithm. Complementation of Büchi automata
is a key step in program verification. Early constructions using a Ramsey-based ar-
gumenthavebeensupplantedbyrank-basedconstructionswithexponentiallybetter
bounds. In 2001 Lee et al. presented the size-change termination (SCT) problem,
along with both a reduction to Büchi automata and a Ramsey-based algorithm. This
algorithm strongly resembles the initial complementation constructions for Büchi
automata.

We prove that the SCT algorithm is a specialized realization of the Ramsey-
based complementation construction. Surprisingly, empirical analysis suggests
Ramsey-based approaches are superior over the domain of SCT problems. Upon
further analysis we discover an interesting property of the problem space that
both explains this result and provides a chance to improve rank-based tools. With
these improvements, we show that theoretical gains in efficiency are mirrored in
empirical performance.

1 Introduction

The automata-theoretic approach to formal program verification reduces questions
about program adherence to a specification to questions about language containment.
Representing liveness, fairness, or termination properties requires finite automata that
operate on infinite words. One automaton, A, encodes the behavior of the program,
while another automaton, B, encodes the formal specification. To ensure adherence,
verify that the intersection of A with the complement of B is empty. Thus a vital prob-
lem is constructing the complementary automata B. Finite automata on infinite words
are classified by their acceptance condition and transition structure. We consider here
nondeterministic Büchi automata, in which a run is accepting when it visits at least one
accepting state infinitely often.

The first complementation constructions for nondeterministic Büchi automata em-
ployed a Ramsey-based combinatorial argument to partition infinite words into a finite
set of regular languages. Proposed by Büchi in 1962 [3], this construction was shown in
1987 by Sistla, Vardi, and Wolper to be implementable with a blow-up of 2O(n2) [14].
This brought the complementation problem into singly-exponential blow-up, but left a
gap with the 2Ω(n log n) lower bound proved by Michel [11].

� A full version of this paper, including proofs, is available at http://www.cs.rice.edu/˜
sfogarty/tacas09-supplement.pdf

�� Work supported in part by NSF grants CCR-0124077, CCR-0311326, CCF-0613889, ANI-
0216467, and CCF-0728882, by BSF grant 9800096, and by a gift from Intel.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 16–30, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cs.rice.edu/~{}sfogarty/tacas09-supplement.pdf
http://www.cs.rice.edu/~{}sfogarty/tacas09-supplement.pdf

Büchi Complementation and Size-Change Termination 17

The gap was tightened in 1988, when Safra described a 2O(n log n) construction [13].
Work since then has focused on improving the practicality of 2O(n log n) constructions,
either by providing simpler constructions, further tightening the bound, or improving
the derived algorithms. In 2001, Kupferman and Vardi employed a rank-based analy-
sis of Büchi automata to simplify complementation [9]. Recently Doyen and Raskin
tightly integrated the rank-based construction with a subsumption relation to provide a
complementation solver that scales to automata several orders of magnitude larger than
previous tools [5].

Separately, in the context of of program termination analysis, Lee, Jones, and Ben-
Amram presented the size-change termination (SCT) principle in 2001 [10]. This prin-
ciple states that, for domains with well-founded values, if every infinite computation
contains an infinitely decreasing value sequence, then no infinite computation is pos-
sible. Lee et al. describe a method of size-change termination analysis and reduce
this problem to the containment of two Büchi automata. Stating the lack of efficient
Büchi containment solvers, they also propose a Ramsey-based combinatorial solution
that captures all possible call sequences in a finite set of graphs. The Lee, Jones, and
Ben-Amram (LJB) algorithm was provided as a practical alternative to reducing the ver-
ification problem to Büchi containment, but bears a striking resemblance to the 1987
Ramsey-based complementation construction [14].

In this paper we show that the LJB algorithm for deciding SCT [10] is a specialized
implementation of the 1987 Ramsey-based complementation construction [14]. We then
empirically explore Lee et al.’s intuition that Ramsey-based algorithms are more prac-
tical than Büchi complementation tools on SCT problems. Initial experimentation does
suggest that Ramsey-based tools are superior to rank-based tools on SCT problems.
This is surprising, as the worst-case complexity of the LJB algorithm is significantly
worse than that of rank-based tools. Investigating this discovery, we note that it is nat-
ural for SCT problems to be reverse-deterministic, and that for reverse-deterministic
problems the worst-case bound for Ramsey-based algorithms matches that of the rank-
based approach. This suggests improving the rank-based approach in the face of reverse
determinism. We demonstrate that, indeed, reverse-deterministic automata have a max-
imum rank of 2, dramatically lowering the complexity of complementation to 2O(n).
Revisiting our experiments, we discover that with this improvement rank-based tools
are superior on the domain of SCT problems.

2 Preliminaries

In this section we review the relevant details of the Büchi complementation and size-
change termination, introducing along the way the notation used throughout this paper.
An nondeterministic Büchi automaton on infinite words is a tupleB=〈Σ, Q, Qin, ρ, F 〉,
where Σ is a finite nonempty alphabet, Q a finite nonempty set of states, Qin ⊆ Q
a set of initial states, F ⊆ Q a set of accepting states, and ρ : Q × Σ → 2Q a
nondeterministic transition relation. We lift the ρ function to sets of states and words of
arbitrary length in the usual fashion.

A run of a Büchi automaton B on a word w ∈ Σω is a infinite sequence of states
q0q1... ∈ Qω such that q0 ∈ Qin and, for every i ≥ 0, we have qi+1 ∈ ρ(qi, wi). A run
is accepting iff qi ∈ F for infinitely many i ∈ IN . A word w ∈ Σω is accepted by B if

18 S. Fogarty and M.Y. Vardi

there is an accepting run of B on w. The words accepted by B form the language of B,
denoted by L(B). A path in B from q to r is a finite subsection of a run beginning in q
and ending in r. A path is accepting if some state in the path is in F .

A Büchi automatonA is contained in a Büchi automaton B iff L(A) ⊆ L(B), which
can be checked by verifying that the intersection of A with the complement B of B is
empty: L(A)∩L(B) = ∅. We know that the language of an automaton is non-empty iff
there are states q ∈ Qin, r ∈ F such that there is a path from q to r and an accepting
path from r to itself. The initial path is called the prefix, and the combination of the
prefix and cycle is called a lasso [16]. Further, the intersection of two automata can
be constructed, having a number of states proportional to the product of the number
states of the original automata [4]. Thus, the most computationally demanding step is
constructing the complement of B. In the formal verification field, existing work has
focused on the simplest form of containment testing, universality testing, where A is
the universal automaton [5,15].

2.1 Ramsey-Based Universality

When Büchi introduced these automata in 1962, he described a complementation con-
struction involving a Ramsey-based combinatorial argument. We describe an improved
implementation presented in 1987. To construct the complement of B, where Q =
{q0, ..., qn−1}, we construct a set Q̃B whose elements capture the essential behavior
of B. Each element corresponds to an answer to the following question. Given a finite
nonempty word w, for every two states q, r ∈ Q: is there a path in B from q to r over
w, and is some such path accepting?

Define Q′ = Q × {0, 1} × Q, and Q̃B to be the subset of 2Q′
whose elements do

not contain both 〈q, 0, r〉 and 〈q, 1, r〉 for any q and r. Each element of Q̃B is a {0, 1}-
arc-labeled graph on Q. An arc represents a path in B, and the label is 1 if the path is
accepting. Note that there are 3n2

such graphs. With each graph g̃ ∈ Q̃B we associate a
language L(g̃), the set of words for which the answer to the posed question is the graph
encoded by g̃.

Definition 1. Let g̃ ∈ Q̃B and w ∈ Σ+. Then w ∈ L(g̃) iff, for all pairs of states
q, r ∈ Q:

(1) 〈q, a, r〉 ∈ g̃, a ∈ {0, 1}, iff there is a path in B from q to r over w.
(2) 〈q, 1, r〉 ∈ g̃ iff there is an accepting path in B from q to r over w.

The languages L(g̃), for the graphs g̃ ∈ Q̃B, form a partition of Σ+. With this partition
of Σ+ we can devise a finite family of ω-languages that cover Σω. For every g̃, h̃ ∈ Q̃B,
let Ygh be the ω-language L(g̃) · L(h̃)ω. We say that a language Ygh is proper if Ygh

is non-empty, L(g̃) · L(h̃) ⊆ L(g̃), and L(h̃) · L(h̃) ⊆ L(h̃). There are a finite, if
exponential, number of such languages. A Ramsey-based argument shows that every
infinite string belongs to a language of this form, and that L(B) can be expressed as the
union of languages of this form.

Lemma 1. [3,14]
(1) Σω =

⋃{Ygh | Ygh is proper}
(2) For g̃, h̃ ∈ Q̃B, either Ygh ∩ L(B) = ∅ or Ygh ⊆ L(B).

Büchi Complementation and Size-Change Termination 19

(3) L(B) =
⋃{Ygh | Ygh is proper and Ygh ∩ L(B) = ∅}.

To obtain the complementary Büchi automaton B, Sistla et al. construct, for each g̃ ∈
Q̃B, a deterministic automata on finite words, Bg, that accepts exactly L(g̃). Using the
automataBg, one can then construct the complementary automatonB [14]. We can then
use a lasso-finding algorithm on B to prove the emptiness of B, and thus the universality
of B. We can avoid an explicit lasso search, however, by employing the rich structure
of the graphs in Q̃B. For every two graphs g̃, h̃ ∈ Q̃B, determine if Ygh is proper. If Ygh

is proper, test if it is contained in L(B) by looking for a lasso with a prefix in g̃ and a
cycle in h̃. B is universal if every proper Ygh is so contained.

Lemma 2. Given an Büchi automaton B and the set of graphs Q̃B,

(1) B is universal iff, for every proper Ygh, Ygh ⊆ L(B).
(2) Let g̃, h̃ ∈ Q̃B be two graphs where Ygh is proper. Ygh ⊆ L(B) iff there exists

q ∈ Qin, r ∈ Q, a ∈ {0, 1} where 〈q, a, r〉 ∈ g̃ and 〈r, 1, r〉 ∈ h̃.

Lemma 2 yields a PSPACE algorithm to determine universality [14]. Simply check each
g̃, h̃ ∈ Q̃B. If Ygh is both proper and not contained in L(B), then the pair (g̃, h̃) provide
a counterexample to the universality of B. If no such pair exists, the automaton must be
universal.

2.2 Rank-Based Complementation

If a Büchi automaton B does not accept a word w, then every run of B on w must
eventually cease visiting accepting states. The rank-based construction uses a notion
of ranks to track the progress of each possible run towards fair termination. A level
ranking for an automaton B with n states is a function f : Q → {0...2n,⊥}, such that
if q ∈ F then f(q) is even or ⊥. Let a be a letter in Σ and f, f ′ be two level rankings
f . Say that f covers f ′ under a when for all q and every q′ ∈ ρ(q, a), if f(q) 	= ⊥ then
f ′(q′) ≤ f(q); i.e. no transition between f and f ′ on a increases in rank. Let Fr be the
set of all level rankings.

If B = 〈Σ, Q, Qin, ρ, F 〉 is a Büchi automaton, define KV (B) to be the automaton
〈Σ, Fr × 2Q, 〈fin, ∅〉, ρ′, Fr × {∅}〉, where

– fin(q) = 2n for each q ∈ Qin, ⊥ otherwise.
– Define ρ′ : 〈Fr × 2Q〉 × σ → 2〈Fr×2Q〉 to be
• If o 	= ∅ then ρ′(〈f, o〉, σ) =
{〈f ′, o′ \ d〉 | f covers f ′ under σ, o′ = ρ(o, σ), d = {q | f ′(q) odd}}.
• If o = ∅ then ρ′(〈f, o〉, σ) =
{〈f ′, f ′ \ d〉 | f covers f ′ under a, d = {q | f ′(q) odd}}.

Lemma 3. [9] For every Büchi automaton B, L(KV (B)) = L(B).

An algorithm seeking to refute the universality of B can look for a lasso in the state-
space of KV (B). The strongest algorithm performing this search takes advantage of
the presence of a subsumption relation in the KV construction: one state 〈f, o〉 sub-
sumes another 〈f ′, o′〉 iff f ′(x) ≤ f(x) for every x ∈ Q, o′ ⊆ o, and o = ∅ iff

20 S. Fogarty and M.Y. Vardi

o′ = ∅. When computing the backward-traversal lasso-finding fixed point, it is suffi-
cient to represent a set of states with the maximal elements under this relation. Further,
the predecessor operation over a single state and letter results in at most two incompa-
rable elements. This algorithm has scaled to automata an order of magnitude larger than
other approaches [5].

2.3 Size-Change Termination

In [10] Lee et al. proposed the size-change termination (SCT) principle for programs:
“If every infinite computation would give rise to an infinitely decreasing value sequence,
then no infinite computation is possible.” The original presentation concerned a first-
order pure functional language, where every infinite computation arises from an infinite
call sequence and values are always passed through a sequence of parameters.

Proving that a program is size-change terminating is done in two phases. The first
extracts from a program a set of size-change graphs, G, containing guarantees about the
relative size of values at each function call site. The second phase, and the phase we
focus on, analyzes these graphs to determine if every infinite call sequence has a value
that descends infinitely along a well-ordered set. For a discussion of the abstraction of
language semantics, refer to [10].

Definition 2. A size-change graph (SCG) from function f1 to function f2, written
G : f1 → f2, is a bipartite {0, 1}-arc-labeled graph from the parameters of f1 to the

parameters of f2, where G ⊆ P (f1) × {0, 1} × P (f2) does not contain both x
1→ y

and x
0→ y.

Size-change graphs capture information about a function call. An arc x
1→ y indicates

that the value of x in the function f1 is strictly greater than the value passed as y to

function f2. An arc x
0→ y indicates that x’s value is greater than or equal to the value

given to y. We assume that all call sites in a program are reachable from the entry points
of the program1.

A size-change termination (SCT) problem is a tuple L = 〈H, P, C,G〉, where H is a
set of functions, P a mapping from each function to its parameters, C a set of call sites
between these functions, and G a set of SCGs for C. A call site is written c : f1 → f2
for a call to function f2 occurring in the body of f1. The size-change graph for a call
site c : f1 → f2 is written as Gc. Given a SCT problem L, a call sequence in L is a
infinite sequence cs = c0, c1, . . . ∈ Cω , such that there exists a sequence of functions
f0, f1, . . . where c0 : f0 → f1, c1 : f1 → f2 A thread in a call sequence c0, c1, . . .

is a connected sequence of arcs, x
a→ y, y

b→ z, . . ., beginning in some call ci such that

x
a→ y ∈ Gci , y

b→ z ∈ Gci+1 , We say that L is size-change terminating if every
call sequence contains a thread with infinitely many 1-labeled arcs. Note that a thread
need not begin at the start of a call sequence. A sequence must terminate if any well-
founded value decreases infinitely often. Therefore threads can begin at any function
call, in any parameter. We call this the late-start property of SCT problems, and revisit
it in Section 3.2.

1 The implementation provided by Lee et al. [10] also make this assumption, and in the presence
of unreachable functions size-change termination may be undetectable.

Büchi Complementation and Size-Change Termination 21

Every call sequence can be represented as a word in Cω, and a SCT problem re-
duced to the containment of two ω-languages. The first language Flow(L) = {cs ∈
Cω | cs is a call sequence}, contains all call sequences. The second language, Desc(L)
= {cs ∈ Flow(L) | some thread in cs has infinitely many 1-labeled arcs}, contains only
call sequences that guarantee termination. A SCT problem L is size-change terminating
if and only if Flow(L) ⊆ Desc(L).

Lee et al. [10] describe two Büchi automata, AFlow(L) and ADesc(L), that accept
these languages. AFlow(L) is simply the call graph of the program. ADesc(L) waits
in a copy of the call graph and nondeterministically chooses the beginning point of a
descending thread. From there it ensures that a 1-labeled arc is taken infinitely often. To
do so, it keeps two copies of each parameter, and transitions to the accepting copy only
on a 1-labeled arc. Lee et al. prove that L(AFlow(L)) = Flow(L), and L(ADesc(L)) =
Desc(L).

Definition 3. 2

AFlow(L) = 〈C, H, H, ρF , H〉, where
– ρF (f1, c) = {f2 | c : f1 → f2}

ADesc(L) = 〈C, Q1 ∪H, H, ρD, F 〉, where
– Q1 = {〈x, r〉 | f ∈ H, x ∈ P (f), r ∈ {1, 0}},
– ρD(f1, c) = {f2 | c : f1 → f2} ∪ {〈x, r〉 | c : f1 → f2, x ∈ P (f2), r ∈ {0, 1}}
– ρD(〈x, r〉, c) = {〈x′, r′〉 | x r′→ x′ ∈ Gc},
– F = {〈x, 1〉 | f ∈ H, x ∈ P (f)}

Using the complementation constructions of either Section 2.1 or 2.2 and a lasso-finding
algorithm, we can determine the containment of AFlow(L) in ADesc(L). Lee et al. pro-
pose an alternative graph-theoretic algorithm, employing SCGs to encode descent in-
formation about entire call sequences. A notion of composition is used, where a call
sequence c0...cn−1 has a thread from x to y if and only if the composition of the SCGs
for each call, Gc0 ; ...; Gcn−1 , contains the arc x

a→ y. The closure S of G under the
composition operation is then searched for a counterexample describing an infinite call
sequence with no infinitely descending thread.

Definition 4. Let G : f1 → f2 and G′ : f2 → f3 be two SCGs. Their composition
G; G′ is defined as G′′ : f1 → f3 where:

G′′ = {x 1→ z | x a→ y ∈ G, y
b→ z ∈ G′, y ∈ P (f2), a = 1 or b = 1}

∪ {x 0→ z | x 0→ y ∈ G, y
0→ z ∈ G′, y ∈ P (f2), and

∀y′, r, r′ . x
r→ y′ ∈ G ∧ y′ r′→ z ∈ G′ implies r = r′ = 0}

Theorem 1. [10] A SCT problem L = 〈H, P, C,G〉 is not size-change terminating iff
S, the closure of G under composition, contains a SCG graph G : f → f such that

G = G; G and G does not contain an arc of the form x
1→ x.

2 The original LJB construction [10] restricted edges from functions to parameters to the 0-
labeled parameters. This was changed to simplify Section 3.3. The modification does not
change the accepted language.

22 S. Fogarty and M.Y. Vardi

Theorem 1, whose proof uses a Ramsey-based argument, yields an algorithm that de-
termines the size-change termination of an SCT problem L = 〈H, P, C,G〉 by ensuring
the absence of a counterexample in the closure of G under composition. First, use an it-
erative algorithm to build the closure set S: initialize S as G; and for every G : f1 → f2
and G′ : f2 → f3 in S, include the composition G; G′ in S. Second, check every
G : f1 → f1 ∈ S to ensure that if G is idempotent, i.e. G = G; G, then G contains an

arc of the form x
1→ x.

3 Size-Change Termination and Ramsey-Based Containment

The Ramsey-based test of Section 2.1 and the LJB algorithm of Section 2.3 bear a
more than passing similarity. In this section we bridge the gap between the Ramsey-
based universality test and the LJB algorithm, by demonstrating that the LJB algorithm
is a specialized realization of the Ramsey-based containment test. This first requires
developing a Ramsey-based framework for Büchi -containment testing.

3.1 Ramsey-Based Containment with Supergraphs

To test the containment of a Büchi automaton A in a Büchi automaton B, we could
construct the complement of B using either the Ramsey-based or rank-based construc-
tion, compute the intersection automaton of A and B, and search this intersection au-
tomaton for a lasso. With universality, however, we avoided directly constructing B by
exploiting the structure of states in the Ramsey-based construction (see Lemma 2). We
demonstrate a similar test for containment.

Consider two automata, A = 〈Σ, QA, Qin
A , ρA, FA〉 and B=〈Σ, QB, Qin

B , ρB, FB〉.
When testing the universality of B, any word not in L(B) is a sufficient counterexample.
To test L(A) ⊆ L(B) we must restrict our search to the subset of Σω accepted by A.
In Section 2.1, we defined a set Q̃B, which provides a family of languages that covers
Σω (see Lemma 1). We now define a set, Q̂A,B, which provides a family of languages
covering L(A).

We first define Q̄A = QA × QA to capture the connectivity in QA. An element
ḡ = 〈q, r〉 ∈ Q̄A is a single arc asserting the existence of a path in A from q to r. With
each arc we associate a language, L(ḡ). Given a word w ∈ Σ+, say that w ∈ L(〈q, r〉)
iff there is a path in A from q to r over w. Define Q̂A,B as Q̄A × Q̃B. The elements
of Q̂A,B, called supergraphs, are pairs consisting of an arc from Q̄A and a graph from
Q̃B. Each element simultaneously captures all paths in B and a single path in A. The
language L(〈ḡ, g̃〉) is then L(ḡ)∩L(g̃). For convenience, we implicitly take ĝ = 〈ḡ, g̃〉,
and say 〈q, a, r〉 ∈ ĝ when 〈q, a, r〉 ∈ g̃.

The languages L(ĝ), ĝ ∈ Q̂A,B, cover all finite subwords of L(A). With them we
define a finite family of ω-languages that cover L(A). Given ĝ, ĥ ∈ Q̂A,B, let Zgh

be the ω-language L(ĝ) · L(ĥ)ω. Zgh is called proper if: (1) Zgh is non-empty; (2)
ḡ = 〈q, r〉 and h̄ = 〈r, r〉 where q ∈ Qin

A and r ∈ FA; (3) L(ĝ) · L(ĥ) ⊆ L(ĝ) and
L(ĥ) · L(ĥ) ⊆ L(ĥ). We note that Zgh is non-empty if L(ĝ) and L(ĥ) are non-empty,
and that, by the second condition, every proper Zgh is contained in L(A).

Büchi Complementation and Size-Change Termination 23

Lemma 4. Let A and B be two Büchi automata, and Q̂A,B be the corresponding set of
supergraphs.

(1) L(A) =
⋃{Zgh | Zgh is proper}

(2) For all proper Zgh, either Zgh ∩ L(B) = ∅ or Zgh ⊆ L(B)
(3) L(A) ⊆ L(B) iff every proper language Zgh ⊆ L(B).
(4) Let ĝ, ĥ be two supergraphs such that Zgh is proper. Zgh ⊆ L(B) iff there exists

q ∈ Qin
B , r ∈ QB, a ∈ {0, 1} such that 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ.

In an analogous fashion to Section 2.1, we can use supergraphs to test the containment
of two automata, A and B. Search all pairs of supergraphs, ĝ, ĥ ∈ Q̂A,B for a pair that
is both proper and for which there does not exist a q ∈ Qin

B , r ∈ QB, a ∈ {0, 1} such
that 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ. Such a pair is a counterexample to containment. If
no such pair exists, then L(A) ⊆ L(B). We call this search the double-graph search, to
distinguish from later algorithms for which a counterexample is a single graph.

The double-graph search faces difficulty on two fronts. First, the number of potential
supergraphs is very large. Secondly, checking language nonemptiness is an exponen-
tially difficult problem. To address these problems we construct only supergraphs with
non-empty languages. Borrowing the notion of composition from Section 2.3 allows
us to use exponential space to compute exactly the needed supergraphs. We start with
graphs corresponding to single letters and compose them until we reach closure. The re-
sulting subset of Q̂A,B, written Q̂f

A,B, contains exactly the supergraphs with non-empty
languages. In addition to removing the need to check for emptiness, composition al-
lows us to test the sole remaining aspect of properness, language containment, in time
polynomial in the size of the supergraphs.

3.2 Strongly Suffix Closed Languages

Theorem 1 suggests that, for some languages, a cycle implies the existence of a lasso.
For Büchi automata of such languages, it is sufficient, when disproving containment,
to search for a graph ĥ ∈ Q̂B, where ĥ; ĥ = ĥ, with no arc 〈r, 1, r〉. This single-graph
search reduces the complexity of our algorithm significantly. What enables this in size-
change termination is the late-start property: threads can begin at any point. We here
define the class of automata amenable to this optimization, beginning with universality
for simplicity.

In size-change termination, an accepting cycle can start at any point. Thus the arc
〈r, 1, r〉 ∈ h̃ does not need an explicit matching prefix 〈q, a, r〉 in some g̃. In the context
of universality, we can apply this method when it is safe to add or remove arbitrary
prefixes of a word. To describe these languages we extend the standard notion of suffix
closure. A language L is suffix closed when, for every w ∈ L, every suffix of w is in L.

Definition 5. A language L is strongly suffix closed if it is suffix closed and for every
w ∈ L, w1 ∈ Σ+, we have that w1w ∈ L.

Lemma 5. Let B be an Büchi automaton where every state in Q is reachable and L(B)
is strongly suffix closed. B is not universal iff the set of supergraphs with non-empty
languages, Q̃f

B, contains a graph h̃ = h̃; h̃ with no arc of the form 〈r, 1, r〉.

24 S. Fogarty and M.Y. Vardi

To extend this notion to handle containment questions L1 ⊆ L2, we restrict our focus
to words in L1. Instead of requiring L2 to be closed under arbitrary prefixes, L2 need
only be closed under prefixes that keep the word in L1.

Definition 6. A language L2 is strongly suffix closed with respect to L1 when L2 is
suffix closed and, for every w ∈ L1 ∩ L2, w1 ∈ Σ+, if w1w ∈ L1 then w1w ∈ L2.

Lemma 6. LetA and B be two Büchi automata where Qin
A = QA,3 every state in QB is

reachable, and L(B) is strongly suffix closed with respect to L(A). Then L(A) 	⊆ L(B)
iff Q̂f

A,B contains a supergraph ĥ = 〈〈s, s〉, h̃〉 where s ∈ FA, ĥ; ĥ = ĥ and there is no

arc 〈r, 1, r〉 ∈ ĥ.

Lemma 6 provides a simplified test for the containment ofA in B when L(B) is strongly
suffix closed with respect to L(A). Search all supergraphs in Q̂A,B for an supergraph
ĥ where ĥ; ĥ = ĥ that does not contain an arc of the form 〈r, 1, r〉. The presence of
this counterexample refutes containment, and the absence of such a supergraph proves
containment. We call this search the single-graph search.

3.3 From Ramsey-Based Containment to Size-Change Termination

We can now delve into the connection between the LJB algorithm for size-change ter-
mination and the Ramsey-based containment test. SCGs of the LJB algorithm are di-
rect analogues of supergraphs in the Ramsey-based containment test of AFlow(L) and
ADesc(L).

Noting that the LJB algorithm examines single SCGs G where G = G; G, we show
that for an SCT problem L = 〈H, P, C,G〉 the conditions of Lemma 6 are met. First,
every state in AFlow(L) is an initial state. Second, every function in L is reachable,
and so every state in ADesc(L) is reachable.4 Finally, the late-start property is precisely
Desc(L) being strongly suffix closed with respect to Flow(L). Therefore we can use
the single-graph search.

Consider supergraphs in Q̂AF low(L),ADesc(L) . The state space of AFlow(L) is the set
of functions H , and the state space of ADesc(L) is the union of H and Q1, the set of

all {0, 1}-labeled parameters. A supergraph in Q̂AF low(L),ADesc(L) thus comprises an
arc 〈q, r〉 in H and a {0, 1}-labeled graph g̃ over H ∪Q1. The arc asserts the existence
of a call path from q to r, and the graph g̃ captures the relevant information about
corresponding paths in ADesc(L).

These supergraphs are almost the same as SCGs, G : q → r. Aside from notational
differences, both contain an arc, which asserts the existence of a call path between two
functions, and a {0, 1}-labeled graph. There are vertices in both graphs that correspond
to parameters of functions, and arcs between two such vertices describe a thread be-
tween the corresponding parameters. The analogy falls short, however, on three points:

(1) In SCGs, vertices are always parameters of functions. In supergraphs, vertices
can be either parameters of functions or function names.

3 With a small amount of work, the restriction that Qin
A = QA can be relaxed to the requirement

that L(A) be suffix closed.
4 In the original reduction, 1-labeled parameters may not have been reachable.

Büchi Complementation and Size-Change Termination 25

(2) In SCGs, vertices are unlabeled. In supergraphs, vertices are labeled either 0 or 1.
(3) In SCGs, only vertices corresponding to parameters of two specific functions are

present. In supergraphs, vertices corresponding to every parameters of every functions
exist.

We show, in turn, that each difference is an opportunity to specialize the Ramsey-
based containment algorithm.

(1) No functions in H are accepting for ADesc(L), and once we transition out of H
into Q1 we can never return to H . Therefore vertices corresponding to function names
can never be part of a descending arc 〈r, 1, r〉. Since we only search Ĵ for a cycle
〈r, 1, r〉, we can simplify supergraphs in Q̂AF low(L),ADesc(L) by removing all vertices
corresponding to functions.

(2) The labels on parameters are the result of encoding a Büchi edge acceptance
condition in a Büchi state acceptance condition automaton, and can be dropped from
supergraphs with no loss of information. Consider an arc 〈〈f, a〉, b, 〈g, c〉〉. If b is 1, we
know the corresponding thread contains a descending arc. The value of c tells us if the
final arc in the thread is descending, but which arc is descending is irrelevant. Thus it is
safe to simplify supergraphs in Q̂AF low(L),ADesc(L) by removing labels on parameters.

(3) While all parameters are states in ADesc(L), each supergraph describes threads
in a call sequence between two functions. There are no threads in this call sequence be-
tween parameters of other functions, and so no supergraph with a non-empty language
has arcs between the parameters of other functions. We can thus simplify supergraphs
in Q̂AF low(L),ADesc(L) by removing all vertices corresponding to parameters of other
functions.

We can specialize the Ramsey-based containment algorithm for L(AFlow(L)) ⊆
L(ADesc(L)) in two ways. First, by Lemma 6 we know that Flow(L) ⊆ Desc(L)
if and only if Q̂AF low(L),ADesc(L) contains an idempotent graph ĝ = ĝ; ĝ with no arc

of the form 〈r, 1, r〉. Secondly, we can simplify supergraphs in Q̂AF low(L),ADesc(L) by
removing the labels on parameters and keeping only the vertices associated with appro-
priate parameters. The simplifications of supergraphs whose languages contain single
characters are in one-to-one corresponding with G, the initial set of SCGs. As every
state in Flow(L) is accepting, every idempotent supergraph can serve as a counterex-
ample. Therefore Desc(L) ⊆ Flow(L) if and only if the closure of the set of simplified
supergraphs under composition contains an idempotent supergraph with no arc of the
form 〈r, 1, r〉. This is precisely the algorithm provided by Theorem 1.

4 Empirical Analysis

All the Ramsey-based algorithms presented in Section 2.3 have worst-case running
times that are exponentially slower than those of the rank-based algorithms. We now
compare existing, Ramsey-based, SCT tools tools to a rank-based Büchi containment
solver on the domain of SCT problems.

4.1 Towards an Empirical Comparison

To facilitate a fair comparison, we briefly describe two improvements to the algorithms
presented above. First, in constructing the analogy between SCGs in the LJB algorithm

26 S. Fogarty and M.Y. Vardi

and supergraphs in the Ramsey-based containment algorithm, we noticed that super-
graphs contain vertices for every parameter, while SCGs contain only vertices corre-
sponding to parameters of relevant functions. These vertices are states in ADesc(L).
While we can specialize the Ramsey-based test to avoid them, Büchi containment
solvers might suffer. These states duplicate information. As we already know which
functions each supergraph corresponds to, there is no need for each vertex to be unique
to a specific function.

The extra states emerge because Desc(L) only accepts strings that are contained
in Flow(L). But the behavior of ADesc(L) on strings not in Flow(L) is irrelevant to
the question of Flow(L) ⊆ Desc(L), and we can replace the names of parameters in
ADesc(L) with their location in the argument list. By using this observation, we can sim-
plify the reduction from SCT problems to Büchi containment problems. Experimental
results demonstrate that these changes do improve performance.

Second, in [2], Ben-Amram and Lee present a polynomial approximation of the LJB
algorithm for SCT. To facilitate a fair comparison, they optimize the LJB algorithm for
SCT by using subsumption to remove certain SCGs when computing the closure under
composition. This suggests that the single-graph search of Lemma 6 can also employ
subsumption. When computing the closure of a set of supergraphs under compositions,
we can ignore elements when they are conservatively approximated, or subsumed, by
other elements. Intuitively, a supergraph ĝ conservatively approximates another super-
graph ĥ when it is strictly harder to find a 1-labeled sequence of arcs through ĝ than
through ĥ. When the right arc can be found in ĝ, then it also occurs in ĥ. If ĝ does
not have a satisfying arc, then we already have a counterexample supergraph. Formally,
given two graphs ĝ, ĥ ∈ Q̂A,B where ḡ = h̄, say that ĝ conservatively approximates ĥ,
written ĝ � ĥ, when for every arc 〈q, a, r〉 ∈ ĝ there is an arc 〈q, a′, r〉 ∈ ĥ, where if
a = 1 then a′ = 1. Note that conservative approximation is a transitive relation. In or-
der to safely employ conservative approximation as a subsumption relation, we replace
the search for a single arc in idempotent graphs with a search for a strongly connected
component in all graphs. Extending this relationship to the double-graph search is an
open problem.

4.2 Experimental Results

All experiments were performed on a Dell Optiplex GX620 with a single 1.7Ghz Intel
Pentium 4 CPU and 512 MB. Each tool was given 3500 seconds, a little under one hour,
to complete each task.

Tools: The formal-verification community has implemented rank-based tools in order
to measure the scalability of various approaches. The programming-languages com-
munity has implemented several Ramsey-based SCT tools. We use the best-of-breed
rank-based tool, Mh, developed by Doyen and Raskin [5], that leverages a subsump-
tion relation on ranks. We expanded the Mh tool to handle Büchi containment problems
with arbitrary languages, thus implementing the full containment-checking algorithm
presented in their paper.

We use two Ramsey-based tools. SCTP is a direct implementation of the LJB al-
gorithm of Theorem 1, written in Haskell [7]. We have extended SCTP to reduce SCT
problems to Büchi containment problems, using either Definition 3 or our improved

Büchi Complementation and Size-Change Termination 27

reduction. sct/scp is an optimized C implementation of the SCT algorithm, which uses
the subsumption relation of Section 4.1 [2].

Problem Space: Existing experiments on the practicality of SCT solvers focus on ex-
amples extracted from the literature [2]. We combine examples from a variety of sources
[1,2,7,8,10,12,17]. The time spent reducing SCT problems to Büchi automata never
took longer than 0.1 seconds and was dominated by I/O. Thus this time was not counted.
We compared the performance of the rank-based Mh solver on the derived Büchi con-
tainment problems to the performance of the existing SCT tools on the original SCT
problems. If an SCT problem was solved in all incarnations and by all tools in less than
1 second, the problem was discarded as uninteresting. Unfortunately, of the 242 SCT
problems derived from the literature, only 5 prove to be interesting.

Experiment Results: Table 1 compares the performance of the rank-based Mh solver
against the performance of the existing SCT tools, displaying which problems each tool
could solve, and the time taken to solve them. Of the interesting problems, both SCTP
and Mh could only complete 3. On the other hand, sct/scp completed all of them, and
had difficulty with only one problem.

Table 1. SCT problem completion time by tool

Problem SCTP (s) Mh (s) sct/scp (s)
ex04 [2] 1.58 Time Out 1.39
ex05 [2] Time Out Time Out 227.7
ms [7] Time Out 0.1 0.02
gexgcd [7] 0.55 14.98 0.023
graphcolour2 [8] 0.017 3.18 0.014

The small problem space makes it difficult to draw firm conclusions, but it is clear
that Ramsey-based tools are comparable to rank-based tools on SCT problems: the
only tool able to solve all problems was Ramsey based. This is surprising given the
significant difference in worst-case complexity, and motivates further exploration.

5 Reverse-Determinism

In the previous section, the theoretical gap in performance between Ramsey and rank-
based solutions was not reflected in empirical analysis. Upon further investigation, it
is revealed that a property of the domain of SCT problems is responsible. Almost all
problems, and every difficult problem, in this experiment have SCGs whose vertices
have an in-degree of at most 1. This property was first observed by Ben-Amram and
Lee in their analysis of SCT complexity [2]. After showing why this property explains
the performance of Ramsey-based algorithms, we explore why this property emerges
and argue that it is a reasonable property for SCT problems to possess. Finally, we
improve the rank-based algorithm for problems with this property.

As stated above, all interesting SCGs in this experiment have vertices with at most
one incoming edge. In analogy to the corresponding property for automaton, we call
this property of SCGs reverse-determinism. Given a set of reverse-deterministic SCGs
G, we observe three consequences. First, a reverse-deterministic SCG can have no more

28 S. Fogarty and M.Y. Vardi

than n arcs: one entering each vertex. Second, there are only 2O(n log n) possible such
combinations of n arcs. Third, the composition of two reverse-deterministic SCGs is
also reverse-deterministic. Therefore every element in the closure of G under composi-
tion is also reverse-deterministic. These observations imply that the closure of G under
composition contains at most 2O(n log n) SCGs. This reduces the worst-case complex-
ity of the LJB algorithm to 2O(n log n). In the presence of this property, the massive
gap between Ramsey-based algorithms and rank-based algorithms vanishes, helping to
explain the surprising strength of the LJB algorithm.

Lemma 7. When operating on reverse-deterministic SCT problems, the LJB algorithm
has a worst-case complexity of 2O(n log n).

It is not a coincidence that all SCT problems considered possess this property. As
noted in [2], straightforward analysis of functional programs generates only reverse-
deterministic problems. In fact, every tool we examined is only capable of producing
reverse-deterministic SCT problems. To illuminate the reason for this, imagine a SCG
G : f → g where f has two parameters, x and y, and g the single parameter z. If G
is not reverse deterministic, this implies both x and y have arcs, labeled with either 0
or 1, to z. This would mean that z’s value is both always smaller than or equal to x
and always smaller than or equal to y. In order for this to occur, we would need a min
operation that returns the smaller of two elements. For the case of lists, for example,
min would return the shorter of two lists. This is not a common operation, and none of
the size-change analyzers were designed to discover such properties of functions.

We now consider the rank-based approach to see if it can benefit from reverse-
determinism. We say that an automaton is reverse-deterministic when no state has
two incoming arcs labeled with the same character. Formally, an automaton is reverse-
deterministic when, for each state q and character a, there is at most one state p such
that q ∈ ρ(p, a). Given a reverse-deterministic SCT problem L, both AFlow(L) and
ADesc(L) are reverse-deterministic. As a corollary to the above, the Ramsey-based
complementation construction has a worst-case complexity of 2O(n log n) for reverse
deterministic automata. Examining the rank-based approach, we note that with reverse-
deterministic automata we do not have to worry about multiple paths to a state. Thus a
maximum rank of 2, rather than 2n, suffices to prove termination of every path, and the
worst-case bound of the rank-based construction improves to 2O(n).

Lemma 8. Given a reverse-deterministic Büchi automaton B with n states, there exists
an automaton B′ with 2O(n) states such that L(B′) = L(B).

In light of this discovery, we revisit the experiments and again compare rank and
Ramsey-based approaches on SCT problems. This time we tell Mh, the rank-based
solver, that the problems have a maximum rank of 2. Table 2 compares the running
time of Mh and sct/scp on the five most difficult problems. As before, time taken to
reduce SCT problems to automata containment problems was not counted.

While our problem space is small, the theoretical worst-case bounds of Ramsey and
rank-based approach appears to be reflected in the table. The Ramsey-based sct/scp
completes some problems more quickly, but in the worst cases, ex04 and ex05, performs
significantly more slowly than Mh. It is worth noting, however, that the benefits of

Büchi Complementation and Size-Change Termination 29

Table 2. SCT problem completion time times by tool, exploiting reverse-determinism

Problem Mh (s) sct/scp (s)
ex04 0.01 1.39
ex05 0.13 227.7
ms 0.1 0.02
gexgcd 0.39 0.023
graphcolour2 0.044 0.014

reverse-determinism on Ramsey-based approaches emerges automatically, while rank-
based approaches must explicitly test for this property in order to exploit it.

6 Conclusion

In this paper we demonstrate that the Ramsey-based size-change termination algo-
rithm proposed by Lee, Jones, and Ben-Amram [10] is a specialized realization of the
1987 Ramsey-based complementation construction [3,14]. With this link established,
we compare rank-based and Ramsey-based tools on the domain of SCT problems. Ini-
tial experimentation revealed a surprising competitiveness of the Ramsey-based tools,
and led us to further investigation. By exploiting reverse-determinism, we were able to
demonstrate the superiority of the rank-based approach.

Our experiments operated on a very sparse space of problem, and still yielded two
interesting observations. First, subsumption appears to be critical to the performance
of Büchi complementation tools using both rank and Ramsey-based algorithms. It has
already been established that rank-based tools benefit strongly from the use of subsump-
tion [5]. Our results demonstrate that Ramsey-based tools also benefit from subsump-
tion, and in fact experiments with removing subsumption from sct/scp seem to limit its
scalability. Second, by exploiting reverse-determinism, we can dramatically improve
the performance of both rank and Ramsey-based approaches to containment checking.

Our test space was unfortunately small, with only five interesting problems emerg-
ing. In [5,15], a space of random automata universality problems is used to provide a
diverse problem domain. We plan to similarly generate a space of random SCT prob-
lems to provide a more informative problem space. Sampling this problem space is
complicated by the low transition density of reverse-deterministic problems: in [5,15]
the most interesting problems had a transition density of 2. Intrigued by the competi-
tive performance of Ramsey-based solutions, we also intend to compare Ramsey and
rank-based approaches on the domain of random universality problems.

On the theoretical side, we are interested in extending the subsumption relation
present in sct/scp. It is not immediately clear how to use subsumption for problems
that are not strongly suffix-closed. While arbitrary problems can be phrased as a single-
graph search, doing so imposes additional complexity. Extending the subsumption re-
lation to the double-graph search of Lemma 4 would simplify this solution greatly.

The effects of reverse-determinism on the complementation of automata bear further
study. Reverse-determinism is not an obscure property, it is known that automata derived
from LTL formula are reverse-deterministic [6]. As noted above, both rank and Ramsey-
based approaches improves exponentially when operating on reverse-deterministic

30 S. Fogarty and M.Y. Vardi

automata. Further, Ben-Amram and Lee have defined SCP, a polynomial-time approxi-
mation algorithm for SCT. For a wide subset of SCT problems with restricted in degrees,
including the set used in this paper, SCP is exact. In terms of automata, this property
is similar, although perhaps not identical, to reverse-determinism. The presence of an
exact polynomial algorithm for the SCT case suggests a interesting subset of Büchi con-
tainment problems may be solvable in polynomial time. The first step in this direction
would be to determine what properties a containment problem must have to be solved
in this fashion.

References

1. Daedalus, http://www.di.ens.fr/˜cousot/projects/DAEDALUS/
2. Ben-Amram, A.M., Lee, C.: Program termination analysis in polynomial time. ACM Trans.

Program. Lang. Syst 29(1) (2007)
3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: ICLMPS, pp.

1–12. Stanford University Press (1962)
4. Choueka, Y.: Theories of automata on ω-tapes: A simplified approach. Journal of Computer

and Systems Science 8, 117–141 (1974)
5. Doyen, L., Raskin, J.-F.: Improved algorithms for the automata-based approach to model-

checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 451–465.
Springer, Heidelberg (2007)

6. Emerson, A.E., Sistla, A.P.: Deciding full branching time logics. Information and Con-
trol 61(3), 175–201 (1984)

7. Frederiksen, C.C.: A simple implementation of the size-change termination principle. Tech.
Rep. D-442, DIKU (2001)

8. Glenstrup, A.J.: Terminator ii: Stopping partial evaluation of fully recursive programs. Mas-
ter’s thesis, DIKU, University of Copenhagen (June 1999)

9. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. Transactions on
Computational Logic, 409–429 (2001)

10. Lee, C., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination.
In: POPL, pp. 81–92 (2001)

11. Michel, M.: Complementation is more difficult with automata on infinite words. In: CNET,
Paris (1988)

12. Sereni, D., Jones, N.D.: Termination analysis of higher-order functional programs. In: Yi, K.
(ed.) APLAS 2005. LNCS, vol. 3780, pp. 281–297. Springer, Heidelberg (2005)

13. Safra, S.: On the Complexity of ω-Automat. In: FOCS, pp. 319–327 (1988)
14. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with

applications to temporal logic. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 217–
237. Springer, Heidelberg (1985)

15. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata constructions. In:
Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 396–411. Springer,
Heidelberg (2005)

16. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)

17. Wahlstedt, D.: Detecting termination using size-change in parameter values. Master’s thesis,
Göteborgs Universitet (2000)

http://www.di.ens.fr/~cousot/projects/DAEDALUS/

Learning Minimal Separating DFA’s for
Compositional Verification�

Yu-Fang Chen1, Azadeh Farzan2, Edmund M. Clarke3, Yih-Kuen Tsay1,
and Bow-Yaw Wang4

1 National Taiwan University
2 University of Toronto

3 Carnegie Mellon University
4 Academia Sinica

Abstract. Algorithms for learning a minimal separating DFA of two
disjoint regular languages have been proposed and adapted for different
applications. One of the most important applications is learning mini-
mal contextual assumptions in automated compositional verification. We
propose in this paper an efficient learning algorithm, called LSep , that
learns and generates a minimal separating DFA. Our algorithm has a
quadratic query complexity in the product of sizes of the minimal DFA’s
for the two input languages. In contrast, the most recent algorithm of
Gupta et al. has an exponential query complexity in the sizes of the two
DFA’s. Moreover, experimental results show that our learning algorithm
significantly outperforms all existing algorithms on randomly-generated
example problems. We describe how our algorithm can be adapted for
automated compositional verification. The adapted version is evaluated
on the LTSA benchmarks and compared with other automated com-
positional verification approaches. The result shows that our algorithm
surpasses others in 30 of 49 benchmark problems.

1 Introduction

Compositional verification is seen by many as a promising approach for scaling
up Model Checking [8] to larger designs. In the approach, one applies a com-
positional inference rule to break the task of verifying a system down to the
subtasks of verifying its components. The compositional inference rule is usually
in the so-called assume-guarantee style. One widely used assume-guarantee rule,
formulated from a language-theoretic view, is the following:

L(M1) ∩ L(A) ⊆ L(P) L(M2) ⊆ L(A)
L(M1) ∩ L(M2) ⊆ L(P)

� This research was sponsored by the iCAST project of the National Science Council,
Taiwan, under the grants no. NSC96-3114-P-001-002-Y and no. NSC97-2745-P-001-
001, GSRC (University of California) under contract no. SA423679952, National
Science Foundation under contracts no. CCF0429120, no. CNS0411152, and no.
CCF0541245, Semiconductor Research Corporation under contract no. 2005TJ1366
and no. 2005TJ1860, and Air Force (University of Vanderbilt) under contract no.
1872753.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 31–45, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

32 Y.-F. Chen et al.

We assume that the behaviors of a system or component are characterized
by a language and any desired property is also described as a language. The
parallel composition of two components is represented by the intersection of the
languages of the two components. A system (or component) satisfies a prop-
erty if the language of the system (or component) is a subset of the language
of the property. The above assume-guarantee rule then says that, to verify that
the system composed of components M1 and M2 satisfies property P , one may
instead verify the following two conditions: (1) component M1 satisfies (guaran-
tees) P under some contextual assumption A and (2) component M2 satisfies
the contextual assumption A.

The main difficulty in applying assume-guarantee rules to compositional ver-
ification is the need of human intervention to find contextual assumptions. For
the case where components and properties are given as regular languages, several
automatic approaches have been proposed to find contextual assumptions [4,10]
based on the machine learning algorithm L∗ [2,17]. Following this line of re-
search, there have been results for symbolic implementations [1,18], various op-
timization techniques [12,6], an extension to liveness properties [11], performance
evaluation [9], and applications to problems such as component substitutability
analysis [5]. However, all of the above suffer from the same problem: they do not
guarantee finding a small assumption even if one exists. Though minimality of
the assumption does not ensure better performance, we will show in this paper
that it helps most of the time.

The problem of finding a minimal assumption for compositional verification
can be reduced to the problem of finding a minimal separating DFA (determin-
istic finite automaton) of two disjoint regular languages [14]. A DFA A separates
two disjoint languages L1 and L2 if its language L(A) contains L1 and is disjoint
from L2 (L1 ⊆ L(A) and L(A) ∩ L2 = ∅). The DFA A is minimal if it has the
least number of states among all separating DFA’s. Several approaches [14,16,13]
have been proposed to find a minimal separating DFA automatically. However,
all of those approaches are computationally expensive. In particular, the most
recent algorithm of Gupta et al. [14] has an exponential query complexity in the
sizes of the minimal DFA’s of the two input languages.

In this paper we propose a more efficient learning algorithm, called LSep , that
finds the aforementioned minimal separating DFA. The query complexity of our
algorithm is quadratic in the product of the sizes of the two minimal DFA’s for
the two input languages. Moreover, our algorithm utilizes membership queries
to accelerate learning and has a more compact representation of the samples
collected from the queries. Experiments show that LSep significantly outperforms
other algorithms on a large set of randomly-generated example problems.

We then give an adaptation of the LSep algorithm for automated compo-
sitional verification and evaluate its performance on the LTSA benchmarks [9].
The result shows that the adapted version of LSep surpasses other compositional
verification algorithms on 30 of 49 benchmark problems. Besides automated com-
positional verification, algorithms for learning a minimal separating DFA have
found other applications. For example, Grinchtein et al. [13] used such an al-

Learning Minimal Separating DFA’s for Compositional Verification 33

gorithm as the basis for learning network invariants of parameterized systems.
Although we only discuss the application of LSep to automated compositional
verification in this paper, the algorithm can certainly be adapted for other ap-
plications as well.

2 Preliminaries

An alphabet Σ is a finite set. A finite string over Σ is a finite sequence of elements
from Σ. The empty string is represented by λ. The set of all finite strings over
Σ is denoted by Σ∗, and Σ+ is the set of all nonempty finite strings over Σ
(so, Σ+ = Σ∗\{λ}). The length of string u is denoted by |u| and |λ| = 0.
For two strings u = u1 . . . un and v = v1 . . . vm where ui, vj ∈ Σ, define the
concatenation of the two strings as uv = u1 . . . unv1 . . . vm. For a string u, un

is recursively defined as uun−1 with u0 = λ. String concatenation is naturally
extended to sets of strings where S1S2 = {s1s2| s1 ∈ S1, s2 ∈ S2}. A string u
is a prefix (respectively suffix) of another string v if and only if there exists a
string w ∈ Σ∗ such that v = uw (respectively v = wu). A set of strings S is
called prefix-closed (respectively suffix-closed) if and only if for all v ∈ S, if u is
a prefix (respectively suffix) of v, then u ∈ S.

A deterministic finite automaton (DFA) A is a tuple (Σ, S, s0, δ, F), where
Σ is an alphabet, S is a finite set of states, s0 is the initial state, δ : S ×
Σ → S is the transition function, and F ⊆ S is a set of accepting states. The
transition function δ is extended to strings of any length in the natural way.
A string u is accepted by A if and only if δ(s0, u) ∈ F . Define L(A) = {u |
u is accepted by A}. A language L ⊆ Σ∗ is regular if and only if there exists a
finite automatonA such that L = L(A). The notation L denotes the complement
with respect to Σ∗ of the regular language L. Let |L| denote the number of states
of the minimal DFA that recognizes L and |A| denote the number of states in
the DFA A.

Definition 1. (Three-Valued Deterministic Finite Automata) A 3-valued deter-
ministic finite automaton (3DFA) C is a tuple (Σ, S, s0, δ, Acc, Rej, Dont), where
Σ, S, s0, and δ are as defined in a DFA. S is partitioned into three disjoint sets
Acc, Rej, and Dont. Acc is the set of accepting states, Rej is the set of rejecting
states, and Dont is the set of don’t care states.

For a 3DFA C = (Σ, S, s0, δ, Acc, Rej, Dont), a string u is accepted if δ(s0, u) ∈
Acc, is rejected if δ(s0, u) ∈ Rej, and is a don’t care string if δ(s0, u) ∈ Dont. Let
C+ denote the DFA (Σ, S, s0, δ, Acc∪Dont), where all don’t care states become
accepting states, and C− denote the DFA (Σ, S, s0, δ, Acc), where all don’t care
states become rejecting states. By definition, we have that L(C−) is the set of
accepted strings in C and L(C+) is the set of rejected strings in C.

A DFA A is consistent with a 3DFA C if and only if A accepts all strings that
C accepts, and rejects all strings that C rejects. It follows that A accepts strings
in L(C−) and rejects those in L(C+), or equivalently, L(C−) ⊆ L(A) ⊆ L(C+). A
minimal consistent DFA of C is a DFA A which is consistent with C and has the

34 Y.-F. Chen et al.

L(A)L(C−) L(C+)

(a) A DFA A consistent with a 3DFA C

L1 L2L(A)

(b) A DFA A separating L1 and L2

Fig. 1. Consistent and Separating DFA’s

least number of states among all DFA’s consistent with C. Figure 1(a) illustrates
a DFA A consistent with a 3DFA C. In the figure, the bounding box is the set
of all finite strings Σ∗. The dark shaded area represents L(C−). The union of
the dark shaded area and the light shaded area represents L(C+). The DFA A
is consistent with C as it accepts all strings in L(C−) and rejects those not in
L(C+).

Given two disjoint regular languages L1 and L2, a separating DFA A for L1
and L2 satisfies L1 ⊆ L(A) and L(A) ∩ L2 = ∅. It follows that A accepts all
strings in L1 and rejects those in L2, or equivalently, L1 ⊆ L(A) ⊆ L2. We say
a DFA A separates L1 and L2 if and only if A is a separating DFA for L1 and
L2. A separating DFA is minimal if it has the least number of states among all
separating DFA’s for L1 and L2. Figure 1(b) shows a separating DFA A for L1
and L2.

A 3DFA C is sound with respect to L1 and L2 if any DFA consistent with
C separates L1 and L2. When the context is clear, we abbreviate “sound with
respect to L1 and L2” simply as “sound”. Figure 2(a) illustrates the condition
when C is sound with respect to L1 and L2. Both L1 ⊆ L(C−) and L(C+) ⊆ L2
are true in this figure. Any DFA consistent with C accepts strings in L(C−) (the
dark area) and possibly some strings in the light shaded area. Hence it accepts
all strings in L1 but none in L2, i.e., it separates L1 and L2. Therefore, C is
sound. Figure 2(c) illustrates the case that C is unsound. We can show that
either L1 	⊆ L(C−) or L(C+) 	⊆ L2 implies C is unsound. Assuming that we
have L1 	⊆ L(C−). It follows that there exists some string u ∈ L1 that satisfies
u /∈ L(C−). The DFA A that recognizes L(C−) (the dark area) is consistent with
C. However, A is not a separating DFA for L1 and L2 because it rejects u, a
string in L1. We can then conclude that C is unsound. The case that L(C+) 	⊆ L2
can be shown to be unsound by a similar argument.

A 3DFA C is complete with respect to L1 and L2 if any separating DFA for
L1 and L2 is consistent with C. Again, when the context is clear, we abbreviate
“complete with respect to L1 and L2” as “complete”. Figure 2(b) shows the
situation when C is complete for L1 and L2. Any separating DFA for L1 and L2
accepts all strings in L1 but none in L2. Hence it accepts strings in L(C−) (the
dark area) and possibly those in the light shaded area, i.e., it is consistent with
C. Therefore, C is complete. Figure 2(d) illustrates the case that C is incomplete.

Learning Minimal Separating DFA’s for Compositional Verification 35

L1 L2

L(C−)

L(C+)

(a) Soundness

L1 L2

L(C−)

L(C+)

(b) Completeness

u

v

L1

L(C+)

L(C−)

L2

(c) Unsoundness

v

uL1 L2

L(C−)

L(C+)

(d) Incompleteness

Fig. 2. Soundness and Completeness of a 3DFA C

We can show that either L(C−) 	⊆ L1 or L2 	⊆ L(C+) implies C is incomplete.
Assuming that we have L(C−) 	⊆ L1. It follows that there exists some string
u ∈ L(C−) that satisfies u /∈ L1. The DFA A that recognizes L1 is a separating
DFA for L1 and L2. However, A is not consistent with C because A rejects u,
a string in L(C−). We can then conclude that C is incomplete. The case that
L2 	⊆ L(C+) can be shown to be incomplete by a similar argument.

Proposition 1. Let L1 and L2 be regular languages and C be a 3DFA. Then

1. C is sound if and only if L1 ⊆ L(C−) and L(C+) ⊆ L2;
2. C is complete if and only if L(C−) ⊆ L1 and L2 ⊆ L(C+).

3 Overview of Learning a Minimal Separating DFA

Given two disjoint regular languages L1 and L2, our task is to find a minimal
DFA A that separates L1 and L2, namely L1 ⊆ L(A) ⊆ L2. Our key idea is
to use a 3DFA as a succinct representation for the samples collected from L1
and L2. Exploiting the three possible acceptance outcomes of a 3DFA (accept,
reject, and don’t care), we encode strings from L1 and L2 in a 3DFA C as follows.
All strings of L1 are accepted by C and all strings in L2 are rejected by C. The
remaining strings take C into don’t care states. Observe that for any DFA A,
the following two conditions are equivalent: (1) A is consistent with C, which
means A accepts all accepted strings in C and rejects all rejected strings in C.
(2) A separates L1 and L2, which means A accepts all strings in L1 and rejects
all strings in L2.

36 Y.-F. Chen et al.

It follows that DFA’s consistent with C and those separating L1 and L2 in
fact coincide. We therefore reduce the problem of finding the minimal separating
DFA for L1 and L2 to the problem of finding the minimal DFA consistent with
the 3DFA C.

By Proposition 1, C is both sound and complete with respect to L1 and L2
because L1 = L(C−), the accepted strings in C, and L2 = L(C+), the rejected
strings in C.

Fig. 3. Learning a Minimal Separating DFA – Overview

Figure 3 depicts the flow of our algorithm. The candidate generation step
is performed by the candidate generator, which produces a series of candidate
3DFA’s Ci targeting the 3DFA C using an extension of L∗. The completeness
checking step examines whether Ci is complete with respect to L1 and L2. If Ci
is incomplete, a counterexample is returned to the candidate generator to refine
the next conjecture. Otherwise, Ci is complete, and the next step is to compute
a minimal DFA Ai consistent with Ci.

The following lemma characterizing the sizes of the minimal consistent DFA
Ai and minimal separating DFA’s for L1 and L2:

Lemma 1. Let Â be a minimal separating DFA of L1 and L2, and Ai be a
minimal DFA consistent with Ci. If Ci is complete, then |Â| ≥ |Ai|.
Proof. By completeness, any separating DFA of L1 and L2 is consistent with Ci.
Hence the minimal separating DFA Â is a DFA consistent with Ci. Because Ai

is the minimal DFA consistent with Ci, we have |Â| ≥ |Ai| . ��
Finally, we check if Ai separates L1 and L2, i.e., L1 ⊆ L(Ai) and L(Ai) ⊆ L2. If
Ai is a separating DFA for L1 and L2, together with Lemma 1, we can conclude
that Ai is a minimal separating DFA for L1 and L2. Note that even if Ci is
unsound, it is still possible that a minimal consistent DFA of Ci separates L1
and L2. It follows that LSep may find a minimal separating DFA before the
candidate generator produces the sound and complete 3DFA.

If Ai is not a separating DFA for L1 and L2, we get a counterexample to
the soundness of Ci (will be described in the next section) and then send it to
the candidate generator to refine the next conjecture. Candidate generator is
guaranteed to converge to the sound and complete 3DFA, hence, our algorithm
is guaranteed to find the minimal separating DFA and terminate.

Learning Minimal Separating DFA’s for Compositional Verification 37

4 The LSep Algorithm

LSep is an active1 learning algorithm which computes a minimal separating DFA
for two disjoint regular languages L1 and L2. It assumes a teacher that answers
the following two types of queries:

– membership queries where the teacher returns true if the given string w
is in L1, false if w is in L2, and don’t care otherwise, and

– containment queries where the teacher solves language containment prob-
lems of the following four types: (i) L1 ⊆ L(Ai), (ii) L(Ai) ⊆ L1, (iii)
L2 ⊆ L(Ai), and (iv) L(Ai) ⊆ L2. The teacher returns “YES” if the con-
tainment holds, and “NO” with a counterexample otherwise, where Ai is a
conjecture DFA.

As sketched in Section 3, the LSep algorithm performs the following steps to
find a minimal separating DFA A for the languages L1 and L2 iteratively.

Candidate Generation

λ b

λ − ?
b ? ?
ba − +
bab + +
a − ?
bb ? ?
baa − +
baba − ?
babb + +

Fig. 4. An Observation Table
and Its Corresponding 3DFA.
The square node denotes a don’t
care state.

The candidate generation step is performed by
the candidate generator, which extends the ob-
servation table in L∗ [17] to allow entries with
don’t cares. An observation table 〈S, E, T 〉 is a
triple of a prefix-closed set S of strings, a set E
of distinguishing strings, and a function T from
(S ∪ SΣ)× E to {+,−, ?}; see Figure 4 for an
example. Let α ∈ S ∪SΣ and β ∈ E. The func-
tion T maps π = (α, β) to + if αβ ∈ L1; it maps
π to − if αβ ∈ L2; otherwise T maps π to ?. In
the observation table of Figure 4, the entry for
(ba, b) is + because the string bab ∈ L1

2.
The candidate generator constructs the ob-

servation table by posing membership queries.
It generates a 3DFA Ci based on the observation
table. If the 3DFA Ci is unsound or incomplete, the candidate generator expands
the observation table by extracting distinguishing strings from counterexamples
and then generates another conjecture 3DFA. Let n be the size of the minimal
sound and complete 3DFA and m be the length of the longest counterexample
returned by containment queries. The candidate generator is guaranteed to find
a sound and complete 3DFA with O(n2 + n logm) membership queries. More-
over, it generates at most n− 1 incorrect 3DFA’s. We refer the reader to [7] for
details.

1 A learning algorithm is active if it can actively query the teacher to label samples;
otherwise, it is passive.

2 Here L1=(a∗b+a+b+)(a+b+a+b+)∗ and L2=a∗(b∗a+)∗.

38 Y.-F. Chen et al.

Completeness Checking

The LSep algorithm finds the minimal DFA separating L1 and L2 by computing
the minimal DFA consistent with Ci. To make sure all separating DFA’s for L1
and L2 are considered, the LSep algorithm checks whether Ci is complete.

By Proposition 1, checking completeness reduces to checking whether L(C−i) ⊆
L1 and L2 ⊆ L(C+

i), which can be done by containment queries. LSep first builds
the DFA’s C+

i and C−i . It then submits the containment queries L(C−i) ⊆ L1 and
L2 ⊆ L(C+

i). If either of these queries fails, a counterexample is sent to the
candidate generator to refine Ci. Note that several iterations between candidate
generation and completeness checking may be needed to find a complete 3DFA.

Finding a Minimal Consistent DFA

After the completeness checking, the next step is to compute a minimal DFA
consistent with Ci. We reduce the problem to the minimization problem of in-
completely specified finite state machines [15]. The LSep algorithm translates the
3DFA Ci into an incompletely specified finite state machine M. It then invokes
the algorithm in [15] to obtain a minimal finite state machine Mi consistent
with M. Finally, Mi is converted to a DFA Ai.

Soundness Checking

After the minimal DFA Ai consistent with Ci is computed, LSep verifies whether
Ai separates L1 and L2 by the containment queries L1 ⊆ L(Ai) and L(Ai) ⊆ L2.
There are three possible outcomes:

– L1 ⊆ L(Ai) ⊆ L2. Hence, Ai is in fact a separating DFA for L1 and L2. By
Lemma 1, Ai is a minimal separating DFA for L1 and L2.

– L1 � L(Ai). There is a string u ∈ L1 \ L(Ai). Moreover, we have L(Ai) ⊇
L(C−i) because Ai is consistent with Ci. Therefore, u ∈ L1 \ L(C−i). By
Proposition 1, u is a counterexample to the soundness of Ci. It is sent to the
candidate generator to refine the 3DFA in the next iteration.

– L(Ai) � L2. There is a string v ∈ L(Ai) \ L2. The string v is in fact a
counterexample to the soundness of Ci by an analogous argument. It is sent
to the candidate generator as well.

4.1 Correctness

The following theorem states the correctness of the LSep algorithm.

Theorem 1. The LSep algorithm terminates and outputs a minimal separating
DFA for L1 and L2.

Proof. The statement follows from the following observations:

1. Each iteration of the LSep algorithm terminates.
2. If the minimal consistent DFA (submitted to soundness checking) separates

L1 and L2, LSep terminates and returns a minimal separating DFA.

Learning Minimal Separating DFA’s for Compositional Verification 39

3. If the minimal consistent DFA does not separate L1 and L2, a counterexam-
ple to the soundness of Ci is sent to the candidate generator.

4. Because of 3, the candidate generator will eventually converge to the sound
and complete 3DFA C defined in Section 3. In this case, the minimal consis-
tent DFA is a minimal separating DFA for L1 and L2. Hence LSep terminates
when C is found. ��

4.2 Complexity Analysis

We now estimate the number of queries used in the LSep algorithm. Lemma 2
states an upper bound on the size of the minimal sound and complete 3DFA
(a proof can be found in [7]). By Lemma 2, the query complexity of LSep is
established in Theorem 2.

Lemma 2. Let Bi be the minimal DFA accepting the regular language Li for
i = 1, 2. The size of the minimal 3DFA C that accepts all strings in L1 and
rejects all strings in L2 is smaller than |B1| × |B2|.
Theorem 2. Let Bi be the minimal DFA accepting the regular language Li for
i = 1, 2. The LSep algorithm uses at most O((|B1| × |B2|)2 + (|B1| × |B2|) log m)
membership queries and 4(|B1|×|B2|)−1 containment queries to learn a minimal
separating DFA for L1 and L2, where m is the length of the longest counterex-
ample returned by the teacher.

Proof. Let C be a minimal 3DFA that accepts all strings in L1 and rejects all
strings in L2. The candidate generator takes at most O(|C|2 + |C| logm) member-
ship queries and proposes at most |C| − 1 incorrect conjecture 3DFA’s to LSep .
By Lemma 2, the size of C is smaller than |B1| × |B2|. It follows that the LSep

algorithm takes O((|B1| × |B2|)2 + (|B1| × |B2|) log m) membership queries and
4(|B1| × |B2|) − 1 containment queries (for each conjecture 3DFA, LSep uses at
most 2 containment queries to check completeness and 2 containment queries to
check soundness) to learn a minimal separating DFA in the worst case. ��

5 Automated Compositional Verification

We discuss how to adapt LSep to the context of automated compositional veri-
fication. The adapted version is referred to as “adapted LSep”. We first explain
how to reduce the problem of finding a minimal assumption in assume-guarantee
reasoning to the problem of finding a minimal separating automaton. We then
show how adapted LSep handles the case in which the system violates the prop-
erty and introduce heuristics to improve the efficiency of the adapted algorithm.

Finding a minimal assumption in assume-guarantee reasoning: Sup-
pose we want to use the following assume-guarantee rule to verify if the system
composed of two components M1 and M2 satisfies a property P :

L(M2) ⊆ L(A) L(M1) ∩ L(A) ⊆ L(P)
L(M1) ∩ L(M2) ⊆ L(P)

40 Y.-F. Chen et al.

The second premise, L(M1) ∩ L(A) ⊆ L(P), in the rule can be rewritten as
L(A) ⊆ (L(M1) ∩ L(P))3. Therefore, the two premises can be summarized as

L(M2) ⊆ L(A) ⊆ L(M1) ∩ L(P)

This immediately translates the problem of finding a minimal assumption in
assume-guarantee reasoning to the problem of finding a minimal separating au-
tomaton of the two languages L(M2) and L(M1)∩L(P). Therefore, if the system
composed of M1 and M2 satisfies the property P , LSep can be used to find a
contextual assumption A that is needed by the assume-guarantee rule4.

The case when the system violates the property: The adapted LSep algo-
rithm handles the case that the system violates the property as follows:

1. A membership query on a string v returns true, false, or don’t care in the
same way as the original LSep algorithm.

2. In addition, it returns fail if v is in both input languages. If fail is returned
by a query, the adapted LSep algorithm terminates and reports v as a witness
that the two languages are not disjoint, i.e., the property is violated.5

3. When a conjecture query returns a counterexample w, the adapted LSep

algorithm submits a membership query on w. If fail is not returned by the
query, the algorithm proceeds as usual.

The following lemma states the correctness of the adapted LSep algorithm
(a proof can be found in [7]):

Lemma 3. If L(M1)∩L(M2) � L(P), eventually the fail result will be returned
by a membership query.

Heuristics for efficiency: Minimizing a 3DFA is computationally expensive.
In the context of automated compositional verification, we do not need to insist
on finding a minimal solution. A heuristic algorithm that finds a small assump-
tion with lower cost may be preferred. The adapted LSep algorithm uses the
following heuristic to build a “reduced” DFA consistent with a 3DFA.

We first use Paull and Unger’s algorithm [15] to find the sets of “maximal”
compatible states6, which are the candidates for the states in the reduced DFA.
Consider an example shown in Figure 5. We have Q1 = {s0, s1}, Q2 = {s0, s2},
Q3 = {s0, s3, s4}.
3 It can be done using the following steps: L(M1)∩L(A) ⊆ L(P) ⇔ (L(M1)∩L(A))∩
L(P) = ∅ ⇔ L(A) ∩ (L(M1) ∩ L(P)) = ∅ ⇔ L(A) ⊆ (L(M1) ∩ L(P)).

4 The reduction was first observed by Gupta et al. [14].
5 The facts that the system violates the property and the two input languages are

not disjoint are equivalent to each other, which can be proved as follows: L(M1) ∩
L(M2) � L(P) ⇔ L(M1) ∩ L(M2) ∩ L(P) �= ∅ ⇔ L(M2) ∩ (L(M1) ∩ L(P)) �= ∅.

6 Two states are incompatible if there exists some string that leads one of them to an
accepting state and leads the other to a rejecting state. Otherwise, the two states are
compatible. The states in a set of compatible states are pairwise compatible. A set of
compatible states Q is maximal if there exists no other set of compatible states Q′

such that Q′ ⊃ Q.

Learning Minimal Separating DFA’s for Compositional Verification 41

C = (Σ, S, s0, δ, A,R, D)

Fig. 5. The 3DFA to be
reduced

We then choose the largest set from {Q1, Q2, Q3}
that contains s0 as the initial state of the reduced
DFA. Here we take Q3. The next state of Q3 after
reading symbol a is the largest set Q′ ∈ {Q1, Q2, Q3}
that satisfies Q′ ⊇ {s′ | s′ = δ(s, a), for all s ∈ Q3} =
{s0, s1}. Here we get Q1. Note that we can always
find a next state in the reduced DFA. This is because
the next states (in the 3DFA) of a set of compati-
ble states are also compatible states. Therefore, the
set of the next states (in the 3DFA) is either a set
of maximal compatible states or a subset of a set of
maximal compatible states. The next states of any
Q ∈ {Q1, Q2, Q3} can be found using the same procedure. The procedure termi-
nates after the transition function of the reduced DFA is completely specified.
The state Q is an accepting state in the reduced DFA if there exists a state
s ∈ Q such that s is an accepting state in the 3DFA, otherwise it is a rejecting
state in the reduced DFA. Formally, we define the reduced DFA (Σ, Ŝ, ŝ0, δ̂, F̂)
as follows, let Q be the sets of maximal compatible states:

– Ŝ ⊆ Q; ŝ0 = Q ∈ Q, where Q is the largest set that contains s0;
– δ̂(ŝ, a) = ŝ′, where ŝ′ is the largest set Q ∈ Q such that Q ⊇ {s′ | s′ =

δ(s, a), for all s ∈ ŝ};
– ŝ ∈ F̂ if there exists a state s ∈ ŝ such that s ∈ A, where A is the set of

accepting states in the 3DFA.

According to our experimental results, although the adapted algorithm is not
guaranteed to provide an optimal solution, it usually produces a satisfactory one
and is much faster than the original version. Besides, since we do not insist on
minimality, we also skip completeness checking in the adapted version. Com-
pleteness checking takes a lot of time because the two DFA’s C+

i and C−
i can

be large and several iteration between candidate generation and completeness
checking may be needed to find a complete 3DFA.

6 Experiments

We evaluated LSep and its adapted version by two sets of experiments. First, we
compared the LSep algorithm with the algorithm of Gupta et al. [14] and that
of Grinchtein et al. [13] on a large set of randomly-generated sample problems.
Second, we evaluated the adapted LSep algorithm and compared it with other
automated compositional verification algorithms on the LTSA benchmarks [9]. A
more detailed description of the settings of our experiments can be found in [7].

6.1 Experiment 1

We first describe the sample generator. Each sample problem has two DFA’s
B1 and B2 such that L(B1) ⊆ L(B2). The sample generator has two input

42 Y.-F. Chen et al.

Table 1. Comparison of the Three Algorithms. The row “Avg. DFA Size” is the
average size of the two input DFA’s B1 and B2 in a sample problem. Each column is
the average result of 100 sample problems. The row “(i,j)” is the parameters of the
sample generator.

Avg. DFA Size 13 21 32 42 54 70 86 102 124
(i,j) (4,4) (5,4) (6,4) (7,4) (8,4) (9,4) (10,4) (11,4) (12,4)
Algorithms Average execution time
LSep 0.04 0.16 0.4 0.84 1.54 2.5 4.3 6.8 10.9
Gupta [14] 6.6 58.7 266.7 431.5 1308.8 >4000 >4000 >4000 >4000
Grinchtein [13] 51.8 139 255.6 514.7 >4000 >4000 >4000 >4000 >4000
Avg. DFA Size 16 24 36 48 63 80 99 119 142
(i,j) (4,8) (5,8) (6,8) (7,8) (8,8) (9,8) (10,8) (11,8) (12,8)
Algorithms Average execution time
LSep 0.15 0.44 0.96 2.1 3.7 6.4 11 17.8 26.9
Gupta [14] 96.2 625.9 972.3 >4000 >4000 >4000 >4000 >4000 >4000
Grinchtein [13] 813.4 >4000 >4000 >4000 >4000 >4000 >4000 >4000 >4000

Unit: Second

parameters i and j. It first randomly generates7 two DFA’s A1 and A2 such
that |A1| = |A2| = i. Both use the same alphabet, which is of size j. Then
the sample generator builds the DFA B1 by constructing the minimal DFA that
recognizes L(A1)∩L(A2) and B2 by constructing the minimal DFA that recog-
nizes L(A1) ∪ L(A2). The sample generator has two important properties: (1)
the difference between |B1| and |B2| is small; (2) there exists a (relatively) small
separating DFA for B1 and B2.

We used eighteen different input parameters (i = 4 ∼ 12, j = 4, 8). For each
pair (i, j), we randomly generated a set of 100 different sample problems (we
eliminated duplications). The average sizes of input DFA’s ranging from 13 to
142. We also dropped trivial cases (|B1| = 1 or |B2| = 1). Table 1 shows the
results. We set a timeout of 4000 seconds (for each set of 100 sample problems).
If the algorithm did not solve any problem in a set of 100 problems within the
timeout period, we mark it as >4000. The time spent on failed tasks is included
in the total processing time.

6.2 Experiment 2

We evaluated the adapted LSep algorithm on the LTSA benchmarks [9]. We
compared the adapted LSep algorithm with the algorithms of Gupta et al.,
Grinchtein et al., and Cobleigh et al. [10]. We implemented all of those algo-
rithms, including the heuristic algorithm for minimizing a 3DFA. We did not
consider optimization techniques such as alphabet refinement [6,12]. This is fair
because such techniques can also be easily adapted to LSep . The experimental
results are shown in Table 2. The sizes of components are slightly different from
the original version because we determinized them. We think the size after de-
terminization can better reflect the difficultly of a benchmark problem. We used
the decomposition suggested by the benchmarks to build components M1 and
7 For each state s in A1 (respectively A2) and for each symbol a, a destination state

s′ in A1 (respectively A2) is picked at random and a transition δ(s, a) = s′ is
established. Each state has a 50% chance of being selected as a final state.

Learning Minimal Separating DFA’s for Compositional Verification 43

Table 2. Experimental Results on the LTSA Benchmarks. The “LSep” column is the
result of the adapted LSep algorithm. “Time” is the execution time in seconds and
|A| is the size of the contextual assumption found by the algorithm. “Cobleigh” and
“Gupta” give results from [10] and [14], respectively. We highlight in bold font the best
results. The column “Problem Size” is the pair (|M2|, |M1|×|P |), where |M2| is the size
of the DFA M2 and |M1|×|P | is the size of the product of the two DFA’s M1 and P .
The column “MO” is the execution time for monolithic verification. The symbol “-”
indicates that the algorithm did not finish within the timeout period. For each row, we
use n-m to denote benchmark problem n with m components.

LSep Cobleigh Gupta Problem MOTime —A— Time —A— Time —A— Size
1-2 0.1 3 170 74 32 3 45, 80 0.08

1-3 0.4 3 - - 109 3 82, 848 0.7
1-4 1.6 3 - - 219 3 138, 4046 4.2
2-2 508 7 89 52 - - 39, 89 0.08

2-3 - - 1010 93 - - 423, 142 0.7
2-4 - - 7063 152 - - 2022, 210 4
3-2 1.9 3 51 57 140 3 39, 100 0.09

3-3 13 3 601 110 551 3 423, 164 0.8
3-4 55 3 4916 189 1639 3 2022, 69 4.2
4-2 5.8 3 21 35 90 3 39, 87 0.09

4-3 20.8 3 1109 103 433 3 423, 140 0.75

4-4 44.9 3 6390 156 793 3 2022, 208 4.1
5-2 940 64 998 127 - - 45, 133 0.08

7-2 362 39 48 46 - - 39, 104 0.09

7-3 - - 405 76 - - 423, 168 0.9
7-4 - - 3236 123 - - 2022, 256 4.1
9-2 1345 52 4448 240 - - 45, 251 0.09

10-2 6442 18 - - 196 3 151, 309 0.8
10-3 5347 22 - - 601 3 327, 3369 6.1
10-4 - - - - 1214 3 658, 16680 33
11-2 6533 82 - - - - 151, 515 0.8
12-2 36 4 1654 162 - - 151, 273 0.8
12-3 133 4 - - - - 327, 2808 6.6
12-4 450 4 - - - - 658, 13348 33

LSep Cobleigh Gupta Problem MOTime —A— Time —A— Time —A— Size
15-2 1477 88 - - 5992 3 151, 309 0.8
15-3 5840 5 - - 4006 3 327, 3369 5.9
15-4 - - - - 6880 3 658, 16680 33
19-2 5.8 3 - - 266 3 234, 544 0.3
19-3 13 3 - - 1392 3 962, 5467 2.9
19-4 69 3 - - 7636 3 2746, 52852 35
21-3 45 3 - - 4558 3 962, 5394 2.9
21-4 718 3 - - 3839 3 2746, 51225 34.8

22-2 0.6 3 8 25 12 3 900, 30 0.3
22-3 2.3 3 1242 193 54 3 7083, 264 4.6
22-4 11 3 - - 170 3 30936, 2190 33
23-2 92 9 8.9 37 - - 50, 40 0.1
24-2 1.2 6 0.2 12 1.2 3 13, 14 0.01

24-3 5.1 6 0.33 12 - - 48, 14 0.02

24-4 18 6 0.63 12 - - 157, 14 0.1
25-2 1156 5 3050 257 - - 41, 260 0.1
26-2 512 38 239 121 - - 65, 123 0.1
27-2 848 46 830 193 - - 41, 204 0.1
28-2 755 46 757 185 - - 41, 188 0.1
29-2 926 21 891 193 - - 41, 195 0.1

30-2 1083 24 986 193 - - 41, 195 0.1
31-2 204 5 274 121 4975 3 65, 165 0.1
32-2 9.9 3 646 193 121 3 41, 261 0.1
32-3 44 3 - - - - 1178, 4806 2.6
32-4 886 3 - - - - 289, 117511 382

M2. Furthermore, we swapped M1 and M2; in [9], they check L(M1) ⊆ L(A)
and L(M2)∩L(A) ⊆ L(P) in the experiments. We swapped them because in the
original arrangement, a large portion of the cases have an assumption of size 1.
We set a timeout of 10000 seconds. Actually we checked all the 89 LTSA bench-
mark problems (of 2 ,3, and 4 components). In the table we do not list results
with minimal contextual assumption of size 1 (10 cases) and those in which no
algorithms finished within the timeout period (30 cases). In addition, we do not
list the result of Grinchtein et al. because of the space limitation. In this set of
experiments, it cannot solve most of the problems within the timeout period (84
cases). Even if it solved the problem (5 cases), it is slower than others.

The adapted LSep algorithm performs better than all the other algorithms in
30 among the 49 problems. The algorithm of Cobleigh et al. wins 14 problems.
However, in 8 of the 14 cases (23-2, 24-2, 24-3, 24-4, 26-2, 27-2, 29-2, 30-2),
their algorithm finds an assumption with size almost the same as |M1×P |. In
those cases, there is no hope of defeating monolithic verification. In contrast,
our algorithm scales better than monolithic verification in several problem sets.
For example, in 1-m, 19-m, 22-m, and 32-m, the execution time of the adapted
LSep algorithm grows much slower than monolithic verification. In 1-m and 22-
m, we can see that the adapted LSep algorithm takes more execution time than

44 Y.-F. Chen et al.

monolithic verification when the number of components is 2, but its performance
surpasses monolithic verification when the number of components becomes 4.

7 Discussion and Further Work

The algorithm of Gupta et al. is passive, using only containment queries (which
is slightly more general than equivalence queries). From a lower bound result
by Angluin [3] on learning with equivalence queries, the query complexity of
the algorithm of Gupta et al. can be shown to be exponential in the sizes of
the minimal DFA’s of the two input languages. Moreover, the data structures
that they use to represent the samples are essentially trees, which may grow
exponentially. These explain why their algorithm does not perform well in the
experiments.

The algorithm of Grinchtein et al. [13] is an improved version of an earlier
algorithm of Pena and Oliveira [16], which is active. However, according to our
experiments, this improved active algorithm is outperformed by the purely pas-
sive learning algorithm of Gupta et al. in most cases. The main reason for the
inefficiency of this particular active learning algorithm seems to be that the mem-
bership queries introduce a lot of redundant samples, even though they reduce
the number of iterations required. The redundant samples substantially increase
the running time of the exponential procedure of computing the minimal DFA.
In contrast, our active algorithm LSep indeed performs better than the passive
algorithm of Gupta et al.

The better performance of LSep can be attributed to the facts that the algo-
rithm utilizes membership queries to accelerate learning and has a more compact
representation of the samples (a 3DFA) collected from the queries. For further
work, it will be interesting to adapt LSep for other applications, such as inferring
network invariants of parameterized systems and to evaluate the performance of
the resulting solutions. Given that LSep is a better learning algorithm, we hope
that other applications will also benefit from it.

References

1. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 548–562. Springer, Heidelberg (2005)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

3. Angluin, D.: Negative results for equivalence queries. Machine Learning 5(2), 121–
150 (1990)

4. Barringer, H., Giannakopoulou, D., Păsăreanu, C.S.: Proof rules for automated
compositional verification through learning. In: SAVCBS 2003, pp. 14–21 (2003)

5. Chaki, S., Clarke, E.M., Sinha, N., Thati, P.: Dynamic component substitutabil-
ity analysis. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 512–528. Springer, Heidelberg (2005)

Learning Minimal Separating DFA’s for Compositional Verification 45

6. Chaki, S., Strichman, O.: Optimized L*-based assume-guarantee reasoning. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291.
Springer, Heidelberg (2007)

7. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal
separating DFA’s for compositional verification. Technical Report CMU-CS-09-101,
Carnegie Mellon Univeristy (2009)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

9. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An eval-
uation of automated assume-guarantee reasoning. ACM Transactions on Software
Engineering and Methodology 7(2), 1–52 (2008)

10. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

11. Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In:
Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS, vol. 4693,
pp. 2–17. Springer, Heidelberg (2007)

12. Gheorghiu, M., Giannakopoulou, D., Păsăreanu, C.S.: Refining interface alphabets
for compositional verification. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 292–307. Springer, Heidelberg (2007)

13. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automat-
ically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 483–497. Springer, Heidelberg (2006)

14. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for composi-
tional verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 420–432. Springer, Heidelberg (2007)

15. Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified
sequential switching functions. IRE Transitions on Electronic Computers EC-8,
356–366 (1959)

16. Pena, J.M., Oliveira, A.L.: A new algorithm for the reduction of incompletely
specified finite state machines. In: ICCAD 1998, pp. 482–489. ACM Press, New
York (1998)

17. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Information and Computation 103(2), 299–347 (1993)

18. Sinha, N., Clarke, E.M.: SAT-based compositional verification using lazy learn-
ing. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 39–54.
Springer, Heidelberg (2007)

RBAC-PAT: A Policy Analysis Tool for Role Based
Access Control�

Mikhail I. Gofman1, Ruiqi Luo1, Ayla C. Solomon2, Yingbin Zhang1, Ping Yang1,
and Scott D. Stoller3

1 Dept. of Computer Science, Binghamton University, NY 13902, USA
2 Dept. of Computer Science, Wellesley College, Wellesley, MA 02481, USA

3 Dept. of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA

Abstract. Role-Based Access Control (RBAC) has been widely used for ex-
pressing access control policies. Administrative Role-Based Access Control (AR-
BAC) specifies how an RBAC policy may be changed by each administrator.
Because sequences of changes by different administrators may interact in un-
intended ways, it is often difficult to fully understand the effect of an ARBAC
policy by simple inspection. This paper presents RBAC-PAT, a tool for analyzing
RBAC and ARBAC policies, which supports analysis of various properties in-
cluding reachability, availability, containment, weakest precondition, dead roles,
and information flows.

1 Introduction

Role-Based Access Control (RBAC) is widely used for expressing access control poli-
cies in areas such as health care and finance. In large organizations, RBAC policies
are often managed by multiple administrators with varying authority. An Administra-
tive Role Based Access control (ARBAC) policy specifies how each administrator may
change the RBAC policy. Changes by one administrator may interact in unintended
ways with changes by other administrators. Consequently, the effect of an ARBAC pol-
icy is hard to understand by manual inspection alone.

Policy analysis helps systems designers and administrators understand and debug
policies. This paper presents RBAC-PAT, a tool for analyzing various properties of
RBAC and ARBAC policies, including (1) reachability: e.g., can user u be assigned
to role r (called a “goal”)? (2) availability: e.g., is user u always a member of role r?
(3) role-role containment: is every member of role r1 also a member of role r2? (4)
weakest precondition: what are the minimal sets of initial roles that enable a user to get
added to roles in the goal? (5) dead roles: what roles cannot be assigned to any user? and
(6) information flow: can information flow from object o1 to object o2? For properties
(1)–(5), the analysis considers all RBAC policies reachable from a given initial RBAC
policy by actions allowed by a given ARBAC policy for a given set of administrators.

� This work was supported in part by NSF Grants CNS-0831298 and CNS-0627447 and ONR
Grant N00014-07-1-0928.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 46–49, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

RBAC-PAT: A Policy Analysis Tool for Role Based Access Control 47

2 Preliminaries

Role Based Access Control. The central notion of RBAC is that users are assigned
to appropriate roles, and roles are granted appropriate permissions. Role hierarchy is
a partial order on the set of roles. For example, GradStudent � Student means that
role GradStudent is senior to role Student , i.e., every member of GradStudent is also
implicitly a member of Student .

Administrative Role Based Access Control. ARBAC97 [2] controls changes
to the user-role assignment, the permission-role assignment and the role hi-
erarchy. Authority to assign users to roles and revoke users from roles are
specified by the can assign and can revoke relations, respectively. For exam-
ple, can assign(DeptChair ,Grad ∧ ¬RA,TA) specifies that the administrative role
DeptChair has authority to assign a user who is a member of Grad but not a mem-
ber of RA to the role TA. A role that appears in a positive precondition, like Grad in
this example, is called a positive role; similarly, RA is a negative role in this example.
Authority to assign and revoke permissions is controlled similarly.

3 Tool Description

Parser/Checker

GUI

Parsed Policy

Evidence Generator
BACK−END

FRONT−END

Policy Analysis EnginePolicy Analysis Engine

Hierarchy Converter

Converted Policy

ARBAC Policy Property

Evidence

Fig. 1. System architecture

The architecture of RBAC-PAT is shown in Figure 1.
Below, we describe its main components.

3.1 Hierarchy Converter

This component converts hierarchical policies into
non-hierarchical policies for analysis [3].

3.2 Policy Analysis Engine

Reachability, availability, role-role containment, and
weakest precondition. RBAC-PAT implements algo-
rithms we developed for user-role reachability analysis

of ARBAC with and without the separate administration restriction [4]. Separate ad-
ministration requires that administrative roles and regular roles are disjoint. Our algo-
rithms for the other analysis problems are either similar to these algorithms or reduce
the problem to user-role reachability analysis [4,3]. We developed forward and back-
ward algorithms for user-role reachability with separate administration and analyzed
their parameterized complexity. The idea of parameterized complexity is to identify an
aspect of the input that makes the problem computationally hard, introduce a parameter
k to measure that aspect, and develop an algorithm that may have high complexity in
terms of k, but is polynomial in the overall input size when the value of k is fixed. Such
an algorithm is said to be fixed parameter tractable with respect to k (“FPT w.r.t. k”).

In the forward algorithm, a simple backward slicing transformation eliminates roles
and rules irrelevant to the given goal. Next, a reduced state graph is constructed; reach-
ability is determined from it. Each node corresponds to an RBAC policy; each edge

48 M.I. Gofman et al.

corresponds to a change allowed by the ARBAC policy. The following reduction is
applied: (1) Transitions that revoke non-negative roles or add non-positive roles are
prohibited; (2) Transitions that add non-negative roles or revoke non-positive roles are
called invisible transitions and get combined with a preceding visible transition to form
a single composite transition. The forward algorithm is FPT w.r.t. the number of mixed
roles, i.e., roles that are both positive and negative. This number is usually significantly
smaller than the total number of roles. For example, in ARBAC policies we developed
for a university and a health care facility, the percentage of mixed roles is less than 25%.

The backward algorithm has two stages. The first stage uses backward search from
the goal to construct a directed graph G. Each node in G is a set of roles, and each
edge is labeled with a can assign rule and corresponds to a role assignment action
allowed by that rule. However, some negative preconditions of can assign transitions
cannot be evaluated during the backward search. The second stage is a forward search
that annotates G with the additional information needed to check those preconditions,
namely, sets of irrevocable roles that might be left in the state by previous transitions.
For ARBAC policies with at most one positive precondition per rule, our backward
algorithm is FPT w.r.t. the number of irrevocable roles.

We developed a forward algorithm for analysis of ARBAC without separate admin-
istration that is FPT w.r.t. the number of mixed roles and the number of users. We
also identified a condition called hierarchical role assignment that is often satisfied in
practice, and we showed that our algorithms that assume separate administration give
accurate results for policies satisfying this condition. Informally, the condition is that an
administrator cannot assign users to administrative roles that are not junior to his own
administrative role.

ARBAC policy analysis problems could be solved using general-purpose finite-state
verification tools, but those tools lack the specialized optimizations in our algorithms
and would be asymptotically less efficient for some families of policies. A detailed
comparison with related work on verification and security policy analysis appears in [4].

RBAC-PAT computes policy statistics, including the numbers of mixed roles and
irrevocable roles, and checks whether separate administration and hierarchical role as-
signment hold. RBAC-PAT uses this information to try to choose the most appropriate
analysis algorithms for a given analysis problem. In cases where separate administration
restriction is satisfied and it is unclear whether the forward or the backward algorithm
will be faster, RBAC-PAT prompts the user to choose between these algorithms.

Dead role analysis. We developed an algorithm to detect dead roles in an ARBAC
policy, i.e., roles that cannot be assigned to any user. Dead roles might indicate flaws
in the policy. A straightforward algorithm for detecting dead roles is: for every user ui,
compute a set Ri of roles that can be assigned to ui until all roles have been assigned
to some user or all users have been considered; roles not in

⋃
Ri are dead. If the policy

satisfies separate administration, the following optimizations are applied: (1) a slicing
transformation is used to eliminate roles and rules irrelevant to unassigned roles, and
only users with distinct sets of initial roles are considered; and (2) at each step, we
consider the user that can potentially be assigned to the most currently unassigned roles.

Information flow analysis. Information flow analysis helps administrators understand
the information flows allowed by an RBAC policy. Information can flow directly from

RBAC-PAT: A Policy Analysis Tool for Role Based Access Control 49

object o1 to object o2 if there exists a user that can read from o1 and write to o2. Os-
born [1] proposed an algorithm for constructing an information flow graph from an
RBAC policy, in which an edge o1 → o2 specifies that information can flow directly
from o1 to o2. We improve this algorithm by eliminating infeasible intermediate edges,
for example, edges resulting from roles that have not been assigned to any users. RBAC-
PAT also supports information flow queries such as “can information flow, directly or
transitively, from object o1 to object o2?”

Evidence generation. RBAC-PAT provides evidence that shows why a property holds
or is violated. For example, if the answer to a reachability analysis query is yes, RBAC-
PAT provides a sequence of administrative actions that leads to the specified role as-
signment, and highlights the corresponding ARBAC rules in the policy.

3.3 Case Studies

We developed RBAC and ARBAC policies for a university and a health care facility.
Here are some sample properties for the university policy: (1) User-role reachabil-
ity: can a user initially in role DeptChair and a user initially in role Undergrad to-
gether assign the latter user to HonorsStudent? (2) Weakest Precondition: what are the
weakest preconditions for an administrator initially in DeptChair to assign a user to
HonorsStudent? (3) Role-role containment: is TA contained in Grad? (4) Information
flow query: can information flow from GradeBook to DeptReport? RBAC-PAT termi-
nates in at most 0.19 second for all queries we tried. RBAC-PAT also helped uncover
some flaws in the original university policy, for example, a place where we accidentally
used Student instead of Undergrad and places where we forgot to take role hierarchy
into account, e.g., places where we forgot that Provost inherits from Staff . Further,
in order to validate our FPT results and explore the practical performance of the algo-
rithms, we applied RBAC-PAT to reachability analysis of hundreds of randomly gen-
erated policies [4]. For the policies containing 13 reachable mixed roles and 32 roles,
RBAC-PAT generates at most 232320 states and 2900920 transitions, and terminates in
8.6 hours. For the policies containing 5 reachable mixed roles and 500 roles, RBAC-
PAT generates at most 510 states and 2550 transitions, and terminates in 155 minutes.

Acknowledgement. We thank C. R. Ramakrishnan, Jian He, Yogesh Upadhyay, Pinki
Pasad, and Joel St. John for their contributions to the tool development.

References

1. Osborn, S.: Information flow analysis of an RBAC system. In: SACMAT, pp. 163–168 (2002)
2. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based administra-

tion of roles. TISSEC 2(1), 105–135 (1999)
3. Sasturkar, A., Yang, P., Stoller, S.D., Ramakrishnan, C.: Policy analysis for administrative role

based access control. In: IEEE CSFW, pp. 124–138 (2006)
4. Stoller, S., Yang, P., Ramakrishnan, C.R., Gofman, M.: Efficient policy analysis for adminis-

trative role based access control. In: CCS, pp. 445–455 (2007)

ITPN-PerfBound: A Performance Bound Tool
for Interval Time Petri Nets

Elina Pacini Naumovich�, Simona Bernardi, and Marco Gribaudo

Dipartimento di Informatica, Università di Torino, Torino (Italy)
{pacini,bernardi,marcog}@di.unito.it

Abstract. The ITPN-PerfBound is a tool for the modeling and analysis
of Interval Time Petri Nets (ITPN), that is Petri Nets in which firing
time intervals, and possibly firing frequency intervals, are associated to
transitions. The tool is particularly well-suited in the verification and
validation activities of real-time systems, where the main goal is to give
guarantees about the worst and best case system performance. The tool
has been implemented within the DrawNET framework and supports the
analysis of ITPN models based on the computation of upper and lower
bounds of classical performance metrics, such as throughput and cycle
time.

1 Introduction

In the verification and validation activities of real-time systems, one of the main
goals is to give guarantees about the best and the worst system performance,
e.g., best/worst execution time, before such systems are put into use. Interval
Time Petri Nets (ITPNs) and related bound computation techniques can be
used for this purpose [1]. ITPNs include Time Petri Nets (TPNs) [2] and TPNs
with firing frequency intervals (TPNFs) [1]. TPNs are Petri Nets in which firing
time intervals are associated to transitions. TPNFs reduce the non-determinism
of free-choice conflicts in TPNs by assigning a firing frequency interval to each
transition in free-choice conflict. ITPN performance bound computation tech-
niques are efficient techniques that can be applied to compute bounds of tran-
sition throughput, cycle time, and place marking. The bounds are computed by
solving a linear programming problem (LPP) derived from the structure of the
net, the initial marking and the firing time/frequency interpretation.

Currently, there are many tools for the modeling and analysis of TPNs, while
no tools for TPNF are available (e.g., see the Petri Net tool data-base for an
updated list [3]). Several of them (e.g., [4,5,6]) provide support for the behav-
ioral analysis of TPNs, based on the use of enumerative techniques. However,
to the best of our knowledge, none of them have performance bound analysis
capabilities.
� Corresponding author. Elina Pacini Naumovich has been supported by the World

Wide Style project “Sviluppo di metodi e tecniche per la validazione dell’affidabilità
dei sistemi software critici” of the University of Torino.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 50–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ITPN-PerfBound: A Performance Bound Tool for Interval Time Petri Nets 51

In this paper, we present ITPN-PerfBound, a graphical tool for the model-
ing and performance bound analysis of ITPNs. The tool has been implemented
within the DrawNET framework [7], which provides facilities for the design
and solution of models expressed in any graph-based formalism. In particular,
DrawNET supports a two level structure. The meta-level defines the formalism
being used, and the level describes the model belonging to the formalism. The
models can be solved using other existing tools (i.e., GreatSPN [8]), interfaced
to the DrawNET framework throughout Solvers. A Solver is a small interface
that translates a model in a particular format (using an entity called Filter),
and then takes care of invoking the tool that produces the actual results. It also
extracts the particular measures and stores them back inside the corresponding
model.

Finally, to support the inter-operability between PN tools, ITPN-PerfBound
includes the possibility of exporting (1) TPN models, by using the standard
PNML format [9] enriched with timing information which are compliant with
the TINA tool [4], and (2) un-timed PN models toward the GreatSPN tool [8].

2 Overall Architecture and Main Functionalities

ITPN-PerfBound has been implemented within the DrawNET framework. We
used the DrawNET XML-interchange format FDL (Formalism Definition Lan-
guage) for defining the ITPN formalism. The DrawNET GUI reads the ITPN
formalism, written in FDL and presents to the user a graphical user interface
for designing models of that formalism. Figure 1 shows the overall architecture
of the ITPN-PerfBound tool (part inside the grey rectangle) and its interac-
tion with other Petri Net tools (i.e., TINA and GreatSPN). The components
are depicted as rounded-cornered rectangles while the information flow between
components is indicated by arrows.

The DrawNET ITPN module is the editor component that is used by the
modeler to construct ITPN models. The DrawNET ITPN module and the Model/
Result Filters exchange ITPN models described with the DDL (Data Definition
Language). The Model Filter produces a set of input files for the ITPN bound
solvers, containing information on the ITPN model definition and on the metrics
to be computed. In particular, the un-timed specification of the ITPN model is
translated into the format of the GreatSPN tool (.net/.def files), then enabling
the user to exploit the GreatSPN facilities for the structural analysis of the un-
timed version of such ITPN models. The Model Filter translates also the ITPN
models into the standard PNML format [9], enriched with timing information
which are compliant with the TINA tool.

The ITPN bound solvers include a set of solution components, written in C-
language, that implement the ITPN performance bound techniques for ITPNs
with generic topology and for special structural classes of ITPNs. The LPP
generator components produce the LPP from the structure of the ITPN model
and the initial marking (.net/.def files), the specification of the transition firing
time/frequency (.itpn file), the user query about the metric of interest (.cmd
file). Two LPP generators have been implemented that create a different LPP,

52 E.P. Naumovich, S. Bernardi, and M. Gribaudo

DrawNET
ITPN module

Result
Filter

ITPN
.fdl
.fdli

Model
Filter

.net,
.def,.itpn,

.cmd
DDL

DDL .lp_out

ITPN-PerfBound

Structural analysis of
underlying un-timed PN
and reachability analysis of TPN

TINA tool

ITPN bound solvers

LPP
generator

LPsolve
tool

LPP for special
PN structural
sub-classes

LPP
for general PNs

.lp_in

GreatSPN tool
Structural analysis

of underlying
un-timed PN

(e.g., P/T-invariants).net
.def

.pnml

Fig. 1. Components interaction and information flow

according to the type of performance bound technique chosen, and return the
LPP written in the input format (.lp in file) of the free-source LPsolve tool [10].
The latter is used to compute the LPP solution (.lp out file). The results of the
performance bound analysis are fed back to the original ITPN model by the
Result Filter and displayed by DrawNET ITPN module.

From the user point of view, the tool provides the following functionalities:

– Create ITPN models by loading the ITPN module from the DrawNET GUI
and save them in the DrawNET XML-interchange format (i.e., mdl).

– Compute performance upper/lower bounds of transition throughput, cycle
time and place marking for ITPN model with generic topology. The result
of the analysis (i.e., the optimal value of the LPP objective function) is
displayed in the Properties tab associated to the corresponding net object
(transition/place) in the DrawNET ITPN module.

– Compute best/worst case performance transition cycle time and throughput
for special structural classes of ITPNs (i.e., Marked Graphs and 1-consistent
monoT-semiflows). The presentation of the results (i.e., the LPP optimal
solution and the corresponding value of the objective function) is both tex-
tual and graphical: the bound values are displayed in the Properties tab
associated to the net model in the DrawNET ITPN module and the slowest
sub-net of the ITPN model (i.e., the sub-net with the highest cycle time) is
highlighted in red.

– Export the ITPN models toward the GreatSPN tool [8] and the standard
PNML format, enriched with timing information which are compliant with
the TINA tool [4].

ITPN-PerfBound: A Performance Bound Tool for Interval Time Petri Nets 53

3 Applications and Conclusion
The ITPN-PerfBound tool has been applied to several case studies and examples
from the literature. Among them, we can mention: a flexible manufacturing
system [11] that produces short-stroke cylinders; the alternating bit protocol,
modeled with an un-timed PN in [12]; and a computer-assisted braking system
for vehicles [13]. The integration of the ITPN bound solvers within the DrawNET
environment, well as the implementation of the filters towards GreatSPN and
TINA, has been considerably reduced the time devoted to the V&V activities of
the considered case studies. New GUI facilities are going to be implemented that
allows the analyst to visualize the net labels, parameters, timing specifications
and results in the DrawNET model job window and to export the net to the
SVG format. Possible future developments concern the implementation of new
filters that enable to import, in the ITPN-PerfBound tool, the ITPN models
specified either in the PNML standard format or in the GreatSPN format.

The tool is available at the following URL:
http://www.draw-net.com/ITPN-PerfBound.

References

1. Bernardi, S., Campos, J.: On Performance Bounds for Interval Time Petri Nets.
In: Proceedings of the 1st International Conference on Quantitative Evaluation
of Systems (QEST’04), Enschede, The Netherlands, pp. 50–59. IEEE Computer
Society Press, Los Alamitos (2004)

2. Merlin, P., Faber, D.: Recoverability of communication protocols. IEEE Trans
Commun. COM-24(9) (1976)

3. PetriNetsWorld: Petri nets tool database,
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

4. Berthomieu, B.: The TIme petri Net Analyzer (TINA) toolbox,
http://www.laas.fr/tina/

5. Roux, O., et al.: The Roméo tool, http://romeo.rts-software.org
6. Vicario, E., et al.: The ORIS tool,

http://www.stlab.dsi.unifi.it/oris/index.html
7. Gribaudo, M., Codetta Raiteri, D.G.F.: The DrawNET Modelling System: a frame-

work for the design and the solution of single-formalism and multi-formalis models.
Technical Report TR-INF-2006-01-UNIPMN (January 2006)

8. PerfGroup: The GreatSPN tool, http://www.di.unito.it/~greatspn
9. Billington, J., et al.: The Petri Net Markup Language. Standard ISO/IEC-15909-2

10. Berkelaar, M., et al.: LP SOLVE: library for solving linear (integer) programming
problems, http://lpsolve.sourceforge.net/5.5/

11. Paoli, A., Sartini, M., Tilli, A.: Rapid prototyping of logic control in industrial au-
tomation exploiting the generalized actuator approach. In: Proc. of 13th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation, Ham-
burg, Germany. IEEE, Los Alamitos (2008)

12. Diaz, M., Azema, P.: Petri net based models for the specification and validation
of protocols. In: Rozenberg, G. (ed.) APN 1984. LNCS, vol. 188, pp. 101–121.
Springer, Heidelberg (1985)

13. Bernardi, S., Campos, J., Merseguer, J.: Timing-failure risk assessment based on
Petri net bounding techniques. Technical report, University of Torino, Italy (June
2008)

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
http://www.laas.fr/tina/
http://romeo.rts-software.org
http://www.stlab.dsi.unifi.it/oris/index.html
http://www.di.unito.it/~greatspn
http://lpsolve.sourceforge.net/5.5/

Romeo: A Parametric Model-Checker for Petri
Nets with Stopwatches

Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez

IRCCyN, CNRS UMR 6597, Nantes, France
{Didier.Lime,Olivier-h.Roux,Charlotte.Seidner,
Louis-Marie.Traonouez}@irccyn.ec-nantes.fr

Abstract. Last time we reported on Romeo, analyses with this tool
were mostly based on translations to other tools. This new version pro-
vides an integrated TCTL model-checker and has gained in expressivity
with the addition of parameters. Although there exists other tools to
compute the state-space of stopwatch models, Romeo is the first one
that performs TCTL model-checking on stopwatch models. Moreover, it
is the first tool that performs TCTL model-checking on timed parametric
models. Indeed, Romeo now features an efficient model-checking of time
Petri nets using the Uppaal DBM Library, the model-checking of stop-
watch Petri nets and parametric stopwatch Petri nets using the Parma
Polyhedra Library and a graphical editor and simulator of these mod-
els. Furthermore, its audience has increased leading to several industrial
contracts. This paper reports on these recent developments of Romeo.

Keywords: Time Petri nets, model-checking, stopwatches, parameters,
TCTL, tool.

1 Introduction

Time Petri nets (TPNs) [1] are a classical time extension of Petri nets. They allow
an easy representation of real-time systems features such as synchronization and
parallelism. State reachability is decidable for bounded TPNs, which is sufficient
for virtually all practical purposes.

However, it is also often useful to model actions that can be suspended and
later resumed. Several extensions of time Petri nets have been proposed to ex-
press the preemptive scheduling of tasks, such as Scheduling-TPNs [2], inhibitor
hyperarc TPNs (ITPNs) [3] or Preemptive-TPNs [4]. All these models belong
to the class of TPNs extended with stopwatches (SwPNs)[5]. Reachability and
most other properties of interest are however undecidable for SwPNs, even when
bounded [5].

Furthermore, the design of a system often benefits from the use of parame-
ters, e.g. when specifications are not yet completely defined. Parametric TPNs
(PTPNs) and parametric SwPNs (PSwPNs) are parametric extensions of TPNs
and SwPNs that can be used to perform parametric model-checking [6]. The goal
is to synthesize constraints on the parameters which helps the system design.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 54–57, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Romeo: A Parametric Model-Checker for Petri Nets 55

2 Presentation of Romeo

The Romeo tool 1 (available for Linux, MacOSX and Windows platforms) con-
sists of a graphical user interface (GUI) (written in Tcl/Tk), to edit and simulate
TPNs, and a computation module Mercutio (written in C++), that performs
model-checking and state-space computation.

The two other main tools for the analysis of TPNs and SwPNs are Tina [7]
and Oris [8]. Tina has many interesting features, including the computation
of a graph preserving CTL (Computation Tree Logic) properties and an off-line
full LTL model-checker. Oris also has several unique features of interest among
which the most notable is probably the analysis of time Petri nets with stochastic
aspects.

Design and Simulation. The GUI allows Petri nets edition and features
three different modes for each supported extension (TPNs, Scheduling-TPNs or
ITPNs). In each mode, a parametric extension is available (PTPNs, Scheduling-
PTPNs or PITPNs). In these latter extensions, Romeo supports the use of
parametric linear expressions in the time bounds of the transitions, and allows
to add linear constraints on the parameters to restrict their domain.

The GUI also features an on-line interactive simulator for scenario testing. It
allows to study a particular trace in the state-space of the model, either with
the state-class method [9] or with the zone-based method [10] (only for TPNs).

On-the-Fly Model-Checking. Through the computation module Mercutio,
Romeo can perform model-checking of time Petri nets models for quantitative
temporal logic formulae (TCTL) [11]. We consider a restricted subset of TCTL
formulae with no recursion in the formulae for which we can propose an effi-
cient on-the-fly model-checking. Moreover, this subset appears to be sufficient
to verify many interesting properties on time models. Reachability properties
can be checked with formulae such as ∃♦[a,b](p) (where [a, b] is a time interval,
with b possibly infinite, and p a property on the markings of the net) and safety
properties with ∀�[a,b](p). Liveness properties can be checked with ∀♦[a,b](p)
or by using a bounded response property such as p �[0,b] q. It is equivalent to
∀�(p ⇒ ∀♦[0,b](q)), and thus allows one level of recursion.

This subset allows to implement efficient model-checking algorithms for TPNs
with the state-class graph [12]. In bounded TPNs, the algorithm is based on
DBMs (Difference Bounds Matrix) and the implementation uses the Uppaal
DBM Library [13] to encode the firing domains. For SwPNs and parametric
SwPNs, the reachability problem is undecidable and as a consequence semi-
algorithms are implemented in Romeo. In these models, firing domains are en-
coded with polyhedra by using the Parma Polyhedra Library [14].

With parametric nets, Romeo can verify parametric TCTL formulae in which
the bounds of the temporal constraints (a and b in the above examples) can
be replaced by parameters. The goal is to determine the valuations of these
parameters, such that for these valuations the model verifies the formula. The
1 Download at: http://romeo.rts-software.org/

56 D. Lime et al.

semi-algorithms implemented are based on the parametric state-class graph [6].
As a result, Romeo synthesizes a set of constraints (a disjunction of polyhedra,
also encoded with the Parma Polyhedra Library) to represent the set of these
valuations.

State-Space Computation. Romeo implements two state-space computation
methods, the state-class graph and the zone-based graph.

Romeo computes the state-class graph (SCG) that preserves LTL proper-
ties [9]. The algorithm is based on DBMs for bounded TPNs and the semi-
algorithm is based on polyhedra for PTPNs. For SwPNs, exact computation
semi-algorithms are implemented by using either polyhedra or both polyhedra
and DBMs. Finally an overapproximating semi-algorithm is also available for
SwPNs and uses DBMs.

For TPNs, Romeo generates a zone-based graph [10] that preserves markings
and converges by inclusion.

Finally, translations from TPNs to Timed Automata are available through
the state-class automaton or by a structural translation. SwPNs can be trans-
lated into Stopwatch Automata by an overapproximation method. Both were
accounted for in [15].

3 New Functionalities

Since the last paper about Romeo [15], several enhancements have been made
to the tool.

Regarding expressiveness, we have added the support for several classical spe-
cial arcs: read arcs (resp. logical inhibitor arcs) test the number of tokens in
a place, without consuming them, for the relation “greater than” (resp. “less
than”). Reset arcs empty a place of all its token (regardless of their number)
after the firing of a transition.

Furthermore, in addition to the scheduling extension, stopwatches can now
be defined using time inhibitor arcs [3].

Regarding verification, we now have a model-checker for TCTL properties for
TPNs, SwPNs and their parametric counterparts. It allows to work with Romeo

without the help of other tools.
This is, to our knowledge, the first TCTL model-checker for (bounded) time

Petri nets but also the first one for stopwatch models.
Furthermore, as already mentioned, Romeo now implements a new framework

for the design and verification of parametric time Petri nets as described in [6].
The associated parametric model-checker is also, to our knowledge, the first one
to perform TCTL parametric model-checking on timed parametric models.

4 Conclusion

Romeo is one of the three main tools on time and stopwatch Petri nets. It
performs state-space computation and simulation based on both the state-class

Romeo: A Parametric Model-Checker for Petri Nets 57

method and the zone-based method. Moreover, it performs on-the-fly TCTL
model-checking of time, stopwatch and parametric Petri nets. Its implementation
is very efficient thanks to the use of two robust libraries, namely the Uppaal DBM
Library and the Parma Polyhedra Library.

Romeo has many industrial users such as DGA, SODIUS, Dassault Aviation
and EADS leading to several industrial contracts and partnerships.

References

1. Merlin, P.: A study of the recoverability of computing systems. PhD thesis, De-
partment of Information and Computer Science, Univ. of California, Irvine (1974)

2. Roux, O., Déplanche, A.M.: A t-time Petri net extension for real time-task schedul-
ing modeling. European Journal of Automation (JESA) 36(7), 973–987 (2002)

3. Roux, O.H., Lime, D.: Time petri nets with inhibitor hyperarcs. Formal semantics
and state space computation. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004.
LNCS, vol. 3099, pp. 371–390. Springer, Heidelberg (2004)

4. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Time state space analysis of real-time
preemptive systems. IEEE trans. on Soft. Eng. 30(2), 97–111 (2004)

5. Berthomieu, B., Lime, D., Roux, O.H., Vernadat, F.: Reachability problems and
abstract state spaces for time Petri nets with stopwatches. Discrete Event Dynamic
Systems 17(2), 133–158 (2007)

6. Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of time Petri
nets with stopwatches using the state-class graph. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 280–294. Springer, Heidelberg (2008)

7. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool tina – construction of abstract
state spaces for Petri nets and time Petri nets. Int. Journal of Production Research
42(4) (July 2004), http://www.laas.fr/tina/

8. Bucci, G., Sassoli, L., Vicario, E.: Oris: A tool for state-space analysis of real-time
preemptive systems. In: QEST 2004 (2004)

9. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE trans. on Soft. Eng. 17(3), 259–273 (1991)

10. Gardey, G., Roux, O.H., Roux, O.F.: State space computation and analysis of
time Petri nets. Theory and Practice of Logic Programming (TPLP) 6(3), 301–320
(2006); Copyright Cambridge Press

11. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information
and Computation 104, 2–34 (1993)

12. Hadjidj, R., Boucheneb, H.: On-the-fly TCTL model checking for time Petri nets
using state class graphs. In: ACSD, pp. 111–122. IEEE Computer Society Press,
Los Alamitos (2006)

13. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1–2), 134–152 (1997)

14. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library. Quaderno
457, Dipartimento di Matematica, Università di Parma, Italy (2006)

15. Gardey, G., Lime, D., Magnin, M., Roux, O(H.): Roméo: A tool for analyzing time
petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005)

http://www.laas.fr/tina/

Alpaga: A Tool for Solving Parity Games
with Imperfect Information

Dietmar Berwanger1, Krishnendu Chatterjee2, Martin De Wulf3,
Laurent Doyen3,4, and Thomas A. Henzinger4

1 LSV, ENS Cachan and CNRS, France
2 CE, University of California, Santa Cruz, USA
3 Université Libre de Bruxelles (ULB), Belgium

4 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. Alpaga is a solver for two-player parity games with imperfect infor-
mation. Given the description of a game, it determines whether the first player
can ensure to win and, if so, it constructs a winning strategy. The tool provides a
symbolic implementation of a recent algorithm based on antichains.

1 Introduction

Alpaga is a tool for solving parity games with imperfect information. These are turn-
based games played on a graph by two players, one of them having imperfect infor-
mation about the current state of the play. We consider objectives over infinite paths
specified by parity conditions that can express safety, reachability, liveness, fairness,
and most properties commonly used in verification. Given the description of a game,
the tool determines whether the imperfect information player has a winning strategy for
the parity objective and, if this is the case, it constructs such a winning strategy.

The Alpaga implementation is based on a recent technique using antichains for solv-
ing games with imperfect information efficiently [3], and for representing the strategies
compactly [2]. To the best of our knowledge, this is the first implementation of a tool
for solving parity games with imperfect information.

In this paper, we outline the antichain technique which is based on fixed-point com-
putations using a compact representation of sets. Our algorithm essentially iterates a
controllable predecessor operator that returns the states from which a player can force
the play into a given target set in one round. For computing this operator, no polynomial
algorithms is known. We propose a new symbolic implementation based on BDDs to
avoid a naive enumerative procedure.

Imperfect-information games arise in several key applications related to verification
and synthesis of reactive systems, such as (a) synthesis of controllers for plants with un-
observable transitions; (b) distributed synthesis of processes with private variables not
visible to other processes; (c) synthesis of robust controllers; (d) synthesis of automata
specifications where only observations of automata are visible, and (e) the decision and
simulation problem of quantitative specification languages; (f) model-checking secrecy
and information flow. We believe that the tool Alpaga will make imperfect information
games a useful framework for designers in the above applications.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 58–61, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Alpaga: A Tool for Solving Parity Games 59

An example of distributed-system synthesis has been solved with the tool. We have
considered the design of a mutual-exclusion protocol for two processes. The tool Al-
paga was able to synthesize a winning strategy for a requirement of mutual exclusion
and starvation freedom which corresponds to Peterson’s protocol. Details can be found
in an extended version of this paper [1].

2 Games and Algorithms

Let Σ be a finite alphabet of actions and let Γ be a finite alphabet of observations.
A game structure with imperfect information over Σ and Γ is a tuple G = (L, l0, ∆, γ),
where

– L is a finite set of locations (or states), l0 ∈ L is the initial location;

– ∆ ⊆ L×Σ×L is a set of labelled transitions such that for all � ∈ L and all a ∈ Σ,
there exists �′ ∈ L such that (�, a, �′) ∈ ∆, i.e., the transition relation is total;

– γ : Γ → 2L \ ∅ is an observability function that maps each observation to a set
of locations such that the set {γ(o) | o ∈ Γ} partitions L. For each � ∈ L, let
obs(�) = o be the unique observation such that � ∈ γ(o).

The game on G is played in rounds. Initially, a token is placed in location l0. In every
round, Player 1 first chooses an action a ∈ Σ, and then Player 2 moves the token to an
a-successor �′ of the current location �, i.e., such that (�, a, �′) ∈ ∆. Player 1 does not
see the current location � of the token, but only the observation obs(�) associated to it.
A strategy for Player 1 in G is a function α : Γ+ → Σ. The set of possible outcomes
of α in G is the set Outcome(G, α) of sequences π = �1�2 . . . such that �1 = l0 and
(�i, α(obs(�1 . . . �i)), �i+1) ∈ ∆ for all i ≥ 1. A visible parity condition on G is defined
by a function p : Γ → N that maps each observation to a non-negative integer priority.
We say that a strategy α for Player 1 is winning if for all π ∈ Outcome(G, α), the least
priority that appears infinitely often in π is even.

To decide whether Player 1 is winning in a game G, the basic approach consists
in tracing the knowledge of Player 1, represented a set of locations called a cell. The
initial knowledge is the cell s0 = {l0}. After each round, the knowledge s of Player 1
is updated according to the action a she played and the observation o she receives, to
s′ = posta(s) ∩ γ(o) where posta(s) = {�′ ∈ L | ∃� ∈ s : (�, a, �′) ∈ ∆}.

Antichain algorithm. The antichain algorithm is based on the controllable predecessor
operator CPre : 2S → 2S which, given a set of cells q, computes the set of cells q′ from
which Player 1 can force the game into a cell of q in one round:

CPre(q) = {s ⊆ L | ∃a ∈ Σ · ∀o ∈ Γ : posta(s) ∩ γ(o) ∈ q}. (1)

The key of the algorithm relies on the fact that CPre(·) preserves downward-closedness.
A set q of cells is downward-closed if, for all s ∈ q, every subset s′ ⊆ s is also in q.
Downward-closed sets q can be represented succinctly by their maximal elements r =
q� = {s ∈ q | ∀s′ ∈ q : s �⊂ s′}, which form an antichain. With this representation,
the controllable predecessor operator is defined by

CPre(r) =
⌈{s ⊆ L | ∃a ∈ Σ · ∀o ∈ Γ · ∃s′ ∈ r : posta(s) ∩ γ(o) ⊆ s′}⌉. (2)

60 D. Berwanger et al.

Strategy construction. The implementation of the strategy construction is based on [2].
The algorithm of [2] employs antichains to compute winning strategies for imperfect-
information parity games in an efficient and compact way: the procedure is similar to the
classical algorithm of McNaughton [4] and Zielonka [5] for perfect-information parity
games, but, to preserve downwards closure, it avoids the complementation operation
of the classical algorithms by recurring into subgames with an objective obtained as a
boolean combination of reachability, safety, and reduced parity objectives.

Strategy simplification. A strategy in a game with imperfect information can be repre-
sented by a set Π = {(s1, rank1, a1), . . . , (sn, rankn, an)} of triples (si, ranki, ai) ∈
2L×N×Σ where si is a cell, and ai is an action. Such a triple assigns action ai to every
cell s ⊆ si; since a cell s may be contained in many si, we take the triple with minimal
value of ranki. Formally, given the current knowledge s of Player 1, let (si, ranki, ai)
be a triple with minimal rank in Π such that s ⊆ si (such a triple exists if s is a winning
cell); the strategy represented by Π plays the action ai in s.

Our implementation applies the following rules to simplify the strategies and ob-
tain a compact representation of winning strategies in parity games with imperfect
information.

(Rule 1) In a strategy Π , retain only elements that are maximal with respect to the
following order: (s, rank, a) � (s′, rank′, a′) if rank ≤ rank′ and s′ ⊆ s. Intuitively,
the rule specifies that we can delete (s′, rank′, a′) whenever all cells contained in s′ are
also contained in s; since rank ≤ rank′, the strategy can always choose (s, rank, a) and
play a.

(Rule 2) In a strategy Π , delete all triples (si, ranki, ai) such that there exists (sj , rankj ,
aj) ∈ Π (i �= j) with ai = aj , si ⊆ sj (and hence ranki < rankj by Rule 1),
such that for all (sk, rankk, ak) ∈ Π , if ranki ≤ rankk < rankj and si ∩ sk �= ∅,
then ai = ak. Intuitively, the rule specifies that we can delete (si, ranki, ai) whenever
all cells contained in si are also contained in sj , and the action aj is the same as the
action ai. Moreover, if a cell s ⊆ si is also contained in sk with ranki ≤ rankk < rankj ,
then the action played by the strategy is also ak = ai = aj .

3 Implementation

Computing CPre(·) is likely to require time exponential in the number of observations
(a natural decision problem involving CPre(·) is NP-hard [2]). Therefore, it is natural
to let the BDD machinery evaluate the universal quantification over observations in (2).
We present a BDD-based algorithm to compute CPre(·).

Let L = {�1, . . . , �n} be the state space of the game G. A cell s ⊆ L can be rep-
resented by a valuation v of the boolean variables x̄ = x1, . . . , xn such that, for all
1 ≤ i ≤ n, �i ∈ s iff v(xi) = true. A BDD over x1, . . . , xn is called a linear encoding,
it encodes a set of cells. A cell s ⊆ L can also be represented by a BDD over boolean
variables ȳ = y1, . . . , ym with m = log2 n�. This is called a logarithmic encoding, it
encodes a single cell.

We represent the transition relation of G by the n · |Σ| BDDs Ta(�i) (a ∈ Σ, 1 ≤
i ≤ n) with logarithmic encoding over ȳ. So, Ta(�i) represents the set {�j | (�i, a, �j) ∈

Alpaga: A Tool for Solving Parity Games 61

∆}. The observations Γ = {o1, . . . , op} are encoded by log2 p� boolean variables
b0, b1, . . . in the BDD BΓ defined by

BΓ ≡
∧

0≤j≤p−1

b̄ = [j]2 → Cj+1(ȳ),

where [j]2 is the binary encoding of j and C1, . . . , Cp are BDDs that represent the sets
γ(o1), . . . , γ(op) in logarithmic encoding.

Given the antichain q = {s1, . . . , st}, let Sk (1 ≤ k ≤ t) be the BDDs that encode
the set sk in logarithmic encoding over ȳ. For each a ∈ Σ, we compute the BDD CPa

in linear encoding over x̄ as follows:

CPa ≡ ∀b̄ ·
∨

1≤k≤t

∧
1≤i≤n

xi →
[∀ȳ · (Ta(�i) ∧BΓ

)→ Sk

]
.

Then, we define CP ≡ ∨a∈Σ CPa(q), and we extract the maximal elements in CP(x̄)
as follows, with ω a BDD that encodes the relation of (strict) set inclusion ⊂:

ω(x̄, x̄′) ≡
(n∧

i=1

xi → x′
i

)
∧
(n∨

i=1

xi �= x′
i

)
,

CPmin(x̄) ≡ CP(x̄) ∧ ¬∃x̄′ · ω(x̄, x̄′) ∧ CP(x̄′).

Finally, we construct the antichain CPre(q) as the following set of BDDs in logarithmic
encoding: CPre(q) = {s | ∃v ∈ CPmin : s = {�i | v(xi) = true}}.

Features of the tool. The input of the tool is a file describing the transitions and ob-
servations of the game graph. The output is the set of maximal winning cells, and a
winning strategy in compact representation. We have also implemented a simulator to
let the user play against the strategy computed by the tool. The user has to provide an
observation in each round (or may let the tool choose one randomly). The web page of
the tool is http://www.antichains.be/alpaga. We provide the source code,
the executable, an online demo, and several examples.

References

1. Berwanger, D., Chatterjee, K., De Wulf, M., Doyen, L., Henzinger, T.A.: Alpaga: A tool for
solving parity games with imperfect information. Technical Report MTC-REPORT-2008-007,
EPFL (2008), http://infoscience.epfl.ch/record/130681

2. Berwanger, D., Chatterjee, K., Doyen, L., Henzinger, T.A., Raje, S.: Strategy construction for
parity games with imperfect information. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 325–339. Springer, Heidelberg (2008)

3. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games
of incomplete information. Logical Methods in Computer Science 3(3:4) (2007)

4. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied
Logic 65(2), 149–184 (1993)

5. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theoretical Computer Science 200, 135–183 (1998)

http://infoscience.epfl.ch/record/130681

Compositional Predicate Abstraction from
Game Semantics�

Adam Bakewell and Dan R. Ghica

University of Birmingham, UK

Abstract. We introduce a technique for using conventional predicate
abstraction methods to reduce the state-space of models produced us-
ing game semantics. We focus on an expressive procedural language that
has both local store and local control, a language which enjoys a simple
game-semantic model yet is expressive enough to allow non-trivial exam-
ples. Our compositional approach allows the verification of incomplete
programs (e.g. libraries) and offers the opportunity for new heuristics
for improved efficiency. Game-semantic predicate abstraction can be em-
bedded in an abstraction-refinement cycle in a standard way, resulting
in an improved version of our experimental model-checking tool Mage,
and we illustrate it with several toy examples.

1 Introduction

The most important technical challenge for automatic software verification is
the so-called state-explosion problem, the fact that the state-complexity of the
model checking problem is exponential in the size of the program. As a direct
consequence of this, automatic verification is said not to scale, i.e. only rather
small programs can be handled.

A variety of techniques are used to handle the systems with very large state
spaces that occur in automatic verification. Taken together, they can lead to
surprisingly effective tools, which can handle fully automatically an impressive
range of programs [1,2]. But in a series of papers [3,4,5,6] we have argued that
while such techniques are very effective on small to medium sized programs, in
order for automatic verification to scale up to large and very large programs it
is necessary to be based on compositional methods, i.e. have the ability to verify
fragments of programs, then make correctness judgements about the whole based
on correctness judgements about the parts. We believe game semantics [7,8]
provides a solid theoretical foundation on which such methods can be developed.

In this paper we develop a predicate abstraction [9] from game-based models.
The technical challenge is combining the compositional and semantic-directed
model construction of game semantics with the syntactic constructs of predi-
cate abstraction and its essential use of global state. In the paper we formulate
predicate abstraction for games, prove relevant technical results (decidability,
soundness of approximation), discuss new heuristics stemming from this style of
� Supported by EPSRC grants EP/D070880/1 and EP/D034906/1.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 62–76, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Compositional Predicate Abstraction from Game Semantics 63

predicate abstraction and illustrate it with some examples. The implementation
is based on our existing experimental tool Mage.1

2 The Language

The technique that we present here can be used to abstract any programs writ-
ten in a language that has a game-semantic model. To have a focused presen-
tation we will select a fragment of the language that is expressive enough to
allow interesting examples, yet simple enough to allow a concise presentation.
We call this language IAl. The starting point is IA [10], a well studied language
which combines lambda calculus with the simple imperative language. We will
use an enhanced variant of a language that in addition to local variables also
uses block-structured control, a generalisation of C’s break and continue oper-
ations. A similar language, IAx, was studied by Laird [11]. IA-like languages are
supposed to use lambda-abstraction uniformly over all types, but this, in con-
junction with the call-by-name procedural mechanism, leads to confusing phe-
nomena such as interference or bad variables [12]. To avoid such issues, which
raise the complexity of our presentation but are ultimately irrelevant to the mat-
ter of predicate abstraction, we impose some restrictions on the way variables
and labels can be used in the language by disallowing variable and label-typed
terms in the language. Variables and labels are “named constants” rather than
programming language identifiers [13]. We disallow recursion and higher-order
functions because they introduce infinite-state models in a way that is not re-
lated to the store. Finally to further focus the presentation on store abstraction
rather than functional aspects, we only allow a very simple function-definition
mechanism, similar to that of C, where all functions are defined in global scope.
This language is in general quite close to a large subset of C and we are building
up towards real code in the near future.

2.1 Syntax and Operational Semantics

IAl has a discrete set of labels L and a discrete set of locations C. The base types
T of the language are commands com, booleans bool and integers int. Function
types are defined by the grammar U ::= T1 × · · · × Tk → T . For each type T
there is a discrete set of identifiers of that type FT . We use a distinct type prog
for programs. The type rules of the language are given in Fig. 1, where by L(M)
and C(M) we mean the set of labels and locations, respectively, used in M and
by V(M) the set of (free) variables of a term.

The rules for new, break, continue perform the introduction of a fresh loca-
tion or label name x. This is apparently syntactically restrictive, e.g. the term
new x.new x.!x does not type-check, but any such term can be alpha-converted
to a legal term, i.e. new x.new y.!y.

The “big-step” operational semantics are standard for an IA-like language.
Let V be the set of values, including natural numbers, booleans and skip, V =

1 http://www.cs.bham.ac.uk/research/projects/mage

http://www.cs.bham.ac.uk/research/projects/mage

64 A. Bakewell and D.R. Ghica

x ∈ FT

x : T n : int true : bool false : bool skip : com

M : com N : T

M ; N : T

M : int N : int
M ⊕ N : int

B : bool Mi : T

if B then M1 else M2 : T

x ∈ C M : int
x:=M : com

x ∈ C
!x : int

x ∈ L
goto x : com

f ∈ FT1×···×Tk→T Mi : Ti

f(M1, . . . , Mk) : T

M : T x 	∈ C \ C(M)

new x.M : T

M : com x 	∈ L \ L(M)

break x.M : com

M : com x 	∈ L \ L(M)

cont x.M : com

M : T

M : prog
V(M) = {x1, . . . , xk} f ∈ FT1×···×Tk→T M : T N : prog

let f(x1, . . . , xk) = M in N : prog

Fig. 1. Typing rules for IAl

M, Σ ⇓ skip, Σ′ N, Σ′ ⇓ E, Σ′′

M ; N, Σ ⇓ E, Σ′′
M, Σ ⇓ G, Σ′

M ; N, Σ ⇓ G, Σ′′

M, Σ ⇓ m, Σ′ N, Σ′ ⇓ G, Σ′′

M ⊕ N, Σ ⇓ G, Σ′′
M, Σ ⇓ G, Σ′

M ⊕ N, Σ ⇓ G, Σ′′

M, Σ ⇓ m, Σ′ N, Σ′ ⇓ n, Σ′′ p = m ⊕ n

M ⊕ N, Σ ⇓ p, Σ′′

B, Σ ⇓ b, Σ′ Mb, Σ′ ⇓ E, Σ′′

if B then Mtrue else Mfalse, Σ ⇓ E, Σ′′
B, Σ ⇓ G, Σ′

if B then Mtrue else Mfalse, Σ ⇓ G, Σ′

M, Σ ⇓ m, Σ′

x:=M, Σ ⇓ skip, Σ′[x �→ m]

M, Σ ⇓ G, Σ′

x:=M, Σ ⇓ G, Σ′ !x, Σ ⇓ Σ(x), Σ

M, Σ ⊗ (x �→ 0) ⇓ E, Σ′ ⊗ (x �→ n)

new x.M, Σ ⇓ E, Σ′
M, Σ ⇓ goto x, Σ′

break x.M, Σ ⇓ skip, Σ′
M, Σ ⇓ skip, Σ′

break x.M, Σ ⇓ skip, Σ′

M, Σ ⇓ goto x, Σ′ cont x.M, Σ′ ⇓ E, Σ′′

cont x.M, Σ ⇓ E, Σ′′
M, Σ ⇓ skip, Σ′

cont x.M, Σ ⇓ E, Σ′

P,U ⊗ (f �→ F), Σ ⇓ E, Σ′

let f(x1, . . . , xk) = F in P, U , Σ ⇓ E, Σ′
U(f) = F F [Mi/xi],U , Σ ⇓ E, Σ′

f(M1, . . . , Mk),U , Σ ⇓ E, Σ′

Fig. 2. Operational semantics for IAl

N + B + 1. Let G = {goto x | x ∈ L} be the set of non-local jumps. Let
the set of final forms be E = V + G. We assume V ∈ V, G ∈ G, etc. We
also use an environment U which is a map from function-identifiers to terms.
Let Σ : C → Z be a store, let Σ ⊗ (x �→ n) represent the extension of Σ
to domain C + {x} such that Σ ⊗ (x �→ n)(x) = n, and let Σ[x �→ n] be a
store equal to Σ except that Σ[x �→ n](x) = n. The operational semantics of
the language are relations of the form M,U , Σ ⇓ E, Σ′, meaning term M in
environment U and state Σ evaluates to final form E ∈ E and final state Σ′.
If the environment is not used in the rule it will be omitted, for simplicity. The
operational semantics is given in Fig. 2. Note that continue is expressive enough
to encode iteration: while M do N ≡ cont y.if M then N ; goto y else skip.
Also note that a notion of abnormal termination can be encoded with goto
abort, where abort is a reserved label. With abort, assertions can be encoded
as assert(M) ≡ if M then skip else goto abort.

Compositional Predicate Abstraction from Game Semantics 65

2.2 Game Semantics

In this section we will present a game-like model along the lines of [14], but with
the important distinction that state will be modelled explicitly in a way rather
similar to [15] and [16]. We can do this because of the greatly simplified role
that locations can play in the language. The absence of var-type terms makes
interference and bad variables impossible and supports a global store model.

A state Σ : A → Z maps a set of names A to integer values. Given an alphabet
A and a set of names A, a stateful sequence sΣΣ′

consists of a sequence s ∈ A∗

and two states Σ, Σ′ : A → Z. If s = ε, the empty sequence, we require Σ = Σ′.
We define the following operations on sets of stateful sequences, i.e. stateful
languages: S · T =

{
(s · t)ΣΣ′′ | sΣΣ′ ∈ S, tΣ

′Σ′′ ∈ T
}
. Also,

S(0) = {εΣ,Σ | Σ : A → Z}, S(k) = S · S(k−1), S∗ =
⋃
k∈N

S(k).

If t, u are stateless sequences then we define t · sΣΣ′ · u = (t · s · u)ΣΣ′
.

With every type U of the language we associate an alphabet �U�:

�int� = {q} ∪ Z, �bool� = {q, t, f}, �com� = {q, a}.
For function types we have

�T1 × · · · × Tn → T � =
∑

i=1,n

�Ti� + �T �. (1)

Terms M : T are modelled by languages over alphabet

AM = �T � +
∑

U s.t.
V(M)∩FU 	=∅

�U� +
∑

y∈L(M)

goy. (2)

To make the disjoint sum more explicit, we syntactically tag elements of
�U� with the identifier x. The symbols in the alphabet are the so-called game-
semantic “moves”. They represent the observable actions that a term can per-
form. Every language that denotes a meaning of a term has a certain form, given
by all its possible initial and final moves, called bracketing moves. If the final
action belongs to the normal alphabet associated with the type, the trace is a
complete computation leading to value a, and we denote it by �M�a. Another
possible final action is gox for some label x and it denotes an attempt to jump
out of the scope of the term; we denote such traces {|M |}. The meaning of terms
at ground type can be decomposed as:

�M : com� = q · �M�a · a + q · {|M |}
�M : bool� = q · �M�t · t + q · �M�f · f + q · {|M |}
�M : int� =

∑
n∈Z

q · �M�n · n + q · {|M |}.

66 A. Bakewell and D.R. Ghica

�skip� = εΣΣ , {|skip|} = ∅
�n�n = εΣΣ , �m�n = ∅ if m �= n, {|u|} = ∅
�M1; M2�p = �M1� · �M2�p, {|M1; M2|} = {|M1|} + �M1� · {|M2|}
�M1 ⊕ M2�p =

∑
m,n,p∈Z

m⊕n=p

�M1�m · �M2�n, {|M1 ⊕ M2|} = {|M1|} +
∑
m∈Z

�M1�m · {|M2|}

�x:=M� =
∑
n∈Z

(
�M�ΣΣ′

n

)ΣΣ′[x �→n]
, {|x:=M |} = {|M |}

�!x�n = εΣΣ if Σ(x) = n, �!x�n = ∅ if Σ(x) �= n, {|!x|} = ∅
�new x.M�=

(
�M�Σ⊗(x �→0),Σ′⊗(x �→n))Σ,Σ′

, {|new x.M |}=
({|M |}Σ⊗(x �→0),Σ′⊗(x �→n))Σ,Σ′

�if M then M1 else M2�a = �M�t · �M1�a + �M�f · �M2�a,

{|if M then M1 else M2|} = {|M |} + �M�t · {|M1|} + �M�f · {|M2|}
�goto x�a = ∅, {|goto x|} = (gox)ΣΣ

�break x.M�a = �M�a + {|M |}x, {|break x.M |} = {|M |}y · goy , x �= y

�cont x.M�a = {|M |}∗x · �M�a, {|cont x.M |} = {|M |}∗x · {|M |}y · goy, x �= y.

Fig. 3. Game-semantic evaluations

Intuitively, �M�a, {|M |} are the observable effects of the actual computation that
M carries out in order to produce a or jump, respectively.

For a term M we define a pattern-matching operator that extracts traces with
a given initial and final states �M�ΣΣ′ ∆= {s | sΣΣ′ ∈ �M�} and similarly for
{|M |}. We also use the notation {|M |} ∆= {|M |}x · gox and we implicitly sum over
all states Σ. Most of the semantic valuations are given in Fig. 3.

Note that constants have no observable side-effects and cannot jump. For
break, normal termination is either the normal termination of M or a jump to
the breaking label x; any other termination can only be a jump. For continue,
any jump to x causes a restart of M , until it terminates normally or until it
jumps to a different location than x.

As in [14] we only give a game-semantic definition for function application of
a free function identifier, i.e. a function where the definition is not known. We
choose not to present function application in general because it is too complex for
this presentation, unrelated to the issue of predicate abstraction. In the absence
of recursion β-redexes (i.e. function calls with known definitions) can be reduced
operationally. It is fair to say that the entire apparatus of game semantics and
the entire development to this point is necessary only insofar as it allows the
formulation of this rule:

�f(M1, . . . , Mn)�k = qf ·
⎛⎝ n∑

i=1

∑
a∈�Ti�

qfi ·�Mi�a ·afi

⎞⎠∗

· kf

Compositional Predicate Abstraction from Game Semantics 67

{|f(M1, . . . , Mn)|} = qf ·
⎛⎝ n∑

i=1

∑
a∈�Ti�

qfi ·�Mi�a ·afi

⎞⎠∗

·
(

n∑
i=1

qfi · {|Mi|}
)

.

Moves qf , kf are markers delineating the overall beginning and end of compu-
tation. Moves qfi, afi are markers delineating the beginning and execution of
each argument. A normal execution of a function is an arbitrary sequence of
executions of its arguments. If one of the arguments causes a non-local jump
then the function call terminates with that non-local jump. The locality of the
jumps ensures that all jumps from Mis are either local or outside of the scope.
It is not possible for arguments to cause jumps to each other.

Finally, for completeness, if x : T is a base-type free variable then �x�a = x
and {|x|} = ∅: its meaning is an unspecified action labelled with the variable.

We are mainly interested in proving safety properties. Suppose that there is
a special label called abort. A term is abort-free if it has no occurrence of goto
abort. We say that a term M is safe if for any abort-free context with a hole C[−]
and for any state Σ we have C[M], Σ ⇓ E, Σ′, E �= goto abort. The connection
between the operational and game semantics is given by:

Theorem 1. A term of IAl M is safe if and only if {|M |}abort = ∅.
The proof of this result is routine, similar to that in [4].

Example 1. Show new x.f(c; x := !x + 2, assert (!x % 2 <> 0)) is safe.
This example illustrates the uniqueness of the game-semantic approach, be-

cause it requires reasoning about a non-trivial interaction between non-local
function f, non-local procedure c and the store. The set of locations is L = {x}
and the state is Σ : {x} → Z. For simplicity we denote the function (x �→ n)
simply as n. Following simple calculations we have

�c;x:=!x+2� = c · εn,n+2 = cn,n+2 �c;x:=!x+2� = ∅
�assert(!x%2!=0)� = ε2k,2k {|assert(!x%2!=0)|} = (goabort)2k+1,2k+1.

Applying f gives:

�f(c;x:=!x+2,assert(!x%2<>0))�

= qf ·
(∑

n

qf1 · cn,n+2 · af1 +
∑

k

qf2 · ε2k,2k · af2

)∗

· af

{|f(c;x:=!x+2,assert(!x%2<>0))|}

=qf ·
(∑

n

qf1 · cn,n+2·af1+
∑

k

qf2·ε2k,2k·af2

)∗

·
(∑

k

qf2·(goabort)2k+1,2k+1

)
.

By a simple inductive argument,
(∑

n qf1 · cn,n+2 · af1 +
∑

k qf2 · ε2k,2k · af2
)∗

always produces traces of the form sn,n+2k, therefore

�new x.f(c;x:=!x+2,assert(!x%2<>0))�=qf · (qf1 · c · af1 + qf2 · af2)∗ · af

{|new x.f(c;x:=!x+2,assert(!x%2<>0))|}=∅,

68 A. Bakewell and D.R. Ghica

since the rule for new forces the initial state to be 0 and removes the (only)
location x from the state. According to Thm. 1 this means the term is safe. Note
that if we take the set of integers to be finite the set of state annotations is also
finite and the formula can be mechanically verified.

3 Predicate Abstraction

The key problem of automatic software verification is that the set of all possible
states Σ is very large. If we restrict IAl to finite k-bit integers, then a set
of states over n variables has, obviously, 2nk elements. Predicate abstraction in
game semantics is about reducing the size of this set, in a way that is compatible
with the compositional (denotational) structure of the semantics and which can
still model the subtle interplay between store and procedural behaviour. To
further simplify the presentation we will only consider predicate abstraction for
assignments that only use pure expressions on the RHS, i.e. expressions that do
not change the state while returning a value. This is not a substantial restriction,
as all programs can be converted to that form using assignment to intermediate
values.

We abstract a state Σ in the standard way (e.g. [9]) by representing it as a
set of predicates over dom(Σ). If σ is approximated by p predicates then the
number of possible values is 2p, which can be far smaller than 2nk. We denote
an abstracted state by Ψ .

We introduce the following notations. Given a set of states S = {Σ | Σ : L →
Z} over locations L, let PL be the set of all predicates definable using its locations
as variables, and let PL ∈ P∗

L a (finite) list of its elements, constituting the
predicate abstraction of S. The predicates Ψ ∈ PL are called abstract states. A set
of abstract states is satisfiable written sat(Ψ0, . . . , Ψk) if there is an assignment
of their variables that makes each Ψi true; we call such predicates that are
simultaneously satisfiable compatible.

We define pa-traces similar to stateful traces, sΨΨ ′
, with concatenation of

pa-languages defined as S · T = {(st)ΨΨ ′ | sΨΨ0 ∈ S, tΨ
′
0Ψ ′ ∈ T, sat(Ψ0, Ψ

′
0)}.

Note that concatenation of pa-traces is non-deterministic, due to the possible
choices for Ψ0, Ψ

′
0, unlike stateful trace concatenation which is deterministic.

Exponentiation and iterated closure are defined similarly to stateful traces.
Let EN and EB be the languages of integer and boolean expressions con-

structed from constants, arithmetic and logic operators and uninterpreted vari-
ables. The predicate-abstracted semantics is defined in terms of pa-traces and
is structurally similar to that of the original game semantics. �int� = {q} ∪
EN , �bool� = {q} ∪ EB, �com� = {q, a}. Function-type and term alphabets are
analogously to Eqns. 1 and 2. Note that the sub-alphabet of result moves is
expanded from the set of all values of a given type to the set of all syntactic
expressions over L of a given type. Trace decompositions are analogous to game
semantics: �M : com� = q · �M�a · a + q · {|M |}, and so on for the other types.
The semantic rules for constants, sequential composition, control and function
application are also analogous to those of the original game semantics. We only

Compositional Predicate Abstraction from Game Semantics 69

present the rules that are substantially different: branching, arithmetic and logic,
assignment and dereferencing, local variable.

We introduce the notation �M�
〈Ψ0Ψ1〉
B

∆=
(
�M�

Ψ0Ψ1

B

)Ψ0Ψ1 to identify particular

traces. Note that �−�
Ψ0,Ψ1 is a trace-selection operator whereas (−)Ψ0,Ψ1 is an

annotation. The pa-semantics of branching is:

�if M then M1 else M2�a

=
∑

B∈EB

sat(Ψ1,B)

�M�
〈Ψ0Ψ1〉
B · �M1�a +

∑
B′∈EB

sat(Ψ ′
1,¬B′)

�M�
〈Ψ ′

0Ψ ′
1〉

B′ · �M2�a

{|if M then M1 else M2|}
= {|M |}+

∑
B∈EB

sat(Ψ1,B)

�M�
〈Ψ0Ψ1〉
B · {|M1|}+

∑
B′∈EB

sat(Ψ ′
1,¬B′)

�M�
〈Ψ ′

0Ψ ′
1〉

B′ · {|M2|},

Note that the guard M evaluates to a syntactic expression B, rather than a
value. The branch to be executed is chosen depending on whether the expression
is compatible with the state or whether its negation is. Note that it is possible
that both conditions are satisfied, case in which the branching becomes non-
deterministic. Arithmetic and logic operators evaluate to a syntactic expression
rather than a value:

�M1 ⊕M2�E1⊕E2
= �M1�E1

· �M2�E2
,

{|M1 ⊕M2|} = {|M1|}+ �M1� · {|M2|}.
The rule for assignment is:

�x:=M� =
∑

E∈EN

(
�M�

ΨΨ ′

E

)ΨΨ ′′

, {|x:=M |} = {|M |},

where sat(Ψ ′′, Ψ ′[E/x]).
Note that after assignment a new pa-state Ψ ′′ must be chosen, which is com-

patible to the old state in which x has become E. Note that the choice of Ψ ′′

can introduce non-determinism in the interpretation. The pa-semantics of as-
signment is non-deterministic, unlike the game-semantic interpretation.

Dereferencing returns x, seen as a syntactic expression:

�!x�x = εΨΨ , �!x�E = ∅ if E �= x, {|!x|} = ∅.
Local variable introduction must cope with the fact that the bound variable
cannot appear outside of its context, therefore the pa-states inside the block
must come from a different set than that used outside the block, which uses a
smaller set of locations.

�new x.M� =
(
�M�

Ψ0Ψ1)Ψ ′
0,Ψ ′

1 ,

{|new x.M |} =
({|M |}Ψ0Ψ1)Ψ ′

0,Ψ ′
1 .

70 A. Bakewell and D.R. Ghica

where Ψ ′
0, Ψ

′
1 ∈ PL, Ψ0, Ψ1 ∈ PL+{x}, sat(Ψ0, Ψ

′
0, x = 0), sat(Ψ1, Ψ

′
1). As in the

case of assignment, the choice of updated state is not necessarily deterministic.
It is assumed that local variables are initialized to zero.

Example 2. We reconsider the Example 1 program, using pa-semantics to show
that new x.f(c; x := !x + 2, assert (!x % 2 <> 0)) is safe.

Assume the singleton predicate set P{x} = {even(x)}, so the only possible ab-
stracted states are e = even(x) and o = ¬even(x). Following simple calculations
we have

�!x+2�x+2 = εo,o + εe,e, {|!x+2|}x+2 = ∅, �!x+2�
o,o

x+2 = ε, �!x+2�
e,e

x+2 = ε

�x:=!x+2� =
(
�!x+2�

o,o

x+2

)o,Ψ +
(
�!x+2�

e,e

x+2

)e,Ψ ′

,

where sat(¬even(x + 2), Ψ), sat(even(x + 2), Ψ ′), so Ψ = e, Ψ ′ = o. Therefore
�x:=!x+2� = εo,o + εe,e. Also, {|x:=!x+2|} = ∅. The two arguments are

�c;x:=!x+2� = q · �c;x:=!x+2� · a + q · {|c;x:=!x+2|} = qcao,o + qcae,e

�assert(!x%2<>0)� = q · ae,e + (q · goabort)o,o.

Applying f gives:

�f(c;x:=!x+2,assert(!x%2<>0))�

= qf · (qf1 · ce,e · af1 + qf1 · co,o · af1 + qf2 · εe,e · af2)∗ · af

{|f(c;x:=!x+2,assert(!x%2<>0))|}
=qf · (qf1 · ce,e · af1 + qf1 · co,o · af1 + qf2 · εe,e · af2)∗ · (qf2 · (goabort)o,o

)
.

Obviously the iteration
(
qf1 · ce,e · af1 + qf1 · co,o · af1 + qf2 · εe,e · af2

)∗ always
produces either traces of the form se,e or so,o, therefore

�new x.f(c;x:=!x+2,assert(!x%2<>0))� =qf · (qf1 · c · af1 + qf2 · af2)∗ · af

{|new x.f(c;x:=!x+2,assert(!x%2<>0))|} =∅,
since the rule for new forces the initial state to be compatible with x = 0 (i.e.
Ψ = e); the outer set of predicates is defined over the empty set of locations and
is omitted. Note that in this (not typical) case the pa-semantics and the game
semantics give the same interpretation.

3.1 Formal Properties

The technical hurdle is formulating the pa-semantics; with the definitions in
place proving the relevant technical properties is a routine exercise.

This ancillary result is important towards proving decidability.

Proposition 1. For any M : T , T ∈ {bool, int} there is only a finite set of
syntactic expressions E such that �M : T �E �= ∅.

Compositional Predicate Abstraction from Game Semantics 71

Proposition 2 (Decidability). If PL is finite then {|M |} = ∅ is decidable.

The proof relies on the fact that, given a finite set of pa-state annotations Ψ ,
and considering the finitary encoding of the alphabet (from Prop. 1) the pa-
semantics accepts a regular-language formulation. Let us write {|M |}〈P〉 when
we need to emphasise that a pa-semantics is over predicate set P .

Proposition 3 (Monot.). If P ⊆ P ′ and {|M |}〈P〉 = ∅ then {|M |}〈P′〉 = ∅

The contra-positive has an immediate proof; if {|M |}〈P′〉 has a trace then remov-
ing a predicate does not invalidate any of the satisfiablity conditions, therefore
{|M |}〈P〉 will have a trace. The monotonicity property states that “improving”
the abstraction does not remove any possible failure traces.

Proposition 4 (Correctness). If P = {x = n | x ∈ L, n ∈ Z} then {|M |} = ∅
iff {|M |} = ∅.
The proof is immediate, as the Ψ ’s are a precise predicate representations of the
state Σ in the stateful formulation of the game semantic model.

From Correctness and Monotonicity, along with Thm. 1 it follows that

Theorem 2 (Soundness). If {|M |} = ∅ then M is safe.

Thm. 2 and Prop. 2 state that any finite PA semantics is a sound and effective
approximation for the concrete semantics, and it can be used for automatic
proving of safety properties of IAl terms.

4 Heuristics

Our experimental model checker Mage implements automatic verification algo-
rithms within the framework described in previous sections. We use a finite set
of predicates of form Ψ =

∧
P∈P δi(P) where each δi is either the identity or the

negation operation and each P is a proposition over the set of locations. Such
predicates can be efficiently represented as bit-vectors.

4.1 Internal and External Compositionality

Games-based verification tools are compositional in the sense that they can han-
dle open terms (see earlier examples); call this kind of compositionality external.
Additionally, games-based tools are internally compositional, i.e. the model of a
term is built inductively from the models of its sub-terms. This approach is help-
ful because it allows the modification of the abstraction scheme within the term
being constructed; some branches of the syntax tree can be heavily abstracted
while others can be much more precise. This feature has been discussed in the
context of games-based data-abstraction and refinement [4,6], and it can be used
again to great effect with predicate abstraction by changing the predicate set
within the term.

72 A. Bakewell and D.R. Ghica

4.2 Flexibility and Efficiency

The pa-semantics allows the predicate set to change at every composition point
in the program — i.e. between every sub-term and its successor in the parse tree.
This flexibility can be exploited by removing from the pa-state Ψ predicates P
deemed irrelevant and reintroducing them whenever precision needs to be im-
proved. It is well known that minimizing the predicate set size is essential to
avoid a state explosion; moreover, n predicate-bits are typically much more ex-
pensive to maintain than an n-bit state in conventional model checking, because
each bit represents an arbitrarily complex predicate.

Predicate annotations. Running a satisfiability check over a current state and
all possible next-states, and allowing the entire predicate set to change at every
composition is too expensive in general. To make our treatment of variable ab-
straction schemes more perspicuous, we shall use syntactic annotations “newp”
and “endp” to delimit predicate scopes at the level of the source code. This is
important because for any assignment we can track the state-change precisely
by only using two predicates (i.e. a two-bit vector), representing the state before
and after the assignment. For example, in the code fragment below no more
than two predicates are needed at any one time to track the following execution
accurately and validate the assertion (c:com is a free procedure identifier).

newp (x = 0); x := 0; c;
newp (x = 1); x := !x + 1; c; endp (x = 0);
newp (x = 11); x := !x + 10; c; endp (x = 1);
newp (x = 111); x := !x + 100; c; endp (x = 11);
assert(x = 111); endp (x = 111)

Another simplifying restriction we impose is that predicate scopes are well nested
and use instead “letp p in M” annotations. Next-state calculation (which
predicates can change valuation at a given program point), and identification
of relevant predicates for current-state tests become much simpler because the
predicates form a stack that can be mapped into the standard program stack. On
the other hand, a disadvantage of nested scoping is that a series of overlapping
scopes cannot always be kept tight. In the same example the maximum size of
the bit vector used to represent the pa-state is now four:

letp (x = 0) in x := 0; c;
letp (x = 1) in x := !x + 1; c;
letp (x = 11) in x := !x + 10; c;
letp (x = 111) in x := !x + 100; c;
assert(x = 111)

4.3 Predicate Scope

Our experimental tool, Mage resolves satisfiability tests with the external SMT
engine Yices

2. Two fully automatic predicate annotation schemes are used, both
in the compositional “letp” style:
2 http://yices.csl.sri.com/

http://yices.csl.sri.com/

Compositional Predicate Abstraction from Game Semantics 73

1. All (pure) conditional expressions in the program are predicates in the model,
each given maximal scope to maximize the chance of a successful check (but
expensive in situations where a scope contains many conditionals).

2. Conditionals are made predicates with minimal scope initially; checking is
therefore much faster and much more likely to be inconclusive. A refinement
loop is added to expand the scope of some predicates (see Section 4.4).

It is this issue of predicate scope that the internal compositionality of the game-
based formulation exposes and allows to be manipulated to the advantage of the
verification process: for success the selected predicates must be both adequate
and have sufficient scope; but too many predicates with excessive scope will
make checking infeasible.

Example 3 (Number magic). The magician asks the stooge to think of an n,
double it, add 50, divide by 2, subtract n and add 100. The distract:com
procedure is just that, an irrelevant diversion.

new m.new n.n := stooge(); distract;
m := !n + !n; distract; assert(m = 2 * n);
m := !m + 50; distract; assert(m = 50 + 2 * n);
m := !m / 2; distract; assert(m = 25 + n);
m := !m - !n; distract; assert(m = 25);
m := !m + 100; distract; assert(m = 125)

The checks on magic answer m provide the intermediate invariants needed to
prove the trick by predicate abstraction and the distractions prevent Mage

treating the assignment sequence as a single basic block (which makes the proof
trivial)!

This is easily verified by Mage using maximally scoped predicates. But notice
that with five conditionals and hence five predicates (and no clever optimiza-
tions) the satisfiability of 25 possible next-states must be tested at each compo-
sition point in the pa-model where the state can change. This takes around 250
seconds.

Mage can also verify the term much faster, in about 2 seconds, using min-
imally scoped predicates, widened just enough to include the assignment that
makes it true and the assertion that declares it. This is achieved by preserving
the valuations of predicates from the end of their letp scope until the next as-
signment. For example, in letp (m = 25) in (m := !m - !n; distract();
assert(m = 25)); at the assignment-composition, the valuation m = 25 + n
from the previous scope is compatible only with next-state m = 25, as per the
definition of pa-trace concatenation.

Hence the problem of having to nest overlapping scopes is eliminated as the
model of letp p in M1; letp p in M2 can reach exactly the same states as
that of letp p in (M1;M2) because pa-trace concatenation always kicks in at
the boundary between letps.

There is considerable potential for further speed up the implementation by de-
veloping tighter solver integration; the incremental-SMT approach to predicate

74 A. Bakewell and D.R. Ghica

abstraction is fully compatible with our approach and would shrink run-times
by a substantial factor although it cannot in itself avoid the state explosions.

4.4 Counter-Example Guided Scope Refinement

Counterexample certification checks trace feasibility of a pa-trace. Pa-trace con-
catenation offers a local check of compatibility between pa-states, but each such
concatenation point is a source of non-determinism. After several such concate-
nations the global trace from start to end may be actually not possible.

Consider for example the following code, with abstracting predicates written
explicitly as program annotation in letp style:

letp (x > y) in letp (x < y) in letp (z <> 2) in
x := n; y := m;
if !x > !y then z := 1 else z := 0;
if !x < !y then z := !z + 1 else skip;
assert(!z <> 2)

The second assignment to z may go from a pa-state in which z <> 2 to a pa-
state in which z <> 2 or to one in which z = 2. Because these distinctions
cannot be made locally, the feasibility check must involve a global satisfiability
test of the entire concatenation. In this case, we must check whether all predi-
cates x1 = n, y1 = m, x1 <= y1, z1 = 0, x1 < y1, z2 = z1 + 1, z2 = 2
are compatible.

Refinement is realised by modifying the predicate abstraction with the aim
of eliminating some infeasible counterexamples and the guarantee of not intro-
ducing new infeasible counterexamples. In our framework it can be achieved
by adding predicates or extending the scope of existing predicates. Mage in
predicate-scope refinement mode begins by using the guard of each if statement
(implicit in assert) as a tightly-scoped predicate, represented by the annotation:

if B then M else N ⇒ if (letp B in B) then M else N

Note that the unannotated term and the tight annotation have identical models
as the predicates never live long enough to be absorbed into the global state.
So for the simple algorithm in Mage (with no interpolation or other methods
for adding predicates that are not conditionals), refinement now simply means
extending the scope of some letp that appears in an infeasible counterexample!

Example 4. Consider the safe term

new x.new y.new z.
x := !i; y := !i;
if letp (x > y) in !x > !y
then z := !x - !y; assert(letp (z > 0) in !z > 0)
else skip

Checking generates a counterexample that needs to satisfy x1 = i1, y1 = i2,
x1 > y1, z1 = x1 - y1, z1 > 0 which is infeasible. Maximizing the two pred-
icate scopes would eliminate the counterexample in one step, but by expanding
them more gradually we arrive at the following provably safe scopes:

Compositional Predicate Abstraction from Game Semantics 75

new x.new y.new z.x := !i; y := !i;
letp (x > y) in if !x > !y
then letp (z > 0) in z := !x - !y; assert(!z > 0)
else skip

The tight scopes require a running time of 0.75 sec. while the loose scope requires
7.5 sec. of execution.

Note that this scheme is guaranteed to terminate and the program will be ver-
ified if it is verifiable when annotated with maximally-scoped conditionals. The
gradual scope expansion creates two problems: more refinement iterations and
the need for heuristics regarding which letp to expand. By a depth-first ex-
pansion scheme the tightest safe annotation will be found. This makes ours an
alternative approach to the idea of predicate minimization used in other tools [17]
so the burden of the expanded predicates on verification in other parts of the
model should be minimized. The problem of more iterations is mitigated if model
checking on the intermediate refinements is restricted to testing for the presence
of the infeasible counterexample.

5 Further Work

We believe we are only beginning to exploit the new possibilities of attacking
state-space explosion through internal compositionality. The next instance of
the tool will incorporate at least a form of refinement by delayed SMT: we will
extend the semantics and tool to allow the precision of a fixed pa to be gradually
improved by delaying SMT tests for up to a specified number of concatenations.
This achieves the same effect as expanding the scope of each predicate without
actually increasing the state, but at the cost of more false counterexamples.

There is now a real potential to combine game-semantic models with more
complex state-representation assertion languages, such as those arising from sep-
aration logic [18] and target heap-oriented programs compositionally. We are
currently examining this, as well as game-semantic models of more realistic pro-
gramming languages.

References

1. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and static driver verifier:
Technology transfer of formal methods inside Microsoft. In: IFM, pp. 1–20 (2004)

2. Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST software verification sys-
tem. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 25–26. Springer,
Heidelberg (2005)

3. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L.: Applying game seman-
tics to compositional software modeling and verification. In: Jensen, K., Podelski,
A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 421–435. Springer, Heidelberg (2004)

4. Dimovski, A., Ghica, D.R., Lazić, R.S.: Data-abstraction refinement: A game se-
mantic approach. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672,
pp. 102–117. Springer, Heidelberg (2005)

76 A. Bakewell and D.R. Ghica

5. Ghica, D.R., Murawski, A.S.: Compositional model extraction for higher-order
concurrent programs. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 303–317. Springer, Heidelberg (2006)

6. Bakewell, A., Ghica, D.R.: On-the-fly techniques for game-based software model
checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 78–92. Springer, Heidelberg (2008)

7. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000)

8. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and III. Inf.
Comput. 163(2), 285–408 (2000)

9. Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidel-
berg (1999)

10. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. Electr. Notes Theor. Comput.
Sci. 3 (1996)

11. Laird, J.: A fully abstract game semantics of local exceptions. In: LICS, pp. 105–114
(2001)

12. Reynolds, J.: The craft of programming. Prentice-Hall, Englewood Cliffs (1981)
13. Pitts, A.M.: Reasoning about local variables with operationally-based logical rela-

tions. In: O’Hearn, P.W., Tennent, R.D. (eds.) Algol-Like Languages, July 1996,
vol. 2, pp. 173–193. Birkhauser, Basel (1997); reprinted from Proceedings Eleventh
Annual IEEE Symposium on Logic in Computer Science, Brunswick, NJ, July
1996, pp. 152–163 (2006)

14. Ghica, D.R., McCusker, G.: The regular-language semantics of second-order Ide-
alized Algol. Theor. Comput. Sci. 309(1-3), 469–502 (2003)

15. Ong, C.H.L.: Observational equivalence of 3rd-order Idealized Algol is decidable.
In: LICS, pp. 245–256 (2002)

16. Laird, J.: A game semantics of names and pointers. Annals of Pure and Applied
Logic 151(2-3), 151–169 (2008); first Games for Logic and Programming Languages
Workshop

17. Chaki, S., Clarke, E., Groce, A., Strichman, O.: Predicate abstraction with mini-
mum predicates. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860,
pp. 19–34. Springer, Heidelberg (2003)

18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74 (2002)

Compositional Synthesis of Reactive Systems
from Live Sequence Chart Specifications�

Hillel Kugler1 and Itai Segall2,��

1 Computational Biology Group, Microsoft Research, Cambridge, UK
hkugler@microsoft.com

2 Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel

itai.segall@weizmann.ac.il

Abstract. Synthesis is the process of automatically generating a correct
running system from its specification. In this paper, we suggest a trans-
lation of a Live Sequence Chart specification into a two-player game for
the purpose of synthesis. We use this representation for synthesizing a
reactive system, and introduce a novel algorithm for composing two such
systems for two subsets of a specification. Even though this algorithm
may fail to compose the systems, or to prove the joint specification to be
inconsistent, we present some promising results for which the composi-
tion algorithm does succeed and saves significant running time. We also
discuss options for extending the algorithm into a sound and complete
one.

1 Introduction

Automatic synthesis of systems directly from their specification has been a dream
for many researchers. In the dream, a specifier is faced with an expressive yet
intuitive specification language, in which she specifies the requirements from her
system. All the rest will then happen automatically – by clicking a button, the
specification will automatically be checked for consistency, and if found consis-
tent, a system that is correct-by-construction will be generated, i.e., a system
that is guaranteed to satisfy the specification. On the way towards realizing
this dream, one must first choose a specification language that is both expres-
sive and intuitive, and then build strong and fast algorithms for synthesizing
systems from this language. Synthesis raises major challenges in terms of the in-
herent complexity of the problem and the required methodological development
approach. Compositional synthesis, in which two synthesized systems may easily
be composed into one large system, may help in addressing these challenges. By
synthesizing small parts of the specification separately, and composing the inter-
mediate results, one may save significant running time. Moreover, specifications
� The research was supported in part by The John von Neumann Minerva Center for

the Development of Reactive Systems at the Weizmann Institute of Science.
�� This work was carried out during this author’s internship at Microsoft Research,

Cambridge, UK.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 77–91, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

78 H. Kugler and I. Segall

are usually constructed by a team and evolve over time, by introducing more re-
quirements and modifying existing ones. A compositional approach to synthesis
supports such evolution by reusing results for existing parts of the specification,
rather than having to synthesize a complete system whenever the specification
is modified. Another common way of tackling the high complexity of synthesis
is by introducing semi-automatic algorithms. Such algorithms require some in-
teraction with the user, but may perform much better by exploiting the user’s
understanding of the system. In a compositional synthesis algorithm this can be
done by leaving the choice of the parts that should be separately synthesized to
the user.

Live Sequence Charts (LSCs) [8] have been introduced as a highly expressive
extension of Message Sequence Charts [18]. LSCs are multi-modal charts that
distinguish between behaviors that may happen (existential, cold) and those
that must happen (universal, hot). LSCs are highly expressive, and different
translations of LSCs into temporal logic have been suggested (see, e.g., [9,21]).
On the other side, being visual in nature, we believe the language is highly
intuitive. Thus, LSCs were suggested as an expressive and intuitive specification
language to use for synthesis in [13]. Despite research efforts on synthesizing
systems from LSCs, e.g., [15,5], practical application to real-world systems has
not yet been achieved.

In this paper, we propose a representation of LSC specifications as two-player
game structures, in which a winning strategy for the system is equivalent to a re-
active system satisfying the requirements. This representation is then synthesized
into a reactive system using an approach similar to that proposed in [28,29]. We
further propose a method for composing two synthesized systems. This method
consists of an algorithm that is sound but not complete, and an algorithm that
is complete but not sound. Therefore, it might fail to compose systems, or to
prove their specifications to be inconsistent. However, we do provide several test
cases for which it does succeed in creating a system for the entire specification,
or prove the entire specification to be inconsistent, in running time significantly
faster than that of non-compositional synthesis. We also briefly describe an ex-
tension of the approach that is sound and complete. This extension may be
problematic in terms of running time and implementation, therefore it is given
in this paper mainly for completeness of the approach, rather than as a full
replacement for synthesis of composite specifications.

This work focuses on a subset of LSCs that includes only messages, and as-
sumes that main charts include only messages controlled by the system. We also
assume that no LSC has multiple copies simultaneously open during runtime.
Finally, all messages in the specification are assumed to be synchronous, i.e., the
event of sending a message and receiving it are simultaneous.

We implemented the approach introduced here as part of the new Scenario-
Based Tool [33] developed at Microsoft Research Cambridge, using TLV [31] for
the symbolic computations.

Some details of implementation, proofs, and notations are omitted from this
version of the paper due to lack of space. See [23] for more details.

Compositional Synthesis of Reactive Systems 79

Fig. 1. An example LSC

2 Preliminaries

2.1 Live Sequence Charts

Live sequence charts (LSCs) [8] are an extension of message sequence charts
(MSCs) [18]. LSCs, like MSCs, contain vertical lines, termed lifelines, which de-
note objects, and events, involving one or more lifelines. The most basic construct
of the language are messages : a message is denoted by an arrow between two
lifelines (or from a lifeline to itself), representing the event of the source object
sending a message to the target object. A typical LSC consists of a prechart (de-
noted by a blue dashed hexagon), and a main chart (denoted by a solid frame).
The intended semantics is that whenever the prechart is satisfied in a run of the
system, eventually the main chart must also be satisfied. The synthesis method
presented here focuses on messages, and does not currently support any of the
more advanced constructs of the language, such as conditions, loops, etc.

Any object taking part in the specification is either controlled by the system,
or by the environment. A message is said to be a system (environment) message,
i.e., controlled by the system (environment), if it is sent from an object controlled
by the system (environment).

An example of an LSC appears in Fig. 1. The LSC refers to three objects,
Env representing the environment, and Worm and Pi.p representing two system
objects. The LSC states that whenever Worm sends the message L3 to itself, and
then Env sends Tick to Worm (in this order), then Pi.p should send itself the
messages SetFatePrimary, SetFateSecondary and SetFateTertiary (in this
order), and Worm should send itself the message Forb1. Note that in the main
chart there is no explicit order between the Pi.p messages and that of the Worm.
Also note that if one of the main chart messages occurs before the prechart ends
(e.g., after L3 is sent, but before Tick), then the prechart is cold-violated and
gracefully closed. This is considered legal behavior. If, however, the prechart
completes, then the main chart messages must be sent in the correct order.
Otherwise, this is considered a violation of the specification.

An operational semantics and an execution technique termed play-out was
defined for the LSC language in [16]. Play-out remembers at each point in time

80 H. Kugler and I. Segall

for each LSC the current cut (intuitively, a marker of what has already happened,
and what not). It also maintains the set of active LSCs (those for which the
prechart has been satisfied, but not the main chart). The set of all LSCs and their
cuts is termed a configuration. At each step, the play-out mechanism chooses
one message that is enabled in some active LSC (i.e., appears right after the
current cut), and not violating in any others (a message is violating if it appears
in an active chart but is not enabled), and executes it. Stronger mechanisms,
termed smart play-out and planned play-out are introduced in [14,17]. These
are initiated following each environment step, and look for a sequence of system
events to perform in response (termed superstep), in order to drive the system
to a stable state (one in which no LSC is active). However, looking only one
superstep, or a finite number of supersteps, ahead, is not sufficient either. An
example for this is given in [12]. This leads to the synthesis problem, i.e., given
an LSC specification, finding a reactive system that adheres to the specification,
or proving one does not exist.

2.2 Game Structures and Strategies

We view the synthesis problem as a two-player game between the system and
environment, as formulated in a game structure. We modify the game structure
and strategy definitions from [29] to reflect games in which the system is the first
player. Intuitively, a game structure is a tuple G : 〈V, X, Y, Θ, ρs, ρe, ϕ〉, where V
represents the set of state variables, X is the set of system-controlled variables,
and Y is the set of environment-controlled variables. Θ is the initial condition.
ρs and ρe represent the transition relations of the system and environment, resp.
The transition relation of the system depends only on the current state, whereas
that of the environment may depend also on the system’s transition. Finally, ϕ
is the winning condition, of the form ϕ = ��q, where q is a state formula.

A strategy is a partial function mapping a series of states to a set of possible
system actions. A run is compliant with a strategy if each step taken by the
system is one allowed by the strategy. A strategy is winning for the system if
any run, in which the environment takes only legal steps (i.e., ones allowed by the
game definition), and is compliant with the strategy, is winning for the system,
i.e., satisfies ϕ. Finally, a game structure is realizable if there exists a strategy
that is winning for the system from any initial state (one satisfying Θ).

3 The Synthesis Problem

The synthesis problem is defined as follows. Given an LSC specification, de-
termine whether there exists a reactive system that satisfies the specification,
and generate one if so. Such a system will be called a synthesized system. This
synthesized system must fulfill two requirements: infinitely often it must listen
for environment events, and, it must never violate the specification. Note that
violation here refers both to explicit violations of the requirements (safety), and
to cases in which a step that must happen never does (liveness).

Compositional Synthesis of Reactive Systems 81

Two major distinct views can be taken when considering synthesis from LSCs.
According to the first view, inspired by [16], the synthesized system is a direct
execution engine for the specification, that never violates it. According to the
second view, adopted in this work, the system need not execute the specification
directly – it may take any action, as long as the two requirements above hold.
We will refer to the problem addressed in this paper as synthesis, and to the
other interpretation as non-violating execution.

In practice, the difference between the two translates to the choice of steps
from a given state. In synthesis, the system may perform any step it deems
necessary, while in non-violating execution, a message may be sent only if it is
enabled in some active main chart, as defined in the operational semantics [16].

Our interpretation of the synthesis problem treats the specification as more
under-specified – the specifier states things that may and must happen in the sys-
tem, but anything unconstrained may also happen. In non-violating execution,
an event may happen only if explicitly specified so. Note that in non-violating
execution, a specification may be unrealizable, but become realizable by adding
another LSC (or set of LSCs). In synthesis, however, specifications are mono-
tonic. If a specification is unrealizable, then so is every extension thereof, and
vice versa, a synthesized system for a specification may also serve as a synthe-
sized system for any subset of it. This monotonicity gives rise to the issue of
composition – given synthesized systems for two specifications, find a system for
the unified specification.

Non-violating execution may seem more appropriate for finalized specifica-
tions. However, for intermediate stages the specification is usually more under-
specified, and the specifier does not want to restrict execution to those steps
explicitly appearing in it. Therefore, for such specifications, synthesis is more ap-
propriate. Moreover, synthesis of intermediate specifications may aid the specifier
in identifying under-specified parts in the specification, and extending it accord-
ingly. For the final specification, the choice between non-violating execution and
synthesis depends on the amount of detail the specifier has introduced, and the
level of under-specification in it. Even for the final specification the specifier may
choose to leave certain parts under-specified and decide to use synthesis.

4 The Representation

4.1 The LSC Game Structure

As mentioned above, this work focuses on a subset of LSCs that includes only
messages, and assumes that main charts include only system messages. We also
assume that no LSC has multiple copies simultaneously open during runtime.
Finally, all messages in the specification are assumed to be synchronous, i.e., the
event of sending a message and receiving it are simultaneous.

Given an LSC specification, we construct a game structure G. Intuitively,
the system controls a single variable, ms, that represents the message sent by a
system object in this step. The environment controls a variable me representing
the message sent by an environment object in this step, and a set of variables

82 H. Kugler and I. Segall

L that represent the current LSC configuration. In every turn, the system sends
a single message or chooses not to (by using the special symbol ⊥ for m′

s). The
environment may choose an environment message to send only if the system did
not send one of its own (i.e., if m′

s is ⊥). The environment may also choose
not to send any message (by using its own ⊥ symbol for m′

e). The domain of
me includes one additional special symbol, ∞ (may also be used only when
m′

s is ⊥). By using this symbol, the environment may force the game to stay
forever in the current state. This forces the system to pass control back to the
environment only at the end of a superstep, and is crucial for the correctness of
the composition. Updating the configuration is deterministic, given m′

s and m′
e,

and follows the semantics defined in [16] directly.
We adopt the superstep approach from [14]. Following a single environment

step, the system may perform as many steps as it wishes (finitely many) in order
to reach a state in which all LSCs are not active. Only then will the environment
be allowed to play again.

More formally, given an LSC specification, we construct a game structure
G : 〈V, X, Y, Θ, ρs, ρe, ϕ〉 as follows:

– The set of variables V = {ms, me} ∪ L, as follows:
• ms represents the system message sent in this step. Its domain is the

set of all messages sent by system objects in the specification, plus the
symbol ⊥, representing a no-op.

• me represents the environment message sent in this step. Its domain is
the set of all messages sent by environment objects in the specification,
plus the symbols ⊥ and ∞, both representing no-ops.

• L contains the following:
∗ For each lifeline i, a variable loci representing the location of the cut

on lifeline i. Each location variable ranges over 0, . . . , lmax, where
lmax is the last location of lifeline i.

∗ For each LSC l, boolean variables activel and hotV iolatedl represent-
ing whether the LSC is active, and whether it was ever hot violated,
respectively. We also introduce another boolean variable prevl for
each LSC l, that represents the fact that in the previous timestep
activel and hotV iolatedl were both false.

– X = {ms} is the only system variable.
– Y = V \X = {me} ∪ L are the environment variables.
– The system transition relation is defined such that

ρs(ms, me, L, m′
s) = 1 ⇐⇒ [(ms = ⊥ ∧me = ∞→ m′

s = ⊥)]
– The environment transition relation is defined such that

ρe(ms, me, L, m′
s, m

′
e, L

′) = 1 ⇐⇒ [(m′
s �= ⊥ → m′

e = ⊥)∧ the L′ variables
represent the state of the specification after sending m′

s and m′
e from state

L]. We omit from this version of the paper the details of updating the L
variables, as they are somewhat similar to those of [14], and are a direct
translation of the operational semantics defined in [16].

– The winning condition is ϕ = ��(ms = ⊥ ∧ prevl1 ∧ · · · ∧ prevlk), where
l1, . . . , lk are the LSCs in the specification. This represents the requirements

Compositional Synthesis of Reactive Systems 83

from the synthesized system, i.e., infinitely often the system must listen to
environment events (this happens when ms = ⊥), and it must never violate
the specification (represented by the requirements on the prev variables in
ϕ, similarly to the requirement for ending a superstep in [14]). We denote
by q the state formula in ϕ.

– The initial condition is Θ = [(ms = me = ⊥)∧ values for L that represent
all LSCs being closed].

For a variable u, we denote by ū a valuation of u, and similarly for sets of
variables.

4.2 Monotonicity

Given a realizable LSC game structure, the game structure corresponding to any
subset of the LSCs is also realizable. Moreover, the restriction of a winning state
in the composite structure to the subset one is a winning state in it. Intuitively,
given a winning strategy for the composite specification, the same strategy can
be used for the subset one. Since the strategy is winning for the composite
specification, it satisfies the safety and liveness requirements of all LSCs in the
entire specification, therefore it satisfies them for the LSCs in the subset one,
and is a winning strategy for the subset specification.

Similarly, any extension of an unrealizable LSC game structure (by adding
more LSCs) is also unrealizable.

5 The Synthesis Algorithm

We adapt the algorithm from [29] for games in which the system (controller)
plays first in each turn. For lack of space, the details of this modification are
omitted from this version of the paper. The result of the algorithm is a transition
system S = 〈V, ρ, Θ〉.
Definition 1. Given a transition system S = 〈V, ρ, Θ〉, the strategy induced by
S is defined as: f(s0, s1, . . . , st) = {m′

s|∃m′
e, L

′ : (st, m
′
s, m

′
e, L

′) |= ρ}, i.e., the
strategy allows any system message that appears in transitions from st.
Since the induced strategy considers only the current state (state-strategy), we
will use the short notation of f(V).

6 Strategy Composition

Consider LSC game structures for two subset specifications G1, G2. The variables
ms and me are the only ones appearing in both. For now, assume the sets of
messages appearing in the two specifications are equal, thus the domains of ms

and me are also equal. The case where some messages appear only in one of the
specifications is discussed in Section 6.3. Clearly, ρ1

s = ρ2
s since they depend only

on ms, me and m′
s. ρe is the conjunction of ρ1

e and ρ2
e (each restricted to the

variables relevant to it). q, the state formula in ϕ, is the conjunction of q1 and
q2. Finally, the initial condition is Θ = Θ1∧Θ2. Define G = 〈V, X, Y, ρs, ρe, ϕ, Θ〉
to be the LSC game structure for the composite specification.

84 H. Kugler and I. Segall

6.1 The Composition Algorithm

We present an algorithm for the composition of transition systems that induce
strategies. The algorithm has two main steps. It first computes the synchronous
parallel composition of the transition systems, and then removes bad states from
the result. A state is considered bad if it is a dead end, or will necessarily lead
to one.

Given a transition system S inducing a strategy for the LSC game structure
G, the following assertions, Rlvt(V, m′

s) and Self(V, m′
s), represent whether the

message m′
s is relevant from a given state, and whether it leaves the LSC con-

figuration unchanged from it, resp.

(s, m̄′
s) |= Rlvt ⇔ ∃m̄′

e, L̄
′ : (s, m̄′

s, m̄
′
e, L̄

′) |= ρ

(s, m̄′
s) |= Self ⇔ m̄′

s �= ⊥ ∧ [∀m̄′
e, L̄

′ : (s, m̄′
s, m̄

′
e, L̄

′) |= ρ → (s[L] = L̄′)]

Where s[L] stands for the restriction of s to the variables of L.
Using these assertions, we define the operator bad predecessor, denoted �p,

as follows (where the notation ||q|| stands for the set of states satisfying q):

|| � p|| = {s|∀m̄′
s[(s, m̄

′
s) |= Rlvt] →

[(s, m̄′
s) |= Self ∨ ∃m̄′

e, L̄
′((s, m̄′

s, m̄
′
e, L̄

′) |= ρ ∧ (m̄′
s, m̄

′
e, L̄

′) ∈ ||p||)]}
Thus, a state satisfies �p if any system message relevant from it is either a self

message (i.e., it leaves the configuration unchanged), or opens an opportunity
for the environment to get to a state satisfying p. By applying �p iteratively
until a fixpoint is reached, we mark all bad states. By initially setting the set of
bad states to ∅, dead-end states are marked as bad in the first iteration, and in
following iterations, all states necessarily leading to them. We therefore define
the set Bad as: Bad = µB.�B, i.e., the minimal fixpoint of the bad predecessor
predicate.

One can improve the performance of the fixpoint computation by first com-
puting the set of reachable states in the transition system, and considering only
those in the fixpoint iterations. Since the size of synthesized systems is typi-
cally significantly smaller than that of the whole specification model, the set of
reachable states in them may be computed relatively easily.

The pseudo-code of an algorithm for the composition of synthesized systems
is given in Fig. 2. The algorithm gets as input two transition systems, and if
successful returns a new transition system. It computes the synchronous parallel
composition of the two input systems, and removes bad states from it. If an
initial state is found to be bad, then the algorithm terminates with no returned
system. Otherwise, it constructs a transition relation that makes sure no bad
states are ever reached. In the following sections we explore how this algorithm
is either sound or complete, depending on the inputs.

6.2 Sound Composition

For the sound composition, we use the algorithm from Fig. 2 with synthesized
systems as input. Intuitively, the algorithm tries to weave the two strategies in

Compositional Synthesis of Reactive Systems 85

1: procedure Compose(System S1, System S2)
2: S := S1|||S2

3: bad ← calc bad(S, reachable(S))
4: if ∃s0 |= Θ, s0 ∈ bad then return “Failed”
5: else ρ(s,m′

s, m
′
e, L

′) ←
6: [ρ(s, m′

s, m
′
e, L

′)∧(∀m̃′
e, L̃

′ : ρ(s,m′
s, m̃

′
e, L̃

′) → (s,m′
s, m̃

′
e, L̃

′) �∈ bad)]
7: Return S
8: end if
9: end procedure

Fig. 2. Pseudo-code for the composition algorithm

a way that does not violate either. If the strategies “agree” on the steps to be
taken and their order, then the algorithm will succeed. Otherwise, the algorithm
will fail. Note that the input strategies are not necessarily maximal, therefore
the fact that the algorithm did not succeed in weaving them together does not
mean there are no other winning strategies that can be successfully composed.

When the algorithm is given synthesized systems as input, it is sound, i.e., if it
finds a system, then it is a synthesized system for the composite specification that
induces a system-winning strategy. The formal proof of this claim is omitted from
this version of the paper. Intuitively, we observe that if ms = ⊥ in a given state
(i.e., the system decides to let the environment play), then the environment may
use the ∞ symbol to force the system to stay in this state forever. Therefore,
if ms = ⊥ in a system-winning state, then this state necessarily satisfies q.
The soundness proof relies on this observation, along with the fact that the
only variables shared between the subset systems are ms and me. The proof
considers the system found by the algorithm, and the strategy induced by it. It
shows that any run compliant with it is necessarily compliant with the strategies
for the subset specifications, and therefore winning in them. Then, following the
observation above, it is also winning for the composite specification.

6.3 Augmented Strategies

Often when one considers composition of two specifications, there are messages
that appear in one specification and not in the other. The synthesis algorithm as
presented here will not allow steps not appearing explicitly in the specification.
For composition, however, each part should be allowed to advance as much as it
wishes, while using messages appearing only in it.

In this section, we show how a synthesized system may be augmented to allow
steps that appear only in another (given) specification. Although the augmented
system might not be a winning one anymore (it may now choose infinitely many
steps from the other system without advancing), the composition algorithm is
still sound when given these augmented systems as input.

86 H. Kugler and I. Segall

Definition 2. Given an LSC game structure, G, we define the set of system
messages irrelevant to G to be the set of values for m′

s s.t. in any state, sending
them changes nothing in the configuration, as follows:

irrel(G) = {m̄′
s|∀s, m̄′

e, L̄
′ : (s, m̄′

s, m̄
′
e, L̄

′) |= ρe → (L̄ = L̄′)} \ {⊥}
Given two synthesized systems, S1, S2, for game structures G1, G2 resp., we
create augmented systems S̃1, S̃2, by augmenting their transition relations with
transitions in which the LSC configuration does not change, the system sends
a message relevant only to the other system, and the environment sends no
message, as follows (for i, j ∈ {1, 2}, i �= j):

ρ̃i(s, s′) = ρi(s, s′)∨ (s[Li] = s′[Li]∧ s′[me] = ⊥∧ s′[ms] ∈ irrel(Gi) \ irrel(Gj))

The algorithm, given augmented synthesized systems, is still sound, i.e., if it
finds a system then it is a synthesized system for the composite specification that
induces a winning strategy. The proof of the soundness is similar with augmented
strategies, with the addition that steps resulting from augmenting one transition
relation do not change the state of that system, and are always “real” steps in
the other system, therefore there are finitely many such consecutive steps.

The strategy synthesized by the synthesis algorithm of [29] is one that allows
only steps that strictly get it closer to a stable state (one that satisfies q).
Following a stable state, any step leading to a winning state is allowed, and then
again only steps that strictly get it closer to a stable state. One may further
augment the system by allowing any step leading to a winning state from states
that are not stable, but for which no “real” step has been taken since a stable
state (but only ones resulting from augmenting the strategy).

6.4 Complete Composition

For the complete part, we use the same algorithm from Fig. 2 on inputs that
represent an over-approximation of the maximal winning strategies. These will
be termed optimistic strategies. We show that if the algorithm is given optimistic
strategies as input, then it returns an optimistic strategy. Therefore, if no system
is returned, then the composite specification is unrealizable.

Definition 3. Given an LSC game structure, G, a strategy is optimistic if ∀s,
and m̄′

s: if (∀m̄′
e, L̄

′[(s, m̄′
s, m̄

′
e, L̄

′) |= ρe] → (m̄′
s, m̄

′
e, L̄

′) ∈ win(G)), then m̄′
s ∈

f(s). i.e., an optimistic strategy allows any system step that will necessarily lead
to a winning state. A system inducing an optimistic strategy will be termed an
optimistic system.

In other words, an optimistic strategy must allow any transition to a state from
which the system can win, and is therefore an over-approximation of the maximal
winning strategy.

One can construct the minimal optimistic strategy by allowing any system
step from a winning state after which any environment step reaches another
winning state. Such a strategy will never violate any safety constraint (since it
will not lead to a non-winning state), but it might violate liveness constraints.

Compositional Synthesis of Reactive Systems 87

If the composition algorithm from Fig. 2 is given optimistic systems as input,
then it returns an optimistic system for the composite specification. Intuitively,
the proof relies on the fact that a restriction of a winning state to a subset game
structure is a winning state in it, therefore the synchronous parallel composition
step induces an optimistic strategy. It then shows that no winning state is ever
added to Bad, therefore no transitions between winning states are removed.

As a corollary, the algorithm is complete, i.e., if it finds no system, then the
composite specification is unrealizable.

Note that even though the computed strategy is not the minimal optimistic
strategy, it also will never violate a safety requirement, assuming the two input
strategies never do so. This ensures that if we start from minimal optimistic
strategies, and keep composing them (and the results of composing them), we
will get a system that never causes a violation to any LSC. The reason the
algorithm is not sound is that the resulting system, by being optimistic, does
not guarantee to pass control back to the environment infinitely often. It might
enter an infinite loop of system events, even though neither violates any chart.

6.5 Towards a Sound and Complete Algorithm

The composition algorithms described here are not meant to completely replace
the full synthesis algorithm, but rather as fast alternatives that for some cases
may work, and for others might fail. In such cases, there may be a need for
applying full synthesis on the composite specification.

We now briefly describe possible extensions for these algorithms that together
form a sound and complete algorithm. These are described in very general guide-
lines, and further implementation details are left as future work. The main reason
for this is that the resulting algorithm may be too slow to be of any practical
usage. Moreover, one part of the extension (the sound part) must be applied at
the bottom-most level, i.e., when synthesizing a system. If one performs several
composition steps, and now realizes he needs to further extend the system, he
needs to start from the beginning, strengthen the synthesized systems and com-
pose them together again. For the other part (the complete part), there does not
seem to be a symbolic implementation.

The sound part of the algorithm can be extended as follows. The synthesis
algorithm, as described above, finds strategies that at each step strictly move
towards a stable state (one that satisfies q). By introducing an extra variable,
counter, one can allow a given number of steps to move away from stable states
(in each superstep). The intended usage is as follows: one sets counter to some
low value, synthesizes his basic systems, and composes them. If some composition
step fails, the basic systems can be resynthesized with larger initial counter,
thus improving the chances for the compositions to succeed (yet extending its
complexity and running time). If the composite system is realizable, then there
exists a large enough initial counter for which the compositions will succeed.

The complete part can be extended by strengthening the computation of bad
states. Currently, states are marked bad if they may lead only to themselves or
to other bad states. However, the strategy might allow infinite loops of system

88 H. Kugler and I. Segall

(a) Running time (log-scale) as a
function of the number of disjoint
copies of a 6-LSC specification.

(b) Running time (log-scale) as a
function of the number of LSCs, for
inconsistent chain specifications.

Fig. 3. Running times for two parameterized examples

moves. Since the strategy does not violate any LSC (assuming initially mini-
mal optimistic strategies were used), if such loops were avoided altogether, the
resulting system would have been a winning one. Thus, by identifying such loops
of increasing size, one improves his composed optimistic strategy, and if the sys-
tem is unrealizable, eventually it will be proven as such.

An algorithm that alternatingly increases the counter and the loop size will
be sound and complete. Details of these extensions are left as future work.

7 Results

We implemented our approach as part of the new Scenario-Based Tool [33] de-
veloped at Microsoft Research Cambridge, using TLV [31] for the symbolic com-
putations. We now describe some experimental results from these tools.

The first example is a simple specification consisting of 6 LSCs, that refer
to two objects. Following an initial environment message, the system must send
the messages m1, m2, m2 in this order before passing control back to the envi-
ronment. This specification was replicated, using disjoint sets of messages, with
the number of replicas parameterized, and ranging from 1 to 10. Each copy was
synthesized separately and the results were composed. Figure 3(a) compares the
running time (log-scale) as a function of the number of copies, for: (a) the com-
positional approach, when only winning systems are composed, (b) the composi-
tional approach, when both winning and optimistic systems are composed, and
(c) non-compositional synthesis of the entire specification. The compositional ap-
proach, when only winning strategies are composed, is clearly significantly faster,
but if a composition step would have generated an inconsistent specification, it
could not have been proved without optimistic strategies.

Another example is adopted from [12], where it is shown that synthesis is strictly
stronger than smart play-out. We modify the example to form a series of inconsis-
tent specifications of growing lengths, where specification i requires considering i
supersteps ahead in order to prove its inconsistency. Figure 3(b) shows the running
time (log-scale) as a function of the specification size, for compositional synthesis
(in which each LSC is synthesized separately and composed into the system) as

Compositional Synthesis of Reactive Systems 89

opposed to full synthesis of the specification. Clearly, the compositional approach
saves significant running time. It is worth mentioning that inconsistency is proven
when the composition is performed in a specific order. Different choices of the or-
der did not manage to prove inconsistency.

Two more test cases were generated, both inspired by a biological model
describing the process of vulval precursor cell fate determination in the develop-
ment of the C. elegans nematode [20]. In one, (a simplification of) the different
developmental steps were each synthesized separately, and the results were com-
posed. This specification consists of 22 LSCs. Without composition, the synthe-
sis of the entire system did not finish within 5 days, whereas the compositional
approach obtains a running system in less than 3 minutes. The second specifica-
tion focuses on the last developmental stage, and demonstrates the incremental
nature of the specification process, while using compositional synthesis. This
system was composed in 9.85 seconds, while the full non-compositional synthe-
sis did not finish within 3 days. The latter example also acts as an example
in which smart play-out may choose a superstep that is correct, but may lead
to violations in future supersteps. The synthesized system, on the other hand,
avoids such violations.

8 Related Work

In recent years there have been considerable research efforts on synthesizing exe-
cutable systems from scenario-based requirements [26]. In many of these papers
the requirements are given using a variant of classical Message Sequence Charts
while the synthesized system is state-based. The main distinguishing feature of
our work is that we consider synthesis from Live Sequence Charts, which are
more expressive than most of the classical MSC variants.

One should realize that constructing a program from a specification is a long-
known general and fundamental problem, dating back to work by Church [7] and
tackled by [6,32]. There has also been much research on synthesis from a specifi-
cation given in temporal logic, starting with closed systems, that do not interact
with the environment [27,10], and later [30,1,36] dealing with the synthesis of
open systems from Linear Temporal Logic specifications. The problems of realiz-
ability checking and synthesis from LTL are shown to be 2EXPTIME-complete.
Despite this high complexity, progress has been made in the development and
application of synthesis algorithms, by proposing new algorithms [25], using
heuristic approaches [11], considering subsets of temporal logic [2,28], smart im-
plementation and application [19,3,34]. A compositional method for synthesis is
presented in [24] building upon basic results first described in [25].

Synthesis from LSCs was first studied in [13], and is tackled there by defining
consistency, showing that an entire LSC specification is consistent if and only if it
is satisfiable by a state-based object system, and then synthesizing a satisfying
system. The work in [13] considers a core LSC subset consisting of messages
only, similar to this paper, but does not implement the algorithms or study the
practical questions related to implementation. A game theoretic approach to
synthesis from LSCs involving a reduction to parity games is described in [4],

90 H. Kugler and I. Segall

the authors summarize the experimental results as negative, partially due to a
poor prototype implementation. Synthesis from LSCs using a reduction to CSP
is described in [35]. In [22] synthesis from LSC is tackled somewhat similarly to
this paper, however compositional synthesis is not considered at all.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and Unrealizable Concurrent Pro-
gram Specifications. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini,
M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

2. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller Synthesis for Timed Au-
tomata. In: IFAC Symp. on System Structure and Control, pp. 469–474 (1998)

3. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Automatic Hardware Synthesis from Specifications: A Case Study. In: Proceedings
of the Design, Automation and Test in Europe, pp. 1188–1193 (2007)

4. Bontemps, Y., Heymans, P., Schobbens, P.Y.: From Live Sequence Charts to State
Machines and Back: A Guided Tour. IEEE Trans. Software Eng. 31(12), 999–1014
(2005)

5. Bontemps, Y., Schobbens, P.: Synthesizing Open Reactive Systems from Scenario-
Based Specifications. In: Proc. of the 3rd Int. Conf. on Application of Concurrency
to System Design (ACSD 2003) (2003)

6. Büchi, J., Landweber, L.: Solving Sequential Conditions by Finite-State Strategies.
Trans. Amer. Math. Soc. 138, 295–311 (1969)

7. Church, A.: Logic, Arithmetic and Automata. In: Proc. 1962 Int. Congr. Math,
Upsala, pp. 23–25 (1963)

8. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. J. on
Form. Meth. in Sys. Design 19(1), 45–80 (2001)

9. Damm, W., Toben, T., Westphal, B.: On the Expressive Power of Live Sequence
Charts. In: Reps, T., Sagiv, M., Bauer, J. (eds.) Wilhelm Festschrift. LNCS,
vol. 4444, pp. 225–246. Springer, Heidelberg (2007)

10. Emerson, E., Clarke, E.: Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons. Science of Computer Programming 2, 241–266 (1982)

11. Harding, A., Ryan, M., Schobbens, P.: A New Algorithm for Strategy Synthesis in
LTL Games. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440,
pp. 477–492. Springer, Heidelberg (2005)

12. Harel, D., Kantor, A., Maoz, S.: On the Power of Play-Out for Scenario-Based
Programs (to appear, 2009)

13. Harel, D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Speci-
fications. Int. J. of Found. of Comp. Sci (IJFCS) 13(1), 5–51 (2002)

14. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-Out of Behavioral
Requirements. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517, pp. 378–398. Springer, Heidelberg (2002)

15. Harel, D., Kugler, H., Pnueli, A.: Synthesis Revisited: Generating Statechart Mod-
els from Scenario-Based Requirements. In: Kreowski, H.-J., Montanari, U., Orejas,
F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems
Modeling. LNCS, vol. 3393, pp. 309–324. Springer, Heidelberg (2005)

16. Harel, D., Marelly, R.: Come Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine (2003)

17. Harel, D., Segall, I.: Planned and Traversable Play-Out: A Flexible Method for
Executing Scenario-Based Programs. In: Grumberg, O., Huth, M. (eds.) TACAS
2007. LNCS, vol. 4424, pp. 485–499. Springer, Heidelberg (2007)

Compositional Synthesis of Reactive Systems 91

18. ITU. International Telecommunication Union Recommendation Z.120: Message Se-
quence Charts. Technical report (1996)

19. Jobstmann, B., Bloem, R.: Optimizations for LTL Synthesis. In: 6th Conf. Formal
Methods in Computer Aided Design (FMCAD 2006) (2006)

20. Kam, N., Kugler, H., Marelly, R., Appleby, L., Fisher, J., Pnueli, A., Harel, D.,
Stern, M., Hubbard, E.: A Scenario-Based Approach to Modeling Development:
A Prototype Model of C. Elegans Vulval Fate Specification. Developmental Biol-
ogy 323(1), 1–5 (2008)

21. Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal Logic for
Scenario-Based Specifications. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 445–460. Springer, Heidelberg (2005)

22. Kugler, H., Plock, C., Pnueli, A.: Controller Synthesis from LSC Requirements. In:
12th International Conference on Fundamental Approaches to Software Engineer-
ing (FASE 2009). LNCS. Springer, Heidelberg (2009)

23. Kugler, H., Segall, I.: Compositional Synthesis of Reactive Systems from Live Se-
quence Chart Specifications. Technical report, Microsoft Research (2009)

24. Kupferman, O., Piterman, N., Vardi, M.: Safraless Compositional Synthesis. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Hei-
delberg (2006)

25. Kupferman, O., Vardi,M.: Safraless Decision Procedures. In: Proc. 46th IEEE Symp.
on Found. of Computer Science, Pittsburgh, October 2005, pp. 531–540 (2005)

26. Liang, H., Dingel, J., Diskin, Z.: A Comparative Survey of Scenario-Based to State-
Based Model Synthesis Approaches. In: Proc. of the Intl. Work. on Scenarios and
State Machines: Models, Algs., and Tools (SCESM 2006), pp. 5–12 (2006)

27. Manna, Z., Waldinger, R.: A Deductive Approach to Program Synthesis. ACM
Trans. Programming Languages and Systems 2, 90–121 (1980)

28. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005)

29. Pnueli, A.: Extracting Controllers for Timed Automata. Technical report, NYU
(2005)

30. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: Proc. 16th ACM
Symp. Princ. of Prog. Lang, pp. 179–190 (1989)

31. Pnueli, A., Shahar, E.: A Platform for Combining Deductive with Algorithmic
Verification. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
184–195. Springer, Heidelberg (1996)

32. Rabin, M.: Decidability of Second Order Theories and Automata on Infinite Trees.
Trans. Amer. Math. Soc. 141, 1–35 (1969)

33. Microsoft Research Cambridge, Scenario-Based Tool for Biological Modeling
(2009), http://research.microsoft.com/SBT/

34. Sohail, S., Somenzi, F., Ravi, K.: A Hybrid Algorithm for LTL Games. In: Logozzo,
F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 309–323.
Springer, Heidelberg (2008)

35. Sun, J., Dong, J.S.: Synthesis of Distributed Processes from Scenario-Based Spec-
ifications. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 415–431. Springer, Heidelberg (2005)

36. Wong-Toi, H., Dill, D.: Synthesizing Processes and Schedulers from Temporal Spec-
ifications. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp.
272–281. Springer, Heidelberg (1991)

http://research.microsoft.com/SBT/

Computing Weakest Strategies for Safety Games of
Imperfect Information

Wouter Kuijper and Jaco van de Pol

University of Twente�

Formal Methods and Tools
Dept. of EEMCS

{W.Kuijper,J.C.vandePol}@ewi.utwente.nl

Abstract. CEDAR (Counter Example Driven Antichain Refinement) is a new
symbolic algorithm for computing weakest strategies for safety games of im-
perfect information. The algorithm computes a fixed point over the lattice of
contravariant antichains. Here contravariant antichains are antichains over pairs
consisting of an information set and an allow set representing the associated
move. We demonstrate how the richer structure of contravariant antichains for
representing antitone functions, as opposed to standard antichains for represent-
ing sets of downward closed sets, allows CEDAR to apply a significantly less
complex controllable predecessor step than previous algorithms.

1 Introduction

Many problems related to synthesis and verification of systems reduce naturally to solv-
ing games [13,8]. In particular, games of imperfect information form a class of games
where the players have only partial access to the current state, which leads to the play-
ers having imperfect information about the game’s exact location. In our field this class
of games is important since the concept of partial observability seems to arise quite
naturally in several applications.

For example, the Controller Synthesis problem requires a control strategy for a plant
to be automatically synthesized [9,10]. Here, in general, not everything about the plant
will be directly observable for the controller. On a more fine grained level of control, the
problem of Motion Planning with Uncertainty naturally exhibits aspects of imperfect
information. Finally, for a general problem like Interface Compatibility Checking [5]
on componentized, object-oriented programs, we may consider the private fields and
methods of an object leading to internal, non-observable behaviour.

When we restrict ourselves to safety objectives but maintain partial observability
we are dealing with safety games of imperfect information. For this class, if a game is
solvable, there always exists a weakest solution which subsumes all other solutions to
the same game.

Complexity. It is known that partial observability bumps the complexity of two player
games with perfect observation to a higher class [11]: the exponential complexity for

� This work was partly funded by NWO project 600.065.120.24N20.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 92–106, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Computing Weakest Strategies for Safety Games of Imperfect Information 93

solving games of imperfect information derives from an inherent subset construction
needed to analyze the information sets of the player.

Recently, however, progress has been made in the form of symbolic algorithms that
are able to analyze nondeterministic automata while avoiding the explicit subset con-
struction for determinization [14,15,6]. One such new class of algorithms works by
computing fixed points over antichains which are sets of pairwise incomparable sets of
states (information sets). Although the inherent complexity of the problem still remains
exponential, on instances the authors report significant efficiency gains [2].

Contribution. In our approach we limit the scope to safety objectives which allows
for a symbolic algorithm that can compute weakest strategies. This is complementary
to the approach of [4]. Our approach is useful for cases where (1) everything that one
wants to synthesize is expressible as a safety property (e.g.: hard timeliness constraints
for instance are expressible as a safety property) and/or (2) the result must be reusable
and amenable to further analysis/composition/optimization. It is especially in case (2)
where weakest strategies really shine.

Since a weakest strategy for a given game subsumes all possible safe strategies it is
useful as a safety monitor (i.e: for supervising software or users that cannot be com-
pletely guaranteed safe). Computing the weakest strategy may also form part of a pre-
processing step for generating a safe input graph to a second synthesis procedure that
can optimize some performance measure that is not expressible as a safety property. Fi-
nally, weakest safety strategies are useful in a compositional setting where the behaviour
of the context is not known beforehand so that a most general solution is necessary in
order not to exclude possible safe compositions with a concrete context.

Our main contribution is a new algorithm named CEDAR (Counter Example Driven
Antichain Refinement). In a nutshell, the algorithm computes a fixed point over an
enriched form of antichains which we call contravariant antichains. Contravariant An-
tichains enjoy most of the properties of normal antichains, but they can represent knowl-
edge based strategies, which are antitone functions from information sets to allow sets,
rather than just sets of downward closed information sets. This additional structure al-
lows us to symbolically compute, not just the set of winning initial information sets, but
the entire weakest knowledge based strategy.

As a second contribution our approach permits to significantly simplify the control-
lable predecessor step. In contrast to [4] we only treat a single counterexample observa-
tion to the observation-closedness condition for the contravariant antichain, as opposed
to treating all counterexample observations at every iteration.

Related Work. A result that contrasts with the symbolic approach is [3]. Here games
are solved by searching the knowledge based subset construction in a forward direction
(starting from the initial information set). The winning strategy is constructed while
traversing this graph using an efficient on-the-fly fixed point algorithm due to [7]. This
means that loosing states are pruned out and back propagated at an early stage but it does
not constitute a fully symbolic algorithm since the algorithm still explicitly constructs
(a subgraph of the) knowledge based subset construction.

The algorithm presented in [4] works for omega regular winning conditions, which
from one point of view makes it more general than CEDAR, which works only for safety

94 W. Kuijper and J. van de Pol

objectives. However this generality also comes at a price since for omega regular ob-
jectives there is in general no weakest strategy [1]. Indeed the algorithm computes the
set of winning information sets, i.e.: the weakest information sets from which there still
exists a winning strategy.

Recently the same authors show that the antichain representation of the largest win-
ning regions for a given parity game does not allow to recover the winning strategy
directly [2]. The authors present an algorithm that can construct a winning strategy us-
ing antichains as the underlying datastructure for representing sets of downward closed
state sets. Clearly, since they are dealing with parity games, the algorithm will construct
a strategy that is not necessarily the weakest. This approach can be seen as complemen-
tary to ours. Our approach is limited to safety games, but computes the strategy directly
in the form of a contravariant antichain, and ensures that the resulting strategy is the
weakest.

Structure of the paper. The paper is structured as follows. In Section 2 we define and
discuss imperfect information safety games, strategies, and weakest strategies. In Sec-
tion 3 we introduce contravariant antichains which is the new datastructure underlying
CEDAR. In Section 4 we present the CEDAR algorithm. And finally in Section 5 we give
preliminary experimental results and concluding remarks.

2 Safety Games of Imperfect Information

In this section we introduce formally the notion of a safety game of imperfect informa-
tion, and we define the weakest, antitone knowledge based strategy for a given game.

Definition 1 (Safety Games). A safety game of imperfect information G is a tuple

G = (L, Cout, Cin, α, β, δ, iinit)

consisting of a finite set of game locations L, a finite set of control outputs Cout, a
finite set of control inputs Cin, an output labeling α : L → Cout, an input labeling
β : L → Cin, a game board δ ⊆ L × L, and a set of initial locations iinit ⊆ L (also
called the initial information set). We define O = Cout×C in as the set of observations,
an observation o ∈ O is written as o = cout/cin. As a convenience we define labeling
γ : L → O such that γ(�) = α(�)/β(�). We define A = 2Cout

as the set of allow sets.
Let α−1(a) = {� ∈ L | ∃cout ∈ a.α(�) = cout}, and γ−1(o) = {� ∈ L | γ(�) = o};
since it is always clear from the context where a set of locations is required, throughout
the paper we will leave the conversions α−1(·) and γ−1(·) implicit. �

A safety game of imperfect information should be interpreted as a game between two
players: the safety player and the reachability player. The objective for the safety player
is to keep the game running forever. The objective for the reachability player is to reach
a deadlock state, i.e.: a location � in which it holds δ(�) = ∅.

Since we aim for a framework where strategies are ordered with respect to permis-
siveness we introduce moves for the safety player as allow sets. In this way we can have
a subsumption relation on the moves for the safety player. The moves for the reachabil-
ity player are then the concrete successor locations that are allowed by the game board

Computing Weakest Strategies for Safety Games of Imperfect Information 95

and by the allow set chosen by the safety player. For example, if we are in game location
� ∈ L and the safety player chooses move a ∈ A, the reachability player must choose
a successor location from the forcing set which is defined as δ(�) ∩ a. It is up to the
safety player to ensure that her forcing set never becomes empty. Below we illustrate
the definition with a concrete example of a safety game.

Example 1 (Pennymatching). We introduce a simple game of penny-matching. In this
game, at each round, both players choose a side to a penny. If the safety player forfeits
her choice by playing a = {h, t} (heads or tails) the reachability player will choose
for her. This may seem counterintuitive on this simple example, however note that,
from a control perspective, this is a reasonable model: when the safety player permits
two possible, distinct control outputs and the game-board does not resolve this choice
either, she automatically yields this forcing power to her opponent.

The rules of the game are now as follows: if both players play heads the game is over
and it is a win for the reachability player, in all other cases the game simply continues.
To make the game slightly more interesting we stipulate that the reachability player
cannot surprise the safety player by playing heads twice in a row.

Finally, in order to investigate the effect of imperfect information, we introduce two
variants of the game: open pennymatching where the safety player can observe the coin
of the reachability player, and, the harder variant, blind pennymatching where the safety
player has no information about what side the reachability player chooses at each turn.
According to definition 1 we may model these games as follows:

Lpenny = {h, t} × {h, t} C in
open = {h, t} C in

blind = {x} Cout
penny = {h, t}

iinit
penny = {ht} βopen(sr) = r βblind(sr) = x αpenny(sr) = s

δpenny = {(sr, s′r′) ∈ L× L | ¬(s = r = h) ∧ (r = h → r′ �= h)}

Note that we consistently shorten a location (s, r) ∈ Lpenny as a juxtaposition sr. In
Figure 1 we show a fragment of the unraveling of this game into a game dag. The inter-
mediate forcing sets (where the reachability player will choose his move) are shown as
dotted boxes. Note that the move a = {h, t} (the weakest move for the safety player)
played from the initial game state transitively leads to all four possible game locations
including the deadlock at ‘hh’. Further note that, played from the location ‘th’ the same
move transitively leads to ‘ht’ or ‘tt’ which are both still safe.

The dashed lines connecting two nodes of the game dag indicate that for the blind
version of the game these states in the unraveling of the game are indistinguishable for
the safety player. Note that for the open version of the game it is immediately clear what
would be the rational strategy for the safety player, the safety player just has to avoid
the deadlock state marked with × hence she has to play a = {t} all the time until she
observes ‘t/h’ after which she may relax her move to a = {h, t}. For the blind version
of the game this is not so straightforward since her observation t/x cannot distinguish
between the successor locations th and tt, and for that reason she can never know for
sure to be in location th. How this is analyzed formally is shown in Example 2. �

Knowledge Based Subset Construction. So far we have not explicitly dealt with the
fact that the safety player has only a limited number of observations at her disposal. The

96 W. Kuijper and J. van de Pol

ht
{h}

������������
{h,t}��

{t}

����������������

{hh, ht}
����

��
����

��
{hh, ht, th, tt}

��������
���������

�����������������

		������������������ {th, tt}

			

			 ��

hh
×

����� ht
...

th
{h}�

���

�����
{h,t}�� {t}

tt
...

� � � � � �

{ht}
��

{ht, tt}
���������

{tt}
��

ht
...

tt
...

Fig. 1. Game DAG for the pennymatching game of Example 1

fact that the safety player can only make a limited observation of the current state is
commonly referred to as partial observability. Partial observability leads to the safety
player having only imperfect information about the exact location of the game. The
impact of imperfect information in the analysis of games is huge due to the fact that
the game graph δ is not observation deterministic. This means that distinct branchings
in δ are not always distinguishable for the safety player. It is well known that this type
of non-determinism can be resolved by applying a subset construction. We give the
definitions below. Recall that, for a given location, γ(�) = o denotes the observable
information on �, in this sense the set of observations O partitions L.

Definition 2 (Knowledge Based Subset Construction). For a given game, with I
we denote the set of information sets defined as I = 2L, and with ∆ we denote the
knowledge based subset construction which is defined as a graph over information sets
∆ ⊆ I × I as follows:

∆ = {(i, i′) ∈ I × I | ∃o ∈ O.i′ = δ(i) ∩ o}
Note that the image of δ on i is δ(i) =

⋃
�∈i δ(�), now i′ = δ(i) ∩ o represents the

strongest knowledge the safety player has about the successor location upon observing
o with knowledge i about the source location. �

Example 2 (Knowledge Based Subset Construction). Figure 2 shows a fragment of
the knowledge based subset construction for the blind version of the pennymatching
game from Example 1. We do not normally draw the empty information set, we do
include the intermediate forcing sets again for clarity, and now, in addition, we also
show the observations that result from the moves for the reachability player.

From this graph it is clear what is the rational strategy for the blind pennymatching
game: always play a = {t} to avoid information sets that include a deadlock state. �

Knowledge Based Strategies. We are now in a position to introduce the concept of a
strategy for the safety player. This definition also determines the winning condition: the
safety player wins the game iff she has a strategy to force an infinite play.

Computing Weakest Strategies for Safety Games of Imperfect Information 97

{ht}
{h}

�����������
{h,t}

��

{t}

�������������������

{hh, ht}
h/x

��

{hh,ht, th, tt}
h/x

���

�����
t/x

������

���������

{th, tt}
t/x

��
{hh, ht}

×
{th, tt}

{h}�
��

�����
{h,t}

��
{t}

���

�����

{hh, ht}
h/x

��

{hh, ht, th, tt}
h/x

��

�����
� t/x

��

�����
�

{th, tt}
t/x

��
{hh, ht}

×
{th, tt}

...

Fig. 2. Knowledge based subset construction for the blind pennymatching game

Definition 3. For a given game, a knowledge based strategy is a function f : I →
A. With F we denote the set of all knowledge based strategies. For a given strategy
f ∈ F and information set i0 ∈ I , with outcome(G, f, i0) we denote the outcome of
f on G starting from i0 as a set of non-empty traces of game locations annotated with
information states: outcome(G, f, i0) ⊆ (L× I)+. This is defined as follows:

outcome(G, f, i0) = {�0i0 . . . �nin | ∀j ≤ n.�j ∈ ij, and ∀j < n.

(�j , �j+1) ∈ δ and (ij , ij+1) ∈ ∆ and α(�j+1) ∈ f(ij)}
These are all possible finite (partial) plays that may arise when our safety player is
playing according to knowledge based strategy f . An outcome is safe iff no play ends
in a deadlock (every finite play has a proper extension). We say that a strategy f is safe
for G iff for all i ∈ I either outcome(G, f, i) is safe, or f(i) = ∅. A strategy is winning
iff it is safe and f(iinit) �= ∅. A game is solvable iff it permits a winning strategy. �

An Inductive Definition of Safety. For the exposition of CEDAR we need to give an
equivalent, inductive characterization of safety in terms of the following two elementary
properties of knowledge based strategies. The first property is obstinacy, intuitively a
strategy is obstinate if it blocks completely on information sets for which an empty
forcing set is possible, or, equivalently, it returns a non-empty allow set only if each of
the states in the information set has at least one valid successor in the underlying game
board intersected with the allow set. The second property is observation-closedness,
intuitively a strategy is observation-closed if it can guarantee that non-blocking states
will, for every possible observation, lead to non-blocking successor states.

One may think of these two properties as an inductive definition of safety where
obstinacy forms the base case, and observation-closedness forms the inductive case.

Definition 4 (Inductive Safety). For a given game, a knowledge based strategy f ∈ F
is obstinate iff for all i ∈ I such that there exists � ∈ i for which δ(�) ∩ f(i) = ∅ it
holds f(i) = ∅. A knowledge based strategy f ∈ F is observation-closed iff for all
i ∈ I and o ∈ O such that δ(i) ∩ f(i) ∩ o �= ∅ it holds that f(δ(i) ∩ o) �= ∅. �

98 W. Kuijper and J. van de Pol

The following lemma establishes that obstinacy and observation-closedness are suffi-
cient conditions to characterize safety for knowledge based strategies.

Lemma 1 (Inductive Safety). For a given game, a strategy is safe iff it is both obstinate
and observation-closed. �

Weakest Strategies. In the previous sections we have consistently defined a solution to
a safety game as any winning strategy. In this section we sharpen this to the weakest, or
most permissive winning strategy. Intuitively, a winning strategy is the most permissive
winning strategy if for all plays the strategy always yields the largest possible allow set
that is sufficient for keeping the future play safe. Formally, this means we introduce an
ordering on F with respect to which we may select the greatest element in the subset of
safe strategies.

Definition 5. For a given game, we define a weak partial order! on F such that f ′ ! f
iff for all i ∈ I it holds f ′(i) ⊇ f(i). We say f ′ is weaker or more permissive than f . A
strategy f ∈ F is antitone iff for all i, i′ ∈ I it holds: i ⊆ i′ implies f(i) ⊇ f(i′). �

We first show that for obtaining weakest, safe strategies, we can restrict our attention to
antitone strategies.

Lemma 2. For a given game, for any safe strategy f there exists a weakest, safe, anti-
tone strategy f ′ such that f ′ ! f . �

Proof. Given a strategy f that is obstinate and observation-closed, we can define g(i) :=⋃{f(i′) | i ⊆ i′}. It is straightforward to show that g ! f , and g is antitone, obstinate,
and observation-closed.

Given any two antitone, obstinate and observation-closed strategies f1 and f2, it can
be checked that their join, defined as (f1 # f2)(i) := f1(i) ∪ f2(i) is also antitone,
obstinate, and observation-closed. Hence, as the lattice of antitone safe strategies is
finite, it is a complete lattice, and the weakest safe antitone f ′ ! g exists. �

We can summarize this discussion by the following definition and theorem:

Definition 6. With fG we denote the weakest, safe, antitone strategy on game G. �

Theorem 1. For any game G it holds that G is solvable iff fG(iinit) �= ∅. �

3 A Datastructure for Representing Antitone Functions

In this section we develop an efficient, symbolic representation for antitone functions as
contravariant antichains which are antichains over domain/codomain pairs. First we
give the general definition of a contravariant antichain, next we instantiate this definition
and use it as the main datastructure underlying CEDAR. As it turns out, contravariant
antichains are suitable for representing both knowledge based strategies as well as the
set of open counterexample observations.

Definition 7 (Contravariant Antichains). Let (S,⊆s) be some finite, partially or-
dered domain that forms a complete lattice, and (T,⊆t) some finite, partially ordered

Computing Weakest Strategies for Safety Games of Imperfect Information 99

co-domain that forms a complete lattice. A contravariant relation is a set h ⊆ S × T
that represents a function [[h]] : S → T such that [[h]](s) =

⋃{t′ | 〈s′, t′〉 ∈ h, s ⊆s s′},
i.e.: an element s from the domain S is implicitly mapped to an element t of the
codomain T that is the join of all t′ to which weaker s′ than s are explicitly related
in h. We will frequently abuse notation and write simply h(s) instead of [[h]](s). We
define the weak partial order ⊆〈s,t〉 on S × T as the product order: 〈s, t〉 ⊆〈s,t〉 〈s′, t′〉
iff s ⊆s s′ and t ⊆t t′. The corresponding strict partial order is denoted by ⊂〈s,t〉.

A contravariant antichain is a contravariant relation consisting of pairwise ⊂〈s,t〉-
incomparable domain/codomain pairs. With C[S, T] we denote the set of contravariant
antichains from S to T . �

Below we give an example of the use of contravariant antichains for representing knowl-
edge based strategies.

Example 3 (Strategies as Contravariant Antichains). Assuming the definition in ex-
ample 1, the following contravariant antichain hpenny ∈ C[I, A] represents a knowledge
based strategy for the pennymatching game:

hpenny = {〈{ht, tt, th}, {t}〉, 〈{th}, {h, t}〉}
Note that [[hpenny]] is a winning strategy for the (blind) pennymatching game. For this
specific instantiation of Definition 7 we will refer to the domain/codomain pairs as
info/allow pairs.

It is clear that contravariant antichains with their semantics in the domain of anti-
tone functions form an adequate representation of knowledge based strategies. They
are, however, not canonical. To see this note that the following contravariant antichain
kpenny is equivalent to hpenny in the sense that they represent the same strategy:

kpenny = {〈{ht, tt, th}, {t}〉, 〈{th}, {h}〉}
Note that [[kpenny]]({th}) = {h} ∪ {t} = {h, t}. �

Apparently there is still structure in a contravariant antichain. To characterize it, we
lift ⊆s and ⊆t to preorders on S × T , by defining 〈s, t〉 ⊆〈s,·〉 〈s′, t′〉 iff s ⊆s s′,
and similar for ⊆〈·,t〉. Note that for the corresponding strict partial orders, we have:
⊂〈s,t〉= (⊂〈s,·〉 ∩ ⊆〈·,t〉) ∪ (⊆〈s,·〉 ∩ ⊂〈·,t〉).

We now propose two possible canonical classes of contravariant antichains called
saturated contravariant antichains and sparse contravariant antichains, respectively.
A contravariant antichain is called saturated if it contains all ⊆〈s,t〉-maximal domain/
codomain pairs in the graph of the antitone function it represents. The strategy hpenny
from example 3 is saturated. A contravariant antichain is sparse if it contains only⊆〈s,·〉-
principal pairs, which are all pairs for which the target is disjoint from the joined targets
of all domain/codomain pairs that have a weaker source element. The strategy kpenny
from example 3 is sparse. Both on saturated and sparse instances,⊆〈s,·〉 is antisymmetric.

A contravariant antichain in its sparse normal form is generally smaller because it
only contains pairs that have “added value”. However, in principle, it carries the same
information as a contravariant antichain in its saturated normal form. In Section 4 we
show how both normal forms are useful in practice.

100 W. Kuijper and J. van de Pol

Definition 8 (Sparse Contravariant Antichains). Let (S,⊆s), (T,⊆t) be complete,
finite lattices. For a given contravariant relation h ⊆ S × T and s ∈ S with h↑s we
denote h above s, defined as h↑s = {〈s′, t′〉 ∈ h | s ⊂s s′}. With S(h) we denote the
source set of h defined as S(h) = {s ∈ S | ∃t.〈s, t〉 ∈ h}. With %h& we denote the
sparse normal form of h. This is defined as follows:

%h& = {〈s, t〉 | s ∈ S(h) and t = [[h]](s) \ [[h↑s]](s) and t �= ∅}
We say h is sparse iff h = %h&. With %C&[S, T] we denote the set of all sparse con-
travariant antichains from S to T . �
Definition 9 (Saturated Contravariant Antichains). Given any contravariant relation
h ⊆ S × T , with h� we denote the restriction of h to ⊆〈s,t〉-maximal elements. This is
defined as follows:

h� = {〈s, t〉 ∈ h | t �= ∅ and �〈s′, t′〉 ∈ h.〈s, t〉 ⊂〈s,t〉 〈s′, t′〉}
We define the contravariant closure as follows:

h&& = {〈s, t〉 | ∃〈s1, t1〉, . . . , 〈sm, tm〉 ∈ h.s = ∩1≤j≤msj and t = ∪1≤j≤mtj}�
i.e.: for any non-empty subset of domain/codomain pairs we take the meet of the source
elements and the join of the target elements. We say h is saturated iff h = h&&, with
C&&[S, T] we denote the set of all saturated contravariant antichains from S to T . For
h, k ∈ C&&[I, A] we let h # k be the join of h and k, defined as h # k = h ∪ k&&. �

4 An Algorithm for Computing Weakest Strategies

Algorithm 1 computes the weakest, safe knowledge based strategy for a given safety
game of imperfect information. The algorithm works by approximating from above
an obstinate, observation-closed fixed point in the lattice of saturated contravariant an-
tichains. We recall our characterization of safety in terms of obstinacy and observation-
closedness in Definition 4. The algorithm is based on the fact that we can maintain ob-
stinacy as an invariant by never allowing any source location with empty forcing sets
into the strategy. Observation-closedness then remains as the fixed point condition that
the algorithm needs to work towards. The idea is to approach the fixed point by treating,
at each iteration, a counterexample against observation-closedness. A counterexample
against observation-closedness consists of an information set i ∈ I and an observation
o ∈ O, such that δ(i) ∩ f(i) ∩ o �= ∅ and f(δ(i) ∩ o) = ∅, i.e., o can actually be
observed, but the strategy blocks on the resulting information set.

In order to avoid an explicit iteration over all possible observations, CEDAR com-
putes, for a given i ∈ I , the set of counterexample observations symbolically. To show
how this is done we now give an alternative characterization of the set of counterexam-
ple observations as the set of unexplained observations.

Intuitively, an observation o ∈ O from an information set i ∈ I is explained by
another information set i′′ ∈ I , if the successor information set i′ = δ(i)∩ o is a subset
of i′′ and f(i′′) �= ∅. Note that, since f is antitone, it follows that f(i′) �= ∅ hence
(i, o) is not a counterexample to observation-closedness. The set of observations that
are not explained by any i′′ can now be computed symbolically as

Computing Weakest Strategies for Safety Games of Imperfect Information 101

O† =
⋂

i′′∈I.f(i′′) 	=∅

γ((δ(i) ∩ f(i)) \ i′′) (1)

That is: O† contains all observations for which the successor information set from i
is not completely inside any suitable i′′. In Definition 10, we see how the contravariant
antichain representation of strategies simplifies the intersection in Equation 1 further.

Prerequisite Functions. Before we discuss CEDAR in more detail we first define the
three helper functions in terms of which the algorithm is expressed.

Definition 10 (Unexplained Observations). For h ∈ C&&[I, A] we let ĥ be the an-
tichain of maximal information sets in h, defined as: ĥ = {i′′ ∈ S(h) | �i′ ∈ S(h).i′′ ⊂
i′}. We let Uobs(h) ∈ %C&[I, 2O] be the set of unexplained observations, defined as
follows:

Uobs(h) = %{〈i, O†〉 | i ∈ S(h) and O† =
⋂

i′′∈ĥ

γ((δ(i) ∩ h(i)) \ i′′)}& (2)

�
Note the restriction to maximal information sets in Equation 2. This is valid since an
observation that is not explained by any of the maximal information sets will certainly
not be explained by any of the weaker information sets. Below we give an example of
how defining Equation 2 is used to compute the set of counterexample observations.

Example 4 (Unexplained Observations for Pennymatching). We let h ∈ C&&[I, A]
be h = {〈{ht, tt, th}, {h, t}〉}, this is the weakest obstinate strategy for the penny-
matching game. So let i = {ht, tt, th} and a = {h, t}. To compute Uobs(h) we first
compute the forcing set δ(i) ∩ a = {hh, ht, tt, th}. We then compute the set of unex-
plained observations, we have only one maximal information set i′′ = {ht, tt, th} ∈ ĥ,
we subtract i′′ from the forcing set and obtain {hh}. For this set we compute the
set of corresponding observations γ({hh}) = {h/x}. Since there is only one maxi-
mal information set, in this case, the intersection is trivially done: for i we get simply
O† = {h/x}, and hence Uobs(h) = {〈{ht, tt, th}, {h/x}〉}. �
After explaining how to detect counter examples as unexplained observations, we now
explain how to treat such a counterexample (i, o). First, let h⇓ i be the substrategy of
h on i, defined as h⇓ i = {〈i′, a′〉 ∈ h | i′ ⊆ i}. This represents the behaviour of the
strategy [[h]] on all the information sets that are stronger-than-or-equal-to i. Now, if i has
an unexplained observation cout/cin ∈ [[Uobs(h)]](i), since all stronger i′ ⊆ i have a
weaker allow set h(i′) ⊇ h(i) these stronger i′ will also allow cout. Hence, to effectively
“treat” the unexplained observation CEDAR will replace the entire affected substrategy
by the most permissive substrategy that is observation-closed on o = cout/cin. This
most permissive substrategy will actually be the join of two substrategies, which are
based on the restricted successor, and the controllable predecessor.

The controllable predecessor substrategy, illustrated in Figure 3 (a), contains the
weakest, obstinate info/allow pairs that explain the observation by strengthening the
information set to the weakest controllable region that forces the successor information
set within one of the existing maximal information sets i′′ ∈ ĥ, i.e.: this new substrategy
solves the problem by requiring more knowledge.

102 W. Kuijper and J. van de Pol

Definition 11 (Controllable Predecessor). For some strategy h ∈ C&&[I, A], a set
of maximal information sets q ⊆ I , and some observation o = cout/cin ∈ O we let
Cpre(h, q, o) ∈ C&&[I, A] be the controllable cout/cin-predecessor strategy of h, defined
as follows:

Cpre(h, q, o) = {〈ic, a〉 | 〈i, a〉 ∈ h, i′′ ∈ q, ic = i \ δ−1((δ(i) ∩ o) \ i′′)}&& �

The restricted successor substrategy, illustrated in Figure 3 (b), contains the weakest,
obstinate info/allow pairs that avoid the unexplained observation by restricting the allow
set and hence preventing the observation from arising at all, i.e.: this new substrategy
solves the problem by becoming less permissive.

Definition 12 (Restricted Successor). We let Rsucc(h, cout) ∈ C&&[I, A] be the re-
stricted cout-successor strategy of h, defined as follows:

Rsucc(h, cout) = {〈ir, ar〉 | 〈i, a〉 ∈ h, ar = a \ {cout}, ir = i ∩ δ−1(δ(i) ∩ ar)}&& �

Description of the Algorithm. We have now all prerequisites to present Algorithm 1,
and illustrate its working on the blind penny matching example.

In line 1 the contravariant antichain is initialized to be fully uninformed, except that
the system is not initially in a deadlock state, and maximally permissive, i.e. it allows
all control outputs. The while condition in line 2 states what is basically the negation of
observation-closedness, in terms of Definition 10. In line 3 we select a counterexample
information set and concrete observation from the (symbolic) set of its unexplained
observations. In line 4 we compute the most conservative refinement needed to make the
contravariant antichain observation-closed for the selected counterexample observation.
The most permissive substrategy is computed based on Definitions 11 and 12.

Note that this refinement is strict since (1) in the restricted successor, the allow set ar

of each newly introduced pair is guaranteed to be a strict subset of a, and (2) in the con-
trollable predecessor, the information set ic for each newly introduced pair is guaranteed
to be a strict subset of i. Further note that, for (1), using a saturated contravariant an-
tichain for info/allow pairs makes sure that besides being strict, the restricted successor

i

i
′′δ(i) ∩ o

δ
−1((δ(i) ∩ o) \ i

′′)

i

ir

δ(i) ∩ arδ(i) ∩ ar

δ−1(δ(i) ∩ ar)

...

δ(i) ∩ a

(a) controllable predecessors (b) restricted successors

Fig. 3. Illustration of Definitions 11, 12: (a) for a given i, o and i′′ we compute the weakest ic ⊆ i
such that δ(ic) ∩ o ⊆ i′′, i.e.: i′′ explains (ic, o). Here, ic is the left dashed region, and the gray
region denotes δ(ic)∩ o. (b) for a given i, a and ar ⊂ a we compute the weakest ir ⊆ i such that
〈ir, ar〉 is obstinate. The gray region denotes δ(ir) ∩ ar.

Computing Weakest Strategies for Safety Games of Imperfect Information 103

strategy is also the most permissive, and, for (2), using a sparse contravariant antichain
for the counterexample pairs makes sure that the new ic pairs are never fully absorbed
by the existing pairs above i in the saturated strategy.

After one iteration of the while loop we have obtained the next contravariant an-
tichain which is strictly below the previous one but always above-or-equal-to fG in the
strategy subsumption ordering !. The algorithm terminates when there are no more
counterexamples to observation-closedness. Since the other requirement on fG, obsti-
nacy, is an invariant of the algorithm it follows that, at termination, [[h]] = fG. In line 5
we do a final test to see if fG is winning from the initial state, if so then the results are
useful and h is returned. If we are not interested in any particular initial state we may
set iinit = ∅ since, upon termination, it always holds: h(∅) = fG(∅) = Cout.

Algorithm 1. CEDAR (Counter Example Driven Antichain Refinement)

Data: G = (L, Cout, Cin, α, β, δ, iinit) — a game.
Result: the contravariant antichain h such that [[h]] = fG, or ∅ in case G is unsolvable.
h ← { 〈 {
 ∈ L | δ(
) �= ∅}, Cout 〉 }1

while Uobs(h) �= ∅ do2

select some 〈i, O†〉 ∈ Uobs(h) and cout/cin ∈ O†3

h ← (h \ h⇓ i) � (Rsucc(h⇓ i, cout) � Cpre(h⇓ i, ĥ, cout/cin))4

if h(iinit) �= ∅ then5

return h6

else7

return ∅8

Example 5 (Solving pennymatching with CEDAR). The next table shows the succes-
sive values of the main program variables during a run of the algorithm on the blind
pennymatching game of Example 1.

line 1; initialization: h ← {〈{ht, th, tt}, {h, t}〉}
line 2; observation closed? Uobs(h) = {〈{ht, th, tt}, {h/x}〉}
line 3; select counterexample: i ← {ht, th, tt}

cout/cin ← h/x
line 4; refinement: Rsucc(h⇓ i, h) = {〈{ht, th, tt}, {t}〉}

Cpre(h⇓ i, ĥ, h/x) = {〈{th}, {h, t}〉}
h ← {〈{ht, th, tt}, {t}〉, 〈{th}, {h, t}〉}

line 2; observation closed? Uobs(h) = ∅
line 5; strategy is winning? h({ht}) = {t}
line 6; yes, return h h = {〈{ht, th, tt}, {t}〉, 〈{th}, {h, t}〉}

As can be seen, on this simple example, the fixed point is reached after a single iteration.
And the resulting strategy is indeed the weakest (and in this case winning) strategy. �

104 W. Kuijper and J. van de Pol

5 Experiments and Conclusion

We made a prototype implementation of the algorithm using the BuDDy package [12]
for BDD manipulations. For comparison, we also implemented an on-the-fly, forward
fixed point evaluation over the knowledge based subset construction as described by [3].
We refer to that algorithm as OTFOE (On-The-Fly fOrward Exploration). The compar-
ison is not completely fair, because OTFOE computes a partial weakest strategy only
for reachable information sets, and, vice versa, CEDAR does not compute the reachable
information sets. Although the algorithms compute slightly different results, still it is
interesting to contrast the fully symbolic approach with the explicit forward exploration.

We evaluated both algorithms on two different architectures. The first architecture is
a single monolithic game graph. The second architecture is a composed game graph
generated by four randomly synchronizing components of which only the first one
contains a deadlock and control in- and outputs. Both architectures are illustrated in
Figure 4. The distinguishing difference of the compositional architecture, as opposed to
the monolithic architecture, lies in the concurrency and locality exhibited by the former
and not by the latter.

The game components are randomly generated with a fixed number of locations and
labels (cf. Figure 4). Random δ relations are generated componentwise. We take care
that each δx is input enabled so that the product δ is always deadlock free. We then
introduce deadlocks on a random set of error locations. For the transition density, rδ =
|δ|/|L|2, we maintain rδ = 0.3 for the monolithic architecture and 0.04 < rδ < 0.08 for
the compositional architecture. Around these values we observed the maximal number
of safely reachable information sets on average. Note that this biases our experiments
to dense, solveable game graphs.

We solved 9 random games for each architecture and measured the number of δ(·)
and δ−1(·) operations performed. These are principal operations for both CEDAR and
OTFOE. In particular, OTFOE uses one δ(·) for determining the forcing set of each
newly generated information set, and one δ−1(·) to test obstinacy whenever an allow
set changes (i.e. for new states and for backpropagating unsafe control outputs).

The results of the experiments are shown in Table 1 and Figure 5. We see that,
on dense game graphs generated by many components, CEDAR performs better than
OTFOE. We still see evidence of bad worst-case behaviour in the form of outliers like
random compositional game number 7. For sparser game graphs we observed the worst
performance of CEDAR around rδ = 0.1 for monolithic games (≈ 3.3 · 103 operations
on average), and around rδ = 0.01 for compositional games (≈ 46 ops.). Whether

|L0| = 32
(3 init–,
5 error–

locations)

C
in

C
out

|L1| = 4

(2 init
1 err.)

C
in

C
out

|L2| = 4

(2 init)
|L3| = 4

(2 init)
|L4| = 4

(2 init)

C
1,2

C
2,3

C
3,4

(2) (2) (2)

C
2,1

C
3,2

C
4,3

(2) (2) (2)

(2)

(2)

(3)

(3)

Fig. 4. The monolithic (left) and compositional (right) architectures. For the compositional archi-
tecture we make sure that component x is input enabled with respect to the internal synchroniza-
tion labels in Cy,x. These special labels are projected away in the final game graph.

Computing Weakest Strategies for Safety Games of Imperfect Information 105

Table 1. Results for CEDAR and OTFOE on monolithic and compositional games. Under ops. we
give the number of δ(·) and δ−1(·) operations performed. Under size we give the final (maximal)
size of the contravariant antichain for CEDAR and the explored (safe) information sets for OTFOE.

monolithic games compositional games
CEDAR OTFOE CEDAR OTFOE

ops. size ops. size # ops. size ops. size
1 18 4(4) 327 105(69) 1 13 2(2) 23 8(0)
2 207 1(8) 11 4(0) 2 9 3(3) 116 43(30)
3 290 1(12) 265 69(0) 3 16 3(3) 200 68(24)
4 90 6(8) 340 103(62) 4 16 4(4) 17 7(4)
5 62 5(6) 303 98(60) 5 42 1(4) 260 81(0)
6 37 5(5) 229 78(42) 6 9 3(3) 219 80(60)
7 203 1(11) 11 4(0) 7 77 3(4) 27 10(0)
8 314 5(14) 20 7(0) 8 15 3(3) 13 5(3)
9 212 1(10) 183 44(0) 9 27 4(5) 39 15(9)

0 100 200 300 400

4

1

5

3

6

9

8

2

7

G
am

es

Number of operations

CEDAR
OTFOE

0 50 100 150 200 250 300

5

6

3

2

9

7

1

4

8

G
am

es

Number of operations

CEDAR
OTFOE

Fig. 5. Sorted charts of the data in Table 1; for monolithic (left) and compositional games (right).
The dotted and solid lines show averages over 100 games for OTFOE and CEDAR, respectively.

or not bad worst-case behaviour plays a significant role on real instances needs to be
evaluated by testing the algorithm on real-world models.

As future work, we suggest to investigate the degrees of freedom allowed in CEDAR,
for instance in selecting the next counter example. Dynamic programming techniques
could speed up the implementation, by avoiding the complete recomputation of the next
counter example. In order to preserve memory usage, one could also store the strategies
in a sparse contravariant antichain, and recompute its saturated pairs in each iteration.
Finally, one could compare the efficiency of CEDAR with the antichain method in [2].
However, a fair comparison is complicated because both algorithms compute essentially
different objects. In a separate paper, we will show how the results can be used for
compositional controller synthesis.

References

1. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to safety
games. Theoretical informatics and applications (July 2008)

2. Berwanger, D., Chatterjee, K., Doyen, L., Henzinger, T., Raje, S.: Strategy Construction for
Parity Games with Imperfect Information. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 325–339. Springer, Heidelberg (2008)

106 W. Kuijper and J. van de Pol

3. Cassez, F.: Efficient On-the-Fly Algorithms for Partially Observable Timed Games. In:
Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 5–24. Springer,
Heidelberg (2007)

4. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular
games with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 287–
302. Springer, Heidelberg (2006)

5. de Alfaro, L., Henzinger, T.A.: Interface automata. In: FSE, pp. 109–120. ACM Press, New
York (2001)

6. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)

7. Liu, X., Ramakrishnan, C.R., Smolka, S.A.: Fully local and efficient evaluation of alternating
fixed points (Extended abstract). In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, p. 5.
Springer, Heidelberg (1998)

8. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics,
and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg (2002)

9. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ronchi
Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372,
pp. 652–671. Springer, Heidelberg (1989)

10. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM J. Control Optim. 25, 206–230 (1987)

11. Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Com-
puter and System Sciences 29, 274–301 (1984)

12. Lind-Nielsen, J.: Buddy: Binary decision diagrams,
http://sourceforge.net/projects/buddy

13. Tirole, J., Fudenberg, D.: Game Theory. MIT Press, Cambridge (1991)
14. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algorithm for

checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

15. De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect in-
formation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168.
Springer, Heidelberg (2006)

http://sourceforge.net/projects/buddy

Context-Bounded Analysis for Concurrent Programs
with Dynamic Creation of Threads

Mohamed Faouzi Atig1, Ahmed Bouajjani1, and Shaz Qadeer2

1 LIAFA, CNRS and University Paris Diderot, France
{atig,abou}@liafa.jussieu.fr

2 Microsoft Research, Redmond
qadeer@microsoft.com

Abstract. Context-bounded analysis has been shown to be both efficient and
effective at finding bugs in concurrent programs. According to its original defi-
nition, context-bounded analysis explores all behaviors of a concurrent program
up to some fixed number of context switches between threads. This definition is
inadequate for programs that create threads dynamically because bounding the
number of context switches in a computation also bounds the number of threads
involved in the computation. In this paper, we propose a more general definition
of context-bounded analysis useful for programs with dynamic thread creation.
The idea is to bound the number of context switches for each thread instead of
bounding the number of switches of all threads. We consider several variants
based on this new definition, and we establish decidability and complexity results
for the analysis induced by them.

1 Introduction

The verification of multithreaded programs is a challenging problem both from the theo-
retical and the practical point of view. (We consider here programs with parallel threads
which may use local variables as well as shared (global) variables.) Assuming that the
variables of the program range over a finite domain (which can be obtained using some
abstraction on the manipulated data), there are several aspects in multithreaded pro-
grams which make their analysis complex or even undecidable in general [13].

Indeed, it is well known that for instance in the case where each thread can be mod-
eled as a finite-state system, the state space of the program grows exponentially w.r.t. the
number of threads, and the reachability problem is PSPACE-hard. Moreover, if threads
are modeled as pushdown systems, which corresponds to allowing unbounded depth
(recursive) procedure calls in the program, then the reachability problem becomes un-
decidable as soon as two threads are considered.

Context-bounding has been proposed in [10] as a suitable technique for the anal-
ysis of multithreaded programs. The idea is to consider only the computations of the
program that perform at most some fixed number of context switches between threads.
(At each point only one thread is active and can modify the global variables, and a
context-switch happens when the active thread terminates or is interrupted, and a pend-
ing one is activated.) The state space which must be explored may still be unbounded
in presence of recursive procedure calls, but the context-bounded reachability problem

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 107–123, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

108 M.F. Atig, A. Bouajjani, and S. Qadeer

is decidable even in this case. In fact, context-bounding provides a very useful tradeoff
between computational complexity and verification coverage. This tradeoff is based on
three important properties. First, context-bounded verification can be performed more
efficiently than unbounded verification. From the complexity-theoretic point of view, it
can be seen that context-bounded reachability is an NP-complete problem (even in the
case of pushdown threads). Second, many concurrency errors, such as data races and
atomicity violations, are manifested in executions with few context switches [9]. Fi-
nally, verifying all executions of a concurrent program up to a context bound provides
an intuitive and meaningful notion of coverage to the programmer.

In the last few years, several implementations and algorithmic improvements have
been proposed for context-bounded verification [2,9,16,7,6]. For instance, context-
bounded verification has been implemented in explicit-state model checkers such as
CHESS [9] and SPIN [18]; it has also been implemented in symbolic model checkers
such as SLAM [11], jMoped [16], and in [6].

While the concept of context-bounding is adequate for multithreaded programs with
a (fixed) finite number of threads, the question we consider in this paper is whether this
concept is still adequate when dynamic creation of threads is considered.

Dynamic thread creation is useful for modeling several important aspects, e.g., (1)
unbounded number of concurrently execution of software modules such as file systems,
device drivers, non-blocking data structures etc., or (2) creation of asynchronous activ-
ity such as forking a thread, queuing a closure to a threadpool with or without timers,
callbacks, etc. Both these sources are very important for modeling operating system
components; they are likely to become important even for application software as it
becomes increasingly parallel in order to harness the power of multi-core architectures.

We argue that the “classical” notion of context-bounding which has been used so far
in the existing work is actually too restrictive in this case. Indeed, bounding the number
of context switches in a computation also bounds the number of threads involved. In
this paper, we propose a more general definition of context-bounded analysis useful for
programs with dynamic thread creation. The idea is to bound the number of context
switches for each thread instead of bounding the number of switches of all threads. We
consider several variants based on this new definition, and we establish decidability and
complexity results for the analysis induced by them.

We introduce a notion of K-bounded computations where each of the involved
threads can be interrupted and resumed at most K times. (We consider that when a
thread is created, the number of context switches it can perform is the one of its ances-
tor minus 1.) Notice that the number of context switches by all threads in a computation
is not bounded since the number of threads involved is not bounded.

In the case of finite-state threads, we prove that this problem is as hard as the cover-
ability problem for Petri nets (which is EXPSPACE-complete). The reduction from our
problem to the coverability problem of Petri nets is based on the simple idea of count-
ing the number of pending threads for different values of the global and local states, as
well as of the number of switches that these threads are allowed to perform. conversely,
we prove that the coverability problem of Petri nets can be reduced to the 2-bounded
reachability problem. These results show that in the case of dynamic thread cre-
ation, considering the notion of context-bounding for each individual thread makes the

Context-Bounded Analysis for Concurrent Programs 109

complexity jumps from NP-completeness to EXPSPACE-completeness, even in the
case of finite-state threads. Then, an interesting question is whether it is possible to have
a notion of context-bounding with a lower complexity. We propose for that the notion of
stratified context-bounding. The idea is to consider computations where the scheduling
of the threads is ordered according to their number of allowed switches: First, threads of
level K (the level means here the number of allowed switches) are scheduled generating
threads of level K−1, then threads of level K−1 are scheduled, and so on. Next, it is
possible to schedule again threads of level K and repeat the process, but this only for a
finite number of times L. Again, notice that (K,L)-stratified computations may have an
unbounded number of context switches since it is possible to schedule an unbounded
number of threads at each level. This concept generalizes obviously the “classical” no-
tion of context-bounding. We prove that, for finite-state threads, the (K,L)-stratified
context-bounded reachability problem is NP-complete (i.e., it matches the complexity
of the “classical” context-bounded reachability problem). The proof is by a reduction
to the satisfiability problem of existential Presburger formulas.

Then, we consider the case of dynamic creation of pushdown threads. We prove that,
surprisingly, the K-bounded reachability problem is in fact decidable, and that the same
holds also for the (K,L)-stratified context-bounded reachability problem. To establish
these results, we prove that these problems (for pushdown threads) can be reduced to
their corresponding problems for finite-state threads. This reduction is not trivial. The
main ideas behind the reduction are as follows: First, the K-bounded behaviors of each
single thread can be represented by a labeled pushdown system which (1) makes visible
(as labels) on its transitions the created threads, and (2) guesses points of interruption-
resumption and the corresponding values of the global states. (These guesses are also
made visible on the transitions.) Then, the main problem is to “synchronize” these la-
beled pushdown systems so that their guesses can be validated. The key observation is
that it is possible to abstract these systems without loss of preciseness by finite-state
systems. This is due to the fact that we can consider that some of the generated threads
can be lost (since they can be seen as threads that are never activated), and therefore
we can reason about the downward closure of the languages of the labeled pushdown
systems mentionned above (w.r.t. suitable sub-word relation). This downward closure
is in fact always regular and effectively constructible.

2 Preliminaries

Words and languages. Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set
of all words (resp. non empty words) over Σ, and by ε the empty word. A language L
is a (possibly infinite) set of words. Let u ∈ Σ∗ and a ∈ Σ. We denote by |u| the length
of u and by |u|a the number of occurrences of a in u. Consider a non empty word
u = a1 · · ·an. For any i such that 1≤ i≤ n, we denote by ui the symbol ai.

Given an alphabet Σ, we denote by �⊆ Σ∗ × Σ∗ the subword relation defined as
follows: for every u = a1 · · ·an ∈ Σ∗, and every v = b1 · · ·bm ∈ Σ∗, u� v iff ∃i1, . . . , in ∈
{1, . . . ,m} such that i1 < i2 < .. . < in and ∀ j ∈ {1, . . . ,n},a j = bi j . Given a language
L⊆ Σ∗, the downward closure of L (w.r.t.�) is the set L ↓= {u ∈ Σ∗ | ∃v ∈ L , u� v}.

110 M.F. Atig, A. Bouajjani, and S. Qadeer

Finite State Automata. A Finite State Automaton (FSA) is a tuple S = (S,Σ,δ,sinit ,
s f inal) where S is a finite set of states, Σ is a finite input alphabet, δ⊆ S×(Σ∪{ε})×S
is a finite set of transitions, sinit ∈ S is the initial state, and s f inal ∈ S is the acceptor state.
The language accepted by the finite state automaton S is denoted L(S).

Labeled Pushdown Systems. A Labeled Pushdown System (LPDS) is defined by a
tuple P = (G,Σ,Γ,∆) where G is a finite set of states, Σ is an input alphabet (actions), Γ
is a stack alphabet, and ∆ is a finite set of transition rules of the form: gγ

a
↪→ g′w′ where

g,g′ ∈ G, a ∈ Σ∪{ε}, γ ∈ Γ, and w′ ∈ Γ∗ such that |w′| ≤ 2.
A configuration of P is a tuple 〈g,σ,w〉 where g ∈ G is a state, σ ∈ Σ∗ is an input

word, and w∈ Γ∗ is a stack content. We define the binary relation⇒P between configu-

rations as follows: 〈g,aσ,γw〉⇒P 〈g′,σ,w′w〉 iff gγ
a

↪→ g′w′ ∈ ∆. The transition relation
⇒∗

P is the reflexive transitive closure of the binary relation⇒P .
Given a labeled pushdown system P = (G,Σ,Γ,∆), two states g,g′ ∈ G, and a

stack symbol γ, let LP (gγ,g′) = {σ ∈ Σ∗ |∃w ∈ Γ∗ s.t 〈g,σ,γ〉 ⇒∗
P 〈g′,ε,w〉}. Clearly,

LP (gγ,g′) is a context-free language, and conversely, every context-free language can
be defined as a trace language of some labeled pushdown system.

We recall hereafter a result due to Courcelle [3] which will be used later in the paper.

Theorem 1. Let P = (G,Σ,Γ,∆) be a LPDS, g,g′ ∈ G be two states, and γ ∈ Γ be a
stack symbol. Then, it is possible to construct a FSA S = (S,Σ,δ,sinit ,s f inal) such that
L(S) =

(
LP (gγ,g′)

) ↓, where in the worst case |S| is exponential in
(|G|+ |Σ|+ |Γ|).

Multi-sets. Let Ξ be a nonempty alphabet (possibly infinite). A multi-set over Ξ is a
function M : Ξ→N. We denote by M[Ξ] the collection of all multi-sets over Ξ and by /0
the empty multi-set. Given two multi-sets M and M′, we write M′ ≤M iff M′(a)≤M(a)
for every a ∈ Ξ; and M + M′ (resp. M−M′ if M′ ≤ M) to denote the multi-set where
(M +M′)(a) = M(a)+M′(a) (resp. (M−M′)(a) = M(a)−M′(a)) for every a∈ Ξ. For
every word u∈Ξ∗, [u] is the multi-set such that [u](a)= |u|a for every a∈Ξ. Sometimes,
[u] is called the Parikh image of u. This definition is extended in the straightforward
manner to languages (sets of words) as follows [L] = {[u] : u ∈ L}.
Petri Nets. A Petri net is a pair N = (P,T) where P is a finite set of places and T ⊆
P∗ ×P∗ is a finite set of transition rules. We often write w � w′ to denote a transition
(w,w′)∈ T . Given a transition t = w�w′ ∈ T , we define a relation

t→⊆ (M[P]×M[P]
)

between multi-sets over P as follows: W
t→W ′ iff W ≥ [w] and W ′ = W + [w′]− [w].

We define the transition relation →N on multi-sets over P by the union of
t→, i.e.,

→N =
⋃

t∈T
t→. The transition relation→∗

N is the reflexive transitive closure of→N .

The coverability problem for a Petri net N is the problem of deciding for two given
places p and p′ whether there is a multi-set W such that [p′]≤W and [p]→∗

N W .

Theorem 2. The coverability problem for Petri nets is EXPSPACE-complete [8,12].

Existential Presburger Formulas (EPF). Let V be a set of variables. We use x,y, . . .
to range over variables in V . The set of existential Presburger formulas is defined by
the following grammar and interpreted over natural numbers:

Context-Bounded Analysis for Concurrent Programs 111

t ::= 0 | 1 | x | t1 + t2 φ ::= t1 > t2 | t1 = t2 | φ1∧φ2 | φ1∨φ2 | ∃x ·φ1

The semantics of these formulas is defined in the standard way. Given a formula φ
with free variables x1, . . . ,xn, and a valuation U : V → N, we denote φ(U) the truth
value of φ for the valuation U . We say that a formula φ is satisfiable if there is some
valuation U such that φ(U) is true. It is well-know that the satisfiability problem for
existential Presburger formulas is decidable [17], and that:

Theorem 3. The satisfiability problem for existential Presburger formulas is NP-
complete.

Given a language L over the alphabet Σ = {a1, . . . ,an}, the set [L] (called the Parikh
image of L) is definable by a formula φ with free variables xa1 , . . . ,xan if for every
valuation U , φ(U) is true iff there is a word u ∈ L such that U(xai) = [u](ai) for every
i ∈ {1, . . . ,n}. We recall a result about existential Presburger formulas given in [14,17].

Theorem 4. Let P = (G,Σ,Γ,∆) be a LPDS, g,g′ ∈ G be two states, and γ ∈ Γ be a
stack symbol. Then, it is possible to compute in polynomial time an existential Pres-
burger formula φ which defines [LP (gγ,g′)].

3 Dynamic Networks of Concurrent Systems

3.1 Syntax

A Dynamic Network of Concurrent Pushdown System (DCPS) is a tuple A = (G,Γ,∆,
g0,γ0) where G is a finite set of states, Γ is a finite set of stack symbols, g0 is the initial
state, γ0 is the initial stack symbol, and ∆ is a finite sets of transition rules of the forms:
(1) gγ ↪→ g′w′, or (2) gγ ↪→ g′w′ � γ′ where g,g′ ∈ G, γ,γ′ ∈ Γ, w′ ∈ Γ∗, and |w′| ≤ 2.

A DCPS models dynamic multithreaded programs with (potentially recursive) pro-
cedure calls. Threads are modeled as pushdown processes which can spawn new pro-
cesses. They have local variables and have also access to global (shared) variables. The
values of the local variables are modeled using the stack alphabet Γ, whereas the val-
ues of the global variables are modeled using states in G. Rules of the form gγ ↪→ g′w′
correspond to standard transitions of pushdown systems (popping γ and then pushing
w′ while changing the control state from g to g′), and rules of the form gγ ↪→ g′w′ � γ′
are similar but in addition they create a new thread with an initial local state γ′. Notice
that push (resp. pop) operations allow to model procedure calls (resp. returns).

When unbounded recursion is not considered, threads can be modeled as finite-state
processes instead of pushdown systems. This corresponds to the special case where in
all the transition rules defined above the pushed sequence w′ is of size at most 1. We
use the acronym DCFS for dynamic networks of concurrent finite-state system.

3.2 Semantics

A configuration of A is given by (1) a state g (the current value of the global store),
(2) the local configuration of the active thread, which is a pair (w, i) where w is its call
stack and i is its switch number (the number of interruptions/resumptions of the thread
together with the switch number of its ancestor at the moment of its creation), and

112 M.F. Atig, A. Bouajjani, and S. Qadeer

(3) a multiset of the local configurations of the idle threads. Formally, a configuration
of A is a tuple 〈g,(w, i),M〉 ∈ G× (Γ∗ ×N

)×M[Γ∗ ×N]. We assume that the initial
configuration of A is (g0,(γ0,0), /0).

For a given i ∈ N, the relation ⇒i on configurations is →i ∪ �→i, where →i and �→i

are defined as follows:

– 〈g,(γw, i),M〉 →i 〈g′,(w′w, i),M′〉 iff (1) there is a rule gγ ↪→ g′w′ ∈ ∆ and M = M′,
or (2) there is a rule gγ ↪→ g′w′ � γ′ ∈ ∆ and M′ = M +[(γ′, i+ 1)].

– 〈g,(w, i),M +[(w′, j)]〉 �→i 〈g,(w′, j),M +[(w, i+ 1)]〉 for every j ∈ N, g ∈ G, M ∈
M[Γ∗ ×N], and w,w′ ∈ Γ∗.

The relations →i correspond to the execution of pushdown (pop and push) operations,
with the possibility of creating new threads (added to the multiset of idle threads). The
created threads get the switch number i + 1. The relations �→i correspond to context
switches: The local configuration (w′, j) of a waiting thread is taken from the multiset
and given the status of active, while the local configuration (w, i) of the interrupted task
is stored in the multiset after incrementing its switch number.

Let ⇒≤B=
⋃

i≤B ⇒i for every B ∈ N∪{∞}. We write simply ⇒ instead of ⇒≤∞.
Finally,⇒∗

i and⇒∗≤B denote the transitive closure of⇒i and⇒≤B, respectively.

3.3 Reachability Problems

We consider the three following notions of reachability:

State reachability: A state g is said to be reachable iff 〈g0,(γ0,0), /0〉⇒∗ 〈g,(w, j),M〉
for some (w, j)∈Γ∗ ×N and M ∈M[

(
Γ∗ ×N

)
]. The state reachability problem (SRP

for short) is, for a given DCPS A and g∈G, to determine whether g is reachable by A .

K-bounded state reachability: Given K ∈N, a state g∈G is said to be K-reachable iff
〈g0,(γ0,0), /0〉 ⇒∗≤K 〈g,(w, j),M〉 for some (w, j) ∈ Γ∗ ×{0, . . . ,K}, and M ∈M[Γ∗ ×
{0, . . . ,K + 1}]. The K-bounded state reachability problem (SRP[K] for short) is, for a
given DCPS A , K ∈ N, and g ∈ G, to determine whether g is K-reachable by A .

Observe that, in SRP[K], a bound K is imposed on the number of switches (interup-
tions/resumptions) performed by each thread (together with the switch number of its
ancestor at the moment of its creation). However, due to dynamic creation of threads,
bounding the number of switches of each thread does not bound the number of switches
in the whole computations of the system (since an arbitrarily large number of threads
can be involved in these computations).

L-stratified K-bounded state reachability: Given K,L ∈ N, a state g ∈ G is said to
be [K,L]-reachable iff 〈g0,(γ0,0), /0〉(⇒∗

0 ◦· · ·◦ ⇒∗
K)L 〈g,(w, j),M〉 for some (w, j) ∈

Γ∗ × {0, . . . ,K}, and M ∈ M[Γ∗ × {0, . . . ,K + 1}]. The L-stratified K-bounded state
reachability problem (SRP[K,L] for short) is, for a given DCPS A , g∈G , and K,L∈N,
to determine whether g is [K,L]-reachable.

In SRP[K,L], a special kind of K-bounded computations (called stratified compu-
tations) are considered: In one stratum of such a computation, threads are scheduled
according to their increasing switch number (from 0 to K). This corresponds to the con-
sideration of the relation⇒∗

0 ◦· · ·◦ ⇒∗
K . Then, a L-stratified computation is a sequence

Context-Bounded Analysis for Concurrent Programs 113

of L strata. Observe that even in the case of stratified computations, an arbitrarily large
number of context switches may occur along a computation due to dynamic creation of
threads. Moreover, relaxing the bound L, i.e. considering arbitrarily large sequences of
strata, corresponds to considering the SRP[K] problem. Very particular stratified com-
putations are those where the whole number of context switches is bounded [10].

4 Analysis of Dynamic Networks of Concurrent Finite-State
Systems

In this section, we show that SRP and SRP[K] are EXPSPACE-complete (Theorem 5),
whereas, the problem SRP[K,L] is NP-complete (Theorem 6).

Theorem 5. The problems SRP and SRP[K] for DCFSs, for every natural number K ≥
2, are EXPSPACE-complete.

Proof: We prove that SRP[K] for DCFSs is polynomially reducible to the coverability
problem for Petri nets and vice-versa. We give here a sketch of the proof (for more
details see [1]). The constructions presented below can be adapted to show that the SRP
problem for DCFSs is also EXPSPACE-complete.

From SRP[K] for DCFSs to coverability problem for Petri nets. Given a natural
number K and a DCFS A = (G,Γ,∆,g0,γ0), we construct a Petri net N = (P,T) which
has the following structure:

– The set of places:
• A place (w, j) is associated with each natural number j ∈ {0, . . . ,K + 1} and

each stack configuration w ∈ Γ∪{ε}. The number of tokens in the place (w, j)
is the number of pending threads of A with local configuration (w, j).

• A place (g,w, i) is associated with each i ∈ {0, . . . ,K}, each state g ∈ G, and
each stack configuration w ∈ Γ∪{ε}. A token in the place (g,w, i) represents
the fact that g is the current value of the global store of A and that (w, i) is the
local configuration of the active thread.

– The set of transitions:
• For each i ∈ {0, . . . ,K} and each rule g1γ ↪→ g2w (resp. g1γ ↪→ g2w � γ′) of A ,

N has a transition (g1,γ, i) � (g2,w, i) (resp. (g1,γ, i) � (g2,w, i)(γ′, i+ 1)).
• For each i, j ∈ {0, . . . ,K}, each state g ∈ G, and each pair of stack configura-

tions w,w′ ∈ Γ∪{ε}, there is a transition (g,w, i)(w′, j) � (g,w′, j)(w, i+1) in
T . This transition simulates a context switch of A .

Notice that the size of N is polynomial in the size of A .

Lemma 1. (g0,(γ0,0), /0)⇒∗ (g,(w, i),M) for some (w, i) ∈ (Γ∪{ε})×{0, . . . ,K} and
M ∈M[(Γ∪{ε})×{0, . . . ,K + 1}] iff [(g0,γ0,0)]→∗

N [(g,w, i)]+ M.

From coverability problem for Petri nets to SRP[2] for DCFSs. Given a Petri net
N = (P,T) and two places p0, p f ∈ P, we construct a DCFS A = (G,Γ,∆,g0,γ0) such
that: the state g f is 2-reachable by A iff there is a multi-set W ∈M[P] such that [p0]→∗

P
W and [p f] ≤W . Intuitively, A has a special stack symbol γ1 such that the number
of pending threads with local configuration (γ1,1) gives an upper bound of the length

114 M.F. Atig, A. Bouajjani, and S. Qadeer

of the run of N simulated by A . For each place p ∈ P, A has a stack symbol p; the
number of such pending threads with stack content p denotes the current number of
tokens in p. We now sketch the behavior of A . The DCFS A guesses the length of the
simulated run of N by creating a number of threads with local configuration (γ1,1)
from the initial configuration. Then, the simulation of a rule t = w � w′ ∈ T is done in
two steps. First, A checks if t can be fired by verifying if there is a pending thread with
local configuration (wi,2) for every i ∈ {1, . . . , |w|}. Second, A uses pending threads
with local configuration (γ1,1) to create, for every j ∈ {1, . . . , |w′|}, a thread with local
configuration (w′j,2). Finally, to check if there is a token in the place p f , A verifies
if there a pending thread with local configuration (p f ,2) and moves its state to g f .
Formally, A is built up from N as follows:

– The set of states:
• A has two special states g0 and g f . The states g0 and g f are the initial state and

the final state, respectively.
• For each rule t = w � w′ ∈ T , A has the following sequences of

global states g(t,w1), . . . ,g(t,w|w|) and g(t,w′1), . . . ,g(t,w′|w′ |)
. The sequence of states

g(t,w1), . . . ,g(t,w|w|) is used to simulate taking iteratively a token from each place

wi for i = 1 to |w|. The sequence of states g(t,w′1), . . . ,g(t,w′|w′ |)
is used to simulate

adding iteratively a token to each place w′j for j = 1 to |w′|.
– The set of stack alphabet:

• A has two special stack symbols γ0 and γ1. The symbol γ0 represents the initial
stack content. Symbols γ1 represent auxiliary threads that are ”consumed” for
simulating tokens generation by transitions of N .

• For each place p ∈ P, A has a stack symbol p. The number of pending threads
with stack content p denotes the current number of token in the place p.

– The set ∆ is the smallest set of rules satisfying the following conditions:
• Guessing the length of the run of N : The rule g0γ0 ↪→ g0γ0 � γ1 is in ∆. This rule

creates an arbitrary number of threads γ1 with switch number 1. This gives an
upper bound of the length of the run of N simulated by A .

• Creation of the initial marking of N : The rule g0γ0 ↪→ g0 � p0 is in ∆. This rule
creates a thread p0. This corresponds to the initial multiset [p0] of N .

• Simulation of a transition rule of N : A transition t = w � w′ is simulated by
checking iteratively that there is a pending thread with stack content wi for
i = 1 to |w|, and then, by creating iteratively a thread with initial stack content
w′j for j = 1 to |w′|.
∗ Initialization of the simulation: For each transition t = w � w′ ∈ T , the

rule g0w1 ↪→ g(t,w1) is in ∆. This rule corresponds to start simulating t and
to check that there is a pending thread with stack content w1.

∗ Checking if the transition rule can be fired: For each transition t = w �
w′ ∈ T and for each i ∈ {1, . . . , |w|−1}, the rules g(t,wi)wi+1 ↪→ g(t,wi+1)
are in ∆. These transitions simulate the operation of taking a token from
each place in w2, . . . ,w|w|.

∗ Generating the output tokens: For each transition t = w � w′ ∈ T and
for each j ∈ {1, . . . , |w′| − 1}, the rules g(t,w|w|)γ1 ↪→ g(t,w′1)γ1 � w′1 ,

Context-Bounded Analysis for Concurrent Programs 115

g(t,w′j)γ1 ↪→ g(t,w′j+1)γ1 � w′(t, j+1) , and g(t,w′|w′ |)
γ1 � g0 are in ∆. These

transitions simulate the operation of adding a token to each place of
w′1, . . . ,w

′
|w′ |. Notice that if the thread γ1 has a switch number 1, then the

created threads w′1, . . . ,w
′
|w′ | have switch number 2.

• Checking the final marking: The rule g0 p f ↪→ g f is in ∆. This corresponds to
checking if there a multiset with at least one token in p f reachable by N .

The relation between N and A is given by the following lemma:

Lemma 2. The control state g f is 2-reachable by A iff there a marking W ∈M[P] such
that W ≥ [p f] and [p0]→∗

N W . ��
We consider now the problem SRP[K,L] for K,L ∈ N. We prove that:

Theorem 6. For every K,L ∈N, the problem SRP[K,L] for DCFSs is NP-complete.

Proof: NP-hardness is proved by a reduction from the coverability problem for acyclic
Petri nets [15] to SRP[K,1]. This is done by a simple adaptation of the construction
given in Theorem 5. The upper-bound is obtained by a reduction to the satisfiability
problem of existential Presburger formulas. We sketch hereafter the proof for the special
when L = 1. The extension to L > 1 is straightforward [1].

Let A = (G,Γ,∆,g0,γ0) be a DCFS and K be a natural number. We recall that a state
gK+1 ∈ G is [K,1]-reachable by A iff there is a sequence of states g1, . . . ,gK ∈ G, a
sequence of stack configurations w1, . . . ,wK+1 ∈ Γ∪{ε}, and a sequence of multi-sets
M1, . . . ,MK+1 ∈M[(Γ∪{ε})×{0, . . . ,K + 1}] such that:

〈g0,(γ0,0), /0〉 ⇒∗
0 〈g1,(w1,1),M1〉 ⇒∗

1 · · · ⇒∗
K 〈gK+1,(wK+1,K + 1),MK+1〉 (a)

The problem of checking whether a state gK+1 is [K,1]-reachable by A can be
rewriting as follows: Whether there are some w0, . . . ,wK+1 ∈ Γ∪{ε}, g1, . . . ,gK ∈ G,
and Nj,N′j ∈ M[Γ× { j}] for every j ∈ {0, . . . ,K + 1}, such that: (1) w0 = γ0, (2)
N0 = N′0 = /0, (3) and for every i ∈ {0, . . . ,K}, we have:

〈gi,(wi, i),N′i + ∑i−1
l=0(N

′
l −Nl)〉 ⇒∗

i 〈gi+1,(wi+1, i+ 1),N′i+1 + ∑i
l=0(N

′
l −Nl)〉 (b)

Observe that for every i ∈ {0, . . . ,K +1}, we have that Mi = N′i +∑i−1
l=0(N

′
l −Nl) and

that Ni + [(wi, i)] is the multi-set of executed threads with switch number i. Then, the
equation (b) can be rewritten as follows: For every i ∈ {0, . . . ,K}, we have:

〈gi,(wi, i),Ni〉 ⇒∗
i 〈gi+1,(wi+1, i+ 1),N′i+1〉 and Ni ≤ N′i (c)

This means that A can reach the configuration 〈gi+1,(wi+1, i + 1),N′i+1〉 while ex-
ecuting all threads in the multiset [(wi, i)] + Ni which should be less than the num-
ber of generated threads with switch number i, i.e. [(wi, i)] + N′i . We can further sim-
plify our problem as follows: A state gK+1 is [K,1]-reachable by A iff there are some
w0,w′0,w1, . . . ,wK+1,w′K+1 ∈ Γ∪{ε}, g1, . . . ,gK ∈ G, and Nj,N′′j ∈M[Γ×{ j}] for ev-
ery j ∈ {0, . . . ,K +1}, such that: (1) w0 = w′0 = γ0, (2) N0 = N′′0 = /0, (3) and for every
i ∈ {0, . . . ,K}, we have:

〈gi,(wi, i),Ni〉 ⇒∗
i 〈gi+1,(w′i+1, i+ 1),N′′i+1〉 and Ni +[(wi, i)]≤ N′′i +[(w′i, i)] (d)

116 M.F. Atig, A. Bouajjani, and S. Qadeer

Observe that if (c) holds, then (d) holds by simply considering w′i = wi for every
i ∈ {0, . . . ,K + 1}. On the other hand, if (d) is true, then (c) is true by taking N′K+1 =
N′′K+1, wK+1 = w′K+1, and for every i ∈ {0, . . . ,K}, N′i = N′′i +[(w′i, i)]− [(wi, i)] which
possible since Ni + [(wi, i)] ≤ N′′i + [(w′i, i)]. In the latter case, we can show that for
every i ∈ {0, . . . ,K}, 〈gi,(wi, i),Ni〉 ⇒∗

i 〈gi+1,(wi+1, i+ 1),N′i+1〉 and Ni ≤ N′i .
Hence, a state gK+1 is [K,1]-reachable iff the three following requirements hold:

1. For each i ∈ {0, . . . ,K}, we have 〈gi,(wi, i),Ni〉 ⇒∗
i 〈gi+1,(w′i+1, i+ 1),N′′i+1〉.

2. For each i ∈ {1, . . . ,K}, we have Ni +[(wi, i)]≤ N′′i +[(w′i, i)].
3. N0 = N′′0 = /0 and w0 = w′0 = γ0.

(Notice indeed that requirements 1, 2 and 3 are equivalent to (d)).
Let us fix (guess) a sequence of states σ = g1, . . . ,gK ∈G. We show how to compute

an existential Presburger formula φσ, of polynomial size in the size of A , which is satis-
fiable iff the state gK+1 is [K,1]-reachable by A . To this end, we compute an existential
Presburger sub-formula for each of the previous three requirements. These sub-formulas
use the set V = {x(w,i),y(w,i) |w ∈ (Γ∪{ε}) ∧ 0 ≤ i≤ K + 1} as a set of free variables
such that for each i ∈ {0, . . . ,K + 1} and for each w ∈ Γ∪{ε}, the variable x(w,i) (resp.
y(w,i)) stands for the number of occurrences of (w, i) in the multiset

(
[(wi, i)]+Ni

)
(resp.(

[(w′i, i)]+N′′i
)
), i.e.
(
[(wi, i)]+Ni

)(
(w, i)
)

(resp.
(
[(w′i, i)]+N′′i

)(
(w, i)
)
). Then, the for-

mula φσ is obtained as the conjunction of these subformulas computed as follows:

- Checking the first requirement: For each i ∈ {0, . . . ,K} and for each gi,gi+1 ∈ G,
we compute a formula φ(i,gi,gi+1) such that φ(i,gi,gi+1)(U) is true iff there are wi,w′i+1 ∈
Γ∪{ε} and Ni ∈M[(Γ∪{ε})×{i}], and N′′i+1 ∈M[(Γ∪{ε})×{i+ 1}] such that: (1)
〈gi,(wi, i),Ni〉 ⇒∗

i 〈gi+1,(w′i+1, i+1),N′′i+1〉, (2)
(
[(wi, i)]+Ni

)(
(w, i)
)

= U(x(w,i)), and
(3)
(
[(w′i+1, i+ 1)]+ N′′i+1

)(
(w, i+ 1)

)
= U(y(w,i+1)) for all w ∈ Γ∪{ε}.

To this end, we prove that the set of valuation U : V → N, such that there is a com-
putation 〈gi,(wi, i),Ni〉⇒∗

i 〈gi+1,(w′i+1, i+1),N′′i+1〉 of A , where for every w∈ Γ∪{ε},(
[(wi, i)]+Ni

)(
(w, i)
)

= U(x(w,i)) and
(
[(w′i+1, i+1)]+N′′i+1

)(
(w, i+1)

)
= U(y(w,i+1)),

can be defined as the Parikh image of a language accepted by a finite state automaton
S(i,gi,gi+1) with the input alphabet (Γ∪ {ε})×{i, i + 1}. Then, we use Theorem 4 to
construct the formula φ(i,gi,gi+1). The automaton S(i,gi,gi+1) has the following structure:

– The set of states:

• S(i,gi,gi+1) has two special states: sinit as an initial state and s f inal as a final state.
• For each g ∈G, the automaton S(i,gi,gi+1) has a state gc. This represents that the

current value of the global store of A is g when a context switch occurs.
• For each g ∈ G and for each w ∈ Γ∪{ε}, the automaton S(i,gi,gi+1) has a state

(g,w). This corresponds to the fact that the current value of the global store of
A is g and the local configuration of the active thread is (w, i).

– The set of transitions:
• Initialization For each wi ∈ Γ∪{ε}, the automaton S(i,gi,gi+1) has the transition

sinit (wi,i)−−−−→(gi,wi). This transition corresponds to a guess of the local configu-
ration of the first active thread (wi, i).

Context-Bounded Analysis for Concurrent Programs 117

• Simulation of a transition: For each rule gγ ↪→ g′w′ (resp. gγ ↪→ g′w′ � γ′) of A ,

S(i,gi,gi+1) has the transition (g,γ) (γ′,i+1)−−−−−→(g′,w′) (resp. (g,γ) ε−→(g′,w′)).
• Simulation of a context switch For each state g ∈ G and each pair of stack

configurations w and w′ in Γ∪ {ε}, the automaton S(i,gi,gi+1) has the transi-

tions (g,w) (w,i+1)−−−−−→gc and gc (w′,i)−−−−→(g,w′). These transitions simulate a con-
text switch between two threads with local configurations (w, i) and (w′, i).

• End of the simulation: For each w ∈ Γ∪{ε}, the automaton S(i,gi,gi+1) has the

transition (gi+1,w) (w,i+1)−−−−−→ s f inal . This corresponds to the interruption of the
thread with local configuration (w, i) and to the end of the simulation.

It can be checked that the size of the automaton S(i,gi,gi+1) is polynomial in the size
of A . The relation between S(i,gi,gi+1) and A is given by the following lemma:

Lemma 3. A word u is in L(S(i,gi,gi+1)) iff there are wi,w′i+1 ∈ (Γ∪{ε}), Ni ∈M[(Γ∪
{ε})× {i}], and N′′i+1 ∈ M[(Γ ∪ {ε})× {i + 1}] such that: (1) 〈gi,(wi, i),Ni〉 ⇒∗

i

〈gi+1,(w′i+1, i + 1),N′′i+1〉, (2)
(
[(wi, i)] + Ni

)(
(w, i)
)

= [u]((w, i)), and (3)
(
[(w′i+1, i +

1)]+ N′′i+1

)(
(w, i+ 1)

)
= [u]((w, i+ 1)) for every stack configuration w ∈ Γ∪{ε}.

As a consequence of Theorem 4 and Lemma 3, it is possible to compute in polynomial
time and size an existential Presburger formula φ(i,gi,gi+1) that represents the Parikh
image of the language L(S(i,gi,gi+1)).

Lemma 4. For every valuation U, φ(i,gi,gi+1)(U) is true iff there are wi,w′i+1 ∈ (Γ∪
{ε}), Ni ∈ M[(Γ ∪ {ε})× {i}], and N′′i+1 ∈ M[(Γ ∪ {ε})× {i + 1}] such that: (1)
〈gi,(wi, i),Ni〉 ⇒∗

i 〈gi+1,(w′i+1, i+1),N′′i+1〉, (2)
(
[(wi, i)]+Ni

)(
(w, i)
)

= U(x(w,i)), and
(3)
(
[(w′i+1, i+ 1)]+ N′′i+1

)(
(w, i+ 1)

)
= U(y(w,i+1)) for every w ∈ Γ∪{ε}.

- Checking the second requirement: The requirement that Ni + [(wi, i)] ≤ N′′i +
[(w′i, i)], for every i ∈ {1, . . . ,K}, can be expressed by φ(i,2) =

∧
w∈(Γ∪{ε}) x(w,i) ≤ y(w,i).

- Checking the third requirement: To express the requirements that N0 = N′′0 = /0
and w0 = w′0 = γ0, we consider the formula φ3 as the conjunction of the formulas:
x(γ0,0) = y(γ0,0) = 1 and x(w,0) = y(w,0) = 0 for all w ∈ Γ∪{ε} such that w �= γ0.

Finally, the formula φσ is obtained as φ3 ∧
(∧

i∈{0,...,K} (φ(i,gi ,gi+1) ∧φ(i,2))
)
. It can

be checked that the size of φσ is polynomial in K and in the size of A . �

5 Analysis of Dynamic Networks of Concurrent Pushdown
Systems

We consider now the case of DCPSs. It is well-known that the SRP is undecidable
already for networks with two concurrent pushdown processes. We prove however that
both problems SRP[K] and SRP[K,L] are decidable, for any given bounds K and L. For
that, we prove the following fact.

Theorem 7. For every K,L ∈N, the problems SRP[K] and the SRP[K,L] for DCPS are
exponentially reducible to the corresponding problems for DCFS.

The rest of this section is devoted to the proof of Theorem 7. Let us fix a DCPS
A = (G,Γ,∆,g0,γ0). We show that it is possible to construct a DCFS A f s such that

118 M.F. Atig, A. Bouajjani, and S. Qadeer

the problems SRP[K] and SRP[K,L] for A can be reduced to the corresponding prob-
lems for A f s. Let us present the main steps of this construction. For that, let us consider
the problem SRP[K], for some fixed K ∈ N. Then, let us concentrate on the computa-
tions of one thread, and assume that this thread will be interrupted and resumed i times
(with i≤K) during its execution from some initial global state g and initial local state γ
to some final global state g′. The computations of such a thread correspond to the run of
a labeled pushdown system, built out of A , which (1) performs the same operations on
the stack and global states as the ones specified by ∆, (2) makes visible as transition la-
bels the local state (element of Γ) of the spawned threads, and (3) nondeterministically
guesses jumps from a global state to another one corresponding to the effect of context
switches. These jumps are also made visible as transition labels under the form of pairs
(gl,gl+1) ∈G×G (meaning that the computation of the thread is interrupted at state gl

and is resumed at state gl+1). The number of such jumps in each run is precisely i.
Then, the problem is to handle the composition of all the computations (unbounded

number) of the generated threads and to make sure that the guesses made by each one
of them (on their control state jumps due to context switches) are correct. The key ob-
servation which allows to solve this problem is that it is possible to assume without loss
of preciseness that some of the generated threads can be ignored (or lost). Indeed, these
threads can always be considered as threads which will never be scheduled. Therefore,
the behaviors of each thread can be modeled using a finite-state automaton which recog-
nizes the downward closure of the language of the labeled pushdown system of a thread
w.r.t. the ordering on words where u is less than v if u can be obtained from v by erasing
symbol in Γ. We know by Theorem 1 that this automaton is effectively constructible.
So, let S(i,g,γ,g′) be the automaton modeling the computations of threads starting from g
and γ and reaching g′ after i interruptions-resumptions.

The next step is to synchronize the so-defined finite-state automata in order to rep-
resent valid computations of the whole system. For that, we define a DCFS A f s which
simulates the composition of these automata as follows:

– Assume that the initial global state is g0 and that the initial thread has an starting
local state γ0. Then, A f s guesses for this thread the number of switches i and its
final state g, and starts simulating its behaviors according to the transitions of the
automaton S(i,g0,γ0,g). To initialize the simulation, A f s has a rule g0γ0 ↪→ $sinit

(i,g0,γ0,g),

where sinit
(i,g0,γ0,g) is the initial state of S(i,g0,γ0,g). This rule allows to check that the

control state is g0 and to move to a special control state $ corresponding to a simu-
lation phase without context switches.

– During the simulation, when a transition s
γ−→s′ is encountered, a new thread γ is

spawned by A f s. This is done using a rule $s ↪→ $s′� γ. The new thread will stay
pending until A f s can dispatch it.

– A pending thread γ which has never been activated can be dispatched by A f s at the
moment of a context switch. For that, A f s has a rule gγ ↪→ $sinit

(i,g,γ,g′) where sinit
(i,g,γ,g′)is

the initial state of S(i,g,γ,g′), for every possible starting and ending states g and g′,
and every possible number of context switches i≤ K.

– Encountering a transition s
(g1,g2)−−−−−→s′ means that the computation of the simulated

thread has lead to the global store g1, and that this computation will be interrupted

Context-Bounded Analysis for Concurrent Programs 119

at this point and will be resumed later when the global store will become g2 (due
to the execution of some other threads). Then, A f s moves from its control state
$ to a control state g1 so that the control can be taken by another thread (which
was waiting for g1), and transforms the local state of the current thread (which
may be interrupted) to (g2,s′). Both of these operations are done using a rule $s ↪→
g1(g2,s′). In the case of g1 �= g2, we observe that the only action that can be done by
A f s after executing this rule is a context switch, i.e., (g2,s′) becomes idle and some
pending thread is activated (either dispatched for the first time, or resumed after
some interruption). We have seen above how A f s dispatches pending threads for
the first time. The resumption of threads at control state g1 is done by having rules
of the form g1(g1,s′′) ↪→ $s′′ for all possible states s′′ in S(i,g,γ,g′) . Such a rule means
that if a pending thread (g1,s′′) exists, then it can be resumed and the simulation
of its behaviors is pursued from the state s′′ (at which it was stopped at the last
interruption). Similarly, (g2,s′) will be resumed when the rule g2(g2,s′) ↪→ $s′ can
be executed which can only happen if the global store becomes g2.

– Finally, when a final state s f inal
(i,g,γ,g′) of S(i,g,γ,g′) is reached, this means that the sim-

ulation of the current thread has been completed and therefore the global store
must be g′ (the guessed target state) at this point. Then, the execution of the rule
$s f inal

(i,g,γ,g′) ↪→ g′⊥ allows to release the control so that some pending thread waiting

for g′ can be resumed.

Let us give in more details the construction described above.

5.1 Simulating Threads with Finite-State Automata

First, we define the DCPS Alos obtained from A by allowing losses of the gener-
ated threads. Let Alos = (G,Γ,∆los,g0,γ0) be the DCPS such that ∆los = ∆∪ {gγ ↪→
g′w′ |(gγ ↪→ g′w′ � γ′) ∈ ∆}.
Lemma 5. For every K,L ∈ N, a control state g ∈ G is K-reachable (resp. [K,L]-
reachable) in A if and only if g is K-reachable (resp. [K,L]-reachable) in Alos.

Next, we show the construction of the automaton S(i,g,γ,g′) for some given i∈ {0, . . . ,K},
γ ∈ Γ, and g,g′ ∈ G. For that, we start by considering a labeled pushdown system sim-
ulating the behaviors of thread that reaches the state g′ starting from g and the stack
configuration γ after some number of jumps in the control state (representing guesses
on the effect of context switches), The spawned thread as well as the guesses on the
control state jumps made during the computation are made visible as labels on the tran-
sitions. Let P = (G,Γ∪G×G,Γ,∆P) be the labeled pushdown system where ∆P is the
smallest set of rule such that (1) for every g1γ1 ↪→ g2w � γ2 (resp. g1γ1 ↪→ g2w) in ∆los,

the rule g1γ1
γ2
↪→ g2w (resp. g1γ1

ε
↪→ g2w) is in ∆P , and (2) for every (g1,g2) ∈ G×G,

and for every γ1 ∈ Γ, the rule g1γ1
(g1,g2)
↪→ g2γ1 is in ∆P .

Then, the set of behaviors represented by this labeled pushdown system which cor-
respond to precisely i control switches (interruption-resumptions) is

L(i,g,γ,g′) = LP (gγ,g′)∩ (Γ∗ · (G×G) ·Γ∗)i.

120 M.F. Atig, A. Bouajjani, and S. Qadeer

This set is context-free in general (since it is the intersection of a context-free language
with a regular one). However, due to Lemma 5, we can consider without loss of pre-
ciseness the downward closure of L(i,g,γ,g′) w.r.t. the sub-word relation corresponding to
the deletion of symbols in Γ while preserving all symbols in G×G, i.e., the set

L(i,g,γ,g′) ↓ ∩(Γ∗ · (G×G) ·Γ∗)i.

By Theorem 1, this set regular an can be effectively represented by a finite-state au-
tomaton S(i,g,γ,g′) = (S(i,g,γ,g′),Γ∪G×G,δ(i,g,γ,g′),s

init
(i,g,γ,g′),s

f inal
(i,g,γ,g′)). We assume w.l.o.g

that all states in the automaton S(i,g,γ,g′) are co-reachable from the final state.

Lemma 6. Let i ∈ N be a natural number, γ ∈ Γ be a stack symbol,
g1,g′1,g2, . . . ,gi+1,g′i+1 ∈ G be a sequence of states, and w0, . . . ,wi ∈ Γ∗ be a se-
quence of stack contents. Then, w0(g′1,g2)w1(g′2,g3)w2 · · · (g′i,gi+1)wi is accepted by
S(i,g1,γ,g′i+1) iff there are u0, . . . ,ui+1 ∈ Γ∗ such that, for every l ∈ {1, . . . , i + 1} and

j ∈N, 〈gl,(ul−1, j), /0〉 ⇒∗
j 〈g′l,(ul , j),Ml−1〉 is a computation of Alos where u0 = γ and

Ml−1((γ′, j + 1)) = [wl−1](γ′) for all γ′ ∈ Γ.

The lemma above says that a word w0(g′1,g2)w1(g′2,g3)w2 · · · (g′i,gi+1)wi is in
L(S(i,g1,γ,g′i+1)) iff the DCPS Alos is able to bring the value of the global variables from gl

to g′l and the stack configuration of the simulated thread from ul−1 to ul while creating
the set of threads with initial stack symbols in [wl−1] for every l ∈ {1, . . . , i+ 1}.

5.2 From DCPS to DCFS

We define the DCFS A f s = (G f s,Γ f s,∆ f s,g0,γ0) where:

– G f s = G∪{$} is a finite set of states with $ /∈ G.
– Γ f s is a finite set of stack alphabet defined as the union of the sets Γ∪{⊥}, S(i,g,γ,g′)

and G×S(i,g,γ,g′) for all (i,g,γ,g′) ∈ {0, . . . ,K}×G×Γ×G, where S(i,g,γ,g′) is the
set of states of S(i,g,γ,g′).

– ∆ f s is the smallest set of transitions such that
• Initialize/Disptach: For every i ∈ {0, . . . ,K}, every γ ∈ Γ, and every g,g′ ∈ G,

the rule gγ ↪→ $sinit
(i,g,γ,g′) is in ∆ f s where sinit

(i,g,γ,g′) is the initial state of S(i,g,γ,g′).

• Skip: For every transition s ε−→s′ of S(i,g,γ,g′), the rule $s ↪→ $s′ is in ∆ f s.

• Spawn:For every transition s
γ−→s′ of S(i,g,γ,g′), the rule $s ↪→ $s′ � γ is in ∆ f s.

• Interrupt: For every transition s
(g1,g2)−−−−−→s′ of S(i,g,γ,g′), the rule $s ↪→ g1(g2,s′)

is in ∆ f s.
• Resume: For every (g,s) ∈ Γ f s, the rule g(g,s) ↪→ $s is in ∆ f s.
• Terminate: The rule $s f inal

(i,g,γ,g′) ↪→ g′⊥ is in ∆ f s, where s f inal
(i,g,γ,g′) is the final state

of S(i,g,γ,g′).

Lemma 7. For every K,L ∈N, a control state g is K-reachable (resp. [K,L]-reachable)
in A if and only if g is K-reachable (resp. [K,L]-reachable) in A f s.

The proof of the lemma above is technical and is given in details in [1]. We give here-
after a high level description of it. Let us consider a DCPS A+ which is the union of

Context-Bounded Analysis for Concurrent Programs 121

Alos and A f s in the sense that for each created thread with initial configuration γ ∈ Γ,
A+ chooses nondeterministically whether the thread will be executed according to the
rules of Alos, or simulated according to the rules of A f s. Then, we define the rank of
a computation of A+ to be the pair (m,n) ∈ N×N where m is the number of threads
involved in the computation that follow the rules of Alos and n is the number of threads
in the computation following the rules of A f s. Observe that computations of rank (m,n)
where n = 0 (resp. m = 0) are precisely the computations of Alos (resp. A f s). We prove
that for any computation of A+ of rank (m+1,n) (resp. (m,n+1)), there exists a com-
putations of A+ of rank (m,n+1) (resp. (m+1,n)). This computation is obtained from
the original one by simulating the execution of a thread that follows the rules of Alos

(resp. A f s) by a thread that follows the rules of A f s (resp. Alos). This is possible thanks
to Lemma 6. A consequence of this fact is that, for every m ∈ N, a control state is
K-reachable (resp. [K,L]-reachable) by a computation of rank (m,0) (i.e., by a compu-
tation of Alos with m threads) if and only if it is K-reachable (resp. [K,L]-reachable) by
a computation of rank (0,m) (i.e. by a computation of A f s with the m threads). This is
precisely what Lemma 7 is saying.

Finally, Theorem 7 is an immediate consequence of Lemma 7. A corollary of Theo-
rem 7 and Theorem 5 is the following fact.

Corollary 1. For every K ∈ N, the problem SRP[K] for DCPS is in 2-EXPSPACE, and
for every K,L ∈ N, the problem SRP[K,L] for DCPS is in NEXPTIME.

6 Conclusion

We have proposed new concepts for context-bounded verification we believe that are
natural and suitable for programs with dynamic thread creation. These concepts are
based on the idea of bounding the number of switches for each thread and not for all
the threads in a computation.

First, we have proved that even for finite-state threads, adopting such a notion of
context-bounding leads in general to a problem which is as hard as the coverability
problem of Petri nets. This means that, in theory, the complexity of this problem is high,
but in practice, there are quite efficient techniques (based on iterative computation of
under/upper approximations) developed recently for solving this problem which have
been implemented and used successfully in [5,4]. Moreover, we have proposed a notion
of stratified context-bounding for which the verification is in NP, i.e., as hard as in
the case without dynamic thread creation. An interesting question is how to implement
efficiently the analysis in this case using clever encodings in SMT solvers.

Moreover, we have proved that the considered problems are still decidable for the
case of pushdown threads. This is done by a nontrivial reduction to the correspond-
ing problems for finite-state threads. This reduction is based on computing the regular
downward closure of context-free languages w.r.t. the sub-word relation. The down-
ward closure computation may lead in general to an unavoidable exponential blow-up.
This is due to the succinctness of context-free grammars w.r.t. finite state automata: For
instance, the finite language {a2N}, for a fixed N ≥ 1, can be defined with a context-free
grammar of size N whereas a finite-state automaton representing it (or its downward

122 M.F. Atig, A. Bouajjani, and S. Qadeer

closure) is necessarily of size at least 2N . An interesting open problem is whether there
is an alternative proof technique which allows to avoid the downward closure construc-
tion. In practice, we believe that it would be possible to overcome this problem by for
instance designing algorithms allowing to generate efficiently and incrementally (parts
of the) downward closure.

Finally, in our models, we consider that each created thread inherits a switch number
from its father (the one of its father plus 1). An alternative definition can be obtained
by considering that each created thread is given the switch number 0. (Therefore, each
thread can perform up to K switches.) For that model, we can prove (for more details see
[1]) that our results concerning the reachability problems SRP and SRP[K] hold with
the same complexity bounds. However, the problem SRP[K,L] for finite state threads
(resp. pushdown threads) becomes EXPSPACE-complete (in 2-EXPSPACE) instead of
NP-complete (NEXPTIME) for this definition.

References

1. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent programs
with dynamic creation of threads. Technical report, LIAFA (October 2008)

2. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of multithreaded
software with asynchronous communication. In: Ramanujam, R., Sen, S. (eds.) FSTTCS
2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)

3. Courcelle, B.: On construction obstruction sets of words. In: EATCS 1991, vol. 44, pp. 178–
185 (1991)

4. Ganty, P., Raskin, J.F., Begin, L.V.: A complete abstract interpretation framework for cover-
ability properties of WSTS. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855, pp. 49–64. Springer, Heidelberg (2005)

5. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, enlarge and check: New algorithms for the
coverability problem of WSTS. J. Comput. Syst. Sci. 72(1), 180–203 (2006)

6. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequential anal-
ysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 37–51. Springer, Hei-
delberg (2008)

7. Lal, A., Touili, T., Kidd, N., Reps, T.W.: Interprocedural analysis of concurrent programs
under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

8. Lipton, R.: The reachability problem requires exponential time. Technical Report TR 66
(1976)

9. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of multithreaded
programs. In: PLDI 2004, pp. 446–455. ACM Press, New York (2007)

10. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidel-
berg (2005)

11. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: PLDI 2004, pp. 14–24. ACM,
New York (2004)

12. Rackoff, C.: The covering and boundedness problem for vector addition systems. Theoretical
Computer Science (1978)

13. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable. ACM
Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

Context-Bounded Analysis for Concurrent Programs 123

14. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free. In: Dı́az,
J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1136–
1149. Springer, Heidelberg (2004)

15. Stewart, I.A.: Reachability in some classes of acyclic petri nets. Fundam. Inform. 23(1), 91–
100 (1995)

16. Suwimonteerabuth, D., Esparza, J., Schwoon, S.: Symbolic context-bounded analysis of mul-
tithreaded java programs. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008.
LNCS, vol. 5156, pp. 270–287. Springer, Heidelberg (2008)

17. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational Horn clauses. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 337–352. Springer, Heidelberg
(2005)

18. Zaks, A., Joshi, R.: Verifying multi-threaded C programs with SPIN. In: Havelund, K., Ma-
jumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 325–342. Springer, Heidel-
berg (2008)

Semantic Reduction of Thread Interleavings in
Concurrent Programs

Vineet Kahlon, Sriram Sankaranarayanan, and Aarti Gupta

NEC Laboratories America, 4 Independence Way, Princeton, NJ
{kahlon,srirams,agupta}@nec-labs.com

Abstract. We propose a static analysis framework for concurrent pro-
grams based on reduction of thread interleavings using sound invariants
on the top of partial order techniques. Starting from a product graph
that represents transactions, we iteratively refine the graph to remove
statically unreachable nodes in the product graph using the results of
these analyses. We use abstract interpretation to automatically derive
program invariants, based on abstract domains of increasing precision.
We demonstrate the benefits of this framework in an application to find
data race bugs in concurrent programs, where our static analyses serve
to reduce the number of false warnings captured by an initial lockset
analysis. This framework also facilitates use of model checking on the
remaining warnings to generate concrete error traces, where we leverage
the preceding static analyses to generate small program slices and the
derived invariants to improve scalability. We describe our experimental
results on a suite of Linux device drivers.

1 Introduction

Concrete error traces are critical for effective debugging of software. Unfortu-
nately, generating error traces for concurrency related bugs is notoriously hard.
One of the key reasons for this is that concurrent programs are behaviorally com-
plex due to the many possible interleavings between threads. These interleavings
make concurrent programs hard to analyze.

Verification and analysis for concurrent systems is currently a very active
area of research due to the multi-core revolution. Testing, static analysis, and
model checking have all been explored but not without some drawbacks. Testing
has clearly been the most effective debugging technique for sequential programs.
However, the multitude of interleavings among threads makes it hard to provide
meaningful coverage guarantees for concurrent programs. Furthermore, replaya-
bility of the bugs detected through testing is a challenge.

Static analysis techniques have been successful for detecting standard concur-
rency bugs such as data races and deadlocks [28,25,24,11,26,15]. However, the
large number of bogus warnings generated by static analyzers remains a draw-
back. Most static analyses ignore conditional statements, focusing mostly on the
syntactic reachability of a pair of control locations rather than semantic reach-
ability. This places the burden of sifting the true bugs from the false warnings
on the programmer, which leads to poor productivity.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 124–138, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Semantic Reduction of Thread Interleavings in Concurrent Programs 125

Model checking [5,3,6] has the advantages of systematic state space explo-
ration, and can produce concrete error traces. However, the state explosion
problem severely limits its scalability on large real-life concurrent programs.

In this paper, we propose a general framework for analysis of concurrent
programs, based on semantic reduction in the thread interleavings by use of
sound invariants. We first utilize partial order reduction (POR) techniques and
constraints from synchronization primitives to construct a transaction graph.
The transaction graph effectively captures the relevant thread interleavings for
performing a sound static analysis. We then derive sound invariants by using
abstract interpretation over this transaction graph. These invariants are used
to further refine the transaction graph by removing unreachable nodes. This
can lead to larger transactions, i.e. a reduction in the thread interleavings. The
removal also facilitates the discovery of stronger invariants on the reduced graph.
This process can be iterated until convergence, i.e. until no more nodes can be
removed and no better invariants computed. The transaction graph is central in
our approach: at any stage it provides a current snapshot of thread interleavings
needed for sound static analysis. It also allows us to stage various analyses to
achieve scalability, such that less precise but cheaper techniques are used first
to refine the transaction graph, to enable application of more precise techniques
later. Our focus is on successive reduction of thread interleavings, which is a
primary source of complexity in the analysis of concurrent programs.

a0: voidAlloc Page() {
a1: a := c;
a2: pt lock(&plk);
a3: if (pg cnt ≥ LIMIT) {
a4: pt wait(&pg lim,&plk);
a5: incr (pg count) ;
a6: pt unlock(&plk);
a7: sh1 := sh ;
a8: } else {
a9: pt lock(&count lock);
a10: pt unlock(&plk);
a11: page := alloc page();
a12: sh := 5 ;
a13: if (page)
a14: incr(pg count);
a15: pt unlock(&count lock);
a16: end-if
a17: b := a +1;
a18: end-function

b0: voidDealloc Page() {
b1: pt lock(&plk);
b2: if (pg count == LIMIT)

b3: sh := 2 ;
b4: decr (pg count) ;

b5: sh1 := sh ;
b6: pt notify(& pg lim, & plk);
b7: pt unlock(& plk);
b8: } else {
b9: pt lock(&count lock);
b10: pt unlock(&plk);
b11: decr(pg count);
b12: sh := 4 ;
b13: pt unlock(&count lock);
b14: end-if
b15: end-function

Fig. 1. Example concurrent program consisting of two functions

126 V. Kahlon, S. Sankaranarayanan, and A. Gupta

Motivating Example
The concurrent program shown in Fig. 1 comprises of multiple threads executing
the Alloc Page and Dealloc Page routines. We assume that each statement shown
is executed atomically. For clarity, all shared variable accesses and synchroniza-
tion constructs pt lock, pt unlock, pt wait and pt notify are highlighted.

The shared variable sh is written to at location a12, b3 and b12. Since the
set of locks held at a12 and b3 (viz., {count lk} and {plk}, respectively) are
disjoint, the pair (a12,b3) normally constitutes a data race warning according
to lockset-based race detection techniques.

When some thread reaches the control location b3, we automatically establish
the interval invariant ψ3 : pg count ∈ [LIMIT, +∞), regardless of the control
location of the other threads. This invariant is quite challenging to establish
(the reader is invited to attempt). Specifically, establishing ψ3 requires us to
reason about the sequence of synchronizations between threads as well as the
conditional branches involved.

Likewise, we establish the invariant ϕ12 : pg count ∈ (−∞, LIMIT) when
some thread reaches the control location a12, regardless of the location of the
other threads. Once again, this invariant is non-trivial to establish.It involves
conditional branches as well as thread synchronization.

Using the invariants computed, we conclude that locations a12 and b3 are
not simultaneously reachable . In other words, the lockset-based method yields a
bogus warning that can be eliminated by means of the automatically computed
invariants ψ3, ϕ12.

2 Program Model

We consider concurrent imperative programs comprising threads that commu-
nicate using shared variables and synchronize with each other using standard
primitives such as locks, rendezvous, etc.

Program Representation. Each thread in a concurrent program Ti :〈Fi, ei, Gi, Li〉
consists of procedures Fi, entry procedure ei ∈ Fi, a set of global variables
G and thread local variables v. Each procedure p ∈ F , is associated with a
tuple of formal arguments args(p), a return type tp, local variables L(p), and a
control flow graph (CFG). Each procedural CFG 〈N(p), E(p), action〉 consists
of a set of nodes N(p) and a set of edges E(p) between nodes in N(p). Each
edge m → n ∈ E(p) is associated with an action that is an assignment, a call to
another procedure, a return statement, a conditional guard, or a synchronization
statement. The actions in the CFG for a procedure p may refer to variables in
the set G ∪ args(p) ∪ L(p).

A multi-threaded program Π consists of a set of threads T1, . . . , TN for some
fixed N > 0 and a set of shared variables S. Note that every shared variable
s ∈ S is a global variable in each thread Ti.

Threads synchronize with each other using standard primitives like locks, ren-
dezvous and broadcasts. Locks are standard primitives used to enforce mutually
exclusive access to shared resources. They occur very commonly in many parallel

Semantic Reduction of Thread Interleavings in Concurrent Programs 127

programming paradigms and are widely used to enforce thread synchronization.
Rendezvous are motivated by wait/notify primitives of Java and condition
variables in the POSIX thread library. Rendezvous find limited use in applica-
tions such as browsers, device drivers and scientific programs. Broadcasts are
seldom seen in practice.

2.1 Preliminaries

Static program analysis can be used to compute sound invariant assertions that
characterize the values of program variables at different program points. Since
our approach involves reasoning with infinite sets of integers and reals, the ab-
stract interpretation framework forms an integral part. We provide a concise
description of abstract interpretation in this section. A detailed presentation is
available elsewhere [9,8].

Let Ψ be a CFG of a sequential (single threaded) program. Concurrent pro-
grams are treated in Section 4. For simplicity, we assume that Ψ consists of a
single procedure that does not involve calls to other procedures. Procedures, in-
cluding recursive procedures, can be handled by implementing a context-sensitive
program analysis. All variables involved in Ψ are assumed to be integers. Pointers
and arrays are lowered into integers using a process of memory modeling followed
by abstraction. Such an abstraction is implemented by the F-Soft framework [14].
As mentioned earlier, each edge in the CFG is labeled with an assignment or a
condition.

An abstract domain Γ consists of assertions drawn from a selected assertion
language which form a lattice through the partial order � modeling logical in-
clusion between assertions. Each object a ∈ Γ represents a set of program states
[[a]]. For the analysis, we require the following operations to be defined over Γ :

(a) Join: Given a1, a2 ∈ Γ , the join a = a1 � a2 is the smallest abstract object a
w.r.t � such that a1 � a, a2 � a.

(b) Meet: The meet a1 � a2 corresponds to the logical conjunction.
(c) Abstract post condition postΓ models the effect of assignments.
(d) Inclusion test � to check for the termination.
(e) Widening operator ∇ to force convergence for the program loops.
(f) Projection operator ∃ removes out-of-scope variables.
(g) Narrowing operator � is used for solution improvement.

Given a program Ψ and an abstract domain Γ , we seek a map π : L �→ Γ
that maps each CFG location � ∈ L to an abstract object π(�). Such a map is
constructed iteratively by the forward propagation iteration used in data-flow
analysis:

π0(�) =
{�, if � = �0
⊥, otherwise

and πi+1(�) =
⊔

e: m→�

postΓ (πi(m), e) .

If the iteration converges, i.e, πi+1(�) � πi(�) for all � ∈ L for some i > 0, πi+1 is
the result of our analysis. However, unless the lattice Γ is of finite height or satis-
fies the ascending chain condition, convergence is not always guaranteed. On the

128 V. Kahlon, S. Sankaranarayanan, and A. Gupta

other hand, many of the domains commonly used in verification do not exhibit
these conditions. Convergence is forced by using widening and narrowing [9].

Using abstract interpretation, we may lift dataflow analyses to semantically
rich domains such as intervals, polyhedra, shape graphs and other domains to
verify sophisticated, data-intensive properties. Intervals, Octagons and Polyhe-
dra are instances of numerical domains that may be used to reason about the
numerical operations in the program.

The interval domain consists of assertions of the form xi ∈ [�, u], associating
each variable with an interval containing its possible values. The domain oper-
ations for the interval domain such as join, meet, post condition, inclusion, etc.
can be performed efficiently (see [7] for details). However, the interval domain
is non-relational. It computes an interval for each variable that is independent
of the intervals for the other variables. As a result, it may fail to handle many
commonly occurring situations that require more complex, relational invariants.
The polyhedral domain [10] computes expressive linear invariants and is quite
powerful. However, this power comes at the cost of having exponential time
domain operations such as post condition, join, projection and so on.

The octagon domain due to Miné [22] extends the interval domain by com-
puting intervals over program expressions such as x − y, x + y and so on, for
all possible pairs of program variables. The domain can perform operations such
as post, join and projection efficiently using a graphical representation of the
constraints and a canonical form based on shortest-path algorithms.

3 Transaction Graphs

In this section, we describe how we capture thread interleavings in the form of
a transaction graph. We also describe our procedure for constructing an initial
transaction graph by utilizing partial order reduction techniques and constraints
due to synchronization primitives. The transaction graph will be used as a basis
for the static analysis technique to be presented in the next section.

Let P be a concurrent program comprised of threads T1,..., Tn and let Ni

and Ei be the set of control locations and transitions of the control flow graph
(CFG) of Ti, respectively. We write �i � mi to denote a path from li to mi.

Definition 1 (Transaction Graph). A transaction graph ΠP of P is defined
as ΠP = (NP , EP), where NP ⊆ N1 × ... × Nn and EP ⊆ NP × NP . Each
edge of ΠP represents the execution of a sequence of statements by a thread Ti.
Specifically, an edge is of the form (l1, . . . , li, . . . , ln) → (l1, . . . , mi, . . . , ln),, such
that there is a path in Ti from li � mi. Such an edge represents an execution of
a program segment in thread Ti.

A transaction graph considers a subset of the possible tuples of control states
concurrently reachable by n different threads. Edges of the graph consist of a
sequence of moves by a single thread. The product graph is a transaction graph
ΠP ≡ ⊗iNi consisting of the cartesian product of the control locations in each
thread, and each edge representing the execution of a single statement by a single

Semantic Reduction of Thread Interleavings in Concurrent Programs 129

thread. In the presence of rendezvous and broadcast actions on the edges, the
definition may be updated to necessitate synchronous rendezvous to happen in
two consecutive moves.

The cartesian product graph consists of a superset of all the concurrent control
states that need to be considered for the analysis of a given program. It is reduced
to a transaction graph of manageable size by using partial order reduction (POR)
[13] wherein we remove redundant control states that produce a result consistent
with some other interleaving (see below).

Shared Variable Identification: The first step towards building a transaction
graph consists of automatically and conservatively identifying shared variables.
In general, shared variables are either global variables of threads, aliases thereof
and pointers passed as parameters to API functions. Since global variables can be
accessed via local pointers, alias analysis is key for identifying shared variables.

Our shared variable detection technique uses update sequences(Cf. [16]) to
track aliasing information as well as whether a variable is being shared. An
update sequence of assignments from pointers p to q along a sequence {lj} of
consecutive thread locations is of the form l0 : p1 = p, l1 : p2 = q1, ..., li−1 : pi =
qi−1, li : pi+1 = qi, ..., lk : p = qk, where qi is aliased to pi between locations li−1
and li. Then p is aliased to a shared variable if there exists an update sequence
starting at a global variable or an escaped variable. Update sequences can be
tracked via a simple and efficient dataflow analysis (see [17] and [16] for details).

Static Partial Order Techniques: The transaction graph is computed using
partial order reduction (POR) which has been used extensively in model check-
ing [13]. POR exploits the fact that concurrent computations are partial orders
on operations of threads on shared variables. Therefore, instead of exploring
all interleavings that realize this partial order, it suffices to explore just a few
(ideally just one).

In this setting, we use POR over the complete product graph P of the thread
CFGs, instead of over the state space of the concurrent program. We consider
a pair of statements st1 and st2 of threads T1 and T2, respectively, to be de-
pendent if (i) st1 and st2 access a common shared variable (including variables
used for synchronization), and (ii) at least one of the accesses is a write opera-
tion. Whereas, this is a purely syntactic characterization, we may use semantic
considerations to obtain a more refined dependence relation.

When constructing the transaction graph, a key goal is to maximize the
lengths of the resulting transactions in the presence of scheduling constraints
imposed by synchronization primitives. The general problem of delineating trans-
actions of maximal length for threads synchronizing via locks and rendezvous
is presented elsewhere [18]. For completeness, we present a simple transaction
delineation algorithm for the easier case of two threads synchronizing via locks.
Our algorithm is broadly similar to that of Godefroid [13] and is shown in Alg. 1.
It is a worklist algorithm that traverses through the global control states of the
concurrent program and computes their successors. The pair (l1, l2) represents

130 V. Kahlon, S. Sankaranarayanan, and A. Gupta

Algorithm 1. Transaction Delineation based on Static POR

1: Initialize W = {(in1, in2)}, where inj is the initial state of thread Tj , and
Processed to ∅.

2: repeat
3: Remove a state (l1, l2) from W and add it to Processed
4: if neither l1 nor l2 is a shared object access then
5: let Succi = {(m1, m2)| where (a) mi′ = li′ with i′ ∈ {1, 2} and i′ �= i, and (b)

mi is CFL-reachable from li via a local path x of thread Ti such that mi is the
first shared object access encountered along x}

6: Set Succ = Succ1 ∪ Succ2

7: else if l1 is a shared object access of sh, say, then
8: if m2 is a statement accessing sh that is CFL-reachable from l2 via a path x

of T2 such that (a) l1 conflicts with m2, and (b) no lock held at l1 is acquired
(and possibly released) along x then

9: Let Succ1 = {(m1, l2)| where m1 is CFL-reachable from l1 via a path y
such that m1 is the first shared object access along y after l1}

10: Let Succ2 = {(l1, m2)}
11: Set Succ = Succ1 ∪ Succ2

12: else
13: Succ = {(m1, l2)| m1 is CFL-reachable from l1 via a path x such that m1

is the first shared object access along x after l1}
14: end if
15: else if l2 is a shared object access of sh, say, then
16: compute Succ as in steps 7-14 with the roles of l1 and l2 reversed
17: end if
18: Add all states of Succ not in Processed to W .
19: until W is empty

a global control state in which threads T1 and T2 are at control locations l1 and
l2, respectively.

At the initial state (in1, in2) of the given concurrent program, we let each
thread execute until it encounters its first shared object access (steps 4-6). Next,
in order to compute the successors of a global state (l1, l2) we need to decide
whether a context switch is required at location li of thread Ti. A conflict analysis
is carried out to determine whether T1 is currently accessing a shared object sh
at the location l1 and whether thread T2 starting at l2 can reach a location
m2 which accesses sh and is dependent with l1, i.e., l1 conflicts with m2. If so,
then we explore interleavings wherein T1 executes l1 first leading to the set of
successors Succ1 (step 9) and those wherein T2 executes the path leading to m2
before l1 is executed leading to the set of successors Succ2 (step 10). On the other
hand, if the synchronization primitives ensure that no path starting at l2 leads
to T2 accessing sh then no context switch is required at l1 and the successors of
(l1, l2) result only from executing transitions of T1 (step 13).

A crucial difference between Alg. 1 and the classical POR algorithm is that
in deducing reachability of mi from li we need to take recursion into account,
i.e., we need to deduce CFL-reachability of mi from li in thread Ti.

Semantic Reduction of Thread Interleavings in Concurrent Programs 131

(a1, b1)

(a1, b3)

(a12, b1)

(a12, b3)

(a3, b1)

(a8, b1)(a10, b1) (a3, b3) (a1, b4)

(a1, b6)(a3, b4)

(a3, b6)(a14, b1)

(a9, b1) (a8, b3)

(a8, b4)

Fig. 2. Transaction Graph

Example 1. In Figure 1, the statements at locations a12 and b12 are dependent
since the outcome for sh differs based on their relative order of execution. State-
ments b5 and a14 are independent, the actions performed by them commute.
Statements b4 and b11 of Fig. 1 both decrease a shared variable pg count by
1. Semantically, these statements are independent, since their order of execution
does not affect the reachable states.

Synchronization Constraints. We now illustrate utilization of synchronization
constraints in our running example from Figure 1. Fig. 2 shows a portion of the
transaction graph obtained after pruning nodes with non-disjoint locksets. Exam-
ples of tuples pruned for non-disjoint lockset include (a5,b4), (a6,b3), (a3,b2) and
so on which are mutually excluded by the lock plk. Note that a static lockset anal-
ysis on each thread allows us to avoid generating such pairs in the first place.

The send and wait statements b6 and a4, respectively, enforce that in a
2−threaded execution, b7 must be executed before a4. Therefore all the nodes
in the set {(a5,b7), (a6,b7), (a7,b7)} are all unreachable. Again, computing the
synchronization language at each location visited by each thread will ensure that
such tuples are never considered.

The POR and synchronization-based constraints yield transactional sequence
of actions for each thread so that an interleaving with another thread need not
be considered during the execution of this sequence, while still capturing all the
feasible interleavings. However, such sequences may be conditional on the loca-
tion of the other thread. For instance, statements {b1, . . . ,b7 } are transactional
provided the Alloc Page thread resides in one of the locations {a1,. . . ,a7}. This
allows us to compact many locations in the product graph into one single location
in the initial transaction graph.

To summarize, partial order techniques and synchronization constraints are
used to construct a transaction graph over the global control states. Although
our presentation described these steps separately, our implementation derives
an initial set of thread conflicts based on both considerations, which drives the
construction of the transaction graph. The initial transaction graph is used to
compute sound invariants, described in the next section.

132 V. Kahlon, S. Sankaranarayanan, and A. Gupta

4 Generation of Sound Invariants

We now apply abstract interpretation over the initial transaction graph to com-
pute sound invariants. The key difference between abstract interpretation for
sequential programs as opposed to transaction graphs, is the treatment of in-
variants that relate thread-local variables to shared variables. Such invariants
are quite useful, since threads typically perform many actions involving locals
and globals in an atomic section. However, local variables of a thread T1 may
not be shared directly with another thread T2. A general solution is to consider
a cartesian product of the abstract domain with itself, yielding tuples of invari-
ant facts 〈ϕ1, . . . , ϕn〉 for each node of the transaction graph, wherein ϕi[S, Li]
relates the global variables S with the local variables Li of the ith thread.

For the sake of simplicity, we restrict our attention to two threads (i.e, n = 2).
The invariant tuple annotating a node 〈�i, mj〉 of the transaction graph is de-
noted 〈ϕi, ψj〉, wherein ϕi[S, L1] relates the values of the shared and local vari-
ables for thread T1 and ψj [S, L2] for thread T2. Since the programs communicate
through shared variables, we require that the set of shared variables described
by any pair ϕi, ψj are the same: (∃L1) ϕi ≡ (∃L2)ψj .

This consistency condition will be maintained in our analysis. However, main-
taining this condition through the abstract interpretation process is tricky.

Example 2. Consider a simple action by a thread T1, a : �1
x := 10−−−−−→ �2 which

updates a shared variable x to 10, while thread T2 remains in location m. This
corresponds to a move in the transaction graph from 〈�1, m〉 → 〈�2, m〉.

Let 〈(x = 5), (x = l, l = 5)〉 be the assertion labeling the node (�1, m). After
a move by the first thread, the assertion labeling the node (�2, m) should be
〈(x = 10), (l = 5, x = 10)〉. Note that to maintain consistency, we are forced to
update the invariant for thread T2 even if T2 did not perform any action.

A similar situation arises at the “join-nodes” of the transaction graph. Due to
the consistency condition, these nodes do not act as true join nodes as in the
sequential case. We address these difficulties by introducing a “meld” operator
in the abstract domain, in order to maintain the consistency condition.

Melding: As mentioned earlier, the shared variables S may be modified by
executing some transaction edge ni → nk by thread Ti, updating the component
ϕi of the invariant tuple. However, this may violate the consistency requirements
w.r.t the invariant tuples corresponding to the other threads. To enforce this
consistency, we introduce an operator meld(ϕk, ψj) that forces the global state
values represented by assertion ψj to coincide with those in ϕk.

Definition 2 (Meld). Let α[S, L1] and β[S, L2] be assertions over shared and
local variables for each thread. The assertion γ : meld(α, β) is such that (a)
(∃L1)α ≡ (∃L2)γ and (∃G)β |= (∃G)γ, and (b) the operator must be entry-wise
monotonic. I.e., if α1 |= α2 and β1 |= β2 then

meld(α1, β1) |= meld(α2, β1), meld(α1, β1) |= meld(α1, β2) .

Semantic Reduction of Thread Interleavings in Concurrent Programs 133

The result γ of meld(α, β) over-approximates the global variable values described
by α and the local variable values described by β.

The design of a melding operator is specific to the underlying abstract domain.
A simple melding operator can be constructed for most abstract domains using
projection and works for domains wherein the conjunction � coincides with the
logical conjunction ∧ (i.e, Moore closed domains). Formally, we have meld(ϕ, ψ) :
(∃L1)ϕ ∧ (∃G)ψ.

Post Condition: An elementary step in the fixed point computation consists
of propagating an assertion pair 〈ϕi, ψj〉 across an edge ni → nk of one of
the threads. Let ϕk denote the result of the post-condition post(ϕi, ni → nk).
In practice, however, a move by a thread ni → nk in the transaction graph
may represent the execution of a (possibly atomic) program segment in the
corresponding thread consisting of numerous basic blocks. Therefore, the “post”
needs to be computed using a thread-local abstract interpretation of the segment
corresponding to the edge.

The effect of executing a thread edge ni → nk starting from the node 〈ni, mj〉,
labelled by the assertion 〈ϕi, ψj〉, yields the assertion pair

〈
ϕk, ψ′

j

〉
wherein:

ϕk : post(ϕi, ni → nk), ψ′
j : meld(ϕk, ψj). Formally, we use a propagation

operator propagate to model the effect of executing a transaction ni across an
edge ni → nk: propagate(〈ϕi, ψj〉 , ni → nk) =

〈
ϕk, ψ′

j

〉
.

Our goal is to produce a map η labeling each node of the transaction graph
〈ni, mj〉 with a pair of assertions η(ni, mj) : ϕi, ψj such that ϕi[S, L1] relates
the shared variables S with the local variables L1, and similarly ψj . Secondly,
each of the assertions 〈ϕi, ψj〉 holds, whenever the individual thread controls
simultaneously reside in the nodes 〈ni, mj〉.

Formally, for any edge 〈ni, mj〉 → 〈nk, mj〉, we require that propagate(η(ni,
mj), ni → nk) |= η(nk, mj). A symmetric condition needs to hold for moves of
the thread T2. The map η can be constructed using forward propagation on a
transaction graph G using propagate as the post-condition.

Loops and Recurrences: A cycle in the transaction graph corresponds directly
to a loop or a recursive procedure in one or more of the threads. Such cycles are
handled naturally in our abstract interpretation scheme using widening. Specif-
ically, widening is performed conservatively at each node of the form (l1, . . . , lk)
such that for some component li there exists a back-edge of the form mi → li in
the CFG of Ti. For example, in the case of cycles arising due to loops li would
be a loop head. Standard iteration schemes known for sequential programs can
be used for analyzing transaction graphs.

5 Refinement of Transaction Graphs

We use the abstract interpretation framework described in the previous section
to automatically derive sound invariants for the concurrent program. In practice,
we use abstract domains of increasing precision ranges, octagons, and polyheda
to derive more accurate invariants.

134 V. Kahlon, S. Sankaranarayanan, and A. Gupta

Algorithm 2. Refinement of Transaction Graph

1: Construct an initial transaction graph G0
π by using partial order techniques and

synchronization constraints.
2: repeat
3: Compute range, octagonal, and polyhedral invariants over Gi

π And prune paths
from Gi

π resulting in Hi
π.

4: Compute a new product transaction graph Gi+1
π based on the thread conflicts

and synchronization constraints in Hi
π.

5: until Gi+1
π = Gi

π

6: return Gi
π

Invariant-based slicing of thread conflicts. At each stage, we use the de-
rived invariants to show the unreachability of code segments, e.g. in conditional
branches. If these unreachable code segments contain shared variable accesses,
this can lead to a reduction in the conflicts between threads, thereby allow-
ing larger transactions in individual threads. We call this a refinement of the
transaction graph, since it provides a more accurate view of thread interleavings
required for analysis. Such refinement helps to improve accuracy of subsequent
analysis by discounting spurious thread interference from unreachable code seg-
ments, while also improving scalability due to smaller transaction graphs that
result from a smaller number of interleavings and larger individual transactions.

Iterative refinement. In general, we can iteratively refine the transaction
graph by alternately leveraging conflict analysis (using partial order techniques
and synchronization constraints) and sound invariants until we reach a fix-point,
where the transaction graph cannot be refined any more.

This iterative procedure for refining a transaction graph is shown in Figure 2.
The initial transaction graph construction utilizes POR and synchronization con-
straints (described in Section 3). This bootstraps the iterative process. This initial
step is critical for making the computation of sound invariants scale (described
in Section 4). This is because the initial transaction graph over global control
states is much smaller than a naive product graph over individual statements
in threads. Furthermore, the capturing of POR and synchronization constraints
drastically reduces the number of interleavings considered by our invariant com-
putation. This effectively, makes the invariants stronger.

6 Applications

The transaction graph constructed by exploiting synchronization constraints
and sound invariants can be used for various analyses and verification appli-
cations on concurrent programs. These include concurrent pointer alias analysis,
model checking, etc. Once the product transaction graph has been computed,
any dataflow analysis of concurrent programs can be carried out sequentially
over the nodes of this graph. From a model checking perspective, the product

Semantic Reduction of Thread Interleavings in Concurrent Programs 135

transaction graph encodes all the context switches that need be explored. When
carrying out partial order reduction over the state space during model checking
(described later in this section), we allow context switching only at transaction
boundaries defined by the transaction graph.

In the remainder of this section, we describe a specific application of our
approach for detection of data race bugs in concurrent programs. There have
been many successful efforts based on static analysis [28,25,24,11,26,15]. These
approaches, however, may generate a large number of bogus warnings. Model
checking [5,3,6] has the advantage that it can produce concrete error traces and
does not rely on the programmer to inspect the warnings and decide whether
they are true bugs or not. However, the state explosion problem severely limits
its scalability, especially on large real-life concurrent programs.

Classic static data race warning generation has three main steps. First, control
locations with shared variable accesses are determined in each thread. Next, the
set of locks held at each of these locations of interest are computed, using lockset
analysis. Pairs of control locations in different threads where (i) the same shared
variable is accessed, (ii) at least one of the accesses is a write operation, and (iii)
disjoint locksets are held, constitute a potential data race site and a warning is
issued.

Since dataflow analysis for concurrent programs is undecidable in general,
typical static data race detection methods ignore conditional statements in the
threads and perform thread-local analysis only. Indeed, a pair of control locations
(c1, c2) marked as a potential data race site may simply be unreachable in any
run of the given concurrent program.

We use the static analysis framework proposed in this paper to check the
reachability of the pair of control locations (c1, c2) appearing in such warn-
ings. If the pair is statically unreachable, then the warning is bogus, and can
be eliminated. The combined use of synchronization constraints and sound in-
variants provide cheaper methods than model checking to check the pairwise
(un)reachability of c1 and c2, while providing more accuracy than existing static
analysis methods for data race detection. In fact, one can use any of the exist-
ing fast methods to generate the initial set of data race warnings, and use our
techniques to automatically reduce the number of warnings.

We also leverage the final transaction graph generated in our framework to
perform model checking, for producing concrete error traces for the remaining
warnings. Details of our symbolic (SAT-based) model checking techniques for
concurrent programs are described in our previous work [19]. The additional
benefit is that our transaction graph already captures reductions in thread in-
terleavings that would have otherwise been explored during model checking. We
also use slicing on the transaction graph to generate smaller models for specific
warnings, by inlining the functions in the specific contexts and slicing away the
rest. We can also use the derived invariants to prune the search space during
model checking. The combined effect is to improve the viability of model checking
on concurrent programs.

136 V. Kahlon, S. Sankaranarayanan, and A. Gupta

7 Experimental Results

We applied the proposed static analysis framework for reducing data race warn-
ings generated by an initial lockset-based analysis on a suite of Linux device
drivers with known data races. The results are shown in Table 1, where columns
4 and 5 report the number of warnings (#Warn) and time taken (seconds), re-
spectively, by the lockset-based static analysis. Column 6 reports the number of
warnings after reduction by using our invariant-based static analysis, with the
time taken (in seconds) reported in Column 7. This analysis is successful in re-
ducing the number of warnings to a more manageable level within a few minutes.
As an additional benefit, we may now apply techniques such as model checking
on the few remaining warnings. Column 8 reports the number of warnings for
which our model checking procedure [19] was successful in generating a concrete
error trace, with the final unresolved number of warnings reported in Column 9.

Table 1. Results for Static Reduction of Data Race Warnings

Driver KLOC # ShVars
#Warn. Time #After Time #Wit. #Unknown

(secs) Invar (secs)
pci gart 0.6 1 1 1 1 4 0 1
jfs dmap 0.9 6 13 2 1 52 1 0
hugetlb 1.2 5 1 3.2 1 0.9 1 0
ctrace 1.4 19 58 6.7 3 143 3 0
autofs expire 8.3 7 3 6 2 12 2 0
ptrace 15.4 3 1 15 1 2 1 0
raid 17.2 6 13 1.5 6 75 6 0
tty io 17.8 1 3 4 3 11 3 0
ipoib multicast 26.1 10 6 7 6 16 4 2
TOTAL 99 24 21 3

Table 2. Results for Model Checking Data Race Warnings. All timings are in seconds
and memory in MBs.

Witness #
Symbolic POR+BMC
DepthTime Mem

jfs dmap : 1 10 0.02 59
ctrace : 1 8 2 62
ctrace : 2 56 10 hr 1.2G
ctrace : 3 92 2303 733
autofsexpire : 1 9 1.14 60
autofsexpire : 2 29 128 144
ptrace : 1 111 844 249
raid : 1 42 26.13 75
raid : 2 84 179 156
raid : 3 44 32.19 87

Witness #
Symbolic POR+BMC
DepthTime Mem

raid : 4 34 4.15 61
raid : 5 40 9.30 59
raid : 6 70 70 116
tty io : 1 34 0.82 5.7
tty io : 2 32 9.69 14
tty io : 3 26 31 26
ipoib multicast : 1 6 0.1 58
ipoib multicast : 2 8 0.1 59
ipoib multicast : 3 4 0.1 58
ipoib multicast : 4 14 0.3 59

Semantic Reduction of Thread Interleavings in Concurrent Programs 137

The detailed results for model checking are shown in Table 2, where we re-
port the depth at which the bug is found, and the time and memory used by
our model checking procedure that uses symbolic POR with SAT-based BMC.
We were able to generate a concrete error trace for the known data race in
all but one example. This is mainly due to the small sliced models we gener-
ated by using warning-specific static information, even for large drivers (such
as ipoib multicast). Thus, our static analysis framework enables scalable model
checking for larger concurrent programs.

8 Related Work and Conclusions

We have presented a general framework for static analysis of concurrent pro-
grams, where we use partial order reduction and synchronization constraints to
capture a reduced set of thread interleavings, on which we derive sound invari-
ants by using abstract interpretation to perform further reduction. We described
an application of this framework to reduce the number of data race warnings,
and to enable the application of model checking to find concrete error traces.

Our work is related to prior work on verification of concurrent programs that
attempts to get around the undecidability barrier by considering restricted mod-
els of synchronization and communication [1,12] or by bounding the number of
context switches [27,2,23,21]. There are also other recent efforts to leverage se-
quential analysis in concurrent settings [4,20]. Our approach also exploits specific
patterns of synchronization, but our main focus is on deriving sound invariants
for reduction in thread interleavings, by lifting abstract interpretation techniques
to the concurrency setting. Since thread interleavings are a primary source of
complexity in concurrent programs, this provides us further opportunities to
apply more precise analyses, including model checking.

References
1. Atig, M.F., Bouajjani, A., Touili, T.: On the reachability analysis of acyclic net-

works of pushdown systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 356–371. Springer, Heidelberg (2008)

2. Bouajjani, A., Fratani, S., Qadeer, S.: Context-bounded analysis of multithreaded
programs with dynamic linked structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 207–220. Springer, Heidelberg (2007)

3. Brat, G., Havelund, K., Park, S., Visser, W.: Model checking programs. In: ASE
(2000)

4. Chugh, R., Voung, J.W., Jhala, R., Lerner, S.: Dataflow analysis for concurrent
programs using datarace detection. In: PLDI, pp. 316–326 (2008)

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Workshop on Logics of Programs, pp.
52–71 (1981)

6. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, Zheng, H.:
Bandera: Extracting finite-state models from java source code. In: ICSE (2000)

7. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming (1976)

8. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to Abstract interpretation, invited paper. In: Bruynooghe, M., Wirsing,
M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

138 V. Kahlon, S. Sankaranarayanan, and A. Gupta

9. Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL (1977)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the
variables of a program. In: ACM POPL, January 1978, pp. 84–97 (1978)

11. Engler, D., Ashcraft, K.: RacerX: Effective, Static Detection of Race Conditions
and Deadlocks. In: SOSP (2003)

12. Farzan, A., Madhusudan, P.: Causal dataflow analysis for concurrent programs.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 102–116.
Springer, Heidelberg (2007)

13. Godefroid, P.: Partial-order methods for the verification of concurrent systems: an
approach to the state-explosion problem. LNCS, vol. 1032. Springer, Heidelberg
(1996)

14. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: F-soft: Software verifica-
tion platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 301–306. Springer, Heidelberg (2005)

15. Choi, J., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.: Effi-
cient and precise datarace detection for multithreaded object-oriented programs.
In: PLDI (2002)

16. Kahlon, V.: Bootstrapping: A Technique for Scalable Flow and Context- Sensitive
Pointer Alias Analysis. In: PLDI (2008)

17. Kahlon, V., Yang, Y., Sankaranarayanan, S., Gupta, A.: Fast and Accurate Static
Data-Race Detection for Concurrent Programs. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 226–239. Springer, Heidelberg (2007)

18. Kahlon, V.: Exploiting Program Structure for Tractable Dataflow Analysis of Con-
current Programs (2008), kahlonnec-labs.com

19. Kahlon, V., Gupta, A., Sinha, N.: Symbolic model checking of concurrent programs
using partial orders and on-the-fly transactions. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 286–299. Springer, Heidelberg (2006)

20. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 37–51.
Springer, Heidelberg (2008)

21. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

22. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001)

23. Musuvathi, M., Qadeer, S.: Fair stateless model checking. In: PLDI (2008)
24. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:

POPL (2007)
25. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: PLDI

(2006)
26. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: Context-Sensitive Correlation

Analysis for Race Detection. In: PLDI (2006)
27. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.

In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

28. Sterling, N.: Warlock: A static data race analysis tool. In: USENIX Winter Tech-
nical Conference (1993)

kahlonnec-labs.com

Inferring Synchronization under Limited Observability

Martin Vechev, Eran Yahav, and Greta Yorsh

IBM T.J. Watson Research Center

Abstract. This paper addresses the problem of automatically inferring synchro-
nization for concurrent programs. Given a program and a specification, we in-
fer synchronization that avoids all interleavings violating the specification, but
permits as many valid interleavings as possible. We let the user specify an up-
per bound on the cost of synchronization, which may limit the observability —
what observations on program state can be made by the synchronization code.
We present an algorithm that infers, under certain conditions, the maximally per-
missive synchronization for a given cost. We implemented a prototype of our
approach and applied it to infer synchronization in a number of small programs.

1 Introduction

Concurrency is hard. Concurrent execution of operations that share data requires syn-
chronization to guarantee correctness. Typically, the programmer is required to reason
about all the ways in which concurrent operations can interleave, and introduce syn-
chronization code that avoids incorrect interleavings. Because of the excruciating diffi-
culty in finding even a single choice of synchronization that makes the program correct
and reasonably efficient [15], programmers often introduce synchronization in an ad-
hoc manner, and rarely explore alternative choices. In particular, programmers often
resort to coarse-grained synchronization because: (i) it simplifies reasoning about the
program, and (ii) the overhead incurred by finer-grained synchronization is prohibitive.

Our goal is to assist the programmer in systematically exploring alternative choices
of synchronization, based on the cost that she is willing to accept. Given a program P ,
and a specification S, we define the set VP(P, S) of concurrent programs that satisfy
S and can be obtained from P by adding synchronization. To understand the tradeoffs
between different choices of synchronization code, we examine two dimensions along
which programs in VP(P, S) can be compared:

– Permissiveness: Given two programs P1, P2∈VP(P, S), we say that P1 is more
permissive than P2 when the set of traces permitted by P1 is a superset of the set of
traces permitted by P2.

– Synchronization Cost: Given two programs P1, P2 ∈ VP(P, S), we say that P1
has lower cost than P2 when the running time of the synchronization code in P1 is
lower than that of P2.

There is a connection between the cost of synchronization and its permissiveness.
For the synchronization code to be more permissive, it needs to draw finer distinctions
between interleavings, which typically requires atomically observing more of the pro-
gram’s state. Atomically observing more of the program’s state means increasing the
synchronization cost.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 139–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

140 M. Vechev, E. Yahav, and G. Yorsh

In general, the user would like to maximize permissiveness and minimize the cost.
However, the synchronization solution that provides maximal permissiveness maybe
too costly. There may be another (incomparable) solution, with less permissiveness and
lower cost, which is acceptable. We let the user specify an upper bound on the cost, and
infer a maximally permissive solution within the limits of this upper bound.

There are various synchronization mechanisms available to concurrent programmers
today. In this paper we choose to focus on the classical conditional critical regions
(CCRs), an elegant construct originally introduced by Hoare [7]. A CCR consists of a
guard and a sequence of statements that are to be executed atomically if the guard evalu-
ates to true. If the guard evaluates to false, the thread blocks until it is able to atomically
re-evaluate the guard. Guards only observe program state, but cannot modify it. CCRs
have been implemented as a synchronization construct in the language Edison [5], as
a language extension of Java via software transactional memory [6], and recently in
the high-performance parallel language X10 [14]. One of the advantages of CCRs over
other lower-level operational primitives such as locks and condition variables is their
concise and declarative nature.

A key challenge in using CCRs is finding the appropriate guard expressions. A pro-
grammer must address the following: (i) correctness — guards must eliminate invalid
interleavings that violate S; (ii) permissiveness — guards should allow as many inter-
leavings as possible: a thread executing a guard should not block unless its execution
is doomed to violate S; (iii) cost — it is important to reduce the cost of evaluating the
guard expression. Because the guard is evaluated atomically, this cost is typically dic-
tated by the number of shared variables accessed in the guard. One way to reduce the
cost is by restricting the code to observe only a subset of these variables. Balancing
these trade-offs may require the programmer to simultaneously consider all guards in
all of the CCRs in the program.

This work addresses the challenge of automatically inferring correct and maximally
permissive guards, without exceeding the upper bound on the cost of the guards, speci-
fied by the user. This bound restricts the language of guards — the expressions that can
be used as guards — to those that cost less than the specified bound.

Consider a concurrent program P , a specification S, and a language of guards LG.
We denote by VP(P, S, LG) the set of programs that satisfy S and are obtained from
P by adding guards from LG. It is possible that no program P ′ ∈ VP(P, S, LG) per-
mits all valid interleavings of P . The reason is that the language LG may not be ex-
pressive enough to distinguish between a valid and an invalid interleaving and thus
a valid program P ′ must avoid both. It is therefore natural to define the notion of a
maximally-permissive program under a given language of guards: P ′ ∈ VP(P, S, LG)
is maximally-permissive with respect to LG if there is no program in VP(P, S, LG) that
permits more interleavings than P ′. In other words, it is impossible to modify P ′ using
expressions from LG to permit more interleavings without violating the specification S.
Our goal in this paper can be stated as follows:

Given a concurrent program P , a specification S, and a language of guards
LG, construct a program P ′ ∈ VP(P, S, LG), such that P ′ is maximally per-
missive with respect to LG, and has minimal synchronization cost.

Inferring Synchronization under Limited Observability 141

The above problem statement is closely related to the ones addressed by program
repair [9] and controller synthesis [12]. However, in contrast to these approaches, our
work focuses on inferring synchronization code that observes the state without modi-
fying it, and takes into account the cost of synchronization when attempting to find the
maximally permissive solution.

1.1 Main Contributions

The contributions of this paper can be summarized as follows:

– We present a technique for automatically inferring correctly-synchronized concur-
rent programs. To explore alternative choices of synchronization, we let the user
control the upper bound on the cost.

– We first present an exponential algorithm that infers a maximally permissive pro-
gram for a given language of guards. Next, we define a greedy algorithm that infers,
under certain conditions, a maximally permissive program for the given language
of guards. Both algorithms minimize synchronization cost.

– We implemented a prototype of our approach and applied it to several programs,
including classical ones such as dining philosophers and asynchronous counters.

Next, we use a simple example to illustrate the challenges that our goal presents, and
show how they are addressed in our approach.

1.2 A Simple Motivating Example

Fig. 1 is a simple program consisting of three operations op1, op2, and op3, that are
executed concurrently by the client program (the main procedure). The interleavings
for this example are shown in Fig. 2. In this example, the global state consists of the pro-
gram counter of each of the three threads, and the value of the shared variables x,y,z.
We denote the global state using a tuple 〈pc1, pc2, pc3, x, y, z〉 where pc1,pc2, pc3 are
program counters and x, y, z are the values of the corresponding shared variables. For
this program, we would like to guarantee that the global invariant y �= 2 ∨ z �= 1 is
maintained. Unfortunately, while most interleavings indeed satisfy this specification,
the interleaving x=z+1;z=y+1;y=x+1 leads to its violation. In the figure, we use nodes
with red dotted boundaries to denote states in which the invariant is violated.

Implementability. Our goal in the example is to construct a new maximally permissive
program in which the invalid interleaving above is not allowed. Generally, to eliminate
invalid traces, we consider the (possibly infinite) set of program traces represented using
a transition system, and compute a subset of the transitions in the transition system for
which all resulting traces are guaranteed to be accepting. However, since our goal is to

op1 { 1: x = z + 1 }
op2 { 2: y = x + 1 }
op3 { 3: z = y + 1 }

main:
int x = 0, y = 0, z = 0;
op1 || op2 || op3

Fig. 1. An example program with three threads

142 M. Vechev, E. Yahav, and G. Yorsh

construct a program, it is not sufficient to find a valid transition system, we need to find
one that is expressible as a program in the provided programming language. Similar
implementability challenges occur in other synthesis settings, e.g., synthesis of reactive
modules [12].

Cost vs. Permissiveness. The ability to avoid a specific transition depends on the amount
of information that can be obtained atomically from the global state and reflected in a
CCR guard. Atomically reading the entire program state is often too costly. Reducing
the cost of synchronization is achieved by restricting the language of guards. When the
language of guards is restricted, the information available for a guard might not be suffi-
cient to uniquely identify a single transition. This limited observability induces a natural
equivalence between transitions. Informally, we define two transitions to be equivalent
when they execute the same statement, and their source states cannot be distinguished
by the language of guards. Under limited observability, the addition of a guard to a
statement in order to eliminate a transition t results in the elimination of all transitions
that are equivalent to t.

Fig. 3(a) shows a valid version of the example of Fig. 1 using CCRs with guards
where the bound on the cost allows the solution to observe the entire program state.
The synchronization in this program was automatically inferred by our tool. In this pro-
gram, the guard (x �= 1 ∨ y �= 0 ∨ z �= 0) (directly) eliminates only the transition

〈e, 2, 3, 1, 0, 0〉 z=y+1−→ 〈e, 2, e, 1, 0, 1〉which would have inevitably led to an error state.
Note that in this example, allowing the guards to observe the values of all shared vari-
ables leads to the maximally permissive result of only eliminating invalid interleavings.

< 1,2,3,
 0,0,0 >

< e,2,3,
 1,0,0 >

x=z+1

< 1,e,3,
 0,1,0 >

y=x+1

< 1,2,e,
 0,0,1 >

z=y+1

< e,e,3,
 1,2,0 >

y=x+1

< e,2,e,
 1,0,1 >

z=y+1

< e,e,3,
 1,1,0 >

x=z+1

< 1,e,e,
 0,1,2 >

z=y+1

< e,2,e,
 2,0,1 >

x=z+1

< 1,e,e,
 0,1,1 >

y=x+1

< e,e,e,
 1,2,3 >

z=y+1

< e,e,e,
 1,2,1 >

y=x+1

< e,e,e,
 1,1,2 >

z=y+1

< e,e,e,
 3,1,2 >

x=z+1

< e,e,e,
 2,3,1 >

y=x+1

< e,e,e,
 2,1,1 >

x=z+1

Fig. 2. Transition system for the example program of Fig. 1 (Self-loops on exit states are omitted.)

However, suppose that our solution is restricted to use CCR guards whose cost is
limited to only observing the values of variables x,z (and not the entire program
state). Under such limited observability, the states 〈e, 2, 3, 1, 0, 0〉, 〈e, e, 3, 1, 2, 0〉, and
〈e, e, 3, 1, 1, 0〉 cannot be distinguished by any guard. Therefore, the guard (x �= 1∨z �=
0) added to the statement z=y+1 to eliminate the bad transition 〈e, 2, 3, 1, 0, 0〉 z=y+1−→
〈e, 2, e, 1, 0, 1〉 has the side effect of eliminating the two other equivalent transitions.
This triggers further elimination of transitions from state 〈1, e, 3, 0, 1, 0〉 of statement
x=z+1. Fig. 3(b) shows a valid solution of the example of Fig. 1 inferred by our tool.

Inferring Synchronization under Limited Observability 143

op1 { 1: x = z + 1 }
op2 { 2: y = x + 1 }
op3 { 3: (x �= 1 ∨ y �= 0 ∨ z �= 0) ->

z = y + 1 }

op1 { 1: (x �= 0 ∨ z �= 0) ->
x = z + 1 }

op2 { 2: y = x + 1 }
op3 { 3: (x �= 1 ∨ z �= 0) ->

z = y + 1 }
(a) (b)

Fig. 3. Example program with synchronization, observing (a) all shared variables , (b) only x,z

Sometimes it is possible to simplify the guards of a solution without affecting the set
of allowed interleavings. For example, in Fig. 3(a), we can use only variables x and y
in the guard of z=y+1. Such optimizations are further discussed in Section 4.1.

The key point to take away from this example is the connection between synchro-
nization cost and permissibility. Restricting the cost of synchronization by limiting ob-
servability may lead to eliminating valid interleavings that cannot be distinguished from
invalid ones. For instance, the solution in Fig. 3(b) permits a subset of the traces allowed
by the solution in Fig. 3(a) because it is not allowed to observe variable y.

In the rest of the paper we describe our approach in more detail. Due to space re-
strictions, our description is somewhat informal. Additional formal details, examples,
proofs, and discussion of related work are available in [16].

2 Preliminaries

Transition System. A transition system ts is a tuple 〈Σ, T, Init〉 where Σ is a set of
states, T ⊆ Σ × Σ is a set of transitions between states, and Init ⊆ Σ are the initial
states. For a transition t ∈ T , we use src(t) to denote the source state of t, and dst(t)
to denote its destination state.

For a transition system ts, we use the following notations. We use s �ts s′ to
denote that there exists a path in ts starting in state s and ending in state s′. Formally,
the relation �ts is the reflexive transitive closure of the successor relation defined by T.
A stuck state is a state that does not have any successors in ts. The set of stuck states is
denoted by Stuckts. A doomed state is a state from which all paths end in stuck states.
The set of doomed states is denoted by Doomedts. We say that a state s ∈ Σ is reachable
when there exists a path to s from some initial state. The set of all reachable states of
ts is denoted by Reachts. A transition system ts is valid, denoted by valid(ts), if and
only if no doomed state is reachable. For a transition system ts, a trace is a (possibly
infinite) sequence of transitions t0, t1, . . . such that src(t0) ∈ Init and for every i ≥ 0,
ti ∈ T and dst(ti) = src(ti+1). We use [[ts]] to denote the set of traces of a transition
system ts. A trace is valid if it does not contain any doomed state.

Conditional Critical Regions (CCRs). The conditional critical region (CCR) construct,
originally introduced by Hoare [7], allows the programmer to specify what opera-
tions have to be executed atomically and under what condition. A CCR has the form:
guard → stmt where guard is a boolean expression and stmt is a statement (in-
cluding a sequential composition of statements) that have to be executed atomically.
The guard is evaluated atomically and if true, the statements are executed atomically.
Otherwise, the thread blocks until the guard evaluates to true.

144 M. Vechev, E. Yahav, and G. Yorsh

Program Syntax. For the purpose of this paper, we consider a program that consists
of a set of (named) operations, Op

def= {op1, . . . , opn}, executed in parallel by different
threads. An operation is a code fragment defined using a simple, flat, programming
language with assignment, conditional and unconditional goto, sequential composition,
and CCRs. The language does not contain parallel composition, allocation of threads,
nested CCRs, and invocation of operations.

If not stated otherwise, each basic statement is in a separate CCR, guarded by true,
and the guard is omitted. The user may define CCRs in which the atomic statement
consists of a sequence of statements, and not a single basic statement. We assume that
every statement participates in (exactly one) CCR.

We use Var to denote the set of (shared) program variables, which can be referenced
by any operation. To simplify the exposition, we do not use local variables. There is
nothing in our approach that prevents us from using local variables, but having local
variables makes the formal definitions cumbersome. We assume that all program vari-
ables have integer values, initialized to 0.

Program Semantics. Let P be a program with variables Var. A program state s is a
pair 〈pcs, vals〉 where pcs : {1, . . . , n} → Int maps a thread identifier to the program
counter of the corresponding thread, ranging over program locations in the operation
executed by the thread, and vals : Var → Int is a valuation of the variables. We use
ΣP to denote the set of all program states. The set of initial program states is denoted
by InitP ⊆ ΣP . The value of a program expression e in a state s ∈ ΣP is denoted by
[[e]](s). It is computed using standard evaluation rules for program expressions.

We define a transition system for a program P to be 〈ΣP , TP , InitP 〉 where a tran-
sition (s, s′) ∈ TP is labeled by a program location l and a thread identifier tid. A
transition (s, s′) labeled with l and tid is in TP if (i) the program counter of the thread
tid in state s is at program location l, (ii) the guard of the CCR at program location l
is satisfied in s, and (iii) execution of the statement corresponding to CCR at l in pro-
gram state s by thread tid results in state s′. In addition, we guarantee that states at the
program exit are not stuck by adding the corresponding self-loop transitions to ts. For a
transition t ∈ TP , we use lbl(t), tid(t), and ccr(t) to denote the corresponding program
location, thread id, and the (unique) CCR at program location lbl(t), respectively.

The semantics of a program P , denoted by [[P]], is the (prefix closed) set of traces of
the corresponding transition system 〈ΣP , TP , InitP 〉.

Specification. The user can specify a global invariant S, which describes a set of states.
An invariant can refer to program variables and to the program counter of each thread
(e.g., to model local assertions). Our approach can be extended to handle any temporal
safety specifications, expressed as a property automaton, by computing the synchronous
product of program’s transition system and the property automaton [3].

We define 〈ΣP , TP,S , InitP 〉 to be a transition system for a program P and global
invariant S, where TP,S ⊆ TP is defined by removing from TP all transitions in which
the source state does not satisfy S: TP,S = {t ∈ TP |src(t) satisfies S}. This effectively
means that in the transition system for P and S, all states which do not satisfy S become
stuck states — states with no outgoing transitions. If a stuck state is reachable, the
transition system for P and S is not valid.

Inferring Synchronization under Limited Observability 145

A program P is valid with respect to S if and only if the corresponding transition
system 〈ΣP , TP,S , InitP 〉 is valid. This notion of validity includes both safety properties
defined by the global invariant S and a progress guarantee that the program does not
get stuck, in any execution.

3 Maximally-Permissive Programs

Given an input program P and a specification S, we modify P by adding synchroniza-
tion such that the modified program satisfies the specification S. Conceptually, we take
the following steps: (i) construct the transition system ts of P and S; (ii) remove a min-
imal set of transitions from ts such that the resulting transition system ts′ is valid with
respect to S; (iii) implement ts′ as a program, by adding synchronization code to P .

In this work, we rely on standard techniques to construct the transition system of P ,
e.g., [8], and focus on steps (ii) and (iii).

3.1 Removing Transitions under Limited Observability

By limiting the cost of synchronization code, we induce limited observability. Hence,
not every transition system obtained by removing a bunch of transitions from ts can be
implemented as a program with the same traces by adding synchronization code to P .

To remove a transition t, and implement the result as a program, the input program
P is modified by strengthening the guard of ccr(t), preventing its execution from the
source state src(t). When the state src(t) can be uniquely characterized by an expres-
sion in the language of guards LG, we can use its characterization to strengthen the
guard of ccr(t) without affecting transitions other than t. Our ability to uniquely char-
acterize a state src(t) depends on LG. Usually, due to limited observability, we may
not be able to uniquely characterize src(t). In such cases, the removal of the transition
t may remove other transitions executing the same statement, because they have the
same guard. We say that two transitions are equivalent when the language of guards
is not expressive enough to remove one of the transition without removing the other
one. We now provide a formal definition of the transition equivalence under limited
observability.

Observational Equivalence. First, we define equivalence relation on states with respect
to LG. Two states are equivalent with respect to LG, when there is no guard in LG that
can be used to distinguish them. Formally, for all s, s′ ∈ ΣP ,

s ≈LG s′ if and only if for all g ∈ LG.[[g]](s) = [[g]](s′) (1)

We now define equivalence relation on transitions with respect to LG. Two transitions
t and t′ are equivalent when they execute the same statement and their source states are
indistinguishable by LG. Formally, for all t, t′ ∈ TP,S ,

t ≈LG t′ if and only if lbl(t) = lbl(t′) and src(t) ≈LG src(t′) (2)

We use [t]LG to denote the equivalence class of t with respect to ≈LG. For a set of
transitions E ⊆ TP,S , we use [E]LG to denote ∪t∈E [t]LG.

146 M. Vechev, E. Yahav, and G. Yorsh

Characterizing Observable States. We define a characterization function to respect the
equivalence relation ≈LG. Let χ be a function that takes as input a state s ∈ ΣP and
returns a guard in LG. We say that χ characterizes the states observable by LG, when
for all s, s′ ∈ ΣP ,

[[χ(s)]](s′) = true if and only if s ≈LG s′ (3)

Our method is applicable to any guard languages for which a characterization func-
tion is defined. Usually, it is easy to define a characterization function, e.g., by enumer-
ating the values of observable variables in the state.

Example 1. Consider the program of Fig. 1 and its transition system in Fig. 2. Let LG
be boolean combinations of predicates of the form var == c, where var is one of the
program variables {x,z}, and c is a constant. Under LG, many of the states in Fig. 2 are
equivalent. For example, the states s1 = 〈e, 2, 3, 1, 0, 0〉, s2 = 〈e, e, 3, 1, 2, 0〉, and s3 =
〈e, e, 3, 1, 1, 0〉 are equivalent as they cannot be distinguished by LG. Consequently, the
transitions corresponding to the statement z=y+1 outgoing from s1, s2, and s3 are
equivalent. When the characterization function is defined by enumerating the values of
observable variables in the state, χ(s1)=χ(s2)=χ(s3) = (x == 1)∧(z == 0).

3.2 Implementability

We can use χ to define a guard in LG that removes a transition t ∈ TP,S , and all the
transitions in its equivalence class [t]LG, but does not affect any other transitions.

Lemma 1. For all t, t′ ∈ TP,S such that lbl(t) = lbl(t′), t′ ≈LG t if and only if
[[χ(src(t))]](src(t′)) = true.

A transition system ts is implementable from P and LG when there exists a program
P ′ obtained from P by introducing guards from LG such that the set of traces of ts
and P ′ are the same. The following theorem relates implementability to observational
equivalence. Intuitively, if we remove an equivalence class of transitions from an im-
plementable transition system, the result is an implementable transition system.

Theorem 1 (Implementability). For every R ⊆ TP,S , the transition system ts defined
by 〈ΣP , TP,S \ [R]LG, InitP 〉 is implementable from P and LG:

(1) There exists a program P ′ such that [[P ′]] = [[ts]].
(2) P ′ can obtained from P by introducing guards from LG.

implement(P:Program,R:Transitions):Program {
P ′ = P
foreach t ∈ R

let ccr(t) be l : guard → stmt in
P ′ = P ′[l : ¬χ(src(t)) ∧ guard → stmt]

return P ′

}
Fig. 4. The procedure implement

Given P and [R]LG, for some
R ⊆ TP,S , the simple algorithm
implement from Fig. 4 computes
such P ′. It relies on Lemma 1 to
guarantee that only transitions from
[R]LG are removed. The algorithm
constructs P ′ from P by strengthen-
ing the guards of CCRs that corre-
spond to transitions in [R]LG. For a transition t, we use the notation P ′[l : ¬χ(src(t))∧
guard→ stmt] for the program obtained from P ′ by strengthening the guard of ccr(t)
to be ¬χ(src(t)) ∧ guard. This change is sufficient (by Lemma 1) to remove the tran-
sition t itself and all its equivalence class [t]LG, but only them.

Inferring Synchronization under Limited Observability 147

3.3 Maximally Permissive Programs

We now define the natural notion of a maximally-permissive program for a given lan-
guage of guards. We note that maximal permissiveness arises in many other settings
(e.g., [10,13]).

Definition 1 (Maximally-Permissive). Consider a program P and a language of
guards LG. Let P ′ be a program obtained from P by introducing guards from LG.
P ′ is maximally-permissive with respect to LG if and only if P ′ is valid and for every
program P ′′ obtained from P by introducing guards from LG, if [[P ′]] ⊂ [[P ′′]], then P ′′

is not valid.

We use MP(P, LG) to denote the set of all maximally-permissive programs that can be
obtained from P by introducing guards from LG. Note that the programs in MP(P, LG)
have identical or incomparable sets of traces, i.e., for every pair P, P ′ ∈ MP(P, LG),
[[P]] �⊂ [[P ′]]. When we cannot eliminate all invalid interleavings (that end in stuck
states) only by introducing guards, MP(P, LG) is empty.

In the rest of this section, we show that every maximally-permissive program can be
implemented by removing edges from the transition system of P .

We present two algorithms for computing maximally permissive programs with re-
spect to the language of guards LG. The language LG is required in all of the algorithms.
To avoid clutter we do not pass it as an explicit parameter.

3.4 EXHAUSTIVE Algorithm

Theorem 1 allows us to implement any transition system defined by removing a set of
transitions [R]LG from the transition system that corresponds to the original program P .
We are interested in valid transition systems. Therefore, we restrict our attention to sets
of transitions that yield valid and implementable transition systems. Rather than con-
sidering all subsets of transitions as possible candidates for removal, we define the set
of bad transitions, and only consider transitions from this set as candidates for removal.

We define a bad transition as a transition that lies on an invalid trace. More formally,
given a transition system 〈Σ, T, Init〉 we say that a transition t ∈ T is a bad transition
when i �ts src(t), dst(t) �ts d, such that i ∈ Init, d ∈ Doomedts. Using this defi-
nition, we would like to construct an algorithm that computes a maximally permissive
program, but only considers bad transitions as candidates for removal.

Side effects. Implementability restrictions require that when we remove a transition t
we also remove all other equivalent transitions [t]LG. As a result, the removal of a bad
transition might introduce additional bad transitions.

Definition 2. We say that a removal of a transition t has a side effect when |[t]LG| > 1.
When the removal of a transition t does not have a side-effect, we say that it is side-
effect free.

Example 2. Consider the example program of Fig. 1 and its transition system in Fig. 2.

Assume that the algorithm has chosen to remove the bad transition 〈e, 2, 3, 1, 0, 0〉 z=y+1−→
〈e, 2, e, 1, 0, 1〉, denote it t. The statement executed by this transition is 3: true →
z=y+1. Under observability limited to variables x,z, this removal has the side effect

148 M. Vechev, E. Yahav, and G. Yorsh

of removing the (equivalent) transitions from 〈e, e, 3, 1, 1, 0〉 and 〈e, e, 3, 1, 2, 0〉. Since
there are no other outgoing transitions from these states, the removal of t makes these
states doomed, thus adding bad transitions.

Because the removal of a bad transition can introduce additional bad transitions (by
introducing doomed and stuck states), an algorithm based on selecting bad transitions
has to remove transitions gradually, and recompute the set of bad transitions after every
step. This leads to the following algorithm.

EXHAUSTIVE(P : Program) : Program {
1: R = ∅
2: while (true) {
3: ts = 〈ΣP , TP,S \ R, InitP 〉
4: if valid(ts) return implement(P,R)
5: B = bad-transitions(ts)
6: if B = ∅ abort “cannot find valid synchronization”
7: select a transition t ∈ B
8: R = R ∪ [t]LG

}
}
bad-transitions(ts : TransSys) : Set of Transitions {

let ts be 〈Σ, T, Init〉 in
return {t ∈ T | i �ts src(t), dst(t) �ts d, i ∈ Init, d ∈ Doomedts}

}
Fig. 5. EXHAUSTIVE algorithm

Fig. 5 shows the EXHAUSTIVE algorithm for inferring synchronization. The algorithm
takes a program as input and constructs a valid program by iteratively eliminating bad
transitions. The algorithm maintains a set R of transitions to be removed. Initially, this
set is empty. On every iteration of the algorithm, we construct a transition system ts by
removing the transitions in R from the transition system of the input program P . If the
resulting transition system is valid, the algorithm uses the procedure implement to
return a modified version of P that avoids all transitions in R. If the transition system
ts is not valid, the algorithm computes a set of bad transitions by using the procedure
bad-transitions(ts). If the set is empty, it means that the transition system is not valid,
but there are no more bad transitions to be removed (in this algorithm, it means that
no bad transitions remain in ts and there exists a stuck state in Init). If the set B of
bad transitions is not empty, the algorithm non-deterministically chooses one of the
transitions in B as the transition to be removed. To guarantee that a program that avoids
transitions in R is implementable, when we add a bad transition t to R, we add to R all
transitions in its equivalence class [t]LG.

Theorem 2 (Correctness of EXHAUSTIVE). A run of the EXHAUSTIVE algorithm termi-
nates with either a valid program or abort.

Inferring Synchronization under Limited Observability 149

Example 3. This example demonstrates how the algorithm is applied to the program
of Fig. 1 and its transition system in Fig. 2. The first step in the algorithm is to check
whether ts = 〈ΣP , TP,S \ R, InitP 〉 is valid. Since at this point R = ∅, the transition
system is the one of Fig. 2 which is invalid (there is a trace reaching the stuck state
〈e, e, e, 1, 2, 1〉). The algorithm now computes the set B, and lets assume that it chooses

to remove the bad transition t = 〈e, 2, 3, 1, 0, 0〉 z=y+1−→ 〈e, 2, e, 1, 0, 1〉. The statement
executed by this transition is the statement 3: true → z=y+1. Under full observ-
ability, χ(src(t)) = (x == 1 ∧ y == 0 ∧ z == 0). Using this formula, the algorithm
creates a new program P ′ in which the statement has the guard ¬χ(src(t)), that is,
3: (x �= 1 ∨ y �= 0 ∨ z �= 0)→ z=y+1.

Next, we show how to use the EXHAUSTIVE algorithm to compute all maximally per-
missive programs for a given input program, specification and language of guards. The
idea is to implement the non-deterministic choice of a transition t ∈ B in line 7 us-
ing backtracking. As a result, we obtain different sets of transitions to remove, where
each set yields a valid program. (It is different from enumerating all possible subsets of
bad transitions of the original program, because of side effects.) The following lemma
shows that all maximally permissive programs can be obtained this way.

Lemma 2. For every maximally permissive program P ′ ∈ MP (P, LG), there exists a
run of the EXHAUSTIVE algorithm that returns P ′′ such that [[P ′]] = [[P ′′]].

Let PS denote the set of (valid) programs obtained from all possible runs of EXHAUS-
TIVE, for different choices of t ∈ B in line 7. To compare permissiveness of programs
P1, P2 ∈ PS, we look at the corresponding sets of removed transitions R1, R2 ⊆ TP,S ,
computed by the EXHAUSTIVE algorithm, where Pi = implement(P, Ri), for i = 1, 2.
If R1 ⊂ R2, then the transition system obtained by removing R1 has more traces (is
more permissive) than the transition system obtained by removing R2. Formally, let RS
be the set of sets of removed transitions that correspond to the programs in PS. We
define the operation min(RS) that chooses from RS the minimal sets of transitions that
guarantee a valid transition system:

min(RS) def= {R ∈ RS | ∀R′ ∈ RS.R′ �⊂ R} (4)

This allows us to generate all maximally permissive programs:

Theorem 3. For every maximally permissive program P ′ ∈ MP (P, LG), there exists
R ∈ min(RS) such that [[P ′]] = [[implement(P, R)]]. For every R ∈ min(RS),
implement(P, R) ∈MP (P, LG).

Complexity. A single run of EXHAUSTIVE is polynomial in the size of the (original)
transition system. The size of RS is exponential in the transition system. Computing
min(RS) is polynomial in the size of RS. Therefore, computing MP (P, LG) is expo-
nential in the size of the transition system.

3.5 GREEDY Algorithm

The EXHAUSTIVE algorithm of Fig. 5 is choosing transitions for removal from the set
bad-transitions(ts). This set may also contain transitions from one doomed state to an-
other. Removal of a transition between doomed states is redundant, as such a transition

150 M. Vechev, E. Yahav, and G. Yorsh

will become unreachable (and therefore transitively removed) when transitions into
dominating doomed states are removed. We can further leverage the structure of the
transition system and avoid removal of a transition between doomed states by having
the algorithm pick transitions from the cut between non-doomed and doomed states.

The GREEDY algorithm is a modification of the EXHAUSTIVE algorithm such that in-
stead of using bad-transitions(ts), it uses the following procedure cut-transitions(ts).

cut-transitions(ts : TransSys) : Transitions {
let ts be 〈Σ, T, Init〉 in
return {t ∈ T | i �ts src(t), i ∈ Init, src(t) /∈ Doomedts, dst(t) ∈ Doomedts}

}

Example 4. Consider the program of Fig. 1. Assume LG is as earlier boolean combina-
tions of equality to constants, and is limited to only observing variables x and z. The
starting point of the algorithm is the transition system of Fig. 2. In the first step, the

only transition in the cut is the transition t = 〈e, 2, 3, 1, 0, 0〉 z=y+1−→ 〈e, 2, e, 1, 0, 1〉,
and so the algorithm chooses to eliminate this transition. This results in the addition
of the guard (x �= 1 ∨ z �= 0) to the statement z=y+1, and has the side-effect of
removing the transitions from 〈e, e, 3, 1, 1, 0〉 and 〈e, e, 3, 1, 2, 0〉, which now become
doomed states. In the second step, the algorithm chooses to eliminate the transition

〈1, e, 3, 0, 1, 0〉 x=z+1−→ 〈e, e, 3, 1, 1, 0〉. This adds the guard (x �= 0∨z �= 0) to the state-

mentx=z+1, which has the side effect of removing the transition 〈1, 2, 3, 0, 0, 0〉 x=z+1−→
〈e, 2, 3, 1, 0, 0〉. The resulting program is shown in Fig. 3(b).

Theorem 4 (Correctness of GREEDY). A run of the GREEDY algorithm terminates with
either a valid program or abort.

In GREEDY, the non-deterministic choice of a transition t at line 7 of Fig. 5 returns a
cut transition. In contrast to EXHAUSTIVE, where the non-deterministic choice is im-
plemented using backtracking, in GREEDY we implemented it as an arbitrary choice,
because any choice returns a reasonable (in fact, locally optimal) solution, while enumer-
ating all possibilities does not guarantee maximal permissiveness. Finding a maximally-
permissive solution is exponential in the size of the transition system in the worst-case
(using EXHAUSTIVE with backtracking), while GREEDY is polynomial. GREEDY computes
a maximally permissive solution when the removal of transitions has no side-effects:

Theorem 5. If a run of GREEDY has no side-effects then it computes a maximally per-
missive program for P and LG or aborts. If it aborts, then MP(P, LG) = ∅.

Note that the theorem only requires that transitions removed during the run of GREEDY to
be side-effect free. Recall that under full observability, there cannot be any side-effects,
but GREEDY does not require full observability. That is, even under limited observability,
it is possible that a run of GREEDY has no side-effects, in which case, it produces a
maximally permissive program. However, in cases where limited observability causes
side-effects, there are no guarantees: GREEDY may fail or succeed in finding a maximally
permissive solution. The following example demonstrates that GREEDY fails to find a
maximally permissive program when EXHAUSTIVE manages to find it.

Inferring Synchronization under Limited Observability 151

Example 5. Consider the program of Fig. 1, and its transition system in Fig. 2. For
this program, when the guard language is limited to only allow the observability of
the variable z, the result of GREEDY is a program that admits no traces. However, the
EXHAUSTIVE algorithm does find a solution with this guard language. The solution found
by EXHAUSTIVE is the addition of a guard z �= 0 to the statements x=z+1 and z=y+1.

In most examples we considered, even when GREEDY encountered side-effects, it was
always able to find the best solution. Characterizing more accurately when GREEDY

guarantees maximal permissiveness is an interesting subject of future work.

3.6 Challenges in Inferring Synchronization under Abstraction

The algorithms presented in this paper operate on a finite transition system. To handle
infinite-state systems, we use finite-state abstraction. Given a program P and a specifi-
cation S, we first compute an abstract transition system for it (see, e.g., [4]), and then
apply EXHAUSTIVE or GREEDY to it. If the algorithm does not abort, then the resulting
program is guaranteed to satisfy S. However, under abstraction, we cannot guarantee
that the resulting program does not reach a stuck state. That is, we might generate
guards that make a thread block indefinitely. The reason for this limitation is that under
abstraction we might lose the information that a state becomes stuck.

We can conservatively eliminate abstract states that potentially become stuck, los-
ing the ability to guarantee that the result is maximally-permissive. In many cases the
conservative approach does not manage to find even a single valid program and aborts.
Another approach is to refine an abstract transition system when a state becomes po-
tentially stuck. In the case that the concrete transition system has a finite bisimulation
quotient, our algorithm terminates and produces a valid program (or abort). Yet another
approach is to use an abstraction that record information about stuck states. There are
abstractions that can record some progress properties, but their precision for detecting
stuck states has not been evaluated. This is a challenging problem, but it is beyond the
scope of this paper.

4 Prototype Implementation

We have implemented the GREEDY algorithm in a prototype tool based on the SPIN
model-checker [8]. The tool takes as input a program P , which uses CCRs, a specifica-
tion S and a set of variables Obs ⊆ Var that guards may refer to. The set of variables
Obs is used to determine an upper bound on the synchronization cost. The tool then
automatically infers correct synchronization with minimal cost, using the cost function
from Section 4.1.

We used the tool on several small but instructive examples, described in [16], in-
cluding dining philosophers and asynchronous counters. In all of the examples we start
with a program that is initially incorrect and does not use any synchronization (our tool
also works on input programs that already contain guards). In all examples, out tool
successfully inferred guards that achieve maximal permissiveness.

4.1 Reducing Synchronization Cost

The algorithms presented so far infer correct (and maximally permissive) guards whose
cost is less than a user-specified upper bound, however, the guards they produce are

152 M. Vechev, E. Yahav, and G. Yorsh

not guaranteed to have the least synchronization cost for this level of permissiveness.
Sometimes, it may be possible to reduce the cost of these guards while maintaining
correctness and maximal permissiveness. We now demonstrate how this is done for a
specific cost model.

Cost as the Number of Shared Accesses. Depending on the environment and the under-
lying architecture (e.g. cache costs), there may be different cost models for comparing
the synchronization cost of two guard expressions. Here, we consider one intuitive cost
model: we compare the number of distinct shared variables accessed in each guard. This
is a natural measure reflecting the atomic observations about the shared state.

Formally, given a program P , we denote the number of distinct variables accessed by
the CCR guard in location l of P by nga(P, l). Given a program P , and a specification
S, we say that P1 ∈ VP(P, S) has lower cost than a program P2 ∈ VP(P, S) if for
every location l of P , nga(P1, l) ≤ nga(P2, l).

The language of guards is restricted to boolean combinations of equalities between a
variable in the user-provided set Obs and an (integer) constant. We denote this lan-
guage of guards by EQ(Obs) and define a characterization function χ as follows:

implement(P:Program,R:Transitions) {
P ′ = P
ts = 〈ΣP , TP,S \ R, InitP 〉
L = {lbl(t) | t ∈ R}
foreach l ∈ L
BS={src(t)∈Reachts | lbl(t) = l, t∈R}
GS={src(t)∈Reachts | lbl(t) = l}
sep = SEPARATOR(BS, GS)
let ccr(l) be guard → stmt in
P ′ = P ′[l : ¬sep ∧ guard → stmt]

return P ′

}
SEPARATOR(S1, S2 : Set of States) {

foreach k = 1, . . . , |Obs|
foreach V ⊆ Obs such that |V | = k

if (S1 ↓ V) ∩ (S2 ↓ V) = ∅
return χV (S1);

abort ”cannot find separator”
}

Fig. 6. implement with separator

χObs(s)
def=

∧
v∈Obs,[[v]](s)=c

v = c

It is easy to see that χObs is well defined
and characterizes the states observable by
the language defined above. The characteri-
zation function χObs can be extended natu-
rally to apply to sets of states. Given a set of
states S ⊆ Σ, χObs(S) =

∨
s∈S χObs(s).

The simple version of implement
shown in Fig. 4 uses χ which finds a guard
in the language, but does not attempt to
minimize its cost. Synchronization derived
using simple version of implement al-
ways has the same high cost: for each la-
bel l, nga(P, l) = |Obs|. Our tool uses an
improved version of implement, shown
in Fig. 6, which results in a program with
the same permissiveness as for the sim-
ple version of implement, but has mini-
mal cost. The main idea is to replace χObs
with a “separator” formula, as we briefly de-
scribe next (see [16] for details).

Separator. A separator is a guard in LG that distinguishes between two sets of states.
Given S1, S2 ⊆ Σ, separator g satisfies (i) for all s1 ∈ S1, [[g]](s1) = true, and (ii) for
all s2 ∈ S2, [[g]](s2) = false.

There may be multiple separators in LG, with different costs: for example χObs(S1)
is a separator. However, the cost of this separator may be higher than necessary, because

Inferring Synchronization under Limited Observability 153

it does not take into account S2. The algorithm in Fig. 6 computes a separator in the
language EQ(Obs) with the minimal number of variables. It enumerates subsets V of
Obs of increasing size until it finds one that can distinguish between S1 and S2, and
builds a separator formula using χV .

The variables in V cannot distinguish between two states s and s′ when the values
of all these variables are identical in s and s′. Technically, we use s ↓ V to denote the
projection of the state s onto the set of variables V ⊆ Obs. For a set S ⊆ Σ, we use
S ↓ V to denote {s ↓ V | s ∈ S}. A set of variables V can distinguish between sets of
states S1 and S2, if their projections onto V are disjoint.

Example 6. Let Var = {x, y, z}. Let S1 = {〈1, 1, 1〉} and S2 = {〈1, 1, 2〉, 〈1, 2, 3〉}.
Suppose that Obs = {x, z}. Then, a possible separator for S1 and S2 is χObs(〈1, 1, 1〉)
def= x = 1 ∧ z = 1, which performs two shared accesses. Another separator for S1 and
S2 is z = 1, and it only accesses a single variable. The algorithm in Fig. 6 returns the
latter.

5 Related Work

Early work by Emerson and Clarke [2] uses temporal specifications to generate a syn-
chronization skeleton. The generated programs assume full observability of the pro-
gram state. This has been later extended by Attie and Emerson to synthesize programs
with finer grained atomic sections [1]. Early work by Manna and Wolper [11] synthe-
sizes CSP programs. In contrast, we synthesize programs for shared memory. These
approaches have no notion of optimality, and no notion of synchronization cost. Our
approach allows us to phrase the question of synchronization cost and optimality rela-
tive to a given language of guards. We also assume that the computation performed by
the program is provided, and the goal of the synthesis algorithm is to add the required
synchronization that guarantees that the specification is satisfied. Pnueli and Rosner
[12] consider the problem of synthesizing a reactive module based on an LTL specifica-
tion. They discuss the problem of implementability in this setting, and define necessary
and sufficient conditions for the implementability of a given specification.

The work of Joshi et. al. [10] discusses a method for proving that a given program
P is maximally concurrent (permissive) with respect to a specification S. This requires
a manual phase where the input program P is translated to another equivalent program
P’ and maximal concurrency is then manually proved on P’. In contrast, we recognize
that maximal concurrency is only one component of a more general problem that in-
volves other important dimensions such as synchronization cost. We study how both of
these two dimensions are connected and provide algorithms that take into account both
dimensions when inferring synchronization.

Acknowledgements. We thank Barbara Jobstmann, and the anonymous referees.

References

1. Attie, P.C., Emerson, E.A.: Synthesis of concurrent systems for an atomic read/atomic write
model of computation. In: PODC 1996, pp. 111–120. ACM Press, New York (1996)

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Logic of Programs, Workshop, pp. 52–71 (1982)

154 M. Vechev, E. Yahav, and G. Yorsh

3. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(1999)

4. Dams, D.: Abstract Interpretation and Partition Refinement for Model Checking. PhD thesis,
Eindhoven University of Technology, The Netherlands (December 1996)

5. Hansen, B.: Edison - a multiprocessor language. Software - Practice and Experience 11(4),
325–361 (1981)

6. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA 2003, pp.
388–402. ACM Press, New York (2003)

7. Hoare, C.A.R.: Towards a theory of parallel programming. In: The origin of concurrent pro-
gramming: from semaphores to remote procedure calls, pp. 231–244 (2002)

8. Holzmann, G.J.: The Spin Model Checker, Primer and Reference Manual. Addison-Wesley,
Reading (2003)

9. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami, K., Ra-
jamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer, Heidelberg (2005)

10. Joshi, R., Misra, J.: Toward a theory of maximally concurrent programs (shortened version).
In: PODC 2000, pp. 319–328. ACM Press, New York (2000)

11. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifica-
tions. ACM Trans. Program. Lang. Syst. 6(1), 68–93 (1984)

12. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190.
ACM Press, New York (1989)

13. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM J. Control Optim. 25(1), 206–230 (1987)

14. Saraswat, V.A., Sarkar, V., von Praun, C.: X10: concurrent programming for modern archi-
tectures. In: PPoPP 2007, pp. 271–271. ACM Press, New York (2007)

15. Sutter, H., Larus, J.: Software and the concurrency revolution. Queue 3(7), 54–62 (2005)
16. Vechev, M., Yahav, E., Yorsh, G.: Inferring synchronization under limited observability.

Technical report, IBM (2008), http://www.research.ibm.com/paraglide/

http://www.research.ibm.com/paraglide/

The Complexity of Predicting Atomicity
Violations�

Azadeh Farzan1 and P. Madhusudan2

1 University of Toronto
2 Univ. of Illinois at Urbana-Champaign

Abstract. We study the prediction of runs that violate atomicity from
a single run, or from a regular or pushdown model of a concurrent pro-
gram. When prediction ignores all synchronization, we show predicting
from a single run (or from a regular model) is solvable in time O(n+k.ck)
where n is the length of the run (or the size of the regular model), k is
the number of threads, and c is a constant. This is a significant improve-
ment from the simple O(nk · 2k2

) algorithm that results from building a
global automaton and monitoring it. We also show that, surprisingly, the
problem is decidable for model-checking recursive concurrent programs
without synchronizations. Our results use a novel notion of a profile: we
extract profiles from each thread locally and compositionally combine
their effects to predict atomicity violations.

For threads synchronizing using a set of locks L, we show that predic-
tion from runs and regular models can be done in time O(nk ·2|L|·log k+k2

).
Notice that we are unable to remove the factor k from the exponent on n
in this case. However, we show that a faster algorithm is unlikely : more
precisely, we show that prediction for regular programs is unlikely to
be fixed-parameter tractable in the parameters (k, |L|) by proving it is
W [1]-hard. We also show, not surprisingly, that prediction of atomicity
violations on recursive models communicating using locks is undecidable.

1 Introduction

The new disruptive trend in microprocessor technology that bodes a future where
there will be no significant speed-up of individual processors but only a mul-
titude of processor cores, poses a tremendous challenge to computer science.
Parallel computers will become ubiquitous and all software will have to exploit
parallelism to gain performance. One of the most challenging aspects of this
overhauling of technology is that concurrent programs are very hard to write
and debug, making reliability and programmer productivity a huge concern.

Despite various efforts in computer science that strive to enable simple models
for concurrency such as transactional memory[24], stream-programming, actors
and MPI (message passing interface) paradigms [1,14,2], that escape the dread
of a wild shared-memory program, it is fairly clear that concurrent reactive

� For a full version of this paper refer to [8].

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 155–169, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

156 A. Farzan and P. Madhusudan

programs will exhibit significant non-determinism in terms of interleaved execu-
tions. A serious consequence of this is that software will become very hard even
to test against one particular input : given a concurrent program and an input,
there will be a myriad of interleaved executions, making testing extremely chal-
lenging. The CHESS project at Microsoft research and IBM’s ConTest tool are
efforts that try to address this problem.

An extremely common generic concurrency bug is the violation of atomicity.
Intuitively, a programmer writing a procedure often wants non-interfered access
to certain data, enabling local reasoning of the procedure in terms of how it
affects the state. A programmer often puts together concurrency control mech-
anisms to ensure atomicity, often by taking locks on the data accessed. This is
extremely error-prone: errors occur if not all locks for accessed data are taken,
non-uniform ordering of locking can cause deadlocks, and naive ways of locking
can inhibit concurrency, which forces programmers to invent intricate ways to
achieve concurrency and correctness at the same time. Recent studies of concur-
rency errors [19] show that a majority of errors (69%) are atomicity violations.
This motivates the problems we consider in this paper: to study algorithms that
can help search the space of all interleavings for atomicity violations.

First, we assume that we have a mechanism to observe the global run of a con-
current program as an interleaved sequence of events executed by the different
threads1. Assuming a program’s global run is divided into transactions, where a
transaction is a block of code like a procedure that we expect the programmer
intends to be atomic, we would like to check for runs of the program that violate
atomicity with respect to these transaction boundaries2. The notion of atom-
icity we study is a standard notion called conflict-serializability— intuitively, a
conflict serializable run is a run that may involve interleaving of threads but is
semantically equivalent to a serial run where all transactions are executed in a
sequential non-interleaved fashion.

Given a run, the first problem of interest is to check whether it is serializable.
This problem is a monitoring problem and we have recently solved this problem
satisfactorily [7], showing that there is a deterministic monitoring algorithm that
uses space at most O(k2 + kv) (for a program with k threads and v global vari-
ables). The salient aspect of this algorithm is that the space used is independent
of the length of the observed run, making it extremely useful in practice.

In this paper, we study the harder problem of predicting atomicity violations.
Given a run r, we would like to predict other runs r′ which are not serializable.
This is an extremely interesting and useful problem to solve; if we execute a
program on an input and obtain one run r, and use it to predict non-serializable
runs r′ efficiently, it gives us a very effective mechanism of finding atomicity vio-
lations without generating and testing all interleavings in a brute-force manner.

1 In practice, we can augment the program so that it communicates to a monitoring
module, and with extra synchronization, ensure sequential consistency, and correct
observation of runs.

2 Note that we do not assume a transactional memory programming model; the pro-
grams we consider run on “wild” shared memory.

The Complexity of Predicting Atomicity Violations 157

Our prediction model is simple and intuitive: given a run r, we project the run
r to each of the threads to get local runs r1, . . . , rk. We then consider all runs
that can be obtained by combining the runs r1 through rk in any interleaved
fashion to be predicted by the run r. Note that our notion of a run does not
include conditional checks made by the threads nor the actual data written by
the programs: this is intentional, as considering these aspects leads to a very
complex prediction model that is unlikely to be tractable. Our prediction model
is optimistic: we predict a larger class of runs than may be allowed by the actual
program, and hence any non-serializable execution that we infer must be subject
to testing to check feasibility of execution by the program.

The problem of inferring whether any interleaved execution of k local runs
r1, . . . , rk leads to a violation of serializability is really a model-checking prob-
lem: for each thread Ti we are given a straight-line program executing ri, and
asked whether the concurrent program has a serializability violation. A natural
analog of this problem is that we are given a set of k program models (finite-
state transition systems or recursive transition systems) and asked whether any
interleaving of them results in a serializability violation. Program models can be
derived in various ways: for instance we can collect the projections of multiple
tests and build local transition systems and check whether we can predict a run
that violates atomicity. Program models may also be obtained statically from
programs using abstraction techniques.

This paper is devoted to the theoretical analysis of predicting atomicity viola-
tions from straight-line concurrent programs (for predictions from tests), regular
concurrent programs and recursive concurrent programs.

Let us briefly consider the problem of inferring runs from straight-line. It is
clear that we can construct a global transition system that generates all the in-
terleavings of the program, and by intersecting this with a monitoring automaton
for serializability, predict atomicity violations. However, this essentially gener-
ates all the interleavings, which is precisely the problem we wish to avoid. The
goal of this paper is to study when this can be avoided.

Notice that the state space of the global transition system generating all inter-
leavings is O(nk) in size where n is the size of the program, and k is the number
of threads. In practical applications, n is very large (the length of the run) and
k, though small, is not a constant, leading to a very large state-space, making
prediction almost impossible. Moreover, we clearly cannot expect algorithms to
work without an exponential dependence on k (we can show that the problem is
NP-complete). However, it would be extremely beneficial if we can build algo-
rithms where k does not occur in the exponent on n. An algorithm that works in
time O(n + k.ck) would work much faster in practice. For instance, in the SOR
benchmark (see [7]) for k = 3 threads, the length of a run is n = 97× 106 nodes,
and nothing short of a linear dependency on n can really work in practice.

Secondly, predicting runs gets harder when the synchronization mechanisms
have to be respected. In this paper, we consider two models: one where we
ignore any synchronization mechanism (which leads to faster but less accurate
predictions) and one where we consider synchronization using locks.

158 A. Farzan and P. Madhusudan

Our main contributions in this paper are the following. Assuming the set of
variables manipulated is a constant, we show:

– For prediction without considering of synchronization mechanisms, we show:
• Straight-line programs and regular programs over a fixed set of global

variables are solvable in time O(n+k.ck) for a constant c (which depends
quadratically on the number of variables). This result is proved by giv-
ing a compositional algorithm that extracts relevant results from each
thread, using a novel notion called a profile, and combines the profiles
to check violations.

• Prediction of atomicity errors for recursive programs is (surprisingly)
decidable, and can be done in time O(n3 + k.ck).

– For prediction in programs that use lock synchronization over a lock-set L:
• Straight-line programs and regular programs over a fixed set of global

variables are solvable in time O(nk · 2|L|·log k+k2
). This is a global al-

gorithm that considers all interleavings, and hence k does occur in the
exponent on n. However, we show that removing the k from the expo-
nent is highly unlikely. More precisely, we show that it is unlikely that
there is an an algorithm that works in time O(poly(n) ·f(k, |L|)), for any
computable function f , by showing that the problem is W[1]-hard over
the parameters (k, |L|). W[1]-hard problems are studied in complexity
theory, and are believed not to be fixed-parameter tractable.

• Prediction of atomicity for recursive programs is (not surprisingly) un-
decidable.

Two aspects of our work are novel. First, the notion of profiles that we use to
give the first sound and complete compositional mechanisms to prove atomicity
of programs without locks. Second, for programs with locks, our W[1]-hardness
lower bound shows that an efficient compositional method is unlikely. Such fixed-
parameter intractability results are not common in the verification literature (we
know of no such hardness result directly addressing model checking of systems).

The paper is organized as follows. In Section 2 we first define schedules which
capture how programs access variables, then define the three classes of programs
we study, namely straight-line, regular, and recursive programs. We also define
the notion of conflict-serializability and its algorithmic equivalent in terms of
conflict-graphs. Section 3 is devoted to the study of finding atomicity viola-
tions in programs with no synchronization mechanisms while Section 4 studies
the problem for programs with lock synchronization. We end with concluding
remarks and future directions in Section 5.

Related Work: Atomicity is a new notion of correctness for concurrent pro-
grams. It has been suggested [10,11,26,25,27] that atomicity violations based on
serializability are effective in finding concurrency bugs. A recent and interest-
ing study of bug databases identifies atomicity violations to be the single major
cause for errors in a class of concurrent programs [19] Work in software verifica-
tion for atomicity errors are often based on the Lipton-transactional framework.
Lipton transactions are sufficient (but not necessary) thread-local conditions

The Complexity of Predicting Atomicity Violations 159

that ensure serializability [18]. Flanagan and Qadeer developed a type system
for atomicity [10] based on Lipton transactions (which, being local, is also com-
positional). Model checking has also been used to check atomicity using Lipton’s
transactions [11,15]. In [6], we had proposed a slightly different notion of atom-
icity called causal atomicity which can be checked using partial-order methods.

The run-time monitoring for atomicity violations is well-studied. Note that
here the problem is to simply observe a run and check whether that particu-
lar run is atomic (involves no prediction). In a recent paper [9], the authors
show monitoring algorithms that work with efficient space constraints to mon-
itor atomicity violations during testing. In another recent paper [7], we have
established a more sophisticated algorithm that uses bounded space to moni-
tor, and results in extremely efficient monitoring algorithms. The existence of
a monitor also implies that if the global state-space of a concurrent program
can be modeled as a finite-state system, then the model checking problem for
serializability is decidable.

The work in [22] defines access interleaving invariants that are certain pat-
terns of access interactions on variables, learns the intended specifications using
tests, and monitors runs to find errors. A variant of dynamic two-phase locking
algorithm [20] for detection of an serializability violation is used in the atomicity
monitoring tool developed in [27].

Turning to predictive analysis, there are two main streams of work that are rel-
evant. In papers [26,25], Wang and Stoller study the prediction of runs that vio-
late serializability from a single run. Under the assumptions of deadlock-freedom
and nested locking, they show precise algorithms that can handle serializability
violations involving at most two transactions. They also give heuristic incomplete
algorithms for checking arbitrary runs. In contrast, the algorithms we present
here do not make these assumptions, and are precise and complete. Predicting
alternate executions from a single run are also studied in a series of papers by
Rosu et al [23,4]. While these tools can also predict runs that can violate atomic-
ity, their prediction model is tuned towards explicitly generating alternate runs,
which can then be subject to atomicity analysis. In sharp contrast, the results
we present here search the space of alternate interleavings efficiently, without
enumerating them. However, the accuracy and feasibility of prediction in the
above papers are better as the algorithm involves looking at the static structure
of the programs and analyzing their control dependencies.

2 Modeling Runs of Concurrent Programs

A program consists of a set of threads that run concurrently. Each thread se-
quentially runs a series of transactions. A transaction is a sequence of actions;
each action can be a read or write to a (global) variable.

We assume a finite set of thread identifiers T = {T1, T2, . . . , Tk}. We also
assume a finite set of entity names (or just entities) X = {x1, x2, . . . , xv} that

160 A. Farzan and P. Madhusudan

the threads can access. Each thread T ∈ T can perform actions from the set
AT = {T :read(x), T :write(x) | x ∈ X}. Define A =

⋃
T∈T AT .

For most parts of this paper (save for the technical lemmas), we will assume
that the number of variables |X | = v is a fixed constant.

Let us define for each thread T ∈ T , the extended alphabet ΣT = AT ∪
{T :�, T :�}. The events T :read(x) and T :write(x) correspond to thread T reading
and writing to entity x, T :� and T :� correspond to boundaries that begin and
end transactional blocks of code in thread T . Let Σ =

⋃
T∈T ΣT .

For any alphabet A, w ∈ A∗, let w[i] (where i ∈ [0, |w| − 1]) denote the i’th
element of w, and w[i, j] denote the substring from position i to position j (both
inclusive) in w. For w ∈ A∗ and B ⊆ A, let w|B denote the word w projected
to the letters in B. For a word w ⊆ Σ∗, w|T be a shorthand notation for w|ΣT ,
which denotes the actions that thread T partakes in.

The following defines the notion of observable behaviors on the global variables
of a concurrent program, which we call a schedule.

Definition 1. A transaction tr of a thread T is a word in (T :�) · A∗
T · (T :�).

Let TranT denote the set of all transactions of thread T , and let Tran denote the
set of all transactions. A schedule is a word σ ∈ Σ∗ such that for each T ∈ T ,
σ|T is a prefix of Tran∗

T . Let Sched denote the set of all schedules.

In other words, the actions of thread T are divided into a sequence of transac-
tions, where each transaction begins with T :�, is followed by a set of reads and
writes, and ends with T :�. Let Sched denote the set of all schedules.

When we refer to two particular events σ[i] and σ[j] in σ, we say they belong
to the same transaction if they belong to the same transaction block: i.e. if
there is some T such that σ[i], σ[j] ∈ AT , and there is no i′, i < i′ < j such
that σ[i′] = T :�. We will refer to the transaction blocks freely and associate
(arbitrary) names to them, using notations such as tr, tr1, tr

′, etc.

Concurrent Programs
We now define the three classes of programs we will work with— straight-line,
regular, and recursive programs.

For a set of locks L, and thread T ∈ T , define the set of lock-actions of T as
ΠL,T = {T :acquire(l), T :release(l)| l ∈ L}. Let ΠL =

⋃
T∈T ΠL,T .

A word γ ∈ Π∗
L is lock-valid if it respects the usual locking pattern imposed

by a the locking mechanism, or formally, if for every l ∈ L, γ|Π{l} is a prefix of[⋃
T∈T (T :acquire(l) T :release(l))

]∗.
We consider three frameworks based on the structure of code in the threads.

– A Straight-line program over L is a set Pr = {αT }T∈T where αT ∈
(T :�(AT ∪ΠL,T)∗T :�)∗ such that αT |ΠL,T is lock-valid.

The runs defined by the program Pr is given by: Runs(Pr) = {w| w ∈ (Σ∪
ΠL)∗, s.t. w|ΠL is lock-valid and w|ΣT is a prefix of αT , for each T ∈ T }.

The Complexity of Predicting Atomicity Violations 161

– A regular program over L is a set Pr = {AT }T∈T where each AT is
a finite transition system. AT = (QT , qT

in ,→T) where QT is a finite set of
states, qT

in ∈ QT is the initial state, and →T⊆ QT × (ΣT ∪ΠL,T) × QT is
the transition relation. The language of AT , L(AT), is the set of all words
w ∈ (AT ∪ΠL,T)∗ on which there is a path from qin on w. We require that
for any w ∈ L(AT), w|ΠL,T is lock-valid, and w|ΣT is a prefix of Tran∗

T .
The runs defined by Pr is given by:

Runs(Pr) = {w| w ∈ (Σ ∪ ΠL)∗, s.t. w|ΠL is lock-valid and for each T ∈
T , w|ΣT ∈ L(AT)}.

– A Recursive program over L is a set Pr = {PT }T∈T where each PT is
a pushdown transition system PT = (QT , qT

in , Γ T ,→T) where QT is a finite
set of states, qT

in ∈ QT is the initial state, Γ T is the stack alphabet, and
→T⊆ QT ×(ΣT ∪ΠL,T)×{push(d), pop(d), skip}d∈Γ T ×QT is the transition
relation. The language of PT , L(PT) is the set of all words generated by PT

and is defined as usual. We again require that for any w ∈ L(PT), w|ΠL,T is
lock-valid, and w|ΣT is a prefix of Tran∗

T .
The runs defined by Pr is given by: Runs(Pr) = {w| w ∈ (Σ ∪ ΠL)∗,

s.t. w|ΠL is lock-valid and for each T ∈ T , w|ΣT ∈ L(AT)}.
Finally, for any program Pr as above, the set of schedules defined by Pr is

defined as Sched(Pr) = Runs(Pr)|Σ . A program without locks is a program Pr
over the empty set of locks.

Defining atomicity
We now define atomicity as the notion of conflict serializability. Define the de-
pendency relation D as a symmetric relation defined over the events in Σ, which
captures the dependency between (a) two events accessing the same entity, where
one of them is a write, and (b) any two events of the same thread, i.e.,

D = {(T1:a1, T2:a2) | T1 = T2 and a1, a2 ∈ A ∪ {�,�} or
∃x ∈ X such that (a1 = read(x) and a2 = write(x)) or
(a1 =write(x) and a2 =read(x)) or (a1 =write(x) and a2 =write(x))}.

Definition 2 (Equivalence of schedules). The equivalence of schedules is
defined as the smallest equivalence relation ∼ ⊆ Sched × Sched such that: if
σ = ρabρ′, σ′ = ρbaρ′ ∈ Sched with (a, b) �∈ D, then σ ∼ σ′.

It is easy to see that the above notion is well-defined. Two schedules are con-
sidered equivalent if we can derive one schedule from the other by iteratively
swapping consecutive independent actions in the schedule.

We call a schedule σ serial if all the transactions in it occur sequentially:
formally, for every i, if σ[i] = T :a where T ∈ T and a ∈ A, then there is some
j < i such that T [i] = T :� and every j < j′ < i is such that σ[j′] ∈ AT . In
other words, the schedule is made up of a sequence of complete transactions
from different threads, interleaved at boundaries only.

162 A. Farzan and P. Madhusudan

T1:�

T1:read(x)

T1:write(y)

T2:�

T2:read(z)

T1:write(z)

T2:write(x)

T2:�

T1:�

T1:�

T1:read(x)

T1:write(y)

T2:�

T2:read(z)

T1:write(z)

T2:�

T1:�

T2:read(x)

Fig. 1. A non-serializable schedule and a serializable schedule

Definition 3. A schedule is serializable if it has an equivalent serial schedule.
That is, σ is a serializable schedule if there a serial schedule σ′ such that σ ∼ σ′.

Example 1. Figure 1 contains two schedules depicted by the dotted lines. The
one on the left is not serializable. The dependent events (T1:read(x), T2:write(x))
indicate that T2 has to be executed after T1 in a serial run, while the pair of
dependent events (T2:read(z), T1:write(z)) impose the opposite order. Therefore,
no equivalent serial run can exist. The schedule on the right is serializable since
in an equivalent serial run exists that runs T2 followed by T1.

The Conflict-Graph Characterization: For any schedule σ, let us give
names to transactions in σ, say tr1, . . . , trn. The conflict-graph of σ is CG(σ) =
(V, E) where V = {tr1, . . . , trn} and E contains an edge from tr to tr′ iff there
is some event a in transaction tr and some action a′ in transaction tr′ such that
(1) the a-event occurs before a′ in σ, and (2) aDa′.

Lemma 1. [3,20,12,7] A schedule σ is atomic iff the conflict graph associated
with σ is acyclic.

The above characterization yields a simple algorithm for serializability:

Proposition 1. The problem of checking whether a single schedule σ is serial-
izable is decidable in polynomial time.

3 Model Checking Atomicity for Concurrent Programs
without Synchronizations

In this section, we present model checking algorithms for checking atomicity of
finite-state concurrent programs (straight-line, regular, and recursive programs).
Let us first show that if the program has a non-serializable run, then it has a
non-serializable run of a particular form.

The Complexity of Predicting Atomicity Violations 163

T1:�

T1:read(x)

T1:write(y)

T2:�

T2:read(z)

T1:write(z)

T2:write(x)

T2:�

T1:�

A run σ is said to be normal if there is a thread
Ti such that σ = ui · Ti:� · vi · w1 · w2 · · ·wi−1 ·
wi+1 · · ·wk · v′i · Ti:� · u′

i, where wj = σ|ΣTj
(for every

j), ui · Ti:� · vi · v′i · Ti:� · u′
i = σ|ΣTi

, and vi · v′i ∈ A∗
Ti

.
In other words, a run is normal if it executes a thread
from the beginning up to the middle of a transaction in
that thread, executes other threads serially and com-
pletely, and then finishes the incomplete thread. The
Figure on the right demonstrates the normal run which
is equivalent to the non-serializable run in Figure 1 (on
the left).

The following observation will prove useful through-
out this section:
Lemma 2. If a program with no locks (L = ∅) has a non-serializable run, then
it has a non-serializable normal run.
The crucial observation (behind Lemma 2) is that there are really at most two
events in each thread that contribute to evidencing the cycle in the conflict
graph, and hence witnessing non-serializability. Intuitively, for each thread T in
the cycle, we pick can pick two events inT and outT , that cause respectively
the incoming edge from the previous thread and the outgoing edge to the next
thread in the cycle. This observation leads us to the following notion of profiles:

Definition 4 (Profile). Let σT ⊆ Σ∗
T be a local schedule. A profile for σT is a

(bounded-length) word π that is of one of the following forms:

– π = T :� T :a T :�, where T :a occurs in σT , or
– π = T :� T :a T :b T :� , provided there are two indices i and j such that i < j,

σT [i] = T :a, σT [j] = T :b, and moreover there is no i′ with i < i′ < j and
σT [i′] = T :�. In other words, T :a and T :b occur as events in σt in that order,
and belong to the same transaction.

– π = T :� T :a T :� T :� T :b T :�, provided there are two indices i and j such
that i < j, σT [i] = T :a, σT [j] = T :b, and moreover there is an i′ with
i < i′ < j and σT [i′] = T :�. In other words, T :a and T :b occur as events in
σt in that order, and belong to different transactions.

The idea of a profile is that it picks one or two events from a thread’s execution,
along with the information as to whether the two events occurred in the same
transaction or in different transactions. It turns out that profiles are enough to
witness non-serializability.

Lemma 3. A program P with no locks (straight-line, regular, or recursive) has
a non-serializable run if and only if there exists a set 〈πT 〉T∈T , where each πT

is a profile of σ|T , such that the straight line program defined by these profiles
has a non-serializable run.

The above lemma is very important, as it says that no matter how long or
complex a thread is, we can summarize it using short profiles and check the
profiles for non-serializability. This will form the key technical idea in proving
the upper bounds in this section.

164 A. Farzan and P. Madhusudan

3.1 Straight-Line and Regular Programs

We discuss now the problem of checking whether a straight-line or regular pro-
gram has a non-serializable schedule. We show that, by using profiles, we can
solve this problem in O(n + k.ck) time where n is the maximum size of the
program for any thread, k is the number of threads, and c is a constant.

Suppose that a regular program Pr consists of threads T1, . . . , Tk. The idea
is to replace each thread Ti by a set of profiles Pi, and then check whether the
collection of profiles P1, . . . ,Pk induces a non-serializable run. By Lemma 3,
Pr has a non-serializable run if and only if the collection of profiles P1, . . . ,Pk

induces a non-serializable run.
For all threads Ti, the set of profiles Pi can be computed from Ti in O(n) time.

Assuming that Ti is represented by a finite transition system of size n, one can
establish in time linear in n whether a profile π is a profile of Ti. Since there are
at most v2 possible profiles (where v is the number of global variables), one can
compute all profiles of Ti in time O(v2n). In fact, we construct an automaton Pi

which accepts Pi, the set of all profiles of Ti. These profile automata are all of
size O(v2). We build a product automaton P which accepts the set of all possible
interleavings of strings accepted by P1, . . . , Pk. Hence, P accepts the set of all
possible interleavings of profiles of threads T1, . . . , Tk, and its size is O

(
(v2)k

)
.

We can now intersect P with a monitoring automaton S for non-serializability
(see [7]). The monitor maintains a graph with k nodes, and a set of labels of
size O(v) for each node; therefore S is of size O

(
2k2

+ k2vk
)
. However, since it

suffices to monitor only normal runs, we can restrict ourselves to graphs with
only a linear number of edges and vertices, resulting in an automaton of size
O
(
k2vk
)
. Thus, the product automaton is of size O

(
k.2vk.v2k

)
. Hence we have

the following result:

Theorem 1. Given a straight-line or regular program Pr, one can check in time
O(nv2 +k2vk.v2k) whether Pr has a non-serializable run, where n is the maximum
size of a thread, k is the number of threads, and v is the number of variables. When
v is a constant, the complexity reduces to O(n + kck) where c is a constant.

We can show that, in general, an exponential dependence on the input is unlikely
to be avoidable:

Theorem 2. The problem of checking non-serializability of straight-line pro-
grams and regular programs, without locks, are both NP-complete.

3.2 Recursive Programs

In this section, we discuss the effect of the presence of recursion in the code on the
serializability checking problem. Note that even reachability of a global state is
undecidable for concurrent recursive programs, and, since serializability is a fairly
complex global property, even the decidability of serializability is not obvious.

We show, surprisingly, that checking serializability for recursive programs
without locks is indeed decidable and in time O(n3 + k.ck). Again, the notion of
profiles come to the rescue, as they avoid searching the global state-space.

The Complexity of Predicting Atomicity Violations 165

By Lemma 4, the witness for non-serializability need only contain a profile
of each thread; Therefore, we can, similar to the regular program case, extract
the profiles of each thread, and combine the profiles (which are straight-line
programs) to check for non-serializability.

Extracting profiles from non-recursive threads is a rather straightforward task.
For recursive programs, this is slightly more involved. Recall that each thread
T is modeled as a pushdown automaton (PDA) PT . We show that for any PDA
P , we can efficiently construct an NFA (nondeterministic finite automaton) N ,
such that the set of profiles of P and N are the same. Therefore, we can replace
the PDA model (the recursive code) of a thread by regular program, effectively
removing recursion, and reduce serializability of recursive programs to that of
regular programs.

Lemma 4. For a PDA P , we can construct, in O(|P |3.v2)-time, an NFA that
is of size O(|P |.v2) and that accepts the set of all profiles of schedules of P .

The result below follows from our result on checking serializability of regular
programs.

Theorem 3. Given a recursive program Pr, the problem of checking whether it
generates a non-serializable schedule, is solvable in time O(n3v2 + k.2vk.v2k),
where n is size of the program, k is the number of threads, and v is the number
of variables. When v is a constant, the complexity reduces to O(n3 +kck), where
c is a constant.

4 Programs with Lock Synchronization

In this section, we consider programs that synchronize using locks. We establish
two simple results: first, we show that the problem of checking straight-line and
regular programs with locks is solvable in time O(nk ·2|L|·log k), and, second, that
the problem of checking recursive programs with locks is undecidable. Note that
the complexity bounds we prove for straight-line programs and regular programs
are not of the form O(poly(n) · 2|L|·logk · f(k)), i.e., we do not remove k from
the exponent on n, as we did for checking atomicity of programs without locks
by extracting profiles locally and combining them. However, for programs with
locks, a notion of summarizing a thread using a finite amount of information
that is independent of n seems hard. In fact, we believe that no such scheme
exists. More precisely, we show that the problem of checking atomicity in regular
programs with locks is unlikely to be fixed-parameter tractable (i.e., it is unlikely
that there is an algorithm that works in time O(poly(n) · f(k, |L|)) for any
computable function f) by showing that the problem is W[1]-hard.

Given a straight-line or regular program with locks, we can construct the
product machine that generates all global runs. This machine will be of size
O(nk · 2|L|·log k), as its state-space will track individual states of each thread,
and in addition will keep track for each lock, the thread that holds it. We can
now intersect this with a monitoring automaton for non-serializability (see [7]),

166 A. Farzan and P. Madhusudan

which is of size O(2k2+kv). It is easy to see that the language of the resulting
automaton is empty if and only if the program has a serializability violation. We
therefore have proven the following theorem.

Theorem 4. The problem of checking whether a straight-line program or a
regular program with locks has a serializability violation is decidable in time
O(nk · 2|L|·log k+k2+kv). When v is a constant, the complexity reduces to O(nk ·
2|L|·log k+k2

).

Let us now consider recursive programs with locks. It is known that the global
reachability problem for two recursive machines communicating via synchronous
messages is undecidable [21]. Moreover, it is known (see Kahlon et al [16]) that
synchronous messages can be simulated using locks, and hence the global reach-
ability problem for two recursive machines synchronizing using locks is undecid-
able. It is not hard to reduce this problem to checking serializability of a recursive
program: intuitively, we augment the machines to execute a non-serializable run
when they reach their respective goal states. Hence:

Theorem 5. The problem of checking whether a recursive program with locks
has serializability violations is undecidable.

4.1 A Lower Bound on Checking Atomicity of Lock Synchronized
Regular Programs

In this section, we will assume that the number of variables, v, is a constant.
In the setting of programs where all synchronization was ignored, we showed

that predicting atomicity errors can be done in time O(poly(n) · k.ck). As we
argued, this is a much better algorithm than the naive algorithms that work
in time O(nk) as typically n is much larger than k. In the setting of programs
that synchronize using locks, we showed only an algorithm that runs in time
O(nk · 2|L|. log k). A natural question is to ask whether this problem can also be
solved in time O(poly(n) · 2|L|·log k · f(k)). We now show that this is unlikely: in
fact, we show that the problem is unlikely to be fixed-parameter tractable (over
the parameter k) by showing it is W [1]-hard.

Consider a problem X in which to each instance i we associate in addition
to its size n a second a parameter k ∈ N. Then the problem X is said to be
fixed-parameter tractable with respect to k if there is an algorithm that decides
X in time O(nc · f(k)), where f is an arbitrary function (we will assume f is
computable) and c is a constant.

Fixed-parameter tractability is a mature area of computational complexity
theory; we refer the reader to the textbooks [5,13]. For instance, finding a vertex
cover of a graph G with k sets is an NP-complete problem, but is fixed-parameter
tractable when the parameter is k (in fact, solvable in time O(2k · |G|)). Also,
there is a hierarchy of classes of problems, called the W -hierarchy, for which no
fixed-parameter tractable algorithms are known, and it is believed that problems
complete for these classes are not fixed-parameter tractable. For instance, finding
an independent set of size k in a graph G, where k is the parameter, is known
to be W [1]-hard and hence not believed to be fixed-parameter tractable.

The Complexity of Predicting Atomicity Violations 167

In this section, we will show that the problem of checking whether a regular
program with locks has an atomicity violation, where the parameters are the
number of threads in the program and the number of locks, is W[1]-hard.

We show hardness by reducing the problem of finite state automata intersec-
tion given below, which is known to be W[1]-hard, to our problem:

Finite State Automata Intersection
Instance: A set of k deterministic finite-state automata A1, . . . Ak over

a common alphabet Σ (Σ is not fixed).
Parameters: k, m
Question: Is there a string w ∈ L(A1)∩L(A2)∩. . . L(Ak) with |w| ≥ m?

Given an instance of this problem 〈A1, . . . , Ak〉, we construct finite-state automata
B1, . . . Bk over a set of locksL and variables V such that they have a serializability
violation if and only if the intersection of A1, . . . , Ak is nonempty. Furthermore,
and most importantly, |L| = O(k · |Σ|), V = {x}, a single variable, and each Bi

will be of size O(|Ai| ·m). Note that the parameters never occur in the exponent in
the complexity of any of these sizes. Hence, an FPT algorithm for serializability of
regular programs with locks will imply that the finite-state intersection problem
is fixed-parameter tractable, which is unlikely as it is W [1]-hard.

The construction proceeds in two phases. First, we construct automata
C1, . . . , Ck that communicate using pairwise rendezvous, and show that they
exhibit a serializability violation if and only if the intersection of A1, . . . , Ak

is nonempty. Then we show that the pairwise rendezvous mechanism can be
simulated using locks. Intuitively, the automaton C1 guesses a letter and com-
municates it to all other processes by relay messaging. All automata update
their state, each Ci simulating automaton Ai. C1 ensures that at least m letters
have been guesses, and then sends a message asking whether all other processes
have reached their final states. If they all respond that they have, C1 and C2
perform a sequence of accesses to a single variable x that results in a serializabil-
ity violation. Finally, we show that we can simulate the pairwise rendezvous of
communication using only lock-synchronization (using a mechanism in Kahlon
et al [16], and build automata B1, . . . , Bk such that they exhibit a serializabil-
ity violation if and only if the intersection of the languages of A1, . . . , Ak has a
string longer than m. This leads us to the following theorem:

Theorem 6. The following problem:

Serializability of Regular Programs
Instance: A regular program B1, . . . Bk with lock synchronization over

a set of locks L and over a single global variable x.
Parameter: k, |L|
Question: Is the program atomic?

is W [1]-hard. ��
The above shows that it is unlikely that there is an algorithm that can solve
atomicity of regular programs in time O (poly(n) · f(k, |L|)). The question as to
whether the problem of checking serializability violations of straight-line pro-
grams is also W [1]-hard is open.

168 A. Farzan and P. Madhusudan

The above reduction from automata intersection to atomicity has the property
that the state-space of the machines and the lock-set are only linear in k; this has
further implications. In [17], it was shown that the intersection of k finite-state
automata, each of size n, is unlikely to be solvable in time O

(
n(k/f(k))+d

)
where

f = o(k) and d > 0 is a constant (i.e. reducing the exponent from k to a function
sublinear in k). The authors show that if this were true, then problems solvable
in nondeterministic time t would be solvable in subexponential deterministic
time. This unlikelihood combined with our reduction (simplified not to count
the number of letters in the word) implies that it is unlikely to find algorithms
for atomicity that work in time O

(
n(k/f(k))+d

)
as well. That is, not only is k

unavoidable in the exponent on n, a sub-linear exponent is also unlikely.

5 Conclusion and Future Work
We have established fundamental algorithms for predicting atomicity violations
from straight-line programs, regular programs, and recursive programs. We have
studied two prediction models: one which ignores any synchronization of the
threads, and the other that considers lock-based synchronization. Our main re-
sults are that the problem is tractable, and solvable without exploring all in-
terleavings, for the case when synchronizations are ignored. We believe that the
notion of profiles set forth in this paper, which compositionally solve the serial-
izability model-checking problem, will be very useful in practical tools. For syn-
chronization using locks, we showed that such an efficient compositional scheme
is unlikely, by proving a W[1]-hardness lower bound for regular programs.

There are several future directions worthy of pursuit. First, we are implement-
ing prediction tools for atomicity violations in large programs, and preliminary
results show that more restrictions (such as limiting violations to involve only
two threads) are needed to make algorithms practical. Second, we do not know
whether prediction of atomicity violations of straight-line programs with locks
is also W[1]-hard; establishing this will give a strong argument to use prediction
models that ignore synchronizations. Finally, the recent study of nested locking
holds promise, as global reachability of concurrent programs synchronizing via
nested locks admits a compositional algorithm [16]. We would like to investigate
whether atomicity prediction can also benefit if threads use nested locking.

Acknowledgements. This work was partially supported by NSF Career Award
CCF-0747041 and the Universal Parallel Computing Research Center at the
University of Illinois at Urbana-Champaign (sponsored by Intel Corporation
and Microsoft Corporation).

References

1. MPI: A message-passing interface standard,
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

2. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

3. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database sys-
tems. ACM Comput. Surv. 13(2), 185–221 (1981)

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

The Complexity of Predicting Atomicity Violations 169

4. Chen, F., Serbanuta, T.F., Rosu, G.: jpredictor: a predictive runtime analysis tool
for java. In: ICSE, pp. 221–230 (2008)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1998)

6. Farzan, A., Madhusudan, P.: Causal atomicity. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006)

7. Farzan, A., Madhusudan, P.: Monitoring atomicity in concurrent programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer, Hei-
delberg (2008)

8. Farzan, A., Madhusudan, P.: The complexity of predicting atomicity violations.
Technical Report CSRG-591, University of Torotno, Department of Computer Sci-
ence (2009)

9. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dynamic
atomicity checker for multithreaded programs. In: PLDI, pp. 293–303 (2008)

10. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI, pp.
338–349 (2003)

11. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. In: POPL, pp. 256–267 (2004)

12. Fle, M.P., Roucairol, G.: On serializability of iterated transactions. In: PODC
1982: Proceedings of the first ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, pp. 194–200. ACM Press, New York (1982)

13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
14. Gordon, M., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data, and

pipeline parallelism in stream programs. In: ASPLOS, pp. 151–162 (2006)
15. Hatcliff, J., Robby, Dwyer, M.B.: Verifying atomicity specifications for concurrent

object-oriented software using model-checking. In: Steffen, B., Levi, G. (eds.) VM-
CAI 2004. LNCS, vol. 2937, pp. 175–190. Springer, Heidelberg (2004)

16. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

17. Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite
state automata and n l versus n p. Theor. Comput. Sci. 302(1-3), 257–274 (2003)

18. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975)

19. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ASPLOS, pp. 329–339 (2008)

20. Papadimitriou, C.: The theory of database concurrency control. Computer Science
Press, Inc, New York (1986)

21. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

22. Lu, S., Tucek, J., Qin, F., Zhou, Y.: Avio: detecting atomicity violations via access
interleaving invariants. In: ASPLOS, pp. 37–48 (2006)

23. Sen, K., Rosu, G., Agha, G.: Online efficient predictive safety analysis of multi-
threaded programs. STTT 8(3), 248–260 (2006)

24. Shavit,N.,Touitou,D.:Softwaretransactionalmemory.In:PODC,pp.204–213(1995)
25. Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of atomicity errors

in concurrent programs. In: PPoPP, pp. 137–146 (2006)
26. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multi-threaded programs.

IEEE Transactions on Software Engineering 32, 93–110 (2006)
27. Xu, M., Bod́ık, R., Hill, M.D.: A serializability violation detector for shared-

memory server programs. SIGPLAN Not. 40(6), 1–14 (2005)

MoonWalker: Verification of .NET Programs

Niels H.M. Aan de Brugh1, Viet Yen Nguyen2, and Theo C. Ruys3

1 OCÉ, Venlo, The Netherlands
niels.aandebrugh@oce.com

2 RWTH Aachen University, Germany
http://moves.rwth-aachen.de/~nguyen/
3 University of Twente, The Netherlands

http://www.cs.utwente.nl/~ruys/

Abstract. MoonWalker is a software model checker for cil bytecode
programs, which is able to detect deadlocks and assertion violations in
cil assemblies, better known as Microsoft .NET programs. The design of
MoonWalker is inspired by the Java PathFinder (jpf), a model checker
for Java programs. The performance of MoonWalker is on par with jpf.
This paper presents the new version of MoonWalker and discusses its
most important features.

1 Introduction

This paper presents MoonWalker1 1.0 [18], a software model checker for the
verification of cil bytecode programs. cil stands for Common Intermediate
Language and is the platform independent bytecode used within Microsoft’s
.Net. MoonWalker targets programs compiled against the Mono development
platform [16], an open source implementation of the .Net development platform.

MoonWalker is a software model checker that uses the virtual machine ap-
proach of verification: the effect of every cil bytecode instruction is analysed by
the tool. MoonWalker systematically explores all reachable states of the appli-
cation under verification, which involves executing bytecode instructions, stor-
ing and restoring states, and checking for safety properties. During exploration,
MoonWalker will check for deadlocks and assertion violations.

The approach of MoonWalker is inspired by the Java PathFinder (jpf) [12,15],
a very successful software model checker for Java. jpf pioneered the concept of
implementing a software model checker around a virtual machine. And although
the object-oriented design and the actual implementation of MoonWalker (in
C#) and organisation of the classes and algorithms are different, all credits for
the verification approach should go to the developers of jpf.

With MoonWalker 1.0, however, there is now a competitive software model
checker readily available for the .Net framework. An important advantage of
cil over Java bytecode is that cil has been designed to be the target for many
programming languages, not just C#. See [17] for a complete overview. Finally,
version 1.0 of MoonWalker incorporates some new techniques not yet available
in other model checkers.
1 MoonWalker was previously known as mmc: the Mono Model Checker.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 170–173, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

MoonWalker: Verification of .NET Programs 171

xrt [5] is an alternative software model checker for .Net, which follows the
same approach as jpf. xrt is not publicly available.

2 MoonWalker 1.0

The architecture of MoonWalker 0.5 has been outlined in [11] and the design
and implementation of version 0.5 are described in detail in [1]. This section
discusses the new features that have been added to MoonWalker over the past
1 1

2 years. Details can be found in [7], available from [18].
Several improvements have been made to MoonWalker 1.0 to enhance its us-

ability, including a user-friendly error tracer, an extensive test framework, and
an implementation of structured exception handling. Furthermore, two partial
order reduction (POR) [4] techniques have been implemented into MoonWalker
1.0: (i) POR using object escape analysis (which is also used by jpf) and (ii)
stateful dynamic POR. Finally, two novel techniques have been implemented in
MoonWalker 1.0, which will be discussed in more detail below.

Memoised Garbage Collector. MoonWalker 0.5 used the well known Mark &
Sweep algorithm (m&s) for garbage collection (GC). A drawback of m&s is that
it is global: for each invocation (i.e. after each transition), the whole heap is
visited twice to remove dead objects. In other words, m&s cannot exploit the
locality of transitions within a (software) model checker.

For MoonWalker 1.0 we took a different approach, which is based on an in-
cremental shortest-path algorithm for single-source directed graphs with posi-
tive weights [9]. We devised and implemented the Memoised Garbage Collector
(mgc) algorithm, which uses information retrieved from changes between suc-
cessive states to determine which objects should be garbage collected.

The basic idea is to track for each object in the heap its depth from the
root elements (on the call stacks of the threads). Upon changes to the heap,
the tracked depth of the changed objects become inconsistent, and their depths
need to be recalculated. When the changes to the heap are small – which they
usually are – only a small part of the heap needs to be traversed. If the depth
of an object becomes infinity, we know that the object has become unreachable.

We know of one other software model checker which uses a non-global garbage
collector: JNuke [2]. JNuke uses a generational garbage collection (ggc) as
described in [3]. Although the objectives of both non-global GC algorithms are
the same, the implementations are substantially different. mgc is provable pre-
cise [7], whereas ggc is not, because the latter exploits the heuristic that only
new objects are likely to be garbage collected. For MoonWalker unpreciseness
is undesired because this may cause the state matcher to determine that two
semantically equivalent states are different [6].

mgc has a better time-complexity than m&s, which is the dominant garbage
collection in use by software model checkers. Experiments showed that the use
of mgc increases performance of about 10-25%, depending on the model and its
state space. Details on mgc can be found in [7,8].

Collapsing Interleaving Information. The dynamic POR algorithm by Flanagan
& Godefroid [4] only works correctly for stateless exploration. The issue lies in

172 N.H.M. Aan de Brugh, V.Y. Nguyen, and T.C. Ruys

the correct dynamic POR semantics upon a state revisit. A naive and incorrect
stateful adaptation of dynamic POR would backtrack upon exploration of a re-
visited state. This is incorrect, because mutual dependencies between transitions
in the state space below the revisited state and the current path to the revisited
state would not be considered. This leads to over-aggressive reduction. Both [10]
and [13] independently observed this, and proposed similar solutions. The idea
is to mimic a stateless search upon a revisit by recalling all necessary interleav-
ing information about the state space below the revisited state and inject the
appropriate transitions in the working sets on the current DFS stack.

[10,13] observe that stateful dynamic POR uses a lot of memory and suggest
(as future work) to compress the interleaving information used for stateful dy-
namic POR. MoonWalker 1.0 improves upon [13] by compressing the interleaving
information by canonicalisation followed by collapse compression. The collapse
compression step exploits the notion that the interleaving information of states
do not change much between successive states. We reuse the structered state
collapsion scheme that was already present in MoonWalker 0.5.

Experiments show (again depending on the model and the state space) that
dynamic POR may reduce the memory consumption by a factor of two.

Implementation. The current version of MoonWalker is version 1.0. The total
development of the tool took roughly two man years of work. The code base of
MoonWalker 1.0 consists of 17k lines of C# code and constitutes 475Kb of source
code. Both a binary and source distribution are available from [18].

MoonWalker 1.0 supports 74 cil bytecode instructions. These are all possible
instructions that can be emitted by Mono’s C# 1.x compiler. Support for the
last nine missing instructions is future work.

Experiments. Apart from using small experiments that synthesise a small sce-
nario, we also used the Java Grande Forum Benchmarks (JGF) [14] for evalu-
ating MoonWalker against jpf. JGF is a mature benchmark suite developed for
the scientific community, which contains real life examples. Of the three multi-
threaded parallel benchmarks within this suite, we used the MolDyn benchmark
(loc: 965, size: 26Kb) and Raytracer benchmark (loc: 1540, size: 49Kb). We
ported these two benchmarks to C# for use with MoonWalker.

Results show that MoonWalker and jpf are on par in terms of performance.
Differences between the two tools are small. Both tools typically explore about
1000-5000 states/sec. MoonWalker is faster in terms of states per second, but jpf

is better at reducing the state space because its POR object escape analysis al-
gorithm also uses locking information. The results also indicate that MoonWalker
utilises memory relatively less efficiently than jpf. This is caused by the memory
overhead incurred by stateful dynamic POR. Details on the experiments can be
found in chapter 5 of [7].

3 Conclusions

In this paper we presented MoonWalker 1.0, a model-checker for cil bytecode
programs. Due to several refactorings, the design and implementation of

MoonWalker: Verification of .NET Programs 173

MoonWalker is clear, readable and extensible. We feel that MoonWalker is a
useful platform in an academic environment where ease of experimentation with
different implementations is an important virtue. To extend the usability of
MoonWalker further, several improvements are planned:

– Further improvements to POR and state compression;
– Optimisations to the (memoised) garbage collector;
– Mixing of symbolic and concrete data;
– Multi-threaded and distributed version of MoonWalker;
– Case studies with other programming languages than C#;
– Support for C# 3.0 and .Net 3.5.

References

1. Aan de Brugh, N.H.M.: Software Model Checking for Mono. Master’s thesis, Uni-
versity of Twente, Enschede, The Netherlands (August 2006)

2. Artho, C., Schuppan, V., Biere, A., Eugster, P., Baur, M., Zweimüller, B.: JNuke:
Efficient Dynamic Analysis for Java. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 462–465. Springer, Heidelberg (2004)

3. Fargas, P.: Garbage Collection for JNuke. Master’s thesis, ETH Zürich, Switzerland
(September 2004)

4. Flanagan, C., Godefroid, P.: Dynamic Partial-Order Reduction for Model Checking
Software. In: Proc. of POPL 2005, pp. 110–121. ACM Press, New York (2005)

5. Grieskamp, W., Tillmann, N., Schulte, W.: XRT: Exploring Runtime for. NET -
Architecture and Applications. ENTCS 144(3), 3–26 (2006); Proc. of SoftMC 2005

6. Iosif, R., Sisto, R.: Using Garbage Collection in Model Checking. In: Havelund,
K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 20–33. Springer,
Heidelberg (2000)

7. Nguyen, V.Y.: Optimising Techniques for Model Checkers. Master’s thesis, Uni-
versity of Twente, Enschede, The Netherlands (December 2007)

8. Nguyen, V.Y., Ruys, T.C.: Memoised Garbage Collection for Software Model
Checking. In: Knowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 201–214. Springer, Heidelberg (2009)

9. Ramalingam, G., Reps, T.W.: An Incremental Algorithm for a Generalization of
the Shortest-Path Problem. Journal Algorithms 21(2), 267–305 (1996)

10. Ranganath, V.P., Hatcliff, J., Robby.: Enabling Efficient Partial Order Reduc-
tions for Model Checking Object-Oriented Programs. Technical Report SAnToS-
TR2007-2, SAnToS Laboratory, CIS Department, Kansas State University (2007)

11. Ruys, T.C., Aan de Brugh, N.H.M.: MMC: the Mono Model Checker.
ENTCS 190(1), 149–160 (2007); Proc. of Bytecode 2007, Braga, Portugal

12. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.
ASE 10(2), 203–232 (2003)

13. Yi, X., Wang, J., Yang, X.: Stateful Dynamic Partial-Order Reduction. In: Liu,
Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 149–167. Springer, Heidelberg
(2006)

14. The Java Grande Forum Benchmark Suite,
http://www.epcc.ed.ac.uk/research/activities/java-grande/

15. Java PathFinder, http://javapathfinder.sourceforge.net/
16. The Mono Project, http://www.mono-project.com/
17. .NET Languages, http://www.dotnetlanguages.net/
18. Moonwalker, http://www.cs.utwente.nl/~ruys/moonwalker/

http://www.epcc.ed.ac.uk/research/activities/java-grande/
http://javapathfinder.sourceforge.net/
http://www.mono-project.com/
http://www.dotnetlanguages.net/
http://www.cs.utwente.nl/~ruys/moonwalker/

Boolector: An Efficient SMT Solver for
Bit-Vectors and Arrays

Robert Brummayer and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria
{robert.brummayer,armin.biere}@jku.at

Abstract. Satisfiability Modulo Theories (SMT) is the problem of de-
ciding satisfiability of a logical formula, expressed in a combination of
first-order theories. We present the architecture and selected features of
Boolector, which is an efficient SMT solver for the quantifier-free theories
of bit-vectors and arrays. It uses term rewriting, bit-blasting to handle
bit-vectors, and lemmas on demand for arrays.

1 Introduction

A new kind of verification engines, called Satisfiability Modulo Theories (SMT)
solvers, gained a lot of interest both in research and industry recently. SMT
generalizes pure boolean satisfiability (SAT) and provides first-order theories to
express design and verification conditions of interest. For example, important
first-order theories are fixed-size bit-vectors, arrays, linear arithmetic, and dif-
ference logic. An SMT solver takes a formula expressed in a combination of first-
order theories as input, and decides satisfiability. Additionally, if the instance is
satisfiable, then most SMT solvers provide a model. For more information about
SMT and first-order theories see for example [4,10,12].

Boolector is an efficient SMT solver for the quantifier-free theory of bit-vectors
in combination with the extensional theory of arrays. Bit-vectors can be used to
express designs and specifications directly on the word-level, while arrays can be
used to model memory, e.g. main memory in software, or memory components
like caches and FIFOs in hardware systems. The combination of bit-vectors and
arrays allows reasoning about software and hardware on a more appropriate level
than pure propositonal logic. Generally, SMT solvers benefit from the additional
word-level information and generates word-level models. Boolector provides con-
crete models for bit-vector and arrays.

The SMT competition [2] in 2008 showed, that there has been a lot of progress
in the SMT community. In each division the winner clearly outperformed last
year’s winner. In particular, the performance of SMT solvers in the quantifier-
free theory of bit-vectors QF BV, and bit-vectors with arrays and uninterpreted
functions QF AUFBV, increased heavily. Boolector entered the SMT competition
for the first time. It participated in exactly these two divisions and won both.
In QF BV it solved 18 formulas more than Z3.2 and 92 formulas more than last

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 174–177, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays 175

year’s winner Spear v1.9 [1]. In QF AUFBV Boolector solved 16 formulas more
than Z3.2 and 64 more than last year’s winner Z3 0.1 [8].

2 Architecture

Boolector depends on term rewriting and bit-blasting for bit-vectors. Lemmas
on demand [9] are used to handle the extensional theory of arrays lazily [5]. It
takes a formula expressed in the SMT-LIB format [11], or alternatively in the
BTOR format [6], as input. The BTOR format is a low-level bit-vector format
with clean semantics that is easy to parse. Additionally, BTOR supports bit-
vector arrays and model checking of safety properties. In addition to these input
formats, Boolector also provides a rich C API, which allows to use Boolector as
library. Boolector is implemented in C. A schematic overview is shown in Fig. 1.

Refinement

SAT / UNSAT MODEL

Approximation

SAT Solver

Consistency

SMT−LIB BTORParser

Rewriter

FormulaUnder−
Array

Checker

Generator

Model

Fig. 1. Schematic overview of Boolector

Parser. The parser reads the input and builds an abstract syntax DAG. During
the parse process, basic rewriting rules are applied to simplify the DAG.

Rewriter. The rewriting engine provides rewrite rules that can be divided into
three levels. By default, all rewrite levels are applied to simplify the input. Level
1 rewrite rules are basic rules, e.g. a∧ ¬a ⇔ ⊥, that are applied during formula
construction. Level 2 rewrite rules consist of global term substitutions in com-
bination with static analysis techniques. Before terms are substituted, they are
topologically sorted. Then, term substitutions are performed in one pass. Level 3

176 R. Brummayer and A. Biere

rewrite rules perform arithmetic normalization. Rewrite rules of quadratic worst
case complexity are additionally bounded in recursion depth.

Array Consistency Checker. This checker is one main component in the
lemmas on demand approach for the extensional theory of arrays [5]. It checks
if the current assignment by the SAT solver is consistent with the theory.

Under-approximation. Boolector supports under-approximation of bit-vector
variables and reads on arrays. This module is responsible for realizing under-
approximation directly on the CNF level. Under-approximation constraints are
added as clauses that additionally constrain the search space.

SAT Solver. PicoSAT [3] is used as SAT solver. It uses state of the art tech-
niques like watching literals, phase saving, conflict learning and rapid restarts.
Boolector uses PicoSAT incrementally to decide the extensional theory of arrays,
and for under-approximation.

Model Generator. The ability to provide concrete models in the satisfiable
case cannot be overestimated. In generaral, a satisfiable formula corresponds to
a bug that has been found. The ability to provide a concrete counter example
that can be directly used for debugging is one of the main features in the success
story of model checking [7]. Boolector can output concrete bit-vector and array
models. The array models are (partially) instantiated arrays, where indices and
values are concrete bit-vectors.

Formula Refinement. The formula refinement is the heart of Boolector. Ini-
tially, the bit-vector part is translated to SAT while the array part is abstracted
with the help of fresh bit-vector variables. The refinement loop calls the SAT
solver to obtain an assignment. If the result is unsatisfiable, the loop terminates
with unsatisfiable. However, if the result is satisfiable, the array consistency
checker is used to check if the current assignment is consistent with the exten-
sional theory of arrays. If the current assignment is consistent, then the formula
is satisfiable. However, if the assignment is inconsistent, a lemma on demand,
that rules out this and similar assignments, is added as as formula refinement.
Additionally, under-approximation refinement can be enabled for bit-vector vari-
ables and reads. In this case the under-approximation refinement and the lemmas
on demand refinement for the extensional theory of arrays are intertwined.

3 Selected Features

Model Checking. Boolector can also be used as incremental model checker for
word-level safety properties of synchronous hardware systems with memories [6].
The BTOR format provides a sequential ”next“ operator, which can be used to
express state transitions of bit-vector registers and memories. Boolector supports
bounded model checking for witnesses, and k-induction with and without all-
different constraints. All-different constraints are used for simple paths.

Under-approximation. Boolector supports several under-approximation tech-
niques and refinement strategies. Bit-vector variables and reads on arrays can

Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays 177

be additionally constrained on the CNF level. The under-approximation can
be refined locally or globally. In the global refinement strategy, the under-
approximation is refined equally for all variables and reads. In the local strategy
the under-approximation refinement is individually performed for each variable
and read. The under-approximation feature allows to generate ”smaller“ models
that are typically easier to interpret by users.

Pretty Printer. Boolector allows to convert formulas from BTOR to SMT-
LIB format and vice versa. The pretty printer can be combined with Boolector’s
rewriting module to internally simplify the formula before conversion.

4 Conclusion

We presented Boolector, which is an efficient SMT solver for the quantifier-free
theories of bit-vectors and arrays. Boolector uses term rewriting, bit-blasting for
bit-vectors, and lemmas on demand for arrays. We discussed its architecture,
main concepts, and selected features.

References

1. Babic, D.: Exploiting Structure for Scalable Software Verification. PhD thesis
(2008)

2. Barrett, C., Deters, M., Oliveras, A., Stump, A.: SMT-Comp. (2008),
http://www.smtcomp.org

3. Biere, A.: PicoSAT essentials. JSAT 4 (2008)
4. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with

Applications to Verification. Springer, Heidelberg (2007)
5. Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays.

In: Proc. SMT (2008)
6. Brummayer, R., Biere, A., Lonsing, F.: BTOR: Bit-precise modelling of word-level

problems for model checking. In: Proc. BPR (2008)
7. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25

Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008)
8. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. de Moura, L., Rueß, H.: Lemmas on demand for satisfiability solvers. In: Proc. SAT
(2002)

10. Kroening, D., Strichman, O.: Decision Procedures: An algorithmic Point of View.
Springer, Heidelberg (2008)

11. Ranise, S., Tinelli, C.: The satisfiability modulo theories library, SMT-LIB (2008),
http://www.smt-lib.org

12. Sebastiani, R.: Lazy satisfiability modulo theories. JSAT, 3 (2007)

http://www.smtcomp.org
http://www.smt-lib.org

The Yogi Project: Software Property Checking
via Static Analysis and Testing

Aditya V. Nori1, Sriram K. Rajamani1, SaiDeep Tetali1,
and Aditya V. Thakur2

1 Microsoft Research India
{adityan,sriram,v-saitet}@microsoft.com

2 University of Wisconsin-Madison
adi@cs.wisc.edu

Abstract. We present Yogi, a tool that checks properties of C pro-
grams by combining static analysis and testing. Yogi implements the
Dash algorithm which performs verification by combining directed test-
ing and abstraction. We have engineered Yogi in such a way that it
plugs into Microsoft’s Static Driver Verifier framework. We have used
this framework to run Yogi on 69 Windows Vista drivers with 85 prop-
erties. We find that the new algorithm enables Yogi to scale much better
than Slam, which is the current engine driving Microsoft’s Static Driver
Verifier.

1 Introduction

Static analysis and testing have always had complementary strengths and weak-
nesses. With static analysis, we can obtain very good coverage and analyze pro-
gram paths that are hard to exercise using testing, but we are forced to deal
with scalability issues and false errors. With runtime testing, we can obtain only
partial coverage, but the approach scales to large programs and every error that
is reported is indeed realizable. Thus, attempting to combine the complementary
strengths of static analysis and runtime testing is natural.

For the past few years, we have been investigating methods for combining
static analysis in the style of counter-example driven refinement ala Slam [1],
with runtime testing and automatic test case generation approaches in the style
of concolic execution ala Dart [5]. Our first attempt in this direction was the
Synergy algorithm [6], which handled single procedure programs with only in-
teger variables. Then, we proposed Dash [3], which had new ideas to handle
pointer aliasing and procedure calls in programs. Throughout this evolution,
Yogi has been our implementation vehicle to realize and evaluate these algo-
rithms. Currently, Yogi implements the Dash algorithm. We have spent over
3 person-years of engineering to make the tool robust and usable – Yogi has
been run over several hundreds of thousands of lines of C code, with several
properties.

We describe the design and engineering of Yogi in this paper. The Synergy

and Dash algorithms themselves are described in [6,3]. Section 2 outlines the

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 178–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Yogi Project: Software Property Checking 179

(a) Architecture of Yogi (b) An example Slic specification

Fig. 1.

architecture and various components in Yogi. Section 3 describes empirical re-
sults from running Yogi on 69 Windows Vista device drivers with 85 properties
and Section 4 concludes the paper by discussing current status of Yogi.

2 Architecture

As shown in Figure 1(a), Yogi takes two inputs: (1) a C program, and (2) a safety
property specified in the Slic specification language [2]. A sample Slic spec-
ification for a locking protocol (KeAcquireSpinLock and KeReleaseSpinLock
occur in strict alternation) is shown in Figure 1(b). Yogi uses Slam’s front-end
(called slamcl) to parse C programs and Slam’s property instrumentor (called
slicc) to instrument the property into the program. The resulting program with
the property instrumented is in Slam’s internal binary format called li. We have
developed a translator called li2yogi that converts the li format to Yogi’s in-
termediate form called yogi-ir. The yogi-ir is a textual format that represents the
program at the level of basic blocks with instructions. Each instruction is one
of three types: an assignment, assume statement or a procedure call. Once a
program has been converted to the yogi-ir format, it is read by the YogiParser

to produce an internal inter-procedural control flow graph.
The two main components of Yogi are: (1) Ysim, a simulator which can

perform both concrete execution with concrete values and symbolic execution,
and (2) YabsMan, an abstraction manager, which manages proofs.

The Ysim simulator code is polymorphic over the type of the values it oper-
ates. Thus, the same simulation code does both concrete and symbolic execution.
During concrete execution, the simulator uses a model of memory where concrete
values of appropriate type are stored in locations. During symbolic execution,
the simulator stores symbols and formulas in locations. It uses the Z3 theorem
prover [4] to reason about consistency of the formulas and to generate test cases
as satisfiable models of formulas. The YabsMan abstraction manager maintains

180 A.V. Nori et al.

a region graph abstraction of the program. For each control point in a program
YabsMan maintains a finite partition over the set of states. Each partition is
represented by a predicate, which is a Z3 formula.

Yogi implements the Dash algorithm [3]. The Dash algorithm simultane-
ously maintains a forest of test runs and a region-graph abstraction of the
program. Tests are used to find bugs and abstractions are used to prove their
absence. During every iteration, if a concrete test has managed to reach the error
region, a bug has been found. If no path in the abstract region graph exists from
the initial region to the error region, a proof of correctness has been found. If
neither of the above two cases are true, then we have an abstract counterex-
ample, which is a sequence of regions in the abstract region graph, along which
a test can be potentially driven to reveal a bug. The Dash algorithm crucially
relies on the notion of a frontier [6,3], which is the boundary between tested
and untested regions along an abstract counterexample that a concrete test has
managed to reach. In every iteration, the algorithm first attempts to extend
the frontier using test case generation techniques similar to Dart. If test case
generation fails, then the algorithm refines the abstract region graph so as to
eliminate the abstract counterexample.

Yogi performs modular verification. For function calls, Yogi uses an initial
abstraction that is based on locations that the procedure modifies. A conservative
alias analysis is used to get an overapproximation to the set of locations modified
by the procedure and this is used to build an initial summary for each function.
If a procedure call occurs at the frontier, then the summary so computed is first
used to see if a refinement can rule out the abstract counterexample. If this
is not possible, Yogi tries to generate a test case through the procedure, and
see if the test case extends the frontier. If the test case so generated does not
extend the frontier, then Yogi descends into the called procedure and analyzes
the procedure in detail [3].

3 Empirical Results

We have integrated Yogi with Microsoft’s Static Driver Verifier framework.
We have tested Yogi with the Static Driver Verifer’s integration test pass suite,
which contains 69 device drivers and 85 properties, a total of 5865 driver-property
pairs. The largest driver in this pass has over 30K lines of code, and the total
size of all the drivers is over 300K lines of code.

At the time of this writing Yogi finishes on 95% of the runs on the integration
test pass. It is able to both prove properties correct and find bugs in the driver
code. In comparison with Slam there are 129 runs where Slam either times out
or spaces out, where Yogi is able to give a result. The total time taken by Yogi

to run over all the 5865 runs is about 32 hours on an 4 core machine, compared
to over 69 hours taken by Slam.

A comparison of Yogi with Slam on 16 representative drivers is shown in
Table 1. Every row of this table shows the driver, its number of lines of code,
the number of properties checked and the time (in minutes) taken by Slam and
Yogi along with the number of time-outs (set to 30 minutes).

The Yogi Project: Software Property Checking 181

Table 1. Empirical evaluation of Yogi on 16 device drivers

Program Lines Properties Slam Yogi

Time-outs Time (min) Time-outs Time (min)
parport 34196 19 1 91.2 0 26.1
serial1 32385 21 3 142.4 0 21.5
serial 31861 21 3 203.9 0 28.1
fdc fail 9251 50 0 117.6 0 8
kbdclass1 7426 38 2 124.9 0 115
kbdclass 7132 36 2 125.5 0 90.4
serenum 6011 38 1 95.6 0 10.9
pscr 5680 37 0 55 0 26.4
modem 3467 19 0 18 0 22.3
1394Vdev 2757 22 2 90.7 0 72.9
1394Diag 2745 23 3 121.4 0 68.8
diskperf 2351 31 0 36.8 1 100
incomplete1 1558 29 0 16 0 6.3
toastmon1 1539 32 0 13.5 0 8.4
toastmon 1505 32 0 16.6 0 7.6
daytona 565 29 1 106.9 0 77.4

4 Current Status

Yogi is a stable and robust tool that has been run over several hundreds of
thousands of lines of C code. At the tool demonstration, we will show Yogi

running on small programs and demonstrate its ability to find bugs and prove
programs correct. We will also present the results from running Yogi on the
5865 runs from Static Driver Verifier’s integration test pass (a subset of these
results are shown in Table 1).

References

1. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of
interfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103–122. Springer,
Heidelberg (2001)

2. Ball, T., Rajamani, S.K.: Slic: A specification language for interface checking of C.
Technical Report MSR-TR-2001-21, Microsoft Research (2001)

3. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
ISSTA 2008: International Symposium on Software Testing and Analysis, pp. 103–
122. ACM Press, New York (2008)

4. de Moura, L., Bjorner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.
In: PLDI 2005: Programming Language Design and Implementation, pp. 213–223.
ACM Press, New York (2005)

6. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
A new algorithm for property checking. In: FSE 2006: Foundations of Software
Engineering, pp. 117–127. ACM Press, New York (2006)

TaPAS: The Talence Presburger Arithmetic Suite

Jérôme Leroux and Gérald Point

LaBRI, Université Bordeaux 1, CNRS
{leroux,point}@labri.fr

Abstract. TAPAS is a suite of libraries dedicated to FO (R, Z, +,≤). The suite
provides (1) the application programming interface GENEPI for this logic with
encapsulations of many classical solvers, (2) the BDD-like library SATAF used
for encoding Presburger formulae to automata, and (3) the very first implementa-
tion of an algorithm decoding automata to Presburger formulae.

1 The Mixed Additive Theory

The automatic verification of reactive systems is a major field of research. These sys-
tems are usually modeled with variables taking values in some infinite domains. Popular
approaches for analyzing these models are based on decision procedures adapted to the
variables domains. For numerical variables the mixed additive theory FO (R, Z, +,≤)
provides a natural logic to express linear constraints between integral variables and real
variables. This logic has positive aspects: it is decidable and actually many solvers im-
plement decision procedures for the full logic or some sub-logics like the Presburger
arithmetic. TAPAS is a suite of libraries dedicated to these logics.

The sequel is organized as follows. In Section 2 the architecture of TAPAS is pre-
sented. Section 3 presents the BDD-like library SATAF used for encoding Presburger
formulae to automata and for decoding automata to Presburger formulae. Finally, Sec-
tion 4 provides some benchmarks.

2 TAPAS at a Glance

The following figure shows the architecture of TAPAS (enclosed by the dotted line).
The FAST model-checker is also depicted but it does not actually belong to the suite; it
is just a client application.

ALAMBIC
Armoise compiler

FAST
model-checker

G
E

N
E

P
I

Pl
ug

in
s LASH

LIRA

MONA

OMEGA

PPL
SATAF

GENEPI

Plugin
A

PI C
lie

nt
A

PI

im
plem

ents ARMOISE

formula

FAST

model

Selecting the most efficient solver for a given application can be difficult. This choice
can change dramatically the practical performance of the application. Since solvers have

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 182–185, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

TaPAS: The Talence Presburger Arithmetic Suite 183

incompatible application programming interfaces (API), a particular one must be first
selected prior the implementation of the application; change afterward require addi-
tional development effort. The GENEPI library[BLP06] addresses this issue by offering
small APIs between, on one side, applications requiring solvers and, on the other side,
solvers implementing decision procedures. The connection between applications and
solvers is realized transparently using dynamically loaded modules (plugins) specified
at the execution time. This way the choice of a solver can be postponed after the im-
plementation of an application based on GENEPI; the best one can be selected by per-
forming benchmarks. Since [BLP06], GENEPI has been enhanced with new features:
support for R, new plugins (LIRA and PPL), . . .

In general, specifying sets with low level logics is difficult and fastidious. The same
problem appears with FO (R, Z, +,≤). The ARMOISE language allows to describe con-
cisely sets of vectors (in Z and/or R). The succinctness of formulae is achieved using,
among other tricks, hierarchical definitions and arithmetic over sets (which hides nu-
merous and ugly quantifications). Below is an example of an ARMOISE formula which
specifies a repeated pattern in N2. Note that ARMOISE formulae may define sets which
are not necessarily definable in FO (R, Z, +,≤).

let
origin := (7,3);
directions := { (4,0), (0,4), (4,4) };
pattern := ([0...2], [0...2]) \ (1,1);

in
origin + nat * directions + pattern;

TAPAS provides tools to support the ARMOISE language. The ALAMBIC library per-
mits to compile ARMOISE formulae into calls to GENEPI functions. An important step
in this compilation process is the translation of high-level constructions into the mixed
additive theory; due to the expressive power of ARMOISE this transformation is not
always possible.

3 SATAF: Shared-Automata and the Synthesis of Formulae

Many solvers like LASH, LIRA and MONA are based on automata packages. Intuitively,
mappings from words to numerical vectors are used to associate to automata potentially
infinite sets of numerical vectors (one vector per accepted word). Usually, the minimal
deterministic automata are proved canonically associated to the represented sets and
not on the way they have been computed. In particular these solvers are well adapted
to sets obtained after long chains of operations like in symbolic model checking. In
[Cou04], Couvreur introduced a new data-structure called shared-automata. Intuitively,
the sharing of a finite set of automata is performed by merging every states equivalent
with respect to the Nérode relation. TAPAS contains the SATAF library that implements
this data structure. In SATAF, deciding if two automata recognize the same language
reduces to check the equality of their pointers. Similarly to BDD packages, SATAF uses
a pointer-based hash-table cache algorithm. Up to our knowledge, no other automata
package implements these features. Since the first version of SATAF written in JAVA

by Couvreur [Cou04], a new version written in C is now maintained in TAPAS. TAPAS
also provides an implementation of the GENEPI API based on SATAF.

184 J. Leroux and G. Point

Extracting geometrical properties (for instance linear constraints) from automata is
a challenging problem. From a theoretical point of view, this problem has been solved
in [Ler05]. This article provides a polynomial time algorithm for computing Presburger
formulae from automata representing Presburger sets. The algorithm first extracts the
“necessary” linear constraints from the automaton. Then, it computes an unquantified
Presburger formula using only these constraints, Boolean operations, translations by
integer vectors, and scaling by integer values. An implementation of this algorithm is
provided with SATAF. The generated formulae follows the ARMOISE syntax. Note that
SATAF, GENEPI and ALAMBIC provide together the very first implementation of an
algorithm that normalizes Presburger formulae into unique canonical forms that only
depend on the denoted sets. Intuitively in the normalization process, the minimization
procedure for automata acts like a simplification procedure for the Presburger arithmetic.

4 Experimenting the Automata to Formulae Algorithm

FAST [BLP06] is a tool for verifying reachability properties of infinite-state systems.
The tool is implemented over TAPAS. Benchmarks of FAST on various GENEPI im-
plementations are available in [BLP06, BDEK07]. We experimented the computation
of ARMOISE specifications from SATAF automata denoting the reachability sets of 40
systems. Some results are presented in the following table. Column “→ A” is the time
in seconds spent for computing an automatonA representing the reachability set, “|A|”
is the number of states of A, “A → S” is the time in seconds to produce an ARMOISE

specification S from A, |S| is the number of characters of S, “n” is the number of
variables of S, and “l” is the number of linear constraints generated in S.

system → A |A| A → S |S| n l
Central Server system 9.57 75 0.07 3716 12 10
Consistency Protocol 194.96 90 0.06 3811 11 11
CSM - N 24.38 66 0.05 3330 14 11
Dekker ME 17.73 200 0.01 13811 22 0
Multipoll 11.38 612 2.54 60995 18 19
SWIMMING POOL 71.03 553 0.14 1803 9 18
Time-Triggered Protocol 116.89 17971 90.53 984047 11 44

We also experimented the normalization of ARMOISE formulae on various examples.
Due to space limitation, only four representative examples are presented: modulo,
large-coef, large-var and unsimplified. Example modulo denotes the
Cartesian product (11N) × (7N) × (5N) × (3N) where mN is the set of non-negative
integers multiple of m, large-coef is the conjunction of three linear constraints with
coefficients larger than 20, large-var is a linear constraint defined over 36 variables,
and unsimplified is a disjunction of two sets of linear constraints with redundant
constraints. Benchmark results are summarized in the following table. Columns have
the following meaning: “example” provides the name of the ARMOISE specification S0,
“|S0|” is the number of characters of S0, “S0 → A” is the time in seconds to produce a
SATAF automatonA from S0. The other columns have been defined previously.

example |S0| S0 → A |A| A → S |S| n l
modulo 40 0.1 4620 35.8 335 4 0
large-coef 167 1.7 147378 25.1 957 4 3
large-var 543 0.2 4320 12.7 2220 36 1
unsimplified 529 1.1 16530 1.3 1026 5 2

TaPAS: The Talence Presburger Arithmetic Suite 185

We observe that the computation of SATAF automataA from ARMOISE specifications
S0 takes less than 2 seconds. Moreover, the computation of ARMOISE specifications S
from A takes less than half a minute even on automata with more than 105 states. In
practice the implementation (quadratically) slows down in presence of modular cons-
traints. Note that |S0| < |S| in all our examples due to non-optimized outputs. How-
ever, even if |S0| < |S| in the last example unsimplified, the redundant linear
constraints of S0 no longer appear in S.

Contrary to previous results, we observe that |S| is quite smaller than |A|. Recall
that the generated ARMOISE specifications are combinations of linear constraints. In
both series of benchmarks formulae contain a few number of constraints (see the “l”
column). The complexity of the combinations explains the differences in the results. In
practice, we observe that small automata can encode complex combinations but only a
small number of linear constraints.

5 Conclusion and Future Work

TAPAS is distributed at http://altarica.labri.fr/wiki/tools:tapas:
under GPLv2. Thanks to GENEPI, this is the first tool to our knowledge which offers
(1) a simple framework for the development of applications requiring solvers for the
mixed additive theory and (2) an easy way to benchmark solvers. TAPAS also pro-
vides the SATAF solver based on shared-automata and the first implementation of the
algorithm translating them into equivalent ARMOISE formulae.

Future Work. Predicate abstraction methods are limited by the number of considered
predicates. Usually some of these predicates are redundant. More precisely, some pred-
icates are not semantically used even if they syntactically appear. In future work, we
are interested in using the normalization procedure of TAPAS in order to remove re-
dundant predicates. In fact, the set of extracted linear constraints from an automaton is
known minimal : these constraints syntactically appears in any unquantified Presburger
formula that denotes the set represented by the automaton.

References

[BDEK07] Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: LIRA: Handling constraints of
linear arithmetics over the integers and the reals. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Heidelberg (2007)

[BLP06] Bardin, S., Leroux, J., Point, G.: FAST extended release. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg
(2006)

[Cou04] Couvreur, J.-M.: A BDD-like implementation of an automata package. In: Do-
maratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS,
vol. 3317, pp. 310–311. Springer, Heidelberg (2005)

[Ler05] Leroux, J.: A polynomial time presburger criterion and synthesis for number
decision diagrams. In: LICS, pp. 147–156. IEEE Comp. Soc., Los Alamitos
(2005)

http://altarica.labri.fr/wiki/tools:tapas:

Transition-Based Directed Model Checking

Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

University of Freiburg
Department of Computer Science

Freiburg, Germany
{mwehrle,kupfersc,podelski}@informatik.uni-freiburg.de

Abstract. Directed model checking is a well-established technique that is tai-
lored to fast detection of system states that violate a given safety property. This
is achieved by influencing the order in which states are explored during the state
space traversal. The order is typically determined by an abstract distance function
that estimates a state’s distance to a nearest error state. In this paper, we propose a
general enhancement to directed model checking based on the evaluation of state
transitions. We present a schema, parametrized by an abstract distance function,
to evaluate transitions and propose a new method for the state space traversal.
Our framework can be applied automatically to a wide range of abstract distance
functions. The empirical evaluation impressively shows its practical potential.
Apparently, the new method identifies a sweet spot in the trade-off between scal-
ability (memory consumption) and short error traces.

1 Introduction

When model checking safety properties, the ultimate goal is to prove the absence of
error states. This can be done by exploring the entire reachable state space. However,
the state space of realistic applications is often too large to be enumerated exhaustively
because of the state explosion problem. Directed model checking is a well-established
technique to tackle this problem and has found its way in state-of-the-art tools such as
SPIN, PATHFINDER or UPPAAL [5, 6, 11]. In directed model checking, the state space
traversal is guided (“directed”) based on specific criteria towards error states. Gener-
ally, these guidance criteria are automatically extracted from the model by taking an
abstraction of the model and computing an abstract distance function d#. For a state s,
the value d#(s) approximates the distance of s to a nearest error state. These values are
used during the state space traversal in order to determine which state is explored next.

Each different version of directed model checking thus arises through the choice
of the abstraction that is used to compute the abstract distance function, and by the
choice of the basic (non-deterministic) algorithm for traversing the state space. Earlier
work on directed model checking was mainly focused on the first point, i. e., in defining
abstractions that lead to distance estimation functions d# to guide the state space traver-
sal efficiently towards an error state [3, 4, 5, 9, 12, 13, 17, 18]. Considering the second
point, there are two predominantly used algorithms of directed model checking, namely
A∗ and greedy search (cf. [16]). A∗ is guaranteed to find shortest possible error traces
for certain kinds of distance estimation functions, but is often too memory consuming

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 186–200, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Transition-Based Directed Model Checking 187

for large systems. Greedy search does not necessarily find shortest possible error traces,
but mostly scales much better than A∗ in practice.

In this paper, we present a new version of directed model checking that seems to
identify a sweet spot in the trade-off between scalability (memory consumption) and
short computed error traces. It is based on the concept of useless transitions which is
an adaptation of the useless actions approach that has been introduced in the context of
AI Planning [20]. As indicated by its name, the concept of useless transitions extends
directed model checking by additionally evaluating transitions, not just states. We will
see that this is a general concept in the sense that useless transitions can be computed
fully automatically with the given distance estimation function d#. That is, whatever
the choice of the underlying abstraction for computing the abstract distance function
has been, we can use the already computed abstract distance function in order to effec-
tively recognize useless transitions. We will characterize a class of distance estimation
functions for which our method is suited best. We define a new (non-deterministic)
strategy for state space traversal that takes these useless transitions into account. The
new strategy is an amalgam of the two strategies A∗ and greedy search. For the two
extreme cases of abstraction, it becomes the former or the latter, respectively.

We have implemented our method and have applied it to a number of academic and
industrial benchmarks. This allowed us to experimentally compare the new directed
model checking method with the two existing predominant methods A∗ and greedy
search. The empirical results impressively show the benefit of our approach: We obtain
almost shortest error traces, whereas the number of expanded states reduces signifi-
cantly compared to A∗ and also to greedy search in most cases.

We will next give an example that greatly oversimplifies the issues at hand but gives
an intuition about useless transitions and their potential usefulness.

Example. Figure 1 depicts a system consisting of n + 1 parallel components A0 to An.
The initial state of the system is (s0

0, s1
0, . . . , sn

0) and the error state is (s0
1, s1

1, . . . , sn
1).

Suppose that we apply directed model checking to check if this error state is reachable.
Further suppose that we therefore use the maximum graph distance as the abstract dis-
tance function [4, 5]. This function is based on the local distance of each single automa-
ton Ai. More precisely, let d(i) denote the graph distance from Ai’s current location to
Ai’s error state, then the maximum graph distance is defined as maxi=0, ..., n d(i).

It turns out that, for this problem, the maximum graph distance is a rather uninformed
distance function. It cannot distinguish states that are nearer to the error state from
others. If there is at least one local state of the form si

0, then the abstract distance value
is 1. We may characterize the state space topology induced by this abstract distance
function as follows. There is one single plateau (for all of the 2n+1 reachable system
states but for the error state the abstract distance is 1). This means that the guidance
based on this abstract distance function is very poor. In fact, for every abstract distance
function, the similar situation arises.

In the example, it is trivial to see that each state transition where a local state leaves
a local error state (depicted by a double circle) should be avoided as much as possible
during the state space traversal (it is a useless transition!). Without steps corresponding
to such transitions, the state space traversal stops after n + 1 steps and returns the
shortest possible error path.

188 M. Wehrle, S. Kupferschmid, and A. Podelski

s0
0 s1

0 sn
0

sn
1s1

1s0
1

. . .

Fig. 1. An automata system with n + 1 components

The remainder of this paper is organized as follows. In the next section, we discuss
related work. In Section 3, we give the preliminaries needed for this work, including a
more detailed introduction to directed model checking. In Section 4, we introduce the
notion of useless transitions and present our directed model checking algorithm based
on this concept. In Section 5, we empirically evaluate our algorithm on a number of
benchmarks. Section 6 concludes the paper.

2 Related Work

Research on directed model checking so far mainly focused on finding abstractions
that lead to efficient distance estimation functions. It was pioneered by Edelkamp et al.
[4, 5] who proposed to base the distance estimation on the graph distance (see also the
example in the previous section). This is a rather coarse abstraction that leads to distance
estimation functions that are easy to compute on the one hand, but that are not very
informative on the other hand. Kupferschmid et al. [12] have introduced two abstract
distance functions based on the monotonicity abstraction. This abstraction technique is
an adaptation of the ignoring-delete-lists principle that has originally been introduced in
the area of AI Planning [1]. The basic idea is that every state variable, once it obtained
a value, keeps that value forever. Therefore, the value of a variable is no longer an
element, but a subset of its domain. The distance estimation values are then computed
by iteratively applying transitions under this abstraction until an error state is reached,
and then returning the abstract error length as estimation.

Furthermore, Dräger et al. [3] iteratively “merge” a pair of automata, i. e., compute
their product and then merge locations until there are at most n locations left, where n
is an input parameter. The distance estimation function is read off the overall merged
automaton. Moreover, several distance estimation functions based on pattern databases
have been proposed [9, 13, 17, 18]. A pattern database heuristic function abstracts a
problem by ignoring some of the relevant symbols, e. g., some of the state variables.
The state space of the abstracted problem is built completely as a pre-process to search,
and is used as a look-up table for the heuristic values during search.

The problem of evaluating state transitions has been studied mostly in the area of
AI Planning. In this context, an approach to avoid useless actions has been proposed
which has led to a significantly improved search behavior on a wide range of planning
instances [20]. In Section 4, we adapt this technique to the context of directed model
checking of concurrent systems with interleaving and binary synchronization. Comple-
mentary to useless actions, Hoffmann and Nebel [8] and Helmert [7] proposed what
they call helpful actions and preferred operators, respectively. These methods are used

Transition-Based Directed Model Checking 189

to select a set of promising successors to a search state. The helpfulness of a transition is
determined during the computation of the distance estimation values. These values are
obtained by solving an abstract problem. Roughly speaking, a transition is considered
as helpful if it is contained in that abstract solution. However, this approach is specific
to the applied distance function.

3 Preliminaries

In this section, we give the basic notation as well as a formal definition of the considered
models. Section 3.2 introduces directed model checking, A∗ and greedy search.

3.1 Notation

In our setting, an automaton is a tuple A = (S, s0, T, Σ), where S is a finite set of
states, s0 ∈ S is the initial state, T ⊆ S × (Σ ∪ {τ})× S is a set of labeled transitions,
Σ a finite set of synchronization labels, and τ �∈ Σ denotes a special internal label. A
transition (s, α, s′) ∈ T is also denoted by s

α−→ s′.
Let N be the set {1, . . . , n}. For n automata Ai = (Si, s0

i , Ti, Σi), i ∈ N , with
pairwise disjoint sets of states, the parallel composition A1 || . . . || An is defined by the
product automaton (S×, (s0

1, . . . , s0
n), T×, Σ1∪· · ·∪Σn), where S× = S1×· · ·×Sn,

and the set of transitions T× ⊆ S××{τ}×S× is defined as follows. There is a transition
(s1, . . . , sn) τ−→ (s′1, . . . , s′n) ∈ T× iff one of the following conditions holds.

1. There exists i ∈ N such that si
τ−→ s′i ∈ Ti, and sk = s′k for all k ∈ N \ {i}.

2. There exist i, j ∈ N with i �= j, and there exists a label α ∈ (Σi ∩ Σj) such that
si

α−→ s′i ∈ Ti and sj
α−→ s′j ∈ Tj , and sk = s′k for all k ∈ N \ {i, j}.

A system S of n automata A1, . . . , An is the parallel composition A1 || . . . || An.
Note that in a parallel system only τ transitions occur; two synchronized transitions in
automata Ai and Aj also correspond to a τ transition in S. We address the falsification
of invariants; in CTL, these properties take the form A Gϕ. In this paper, ϕ is a formula
of the form

∧
i ¬si, where si ∈ S1 × · · · × Sn are error states. We call a tuple T =

〈S, ϕ〉 a model checking task. A trace π = s0, t1, s1, . . . , tn, sn is an alternating
sequence of states and transitions where ti is an outgoing transition of si−1. We call a
trace that leads to a state that satisfies ¬ϕ an error trace. The length of a trace |π| is
defined as the number of transitions in π, i. e., |π| = n.

3.2 Directed Model Checking

Directed model checking describes the task of finding error states where the state space
traversal is guided (“directed”) by a distance estimation function d#. This function is
computed fully automatically based on the declarative description of the system and
an abstraction principle (e. g., the monotonicity abstraction [12]). In a nutshell, d# is a
function that maps states to integers, reflecting an estimate of the shortest error distance.
Typically, this estimate is the length of a corresponding abstract error trace. States are
evaluated with d#, states with lower values are preferred. Note that abstract distance
functions influence the order in which the states are explored, thereby completeness

190 M. Wehrle, S. Kupferschmid, and A. Podelski

is not affected. On the one hand, it is desirable to have distance functions that are as
informative as possible. On the other hand, the computation must not be too expensive.

Figure 2 shows a basic directed model checking algorithm. Given a model checking
task 〈S, ϕ〉 and an abstract distance function d#, the algorithm returns False if there is a
state that violates ϕ, otherwise it returns True. The initial state of S is s0. The algorithm
maintains a priority queue open which contains visited but not yet explored states. When
open.getMinimum is called open returns a minimum element, i. e., one of its elements
with minimal priority value. States that have been expanded are stored in close. Every
state encountered during search is first checked if it is an error state. If this is not the
case, its successors are computed. Every successor that has not been visited before is
inserted into open according to its priority value. The evaluate function depends on the
applied version of directed model checking, i. e., if applied with A∗ or greedy search.
For A∗, evaluate(s, d#) returns d#(s) + c(s), where c(s) is the length of the path on
which s was reached for the first time. For greedy search, it simply evaluates to d#(s).
When every successor has been computed and prioritized, the process continues with
the next state from open with lowest priority value. Every state stores information about
how it has been reached, i. e., its immediate predecessor state and transition. Therefore,
if an error state s is finally reached, the corresponding error trace is generated by back
tracing from s.

1 function verify(S , ϕ, d#):
2 open = empty priority queue, closed = ∅
3 priority = evaluate(s0, d#)
4 open.insert(s0, priority)
5 while open is not empty:
6 s = open.getMinimum()
7 if s violates ϕ:
8 return False
9 if s �∈ closed:

10 closed = closed ∪ {s}
11 for each outgoing transition t of s:
12 s′ = successor(s, t)
13 if s′ �∈ closed ∪ open:
14 priority = evaluate(s′, d#)
15 open.insert(s′, priority)
16 return True

Fig. 2. A basic directed model checking algorithm

For distance estimation functions that are admissible, i. e., that never overestimate
the real error distance, A∗ is guaranteed to find shortest possible error traces [16].

4 Transition-Based Directed Model Checking

Until now, directed model checking algorithms have roughly followed the scheme as
outlined in the last section by evaluating states, thereby suffering from the fact that A∗

is often not practical and the error traces of greedy search are often of poor quality.

Transition-Based Directed Model Checking 191

In this section, we propose an extension based on transition evaluation. We will first
define the theoretical concept of useless transitions and then its practical counterpart,
the relatively useless transition. This notion can be directly used to combine A∗ and
greedy search to a new transition-based directed model checking algorithm.

4.1 Useless and Relatively Useless Transitions

In this section, we give the definition of useless transitions. We will first give an exact
notion that captures precisely our intuition on the one hand, but is computationally hard
on the other hand. Therefore, we will investigate ways to approximate this definition,
leading to the concept of relatively useless transitions.

Intuitively, a transition is useless if it is not needed to reach the nearest error state on
a shortest path. This is formally stated in the next definition.

Definition 1 (Useless Transition). Let 〈S, ϕ〉 be a model checking task, where S =
(S, s0, T, Σ). A transition t ∈ T leading from a state s to state s′ is useless in s iff no
shortest trace from s to a nearest error state starts with this transition.

We use d(s) to denote the distance of a state s to a nearest error state. More precisely,
d(s) = n if there is a trace π from s to an error state with |π| = n and there is no trace
π′ from s to an error state with |π′| < n. When we want to stress that d is a function
also on the system S, we will write d(S, s).

By Definition 1, a transition t is useless in a state s if and only if the real error
distance d does not decrease by one, i. e., a transition from s to s′ is useless iff d(s) ≤
d(s′). To see this, recall that d(s) ≤ d(s′) + 1 for every transition. If a shortest error
trace starts from s with t, then d(s) = d(s′) + 1. Otherwise the error distance does
not decrease, i. e., d(s) < d(s′) + 1. Since the distance values are all integers, this
is equivalent to d(s) ≤ d(s′). We will use the inequality d(s) ≤ d(s′) in connection
with the idea of removing a useless transition. Therefore, we will define the notion
of reduced systems. To do this, we first need some more terminology. For a system
S = A1 || . . . || An, say S = (S, s0, T, Σ), we define a function µS that maps
transitions from the system S to the corresponding transitions in Ai = (Si, s0

i , Ti, Σi).
This function µS : T → 2T1 ∪···∪Tn is defined as follows. When we write si

c−→ s′i for
a transition t, we assume that t is contained in automaton i, i. e., si

c−→ s′i ∈ Ti.

µS((s1, . . . , sn) τ−→ (s′1, . . . , s′n))

=

{
{si

τ−→ s′i} ∃i ∈ {1, . . . , n}
{si

α−→ s′i, sj
α−→ s′j} ∃i, j ∈ {1, . . . , n}, i �= j, ∃α ∈ (Σi ∩Σj)

Based on this definition, we now define reduced systems.

Definition 2 (Reduced system). Let S = A1 || . . . || An be a system, say S =
(S, s0, T, Σ), with Ai = (Si, s0

i , Ti, Σi) for i ∈ {1, . . . , n}. Let t ∈ T be a tran-
sition. The reduced system with respect to t is defined as St = A′

1 || . . . || A′
n, where

A′
i = (Si, s0

i , Ti \ µS(t), Σi).

Note that, according to the definition of µS , at most two automata Ai are affected by
reducing the system (one in the case of interleaving, two in the case of binary synchro-
nization). Roughly speaking, a transition t of the system S corresponds to one or two

192 M. Wehrle, S. Kupferschmid, and A. Podelski

transitions of one or two automata of S. The reduced system St is obtained by removing
these transitions from the corresponding automata. Note that removing one transition
from an automaton A removes several transitions from the system S.

Based on the definition of reduced systems, we will give a proposition that leads to
a testing criterion for useless transitions.

Proposition 1. Let 〈S, ϕ〉 be a model checking task with S = (S, s0, T, Σ), s, s′ ∈
S, t ∈ T leading from s to s′. If d(St, s) ≤ d(S, s′), then t is useless in s.

Proof. If d(St, s) ≤ d(S, s′), then d(S, s) ≤ d(S, s′) because d(S, s) ≤ d(St, s)
(the error distance cannot decrease in reduced systems). As d(s) ≤ d(s′) iff t is useless
in s, the claim follows directly.

This characterization can be interpreted as follows. A transition t is useless in s if the
error state is still reachable from s on the same shortest trace when the corresponding
transitions to t are removed from the system. However, it is not practical as computing
exact distances is PSPACE-hard. A direct way to approximate this test is to use the given
distance estimation function d# instead of d. This is rational because d# is designed
for exactly the reason of approximating d. When we want to stress that d# is a function
also on the system S, we will write d#(S, s).

Definition 3 (Relatively Useless Transition). Let 〈S, ϕ〉 be a model checking task
with S = (S, s0, T, Σ), s, s′ ∈ S, t ∈ T leading from s to s′. Let d# be a distance
estimation function. Then t is relatively useless for d# in s if d#(St, s) ≤ d#(S, s′).

Note that this is exactly the testing criterion from Proposition 1 where d has been re-
placed by d#. Obviously, the quality of this approximation strongly depends on d#’s
precision. A very uninformed function, e. g. a function that constantly returns zero,
recognizes every transition as relatively useless. However, the more sophisticated the
distance estimation, the more precise is the approximation. We will come back to this
point in the next section. Intuitively, taking a relatively useless transition t does not
seem to guide the state space traversal towards an error state as the stricter distance
estimate in St does not increase.

One would expect that transitions should not be relatively useless if they lead to states
nearer to an error state. Indeed, under the rational assumption that distance functions
d# never decrease their estimate in reduced systems, i. e., d#(S, s) ≤ d#(St, s) for all
systems S, transitions t and states s, transitions leading to better estimates are never
relatively useless in any system S.

Proposition 2. Let 〈S, ϕ〉 be a model checking task with S = (S, s0, T, Σ). Let d#

be a distance estimation function such that d#(S, s) ≤ d#(St, s) for all s ∈ S and
t ∈ T . Let s, s′ ∈ S be states and t ∈ T be a transition that leads from s to s′. If
d#(s′) < d#(s), then t is not relatively useless for d# in s.

Proof. Assume that t is relatively useless, i. e., d#(St, s) ≤ d#(S, s′). As d#(S, s) ≤
d#(St, s), we have d#(S, s) ≤ d#(S, s′), showing that the distance estimate does not
decrease when the relatively useless transition t is applied.

Transition-Based Directed Model Checking 193

4.2 Directed Model Checking with Relatively Useless Transitions

In this section, we put the pieces together. So far, we have presented a notion of useless
transitions to identify transitions that should be less preferred during the state space
traversal. A direct way to integrate this information is to “penalize” states that result
from applying such a transition. This is rational because avoiding transitions that are
not likely to appear in shortest error traces is likely to improve the detection of (short)
error traces. States that are reached by applying such a useless transition should be less
preferred when traversing the state space.

As argued in the introduction and Section 3.2, there are two choices to be made
when the directed model checking approach is applied, namely choosing the underlying
abstraction for the distance estimation functions, and choosing the algorithm that is
essentially determined by the evaluate function that computes the priority values for
the states. Here, we assume that a distance estimation function d# is already given,
and d# is additionally used to determine relatively useless transitions. For the second
point, we give a simple extension of the evaluate function in Fig. 3. Recall that s and t
(lines 2 and 3) are stored in the successor state and can be accessed easily. As outlined
above, states that result from applying a relatively useless transition are “penalized”. As
penalty value for s, we chose c(s), the length of the trace on which s was reached for
the first time. This leads to a combination of A∗ and greedy search as discussed in more
detail below.

1 function evaluate(s′ , d#):
2 s = predecessor of s′

3 t = transition from s to s′

4 if t is relatively useless for d# in s:
5 priority = d#(s′) + c(s′)
6 else:
7 priority = d#(s′)
8 return priority

Fig. 3. Evaluation function based on relatively useless transitions

Overall, this algorithm is an amalgam of the algorithms A∗ and greedy search based
on transition evaluation. Its behavior depends on the accuracy of the underlying distance
estimation function d#. As mentioned earlier, the more accurate d#, the more transi-
tions are classified correctly, and therefore, the more it tends towards greedy search. At
the extreme ends of the spectrum, it becomes greedy search (for the perfect distance
function that classifies every transition correctly) and breadth first search, respectively,
which is a degenerated version of A∗ for the distance function that constantly returns
zero. From this perspective, our algorithm can be considered as a combination of greedy
search and A∗.

4.3 Discussion

Although it is technically possible to apply our algorithm to every model checking
task, there are distance functions that are probably best suited for this concept. Let us

194 M. Wehrle, S. Kupferschmid, and A. Podelski

have a look at this class of functions. Roughly speaking, distance estimation functions
can be divided into two classes, namely those that compute the values on-the-fly by
solving an abstract problem in every search state, and those that do it in a preprocessing
step, typically by computing a lookup table (e. g., a pattern database). The concept of
useless transitions seems to be best suited for distance functions that are computed on-
the-fly because the time overhead to compute this information is comparatively low.
Contrarily, distance functions from the second class are less suited because for every
modified system, an additional pattern database has to be computed (recall that for the
computation of the useless-values, the system is modified and the distance value is
recomputed on this modified system). However, as we will see, for distance functions
computed on-the-fly, the overall performance can often be significantly improved.

The performance of our approach strongly depends on the quality of d# that is used
to guide the search and to determine useless transitions. The higher the precision of d#,
the more transitions are evaluated correctly, and hence, the better the overall perfor-
mance as many unnecessary states need not be considered. In small examples, distance
functions like the graph distance could already lead to improvements. Pointing to our
motivating example in the introduction, we recognize that all transitions corresponding
to edges from down to up are relatively useless for the graph distance heuristic, whereas
all other transitions are not. In this example, applying our algorithm leads to a short-
est possible error trace with dramatically smaller explored state space than with greedy
search or A∗. For more complex examples, more sophisticated distance functions are
needed to benefit from our approach, as we will empirically show in the next section.

5 Evaluation

We have implemented our algorithm in the model checker MCTA [14] as part of a
tool development effort within the AVACS project1. The tool and its source code are
freely available at http://mcta.informatik.uni-freiburg.de/. We com-
pare our search method with A∗ and greedy search. In addition to the automaton model
as considered in this paper, many of them feature integer and clock variables and rep-
resent timed automata. Transitions can additionally be guarded by integer and clock
constraints. Moreover, a transition can change the value of integer variables and re-
set clock variables. Note that the concept of useless transitions is general and can be
adapted to that class of automata in a straightforward way. To get a conservative ap-
proximation of useless transitions, we have implemented our concept in a stronger way
than described in the last section. When the reduced system St is computed for a sys-
tem S = A1|| . . . ||An and a transition t in S, we additionally remove transitions in the
automata Ai that read variables that are set by some t′ ∈ µS(t), and transitions that
lead to the same state as some t′ ∈ µS(t).

5.1 The Distance Estimation Functions

We evaluated our algorithm for a number of distance estimation functions. We give de-
tailed results for the distance functions hL and hU introduced by Kupferschmid et al.

1 http://www.avacs.org/

http://mcta.informatik.uni-freiburg.de/
http://www.avacs.org/

Transition-Based Directed Model Checking 195

[12] and for the distance function based on the maximum graph distance hgd introduced
by Edelkamp et al. [4, 5]. As outlined in Section 2, hL and hU are based on the mono-
tonicity abstraction principle, where a state variable can have multiple values simultane-
ously. hL performs a fixpoint iteration under this abstraction starting in the current state
until an error state is reached, and returns the number of iterations as distance estimate.
Based on this fixpoint iteration, hU additionally extracts an abstract error trace starting
from the abstract error state, and returns the number of abstract transitions as the esti-
mate. Observe that computing hU is more expensive than hL. As we will see in Section
5.3, this pays off in better search behavior. The maximum graph distance function hgd

uses the graph distance as indicated by its name.

5.2 The Benchmark Set

Our benchmarks stem from the AVACS benchmark suite.

Industrial benchmarks. The M and N examples come from a case study that models
a real-time protocol to ensure mutual exclusion of a state in a distributed system via
asynchronous communication. The protocol is described in full detail in [2]. The C ex-
amples stem from a case study from an industrial project partner of the UniForM-project
[10] where the problem is to design a distributed real-time controller for a segment of
tracks where trams share a piece of track. For the evaluation of our approach we chose
the property that both directions are never given simultaneous permission to enter the
shared segment. In both case studies, a subtle error has been inserted by manipulating
a delay so that the asynchronous communication between these automata is faulty.

Academic benchmarks. The FA and FB examples are flawed versions of the Fischer
protocol for mutual exclusion (cf. [15]). The variants differ in the way they encode the
error condition. As a second set of benchmarks, we use arbiter trees to establish mutual
exclusion between 2k client processes [19]. The benchmarks A2–A6 contain arbiter
trees of height 2–6, with an exponentially growing number of processes.

5.3 Experimental Results

The reported experimental results were obtained on a 2.66 GHz Intel Xeon computer
with memory out at 4 GB and a Linux operating system. We compare our new state
space traversal technique, denoted UT, with A∗ and greedy search (G) in three different
configurations. In the first configuration, hL is used as the abstract distance function,
the second uses hU and the third configuration uses hgd.

Table 1 shows the results of the first configuration. Here, the number of explored
states significantly decreases compared to A∗ and we are able to solve much larger
problems. Compared to greedy search, the length of the found error traces are sig-
nificantly shorter. Moreover, due to better search guidance, we additionally often get
significant improvements in terms of the number of explored states and traversal time.

The results for the second configuration are depicted in Table 2. Note that hU is
more informative than hL, and search behavior therefore is mostly better (in particu-
lar, the Fischer protocol examples are trivial for hU). This fact directly influences the
performance when applied with our algorithm: With UT and hU, we obtain even better

196 M. Wehrle, S. Kupferschmid, and A. Podelski

Table 1. Experimental results for hL with A∗, greedy search (G), and our combined approach
(UT). Abbreviations: #a: number of parallel automata, #v: number of variables, memory: peak
memory used in MB, y e+x: y · 10x, dashes indicate out of memory (> 4 GB).

explored states runtime in s memory trace length
Inst. #a #v A∗ G UT A∗ G UT A∗ G UT A∗ G UT

C1 5 15 22501 1928 1658 0.16 0.04 0.06 9 8 8 54 100 91
C2 6 17 66791 4566 1333 0.48 0.09 0.08 14 8 8 54 132 91
C3 6 18 76777 6002 1153 0.58 0.11 0.06 15 9 8 54 128 91
C4 7 20 726516 81131 1001 5.34 1.00 0.10 70 19 8 55 344 121
C5 8 22 6.00e+6 430494 833 44.64 5.32 0.12 484 63 8 56 1057 114
C6 9 24 – 4.56e+6 833 – 48.00 0.17 – 521 9 – 3217 114
C7 10 26 – – 829 – – 0.22 – – 9 – – 114
C8 10 27 – 1.19e+7 816 – 110.81 0.18 – 1158 9 – 5644 95
C9 10 28 – 2.77e+7 13423 – 252.66 2.27 – 2534 22 – 5803 90
M1 3 15 34680 4581 4256 0.17 0.02 0.02 9 8 8 47 457 97
M2 4 17 135073 15832 8186 0.75 0.08 0.06 15 10 9 50 1124 146
M3 4 17 155164 7655 10650 0.88 0.04 0.07 15 9 10 50 748 91
M4 5 19 584221 71033 22412 4.27 0.44 0.19 38 19 15 53 3381 136
N1 3 18 80541 50869 5689 0.97 1.26 0.06 17 45 9 49 26053 108
N2 4 20 332486 30476 22763 5.00 0.31 0.24 37 19 14 52 1679 259
N3 4 20 406908 11576 35468 6.66 0.12 0.42 38 12 15 52 799 204
N4 5 22 1.59e+6 100336 142946 33.78 1.14 1.86 117 40 39 55 2455 792
F A

5 6 6 71 9 9 0.00 0.00 0.00 7 7 7 8 8 8
F A

10 11 11 511 9 9 0.00 0.00 0.00 8 7 7 8 8 8
F A

15 16 16 1701 9 9 0.05 0.00 0.00 16 7 7 8 8 8
F B

5 5 6 54 179 7 0.00 0.00 0.00 7 7 7 6 12 6
F B

10 10 11 429 86378 7 0.01 1.29 0.00 8 109 7 6 22 6
F B

15 15 16 1504 – 7 0.04 – 0.00 17 – 7 6 – 6
A2 8 0 73 36 15 0.00 0.00 0.00 7 7 7 12 21 12
A3 16 0 5168 206 32 0.08 0.01 0.01 8 7 7 17 24 17
A4 32 0 4.44e+6 76811 95 95.95 7.53 0.06 1060 65 9 22 42 22
A5 64 0 – 263346 34 – 50.83 0.11 – 325 13 – 112 27
A6 128 0 – – 39 – – 0.49 – – 30 – – 32

results than with UT and hL. Note that hU is not admissible, which means that there is
no guarantee to obtain a shortest possible error trace in this setting in theory. However,
in practice, we obtained shortest possible traces in our examples with A∗. The trace
length of UT is still mostly shorter than with greedy search. In particular, note that for
both hL and hU configurations without UT, the large C examples C7–C9 could only be
solved with an error trace of very poor quality compared to UT. Moreover, the largest
arbiter example A6 could not be solved at all without UT within 4 GB of memory.

Table 3 gives the results for the third configuration (hgd). Here, we observe that the
results with UT are less significant than with the first two configurations. This is be-
cause, having a closer look at the distance estimation values in many of the instances,
the estimation values are often constant. This is due to the very coarse abstraction (i. e.,
the graph distance) used by hgd. Therefore, too many transitions are relatively use-
less for this distance function, causing the search process to degenerate towards A∗.

Transition-Based Directed Model Checking 197

Table 2. Experimental results for hU. Abbreviations as in Table 1.

explored states runtime in s memory trace length
Inst. #a #v A∗ G UT A∗ G UT A∗ G UT A∗ G UT

C1 5 15 12480 715 277 0.22 0.02 0.02 9 7 7 54 73 59
C2 6 17 35047 1612 242 0.56 0.05 0.03 12 7 7 54 99 59
C3 6 18 39755 734 228 0.68 0.03 0.03 12 7 7 54 86 59
C4 7 20 359376 9120 566 5.46 0.15 0.12 50 9 8 55 139 55
C5 8 22 2.88e+6 83911 190 42.01 1.08 0.06 325 18 8 56 300 56
C6 9 24 2.89e+7 718015 190 374.72 6.39 0.08 3122 79 8 56 864 56
C7 10 26 – 2.55e+6 184 – 21.74 0.10 – 236 8 – 2412 56
C8 10 27 – 1.11e+7 570 – 145.24 0.28 – 1237 9 – 3733 94
C9 10 28 – – 1225 – – 0.67 – – 10 – – 153
M1 3 15 33999 7668 4366 0.16 0.04 0.03 9 8 8 47 71 73
M2 4 17 124237 18847 2036 0.71 0.11 0.02 14 10 8 50 119 81
M3 4 17 157173 19597 12829 0.93 0.11 0.11 16 10 11 50 124 89
M4 5 19 562527 46170 9873 4.30 0.28 0.11 40 16 12 53 160 97
N1 3 18 78798 9117 5191 0.96 0.08 0.05 17 9 9 49 99 80
N2 4 20 279853 23462 3260 4.17 0.24 0.04 35 15 9 52 154 136
N3 4 20 378963 43767 19271 6.16 0.47 0.22 39 20 14 52 147 149
N4 5 22 1.32e+6 152163 15102 26.91 1.97 0.20 110 54 18 55 314 377
F A

5 6 6 9 9 9 0.00 0.00 0.00 7 7 7 8 8 8
F A

10 11 11 9 9 9 0.00 0.00 0.00 7 7 7 8 8 8
F A

15 16 16 9 9 9 0.00 0.00 0.00 7 7 7 8 8 8
F B

5 5 6 7 7 7 0.00 0.00 0.00 7 7 7 6 6 6
F B

10 10 11 7 7 7 0.00 0.00 0.00 7 7 7 6 6 6
F B

15 15 16 7 7 7 0.00 0.00 0.00 7 7 7 6 6 6
A2 8 0 20 25 20 0.00 0.01 0.00 7 7 7 12 21 18
A3 16 0 25 82 27 0.00 0.01 0.01 7 7 7 17 18 17
A4 32 0 213 39 34 0.06 0.02 0.05 9 8 9 22 28 22
A5 64 0 187148 4027 42 42.68 1.22 0.23 414 17 13 27 47 27
A6 128 0 – – 50 – – 1.10 – – 31 – – 32

However, UT mostly still explores less states than A∗, thereby producing significant
shorter error traces than greedy search.

Overall, the concept of useless transitions has shown its potential in an impressive
way. The results show a significant improvement of the error traces in comparison to
greedy search as well as a significant reduction of the explored state space compared
to A∗. On many problems, the size of the explored state space is even lower than with
greedy search. Our experimental evaluation has shown this effect on a large number of
benchmarks, ranging from academic to industrial examples with instances of different
difficulties, ranging from very easy to very hard. Some problems represent timed sys-
tems. We have seen that the overall performance of UT depends on the precision of
the underlying distance estimation function. With UT, a sophisticated distance function
like hL already often leads to significant better guidance of the state space traversal than
with greedy search and A∗. More informative distance functions (like hU) also lead to
better search guidance when applied with UT, and hence, the number of explored states
further decreases. With less informative distance functions (like hgd), the impact of UT
decreases and the whole search process degenerates towards A∗.

198 M. Wehrle, S. Kupferschmid, and A. Podelski

Table 3. Experimental results for hgd. Abbreviations as in Table 1.

explored states runtime in s memory trace length
Inst. #a #v A∗ G UT A∗ G UT A∗ G UT A∗ G UT

C1 5 15 56496 18796 32583 0.12 0.06 0.12 11 9 10 54 1167 61
C2 6 17 185109 66389 107175 0.49 0.22 0.42 20 14 17 54 1847 69
C3 6 18 240090 94536 133529 0.68 0.33 0.55 24 17 20 54 2153 68
C4 7 20 2.45e+6 1.11e+6 1.27e+6 8.00 3.80 5.84 160 100 124 55 6805 71
C5 8 22 2.28e+7 1.27e+7 1.07e+7 82.79 43.50 56.38 1319 877 976 56 35067 67
C6 9 24 – – – – – – – – – – – –
M1 3 15 44611 12277 19333 0.21 0.07 0.10 9 9 8 47 2779 95
M2 4 17 176429 43784 67184 0.96 0.28 0.33 16 14 11 50 11739 105
M3 4 17 188472 54742 84020 1.05 0.37 0.46 15 15 12 50 12701 113
M4 5 19 706127 202924 319485 5.02 1.69 1.98 41 43 26 53 51402 218
N1 3 18 94908 15732 29276 1.10 0.18 0.28 17 11 11 49 3565 113
N2 4 20 391813 102909 149431 5.49 1.42 1.71 36 27 22 52 18180 130
N3 4 20 428812 131202 166041 6.34 2.04 1.94 35 30 21 52 20021 160
N4 5 22 1.76e+6 551091 734171 34.13 11.73 10.89 111 115 74 55 90467 147
F A

5 6 6 658 271 658 0.00 0.00 0.00 7 7 7 8 218 8
F A

10 11 11 13623 271 13623 0.12 0.00 0.13 24 8 24 8 218 8
F A

15 16 16 109773 271 109773 1.61 0.00 1.78 309 9 309 8 218 8
F B

5 5 6 78 496 9 0.00 0.00 0.00 7 7 7 6 79 6
F B

10 10 11 523 6.73e+6 9 0.00 94.81 0.00 8 3254 7 6 27107 6
F B

15 15 16 1718 – 9 0.03 – 0.00 17 – 7 6 – 6
A2 8 0 359 27 334 0.00 0.01 0.00 7 7 7 12 22 12
A3 16 0 61633 344 49652 0.13 0.01 0.18 13 7 14 17 169 17
A4 32 0 – 38209 – – 0.30 – – 18 – – 867 –
A5 64 0 – – – – – – – – – – – –

6 Conclusion

We have introduced the concept of useless transitions to directed model checking as an
adaptation of the useless actions approach that has successfully been proposed in the
area of AI Planning. Based on useless transitions, we have proposed a hybrid algorithm
between A∗ and greedy search that seems to identify the sweet spot of the trade-off
between scalability and short computed error traces. We have implemented this algo-
rithm and evaluated it empirically on a number of benchmarks for a number of distance
estimation functions. Our empirical evaluation shows a substantial performance gain
in terms of explored states when compared with A∗, and a significant solution qual-
ity improvement when compared with greedy search. Due to better guidance abilities,
we often even explore less states than greedy search, being able to solve much larger
problems than A∗ and greedy search.

As outlined in the discussion section, our approach seems to be currently best suited
for distance estimation functions that are computed on-the-fly, and less suited for dis-
tance functions based on pattern databases. This is because the time overhead seems to
be too large when adapting it for such functions in a straight forward way. To investigate
how to adapt our concept efficiently to distance functions based on pattern databases will
be an important topic for future research. Furthermore, it will be interesting to refine our

Transition-Based Directed Model Checking 199

concept to more than two degrees of uselessness. We expect that algorithms exploiting
that knowledge further improve the state space traversal.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. This work was partly
supported by the German Research Foundation (DFG) as part of the Transregional Col-
laborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS, http://www.avacs.org/).

References

1. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1–2), 5–33
(2001)

2. Dierks, H.: Comparing model-checking and logical reasoning for real-time systems. Formal
Aspects of Computing 16(2), 104–120 (2004)

3. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving
abstractions. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 19–34. Springer, Hei-
delberg (2006)

4. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the
validation of communication protocols. International Journal on Software Tools for Technol-
ogy Transfer 5(2), 247–267 (2004)

5. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg
(2001)

6. Groce, A., Visser, W.: Heuristics for model checking Java programs. International Journal on
Software Tools for Technology Transfer 6(4), 260–276 (2004)

7. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Re-
search 26, 191–246 (2006)

8. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

9. Hoffmann, J., Smaus, J.-G., Rybalchenko, A., Kupferschmid, S., Podelski, A.: Using pred-
icate abstraction to generate heuristic functions in Uppaal. In: Edelkamp, S., Lomuscio, A.
(eds.) MoChArt IV. LNCS, vol. 4428, pp. 51–66. Springer, Heidelberg (2007)

10. Krieg-Brückner, B., Peleska, J., Olderog, E.-R., Baer, A.: The UniForMworkbench, a
universal development environment for formal methods. In: Woodcock, J.C.P., Davies, J.,
Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1186–1205. Springer, Heidelberg (1999)

11. Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podelski, A.,
Behrmann, G.: UPPAAL/DMC – abstraction-based heuristics for directed model checking.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 679–682. Springer,
Heidelberg (2007)

12. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuris-
tic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp.
35–52. Springer, Heidelberg (2006)

13. Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via russian doll
abstraction. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
203–217. Springer, Heidelberg (2008)

http://www.avacs.org/

200 M. Wehrle, S. Kupferschmid, and A. Podelski

14. Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster than UPPAAL? In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 552–555. Springer, Heidelberg (2008)

15. Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer Sys-
tems 5(1), 1–11 (1987)

16. Pearl, J.: Heuristics: Intelligent search strategies for computer problem solving. Addison-
Wesley, Reading (1984)

17. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic
pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
497–511. Springer, Heidelberg (2004)

18. Qian, K., Nymeyer, A., Susanto, S.: Abstraction-guided model checking using symbolic
IDA* and heuristic synthesis. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 275–
289. Springer, Heidelberg (2005)

19. Seitz, C.L.: Ideas about arbiters. Lambda 1, 10–14 (1980)
20. Wehrle, M., Kupferschmid, S., Podelski, A.: Useless actions are useful. In: Proceedings of

the 18th International Conference on Automated Planning and Scheduling (ICAPS 2008),
pp. 388–395. AAAI Press, Menlo Park (2008)

Memoised Garbage Collection
for Software Model Checking

Viet Yen Nguyen1 and Theo C. Ruys2

1 RWTH Aachen University, Germany
http://moves.rwth-aachen.de/~nguyen/
2 University of Twente, The Netherlands

http://www.cs.utwente.nl/~ruys/

Abstract. Virtual machine based software model checkers like jpf and
MoonWalker spend up to half of their verification time on garbage
collection. This is no surprise as after nearly each transition the heap
has to be cleaned from garbage. To improve this, this paper presents
the Memoised Garbage Collection (MGC) algorithm, which exploits the
(typical) locality of transitions to incrementally perform garbage collec-
tion. MGC tracks the depths of objects efficiently and only purges ob-
jects whose depths have become infinite, hence unreachable. MGC was
experimentally evaluated via an implementation in our model checker
MoonWalker and benchmarks using the parallel Java Grande Forum
benchmark suite. By using MGC, a performance increase up to 78% was
measured over the traditional Mark&Sweep implementation.

1 Introduction

Within the software development cycle, model checkers are often used to vali-
date the initial design of a system before actually implementing it. The process
of model checking usually consists of three parts: modelling, specification and
verification. During the modelling phase, an abstraction is made from the de-
sign under verification. This abstraction – the model – is then verified against
the specification. This traditional approach has its disadvantages. For, (i) creat-
ing an abstraction at the right level is considered difficult, (ii) the abstraction is
crafted manually and prone to human error, (iii) the model and its semantics are
bounded to the expressiveness of the modelling language, which generally tend
to be rigourously formalised (e.g., process algebra’s, state machines) [4] and (iv)
after validation, the model still has to be transformed to an implementation. As
fully automated code generators do not exist (yet), parts of this refinement step
have to be done manually.

Software model checking overcomes these labor intensive problems by veri-
fying the implemented system directly instead of the abstract model. This ap-
proach has been pioneered by Klaus Havelund [9] in the first version of the Java
PathFinder (jpf). This initial version of jpf comprised a Java to Promela trans-
lator that enabled the verification of Java programs using the model checker
Spin [10]. This experiment highlighted many challenges associated with the

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 201–214, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

202 V.Y. Nguyen and T.C. Ruys

(a) Java PathFinder (b) MoonWalker

Fig. 1. Profiler data from Raytracer 3-1 benchmark [22] (see Section 4.2) describing
the stakes of garbage collection (GC), state storage (State), exploration (DFS) and all
remaining functionality (Misc.)

software model checking approach. The foremost problem was overcoming the
semantic gap between Java and Promela. This was solved by introducing the
bytecode interpretation approach in the second iteration of jpf [23,25]. Ever
since, more techniques have been developed to make software model checking
more effective [15]. Within the context of this paper, the emergence of thread
and heap symmetry reduction techniques [11,12,17] are most important.

These developments gave rise to other software model checkers, like xrt [8],
BOGOR [20], Bandera [4] and MoonWalker [2,21,26]. The latter is a soft-
ware model checker developed at the University of Twente. It verifies CIL assem-
blies – better known as Microsoft .net programs – for assertion violations and
deadlocks. It is written in C#, runs on Windows, Linux and MacOS X and its
main purpose it so serve as a testbed for experimenting with novel model check-
ing techniques. The architecture of the initial version [1] was heavily inspired by
jpf’s. In terms of performance, MoonWalker is comparable with jpf. For the
second iteration of MoonWalker, we developed new techniques for speeding
up verification [18]. In this paper, we present one of our contributions.

Using a profiler, we observed that the software model checkers typically spend
around half of the time on garbage collection (see Figure 1 for an illustrating
example). This does not come as a surprise as after most transitions the heap has
to be cleaned from garbage. To lower the stake of garbage collection and there-
fore reduce the time needed for verification, we developed a new algorithm called
the Memoised Garbage Collector (MGC). This algorithm is inspired by incre-
mental graph updates from graph grammars and routing [19], and has a more
favourable time-complexity compared to the often used Mark&Sweep (M&S)
algorithm [16]. The key idea here is that instead of calculating reachability of
a vertex (like M&S does), track the depths of the objects efficiently and purge
objects whose depth becomes infinite, i.e., became unreachable.

This paper is further organised as follows. Section 2 outlines background re-
search. This is followed by a description of MGC in section 3. Section 4 describes
the benchmark setup, results and discussion. This paper ends on directions for
future work (section 5) and the conclusions.

Memoised Garbage Collection for Software Model Checking 203

2 Background

Notation-wise, in this paper, a directed graph G with a source vertex is defined
as G = (V, v0, E), where V is the set of vertices, E the set of edges, and v0 ∈ V
is the initial, root vertex. The direct predecessors of a vertex u in a graph G
is defined as the set Pred(G, u). The set of direct successors of a vertex u are
defined as Succ(G, u).

2.1 Garbage Collection for Symmetry Reduction

Garbage collection [14] is a form of automatic memory management. It is the
process of reclaiming memory allocations that will not be used in the future,
thereby freeing up memory. Garbage collection is a rather expensive process,
it usually requires the traversal of all memory allocations before it is decidable
which allocations can be reclaimed. Within the context of software model check-
ing, garbage collection is used for a slightly different purpose, as identified by
Iosif [13].

The scenario of a typical software model checker is as follows. Consider an
object-oriented language that disallows pointer arithmetic, like Java or C#. Ob-
jects used by a program are internally stored in an array. Yet, because pointer
arithmetic’s is disallowed, the index of an object (i.e., its address) has no se-
mantic value. Objects can only be reached via dereferencing. When references
between objects in an array are mapped, the resulting graph is a heap graph. The
shape of the heap graph is of semantic value, because the references between ob-
jects are. Due to different interleavings of a program, the software model checker
can reach different states such that both have the same heap graph shape, but the
objects in question are permutated differently in the respective arrays. If states
are matched by simply matching array-equivalence, the semantically equivalent
heaps will be seen as different, thereby increasing the number of states un-
necessary. Detection of semantically equivalent heaps is called heap symmetry
detection [11,15].

To date, two variants of heap symmetry reduction are known to be effective.
The technique of Iosif [11] traverses the full heap graph and creates a canoni-
cal array of objects out of it. This canonical array is stored in the hashtable.
Upon state matching, the state to be matched is canonicalised and then the
canonicalised arrays are matched. The technique of Lerda et al. [15] maintains a
canonicalised array, instead creating one when necessary. The latter is employed
by MoonWalker. Both rely on the garbage collection algorithm to function. A
heap graph traversal is needed for purging unreferencable, i.e., garbage, objects.
This stems from an important observation by Iosif that garbage objects may dif-
fer between states that have different paths leading to them, but are equivalent
when canonicalised [13].

In software model checking though, it is observable that changes between
successive states are small. Hence, the changes to the heap graph are also small.
This can be exploited by tracking these changes and have them drive the garbage
collection algorithm. Time can be saved for especially large heaps.

204 V.Y. Nguyen and T.C. Ruys

2.2 Incremental Shortest Path

To take advantage of the small changes between successive states, we propose a
garbage collection algorithm inspired by an incremental shortest-path algorithm.
A generalised algorithm for single-source directed graphs with positive weights
was devised by Ramalingam and Reps [19]. See Algorithm 1. It can be viewed
as an incremental version of Dijkstra’s shortest path algorithm [5].

Traditionally, depths of vertices are computed all at once using Dijkstra’s
algorithm, stored and used when necessary. We use depth(u) to indicate the
stored depth of vertex u. When the graph changes from G to G′, the real depths
of the vertices may change. This is however not reflected in the stored depths.
Thus usually, upon a change to the graph, Dijkstra’s algorithm is called to
globally recompute the stored depths.

For large graphs, it is more efficient to recompute only the stored depths of
vertices whose real depths have changed. To date however, there is no method
to determine efficiently and precisely this set of vertices. However an over-
approximation of this set can be traversed by using Ramalingam and Reps’s
notion of inconsistency and a top-down traversal order. The former is defined as
follows:

Given the stored depth mapping depth, a graph G′ = (V ′, v′0, E
′) and

the right-handside function rhs(G′, u) = minv∈Pred(G′,u) depth(v) + 1,
a vertex u ∈ V ′ is inconsistent if rhs(G′, u) �= depth(u).

Inconsistent vertices are spotted cheaply by monitoring the changes to the pre-
decessor transitions upon graph changes, as shown later in Section 3. Then, the
inconsistent vertices are traversed according to their key, which is defined as the
minimum of the rhs and the stored depth: key(G′, u)=min(rhs(G′, u), depth(u)).
The vertex u with the lowest key is processed first, see line 2 of Algorithm 1. It is
the inconsistent vertex closest to the root. If there are multiple vertices with the
same lowest key, one is selected non-deterministically. In case its rhs is smaller
than its stored depth, we know that the changes to the graph moved u closer
to the root. We can assign its rhs value to depth to make it consistent (line
3-4). This could cause its successors, Succ(G′, u), to become inconsistent, and
they will be processed when their key is the lowest. On line 5-6, we deal with
the case that rhs(G′, u) is greater than depth(u), thus it moved farther from the
root. We assign its stored depth with infinity (∞). This ensures vertex u’s key is
purely determined by the rhs and if it is the lowest, it will be processed again.

Algorithm 1. RamalingamReps()
Data. graph G′ = (V ′, v′

0, E
′)

while G′ contains inconsistent vertices do1

u ← the vertex with the lowest key2

if rhs(G′, u) < depth(u) then3

depth(u) ← rhs(G′, u)4

else if depth(u) < rhs(G′, u) then5

depth(u) ← ∞6

Memoised Garbage Collection for Software Model Checking 205

The cause-and-effect behaviour of making vertices consistent and triggering its
successors become inconsistent is guaranteed to reach a fixpoint because of the
traversal order by the lowest key. A proof of correctness is provided in [19].

Intuitively, this algorithm determines a subgraph of vertices for which the
stored depths reflect the real depths. This is ensured for consistent vertices whose
stored depth is smaller or equal to the vertex with the smallest key value. Based
on this subgraph, the inconsistent vertex closest to this subgraph is made consis-
tent. This enlarges the subgraph. This is recursively done until all inconsistent
vertices are traversed and the subgraph is equal to the graph. A walkthrough
of this algorithm is shown in Figure 3. It outlines the steps of Ramalingam and
Reps’s algorithm on graph G′ from Figure 2.

v0

v1 v2

v4

v3

v5 v6

0

1 2

2

3

3 3

(a) Graph G

v0

v1 v2

v4

v3

v5 v6

0

1 2

2

3

3 3

(b) Graph G′

Fig. 2. Graph G was changed to graph G′, but the stored depths (the labels upper-
right from the vertex) were not recomputed. Because of this, vertices v2, v3 and v6 are
inconsistent, as indicated by the gray fill in graph G′.

The foremost application of Ramalingam and Reps’s algorithm is in routing.
Routers need to recalculate shortest paths to neighbouring routers when the
connections change. Whereas Dijkstra’s algorithm recalculates all shortest paths,
this algorithm only recalculates shortest paths that have actually changed. For
large networks, this algorithm reduces time. In this paper, we show how the idea
behind this algorithm improves garbage collection in software model checking.

3 Memoised Garbage Collection

Ramalingam and Reps’s algorithm works on graphs in general. To make it appli-
cable for garbage collection in software model checking, we introduce additional
semantics upon it.

First, a heap does not have a single root object, but multiple, namely the
objects referenced from the call stacks of the program threads (see Figure 4). To
make a heap graph a single-root graph, we introduce a fictive root v0 whose suc-
cessors are the objects referenced from the call stacks. Each reference counts as a
distance of one. Given these semantic additions, the resulting graph can be pro-
cessed by Ramalingam and Reps’s algorithm. When the algorithm terminates,
objects with an infinite depth are unreachable and can be garbage collected.

Due to the dynamic nature of object oriented software, the algorithm must
also deal with newly instantiated objects, as they change the heap graph. To

206 V.Y. Nguyen and T.C. Ruys

v0

v1 v2

v4

v3

v5 v6

0

1 2

2

3

3 3

(a) Initial situation. Ver-
tex v2 is selected as the
inconsistent vertex with
the lowest key.

v0

v1 v2

v4

v3

v5 v6

0

1 1

2

3

3 3

(b) Vertex v2 was made
consistent by assigning its
rhs to its stored depth.
Vertex v3 is next.

v0

v1 v2

v4

v3

v5 v6

0

1 1

2

∞

3 3

(c) depth(v3) becomes in-
finity because it has no
predecessors. Vertex v6 is
next.

v0

v1 v2

v4

v3

v5 v6

0

1 1

2

∞

3 2

(d) rhs(G′, v6) is based
on v2 and therefore its
stored depth becomes
two. No inconsistent
vertices left.

v0

v1 v2

v4 v5 v6

0

1 1

2 3 2

(e) Vertices of infinite
depth are purged, like v3.
Vertices v4 and v5 did not
need to be traversed.

Fig. 3. Walkthrough of Ramalingam and Reps’s algorithm on graph G′ of Figure 2.
The vertices in the dashed subgraph are ensured consistent.

ensure that the new object will be seen as reachable from the fictive root, the
stored depth of that object must be initialised with infinity. It will then be seen
as inconsistent upon the first next run of the algorithm, and as such, it will be
made consistent by assigning it with a consistent depth.

3.1 Implementation

An implementation of the algorithm has three main issues to consider, namely
(i) how inconsistent vertices are determined, (ii) how an inconsistent vertex with
the least key is found and (iii) how predecessors of an object are determined.
Algorithm 2 is an implementation of Algorithm 1 for which these issues have
been resolved.

(i) The first issue is tackled by lines 3-6 and lines 15-19. Initially, a vertex could
be detected on inconsistency by computing its rhs and compare it against its
stored depth. Computing the rhs is expensive as it requires the traversal of all the
predecessors. Therefore, we first use a safe indication, which we call “dirtyness”.
A predecessor set is dirty whenever it was modified, like additions and removal
of predecessor objects, from the previous predecessor set, Pred(G, o). Also, it

Memoised Garbage Collection for Software Model Checking 207

callstacks

Eval. stack:

Locals:

Arguments:

method
frame

frame
method

method

method

method

frame

frame

frame

Fields:

heapthreads

Fig. 4. Organisation of a state in a software model checker. It consists of two threads,
each having a callstack. The three objects on the left are root objects, as they are
referenced directly from the call stacks.

is possible that during one transition, an object is created, used and discarded.
Those objects have an empty predecessor set and also have to be considered
for inconsistency. When an object passes these tests, then ultimately its rhs is
calculated and compared against its depth. Between lines 15-19, successor objects
are traversed that could have become inconsistent because their common parent
has become consistent. The inconsistent childs are added to the priority queue
Q so that they will be made consistent.

(ii) The second issue is determining the object with the least key. Inconsistent
objects added to Q are sorted by their key. Due to this order, the object with
the least key can be extracted in constant time. In case the key changes of an
inconsistent object’s that is already in Q (because its predecessor has a changed
depth), then this change is reflected by an update to the queue, as done in line 17.

(iii) The third issue relates to function rhs and Algorithm 2. The heap only
stores the successor relation explicitly. The predecessor relation can be derived
implicitly from this. However, to speed up the algorithm, we maintain an explicit
predecessor relation. In MoonWalker, this relation has to be updated in the
following situations:

– Upon interpretation of the stfld instruction, if an object reference is stored
into an object’s field.

208 V.Y. Nguyen and T.C. Ruys

Algorithm 2. MemoisedGC(s, s′)
Data. priority queue Q
G = (V, E, v0) ← the object graph associated with state s1

G′ = (V ′, E′, v0) ← the object graph associated with state s′, the successor of s2

foreach object o ∈ V ′ do3

if Pred(G′, o) is dirty ∨ Pred(G′, o) is empty then4

if rhs(G′, o) �= depth(o) then5

add o to Q with order key(G′, o)6

while Q is not empty do7

u ← dequeue element from Q with smallest order8

if rhs(G′, u) < depth(u) then9

depth(u) ← rhs(G′, u)10

Affected ← Succ(G′, u)11

else if depth(u) < rhs(G′, u) then12

depth(u) ← ∞13

Affected ← Succ(G′, u) ∪ {u}14

foreach o ∈ Affected do15

if rhs(G′, o) �= depth(o) then16

if o ∈ Q then adjust o on Q with order key(G′, o)17

else add o to Q with order key(G′, o)18

else if o ∈ Q then remove o from Q19

– Upon interpretation of the stelem instruction, if an object reference is stored
into an array element.

– Upon a System.Array.ArrayCopy internal call, when object references are
copied to the destination array.

– When an object reference is pushed on the call stack; then the referenced
object becomes a child of the fictive root.

– When an object reference is popped from the call stack; then the referenced
object is removed as child of the fictive root.

When state collapsion [23] is applied, the predecessor relation also has to be
updated similarly upon restoring an object, array and callstack. Furthermore,
the predecessor relation has to be stored as a bag (i.e., a counting set). It is
possible that an object references another object multiple times by holding the
same object reference in multiple fields. If one of these references is removed, then
the predecessor relation still holds. The predecessor relation between objects is
discarded when all references to the successor object are removed.

3.2 Time Complexity

Whereas the time complexity of M&S is lineair to the size of the heap, the time-
complexity of MGC is expressed in other terms. The main term is that of an
affected object, which is an object whose stored depth has changed during one
run of the algorithm. The extended size of an affected object o is |Pred(o)|. Given
these terms, [19] showed that the worst-case time-complexity of algorithm 2 is

Memoised Garbage Collection for Software Model Checking 209

O(N · (log(N) + M)), where N is the sum of extended sizes of affected objects
plus the amount of affected objects, and M the cost to calculate rhs.

4 Experimental Evaluation

To evaluate the effectiveness of MGC, we wanted to compare it against M&S.
M&S was already implemented in MoonWalker. For running the experiments,
we also implemented MGC. It took us three man-months to implement it, in-
cluding the learning-curve necessary to pick up the .net platform, to get familiar
with MoonWalker’s code and implementing several enhancements to Moon-

Walker in between.

4.1 Bandera’s Models

Instead of crafting our own benchmarks, we purposely used existing benchmarks.
Otherwise one could interpret the results with bias. Thus, we took three models
from Bandera’s suite, namely Pipeline, SleepingBarbers and BoundedBuffer,
and manually ported them to C#. However, after running these academic ex-
amples through MoonWalker, we found them unsuitable for our comparison.
The more favourable time-complexity of MGC would only be advantageous for
models with big heaps and long verification times. The three small examples
have either short verification times (around a second) or very small heaps.

4.2 Java Grande Forum Benchmarks

Benchmarks that resemble real life situations usually have bigger and complex
heaps and larger state spaces, making them more interesting and challenging
to verify. The three multi-threaded models in the Java Grande Forum Bench-
mark suite (JGF) [22,24] are such models. These models were developed for the
scientific community to evaluate emerging parallel programming paradigms and
to expose their weaknesses. Two of these models, MolDyn and Raytracer, were
usable. The third benchmark, MonteCarlo, uses file I/O which is not (yet) sup-
ported by MoonWalker. The benchmarks have two parameters, denoted as
t − d, where t is the number of threads and d is the datasize. For MolDyn, the
datasize means the number of particles that is simulated. For Raytracer it means
the number of pixels in both width and height that is being rendered. A higher
t and/or a higher d will lead to a larger state space. Additionally, to get an idea
of the models’s size and complexity, its metrics are shown in table 1.

Table 1. Metrics of the MolDyn en Raytracer benchmarks

Metric MolDyn Raytracer

#Lines of code 965 1540
#Classes 9 17
#Methods 28 71
#Statements 433 421
#Source code size in Kb. 26 49

210 V.Y. Nguyen and T.C. Ruys

As the benchmarks are written in Java, we had to convert them to C#.
Due to the size of the code, converting it manually as we did for Bandera’s
small examples is too error-prone. Instead, we used Microsoft’s Java Language
Conversion Assistant 3.0, which is included with Microsoft Visual Studio 2005.
The conversion was nearly complete and self-contained. The only two things
that were not automatically converted were assert statements and final field
attributes. The first was fixed by manually converting the assert statement to a
System.Diagnostics.Debug.Assert statement in the resulting C# code. The
second was fixed by adding the readonly attribute to fields which are marked
final in the Java code.

While running initial runs, MoonWalker found an assertion violation in
both models due to a datarace. The datarace occurs over the accesses to variables
used to check the assertion and therefore the race does not affect the behaviour
of the model. Data races in the Java Grande Benchmarks have also been detected
by [6]. While the datarace can be fixed by proper synchronisation of accesses to
the concerning variables, we purposely did not do that. We wanted to keep the
benchmarks as pure as possible, and secondly, the datarace only increases the
state space, so the only side-effect is that the model checker has to do more work.

4.3 Setup

All benchmark runs were performed on a cluster of nine identical systems. Each
system has a 2.4 GHz CPU, 2 GB of memory, running Windows XP and installed
with .NET 3.0. For both benchmarks, all configurations from 2-1 to 3-3 were ran,
with a total of six configurations. Each benchmark run was performed with both
static and dynamic partial order reduction enabled [18], a memory threshold of
1.5 GB and a time-limit of 10 hours. A grand total of 24 runs were made, which
took a day on the cluster to complete.

4.4 Results

The results of the experiment are summarised in two tables. Table 2 describes
the results of the MolDyn benchmark and Table 3 describes the results of the
Raytracer benchmark.

The heap size column describes the max. heap size encountered during verifi-
cation. The time column is the verification time in seconds. A verification that
has run out of time is indicated by “o.t.”. The memory column is the maximal
memory used during verification in megabytes. A verification that has run out
of memory is indicated by “o.m.”. The states column is the amount of states
in the state space. The revisits column is the amount of states revisited during
verification. The states stored column is the amount stored in the hashtable.
This may differ from the amount of states in the state space due to the ex post
facto transition merger that is enabled with stateful dynamic partial order re-
duction [7]. Note that three columns are represented in thousands for the results
from MolDyn benchmarks. The state stored/Mb. column gives an indication of
the memory utilisation efficiency. The states/sec. column is the amount of states
processed per second during verification. It is calculated by adding the amount
of states with the revisits and have that divided by the verification time.

Memoised Garbage Collection for Software Model Checking 211

Table 2. MolDyn results with the Memoised Garbage Collector (MGC) and the Mark
& Sweep Garbage Collector (M&S)

con
fig.

gc. heap
siz

e (#
ob

j.)

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

(·1
0
3)

rev
isit

s (·1
0
3)

sta
tes

sto
red

(·1
0
3)

sta
tes

sto
red

/M
b

sta
tes

/se
c

2-1 MGC 45 434 1470 1482 1063 1482 1008 5863
M&S 458 1470 1482 1063 1482 1008 5560

2-2 MGC 101 1447 o.m. 1928 790 978 652 1878
M&S 1553 o.m. 1926 788 977 651 1748

2-3 MGC 253 78 o.m. 246 0 246 164 3163
M&S 72 o.m. 249 0 249 166 3475

3-1 MGC 60 913 o.m. 2726 3022 1664 1109 6296
M&S 1038 o.m. 2724 3018 1662 1108 5531

3-2 MGC 144 91 o.m. 328 0 328 218 3591
M&S 98 o.m. 327 0 327 218 3324

3-3 MGC 372 153 o.m. 152 0 152 101 993
M&S 68 o.m. 151 0 151 101 2238

Table 3. Raytracer results with the Memoised Garbage Collector (MGC) and the
Mark & Sweep Garbage Collector (M&S)

con
fig.

gc. heap
siz

e (#
ob

j.)

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

rev
isit

s

sta
tes

sto
red

sta
tes

sto
red

/M
b

sta
tes

/se
c

2-1
MGC

935
1 37 844 579 844 23 1231

M&S 1 36 844 579 844 23 1198

2-2
MGC

940
109 664 65923 53264 65923 99 1091

M&S 113 655 65923 53264 65923 101 1055

2-3
MGC

3254
o.t. 1151 79673 19899 79673 69 3

M&S o.t. 1373 97233 24289 97233 71 3

3-1
MGC

1368
38 483 53631 71076 53631 111 3278

M&S 68 475 53631 71076 53631 113 1842

3-2
MGC

1368
o.t. 1571 32520383 248967 187623 119 910

M&S o.t. 1572 30093872 246229 185707 118 843

3-3
MGC

1384
23 o.m. 43330 0 43330 29 1890

M&S 32 o.m. 43323 0 43323 29 1347

From the table of MolDyn, we observe that MGC is faster (in terms of states/
sec) for configurations 2-1, 2-2, 3-1 and 3-2, with respectively 5%, 7%, 14% and 8%
performance increase. The average performance increase with MGC on these con-
figuration is 9%. Table 3 shows that MGC is faster for all configurations except
configuration 2-3. The increases are respectively, 3% for both configurations 2-1
and 2-2, 78% for configuration 3-1, 8% for configuration 3-2 and 40% for configu-
ration 3-3. The average performance increase of these configurations is 26%.

We hypothesised that the increase of performance correlates with the heap
size. This is partially true. We saw that Raytracer configurations have bigger

212 V.Y. Nguyen and T.C. Ruys

heaps, and as such the performance increase is generally higher than those of
the MolDyn benchmarks. The latter configurations however revealed a surpris-
ing result, namely a huge decline in performance for configuration 3-3 and a
moderate decline in performance for configuration 2-3. We investigated this us-
ing a profiler and observed that our initial assumption does not always hold. We
assumed that the heap does not change much between successive states. This
depends however on the heap property that is being measured. The heap shape
does not change much, but we did observe that the depth labelling changes
much for MolDyn configurations 2-3 and 3-3. As object references are popped
and pushed upon the callstacks, the successors of the fictive root change, and
thus, also the object graph. Also, these affected objects can cause a chain re-
action of changed depth labelling of subsequent successor objects. The MGC

bases object reachability on this depth labelling.
Furthermore, the profiler revealed an overhead in the maintenance of parent

lists. These list are updated upon every change to the object graph. The changes
are especially heavy when a collapsed state is restored, where it is not uncommon
that many objects change.

Note that both observations depend on the model that is being verified. The
Raytracer model is less susceptible to massive depth-labelling changes between
successive states, thereby benefiting more from MGC.

When it comes to memory overhead (in terms of states stored per Mb.), we
see that there is no significant difference between MGC and M&S. This means
that the memory overhead for maintaining parentlists is neglectible.

5 Future Work

Profiler measurements revealed that MGC decreases the stake of garbage collec-
tion from55%to 24%onRaytracer 3-1.Yet, during development of MGC, we iden-
tified several opportunities for further optimising the garbage collection process.
Implementation. The implementation can be further improved by using a HOT
queue [3] instead of currently used the Interval Heap for Q in Algorithm 2. The
HOT queue has a better time-complexity for monotone increasing keys, which
holds for this algorithm. Also the calculation of the rhs function can be done in
constant-time using the improved algorithm by [19]. Both are more difficult to
implement efficiently and for this reason, it is deferred as future work.
No garbage or lots of garbage. While studying the effect of MGC, we observed
that lots of calls to the garbage collector do not result in the collection of garbage
objects and that some calls result in the collection of lots of objects. The first es-
pecially happens when the callstack of a thread grows by successive method calls.
If one would develop a method to detect this beforehand and disable the garbage
collector, time is saved, especially when combined with M&S. The latter, collec-
tion of lots of garbage, occurs when exploration comes closer to the end state. By
switching from MGC to M&S, thus a hybrid-approach, would benefit here.
Other incremental shortest path algorithms. The incremental shortest path algo-
rithm by Ramalingam and Reps set off an active field of study on incremental

Memoised Garbage Collection for Software Model Checking 213

shortest path calculation. Since its publication, hundreds of publications de-
scribing refinements and specialisations have emerged. It is well possible that
improvements have been developed that are also applicable to MGC.
Incremental cycle detection with reference counting. The improvements men-
tioned above are merely to improve the MGC. Our study also gave us an idea
for a more fundamental improvement. MGC uses the depth of a vertex as a
property to determine reachability. In the end, it is all about the latter, not
about the depth. Other properties of a graph might be used instead. For exam-
ple, a fundamental different approach is to combine reference counting with a
form of incremental cycle detection. The incremental cycle detector exploits the
changes in a transition by incrementally maintaining the list of cycles in a heap.
The reference garbage collector only has to check whether the change causes the
cycle to become unreachable from the object graph, and if so, collect the cycle.
Applications of incremental computation. The incremental nature of the MGC is
also applicable to other algorithms.For instance, [17] describes an incremental heap
canonicalisation algorithm based on Iosif’s canonicalisation algorithm [11]. They
use the shortest path to achieve this, and, as they suggest themselves, can be calcu-
lated incrementally. This can be further extended to gain an incremental k-BOTS
algorithm, such that thread symmetries [12] can be detected incrementally.

6 Conclusions

Software model checkers spend around half of their time on garbage collection
using the Mark&Sweep algorithm. To optimise this, we describe the Memoised
Garbage Collecter, which has a better time-complexity than M&S. In particular,
we show how depth-information can be used to determine reachability, how an in-
cremental shortest-path algorithm can be applied to track the depths efficiently,
how this algorithm drives the MGC, how this garbage collection algorithm can
be implemented and finally an experimental evaluation of it on real-life bench-
mark models. The performance gain observed from our benchmarks is up to 78%
percent, depending on the model and configuration.

Through our work on MGC, we identified several directions for future work
(see Section 5) which hopefully lead to more improved garbage collection algo-
rithms and faster software model checking in general.

References
1. Aan de Brugh, N.H.M.: Software Model Checking for Mono. Master’s thesis, Uni-

versity of Twente, Enschede, The Netherlands (August 2006)
2. Aan de Brugh, N.H.M., Ruys, T.C., Nguyen, V.Y.: MoonWalker: Verification of

.NET Programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 170–173. Springer, Heidelberg (2009)

3. Cherkassky, B.V., Goldberg, A.V., Silverstein, C.: Buckets, Heaps, Lists, and Mono-
tone Priority Queues. In: Saks, M. (ed.) SODA 1997: Proceedings of the eighth
annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA,
pp. 83–92. Society for Industrial and Applied Mathematics (1997)

4. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Bandera, R.: A Source-Level Interface for
Model Checking Java Programs. In: ICSE 2000, pp. 762–765 (2000)

214 V.Y. Nguyen and T.C. Ruys

5. Dijkstra, E.: A Note on Two Problems in Connexion with Graphs. In: Numerische
Mathematik, vol. 1, pp. 269–271 (1959)

6. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: Efficiently Computing the Happens-
Before Relation Using Locksets. In: Havelund, K., Núñez, M., Roşu, G., Wolff,
B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262, pp. 193–208. Springer,
Heidelberg (2006)

7. Flanagan, C., Godefroid, P.: Dynamic Partial-Order Reduction for Model Checking
Software. In: Palsberg, J., Abadi, M. (eds.) POPL 2005, pp. 110–121. ACM, New
York (2005)

8. Grieskamp, W., Tillmann, N., Schulte, W.: XRT- Exploring Runtime for. NET Ar-
chitecture and Applications. In: Cook, B., Stoller, S., Visser, W. (eds.) Proceedings
of the Workshop on Software Model Checking, SoftMC 2005. Electr. Notes Theor.
Comput. Sci., vol. 144, pp. 3–26 (2006)

9. Havelund, K.: Java PathFinder, A Translator from Java to Promela. In: Dams,
D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, p. 152.
Springer, Heidelberg (1999)

10. Holzmann, G.J.: The Spin Model Checker – Primer and Reference Manual.
Addison-Wesley, Boston (2004)

11. Iosif, R.: Exploiting Heap Symmetries in Explicit-State Model Checking of Soft-
ware. In: ASE 2001, pp. 254–261. IEEE Computer Society, Los Alamitos (2001)

12. Iosif, R.: Symmetry Reductions for Model Checking of Concurrent Dynamic Soft-
ware. STTT 6(4), 302–319 (2004)

13. Iosif, R., Sisto, R.: Using Garbage Collection in Model Checking. In: Havelund,
K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 20–33. Springer,
Heidelberg (2000)

14. Jones, R., Lins, R.: Garbage Collection. John Wiley & Sons, Chichester (1996)
15. Lerda, F., Visser, W.: Addressing Dynamic Issues of Program Model Checking. In:

Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 80–102. Springer, Heidelberg
(2001)

16. McCarthy, J.: Recursive Functions of Symbolic Expressions and Their Computa-
tion by Machine, Part I. Communications of the ACM 3(4), 184–195 (1960)

17. Musuvathi, M., Dill, D.L.: An Incremental Heap Canonicalization Algorithm. In:
Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 28–42. Springer, Heidelberg
(2005)

18. Nguyen, V.Y.: Optimising Techniques for Model Checkers. Master’s thesis, Uni-
versity of Twente, Enschede, The Netherlands (December 2007)

19. Ramalingam, G., Reps, T.W.: An Incremental Algorithm for a Generalization of
the Shortest-Path Problem. Journal Algorithms 21(2), 267–305 (1996)

20. Robby, Dwyer, M.B., Hatcliff, J.: Domain-specific Model Checking Using The Bo-
gor Framework. In: ASE 2006, pp. 369–370. IEEE Computer Society, Los Alamitos
(2006)

21. Ruys, T.C., Aan de Brugh, N.H.M.: MMC: the Mono Model Checker. Electr. Notes
Theor. Comput. Sci. 190(1), 149–160 (2007); Proc. of Bytecode 2007

22. Smith, L.A., Bull, J.M., Obdrzálek, J.: A Parallel Java Grande Benchmark Suite.
In: ACM/IEEE Conference on Supercomputing (SC 2001). ACM, New York (2001)

23. Visser, W., Havelund, K., Brat, G.P., Park, S.: Model Checking Programs. In: ASE
2000, pp. 3–12. IEEE Computer Society, Los Alamitos (2000)

24. The Java Grande Forum Benchmark Suite,
http://www.epcc.ed.ac.uk/research/activities/java-grande/

25. Java PathFinder, http://javapathfinder.sourceforge.net/
26. MoonWalker, http://www.cs.utwente.nl/~ruys/moonwalker/

http://www.epcc.ed.ac.uk/research/activities/java-grande/
http://javapathfinder.sourceforge.net/
http://www.cs.utwente.nl/~ruys/moonwalker/

Hierarchical Adaptive State Space Caching
Based on Level Sampling

Radu Mateescu and Anton Wijs

INRIA / VASY, 655, avenue de l’Europe, F-38330 Montbonnot St Martin, France
{Radu.Mateescu,Anton.Wijs}@inria.fr

Abstract. In the past, several attempts have been made to deal with the state
space explosion problem by equipping a depth-first search (DFS) algorithm with
a state cache, or by avoiding collision detection, thereby keeping the state hash
table at a fixed size. Most of these attempts are tailored specifically for DFS, and
are often not guaranteed to terminate and/or to exhaustively visit all the states. In
this paper, we propose a general framework of hierarchical caches which can also
be used by breadth-first searches (BFS). Our method, based on an adequate sam-
pling of BFS levels during the traversal, guarantees that the BFS terminates and
traverses all transitions of the state space. We define several (static or adaptive)
configurations of hierarchical caches and we study experimentally their effec-
tiveness on benchmark examples of state spaces and on several communication
protocols, using a generic implementation of the cache framework that we devel-
oped within the CADP toolbox.

1 Introduction

In model checking, the state space explosion problem is the most important issue. It
stems from the fact that a linear growth of the number of concurrent processes in a
specification leads to an exponential growth of the number of states in the resulting
state space. This problem strongly limits the possibilities to verify large systems, since
state space generation algorithms typically need to keep all generated states in memory,
thereby exhausting it quickly. Over the years, many techniques have been introduced to
fight it, e.g. partial order reduction [16,5], using secondary storage [8,17], distributed
model checking [13,3,2], and directed model checking [9,10].

Another research branch is to consider partial storage of the previously explored
states. This idea has lead, roughly speaking, to two classes of approaches: one where
exhaustive exploration of the state space is guaranteed, and one where it is not. Since
we are concerned with state space generation, i.e. the traversal of all the transitions in a
state space, we focus on the first class; the reader is referred to Section 5 for the second
one. The first class contains most work on state space caching [19], where a cache is
employed which can never contain more than n states, and a technique which can be
referred to as covering set determination [1] where, by means of static analysis, the goal
is to identify which states to store in order to guarantee termination of the exploration.
The caching approach is usually reserved for depth-first search (DFS) exploration, since
termination can be guaranteed by efficient cycle detection, as opposed to when using

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 215–229, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

216 R. Mateescu and A. Wijs

breadth-first search (BFS). However, partial storage of explored states for BFS is desir-
able as well, since BFS (unlike DFS) can be efficiently distributed in order to perform
the state space exploration using clusters of machines.

In this paper, we focus on state space generation with the goal of storing the state
space on disk, meaning that besides minimising the memory use, we also aim at reduc-
ing the number of state revisits, which determines the amount of redundant information
in the generated state space. This distinguishes our work from earlier work on state
space caching, where the goal was to visit all states (but not necessarily traverse all
transitions) and hence memory use was the main factor of importance. First, we pro-
pose a framework allowing hierarchies of caches in addition to single caches. To our
knowledge, this has not been investigated yet in this context, although it is quite com-
mon practice in the field of hardware architectures [18]. The main idea is that several
caches together, each having different characteristics, can be more efficient than one
single cache. We study the performance of several hierarchical cache configurations
using DFS, some of them improving on results shown by single cache setups. Second,
we explain how these caches can be used for BFS by storing search levels instead of
individual states in them. This provides a generic (language-independent) on-the-fly
covering set estimation, instead of a (language-dependent) one based on static analysis.
Our main result in this setting guarantees termination of the BFS with caches if appro-
priate sampling functions are used to decide which search levels must be stored. Finally,
we propose a learning mechanism allowing the BFS algorithm to adapt on-the-fly to the
state space structure by detecting its earlier mistakes.

Using the CADP toolbox [12] and the underlying OPEN/CÆSAR environment [11]
for state space manipulation, we have implemented generic libraries for hierarchical
caches, as well as cache-equipped BFS and DFS exploration tools, which allow to finely
tune the memory use. We applied these tools on many examples of state spaces, taken
either from benchmarks, or produced from communication protocols. These experi-
ments allowed us to identify the most effective cache configurations, which can lead to
memory reductions of over one order of magnitude, and even to speedups of the genera-
tion. Our results improve over existing ones by being language-independent and robust
to the variations of the so-called locality (roughly, the size of back jumps during BFS)
of state spaces.

The paper is organized as follows. Section 2 defines the terminology we use for state
space exploration. Section 3 presents our cache-based BFS algorithm based on sam-
pling of levels, proves its termination, and defines several instances of it using hierar-
chical caches and adaptive mechanisms. Section 4 briefly describes the implementation
within CADP and gives various performance measures. Finally, Section 5 compares our
approach with previous work and Section 6 gives concluding remarks and directions for
future work.

2 Preliminaries

Labelled transition systems (LTSs) capture the operational behaviour of concurrent sys-

tems. An LTS consists of transitions s
�−→ s′, meaning that being in a state s, an action �

can be executed, after which a state s′ is reached.

Hierarchical Adaptive State Space Caching 217

Definition 1. A labelled transition system (LTS) is a tuple M = (S ,A ,T ,s0), where
S is a set of states, A a set of transition labels, T : S ×A ×S a transition relation,

and s0 the initial state. A transition (s, �,s′) ∈ T is denoted by s
�−→ s′.

Furthermore, we express that a state s′ is reachable from s with s →∗ s′, where →∗
is the reflexive, transitive closure of →. Likewise, we express with s →+ s′ that s′ is
reachable from s by traversing at least one transition. The set of enabled transitions

of s is en(s) = {(s, �,s′) | ∃� ∈ A ,s′ ∈ S .s
�−→ s′}, and the set of successor states

succ(s) = {s′ ∈S | ∃� ∈A .(s, �,s′) ∈ en(s)} consists of all states reachable from s via
a single transition.

Before generation, the structure of an LTS is not known. A generation algorithm is
given an implicit LTS Mim = (s0,en), with s0 an initial state, and en the enabled function
which can be used to generate the other states and the transitions between them, thereby
creating an explicit LTS in line with Definition 1. We call an LTS finite iff S and A are
of a finite size. Whenever a state is newly discovered, we call it a visited state; once we
have generated all transitions and successors of s by employing the enabled function,
we call s an explored state. Recognising when a newly visited state is already explored
is called duplicate detection (DD). In a standard BFS, all previously explored states
are stored in memory, in what is called the Closed set, and all visited states yet to be
explored are stored in the Open set, also called the search horizon. Given a nonempty
Open set, the exploration of all the states therein can be seen as an iteration of the BFS

algorithm, which produces a new search level consisting of all the newly generated
successors. Subsequently, these states without the duplicates make up the new Open
set, which can be subjected to a new iteration. DD will happen whenever applicable,
and the resulting LTS will contain no redundant states, i.e. states which are de facto
equal to other states in the LTS. To make things clear when it comes to partial DD,
we represent LTS generation explicitly by first constructing a generation tree of nodes.
Figure 1 depicts the generation of an LTS as the traversal of some system behaviour,
using both BFS with and without a Closed set. Left and right of the behaviour are two
trees, where the numbering of the nodes firstly indicates the search level in which the
node is encountered, and secondly, in what order the nodes are encountered. The dotted
lines visualise which system state each node maps to. Using a Closed set, all explored
nodes remain in memory, therefore, in the left tree, once nodes 2.4 and 3.5 are visited,
they are recognised as essentially being equal to nodes 2.3 and 1.1, respectively, via
their associated system states. If we consider BFS without a Closed set, on the right
of the figure, we observe partial DD. Once node 2.4 is encountered, it is recognised
as being essentially equal to node 2.3, since 2.3 at that time resides in the Open set.
However, later on, node 3.5 is not recognised as being equal to node 1.1, since the latter
has not been kept in memory, and the generation continues endlessly. From a generation
tree, an LTS is derived by creating a state for each node deemed unique. For the right
tree in the figure, this results in redundant states.

For checking duplicates, in practice, often a hash table is used to quickly search the
contents of Closed. Such a hash table uses a hash function h : S →N to store h(s) for
all s ∈ Closed. If h leads to collisions, that is there are s,s′ ∈ S such that s �= s′ and
h(s) = h(s′), then collision detection is a method to recognise this, which usually means
storing multiple states at the same index in a hash array.

218 R. Mateescu and A. Wijs

....

a
b

c
d

e

a b

c

e

d

a b

c

e

c

e

d

System
behaviour

s0

s2s1

s3

BFS without ClosedBFS with Closed

0.0

1.1 1.2

3.5

2.3 2.4

0.0

1.1 1.2

2.3 2.4

3.5

4.6

Fig. 1. BFS with and without a Closed set

3 BFS with State Space Caching

Caches have a fixed size, and a so-called replacement strategy, which determines which
element should be removed next, whenever a new element needs to be added to an
already full cache. There have been caching attempts with DFS [20,6,27,28,19,15,21,1],
and a few with BFS, which, however, are not guaranteed to terminate [29,30].

As with related work on caching with DFS, we intend to restrict the growth of the
Closed set. This, usually, has a negative effect on two other aspects of LTS generation,
namely the execution time and the size of the output LTS. Unlike most previous work,
besides the fact that we focus on BFS, we also try to minimise this negative effect. More
precisely, we aim at satisfying three criteria: (a) The approach should be independent of
any modelling paradigm, that is, it should not rely on analysis of the specification from
which the LTS is derived, e.g., by using techniques such as static analysis, as in [1]; (b)
The resulting LTS should contain as few duplicates as possible; restriction of the growth
of the Closed set, however, tends to deteriorate DD, unless the LTS has a tree structure,
or we are able to store exactly the right states in Closed, which would require prior
knowledge of the LTS structure; (c) Termination of the generation algorithm must be
guaranteed. This is not trivial for BFS, and possibly the main reason that few attempts
exist of partial DD with BFS; as regards DFS, cycle detection by keeping the DFS stack
in memory suffices to guarantee termination.

Without knowledge of the LTS structure, how can we decide which states to store and
which to ignore? Many attempts have been made in the past to predict state space struc-
tures, e.g. [1,29,7,25], but theoretically, any state may lead to any other state. Some have
observed that, although LTSs may have any conceivable structure, the ones stemming
from real specifications, which form our main target, seem to share some structural
properties [29,7]. Later, we return to this. First, we determine under which conditions
the partial storage of explored states in the Closed set does not remove the termination
guarantee of BFS.

3.1 Partial Storage of Explored States and Termination

Let us consider the relation between partial storage of explored states and termina-
tion of BFS. Earlier approaches using BFS all seem to be probabilistic in this respect;

Hierarchical Adaptive State Space Caching 219

termination is at best highly likely [30,29,7]. Consider the right search tree from
Figure 1, now with Closed = {1.1}. Note that this is sufficient to generate the LTS with-
out any redundancy. But, focusing on termination, there are more possibilities; consider
Closed = {2.3}. Even though node 3.5 is not recognised as identical to node 1.1, leading
to redundancy in the LTS, the generation will terminate, as node 4.6 will be recognised
as identical to the, stored, node 2.3. In other words, the fact that we store search level 2
means that the algorithm terminates. [1] calls a set of vertices in an automaton which en-
sures termination if states associated with them are stored a covering set. Similarly, we
call a set of states a covering set if stored related nodes ensure termination. Periodically
storing levels seems sufficient to always have a represented covering set in memory.
In those cases where a state s is explored again, some of its ‘descendants’, either im-
mediate or remote successors, will be recognised as part of a stored level, hence the
redundant work resulting from the detection failure at s is finite. The levels should be
stored completely, otherwise redundant traces may never be recognised as such (more
precisely, levels need to be stored without any internal redundancy: in the example tree,
note that node 2.4 does not need to be stored, as it is identical to node 2.3). We call
these stored levels snapshots.

Periodically storing levels allows us the construction of a covering set on-the-fly,
as long as there is no bound on the number of snapshots in memory. We investigate
this setup in more detail in Section 3.2. However, we are also interested in bound-
ing the number of snapshots in memory, since it allows us to be more rigorous at re-
moving states. Algorithm 1 shows this technique, which we call ‘BFS with Snapshots’
(BFSWS), where a sampling function f : N→B, with B the domain of the Booleans, is
used to determine at which levels to make snapshots, and n is the maximum number of
snapshots in memory. When n→ ∞, we can store an unbounded number of snapshots.

It is important to note that although duplicates are removed from Next before the new
horizon is created, this is not done when making a new snapshot, in order to keep the
levels complete. As explained in Section 4, though, storage of states in snapshots can
be implemented such that duplicate occurrences cost little extra memory to keep. Next,
Lemma 1 shows under which conditions we can guarantee termination of BFSWS even
if the number of snapshots is limited. We prove that BFSWS terminates as long as the
sampling period, i.e. the number of levels between the taking of snapshots, increases
along the search. From f , we can derive a function p f as follows:

Algorithm 1. BFS with Snapshots
Require: Sampling function f : N→B, number of snapshots n

procedure BFSWS(s0)
i, j ← 0, Open←{s0}, S0, . . . ,Sn−1 ← /0 {Initial state added to horizon}
S j ← Open {First snapshot contains initial state}
while Open �= /0 do {Repeat until there are no more states to explore}

i← i+1, Next← /0 {The next level (i+1) is currently empty}
for all s ∈Open do {Explore all states in the horizon}

Next← Next∪{s′ | ∃�.(s, �,s′) ∈ en(s)}
Open← Next \⋃n−1

k=0 Sk {Add new states to horizon}
if f (i) then j← j +1 mod n, S j ← Next {Should this level be sampled?}

220 R. Mateescu and A. Wijs

– p f (0) = 0, (as we assume f (0) is true)
– p f (i) = d, with i,d ∈ N, i,d > 0, f (p f (0) + . . . + p f (i− 1) + d) ∧ ∀0 < d′ <

d.¬ f (p f (0)+ . . .+ p f (i−1)+ d′)

In words, p f expresses the subsequent sampling periods observable in f . Now, we need
to prove that BFSWS is terminating for finite LTSs if p f is increasing.

Lemma 1. BFSWS of a finite LTS with a finite number of snapshots n > 0, is terminat-
ing if p f is increasing.

Proof. Let us consider a cycle of size k in an LTS. In a generation tree of
BFSWS without DD, this cycle will be generated infinitely often, leading to
s0,s1, . . . ,sk−1,sk . . . ,s2k−1,s2k, . . . etc.1, with ∀0 ≤ i ≤ k− 1,∀ j ∈ N.si = si+ j·k. We
need to prove that by taking n snapshots, with p f increasing, the cycle will be detected.
First, we consider the case n = 1. Other cases follow from this.

Without loss of generality, we say that the first snapshot including a state from the
cycle is taken while traversing the cycle for the first time. We call this state ŝ0 = sd , with
0 ≤ d ≤ k− 1. Let us first consider a p f with ∀i ∈N.p f (i) = p, and p < k. It follows
that for subsequent snapshots ŝi = sd+i·p, with i ∈ N. Observe that with ŝ0, DD will
succeed when reaching state sd+k. But, since p < k, we have sd+p →+ sd+k, i.e. ŝ1 →+

sd+k. Because n = 1, we lose ŝ0 after creating ŝ1, hence there is no DD when we reach
sd+k. Similarly, with ŝ1, DD can happen when reaching sd+p+k, but ŝ2 →+ sd+p+k. In
general, with ŝi, detection may happen at state sd+i·p+k, but ŝi+1 →+ sd+i·p+k. However,
if p ≥ k, we have with ŝi that sd+i·p+k →∗ sd+(i+1)·p, i.e. sd+i·p+k →∗ ŝi+1, so the next
snapshot would be created some time after the exploration of sd+i·p+k, but when sd+i·p+k

is reached, DD takes place and the cycle traversal is terminated. If p f is increasing, it
follows that there exists i ∈N such that p f (i)≥ k, hence BFSWS can, in that case, deal
with any cycle of arbitrary size. The case of BFSWS with n > 1 is a generalisation of
case n = 1. For a p f with ∀i ∈N.p f (i) = p, if n · p < k, for all ŝi, detection may happen
at state sd+i·p+k, but sd+(i+n)·p →+ sd+i·p+k, i.e. ŝi+n →+ sd+i·p+k, and ŝi+n replaces ŝi.
If n · p≥ k, then for ŝi, sd+i·p+k →∗ sd+(i+n)·p, i.e. sd+i·p+k →∗ ŝi+n, hence DD will take
place at sd+i·p+k. If p f is increasing, clearly BFSWS with n > 1 also terminates.

BFSWS is guaranteed to terminate if the sampling period is bigger than the size of the
largest cycle in the LTS. Since we do not know this size a priori, constantly increasing
the period ensures that eventually, the sampling period will be big enough. Now that
we know under which conditions BFSWS always terminates, we can look at additional
techniques to minimise the amount of redundant work, in order to keep the LTSs on
disk as small as possible, and the execution time.

3.2 Maximising the Efficiency of Partial Duplicate Detection

BFS With Snapshot Caches. As explained in Section 1, a cache may contain a finite
number of elements. For BFSWS, we can use a cache to store snapshots, as opposed
to individual states, which is more common in related work. By choosing complete
snapshots as elements, BFSWS is guaranteed to terminate, but it is impossible to enforce

1 As we enumerate the states of the cycle here, s0 is not necessarily the initial state of the LTS.

Hierarchical Adaptive State Space Caching 221

Rifi
ni

Fig. 2. A stream hierarchy of state space generation caches

a fixed size of the cache. This seems at odds with the principle of a cache, but the caches
of webbrowsers work in a somewhat similar manner; such a cache must always contain
complete files, not parts of files, even though the files vary in size. For state space
caching, this does not cause real problems, since in practice it shows that the gain in
memory is still considerable. The size, together with the replacement strategy, which
dictates which element to remove in case the cache is full, typically defines a cache. To
this, we add the sampling function, which deals with the input of elements, resulting in
the following definition.

A state space generation cache Ci is a triple (fi,Ri,ni), with fi : N→B the sampling

function, Ri : 22S×2N→ 2S the replacement function, taking a set of snapshots together
with meta-data about the snapshots (in the form of natural numbers), and returning a
snapshot to be removed next, and ni the maximal number of snapshots in the cache.

Figure 2 illustrates a stream hierarchy of state space generation caches, in a way
in which also in hardware architectures, multiple caches can be linked together. The
fi of a cache Ci decides which snapshots to accept for storage, ni is the maximum
number of snapshots it contains, and Ri is the replacement strategy. The removal of
a snapshot from Ci leads to the input of a snapshot in Ci+1, that is, if fi+1 accepts it,
etc. In general, Ri computes the cost of every snapshot in the cache based on a cost
function c : 2N→N, and picks the snapshot with the lowest cost for the next removal.
The cost function can use any accumulated data during the generation, e.g., (a) size of
the snapshot, (b) snapshot level number, i.e. the time the snapshot was created, (c) the
last time DD succeeded due to the snapshot, and (d) hit ratio of the snapshot, i.e. how
many times DD succeeded due to the snapshot.

This machinery allows for a wide range of configurations, since it involves at least
four new parameters: the number of caches, and per cache a sampling function, a size,
and a replacement strategy. Next, we explain which configurations make sense for the
generation of LTSs stemming from real specifications.

Exploiting Transition Locality. Related attempts to search LTSs with partial DD often
use a notion called transition locality l of states [29,7,24]. This is a property of an LTS

together with a corresponding traversal tree of traditional BFS, i.e. without caching.
It expresses the biggest distance, measured in levels, between any two nodes which
are considered equal. In Figure 1, for the LTS together with the left tree, l = 2, as
nodes 1.1 and 3.5 are considered equal. It has been claimed [29,7,24] that l is extremely
low for LTSs of real protocol specifications. This can be exploited by only keeping
the last l levels of the tree in memory, which yields a version of BFS called frontier
search [24].2 Algorithm 1 describes frontier search if f (i) equals true for all i ∈ N,

2 In the original setting of Artificial Intelligence, a predecessor function is assumed to be avail-
able to have access to the recent predecessors. Lacking such a function in on-the-fly model
checking, the last l levels should be stored [10].

222 R. Mateescu and A. Wijs

and n = l. Termination is only guaranteed if n ≥ l, n = l being ideal, since it saves as
much memory as possible with this technique. However, in practice, l is not known
before traversal of the LTS, therefore termination cannot be guaranteed. In addition, our
experience points out that, although the majority of equalities concern nodes which are
indeed very close to each other, there are usually also some equal nodes much further
removed from each other, e.g. more than half the total depth of the tree. This differs
from reported results [29,7,24], possibly because we look at a large set of specifications
of varying types of systems. In case l is close to the full depth of the tree, which is likely
to happen for e.g. cyclic processes, one cannot gain that much memory.

However, the fact remains that often, most nodes which are considered equal are
very close to each other in the tree. We choose to exploit this by setting up a stream
of caches, the first one sampling frequently, and subsequent ones sampling less often,
as identification with ‘older’ nodes is less likely to happen. Then, for the first cache,
we can choose n1 < l, which not only removes the necessity to know l a priori, but for
LTSs where l is large, we can also save more memory compared to frontier search and
related techniques. Related to this, Tronci et al. [29] deal with distances larger than l in
a probabilistic way, while we guarantee eventual detection, hence termination. Streams
of caches can be set up in many different ways; we consider two, the results of which
will be discussed in the next section:

1. The first cache samples often, in fixed periods, and a second cache employs a sam-
pling function with increasing period, cf. Lemma 1. We call this setup Frontier
Safety Net, since behind the frontier cache, we can fall back on safety nets.

2. Initially, there is one cache, C1, sampling often, in fixed periods. As soon as the
cache is full, another one, C2, with the same setup is created and connected behind
C1. Whenever this cache is full, a third one is created, etc. If the sampling period of
the caches is not 0, i.e. not every level is sampled, then the further down the stream,
the fewer levels are accepted by a cache, hence the longer it takes before the cache
is full. Since the number of snapshots allowed in memory is not bounded, this setup
guarantees termination of the algorithm. We call this setup Pebble Search, since the
distribution of the snapshots over a generation tree resembles the waves produced
by a pebble when dropped in a pool, i.e. the further away from the point of impact,
i.e. the horizon, the further the distance between waves.

The Backtracking Set. In our experience, Frontier Safety Net and Pebble Search lead
to good reductions of the memory use, ranging from 50% to sometimes less than 10%,
as will be shown in the next section. However, if there are many duplicates to be de-
tected at a distance greater than n1× p1, with p1 the constant sampling period of cache
C1, then this tends to lead to a big increase of redundant work, negatively affecting
both the execution time and the output LTS. Consider Figure 3, where in the Open set,
node 0 is equal to node 1, which has been explored before, but removed from mem-
ory by now. Therefore, node 0 will be re-explored, leading to nodes equal to nodes
2 and 3, the successors of node 1. Since nodes 2 and 3 are also removed, these new
nodes are explored as well, and their successors are finally identified as equal to the
successors of nodes 2 and 3, since these are present in a snapshot, i.e. the grey bar.

Hierarchical Adaptive State Space Caching 223

1

2 3

History

Open0

Fig. 3. Duplicate work

All in all, failure to recognise that node 0 has essentially
been seen before leads to the traversal of 6 redundant tran-
sitions. In state space traversal, the traversal of transitions is
the most time-consuming operation, therefore this redundant
work has a real impact on the overall execution time. In both
our setups, the older the levels, the fewer remain in memory,
hence, the larger the distance between equal nodes, the more
likely it is that failure of DD leads to the exploration of many
nodes before a snapshot is ‘reached’. On the one hand, only
keeping a few very old levels makes sense, since new nodes
do not often refer back to very old nodes. On the other hand,

on those occasions where they do, we often obtain a significant amount of redundant
work. Let us call the branching factor, i.e. the average number of successors of a state in
the LTS, b, and the distance between an old node and the nearest subsequent snapshot
d, then every detection failure leads to approximately ∑d

i=1 bi additional traversals. In
practice, it turns out that if a much older node, i.e. older than only a few levels ago, is
referred to again once, then it tends to be referred to several times more later on, in our
case each time leading to at least ∑d

i=1 bi extra traversals (in subsequent re-explorations,
the nearest snapshot may well have been removed from memory, thereby increasing the
distance to the next snapshot).3

These nodes seem to represent states which are very common for the specified sys-
tems, imagine e.g. the specification of a car; there are many ways to use the car, but
eventually you return to the state representing ‘off’. By keeping the node representing
‘off’ in memory, we can avoid a lot of redundant work. Recognising these important
nodes is very hard, but we propose a mechanism for BFSWS which can guess which
nodes are important. Every time a node is revisited, the mechanism gets closer to dis-
covering this revisiting. For this we introduce an extra, unbounded, set of nodes to be
kept in memory, the Backtrack set. While traversing, this set is filled with nodes by
following two rules, where very old snapshots are defined as ‘not in cache C1’: 1) given
a node N in the Open set with | succ(N) |> 1, if there exists a snapshot Si not in C1

such that for all N′ ∈ succ(N), there exists N′′ ∈ Si with N′ = N′′ (i.e. N′ is considered
equal to N′′), then we add N to Backtrack, and 2) given a node N in the Open set with
| succ(N) |> 1, if for all N′ ∈ succ(N), there exists N′′ ∈ Backtrack with N′ = N′′, then
we add N to Backtrack. The first rule states that if all the successors of a node are de-
tected as duplicates due to a single very old snapshot, then it is very likely that we have
explored their parent before. The more successors the node has, the more likely this is,
hence we exclude the case here of a single successor. Failure to detect duplicates which
only have one successor does not directly lead to much redundant work anyway. The
second rule is a continuation of this: if all the successors of a node are suspected of hav-
ing been re-explored, then we suspect this node as well. With this technique, we bound
and lessen the amount of redundant work with each revisit of a node; the nth revisit leads
to ∑|d−(n−1)|

i=0 bi−1 extra traversals. Practice shows that this learning mechanism is very

3 [19] reports that no relation is found between the number of previous visits to a state and the
likelihood that it will be visited again in the future. We found that revisits are likely to states
which had ‘late’ revisits, i.e. revisits many levels after the first visit.

224 R. Mateescu and A. Wijs

successful, as seen next. By only keeping a few extra nodes in memory according to
these rules, we sometimes reduce the amount of redundant work considerably.

4 Implementation, Caching Setups, and Experiments

We built a generic, application-independent implementation of the caching machinery
using the OPEN/CÆSAR [11] environment of the CADP toolbox [12], which provides
various primitives for state space storage and exploration (hash tables, edge lists, stacks,
etc.). The cache library allows to define caches containing a fixed number of elements,
either states or snapshots, each one being possibly assorted with user-defined infor-
mation allowing, e.g., to calculate the cost associated to the element. The replacement
strategy used by a cache can be user provided, or selected among five built-in strate-
gies: least/most recently used (LRU/MRU), least/most frequently used (LFU/MFU), and
random (RND). The elements of a cache are stored in a balanced heap equipped with a
hash table in order to allow fast retrievals of the lowest-cost element and fast searches of
elements. A special primitive retrieves the last element replaced after an insertion took
place in an already full cache; this allows to manage hierarchical caches (organized,
e.g., as trees) by retrieving an element from one cache and inserting it into another.

The most basic usage of the cache library is for storing visited states, assorted with
their id’s, during a DFS traversal of the state space. A more complex usage is e.g. for
BFSWS, where elements stored in the cache are snapshots, but the searches carried out
for DD concern individual states. To reduce memory consumption, states belonging to
the set of snapshots currently present in a cache are stored uniquely and referenced
through pointers; state deletion is done efficiently using a reference counting scheme
borrowed from garbage collection [22]. Next, we study the performance of several BFS

and DFS setups experimentally. For this, we used around 35 LTSs from the VLTS bench-
mark suite stemming from real, industrial case studies (http://www.inrialpes.fr/
vasy/cadp/resources/benchmark bcg.html) and also several communication
protocols (http://www.inrialpes.fr/vasy/cadp/demos.html). The experi-
ments were run on a LINUX machine with a 2.2GHz CPU and 1 GB memory.

4.1 BFS Experiments

Here, we show the results of a representative selection of cases, generated by standard
BFS and by BFSWS using some of the most successful cache setups. Caches are de-
scribed as triples, a sampling function which increases its period by n after every sam-
pling being written as n, a function with constant period n being written as cn, LLNR

being a replacement function based on lowest level number, and BT indicating the back-
tracking mechanism. The top three graphs visualise the results on several instances of
the Bounded Retransmission Protocol (BRP), varying in both the size of messages and
the number of retransmissions. Here, the techniques are extremely effective, allowing
not only to reduce the memory use drastically, but also to make the generation much
faster. This is due to the hash table being very small, which speeds up DD. Usually,
this gain is countered by failed detections, leading to more (time consuming) transition
traversals, but here such failures hardly occur. Additional tests showed that we could

http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html
http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html
http://www.inrialpes.fr/vasy/cadp/demos.html

Hierarchical Adaptive State Space Caching 225

generate the LTS for BRP 〈300,300〉, consisting of more than 410,000,000 states, in 37
hours with (c2,LLNR,5)(2,LFU,10), and in 22 hours with backtracking. The bottom
three graphs show the generation results for the SCSI-2 bus arbitration protocol, varying
the number of competing disks. Here, memory use can be reduced to 20% compared to
standard BFS, using a Frontier Safety Net with backtracking. Moreover, both backtrack-
ing setups show practically no increase in execution time, and the number of redundant
states produced is reasonable.

The graphs below compare execution times and state generation of BFS and
3 sampling setups. Execution times of the setups are often much longer than
for BFS, due to using more complex data structures, and the redundant work.
However, this effect becomes mainly apparent with small examples. The bottom
two graphs relate output LTS sizes with the original sizes, indicating the num-
ber of states in memory by the size of the bubbles. Bubbles on the same hor-
izontal line relate to the same case. Pebble Search with backtracking sometimes
produces remarkably smaller LTSs than the other methods, and faster, suggest-
ing that for these cases, keeping snapshots which are more evenly distributed
over the history of the generation pays off. In Frontier Safety Net, the second
cache samples more and more infrequently, eventually leaving a big ‘hole’ in the
stored history. There is still room for improvement, though, which we plan as fu-
ture work. For most cases, memory use can be reduced to about 30% using the
sampling mechanism. The graphs show that either backtracking has a very positive
effect (e.g. in execution time), or no effect; a negative effect hardly ever occurs. This
makes backtracking a useful feature to enable by default in the BFSWS state space
generator.

226 R. Mateescu and A. Wijs

4.2 DFS with Caches

Our generic cache machinery
can also be used in conjunc-
tion with other graph traver-
sals to reduce the memory
needed for LTS generation.
The figure aside shows the be-
haviour of DFS equipped with
cycle detection (by searching
states on the DFS stack) and
a hierarchical 〈MFU,LRU〉
cache, executed on a VLTS

subset. For each example, the
figure gives the minimal size of the cache yielding an output LTS of size at most double
w.r.t. the input LTS. Among the five built-in replacement strategies, LRU performs best
on all examples (reducing the cache size down to 40% of the number of states), followed
closely by MFU and RND. LRU is close to the strategy removing the oldest states, rated
best among the strategies analysed in [19]. If we split the cache into two cascading sub-
caches of varying sizes and different strategies, the best cache size reduction (down to
30% of the number of states) was achieved by using an MFU or RND subcache followed
by an LRU one (of about 25% of the whole cache). Overall performance (see the figure)
was further improved by increasing the LRU subcache to 75%. Compared to BFSWS,
the success of DFS setups differs a lot from one case to another. Moreover, a difficulty
with “fixed size” DFS caching is to determine the right size of the cache, which, in or-
der to be effective, should lie between 30− 60% of the (a priori unknown) LTS size;
BFSWS, on the other hand, simply takes whatever memory it needs.

Hierarchical Adaptive State Space Caching 227

5 Related Work

As mentioned in the introduction, existing approaches for state space generation can
roughly be divided in two classes. In the second class, where exhaustiveness is not guar-
anteed, hashing without collision detection is often used, which is a way to ensure that
the hash table stores a fixed number of states. Concerning collisions, [20,6] assume that
whenever a collision happens in the hash table, the new state has already been visited.
In [6], this is used for a nested DFS to search for errors in LTSs. Collision avoidance
in this way guarantees termination. [29,7] take the opposite approach concerning this.
They fully depend on LTSs of protocols having small localities. They avoid collision
detection, by removing a previously stored state if there is a hash collision with a new
state, arguing that in most cases this means removing a state beyond the locality region.
Termination is handled by stopping the search once the collision rate is sufficiently high,
or a maximum search depth has been reached. In [30], a fixed size cache and Open set
is used for a probabilistic, randomised BFS, where states are replaced at random. These
last two cases report memory savings of 40% on average, the first case achieving this
partly by keeping the Open set on disk. In [27], the probability of failures is reduced by
using open addressing and t-limited lookups and insertions in the hash table, where a
hash function provides not one position for a state in the hash table, but a sequence of t
possible locations. In addition to this, [28] includes the level number of a state in a BFS

in calculating its omission probability.
The other class, guaranteeing exhaustiveness, includes most state space caching

work, which has been done for DFS [19,15,21,14]. In [19], several replacement strate-
gies are used for a single LTS, and the conclusion is that the one selecting the oldest
states is the best. [21] continue on this, believing the conclusion to be a random strategy.
[14] reinvestigates this, employing many other strategies on many examples, some of
them from practical cases. In those cases, a proposed strategy called stratified caching
with random replacement performs best. Here, strata are created, very similar to our
snapshots. The states of certain strata, however, are candidates for removal from mem-
ory, as opposed to storing in memory. Caching is combined with static analysis and
partial order reduction in [15]. Our setting allows hierarchies of caches, and they can
be used to store snapshots in case of BFS. In [1], an unbounded set of states is stored
based on a storing strategy, usually based on static analysis. They claim that up to 90%
can be saved in memory use, but, as reported by [17], this leads to an extensive amount
of redundant work. In [17], a hash table is initially used in a traditional manner, until it
fills up the whole memory, at which point older states are moved to secondary storage.
The number of lookups on disk is reduced by using a Bloom filter. Instead of trying to
use memory in a smarter way, they want the generation to be able to continue once the
memory is filled. We experience that trying to avoid a big Closed set pays off in terms
of execution time, since the hash table is kept small. However, our BFS method may
still run out of memory. It could be interesting to look at a combination of the two.

In Artificial Intelligence (AI), connecting to directed model checking, multiple meth-
ods are presented to bound the memory use of exhaustive search algorithms, e.g.
IDA∗ [23], MA∗ [4], and extensions IE and SMA∗ [26]. As is common in this field,
the algorithms employ a cost function, mapping states to costs. For memory-bounding,
this function is used to decide which states to remove from memory. The cost function

228 R. Mateescu and A. Wijs

provides knowledge of the LTS structure a priori, and its main purpose is to guide the
search to a goal state. In this paper, we are neither concerned with a subset of goal
states, nor have any structural knowledge. It is, however, possible to incorporate the
AI algorithms in our framework, like DFS and BFS, in order to obtain more memory
efficient variants.

6 Conclusion and Future Work

We presented generic machinery for hierarchical, adaptive state space caching, imple-
mented using the OPEN/CÆSAR environment [11] of the CADP toolbox [12]. This ma-
chinery can be used in a very flexible manner for state space generation, in conjunction
with DFS and BFS traversals. Our algorithm BFSWS is exhaustive and guaranteed to
terminate, and its behaviour can be finely tuned using the caching and learning mecha-
nisms introduced in Section 3. These techniques compete favourably with earlier ones,
such as hashing without collision detection and frontier search, which only concern
LTS search (and not generation), lack termination or exhaustiveness (or both), or are
dedicated to LTSs with small localities. The learning mechanism for BFSWS strongly
reduces the amount of redundant work, and is also able to speed up the generation.

As future work, we will study other BFSWS configurations on further examples
(e.g. the BEEM benchmark [25]), and try to design additional mechanisms to deal
more efficiently with different LTS structures. Secondly, we plan to adapt the ma-
chinery for distributed state space generation [13]. Finally, we want to investigate its
use in conjunction with on-the-fly LTS reduction modulo τ-confluence and branching
bisimulation.

References

1. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 433–445. Springer, Heidelberg (2003)

2. Blom, S., Calamé, J.R., Lisser, B., Orzan, S., Pang, J., van de Pol, J., Dashti, M.T., Wijs, A.J.:
Distributed analysis with µCRL: A compendium of case studies. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 683–689. Springer, Heidelberg (2007)

3. Blom, S.C.C., Orzan, S.: Distributed State Space Minimization. STTT 7(3), 280–291 (2005)
4. Chakrabarti, P.P., Ghose, S., Acharya, A., De Sarkas, S.C.: Heuristic Search in Restricted

Memory. Artificial Intelligence 41(2), 197–222 (1989)
5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
6. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-Efficient Algorithms for

the Verification of Temporal Properties. FMSD 1(2–3), 275–288 (1992)
7. Della Penna, G., Intrigila, B., Tronci, E., Venturini Zilli, M.: Exploiting Transition Locality

in the Disk Based Murphi Verifier. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002.
LNCS, vol. 2517, pp. 202–219. Springer, Heidelberg (2002)

8. Edelkamp, S., Jabbar, S.: Real-time model checking on secondary storage. In: Edelkamp, S.,
Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI), vol. 4428, pp. 67–83. Springer, Heidelberg
(2007)

9. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed Explicit-State Model Checking in the
Validation of Communication Protocols. STTT 5(2–3), 247–267 (2004)

Hierarchical Adaptive State Space Caching 229

10. Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A.J., Fehnker, A., Aljazzar, H.: Survey
on Directed Model Checking. In: Peled, D., Wooldridge, M. (eds.) MoChArt 2008. LNCS
(LNAI), vol. 5348, pp. 65–89. Springer, Heidelberg (2009)

11. Garavel, H.: OPEN/CAESAR: An open software architecture for verification, simulation,
and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84. Springer, Hei-
delberg (1998)

12. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A toolbox for the construction
and analysis of distributed processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

13. Garavel, H., Mateescu, R., Smarandache, I.: Parallel state space construction for model-
checking. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 217–234. Springer, Hei-
delberg (2001)

14. Geldenhuys, J.: State caching reconsidered. In: Graf, S., Mounier, L. (eds.) SPIN 2004.
LNCS, vol. 2989, pp. 23–38. Springer, Heidelberg (2004)

15. Godefroid, P., Holzmann, G.J., Pirottin, D.: State-Space Caching Revisited. FMSD 7(3),
227–241 (1995)

16. Godefroid, P., Wolper, P.: Using Partial Orders for the Efficient Verification of Deadlock
Freedom and Safety Properties. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575,
pp. 410–429. Springer, Heidelberg (1992)

17. Hammer, M., Weber, M.: ”To Store or Not To Store” Reloaded: Reclaiming Memory on
Demand. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006.
LNCS, vol. 4346, pp. 51–66. Springer, Heidelberg (2007)

18. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 4th edn.
Morgan Kaufmann, San Francisco (2006)

19. Holzmann, G.J.: Automated Protocol Validation in Argos, assertion proving and scatter
searching. IEEE Trans. on Software Engineering 13(6), 683–696 (1987)

20. Holzmann, G.J.: An Improved Protocol Reachability Analysis Technique. Software - Practice
and Experience 18(2), 137–161 (1988)

21. Jard, C., Jéron, T.: Bounded-memory Algorithms for Verification On-the-fly. In: Larsen,
K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 192–202. Springer, Heidelberg (1992)

22. Knuth, D.E.: The Art of Computer Programming — Sorting and Searching. Computer Sci-
ence and Information Processing, vol. III. Addison-Wesley, Reading (1973)

23. Korf, R.: Depth-First Iterative-Deepening: An Optimal Admissible Tree Search. Artificial
Intelligence 27(1), 97–109 (1985)

24. Korf, R., Zhang, W., Thayer, I., Hohwald, H.: Frontier Search. J. ACM 52(5), 715–748 (2005)
25. Pelánek, R.: Properties of state spaces and their applications. STTT 10(5), 443–454 (2008)
26. Russell, S.: Efficient memory-bounded search methods. In: Neumann, B. (ed.) ECAI 1992,

pp. 1–5. Wiley, Chichester (1992)
27. Stern, U., Dill, D.L.: Combining State Space Caching and Hash Compaction. In: 4.

GI/ITG/GME Workshop, pp. 81–90. Shaker Verlag, Aachen (1996)
28. Stern, U., Dill, D.L.: A New Scheme for Memory-Efficient Probabilistic Verification. In:

Gotzhein, R., Bredereke, J. (eds.) FORTE 1996, pp. 333–348. Chapman and Hall, Boca Ra-
ton (1996)

29. Tronci, E., Della Penna, G., Intrigila, B., Venturini Zilli, M.: Exploiting Transition Locality
in Automatic Verification. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS,
vol. 2144, pp. 259–273. Springer, Heidelberg (2001)

30. Tronci, E., Della Penna, G., Intrigila, B., Venturini Zilli, M.: A Probabilistic Approach to
Automatic Verification of Concurrent Systems. In: APSEC 2001, pp. 317–324. IEEE Press,
New York (2001)

Static Analysis Techniques for
Parameterised Boolean Equation Systems�

Simona Orzan, Wieger Wesselink, and Tim A.C. Willemse

Eindhoven University of Technology, The Netherlands

Abstract. Parameterised Boolean Equation Systems (PBESs) can be used to en-
code and solve various types of model checking and equivalence checking prob-
lems. PBESs are typically solved by symbolic approximation or by instantiation
to Boolean Equation Systems (BESs). The latter technique suffers from some-
thing similar to the state space explosion problem and we propose to tackle it by
static analysis techniques, which we tailor for PBESs. We introduce a method to
eliminate redundant parameters and a method to detect constant parameters. Both
lead to a better performance of the instantiation and they can sometimes even re-
duce problems that are intractable due to the infinity of the underlying BES to
tractable ones.

1 Introduction

Model checking and equivalence checking techniques are very sensitive to the size of
the state space. A static analysis can be used to reduce the state space size; most often,
it employs some form of flow analysis to detect what values a given subexpression of
a process description can possibly evaluate to at run-time [9], and this information can
subsequently be used to achieve state space reductions. A further minimisation might
be obtained if the analysis is tailored to the properties to be verified. This constitutes a
major challenge, as it requires analysing both the verification question and the specifi-
cation. One can avoid this by encoding the verification problem in a single high-level
formalism; Parameterised Boolean Equation Systems [11,7] allow to do just that.

Parameterised Boolean Equation Systems (PBESs) have emerged as a versatile
framework for studying and solving verification problems. Prime examples are the
PBES encoding of the first-order modal µ-calculus model checking problem over (pos-
sibly infinite) labelled transition systems [11,7] and equivalence checking of various
bisimulations on (possibly infinite) labelled transition systems [1]. Intuitively, the PBES
encoding of a given verification problem only requires the aspects of the specification
that influence the property that has to be verified.

Problems encoded in the PBES framework can be solved by computing the solution to
the respective PBES. Even though the latter is an undecidable problem, a number of tech-
niques have been developed to obtain solutions in practice, including symbolic approxi-
mation [7], pattern matching [8], invariant techniques [13] and instantiation [11,12,4].

� This research has been partially funded by the Netherlands Organisation for Scientific Re-
search (NWO) under FOCUS/BRICKS grant number 642.000.602.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 230–245, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Static Analysis Techniques for Parameterised Boolean Equation Systems 231

In this paper, we are concerned with the latter, i.e. instantiation of PBESs to Boolean
Equation Systems (BES); BESs constitute a decidable fragment of PBESs.

We develop two methods, based on static analysis, that allow to automatically reduce
the complexity of a PBES. These methods take inspiration from [6], where comparable
methods are applied to a symbolic state space description. We first investigate, and
prove the correctness of a method that allows to eliminate a class of redundant data
parameters from a PBES; second, we develop an algorithm, and prove its correctness,
that computes a special type of PBES invariant [13], which can subsequently be used to
eliminate data parameters and simplify the right-hand sides of a PBES.

The practical significance of the two complexity reduction methods is assessed by
means of a set of experiments derived from typical model checking problems. These
demonstrate dramatic improvements in the time needed to compute a BES from a PBES,
and the size of these BESs; some intractable problems even reduce to tractable ones.

A third contribution of our paper is the introduction of a normal form for PBESs. The
existence of the normal form has both theoretical and practical implications. On the one
hand, it allows for more concise definitions and a uniform presentation of manipulation
methods, and, on the other hand, it will help to find, e.g., new patterns [8]. Apart from
using the normal form in our definitions of the two mentioned complexity reduction
methods, we also use it to simplify the characterisation of invariants for PBESs, paving
the way for automating the detection and checking of complex invariants.

Related Work. As mentioned, we take inspiration from [6], where similar static analysis
techniques are applied to reduce state spaces. Other forms of static analysis techniques
include abstract interpretation, initiated in [3] and used in, e.g. [10,14], influence anal-
ysis in programming languages [5], and the so-called cone of influence reduction (also
known as slicing or localisation reduction) technique that reduces the size of the state
space for synchronous circuits in specific (see [2]) and systems in general (see [16]).
Compared to these works, our methods deal with a more advanced setting and have the
potential to immediately (and soundly) reduce the complexity of (encoded) verification
problems. As such, we can solve verification questions that cannot readily be answered
by only reducing the state space (see e.g. our Example 1).

Outline. In Section 2 the basic PBES theory is repeated. Section 3 describes a nor-
mal form for PBESs and its implications for invariants. The two complexity reduction
methods are described in Section 4, and an analysis of the impact of these algorithms
on typical model checking problems can be found in Section 5. Section 6 summarises
the main results of this paper and discusses future work.

2 Preliminaries

2.1 Data

We work in the setting of abstract data types, i.e., we assume that there are nonempty
data sorts and operations on these sorts. We typically use letters D1, D2, . . . to denote
data sorts. Furthermore, we assume to have a set D of sorted data variables, with typ-
ical elements d, d1, . . ., etcetera. We write d, which stands for a vector of variables
(d1, . . . , dn); this notation extends to vectors of terms e, vectors of sorts D and vectors

232 S. Orzan, W. Wesselink, and T.A.C. Willemse

of values v in the semantic domain. A vector of sort declarations d:D should be read
as (d1:D1, . . . , dn:Dn). The i-th element of d is denoted d[i].

With every syntactic sort D we associate a semantic set D such that every syntactic
term of type D and all the operations on the sort D can be mapped to the elements and
operations of D they represent. For the interpretation of closed data terms, we assume
an interpretation function [[]] that maps every term t of sort D to the data element [[t]] of
D it represents. For open terms we use an environment ε that maps each variable from
D to a data element of the associated type. The interpretation [[t]] ε of an open term t is
given by ε(t), where ε is extended to terms in the standard way.

For arbitrary environment θ, we write θ[v/d] to represent the environment that is
defined as (θ[v/d])(d′) = θ(d′) for d �= d′ and (θ[v/d])(d) = v. For substitution on
vectors we define θ[v/d] to be equivalent to the simultaneous substitution θ[v[1]/d[1],
. . . , v[n]/d[n]].

For convenience, we assume the existence of a sort B = {�,⊥} representing the
Booleans B. For this sort, we assume the usual operators are available and we do not
write constants or operators in the syntactic domain any different from their semantic
counterparts. For example, we have B = {�,⊥} and the syntactic operator ∧ :B ×
B → B corresponds to the usual, semantic conjunction ∧ :B× B → B.

2.2 Parameterised Boolean Equation Systems

Parameterised Boolean Equation Systems (PBESs, or equation systems for short) are
empty (denoted ε) or finite sequences of fixed point equations, where each equation is
of form

�
µX(d:D) = φ

�
or
�
νX(d:D) = φ

�
. The left-hand side of each equation

consists of a fixed point symbol, where µ indicates a least and ν a greatest fixed point,
and a sorted predicate variable X of sort D → B, taken from some countable domain
of sorted predicate variables X . The right-hand side of each equation is a predicate
formula as defined below.

Definition 1. Predicate formulae φ are defined by the following grammar:

φ ::= b |X(e) | φ⊕ φ | Qd:D. φ

where ⊕ ∈ {∧,∨}, Q ∈ {∀, ∃}, b is a data term of sort B, X is a predicate variable,
d is a data variable of sort D and e is a vector of data terms. The interpretation of
φ in the context of environments η for predicate variables and ε for data variables is
denoted [[φ]] ηε, where:

[[b]] ηε =def ε(b)
[[X(e)]] ηε =def η(X)(ε(e))

[[φ1 ⊕ φ2]] ηε =def [[φ1]] ηε⊕ [[φ2]] ηε
[[Qd:D. φ]] ηε =def Qv ∈ D. [[φ]] ηε[v/d]

We denote the freely occurring data variables in a formula φ by FV(φ). In line with
[13], predicate formulae that do not contain predicate variables are called simple pred-
icate formulae; Pred is the set of simple formulae. A simple predicate formula φ satis-
fies the property [[φ]] ηε = [[φ]] η′ε, for arbitrary η, η′. As a convention, we denote simple
predicate formulae using letters g, h, etcetera. Observe that negation does not occur
in predicate formulae, except as an operator in Boolean terms. We frequently write
h =⇒ φ instead of ¬h ∨ φ.

Static Analysis Techniques for Parameterised Boolean Equation Systems 233

The set of predicate variables that occur in a predicate formula φ, denoted by occ(φ), is
defined recursively as follows, for any formulae φ1, φ2:

occ(b) =def ∅ occ(X(e)) =def {X}
occ(φ1 ⊕ φ2) =def occ(φ1) ∪ occ(φ2) occ(Qd:D. φ1) =def occ(φ1).

Extended to equation systems, occ(E) is the union of all variables occurring at the right-
hand side of equations in E . For any equation system E , the set of binding predicate
variables, bnd(E), is the set of variables occurring at the left-hand side of some equation
in E . Formally, we define:

bnd(ε) =def ∅ bnd((σX(d:D) = φ) E) =def bnd(E) ∪ {X}
occ(ε) =def ∅ occ((σX(d:D) = φ) E) =def occ(E) ∪ occ(φ).

The set of freely occurring predicate variables in E , denoted free(E) is defined as
occ(E) \ bnd(E). An equation system E is said to be well-formed iff every binding
predicate variable occurs at the left-hand side of precisely one equation of E . We only
consider well-formed equation systems in this paper.

An equation system E is called closed if free(E) = ∅ and open otherwise. An equa-
tion (σX(d:D) = φ), where σ denotes either the fixed point sign µ or ν, is called
data-closed if the set of data variables that occur freely in φ is contained in the set of
variables induced by the vector of variables d. An equation system is called data-closed
iff each of its equations is data-closed.

An equation (σX(d:D) = φ) gives rise to a fixed point over the set of functions with
domain D and co-domain B. We introduce the notation φ〈d〉, which lifts the predicate
formula φ to the (syntactic) functional (λd:D. φ). The interpretation of φ〈d〉, denoted
[[φ〈d〉]] ηε, is given by the functional (λv∈D. [[φ]] ηε[v/d]). The set of (total) functions
f :D → B, denoted by BD, equipped with the point-wise ordering� leads to a complete
lattice. Assuming that the domain of the predicate variable X is of sort D, the functional
[[φ〈d〉]] ηε yields the monotone predicate formula transformer λg∈BD. ([[φ〈d〉]] η[g/X]ε).
The existence of the least and greatest fixed points of such transformers is guaranteed
by Tarski’s fixed point Theorem [15].

Definition 2. The solution of an equation system in the context of a predicate environ-
ment η and a data environment ε is inductively defined as follows, for any E:

[[ε]] ηε =def η
[[(σX(d:D) = φ)E]] ηε =def [[E]] (η[σf ∈ BD. [[φ〈d〉]] ([[E]] η[f/X]ε)ε/X])ε.

The solution of an equation system prioritises the fixed point signs of equations that
come first over the signs of equations that follow, while respecting the equivalences of
the equations. It follows that the solution is sensitive to the order of equations in an
equation system. We illustrate the use of equation systems by means of an academic
example using the encoding of [7] of the first-order modal µ-calculus model checking
problem.

Example 1. Consider an infinite-state process that can perform an arbitrary number of
a actions, then performs a b action and then performs as many c actions as a actions
that were performed. A partial visualisation of this process, and a process algebraic
description using condition-action-effect rules is given below:

234 S. Orzan, W. Wesselink, and T.A.C. Willemse

P (n:N, d:B)
= d −→ a · P (n + 1, d)
+ d −→ b · P (n,¬d)
+ ¬d ∧ n > 0 −→ c · P (n− 1, d)

P (0,�)

· · ·

· · ·

a

b

a

b

a

b

a

b

c c c c

Given this process, we might wish to verify whether it is possible to perform an infinite
number of a actions (νX.〈a〉X), or, whether along every a path, always a b action is
attainable (νV. ([a]V ∧µW. (〈a〉W ∨〈b〉�))). The first verification problem is encoded
by (1); the second by (2), given below:
�
νX(n:N, d:B) = d ∧X(n + 1, d)

�
(1)

�
νV (n:N, d:B) = (d =⇒ V (n + 1, d)) ∧W (n, d)

�
�
µW (n:N, d:B) = d ∨ (d ∧W (n + 1, d))

� (2)

Currently, instantiation of the above equation systems leads to two infinite BESs. We
will use Eqn. (2) as a running example in Section 4. ��

3 Predicate Formula Normal Form

Manipulations and comparisons of formal objects typically benefit from the use (and
existence) of a normal form for such objects. For this reason, we introduce a normal
form for predicate formulae, which immediately implies a normal form for equation
systems. Throughout this paper, we will then assume equation systems in normal form.

Definition 3. A predicate formula is said to be in Predicate Formula Normal Form
(PFNF) if it has the following form:

Q1v1:V1. · · ·Qnvn:Vn. h ∧
�
i∈I

�
gi =⇒

�
j∈Ji

Xj(ej)
�

where Xj ∈ X , Qi ∈ {∀, ∃}, I is a (possibly empty) finite index set, each Ji is a
non-empty finite index set, and h and every gi are simple formulae.

Note that here Ji is used to index a set of occurrences of not necessarily different vari-
ables. For instance, (n > 0 =⇒ X(3) ∨X(5) ∨ Y (6)) is a formula complying to the
definition of PFNF. As long as it does not lead to confusion, we stick to the convention
to drop the typing of the quantified variables vi.

Proposition 1. Every predicate formula can be rewritten to an equivalent predicate
formula in PFNF.

The proof is constructive, by means of a structural induction; this immediately provides
the basis for a normalisation algorithm. We should remark that transforming the dis-
junction of two PFNF formulae into a PFNF formula leads to an undesirable blow-up
of the formula size. However, when used, as here, in the context of equation systems,
this blow-up can be reduced to a linear blow-up by introducing new equations.

Static Analysis Techniques for Parameterised Boolean Equation Systems 235

A static invariance check. PBES invariants [13] are simple predicates characterising a
closed set of attainable values of the data parameters in an equation system. They are
very useful for simplifying and solving complex equation systems, as demonstrated in
several case studies [13,8]. However, finding the right invariants is not easy, partly be-
cause the invariance condition quantifies over arbitrary predicate variable environments.
Using PFNF, however, the invariance condition of [13] can be recast to one that can be
checked statically. For completeness’ sake, we first repeat the definition of an invariant.

Definition 4. The simple function f :V → Pred is said to be a global invariant for an
equation system E iff X ⊇ V ⊇ bnd(E) and for each (σX(dX :DX) = φ) occurring
in E , we have:

f(X) ∧ φ ↔ (f(X) ∧ φ)
�
Xi∈V

(f(Xi) ∧Xi(dXi))〈dXi
〉/Xi

�
.

Note that ψ
�
Xi∈V

φ(Xi)/Xi

�
stands for a simultaneous syntactic subtitution of φ(Xi)

for every Xi from V in ψ. The invariance condition basically states that the right-
hand sides of all equations should be insensitive to strengthening all predicate variable
occurrences with their corresponding simple formula. The following theorem provides
an easy to check criterion implying the invariance condition.

Theorem 1. Let E be an equation system where every equation k is in PFNF:�
σkXk(dXk

:Dk) = Qk
1v1. · · ·Qk

nk
vnk

. (hk ∧
�

i∈Ik

(gk
i =⇒

�
j∈Ji

Xj(ej)))
�
.

Then the simple function f :V → Pred is a global invariant for E if for each k:�
i∈Ik

�
j∈Ji

�
(f(Xk) ∧ hk ∧ gk

i)→ f(Xj)[ej/dXj]
�

(ιk)

��
The proof is a tedious and semantically rather involved exercise leading to f satisfying
Definition 4 under all data and predicate environments. It makes essential use of the fact
that condition (ιk) implicitly converts all quantifiers Qk

1 . . . Qk
nk

into universal quanti-
fiers. Note that (ιk) is not a necessary condition for f to be an invariant, as demonstrated
by the following example which makes use of the fact that all existential quantifiers are
converted to universal quantifiers.

Example 2. Consider the equation system E given below:

E :≡
�
µX(n:N) = ∃m:N. (m > 5 =⇒ Y (n))

� �
νY (n:N) = Y (n + 1)

�
.

Let us define the simple function f as f(X) = �, f(Y) = ⊥. Condition (ιk) in this
case requires ∀m:N. (�∧m > 5 =⇒ ⊥), which does not hold. Still, f is an invariant
for E , since it satisfies the invariant condition: (� ∧ ∃m:N. (m > 5 =⇒ Y (n))) ↔
(� ∧ ∃m:N. (m > 5 =⇒ (⊥ ∧ Y (n)))). ��
It can be proven (not trivially) that the condition above is actually necessary in the
case of quantifier-free equation systems, but we pose it as an interesting open problem
whether condition (ιk) can be modified (or some other condition can be thought up) to
serve as a sufficient and necessary condition without employing a quantification over
predicate environments.

236 S. Orzan, W. Wesselink, and T.A.C. Willemse

4 Redundant and Constant Parameter Detection and Elimination

A part of the complexity of an equation system stems from the arity of the involved
predicate variables and the types of these. Reducing an equation system’s complexity
can thus be achieved by minimising the complexity of the formal data parameters, either
by removing them or by (implicitly) reducing their types. However, such operations are
not always sound. In Sections 4.1 and 4.2, we develop algorithms that achieve these
types of reductions without compromising soundness.

4.1 Parameter Elimination

The type of a predicate variable X is said to contain redundancy with respect to an
environment if it relies on one or more values that do not manifest themselves in the
truth of X using this environment.

Definition 5. Given an environment η and a predicate variable X with signature D1×
· · · × Dn → B, then a sort Di (1 ≤ i ≤ n) is redundant with respect to η if for all
values v, w ∈ Di, and vj ∈ Dj for j �= i, we have

η(X)(v1, . . . , v, . . . , vn) = η(X)(v1, . . . , w, . . . , vn)

A semantic analysis of redundancy is neither feasible, nor desirable for most complex
equation systems, so the best that can be achieved is to approximate the set of redundant
sorts. We start by formalising the concept of influence.

Definition 6. Let ρ be a predicate function in PFNF:

Q1v1. · · ·Qnvn. h ∧
�
i∈I

�
gi =⇒

�
j∈Ji

Xj(ej)
�

We define the dependence set dep(ρ) and the significance set sig(ρ) as follows:

1. dep(ρ) =def
�
i∈I

{Xj(ej) | j ∈ Ji}
2. sig(ρ) =def

�
i∈I

FV(Q1v1. · · ·Qnvn. h ∧ gi)

The influence of a set of predicate functions on predicate variables is modelled by means
of an influence graph. Recall that the i-th element of a vector d is denoted d[i].

Definition 7. Let E = (σ1X1(dX1 :DX1) = φX1) · · · (σnXn(dXn :DXn) = φXn) be
an equation system. The marked influence graph G(E) = (V,−→, M) of E is a directed
graph where:

– V = {(Xi, j) | 1 ≤ i ≤ n and 1 ≤ j ≤ arity(DXi)};
– −→⊆ V × V is the transition relation, defined by

(Xi, k) −→ (Xj , l) iff Xj(e) ∈ dep(φXi) and dXi [k] ∈ FV(e[l])

– M ⊆ V is the initial marking, defined by

M = {(Xi, j) | 1 ≤ i ≤ n and dXi [j] ∈ sig(φXi)}

Static Analysis Techniques for Parameterised Boolean Equation Systems 237

Intuitively, in a marked influence graph G(E), the initial marking M is the set of vari-
ables that influences the truth of the simple formulae that occur in the predicate formulae
of the equation system E . The transition relation −→ formalises the direct and indirect
influence that formal parameters can have on the value of other formal parameters.

Example 3. Consider the equation system from Eqn. (2)
(Example 1), first brought into PFNF. The marked influ-
ence graph is depicted on the right, where the marked
states are black and non-marked states are white.

(V, 1) (V, 2)

(W, 1) (W, 2) ��

Next, we define the set of positive redundant variables as follows:

R = {dXi [j] | (Xi, j) �−→∗ (Xk, l) and (Xk, l) ∈ M} (3)

Computing the setR requiresO(| −→ |) steps at most using, e.g., a standard least fixed
point computation, depth-first or breadth-first search. We refrain from spelling out such
an algorithm.

Definition 8. Let E = (σ1X1(dX1 :DX1) = φX1) · · · (σnXn(dXn :DXn) = φXn),
where each φXk

is of the form:

Qk
1v1. · · ·Qk

nk
vnk

. hk ∧
�

i∈Ik

�
gk

i =⇒
�

j∈Jk
i

Xj(ej)
�

The reduction of E , denoted �E is the equation system

(σ1�X1(dX1 :	DX1) =	φX1) · · · (σn

Xn(dXn :�DXn) = 	φXn)

where for every k (1 ≤ k ≤ n), we define the following:

1. 	dXk
is the vector dXk

from which the parameters dXk
[i] ∈ R have been removed;

2. �DXk
is the vector DXk

from which the types of dXk
[i] have been removed;

3. 	φXk
:≡ Qk

1v1. · · ·Qk
nk

vnk
. hk ∧ �

i∈Ik

�
gk

i =⇒
j∈Jk

i

Xj(�ej)
�

, where �ej is the

vector ej from which expressions ej [i] with dXj [i] ∈ R have been removed.

The reduction of an equation system basically consists of a syntactic manipulation of
predicate variable typings and predicate variable occurrences. It introduces a new set
of predicate variables that are linked to the original predicate variables in the equation
system. The typing of these newly introduced predicate variables is of lesser complexity
than the typing of the original predicate variables. In particular, if the original equation
system contains a predicate variable Xi of type DXi , then the associated predicate vari-

able �Xi is of type	DXi , which is based on 	DXi . For elements w of type DXi , we denote
the corresponding reduced element by �w. We have the following two properties:

Lemma 1. If E is data-closed, then so is �E .

238 S. Orzan, W. Wesselink, and T.A.C. Willemse

Proof. From the observation that �E can only contain a free data variable if this is a
formal parameter dXk

[j] for some equation for
Xk that does not occur in the param-
eter list of this equation. This leads to a contradiction, based on the definition of R
and �E . ��
Lemma 2. Let E be a data-closed equation system. Let (σkXk(dXk

:DXk
) = φXk

) be
an arbitrary equation in E . Let η be an environment for which η(X)(v) = η(�X)(�v) for
all v and X ∈ occ(φXk

). Then:

∀ε : [[φk]] ηε = [[�φk]] ηε

Proof. Without loss of generality, φXk
is in PFNF. The proof then follows from a re-

peated application of the semantics. ��
The following theorem demonstrates that the elimination of positively redundant formal
parameters from an equation system does not affect the solution of the equation system.

Theorem 2. Let E be a data-closed equation system. Let η, ε be arbitrary environ-
ments. If for all X ∈ free(E) we have η(X)(v) = η(�X)(�v) for all v, then for all
Xk ∈ bnd(E) and all v:

[[E]] ηε(Xk(v)) = [[�E]] ηε(
Xk(�v))

Proof. By means of an induction on |E|. The base case follows immediately. The induc-
tion requires a case distinction, a transfinite approximation and Lemmas 1 and 2. ��
Corollary 1. In case E is data-closed and closed, we obtain the following result:

∀η, ε : ∀Xl ∈ bnd(E) : [[E]] ηε(Xl(v)) = [[�E]] ηε(�Xl(�v)))

Example 3. Consider the equation system from Eqn. (2) from Example 1, brought into
PFNF, and name it E . From its marked influence graph, we find R = {(V, 2), (W, 2)}.
This means that equation system (2) can be reduced to the equation system �E , where:

�E :≡
�
ν�V (d:B) = (d =⇒ �V (d)) ∧�W (d)

� �
µ�W (d:B) = d∧ (¬d =⇒ �W (d))

�

We find that for all j ∈ N and b ∈ B, we have [[E]] ηε(X(j, b)) = [[�E]] ηε(�X(b)) for
X ∈ {V, W} and all η, ε. Moreover, a full instantiation of �E (see [4]) leads to a BES
consisting of four equations:

(ν�V� = �V� ∧�W�) (ν�V⊥ = �W⊥) (µ�W� = �) (µ�W⊥ = ⊥)

where variable �Xd encodes �X(d) for d ∈ B and X = V, W . The above BES immedi-
ately leads to the answer true for variables �V�,�W� and false for the variables�V⊥,�W⊥.
Hence, using redundant parameter elimination, instantiation allows for solving equa-
tion systems that could not be solved before using this technique, solving verification
problems that we could not solve before. ��

Static Analysis Techniques for Parameterised Boolean Equation Systems 239

4.2 Detection of Constants

As in the previous section, let E be an equation system, where every equation l (1 ≤
l ≤ N) is in PFNF, and let κ be a target predicate formula (i.e., a formula whose
truth we wish to assess in the context of E), without any free data variables, in PFNF.
In this section, we develop an algorithm that automatically computes an invariant that
associates constants to the formal parameters of predicate variables. To this end, we will
be using a special type of simple functions called ground functions.

Definition 9. A predicate formula p ∈ Pred is a ground predicate for a variable X of
an equation system E if p ≡ ⊥ or p ≡ (dX = c), where c is a partially instantiated
list, i.e. for all indices j, c[j] ∈DX [j]∪ {dX [j]}. A simple function g:occ(E)→ Pred
is a ground function if, for all variables X , g(X) is a ground predicate.

Here dX = c is a shortcut for
�

1≤i≤arity(X)(dX [i] = c[i]). Ground predicates for-
malise assertions about the values associated to the data parameters. To each parameter
i, either a constant from its value domain, or its name dX [i] is associated. In the latter
case, the corresponding assertion is thus dX [i] = dX [i], evaluating to �.

The set of ground predicates for X in E is GPredE,X and the set of ground functions
for E is GFuncE . The binary operator SUP takes two ground predicates of the same
variable and yields the supremum of these ground predicates; it remains undefined for
ground predicates of different variables.

SUP((dX = c), (dX = c′)) =def (dX = c′′)), where for all 1 ≤ i ≤ n:

c′′[i] =
�c[i], if c[i] = c′[i]

dX [i], otherwise
(4)

For instance, if X has arity 3, then SUP((dX = 〈2, 0, dX [3]〉), (dX = 〈2, 5, dX [3]〉))
yields (dX = 〈2, dX [2], dX [3]〉). The operator SUP extends naturally to sets of ground
predicates of the same variable; as a convention, we set SUP(∅) =def ⊥.

We call X(e), with e a list of data expressions, an instantiated occurrence of X and
we denote the set of all instantiated occurrences of predicate variables in φ by iocc(φ).
From any such occurrence X(e), we can extract a ground predicate by retaining only
those data expressions which are constants:

gpred(X(e)) =def (dX = c), with c[i] =
� c, if e[i]↔ c and c ∈DX [i]

dX [i], otherwise.
(5)

Finally, let φ be a formula in PFNF: Q1v1 . . . Qnvn.h ∧�i∈I gi =⇒
j∈Ji

Xj(ej).
Then the guard of an instantiation Xj(ej) in φ, written guard(Xj(ej), φ) is defined
as h ∧ gi.

A constant detection algorithm. The recursive function ga generates successive ground
functions that approximate the parameter lists of E’s predicate variables reached when
starting instantiation of E from target predicate formula κ.

240 S. Orzan, W. Wesselink, and T.A.C. Willemse

ConstElm(E , κ))

for X ∈ occ(E),
ga0(X) := SUP({gpred(X(e))| X(e) ∈ iocc(κ) ∧ guard(X(e), κ) �↔ ⊥})

for X ∈ occ(E),
gan+1(X) := SUP({gan(X)} ∪ �

gan(Y)≡(dY =e)
{gpred(X(e′))|

X(e′) ∈ iocc(φY [e/dY]) ∧ guard(X(e′), φY [e/dY]) �↔ ⊥})
Output : gi ≡

n≥0
gan

Both in the definition of GPred and in the algorithm, the existence of a sound deci-
sion method for φ ↔ ψ is assumed. Usually a very simple one, like syntactic equiva-
lence, will produce meaningful enough invariants.

Correctness. We next give a formal argument for the correctness of the constant detec-
tion algorithm; that is, we show that the output of the algorithm yields an invariant of
the original PBES which preserves the truth of κ.

The function gan captures the information gathered from the arguments of the pred-
icate variables after n substitution steps. gan(Xk) = ⊥ has the intuitive meaning that
Xk is unreachable from κ within n substitution steps and gan(Xk) = � holds when
none of Xk’s arguments remain constant. We have the following simple observation:

Lemma 3. For all n ≥ 0 and all X ∈ occ(E), gan(X)→ gan+1(X).

Proof (sketch). It is easy to prove that p → SUP(S) for all p ∈ S with S a set of ground
predicates for X . Then, from the way gan+1 is constructed, namely gan+1(X) =
SUP({gan(X)} ∪ S), we immediately conclude that gan(X)→ gan+1(X). ��
Lemma 4. ConstElm(E , κ) terminates for every E and κ.

Proof (sketch). In the ConstElm(E , κ) computation, an index N is reached for which
gaN ≡ gaN+1 (for every predicate variable X , gaN (X) ≡ gaN+1(X)); for this N , we
have gaN = gaN+k for every k (i.e., ga is stable). The first part of this claim follows
from the finiteness of bnd(E) and the observation that there is a decreasing measure
that can be associated to the ga0 . . . gan . . . sequence (viz., the number of constants
occurring in gan). The second part follows by induction. The output of the algorithm is
then

0≤i≤N gaN ; following Lemma 3, this is equivalent to gaN . ��

The theorem below states that the algorithm indeed yields valid invariants.

Theorem 3. The output of the algorithm ConstElm(E , κ) is a global invariant for E .

Proof (sketch). Lemma 4 shows that gi is in fact gaN for some sufficiently large N . We
prove by contradiction that gaN satisfies the sufficient condition from Theorem 1. The
argument essentially uses Lemma 3. Consequently, gaN is a global invariant. ��
Using the invariant gi computed by ConstElm, we can now strengthen the original
PBES. The strengthened system is, according to the definition from [13]:

red(ε) = ε
red((σX(dX :DX) = φ) E ′) = (σX(dX :DX) = gi(X) ∧ φ) red(E ′)

Static Analysis Techniques for Parameterised Boolean Equation Systems 241

Note that if gi(X) ≡ (dX = c) then gi(X) ∧ φ is in fact logically equivalent to
φ[c/dX], meaning that the number of free variables in φ decreases. Using the redundant
parameter elimination technique of the previous section, the equation system can then
be reduced. So, red indeed reduces the complexity of equation systems. It suffices to
show that this strengthening preserves the truth for κ:

Theorem 4. Let η and ε be arbitrary predicate and data environments, respectively.
Then [[κ]] ([[E]] ηε)ε = [[κ]] ([[red(E)]] ηε)ε. ��
Proof (sketch). The preservation of κ’s solution follows from Corollary 2 of [13] and
the identity κ ↔ κ

�
Xi∈V

(gi(Xi) ∧Xi(dXi))〈dXi
〉/Xi

�
, which can be shown by a

series of calculations. ��
Example 4. Let κ be the target formula ∀v:N. X(1, v), and E defined as:

(µX(m:N, n:N) = m ≤ 10⇒ (X(m, n + 1) ∨ Y (m)))
(νY (p:N) = X(p, 0) ∧ (p ≥ 5⇒ Z(p)))
(µZ(q:N) = q ≤ 10)

The ConstElm algorithm produces the following approximations:

ga0(X) = (m = 1 ∧ n = n) ga0(Y) = ⊥ ga0(Z) = ⊥
ga1(X) = (m = 1 ∧ n = n) ga1(Y) = (p = 1) ga1(Z) = ⊥
ga2(X) = (m = 1 ∧ n = n) ga2(Y) = (p = 1) ga2(Z) = ⊥

Strengthening each equation with the invariant gi (which assigns m = 1 to X , p = 1
to Y and ⊥ to Z), and simplifying the resulting right-hand sides of the equations, we
obtain the following reduced equation system:

(µX(m:N, n:N) = X(1, n + 1) ∨ Y (1))
(νY (p:N) = X(1, 0))
(µZ(q:N) = ⊥)

Using the technique from the previous section, we find that formal parameters m, n, p
and q all become redundant. The solution to this system of equations has⊥ as a solution
for X, Y and Z , which leads to the solution ⊥ for κ. Note that the instantiation solving
technique does not terminate on the original equation system E , nor does the redundant
parameter elimination technique remove formal parameters from E . ��

Complexity and implementation. Denote the number of predicate variables in occ(E)
by v, the maximum length for the argument list of a predicate variable by l, and the max-
imum number of occurrences of one variable in all the right-hand sides of E’s equations
by o. For each iteration n, gan can be computed inO(v×l×o) (ignoring the complexity
of rewriting that may be necessary), since there are v variables and for each gan(X), the
SUP of a set of at most o ground predicates is computed. This requires comparisons of
arrays of length l. Every variable dX [i] from an argument list can appear in the ground
approximations of X as a constant (dX [i] = c ∈DX [i]) or as variable dX [i] = dX [i].
Once its assertion becomes dX [i] = dX [i], it will never become of the constant type

242 S. Orzan, W. Wesselink, and T.A.C. Willemse

again. Since the total number of constant assertions is decreasing with every iteration
(see also the proof of Lemma 3), and since there are at most v × l data variables in the
system, the maximum number of iterations until stabilisation is v × l. Hence, an upper
bound on the total cost of ConstElm is O(v2 × l2 × o).

In practice, checking whether the guards are unsatisfiable requires careful bookkeep-
ing and can be inefficient. A sound solution is to over-approximate all guards to �,
leading to a much quicker algorithm (which may compute weaker invariants), while
preserving soundness (the same proof applies).

5 Experiments

For conducting our experiments, we have used the tool-suite mCRL21, which imple-
ments techniques from [7,4] and for which we implemented the redundant parameter
elimination and the constant parameter elimination methods. All experiments described
in the remainder of this section have been conducted on a Dual Core, 2.6GHz AMD
Opteron Processor running Linux with 128Gb memory.

Redundant Parameter Elimination. The first series of experiments consists of an analy-
sis of several communication protocols from the literature: the Alternating Bit Protocol,
the Positive Acknowledgement Retransmission Protocol, the Concurrent Alternating
Bit Protocol and variations of the Sliding Window Protocol with different buffer size.
Note that none of these system descriptions could be simplified using the related pa-
rameter elimination techniques from [6] without manually changing the descriptions.

The verification problem that we encoded for each of these protocols is deadlock-
freedom. We varied the size of the set of messages M that can be communicated from
2, 4, 8 to∞, and measured the increase in the size of the BES that is obtained by instan-
tiating the respective PBES before and after applying the redundant parameter elimina-
tion technique of Section 4.1, see Table 1. Running the latter algorithm takes less than
.1 seconds for every equation system (the number of data parameters for each equation
system varies from 13 to 22 per equation). Clearly, the size of the set of message has a
significant impact on the size of the BESs, as witnessed e.g., for the SWP with buffer
size 4: instantiating the equation system for the SWP with |M | = 4 is not viable in
a reasonable amount of time. In contrast, the redundant parameter elimination method
detects that the content of the messages is irrelevant for deadlock-freedom and there-
fore eliminates all references to messages from the equation system, resulting in small
BESs. A similar reduction in size can be obtained by first abstracting out the data from
the protocol descriptions and then checking the resulting systems for deadlock-freedom;
this, however, requires in-depth knowledge about the behaviours of the systems.

A second batch of experiments conducted using the same protocols and the same
setup is to verify whether a sender can infinitely often send a particular (constant) mes-
sage m, which is formalised by the following formula of fixed point alternation depth 2:
νX. µY. 〈r(m)〉X ∨ 〈¬r(m)〉Y , where the action r models the sending of the message
to the communications protocol (which is receiving the message). The number of data
parameters for the equation systems again varies from 13 to 22 per equation). Unlike for

1 http://www.mcrl2.org

http://www.mcrl2.org

Static Analysis Techniques for Parameterised Boolean Equation Systems 243

Table 1. The effect of redundant parameter elimination in equation systems encoding (1)
deadlock-freedom (νX. [�]X ∧ 〈�〉�) and (2) infinitely-often sending a constant message
(νX.µY. 〈r(m)〉X ∨ 〈¬r(m)〉Y) of various communication protocols using a set M of mes-
sages. Here, the x in x/y stands for the size of the BES before elimination of redundancy and the
y in x/y stands for the size of the BES after elimination of redundancy.

Property (1)
|M| → 2 4 8 ∞

Protocol ↓
ABP 74 / 38 146 / 38 290 / 38 ∞ / 38
PAR 91 / 47 179 / 47 355 / 47 ∞ / 47
CABP 464 / 224 1,040 / 224 2,576 / 224 ∞ / 224
One-bit SWP 324 / 144 900 / 144 2,916 / 144 ∞ / 144
SWP (buffer size 2) 14,064 / 1,860 140,352 / 1,860 1.7 ∗ 106 / 1,860 ∞ / 1,860
SWP (buffer size 4) 2.6 ∗ 106 / 43,320 nc / 43,320 nc / 43,320 ∞ / 43,320

Property (2)
|M| → 2 4 8 ∞

Protocol ↓
ABP 77 / 41 149 / 41 293 / 41 ∞ / 41
PAR 95 / 51 183 / 51 359 / 51 ∞ / 51
CABP 513 / 257 1,121 / 257 2,721 / 257 ∞ / 257
One-bit SWP 379 / 181 991 / 181 3,079 / 181 ∞ / 181
SWP (buffer size 2) 17,809 / 2,545 163,393 / 2,545 1.9 ∗ 106 / 2,545 ∞ / 2,545
SWP (buffer size 4) 3.5 ∗ 106 / 64,609 nc / 64,609 nc / 64,609 ∞ / 64,609

the deadlock freedom property, the presence of the data message in the system descrip-
tion is vital, which means that abstracting the data away is no option. First applying the
redundant parameter elimination technique from [6] therefore yields no improvement.
The results of our experiments are depicted in the second matrix in Table 1 and show a
similar trend as the first batch of experiments. It is important to note that the resulting
BESs are also alternating. Thus, size really becomes a problem as the best, known al-
gorithms for solving BESs are exponential in the fixed point alternation depth and have
as base the size of the BES. Large BESs thus quickly become intractable.

Constant Parameter Elimination. As demonstrated in [13,8], well chosen invariants help
to simplify equation systems, so that rewriting becomes less of a bottleneck in instanti-
ating. Figure 1 clearly illustrates this effect: applying a constant parameter elimination

0

100

200

300

400

8 9 10 11 12 13 14
0

50
100
150
200
250
300

10 11 12 13 14 15 16 17 18

Fig. 1. The effect of constant parameter elimination on the instantiation time required to obtain a
BES from an equation system encoding the deadlock-freedom property for n dining philosophers
(left) and for n Milner schedulers (right). Time is measured in minutes (y-axis).

244 S. Orzan, W. Wesselink, and T.A.C. Willemse

in the equation systems that encode deadlock-freedom in n dining philosophers and a
token ring of n Milner schedulers, respectively. The time required to solve the original
equation systems increases exponentially with increasing n in both cases (continuous
lines). In contrast, after applying a constant parameter elimination, the increase in time
to compute the resulting equation system is modest (dashed lines). Removing the con-
stant parameters requires little time: < 10 seconds for the most complex case.

6 Summary

We have devised algorithms that reduce the complexity of PBESs; this is achieved by
detecting and removing parameters that do not contribute to the solution of a PBES
and by removing constant parameters. Our experiments show that the algorithms are
very effective at reducing the size of the BESs that can be computed from the PBESs.
This means that the complexity of solving the PBES via a resolution of the BES can be
reduced as well, which is particularly important for alternating BESs.

As we observed and proved, a sufficient invariance condition for PBESs can be
stated that does not require a quantification over arbitrary predicate environments. Our
constant detection algorithm is a special case of an invariance detection algorithm for
PBESs, based on the above-mentioned observation; it is therefore interesting future
work to extend the constant detecting algorithm in order to detect more complex classes
of invariants.

References

1. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking for infinite
systems using parameterized boolean equation systems. In: Caires, L., Vasconcelos, V.T.
(eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer, Heidelberg (2007)

2. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (1999)
3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In: POPL (1977)
4. van Dam, A., Ploeger, B., Willemse, T.A.C.: Instantiation for parameterised boolean equa-

tion systems. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 440–454. Springer, Heidelberg (2008)

5. Gallardo, M.M., Joubert, C., Merino, P.: Implementing influence analysis using parame-
terised boolean equation systems. In: Proc. ISOLA 2006. IEEE Comp. Soc. Press, Los
Alamitos (2006)

6. Groote, J.F., Lisser, B.: Computer assisted manipulation of algebraic process specifications.
SIGPLAN Notices 37(12), 98–107 (2002)

7. Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Sci. Comput. Pro-
gram 56(3), 251–273 (2005)

8. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor. Comput.
Sci. 343(3), 332–369 (2005)

9. Hentze, N., McAllester, D.: Linear-time subtransitive control flow analysis. In: Proc. PLDI
1997. ACM, New York (1997)

10. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation for three-
valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, p. 155. Springer,
Heidelberg (2001)

Static Analysis Techniques for Parameterised Boolean Equation Systems 245

11. Mateescu, R.: Local model-checking of an alternation-free value-based modal mu-calculus.
In: Proc. 2nd Int’l Workshop on VMCAI (September 1998)

12. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing sys-
tems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

13. Orzan, S., Willemse, T.A.C.: Invariants for parameterised boolean equation systems. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 187–202. Springer,
Heidelberg (2008)

14. van de Pol, J.C., Valero Espada, M.: Modal abstractions in µCRL∗. In: Proc. AMAST (2004)
15. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Mathemat-

ics 5(2), 285–309 (1955)
16. Watanabe, H., Nishizawa, K., Takaki, O.: A coalgebraic representation of reduction by

cone of influence. In: Proc. of Workshop on Coalgebraic Methods in Computer Science,
vol. 164(1), pp. 177–194 (2006)

Parametric Trace Slicing and Monitoring�

Feng Chen and Grigore Roşu

Department of Computer Science, University of Illinois at Urbana-Champaign
{fengchen,grosu}@cs.uiuc.edu

Abstract. Analysis of execution traces plays a fundamental role in
many program analysis approaches. Execution traces are frequently para-
metric, i.e., they contain events with parameter bindings. Each paramet-
ric trace usually consists of many trace slices merged together, each slice
corresponding to a parameter binding. Several techniques have been pro-
posed to analyze parametric traces, but they have limitations: some in
the specification formalism, others in the type of traces they support;
moreover, they share common notions, intuitions, even techniques and
algorithms, suggesting that a fundamental understanding of parametric
trace analysis is needed. This foundational paper gives the first solution
to parametric trace analysis that is unrestricted by the type of paramet-
ric properties or traces that can be analyzed. First, a general purpose
parametric trace slicing technique is discussed, which takes each event in
the parametric trace and distributes it to its corresponding trace slices.
This parametric trace slicing technique can be used in combination with
any conventional, non-parametric trace analysis, by applying the latter
on each trace slice. An online monitoring technique is then presented
based on the slicing technique, providing a logic-independent solution to
runtime verification of parametric properties. The presented monitoring
technique has been implemented and extensively evaluated. The results
confirm that the generality of the discussed techniques does not come at a
performance expense when compared with existing monitoring systems.

1 Introduction and Motivation

Parametric traces, i.e., traces containing events with parameter bindings, abound
in programming language executions, because they naturally appear whenever
abstract parameters (e.g., variable names) are bound to concrete data (e.g.,
heap objects) at runtime. For example, if one is interested in analyzing collec-
tions and iterators in Java, then execution traces of interest may contain events
createIter〈c i〉 (iterator i is created for collection c), updateColl〈c〉 (c is modified),
and “next〈i〉 (i is accessed using its next element method), instantiated for par-
ticular collection and iterator instances. Most properties of parametric traces are
also parametric, i.e., refer to each particular parameter instance; for example, a
property may be “collections are not allowed to change while accessed through

� Supported in part by NSF grants CCF-0448501, CNS-0509321 and CNS-0720512,
by NASA contract NNL08AA23C, and by several Microsoft gifts.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 246–261, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Parametric Trace Slicing and Monitoring 247

iterators”, which is parametric in a collection and an iterator. To distinguish
properties parametric in a set of parameters X from ordinary, non-parametric
properties, we write them ΛX.P ; for example, violations of the above paramet-
ric property expressed as a regular expression (here matches mean violations)
can be “Λc, i. createIter〈c i〉 next〈i〉∗ updateColl〈c〉+ next〈i〉”. From here on we
omit the event parameters in parametric properties when they are redundant;
for example, we write “Λc, i. createIter next∗ updateColl+ next” for the above.

Parametric properties, unfortunately, are very hard to formally verify and
validate against real systems, mainly because of their dynamic nature and po-
tentially huge or even unlimited number of parameter bindings. Let us ex-
tend the above example: in Java, one may create a collection from a map
and use the collection’s iterator to operate on the map’s elements. A similar
safety property is: “maps are not allowed to change while accessed indirectly
through iterators”. Its violation pattern is: “Λm, c, i. createColl (updateMap |
updateColl)∗ createIter next∗ (updateMap | updateColl)+ next”, with two new
parametric events createColl〈m, c〉 (collection c is created from map m) and
updateMap〈m〉 (m is updated). All the events used in this property provide only
partial parameter bindings (createColl binds only m and c, etc.), and parameter
bindings carried by different events may be combined into larger bindings during
the analysis; e.g., createColl〈m1, c1〉 can be combined with createIter〈c1, i1〉 into
a full binding 〈m1, c1, i1〉, and also with createIter〈c1, i2〉 into 〈m1, c1, i2〉. It is
highly challenging for a trace analysis technique to correctly and efficiently main-
tain, locate and combine trace slices for different parameter bindings, especially
when the trace is long and the number of parameter bindings is large.

Parametric properties have been receiving growing interest in runtime ver-
ification (RV), as shown by the increasing number of RV systems supporting
them, e.g., [3,1,14,12,7,13,15,9,5,4]. Most of these techniques tightly couple the
handling of parameter bindings with the property checking, yielding monolithic
but supposedly efficient monitors. For example, Tracematches [1] extends state
machines with parameter bindings in order to support parametric regular pat-
tern properties; a series of optimizations to the resulting data-structures make
Tracematches one of the most efficient RV systems [3]. The major challenges
these “monolithic monitor” approaches face are how to keep track of the sta-
tus for each particular parameter instance during property checking, and how
to correctly garbage-collect portions of the monitor as they become irrelevant
[14,5,4]. Such couplings of parameter binding and property checking result in
rather complex and property-formalism-specific algorithms, hard or impossible
to adapt to other formalisms. For example, [3] builds upon a finite state ma-
chine skeleton associated to the underlying pattern, so it cannot be adapted to,
e.g., context-free patterns; [14] stacks automata in order to support parametric
context-free patterns, making it slower than Tracematches [3] and insensitive
to certain events of interest (such as ends of procedures [15]); Eagle [4] has no
garbage-collection due to its generality, causing prohibitive overhead [3].

JavaMOP [9] proposes a different solution, based on a complete decoupling
of parameter binding from property checking. This separation allows the use

248 F. Chen and G. Roşu

of “off-the-shelf” algorithms and techniques for non-parametric properties as
plug-ins; e.g., JavaMOP supports several property specification formalisms, in-
cluding regular expressions, temporal logics, and context-free patterns [15,9], all
parametric. However, the technique currently supported by JavaMOP can only
handle a limited type of traces, namely ones in which the first event for a particu-
lar property instance binds all the property parameters. This limitation prevents
JavaMOP from supporting many useful parametric properties [3]. In this paper
we show that the decoupling of parameter binding and property checking is not
only possible without any limitation, but also very practical.

In spite of all the recent advances in parametric property and trace analysis,
the following questions are still left largely open in their full generality: Given a
parametric trace τ and a parametric property ΛX.P , what does it mean for τ
to be a good or a bad trace for ΛX.P? How can we leverage, to the parametric
case, knowledge and techniques to analyze conventional, non-parametric traces
against conventional, non-parametric properties? In this paper we first formulate
and then rigorously answer these questions and empirically validate our answer.

Contributions.Besides proposing a formal semantics to parametric traces, prop-
erties, and monitoring, we make two theoretical contributions and discuss an im-
plementation that validates them empirically. Our first result is a general-purpose
online parametric trace slicing algorithm (algorithm A〈X〉), which positively an-
swers the question: given a parametric execution trace τ , can one effectively find
the slices τ �θ corresponding to each parameter instance θ without having to
traverse the trace for each θ? Our second result, which builds upon the slicing algo-
rithm, is an online monitoring technique (algorithms B〈X〉 and C〈X〉) for para-
metric properties, which separates handling of parameters from checking trace
slices against the specified property. It positively answers the question: is it pos-
sible to monitor arbitrary parametric properties ΛX.P against parametric exe-
cution traces τ , provided that the root non-parametric property P is monitorable
using conventionalmonitors? Finally, we implemented and evaluated the proposed
techniques and show empirically that their generality does not come at a perfor-
mance expense when compared with existing monitoring systems.

Paper structure. Section 2 formalizes parametric events, traces and properties,
defines trace slicing and discusses an online trace slicing algorithm. Section 3
presents our main techniques for parametric trace monitoring. Section 4 dis-
cusses implementation optimizations to the proposed monitoring technique and
its evaluation. Section 5 summarizes related researches and Section 6 concludes.

Note. Proofs to all the claimed results can be found in [16].

2 Parametric Trace Slicing for Monitoring

In this section, we first define some basic notions (event, trace and property)
and then present an online parametric trace slicing algorithm that provides the
foundation for the online monitoring technique discussed in Section 3.

Parametric Trace Slicing and Monitoring 249

2.1 Events, Traces and Properties

Here we introduce the notions of event, trace and property, first non-parametric
and then parametric. Trace slicing is then defined as a reduct operation that
forgets all the events unrelated to the given parameter instance.

Definition 1. Let E be a set of (non-parametric) events, called base events
or simply events. An E-trace, or simply a (non-parametric) trace when E is
understood or not important, is any finite sequence of events in E, that is, an
element in E∗. If event e ∈ E appears in trace w ∈ E∗ then we write e ∈ w.

Example. (part 1 of simple running example) Consider a certain resource (e.g., a
synchronization object) that can be acquired and released during the lifetime of a
given procedure (between its begin and end). Then E={acquire, release, begin, end}
and execution traces corresponding to this resource are sequences of the form
“begin acquire acquire release end begin end”, “begin acquire acquire”, etc. For
now there are no “good” or “bad” execution traces. �

Definition 2. An E-property P , or simply a (base or non-parametric) prop-
erty, is a function P : E∗ → C partitioning the set of traces into categories C. It
is common, but not enforced, that C includes “validating”, “violating”, and “don’t
know” (or “?”) categories. In general, C, the co-domain of P , can be any set.

Example. (part 2) Consider a regular expression specification, (begin(ε | (acquire
(acquire | release)∗release))end)∗, stating that the procedure can (non-recursively)
take place multiple times and, if the resource is acquired during the proce-
dure then it is released by the end of the procedure. The validating traces are
those matching the pattern, e.g., “begin acquire acquire release end begin end”.
At first sight, one may say that all the other traces are violating traces, be-
cause they are not in the language of the regular expression. However, there are
two interesting types of such “violating” traces: ones which may still lead to a
validating trace provided the right events will be received in the future, e.g.,
“begin acquire acquire”, and ones which have no chance of becoming a validating
trace, e.g. “begin acquire release acquire end”. Therefore, we can pick C to be
the set {validating, violating, don’t know} and, for a given regular expression E,
define its associated property PE : E∗ → C as follows: PE(w) = validating iff w is
in the language of E, PE(w) = violating iff there is no w′ ∈ E∗ such that w w′ is
in the language of E, and PE(w) = don’t know otherwise; this is the monitoring
semantics of regular expressions in JavaMOP [9]. Other semantic choices are
possible; for example, one may choose C to be the set {matching, don’t care} and
define PE(w) = matching iff w is in the language of E, and PE(w) = don’t care
otherwise; this is the semantics of regular expressions in Tracematches [1]. �
We next extend the above definitions to the parametric case, i.e., events carrying
concrete data instantiating abstract parameters.

Example. (part 3) Events acquire and release are parametric in the resource; if
r is the name of the generic “resource” parameter and r1 and r2 are two concrete
resources, then parametric acquire/release events have the form acquire〈r �→ r1〉,

250 F. Chen and G. Roşu

release〈r �→ r2〉, etc. Not all events need carry instances for all parameters; e.g.,
the begin/end parametric events have the form begin〈⊥〉 and end〈⊥〉, where ⊥,
the partial map undefined everywhere, instantiates no parameter. �
Let [A→B]/[A⇁B] be the sets of total/partial functions from A to B.

Definition 3. (Parametric events and traces). Let X be a set of param-
eters and let V be a set of corresponding parameter values. If E is a set of
base events like in Def. 1, then let E〈X〉 be the set of corresponding parametric
events e〈θ〉, where e is a base event in E and θ is a partial function in [X⇁V].
A parametric trace is a trace with events in E〈X〉, that is, a word in E〈X〉∗.
To simplify writing, we occasionally assume the parameter values set V implicit.

Example. (part 4) A parametric trace can be: begin〈⊥〉 acquire〈θ1〉 acquire〈θ2〉
acquire〈θ1〉 release〈θ1〉 end〈⊥〉 begin〈⊥〉 acquire〈θ2〉 release〈θ2〉 end〈⊥〉, where
θ1 maps r to r1 and θ2 maps r to r2. We take the freedom to only list the
parameter values when writing parameter instances, that is, 〈r1〉 instead of
〈r �→ r1〉, or τ�r2 instead of τ�r �→r2 , etc. With this notation, the above trace
is: begin〈〉 acquire〈r1〉 acquire〈r2〉 acquire〈r1〉 release〈r1〉 end〈〉 begin〈〉 acquire〈r2〉
release〈r2〉 end〈〉. This trace involves two resources, r1 and r2, and really consists
of two trace slices, one for each resource. The begin and end events belong to both
trace slices. The slice corresponding to θ1 is “begin acquire acquire release end
begin end”, while the one for θ2 is “begin acquire end begin acquire release end“. �

Definition 4. Partial functions θ in [X⇁V] are called parameter instances.
θ, θ′ ∈ [A⇁B] are compatible if for any x ∈ Dom(θ) ∩ Dom(θ′), θ(x) = θ′(x).
We can combine compatible instances θ and θ′, written θ � θ′, as follows:

(θ � θ′)(x) =

⎧⎨⎩
θ(x) when θ(x) is defined
θ′(x) when θ′(x) is defined
undefined otherwise

θ � θ′ is also called the least upper bound (lub) of θ and θ′. θ′ is less
informative than θ, or θ is more informative than θ′, written θ′ � θ, iff for
any x ∈ X, if θ′(x) is defined then θ(x) is also defined and θ′(x) = θ(x).

For our example, 〈〉 is compatible with 〈r1〉 and with 〈r2〉, but 〈r1〉 and 〈r2〉 are
not compatible; moreover, 〈〉 � 〈r1〉 and 〈〉 � 〈r2〉.
Definition 5. (Trace slicing) Given parametric trace τ ∈ E〈X〉∗ and θ in
[X⇁V], let the θ-trace slice τ�θ ∈ E∗ be the non-parametric trace defined as:

– ε�θ= ε, where ε is the empty trace/word, and

– (τ e〈θ′〉)�θ=
{

(τ�θ) e when θ′ � θ
τ�θ when θ′ �� θ

The trace slice τ�θ first filters out all the parametric events that are not relevant
for the instance θ, i.e., which contain instances of parameters that θ does not care
about, and then, for the remaining events relevant to θ, it forgets the parameters

Parametric Trace Slicing and Monitoring 251

so that the trace can be checked against base, non-parametric properties. It is
crucial to discard parameter instances that are not relevant to θ during the
slicing, including those more informative than θ, in order to achieve a “proper”
slice for θ: in our running example, the trace slice for 〈〉 should contain only
begin and end events and no acquire or release. Otherwise, the acquire and release
of different resources will interfere with each other in the trace slice for 〈〉.

One should not confuse extracting/abstracting traces from executions with
slicing traces. The former determines the events to include in the trace, as well
as parameter instances carried by events, while the latter dispatches each event
in the given trace to corresponding trace slices according to the event’s parameter
instance. Different abstractions may result in different parametric traces from
the same execution and thus may lead to different trace slices for the same
parameter instance θ. For the (map, collection, iterator) example in Section 1,
X = {m, c, i} and an execution may generate the following parametric trace:
createColl〈m1, c1〉 createIter〈c1, i1〉 next〈i1〉 updateMap〈m1〉. The trace slice for
〈m1〉 is updateMap for this parametric trace. Now suppose that we are only
interested in operations on maps. Then X = {m} and the trace abstracted from
the execution generating the above trace is createColl〈m1〉 updateMap〈m1〉, in
which events and parameter bindings irrelevant to m are removed. Then the
trace slice for 〈m1〉 is createColl updateMap. In this paper we focus on the trace
slicing; more discussion about trace abstraction can be found in [10].

Definition 6. Let X be a set of parameters together with their corresponding
parameter values V , like in Definition 3, and let P : E∗ → C be a non-parametric
property like in Definition 2. Then we define the parametric property ΛX.P
as the property (over traces E〈X〉∗ and categories [[X⇁V]→ C])

ΛX.P : E〈X〉∗ → [[X⇁V] → C]
defined as (ΛX.P)(τ)(θ) = P (τ�θ) for any τ ∈ E〈X〉∗ and any θ ∈ [X⇁V]. If
X = {x1, ..., xn} we may write Λx1, ..., xn.P instead of (Λ{x1, ..., xn}.P . Also, if
Pϕ is defined using a pattern or formula ϕ in some particular trace specification
formalism, we take the liberty to write ΛX.ϕ instead of ΛX.Pϕ.

Parametric properties ΛX.P over base properties P : E∗ → C are therefore
properties taking traces in E〈X〉∗ to categories [[X⇁V]→C], i.e., to function
domains from parameter instances to base property categories. ΛX.P is defined
as if many instances of P are observed at the same time on the parametric
trace, one property instance for each parameter instance, each property instance
concerned with its events only, dropping the unrelated ones.

2.2 Algorithm for Online Parametric Trace Slicing

Definition 5 illustrates a way to slice a parametric trace for given parameter
bindings. However, it is not suitable for online trace slicing, where the trace is
observed incrementally and no future knowledge is available, because we cannot
know all possible parameter instances θ apriori. We next define an algorithm

252 F. Chen and G. Roşu

A〈X〉 in Fig. 1 that takes a parametric trace τ ∈ E〈X〉∗ incrementally, and
builds a partial function T ∈ [[X⇁V]⇁E∗] of finite domain as a quick lookup
table for all slices of τ .

Algorithm A〈X〉
Input: parametric trace τ ∈ E〈X〉∗
Output: map T ∈ [[X⇁V]⇁E∗] and

set Θ ⊆ [X⇁V]
1 T ← ⊥; T(⊥)← ε; Θ ← {⊥}
2 foreach e〈θ〉 in order in τ do
3 : foreach θ′ ∈ {θ}
Θ do
4 : : T(θ′)← T(max (θ′]Θ) e
5 : endfor
6 : Θ ← {⊥, θ}
Θ
7 endfor

Fig. 1. Parametric slicing algorithm A〈X〉

Let us first introduce some op-
erations on sets of partial func-
tions used in A〈X〉 (only the
informal intuition is given here;
rigorous definitions can be found
in [16]). Given sets of partial func-
tions Θ,Θ′ ⊆ [X⇁V], �Θ is the
least informative partial function
θ ∈ [X⇁V] such that for any θ′ ∈
Θ, θ′ � θ; maxΘ is the most in-
formative θ ∈ Θ; Θ�Θ′ = {θ�θ′ |
θ ∈ Θ, θ′ ∈ Θ′ s.t., θ � θ′ exists};
and (θ]Θ = {θ′ | θ′ ∈ Θ and θ′ �
θ}. Note that �Θ and maxΘ may not exist. Then Theorem 1 shows that, for
any θ ∈ [X⇁V], the trace slice τ�θ is T(max (θ]Θ) after A〈X〉 processes τ , where
Θ is the domain of T, calculated by A〈X〉 incrementally. Therefore, assuming
that A〈X〉 is run on trace τ , all one has to do in order to calculate a slice τ�θ

for a given θ ∈ [X⇁V] is to calculate max (θ]Θ followed by a lookup into T.
This way the trace τ , which can be very long, is processed/traversed only once,
as it is being generated, and appropriate data-structures are maintained by our
algorithm that allow for retrieval of slices for any parameter instance θ, without
traversing τ again.

Fig. 1 shows our trace slicing algorithm A〈X〉. In spite of A〈X〉’s small size,
its proof of correctness is surprisingly intricate as shown in [16]. The algorithm
A〈X〉 on input τ , written more succinctly A〈X〉(τ), traverses τ from its first
event to its last event and, for each encountered event e〈θ〉, updates both its
data-structures, T and Θ. After processing each event, the relationship between
T and Θ is that the latter is the domain of the former. Line 1 initializes the
data-structures: T is undefined everywhere (i.e., ⊥) except for the undefined-
everywhere function ⊥, where T(⊥) = ε; as expected, Θ is then initialized to
the set {⊥}. The code (lines 3 to 6) inside the outer loop (lines 2 to 7) can be
triggered when a new event is received. When a new event is received, say e〈θ〉,
T is updated as follows: for each θ′ ∈ [X⇁V] that can be obtained by combining
θ with the compatible partial functions in the domain of the current T, update
T(θ′) by adding the non-parametric event e to the end of the slice corresponding
to the largest (i.e., most “knowledgeable”) entry in the current table T that is
less informative or as informative as θ′; Θ is then extended in line 6.

Example. Consider the following sample parametric trace with events para-
metric in {a, b, c}: τ = e1〈a1〉 e2〈a2〉 e3〈b1〉 e4〈a2b1〉 e5〈a1〉 e6〈〉 e7〈b1〉 . Table 1
shows how A〈X〉 works on τ . An entry of the form “〈θ〉 : w” in a table cell
corresponding to a “current” parametric event e〈θ〉 means that T(θ) = w after
processing all the parametric events up to and including the current one; T is

Parametric Trace Slicing and Monitoring 253

Table 1. A run of the trace slicing algorithm A〈X〉
e1〈a1〉 e2〈a2〉 e3〈b1〉 e4〈a2b1〉 e5〈a1〉 e6〈〉 e7〈b1〉
〈〉:ε
〈a1〉:e1

〈〉:ε
〈a1〉:e1
〈a2〉:e2

〈〉:ε
〈a1〉:e1
〈a2〉:e2
〈b1〉:e3
〈a1b1〉:e1e3
〈a2b1〉:e2e3

〈〉:ε
〈a1〉:e1
〈a2〉:e2
〈b1〉:e3
〈a1b1〉:e1e3
〈a2b1〉:e2e3e4

〈〉:ε
〈a1〉:e1e5
〈a2〉:e2
〈b1〉:e3
〈a1b1〉:e1e3e5
〈a2b1〉:e2e3e4

〈〉:e6
〈a1〉:e1e5e6
〈a2〉:e2e6
〈b1〉:e3e6
〈a1b1〉:e1e3e5e6
〈a2b1〉:e2e3e4e6

〈〉:e6
〈a1〉:e1e5e6
〈a2〉:e2e6
〈b1〉:e3e6e7
〈a1b1〉:e1e3e5e6e7
〈a2b1〉:e2e3e4e6e7

undefined on any other partial function. Obviously, the Θ corresponding to a
cell is the union of all the θ’s that appear in pairs “〈θ〉 : w” in that cell. Trace
slices for parameter instances, e.g., 〈a1b1〉 and 〈a2b1〉, which have not been seen
in any observed event are also created. Note that, as each parametric event e〈θ〉
is processed, the non-parametric event e is added at most once to each slice. �
A〈X〉 computes trace slices for all combinations of parameter instances observed
in parametric trace events. Its complexity is therefore O(n×m) where n is the
length of the trace and m is the number of all possible parameter combinations.
However, A〈X〉 is not intended to be implemented directly; it is only used as a
correctness backbone for other trace analysis algorithms, such as the monitoring
algorithms discussed below. An alternative and apparently more efficient solu-
tion is to only record trace slices for parameter instances that actually appear in
the trace (instead of for all combinations of them), and then construct the slice
for a given parameter instance by combining such trace slices for compatible
parameter instances. However, the complexity of constructing all possible trace
slices at the end using such an algorithm is also O(n ×m). In addition, A〈X〉
is more suitable for online monitoring: each event is sent to its slices (that are
consumed by corresponding monitors) and never touched again.

A〈X〉 compactly and uniformly captures several special cases and subcases
that are worth discussing. The discussion below can be formalized as an induc-
tive (on the length of τ) proof of correctness for A〈X〉, but we prefer to keep
this discussion informal here and use it as a means to better explain the algo-
rithm A〈X〉, providing the reader with additional intuition for its difficulty and
compactness. A rigorous proof can be found in [16].

Let us first note that a partial function added to Θ will never be removed
from Θ; that’s because Θ ⊆ {⊥, θ} �Θ. The same holds true for the domain of
T, because line 4 can only add new elements to Dom(T); in fact, the domain of
T is extended with precisely the set {θ} � Θ after each event parametric in θ
is processed by A〈X〉. Moreover, since Dom(T) = Θ = Θε = {⊥} initially and
since Θ∪({θ}�Θ) = {⊥, θ}�Θ while Θτ e〈θ〉 = {⊥, θ}�Θτ , where Θτ is Θ after
A〈X〉 processes τ , we can inductively show that Dom(T) = Θ = Θτ each time
after A〈X〉 is executed on a parametric trace τ . Each θ′ considered by the loop at
lines 3-5 has the property that θ � θ′, and at (precisely) one iteration of the loop
θ′ is θ; indeed, θ ∈ {θ} �Θ because ⊥ ∈ Θ. Essentially, the claimed Theorem 1
holds iff T(θ′) = τ�θ′ after T(θ′) is updated in line 4. A tricky observation which
is crucial for this is that the updates of T(θ′) do not interfere with each other
for different θ′ ∈ {θ} � Θ; otherwise the non-parametric event e may be added
multiple times to some trace slices T(θ′).

254 F. Chen and G. Roşu

Let us next informally argue, inductively, that it is indeed the case that
T(θ′) = τ�θ′ after T(θ′) is updated in line 4 (it vacuously holds on the empty
trace). Since max (θ′]Θ ∈ Θ, the inductive hypothesis tells us that T(max (θ′]Θ)
= τ�max (θ′]Θ ; these are further equal to τ�θ′ . Since θ � θ′, the definition of trace
slicing implies that (τ e〈θ〉)�θ′= τ�θ′ e. Therefore, T(θ′) is indeed (τ e〈θ〉)�θ′ after
line 4 of A〈X〉 is executed while processing the event e〈θ〉 that follows trace τ .
This concludes our informal proof sketch.

Let A〈X〉(τ).T and A〈X〉(τ).Θ be T and Θ of A〈X〉 after it processes τ .

Theorem 1. The following hold for any τ ∈ E〈X〉∗:
1. Dom(A〈X〉(τ).T) = A〈X〉(τ).Θ = Θτ ;
2. A〈X〉(τ).T(θ) = τ�θ for any θ ∈ A〈X〉(τ).Θ;
3. τ�θ= A〈X〉(τ).T(max (θ]A〈X〉(τ).Θ) for any θ ∈ [X⇁V].

3 Online Parametric Trace Monitoring

Here we first define monitors M and parametric monitors ΛX.M . Like for para-
metric properties, which are just properties over parametric traces, we show that
parametric monitors are also just monitors, but for parametric events and with
instance-indexed states and output categories. We show that a parametric mon-
itor ΛX.M is a monitor for the parametric property ΛX.P , with P the property
monitored by M . Finally, we present an online monitoring algorithm based on
algorithm A〈X〉 and then refine it to an efficient monitoring algorithm.

3.1 Monitors and Parametric Monitors

Non-parametric monitors are defined as a variant of Moore machines:

Definition 7. A monitor M is a tuple (S, E , C, ı, σ : S × E → S, γ : S → C),
where S is a set of states, E is a set of input events, C is a set of output categories,
ı ∈ S is the initial state, σ is the transition function, and γ is the output function.
The transition function is extended to σ : S × E∗ → S the standard way.

The notion of a monitor above is rather conceptual. Actual implementations of
monitors need not generate all the state space apriori, but on a “by need” basis.
Allowing monitors with infinitely many states is a necessity in our context. Even
though only a finite number of states is reached during any given (finite) execu-
tion trace, there is, in general, no bound on how many. For example, monitors for
context-free grammars like the ones in [15] have potentially unbounded stacks
as part of their state. Also, as shown shortly, parametric monitors have domains
of functions as state spaces, which are infinite as well.

Definition 8. M = (S, E , C, ı, σ, γ) is a monitor for property P : E∗ → C iff
γ(σ(ı, w)) = P (w) for each w ∈ E∗. Every monitor M defines the property PM :
E∗ → C with PM (w) = γ(σ(ı, w)); note that M is a monitor for PM . Monitors
M and M ′ are equivalent, written M ≡M ′ iff PM = PM ′ .

Parametric Trace Slicing and Monitoring 255

Proposition 1. Every property P defines a monitor MP with MP a monitor
for P . For any property P , PMP = P . For any monitor M , if M = MP for
some property P then MPM ≡M .

We next define parametric monitors in the same style as the other parametric
entities defined in this paper: starting with a base monitor and a set of param-
eters, the corresponding parametric monitor can be thought of as a set of base
monitors running in parallel, one for each parameter instance.

Definition 9. Given parameters X with corresponding values V and monitor
M = (S, E , C, ı, σ : S × E → S, γ : S→C), the parametric monitor ΛX.M is
the monitor ([[X⇁V]→S], E〈X〉, [[X⇁V]→C], λθ.ı, ΛX.σ, ΛX.γ), with ΛX.σ :
[[X⇁V]→S]× E〈X〉→ [[X⇁V]→S] and ΛX.γ : [[X⇁V]→S]→ [[X⇁V]→C]
defined as

(ΛX.σ)(δ, e〈θ′〉)(θ) =
{

σ(δ(θ), e) if θ′ � θ
δ(θ) if θ′ �� θ

(ΛX.γ)(δ)(θ) = γ(δ(θ))

for any δ ∈ [[X⇁V]→S] and any θ, θ′ ∈ [X⇁V].

Therefore, a state δ of parametric monitor ΛX.M maintains a state δ(θ) of M
for each parameter instance θ, takes parametric events as input, and outputs
categories indexed by parameter instances (one category of M per instance).

Proposition 2. If M is a monitor for P , then ΛX.M is a monitor for para-
metric property ΛX.P , or, PΛX.M = ΛX.PM .

3.2 Algorithm for Online Parametric Trace Monitoring

We next propose a monitoring algorithm for parametric properties. A first chal-
lenge here is how to represent the states of the parametric monitor. Inspired
by algorithm A〈X〉, we encode functions [[X⇁V]⇁S] as tables with entries in-
dexed by parameter instances in [X⇁V] and with contents states in S. Such
tables will have finite entries since each event binds only a finite number of
parameters. Fig. 2 shows our monitoring algorithm for parametric properties.
Given parametric property ΛX.P and M a monitor for P , B〈X〉(M) yields a
monitor that is equivalent to ΛX.M , that is, a monitor for ΛX.P . Section 4 shows
one way to use this algorithm: a monitor M is first synthesized from the base
property P , then that monitor M is used to synthesize the monitor B〈X〉(M)
for the parametric property ΛX.P .

B〈X〉(M) follows very closely the algorithm for trace slicing in Fig. 1, the
main difference being that trace slices are processed, as generated, by M : in-
stead of calculating the trace slice of θ′ by appending base event e to the cor-
responding existing trace slice in line 4 of A〈X〉, we now calculate and store
in table ∆ the state of the “monitor instance” corresponding to θ′ by sending
e to the corresponding existing monitor instance (line 4 in B〈X〉(M)); at the
same time we also calculate the output corresponding to that monitor instance
and store it in table Γ . In other words, we replace trace slices in A〈X〉 by local

256 F. Chen and G. Roşu

Algorithm B〈X〉(M=(S,E ,C, ı, σ, γ))
Input: parametric trace τ ∈ E〈X〉∗
Output:Γ : [[X⇁V]⇁C] and Θ ⊆ [X⇁V]
1 ∆← ⊥; ∆(⊥)← ı; Θ ← {⊥}
2 foreach e〈θ〉 in order in τ do
3 : foreach θ′ ∈ {θ}
Θ do
4 : : ∆(θ′)← σ(∆(max (θ′]Θ), e)
5 : : Γ (θ′)← γ(∆(θ′))
6 : endfor
7 : Θ ← {⊥, θ}
Θ
8 endfor

Fig. 2. Monitoring algorithm B〈X〉

monitors processing those slices. We
also check whether Γ (θ′) at line
5 violates or validates the prop-
erty and, if so, a message includ-
ing θ′ is output. Given a monitor
M , letMB〈X〉(M) be the monitor de-
fined by B〈X〉(M). Theorem 2 then
proves the correctness of B〈X〉.
Theorem 2. MB〈X〉(M) ≡ ΛX.M
for any monitor M . If M is a moni-
tor for P , then MB〈X〉(M) is a mon-
itor for parametric property ΛX.P .

3.3 Optimized Online Monitoring Algorithm

Algorithm C〈X〉 in Fig. 3 refines Algorithm B〈X〉 in Fig. 2 for efficient online
monitoring. C〈X〉 essentially expands the body of the outer loop in B〈X〉 (lines
3 to 7 in Fig. 2). The direct use of B〈X〉 would yield prohibitive runtime over-
head when monitoring large traces, because its inner loop requires search for all
parameter instances in Θ that are compatible with θ; this search can be very ex-
pensive. C〈X〉 introduces an auxiliary data structure and illustrates a mechanical
way to accomplish the search, which also facilitates further optimizations.

Algorithm C〈X〉(M = (S, E , C, ı, σ, γ))
Globals: mappings ∆ : [[X⇁V]⇁S],

Γ : [[X⇁V]⇁C],
U : [X⇁V] → Pf ([X⇁V])

Initialization:
U(θ) ← ∅ for any θ ∈ [X⇁V],
∆(⊥)← ı

function main(e〈θ〉)
1 if ∆(θ)undefined then
2 : foreach θmax � θ (in reversed

: topological order) do
3 : : if ∆(θmax) defined then
4 : : : goto 7
5 : : endif
6 : endfor
7 : defineTo(θ, θmax)
8 : foreach θmax � θ (in reversed

: topological order) do

9 : : foreach θcomp ∈ U(θmax)
: : compatible with θ do

10 : : : if ∆(θcomp
 θ) undef. then
11 : : : : defineTo(θcomp
 θ, θcomp)
12 : : : endif
13 : : endfor
14 : endfor
15 endif
16 foreach θ′ ∈ {θ} ∪ U(θ) do
17 : ∆(θ′)← σ(∆(θ′), e)
18 : Γ (θ′)← σ(∆(θ′))
19 endfor
function defineTo(θ, θ′)
1 ∆(θ)← ∆(θ′)
2 foreach θ′′ � θ do
3 : U(θ′′)← U(θ′′) ∪ {θ}
4 endfor

Fig. 3. Monitoring algorithm C〈X〉

Parametric Trace Slicing and Monitoring 257

C〈X〉 uses three tables: ∆, U and Γ . ∆ and Γ are the same as ∆ and Γ in
B〈X〉, respectively. U is an auxiliary data structure used to optimize the search
“for all θ′ ∈ {θ}�Θ” in B〈X〉 (line 3 in Fig. 2). It maps each parameter instance θ
into the finite set of parameter instances encountered in ∆ so far that are strictly
more informative than θ, i.e., U(θ) = {θ′ | θ′ ∈ Dom(∆) and θ � θ′}. Another
major difference between B〈X〉 and C〈X〉 is that C〈X〉 does not maintain Θ
explicitly: Θ at the beginning/end of the body of the outer loop in B〈X〉 is
Dom(∆) at the beginning/end of C〈X〉, respectively. However, Θ is fixed during
the loop at lines 3 to 6 in B〈X〉 and updated atomically in line 7, while Dom(∆)
can be changed at any time during the execution of C〈X〉.

C〈X〉 is composed of two functions, main and defineTo. The defineTo function
takes two parameter instances, θ and θ′, and adds a new entry corresponding to
θ into ∆ and U . Specifically, it sets ∆(θ) to ∆(θ′) and adds θ into the set U(θ′′)
for each θ′′ � θ. The main function differentiates two cases when a new event
e〈θ〉 is received and processed. The simpler case is that ∆ is already defined on
θ, i.e., θ ∈ Θ at the beginning of the iteration of the outer loop in B〈X〉. In
this case, {θ} � Θ = {θ′ | θ′ ∈ Θ and θ � θ′} ⊆ Θ, so the lines 3 to 6 in B〈X〉
become precisely the lines 16 to 19 in C〈X〉. In the other case, when ∆ is not
already defined on θ, main takes two steps to handle e. The first step searches
for new parameter instances introduced by {θ} � Θ and adds entries for them
into ∆ (lines 2 to 15). We first add an entry to ∆ for θ at lines 2 to 7. Then we
search for all parameter instances θcomp that are compatible with θ, making use
of U (line 8 and 9); for each such θcomp, an appropriate entry is added to ∆ for
its lub with θ, and U updated accordingly (lines 10 to 12). This way, ∆ will be
defined on all the new parameter instances introduced by {θ} �Θ after the first
step. In the second step, the related monitor states and outputs are updated in a
similar way as in the first case (lines 16 to 19). It is interesting to note how C〈X〉
searches at lines 2 and 8 for max (θ]Θ that B〈X〉 refers to at line 4 in Fig. 2: it
enumerates all the θmax � θ in reversed topological order (larger to smaller); we
proved that max (θ]Θ exists and this search will find it ([16]).

Correctness of C〈X〉. We next argue informally the correctness of C〈X〉 (for-
mal proofs can be found in [16]) by showing that it is equivalent to the body
of the outer loop in B〈X〉. Suppose that parametric trace τ has already been
processed by both C〈X〉 and B〈X〉, and a new event e〈θ〉 is to be processed next.
First, note that C〈X〉 terminates: there is only a finite number of partial maps
less informative than θ, that is, only a finite number of iterations for the loops
at lines 2 and 8 in main; since U is only updated at line 3 in defineTo, U(θ) is
finite for any θ ∈ [X⇁V] and thus the loop at line 9 in main also terminates.
Assuming that running the base monitor M takes constant time, the worse case
complexity of C〈X〉(M) is O(k × l) to process e〈θ〉, where k is 2|Dom(θ)| and l
is the number of incompatible parameter instances in τ . Parametric properties
often have a fixed and small number of parameters, in which case k is not sig-
nificant. Depending on the trace, l can grow arbitrarily large; in the worst case,
each event may carry an instance incompatible with the previous ones.

258 F. Chen and G. Roşu

Next result establishes the correctness of C〈X〉. Fix a monitor M . Let ∆b
C

and
Γ b

C
be the ∆C and ΓC when main(e〈θ〉) in C〈X〉(M) begins (“b”=“begin”); let ∆e

C

and Γ e
C

be the ∆C and ΓC when main(e〈θ〉) ends (“e”=“end”); let B〈X〉(M)(τ).∆
and B〈X〉(M)(τ).Γ be the ∆ and Γ after B〈X〉(M) processes trace τ .

Theorem 3. If ∆b
C

= B〈X〉(M)(τ).∆ and Γ b
C

= B〈X〉(M)(τ).Γ , then ∆e
C

=
B〈X〉(M)(τ e〈θ〉).∆ and Γ b

C
= B〈X〉(M)(τ e〈θ〉).Γ .

4 Implementation and Evaluation

We have implemented our online monitoring algorithm in a prototype, here
called PMon (from ”Parametric Monitoring”), and evaluated it on the DaCapo
benchmark [6]. Some optimizations have also been implemented. Note that C〈X〉
iterates through all the possible parameter instances that are less informative
than θ in three different loops: at lines 2 and 8 in main, and at line 2 in defineTo.
Hence, it is important to reduce the number of such instances in each loop.
A static analysis of the specification, discussed in [8], exhaustively explores all
possible event combinations that can lead to violations of the property, and then
the number of loop iterations is reduced by skipping parameter instances that
cannot affect the result of monitoring. The static analysis is used at compile
time to unroll the loops in C〈X〉 and reduce the size of ∆ and U .

Another optimization is based on the observation that the monitoring process
needs to start only when certain events are received. Such events are called
monitor creation events in [9]. The parameter instances carried by such creation
events may also be used to reduce the number of parameter instances that need to
be considered. An extreme, yet surprisingly common case is when creation events
instantiate all the property parameters. In this case, the monitoring process
does not need to search for compatible parameter instances even when an event
with an incomplete parameter instance is observed. The current JavaMOP [9]
supports only traces whose monitoring starts with a fully instantiated creation
event; this was perceived as an inherent limitation of JavaMOP, a consequence of
its generality [3]. Interestingly, it now becomes just a common-case optimization
of our novel, general and unrestricted technique presented here.

Experiments and Evaluation. The following properties from [8] were checked
in our experiments. The latter two cannot be handled by JavaMOP.

– LeakingSync. Only access a synchronized collection using its synchronized
wrapper. One violation pattern monitored: Λc. sync(c) asyncAccess(c).

– FailSafeEnum. Do not update a vector while enumerating over it. The follow-
ing violation pattern monitored: Λv, e. createEnum(v, e) modify(v) access(e).

– ASyncIterCol. Only iterate a synchronized collection c when holding a lock
on c. Two violation patterns monitored: Λc, i. sync(c) ayncCreateIter(c, i) and
Λc, i. sync(c) syncCreateIter(c, i) asyncAccess(i).

– ASyncIterMap. Only iterate a synchronized map m when holding a lock on
m. Two violation patterns monitored: Λm, s, i. sync(m) getSet(m, s)async-
CreateIter(s, i), Λm, s, i. sync(m) getSet(m, s) syncCreateIter(s, i) asyncAccess(i).

Parametric Trace Slicing and Monitoring 259

Table 2. Average percent runtime overhead for PMon, manually coded monitors(Man),
Tracematches(TM) and JavaMOP(MOP), with convergence within 3%. *: Cannot be
handled by JavaMOP

LeakingSync FailSafeEnum ASyncIterCol* ASyncIterMap*
PMon Man TM MOP PMon Man TM MOP PMon Man TM PMon Man TM

antlr 2 1 5 2 0 0 1 0 1 0 0 2 1 2
bloat 140 145 785 141 0 2 0 2 721 150 1459 660 164 2300
chart 25 21 70 24 1 0 0 0 2 0 0 0 0 0
eclipse 0 0 0 0 0 0 0 2 1 2 0 1 0 0

fop 53 47 146 50 1 0 0 0 2 1 1 2 1 0
hsqldb 2 5 24 4 0 0 25 0 1 0 25 1 0 0
jython 62 52 55 59 0 0 8 0 0 0 9 0 0 9
luindex 8 7 20 7 7 4 16 3 3 0 2 1 0 4
lusearch 12 10 52 12 5 2 28 7 4 1 9 0 0 8

pmd 55 47 53 52 0 0 0 0 37 30 36 50 49 53
xalan 39 29 117 40 5 6 33 4 1 1 6 1 1 7

These properties were chosen since they involve some of the most used data
structures in Java and generate intensive monitoring overhead; also, their over-
head is a consequence of the huge number of parameter instances to handle and
not because of the complexity of the base, non-parametric properties.

Using the above properties, we compared our implementation with three
other monitoring approaches, namely: optimal manually implemented monitors1,
Tracematches and JavaMOP. The latter two are chosen for comparison because
they are very efficient monitoring systems [3,9]. The evaluation carried out on a
1.5GB, Pentium 4 2.66GHz machine running Ubuntu 7.10. We used the DaCapo
benchmark version 2006-10; it contains eleven open source programs, as shown
in Table 2. The provided default input was used with the -converge option to
execute the benchmark multiple times until the execution time falls within 3%
variation. The average execution time of six iterations after convergence is used.

The results are shown in Table 2. Among all 44 experiments, PMon generates
14% runtime overhead on average with more than 15% in only 10 experiments,
showing that our algorithm is efficient2. Comparing with other approaches, we
have the following observations: 1) PMon performed as well as or better than
Tracematches in all cases, although the latter has domain specific optimiza-
tions for its hard-wired parametric regular patterns; 2) PMon generates similar
runtime overhead as JavaMOP in the cases that can be handled by JavaMOP,
showing that PMon conservatively extends the limited algorithm implemented
in JavaMOP; 3) the monitoring code generated by PMon performs as well as
the manually implemented monitors in most cases in the evaluated properties.

5 Related Work

Several approaches have been proposed to specify and monitor parametric prop-
erties. Tracematches [1,3] is an extension of AspectJ [2] supporting specifications
1 Borrowed from [8], supposedly the best monitoring code for the given properties.
2 These properties generated a tremendous number of events and parameter instances,

e.g., millions of events and instances seen for LeakingSync and FailSafeEnum [9].

260 F. Chen and G. Roşu

of parametric regular patterns; when patterns are matched during the execution,
user-defined advice can be triggered. J-LO [7] is a variation of Tracematches that
supports linear temporal logic properties. Also based on AspectJ, [13] proposes
Live Sequence Charts (LSC) [11] as an inter-object scenario-based specification
formalism; LSC is implicitly parametric, requiring dynamic parameter binding at
runtime. Tracematches, J-LO and LSC [13] support a limited number of parame-
ters, and each handles parameterization in a way that is specific to its particular
specification formalism. Our proposed technique is generic in the specification
formalism, and admits a potentially unlimited number of parameters.

Program Query Language (PQL) [14] allows the specification and monitoring
of parametric context-free grammar (CFG) patterns. Unlike previous approaches,
PQL can associate parameters with sub-patterns that can be recursively matched
at runtime, yielding a potentially unbounded number of parameters. PQL’s ap-
proach to parametric monitoring is specific to its particular CFG-based specifica-
tion formalism. Also, PQL’s design does not support arbitrary execution traces.
For example, field updates and method begins are not observable. Like PQL, our
technique also allows an unlimited number of parameters. Unlike PQL, our tech-
nique is not limited to particular events and is generic in the property specification
formalism; CFGs are just one such possible formalism.

Eagle [4], RuleR [5], and Program Trace Query Language (PTQL) [12] are
very general trace specification and monitoring systems, whose specification for-
malisms allow complex properties with parameter bindings anywhere in the spec-
ification. Eagle and RuleR are based on fixed-point logics and rewrite rules,
while PTQL is based on SQL relational queries. These systems attempt to de-
fine general specification formalisms supporting data binding among many other
features, while we attempt to define a general parameterization approach that is
logic-independent. The very general specification formalisms tend to be slower
[3,15,9]. We believe that our techniques can be used as an optimization for cer-
tain common types of properties expressible in these systems: use any of these to
specify the base property P , then use our generic techniques to analyze ΛX.P .

6 Concluding Remarks and Future Work

A semantic foundation for parametric traces, properties and monitoring was
proposed. A parametric trace slicing technique, which was discussed and proved
correct, allows the extraction of all the non-parametric trace slices from a
parametric slice by traversing the original trace only once and dispatching each
parametric event to its corresponding slices. It thus enables the leveraging of any
non-parametric, i.e., conventional, trace analysis techniques to the parametric
case. A parametric monitoring technique then makes use of it to monitor arbitrary
parametric properties against parametric execution traces using and indexing or-
dinary monitors for the base, non-parametric property. An implementation of the
discussed techniques reveals that their generality, compared to the existing similar,
but limited, techniques, does not come at a performance expense.

Parametric Trace Slicing and Monitoring 261

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhotak, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: OOPSLA 2005. ACM, New York (2005)

2. AspectJ, http://eclipse.org/aspectj/
3. Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitoring feasible. In:

OOPSLA 2007. ACM, New York (2007)
4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-

tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

5. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time moni-
toring: From Eagle to RuleR. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 111–125. Springer, Heidelberg (2007)

6. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., Van Drunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: OOPSLA 2006. ACM Press, New York (2006)

7. Bodden, E.: J-lo, a tool for runtime-checking temporal assertions. Master’s thesis,
RWTH Aachen University (2005)

8. Bodden, E., Chen, F., Roşu, G.: Dependent advice: A general approach to opti-
mizing history-based aspects. In: AOSD 2009. ACM, New York (2009)

9. Chen, F., Roşu, G.: MOP: An Efficient and Generic Runtime Verification Frame-
work. In: OOPSLA 2007. ACM, New York (2007)

10. Chen, F., Roşu, G.: Mining Parametric State-Based Specifications from Executions.
Technical Report UIUCDCS-R-2008-3000, Dept. of Computer Science at UIUC
(2008)

11. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal
Methods in System Design 19(1), 45–80 (2001)

12. Goldsmith, S., O’Callahan, R., Aiken, A.: Relational queries over program traces.
In: OOPSLA 2005. ACM Press, New York (2005)

13. Maoz, S., Harel, D.: From multi-modal scenarios to code: compiling lscs into as-
pectj. In: FSE 2006, pp. 219–230. ACM, New York (2006)

14. Martin, M., Livshits, V.B., Lam, M.S.: Finding application errors and security
flaws using PQL: a program query language. In: OOPSLA 2005. ACM, New York
(2005)

15. Meredith, P., Jin, D., Chen, F., Roşu, G.: Efficient monitoring of parametric
context-free patterns. In: ASE 2008. IEEE/ACM (2008)

16. Roşu, G., Chen, F.: Parametric Trace Slicing and Monitoring. Technical Report
UIUCDCS-R-2008-2977, Dept. of Computer Science at UIUC (2008)

http://eclipse.org/aspectj/

From Tests to Proofs

Ashutosh Gupta1, Rupak Majumdar2, and Andrey Rybalchenko1

1 Max Planck Institute for Software Systems
2 University of California, Los Angeles

Abstract. We describe the design and implementation of an automatic invariant
generator for imperative programs. While automatic invariant generation through
constraint solving has been extensively studied from a theoretical viewpoint as
a classical means of program verification, in practice existing tools do not scale
even to moderately sized programs. This is because the constraints that need to
be solved even for small programs are already too difficult for the underlying
(non-linear) constraint solving engines. To overcome this obstacle, we propose
to strengthen static constraint generation with information obtained from static
abstract interpretation and dynamic execution of the program. The strengthening
comes in the form of additional linear constraints that trigger a series of sim-
plifications in the solver, and make solving more scalable. We demonstrate the
practical applicability of the approach by an experimental evaluation on a col-
lection of challenging benchmark programs and comparisons with related tools
based on abstract interpretation and software model checking.

1 Introduction

Programmers make mistakes, and much time and effort is spent on finding and fixing
these mistakes. While it has long been known that program invariants are the key to
proving a program correct with respect to a safety property [10, 17], their applicability
has been limited in practice since they often require explicit and expensive programmer
annotations. To circumvent this problem, there has been considerable research effort
in program analysis for automatic inference of program invariants [1, 2, 4, 16, 27]. In
these algorithms, a set of constraints is generated from the program text whose solution
provides an inductive invariant proof of program correctness.

In the abstract interpretation based approach [4, 7, 24] to inductive invariant infer-
ence, one computes the fixpoint of the program semantics relative to an abstract domain.
In case the abstract domain has infinite height (for example, the domain of polyhe-
dra), termination of the fixpoint computation is enforced by a widening operator. In the
counterexample-guided abstraction refinement (CEGAR) approach [1, 16], one starts
with a set of predicates, and uses spurious counterexamples produced by model check-
ing to dynamically discover new predicates that serve as building blocks for the proof of
program correctness. Finally, in the constraint-based approach [5, 14, 27], a paramet-
ric representation of an invariant map serves a starting point. Then, inductiveness and
safety conditions are encoded as constraints on the parameters. Once these constraints
have been determined, any satisfying assignment is guaranteed to yield an inductive
invariant of the program. For example, an invariant template in linear arithmetic will

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 262–276, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

From Tests to Proofs 263

Table 1. Comparison of invariant-based verification tools on benchmark problems

File State-of-the-art techniques This paper
INTERPROC BLAST INVGEN INVGEN+Z3

Seq × diverge 23s 1s 0.5s
Seq-z3 × diverge 23s 9s 0.5s
Seq-len × diverge T/O T/O 2.8s
nested × 1.2s T/O T/O 2.3s
svd(light) × 50s T/O T/O 14.2s
heapsort × 3.4s T/O T/O 13.3s
mergesort × 18s T/O 52s 170s
SpamAssassin-loop* � 22s T/O 5s 0.4s
apache-get-tag* × 5s 0.4s 10s 0.7s
sendmail-fromqp* × diverge 0.3s 5s 0.3s

specify for each program point an expression of the form α0 +α1x1 + . . .+αnxn ≤ 0,
where x1, . . . , xn are program variables, and α0, . . . , αn are unknown parameters. The
control flow graph of the program will specify constraints on the parameters at each
program point, such that a global solution for all the α’s produces an invariant.

While these techniques hold the potential for extremely sophisticated reasoning
about programs, each technique by itself often fails to verify programs, since in prac-
tice reasoning about correctness often requires combining the strength of each individ-
ual approach. In this paper, we demonstrate the potential of such a combination. We
describe the design and implementation of a constraint-based invariant generator for
linear arithmetic invariants. In our implementation, we use information from static ab-
stract interpretation-based techniques as well as from dynamic testing to aggressively
simplify constraints. Our experimental results demonstrate that using these optimiza-
tions our invariant generator can automatically verify many problems for which all the
existing approaches we tried are unsuccessful.

It is important to mention that for each of our examples there is (in theory) a polyhe-
dral abstract domain equipped with a suitable widening operator that can successfully
prove the desired assertion. Our approach targets the cases for which the existing ab-
stract interpreters fail due to heuristic choices made in the implementation that trade
off precision for speed. For example, Figure 1(a) shows a program from [13] for which
an abstract interpreter implementing the standard convex hull-based widening cannot
prove the assertion. In our experiments, the abstract interpretation tool INTERPROC

finds the invariants z = 10w and y ≤ 100x at line 2 but not the crucial y ≥ x. We ob-
served that our approach finds the missing fact y ≥ x which together with the invariants
found by INTERPROC, is sufficient to prove the assertion.

Table 1 shows the results of running a collection of state-of-the-art program verifi-
cation tools on a set of common benchmark programs for software verification, includ-
ing some challenge programs from [21], which are marked with the star symbol “*”.
INTERPROC [22] is a tool based on abstract interpretation (we used the PPL library to-
gether with the octagon domain when applying INTERPROC). BLAST [16] is a software
model checker based on counterexample refinement. INVGEN is our previous imple-
mentation of constraint-based invariant generation using constraint logic programming

264 A. Gupta, R. Majumdar, and A. Rybalchenko

(CLP) as a constraint solver [2]. INVGEN+Z3 is the same constraint-based invariant
generator but using the Z3 decision procedure [8] as the constraint solver, which applies
the Boolean satisfiability-based encoding proposed in [14]. As is evident from Table 1,
the results we obtained for the existing tools on the benchmark examples are disap-
pointing. In Column 2, there is a “×” mark for each program for which INTERPROC

was too imprecise to verify the assertion. In Column 3, the counterexample refinement
procedure of Blast diverges on several examples. In Columns 4 and 5, the invariant
generation procedures time out, denoted by “T/O”, on most examples as the constraints
become too hard to solve (both for CLP and for SAT). In contrast, our technique is able
to efficiently solve all the examples, as shown in the last column.

While our invariant generator can be used in isolation, we have also integrated it
with the Blast software model checker and have used it as the counterexample refine-
ment engine using path programs [3]. Invariants for path programs provide additional
predicates that refine the abstraction for the software model checker, and can produce
better refinement predicates than usually available with current techniques, e.g. [15].
Software model checkers with path program-based counterexample analysis are well-
suited for our techniques because they (automatically) generate small program units to
either test for bugs or provide invariants. Using this integration, we have applied our im-
plementation to verify a set of software verification benchmark programs [21] recently
introduced as a challenge to the community. The examples in the benchmark set are
extracted from common security-critical code, and contain assertions related to buffer
bounds checking. Our implementation was able to verify all the (correct) programs in
the benchmark in about 10s of total time.

Related Work. Our work is influenced by recent advances in automatic static inference
of inductive invariants using constraint solving [6, 14, 26] as well as by the use of
dynamic analysis to estimate and infer likely system properties [9].

Constraint-based invariant synthesis techniques using templates in linear [2, 5, 14]
and polynomial [20, 26] arithmetic have been extensively studied, but their application
has been limited by the cost of the constraint solving process. As we demonstrate in our
experiments, even on quite small examples the constraint solver is likely to time-out.
Our static and dynamic constraint simplification techniques limit the search space for
the constraint solvers. Our experiments demonstrate orders of magnitude improvements
over existing making it feasible to apply these techniques to larger programs.

Software model checking tools, e.g. [1, 16, 19], have previously used invariants
from abstract interpretation—most notably alias analysis, but also octagonal con-
straints [19]—to strengthen the transition relation of the program. The contribution of
this work to the research on software model checking is a powerful predicate inference
engine using invariant generation. We also perform detailed comparisons of the bene-
fits of combining invariant generation with abstract interpretation, as well as combining
invariant generation with CEGAR-based software verification.

Pure dynamic analysis has been used to identify likely, but not necessarily correct,
program invariants [9]. The technique uses program tests to evaluate candidate predi-
cates from some a priori fixed database. The predicates that evaluate to true on all test
runs are returned as likely invariants. The basic technique is not sound, as the test suite
could be inadequate. Hence in a second step, the inferred invariants are provided to a

From Tests to Proofs 265

1 int x=0; y=0; z=0 w=0;
2 while(*){
3 if(*){
4 x++; y+=100;
5 }else if(*){
6 if (x>=4){ x++; y++; }
7 }else if(y>10*w && z>=100*x){
8 y=-y;
9 }
10 w++; z+=10;
11 }
12 if(x>=4 && y <=2) error();

1 int i,j,k,n,m;
2
3 assume(n<=m);
4 for (i=0;i<n;i++)
5 for (j=0;j<n;j++)
6 for (k=j; k<n+m;k++)
7 assert(i+j<=n+k+m);

(a) (b)

Fig. 1. (a) Example from [13]. (b) Example nested.c.

verification-condition based program verifier. If the verifier succeeds, the combination
of the dynamic step and the verification ensures program safety, while removing the
need for providing manual invariants. However, there are some shortcomings of this
technique. First, since the predicates are chosen from some fixed set (usually for effi-
ciency in evaluation), the required program invariants may not fall into this fixed class.
Second, the generated invariants are not in general inductive, therefore if the verifier
fails, it is not evident if either a guessed invariant is wrong (that is, more tests should be
generated to remove it from the discovered set), or if the guessed invariant does repre-
sent all reachable states, but is too weak to allow the verifier to complete the proof.

2 Example

We illustrate our idea using the example program nested.c shown in Figure 1(b).
We want to construct an invariant that proves the assertion in line 7.

The core idea of our tool is to perform constraint-based invariant synthesis. Our al-
gorithm automatically discovers, through an iterative process, that we need an invariant
templates to be a conjunction of four inequalities for each loop head. The invariants
for intermediate locations (between loop heads) can be computed from assertions for
these locations by propagating strongest postconditions (or weakest preconditions). For
clarity of presentation, we shall only show details relevant to the first conjunct in each
template. We use the template map η such that

η.4 = α + αii + αjj + αkk + αmm + αnn ≤ 0 ∧ . . . ∧ . . . ∧ . . . ,

η.5 = β + βii + βjj + βkk + βmm + βnn ≤ 0 ∧ . . . ∧ . . . ∧ . . . ,

η.6 = γ + γii + γjj + γkk + γmm + γnn ≤ 0 ∧ . . . ∧ . . . ∧

To obtain an invariant map from these templates, we need to instantiate the set of param-
eters {α, αi, αj, αk, αm, αn, β, βi, βj, βk, βm, βn, γ, γi, γj, γk, γm, γn } . We proceed by
constructing a system of constraints, say Ψ , over the set of template parameters that

266 A. Gupta, R. Majumdar, and A. Rybalchenko

imposes the invariant conditions on the template map, following a classical approach
from the literature [5, 28]. We omit the details for brevity. Unfortunately, even for this
small example, we obtain a system of non-linear arithmetic constraints which exceeds
the capacity of our constraint solver. Our idea is to scale the invariant generation engine
by using information obtained from abstract interpretation as well as from concrete and
symbolic runs of the program.

We first observe that for this example, some components of the required invariants
can be generated by techniques based on abstract interpretation, e.g., by using octagon
and polyhedral domains [7, 24]. By running INTERPROC (using PPL) on this example,
we obtain the following invariant map ηα that annotates the loop locations with valid
assertions:

ηα.4 = n ≤ m ∧ i ≥ 0 , ηα.5 = n ≥ j ∧ n ≤ m ∧ i ≥ 0 ∧ j ≥ 0 ∧ n ≥ 1 ,

ηα.6 = n + m ≥ k ∧ n ≥ j + 1 ∧ n ≤ m ∧ k ≥ j ∧ i ≥ 0 ∧ j ≥ 0.

While theoretically the analysis could have found all polyhedral relationships, in prac-
tice tools like INTERPROC employ several heuristics that sacrifice precision for speed.
In this case, INTERPROC misses the inequality n + m ≥ i valid at lines 5 and 6 and
crucial for proving the assertion. Our algorithm takes the output generated by the ab-
stract interpreter and uses it as an initial, static strengthening to support constraint based
invariant generation.

In the second step, our algorithm collects dynamic information by executing the pro-
gram. We first present a direct approach that uses program states to compute additional
constraints that support invariant generation. Then, we show an extension that can handle
unbounded collections of states. The extended method uses symbolic execution to collect
such sets of states. We formalize these direct and symbolic approaches in Section 4.

Direct approach. Our direct approach starts with a collection of some reachable pro-
gram states, which can be obtained by applying test generation techniques. We only
track states at the head locations of the loops. Suppose we get the following set of states
{s1, . . . , s4} by running the program on test inputs:

s1 = (pc = 4, i = j = k = 0, m = n = 1), s2 = (pc = 4, j = 3, i = k = 0, m = n = 1),

s3 = (pc = 5, i = j = k = 0, m = n = 1), s4 = (pc = 6, i = j = k = 0, m = n = 1).

Here, the variable pc represents the control location. We shall use these states to sim-
plify the constraints for invariant generation.

We observe that since template expressions must be true for all reachable program
states, in particular, they must hold for the states collected by testing. That is, for each
reachable state we can substitute program variables appearing in the template by their
values determined by the states and use this information to strengthen the constraint Ψ .

Thus, we can conjoin the following set of linear inequalities to the system of con-
straints Ψ , which determines the invariant map:

α + αm + αn ≤ 0 , from s1 α + 3αj + αm + αn ≤ 0 , from s2
β + βm + βn ≤ 0 , from s3 γ + γm + γn ≤ 0 , from s4

From Tests to Proofs 267

These additional constraints are linear. They can be applied by the solver to trigger a series
of simplification steps. After the solving succeeds, we obtain the following invariant map:

η.4 = n ≤ m, i ≥ 0 , η.5 = n + m ≥ i, n ≤ m, i ≥ 0 ,

η.6 = n + m ≥ i, k ≥ j, n ≤ m, i ≥ 0 .

Symbolic approach. We observe that we can simulate the effect of dynamic simplifica-
tion using a large/unbounded set of reachable states. For this purpose we use symbolic
execution, which computes assertions representing sets of reachable program states. We
assume the example discussed so far and three reachable symbolic states below:

ϕ1 = (pc = 4 ∧ i = 0 ∧ n ≤ m) ,

ϕ2 = (pc = 5 ∧ i = 0 ∧ j = 0 ∧ n ≥ 1 ∧ n ≤ m) ,

ϕ3 = (pc = 6 ∧ i = 0 ∧ j = 0 ∧ k = 0 ∧ n ≥ 1 ∧ n ≤ m) .

These symbolic states can be applied to derive additional linear constraints on the tem-
plate parameters. Due to the reachability of ϕ1, ϕ2, and ϕ3 the implications

ϕ1 → η.4 , ϕ2 → η.5 , ϕ3 → η.6

hold for all valuations of program variables. The validity of these implications can be
translated into a linear constraint, say Φ, over template parameters. (See Section 4 for
details.) We conjoin the constraint Φ with the constraint Ψ that encodes the invariance
condition. As a result, the solver performs additional simplifications that lead to im-
proved running time.

Relevant strengthening. In fact, after running our algorithm we can discover which
inequalities computed using abstract interpretation and added as strengthening to the
program were actually useful for finding the invariant that proves the assertion. This
information is crucial for keeping minimal the number of facts reported to the software
model checker as refinement predicates. For this purpose, we examine the solutions that
the constraint solver assigned to the variables encoding the implication validity. For our
example, the following inequalities found by INTERPROC were useful: n ≤ m ∧ i ≥ 0
at line 4, n ≤ m ∧ i ≥ 0 at line 5, and k ≥ j ∧ n ≤ m ∧ i ≥ 0 at line 6.

3 Preliminaries

We start by describing the invariant-based approach for the verification of temporal
safety properties and illustrate constraint-based invariant generation.

Programs and Invariants. We assume an abstract representation of programs by tran-
sition systems [23]. A program P = (X,L, �I , T , �E) consists of a set X of variables, a
set L of control locations, an initial location �I ∈ L, a set T of transitions, and an error
location �E ∈ L. Each transition τ ∈ T is a tuple (�, ρ, �′), where �, �′ ∈ L are con-
trol locations, and ρ is a constraint over variables from X ∪X ′. The variables from X
denote values at control location �, and the variables from X ′ denote the values of the

268 A. Gupta, R. Majumdar, and A. Rybalchenko

variables from X at control location �′. The error location �E is used to represent asser-
tion statements. Each failed assertion leads to �E . We assume that the error location �E
does not have any outgoing transitions. The sets of locations and transitions naturally
define a directed graph, called the control-flow graph (CFG) of the program, which puts
the transition constraints at the edges of the graph.

A state of the program P is a valuation of the variables X . The set of all states
is denoted by Σ. We shall represent sets and binary relations over states using con-
straints over X and X ′ in the standard way. A computation of P is a sequence of
location and state pairs 〈�0, s0〉, 〈�1, s1〉, . . . such that �0 is the initial location and for
each consecutive 〈�i, si〉 and 〈�i+1, si+1〉 there is a transition (�i, ρ, �i+1) ∈ T such
that (si, si+1) |= ρ. A state s is reachable at location � if 〈�, s〉 appears in some com-
putation. The program is safe if the error location �E does not appear in any com-
putation. A path of the program P is a sequence π = (�0, ρ0, �1), (�1, ρ1, �2), . . . of
transitions, where �0 is the initial location. The path π is feasible if there is a computa-
tion 〈�0, s0〉, 〈�1, s1〉, . . . such that each consecutive pair of states (si, si+1) is induced
by the corresponding transition, i.e., (si, si+1) |= ρi. A path that ends at the error loca-
tion is called an error path (or counterexample path).

An invariant of P at a location � ∈ L is a super set of states that are reachable
at �, which we represent by an assertion over X . An inductive invariant map assigns an
invariant to each program location such that for each transition (�, ρ, �′) ∈ T the impli-
cation η.� ∧ ρ→ (η.�′)′ is valid, where (η.�′)′ is the assertion obtained by substituting
variables X with the variables X ′ in η.�′. We observe that due to the invariance con-
dition we have η.�I = true. An invariant map is safe if it assigns an empty set to the
error location, i.e., η.�E = false .

A safe inductive invariant map serves as a proof that the error location cannot be
reached on any program execution, and hence that the program is safe. The invariant-
synthesis problem is to construct such a map for a given program.

Constraint-Based Invariant Generation. In the constraint-based approach [6, 20,
25, 26, 27] to invariant generation, the computation of an invariant map is reduced to
a global constraint solving problem over the program locations. The approach consists
of three steps. First, a template assertion that represents an invariant for each location
is fixed in an a priori chosen language. A template assertion refers to the program vari-
ables X as well as a set of parameters. A parameter valuation determines an invariant.
Second, a set of constraints over these parameters is defined in such a way that the
constraints correspond to the definition of the invariant. This means that every solu-
tion to the constraint system yields a safe inductive invariant map. Third, a valuation of
parameters is obtained by solving the resulting constraint system.

The language of arithmetic has been widely used to specify invariant templates [20,
25, 26]. A linear inequality over the variables X = (x1, . . . , xn) is an expression of the
form a0 + a1x1 + . . . + anxn ≤ 0 if a0, . . . , an are rational numbers. The language of
linear arithmetic consists of conjunctions of linear inequalities. An invariant template in
linear arithmetic treats α0, . . . , αn as unknown parameters. For example, the template
α + αxx + αyy + αzz ≤ 0 represents a linear inequality term over the variables x, y,
and z. Here, the parameters are α, αx, αy , and αz . A possible template instantiation is
−4 + x + 2y − z ≤ 0.

From Tests to Proofs 269

An invariant template and its expressiveness are determined by the number of con-
juncts that appear in the template for each program location. Adding more conjuncts
increases the expressive power at the cost of a more expensive constraint solving task.
Usually, templates are constructed incrementally, by starting with the weakest template
that assigns a single conjunct to each program location and then refining it by adding
additional conjuncts if the constraint solving fails to instantiate the template.

Given a template specification for an invariant map, we generate a set of constraints
that encode the inductiveness and safety conditions. To encode the inductiveness con-
dition, we generate a constraint η.�∧ρ→ (η.�′)′ for each transition (�, ρ, �′). Note that
this implication is implicitly universally quantified over X and X ′. Furthermore, the
conjunction of such implications for all transitions is existentially quantified over the
template parameters. Using Farkas’ lemma [28], we eliminate universal quantification.
The result is a set of existentially quantified non-linear constraints over the template pa-
rameters as well as over the parameters introduced by Farkas’ lemma (see [25] for the
technical details). Techniques involving Gröbner bases and real quantifier elimination
can be used similarly to generate and solve constraints for more general polynomial
constraints [20, 26], and for the combined theory of linear arithmetic and uninterpreted
functions [2].

We assume a function InvGenSystem that computes constraints from programs and
templates. An application of InvGenSystem on a program and templates for each pro-
gram location produces a constraint over the template parameters that encodes the in-
variant map conditions. For the implementation details see [2, 5].

We illustrate InvGenSystem using a single transition between location � and �′ with
the transition relation x ≤ y ∧ x′ = x + 1 ∧ y′ = y. We assume a template ϕ =
(α+αxx+αyy ≤ 0 ∧ β +βxx+βyy ≤ 0) consisting of two conjuncts at the location
�, and a singleton conjunction ψ = (γ + γxx+ γyy ≤ 0) at the location �′. The starting
point is the implication ϕ ∧ ρ → ψ′. To simplify the exposition, we first eliminate the
primed program variables and obtain ϕ ∧ x ≤ y → ψ[x + 1/x], which we present in
the matrix form below.(

αx αy

βx βy

1 −1

)(x
y

) ≤ (−α
−β
0

)
→ (γx+1 γy

) (x
y

) ≤ −γ

Now, we apply Farkas’ lemma to encode the validity of implication and obtain the
following constraint:

∃λ ≥ 0. λ

(
αx αy

βx βy

1 −1

)
=
(

γx+1 γy

) ∧ λ
(−α

−β
0

)
≤ −γ

This constraint determines the values of template parameters and the additional param-
eter λ. It contains non-linear terms that result from the multiplication of λ with (αx βx)
and (αy βy).

Constraint Solving. The constraints generated above are non-linear, since they contain
multiplication terms over the parameters from the invariant templates, as well as the
additional parameters introduced by Farkas’ lemma. The existing solving approaches
include symbolic techniques based on instantiations and case splitting, e.g. [5], and
using SAT solvers by applying an appropriate propositional encoding, e.g. [14].

270 A. Gupta, R. Majumdar, and A. Rybalchenko

For the rest of the paper, we assume a function Solve that takes as input a set of
non-linear constraints and returns either a satisfying assignment to the constraints, or
that the constraint set is unsatisfiable. Unfortunately, in all but the most basic programs,
constraint-based invariant synthesis using the above technique is too expensive. For
most realistic programs, the procedure Solve times out.

4 Constraint Simplification

We now describe how we can use additional static and dynamic information to restrict
the search space determined by the set of static constraints. Technically, we do this by
computing additional constraints on the program transition relation and on the template
parameters and conjoining them with the constraint system defining invariant map. Pro-
gram computations provide a source of such additional dynamic constraints.

INVGEN+ABSINT: Simplification from Abstract Interpretation. Our first simplifi-
cation uses an abstract interpreter to compute program invariants, and uses the result of
the abstract interpretation algorithm to strengthen the program transition relation. That
is, suppose that ηα is an invariant map computed by an abstract interpretation algorithm.
In our constraint generation, we replace the constraint η.�∧ ρ→ (η.�′)′ for a transition
(�, ρ, �′) with the constraint η.� ∧ (ηα.� ∧ ρ)→ (η.�′)′.

INVGEN+TEST: Simplification from Tests. Individual program computations can be
used to simplify the constraints for invariant generation. The crux of the algorithm IN-
VGEN+TEST lies in the observation that an invariant template must hold when partially
evaluated on a reachable state of the program.

Let t(X) be a template over the program variables X and s be a reachable program
state. We write t(s/X) to denote a template expression that is obtained from t by substi-
tuting each variable x ∈ X with its value s(x) in the state s. Then, the constraint t[s/X]
imposes an additional constraint over the template parameters. Note that this constraint
is linear, i.e., its processing does not require application of expensive non-linear solving
techniques.

We show the algorithm INVGEN+TEST in Figure 2. The algorithm takes as input a
program P and an invariant template map η with parameters P . It can return an invari-
ant map for P , output that no invariant map exists for the given invariant templates, or
find a counterexample to the program safety. There are three conceptual steps of the al-
gorithm. The first step (line 1) constructs a set Ψ of constraints on the invariant template
parameters that encode the initiation, inductiveness, and safety conditions. The second
step (lines 2–9) runs a set of tests and generates additional constraints on the parameters
based on the test executions. Finally, the third step (line 10) solves the conjunction of
the static constraints from line 1 and the additional constraints generated during testing.

The loop in lines 3–9 executes the program on a set of tests. We instrument the pro-
gram so that for each program location � reached in the test, the concrete values of all
the program variables that appear in the template η.� are recorded. If a test hits the error
location, then of course, we have found a bug, and we return this error (lines 5,6). Oth-
erwise, the recorded values provide an additional constraint on the template parameters.

From Tests to Proofs 271

1
2
3
4
5
6
7
8
9
10
11
12
13

input
P : program; η: invariant template map with parameters P

vars
Ψ : static constraint; Φ : dynamic constraint

begin
Ψ := InvGenSystem(P, η)
Φ := true
repeat

s1, . . . , sn := GenerateAndRunTest(P)
if sn(pc) = �E then

return “counterexample s1, . . . , sn”
else

Φ := Φ ∧ ∧n
i=1 (η.si(pc))[si/X]

until no more tests
if P∗ := Solve(Ψ, Φ) succeeds then

return “inductive invariant map η[P∗/P]”
else

return “no invariant map for given template”
end.

Fig. 2. Algorithm INVGEN+TEST for invariant generation supported by dynamic simplifica-
tion using program executions. InvGenSystem creates a constraint over the template param-
eters that encodes invariant map conditions for the program P , see Section 3. The function
GenerateAndRunTest selects program computations.

For example, if the template for a location is αx+βy+γ ≤ 0, and a dynamic execution
reaches this location with the concrete state x = 35, y = −9, we know that the param-
eters α, β, and γ must satisfy the constraint 35α− 9β + γ ≤ 0. We call this a dynamic
constraint on the parameters and add this constraint to the auxiliary constraint Φ.

The testing loop terminates due to an externally supplied coverage criterion. At this
point, the constraint solver is invoked to find a satisfying assignment for the parameters
in P that satisfy both the static constraints in Ψ and the dynamic constraints in Φ. If
there is no such solution, the algorithm returns that there is no invariant map for the
program using the current template map. On the other hand, any satisfying assignment
provides an invariant map. Our algorithm maintains the invariant that at any point in
lines 3–13, a satisfying assignment to the constraints Ψ ∧ Φ is guaranteed to be a valid
invariant map.

INVGEN+SYMB: Simplification from Symbolic Execution. We observe that the ba-
sic algorithm conjoins dynamic, linear constraints for each state that is reached by the
test generator. A large number of such constraints may overwhelm the constraint solver,
despite their low processing cost. We improve the basic algorithm by taking into account
sets of reachable states using a single strengthening constraint.

We assume a template t(X) and a set of reachable states represented by an asser-
tion ϕ(X). We can obtain such sets of states by performing symbolic execution along
a collection of program paths. Then, the implication ϕ(X) → t(X) must hold for all
valuations of X since every state in ϕ is reachable.

272 A. Gupta, R. Majumdar, and A. Rybalchenko

3
4.1
4.2
5
6
7
8.1
8.2
9

repeat
π := GeneratePath(P)
(∗ πi = (�i, ρi, �i+1) for 1 ≤ i ≤ n ∗)
if �n+1 = �E and π is feasible then

return “counterexample π”
else

ϕ := (∃X. ρ1 ◦ · · · ◦ ρn)[X/X ′]
Φ := Φ ∧ Encode(ϕ→ η.�n+1)

until no more paths

Fig. 3. Algorithm INVGEN+SYMB. It can be obtained by replacing lines 3–9 of the algorithm
INVGEN+TEST with the above statements. The function GeneratePath selects program paths.
Encode creates linear constraints over template parameters that encode the validity of the given
implication.

Following the method in Section 3, we encode the validity of the implication by a
constraint over the template parameters. In this case, the encoding yields linear con-
straints. In contrast to the cases when the left-hand side of the implication contains
template assertions, in the above implication program variables have constant coeffi-
cients. Thus, when multiplying additional parameters (appearing due to the application
of Farkas’ lemma) with coefficients attached to the program variables we obtain linear
terms, which, in turn, result in linear constraints.

For example, we consider a template t(x, y, z) that consists of two conjuncts α +
αxx + αyy + αzz ≤ 0 ∧ β + βxx + βyy + βzz ≤ 0 . We assume a set of states
ϕ = (−x ≤ 0 ∧ −y ≤ 0 ∧ x + y − z ≤ 0) reached by symbolic execution. The
encoding of the implication ϕ→ t yields the constraint

∃Λ ≥ 0. Λ
(−1 0 0

0 −1 0
1 1 −1

)
=
(αx αy αz

βx βy βz

) ∧ Λ
(

0
0
0

)
≤ (−α

−β

)
,

which is clearly linear.
We assume a function Encode that translates an implication between an assertion

representing a set of states and a template into a linear constraint over template param-
eters. Our extended algorithm INVGEN+SYMB applies Encode on sets of reachable
states computed by symbolic execution of the program. The algorithm is presented in
Figure 3. Since it extends the basic algorithm INVGEN+TEST by adding the symbolic
treatment of reachable states, we only present the modified part.

The algorithm INVGEN+SYMB interleaves symbolic execution and collection of
constraints. It relies on an external function GeneratePath that selects paths through
the control-flow graph of the program, see line 4.1. For a given path, we compute
an assertion representing states that are reachable by executing its transitions, see
line 8.1. We use the relational composition operator ◦, which is defined by ρ ◦ ρ′ =
∃X ′′. ρ[X ′′/X ′] ∧ ρ′[X ′′/X] , to compute the transition relation of the whole path.
The existential quantification in line 8.1 projects this relation to the successor states
ϕ, i.e., it computes the range of the relation. We use variable renaming to keep the re-
sulting assertion consistent with the templates over program variables. We conjoin the
constraint resulting from the translation of the implication between the reachable states

From Tests to Proofs 273

Table 2. Comparison of variations of invariant verification techniques and INTERPROC on addi-
tional benchmark problems inspired by [21]. “�” and “×” indicate whether the invariant com-
puted by INTERPROC proves the assertions, and “T/O” stands for time out.

File INTERPROC INVGEN INVGEN+Z3 INVGEN + INVGEN+Z3 + INVGEN +
INTERPROC INTERPROC + INTERPROC +

SYMB SYMB

Seq × 23.0s 1s 0.5s 6s 0.5s
Seq-z3 × 23.0s 9s 0.5s 6s 0.5s
Seq-len × T/O T/O T/O 4s 2.8s
nested × T/O T/O 17.0s 3s 2.3s
svd(light) × T/O T/O 10.6s T/O 14.2s
heapsort × T/O T/O 19.2s 48s 13.3s
mergesort × T/O 52s 142s T/O 170s
SpamAssassin-loop � T/O 5s 0.28s 1s 0.4s
apache-get-tag × 0.4s 10s 0.6s 3s 0.7s
sendmail-fromqp × 0.3s 5s 0.3s 5s 0.3s
Example1(b) × T/O T/O 0.4s 1s 0.35s

ϕ and the corresponding template η.�n+1 to the dynamic constraint Φ before proceeding
with the next path. We assume an external procedure that selects a finite set of paths. In
our implementation, we apply directed symbolic execution that attempts to unroll loops
at least one time.

The following theorem states that our optimizations are sound (and relatively
complete).

Theorem 1. [Correctness] If Algorithm INVGEN+ABSINT, INVGEN+TEST, or IN-
VGEN+SYMB on input program P and invariant template map η returns (a) “coun-
terexample s1, . . . , sn,” then there is an execution of the program that reaches the error
location; (b) “inductive invariant map η∗,” then η∗ is an invariant map for P , and the
program P is safe; (c) “no invariants with template η,” then there is no invariant map
for P with the given invariant template map η.

5 Experiences

Implementation. We implemented the algorithms INVGEN+TEST and INVGEN+SYMB

using SICStus Prolog [29], the linear arithmetic solver clp(q,r) [18] and the Z3
solver [8] as the backend to solve non-linear constraints. When describing the appli-
cation of INVGEN together with Z3, we shall write INVGEN+Z3. We apply the IN-
TERPROC [22] tool for abstract interpretation over numeric domains, and use the PPL
backend for polyhedra, mainly due to its source code availability. In principle, a variety
of other tools could be used instead, e.g., the ASPIC tool implementing the looka-
head widening and acceleration techniques [11, 12]. INVGEN provides a frontend for
C programs, which relies on CIL infrastructure for C program analysis and transforma-
tion and abstracts from non-arithmetic operations appearing in the input program. We
implement the following additional variable elimination optimization. The additional
constraints obtained from dynamic and static strengthening are linear. In particular, the
additional variables that encode implication between symbolic states and templates, Λ

274 A. Gupta, R. Majumdar, and A. Rybalchenko

in the previous section, can be eliminated. We perform this simplification step before ap-
plying the (expensive) techniques for solving non-linear constraints. For our constraint
logic programming-based implementation, this results in a reduction of the number of
calls to the linear arithmetic solver. When using the SAT approach, it allows us to avoid
applying the propositional search to constraints that can be solved symbolically.

In our experimental evaluation, we observed that INVGEN+TEST and
INVGEN+SYMB offer similar efficiency improvement, with a few exceptions
when INVGEN+SYMB was significantly better. To keep the tables with experimental
data compact, we only describe evaluation of the strengthening that uses symbolic
execution INVGEN+SYMB.

Software Verification Challenge Benchmarks. We applied INVGEN on a suite of soft-
ware verification challenge programs described in [21]. The examples in this benchmark
are extracted from large applications by mining a security vulnerability database for
buffer overflow problems. We use the corrected versions of these programs, using the
buffer access checks as assertions. The suite consists of 12 programs.1 Using polyhedral
abstract domain, INTERPROC computes invariants that are strong enough to prove the
assertion for half of them. The constraint based invariant generation together with the
SAT-based encoding, i.e., INVGEN+Z3, generates invariants for all programs within
36.5 seconds of total time. Using the CLP backend, INVGEN handles 11 examples
within 6.3 seconds, and times out on one program, which is handled by INVGEN+Z3 in
5 seconds. Using the static and dynamic strengthening described in this paper, we ob-
tain the following running times. The combination INVGEN+Z3+INTERPROC+SYMB

solves all examples in 29.5 seconds, while INVGEN+INTERPROC+SYMB handles all
examples within 9.6 seconds. These experiments demonstrate that the various optimiza-
tions can have an effect on verification, but the running times were too short to draw
meaningful conclusions.

Impact of Dynamic Strengthening. The collection from [21] did not allow us to perform
a detailed benchmarking of our algorithm, since the running times on these examples
were too short. We obtained a set of more difficult benchmarks inspired by [21] by
adding additional loops and branching statements, and provide a detailed comparison
that describes the impact of static and dynamic strengthening in isolation in Table 2.
INTERPROC computes 50 inequalities for each loop head, which results in a significant
increase in the number of variables in the constraint system. While being an obstacle for
the propositional search procedure in Z3, the increased number of variables does not
significantly affect the CLP-based backend since the additional variables appear in lin-
ear terms. In summary, the performance of INVGEN+Z3 decreases and the performance
of INVGEN goes up by adding facts from INTERPROC.

Integration with BLAST. We have modified the abstraction refinement procedure of the
BLAST software model checker [15] by adding predicate discovery using path invari-
ants [3]. Table 3 shows how constraint based invariant generation can be effective for

1 Due to short running times, we present the aggregated data and do not provide any table con-
taining entries for individual programs.

From Tests to Proofs 275

refining abstractions. The number of counterexample refinement iterations required is
reduced in all examples.

For several examples we achieved termination of previously diverging abstrac-
tion refinement, and for others the reduction ranges between 25 and 400 percent.

Table 3. INVGEN + INTERPROC + SYMB for predicate
discovery in BLAST. We show the number of refinement
steps required to prove the property.

File BLAST BLAST + INVGEN +
INTERPROC + SYMB

Seq diverge 8
Seq-len diverge 9
fregtest diverge 3
sendmail-fromqp diverge 10
svd(light) 144 43
Spamassassin-loop 51 24
apache-escape 26 20
apache-get-tag 23 15
sendmail-close-angle 19 15
sendmail-7to8 16 13

Summary. Our experimental evalu-
ation leads to the following obser-
vations:

– For complex constraint solv-
ing problems, the additional
strengthening facilitates signif-
icant improvement. It ranges
from reducing the running time
by two orders of magnitude to
making timing out examples
solvable within seconds.

– If the constraint solving is al-
ready fast in the purely static
case, then the strengthening
does not cause any significant
running time penalty.

Acknowledgments. The second author was sponsored in part by the NSF grants CCF-
0546170 and CNS-0720881. The third author was supported in part by Microsoft Re-
search through the European Fellowship Programme.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static analysis.
In: Proc. POPL, pp. 1–3. ACM Press, New York (2002)

2. Beyer, D., Henzinger, T., Majumdar, R., Rybalchenko, A.: Invariant synthesis for combined
theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 378–394.
Springer, Heidelberg (2007)

3. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: Proc. PLDI,
pp. 300–309. ACM Press, New York (2007)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. In: Proc. PLDI, pp. 196–207. ACM
Press, New York (2003)

5. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-
linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 420–432. Springer, Heidelberg (2003)

6. Cousot, P.: Proving program invariance and termination by parametric abstraction, la-
grangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: POPL 1978, pp. 84–96. ACM Press, New York (1978)

276 A. Gupta, R. Majumdar, and A. Rybalchenko

8. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

9. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE Trans. Software Eng. 27(2), 1–25 (2001)

10. Floyd, R.W.: Assigning meanings to programs. In: Mathematical Aspects of Computer Sci-
ence, pp. 19–32. AMS (1967)

11. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in Linear Relation Anal-
ysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer, Heidelberg (2006)

12. Gopan, D., Reps, T.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 452–466. Springer, Heidelberg (2006)

13. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refining abstract
interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
443–458. Springer, Heidelberg (2008)

14. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In: PLDI,
pp. 281–292. ACM Press, New York (2008)

15. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs. In: POPL
2004: Principles of Programming Languages, pp. 232–244. ACM Press, New York (2004)

16. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc. POPL, pp.
58–70. ACM Press, New York (2002)

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12, 576–580
(1969)

18. Holzbaur, C.: OFAI clp(q,r) Manual, edn. 1.3.3. Austrian Research Institute for Artificial
Intelligence, Vienna, TR-95-09 (1995)

19. Jain, H., Ivancic, F., Gupta, A., Shlyakhter, I., Wang, C.: Using statically computed invariants
inside the predicate abstraction and refinement loop. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 137–151. Springer, Heidelberg (2006)

20. Kapur, D.: Automatically generating loop invariants using quantifier elimination. Technical
Report 05431 (Deduction and Applications), IBFI Schloss Dagstuhl (2006)

21. Ku, K., Hart, T., Chechik, M., Lie, D.: A buffer overflow benchmark for software model
checkers. In: Proc. ASE (2007)

22. Lalire, G., Argoud, M., Jeannet, B.: The interproc analyzer, http://pop-art.
inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.
html

23. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, Heidel-
berg (1995)

24. Miné, A.: The octagon abstract domain. Higher-Order and Symb. Comp. 19, 31–100 (2006)
25. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constraint-based linear-relations analysis. In:

Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer, Heidelberg (2004)
26. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation using

Gröbner bases. In: Proc. POPL, pp. 318–329. ACM, New York (2004)
27. Sankaranarayanan, S., Sipma, H., Manna, Z.: Scalable analysis of linear systems using math-

ematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41.
Springer, Heidelberg (2005)

28. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
29. The Intelligent Systems Laboratory. SICStus Prolog User’s Manual. Swedish Institute of

Computer Science, Release 3.8.7 (2001)

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html

Test Input Generation for Programs with
Pointers

Dries Vanoverberghe1,
, Nikolai Tillmann2, and Frank Piessens1

1 Katholieke Universiteit Leuven, Belgium
{Dries.Vanoverberghe,Frank.Piessens}@cs.kuleuven.be

2 Microsoft Research, Redmond, USA
nikolait@microsoft.com

Abstract. Software testing is an essential process to improve software
quality in practice. Researchers have proposed several techniques to au-
tomate parts of this process. In particular, symbolic execution can be
used to automatically generate a set of test inputs that achieves high
code coverage.

However, most state-of-the-art symbolic execution approaches cannot
directly handle programs whose inputs are pointers, as is often the case
for C programs. Automatically generating test inputs for pointer manip-
ulating code such as a linked list or balanced tree implementation re-
mains a challenge. Eagerly enumerating all possible heap shapes forfeits
the advantages of symbolic execution. Alternatively, for a tester, writing
assumptions to express the disjointness of memory regions addressed by
input pointers is a tedious and labor-intensive task.

This paper proposes a novel solution for this problem: by exploiting
type information, disjointness constraints that characterize permissible
configurations of typed pointers in byte-addressable memory can be auto-
matically generated. As a result, the constraint solver can automatically
generate relevant heap shapes for the program under test. We report on
our experience with an implementation of this approach in Pex, a dy-
namic symbolic execution framework for .NET. We examine two different
symbolic representations for typed memory, and we discuss the impact
of various optimizations.

Keywords: Test input generation, symbolic execution, pointers.

1 Introduction

Today, testing is still by far the most effective way to improve software quality.
Recently, there is a lot of effort to automate different parts of the testing process.
One aspect is test input generation for an open program, i.e. a program that takes
� Dries Vanoverberghe is a research assistant of the Fund for Scientific Research -

Flanders (FWO). Most of the work was conducted while he was visiting Microsoft
Research.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 277–291, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

278 D. Vanoverberghe, N. Tillmann, and F. Piessens

inputs. The challenge is to generate a small set of test inputs that maximizes
code coverage.

Symbolic execution[1] is a well known static analysis technique to generate test
inputs, where the program is executed with symbolic inputs instead of concrete
inputs. A constraint solver is used to compute test inputs for particular execu-
tion paths. Since its early introduction, there has been a tremendous increase in
computing power which paved the road for engineering more efficient constraint
solvers and more precise analysis tools. Not surprisingly, symbolic execution
for test input generation has become popular lately (e.g. Java Pathfinder [2],
EXE [3], Cute [4], Sage [5], Pex [6], ...). Most of these tools use a variant of sym-
bolic execution where the program is repeatedly executed with concrete inputs.
During a concrete execution, the program is monitored to build a symbolic repre-
sentation of the executed path; the next test inputs are constructed in such a way
that they will exercise a new execution path. Constraints that are outside of the
scope of the employed constraint solver can be simplified by using observed con-
crete values instead of symbolic values. This variant has been called DART [7],
concolic execution [4], and dynamic symbolic execution[5,6]. The many tools im-
plementing it show its relevance in practice (EXE [3], Cute [4], Sage [5], Pex [6],
Yogi [8], Vigilante [9], Bitscope, ...).

In the context of static analysis tools, reasoning about programs with pointers
has traditionally been challenging. For test input generation this is not different:
Some tools based on dynamic symbolic execution don’t support symbolic pointer
reasoning and use the concrete value for pointers as an under-approximation in-
stead. For instance, EXE [3] uses concrete values whenever it encounters a double
dereference and Sage [5] always uses concrete values. Although this means that
the exploration can sometimes be incomplete, for testing tools this is appro-
priate. If symbolic pointers are supported, simplifying assumptions often make
pointer reasoning incomplete (for example, treating pointers as references instead
of integers with arbitrary arithmetic [4]).

In this work we focus on test input generation for programs manipulating
(complex) data structures with pointers. A common approach is to first assume
that an invariant holds for the data structure; then to apply an operation on the
data structure; and finally to assert that the invariant still holds. Expressing the
invariant for arbitrary pointers is often tedious, as a large portion of the invariant
usually states that different pointers point to different memory regions which do
not overlap in type-incorrect ways. This is a property that is guaranteed by safe
managed languages such as Java and C#, but it is not guaranteed by languages
that allow unsafe memory accesses, such as C and C++.

We studied the problem in the context of Pex [6], a dynamic symbolic execu-
tion tool for the Common Intermediate Language (CIL) of the .NET Framework.
CIL consists of a strongly typed verifiable core, extended with unsafe instruc-
tions (e.g. for unsafe memory accesses through pointers) that are available only
when the program is sufficiently trusted by the user. By using these unsafe in-
structions, C programs can be translated to CIL.

Test Input Generation for Programs with Pointers 279

The contributions of this paper are the following:

– We propose two different symbolic representations for unsafe memory. The
main idea of these representations is to exploit the type information that is
present in the CIL to the fullest extent possible.

– We present a number of axioms that characterize that pointers only overlap
in type-correct ways.

– We introduce a two-phase solving scheme to improve the efficiency of the
solving process by performing multiple incremental queries to the solver.

– We report on an experimental evaluation based on an implementation in
Pex.

The remainder of this paper is structured as follows: Section 2 explains more
details about dynamic symbolic execution. Section 3 motivates why automatic
test input generation for programs with pointers is challenging. Next, we shortly
introduce our type system (Section 4) before explaining how we model memory
(Section 5) and how we enforce disjointness of input data accessed through typed
pointers (Section 6). In Section 7 we discuss how we can improve the performance
of the resulting system. Section 8 contains an evaluation of our approach using
red-black trees and linked lists as data structure. Finally, we treat related work
in Section 9 and conclude.

2 Background: Dynamic Symbolic Execution

Symbolic execution [1] is a technique to explore the behavior of a program under
all possible inputs. Instead of using concrete inputs, the program is executed with
symbols representing arbitrary values. As a result, the inputs are partitioned into
equivalence classes that follow the same execution path. This path is represented
by the path-condition, a conjunction of constraints on the symbolic inputs. At
each branch during the execution of the program, the inputs are split into two
equivalence classes by conjoining the (negated) branch condition with the path-
condition. A satisfiability modulo theory (SMT) solver is used to check whether
the resulting path-conditions are feasible and to compute a set of inputs that
represents that particular execution path.

Theoretically, given a correct (sound and complete) constraint solver and a
correct symbolic execution engine, symbolic execution of programs with a fi-
nite number of finite paths is equivalent to program verification. In reality, the
symbolic execution engine will often be limited in its completeness due to in-
structions with complex behavior such as floating point operations or code that
is outside the scope of the symbolic execution engine such as operating system
calls.

Dynamic symbolic execution (also named DART [7] or concolic execution [4])
is a variant of symbolic execution in which the symbolic constraints are gath-
ered by monitoring the program during a concrete execution and maintaining
a symbolic representation on the side. First the program is executed with ar-
bitrary inputs. Then, a constraint solver is used to find inputs that drive the

280 D. Vanoverberghe, N. Tillmann, and F. Piessens

Set J := false intuitively, J is the set of already...
loop ...analyzed program inputs

Choose program input i such that ¬J(i) stop if no such i can be found
Output i
Execute P (i); record path condition C in particular, C(i) holds
Set J := J ∨ C

end loop

Algorithm 1. Dynamic symbolic execution

execution along new execution paths. The advantage of this approach is that
even in the context of an imprecise representation, there will never be false pos-
itives. When the concrete execution diverges from the intended execution path
it can be detected and reported. Furthermore, when precise symbolic execution
is impossible, concrete values can be used to simplify the constraints. In that
case, the set of covered execution paths is an underapproximation of the feasible
execution paths, which is appropriate for testing.

Algorithm 1 shows the general dynamic symbolic execution algorithm.
For symbolic execution, the constraint solver needs to support a variety of dif-

ferent theories, such as bit-vectors with all common integer arithmetic operations
to model machine integers, the theory of arrays with read and write-functions for
arrays, and tuples to represent structs. Often, uninterpreted functions are used
(e.g. for typing constraints); their possible interpretations are restricted, or fully
determined, by introducing background axioms (potentially with quantifiers).
Satisfiability modulo theory (SMT) checkers are efficient to reason about such a
combination of theories. They handle quantified background axioms by instan-
tiating them when a designated pattern occurs in the formula that is checked
for satisfiability. This approach is only complete when the patterns are carefully
chosen. Since modern SMT checkers can generate models, i.e. satisfying assign-
ments, they can be used as constraint solvers for symbolic execution. In this
work, we use Z3 [10] as the constraint solver.

3 Motivating Example

In the following, we will illustrate the problem of test input generation for pro-
grams whose inputs are pointers. Consider the program in Figure 1. The function
test tests the method enqueueTail, a part of the enqueue operation of linked
lists. It takes the tail pointer p, a pointer to a freshly initialized node q and a new
value val as input and adds the value as last element of the list. In the beginning
of the test, we assume that p and q are not null and different. Furthermore, the
next field of both p and q must be null. After the enqueueTail operation, the
value of the next node of p must equal the new value.

To cover this program, a dynamic test generation tool must generate values
for pointers, i.e. memory addresses, and assign values to the memory locations
at these addresses. In the first execution, arbitrary values can be assigned to

Test Input Generation for Programs with Pointers 281

void enqueue(Queue∗ q, int val) {
Node∗ newNode = malloc(sizeof (Node));
enqueueTail(q −> tail ,newNode , val);
q −> tail = newNode; }

void enqueueTail (Node∗ p, Node∗ q, int val) {
q −> value = val ; p −> next = q; }

void test(Node∗ p, Node∗ q, int val) {
Assume(p ! = 0 && q ! = 0 && p ! = q);
Assume(p −>next == 0 && q −>next == 0);
enqueueTail(p, q, val);
Assert(p −> next −> value == val); }

struct Node {
int value ;
Node∗ next ;

}
struct Queue {

Node∗ head ;
Node∗ tail ;

}

Fig. 1. A motivating example based on linked lists

the inputs; we choose the value 0 for pointers, and 0 for integers. During the
execution, a symbolic representation is maintained, in which the pointers are
treated as regular integers. (We use this representation of pointers as it reflects
the encoding of pointer operations at the level of the execution machine, where
all high-level type information has been erased.) In the first execution, p is null,
so the path-condition will be p == 0. To explore new behavior, we need to find
a value for p such that p! = 0. The constraints will be solved incrementally, and
the final constraint to pass the first assumption is p != 0 && q != 0 && p != q.
The constraint solver might find a solution such as p = 1, q = 2, where 1 and
2 are integers that represent the addresses of the second and third byte of the
addressable memory. During the next execution, this will likely result in an
access violation when trying to read the value of the next field of p, since the
program does not have access to these locations when it is executed within a
regular process of a typical operating system. Of course, this technical issue can
be solved by allocating a big chunk of memory before any test is executed, and
adding additional constraints on p and q to express that these pointers must be
in that memory region.

Next, in order to pass the second assumption, we again send a set of con-
straints to the constraint solver. This time, the solver will not only give a model
for the inputs, but also for some values in memory. Our tool parses this model
and initializes the memory with the supplied values before executing the test.
For example, in this case it would assign null to the next fields of p and q. Al-
though this is not really challenging, integration testing tools (like Sage [5] and
EXE [3]) often don’t support this. For unit testing tools, dealing with pointers
as input is essential.

Besides these technical issues, the dynamic symbolic execution process will
report an assertion violation. This is because the program fails to specify the
assumption that the memory regions, to which p and q point, do not overlap
(are disjoint). Indeed, if for instance q = p + 4 then the next field of p has the
same address as the value field of q. Since the next field of p is updated after the
value of q is set to val, the value of q is destroyed. Therefore, the value of the
next node of p is not equal to val.

282 D. Vanoverberghe, N. Tillmann, and F. Piessens

In practice, it is surprisingly tedious to express all disjointness assumptions.
Especially for complicated data structures, like trees or graphs, where the num-
ber of disjointness constraints is quadratic in the number of nodes. Forgetting one
assumption can lead to a test case that is particularly hard to debug. Further-
more, our experience shows that developers are likely to forget such assumptions
as they are often taken for granted.

In this paper, we seek to exploit the information present in the type system,
and the signature of the test function. We restrict input generation for pointers
in such a way that pointers are always used in a type-correct way. As a result, it is
no longer necessary to encode this quadratic amount of disjointness constraints
manually. Instead, the type information is encoded in the constraints for the
constraint solver.

4 Types

In this section, we give a short sketch of the type system that we considered –
a small subset of the type system of full CIL that we found relevant for unsafe
memory operations. Figure 2 shows the syntax of types in our system. A type
can either be a primitive type or a struct type. I1 is a byte, I2 a two-byte
entity, and so on. R4 represents a four-byte float, and so on. Struct types are
essentially a list of types with labels. In this way, types are basically trees where
the leaves are primitive types and the nodes are struct types. Depending on the
architecture of the machine, pointers would be represented as I4, or I8. We will
use I8 in the following.

Type := PrimitiveType | StructType
PrimitiveType := I1 | I2 | I4 | I8 | R4 | R8 | . . .
StructType := Type Label; StructType | Type Label

Fig. 2. Syntax types

We do not consider empty structs. We assume the presence of the function
sizeof that returns the size of a type in memory in bytes, and the function
nextOffset that gives the offset of the second label of a struct in bytes. The
label represents a named field of a struct. The functions nestedIn and unnested
can be used to test whether one type is nested in another type or not.

5 Memory Representations

This section describes how memory is modeled to support precise test input
generation for unsafe pointers. From the point of view of the concrete execution
engine, memory is just one big byte array. Whenever a value at a particular
offset is read, the execution engine reads a number of consecutive bytes from
memory and converts them to a value of the requested type.

Test Input Generation for Programs with Pointers 283

The most precise way to model memory symbolically is to stay as close to
the concrete semantics as possible. Logically, pointers can be encoded as regular
integers, and memory can be represented as a map from integers to bytes. Reads
and writes are represented as selecting from this map or updating it at a number
of consecutive indices. This precision comes with a cost for every memory access
with a type bigger than a byte. To reduce this cost, we exploit the typing in-
formation to simplify the memory representation. Since well-typed pointers can
not overlap, we can split the memory into different maps according to the type.
We explored two different variants of this scheme:

map per type. For each type T , we keep a map MMT from integers to values
of type T . For struct types, this means that the value of the field can be
retrieved in two ways. For example, assume we have a struct T with a field
of type S: First, we can select the entire struct of type T from the MMT

and get the value of its field. Alternatively, we can compute the address of
the field and select the value directly from MMS.

To keep the different maps consistent, we introduce an axiom over the
maps that relates the initial memory maps. Whenever we write a complete
struct to a pointer, we update both the memory map of the struct and the
memory maps of its fields recursively. Furthermore, we use typing informa-
tion that is present in CIL to reverse engineer when an assignment to a
pointer is an assignment to a field of a struct. In that case, we do not only
update the field, but also the struct. Unfortunately, when complex pointer
manipulation operations are performed, it might not always be statically
known that a pointer points to a field of a struct. In this case, the symbolic
representation is imprecise with respect to the real representation.

map per primitive type. We only maintain maps for primitive types. Read-
ing or writing complete structs is done recursively over all fields. This rep-
resentation is no longer imprecise since the constraint solver now reasons
about the relation between different pointers.

6 Enforcing Disjointness

As mentioned before, the memory representations introduced in Section 5 are
only precise under the assumption that pointers separate memory into disjoints
memory regions that are only accessed according to one particular type (or
compatible types in the case of nested structs). In this section we explain how
we use the typing information to enforce this assumption.

To encode the typing information for the constraint solver, we want to express
that a pointer p has type T (e.g. typeOf(p) == T). Because our type system
contains structs, it is possible though that one pointer has multiple types. Con-
sider a pointer to a struct T whose first field has type S. This pointer has both T
and S as type. To this end, we could introduce a relation typed(T, p) to express
that a pointer p has type T .

However, using such a relation as a basic block of our definitions would be
inefficient: We would have to create constraints to forbid all illegal combinations

284 D. Vanoverberghe, N. Tillmann, and F. Piessens

of types, e.g. to indicate that a typed(byte, p) and typed(int, p) is mutually ex-
clusive. To achieve better performance, we stratify types according to their type
level Essentially, the type level is the largest nesting depth. If we conceptually
think of a type as a tree, the type level is the height of the tree.

For each type level, we define an uninterpreted function typeOftypeLevel that
takes a pointer as input and returns a value representing the type of the pointer.
Now we can define typed(T, p) as syntactic sugar for typeOftypeLevel(T)(p) ==
typeConstant(T). Since the typeOf symbols are functions, the theory of equal-
ity over uninterpreted function symbols can infer that typeOfl(p)! = typeOfl(q)
implies that p and q are different. Using only the predicate typed, these implica-
tions would have to be encoded as quantifiers, which is potentially less efficient.

The semantics of these uninterpreted functions is given by the axioms defined
in Figure 3. Whenever a pointer to a struct type is typed, then the pointers
to the fields of this struct are also typed according to their type. Furthermore,
pointers that are typed must always be in a predefined region of memory that
we allocated for this purpose. The constants vmbase and vmsize represent the
base address and size of this region.

∀ (T : Type, t : label, S : StructType, p : I8), typed((T t; S), p)
=> typed(T, p) && typed(S, (p + nextOffset(T t; S)))

∀ (T : Type, t : label, p : I8), typed((T t), p) => typed(T, p)
∀ (T : Type, p : I8), typed(T, p)

=> p ≥ vmbase && p + sizeof(T) ≤ vmbase + vmsize && p + sizeof(T) > p

Fig. 3. Axioms over typed function

Figure 4 shows the disjointness axioms that apply to pointers and Figure 5
introduces a number of helper functions.

First, two pointers with same type must either be equal or they do not overlap.
Second, two pointers with different types where neither of the types is nested inside
the other type never overlap. Finally, when one type is nested in another type, a
pointer to the nested type can either be correctly embedded with respect to the
pointer of the other type or both pointers do not overlap. Correctly embedded
means that if the nested type is equal to a field type, then the embedded pointer
can be equal to this pointer. Alternatively, if the nested type is nested inside a
field type, then the embedded pointer can be embedded in the pointer to the field.
Together with the axiom to propagate type information to the fields of a struct,
these three axioms precisely define how pointers can relate to each other.

In Section 2, we mentioned that SMT solvers need a carefully designed (set
of) patterns to instantiate quantifiers. In Figure 3 and 4, these patterns are illus-
trated by underlining them. We do not provide patterns for the first quantifier
in the last two disjointness axioms because they are statically expanded. Two
patterns in one quantifier represent one multi-pattern rather than two patterns.
The patterns in our axioms only occur on the left hand side of an implication,
and the right hand side will only generate the same pattern with terms that
are structurally smaller. This corresponds to defining a function by recursion

Test Input Generation for Programs with Pointers 285

∀ (T : Type, p1 : I8, p2 : I8), typed(T, p1) && typed(T, p2) =>

p1 == p2 ‖ noOverlap(T, T, p1, p2)
∀ (T1 : Type, T2 : Type), unnested(T1, T2) =>

∀ (p1 : I8, p2 : I8), typed(T1, p1) && typed(T2, p2) =>

noOverlap(T1, T2, p1, p2)
∀ (T1 : Type, T2 : Type), nestedIn(T1, T2) =>

∀ (p1 : I8, p2 : I8), typed(T1, p1) && typed(T2, p2) =>

noOverlap(T1, T2, p1, p2) ‖ correctlyEmbedded(T1, T2, p1, p2)

Fig. 4. Disjointness axioms

noOverlap(T1 : Type, T2 : Type, p1 : I8, p2 : I8) :=
p1 ≥ p2 + sizeof(T2) ‖ p2 ≥ p1 + sizeof(T1)

embedded(T2 : Type, p1 : I8, p2 : I8) := p1 ≥ p2 && p1 < p2 + sizeof(T2)
correctlyEmbedded(T1 : Type, T2 : Type, p1 : I8, p2 : I8) :=

match T2 with
| PrimitiveType => T1 == T2 && p1 == p2
| StructType =>

match StructType with
| T t; StructType′ => embeddedInF ield(T1,T, p1, p2) ‖

correctlyEmbedded(T1, StructType′, p1, p2 + nextOffset(StructType))
| T t => embeddedInF ield(T1,T, p1, p2)
end

end
embeddedInF ield(T1 : Type, T2 : Type, p1 : I8, p2 : I8) :=

match T2 with
| PrimitiveType => T1 == T2 && p1 == p2
| StructType =>

nestedIn(T1, StructType) && embedded(StructType,p1, p2)
end

Fig. 5. Helper functions for disjointness axioms

over the structure of arguments. Therefore, there will only be a finite number
of instantiations, and the use of pattern based instantiation is complete for our
axioms.

Together with the disjointness axiom, the memory representations of Section 5
are precise for all well-typed programs. Furhtermore, incorrect pointer arithmetic
can be detected by automatically checking whether a pointer has a compatible
type prior to every memory access.

7 Optimizations

7.1 Two-Phase Solving

After initial experiments, we observed that some of the constraint systems gen-
erated during our symbolic execution are particularly hard for the constraint

286 D. Vanoverberghe, N. Tillmann, and F. Piessens

solver. Furthermore, we noticed that the solver mainly had a hard time when
the constraints are unsatisfiable. When they are satisfiable, the constraint solver
usually gives a solution fairly quickly.

This can be explained by analyzing the disjointness axioms. First of all, the
axioms cause a quadratic number of disjointness constraints in the amount of
pointers. Furthermore, each disjointness constraint is actually a disjunction of
two inequalities. To make matters even worse, pointers are represented as bitvec-
tors, therefore an inequality causes the creation of a circuit, i.e. a representation
of the inequality by logical gates operating at the bit-level. Not surprisingly, the
constraint systems give rise to a large number of case splits, especially when all,
or at least many, cases have to be enumerated which often happens when the
constraints are unsatisfiable.

To improve the performance, we split constraint solving in two phases:

– First, we perform a satisfiability check for a simplified set of constraints. In
particular, all disjointness constraints are replaced by a single disequality
between the two pointers (E.g. noOverlap(T 1, T 2, p1, p2) → p1 != p2).
The resulting constraint system is weaker than the original one. If the sat-
isfiability check fails, there will not be a solution for the original constraint
system and we can skip the second phase.

– Then, we exploit the incremental nature of the constraint solver and add
the full disjointness axioms to the simplified constraint system. In principle,
checking the full constraints first and only adding them when necessary is
possible, but we did not implement such a scheme. In any case, the full
constraints are necessary to remain precise.

7.2 Alignment

Data is said to be aligned when its address is divisible by certain powers of two.
For example, on the X86 architecture, a 4-byte (8-byte) entity is aligned when
its address is divisible by four (eight). Accessing misaligned data often imposes
a performance penalty; it may even be forbidden. As a result, most compilers
automatically align data structures according to their type by inserting padding
bytes.

With alignment, two pointers with a primitive type will always be equal or
not overlapping. For primitive types, we can exploit alignment by replacing the
disjointness axiom for pointers of the same type by an alignment constraint
(which states that the lower bits are equal to zero). The advantage is that the
alignment constraint does not cause a quadratic number of pointer inequalities.

8 Evaluation

Since our approach aims at generating inputs for pointers as well, we evaluate
it in the context of data structures where pointer reasoning is essential.

First, we test an implementation of red-black trees, a self-balancing binary
search tree, taken from the Windows source code base. This is a challenging test

Test Input Generation for Programs with Pointers 287

case because red black trees have complicated constraints over a data structure
with pointers. For example, the sum of all black nodes on a path from the root
to any leaf node is always the same. Furthermore, in this performance-optimized
implementation the leafs of the red-black tree are represented by a sentinel node
which is nested inside the tree itself. This was an excellent test to see if nested
types are working correctly.

We have tested the red-black tree with both memory representations described
in Section 5. To evaluate the overhead of the enforcement of the disjointness con-
ditions, we manually created a version of the test case with the extra constraints
that all pointers are aligned modulo 1024, which can be expressed efficiently
by operations at the bit-level. As a consequence, different pointers never over-
lap. This trick was much more convenient to enforce the disjointness of the
pointers than manually walking over the entire data structure and enforcing the
disjointness constraints. Furthermore, these logical conditions are slightly more
efficient than encoding the disjointnesses manually. Therefore, comparing the
performance of the disjointness with this system is not completely fair, but it
already gives a good idea whether our system is much slower because of the dis-
jointness axioms or not. This technique has limited potential for automatisation
because pointers to nested structs are not necessarily aligned.

When changing the constraint systems, the order in which execution paths
are explored usually changes, since the next execution path depends on the test
inputs computed by the constraint solver. In order to compare the performance
of the different memory representations, we inserted a subtle bug in the fixup
routine of the red-black trees. We stop the test input generation as soon as the
first two test cases that trigger the bug have been reported.

The results can be seen in Figure 6. On the Y-axis, we report the number of
tests that has been generated. The memory representation with a map per type
clearly outperforms the representation with a map per primitive type. In Sec-
tion 5, we mentioned that the first representation is potentially imprecise when
it is impossible to statically know if an assignment to a pointer is an assignment
to a field of a struct. In practice, this imprecision never occured while execut-
ing the red-black tree benchmark. A second observation is that the disjointness
constraints do not have a big impact in the first memory representation (16s
vs 28s). For the second representation though, it deteriorates the performance
severely.

To test our optimizations, we have executed the red-black tree again using the
first memory representation and all combinations of the optimizations. We again
stopped the input generation when we found the first two failing test cases. The
result can be seen in Figure 7. With two-phase solving, the test input generation
is clearly faster. In combination with two-phase solving, alignment does not seem
to offer too much improvement. Without two phase solving, alignment seems to
deteriorate the performance, although this is hard to explain. In addition, we
computed the average time for the constraint solver to handle a query. Without
two-phase solving, the average is .13s. With two-phase solving, the averages for
the first and the second phase are .02s and .05s respectively. These number

288 D. Vanoverberghe, N. Tillmann, and F. Piessens

0

1

2

3

4

5

6

7

8

9

10

0.00 100.00 200.00 300.00 400.00 500.00 600.00

T

e

s

t

s

Time(s)

BaseZero

BaseZero SplitStructs

Typed

Typed SplitStructs

Fig. 6. Red black tree: Memory representations (BaseZero uses alignment modulo 1024
to enforce disjointness and Typed uses the the disjointness axioms. SplitStructs means
that we only maintain a map per primitive type.)

0

1

2

3

4

5

6

7

8

9

10

0.00 50.00 100.00 150.00 200.00

T

e

s

t

s

Time(s)

No Two-Phase, No Alignment

No Two-Phase, Alignment

Two-Phase, Alignment

Two-Phase, No Alignment

Fig. 7. Red black tree: Optimizations

confirm our hypothesis that we can improve the performance by doing a fast
satisfiability check first.

Finally, we tested all combinations of the different options (memory represen-
tation, two-phase solving and alignment) on a linked list data structure. We used
a fixed timeout of 600s, and we report the size of the largest queue that has been

Test Input Generation for Programs with Pointers 289

found over time. Figure 8 shows the results. Two-phase solving has the biggest
impact on the size of the linked lists that are being generated. With two phase
solving, the first memory representation seems to perform better. Without two
phase solving, the second memory representation seems better. Also, alignment
seems to improve the performance in three out of four cases.

0

5

10

15

20

25

30

35

40

0.00 100.00 200.00 300.00 400.00 500.00 600.00

S

i

z

e

Time(s)

NSS, TP, A

NSS, TP, NA

NSS, NTP, A

NSS, NTP, NA

SS, TP, A

Fig. 8. Linked list: Optimizations (SS for SplitStructs, TP for two-phase solving, A for
alignment and N for their negated counterparts)

9 Related Work

Recently, a broad range of test input generation tools have been developed based
on symbolic execution [5,11,3,12,4,2]. We compare our work with them based on
two dimensions:

Generating pointers as input. As we discussed in Section 3, most tools
[5,11,3,12] focus on integration testing and do not support pointers as sym-
bolic input for test methods (e.g. Sage [5] only focuses on files as input, and
KLEE [12] on command-line arguments and files). For unit testing complex
data structures this support is essential.

Some argue that a test that requires complex test inputs can be wrapped
in another test that only takes (an array of) inputs with primitive types;
the wrapping test first parses the complex data from the primitive data, and
then calls the original test; this approach complicates the exploration of the
code under test by requiring the exploration of the parser in addition, and it

290 D. Vanoverberghe, N. Tillmann, and F. Piessens

also does not take into account possibly legal configurations of the complex
data which are not generated by the parser.

An alternative solution is test sequence generation, the process of creating
the data structure iteratively by starting with a constructor call followed
with a list of methods with symbolic inputs. Unfortunately, test sequence
generation is far from scalable in practice.

In this paper, we use a designated function to validate the data structure
(also known as repOk methods). This function is similar to the concept of
invariant in deductive software verification. For a valid test input, we assume
that the data structure is valid, then we apply the function we want to test.
Finally, we assert that the resulting data-structure is still valid.

Reasoning about pointers. There is much diversity in the way different tools
handle pointers: e.g. Java Pathfinder [2] only supports object references.

Cute [4] does support pointers, they collect only (dis)equality constraints
over these pointers. Although one might argue that using complicated oper-
ations on pointers is bad practice, it is used in rare but intricate cases. For
example, we frequently encountered alignment-checks on pointers, where the
lower bits of the pointer are inspected by the program. Our approach treats
pointers as regular integers supporting all integer arithmetic operations.

SimC [13] is another tool to generate test inputs that support pointer
reasoning. Unlike us, they model memory as one large array. SimC implicitly
assumes that pointers do not overlap in incorrect ways.

Most tools perform concretization at some level to support pointer rea-
soning [3,5,4], i.e. they use the concrete value of a pointer as observed during
concrete execution. Cute does not use the theory of arrays for representing
memory but concretizes indices of array accesses. This leads to the inabil-
ity to generate test inputs where i == j in the following program: a[i]=0;
a[j]=1; if (a[i]==0) ERROR. EXE concretizes pointers when there are dou-
ble dereferences. Finally, Sage uses concretization to handle symbolic index-
ing into an array. We do not perform concretization to deal with pointers.

For program verification (of low level code), dealing with pointers is chal-
lenging as well. Most verification tools are incomplete with respect to pointers.
For example, in VCC [14], pointers are treated as logical references instead of
integers. Havoc [15] also treats pointers as integers. Havoc also has an encoding
of the type system for SMT solvers [16], but our encoding is more precise. In
particular, in Havoc, two different structs with fields of the same type can not
be differentiated. Furthermore, they don’t encode disjointness constraints at the
byte level. Finally, separation logic [17] is a promising alternative way to reason
about heap manipulating programs.

10 Conclusion

In this paper, we proposed a novel solution for generating test inputs for pro-
grams with pointers. We exploited the type information to encode disjointness

Test Input Generation for Programs with Pointers 291

assumptions that characterize acceptable configurations of typed pointers in
byte-addressable memory as constraints for the solver. As a result, the constraint
solver only computes relevant heap shapes for the program under test.

We have implemented our approach in Pex, and evaluated it on red black
trees and linked lists. From the two memory representations we created, the
representation with a map per type was much faster than the representation
where we only maintained a map per primitive type. Thanks to the two-phase
solving optimization, the disjointness axioms have only minimal impact on the
performance.

References

1. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

2. Visser, W., Pǎsǎreanu, C.S., Khurshid, S.: Test input generation with java
pathfinder. In: ISSTA (2004)

3. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automati-
cally generating inputs of death. In: CCS 2006 (2006)

4. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proc. of ESEC/FSE 2005, pp. 263–272. ACM Press, New York (2005)

5. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In:
Proceedings of NDSS 2008 (Network and Distributed Systems Security) (2008)

6. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

7. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
SIGPLAN Notices 40(6), 213–223 (2005)

8. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Abstract
synergy: A new algorithm for property checking (2006)

9. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: End-to-end containment of internet worms. In: SOSP (2005)

10. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

11. Cadar, C., Engler, D.: Execution generated test cases: How to make systems code
crash itself. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 2–23. Springer,
Heidelberg (2005)

12. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: OSDI 2008 (to appear)

13. Xu, Z., Zhang, J.: A test data generation tool for unit testing of c programs.
QSIC 0, 107–116 (2006)

14. Schulte, W., Xia, S., Smans, J., Piessens, F.: A glimpse of a verifying c compiler –
extended abstract (2007)

15. Chatterjee, S., Lahiri, S.K., Qadeer, S.: A reachability predicate for analyzing low-
level software. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 19–33. Springer, Heidelberg (2007)

16. Condit, J., Hackett, B., Lahiri, S., Qadeer, S.: Unifying type checking and property
checking for low-level codes. In: POPL (to appear, 2009)

17. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS (2002)

Specification Mining with Few False Positives

Claire Le Goues and Westley Weimer

University of Virginia
{legoues,weimer}@virginia.edu

Abstract. Formal specifications can help with program testing, opti-
mization, refactoring, documentation, and, most importantly, debugging
and repair. Unfortunately, formal specifications are difficult to write man-
ually, while techniques that infer specifications automatically suffer from
90–99% false positive rates. Consequently, neither option is currently
practical for most software development projects.

We present a novel technique that automatically infers partial correct-
ness specifications with a very low false positive rate. We claim that ex-
isting specification miners yield false positives because they assign equal
weight to all aspects of program behavior. By using additional informa-
tion from the software engineering process, we are able to dramatically
reduce this rate. For example, we grant less credence to duplicate code,
infrequently-tested code, and code that exhibits high turnover in the
version control system.

We evaluate our technique in two ways: as a preprocessing step for
an existing specification miner and as part of novel specification infer-
ence algorithms. Our technique identifies which input is most indicative
of program behavior, which allows off-the-shelf techniques to learn the
same number of specifications using only 60% of their original input. Our
inference approach has few false positives in practice, while still find-
ing useful specifications on over 800,000 lines of code. When minimizing
false alarms, we obtain a 5% false positive rate, an order-of-magnitude
improvement over previous work. When used to find bugs, our mined
specifications locate over 250 policy violations. To the best of our knowl-
edge, this is the first specification miner with such a low false positive
rate, and thus a low associated burden of manual inspection.

1 Introduction

Debugging, testing, maintaining, optimizing, refactoring, and documenting soft-
ware are costly and time-consuming processes, yet they remain critically im-
portant: deployed programs with incorrect behavior cost billions of dollars and
multiple lives each year [28]. Modifying existing code, correcting defects, and oth-
erwise evolving software are major parts of maintenance [31], which is reported

� This research was supported in part by National Science Foundation Grants CNS
0627523 and CNS 0716478, Air Force Office of Scientific Research grant FA9550-07-
1-0532, and NASA grant NAS1-02117, as well as gifts from Microsoft Research. The
information presented here does not necessarily reflect their positions or policies.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 292–306, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Specification Mining with Few False Positives 293

to consume up to 90% of the total cost of software projects [32]. Incomplete doc-
umentation is a key maintenance difficulty [12]: up to 60% of maintenance time
is spent studying existing software (e.g., [29, p.475], [30, p.35]). Understanding
correct software behavior is central to maintaining, changing, and correcting
code. Human processes and especially tool support for these activities depend
on formal specifications of proper program behavior (e.g., [26]). Unfortunately,
while low-level program annotations are becoming more and more prevalent [11],
formal specifications remain rare.

Formal specifications are difficult for humans to construct [9], and incorrect
specifications are difficult for humans to debug and modify [3]. Specification
mining projects attempt to address these problems by inferring specifications
from program source code or execution traces [1,2,15,17,33,37,38]. Unfortunately,
existing techniques typically produce imprecise specifications and suffer from
false positive rates of 90–99% [36] — that is, a very large proportion of candidate
specifications produced by these techniques are not true program specifications.
Some miners require that every inferred policy be corrected manually [3].

Specification mining can be compared to learning the rules of English grammar
by reading essays written by high school students; we propose to focus on the
essays of passing students and be skeptical of the essays of failing students. We
claim that existing miners have high false positive rates in large part because they
treat all code equally, even though not all code is created equal. For example,
consider an execution trace through a recently modified, rarely-executed piece
of code that was copied-and-pasted by an inexperienced developer. We argue
that such a trace is a poor guide to correct behavior when compared with a
well-tested, infrequently-changed, and commonly-executed trace.

The problem of mining temporal safety policies is undecidable in general [2],
as it is impossible to learn regular languages in the limit [18, Theorem 1.8] based
on finitely many examples. Existing miners thus use heuristics to decide which
specifications are likely true. Our algorithm is no different in that regard; we
infer temporal safety properties of the form “b must follow a,” using heuristics
based on information gleaned from the software engineering process.

We propose a new automatic specification miner that uses artifacts from soft-
ware engineering processes to capture the trustworthiness of its input traces.
The main contributions of this paper are:

– A set of source-level features related to software engineering processes that
capture the trustworthiness of code for specification mining. We analyze the
relative predictive power of each of these features.

– Empirical evidence that our notions of trustworthy code serve as a basis for
evaluating the trustworthiness of traces. We provide a characterization for
such traces and show that off-the-shelf specification miners can learn just as
many specifications using only 60% of traces.

– A novel automatic mining technique that uses our trust-capturing features
to learn temporal safety specifications with few false positives in practice.
We evaluate it on over 800,000 lines of code and explicitly compare it to two
previous approaches. Our basic mining technique learns specifications that

294 C. Le Goues and W. Weimer

locate more safety-policy violations than previous miners (740 vs. 426) while
presenting far fewer false positive specifications (107 vs. 567). When focused
on precision, our technique obtains a low 5% false positive rate, an order-of-
magnitude improvement on previous work, while still finding specifications
that locate 265 violations. To our knowledge, this is the first specification
miner that produces multiple candidate specifications and has a false positive
rate under 90%.

The rest of this paper is organized as follows. In Section 2 we describe tem-
poral safety specifications and highlight uses. Section 3 gives a brief overview of
specification mining. Section 4 describes our approach to specification mining,
including the code trustworthiness metrics used (Section 4.1). In Section 5 we
present experiments supporting our claims and evaluating the effectiveness of
our miner. We discuss related work in Section 6 and conclude in Section 7.

2 Temporal Safety Specifications

A partial-correctness temporal safety property is a formal specification of an
aspect of correct program behavior [23], typically describing how to manipulate
certain important resources and interfaces. Specifications take the form of finite-
state machines that encode valid sequences of events relating to those resources
that occur during the program’s exeuction. For example, one event may represent
reading untrusted data over the network, another may represent sanitizing it,
and a third may represent a database query. Figure 2 shows such a specification
for SQL injection attacks [25], based on the code in Figure 1.

Typically, each important resource is tracked separately [13]. Each finite state
machine starts in its start state. A program conforms to a specification if and
only if it terminates with the corresponding state machine in an accepting state.
Otherwise, the program violates the specification. Such specifications can de-
scribe properties such as locking [10], resource leaks [36], security [25], high-level
invariants [16] and memory safety [19], and more specialized properties such
as the correct handling of setuid [9] or asynchronous I/O request packets [5].
These partial correctness specifications are distinct from and complementary to
full formal behavior specifications.

void bad(Socket s, Conn c) {

string message = s.read ();

string query = "select * " +

"from emp where name = " +

message;

c.submit(query);

s.write("result = " +

c.result ());

}

void good(Socket s, Conn c) {

string message = s.read ();

c.prepare("select * from "

+ " emp where name = ?",

message);

c.exec ();

s.write("result = " +

c.result ());

}

Fig. 1. Pseudocode for an example internet service. The bad method passes untrusted
data to the database; good works correctly. Important events are italicized.

Specification Mining with Few False Positives 295

read

submit prepare

sanitize submit

 exec

Fig. 2. Example specification for Figure 1

These types of specifica-
tions can be used by almost
any existing defect-finding tool
(e.g., [5,10,11,16]); indeed, all
bug-finders require implicit or
explicit specifications. Formal
specifications can also help with
program testing [4], optimization [24], refactoring [21], documentation [6], and
repair [34]. Formal specifications are rare in practice, but not due to a lack of
possible uses.

3 Specification Mining

The goal of specification mining is to construct a formal specification using
examples of program behavior [2]. Traces of program behavior can be collected
from the source code (e.g., [15]) or from instrumented executions on indicative
workloads (e.g., [37]). These traces usually take the form of a sequence of function
calls. A specification miner examines such traces and produces one or more
candidate specifications, which must then be verified by a human.

Existing specification miners fall into two categories. Some produce a single
finite automaton policy with many states [1,2,37], while others produce many
small automata [15,17,36,38], typically of a fixed form. We focus on the latter,
because large automata are much more difficult to verify or debug [3].

The simplest and most common type of temporal specification is a two-state fi-
nite state machine [15,36]. Such two-state specifications require that event a must
always be followed by event b, correspond to the regular expression (ab)∗, and are
written 〈a,b〉. Examples include 〈open,close〉, 〈malloc,free〉, and 〈lock,unlock〉.
Such specifications often describe resource allocation or the correct restoration
of invariants, and are prevalent in practice. Even when attention is restricted to
two-state specifications, mining remains difficult [17].

How a specification miner should decide what event pairs constitute a valid
policy is non-obvious, especially in the face of red herrings such as 〈print,print〉,
or even policy violations. Engler et al. note that programmer errors can be
inferred by assuming the programmer is usually correct [15]. That is, common
behavior implies correct behavior. Engler et al.’s ECC miner counts the number
of times a and b appear together in order and the number of times that event a
appears without event b, and uses the z -statistic to rank the likelihood that the
correlation is deliberate on the part of the programmer. Their miner presents a
ranked list of candidate specifications to the programmer for inspection. Without
human guidance (e.g., without lists of important functions to focus on [15]), this
technique is prone to a very high rate of false positives. On one million lines
of Java code, only 13 of 2808 positively-ranked specifications generated by ECC

were real: a 99.5% false positive rate [36].
In previous work, we observed that programmers often make mistakes in

rarely-tested error handling code [36]. Tracking a single bit of information per
trace — whether that trace corresponded to a program error or not — improved

296 C. Le Goues and W. Weimer

the mining accuracy dramatically, by an order of magnitude. We also included
a software engineering consideration, restricting attention to specifications in
which the events a and b came from the same package or library. We assumed
that independent libraries, potentially written by separate developers, are un-
likely to depend on each other for correctness at the API level. These insights
reduced the number of candidates presented to the programmer by a large fac-
tor: on the same million lines of Java code, the WN miner generated only 649
candidate specifications, of which 69 were real, for an 89% false positive rate.
However, this rate is still too high to be considered automatic; before being used,
the candidate specifications must still be hand-validated.

4 Our Approach: Code Trustworthiness

We call code trustworthy if it is unlikely to exhibit API policy violations. Pre-
vious approaches have implicitly assumed that all execution traces are equally
indicative of correct program behavior, that is, that all traces should be trusted
equally. In this paper, we demonstrate that this assumption is incorrect. We
present a specification miner that works in three stages:

1. Statically estimate the trustworthiness of each code fragment.
2. Lift that judgment to traces by considering the code visited along a trace.
3. Weight the contribution of each trace by its trustworthiness when counting

event frequencies for specification mining.

We hypothesize that code is most trustworthy when it has been written by
experienced programmers who are familiar with the project at hand, when it
has been well-tested, and when it has been mindfully written (e.g., rather than
copied-and-pasted). Previous work has found more errors in recently-changed
code [27], unreadable code [7] and rarely-tested code [36]. Such information can
be collected from a program’s source code and version control history. Section 4.1
describes the set of features we have chosen to approximate the “trustworthiness”
of code. Section 4.2 describes our mining algorithm in more detail.

4.1 Trustworthiness Metrics

Our goal is to automatically distinguish between code that is likely to adhere to
program specifications and code that is not. Our specification miner thus uses a
number of metrics to approximate the trustworthiness of code. We only consider
metrics that can be computed automatically using commonly-available software
engineering artifacts, such as the source code itself or version control information.
In the interest of automation, we do not consider features that require manual
annotation or human guidance. We use the following metrics:

Code Churn. Previous work has shown that frequently modified code is less
likely to be correct [27]; changing the code to fix one defect often introduces
another. We hypothesize that so-called churned code is less likely to adhere to
specifications. Using version control information, we measure the time between

Specification Mining with Few False Positives 297

the current revision and the last revision for each line of code in wall clock hours.
Similarly, we measure the total number of revisions to each line.

Author Rank. We hypothesize that some developers have a better understand-
ing of the implicit specifications for a project than others. A senior developer
who has performed many edits may remember more of the program invariants
than a developer recently added to the group. Source control repositories track
the author of each change. The rank of an author is the proportion of all changes
committed to the repository that were committed by that author. We measure
the author rank of the last author to touch each line of code.

Copy-Paste Development. We hypothesize that duplicated code is more
error-prone because it has not been specialized to its new context and because
patches to the original may not have propagated to the duplicate. We further
hypothesize that duplicated code does not represent an independent correctness
argument on the part of the developer; if printf follows iter in 10 duplicated
code fragments, it is not 10 times as likely that 〈iter,printf〉 is a real speci-
fication. We measure repetition using the open-source PMD toolkit’s copy-paste
detector, which is based on the Karp-Rabin string matching algorithm [20].

Code Readability. In previous work, we showed that more readable code is
less likely to contain errors [7]. We hypothesize that more readable code is thus
also more likely to adhere to specifications. We measure code readability using
our software readability metric, which is based on textual source code features
and agrees with human annotators [7].

Path Feasibility. Infeasible paths are an artifact of the static enumeration pro-
cess; we claim that they do not encode programmer intentions. Previous work
has argued that it is always helpful to have more traces, even incorrect ones [35];
our experiments suggest that quality is more important than quantity (see Sec-
tion 5.2). Merely excluding infeasible paths confers some benefit. However, we
further hypothesize that infeasible paths suggest pairs that are not specifica-
tions. If the programmer has made it impossible for b to follow a along a path,
〈a,b〉 is unlikely to be required. We measure the feasibility of a path using sym-
bolic execution; a path is infeasible if an external theorem prover (in our case,
Simplify) reports that its symbolic branch guards are inconsistent.

Path Frequency. We theorize that paths that are frequently executed by in-
dicative workloads and testcases are more likely to contain correct behavior. We
use a research tool that can statically estimate the relative runtime frequency
of a given path through a program [8] to measure path frequency. We measure
relative runtime frequency with respect to the enclosing method.

Path Density. We hypothesize that a method with few static paths is likely to
exhibit correct behavior and that a method with many paths is likely to exhibit
incorrect behavior along at least one of them. We define “path density” as the
number of traces it is possible to enumerate in each method and in each class.
A low path density for traces containing the paired events ab and a high path
density for traces that contain only a both make 〈a,b〉 a likely specification.

298 C. Le Goues and W. Weimer

4.2 Mining Algorithm Details

Our mining algorithm extends our previous WN miner [36]. Formally, our miner
takes as input:

1. The program source code P . The variable � ranges over source code locations.
2. A set of trustworthiness metrics M1 . . .Mq, with Mi(�) ∈ R.
3. A set of important events Σ, typically taken to be all of the function calls

in P . We use the variables a, b, etc., to range over Σ.

Our miner produces as output a set of candidate specifications C = { 〈a,b〉 | a
should be followed by b}. We determine the validity of a particular candidate
specification by manual inspection; we present experimental results in Section 5.

Our algorithm first statically enumerates traces through P . Since there are
an infinite number of traces, we must choose a finite enumeration strategy. We
consider each method m in P in turn. Using a breadth-first traversal, we enu-
merate the first k paths through m, assuming that branches can either be taken
or not and that an invoked method can either terminate normally or raise any
of its declared exceptions [36]. We pass through loops no more than once. This
produces a set of traces T , where each trace t is a sequence of program locations
�. We write a ∈ t if the event a occurs in trace t and a . . . b ∈ t if the event a
occurs and is followed by the event b in that trace. We also note whether or not a
trace involves exceptional control flow; we write Error(t) for this judgment [36].

Next, where necessary, our miner lifts trustworthiness metrics from locations
to traces. Our lifting is parametric with respect to an aggregation function A :
P(R) → R. We use the functions max, min, span and average in practice. We
write MA for a trustworthiness metric M lifted to work on traces: MA(t) =
A({M(�) | � ∈ t}). We write M for the metric lifted again to work on sets of
traces: M(T) = A({MA(t) | t ∈ T }).

Finally, we consider all possible candidate specifications. For each a and b
in Σ, we collect a number of features. We write Nab for the number of times
a is followed by b in a normal (non-error) trace. We write Na for the number
of times a occurs in a normal trace, with or without b. We similarly write Eab

and Ea for counts in error traces. We write SPab = 1 when a and b are in the
same package (i.e., defined in the same library). We write DFab = 1 when a and
b are connected by dataflow information: when every value and receiver object
expression in b also occurs in a [36, Section 3.1].

In previous work we showed that both the ECC and WN miners can be expressed
using this set of features [35]. The ECC miner returns 〈a,b〉 when a is followed by
b in some traces but not in others: Na−Nab + Ea −Eab > 0 and Nab + Eab > 0
and DFab = 1. The WN miner returns 〈a,b〉 when Eab > 0 and Ea − Eab > 0
and DFab = SPab = 1. Both of these miners encode arbitrary heuristic choices
about which features are considered, the relative importance of various features,
and which features must have high values.

We extend the set of features by adding the aggregate trustworthiness for each
lifted metric MA. We write Miab (resp.Mia) for the aggregate metric values on
the set of traces that contain a followed by b (resp. contain a). Figure 3 lists the

Specification Mining with Few False Positives 299

Na = |{t | a ∈ t ∧ ¬Error (t)}|
Nab = |{t | a . . . b ∈ t ∧ ¬Error (t)}|
Ea = |{t | a ∈ t ∧ Error(t)}|
Eab = |{t | a . . . b ∈ t ∧ Error(t)}|
SPab = 1 if a and b are in the same package, 0 otherwise
DFab = 1 if every value in b also occurs in a, 0 otherwise
Mia = Mi({t | a ∈ t}) where Mi is a lifted trustworthiness metric
Miab = Mi({t | a . . . b ∈ t}) where Mi is a lifted trustworthiness metric

Fig. 3. Features used by our miner to evaluate a candidate specification 〈a,b〉

set of features considered by our miner when evaluating a candidate specification
〈a,b〉. Since we have multiple aggregation functions and metrics (see Section 4.1),
Mia actually corresponds to over a dozen individual features.

We also include a number of statistical features, fractions and percentages
related to the main frequency counts Na . . . Eab, such as the z-statistic used by
ECC to rank candidate specifications; we thus use over 30 total features fi for each
pair 〈a,b〉. Rather than asserting an a priori relationship between these features
that candidate specifications must adhere to, we use linear regression to learn
a set of coefficients ci and a cutoff cutoff , such that our miner outputs 〈a,b〉 as
a candidate specification iff

∑
i cifi < cutoff . This involves a training stage to

determine both the coefficients and the cutoff, described in detail in Section 5.

5 Experiments

Program Version LOC Description
hibernate2 2.0b4 57k Object persistence
axion 1.0m2 65k Database
hsqldb 1.7.1 71k Database
cayenne 1.0b4 86k Object persistence
jboss 3.0.6 107k Middleware
mckoi-sql 1.0.2 118k Database
ptolemy2 3.0.2 362k Design modeling
Total 866k

Fig. 4. Benchmarks used in our experiments

We evaluate our miner on sev-
eral open-source Java bench-
marks, shown in Figure 4. We
selected these programs to allow
a direct comparison to previ-
ous work [17,35,36,38]. We re-
stricted attention to programs
with CVS or SVN source-
control repositories. For each
program, we statically enumer-
ated traces (up to a limit of
20 per method) and gathered
the required information for the
trustworthiness metrics described in Section 4.1. We do not need source code
implementing a particular interface; instead, we generate traces from the client
code that uses that interface (as in [2,14,17,38]). One expensive operation was
computing path feasibility, which required multiple calls to Simplify, an external
theorem prover. On a 3 GHz Intel Xeon machine, computing it on the mckoi-sql

(our second-largest) benchmark took 25 seconds. Enumerating all static traces
for mckoi-sql, with a maximum of 20 traces per method, took 912 seconds in
total; this happens once per program. Collecting the other metrics for hsqldb

300 C. Le Goues and W. Weimer

is relatively inexpensive (e.g., 6 seconds for readability, 7 seconds for path fre-
quency). The actual mining process (i.e., considering the features for every pair
of events in mckoi-sql against the cutoff) took 555 seconds. The total time for
our technique was about 30 minutes per 100,000 lines of code.

5.1 Trustworthiness Metrics: Learning Cutoffs and Coefficients

First, we learn the coefficients and cutoff that determine which candidate spec-
ifications to output, and thus the relative importance of our trustworthiness
metrics. We use recall and precision to evaluate potential coefficients. Recall is
the number of real specifications returned out of all possible real specifications,
or the probability that a real specification is returned by the algorithm. Preci-
sion is the fraction of candidate specifications that are not false positives. A high
recall indicates that the miner is doing useful work (i.e., returning real specifica-
tions), but without a corresponding high precision, those real specifications will
be drowned in a sea of false positives. We claim that current false positive rates
are too high for existing techniques to be of practical use.

Metric F p

Frequency 32.3 0.0000
Copy-Paste 12.4 0.0004
Code Churn 10.2 0.0014
Density 10.4 0.0013
Readability 9.4 0.0021
Feasibility 4.1 0.0423
Author Rank 1.0 0.3284

Fig. 5. Analysis of variance

We use linear regression to find the coefficients
for our miner. Linear regression requires annotated
answers (i.e., a set of known-valid and known-
invalid specifications). We use the valid and in-
valid specifications mined and described in previ-
ous work [35,36] as a training set. Given the set of
linear regression coefficients, we perform a linear
search of possible cutoffs and choose the one that
maximizes an objective function. That objective
function can be the harmonic mean of precision
and recall (our normal miner) or just precision
(which yields a precise miner with very few false
positives).

Our first experiment evaluates the relative importance of our trust-
worthiness metrics. A per-feature analysis of variance, over all of the training
data, is shown in Figure 5. The F column denotes the F -ratio, or the square of
the variance explained by the feature over the variance not explained. It is near
1 if the feature does not affect the model. The p column shows the probability
that the feature does not affect the miner.

All features except Author Rank had a significant main effect (p ≤ 0.05). The
Frequency metric, encoding our static prediction of how often the path would be
executed at run-time [8], was our most important feature: commonly-run (and
thus well-tested) paths do not demonstrate erroneous behavior. All of our new
trustworthiness features were more important to mining than feasibility, which is,
to our knowledge, the only one that had been previously investigated [1]. We were
surprised to discover that our formulation of author rank had no effect on the
model: whether the last person to touch a line of code was a frequent contributor
to the project is not related to whether traces adhered to specifications.

Specification Mining with Few False Positives 301

5.2 Trust Matters for Trace Quality

In our second experiment, we demonstrate that our trustworthiness met-
rics improve existing techniques for automatic specification mining.
For each of our benchmarks, we run the unmodified WN miner [36] on multiple
input trace sets. For generality, we restrict attention to feasible traces, since
miners such as JIST already disregard infeasible paths [1].

We compare WN’s performance on a baseline set of feasible static traces to
its performance on trustworthy subsets of those traces. For this experiment we
define the trustworthiness of a trace to be a linear combination of the metrics
from Section 4.1, with coefficients based on their relative predictive power for
specification mining (the F column in Figure 5).

On the entire baseline set, WN miner produces 75 real specifications. Averaged
over all the benchmarks, WN finds the same specifications using only the top
60% most trustworthy traces: 40% of the traces can be dispensed with while
preserving true positive counts. As a point of comparison, when a random 40%
of the traces are discarded, we find only 56 true specifications in total, with a
4% higher rate of false positives.

We also explore the impact of trustworthy traces on false positive rates by
passing various proportions of trustworthy input to the WN miner. Figure 6 shows
the results when only the 25% most trustworthy traces are used. On the baseline
set, WN has 683 false positives: a false positive rate of 90%. When restricted to
the 25% most trustworthy traces, WN produces 39 real specifications and 306
false positives: a false positive rate of 89%. Notably, we find over one-half of
the specifications with only one-fourth of the input, without sacrificing the false
positive rate. Beyond halving the raw false positive rate, and thus human effort
required to validate the results, this is useful if the smaller output set contains

Fig. 6. The false positive rate of the off-the-shelf WN miner on various input sets. The
total height of the bar represents the number of candidate specifications returned to
the user for inspection.

302 C. Le Goues and W. Weimer

particularly helpful specifications, which we investigate next. As a lower bound,
only two true specifications can be mined from the 25% least trustworthy traces.

Any static specification mining technique involves a particular trace enumer-
ation strategy; trace generation is often a bottleneck. Rather than enumerating
a certain number of traces per method, we claim that trustworthy traces should
be pursued and untrustworthy traces should be skipped. These results also have
implications for multi-party techniques to mine specifications collaboratively by
sharing trace information [35]. Focus should be placed on sharing information
from trustworthy traces. Our trustworthiness metrics could generally be used
as a preprocessing step to improve any static trace-based specification miner
(e.g., [15,17,36,38]). However, they can be even more useful when directly incor-
porated into a mining algorithm.

5.3 Trustworthy Specification Mining

For our main experiment, we measure the efficacy of our new specification
miner on all input trace sets. We must first verify that our miner is not biased
with respect to our training data. A potential threat to the validity of our results
is over-fitting by testing and training on the same data. We use 10-fold cross
validation to mitigate this threat [22]. We randomly partition the data into
10 sets of equal size. We test on each set in turn, training on the other nine;
in this way we never test and train on the same data. If the average results of
cross-validation (over many random partitionings) are different from the original
results, it may indicate bias. For our experiment, the difference was less than
0.01%, indicating little or no bias.

Figure 7 shows the results of applying our new specification miner from
Section 4 to the benchmarks in Figure 4. For each benchmark, we report the
number of candidate specifications returned, broken down into valid specifica-
tions and false positives (determined by manual verification of the results). We

Normal Miner Precise Miner WN ECC

Program Sp
ec

s

Fa
ls
e

B
ug

s

Sp
ec

s

Fa
ls
e

B
ug

s

Sp
ec

s

Fa
ls
e

B
ug

s

Sp
ec

s

Fa
ls
e

B
ug

s

hibernate 7 8 = 53% 279 5 1 = 17% 153 9 42 = 82% 93 3 421 = 99% 21
axion 7 5 = 42% 71 4 0 = 0% 52 8 17 = 68% 45 0 96 = 100% 0
hsqldb 3 1 = 25% 36 1 0 = 0% 5 7 55 = 89% 35 0 244 = 100% 0
jboss 14 75 = 84% 255 2 0 = 0% 12 11 103 = 90% 94 2 442 = 99% 4
cayenne 5 7 = 58% 45 3 0 = 0% 23 5 30 = 86% 18 3 308 = 99% 8
mckoi-sql 7 10 = 59% 20 2 0 = 0% 7 19 137 = 88% 69 2 344 = 99% 5
ptolemy 6 1 = 14% 44 3 0 = 0% 13 9 183 = 95% 72 3 653 = 99% 12
Total 49 107 = 69% 740 20 1 = 5% 265 68 567 = 89% 426 13 2508 = 99% 50

Fig. 7. Comparative mining results on 800kLOC. “Specs” indicates valid specifications,
“False” indicates false positive specifications. “Bugs” totals, for each valid specification
found, the number of distinct methods that violate it. The two left headings give results
for our Normal Miner and our Precise Miner; WN and ECC are previous algorithms.

Specification Mining with Few False Positives 303

also report the number of distinct methods that violated the valid mined speci-
fications (i.e., the number of policy violations found by using that specification
with a bug-finding tool). Each method is counted only once per specification,
even if multiple paths through that method violate it. We reprint published re-
sults for the WN [36] and ECC [15] miners for comparison. Recall that our normal
miner minimizes both false positives and false negatives, while our precise miner
only minimizes false positives (see Section 5.1).

The WN and ECC miners were chosen for comparison because of their compara-
tively low false positive rates. Other methods produce even more candidates. On
jboss, the Perracotta miner produces 490 candidate two-state properties, which
the authors say “is too many to reasonably inspect by hand.” [38] Gabel and
Su report mining over 13,000 candidates from hibernate [17]. Our precise miner
produces six – one is a false positive, and the other five find over 150 violations.

Our normal miner finds important specifications with a low false positive rate.
It improves on the false positive rate of WN by 20%. Moreover, the specifications
that it finds generally find more violations than those found by WN: 740 violations,
or 15 per valid specification, compared to WN’s 426, or 7 per valid specification.
However, the end-user inspects both valid and invalid specifications. Each can-
didate specification from our miner helps to find 4 violations on average; for WN,
less than 1 violation is found on average per candidate inspected.

This precise miner finds fewer valid specifications, but its 5% false positive
rate approaches levels required for automatic use. It finds 30% as many specifi-
cations as WN, but 60% of the violations: each candidate inspected yields over 12
violations on average. Users are often unwilling to wade through voluminous tool
output [15,19]; with a 5% false positive rate, and more useful specifications than
those of previous work, we claim that our precise miner might be reasonable in
both interactive and automatic settings.

5.4 Threats to Validity

Although our two miners outperform existing approaches in terms of bugs found
and false positives avoided, our results may not generalize to industrial prac-
tice. The benchmarks used in this project may not be representative of other
projects. We chose the benchmarks to be directly comparable with previous
work [17,35,36,38], and note that the domains represented are more indicative
of server and back-end computing than of client code. A second threat is over-
fitting. We use cross-validation in Section 5.3 to demonstrate that our results
are not biased by over-fitting. A third threat lies in our manual validation of the
output: our human annotation process may mislabel candidate specifications. To
mitigate this threat we re-checked a fraction of our judgments at random and
used the source code of a and b to evaluate 〈a,b〉. A final threat lies in our use
of “bugs found” as a proxy for specification utility: while our mined specifica-
tions find more policy violations, they may not be as useful for tasks such as
documenting or refactoring. We leave an investigation of specification utility for
future work.

304 C. Le Goues and W. Weimer

6 Related Work

Our work is most closely related to existing specification mining algorithms
(see [36] for a survey). The ECC [15] and WN [36] algorithms are formalized in
detail in Section 4.2. The WML_static [37] miner examines library source code,
assumes that typestate is explicitly captured by object fields and thrown excep-
tions, and produces a single multi-state specification. The WML_dynamic [37] miner
examines dynamic traces and produces a permissive multi-state specification
that describes all observed behavior. The JIST [1] miner refines the WML_static

approach and uses techniques from software model checking to rule out infea-
sible paths. The Perracotta [38] miner mines multiple candidate specifications
that match a given template (e.g., the two-state specification form used in this
paper is one such template). Gabel and Su [17] extend Perracotta using BDDs,
show that two-state mining is NP-complete, and show that some specifications
cannot be mined by composing multiple two-state specifications. The Strauss

tool [2] uses probabilistic finite state machine learning to learn a single specifica-
tion from traces. Shoham et al. [33] mine by using abstract interpretation where
the abstract values are specifications.

Unlike WML_static, JIST, Strauss and Shoham et al., we do not require that
important parts of the specification, such as the classes of interest, be given
in advance by the user. Unlike Strauss, WML_dynamic, JIST, and Shoham et al.,
we produce multiple candidate specifications rather than a single specification;
complex specifications are difficult to debug and verify [3]. Unlike Perracotta

or Gabel and Su, we cannot mine more complicated templates, such as three-
state specifications. Like ECC, WN, and Gabel and Su, our miner is scalable. The
primary difference between our miner and previous miners is that we use software
engineering information, encoded as trustworthiness metrics, to weight input
traces and thus obtain low false positive rates. To our knowledge, no published
miner that produces multiple candidates has a false positive rate under 90%; we
present one with a 5% false positive rate that still finds over 250 violations.

7 Conclusion

Formal specifications have myriad uses, from testing and optimizing, to refactor-
ing and documenting, to debugging and repair. Formal specifications are difficult
to produce manually, and existing specification miners typically have 90–99%
false positive rates. We claim that not all parts of a program are equally indica-
tive of correct behavior. We encode this intuition using trustworthiness metrics
such as predicted execution frequency, measurements of copy-paste code, code
churn, software readability or path feasibility. These metrics can be used to
improve the performance of existing trace-based miners by focusing on trust-
worthy traces: equivalent results can be obtained using only 60% of the input.
We also use our metrics to create a new specification miner and compare it to
two previous approaches on over 800,000 lines of code. Our basic miner learns
specifications that locate hundreds more bugs than previous miners while pre-
senting hundreds fewer false positive candidates. When focused on precision, our

Specification Mining with Few False Positives 305

technique obtains a low 5% false positive rate, an order-of-magnitude improve-
ment on previous work, while still finding specifications that locate hundreds of
violations. To our knowledge, among specification miners that produce multiple
candidate specifications, this is the first to maintain a false positive rate under
90%. We believe it to be a first step towards utility in an automated setting.

References

1. Alur, R., Cerny, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for Java classes. In: POPL (2005)

2. Ammons, G., Bodik, R., Larus, J.R.: Mining specifications. In: POPL, pp. 4–16
(2002)

3. Ammons, G., Mandelin, D., Bod́ık, R., Larus, J.R.: Debugging temporal specifica-
tions with concept analysis. In: Programming Language Design and Implementa-
tion, pp. 182–195 (2003)

4. Ball, T.: A theory of predicate-complete test coverage and generation. In: FMCO,
pp. 1–22 (2004)

5. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: European Systems Conference, April 2006, pp. 103–122 (2006)

6. Buse, R.P.L., Weimer, W.: Automatic documentation inference for exceptions. In:
ISSTA, pp. 273–282 (2008)

7. Buse, R.P.L., Weimer, W.: A metric for software readability. In: ISSTA, pp. 121–
130 (2008)

8. Buse, R.P.L., Weimer, W.: The road not taken: Estimating path execution fre-
quency statically (2009)

9. Chen, H., Wagner, D., Dean, D.: Setuid demystified. In: USENIX Security Sym-
posium, pp. 171–190 (2002)

10. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, Zheng,
H.: Bandera: extracting finite-state models from Java source code. In: ICSE, pp.
762–765 (2000)

11. Das, M.: Formal specifications on industrial-strength code—from myth to real-
ity. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, p. 1. Springer,
Heidelberg (2006)

12. de Souza, S.C.B., Anquetil, N., de Oliveira, K.M.: A study of the documentation
essential to software maintenance. In: SIGDOC, pp. 68–75 (2005)

13. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software. In:
PLDI, pp. 59–69 (2001)

14. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: Symposium on Operating
Systems Design and Implementation (2000)

15. Engler, D.R., Chen, D.Y., Chou, A.: Bugs as inconsistent behavior: A general
approach to inferring errors in systems code. In: SOSP, pp. 57–72 (2001)

16. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI, pp. 234–245 (2002)

17. Gabel, M., Su, Z.: Symbolic mining of temporal specifications. In: ICSE, pp. 51–60
(2008)

18. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

306 C. Le Goues and W. Weimer

19. Hovemeyer, D., Pugh, W.: Finding bugs is easy. In: OOPSLA Companion, pp.
132–136 (2004)

20. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

21. Kataoka, Y., Ernst, M., Griswold, W., Notkin, D.: Automated support for program
refactoring using invariants. In: ICSM, pp. 736–743 (2001)

22. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. IJCAI 14(2), 1137–1145 (1995)

23. Kupferman, O., Lampert, R.: On the construction of fine automata for safety
properties. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 110–
124. Springer, Heidelberg (2006)

24. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs
for dataflow analyses and transformations via local rules. SIGPLAN Not. 40(1),
364–377 (2005)

25. Livshits, V.B., Lam, M.S.: Finding security errors in Java programs with static
analysis. In: USENIX Security Symposium, August 2005, pp. 271–286 (2005)

26. Malayeri, D., Aldrich, J.: Practical exception specifications. In: Advanced Topics
in Exception Handling Techniques, pp. 200–220 (2006)

27. Nagappan, N., Ball, T.: Using software dependencies and churn metrics to predict
field failures: An empirical case study. In: ESEM, pp. 364–373 (2007)

28. National Institute of Standards and Technology. The economic impacts of inade-
quate infrastructure for software testing. Technical Report 02-3 (May 2002)

29. Pfleeger, S.L.: Software Engineering: Theory and Practice. Prentice Hall PTR,
Upper Saddle River (2001)

30. Pigoski, T.M.: Practical Software Maintenance: Best Practices for Managing Your
Software Investment. John Wiley & Sons, Inc., Chichester (1996)

31. Ramamoothy, C.V., Tsai, W.-T.: Advances in software engineering. IEEE Com-
puter 29(10), 47–58 (1996)

32. Seacord, R.C., Plakosh, D., Lewis, G.A.: Modernizing Legacy Systems: Software
Technologies, Engineering Process and Business Practices (2003)

33. Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using
automata-based abstractions. In: ISSTA, pp. 174–184 (2007)

34. Weimer, W.: Patches as better bug reports. In: GPCE, pp. 181–190 (2006)
35. Weimer, W., Mishra, N.: Privately finding specifications. IEEE Trans. Software

Eng. 34(1), 21–32 (2008)
36. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In:

Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476.
Springer, Heidelberg (2005)

37. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented
component interfaces. In: ISSTA (2002)

38. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal
API rules from imperfect traces. In: ICSE, pp. 282–291 (2006)

Path Feasibility Analysis for String-Manipulating
Programs

Nikolaj Bjørner1, Nikolai Tillmann1, and Andrei Voronkov2

1 Microsoft Research
http://research.microsoft.com

2 University of Manchester
http://www.voronkov.com

Abstract. We discuss the problem of path feasibility for programs manipulating
strings using a collection of standard string library functions. We prove results on
the complexity of this problem, including its undecidability in the general case
and decidability of some special cases. In the context of test-case generation, we
are interested in an efficient finite model finding method for string constraints.
To this end we develop a two-tier finite model finding procedure. First, an inte-
ger abstraction of string constraints are passed to an SMT (Satisfiability Modulo
Theories) solver. The abstraction is either unsatisfiable, or the solver produces a
model that fixes lengths of enough strings to reduce the entire problem to be finite
domain. The resulting fixed-length string constraints are then solved in a second
phase. We implemented the procedure in a symbolic execution framework, re-
port on the encouraging results and discuss directions for improving the method
further.

1 Introduction

Dynamic symbolic execution [8,3,14,16] has recently gained attention in the context
of test-case generation. It extends static symbolic execution [11] by collecting sym-
bolic constraints from concrete execution traces obtained by monitoring the executed
instructions. In order to explore a different execution path it suffices to modify one of
the extracted symbolic traces by selecting and negating a branch condition, which we
call flipping a branch. Then a constraint solver is used to provide a satisfying assign-
ment to the modified path condition.

Strings form a fundamental data type found in most if not all general purpose pro-
gramming languages. Strings may be represented in various ways, such as a pointer
to a 0-terminated array of characters (in C), as an array object with an explicit length
(in Java and C#), or even as a singly linked list (in Haskell). Programs that manipulate
strings can often abstract from the representation and use a set of library routines to
perform common functions on strings, such as converting characters to strings, finding
characters and extracting substrings.

The problem. String library routines are themselves implemented as programs, so
dynamic symbolic execution can apply to string routines by exploring the underlying
programs and solving constraints on the data types used in these programs. There is

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 307–321, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://research.microsoft.com
http://www.voronkov.com

308 N. Bjørner, N. Tillmann, and A. Voronkov

an inherent overhead of this approach, as the general dynamic symbolic exploration
engine has to search the state space of the string library routines for solutions to string
constraints. We can take advantage of the fact that path constraints from common string
library routines have a mathematical abstraction rooted in word equations. This suggests
that we may work at the level of abstract strings and treat calls to the string library
functions as operations in a theory of strings. As we will see, the full set of constraints
that can be created from common string functions do not fall in a decidable class. On
the other hand, our objective is really to find small strings that can be supplied as unit
tests, so an incremental small and finite model-finding routine provides the right match.

The main existing way of handling strings in symbolic test-case generation tools is
to not handle them specially. For example in the current release of Pex [16], strings
are represented as arrays and string library routines are explored like any other proce-
dure. As a result, simple calls to library functions become programs containing loops.
Summaries [7] provide one additional layer on top of the string procedures to allow the
search on feasible paths to coalesce several traversals of the same procedure body.

Example 1. Consider the program shown in Figure 1. This program checks whether
the input string s is a URL encoding a query about EasyChair to either Microsoft Live
Search or Google. Essentially, such a string must start with ”http://” followed by a
domain of one of the search engines, followed by a ”/”, and after this ”/” it should
contain a substring ”EasyChair” and not contain other ”/”.

private bool IsEasyChairQuery(string str)
{

// (1) check that str contains "/" followed by anything not
// containing "/" and containing "EasyChair"
int lastSlash = str.LastIndexOf(’/’);
if (lastSlash < 0){return false;}
var rest = str.Substring(lastSlash + 1);
if (! rest.Contains("EasyChair")){return false;}
// (2) Check that str starts with "http://"
if (! str.StartsWith("http://")){return false;}
// (3) Take the string between "http://" and the last "/".
// if it starts with "www." strip the "www." off
var t = str.Substring("http://".Length,

lastSlash - "http://".Length);
if (t.StartsWith("www.")){t = t.Substring("www.".Length);}
// (4) Check that after stripping we have either "live.com"
// or "google.com"
if (t != "live.com" && t != "google.com"){return false; }
// s survived all checks
return true;

}
Fig. 1. The EasyChair Query program

We will use this program as the running example. Consider the following path in the
program, where queries are denoted by “?”.

Path Feasibility Analysis for String-Manipulating Programs 309

lastSlash = str.LastIndexOf(’/’);
? ¬ lastSlash < 0
rest = str.Substring(lastSlash + 1);
? rest.Contains("EasyChair")
? str.StartsWith("http://")
t = str.Substring("http://".Length,lastSlash-"http://".Length);
? t.StartsWith("www.")
t = t.Substring("www.".Length);
? t = "live.com"

We are interested in checking feasibility of this path, that is, finding an input string str
so that the program run with this string as an input will follow this path.

The rest of this paper is organized as follows. Section 2 defines path feasibility in the
context of constraints from basic .NET string library functions and defines a first-order
string library language corresponding to these library functions. The resulting con-
straints for all but one library function are compiled into the core language as outlined
in Section 3. Section 4 discusses the decidability of the library language. One fragment
is equivalent to a long standing open problem in word equations, another fragment is
shown undecidable. This confirms the complexity of the path feasibility problem for
string library functions. We also show that a so-called fixed-length fragment is decid-
able: this fact is used in our implementation. We point out that two other decidable
fragments can be obtained using results from word equations and automatic structures.
Section 5 outlines our incremental procedure for enumerating solutions to core language
constraints. Sections 6 and 7 describe an implementation and evaluation.

2 Path Feasibility and String Constraints

In this section we define a language for representing the path feasibility problem as a
constraint satisfaction problem.

The String Library Language. In this section we will introduce a string library lan-
guage LL. This language is a first-order language for describing constraints involving
string library functions. The string library we are interested in is the .NET String li-
brary, however, we believe that other string libraries can be captured by similar lan-
guages and processed using the methods described in this paper.

Let C be a finite set of characters and S the set of all strings built using these char-
acters. By I we denote the set of all integers. The string library language LL is a
many-sorted first-order language defined as follows. The language has the following
sorts: the character sort C, the string sort S, the integer sort I and the Boolean sort B.
It also contains a countably infinite number of variables of each sort.

The languageLL contains constants denoting all integers, characters and strings, and
some functions on strings and integers. Table 1 contains a description of a representative
subset of the .NET string library. Positions in strings are number from 0 so the character
at the position 0 in a string is always the first character of the string.

Some functions of the .NET library are overloaded. To resolve ambiguity, we add
indexes to the names of these functions. For example, there are six different .NET

310 N. Bjørner, N. Tillmann, and A. Voronkov

Table 1. String library functions

function type meaning
Chars(s, i) S × I → C the character at position i in s
Compare(s1, s2) S × S → I string comparison
Concat(s1, s2) S × S → S string concatenation
Contains(s1, s2) S × S → B true if s2 is a substring of s1

Equals(s1, s2) S × S → B true if s1 = s2

IndexOf4(s1, s2, i) S × S × I → I the index of the first occurrence of s2 in s1 starting at po-
sition i or −1 if not found

LastIndexOf1(s, c) S × C → I the index of the last occurrence of c in s or−1 if not found
Length(s) S → I the length of s
Replace2(s1, s2, s3) S × S × S → S replace all occurrences of s2 in s1 with s3

StartsWith(s1, s2) S × S → B true if s1 starts with s2

Substring1(s, i) S × I → S substring of s starting at position i
Substring2(s, i1, i2) S × I × I → S substring of s starting at position i1 and having length i2
ToString(c) C → S string consisting of a single character c
ToUpper(s) S → S string obtained by converting s to upper case

functions having the name IndexOf. In LL we add indexes to function names to distin-
guish them (cf. IndexOf4 in the table).

To define the semantics of LL we introduce a notion of value assignment. A value
assignment for this language is a mapping of variables to C∪S∪I so that every variable
is mapped to an element of the corresponding domain, for example, variables of the
sort I are mapped to integer values. We will now extend value assignments to arbitrary
expressions and quantifier-free formulas. To this end we should take care of undefined
values since some of the library functions are partial and calling them outside of their
domain causes an exception. We will specify the exception conditions later.

Let us introduce a special undefined value ⊥ and extend value assignments to ar-
bitrary expressions of LL as follows. For every value assignment v and expression e
different from a variable we define v(e) as follows.

1. If e is a constant, then v(e) is the value of this constant, for example the value of
the integer constant 7 is the number 7.

2. Suppose that e has the form f(e1, . . . , en) where f is a function of LL and let
v1 = v(e1), . . . , vn = v(en). If for some i ∈ {1, . . . , n} we have vi = ⊥, then
v(e) = ⊥. Otherwise, let the f̂ be the function corresponding to f (see Table 1 for
the definition of these functions). If f̂ is undefined on (v1, . . . , vn), then v(e) = ⊥,
otherwise v(e) if the value f̂(v1, . . . , vn).

If v(e) = ⊥, we say that v(e) is undefined under the value assignment v.
The next step is to define the semantics of formulas. To this end we will use the three-

valued logic having the Boolean values true and false and the undefined value ⊥.
In this logic, for example, a disjunction is true if at least one of its members is true;
false if all of them are false and undefined otherwise. We omit details due to lack of space.

Path Feasibility Analysis for String-Manipulating Programs 311

Path Feasibility. Suppose that π is a path in a program using only assignments and
tests. The path feasibility problem is the problem of finding initial values of variables
which make the path feasible, i.e., values so that the program execution starting with this
assignment satisfies all tests on the paths and raises no exceptions. The path feasibility
problem can be reduced to the following constraint satisfaction problem for LL:

Given a finite set {L1, . . . , Ln} of literals, find a value assignment v which
makes all of these literals true.

Evidently, the path feasibility problem can be reduced in a straightforward way to the
constraint satisfaction problem for LL. We do not give full details here but restrict
ourselves to an example.

Example 2. Consider the path from Example 1. This path can be translated to the fol-
lowing constraint.

i1 = LastIndexOf1(s1,’/’).
¬i1 < 0.
s2 = Substring1(s1, i1 + 1).
Contains(s2,"EasyChair").
StartsWith(s1,"http://").

i2 = Length("http://").
s3 = Substring2(s1, �, i1 − i2).
StartsWith(s3,"www.").
s4 = Substring1(s3, Length("www.")).
s4 = "live.com".

This constraint is satisfiable if and only if there exists an initial value of the variable
s1 so that the program will follow the intended path.

3 The Core String Language

In this section we will define the so-called core string language CL. This language
contains a smaller number of functions than LL but we will be interested in a larger
fragment of this language, including propositional connectives and bounded quantifiers
of a special form. This language will play the role of an intermediate language between
the string library language and an SMT solver. We will start with defining CL and giving
a translation of LL into CL. This translation will also define the semantics of the LL
functions in a strict way as opposed to a less formal description in Table 1.

Definition 1 (core string language). For simplicity we will usually say the library
language instead of the string library language and the core language instead of the
core string language. Likewise, we will simply say library functions and core functions.
The core language contains the following functions and predicates:

1. The string functions Length and Chars. We will write �(s) instead of Length(s) and
s[i] instead of Chars(s, i).

2. The standard functions and predicates of linear integer arithmetic.
3. Some functions and predicates on characters. We do not specify the set of all these

functions but will use two of them (comparison < and ToUpper) later.

312 N. Bjørner, N. Tillmann, and A. Voronkov

The formulas of the language are defined as follows:

1. Every predicate specified above is a formula;
2. If F1 and F2 are formulas, then ¬F1, F1 ∧F2, F1 ∨F2 and F1 → F2 are formulas.
3. If F is a formula, i a variable of the sort I and �, u expressions of the sort I not

containing i, then (∀i)(� ≤ i ∧ i ≤ u → F) and (∃i)(� ≤ i ∧ i ≤ u ∧ F) are
formulas. In the following, we will write these instead as: (∀i ∈ [� . . . u])F and
(∃i ∈ [� . . . u])F respectively.

Note the following equivalences:

¬(∀i ∈ [� . . . u])F ≡ (∃i ∈ [� . . . u])¬F ; ¬(∃i ∈ [� . . . u])F ≡ (∀i ∈ [� . . . u])¬F.

Table 2. Exception conditions for the library functions

Function exception condition
Chars(s, i) i < 0 ∨ i ≥ �(s)
IndexOf4(s1, s2, i) i < 0 ∨ �(s1) ≥ i
Replace2(s1, s2, s3) �(s2) = 0
Substring1(s, i) i < 0 ∨ i > �(s)
Substring2(s, i1, i2) i1 < 0 ∨ i2 < 0 ∨ i1 + i2 > �(s)

Let us now define for-
mally the translation of the
library language into the
core language. We will do
this by first defining ex-
ception conditions for all
library functions and then
the library functions them-
selves using the core lan-
guage. The exception con-

ditions are given in Table 2. Note that � is the only non-arithmetical core function used
in the exception conditions.

Let us introduce two abbreviations for the core language as follows.

s1[i . . . j] = s2
def= �(s2) = j − i + 1 ∧ (∀k ∈ [i . . . j])(s1[k] = s2[k − i]). (1)

s1 � s2
def= (∃i ∈ [0 . . . �(s2)− �(s1)])s2[i . . . i + �(s1)− 1] = s1. (2)

One can easily show that s1 � s2 is equivalent to Contains(s2, s1) and to ∃s3∃s4(s3 ·
s1 · s4 = s2). The difference is that s1 � s2 is a formula of the core language.

Let us now give a definition for every library function in the core language. This,
together with the definition of exception conditions, also provides a precise semantics
for the library functions instead of the less formal explanation given in Table 1. The
definitions of the library functions are given in Table 3.

We are interested in the following fragment of the core language.

Definition 2. Let F be a formula of either the library or the core language such that (i)
the string variables occurring in F are s1, . . . , sn and (ii) F contains no free occurrences
of integer variables. The formula F is said to be a fixed-length formula if it has the form

�(s1) = i1 ∧ . . . ∧ �(sn) = in ∧ F ′,

where i1, . . . , in are concrete integer constants occurring in F ′. The fixed-length frag-
ment of the library (respectively, core) language is the set of all fixed-length formulas
of this language.

Path Feasibility Analysis for String-Manipulating Programs 313

Table 3. Definitions of some library predicates

function/predicate definition
Chars(s, i) s[i]
Compare(s1, s2) = 0 s1 = s2

Compare(s1, s2) < 0 (∃i ∈ [0 . . . �(s1)− 1])(�(s2) > i ∧ s1[0 . . . i− 1] = s2[0 . . . i− 1]∧
(�(s1) = i ∨ s1[i] < s2[i]))

Compare(s1, s2) > 0 (∃i ∈ [0 . . . �(s2)− 1])(�(s1) > i ∧ s1[0 . . . i− 1] = s2[0 . . . i− 1]∧
(�(s2) = i ∨ s2[i] < s1[i]))

Concat(s1, s2) s1 · s2

Contains(s1, s2) s2 � s1

Equals(s1, s2) s1 = s2

IndexOf4(s1, s2, i1) = i0 (i0 = −1 ∧ s2 �� s1[i1 . . . �(s1)− 1])∨
(i0 ≥ i1 ∧ s1[i0 . . . i0 + �(s2)− 1] = s2∧
(∀j ∈ [i1 . . . i0 − 1])(s1[j . . . j + �(s2)− 1] �= s2))

LastIndexOf1(s, c) = i (i = −1 ∧ (∀j ∈ [0 . . . �(s)− 1])s[j] �= c)∨
(i ≥ 0 ∧ s[i] = c ∧ (∀j ∈ [i + 1 . . . �(s)− 1])s[j] �= c)

Replace2(s1, s2, s3) no definition exists
StartsWith(s1, s2) (∃i ∈ [0 . . . �(s1)− �(s2)])s[0 . . . i− 1] = s2

Substring1(s, i) s[i . . . �(s)− 1]
Substring2(s, i1, i2) s[i1 . . . i1 + i2 − 1]
ToString(c) = s �(s) = 1 ∧ s[0] = c
ToUpper(s1) = s2 �(s2) = �(s1) ∧ (∀i ∈ [0 . . . �(s1)− 1])Upper(s1[i], s2[i])

Theorem 1. The satisfiability problem for the fixed-length fragment of the core lan-
guage is decidable.

Proof. Since i1, . . . , in are integer constants, every value assignment that satisfies the
formula assigns to sk a string of length ik, for all k = 1 . . . n. There exists only a
finite number of value assignments with this property, so by substituting these value
assignments the formula can be replaced by a finite disjunction of formulas with no free
variables. It remains to show that satisfiability of closed formulas of the core language
is decidable. This can be proved by induction on the depth of quantifiers in a formula
F . If the number of quantifiers in F is 0, F is a variable-free quantifier-free formula
which can simply be evaluated. Suppose now that F has at least one quantifier, we will
then show how to eliminate a quantifier in F . Take any quantified subformula G of F
that is not in the scope of another quantifier. Without loss of generality we can assume
that G is of the form (∀i ∈ [e1 . . . e2])H(i). Then e1 and e2 are variable free, so they
can be evaluated to concrete integer values k1 and k2, hence G can be replaced by the
conjunction

∧
k1≤k≤k2

H(k) having a smaller quantifier depth.

Note that this proof works for the string library with any finite number of functions
or predicates on characters, since for such functions we only need that they can be
computed. Section 6 describes how our implementation uses the theory of arrays to
delay relying on finite domains for solving constraints.

As a consequence of this theorem we obtain the following result.

314 N. Bjørner, N. Tillmann, and A. Voronkov

Theorem 2. The satisfiability problem for the fixed-length fragment of the library lan-
guage without the function Replace is decidable.

Proof. Using definitions of Table 3 one can translate any formula of the library lan-
guage without the function Replace into an equivalent formula of the core language.
Since the translation does not introduce new free variables, any fixed-length formula is
translated into a fixed-length formula. Then apply Theorem 1 on the decidability of the
fixed-length fragment of the core language.

Theorem 2 and its proof provide a foundation for our method of constraint solving.

4 Library Language Decidability and Undecidability Results

In this section we consider the full (not fixed-length) library language. We will show
that constraint solving for this language is undecidable. We will also point out that the
decidability of a very large fragment of this language is equivalent to the decidability
problem of a well-known problem related to word equations. Finally, we will prove
some decidability results.

It is easy to see that several functions and predicates of the string library can be
expressed using string concatenation. Among the representative subset selected by us
these are Concat, Contains, Equals and StartsWith. Solving constraints using only such
functions and predicates can be reduced to solving word equations and so is decidable.
However, this fragment is hardly very practical.

Word Equations and Equal Length Constraints. Let us call the subset of LLwithout
Replace, ToUpper the pure library language. It is interesting that path feasibility in the
pure library language is equivalent to a well-known extension of word equations whose
decidability is an open problem. This problem is known as word equations with the
equal length predicate. The equal length predicate, denoted by �� is true on a pair of
strings s1, s2 if and only if s1 and s2 have the same length. The decidability of word
equations with the equal length predicate is an open problem [2,12].

Theorem 3. The path feasibility problem in the pure library language is decidable if
and only if word equations with the equal length predicate are decidable.

Proof. We will show how to reduce the two problems to each other. To this end, we will
first reformulate the constraint satisfaction problem for LL as a problem on strings. To
represent a character c as a string we will use the string consisting of this character. To
represent non-negative integers, we will use the following idea. Let us fix a letter of the
alphabet, for example, |. We will use the string | . . .| of length n, denoted by n̂ as a
representation for the number n and call such strings numerals. To represent a negative
number−n we can use, for example, the string -| . . .| of length n + 1, that is -n̂. Let
us prove several facts about this representation. When we write that some relation can
be represented we mean that it can be represented using an existential formula. Note
the well-known fact [2] that inequations of words can be represented using equations,
hence we will not consider negative literals in the proof.

Using word equations one can express that a string s is a numeral. Indeed, consider
the equation s| = |s. The solutions of this equation are exactly all numerals. Using

Path Feasibility Analysis for String-Manipulating Programs 315

word equations one can express the addition on integers. In our representation the addi-
tion on non-negative integers becomes string concatenation: indeed, m̂n̂ = m̂ + n for
all non-negative integers m,n. It is not hard to represent addition on all integers too.
One can express the equal length predicate using the length function and vice versa.
One direction is obvious since ��(s1, s2) ≡ �(s1) = �(s2). In the other direction, note
that the length of a string s is equal to n if and only if s and n̂ have equal length. What
remains to note is that for the pure library language functions both the equality and the
inequality between these functions can be represented using string concatenation and
the length function.

Let us now prove an undecidability result.

Theorem 4. The path feasibility problem for the library language is undecidable.

Proof. For every character c of the alphabet consider the following function �c: for
every string s, �c(s) = n̂, where n is the number of occurrences of c in n. We will
use the following result from [2]: the existential theory of words with concatenation,
the equal length predicate and functions �0, �1 is undecidable. We already proved in
Theorem 3 that the equal length predicate is expressible in the string library language,
it remains to note that, for every character c, �c is expressible using the library function
Replace.

One can prove other decidability results about automatic structures, we will only briefly
sketch how one can prove them here. Let us call a predicate or a function on strings
automatic if it can be represented by a finite automaton, for details see [10]. To ap-
ply this definition to integers and characters we assume that they are represented re-
spectively as numerals and as one-character strings. The string library contains several
automatic functions, namely Chars, Compare, Equals, Length, StartsWith, ToString,
ToUpper. Other functions are not automatic but have automatic instances when one or
more arguments are instantiated to constants. For example, for every constant string s2,
Concat(s1, s2) considered as a function of s1 is automatic. It is also automatic if we fix
the first argument s1 to be constant. It is known that the full first-order theory of every
automatic structure (structure in which all predicates and functions are automatic) is
decidable. However, this result is hardly interesting in practice for two reasons. Firstly,
using automata-based method on large alphabets is prohibitively expensive. Secondly,
the resulting decidable fragment is too narrow for applications, for example, it does not
include concatenation and integer addition.

5 Solving Constraint Satisfaction Problems in the Library
Language

Our algorithm for checking constraint satisfaction is described here and works as fol-
lows. First, we replace subterms by fresh variables to obtain a flattened constraint C.
Then, produce a so-called integer abstraction of the problem. The integer abstraction is
a quantifier-free formula I of linear arithmetic over two kinds of integer variables: those
coming from the constraint C and those denoting the lengths of string variables occur-
ring in C. After that we look for small solutions to I . Small solutions are obtained from

316 N. Bjørner, N. Tillmann, and A. Voronkov

Table 4. Integer abstraction of library predicates

function abstraction
Compare(s1, s2) = c (�(s1) = 0 → c ≤ 0) ∧ (�(s2) = 0 → c ≥ 0)
Concat(s1, s2) = s �(s) = �(s1) + �(s2)
Contains(s1, s2) �(s1) ≥ �(s2)
IndexOf4(s1, s2, i1) = i i = −1 ∨ (i ≥ i1 ∧ i + �(s2) ≤ �(s1))
LastIndexOf1(s, c) = i i = −1 ∨ i < �(s)

Replace2(s1, s2, s3) = s0
(�(s2) ≥ �(s3)→ �(s1) ≥ �(s0))∧
(�(s2) ≤ �(s3)→ �(s1) ≤ �(s0))

StartsWith(s1, s2) �(s1) ≥ �(s2)
Substring1(s1, i) = s0 �(s0) = �(s1)− i
Substring2(s1, i, j) = s0 �(s0) = j ∧ �(s1) ≥ i + j
ToString(c) = s �(s) = 1
ToUpper(s1) = s0 �(s0) = �(s1)

feasible solutions by imposing and repeatedly tightening bounds on string lengths. If
there is no such solution, then the original constraint is unsatisfiable. If I has a solution
it gives us the lengths of all string variables in C. When we fix the length, we obtain
a fixed-length formula in the core language which can be decided by a finite domain
solver. If this formula has no solution, backtrack and try to find another solution of I .

i1 = LastIndexOf1(s1,’/’).
¬i1 < 0.
s2 = Substring1(s1, i1 + 1).
Contains(s2,"EasyChair").
StartsWith(s1,"http://").
i2 = Length("http://").
s3 = Substring2(s1, i2, i1 − i2).
StartsWith(s3,"www.").
i3 = Length("www.").
s4 = Substring1(s3, i3).
s4 = "live.com"

Flattening. A constraint C is called flat if
all string library functions occur in C at the
top level, that is, for every term of formula
p(t1, . . . , tn) occurring in C, where p is differ-
ent from equality, the terms t1, . . . , tn contain
no occurrences of the string library functions.
For example, the constraint Substring1(s1, i1 +
i2) is flat while the constraint s1 = Concat
(s2, Substring1(s3, 1)) is not, since Substring1
does not occur at the top level. Constraints with
flat literals are created by introducing extra vari-
ables for subterms. For example, the constraint of
Example 2 will become as shown on the right.

Integer abstraction. The integer abstraction of a literal defines necessary conditions
for the literal to be true. This implies that every solution to the literal must also be
a solution to the integer abstraction. For every literal L in a flat constraint its integer
abstraction is built as follows. First, let F e be the exception condition corresponding
to the literal L in Table 2; F e is false if there are no matching exception conditions
for L. If the literal L matches an entry in Table 4 with formula F i, then the integer
abstraction of L is given as ¬F e ∧ F i. If L is a negation ¬L′ and L′ matches an entry
in Table 4, then the abstraction is given as ¬F e; otherwise, the abstraction of L is set to
L. The flat constraint for our example has the integer abstraction given in Figure 2.

Path Feasibility Analysis for String-Manipulating Programs 317

i1 = LastIndexOf1(s1, ’/’) i1 = −1 ∨ i1 < �(s1)
¬i1 < 0 ¬i1 < 0
s2 = Substring1(s1, i1 + 1) ¬(i1 + 1 < 0 ∨ i1 + 1 > �(s1)) ∧ �(s2) = �(s1)− i1 − 1
Contains(s2,"EasyChair") �(s2) ≥ 9
StartsWith(s1,"http://") �(s1) ≥ 7
i2 = Length("http://") i2 = 7

s3 = Substring2(s1, i2, i1 − i2)
¬(i2 < 0 ∨ i1 − i2 < 0 ∨ i2 + i1 − i2 > �(s1))∧
�(s3) = i1 − i2 ∧ �(s1) ≥ i2 + i1 − i2

StartsWith(s3,"www.") �(s3) ≥ 4
i3 = Length("www.") i3 = 4
s4 = Substring1(s3, i3) ¬(i3 < 0 ∨ i3 > �(s3)) ∧ �(s4) = �(s3)− i3
s4 = "live.com" �(s4) = 8

Fig. 2. Integer abstraction of the example program

Fixed-length constraint satisfaction problems. A constraint C is said to be fixed-
length if for every string variable s occurring in C, the constraint also contains a literal
of the form �(s) = i, where i is an integer constant. One can easily note that in this case
for every solution of C the length of s is i.

Consider any flat constraint C and its integer abstraction I . If I is unsolvable, then
C has no solution. Let us now take any value assignment v that solves I and consider
the constraint C′ obtained by adding to C all constraints of the form �(s) = v(i), where
s is a string variable occurring in C and i the integer variable denoting the length of
s. One can immediately see that C′ is a fixed-length constraint and that every solution
to C′ is also a solution to C. Our next observation is that the satisfiability problem for
fixed-length constraints is decidable by Theorem 1.

6 Implementation in Pex and Integration with the SMT Solver Z3

In this Section we describe how string library functions and symbolic string constraints
are represented. We then describe how the Pex [16] tool produces symbolic string con-
straints. We observe that several of the string library functions can be handled using
two functions we call Shift and Fuse. Finally, we describe using the SMT solver Z3 for
solving string constraints. We experiment with different strategies for the integration.

In Pex, Strings are represented as an abstract type String. We use one predicate and
two functions for accessing strings. The predicate null(s) is true if the string s is a null
pointer. The function length(s) results in the length of s, and the function chars(s)
results in an array, whose domain consists of 32-bit bit-vectors and the range is the set
of unicode characters (16-bit bit-vectors).

Building abstract execution paths. All string library functions have implementations
in Microsoft’s .NET base class library, but many of these are in native code and therefore
not in the scope of what Pex can analyze (Pex only analyzes .NET code). Pex therefore
contains straightforward implementations of each of the string library functions written
in C#. We show the implementation of the IndexOf function as an example below.

318 N. Bjørner, N. Tillmann, and A. Voronkov

p u b l i c s t a t i c i n t IndexOf (s t r i n g t e x t , s t r i n g key , i n t s t a r t , i n t c o u n t)
{

i f (t e x t == n u l l) throw new N u l l R e f e r e n c e E x c e p t i o n () ;
i f (key == n u l l) throw new ArgumentNul lE xcep t ion () ;
i f (s t a r t < 0 | c o u n t < 0 | s t a r t + c o u n t < 0 |

s t a r t + c o u n t > t e x t . Length)
throw new ArgumentOutOfRangeExcept ion () ;

i f (key . Length == 0) re turn s t a r t ;
i f (c o u n t < key . Length) re turn −1;
re turn IndexOfC (t e x t , key , s t a r t , c o u n t) ;

}

p r i v a t e s t a t i c i n t IndexOfC (s t r i n g t e x t , s t r i n g key , i n t s t a r t , i n t c o u n t)
{

i n t end = s t a r t + c o u n t − key . Length + 1 ;
f o r (i n t i = s t a r t ; i < end ; i ++) {

bool b = true ;
f o r (i n t j = 0 ; b && j < c o u n t ; j ++)

b &= t e x t [i + j] == key [j] ;
i f (b) re turn i ;

}
re turn −1;

}

The implementation contains two parts, the preamble within the body of IndexOf is
a straight-line code sequence that checks for exception conditions and boundary values.
These checks include the conditions listed in Table 2 and parts from the abstraction of
Table 4 that cover also the concrete case. Then, the portion of the string function that
we wish to abstract is encoded in IndexOfC.

At this point we can run standard dynamic symbolic execution with the string library
functions by using the instructions within IndexOf and IndexOfC for both the concrete
and symbolic execution. Our aim is however to abstract the part of IndexOfC into core
string constraints. For this purpose we introduce the uninterpreted function IndexOfA.
When executing IndexOfC in dynamic symbolic execution, we do not add constraints
to the path condition, but set the symbolic result to IndexOfA(text , key , start , count).

Functions, such as Concat and Substring, do not depend on the string tokens.
Pex encodes such functions using two primitives, Shift and Fuse, axiomatized by
Shift(a, i)[j] * a[i + j] and Fuse(a, i, b)[j] * if j < i then a[j] else b[j]. We
can then replace chars(ConcatA(a, b)) by Fuse(chars(a), length(a), Shift(chars(b),
−length(a))), and chars(SubstringA(a, i, j)) by Shift(chars(a), i).

Solving string constraints. For each execution path we get a path condition and per-
form multiple queries to Z3 using the algorithm outlined next. It uses constants U to
bound the length of strings, N to bound the number of calls to Z3. In our implementa-
tion, both U and N are used to bound the search.

Phase 1. Assert the path condition π, the axioms for Fuse and Shift, and the axiom
∀s . 0 ≤ length(s) < U , where U is a fresh constant. If the constraints are unsatis-
fiable, then fail; otherwise enter the second phase.

Phase 2. We are given a path constraint π that is satisfiable with respect to partial
unfoldings of the supplied axioms. Find the smallest power of two for U such that
the constraints have a model. Set N ← 0.
1. Extract values from the model that suffice to create a finite unfolding of

all quantifiers used in Table 3 for the functions: IndexOf, LastIndexOf,

Path Feasibility Analysis for String-Manipulating Programs 319

Contains, Compare, and Equals. Thus, we assert the definitions of these
functions replacing all quantifiers of the form (∀i ∈ [a . . . b])ϕ(i) with a finite
set of assertions ϕ(v(a)), . . . , ϕ(v(b)).

2. Instantiate the definitions of Shift and Fuse1.
3. If the constraints are satisfiable, return the current model.
4. Fail ifN or U exceed pre-configured bounds.
5. Otherwise, undo the assertions from steps 1 and 2 and force a solution with

increased lengths by asserting Σi�(si) > Σiv(�(si)) where �(si) occur in π.
6. If the new constraints are unsatisfiable, then fail.
7. Otherwise, repeat step 1 with U ← 2 · U , N ← N + 1,

Note that step 5 can prevent exploring models where string lengths add up to the
previous value, but are re-distributed in a different way. While N and U impose limits
on which models are explored, it is the case that our implementation in Pex makes
implicit use of properties of the bit-vector solver in Z3 in the folowing way: Z3 has
a preference for models of bit-vectors where the most significant bits are set, so the
progression of lengths tends to grow in proportion to U .

To distribute length increases fairly among strings, Pex furthermore excludes strings
whose length was increased recently, unless this exclusion would cause the constraints
to become unsatisfiable.

7 Experiments

Table 5. Evaluation of string
solver on EasyChair

mode time/s paths

BFS 7.90 214
DFS 3.65 51
Random 8.73 196
Default 0.83 35
Partial 0.61 30
Abstract 1.02 19

We applied Pex on the EasyChair2 query given in
Figure 1 using different search strategies to flip branches
of already discovered execution paths (which includes
unrolling loops): breadth-first (BFS), depth-first (DFS),
flipping of Random branches, and Pex’ default strat-
egy [17] (which combines several heuristics). We com-
pare those strategies with a partial implementation of
the algorithm described above, where only Concat,
Substring, Remove and Insert are abstracted, and
the fully abstract version of the algorithm. We set the
bounds of U at 212, and N at 3. Table 5 shows the re-
sults: BFS, DFS and Random search performed clearly worse than the default and ab-
stract strategies. The partial abstraction resulted in the fastest run-time and fewer ex-
plored paths than the default exploration strategy, while complete abstraction required
exploring fewer paths, but took slightly more overall time.

A different example that highlights the effectiveness of the abstraction can be con-
structed by creating a program test with a conjunction of the form s.IndexOf(s1)! =−
1&&s.IndexOf(s2)! =− 1&& . . ., where s1, s2, . . . , sc are different non-overlapping
strings with a long common prefix. The goal is to synthesize a string s that contains all
the substrings s1, s2, . . . sc. Table 6 summarizes the results of trying a progression of

1 While necessary for completeness, this step has not had any effect in our experiments.
2 All experiments were performed with a Intel Core 2 CPU T7400 @ 2.16 Ghz, 4GB RAM.

320 N. Bjørner, N. Tillmann, and A. Voronkov

Table 6. Evaluation of string solver on IndexOf progression

c 1 2 3 4 5 6
mode time paths time paths time paths time paths time paths time paths

BFS 0.14 5 4.50 140 73.34 1432 960.08 7727 timeout timeout
Random 0.26 7 0.42 9 4.93 57 16.70 108 40.55 199 154.36 541
Default 0.23 6 0.62 14 7.03 78 7.76 80 8.81 82 193.49 637
Abstract 0.15 6 0.33 8 0.99 10 2.02 12 4.44 14 6.67 16

c = 1, . . . , 6 such conjuncts. DFS search, not shown, does not even manage to explore
a single path, other strategies are also inferior to abstraction.

8 Conclusion

We presented a two-tier approach for generating finite models of path constraints for
string-manipulating programs. Our approach views constraints from string libraries as
extensions of the word equation problem and we identified decidable, undecidable, and
open problems in the context of word equations. Our approach was integrated with the
dynamic symbolic execution engine Pex.

Related Work. In the context of symbolic execution of programs, string abstractions
has been recently studied by Ruan et.al. [13], where an approach based on a first-order
encoding of string functions is proposed. They study C programs where strings are
zero-terminated arrays whose lengths are bounded by constants. The first-order quan-
tifiers can therefore be finitely unfolded and decided using a solver for linear arith-
metic and assignments. Ruan et.al. [5] also fix length of strings in order to obtain a
decidable fragment, but don’t consider increasing the size of strings in the search of
models. Shannon et.al. [15] use automata-based representations for abstracting strings
during symbolic execution of Java programs. They handle a few core methods in the
java.lang.String class, and some other related classes. They integrate a numeric con-
straint solver, but apparently in a partial way. For example, string methods which return
integers, such as IndexOf, cause case-splits over all possible return values within certain
bounds. Automata-based methods have been pursued in the context of static analysis by
Christensen et.al. [4], where automata, using the Mohri-Nederhof algorithm, represent
over-approximations of possible string values. A motivation for the work is SQL injec-
tion attacks. The same motivation also inspired Fu et.al. [6]. They first solve Boolean
and integer constraints to obtain a model and then proceed to solving string constraints
by using the obtained model to build automata for the string constraints. To our knowl-
edge, the mentioned automata-based methods require case analysis outside of their calls
to their constraint solvers and automaton construction phases. In our framework, case
analysis is integrated with the constraint solver pass.

Future work. A plethora of future work is possible in the context of exploring string
manipulating programs. Regular expressions are often used by the discriminating pro-
grammer to accomplish string manipulation. In particular, our running EasyChair ex-
ample can be directly encoded using a regular expression. But real regular expression

Path Feasibility Analysis for String-Manipulating Programs 321

libraries can encode side-effects and non-regular properties. Can such extensions be
handled by methods presented here? A different direction is to extend array property
fragments [1,9] to handle common string queries. We would also like to use informa-
tion encoded in the core language to control the constraint solver programmatically. For
example, one could alternate quantifier unfolding with solving for the bounds.

Acknowledgments. We thank the referees for detailed and constructive feedback, Wol-
fram Schulte for numerous early stage discussions and Yuri Matiyasevich for his help
on finding related work on word equations.

References

1. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg
(2005)

2. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation. Zeitschrift fur
Mathematische Logik und Grundlagen der Mathematik (1988)

3. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automatically gener-
ating inputs of death. In: CCS, pp. 322–335. ACM Press, New York (2006)

4. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expressions. In:
Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidelberg (2003)

5. Dong, Y., Quan, Q., Zhang, J.: Priority-based energy aware and coverage preserving routing
for wireless sensor network. In: VTC Spring, pp. 138–142. IEEE, Los Alamitos (2008)

6. Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A Static Analysis Framework For
Detecting SQL Injection Vulnerabilities. In: COMPSAC, pp. 87–96 (2007)

7. Godefroid, P.: Compositional dynamic test generation. In: Proc. of POPL 2007, pp. 47–54.
ACM Press, New York (2007)

8. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. SIGPLAN
Notices 40(6), 213–223 (2005)

9. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays? In: Amadio,
R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 474–489. Springer, Heidelberg (2008)

10. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: Richness and limi-
tations. In: LICS, pp. 44–53 (2004)

11. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
12. Matiyasevich, Y.: Word Equations, Fibonacci Numbers, and Hilbert’s Tenth problem. In:

Workshop on Fibonacci Words, vol. 43, pp. 36–39 (2007)
13. Ruan, H., Zhang, J., Yan, J.: Test Data Generation for C Programs with String-Handling

Functions. Theoretical Aspects of Software Engineering 0, 219–226 (2008)
14. Sen, K., Agha, G.A.: CUTE and jCUTE: Concolic unit testing and explicit path model-

checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 419–423.
Springer, Heidelberg (2006)

15. Shannon, D., Hajra, S., Lee, A., Zhan, D., Khurshid, S.: Abstracting symbolic execution with
string analysis. In: Taicpart-Mutation, Washington, DC, USA, pp. 13–22 (2007)

16. Tillmann, N., de Halleux, J.: Pex - white box test generation for .NET. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008)

17. Xie, T., Tillmann, N., de Halleux, P., Schulte, W.: Fitness-guided path exploration in dynamic
symbolic execution. Technical Report MSR-TR-2008-123, Microsoft (2008)

Symbolic String Verification: Combining String
Analysis and Size Analysis�

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra

Department of Computer Science
University of California, Santa Barbara, CA, USA
{yuf,bultan,ibarra}@cs.ucsb.edu

Abstract. We present an automata-based approach for symbolic verification of
systems with unbounded string and integer variables. Particularly, we are inter-
ested in automatically discovering the relationships among the string and integer
variables. The lengths of the strings in a regular language form a semilinear set.
We present a novel construction for length automata that accept the unary or bi-
nary representations of the lengths of the strings in a regular language. These
length automata can be integrated with an arithmetic automaton that recognizes
the valuations of the integer variables at a program point. We propose a static
analysis technique that uses these automata in a forward fixpoint computation
with widening and is able to catch relationships among the lengths of the string
variables and the values of the integer variables. This composite string and in-
teger analysis enables us to verify properties that cannot be verified using string
analysis or size analysis alone.

1 Introduction

Static analysis of strings in programs have been an active research area with the goal
of finding and eliminating security vulnerabilities caused by misuse of string variables.
There have been two separate branches of research in this area: 1) String analysis that
focuses on statically identifying all possible values of a string expression at a program
point in order to eliminate vulnerabilities such as SQL injection and cross-site scripting
(XSS) attacks [1, 4, 14, 16], and 2) Size analysis that focuses on statically identify-
ing all possible lengths of a string expression at a program point in order to eliminate
buffer overflow errors [5, 7, 12]. In this paper we present an automata based composite
symbolic verification technique that combines these two analyses with the goal of im-
proving the precision of both. We use a forward fixpoint computation to compute the
possible values of string and integer variables and to discover the relationships among
the lengths of the string variables and integer variables.

Similar to prior size analysis techniques [5, 7, 12] we associate each string variable
with an auxiliary integer variable that represents its length. At each program point, we
symbolically compute all possible values of all integer variables (including the auxiliary
variables), as well as all possible values of all string variables. The reachable values of
all integer variables are over-approximated as a Presburger arithmetic (linear arithmetic)

� This work is supported by NSF grants CCF-0614002 and CCF-0716095.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 322–336, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Symbolic String Verification: Combining String Analysis and Size Analysis 323

formula and symbolically encoded as arithmetic automata [2, 13]. Similar to some
prior string analysis techniques [1, 16], the values that string variables can take are
over-approximated as regular languages and symbolically encoded as string automata.
Our composite analysis is as a forward fixpoint computation with widening on these
arithmetic and string automata.

There are two challenges we need to overcome to connect the information contained
in the string automata and the arithmetic automata (hence, improving the precision of
both) during our composite analysis: 1) Given a string automaton, we need to derive
the arithmetic automaton that accepts the length of the language accepted by the string
automaton, and 2) Given an arithmetic automaton, we need to restrict a string automaton
so that the length of the language is accepted by the arithmetic automaton.

To tackle the first challenge, we present techniques for constructing a length au-
tomata for a given regular language. It is known that the length of the language accepted
by a DFA forms a semilinear set. Given an arbitrary DFA, we are able to construct DFAs
that accept either unary or binary representation of the length of its accepted words. The
unary automaton can be used to identify the coefficients of the semilinear set, while the
binary automaton can be composed with other arithmetic automata on integer variables
to enforce or check length constraints.

To tackle the second challenge, we identify the boundary of the lengths of string
variables from the arithmetic automaton. Precisely, we compute the lower and upper
bound of the values of the string lengths accepted by the arithmetic automaton. We
prove that, given a one-track arithmetic automaton, the lower bound forms a shortest
path to an accepting state while the upper bound (if it exists) forms the longest loop-free
path. Both can be computed in linear complexity to the size of the arithmetic automaton.
We can restrict the target string automaton by intersecting the string automaton that
accepts arbitrary strings within this boundary.

Finally, the performance of our analysis relies on efficient automata manipulation.
We implement our analysis using a symbolic automata representation (MBDD repre-
sentation from the MONA automata package) and leverage efficient manipulations on
MBDDs, e.g., determinization and minimization.

Motivating Examples. Below, we present two motivating examples to demonstrate the
advantages of the composite string and size analysis technique proposed in this paper.
Consider a PHP segment that secures an identified vulnerable point [16] at line 218 in
trans.php, distributed with MyEasyMarket-4.1.

1: <?php $www = $_GET["www"];
2: $l_otherinfo = "URL";
3: $www = ereg_replace("[ˆA-Za-z0-9 .\-@://]","",$www);
4: if(strlen($www)<$limit)
5: echo "<td>" . $l_otherinfo . ": " . $www . "</td>"; ?>

Without proper sanitization (lines 3 and 4) of the user-controlled variable $www, an
attacker can inject the string <scriptsrc=http://evil.com/attack.js> and per-
form a XSS attack at line 5. Above code prevents such attacks by: (1) removing abnor-
mal characters from $www at line 3, and (2) limiting the length of $www at line 4. Our
analysis shows that this code segment is free from attacks by showing that at line 5 (1)

324 F. Yu, T. Bultan, and O.H. Ibarra

the length of the string $www is less than the allowed limit, and (2) under that limit the
string variable $www cannot contain a value that matches the attack pattern. Note that if
one performs solely size analysis, without knowing the contents of $www, the length of
$www can not be determined precisely after line 3. On the other hand, if one performs
solely string analysis, the branch condition at line 4 must be ignored. Both of these
approximations may lead to false alarms.

Now, consider a standard strlen routine in C that returns the length of a given
string by traversing each character until hitting the end character, i.e., ’\0’. This kind
of standard string routines are widely used in legacy C systems, e.g., Apache, Samba,
Sendmail, and WuFTP.

unsinged int strlen(char *s){
1: char *ptr = s;
2: unsigned int cnt =0;
3: while(*ptr != ’\0’){
4: ++ptr;
5: ++cnt;
6: }
7: return cnt; }

Let *s.length denote the size of the string pointed by s. An essential property of
this routine is that at line 7, cnt = *s.length, which can be used as the summary of
this routine and significantly alleviates size analysis overhead [5, 15], however, none
of the size analysis tools prove this property before using it. Our composite analysis is
capable of proving this property. We first construct an assertion (arithmetic) automaton
that accepts the values that satisfy cnt = *s.length. We then conduct our composite
analysis by computing the forward fixpoint with widening. Upon reaching the fixpoint,
at line 7, (1) the arithmetic automaton actually catches the relation that *s.length =
*ptr.length + cnt, and (2) the string automaton of *ptr only accepts {ε}. We prove
the property by showing that the intersection of the language of (1) and the length of
the language of (2) is included in the language of the assertion automaton.

In addition to earlier work on string analysis [1, 4, 14, 16] and size analysis [5, 7, 12]
that motivated our work, there has been some recent work on analyzing string and in-
teger variables together during symbolic execution [6, 11, 15]. Unlike our approach,
these are unsound techniques targeted towards testing and they do not try to compute
an over-approximation of the reachable states via widening. Hence, they cannot prove
properties of above program segments. Compared to [8, 9] that use abstract interpre-
tation for reasoning relational properties among the contents of symbolic intervals of
arrays, our analysis traverses concrete values of string and integer variables using au-
tomata and addresses language properties.

This paper is organized as follows. We present the length automata construction
in Section 2. We present our composite analysis technique that integrates string and
arithmetic analyses in Section 3. We present our experiments with our prototype tool in
verifying small C routines, buffer-overflow benchmarks and PHP web applications in
Section 4. We conclude the paper in Section 5.

Symbolic String Verification: Combining String Analysis and Size Analysis 325

2 Length Automata Construction

Given a string automaton M , we want to construct a DFA Mb (over a binary alphabet)
such that L(Mb) is the set of binary representations of the lengths of the words accepted
by M . We tackle this problem in two steps. We first construct a DFA Mu (over a unary
alphabet) such that L(Mu) is the set of unary representations of the lengths of the words
accepted by M . It is known that this set is a semilinear set. We identify the formula that
represents the semilinear set from Mu. We then construct Mb from the formula, such
that w ∈ L(Mb) if and only if the binary value of w satisfies the formula. I.e., the unary
representation of the binary value of w is in L(Mu).

A DFA M is a tuple 〈Q, q0, Σ, δ, F 〉 where Q is a finite set of states, q0 is the initial
state, Σ is a finite set of symbols. F : Q → {−,+} is a mapping function from a state
to its status. Given a state q ∈ Q, q is an accepting state if F (q) = +. δ : Q×Σ → Q
is the transition function. The cardinality of a finite set A is denoted as �A. The set of
arbitrary words over a finite alphabet Σ is denoted as Σ∗. The length of a word w ∈ Σ∗

is denoted as |w|. A state q of M is a sink state if ∀α ∈ Σ, δ(q, α) = q and F (q) = −.
In the following sections, we assume that for all unspecified pairs (q, α), δ(q, α) goes
to a sink state. In the constructions below, we also ignore the transitions that lead to a
sink state.

A string automaton M is a DFA that consists of a tuple of 〈Q, q0, B
k, δ, F 〉. M

accepts a set of words, where each symbol is encoded as a k-bit string.

Length Constraints on String Automata. We are interested in characterizing lengths
of the accepted words. We characterize these lengths as a set of natural numbers by a
length constraint. Formally speaking, the length constraint of a given string automaton
M is a formula f over a variable x, such that f [c/x] evaluates to true if and only if there
exists a word w, such that w ∈ L(M) and c = |w|.
Property 1: For any DFA M , {|w| | w ∈ L(M)} forms a semilinear set.

Property 2: For any DFA M , fM is in the form that
∨

i x = ci∨
∨

j ∃k.x = aj +bj×k,
where aj , bj and ci are constants. fM can be written as

∨
i x = ci ∨

∨
j ∃k.x = C +

rj + R × k, such that ci, rj , C,R are constants, and ∀i, ci < C, and ∀j, rj < R. We
say that a semilinear set in this form is well-formed.

In the following, we give the algorithm to construct the automata that accept unary or
binary representation of the length of the language accepted by a given string automata.
This construction shows that the length constraint of a DFA is a well formed semilinear
set, and hence gives a constructive proof of Property 1 and Property 2.

From String Automata to Unary Length Automata. It is known that the unary rep-
resentation of the values of a semilinear set can be uniquely identified by a unary au-
tomaton. In the following, we first show how to construct an automaton Mu (over a
unary alphabet) from a given string automaton M , such that L(Mu) is the set of unary
representations of {|w| | w ∈ L(M)}. We say Mu is the unary length automaton of M .

Given a string automaton M = 〈Q, q0, B
k, δ, F 〉, a naive construction of the unary

length automaton is Mu = 〈Q, q0, B
1, δ′, F 〉, where δ′(q, 1) = q′ if ∃α, δ(q, α) = q′.

However, Mu constructed this way will be an NFA. The MBDD representations that we

326 F. Yu, T. Bultan, and O.H. Ibarra

use cannot encode NFAs. Instead, we use a construction which combines the projection
and determinization steps as follows.

Given a string automaton M = 〈Q, q0, B
k, δ, F 〉, we first construct an intermediate

automaton M ′ = 〈Q, q0, B
k+1, δ′, F 〉, where

– ∀q, q′ ∈ Q, and both are not sink states, δ
′
(q, α1) = q′, if δ(q, α) = q′.

M ′ is a DFA that accepts the same words as M except that each symbol in the word
is appended with ‘1’. Mu can then be constructed from M ′ by projecting the first k bits
away. This projection is done by iterative determinization and minimization. During
determinization, the subset construction is applied on the fly.

From Unary Length Automata to Semilinear Set. Here we describe how to identify
the well formed formula of a semilinear set from a unary automaton.

Property 3: A finite deterministic unary automaton M = 〈Q, q0, B
0, δ, F 〉 can be in

two forms: a linear list of states that starts from the initial state with finite length �Q, or
a linear list of states that starts from the initial state with finite length, C, and ends in a
cycle with finite length, R, where C + R = �Q (i.e., a lasso).

Given a deterministic unary automaton, Q can be labeled such that

– �Q = n + 1.
– ∀0 ≤ i < n, δ(qi, 1) = qi+1.

Cycle Case: If ∃0 ≤ m < n, δ(qn, 1) = qm, the well-formed formula of a unary
automaton is

∨
i x = ci ∨

∨
j ∃k.x = C + rj + R× k, where

– C = m, R = n−m.
– ∀i, ∃qt, t < m,F (qt) = +, ci = t.
– ∀j, ∃qt, t ≥ m,F (qt) = +, rj = t−m.

No Cycle Case: Otherwise, the well-formed formula of a unary automaton is
∨

i x = ci,
where ∀i, ∃qt, t ≤ n, F (qt) = +, ci = t.

From Semilinear Set to Binary Length Automata. We propose a novel construction
to derive a DFA M such that L(M) is equal to the set of binary representations (from
the least significant bit) of a well-formed semilinear set. We say M is a binary length
automaton of the string automaton, the length of whose accepted words forms the semi-
linear set.

Assume that we are given a well-formed semilinear set
∨

i x = ci ∨
∨

j ∃k.x =
C +rj +R×k. Let N be max(C,R). A DFA M that accepts the binary representation
of the given semilinear set can be constructed as a tuple 〈Q, q0, Σ, δ, F 〉, where:

– We assume that there exists a sink state qsink ∈ Q, s.t., F (qsink)=−, δ(qsink, 0) =
qsink and δ(qsink, 1) = qsink , and all transitions that are ignored in this construc-
tion are going to qsink .

– Other than the sink state, each state q ∈ Q is a tuple (t, v, b), where t∈{val,remt,
remf}, v ∈ {0, . . . , N}, and b ∈ {⊥}∪{1, . . . , N}. q.t is the type of state q, which
indicates the meaning of the value of q.v and q.b. While q.t = val, q.v is equal to

Symbolic String Verification: Combining String Analysis and Size Analysis 327

the value of the binary word accepted from the initial state to the current state, and
q.b is equal to the binary value of the previous bit in the word. We assume 2 ⊥= 1.
While q.t = remt or remf , q.v is equal to the remainder of which the dividend is
the value of the binary word accepted from the initial state to the current state and
the divisor is R; q.b is the remainder of which the dividend is the binary value of
the previous bit in the accepted word and the divisor is R. q.t = remt indicates the
value of the binary word accepted from the initial state to the current state is greater
or equal to C; q.t = remf indicates the value is less than C.

– q0 is (val, 0,⊥).
– Σ = {0, 1}, i.e., B1.
– δ(q, 1) = q′ if and only if one of the following condition holds:

• q.t = val, q.v + 2q.b ≥ C, q′.t = remt, q′.v = (q.v + 2q.b) mod R,
q′.b = (2q.b) mod R.

• q.t = val, q.v + 2q.b < C, q′.t = val, q′.v = q.v + 2q.b, q′.b = 2q.b.
• q.t = remt, q′.t = remt, q′.v = (q.v+2q.b) mod R, q′.b = (2q.b) mod R.
• q.t = remf , q′.t = remt, q′.v = (q.v+2q.b) mod R, q′.b = (2q.b) mod R.

– δ(q, 0) = q′ if and only if one of the following condition holds:
• q.t = val, q.v + 2q.b ≥ C, q′.t = remf , q′.v = q.v mod R, q′.b = (2q.b)

mod R.
• q.t = val, q.v + 2q.b < C, q′.t = val, q′.v = q.v, q′.b = 2q.b.
• q.t = remt, q′.t = remt, q′.v = q.v, q′.b = (2q.b) mod R.
• q.t = remf , q′.t = remf , q′.v = q.v, q′.b = (2q.b) mod R.

– F (q) = +, for all q ∈ {q | q.t = val, ∃i, q.v = ci} ∪ {q | q.t = remt, ∃j, q.v =
(C + rj) mod R}; F (q) = −, o.w.

By definition, �Q is O(N2). Precisely, in our construction, the number of states that
q.t = val is bounded by C. The number of states that q.t = remt is bounded by R2

and the number of states that q.t = remf is bounded by C ×R. On the other hand, we
have observed that after minimization, �Q is often reduced to N .

An Incremental Algorithm. Below we give an incremental algorithm to construct a
Binary Length Automaton (BLA) M . The construction is achieved by calling the pro-
cedure CONSTRUCT BLA. The input is given as a well-formed semilinear formula,∨

0≤i≤n x = ci ∨
∨

0≤j≤m ∃k.x = C + rj + R × k. At line 3, we first build Qb, the
set of binary states that will be reached by calling the procedure ADD BSTATE. A bi-
nary state is actually the value of the tuple (t, v, b) as described in the previous section.
Each binary state is further associated with an index, a true branch and a false branch,
which are used to construct the state graph. Briefly, ADD BSTATE is a recursive func-
tion which incrementally adds the reached binary state if it has never been explored.
Initially, the binary state is (val, 0,⊥). Note that ADD BSTATE is guaranteed to ter-
minate since the number of binary states are bounded. Upon termination, all reached
binary states will have been added to Qb. For each binary state in Qb, as line 4 to 9, we
iteratively generate a state q and set its transition relation and accepting status, which
are used to construct the final automaton at line 10.

We have implemented the above algorithms using the MONA DFA package. Mini-
mal unary and binary length automata for a regular language are shown Figure 1 where
the set recognized by these automata are {7 + 5k | k ≥ 0}.

328 F. Yu, T. Bultan, and O.H. Ibarra

Algorithm 1. ADD BSTATE(Q, C, R, t, v, b)

1: if ∃q = (t, v, b) ∈ Q then
2: return q.index;
3: else
4: Create q = (t, v, b);
5: q.index = �Q;
6: q.true = −1;
7: q.false = −1;
8: Add q to Q;
9: if t == val ∧ (v + 2× b ≥C) then

10: q.true =ADD BSTATE(Q, C, R, remt, (v + 2× b)%R, (2× b)%R);
11: q.false =ADD BSTATE(Q, C, R, remf , v%R, (2× b)%R);
12: else if t == val ∧ (v + 2× b < C) then
13: q.true =ADD BSTATE(Q, C, R, val, v + 2× b, 2× b);
14: q.false =ADD BSTATE(Q, C, R, val, v, 2× b);
15: else if t == remt then
16: q.true =ADD BSTATE(Q, C, R, remt, (v + 2× b)%R, (2× b)%R);
17: q.false =ADD BSTATE(Q, C, R, remt, v%R, (2 × b)%R);
18: else if t == remf then
19: q.true =ADD BSTATE(Q, C, R, remt, (v + 2× b)%R, (2× b)%R);
20: q.false =ADD BSTATE(Q, C, R, remf , v%R, (2× b)%R);
21: end if
22: return q.index;
23: end if

Algorithm 2. CONSTRUCT BLA(C, R, C = {c1, c2, . . . cn}, R = {r1, r2, . . . rm})

1: Qb = ∅;
2: Q = ∅;
3: init =ADD BSTATE(Qb, C, R, val, 0,⊥);
4: for each qb ∈ Qb do
5: Add q = qq.index to Q;
6: δ(q, 1) = (qb.true �= −1?qqb.true : qsink);
7: δ(q, 0) = (qb.false �= −1?qqb.false : qsink);
8: F (q) = ((qb.t == 0 ∧ ∃c ∈ C.qb.v == c) ∨(qb.t == 1 ∧ ∃r ∈ R.qb.v ==

(r+C)%R) :′ +′?′−′);
9: end for

10: Construct M = 〈Q ∪ {qsink}, qinit, B
1, δ, F 〉;

3 Composite Verification

We first introduce a simple imperative language (the syntax is similar to the one used
in [15]) as our target language. This language consists of a set of labeled statements
l : stat. Labels correspond to instruction addresses. We use s to denote a string variable,
i to denote an integer variable, and c to denote a constant. Each s ∈ S is associated

Symbolic String Verification: Combining String Analysis and Size Analysis 329

(a) Unary (b) Binary

Fig. 1. The Length Automata of (baaab)+ab

with one auxiliary integer variable, denoted as s.length. Let S denote the set of string
variables and I denote the set of integer variables, and IL denote the set of auxiliary
variables. A statement can be one of the following:

– A termination statement halt or abort.
– A string assignment statement s := strexp, where strexp is a string expression

that can be one of the following:
• input(i) which returns an arbitrary string value up to the length equal to the

value of i.
• a string variable s ∈ S.
• a regular expression regexp over S.
• prefix(s, i) which returns the prefix of s up to the first c characters where c

is equal to the value of i.
• suffix(s, i) which returns the the suffix of s starting from the cth character,

where c is equal to the value of i.
• concat(s1, s2) that returns the concatenation of the value of s1 and the value

of s2.
• replace(s1, s2, s3) that returns the result of the following actions: (1) scan

the value of s1 and find the substrings that match to the value of s2, and (2)
replace the matched substrings with the value of s3.

– An integer assignment statement i := intexp, where intexp is an integer expres-
sion in the form

∑
t ct ∗ it that returns a value of the linear function

∑
t ct ∗ it,

where each variable it ∈ I ∪ IL.
– A conditional statement if (bexp) goto l′, where bexp is a binary expression

(defined below). l′ is a program label which indicates the label of the next statement
when bexp evaluates to true.

– An assertion statement assert(
∧

bexp). An assertion holds if
∧

bexp evaluates
to true. A program is correct if all assertions hold on all executions.

A bexp is either a string or an integer formula defined as follows:

– A string formula can be in two forms: (1) s ∈ regexp, or (2) s[c1, c2] ∈ regexp,
which specifies that the value of s or the value of the substring (from the cth

1 to cth
2

character) of s is within a regular language. s �∈ regexp is an abbreviation of s ∈
regexp′, where regexp′ is the complement set of regexp. s = c is an abbreviation
of s ∈ {c} and s �= c is an abbreviation of s �∈ {c}, where c is a constant string.

330 F. Yu, T. Bultan, and O.H. Ibarra

– An integer formula can be in the form:
∑

t ct ∗ it ∼ c, where it ∈ I ∪ IL and
∼∈ {=, <,≤,≥, >}.

We assume that for each l : stmt, l + 1 is a valid label if stmt is not a termination
statement. For each conditional statement if (bexp) goto l′, l′ is a valid label.

Modeling the C Example. To analyze normal C programs, one can consider each
dereference of a pointer, e.g., ∗p, as a string variable. A sequence value from the address
pointed by the pointer is a string value of the string variable. The pointer arithmetic
operation, e.g., p1 := p2 + i, can be considered as a string suffix statement that assigns
the suffix of the dereference of p2 to the dereference of p1. The previous example can
be rewritten using this simple language as follows:

strlen(s1){
1: cnt := 0;
2: s2:=s1;
3: if(s2=’\0’) goto 7;
4: s2:=suffix(s2, 1);
5: cnt := cnt +1;
6: if(s2 != ’\0’) goto 4;
7: assert(s1.length = cnt);
8: halt; }

3.1 Verification Framework

Assume that S = {s1, . . . , sm} and I = {i1, . . . , in} denote the set of string and integer
variables in our target program, respectively. In our analysis, each string variable sk,
1 ≤ k ≤ m, is associated with an auxiliary integer variable in+k as its length sk.length.
Hence, we also have the set of auxiliary integer variables IL = {in+1, . . . in+m}. A
state for each program label consists of a string-automata vector α = 〈α1, . . . , αm〉
and an n + m-track arithmetic automaton a.

Each string variable sk is associated with the string automaton αk in α, which ac-
cepts an over approximation of the set of all possible values that sk can take at the
corresponding program label. Each track of the arithmetic automaton a is a binary en-
coding starting from the least significant bit of the value of an integer variable (the first
n tracks) or the value of the length of a string variable (the last m tracks).

A word accepted by the arithmetic automaton corresponds to a valid valuation for
the integer variables and the lengths of string variables at the corresponding program
point during the execution of the program. The arithmetic automaton accepts an over
approximation of the set of possible words at the corresponding program label. Each
word w is an assignment of the integer variables and the lengths of the string variables;
and each track of w is actually the value that i ∈ I ∪ IL can take at the corresponding
program label. We use w[k] to denote the kth track of the word w. For 1 ≤ k ≤ n, w[k]
is the value of the integer variable ik. For n+ 1 ≤ k ≤ n + m, w[k] is the length of the
string variable sk. We say a string w is the value of a string variable sk if w ∈ L(αk),
and ∃w′ ∈ L(a) such that w′[k] is equal to the binary encoding of |w| starting from the
least significant bit.

Symbolic String Verification: Combining String Analysis and Size Analysis 331

Forward Fixpoint Computation. Our analysis is based on a standard forward fixpoint
computation on α and a for all program labels. For simplicity, we use ν[l] to denote α[l]
and a[l], where α[l] is the string-automaton vector and a[l] is the arithmetic automaton
at the program label l. The algorithm is a standard work-queue algorithm as shown in
Algorithm 3.

For sequential operations (string/integer assignments), we are continuously comput-
ing the post image of ν[l] against l : stmt, and join the result to ν[l + 1] where l + 1
is the label of the next statement. For branch statement l : if(bexp) goto l′, if the
intersection of the language of ν[l] and bexp is not an empty set, we add the result to
ν[l′]. If the intersection of the language of ν[l] and the complement set of bexp is not
an empty set, we add the result to ν[l + 1]. For checking statement l : assert(φ), if
the language of ν[l] is not included in φ, we raise an alarm.

Upon joining the results, we check whether a fixpoint of that program point is reached.
If it is not, we update ν at that program point and push its labeled statement into the
queue. Since we target infinite state systems, the fixpoint computation may not ter-
minate. We incorporate an automata widening operator, denoted as ∇A, proposed by
Bartzis and Bultan in [3] to accelerate the fixed point computation.ν∇ν′ is implemented
as α1∇Aα′

1, . . ., αm∇Aα′
m [16] and a∇Aa′ [3].

Finally, we detail how to compute post and restrict computations, i.e., post(ν, stmt)
and ν ∧ bexp, in the following paragraphs.

Basic Operations. Before we detail the algorithms of post and restrict computations, we
first define some notations and basic operations to simplify our presentation. We use a to
denote the arithmetic automaton, and ak to denote the one-track arithmetic automaton
that accepts the values of the kth track of the arithmetic automaton a. We use α to denote
a string automaton and α to denote a vector of string automata. αk is the kth string
automaton of α. bla(α) returns the binary length automaton of the string automaton α.
The binary length automaton can be considered as an one-track arithmetic automaton.
We use αc, where c is an integer constant, to denote the string automaton which accepts
arbitrary words having length equal to c. That is L(αc) = {w | w ∈ Σ∗, |w| = c}. This
notation is also extended to a range [c1, c2], where c1, c2 are integer constants. We say
that α[c1,c2] is the string automaton that accepts {w | w ∈ Σ∗, c1 ≤ |w| ≤ c2}.

– Extraction: a �k, returns an one-track arithmetic automaton ak so that w ∈ L(ak) if
∃w′ ∈ L(a) and w′[k] = w. ak is constructed by projecting away all tracks except
the kth track of the arithmetic automaton a.

– Projection: a �k, returns a new arithmetic automaton a′ which accepts {w|w′ ∈
L(a), ∀1 ≤ t ≤ m + n, t �= k, w′[t] = w[t]}. a′ is constructed by projecting away
the track k of the arithmetic automaton a.

– Composition: a◦αk, returns a new arithmetic automaton a′ so that L(a′)={w |w∈
L(a), w[k] ∈ L(bla(αk))}. a′ is constructed by intersecting a with an arithmetic
automaton that the track k is accepted by the binary length automaton of the string
automaton αk, and other tracks are unrestricted. This composition restricts L(a) to
a smaller set where the length of sk (the value of the track k) is accepted by the
binary length automaton of αk.

332 F. Yu, T. Bultan, and O.H. Ibarra

Algorithm 3. COMPOSITEANALYSIS(l0)
1: Init(ν);
2: queue WQ;
3: WQ.enqueue(l0 : stmt0);
4: while WQ �= NULL do
5: e := WQ.dequeue(); Let e be l : stmt;
6: if stmt is sequential operation then
7: tmp := post(ν[l], stmt);
8: tmp := (tmp ∪ ν[l + 1])∇ν[l + 1];
9: if tmp �⊆ ν[l + 1] then

10: ν[l + 1] := tmp;
11: WQ.enqueue(l + 1);
12: end if
13: end if
14: if stmt is if bexp goto l′ then
15: if CheckIntersection(ν[l], bexp) then
16: tmp := ν[l] ∧ bexp;
17: tmp := (tmp ∪ ν[l′])∇ν[l′];
18: if tmp �⊆ ν[l′] then
19: ν[l′] := tmp;
20: WQ.enqueue(l′);
21: end if
22: end if
23: if CheckIntersection(ν[l],¬bexp) then
24: tmp := ν[l] ∧ ¬bexp;
25: tmp := (tmp ∪ ν[l + 1])∇ν[l + 1];
26: if tmp �⊆ ν[l + 1] then
27: ν[l + 1] := tmp;
28: WQ.enqueue(l + 1);
29: end if
30: end if
31: end if
32: if stmt is assert(φ) then
33: if ¬ CheckInclusion(ν[l], φ) then
34: Assertion violated!
35: end if
36: end if
37: end while

– Boundary: min(ak) returns the lower bound of the set of integer values whose
binary encodings from the least significant bit are accepted by the one-track au-
tomaton ak. max(ak) returns the upper bound.

Post Image. Recall that there are m string variables and n integer variables. Given
stmt and the state ν that consists of α = 〈α1, . . . , αm〉 and the arithmetic automaton

Symbolic String Verification: Combining String Analysis and Size Analysis 333

a, we want to compute α′ = 〈α′
1, . . . , α

′
m〉 and a′ as the result of the post image against

stmt. We assume that the automata that are not specified remain the same. Let stmt be
one of the following:

– sk := input(ip). α′
k := α[c1,c2], where c1 = min(ap) and c2 = max(ap).

a′ := CONSTRUCT(a, in+k := ip).
– sk1 := sk2 . α′

k1
:= αk2 . a′ := CONSTRUCT(a, in+k1 := in+k2).

– sk := regex. α′
k := CONSTRUCT(regexp). a′ := a �n+k ◦α′

k.
– sk1 := prefix(sk2 , ip). α′

k1
:= PREFIX(αk2 , [c1, c2]), where c1 = min(ap) and

c2 = max(ap). a′ := CONSTRUCT(a, in+k1 := ip)∧CONSTRUCT(in+k2−ip ≥ 0).
– sk1 := suffix(sk2 , ip). α′

k1
:= SUFFIX(αk2 , [c1, c2]), where c1 = min(ap) and

c2 = max(ap). a′ := CONSTRUCT(a, in+k1 := ip)∧CONSTRUCT(in+k2−ip ≥ 0).
– sk := strcat(sk1 , sk2). α

′
k := CONCAT(αk1 , αk2). a

′ := CONSTRUCT(a, in+k :
= in+k1 + in+k2).

– sk := replace(sk1 , sk2 , sk3). α′
k := REPLACE(αk1 , αk2 , αk3). a′ := a �n+k

∧atmp, where atmp accepts {w | w[k] ∈ L(bla(α′
k))}.

– ip := intexp. a′ := CONSTRUCT(a, ip := intexp).

Restriction. Here we describe the result of ν ∧ bexp, where ν is the state consists of α
and a. Let bexp be one of the following:

– sk ∈ regexp. α′
k = αk ∧ CONSTRUCT(regexp). a′ = a ◦ α′

k.
– sk[c1, c2] ∈ regexp. α′

k = αk ∧ αtmp, where αtmp is constructed by
CONCAT(CONCAT(α[c1,c2], CONSTRUCT(regexp)), α∗). a′ = a ◦ α′

k.
–
∑

t ct ∗ it ∼ c. ∀t > n.α′
t = αt ∧ α[c1,c2], where c1 = min(a′ �t) and c2 =

max(a′ �t). a′ = a ∧ CONSTRUCT(
∑

t ct ∗ it ∼ c).

3.2 Implementation

Automaton Construction. In this section, we describe how to construct the correspond-
ing arithmetic and string automata used in our composite analysis. The constructions of
arithmetic automata including CONSTRUCT(

∑
t ct ∗ it ∼ c) and CONSTRUCT(a, i :=∑

t ct ∗ it) are detailed in [2]. The latter returns an arithmetic automaton which ac-
cepts the result of the post image computation on a against the integer assignment i :=∑

t ct ∗ it + c. This construction is implemented by quantifier elimination and variable
renaming, i.e., (∃i, Φ(a)∧ i′ =

∑
t ct ∗ it)[I ′/I]. For some special cases, the time com-

plexity of this construction is linear to the size of a [2]. The constructions of string au-
tomata including CONSTRUCT(regexp), CONCAT(αk1 , αk2), and REPLACE(αk1 , αk2 ,
αk3) have been detailed in [16]. We describe the implementation of PREFIX(α, [c1, c2])
and the implementation of SUFFIX(α, [c1, c2]) below.

Prefix. Formally speaking, α′ is a prefix-DFA of α regarding to the range [c1, c2], if
L(α′) = {w | w ∈ Σ[c1,c2], ∃w′, ww′ ∈ L(α)}. Given α = 〈Q, q0, Σ, δ, F 〉 and
[c1, c2], we first construct α′ = 〈Q, q0, Σ, δ, F ′〉, where ∀q ∈ Q,F ′(q) =′ +′. α′

accepts the prefix of L(α). The next step is restricting its length to the range [c1, c2].
PREFIX(α, [c1, c2]) returns the the result of the intersection of α′ and α[c1,c2], which is
exactly the prefix-DFA of α regarding to the range [c1, c2].

334 F. Yu, T. Bultan, and O.H. Ibarra

Suffix. Formally speaking, α′ is a suffix-DFA of α regarding to the range [c1, c2],
if L(α′) = {w | ∃w′ ∈ Σ[c1,c2], w′w ∈ L(α)}. We first introduce the function
REACH(α, [c1, c2]). REACH(α, [c1, c2]) returns the set of all [c1, c2]-reachable states.
We say a state is [c1, c2]-reachable if it is reachable from the initial state by k steps
and c1 ≤ k ≤ c2. Given α = 〈Q, q0, Σ, δ, F 〉 and [c1, c2], we first compute R =
REACH(α, [c1, c2]) via a breadth-first search. We then construct the following finite au-
tomaton α′ = 〈Q′, q′0, Σ, δ

′
, F ′〉, where

– Q′ = Q ∪ {q′0}
– ∀q, q′ ∈ Q, δ

′
(q, α) = q′, if δ(q, α) = q′.

– ∀q ∈ R, q′ ∈ Q, δ
′
(q′0, α) = q′, if δ(q, α) = q′.

– F
′
(q0) =′ +′, if ∃q ∈ R,F (q) =′ +′.

– ∀q ∈ Q,F
′
(q) = F (q).

Note that α′ constructed by the above construction may be a nondeterministic fi-
nite automaton. We add auxiliary bits to resolve nondeterminism as proposed in [16].
SUFFIX(α, [c1, c2]) returns the result of the minimization and determinization of α′.

Boundary. Below we describe how to identify the boundary of a one-track arithmetic
automaton, which accepts the binary encodings of a set of integer values from the least
significant bit.

Property 4: For an one-track minimized DFA a = 〈Q, q0, B
1, δ, F 〉: ∀q, q′ ∈ Q, if

δ(q, 0) = q′, then F (q) = F (q′).
Property 4 states that transitions labelled by 0 cannot change accepting status, which

holds due to the fact that by definition, the arithmetic automaton accepts a word and any
number of 0 in its higher significant bits. It follows that for any accepted integer value
(except 0), the word from the least significant bit up to the most non-zero significant
bit of its binary encoding forms a unique path (ended by 1) from the initial state to
an accepting state. Furthermore, an accepted non-zero minimal integer value forms the
shortest path from the initial state to an accepting state. On the other hand, if there exists
an accepted non-zero maximal integer value, the maximal value forms the longest loop-
free path from the initial state to an accepting state. Note that if there exists an accepted
path containing a loop, a accepts an infinite set and the maximal value does not exist.
In this case, we use inf to denote the maximal value.

For min(a) and max(a), we have implemented two functions MIN(a) and MAX(a).
Let ms be the length of the shortest path that ends with 1 and ml be the length of the
longest loop-free path that ends with 1. Both ms and ml can be determined by a breadth
first search up to �Q steps. In our implementation, we first check whether a accepts any
non-zero integer value. If this is the case, MIN(a) returns 2ms−1, which is a lower
bound for the shortest path. If there exists a path containing a loop, MAX(a) returns inf.
Otherwise MAX(a) returns 2ml+1 − 1, which is an upper bound for the longest path.
Note that our implementation is a conservative approximation. These bounds can be
tightened by tracing the values along paths.

Symbolic String Verification: Combining String Analysis and Size Analysis 335

4 Experiments

We experimented with our composite analysis tool on a number of test cases extracted
from C string library, buffer overflow benchmarks [10] and web vulnerability bench-
marks [16]. These test cases are rather small but involve pointer arithmetic, string con-
tent constraints, length constraints, loops, and replacement operations. We manually
convert them to our simple imperative language.

For int strlen(char *s), we verify the invariant that the return value is equal
to the length of the input string. For char *strrchr(char *s, int c), we verify
whether the language accepted by the return string is included in {cx | x ∈ Σ∗} ∪ {ε}
upon reaching the fixpoint. For buffer overflow benchmarks, we check whether the
identified memory may overflow its buffer upon reaching the fixpoint for both buggy
(bad) and modified (ok) cases. For web vulnerability benchmarks, we check whether
the identified sensitive function may take any attack string as its input before (bad)
and after (ok) inserting limit constraints and sanitization routines. If it does not, the
sensitive function is SQL attack free with respect to the attack pattern Σ∗<scriptΣ∗.
Limit constraints are written as new statements that limit the length of string variables
using a $limit variable. Table 1 shows that our composite analysis works well in
these test cases in terms of both accuracy and performance. As a final remark, for web
vulnerability benchmarks, one may restrict limit constraints, e.g., set $limit less than
7, to prevent the specified attacks without adding/modifying sanitization routines. In
this case, pure string analysis [16] will raise false alarms.

Table 1. Preliminary experimental results. T: buffer overflow free or SQL attack free.

Test case (bad/ok) Result Time (s) Memory (kb)

int strlen(char *s) T 0.037 522
char *strrchr(char *s, int c) T 0.011 360
gxine (CVE-2007-0406) F/T 0.014/0.018 216/252
samba (CVE-2007-0453) F/T 0.015/0.021 218/252
MyEasyMarket-4.1 (trans.php:218) F/T 0.032/0.041 704/712
PBLguestbook-1.32 (pblguestbook.php:1210) F/T 0.021/0.022 496/662
BloggIT 1.0 (admin.php:27) F/T 0.719/0.721 5857/7067

5 Conclusion

We presented an automata-based approach for symbolic verification of infinite-state
systems with unbounded string and integer variables. Our approach combines string and
size analyses and is able to verify properties that cannot be verified with either analysis
alone. We demonstrated the effectiveness of our approach on several examples.

336 F. Yu, T. Bultan, and O.H. Ibarra

References

1. Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kruegel, C., Kirda, E., Vigna, G.:
Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applica-
tions. In: Proceedings of the Symposium on Security and Privacy (2008)

2. Bartzis, C., Bultan, T.: Efficient symbolic representations for arithmetic constraints in verifi-
cation. Int. J. Found. Comput. Sci. 14(4), 605–624 (2003)

3. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 321–333. Springer, Heidelberg (2004)

4. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expressions. In:
Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidelberg (2003)

5. Dor, N., Rodeh, M., Sagiv, M.: Cssv: towards a realistic tool for statically detecting all buffer
overflows in c. SIGPLAN Not. 38(5), 155–167 (2003)

6. Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A static analysis framework for
detecting sql injection vulnerabilities. In: COMPSAC 2007: Proceedings of the 31st Annual
International Computer Software and Applications Conference (COMPSAC 2007), Wash-
ington, DC, USA, vol. 1, pp. 87–96. IEEE Computer Society Press, Los Alamitos (2007)

7. Ganapathy, V., Jha, S., Chandler, D., Melski, D., Vitek, D.: Buffer overrun detection using
linear programming and static analysis. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security, pp. 345–354 (2003)

8. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical
domains. In: 35th ACM Symposium on Principles of Programming Languages, pp. 235–
246. ACM, New York (2008)

9. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs. In: PLDI
2008: Proceedings of the 2008 ACM SIGPLAN conference on Programming language de-
sign and implementation, Tucson, AZ, USA, pp. 339–348 (2008)

10. Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for software model
checkers. In: ASE 2007: Proceedings of the twenty-second IEEE/ACM international confer-
ence on Automated software engineering, Atlanta, Georgia, USA, pp. 389–392 (2007)

11. Shannon, D., Hajra, S., Lee, A., Zhan, D., Khurshid, S.: Abstracting symbolic execution with
string analysis. In: TAICPART-MUTATION 2007: Proceedings of the Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTATION, Washington, DC,
USA, pp. 13–22. IEEE Computer Society Press, Los Alamitos (2007)

12. Wagner, D., Foster, J.S., Brewer, E.A., Aiken, A.: A first step towards automated detection
of buffer overrun vulnerabilities. In: Network and Distributed System Security Symposium,
pp. 3–17 (2000)

13. Wolper, P., Boigelot, B.: On the construction of automata from linear arithmetic constraints.
In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 1–19. Springer,
Heidelberg (2000)

14. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages. In:
USENIX-SS 2006: Proceedings of the 15th conference on USENIX Security Symposium,
Berkeley, CA, USA, pp. 13–13. USENIX Association (2006)

15. Xu, R.-G., Godefroid, P., Majumdar, R.: Testing for buffer overflows with length abstraction.
In: ISSTA 2008: Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM Press, New York (2008)

16. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic string verification: An automata-based
approach. In: 15th International SPIN Workshop on Model Checking of Software (2008)

Iterating Octagons

Marius Bozga, Codruţa Gı̂rlea, and Radu Iosif

VERIMAG/CNRS, 2 Avenue de Vignate, 38610 Gières, France
{bozga,girlea,iosif}@imag.fr

Abstract. In this paper we prove that the transitive closure of a non-
deterministic octagonal relation using integer counters can be expressed
in Presburger arithmetic. The direct consequence of this fact is that the
reachability problem is decidable for flat counter automata with octag-
onal transition relations. This result improves the previous results of
Comon and Jurski [7] and Bozga, Iosif and Lakhnech [6] concerning the
computation of transitive closures for difference bound relations. The
importance of this result is justified by the wide use of octagons to com-
puting sound abstractions of real-life systems [15]. We have implemented
the octagonal transitive closure algorithm in a prototype system for the
analysis of counter automata, called FLATA, and we have experimented
with a number of test cases.

1 Introduction

Counter automata (register machines) are widely investigated models of compu-
tation. Since the result of Minsky [16] showing Turing-completeness of 2-counter
machines, research on counter automata pursued in two directions. The first
one is defining subclasses of counter automata for which various decision prob-
lems (e.g. reachability, emptiness, boundedness, disjointness, containment, equiv-
alence) are found to be decidable. Examples include Reversal-bounded Counter
Machines [13], Petri Nets and Vector Addition Systems [18] or Flat Counter
Automata [14]. Often, decidability of various problems is achieved by defining
the set of reachable configurations in a decidable logic, such as Presburger arith-
metic [17]. Such definitions are precise, i.e. no information is lost by the use of
over-approximation.

Another, orthogonal, direction of work is concerned with finding sound (but
not necessarily complete) answers to the decision problems mentioned above,
in a cost-effective way. Such approaches use abstract domains (Polyhedra [8],
Octagons [15], Difference Constraints [1], etc.) and compute fixed points that
are over-approximations of the set of reachable configurations.

Both approaches to the analysis of counter automata benefit, in some sense,
from algorithms for computing transitive closures of arithmetic relations. If I is
the initial set of configurations, and R is the transition relation of the counter
automaton, then R∗(I) (the image of I through R∗) is the set of reachable
configurations, where R∗ =

⋃
n≥0 Rn is the transitive closure of R. The problem

lies essentially in expressing the infinite disjunction from the definition of R∗, in
a finite way.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 337–351, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

338 M. Bozga, C. Ĝırlea, and R. Iosif

In this paper we consider octagonal transition relations that are conjunctions
of atoms of the form ±x ± y ≤ c, where x and y are counter values, either
at the current step, or at the next step (in which case they are denoted by
primed variables), and c ∈ Z is an integer constant. For this class of relations,
we prove that the transitive closure is expressible in Presburger arithmetic [17].
This improves the previous result of Comon and Jurski [7], showing that the
transitive closure of a difference bound constraint (a conjunction of atoms of the
form x − y ≤ c, with x, y possible primed counters, and c ∈ Z) is Presburger-
definable.

We adopt the classical representation of octagonal constraints (or octagons)
ϕ(x1, . . . , xn) as difference bound constraints ϕ(y1, . . . , y2n), where y2i−1 stands
for +xi and y2i for −xi, and the implicit condition y2i−1 + y2i = 0, 1 ≤ i ≤ n.
With this convention, [2] provides an algorithm for computing the canonical
form of an octagon, by first computing the strongest closure of the corresponding
difference bound constraint (using the classical Floyd-Warshall cubic algorithm),
and subsequently tightening the constraints of the form y2i − y2i−1 ≤ c and
y2i−1 − y2i ≤ d by adjusting c to 2+c/2, and d to 2+d/2,, respectively1. We
apply this idea to tightening octagonal relations of the form Rk, where R is an
octagon and k ≥ 1 is the arbitrary number of iterations, obtaining in this way a
Presburger formula ψ(k, x1, ..., xn, x′

1, ..., x
′
n) equivalent to the k-th iteration of

ϕ. The transitive closure of R is thus R∗ = ∃k.ψ.
The main application of this result is that the following problems are decid-

able, for the class of counter automata with octagonal transition rules:

– reachability: the automaton has a run leading from a configuration in I to a
configuration in S, where I and S are Presburger-definable sets of configu-
rations.

– emptiness: the automaton has at least a run starting with all counters set to
zero, and leading to a final control location.

In particular, decidability of the reachability problem is useful for the verification
of safety properties (e.g. assertion checking) of integer programs, whereas the
emptiness problem is a promising approach for the analysis of programs with
integer arrays. Indeed, the works of [11,5] reduce the satisfiability problem for
two logics on integer arrays to the emptiness problem of a counter automaton.
By enlarging the class of counter automata for which this problem is decidable,
we enhance the expressiveness of (decidable) logics of integer arrays.

Finally, we have implemented our method in a tool for the analysis of counter
automata, called FLATA [10]. In particular, FLATA computes the transitive
closure of elementary octagonal cycles, which is used in computing the set of
reachable configurations for flat counter automata. We have experimented with
a number of test cases and provided several experimental results.

1 This is needed because we consider the counters to range over integer numbers. If
rationals or real number would have been used, this would not have been needed.

Iterating Octagons 339

1.1 Related Work

The domain of counter machines has been investigated starting with the seminal
work of Minsky [16]. His result on Turing-completeness of 2-counter machines
motivated research on subclasses of counter automata, for which some problems
are decidable, such as: Reversal-bounded Counter Machines [13], Petri Nets and
Vector Addition Systems [18] or Flat Counter Automata [14].

The class of Flat Counter Automata which is closest to our work is the one
studied by Comon and Jurski in [7]. In this work, they prove that the transitive
closure of a difference bound constraint is Presburger-definable. In [6] we showing
how to effectively compute the transitive closure of a difference bound constraint
directly as a finite set of linear inequation systems, opening thus the possibility
of using SMT tools for the analysis of such models.

Octagonal constraints are investigated in the comprehensive paper of Miné
[15]. Among other results, his paper presents a cubic time tightening algorithm
for an octagonal constraint, which is an improvement of the classical algorithm
of Harvey and Stuckey [12]. However, this algorithm is not suitable to tightening
octagonal constraints of parametric size, as the ones we obtain by iteration. For
this reason, we adapt the (newer) tightening algorithm of Bagnara, Hill and
Zaffanella [2] to octagons obtained by arbitrary iteration, as they prove that it
is sufficient to adjust the constants after the computation of minimal paths (by
the Floyd-Warshall algorithm).

Our paper extends to octagons the class of non-deterministic relations for
which the transitive closure can be effectively expressed in Presburger arithmetic.
This result relies essentially on our method from [6] to computing minimal paths
in constraint graphs obtained by iteration, and the idea of [2] for tightening
(finite) octagonal relations.

On a different line of work, Boigelot [3], and Finkel and Leroux [9] have
studied the computation of transitive closure for affine relations of the form
x′ = Ax + b. Their class of systems differs in nature from ours, in what their
transition relations are functional (deterministic), whereas octagons are not.
Because of this, their results seem incomparable to ours.

Roadmap. The paper is organized as follows. Section 2 introduces difference
bound constraints and difference bound relations, recalling a number of results on
DBMs, Section 3 defines octagonal constraints, and gives a necessary quantifier
elimination result on octagons, while Section 4 is dedicated to our main result,
namely computing the transitive closure of an octagonal relation. Section 5 gives
implementation results, and finally, Section 6 concludes. Due to space reasons,
all proofs are given in [4].

2 Difference Bounds

In this section we recall several definitions and results on difference bound con-
straints, and the transitive closure of difference bound relations. In the rest of the
paper, Z denotes the set of integer numbers, n > 0 is the number of variables

340 M. Bozga, C. Ĝırlea, and R. Iosif

and x = (x1, x2, . . . , xn) is the tuple of variables. If ϕ(x) is a logical formula
in which x1, x2, . . . , xn occur free, and v = (v1, v2, . . . , vn) is a tuple of values,
ϕ[v/x] denotes the formula in which each occurrence of xi has been replaced by
vi. We denote by v |= ϕ the fact that ϕ[v/x] is logically equivalent to true. We
say that ϕ is consistent if there exists at least one v ∈ Zn such that v |= ϕ,
and inconsistent otherwise. If ϕ is a formula, let AP (ϕ) denote the set of atomic
propositions in ϕ. If m is a matrix, then mi,j denote the element of m situated
at line i and column j.

2.1 Difference Bound Constraints

Definition 1. Let x = (x1, x2, ..., xn) be a set of variables ranging over Z. Then
a formula φ(x) is a difference bound constraint if it is equivalent to a finite
conjunction of atomic propositions of the form xi−xj ≤ αi,j , i �= j, 1 ≤ i, j ≤ n,
where αi,j ∈ Z.

For instance, x − y = 5 is a difference bound constraint, as it is equivalent to
x−y ≤ 5 ∧ y−x ≤ −5. In practice difference bound constraints are represented
either as matrices or as graphs, each of these representations being suitable for
particular procedures (e.g. closure, iteration). We define these representations
and procedures below.

Definition 2. Let x = (x1, x2, ..., xn) be a set of variables ranging over Z and
φ(x) be a difference bound constraint. Then a difference bound matrix (DBM)
representing φ is an n× n matrix m such that:

mi,j =

{
αi,j if (xi − xj ≤ αi,j) ∈ AP (φ)
∞ otherwise

For a n×n DBM m we denote by γ(m) = {v ∈ Zn | vi−vj ≤ mi,j , 1 ≤ i, j ≤ n}
the set of concretizations of m. Notice that this is exactly the set of models of
the corresponding difference bound constraint ϕ, i.e. γ(m) = {v | v |= ϕ}. A
DBM m is said to be consistent if γ(m) �= ∅, and inconsistent otherwise.

Definition 3. Let x = (x1, x2, ..., xn) be a set of variables ranging over Z and
φ(x) be a difference bound constraint. Then φ can be represented as a weighted
graph G with vertices x1, x2, ..., xn in which there is an arc with weight αi,j

between xi and xj in G if there is a constraint xi − xj ≤ αi,j in φ. This graph is
also called a constraint graph.

Whenever the graph G is obvious from the context, we will denote by x
α−→ y

the fact that there exists an edge with weight α from x to y in G. Notice that
the DBM m of a difference bound constraint is the incidence matrix of its cor-
responding constraint graph. This graph will be denoted as G(m) in the follow-
ing. The three notions (constraint, matrix, graph) are related by the following
property:

Iterating Octagons 341

Property 1. Let φ be a difference bound constraint, m the corresponding DBM
and G(m) the corresponding graph. Then the following three statements are
equivalent :

1. φ is inconsistent
2. G(m) contains at least one negative weight cycle
3. γ(m) = ∅

On one hand, the DBM representation of a difference bound constraint is suitable
for computing its normal form, i.e. the most “explicit” formula that has the same
set of models.

Definition 4. An n × n consistent DBM m is said to be closed if and only if
the following hold:

1. mi,i = 0 ∀1 ≤ i ≤ n

2. mi,j ≤ mi,k + mk,j ∀1 ≤ i, j, k ≤ n

The shortest path closure of a consistent DBM m is a closed DBM m∗ such
that γ(m) = γ(m∗). It is well-known that, if m is consistent then m∗ is unique,
and it can be computed from m in time O(n3), by the classical Floyd-Warshall
algorithm. Moreover, the following condition holds, for all 1 ≤ i, j ≤ n :

m∗
i,j = min

{
k−1∑
l=0

mil,il+1 |xi = xi0xi1 ...xik
= xj is a path in G(m)

}

On the other hand, the graph representation of a difference bound constraint
is suitable for existential quantifier elimination2. Concretely, given a difference
bound constraint φ(x), the formula ∃xk.φ is a difference bound constraint as
well, and its corresponding graph is effectively computable from the graph of φ,
as shown by the following property :

Property 2. Let x = (x1, x2, ..., xn) be a set of variables ranging over Z, φ(x) be
a difference bound constraint and m be the corresponding n × n DBM. Then,
for any 1 ≤ k ≤ n the formula ∃xk.φ(x) is a difference bound constraint, and
its corresponding constraint graph is obtained by erasing the vertex xk together
with the incident arcs from the graph G(m∗). Moreover, the DBM of the resulting
graph is also closed.

The importance of this result will be made clear in the next section, because
it directly implies that the class of difference bound relations is closed under
composition. This is the first ingredient of our transitive closure method.
2 In general, difference bound constraints are not closed under universal quantification,

however finite disjunctions of difference bound constraints are, since the negation of
a difference bound constraint is always equivalent to a finite disjunction of difference
constraints.

342 M. Bozga, C. Ĝırlea, and R. Iosif

2.2 Difference Bound Relations

Definition 5. Let x = (x1, x2, ..., xn), x′ = (x′
1, x

′
2, ..., x

′
n) be sets of variables

ranging over Z. A relation R(x,x′) is a difference bound relation if it is equiv-
alent to a finite conjunction of terms of the form xi − xj ≤ ai,j,x′

i − xj ≤ bi,j,
xi − x′

j ≤ ci,j, or x′
i − x′

j ≤ di,j, where ai,j , bi,j, ci,j , di,j ∈ Z, 1 ≤ i, j ≤ n.

According to the previous section, a difference bound relation can be represented
as a constraint graph with nodes in the set x ∪ x′, such that x

α−→ y if and only

if x− y ≤ α ∈ AP (R), for all x, y ∈ x∪x′. Just like before, the incidence matrix
of this graph is the DBM of the relation.

In the following, we denote x(l) = (x(l)
1 , x

(l)
2 , . . . , x

(l)
n), x(≥l) =

⋃
s≥l x

(s) and
x(≤l) =

⋃
s≤l x

(s), for any l ≥ 0. Given a difference bound relation R(x,x′), we
define the k-th iteration of R:

Rk(x(0),x(k)) = ∃x(1) . . . ∃x(k−1).R(x(0),x(1)) ∧ . . . ∧R(x(k−1),x(k))

for all k ≥ 1. The transitive closure of R is defined as R∗ = ∃k.Rk.
Notice that, since existential quantifiers can be eliminated from difference

bound constraints (cf. Theorem 2), difference bound relations are closed under
composition, and therefore Rk is a difference bound relation, for any k ≥ 0.

We now recall a result from [6], namely that the k-th iteration Rk of a differ-
ence bound relation R is equivalent to a finite set of linear inequation systems.
As a result, R∗ is directly definable in Presburger arithmetic.

The constraint graph Gk, representing the matrix of Rk (i.e. R(x(0),x(1))∧. . .∧
R(x(k−1),x(k))) is the graph composed of k connected copies of the constraint
graph of R.

Definition 6. Let x = (x1, x2, ..., xn), x′ = (x′
1, x

′
2, ..., x

′
n) be sets of variables

ranging over Z and R(x,x′) a DBM relation. The constraint graph of Rk has as

set of vertices
k⋃

l=0
x(l) and, for all 1 ≤ i, j ≤ n, for all 0 ≤ l < k:

x
(l)
i

a−→ x
(l)
j ⇐⇒ xi − xj ≤ a ∈ AP (R)

x
(l)
i

a−→ x
(l+1)
j ⇐⇒ xi − x′

j ≤ a ∈ AP (R)

x
(l+1)
i

a−→ x
(l)
j ⇐⇒ x′

i − xj ≤ a ∈ AP (R)

x
(l+1)
i

a−→ x
(l+1)
j ⇐⇒ x′

i − x′
j ≤ a ∈ AP (R)

In order to compute Rk, for a given k ≥ 1, we must first compute the closure of
the constraint graph from definition 6, in order to remove the intermediary nodes
x(l), 0 < l < k. According to Theorem 2, Rk is a difference bound constraint, and
the graph obtained after eliminating the intermediary variables is the constraint
graph of Rk. Therefore, Rk can be written as a conjunction of the form:

Iterating Octagons 343∧
1≤i,j≤n

x
(0)
i − x

(0)
j ≤min

k
{x(0)

i � x
(0)
j } ∧

∧
1≤i,j≤n

x
(0)
i − x

(k)
j ≤min

k
{x(0)

i � x
(k)
j } ∧

∧
1≤i,j≤n

x
(k)
i − x

(k)
j ≤min

k
{x(k)

i � x
(k)
j } ∧

∧
1≤i,j≤n

x
(k)
i − x

(0)
j ≤min

k
{x(k)

i � x
(0)
j }

where mink{x � y} ∈ Z∪{±∞} denotes the value of the minimal path between
nodes x and y in the constraint graph of Rk3. Notice that Rk is satisfiable if
and only there are no cycles of negative cost within the constraint graph from
Definition 6 (cf. property 1). Since this graph is obtained by connecting k copies
of R, if there is a negative cycle in the graph, there will also be a negative cycle
that goes through x

(0)
i , for some 1 ≤ i ≤ n.

The main result of [7,6] is that mink{x(0)
i � x

(0)
j }, mink{x(0)

i � x
(k)
j },

mink{x(k)
i � x

(k)
j } and mink{x(k)

i � x
(0)
j } are Presburger definable functions.

0

7

−1 −1 −1 −1 −1

0 0 0 0

−2−2−2−2−2

7 7 7 7

−3 −3 −3 −3 −3

. . .

. . .

x
(1)
1

x
(0)
2

x
(0)
3

x
(0)
1 x

(2)
1 x

(3)
1 x

(k−2)
1 x

(k)
1x

(k−1)
1

x
(1)
2 x

(2)
2 x

(k−1)
2

x
(1)
3 x

(2)
3 x

(3)
3 x

(k−2)
3 x

(k−1)
3

x
(k)
2

x
(k)
3

x
(3)
2 . . .x

(k−2)
2

Fig. 1. Graph representation of Rk, k = 1, 2, 3, . . .

Example 1. Let R(x,x′) be the following DBM relation, where x = {x1, x2, x3}:
R(x,x′) = x1−x′

1 ≤ −1∧x1−x2 ≤ 0∧x2−x3 ≤ 7∧x′
2−x2 ≤ −2∧x3−x′

3 ≤ −3

Figure 1 shows the graph representation of Rk, for k = 1, 2, 3 By computing
the minimal weight paths in the constraint graph of Rk for k = 1, 2, 3, ... we
obtain, e.g. :

R(1)(x,x′) = x1−x2≤0 ∧ x1−x3≤7∧x2 − x3 ≤ 7 ∧ x1 − x′
1 ≤ −1 ∧ x1 − x′

3 ≤ 4 ∧
x2−x′

3≤4∧x3−x′
3 ≤ −3 ∧ x′

2−x2 ≤ −2 ∧ x′
2−x3 ≤ 5 ∧ x′

2 − x′
3 ≤ 2

R(2)(x,x′) = x1−x2≤−3∧x1−x3 ≤ 4 ∧ x2−x3 ≤ 7 ∧ x1−x′
1 ≤−2 ∧ x1−x′

3 ≤−2 ∧
x2−x′

3≤1 ∧ x3−x′
3≤−6 ∧ x′

2−x2≤−4 ∧ x′
2−x3≤3 ∧ x′

2−x′
3 ≤ −3

R(3)(x,x′) = x1−x2≤−6 ∧ x1−x3≤1 ∧ x2−x3≤7 ∧ x1−x′
1≤−3 ∧ x1−x′

3 ≤ −8 ∧
x2−x′

3≤−2 ∧ x3−x′
3≤−9 ∧ x′

2−x2≤−6 ∧ x′
2−x3≤1 ∧ x′

2−x′
3≤−8

R(n≥4)(x,x′) = x1 − x2 ≤ −3− 3(n− 2) ∧ x1 − x3 ≤ −2− 3(n− 4) ∧ x2 − x3 ≤ 7 ∧
x1 − x′

1 ≤ −n ∧ x1 − x′
3 ≤ −14− 6(n− 4) ∧ x2 − x′

3 ≤ 1− 3(n− 2) ∧
x3 − x′

3 ≤ −3n ∧ x′
2 − x2 ≤ −2n ∧ x′

2 − x3 ≤ 3− 2(n− 2) ∧
x′

2 − x′
3 ≤ −3− 5(n− 2) �

3 If mink{x � y} = −∞ the constraint is logically equivalent to false, and if min{x �

y} =∞ it is logically equivalent to true.

344 M. Bozga, C. Ĝırlea, and R. Iosif

3 Octagonal Constraints

This section is dedicated to octagonal constraints. We provide preliminary results
that are needed to define transitive closures of octagonal relations, in the next
section.

Definition 7. Let x = (x1, x2, ..., xn) be a set of variables ranging over Z. Then
a formula φ(x) is an octagonal constraint if it is equivalent to a finite conjunction
of terms of the form ±xi±xj ≤ αi,j , 2xi ≤ βi, or −2xi ≤ δi, where αi,j , βi, δi ∈ Z
and i �= j, 1 ≤ i, j ≤ n.

The name octagon comes from the fact that, in two dimensions, these constraints
can be graphically represented by polyhedra with at most eight edges. We repre-
sent octagons using the set of variables y = (y1, y2, . . . , y2n), with the convention
that y2i−1 stands for xi and y2i for −xi, respectively. For instance, the octagonal
constraint x1 + x2 = 3 is represented as y1 − y4 ≤ 3 ∧ y2 − y3 ≤ −3.

If we denote by φ = φ[y1/x1, y2/ − x1, . . . , y2n−1/xn, y2n/ − xn], we obtain
the following valid entailment: φ(x) → (∃y2, y4, . . . , y2n.φ)[x1/y1, . . . , xn/y2n−1].
Moreover φ(x) ↔ (∃y2, y4, . . . , y2n.φ∧∧n

i=1 y2i−1+y2i = 0)[x1/y1, . . . , xn/y2n−1].
To handle the y variables in the following, we define ī = i−1, if i is even, and

ī = i + 1 if i is odd. Obviously, we have ¯̄i = i, for all i ∈ Z, i ≥ 0. The following
definition extends the matrix representation from difference bound constraints
to octagons:

Definition 8. Let x = (x1, x2, ..., xn) be a set of variables ranging over Z and
φ(x) be an octagonal constraint. Then an octagonal difference bound matrix or
octagonal DBM representing φ is an 2n× 2n matrix m such that:

(xi − xj ≤ αi,j) ∈ AP (φ) ⇐⇒ m2i−1,2j−1 = m2j,2i = αi,j

(−xi − xj ≤ αi,j) ∈ AP (φ) ⇐⇒ m2i,2j−1 = m2j,2i−1 = αi,j

(−xi + xj ≤ αi,j) ∈ AP (φ) ⇐⇒ m2i,2j = m2j−1,2i−1 = αi,j

(xi + xj ≤ αi,j) ∈ AP (φ) ⇐⇒ m2i−1,2j = m2j−1,2i = αi,j

(2xi ≤ βi) ∈ AP (φ) ⇐⇒ m2i−1,2i = βi

(−2xi ≤ δi) ∈ AP (φ) ⇐⇒ m2i,2i−1 = δi

A 2n × 2n octagonal DBM m is said to be coherent if and only if mi,j = mj̄,̄i,
for all 1 ≤ i, j ≤ 2n. This property is needed since any constraint xi − xj ≤ α,
1 ≤ i, j ≤ n can be represented as both y2i−1 − y2j−1 ≤ α and y2j − y2i ≤ α. If
m is coherent, we denote by

γOct(m) = {(v1, v2, ..., vn) ∈ Zn | (v1,−v1, v2,−v2, ..., vn,−vn) ∈ γ(m)}

the set of concretizations, i.e. the set of models of the octagonal constraint rep-
resented by m. Also, m is said to be consistent if γOct(m) �= ∅, and inconsistent
otherwise. The octagonal graph of an octagonal constraint φ(x), represented as
a difference bound constraint φ(y) with DBM m, has vertices y, and an arc
labeled by mi,j between yi and yj if and only if mi,j <∞, 1 ≤ i, j ≤ 2n.

Iterating Octagons 345

Definition 9. A consistent coherent 2n× 2n DBM m in Z is said to be tightly
closed if and only if the following hold:

1. mi,i = 0 ∀1 ≤ i ≤ 2n
2. mi,̄i is even ∀1 ≤ i ≤ 2n
3. mi,j ≤ mi,k + mk,j ∀1 ≤ i, j, k ≤ 2n
4. mi,j ≤ (mi,̄i + mj̄,j)/2 ∀1 ≤ i, j ≤ 2n

The intuition behind the last point is the following: since yi − yī ≤ mi,̄i and
yj̄ − yj ≤ mj̄,j and yi = −yī, yj = −yj̄ if we interpret the DBM m as an
octagonal constraint, we have that yi ≤ +mi,̄i

2 , and −yj ≤ +mj̄,j

2 ,, hence yi−yj ≤
+mi,̄i

2 ,+ +mj̄,j

2 ,. Therefore, the tightening of an octagonal DBM has to come up
with values for mi,j that are smaller than +mi,̄i

2 ,+ +mj̄,j

2 ,, for all 1 ≤ i, j ≤ 2n.
The tight closure of a 2n × 2n octagonal DBM m is an octagonal DBM m∗

t

such that γOct(m) = γOct(m∗
t), and m∗

t is tightly closed. By Theorem 7 in [15],
we know that the tight closure of a consistent octagonal DBM exists and is
unique.

We now characterize the consistency of octagonal constraints using their DBM
representations. The following result, proved in [2], is crucial for the develop-
ments of the next section, therefore we cite (a slightly modified version of) it
here:

Theorem 1 ([2]). Let m be a 2n×2n octagonal DBM consistent and coherent,

and let m∗ be its closure. Suppose that
⌊

m∗
i,̄i

2

⌋
+
⌊

m∗
ī,i

2

⌋
≥ 0, for all 1 ≤ i ≤ 2n.

Then γOct(m) �= ∅ and the DBM mT defined as:

mT
i,j = min

{
m∗

i,j ,

⌊
m∗

i,̄i

2

⌋
+
⌊
m∗

j̄,j

2

⌋}
for all 1 ≤ i, j ≤ 2n, is the tight closure of m.

It follows immediately that an octagonal constraint is consistent if and only if
(1) its constraint graph representation does not contain negative weight cycles
and moreover, (2) if the sum between the halved weights of the minimal paths
from any node xi to xī, and from xī and xi is positive. Notice that the lack of
negative weight cycles alone is not enough, as shown by the following example.

Example 2. Let φ(x, y, z, x′, y′, z′) = (x − y′ ≤ 1) ∧ (y′ + x ≤ −2) ∧ (−x + z′ ≤
1) ∧ (−z′ − x ≤ 0) be an octagonal constraint on integer variables x, y, z and
x′, y′, z′. The constraint is inconsistent since it implies (−1 ≤ 2x ≤ −1) and thus
has no integer solution. However, its corresponding octagonal DBM does not
contain negative weight cycles. The tightening step, i.e. replacing each element
mīi with 2

⌊miī

2

⌋
, exhibits two negative weight cycles, between +x and −x, and

between +z′ and −z′. ��
We are now ready to give the result of existential quantification over variables
occurring within octagons. Namely, we prove that, if φ(x1, . . . , xn) is an octag-
onal constraint, the formula ∃xk.φ, for some 1 ≤ k ≤ n is again an octagonal

346 M. Bozga, C. Ĝırlea, and R. Iosif

constraint, and its representation is effectively computable from the constraint
graph of φ.

In the following, we assume w.l.o.g. that k = n (if this is not the case, we
proceed to reindexing variables). From now on assume that φ(x1, . . . , xn) is
consistent, and let m be its 2n× 2n tightly closed coherent octagonal DBM. We
denote by β(m) the 2n− 2× 2n− 2 matrix from which the 2n− 1 and 2n lines
and columns have been eliminated. Notice that these correspond to the xn and
−xn terms, respectively.

Lemma 1. Let m ∈ Z2n×2n be the coherent and tightly closed difference bound
matrix for φ(x1, . . . , xn). Then β(m) is also coherent and tightly closed.

The following theorem proves that octagons are closed under existential quan-
tification.

Theorem 2. Let x = (x1, x2, . . . , xn) be a set of variables ranging over Z, φ(x)
a consistent octagonal constraint and m the corresponding 2n × 2n octagonal
DBM. Then formula ∃xk.φ(x) is equivalent to erasing vertices y2k and y2k−1
together with the incident arcs from the graph G(m∗

t). Moreover, the resulting
graph is also coherent and tightly closed.

4 Octagonal Relations

This section is dedicated to our main result, the definition of the transitive
closure of an octagonal relation in Presburger arithmetic. An octagonal relation
is defined in a similar way to a difference bound relation.

Definition 10. Let x = (x1, x2, . . . , xn), x′ = (x′
1, x

′
2, . . . , x

′
n) be sets of vari-

ables ranging over Z. Then an octagonal relation R(x,x′) is a relation that can be
written as a finite conjunction of terms of the form ±xi ± xj ≤ ai,j,±x′

i ± xj ≤
bi,j, ±xi ± x′

j ≤ ci,j , ±x′
i ± x′

j ≤ di,j , ±2xi ≤ ei,j or ±2x′
i ≤ fi,j, where

ai,j , bi,j , ci,j , di,j , ei,j , fi,j ∈ Z and 1 ≤ i, j ≤ n, i �= j.

The DBM and graph representation of an octagonal relation are defined as in
the previous case of difference bound relations. For the rest of this section, let
R(x,x′) be an octagonal relation and R(y,y′) be its difference bound represen-
tation. Let G be the graph of R, R

k
be the k-th iteration of R, mk be its DBM,

and Gk be the graph corresponding to R
k
, obtained by connecting k copies of

G. The formal definition of Gk is similar to Definition 6.
In order to compute Rk, we need two ingredients. First, we need to check for

consistency of the unfolded relation, that is we need to check that γOct(mk) �= ∅.
Second, we need to obtain the strongest octagonal constraints between y(0) and
y(k) in Gk. By Theorem 2, all intermediate vertices y(l), 0 < l < k can be
eliminated from Gk, and the result is a tightly closed octagonal graph, whose
interpretation is equivalent to Rk.

By Theorem 1, both points require the computation of the values (mk
∗)

i(l),i(l)

and (mk
∗)

i(l),i(l)
, for all 1 ≤ i ≤ 2n and 0 ≤ l ≤ k, where the index i(l) refers to

Iterating Octagons 347

0 1
l k − 1

i

ī

i1

.....

im−2

im−1

k

Gl−1 Gk−l−1

i2

Fig. 2. Computing paths of weight (mk
∗)

i(l),i(l)

the variable y
(l)
i in the DBM representation of R(y,y′). But these values can now

be defined by Presburger formulae, using the results from [7,6]. To understand
this point, consider the situation depicted in Figure 2.

Assume in the following that Gk has no cycles of negative weight. The absence
of negative cycles can be checked a-priori using e.g. the method in [6]. Since we
are aiming at computing minimal weight paths, it is sufficient to consider acyclic
paths only4. For a fixed 0 < l < k, an acyclic path between the nodes yi

(l) and
yī

(l), for some 1 ≤ i ≤ 2n, can be decomposed in at most 2n−1 segments starting
and ending in y(l), but not intersecting with y(l), other than in the beginning
and in the end. Moreover, if the path considered is of minimal weight, these
segments are of minimal weight as well.

Let 1 ≤ i = i0, i1, . . . , im = ī ≤ 2n, be a set of pairwise distinct indices, such
that

(m∗
k)

i(l),i(l)
=

m−1∑
j=0

(m∗
k)

i
(l)
j ,i

(l)
j+1

As in Figure 2, several of the paths y
(l)
i � y

(l)
i1

, y
(l)
i1

� y
(l)
i2

, . . . , y
(l)
im−1

� y
(l)
ī

will contain only nodes from the set y(≤l), whereas the rest will contain only
nodes from the set y(≥l). Notice that, the paths from y(≤l) connect the terminal
nodes of Gl−1, whereas the paths from y(≥l) connect the initial nodes of Gk−l−1.
Therefore, we have:

– (m∗
k)

i
(l)
j ,i

(l)
j+1

= minl−1{y(l)
ij

� y
(l)
ij+1

}, if y
(l)
ij

� y
(l)
ij+1

belongs to y(≤l), and

– (m∗
k)

i
(l)
j ,i

(l)
j+1

= mink−l−1{y(0)
ij

� y
(0)
ij+1
}, if y

(l)
ij

� y
(l)
ij+1

belongs to y(≥l).

4 If a path has a cycle of a positive weight, it cannot be minimal.

348 M. Bozga, C. Ĝırlea, and R. Iosif

But since the minj{x � y} functions are definable in Presburger arithmetic
[7,6], we obtain that (m∗

k)i,̄i are Presburger definable as well. Since moreover,
integer division can be defined in Presburger as⌊u

2

⌋
= v ⇐⇒ 2v ≤ u ≤ 2v + 1

it is possible to encode the consistency check of Theorem 1 by a Presburger
formula, and effectively perform the check required by Theorem 1:∧

1 ≤ i ≤ 2n
0 ≤ l ≤ k

⌊
m∗

i(l),i(l)

2

⌋
+

⌊
m∗

i(l),i(l)

2

⌋
≥ 0

The formula used to check consistency of R(x,x′)k, k≥0 is of sizeO(22n log 2n),
where n is the number of variables in x. For more details, the interested reader
is pointed to [4].

After quantifier elimination, the strongest octagonal relations are obtained by
taking the restriction of the tight closure of mk to y(0) and y(k), according to
Theorem 1 and Theorem 2:

yi
(0) − yj

(k) ≤ (m∗
kt)i(0),j(k) = min

(
(m∗

kt)i(0),j(k) ,

$
(m∗

kt)i(0),i(0)

2

%
+

$
(m∗

kt)j(k),j(k)

2

%)

yi
(k) − yj

(0) ≤ (m∗
kt)i(k),j(0) = min

(
(m∗

kt)i(k),j(0) ,

$
(m∗

kt)i(k),i(k)

2

%
+

$
(m∗

kt)j(0),j(0)

2

%)

yi
(0) − yj

(0) ≤ (m∗
kt)i(0),j(0) = min

(
(m∗

kt)i(0),j(0) ,

$
(m∗

kt)i(0),i(0)

2

%
+

$
(m∗

kt)j(0),j(0)

2

%)

yi
(k) − yj

(k) ≤ (m∗
kt)i(k),j(k) = min

(
(m∗

kt)i(k),j(k) ,

$
(m∗

kt)i(k),i(k)

2

%
+

$
(m∗

kt)j(k),j(k)

2

%)

Since we showed that all weights of the form m∗
i(l),i(l)

are definable in Pres-

burger arithmetic, it follows that Rk is also Presburger definable. Consequently,
the transitive closure of R is the Presburger formula ∃k.Rk, leading to the fol-
lowing theorem:

Theorem 3. The transitive closure of an integer octagonal relation is Pres-
burger definable.

Example 3. Let R(x,x′) be the following octagonal relation, where x = {x1, x2}

R(x,x′) = x1 + x2 ≤ 5 ∧ x′
1 − x1 ≤ −2 ∧ x′

2 − x2 ≤ −3

Figure 3 shows the graph representation of Rk for k = 1, 2, 3, The n-step
closure is:

Rn(x,x′) = x1 + x2 ≤ 5 ∧ x′
1 − x1 ≤ −2n ∧ x′

2 − x2 ≤ −3n∧
x1 + x′

2 ≤ 5− 3n ∧ x2 + x′
1 ≤ 5− 2n ∧ x′

1 + x′
2 ≤ 5− 5n ��

Iterating Octagons 349

. . .

. . .

. . .

. . .y1

y2

y3

y4

−2 −2 −2 −2 −2

−2−2−2−2−2

−3 −3 −3 −3 −3

−3−3−3−3−3

5 5 5 5 5 555 5 5 5 5

Fig. 3. Graph representation of R
k
, k = 1, 2, 3, . . .

5 Implementation and Experience

We have implemented the method for computing transitive closures of octagonal
relations in a tool for the analysis of counter automata, that we are currently

Table 1. Experimental results

R Rn time (ms)
−check +check

x1 − x2 ≤ 0
x2 − x3 ≤ 7
x1 − x′

1 ≤ −1
x3 − x′

3 ≤ −3
x′

2 − x2 ≤ −2

x1 − x2 ≤ 3− 3n
x1 − x3 ≤ 10− 3n
x2 − x3 ≤ 7
x1 − x′

1 ≤ −n
x1 − x′

3 ≤ 10− 6n
x2 − x′

3 ≤ 7− 3n
x3 − x′

3 ≤ −3n
x′

2 − x2 ≤ −2n
x′

2 − x3 ≤ 7− 2n
x′

2 − x′
3 ≤ 7− 5n

383

x1 + x′
2 ≤ −1

−x2 − x′
1 ≤ −2

n ≡2 0 ⇒ x1 − x′
1 ≤ −3n/2

n ≡2 0 ⇒ x′
2 − x2 ≤ −3n/2

n ≡2 1 ⇒ x1 + x′
2 ≤ −1− 3(n− 1)/2

n ≡2 1 ⇒ −x2 − x′
1 ≤ −2− 3(n− 1)/2

75 116

x1 − x′
1 ≤ 0

x1 + x′
2 ≤ −1

−x2 − x′
1 ≤ −2

n ≡2 0 ⇒ x1 − x′
1 ≤ −3n/2

n ≡2 1 ⇒ x1 − x′
1 ≤ −3(n− 1)/2

n ≡2 0 ⇒ x′
2 − x2 ≤ −3n/2

n ≡2 1 ∧ n ≥ 3 ⇒ x′
2 − x2 ≤ −3− 3(n− 3)/2

n ≡2 0 ∧ n ≥ 2 ⇒ x1 + x′
2 ≤ −1− 3(n− 2)/2

n ≡2 1 ⇒ x1 + x′
2 ≤ −1− 3(n− 1)/2

n ≡2 0 ∧ n ≥ 2 ⇒ −x2 − x′
1 ≤ −2− 3(n− 2)/2

n ≡2 1 ⇒ −x2 − x′
1 ≤ −2− 3(n− 1)/2

81 124

x1 + x2 ≤ 5
x′

1 − x1 ≤ −2
x′

2 − x2 ≤ −3

x1 + x2 ≤ 5
x′

1 − x1 ≤ −2n
x′

2 − x2 ≤ −3n
x1 + x′

2 ≤ 5− 3n
x2 + x′

1 ≤ 5− 2n
x′

1 + x′
2 ≤ 5− 5n

11686 38729

350 M. Bozga, C. Ĝırlea, and R. Iosif

developing. Table 1 shows several octagonal relations (first column), the closed
form of their iteration (second column), the execution times (in milliseconds)
needed to compute the closed forms without consistency checks (third column),
and with consistency checks (fourth column). Notice that the first relation is
the difference bound relation example from Section 2, for which no consistency
check is needed.

The tool, called FLATA, is implemented in Java(TM), and it is currently
available at [10]. The execution times from Table 1 are relative to a Intel(R)

Xeon(TM) CPU 3.00GHz equipped with 1 Gb of RAM. As an approximate upper
bound, we can in principle handle difference bound relations on ten counters,
and/or octagons on five counters, within reasonable execution times (≈ 10 min).

The fourth example from Table 1 takes significantly more time than the pre-
vious ones. This happens because in the pre-processing step we need to replace
x1 + x2 ≤ 5 with x1 − x′

3 ≤ 5 ∧ x′
3 + x2 ≤ 0, where x3 is a fresh variable, thus

having to deal with a DBM relation with 6 counters.

6 Conclusions

We have considered the problem of computing transitive closures of octagonal
relations, which are finite conjunctions of atomic formulae of the form±x±y ≤ c,
where x and y are possibly primed integer variables. We show that the k-th itera-
tion of such a relation has a Presburger definable closed form. As a consequence,
the transitive closure is also Presburger definable. This result enlarges the class
of non-deterministic counter automata for which the reachability problem is de-
cidable, to counter automata with octagonal transition relations. This result is
expected to have an impact in the fields of software verification, as abstract mod-
els of software systems are described using octagons. We have implemented our
method in a tool for the analysis of counter automata, and report on a number
of experiments.

References

1. Bagnara, R.: Data-Flow Analysis for Constraint Logic-Based Languages. Ph. D.
Thesis, Dipartimento di Informatica, Università di Pisa (1997)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: An improved tight closure algorithm for in-
teger octagonal constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI
2008. LNCS, vol. 4905, pp. 8–21. Springer, Heidelberg (2008)

3. Boigelot, B.: On iterating linear transformations over recognizable sets of integers.
TCS 309(2), 413–468 (2003)

4. Bozga, M., Girlea, C., Iosif, R.: Iterating octagons. TR VERIMAG (2008)
5. Bozga, M., Habermehl, P., Iosif, R., Vojnar, T.: A logic of singly indexed arrays.

In: LPAR 2008. LNCS(LNAI), vol. 5330, pp. 558–573. Springer, Heidelberg (2008)
6. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi,

M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
577–588. Springer, Heidelberg (2006)

Iterating Octagons 351

7. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer,
Heidelberg (1998)

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84–97. ACM Press, New York (1978)

9. Finkel, A., Leroux, J.: How to compose presburger-accelerations: Applications to
broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS,
vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

10. http://www-verimag.imag.fr/~async/flata/flata.html

11. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays?
In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 474–489. Springer,
Heidelberg (2008)

12. Harvey, W., Stuckey, P.: A unit two variable per inequality integer constraint solver
for constraint logic programming. In: Australian Computer Science Conference, pp.
102–111 (1997)

13. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM 25(1), 116–133 (1978)

14. Leroux, J., Sutre, G.: Flat counter automata almost everywhere? In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

15. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

16. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

17. Presburger, M.: Über die Vollstandigkeit eines gewissen Systems der Arithmetik.
In: Comptes rendus du I Congrés des Pays Slaves, Warsaw (1929)

18. Reutenauer, C.: Aspects Mathématiques des Réseaux de Petri. Collection Études
et Recherches en Informatique. Masson (1989)

http://www-verimag.imag.fr/~async/flata/flata.html

Verifying Reference Counting Implementations�

Michael Emmi1, Ranjit Jhala2, Eddie Kohler1, and Rupak Majumdar1

1 University of California, Los Angeles
{mje,kohler,rupak}@cs.ucla.edu

2 University of California, San Diego
jhala@cs.ucsd.edu

Abstract. Reference counting is a widely-used resource management idiom
which maintains a count of references to each resource by incrementing the count
upon an acquisition, and decrementing upon a release; resources whose counts
fall to zero may be recycled. We present an algorithm to verify the correctness of
reference counting with minimal user interaction. Our algorithm performs com-
positional verification through the combination of symbolic temporal case split-
ting and predicate abstraction-based reachability. Temporal case splitting reduces
the verification of an unbounded number of processes and resources to verifi-
cation of a finite number through the use of Skolem variables. The finite state
instances are discharged by symbolic model checking, with an auxiliary invariant
correlating reference counts with the number of held references. We have imple-
mented our algorithm in Referee, a reference counting analysis tool for C pro-
grams, and applied Referee to two real programs: the memory allocator of an OS
kernel and the file interface of the Yaffs file system. In both cases our algorithm
proves correct the use of reference counts in less than one minute.

1 Introduction

Reference counting is a widely-used resource management idiom where the references
to each resource unit (e.g., memory cell, file handle, device structure) are counted. The
programmer increments the count when acquiring a resource and decrements it when
releasing. A resource may be recycled when its reference count reaches zero.

Despite its ubiquity, reference counting is difficult to implement correctly. Ensuring
a resource is not accessed after its count reaches zero requires precisely reasoning about
shared heap objects in concurrent programs with a statically unknown number of shar-
ers. In the most benign case, errors in reference counting cause resource leaks: when the
last reference to an object is removed but the reference count is not decremented to zero.
More dangerous errors can allow unprivileged read or write access to critical regions of
memory that have been inappropriately reclaimed and recycled, possibly compromising
sensitive information.

We show how predicate-abstraction based software model checking can be extended
with compositional reasoning techniques to enable the static verification of the correct-
ness of reference counting implementations (i.e., that accessed objects have positive
counts). The problem is difficult as such programs are unbounded in several dimensions;

� This research was sponsored in part by the NSF grants CCF-0546170 and CCF-0702743.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 352–367, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Verifying Reference Counting Implementations 353

first, an unbounded number of objects may be dynamically allocated, second, each unit
may be accessed concurrently by an unbounded number of sharers, and hence, third,
the reference count for each individual object may grow without bound. These compli-
cations prohibit the direct application of finite-state techniques such as model checking,
to verify reference counting. Furthermore, standard program analysis abstractions that
summarize an unbounded number of dynamic objects (e.g., clients, resources) are too
imprecise since they do not count the objects they summarize.

Our approach for verifying reference counting implementations follows the follow-
ing strategy. As a first step, we perform compositional reasoning to reduce the verifica-
tion problem to a number of finite-state verification problems whose combined validity
implies the original program’s [22]. One possible verification strategy is to tag each re-
source with a handle, and ensure that clients only access resources to which they have
handles. Correctness then follows separately from the correctness of handling each re-
source, and each handling process. This first step is called temporal case splitting: we
check validity for a particular tracked resource and a particular accessee in an environ-
ment that abstracts all other resources and accessors.

Temporal case splitting trades the original complex verification problem for an infi-
nite number of separate simpler verification obligations. However, using symmetry, we
observe that discharging the proof obligation for an arbitrary symbolically identified
resource, and an arbitrary symbolically identified client, implies discharging each of
the infinitely many obligations induced by case splitting. Thus, as a second step, we
use Skolem variables to name single, but arbitrary, resources and clients. The Skolem
variables induce a natural finite abstraction of the system which distinguishes only the
fixed resources bound to Skolem variables (and abstracts all other resources). Similarly,
instead of tracking every client, the abstraction tracks only the fixed clients bound to
Skolem variables, abstracting the effects of other clients. Skolemization enables strong
updates on the tracked resources: we can follow each increment or decrement to the
tracked resource precisely; all updates to the other resources are weak: their effects are
unknown.

Unfortunately, the strategies given so far are still insufficient; we must also deal with
unbounded reference count values. On the one hand, abstracting a counter’s increments
and decrements by untracked clients results in a loss of the precise counter value, and
a proof is generally not possible. On the other hand, the abstract domain remains in-
finite (with a different value for each counter value) if we track each of these writes
precisely. To solve this problem we observe that correctness follows from knowing a
unit’s count is positive if and only if it is referenced by some client. To prove this, as
a third step, we introduce a reference predicate, specifying the meaning of referencing
a unit, and automatically insert an auxiliary variable whose value, by construction (i.e.
instrumentation) equals the number of client mappings satisfying the reference pred-
icate. An auxiliary invariant enforces a positive valued auxiliary counter whenever a
client satisfies the reference predicate.

With these steps, we reduce proving an object’s real reference count positive to
checking that (1) the tracked client satisfies the reference predicate, and (2) the real ref-
erence count equals the auxiliary count. As (1) follows by precisely tracking the truth
value of the reference predicate for the tracked client, and (2) follows from reasoning

354 M. Emmi et al.

about the equality of program variables, the resulting obligation can be discharged using
well-established techniques: either through specially designed abstract domains [6] that
can prove linear relationships among variables, or, as we implement, through predicate
abstraction and counterexample-guided refinement [11,5,1,13] based model checking.
The meta-argument used for the auxiliary invariant is manually proved sound outside
of the program analysis, and can be reused to verify any program that implements ref-
erence counting, once the reference predicate is specified. The meta-argument used for
the auxiliary invariant is manually proved sound outside of the program analysis, and
can be instantiated with different reference predicates to verify any program that imple-
ments reference counting. Moreover, the soundness of our approach is independent of
the choice of reference predicate: an invalid predicate yields a failed proof, since either
(1) or (2) will fail to hold.

In summary, our analysis combines four ingredients:

Temporal case splitting to reduce the (infinite state) verification goal over infinitely
many objects to infinitely many (finite state) subgoals over individual objects,

Skolemization to reduce infinitely many verification subgoals over different objects,
into a single verification goal over an arbitrary object,

Auxiliary state to provide a finite representation of unbounded execution history
i.e., the unbounded reference count for a given object, and

Model checking to discharge the finite state verification goals induced by the use of
temporal case splitting, skolemization and auxiliary state.

While the general techniques have been known [22], we have not seen them successfully
applied in software model checking so far, and believe that our implementation is an
interesting application of compositional verification to a relevant systems problem.

We have implemented these ideas in a static analyzer for verifying sound reference
counting in C programs. Given a program, and a user-specified set of Skolem variables,
our tool instruments the program with auxiliary state and auxiliary invariant instantia-
tion, and performs model checking on the instrumented program abstracted by Skolem-
and predicate-abstraction. The model checking engine of our tool is based on the
software model checker BLAST [13], and uses an iterative refinement of the abstract
transition relation based on counterexample traces [12,15]. Our technique is not com-
pletely automatic, and requires that the user identify reference counted datatypes as
well as which variables to perform case-splits on. In our experiments, we have found
the identification of reference counted datatypes and case-split variables can be per-
formed with a limited knowledge of the program. Our analysis relieves the programmer
of the difficult burden of providing precise inductive assertions at function and loop
boundaries, a task which is readily performed by the model checker.

We have applied our tool to two case studies: the virtual memory subsystem of the
JOS operating system kernel [17], and the file handle interface routines of the YAFFS
file system [23]. In each case, the soundness argument depends on precise reasoning
about arbitrarily many clients acquiring and releasing resources. These modules (each
of a few hundred lines) encapsulate reference counting; sound counting within them
implies sound counting for the entire systems. Each example can be verified by our tool
within a minute.

Verifying Reference Counting Implementations 355

2 Verification Technique

We now formalize our verification technique and illustrate with an example.

Preliminaries: Programs and Safety. For our formal presentation, we assume an
abstract representation of programs by transition systems [21]. A program P =
〈X,L, �0, R〉 consists of a set X of variables, a set L of control locations, an initial
location �0 ∈ L, and a transition relation R. Variables in X have values over integers or
functions. (Functions are used to model (unbounded) arrays by mapping natural num-
bers, i.e., the “indices”, to values.) A transition 〈�, ρ, �′〉 ∈ R is a move from control
location � to location �′, satisfying ρ, a constraint over free variables from X ∪ X ′.
The variables from X denote values at location �, and the variables from X ′ denote the
values of variables from X at location �′. The sets of locations and transitions naturally
define a directed graph, called the program’s control-flow graph (CFG).

A data state of the program P is a valuation of the variables from X ; the set of all
data states is denoted Σ. We use constraints to represent sets of data states. For a con-
straint ρ over X∪X ′ and a valuation 〈s, s′〉 ∈ Σ×Σ′, we write 〈s, s′〉 � ρ if the valua-
tion satisfies the constraint ρ. A state 〈�, s〉 consists of a location � ∈ L and a data state s.
A computation of the program P is a sequence of states 〈�0, s0〉, 〈�1, s1〉, . . . , 〈�k, sk〉 ∈
(L × Σ)∗, where �0 is the initial location and for each i ∈ {0, . . . , k − 1}, there is a
transition 〈�i, ρ, �i+1〉 ∈ R such that 〈si, si+1〉 � ρ. A data state s is reachable at loca-
tion � if 〈�, s〉 appears in some computation. A state 〈�, s〉 is reachable if the data state s
is reachable at location �. Let ϕ be a set of states. A program P is safe w.r.t. ϕ iff all
reachable states of P are contained in ϕ.

Example. Figure 1 shows an abstraction of a shared memory system in which an
arbitrary number of processes (syntactically identified with pid) share an unbounded
number of resources, indexed by g, and reference counted by the array count. For read-
ability, we present programs in a C-like syntax instead of as tuples. All reference counts
are initially zero. Each process first chooses a resource (line 1), then acquires the re-
source while incrementing its reference count (line 2), performs some task, then re-
leases the resource while decrementing its reference count (line 5). We assume lines 2
and 5 execute atomically. Although implicit, the system may “recycle” a resource when
its reference count reaches 0; to ensure the system does not recycle live resources, we
seek to verify the validity of the assertion on line 3. The simple reference count exam-
ple is “obviously correct”. However, consider a modified version where the acquire of
the resource and the increment of the reference count are not performed atomically, but
in distinct steps. This implementation is buggy: between the resource acquisition and
the reference count increment, the resource can be freed, if another process happens to
hold the only other reference to the same resource, and calls decref. It follows that the
incref operation can read and write on freed (or worse, reallocated) memory. Similar
bugs have been found in Windows device drivers [24].

For this simple example the assertion always holds because the current process at
line 3 holds a reference to resource g, and hence count[g]≥1. The assertion is an in-
stance of a safety property, and can be checked by ensuring that no reachable program
state violates it. Unfortunately, there are infinitely many reachable states of the system

356 M. Emmi et al.

Initially

c o u n t [g] = 0 f o r a l l g

Process pid

1 choose g ;

2 r e f [p i d] ← g ; i n c r e f c o u n t [g] ;

3 a s s e r t (c o u n t [g] > 0) ;

4 do work

5 r e f [p i d] ← −1; d e c r e f c o u n t [g] ;

Fig. 1. Abstract reference counting

1 atomic {
2 i t em ← acquire (0) ;
3 i n c r e f (i t em) ;
4 }
5 repea t {
6 choose g ;
7 atomic {
8 new_item ← acquire (g) ;
9 d e c r e f (i t em) ;

10 i t em ← new_item ;
11 i n c r e f (i t em) ;
12 }
13 }

Fig. 2. Buggy reference counting

Initially

c o u n t [g] = 0 f o r a l l g
xΠ [g] = 0 f o r a l l g

Process pid

1 choose g ;

2 r e f [p i d] ← g ; i n c r e f c o u n t [g] ;

upda te_aux (xΠ [g] , r e f [p i d]= g)

3 a s s e r t (p i d =P ⇒ g=G ⇒ c o u n t [g] >0) ;

4 do work ; upda te_aux (xΠ [g] , r e f [p i d]= g)

5 r e f [p i d] ← −1; d e c r e f c o u n t [g] ;

upda te_aux (xΠ [g] , r e f [p i d]= g)

Fig. 3. Abstract reference counting, after
Skolemization and Auxiliary Instrumenta-
tion. The programmer manually identifies
the Skolem variables P and G. The system
automatically inserts the auxiliary variables and
instrumentation.

as the set of resources, processes, and counter values are all unbounded. Hence we must
perform reachability analysis over an abstraction of the system.

Here the usual abstraction techniques for arrays [1,13], such as merging all elements
into a single element, are too imprecise; they prohibit the analysis from performing
strong updates (i.e., precisely tracking information about a resource), and from distin-
guishing individual resources. Similarly, to prove the assertion we would require an
abstract domain that could distinguish the infinitely many states where count[g] has
different values. For example, a predicate abstraction [11] based domain would have to
track an unbounded number of predicates of the form count[g]=n for each index g and
each integer value n that can be stored in count[g].

Step 1: Temporal Case Splitting
Temporal case splitting [22] is a proof technique that decomposes the proof of a pro-
gram property into sub-proofs, one for each value in the domain of a particular variable.
It is based on the following observation.

Lemma 1. (Case Splitting) Let x be a variable of program P , and ϕ a set of states.
Then P is safe w.r.t. ϕ iff for each c in the domain of x, the program P is safe w.r.t.
(x = c) ⇒ ϕ.

Temporal case splitting can be nested: in order to check safety w.r.t. (x = i) ⇒ ϕ, we
can further case split on a second variable, and so on.

Verifying Reference Counting Implementations 357

Example. For the example of Figure 1, we may split the assertion on line 3 into an
infinite number of assertions assert (g=0⇒ count[g]>0), assert (g=1⇒ count[g]>0),
and so on, one for each resource. By the same reasoning, we can case
split further over the process identifier into an infinite number of assertions
assert (pid=0 ⇒ g=0⇒ count[g]>0), assert (pid=1 ⇒ g=0⇒ count[g]>0), and so
on, one for each process and resource pair. Temporal case splitting is sound in that
if each subgoal is true, then the original safety property is also true. However, by itself
it is not very useful, as it introduces an infinite number of sub-goals.

Step 2: Skolemization
Though case splitting introduces infinitely many sub-goals, the sub-goals are symmetric
as each process behaves in a manner similar to the others, and the resources are distinct
copies of the same entity. Instead of checking each concrete process and resource sepa-
rately, we can perform a single check for an arbitrary process and an arbitrary resource.
If we prove this goal, then the assertion is valid for all processes and all resources. To
name the arbitrary (but fixed) process and resource, require that the programmer iden-
tify Skolem variables. These are fresh variables, distinct from the original program vari-
ables, that are non-deterministically initialized with an arbitrary value from a possibly
unbounded range, and not modified subsequently.

Formally, we introduce Skolem variables as follows. Let P = 〈X,L, �0, R〉 be
a program, and let S be a set of Skolem variables disjoint from X . We denote by
P [S] = 〈X ∪ S,L, �0, R[S]〉 the program P augmented with Skolem variables S,
where 〈�, ρ′, �′〉 ∈ R[S] iff there is a transition 〈�, ρ, �′〉 ∈ R and ρ′ ≡ ρ∧∧s∈S s′ = s.
An extended data state is a valuation to X ∪ S, an extended state consists of a location
� and an extended data state. To distinguish states of P from states of P [S] (which
additionally contain valuations to the Skolem variables), we qualify states with the pro-
grams by writing P -state, or P [S]-state. By definition, the Skolem variables do not alter
the program’s behavior; they exist solely for the purpose of the proof and need not be
maintained at runtime.

Lemma 2. (Skolemization) Let x be a variable of program P , ϕ a set of P -states, S a
set of Skolem variables, and s ∈ S. P is safe w.r.t. ϕ iff P [S] is safe w.r.t. (x = s) ⇒ ϕ.

Proof. First of all, P is safe w.r.t ϕ iff P [S] is. By Lemma 1 P [S] is safe w.r.t. ϕ iff
P [S] is safe w.r.t. (x = c) ⇒ ϕ for each c in the domain of x. Since the set of states
(x = c) ⇒ ϕ is equal to (x = s ∧ s = c) ⇒ ϕ (s is not assigned to in P [S]), and
thus equal to (s = c) ⇒ (x = s) ⇒ ϕ, P [S] is safe w.r.t. ϕ iff P [S] is safe w.r.t.
(s = c)⇒ (x = s)⇒ ϕ for each c in the domain of x, and again by Lemma 1, iff P [S]
is safe w.r.t. (x = s)⇒ ϕ.

Example. For the program of Figure 1, we (manually) identify two Skolem variables
corresponding to the unbounded arrays of processes and resources: P corresponds to
an arbitrary process, and G corresponds to an arbitrary resource. Since G and P are
never assigned to (they do not even exist in the original program), the infinite number of
assertions assert (pid=i ⇒ g=j⇒ count[g] > 0), one for each i and j, are equivalent to

358 M. Emmi et al.

the single assertion assert (pid=P⇒ g=G⇒ count[g]>0), because G=0 ∨ G=1 ∨ · · ·,
and P=0 ∨ P=1 ∨ · · · are both valid formulæ.

The key benefit of the Skolem variables is that they induce a sound finite abstraction
on the state space. Instead of a possibly unbounded number of processes, we (strongly)
track the single process whose identifier is equal to P, and effectively merge all the other
processes (whose identifiers are different from P) into one abstract “summary” process.
Similarly, instead of an unbounded number of indices of the count array, we strongly
track the resource at index G, and merge the cells whose index is different from G into
a single summary cell. For example, using predicate abstraction, we would track the
predicate ref [P]=G, rather than ref [p1]=G, ref [p2]=G, . . . , effectively dividing these
process-specific facts into the fact at P, and those in any other untracked process.

Example. Consider the following C program:

1: for (i = 0; i < N; i++) a[i] = 0;
2: for (i = 0; i < N; i++) assert(a[i] == 0);

To verify the assert on Line 2, the analysis must infer that the loop on Line 1 initializes
all the cells with indices between 0 and N-1 with the value 0. Instead of reasoning about
an unbounded number of cells, suppose the programmer introduces a skolem variable
S, that represents an arbitrary index into the array. Case splitting w.r.t. S replaces the
assertion on Line 2 with assert(i==S => a[i]==0). That is, the verification is re-
duced to an assertion over the single array cell S and all others are ignored. Finally,
notice that predicate abstraction over predicates 0≤i, i<N, 0≤S, S<N, S<i, S=i, S>i,
and a[S]=0 suffices to prove the reduced assertion. Using these predicates, the analy-
sis infers that at Line 1, the invariant (a): (0≤S ∧ S<N ∧ S<i) ⇒ a[S]=0 holds, using
which it it infers that at Line 2, the invariant (b): (0≤S ∧ S<N) ⇒ a[S]=0 holds. Fi-
nally, it infers that at the assert, (0≤i ∧ i<N), which with (b) proves the assert. By the
choice of predicates, we made the analysis precisely track the cell indexed by S, while
merging (i.e., ignoring) the values of all other cells.

The choice of Skolems affects the precision but not the soundness of our technique. A
poor choice can yield an abstraction that is too coarse for verification. A simple heuristic
is to choose a Skolem for each unbounded object (e.g. processes, array indices).

Step 3: Auxiliary Variables and Invariants
We need one more step before applying model checking: strengthening the program
transition relation using auxiliary invariants.

Formally, let P = 〈X,L, �0, R〉 be a program, S a set of Skolem variables for
P , Y be a set of auxiliary variables disjoint from X ∪ S, and for each y ∈ Y , an
auxiliary update function φy mapping current and next values of X ∪ S and cur-
rent values of Y to a value in the domain of y. A monitored program P [S, Y, φ] =
〈X ∪ S ∪ Y, L, �0, R[S, Y]〉 has a transition relation R[S, Y] such that 〈�, ρ, �′〉 ∈ R[S]
iff 〈�, ρ′, �′〉 ∈ R[S, Y] where ρ′ ⇔ ρ ∧∧y∈Y y′ = φy(x, x′, s, s′, y). In other words,
the transition relation is extended by updating the auxiliary variables in Y according
to both the current and next values of variables in X ∪ S and the current values of
variables in Y (using the functions φy). Like Skolem variables, the values stored
in auxiliary variables do not alter program behavior: P is safe w.r.t. property ϕ iff
P [S, Y, φ] is.

Verifying Reference Counting Implementations 359

Intuitively, the auxiliary variables, also known as monitors [21], ghost variables, or
spec variables [22,8,2,18], are additional variables whose values depend on the program
state, but do not affect the values of other program variables. The auxiliary state is solely
a proof device (i.e., they are not maintained during program execution) and are used to
explicate implicit program invariants.

For program P = 〈X,L, �0, R〉 and predicate ψ over X ∪X ′, define the ψ-reduced
program Pψ = 〈X,L, �0, Rψ〉, where 〈�, ρ, �′〉 ∈ R iff 〈�, ρ ∧ ψ, �′〉 ∈ Rψ. An auxil-
iary invariant for P [S, Y, φ] is a predicate ψ over X ∪ S ∪ Y ∪X ′ ∪ S′ ∪ Y ′ such that
the transition relation of P [S, Y, φ] restricted to the reachable states is a subset of ψ.

Lemma 3. (Auxiliary Invariant) Let P be a program and ϕ a set of states of P . For
Skolem variables S, auxiliary variables Y , and auxiliary update functions φ, if ψ is an
auxiliary invariant for P [S, Y, φ] and P [S, Y, φ]ψ is safe w.r.t. ϕ, then P is safe w.r.t. ϕ.

Auxiliary Invariants via Reference Predicates. Even after Skolemization we are left
with verification obligations over unbounded state spaces, as the reference counts are
unbounded. To solve this problem, we introduce an auxiliary invariant relating a re-
source’s reference count with the number of references to it. A reference predicate is a
quantifier-free predicate Π over program variables, that is parameterized by two vari-
ables, a source i and target j. A reference predicate Π defines, for each source i, a
reference (target) set

Π(i) ·= {j | Π(i, j)}
For each reference predicate, we automatically add auxiliary variables that track the
cardinality of Π(i), by instrumenting the program with an unbounded auxiliary array
xΠ that maps the domain of sources to the domain of targets. Assume that: (A1) in the
initial state, the reference predicate is false for all sources and targets, and, (A2) each
transition affects only a finite, named set of sources and targets. The first assumption
is semantic, and depends on the choice of the reference predicate. The second assump-
tion can be syntactically enforced. Under these assumptions, we can automatically in-
strument the program with auxiliary transitions that (1) initialize xΠ [i] with 0, and,
(2) increment (resp. decrement) the auxiliary counter xΠ [i] whenever for some j, a
program transition turns Π(i, j) toggles from false to true (resp. from true to false).
This auxiliary instrumentation ensures “by construction” the invariant: xΠ [i] = |Π(i)|,
i.e., that xΠ [i] equals the cardinality of the reference target set Π(i). Finally, we instru-
ment the program (i.e., conjoin the set of reachable states) with the auxiliary invariant
Π(i, j)⇒ xΠ [i] > 0 for all syntactic sources and targets i and j. This invariant follows
from the meta-theorem that if for some i, j, the reference predicate Π(i, j) holds, then
the reference set Π(i) is non-empty, and hence its cardinality xΠ [i] is positive.

This strategy addresses the unboundedness of the reference counts as follows. First, it
uses a semantic notion of reference (the reference predicate) to instrument the program
with a “correct-by-construction” reference counter. Second, in the program reduced
w.r.t. the auxiliary invariant, we have replaced the global check that the implemented
reference count is positive with the local check that the implemented reference count
equals the auxiliary reference count. Though the auxiliary counter xΠ is an unbounded
array, we can apply case splitting and Skolemization to this array as with the original

360 M. Emmi et al.

program variables. Notice, that strategy only assumes the simple, enforceable, require-
ments A1, A2 about the reference counts and program. In particular, it does not assume
that the program performs correct reference counting.

Example. The reference relationship for the program in Figure 1 is captured by the
predicate:

Π(g, pid)
·=(ref[pid]=g)

which states that there is a reference to the source object g from a target process pid iff
ref[pid]=g. For this reference predicate, xΠ is the auxiliary correct-by-construction
reference count array such that xΠ[g] equals the number of processes that have a
reference to g. Our tool automatically instruments the program so that each element
of xΠ is initially 0. Further, transitions are added to increment (resp. decrement) an
element of xΠ whenever the resource corresponding to the element is acquired (resp.
released). This instrumentation is performed by the function update_aux in Figure 3,
which takes as input the counter xΠ[g] and the predicate ref[pid]=g and increments
(resp. decrements) the counter if the predicate toggles from false to true (resp. true to
false) in executing the transition. Figure 3 shows the program instrumented with the
case splits induced by the Skolem variables (line 3), the auxiliary variable xΠ , and
the auxiliary update function update_aux. Finally, our tool automatically strengthens
the program with the auxiliary invariant ref[pid]=g ⇒ xΠ[g]>0 that follows from
the instrumentation and the meta-theorem described above. Thus, our technique uses
the manually specified reference predicate to instrument the program with correct-by-
construction counters, following which the verification task is reduced to proving, that
for each g, we have count[g] = xΠ[g] (which, conjoined with the auxiliary invariant
proves the reference count assertion on at Line 3). Finally, note that via Skolemization,
the above reduces to proving count[G] = xΠ[G] for an arbitrary object G.

Step 4: Model Checking
Once we have introduced Skolem variables and auxiliary invariants, we can apply a soft-
ware model checker such as SLAM or BLAST to discharge the assertion. Algorithm 1
shows a worklist based abstract model checking algorithm using an auxiliary invariant.
Its soundness is standard. The procedure PredAbs on Line 8 computes an abstraction
of the concrete transition relation relative to an abstract domain (in our implementation,
predicate abstraction with transition refinement [11,13,15]). Notice that the abstraction
assumes that the auxiliary invariant holds along each transition. (Techniques to auto-
matically find appropriate predicates [5,12] are orthogonal, and can be combined with
our algorithm.)

Lemma 4. (Soundness) If Algorithm 1 returns SAFE and ψ is an auxiliary invariant of
P , then P is safe w.r.t. ϕ.

Example. In our example, the model checker runs a program consisting of an un-
bounded number of processes each executing the code, where each instruction in the
code (each line in the example) is considered atomic. Consider the predicates:

(a) pid=P, (b) g=G, (c) count[G]>0,
(d) ref[P]=G, (e) xΠ[G]=count[G], (f) count[G]≥0.

Verifying Reference Counting Implementations 361

Algorithm 1. Symbolic Model Checking
Input: Program P = 〈X, L, �0, R〉, States ϕ, Predicates Π , Auxiliary Invariant ψ
Result: SAFE or UNSAFE

Data: Queue worklist, Incremental per-location invariant η

worklist ← [〈�0, true〉];1

η ← λ�.false;2

while worklist is not empty do3

remove 〈�, ŝ〉 from worklist;4

if ŝ ⇒ η(�) is not valid then5

η ← η[� �→ ŝ ∨ η(�)];6

foreach 〈�, ρ, �′〉 ∈ R do7

add 〈�′, PredAbs(ŝ ∧ ρ ∧ ψ, Π)〉 to worklist;8

end9

end10

end11

if ∀�. η(�)⇒ ϕ(�) then return SAFE else return UNSAFE12

Predicates (a) and (b) allow us to strongly track facts of the “interesting” array indices.
(c) and (d) track whether the (arbitrary) process P references a resource with a positive
count. Predicate (e) tracks whether the auxiliary and actual counters agree on the ref-
erence counts, and (f) is needed to derive (c) when the counts is incremented. These
predicates are sufficient for our model checker to synthesize the inductive invariant

xΠ[G]=count[G] ∧ (ref[P]=G ⇒ count[G]>0)

describing an over-approximation of the reachable program states (Figure 4 shows this
calculation), which suffices to prove the case-split assertion at line 3 of Figure 3. Though
the first two predicates do not appear in the invariant, they are essential for its derivation
as they enable strong updates on the Skolemized cells of count, ref, and xΠ .

Temporal case splitting on the Skolem variables reduces the infinite number of pro-
cesses and resources to a finite set. Similarly, the auxiliary invariant and counter ensure
that we need only to track the relationship between the auxiliary and actual counters,
and whether the former is positive, instead of precisely tracking an unbounded counter.
It is the combination of these techniques that allows the model checker to prove such a
complex property of an unbounded system.

Example: Buggy Reference Counting. Figure 2 shows a reference count implemen-
tation that is contains a bug that arises from aliasing. The program is motivated by
an actual bug in an implementation of the Python language [28]. Each client works
atomically in a loop, acquiring a new resource and releasing the old resource in each
iteration. The error occurs when the old resource in item is the same as the new re-
source in new_item, and the resource has reference count of 1 (i.e., the client holds
the only reference to this resource). The decref on line 9 then decreases the reference
count to 0, and frees the resource. However, the client still holds a reference to the same
resource in new_item (from line 8), so the incref at line 11 erroneously writes to
freed memory, possibly corrupting it. Our tool does find an error trace for this buggy

362 M. Emmi et al.

location abstract states
scheduler true

1 a ā
2 ab ab̄ āb āb̄
3 abcd ab̄d̄ ābc āb̄
4 abcd ab̄d̄ ābc āb̄
5 abcd ab̄d̄ ābc āb̄

exit abd̄ ab̄d̄ āb āb̄

invariant: ef

Fig. 4. The reachable abstract program states of the program in Figure 3 at each program location
w.r.t. the predicates (a)–(f) given above. A string of (possibly barred) predicates indicates a partial
valuation where each non-barred predicate is true, each barred predicate is false, and each unmen-
tioned predicate may be either true or false. (Conceptually the partial valuation is a disjunction
of (total) valuations.) The predicates (e) and (f) hold universally, and the string ef is implic-
itly appended to each valuation. The scheduler is responsible for deciding which process pid
executes.

program. Furthermore, our technique is able to prove safe the correct version of the
program, where the reference count is incremented before the decrement on line 9.

Limitations. One limitation of our approach is that the Skolem variables necessary for
verification are not mechanically determined; this is left for the user of our analysis
tool. In our experience with reference counting we have found the number to be small
(one, or two, per structure) and easy to find, but the search for appropriate Skolems can
be hard in general. Second, our approach is constrained by the invariants that can be
expressed by the abstract domain, and the design of an appropriate domain can be hard
for complicated invariants, especially with rich quantifier structures. Our technique only
checks that when a resource is accessed, it has a positive reference count. This property
by itself does not guarantee the absence of memory leaks, for example, those caused by
cyclic structures of references that are not reachable from any program variable.

3 Case Studies

In addition to the simple examples from Section 2, we have applied our tool to two case
studies of reference counting in real systems code: a page allocator derived from the
JOS kernel [17], and the YAFFS file system [23].

We use a logical memory model: memory is represented as an unbounded array
Mem of elements large enough to hold any structure allocated in the program. Each
memory cell is annotated with a valid bit, initially each with value 0. Pointers are
modeled as indices to the Mem array, and index 0 denotes null. Our implementation
of malloc nondeterministically chooses an index i such that Mem[i].valid = 0,
sets Mem[i].valid to 1, and returns i. Our implementation of free(i) ensures that
Mem[i].valid = 1, and resets Mem[i].valid to 0.

We model concurrency by calling the top-level procedures, which are considered
atomic, inside of a loop which nondeterministically chooses a process/thread identifier
pid and a procedure proc and executes proc as pid.

Verifying Reference Counting Implementations 363

typedef struct env {
int env_mypp;
int env_pgdir[NVPAGES];
struct env *env_prev;
struct env *env_next;

} env_t;

int pages[NPPAGES];
int page_protected[NPPAGES];
env_t *envs = NULL;

Fig. 5. Environment data structures in JOS

int page_alloc(env_t *env, int vp) {
int pp = page_getfree();
if (pp < 0) return -1;
if (env->env_pgdir[vp] >= 0)

pages[env->env_pgdir[vp]]--;
env->env_pgdir[vp] = pp;
pages[pp]++;
return 0;

}
int page_unmap(env_t *env, int vp) {

if (env->env_pgdir[vp] >= 0) {
pages[env->env_pgdir[vp]]--;
env->env_pgdir[vp] = -1;

}
}
int page_map(env_t *srcenv, int srcvp,

env_t *dstenv, int dstvp) {
if (srcenv->env_pgdir[srcvp] < 0)

return -1;
pages[srcenv->env_pgdir[srcvp]]++;
if (dstenv->env_pgdir[dstvp] >= 0)

pages[dstenv->env_pgdir[dstvp]]--;
dstenv->env_pgdir[dstvp] =

srcenv->env_pgdir[srcvp];
return 0;

}

Fig. 6. Page directory manipulation in JOS.
page_getfree returns the index to an unused
page, if one is exists, and -1 otherwise.

env_t *env_alloc(void) {
env_t *env;
int i, env_pp = page_getfree();
if (env_pp < 0) return NULL;
env = (env_t *) malloc(sizeof(env_t));
env->env_mypp = env_pp;
for (i = 0; i < NVPAGES; i++)

env->env_pgdir[i] = -1;

/* put on list */
env->env_next = envs;
env->env_prev = NULL;
if (envs) envs->env_prev = env;
envs = env;
pages[env_pp]++;
page_protected[env_pp] = 1;
return env;

}

void env_free(env_t *env) {
int i;
for (i = 0; i < NVPAGES; i++)

if (env->env_pgdir[i] >= 0)
pages[env->env_pgdir[i]]--;

page_protected[env->env_mypp] = 0;
pages[env->env_mypp]--;

/* take off list */
if (env->env_next)

env->env_next->env_prev =
env->env_prev;

if (env->env_prev)
env->env_prev->env_next =

env->env_next;
else envs = env->env_next;
free(env);

}

Fig. 7. Environment (de)allocation in JOS

JOS Memory Mapping. In JOS [17], a simple operating system used as an educa-
tional aid, memory is organized as an array of physical pages, to which user processes
(or environments) hold virtual page mappings (see Figures 5–7). The environment struc-
ture (env_t) stores the index of a protected physical page (env_mypp), a virtual page
table (env_pgdir), and pointers used for the kernel’s doubly linked list of environ-
ments (env_prev, env_next). The pages array maintains the number of virtual page
mappings to each physical page, or 1 for protected pages (i.e., the env_mypp of some
environment, explicitly marked by the page_protected array). The kernel ensures
that an env_pgdir entry is not protected.

To verify that every live env_pgdir entry has a positive reference count we intro-
duce: a single physical page Skolem variable, one auxiliary counter variable for each
page, and an auxiliary invariant insisting mapped pages’ auxiliary counters are positive.
Model checking ensures the auxiliary counters are equal to JOS’s reference counters.

364 M. Emmi et al.

int yaffs_open(...) {
...
h = yaffsfs_GetHandlePointer(...);
obj = yaffsfs_FindObject(...);
...
h->obj = obj; obj->inUse++;
...

}

void yaffs_close(...) {
...
h = yaffsfs_GetHandlePointer(...);
if (h && h->inUse) {

h->obj->inUse--;
if (h->obj->inUse <= 0)

yaffs_DeleteFile(h->obj);
h->obj = 0;

}
}

Fig. 8. YAFFS reference counting, simplified

Given the Skolems and the auxiliary invariant, our tool proves the correct use of ref-
erence counts for any number of pages and environments. (Memory leak freedom is
proved by ensuring the values of the actual and auxiliary counters coincide.) The reach-
ability analysis requires 17 predicates and 29 seconds.

Yaffs File Object Management. The YAFFS log-structured filesystem for flash mem-
ory [23] represents files with heap-allocated yaffs_Object structures, each contain-
ing a reference counting inUse field (Figure 8 shows fragments of a simplified version,
although we have verified the actual implementation). Users access objects indirectly
through the obj field of a yaffs_Handle pointer. The handles are stored in a fixed-
sized array, indexed by an integer file handle descriptor.

File read and write operations access yaffs_Objects under the assumption that
their reference counts are positive. To verify, we introduce a single file object Skolem
variable. As done for JOS, we also introduce auxiliary state to track handle-object
(un)mappings, and equate that state with actual object reference counts by symbolic
model checking. Assuming that each file operation occurs atomically, our tool is able
to prove the sound use of reference counts for any number of handles and objects. The
reachability analysis requires 34 predicates and 36 seconds.

4 Related Work

Compositional Verification. Our use of temporal case splitting with Skolem variables
is inspired by similar approaches in hardware verification [22], where a hardware de-
sign is decomposed into units of work and the finite instantiations verified using a
BDD-based model checker. Our work differs from the above in two respects. First,
we consider C programs where heap locations are allocated dynamically, and need not
have static names. Second, by using predicate abstraction over more expressive theories
(e.g., equality, arithmetic, arrays) we may track relationships between variables, which
is generally required to prove sound reference counting.

A restricted use of Skolem variables to separate a safety verification problem into
sub-problems has been suggested before [30,4]. However, an analysis with a dataflow
analysis back-end [30] merges states at join points, and cannot perform case splits over
the abstract domain used in our examples. There the benefits of separation were re-
stricted to syntactically disjoint choices (for example, where there were separate as-
sertions on two arrays, and the abstraction would first prove the assertion for the first
array while abstracting the second, and then prove it separately for the second). We, on

Verifying Reference Counting Implementations 365

the other hand, perform case splitting on the temporal behavior of the program, thus
correlating the choice of a Skolem at one point in the execution to a subsequent check.

Predicate Abstraction. Skolem variables have been used with predicate abstraction to
infer universally quantified invariants over the program state [9,19,20]. However, the
properties considered thus far have been limited, for the most part, to simple intrapro-
cedural reasoning about arrays. We believe that one reason for this is that fast Cartesian
predicate abstraction, implemented as the default in software model checkers such as
SLAM or BLAST, is too coarse for reasoning about array and pointer variables. Our
work builds on the interpolant-based transition relation refinement [15] that lazily re-
fines the Cartesian abstraction to the required precision, and our reachability engine
uses this refinement for scalability. The use of quantified predicates in model check-
ing based on predicate abstraction [27,7] has, for similar reasons, been limited to small
and abstract encodings of complicated procedures (e.g., garbage collectors). In these
applications quantifiers are instantiated by matching heuristics implemented in the the-
orem prover, or manually. In contrast, our use of Skolems, while less powerful than full
quantification, is more predictable, and does not rely on matching heuristics. While we
concentrate on the technique of using predicate abstraction with Skolems and auxiliary
state in reachability analysis, techniques to infer quantified predicates [20] are orthogo-
nal, and can be combined with our algorithm to find such predicates. Finally, auxiliary
invariants have been used in software model checking, e.g., to approximate the shape of
the heap using alias analysis [1,13], or to infer polyhedral invariants in a prepass before
applying predicate abstraction [14].

Shape Analysis. Shape analysis [26] and separation logic [25,3] are powerful frame-
works for reasoning about heap manipulating programs. While our techniques can be
simulated inside shape analysis, our advantage is the use of already developed efficient
and scalable predicate abstraction and manipulation engines (from BLAST) to reason
about heap properties on large programs. Shape analysis has also been used to verify
concurrent programs with an unbounded number of threads through the use of man-
ually supplied instrumentation predicates [29]. Skolemization and case splitting are
orthogonal—once they are performed, three valued logic based analyses can be used
to discharge the reduced model checking tasks.

Work on canonical abstraction of arrays [10,16] is close to our work: there, an (un-
bounded) array is abstracted with respect to an iterator into the portion of the array
before, at, and after the iterator; these portions are summarized with respect to the pred-
icates that hold on them. In contrast, our technique abstracts an array into the locations
indexed by Skolems, and all other locations; additional refinements are introduced with
additional Skolems and predicate relationships between values at the Skolem indices.
Instead of a specialized dataflow analysis, we perform path-sensitive model checking
that can then correlate data at Skolem locations. Our experience is that for properties
that depend on an arbitrary element of the array, Skolemization and case splitting pro-
vides a more natural (and often, a more succinct) abstraction of the program.

Acknowledgments. We thank the anonymous referees and Alessandro Cimatti for help-
ful comments.

366 M. Emmi et al.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static analysis.
In: POPL (2002)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion checking
with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg (2006)

4. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST query lan-
guage for software verification. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp.
2–18. Springer, Heidelberg (2004)

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer,
Heidelberg (2000)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for the static analysis
of programs by construction or approximation of fixpoints. In: POPL (1977)

7. Das, S., Dill, D.L.: Counter-example based predicate discovery in predicate abstraction. In:
FMCAD (2002)

8. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: PLDI (2002)

9. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL (2002)
10. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array operations. In:

POPL (2005)
11. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)

CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)
12. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:

POPL (2004)
13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL (2002)
14. Jain, H., Ivančić, F., Gupta, A., Shlyakhter, I., Wang, C.: Using statically computed invariants

inside the predicate abstraction and refinement loop. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 137–151. Springer, Heidelberg (2006)

15. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg
(2005)

16. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)

17. Jos, J.: An operating system kernel,
http://pdos.csail.mit.edu/6.828/2005/overview.html

18. Kuncak, V., Lam, P., Zee, K., Rinard, M.C.: Modular pluggable analyses for data structure
consistency. IEEE Trans. Software Eng. 32(12), 988–1005 (2006)

19. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstraction. In:
Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281. Springer, Heidel-
berg (2004)

20. Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for unbounded system verification.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147. Springer, Heidel-
berg (2004)

21. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, Heidel-
berg (1995)

http://pdos.csail.mit.edu/6.828/2005/overview.html

Verifying Reference Counting Implementations 367

22. McMillan, K.L.: A methodology for hardware verification using compositional model check-
ing. Sci. Comput. Program. 37, 279–309 (2000)

23. One, A.: Yaffs file system, http://www.yaffs.net/
24. Qadeer, S., Wu, D.: KISS: Keep it simple, sequential. In: PLDI (2004)
25. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS (2002)
26. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In: POPL

(1999)
27. Shankar, N.: Combining theorem proving and model checking through symbolic analysis. In:

Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 1. Springer, Heidelberg (2000)
28. van Rossum, G.: Debugging reference count problems,

http://www.python.org/doc/essays/refcnt/
29. Yahav, E.: Verifying safety properties of concurrent java programs using 3-valued logic. In:

POPL (2001)
30. Yahav, E., Ramalingam, G.: Verifying safety properties using separation and heterogeneous

abstractions. In: PLDI (2004)

http://www.yaffs.net/
http://www.python.org/doc/essays/refcnt/

Falsification of LTL Safety Properties in Hybrid
Systems

Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi

Dept. of Computer Science, Rice University, Houston TX 77005
{plakue,kavraki,vardi}@cs.rice.edu

Abstract. This paper develops a novel computational method for the
falsification of safety properties specified by syntactically safe linear tem-
poral logic (LTL) formulas φ for hybrid systems with general nonlinear
dynamics and input controls. The method is based on an effective combi-
nation of robot motion planning and model checking. Experiments on a
hybrid robotic system benchmark with nonlinear dynamics show signifi-
cant speedup over related work. The experiments also indicate significant
speedup when using minimized DFA instead of non-minimized NFA, as
obtained by standard tools, for representing the violating prefixes of φ.

1 Introduction

Hybrid systems, which combine discrete and continuous dynamics, provide sophis-
ticated mathematical models being used in robotics, automated highway systems,
air-traffic management, computational biology, and other areas [1]. An important
problem in hybrid systems is the verification of safety properties [1, 2], which as-
sert that nothing “bad” happens, e.g., “the car avoids obstacles.” A hybrid system
is safe if there are no witness trajectories indicating a safety violation. Safety prop-
erties have traditionally been specified in terms of a set of unsafe states and verifi-
cation has been formulated as reachability analysis [1, 2, 3, 4, 5, 6, 7]. Reachability
analysis in hybrid systems is in general undecidable [2, 3]. Moreover, complete al-
gorithms have an exponential dependency on the dimension of the state space and
are limited in practicality to low-dimensional systems [1, 2, 4].

To handle more complex hybrid systems, alternative methods[8, 9, 10, 11, 12]
have been proposed that shift from verification to falsification, which is often the
focus of model checking in industrial applications [13]. Even though they are un-
able to determine that a system is safe, these methods may compute witness tra-
jectories when the system is not safe. Witness trajectories, similar to error traces
in model checking[13], indicate modeling flaws, which designers can then correct.
The falsification methods in [8, 9, 10] adapt the Rapidly-exploring Random Tree
(RRT) motion planner [14], which was originally developed for reachability analy-
sis in continuous systems. We recently proposed the Hybrid Discrete Continuous
Exploration (HyDICE) falsification method [11, 12], which also takes advantage of
motion planning, but shows significant speedup over related work [9, 10].

As more complex hybrid systems are considered, limiting safety properties to
a set of unsafe states, as in current methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 368–382, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Falsification of LTL Safety Properties in Hybrid Systems 369

considerably restricts the ability of designers to adequately express the desired
safe behavior of the system. To allow for more sophisticated properties, re-
searchers have advocated the use of linear temporal logic (LTL), which makes
it possible to express safety properties with respect to time, such as “if the con-
centration level of gene A reaches x, then the concentration level of gene B will
never reach y.” LTL has been widely used in model checking of discrete systems
in software and hardware [15], and timed systems [16]. The work in [17] gener-
ated trajectories that satisfy LTL constraints on the sequence of triangles visited
by a point robot with Newtonian dynamics by using a controller that could drive
the robot between adjacent triangles. The work in [18] used LTL to analyze gene
networks. The work in [19] developed a method to verify LTL safety properties
for robust discrete-time hybrid systems.

Traditional approaches for verification of an LTL property φ on a hybrid system
H often cast the problem as reachability analysis via model checking. Abstrac-
tions are typically used to obtain a discrete transition modelM that simulatesH,
so that checking φ on M is sufficient to checking φ on H [5]. Moreover, with an
exponential blow-up at most, a nondeterministic finite automaton (NFA) A can
be constructed that describes all prefixes violating φ [20]. This allows for checking
φ on H via model checking on M× A. The challenge lies in the computation of
M, which is limited in practicality to low-dimensional hybrid systems due to the
exponential dependency on the state-space dimension [1, 2, 4].

Applying alternative approaches [8, 9, 10, 11, 12] to falsify LTL safety properties
by reachability analysis is also challenging due to intricacies of motion planning.
During the search, motion planning extends a tree T in the state space of H by
adding valid trajectories as new branches. Consider a vertex v and the trajectory ζ
from the root of T to v. In reachability analysis[8, 9, 10, 11, 12], a witness trajectory
is found when the state associated with v is unsafe. When considering LTL, such
criteria is not sufficient, since ζ needs to satisfy ¬φ. It then becomes necessary to
maintain the propositional assignments satisfied by ζ and to effectively extend T
so that more and more of the propositional assignments of ¬φ are satisfied.

To handle LTL, one can consider a näıve extension of the work in [8, 9, 10,
11, 12] by using A as an external monitor to determine when a tree trajectory
ζ satisfies ¬φ by keeping track of the automaton states associated with each
ζ. As shown in this work, however, such an approach is computationally very
inefficient.

The main contribution of this work is to extend HyDICE [11, 12] in order to
effectively incorporate LTL safety properties into hybrid-system falsification. The
proposed approach, termed TemporalHyDICE, can be used to compute witness
trajectories for the falsification of properties specified by syntactically safe LTL
formulas for hybrid systems with

– external inputs, which could represent controls, uncertainties; and
– general nonlinear dynamics, where Flowq(x, u, t) is treated as a black
box that outputs a state xnew obtained by following the hybrid-system
dynamics when at state (q, x) and applying the input u for t time units.

When differential equations describe the dynamics, closed-form solutions (if
available) or numerical integrations can be used for the black-box simulation.

370 E. Plaku, L.E. Kavraki, and M.Y. Vardi

When differential equations become too cumbersome to describe the dynamics,
other computer programs can be used for the simulation.

In its core, TemporalHyDICE draws from research in traditional and alter-
native approaches in hybrid systems to synergistically combine model checking
and motion planning. This combination presents significant challenges, as it re-
quires dealing with important issues, such as state-space search, memory usage,
scalability, and passing of information between model checking and motion plan-
ning. In TemporalHyDICE, model checking guides motion planning by providing
feasible directions along which to extend T . A feasible direction consists of a se-
quence [τi]ni=1 of propositional assignments that violates φ, which is computed by
searching on-the-fly a discrete transition modelM of H and the automaton A of
¬φ. By not computing M×A explicitly, TemporalHyDICE considerably reduces
the memory used by model checking. Moreover, unlike traditional approaches,
TemporalHyDICE does not require M to simulate H. In fact, M is based on a
simple partition of the state space of H induced by propositions in φ. Motion
planning extends T along directions [τi]ni=1 provided by model checking so that
more and more of τ1, . . . , τn are satisfied in succession. As motion planning ex-
tends T , it also gathers information to estimate the progress made in the search
for a witness trajectory. This information is fed back to model checking to select
in future iterations increasingly feasible directions for extending T . This interac-
tive combination of model checking and motion planning is a crucial component
that allows TemporalHyDICE to effectively search for a witness trajectory.

An initial validation of TemporalHyDICE is provided by falsifying many prop-
erties specified by syntactically safe LTL formulas for a nonlinear hybrid robotic
system. Experiments show significant speedup over related work. This work also
studies the impact of representing ¬φ by DFAs or NFAs, as obtained by stan-
dard tools. The motivation comes from the work in [21], which shows significant
speedup when using DFAs instead of NFAs in model checking. Experiments in
this work in the context of falsification of LTL safety properties in hybrid systems
also indicate significant speedup when using DFAs instead of NFAs.

The rest is as follows. Section 2 contains preliminaries. A straightforward ap-
proach of incorporating LTL into related work [8, 9, 10, 11, 12] by using the au-
tomaton A as an external monitor is described in Section 3. As demonstrated by
the experiments, such an approach, however, is computationally very inefficient.
The proposed approach,TemporalHyDICE, which effectively incorporatesLTL into
hybrid-system falsification, is described in Section 4. Experiments and results are
described in Section 5. The paper concludes in Section 6 with a discussion.

2 Preliminaries

This section defines hybrid automata, LTL, the automata for the complement
of LTL formulas, and the problem statement.

Hybrid Systems: Hybrid systems are modeled by hybrid automata [2]. A
hybrid automaton is a tuple H = (S, I, Inv, E,Guard, Jump, U,Flow), where
S = Q×X is a product of a discrete and finite set Q and continuous spaces X =
{Xq : q ∈ Q}; I ⊂ S denotes initial states; Inv = {Invq : q ∈ Q}, where Invq :

Falsification of LTL Safety Properties in Hybrid Systems 371

Xq → {�,⊥} is the invariant function; E ⊆ Q×Q denotes discrete transitions;
Guard = {Guardqi,qj : (qi, qj) ∈ E} and Jump = {Jumpqi,qj : (qi, qj) ∈ E},
where Guardqi,qj : Xqi → {�,⊥} and Jumpqi,qj : Xqi → Xqj denote guard
and jump functions, respectively; U = {Uq : q ∈ Q}, where an input in Uq ⊆
Rdim(Uq) can represent controls, nondeterminism, or uncertainties; and Flow =
{Flowq : q ∈ Q}, where Flowq : Xq × Uq × R≥0 → Xq is the flow function.
This work treats the dynamics as a black box, where Flowq(x, u, t) outputs the
state obtained by following the dynamics from x when u is applied for t time
units. This allows for general nonlinear dynamics. In fact, the only requirement
is the ability to simulate the dynamics. Invq : Xq → {�,⊥}, Guardqi,qj : Xqi →
{�,⊥}, and Jumpqi,qj : Xqi → Xqj are also treated as black boxes to allow
general specifications that do not limit designers to a particular approach, such
as polyhedral or ellipsoidal constraints. A hybrid-system trajectory consists of
continuous trajectories interleaved with discrete transitions.

Continuous Trajectory: s = (q, x) ∈ S, T ≥ 0, u ∈ Uq define a continuous
trajectory Ψs,u,T : [0, T]→ Xq, where Ψs,u,T (t) = Flowq(x, u, t), t ∈ [0, T].

Discrete Transition: For any (q, x) ∈ S, let χ(q, x) = (q′, Jumpq,q′(x)) if
Guardq,q′(x) = � for some (q, q′) ∈ E. Otherwise, let χ(q, x) = (q, x).

Continuous Trajectory + Discrete Transition: Υs,u,T : [0, T] → S, defined as
Υs,u,T (t) = (q, Ψs,u,T (t)), 0 ≤ t < T and Υs,u,T (T) = χ(q, Ψs,u,T (T)), ensures
that a discrete transition at time T , if it occurs, is followed.

Trajectory Extension: Extending Φ : [0, T] → S by applying u′ ∈ U to Φ(T)
for T ′ ≥ 0 time units, written as Φ ◦ (u′, T ′), is a trajectory Ξ : [0, T + T ′]→ S
where Ξ(t) = Φ(t), t ∈ [0, T] and Ξ(t) = ΥΦ(T),u′,T ′(t− T), t ∈ (T, T + T ′].

Hybrid-System Trajectory: A state s ∈ S, a sequence u1, . . . , uk of inputs,
and a sequence T1, . . . , Tk of times define a trajectory ζ : [0, T] → S, where
T = T1 + · · ·+ Tk and ζ = Υs,u1,T1 ◦ (u2, T2) ◦ · · · ◦ (uk, Tk).

In this work, a discrete transition is taken when a guard condition is satisfied.
There is, however, no inherent limitation in dealing with non-urgent discrete tran-
sitions. In such cases, enabled discrete transitions could be taken nondeterminis-
tically or taken only when the invariant is invalid or a combination of both.

LTL: Let Π denote a set of propositional variables.
LTL Syntax and Semantics [20]: Every π ∈ Π is a formula. If φ and ψ are

formulas, then ¬φ, φ ∧ ψ, φ ∨ ψ, Xφ (next), φUψ (until), φRψ (release), Fφ
(future), and Gφ (globally) are also formulas. Let σ = τ0, τ1, . . . ∈ 2Π . Let
σi = τi, τi+1, . . . We write σ |= φ to indicate that σ satisfies φ and define it as
σ |= �; σ �|= ⊥; σ |= π if π ∈ τ0; σ |= φ ∧ ψ if σ |= φ and σ |= ψ;
σ |= Xφ if σ1 |= φ; σ |= φUψ if ∃k ≥ 0 s.t. σk |= ψ and ∀ 0 ≤ i < k : σi |= φ;
φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ); Fφ ≡ �Uφ; Gφ ≡ ¬F¬φ; φRψ ≡ ¬(¬φU¬ψ).

Syntactically Safe LTL [22]: An LTL formula φ that, when written in positive
normal form, uses only the temporals X , R, and G is syntactically safe. Every
syntactically safe formula is a safety formula.

NFA for Syntactically Safe LTL [20]: With an exponential blow-up at most,
an NFA can be constructed that describes all prefixes violating a syntactically
safe LTL formula. The NFA is a tuple A = (Z,Σ, δ, v0,Acc), where Z is a finite

372 E. Plaku, L.E. Kavraki, and M.Y. Vardi

set of states; Σ = 2Π is the input alphabet; δ : Z × Σ → 2Z is the transition
function; z0 ∈ Z is the initial state; and Acc ⊆ Z is the set of accepting states.
The set of states on which [τi]

n
i=1, τi ∈ 2Π , ends up when run on A is defined as

A([τi]
n
i=1)=

{
δ(z0, τ1), n=1⋃

z∈A([τi]
n−1
i=1)

δ(z, τn), n>1.
A accepts [τi]

n
i=1 iff A([τi]

n
i=1)∩Acc �= ∅.

LTL over Hybrid-System Trajectories: Let Π = {πq,i : q ∈ H.Q ∧ 1 ≤
i ≤ nq}, where nq is the number of propositional variables associated with q.
The truth-value of each πq,i is determined by a black-box function Propq,i :
H.Xq → {�,⊥}. The map τ : H.S → 2Π maps (q, x) ∈ H.S to truth proposi-
tions: τ((q, x)) = {πq,i : πq,i ∈ Π and Propq,i(x) = �}. When interpreted over
a hybrid-system trajectory ζ, the notation τ(ζ) denotes the sequence of propo-
sitional assignments [τi]

n
i=1 (τi ∈ 2Π , τi �= τi+1) in the order satisfied by ζ, i.e.,

τi = τ(ζ(Ti)) where 0 ≤ T1 < · · · < Tn ≤ |ζ| such that n is as large as possible
and τi �= τi+1, 1 ≤ i < n. Then, ζ satisfies φ, written ζ |= φ, iff τ(ζ) |= φ.

Problem Statement: Let P = (H,A, τ), where H is a hybrid automaton; A
is an automaton for the complement of a syntactically safe LTL formula φ over
propositions Π ; and τ is a propositional map interpreted both over hybrid-system
states and trajectories. Given P , compute a valid trajectory ζ : [0, T]→H.S that
satisfies ¬φ, i.e., (∀t∈ [0, T] :Invqt(xt)=�, where (qt, xt)=ζ(t)) and ζ |= ¬φ.

3 Incorporating LTL into Motion-Planning Approaches

Motion planning has been widely used in reachability analysis for continuous
robotic systems with dynamics [23, 24]. These methods rely on a common frame-
work that iteratively extends a tree in the state space of the system by adding
valid trajectories as branches. Recently, the work in [8, 9, 10] adapted the tree-
search framework for reachability analysis in hybrid systems.

There have been no discussions in the literature on how to augment the tree-
search framework with LTL trajectory properties, cf. [8, 9, 10]. This section
describes a minimal extension of the tree-search framework to handle LTL. The
idea is to use A (DFA or NFA) to keep track of the automaton states associated
with each tree trajectory and to determine when a tree trajectory is a witness. In
this way, similar to model checking, the tree-search framework searches on-the-
fly H and A. With these modifications, the tree-search framework can be used
to falsify LTL safety properties in hybrid systems, and, thus, provide a basis
for the experimental comparisons. As demonstrated by the experiments, such an
approach, however, is computationally very inefficient. Section 4, which describes
TemporalHyDICE, then shows how to effectively combine the LTL tree-search
framework with model checking on M and A, where M is a discrete transition
model of H, in order to significantly increase its computational efficiency.

Incorporating LTL into the Tree-Search Framework: The tree is main-
tained as a graph T = (V,E). Each vertex v ∈ T .V is associated with a state
s ∈ H.S, written as v.s. An edge (v′, v′′) ∈ T .E indicates that a valid trajec-
tory connects v′.s to v′′.s. As the search proceeds iteratively, T is extended by

Falsification of LTL Safety Properties in Hybrid Systems 373

Algorithm 3.1. LTL-TSF: Incorporating LTL into the Tree-Search Framework
Input: P : problem specification; tmax ∈ R>0: upper bound on computation time
Output: A solution trajectory if one is found or ⊥ otherwise

(a) T ← InitalizeTree(P)
while ElapsedTime < tmax do

(b) v ← SelectVertexFromTree(P , T) ♦ varies from method to method
(c) [u, T, snew, αnew]← ExtendTree(P , T , v)
(d) if T > 0∧|αnew | > 0 then vnew ← AddBranchToTree(T , v, [u, T, snew, αnew])
(e) if P .A.Acc ∩ αnew �= ∅ then return Traj(T , vnew)

return ⊥
ExtendTree(P ,T , v) :=
1: ε ∈ R>0 ← time step; nsteps ∈ N ← number of steps
2: s = (q, x)← v.s; α ← v.α; x0 ← x; α0 ← α; τ0 ← P .τ (s)
3: u ← sample control from P .H.Uq

4: for i = 1, 2, . . . , nsteps do ♦simulate the continuous and discrete dynamics of P .H
5: xi ← P .H.Flowq(xi−1, u, ε); τi ← P .τ ((q, xi))
6: if τi−1 = τi then αi ← αi−1 else αi ← ∪z∈αi−1P .A.δ(z, τi)
7: if P .H.Invq(xi) = ⊥ then return [u, (i− 1) ∗ ε, (q, xi−1), αi−1]
8: if P .H.Guardq,qnew (xi) = �, (q, qnew) ∈ P .H.E then
9: (xloc, T)← localize discrete event in ((i− 1) ∗ ε, i ∗ ε]; τloc ← P .τ ((q, xloc))

10: if τi−1 = τloc then αloc ← αi−1 else αloc ← ∪z∈αi−1P .A.δ(z, τloc)
11: xnew ← P .H.Jumpq,qnew (xloc); τnew ← P .τ ((qnew, xnew))
12: if τloc = τnew then αnew ← αloc else αnew ← ∪z∈αlocP .A.δ(z, τnew)
13: return [u, T, (qnew, xnew), αnew]
14: return [u, nsteps ∗ ε, (q, xnsteps), αnsteps]

adding new vertices and edges. Consider the trajectory Traj(T , v) from the root
of T to v ∈ T .V . If Traj(T , v) |= ¬φ, then Traj(T , v) is a witness. To deter-
mine Traj(T , v) |= ¬φ, v is associated with the automaton states corresponding
to Traj(T , v), written as v.α and defined as v.α = A(τ(Traj(T , v))). Then,
Traj(T , v) |= ¬φ iff A(v.α) ∩ A.Acc �= ∅. Pseudocode is given in Algo. 3.1.

(a) InitializeTree(P) associates the root vertex vinit with the initial hybrid-
system state and adds vinit to T , i.e., vinit.s = H.sinit, T .V = {vinit}, and
T .E = ∅. The automaton states are computed by running A on the propositional
assignment satisfied by vinit.s, i.e., vinit.α = A.δ(A.zinit, τ(vinit.s)).

(b) SelectVertexFromTree(P , T) selects a vertex v ∈ T .V from which to
extend T . Over the years, numerous strategies have been proposed that rely on
distances, nearest neighbors, probability distributions, and much more [23, 24].

(c) ExtendTree(P , T , v) extends T from v by computing a trajectory ζ :
R>0 → H.S that starts at v.s and satisfies the invariant. A common strategy is to
apply some input u ∈ H.U to v.s and follow the dynamics ofH until the invariant
is not satisfied or a maximum number of steps is exceeded [8, 9, 10, 11, 12, 23, 24].
The input u is generally selected pseudo-uniformly at random to allow subse-
quent calls to extend T along new directions. ExtendTree(P , T , v) returns a
tuple [u, T, snew, αnew], which defines ζ = Υv.s,u,T (Section 2), where snew =
Υv.s,u,T (T) and αnew = A(τ(Traj(T , v) ◦ ζ)). Note that any hybrid-system

374 E. Plaku, L.E. Kavraki, and M.Y. Vardi

simulation method can be used to compute ζ = Υv.s,u,T . For completeness, we
describe a simple iterative procedure. Let nsteps denote the number of steps
and let ε > 0 denote the step size (Algo. 3.1(c):1). Initially, x0 = x and
α0 = v.α, where v.s = (q, x) (Algo. 3.1(c):2). At the i-th iteration, xi =
H.Flowq(xi−1, u, ε) (Algo. 3.1(c):5). The automaton states αi associated with
(q, xi) are updated only if τ((q, xi)) �= τ((q, xi−1)). The update is computed by
running A on τ((q, xi)) starting from αi−1 (Algo. 3.1(c):6). If H.Invq(xi) = ⊥,
then ExtendTree returns [u, (i − 1) ∗ ε, (q, xi−1), αi−1] (Algo. 3.1(c):7). When
H.Invq(xi) = �, ExtendTree checks if a guard is satisfied, which would indicate
a discrete event (Algo. 3.1(c):8). Event detection is followed by event localization,
which localizes the earliest time T ∈ ((i− 1) ∗ ε, i ∗ ε] where the guard is satisfied
(Algo. 3.1(c):9). Bisection or bracketing algorithms are typically used for event
localization [25]. The discrete transition is then triggered to obtain the new state
(Algo. 3.1(c):11). The automaton states are also updated (Algo. 3.1(c):12).

Numerical errors in simulation, invariant checking, event detection and local-
ization could in certain cases cause ExtendTree to miss an invariant violation,
miss a guard, or trigger a different discrete transition. To minimize such er-
rors, a practical approach is to choose a small ε. This approach is the norm in
hybrid-system falsification methods based on motion planning [8, 9, 10, 11, 12].
For hybrid systems with linear guards, it is also possible to use more accurate
event detection and localization algorithms, which come asymptotically close to
the guard boundary[25]. In many practical cases, hybrid systems exhibit a de-
gree of robustness [19, 26] that minimizes the impact of numerical errors, e.g.,
small perturbations do not change the mode-switching behavior. As noted, the
simple implementation of ExtendTree, presented here for completeness, can be
replaced by more sophisticated hybrid-system simulation methods.

(d) AddBranchToTree(T , v, [u, T, snew, αnew]) adds vnew and (v, vnew) to T .
It also associates snew and αnew with vnew and u and T with (v, vnew).

(e) Traj(T , vnew) computes the trajectory from vinit.s to vnew.s by concate-
nating the trajectories associated with the tree edges connecting vinit to vnew.

Incorporating LTL into RRT: The work in [8, 9, 10] relies on RRT[14]. To
incorporate LTL into RRT, it suffices to use LTL-TSF (Algo. 3.1) and implement
SelectVertexFromTree(P , T) as described in [8, 9, 10, 14], e.g., sample s ∈
H.S pseudo-uniformly at random and select v ∈ T .V whose v.s is the closest to
s according to a distance metric. This is referred to as RRT[LTL-TSF].

Incorporating LTL into HyDICE[NoGuide]: Similarly to RRT, HyDICE[11, 12]
also falls into the broad category of tree-search algorithms. Distinctly from RRT,
HyDICE [11, 12] introduced discrete search over (H.Q,H.E) to guide the tree
search in the context of reachability analysis to a set of unsafe states. At each
iteration, the discrete search computed a sequence of discrete transitions from
an initial to an unsafe mode. The tree-search framework then extended T along
the direction provided by the discrete search. Experiments showed significant
speedup of one to two orders of magnitude over RRT-based falsification [9, 10].

Incorporating LTL into HyDICE is more involved than in the case of RRT, since
the discrete search over (H.Q,H.E) does not take LTL into account. When

Falsification of LTL Safety Properties in Hybrid Systems 375

considering LTL, a safety violation is not indicated by an unsafe state, but by
an unsafe trajectory that satisfies ¬φ. Therefore, when considering LTL, unsafe
states and unsafe modes are not defined. This means that the discrete search
over (H.Q,H.E) from an initial to an unsafe mode is also not defined. The next
section shows how to effectively incorporate LTL into HyDICE.

The version of HyDICE [11, 12] that does not use the discrete search is re-
ferred to in [11, 12] as HyDICE[NoGuide]. Experiments in [11, 12] showed that
HyDICE[NoGuide] was significantly slower than HyDICE, but still faster than RRT-
based falsification [9, 10]. As described in [11, 12], HyDICE[NoGuide] corresponds
to the tree-search framework, where SelectVertexFromTree(P , T) is imple-
mented by selecting v ∈ T .V according to a probability distribution over T .V .
This makes it possible to incorporate LTL into HyDICE[NoGuide], referred to as
HyDICE[NoGuide, LTL-TSF], by using LTL-TSF (Algo 3.1).

4 TemporalHyDICE

The computational efficiency of LTL-TSF (Algo. 3.1) depends on the ability of the
approach to quickly extend T along those directions that lead to the computation
of witness trajectories. Motivated by [11, 12], TemporalHyDICE uses a discrete
transition modelM of H and effectively combines LTL-TSF with model checking
over M and A to identify and extend T along such useful directions.

Consider a discrete witness [τi]
n
i=1, i.e., a sequence of propositional assign-

ments accepted by A. Let Γ (τi) = {s ∈ H.S : τ(s) = τi}. If T can be extended
so that a trajectory Traj(T , v) starts at Γ (τ1) and enters Γ (τ2), . . . , Γ (τn) in
succession, then Traj(T , v) would be a witness trajectory. In this way, the
discrete witness provides a feasible direction along which motion planning in
TemporalHyDICE can attempt to extend T in the search for a witness trajectory.

Model checking can be effectively employed for the computation of discrete
witnesses. A discrete transition model is constructed as a graph M = (V,E) in
order to capture the partition of H.S induced by τ , where a vertex v(τi) ∈M.V
corresponds to Γ (τi) and an edge (v(τi), v(τj)) ∈ M.E indicates that it may be
possible to enter directly from Γ (τi) to Γ (τj). Model checking can then compute
discrete witnesses by simultaneously searching A and M.

An issue that arises is which discrete witnesses motion planning can actu-
ally follow. Since it is not known a priori which discrete witnesses are feasible,
TemporalHyDICE maintains a running weight estimate w([τi]

n
i=1) on the feasibil-

ity of [τi]
n
i=1. A high weight indicates significant progress is made in extending

T toward Γ (τ1), . . . , Γ (τn), while a low weight indicates little or no progress.
The core loop consists of using model checking to select at each iteration a

discrete witness [τi]
n
i=1 based on w([τi]

n
i=1) and then using motion planning to

extend T toward Γ (τ1), . . . , Γ (τn) in succession.
Combining Model Checking and Motion Planning: A crucial property

of TemporalHyDICE, distinctive from earlier work [17], is that model checking and
motion planning work in tandem. Information gathered by motion planning (such
as coverage, Γ (τi)’s that have been reached, and time spent) is used to update

376 E. Plaku, L.E. Kavraki, and M.Y. Vardi

Algorithm 4.1. TemporalHyDICE
Input: P : problem specification; tmax ∈ R>0: upper bound on computation time
Output: A witness trajectory if one is found or ⊥ otherwise

(a) T ← InitializeTree(P)
(b) M = (V, E)← DiscreteTransitionModel(P)
(c) InitializeFeasibilityEstimate(P ,M, w)
while ElapsedTime < tmax do

(d) σ
def
= [(zi, τi)]ni=1 ← DiscreteWitness(P ,M, w)

(e) ζ ← ExtendTreeAlongDiscreteWitness(P , T ,M, w, σ)
(f) if ζ �= NIL return ζ

return ⊥
(e) ExtendTreeAlongDiscreteWitness(P , T ,M, w, σ) :=
1: σavail ← {(zi, τi) ∈ σ : (zi, τi).vertices �= ∅}
2: for several times do
3: (zi, τi) ← SelectAvailablePair(w, σavail)
4: v ← SelectVertexFromAvailablePair(w, (zi, τi).vertices)
5: [u, T, snew, αnew]← ExtendTree(P , T , v)
6: if T > 0∧|αnew| > 0 then vnew ← AddBranchToTree(T , v, [u, T, snew, αnew])
7: if P .A.Acc ∩ αnew �= ∅ then return Traj(T , vnew)
8: UpdateFeasibilityEstimates(P , T ,M, w, (zi, τi))
9: τnew ← P .τ (vnew.s)

10: for znew ∈ αnew do
11: σavail ← {(znew, τnew)} ∪ σavail

12: (znew, τnew).vertices ← {vnew} ∪ (znew, τnew).vertices
13: UpdateFeasibilityEstimates(P ,T ,M, w, (znew, τnew))
14: return NIL

the feasibility estimates w([τi]
n
i=1). As a result, a new discrete witness, associated

with a high weight, could be selected in the next iteration by model checking.
In turn, by using highly feasible discrete witnesses [τi]

n
i=1 as guides, motion

planning is able to make progress and extend T toward Γ (τ1), . . . , Γ (τn) until it
successfully computes a witness trajectory. Pseudocode is given in Algo. 4.1.

Algo. 4.1(b) DiscreteTransitionModel(P): As discussed, M captures the
partition of H.S induced by τ and serves to eliminate from consideration certain
infeasible discrete witnesses. Region Γ (τj) is considered unable to directly reach
Γ (τk), written Γ (τj) �→ Γ (τk), if Γ (τj) and Γ (τk) do not share a boundary and
there is no discrete transition from some s′ ∈ Γ (τj) to some s′′ ∈ Γ (τk). A
discrete witness [τi]

n
i=1 is indeed infeasible if Γ (τk) �→ Γ (τk+1) for some 1 ≤

k < n, since no trajectory can enter Γ (τ1), . . . , Γ (τn) in succession. To eliminate
such infeasible discrete witnesses from consideration, M is constructed as a
graph M = (V,E). A vertex v(τi) is added to M.V for each Γ (τi). An edge
(v(τi), v(τj)) is added to M.E if it cannot be determined that Γ (τi) �→ Γ (τj).

Note that the computation of M is problem specific and depends on the
black-box definitions of propositional, guards, and reset functions (Section 2).
For this reason, DiscreteTransitionModel(P) is an external function supplied
by the user. Since there is no requirement that M should simulate H, it is

Falsification of LTL Safety Properties in Hybrid Systems 377

generally a straightforward process for the user to obtainM from P . This is the
case for the experiments in this work. Moreover, the definition of M allows for
spurious edges, i.e., (v(τj), v(τk)) ∈M.E even when Γ (τj) �→ Γ (τk). This further
facilitates the computation ofM since the user can add spurious edges when it is
computationally difficult to determine that Γ (τj) �→ Γ (τk). A spurious edge may
cause model checking to compute at some iterations infeasible discrete witnesses,
since it is impossible to enter directly from Γ (τj) to Γ (τk). The interplay between
model checking and motion planning will cause feasibility estimates associated
with spurious edges to decrease rapidly, since motion planning will fail to extend
T from Γ (τj) to Γ (τk). As a result, model checking will reduce the likelihood of
including spurious edges in future computations of discrete witnesses.

Algo. 4.1(d) DiscreteWitness(P ,M, w) uses model checking to compute
discrete witnesses by searching on-the-fly A and M. The search produces a
sequence [(zi, τi)]

n
i=1, where (zi, τi) ∈ A.Z × 2Π and zn ∈ A.Acc. A criti-

cal issue is which discrete witness to select from combinatorially many possi-
bilities. To address this issue, TemporalHyDICE associates a running estimate
w(zi, τi) on the feasibility of including (zi, τi) in the current discrete witness.
Let (zi, τi).vertices = {v ∈ T .V : zi ∈ v.α ∧ τi = τ(v.s)}, i.e., v is associated
with (zi, τi) iff v.s satisfies τi and zi is included in the automaton states v.α
obtained by running τ(Traj(T , v)) on A. Then,

w(zi, τi) = cova1(zi, τi) ∗ vola2(Γ (τi))/time(zi, τi), (1)

where cov(zi, τi) estimates the coverage of Γ (τi) by the states associated with
(zi, τi).vertices; vol(Γ (τi)) is the volume of Γ (τi); time(zi, τi) is the time motion
planning has spent extending T from (zi, τi).vertices; and a1, a2 are normaliza-
tion constants. The combination of coverage, volume, and computational time
is motivated by motion planners for continuous and hybrid systems [8, 9, 10, 11,
12, 27]. As in [11, 12], cov(zi, τi) is computed by imposing an implicit uniform
grid on a low-dimensional projection of H.S and counting the number of grid
cells that have at least one state from the states associated with (zi, τi).vertices.
The volume vol(Γ (τi)) is a user-supplied value, since it depends on the black-box
definitions of the proposition functions Propq,i (Section 2). In the experiments
in this work, Propq,i define polygons and vol(Γ (τi)) is computed as the cor-
responding polygonal area. TemporalHyDICE associates a high weight w(zi, τi)
with (zi, τi) if motion planning has extended T toward a region Γ (τi) with a
large volume, and states associated with (zi, τi).vertices quickly cover Γ (τi).

The discrete witness is computed as the shortest path from initial to accepting
states by using Dijkstra’s algorithm, where an edge ((zi, τi), (zj , τj)) is assigned
the weight 1/(w(zi, τi) ∗ w(zj , τj)). This allows to select highly feasible discrete
witnesses. With small probability, the discrete witness is also computed as a
random path using a variation of the depth-first-search, where the frontier nodes
are visited in a random order. This randomness provides a way to correct for
errors inherent with the weight estimates by ensuring that each discrete witness
that is not determined as infeasible is selected with non-zero probability.

TemporalHyDICE does not explicitly construct A × M. During the search
for a discrete witness, the outgoing edges of (zi, τi) are computed implicitly

378 E. Plaku, L.E. Kavraki, and M.Y. Vardi

as Edges(zi, τi) = {(zj , τj) : (v(τi), v(τj)) ∈ M.E ∧ zj ∈ A.δ(zi, τj)}. This al-
lows TemporalHyDICE to considerably reduce the memory requirements of model
checking. Note that the largest memory requirements in A are imposed by A.δ,
which can be viewed as a ternary relation, subset of A.Z × Σ × A.Z, where
Σ = 2Π . On the other hand, M can be viewed as a binary relation, subset of
Σ × Σ. Explicitly constructing A ×M would produce a 4-ary relation, subset
of A.Z ×Σ2×A.Z. For this reason, TemporalHyDICE does not compute A×M
explicitly. In addition, the data structure that stores information about a pair
(zi, τi) is created only when a vertex v is added to T .V such that zi ∈ v.α and
τi = τ(v.s). Reducing memory requirements is important for TemporalHyDICE,
since it allows motion planning to extend T by adding more vertices and edges.

Algo. 4.1(e) ExtendTreeAlongDiscreteWitness(P , T ,M, w, σ): Let σ =
[(zi, τi)]

n
i=1 denote the current discrete witness. The objective is to extend T

so that it reaches Γ (τ1), . . . , Γ (τn) in succession. To achieve this objective, the
method proceeds by extending T from vertices associated with pairs (zi, τi).

(Algo. 4.1(e):1) Only pairs (zi, τi) ∈ σ reached by T , i.e., (zi, τi).vertices �= ∅,
can be considered for selecting a vertex v from which to extend T .

(Algo. 4.1(e):3) SelectAvailablePair(w, σavail) selects a pair (zi, τi) from
σavail with probability w(zi, τi)/

∑
(zj ,τj)∈σavail

w(zj , τj), where w(zi, τi) is defined
in Eqn. 1. This selection, thus, favors highly feasible pairs.

(Algo. 4.1(e):4) SelectVertexFromAvailablePair(w, (zi, τi).vertices) selects
a vertex v from (zi, τi).vertices with probability 1

nsel(v)/
∑

v′∈(zi,τi).vertices
1

nsel(v′) ,
where nsel(v) is one plus the number of times v has been selected in the past from
(zi, τi).vertices. This is based on well-established strategies in motion planning
that favor those vertices selected less frequently in the past [23, 24].

(Algo.4.1(e):5–7) As described in Section 3, ExtendTree(P , T , v) and
AddBranchToTree(P , T , v, [u, T, snew, αnew]) extend T from v by computing
and adding to T a valid trajectory that starts at v.s. If any of the automaton
states αnew is an accepting state, then Traj(T , vnew) is a witness trajectory.

(Algo.4.1(e):8–13) The feasibility estimate associatedwith (zi, τi) is updated to
reflecttheextensionofT fromv.Thevertexvnew isassociatedwitheach(znew, τnew),
where znew ∈ αnew and τnew = τ(vnew.s). The feasibility estimate w(znew, τnew) is
alsoupdatedtoreflecttheadditionofvnew to (znew, τnew).vertices.Each(znew, τnew)
is also added to σavail, so that it becomes available for selection in the next iteration.
Theupdatedweightsbetterestimatethefeasibilityofeachdiscretewitness,andthus
improve the selection of discrete witnesses for the next iteration. This in turn allows
motionplanningtomakemoreprogress inextendingT towardΓ (τ1), . . . , Γ (τn)and
eventually compute a witness trajectory.

5 Experiments and Results
The experiments provide an initial validation of TemporalHyDICE for the falsifica-
tion of safety properties expressed by syntactically safe LTL formulas for hybrid
systems with nonlinear dynamics. TemporalHyDICE is shown to be significantly
more efficient than the straightforward extensions of related work [8, 9, 10, 11,
12], which use the automaton A as an external monitor (see Section 3). The ex-
periments also demonstrate the importance of model checking and the discrete

Falsification of LTL Safety Properties in Hybrid Systems 379

transition model in the computational efficiency of TemporalHyDICE. This paper
also studies the impact of A (NFA or DFA) on the efficiency of TemporalHyDICE.

The hybrid systemH models an autonomous vehicle driving over different ter-
rains, similar to the navigation benchmark proposed in [28] and used in [11, 12].
Each terrain corresponds to a mode q ∈ H.Q. The dynamics, velocity, and ac-
celeration vary from one terrain to another. Second-order dynamics (with 5 di-
mensions) for modeling cars, differential drives, and unicycles (see [11, 23, 24] for
model details) are associated with each mode. In each terrain, several polygons are
marked as propositions Propqi,k and guards Guardqi,qj . A state s = (q, x) ∈ H.S
satisfies Propqi,k (resp., Guardqi,qj) iff q = qi and the position-component of x is
inside Propqi,k (resp., Guardqi,qj). When Guardqi,qj is satisfied, a discrete tran-
sition occurs. The mode is then set to qj and velocity is set to zero.

The choice of this specific system is to provide a concrete benchmark that
is easily scalable to test TemporalHyDICE as the complexity of LTL formulas is
increased. For the experiments, 12 safety properties and 100 instances of the
benchmark were created. Syntactically safe LTL formulas were manually de-
signed in order to provide meaningful properties. Benchmark instances were
generated at random in order to test TemporalHyDICE over many problems and
obtain statistically significant results. Experimental data is publicly available.1

Problem Instances: In each problem instance, number of modes is nQ =
10, number of propositions per mode is nP = 15, and number of guards per
mode is nG = 5. A random problem instance is generated as follows. First, the
second-order dynamics associated with each mode is selected pseudo-uniformly
at random from those of a car, unicycle, or differential drive. Second, velocity
is bounded by vmax, where vmax is selected pseudo-uniformly at random from
[3, 6]m/s. Third, for each mode, nP propositions and nG guards are generated
as random polygons. Let π1, . . . , π150 denote the generated propositions.

Syntactically-Safe LTL Formulas: Let β0 = ¬(π1 ∨ · · · ∨ π150).
– sequencing (n = 3, 4, 5, 6): Witness trajectory will reach π1, . . . , πn in order:
φn

1 = ¬ (β0U (π1 ∧ (π1U (π2 ∧ (π2U (. . . πn−1 ∧ (πn−1U (β0Uπn))))))));
– counting (n = 1, 2, 3, 4): Witness trajectory will reach π2, π3, π4 n-times in
order, and then it will reach π5: φn

2 = ¬(ς1U(π1 ∧ Ξ1(Ξ2 · · · (Ξn(ς1Uπ5))))),

Ξj(ψ)
def
= ς1U (π2 ∧ (ς2U (π3 ∧ (ς3U (π4 ∧ (π4U (ς1 ∧ ψ))))))); ςi

def
= β0 ∨ πi;

– coverage (n = 4, 5, 6, 7): Witness trajectory reacheas each πi: φn
3 =
∨n

i=1 G(¬πi).
Results: Experiments were run on Rice Cray XD1 ADA and PBC clusters.

Each run uses a single processor (2.2Ghz, 8GB RAM), i.e., no parallelism. The
automata for each ¬φ are computed by standard tools (scheck [29]). Comparisons
of TemporalHyDICE to RRT[LTL-TSF] in Table 1(a) provide a basis for the results.
While TemporalHyDICE solved all problem instances, RRT[LTL-TSF] timed out
in almost every instance. RRT[LTL-TSF] relies on distance metrics and nearest
neighbors to guide the search. By relying on such limited information, as shown
in [11, 12] in the context of reachability analysis, it quickly becomes difficult to
find feasible directions to extend T , causing a rapid decline in the growth of T .
The results in Table 1(a) confirm this observation also in the case of applying

1 http://www.kavrakilab.org/data/TACAS2009/

380 E. Plaku, L.E. Kavraki, and M.Y. Vardi

Table 1. Reported is the average time in seconds to solve 100 problem instances for
each of the LTL formulas. Times for TemporalHyDICE include the construction of M,
which took < 1s. Entries marked with X indicate a timeout (set to 400s).

(a) Comparison of different methods.
LTL safety formula φ3

1 φ4
1 φ5

1 φ6
1 φ1

2 φ2
2 φ3

2 φ4
2 φ4

3 φ5
3 φ6

3 φ7
3

nr. states minimized DFA 10 21 46 105 23 76 164 287 16 32 64 128
TemporalHyDICE 18.6 25.5 27.2 40.4 22.2 40.4 63.3 88.3 14.6 40.9 127.9 293.2
RRT[LTL-TSF] 267.2 X X X X X X X X X X X

HyDICE[NoGuide, LTL-TSF] 245.3 X X X X X X X X X X X
TemporalHyDICE[no M] 19.2 55.7 X X 203.8 X X X 76.2 367.5 X X

(b) Comparison of TemporalHyDICE when using a minimal DFA, a minimal NFA
constructed by hand, or an NFA constructed by standard tools for φn

2 , n = 1, 2, 3, 4.
Minimized DFA Minimized NFA Standard NFA

LTL safety formula φ1
2 φ2

2 φ3
2 φ4

2 φ1
2 φ2

2 φ3
2 φ4

2 φ1
2 φ2

2 φ3
2 φ4

2

nr. states in automaton 23 76 164 287 7 11 15 19 27 176 912 4099
TemporalHyDICE 22.2 40.4 63.3 88.3 23.5 37.6 52.5 74.4 86.2 X X X

RRT[LTL-TSF] to falsify LTL safety properties in hybrid systems. By combining
model checking and motion planning, TemporalHyDICE effectively guides the
tree search. We also observe that the running time of TemporalHyDICE increases
sub-linearly (φn

1 and φn
2) or sub-quadratically (φn

3) with the number of states in
the minimized DFA. These results provide promising initial validation.

Comparisons of TemporalHyDICE to HyDICE[NoGuide, LTL-TSF] in Table 1(a)
demonstrate the importance of combining model checking and motion planning.
Without model checking to guide motion planning, HyDICE[NoGuide, LTL-TSF],
similar to RRT[LTL-TSF], times out in almost all instances.

Comparisons of TemporalHyDICE to TemporalHyDICE[no M] in Table 1(a) in-
dicate the importance of computing discrete witnesses by searching M and A
(as in TemporalHyDICE) and not just A (as in TemporalHyDICE[no M]). When
searching just A, a discrete witness may contain propositional assignments τi

and τi+1 that cannot be satisfied consecutively, i.e., Γ (τi) �→ Γ (τi+1). As dis-
cussed in Section 4, M serves to eliminate from consideration many of these
infeasible discrete witnesses. This in turn speeds up the search for a witness
trajectory since T is extended far more frequently toward feasible directions. It
is also important to note that, even though the discrete witnesses obtained by
searching just A are not as beneficial as those obtained by searching M and
A, TemporalHyDICE[no M] is still considerably faster than methods that do not
guide the tree search, cf. RRT[LTL-TSF] and HyDICE[NoGuide, LTL-TSF].

Table 1(b) compares TemporalHyDICE when using NFAs computed by stan-
dard tools (scheck [29]), minimal NFAs constructed by hand, or minimal DFAs.
These experiments are motivated by the work in [21], which shows significant
speedup when using DFAs instead of NFAs in model checking. As Table 1(b)
shows, TemporalHyDICE is only slightly faster when using minimal NFAs instead
of minimal DFAs, even though minimal NFAs had significantly fewer states. As
concluded in [21], DFA search has a significantly smaller branching factor than
NFA search, which allows it to offset the drawbacks of a possibly exponential
increase in the size of DFA. This observation is also supported by comparisons of

Falsification of LTL Safety Properties in Hybrid Systems 381

minimal DFAs to standard NFAs, since in such cases there is significant speedup
when using minimal DFAs. Therefore, the non-minimized NFA should be deter-
minized and minimized.

6 Discussion
This work developed a novel method, TemporalHyDICE, for the falsification of
safety properties specified by syntactically safe LTL formulas for hybrid sys-
tems with general nonlinear dynamics. By effectively combining model checking
and motion planning, when a hybrid system is unsafe, TemporalHyDICE may
compute a witness trajectory that indicates a violation of the safety property.
Experiments show significant speedup over related work. As we consider more
complex safety properties and high-dimensional continuous systems, it becomes
important to further improve the synergistic combination of model checking and
motion planning. Another direction is to extend the theory developed in [30] to
show probabilistic completeness for TemporalHyDICE.

Acknowledgment
This work is supported by NSF CNS 0615328 (EP, LK, MV), a Sloan Fellowship
(LK), and NSFCCF0613889(MV). Equipment is supported by NSFCNS0454333
and NSF CNS 0421109 in partnership with Rice University, AMD, and Cray.

References
1. Tomlin, C.J., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the

verification and control of hybrid systems. Proc. of IEEE 91(7), 986–1001 (2003)
2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,

X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

3. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: ACM Symp. on Theory of Computing, pp. 373–382 (1995)

4. Mitchell, I.M.: Comparing forward and backward reachability as tools for safety
analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS,
vol. 4416, pp. 428–443. Springer, Heidelberg (2007)

5. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.: Discrete abstractions of
hybrid systems. Proc. of IEEE 88(7), 971–984 (2000)

6. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald,
M.: Abstraction and Counterexample-guided Refinement in Model Checking of
Hybrid Systems. Intl. J. of Foundations of Computer Science 14(4), 583–604 (2003)

7. Giorgetti, N., Pappas, G.J., Bemporad, A.: Bounded model checking for hybrid dy-
namical systems. In: Conf. on Decision & Control, Seville, Spain, pp. 672–677 (2005)

8. Bhatia, A., Frazzoli, E.: Incremental search methods for reachability analysis of
continuous and hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004.
LNCS, vol. 2993, pp. 142–156. Springer, Heidelberg (2004)

9. Kim, J., Esposito, J.M., Kumar, V.: An RRT-based algorithm for testing and
validating multi-robot controllers. In: Robotics: Science & Systems, Boston, MA,
pp. 249–256 (2005)

10. Nahhal, T., Dang, T.: Test coverage for continuous and hybrid systems. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 449–462. Springer, Hei-
delberg (2007)

382 E. Plaku, L.E. Kavraki, and M.Y. Vardi

11. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: From verification to fal-
sification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
463–476. Springer, Heidelberg (2007)

12. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: From verification to fal-
sification by combining motion planning and discrete search. Formal Methods in
System Design (2008)

13. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi,
M.Y.: Benefits of bounded model checking at an industrial setting. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453. Springer,
Heidelberg (2001)

14. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Intl. J. of
Robotics Research 20(5), 378–400 (2001)

15. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
16. Behrmann, G., David, A., Larsen, K.G., Möller, O., Pettersson, P., Yi, W.: Uppaal

present and future. In: Conf. on Decision & Control, Orlando, FL, pp. 2881–2886
(2001)

17. Fainekos, G.E., Kress-Gazit, H., Pappas, G.: Temporal logic motion planning for
mobile robots. In: IEEE Intl. Conf. on Robotics & Automation, Barcelona, Spain,
pp. 2020–2025 (2005)

18. Batt, G., Belta, C., Weiss, R.: Temporal logic analysis of gene networks under
parameter uncertainty. IEEE Trans. of Automatic Control 53, 215–229 (2008)

19. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification
of LTL properties of non-linear robust discrete time hybrid systems. Intl. J. of
Foundations of Computer Science 18(1), 63–86 (2007)

20. Kupferman, O., Vardi, M.: Model checking of safety properties. Formal methods
in System Design 19(3), 291–314 (2001)

21. Armoni, R., Egorov, S., Fraer, R., Korchemny, D., Vardi, M.: Efficient LTL com-
pilation for SAT-based model checking. In: Intl. Conf. on Computer-Aided Design,
San Jose, CA, pp. 877–884 (2005)

22. Sistla, A.: Safety, liveness and fairness in temporal logic. Formal Aspects of Com-
puting 6, 495–511 (1994)

23. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E.,
Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Cambridge (2005)

24. LaValle, S.M.: Planning Algorithms. Cambridge UniversityPress, Cambridge (2006)
25. Esposito, J., Kumar, V., Pappas, G.: Accurate event detection for simulation of

hybrid systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC
2001. LNCS, vol. 2034, pp. 204–217. Springer, Heidelberg (2001)

26. Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test gener-
ation and coverage for hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G.
(eds.) HSCC 2007. LNCS, vol. 4416, pp. 329–342. Springer, Heidelberg (2007)

27. Plaku, E.,Kavraki, L.E., Vardi,M.Y.: Discrete search leading continuous exploration
for kinodynamic motion planning. In: Robotics: Science & Systems, Atlanta, GA
(2007)

28. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004)

29. Latvala, T.: Efficient model checking of safety properties. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 74–88. Springer, Heidelberg (2003)

30. Ladd, A.M.: Motion Planning for Physical Simulation. PhD thesis, Rice University,
Houston, TX (2006)

Computing Optimized Representations for
Non-convex Polyhedra by Detection and

Removal of Redundant Linear Constraints

Christoph Scholl, Stefan Disch, Florian Pigorsch, and Stefan Kupferschmid

Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 51, 79110 Freiburg, Germany

Abstract. We present a method which computes optimized representa-
tions for non-convex polyhedra. Our method detects so-called redundant
linear constraints in these representations by using an incremental SMT
(Satisfiability Modulo Theories) solver and then removes the redundant
constraints based on Craig interpolation. The approach is motivated by
applications in the context of model checking for Linear Hybrid Au-
tomata. Basically, it can be seen as an optimization method for formu-
las including arbitrary boolean combinations of linear constraints and
boolean variables. We show that our method provides an essential step
making quantifier elimination for linear arithmetic much more efficient.
Experimental results clearly show the advantages of our approach in
comparison to state-of-the-art solvers.

1 Introduction

In this paper we present an approach which uses SMT (Satisfiability Modulo
Theories) solvers and Craig interpolation [1] for optimizing representations of
non-convex polyhedra. Non-convex polyhedra are formed by arbitrary boolean
combinations (including conjunction, disjunction and negation) of linear con-
straints. Non-convex polyhedra have been used to represent sets of states of
hybrid systems. Whereas approaches like [2,3] consider unions of convex polyhe-
dra (i.e. unions of conjunctions of linear constraints) together with an explicit
representation of discrete states, in [4,5] a data structure called LinAIGs was used
as a single symbolic representation for sets of states of hybrid systems with large
discrete state spaces (in the context of model checking by backward analysis).
LinAIGs in turn represent an extension of non-convex polyhedra by additional
boolean variables, i.e., they represent arbitrary boolean combinations of boolean
variables and linear constraints.

In particular, our optimization methods for non-convex polyhedra remove so-
called redundant linear constraints from our representations. A linear constraint
is called redundant for a non-convex polyhedron if and only if the non-convex
polyhedron can be described without using this linear constraint. Note that an
alternative representation of the polyhedron without using the redundant lin-
ear constraint may require a completely different boolean combination of linear

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 383–397, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

384 C. Scholl et al.

constraints. In that sense our method significantly extends results for eliminat-
ing redundant linear constraints from convex polyhedra used by Frehse [3] and
Wang [6].1 In previous work [5] we already made the observation that a major
obstacle to the application of sequences of quantifier eliminations in the context
of model checking for hybrid systems is formed by the growth of the number of
linear constraints in state set representations during Weispfennig–Loos quanti-
fier elimination [7]. For that reason removing redundant linear constraints from
non-convex polyhedra plays an essential role during model checking of non-trivial
examples.

Our paper makes the following contributions:

– We present an algorithm for detecting a maximal number of linear con-
straints which can be removed simultaneously. The algorithm is based on
sets of don’t cares which result from inconsistent assignments of truth val-
ues to linear constraints. We show how the detection of sets of redundant
constraints can be performed using an SMT solver. In particular we show
how to use incremental SMT solving for detecting larger and larger sets of
redundant constraints until a maximal set is obtained.

– We show how the information needed for removing redundant linear con-
straints can be extracted from the conflict clauses of an SMT solver. Finally,
we present a novel method really performing the removal of redundant lin-
ear constraints based on this information. The method is based on Craig
interpolation [1,8,9].

In a comparison with existing tools we consider formulas consisting of ar-
bitrary boolean combinations of linear constraints and boolean variables, com-
bined with quantifications of real-valued variables. For such formulas we solve
two problems: First, we compute whether the resulting formula is satisfiable by
any assignment of values to the free variables and secondly we do even more, we
also compute a predicate over the free variables which is true for all satisfying as-
signments of the formula. We compare our results to the results of the automata-
based tool LIRA [10], the computer algebra system REDUCE/REDLOG [11,12]
(which also solve both problems mentioned above) and to the results of state-
of-the-art SMT solvers Yices [13] and CVC3 [14] (which solve the first problem
of checking whether the formula is satisfiable). Whereas these solvers are not
restricted to the subclass of formulas we consider in this paper (and are not op-
timized for this subclass in the case of Yices and CVC3), our experiments show
that for the subclass of formulas considered here our method is much more effec-
tive. Our results are obtained by an elaborate scheme combining several methods
for keeping representations of intermediate results compact with redundancy re-
moval as an essential component. Internally, these methods make heavy use of
the results of SMT solvers restricted to quantifier-free satisfiability solving.2 Our

1 For convex polyhedra redundancy of linear constraints reduces to the question
whether the linear constraint can be omitted in the conjunction of linear constraints
without changing the represented set.

2 In our implementation we use Yices [13] and MathSAT [15] for this task.

Computing Optimized Representations 385

results suggest to make use of our approach, if the formula at hand belongs to
the subclass of linear arithmetic with quantification over reals and moreover,
even for more general formulas, one can imagine to use our method as a fast
preprocessor for simplifying subformulas from this subclass.

The paper is organized as follows: In Sect. 2 we give a brief review of our
representations of non-convex polyhedra and Weispfennig-Loos quantifier elimi-
nation. In Sect. 3 we give a definition of redundant linear constraints and present
methods for detecting and removing them from representations of non-convex
polyhedra. After presenting our encouraging experimental results in Sect. 4 we
conclude the paper in Sect. 5.

2 Preliminaries

2.1 Representation of Non-convex Polyhedra

We assume disjoint sets of variables C and B. The elements of C = {c1, . . . , cf}
are continuous variables, which are interpreted over the reals R. The elements
of B = {b1, . . . , bk} are boolean variables and range over the domain B = {0, 1}.
When we consider logic formulas over B ∪ C, we restrict terms over C to the
class of linear terms of the form

∑
αici + α0 with rational constants αi and

ci ∈ C. Predicates are based on the set L(C) of linear constraints, they have
the form t ∼ 0, where ∼ ∈ {=, <,≤} and t is a linear term. P(C) is the set of
all boolean combinations of linear constraints over C, the formulas from P(C)
represent non-convex polyhedra over Rf . In this paper we consider the class of
formulas from P(B,C) which is the set of all boolean combinations of boolean
variables from B and linear constraints over C.

As a underlying data structure for our method we use representations of for-
mulas from P(B,C) by LinAIGs [4,5]. LinAIGs are And-Inverter-Graphs (AIGs)
enriched by linear constraints. The structure of LinAIGs is illustrated in Fig. 1.

q
l1

f
1

b
k

b
1

c
1

c
f

f
m

q
ln

AIG

lin. constraints

boolean domain

variables

continuous domain

variables

mapping between

linear constraints and

boolean variables

Represented predicates

...

...

...

...

Fig. 1. Structure of LinAIGs

The component of LinAIGs representing boolean formulas consists in a vari-
ant of AIGs, the so–called Functionally Reduced AND-Inverter Graphs (FRAIGs)
[16,17]. AIGs enjoy a widespread application in combinational equivalence check-
ing and Bounded Model Checking (BMC). They are basically boolean circuits
consisting only of AND gates and inverters. In [17] FRAIGs were tailored towards

386 C. Scholl et al.

the representation and manipulation of sets of states in symbolic model checking,
replacing BDDs as a compact representation of large discrete state spaces.

In LinAIGs (see Fig. 1) we use a set of new (boolean) constraint variables Q as
encodings for the linear constraints, where each occurring �i ∈ L(C) is encoded
by some q�i ∈ Q. For keeping the representation as compact as possible we use
a multitude of methods; e.g., inserting different nodes representing the same
predicate is avoided using an SMT (SAT modulo theories) solver which combines
DPLL with linear programming as a decision procedure [4,5].

2.2 Quantifier Elimination

In [5] Loos’s and Weispfenning’s test point method [7] was adapted to the LinAIG
data structure described above. The method eliminates universal quantifiers for
real-valued variables by converting them into finite conjunctions and existential
quantifiers by converting them into finite disjunctions. The subformulas to be
combined by conjunction (or disjunction in case of existential quantification)
are obtained from the original formula by replacing real-valued variables by
appropriate ‘test points’ arriving again at formulas in linear arithmetic. The test
point method is well-suited for our LinAIG data structure, since substitutions and
disjunctions / conjunctions can be performed efficiently in the LinAIG package
and the method does not need (potentially costly) conversions of the original
formula into CNF / DNF before applying quantifier elimination as in the Fourier-
Motzkin algorithm, e.g..

The number of test points needed depends linearly on the number of linear
constraints in the original formula. Thus, during elimination of one real-valued
variable, the number of linear constraints may grow quadratically with the num-
ber of linear constraints in the original formula. For sequences of quantifier elim-
inations it is therefore important to keep the number of linear constraints in the
original formula as small as possible. Moreover, after elimination of one quan-
tifier (starting with the innermost), it is also important to remove redundant
linear constraints generated as a result of the test point method. For this reason
we developed an algorithm which computes representations depending on a min-
imal set of linear constraints (see Sect. 3). Experimental results in Sect. 4 show
that the method is indeed essential in order to enable sequences of quantifier
eliminations.

3 Redundant Linear Constraints

In this section we present our methods to detect and remove redundant linear
constraints from non-convex polyhedra. Note that our approach also works for
the generalized case of arbitrary boolean combinations of linear constraints and
additional boolean variables (as represented by LinAIGs, e.g.), but here we confine
ourselves to non-convex polyhedra in order to keep the exposition more compact
and readable.

For illustration of redundant linear constraints see Fig. 2 and 3, which show
a typical example stemming from a model checking application. It represents a

Computing Optimized Representations 387

small state set based on two real variables: Lines in Figures 2 and 3 represent
linear constraints, and the gray shaded area represents the space defined by some
boolean combination of these constraints. Whereas the representation depicted
in Fig. 2 contains 24 linear constraints, a closer analysis shows that an optimized
representation can be found using only 15 linear constraints as depicted in Fig. 3.

Fig. 2. Before redundancy removal Fig. 3. After redundancy removal

3.1 Redundancy Detection and Removal for Convex Polyhedra

The task of detecting and removing redundant constraints in non-convex polyhe-
dra is not as straightforward as for other approaches such as [2,3] which represent
sets of convex polyhedra, i. e., sets of conjunctions �1 ∧ . . . ∧ �n of linear con-
straints. If one is restricted to convex polyhedra, the question whether a linear
constraint �1 is redundant in the representation reduces to the question whether
�2 ∧ . . . ∧ �n represents the same polyhedron as �1 ∧ . . . ∧ �n, or equivalently,
whether �1 ∧ �2 ∧ . . .∧ �n represents the empty set. This question can simply be
answered by a linear program solver.

3.2 Detection of Redundant Constraints for Non-convex Polyhedra

Definition 1 (Redundancy of linear constraints). Let F be a boolean func-
tion and let �1, . . . , �n be linear constraints over real-valued variables C = {c1,
. . . , cf}. The linear constraints �1, . . . , �r (1 ≤ r ≤ n) are called redundant in the
representation of F (�1, . . . , �n) iff there is a boolean function G with the property
that F (�1, . . . , �n) and G(�r+1, . . . , �n) represent the same predicates.

Our check for redundancy is based on the following theorem [5]:

Theorem 1 (Redundancy check). For all 1 ≤ i ≤ n let �i be a linear con-
straint over real-valued variables {c1, . . . , cf} and �′i exactly the same linear
constraint as �i, but now over a disjoint copy {c′1, . . . , c′f} of the variables. Let
⊕ denote exclusive-or and ≡ denote boolean equivalence. The linear constraints
�1, . . . , �r (1 ≤ r ≤ n) are redundant in the representation of F (�1, . . . , �n) if and
only if the predicate

(F (�1, . . . , �n)⊕ F (�′1, . . . , �
′
n)) ∧∧n

i=r+1(�i ≡ �′i) (1)

is not satisfiable by any assignment of real values to the variables c1, . . . , cf and
c′1, . . . , c

′
f .

388 C. Scholl et al.

Note that the check from Thm. 1 can be performed by a (conventional) SMT
solver.

A sketch of the proof for the ‘only-if-part’ of Thm. 1 was already given in [5].
In this paper (Sect. 3.3) we present a constructive proof for the ‘if-part’ of the
theorem in order to provide an efficient procedure to compute an appropriate
function G whenever formula (1) is unsatisfiable.

Overall algorithm for redundancy detection. First of all, we present our overall
algorithm detecting a maximal set of linear constraints which can be removed
from the representation at the same time. We start with a small example demon-
strating the effect that it is not enough to consider redundancy of single linear
constraints and to construct larger sets of redundant constraints simply as unions
of smaller sets.

Example 1. Consider the predicate F (c1, c2) = (c1 ≥ 0)∧ (c2 ≥ 0)∧¬(c1 + c2 ≤
0) ∧ ¬(2c1 + c2 ≤ 0). It is easy to see that both the third and the forth linear
constraint in the conjunction have the effect of ‘removing the value (c1, c2) =
(0, 0) from the predicate F ′(c1, c2) = (c1 ≥ 0) ∧ (c2 ≥ 0)’. Therefore both �3 =
(c1 + c2 ≤ 0) and �4 = (2c1 + c2 ≤ 0) are obviously redundant linear constraints
in F . However, it is also easy to see that �3 and �4 are not redundant in the
representation of F at the same time, i.e., only ¬(c1 + c2 ≤ 0) or ¬(2c1 + c2 ≤ 0)
can be omitted in the representation for F .

This observation motivates the following overall algorithm to detect a maximal
set of redundant linear constraints:

Input : Predicate F (�1, . . . , �n)
Output: S: Maximal set of redundant linear constraints
begin

S := ∅;
for i := 1 to n do

if redundant(F , S ∪ {�i}) then
S := S ∪ {�i};

return S;
end

redundant(F, S ∪ {li}) implements the check from Thm. 1 by using an SMT
solver. It is important to note that the n SMT problems to be solved in the
above loop share almost all of their clauses. For that reason we make use of an
incremental SMT solver to solve this series of problems. An incremental SMT
solver is able to profit from the similarity of the problems by transferring learned
knowledge from one SMT solver call to the next (by means of learned conflict
clauses). Experimental results in Sect. 4 indeed show the advantage of using an
incremental SMT solver.

3.3 Removal of Redundant Linear Constraints

Suppose that formula (1) of Thm. 1 is unsatisfiable. Now we are looking for an
efficient procedure to compute a boolean function G such that G(�r+1, . . . , �n)

Computing Optimized Representations 389

and F (�1, . . . , �n) represent the same predicates. Obviously, the boolean func-
tions F and G do not need to be identical in order to achieve this objective; they
are allowed to differ for ‘inconsistent’ arguments which can not be produced by
evaluating the linear constraints with real values. The set of these arguments is
described by the following set DC:

Definition 2. The don’t care set DC induced by linear constraints �1, . . . , �n is
defined as DC := {(v�1 , . . . , v�n) | (v�1 , . . . , v�n) ∈ {0, 1}n and ∀(vc1 , . . . , vcf

) ∈
Rf ∃1 ≤ i ≤ n with �i(vc1 , . . . , vcf

) �= v�i}.
As we will see in the following, it is possible to compute a function G as needed
by making use of the don’t care set DC. However, an efficient realization would
certainly need a compact representation of the don’t care set DC. Fortunately,
a closer look at the problem reveals the following two interesting observations
which turn our basic idea into a feasible approach:

1. In general, we do not need the complete set DC for the computation of the
boolean function G.

2. A representation of a sufficient subset DC′ of DC which is needed for re-
moving the redundant constraints �1, . . . , �r is already computed by an SMT
solver when checking the satisfiability of formula (1), if one assumes that the
SMT solver uses the option of minimizing conflict clauses.

In order to explain how an appropriate subset DC′ of DC is computed by the
SMT solver (when checking the satisfiability of formula (1)) we start with a brief
review of the functionality of an SMT solver:3

An SMT solver introduces constraint variables q�i for linear constraints �i

(just as in LinAIGs as shown in Fig. 1). First, the SMT solver looks for satis-
fying assignments to the boolean variables (including the constraint variables).
Whenever the SMT solver detects a satisfying assignment to the boolean vari-
ables, it checks whether the assignment to the constraint variables is consistent,
i. e., whether it can be produced by replacing real-valued variables by reals in
the linear constraints. This task is performed by a linear program solver. If the
assignment is consistent, then the SMT solver has found a satisfying assignment,
otherwise it continues searching for satisfying assignments to the boolean vari-
ables. If some assignment ε1, . . . , εm to constraint variables q�i1

, . . . , q�im
was

found to be inconsistent, then the boolean ‘conflict clause’ (qε1
�i1

+ . . . + qεm

�im
) is

added to the set of clauses in the SMT solver to avoid running into the same
conflict again. The negation of this conflict clause describes a set of don’t cares
due to an inconsistency of linear constraints.

Now consider formula (1) which has to be solved by an SMT solver and suppose
that the solver introduces boolean constraint variables q�i for linear constraints
�i and q�′i

for �′i (1 ≤ i ≤ n). Whenever there is some satisfying assignment to
boolean variables (including constraint variables) in the SMT solver, it will be
necessarily shown to be inconsistent, since formula (1) is unsatisfiable.

3 Here we refer to the lazy approach to SMT solving, see [18], e.g., for an overview.

390 C. Scholl et al.

In order to define an appropriate function G we introduce the concept of
so-called orbits: For an arbitrary value (v�r+1 , . . . , v�n) ∈ {0, 1}n−r the corre-
sponding orbit is defined by

orbit(v�r+1 , . . . , v�n) := {(v�1 , . . . , v�r , v�r+1 , . . . , v�n) | (v�1 , . . . , v�r) ∈ {0, 1}r}.
Now the following essential observations result from the unsatisfiability of

formula (1): If some orbit orbit(v�r+1 , . . . , v�n) contains two different elements
v(1) := (v�1 , . . . , v�r , v�r+1 , . . . , v�n) and v(2) := (v′�1 , . . . , v′�r

, v�r+1 , . . . , v�n) with
F (v(1)) �= F (v(2)), then

(a) v(1) ∈ DC or v(2) ∈ DC and
(b) the SMT solver detects and records this don’t care when solving formula (1).

In order to show fact (a), we consider the following assignment to the boolean
abstraction variables in formula (1): Let q�1 := v�1 , . . . , q�r := v�r , q�′1

:= v′�1 , . . . ,

q�′r
:= v′�r

, q�r+1 := q�′r+1
:= v�r+1 , . . . , q�n := q�′n

:= v�n . (Thus v(1) is assigned to
the abstraction variables for �1, . . . , �n and v(2) to the abstraction variables for
�′1, . . . , �

′
n.) It is easy to see that this assignment satisfies the boolean abstrac-

tion of formula (1). Since formula (1) is unsatisfiable, the assignment has to be
inconsistent wrt. the interpretation of constraint variables by linear constraints.
So there must be an inconsistency in the truth assignment to some linear con-
straints �1, . . . , �n, �′1, . . . , �

′
n. Since the linear constraints �i and �′i are based on

disjoint sets of real variables C = {c1, . . . , cf} and C′ = {c′1, . . . , c′f}, already the
partial assignment to �1, . . . , �n or the partial assignment to �′1, . . . , �

′
n has to be

inconsistent, i.e., v(1) ∈ DC or v(2) ∈ DC.
Fact (b) follows from the simple observation that the SMT solver has to detect

and record the inconsistency of the assignment mentioned above in order to prove
unsatisfiability of formula (1) and with minimization of conflict clauses it detects
only conflicts which are confined either to �1, . . . , �n or to �′1, . . . , �

′
n.4

Altogether this means that the elements of some orbit(v�r+1 , . . . , v�n) which
are not in the subset DC′ of DC computed by the SMT solver are either all
mapped by F to 0 or are all mapped by F to 1. Thus, we can define an appro-
priate function G by don’t care assignment as follows:

1. If orbit(v�r+1 , . . . , v�n) ⊆ DC′, then G(v�r+1 , . . . , v�n) is chosen arbitrarily.
2. Otherwise G(v�r+1 , . . . , v�n) = δ with F (orbit(v�r+1 , . . . , v�n) \DC′) = {δ},

δ ∈ {0, 1}.
It is easy to see that G does not depend on variables q�1 , . . . , q�r and that G is
well-defined (this follows from |F (orbit(v�r+1 , . . . , v�n) \DC′)| = 1), i.e., G is a
possible solution according to Def. 1. This consideration also provides a proof
for the ‘if-part’ of Thm. 1.
4 For our purposes, it does not matter whether the inconsistency is given in terms of

linear constraints �1, . . . , �n or �′1, . . . , �
′
n. We are only interested in assignments of

boolean values to linear constraints leading to inconsistencies; of course, the same
inconsistencies will hold both for �1, . . . , �n and their copies �′1, . . . , �

′
n.

Computing Optimized Representations 391

A predicate dc which describes the don’t cares in DC′ may be extracted
from the SMT solver as a disjunction of negated conflict clauses which record
inconsistencies between linear constraints.

Note that according to case 1. of the definition above there may be several
possible choices fulfilling the definition of G.

Redundancy Removal by Existential Quantification. A straightforward way of
computing an appropriate function G relies on existential quantification:

– At first by G′ = F ∧ dc all don’t cares represented by dc are mapped to the
function value 0.

– Secondly, we perform an existential quantification of the variables q�1 , . . . , q�r

in G′: G = ∃q�1 , . . . , q�rG
′. This existential quantification maps all elements

of an orbit orbit(v�r+1 , . . . , v�n) to 1, whenever the orbit contains an element
ε with dc(ε) = 0 and F (ε) = 1. Since due to the argumentation above there
is no other element δ in such an orbit with dc(δ) = 0 and F (δ) = 0, G even-
tually differs from F only for don’t cares defined by dc and it certainly does
not depend on variables q�1 , . . . , q�r , i.e., existential quantification computes
one possible solution for G according to Def. 1 (more precisely it computes
exactly the solution for G which maps a minimum number of elements of
{0, 1}n−r to 1).

Redundancy Removal with Craig Interpolants. Although our implementation
of LinAIGs supports quantification of boolean variables by a series of meth-
ods like avoiding the insertion of equivalent nodes, quantifier scheduling, BDD
sweeping and node selection heuristics (see [17]), there remains the risk of dou-
bling the representation size by quantifying a single boolean variable.5 Therefore
the computation of G by G = ∃q�1 , . . . , q�rG

′ as shown above may potentially
lead to large LinAIG representations (although it reduces the number of linear
constraints).

On the other hand, this choice for G is only one of many other possible choices.
Motivated by these facts we looked for an alternative solution. Here we present a
solution which needs only one application of Craig interpolation [1,8,9,19] instead
of a series of existential quantifications of boolean variables. Note that in this
context Craig interpolation leads to an exact result (as one of several possible
choices) and not to an approximation as in [9].

Don’t cares can be assigned arbitrarily in order to make G independent from
q�1 , . . . , q�r , thus our task is to find a boolean function G(q�r+1 , . . . , q�n) with

(F ∧ dc)(q�1 , . . . , q�n) =⇒ G(q�r+1 , . . . , q�n), (2)

G(q�r+1 , . . . , q�n) =⇒ (F ∨ dc)(q�1 , . . . , q�n). (3)

Now let A(q�1 , . . . , q�r , q�r+1 , . . . , q�n , h1, . . . , hl) represent the CNF for a Tsei-
tin transformation [20] of (F ∧dc)(q�1 , . . . , q�r , q�r+1 , . . . , q�n) (with new auxiliary

5 Basically, existential quantification of a boolean variable is reduced to a disjunction
of both cofactors wrt. 0 and wrt. 1.

392 C. Scholl et al.

variables h1, . . . , hl). Likewise, let B(q′�1 , . . . , q
′
�r

, q�r+1 , . . . , q�n , h′
1, . . . , h

′
l′) be the

CNF for a Tseitin transformation of (F ∧ dc)(q′�1 , . . . , q
′
�r

, q�r+1 , . . . , q�n) (with
new auxiliary variables h′

1, . . . , h
′
l′ and new copies q′�1 , . . . , q′�r

of the variables
q�1 , . . . , q�r).

Then A and B fulfill the precondition ‘A∧B = 0’ for Craig interpolation [1,8]:
Suppose that there is a satisfying assignment to A ∧ B given by q�1 :=

v�1 , . . . , q�r := v�r , q
′
�1

:= v′�1 , . . . , q
′
�r

:= v′�r
, q�r+1 := v�r+1 , . . . , q�n := v�n , and

the corresponding assignments to auxiliary variables h1, . . . , hl and h′
1, . . . , h

′
l′

which are implied by these assignments. According to the definition of A and B
this would mean that the set orbit(v�r+1 , . . . , v�n) would contain two elements
(v�1 , . . . , v�r , v�r+1 , . . . , v�n) and (v′�1 , . . . , v

′
�r

, v�r+1 , . . . , v�n) which do not belong
to the don’t care set DC′ and which fulfill F (v�1 , . . . , v�r , v�r+1 , . . . , v�n) = 1 and
F (v′�1 , . . . , v′�r

, v�r+1 , . . . , v�n) = 0. This is a contradiction to the property shown
above that the elements of orbit(v�r+1 , . . . , v�n) which are not in DC′ are either
all mapped by F to 0 or are all mapped by F to 1.

A Craig interpolant G computed for A and B has the following properties [1,8]:

– It depends only on common variables q�r+1 , . . . , q�n of A and B,
– A =⇒ G, i.e., G fulfills equation (2), and
– G ∧B is unsatisfiable, or equivalently, G =⇒ B, i.e., G fulfills equation (3).

This shows that a Craig interpolant for (A,B) is exactly one of the possible
solutions for G which we were looking for. According to [8,9] a Craig interpolant
can be computed in linear time based on a proof by resolution that a formula in
CNF (in our case A ∧ B as defined above) is unsatisfiable. Such proofs can be
computed by any modern SAT solver with proof logging turned on.

4 Experimental Results

We implemented redundancy detection by incremental SMT solving and redun-
dancy removal by Craig interpolation in the framework of LinAIGs. The imple-
mentation uses two SMT solvers via API calls. Yices [13] is used for all SMT
solver calls except the generation of the don’t care set. This means that Yices
performs all equivalence checks needed for LinAIG compaction ([4,5], Sect. 2.1)
and moreover, it is also used for the redundancy detection algorithm described in
Sect. 3 in an incremental way. For the computation of the don’t care set required
for redundancy removal we use MathSAT [15], since it provides a method for ex-
tracting conflict clauses due to inconsistent assignments to linear constraints.
The computation of the Craig interpolants is done with MiniSAT [21], where we
made an extension to the proof logging version. All experiments were performed
on an AMD Opteron with 2.6 GHz and 16 GB RAM under Linux.

Comparison of the LinAIG evolution with and without redundancy removal. In
Fig. 4 we present a comparison of two typical runs of the model checker from
[5]. The left diagram shows the evolution of the linear constraints over time
and the right diagram shows the evolution of node counts. When we do not use

Computing Optimized Representations 393

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

ac
tiv

e
LC

s

intermediate model checking steps

active linear constraints

redundancy removal
no redundancy removal

 0

 20

 40

 60

 80

 100

 120

 140

 160

ac
tiv

e
no

de
s

(x
10

00
)

intermediate model checking steps

active LinAIG nodes

redundancy removal
no redundancy removal

Fig. 4. Comparison of the LinAIG evolution with and without redundancy removal

redundancy removal, the number of linear constraint is quickly increasing up to
1000 and more, and the number of LinAIG nodes is exploding up to a value of
150,000. On the other hand, when using redundancy removal the number of linear
constraints and the number of AIG nodes show only a moderate growth rate. This
behavior has an immediate effect on the run times of the model checker: Whereas
model checking finished within 15 minutes with redundancy removal, the version
without redundancy removal did not finish within a timeout of 24 hours. This
gives a strong evidence that redundancy removal is absolutely necessary when
using quantifier elimination to keep the data structure compact in our model
checking environment.

Existential quantification vs. Craig interpolation. Here we evaluate the two differ-
ent approaches to removal of redundant constraints as presented in Sect. 3.3. The
first approach uses existential quantification to eliminate redundant constraints,
the second one uses our approach based on Craig interpolation. The benchmarks
represent state sets extracted from the model checker from [5] during three runs
with different model checking problems (the first group of runs was taken from an
industrial case study considering a flap controller of an aircraft [5], the following
two groups from the verification of collision avoidance protocols for train applica-
tions [22]). All these problems also contain boolean variables.

The results are given in Table 1. The numbers of AIG nodes and linear con-
straints before redundancy removal are shown in columns 2 and 3. In column 4
the detected number of redundant linear constraints is given. The times for the
detection of redundancy and the don’t care set generation are given in columns
5 and 6. Note that these values are the same for both approaches, because the
difference lies only in the way linear constraints are actually removed. In the
last four columns the results of the two algorithms are shown, where ‘∆ nodes’
denotes the difference between the number of AIG nodes before and after the
removal step and ‘time’ is the CPU time needed for this step. We used a timeout
of 7200 seconds and a memory limit of 4 GB.

The results clearly show that wrt. runtime the redundancy removal based on
Craig interpolation outperforms the approach with existential quantification by
far. Especially when the benchmarks are more complex and show a large number
of redundant linear constraints, the difference between the two methods is sub-
stantial. Moreover, also the resulting AIG is often much smaller. It is interesting

394 C. Scholl et al.

Table 1. Comparison of redundancy removal: existential quantification vs. Craig
interpolants

Benchmark # AIG # linear # redundant redundancy dc set RR exist. quant. RR Craig interp.
nodes constr. lin. constr. detection (s) creation (s) ∆ nodes time (s) ∆ nodes time (s)

stateset 1-1 1459 41 22 0.22 0.35 -541 7.19 -814 0.74
stateset 1-2 1716 74 27 0.51 0.71 -313 13.14 -1047 0.68
stateset 1-3 2340 105 22 1.89 2.41 459 25.35 -515 2.32
stateset 1-4 3500 142 28 8.02 5.53 1642 75.49 1062 10.08
stateset 1-5 2837 123 13 4.61 4.54 -230 12.34 1595 23.10
stateset 2-1 824 29 8 0.12 0.19 747 2.55 -142 0.43
stateset 2-2 1424 37 10 0.36 0.53 1104 3.45 233 1.19
stateset 2-3 3048 52 11 2.45 2.50 1996 10.13 171 4.22
stateset 2-4 1848 37 14 0.57 0.90 852 4.03 -149 1.34
stateset 3-1 495 74 44 0.10 0.14 656 4.55 -365 0.13
stateset 3-2 1775 297 228 1.86 1.74 >7200 -1453 1.60
stateset 3-3 6703 1281 1143 105.69 23.70 >7200 -5805 14.12
stateset 3-4 32021 5943 5706 2774.10 1012.78 >7200 -24633 126.19

to see that using incremental SMT solving techniques it was in many cases pos-
sible to detect large sets of redundant linear constraints in very short times. As
shown in the previous experiment this pays off also in subsequent steps of model
checking when quantifier elimination works on a representation with a smaller
number of linear constraints. Considering column 6 we observe that run times
for the generation of don’t care sets by MathSAT are comparable to the run times
of redundancy detection.6

Comparison of the LinAIG based quantifier elimination with other solvers. In a
last experiment we compared our approach to quantifier elimination with sev-
eral existing tools: REDLOG [12] is an extension to the computer algebra sys-
tem REDUCE [11] and uses the quantifier elimination algorithm of Loos and
Weispfenning [7], too, LIRA 1.1.2 [10] is an automata-based tool capable of rep-
resenting sets of states over real, integer, and boolean variables, and CVC3 1.2.1
[14] as well as Yices 1.0.11 [13] are state-of-the-art SMT solvers.

The benchmarks formulas used in this experiment contain linear constraints
and boolean variables, together with AND operators, negations, and quantifiers
over real-valued variables. The formulas were extracted from the model checker
[5] and represent continuous pre-image computations for state sets. All formulas
contain two quantified variables, one is existentially quantified and the other one
is universally quantified. All formulas are given in the SMT-LIB format [23] and
are publicly available.7 Since the SMT-LIB format only supports flat formulas
(instead of shared graph structures), we had to confine ourselves to state set
representations with moderate sizes.

For the SMT solverswe interpret free variables as implicitly existentially quanti-
fied and decide satisfiability, since they do not compute predicates representing all
6 As already mentioned above, for technical reasons in our implementation we have to

repeat the last step of redundancy detection (which actually was already performed
by Yices) using MathSAT in order to be able to extract conflict clauses.

7 http://abs.informatik.uni-freiburg.de/tacas09bench/

http://abs.informatik.uni-freiburg.de/tacas09bench/

Computing Optimized Representations 395

Table 2. Comparison of Solvers

Benchmark LinAIG REDUCE/REDLOG LIRA Yices CVC3
Name AND LC B R N AND LC B Time AND LC B Time Res. Time Res. Time Res. Time
pre1 1K 22 5 4 27 30 12 5 1.48 830 26 5 0.14 SAT 27.71 ? 0.03 ? 0.22
pre2 2K 20 5 4 15 15 2 4 1.23 1133 35 5 0.21 SAT 67.98 ? 0.05 ? 0.25
pre3 5K 26 5 4 55 71 16 5 2.03 1918 39 5 0.43 SAT 443.66 ? 0.15 ? 0.40
pre4 160K 52 4 4 33 35 12 3 4.48 196483 224 4 38.06 timeout ? 3.94 ? 4.65
pre5 188K 27 20 5 31 59 13 4 4.52 35356 42 16 14.67 memout ? 4.41 ? 4.84
pre6 1396K 31 20 5 21 29 9 3 15.15 396887 68 20 98.89 timeout ? 32.88 ? 22.81
pre7 3894K 30 20 5 32 111 8 4 46.58 memout memout ? 148.47 ? 90.97
pre8 6730K 44 20 5 186 545 14 12 68.95 memout memout ? 239.20 ? 111.56
pre9 9931K 52 8 4 555 8034 20 8 96.19 memout memout ? 191.67 ? 132.06

satisfying assignments. Our LinAIG based tool, REDLOG/REDUCE and LIRA
additionally compute representations for predicates representing all satisfying as-
signments. Again, we used a time limit of 7200 CPU seconds and a memory limit
of 4 GB for our experiments.

Table 2 shows the results. The first section ‘Benchmark’ shows details on the
input formulas. The column ‘AND’ lists the number of AND operators in the
formula, ‘LC’ lists the number of linear constraints, ‘B’ the number of boolean
variables, and ‘R’ the number of real variables. The LinAIG section shows for the
resulting predicates the numbers of AIG nodes (‘N’), the numbers of AND opera-
tors in the corresponding flat formula (‘AND’), the numbers of linear constraints
(‘LC’), boolean variables (‘B’), and run times (‘Time’). The run times include all
CPU times necessary for reading the formulas, constructing LinAIGs, eliminat-
ing quantifiers, and removing redundant linear constraints. For the REDLOG
tool we report the number of AND operators, linear constraints, and boolean
variables in the resulting formula, as well as the run times needed for the compu-
tation. For LIRA, Yices and CVC3 run times are given together with the result
whether the formula is proven to be satisfiable (‘SAT’) or unsatisfiable (‘UN-
SAT’). The two SMT solvers Yices and CVC3 are not using a complete method
and therefore may also report ‘unknown’ which is marked by ‘?’.

Our LinAIG based approach is able to eliminate the quantifiers of all formulas
within a short runtime and moreover, returns formulas which are much more
compact than the formulas produced by REDLOG/REDUCE, both in terms of
AND operators and in terms of linear constraints. For mid-size examples the run
times of REDUCE/REDLOG are outperformed by our tool, whereas the larger
examples could not be solved by REDUCE/REDLOG. LIRA was able to solve
only 3 out of 9 instances within the time or memory limit and it needs much
more run time. The SMT solvers Yices and CVC3 were not able to solve any of
the examples. Note however that these solvers are not restricted to the subclass
of formulas we consider in this paper. They are able to handle the more general
AUFLIRA class of formulas [24] and for handling formulas with quantifiers they
make use of heuristics based on E-matching [25] which are not tuned to problems
that contain only linear arithmetic.

In summary, the experiments clearly demonstrate that for the subclass of
formulas considered in this paper we were able to provide an efficient method
both wrt. run times and wrt. the sizes of the resulting formulas.

396 C. Scholl et al.

5 Conclusions and Future Work

We presented an approach for optimizing non-convex polyhedra based on the
removal of redundant constraints. Our experimental results show that our ap-
proach can be successfully applied to solving quantified formulas including lin-
ear real arithmetic and boolean formulas. The method is based on an elaborate
scheme for keeping graph-based representations of intermediate results as com-
pact as possible, with redundancy removal as an essential component. Since our
method does not only solve satisfiability of formulas, but constructs predicates
of all satisfying assignments to the free variables in the formula, our results may
suggest to use the presented method in the future also as a fast preprocessor for
more general formulas by simplifying subformulas from the subclass considered
in this paper. Moreover, it will be interesting to apply the methods to underlying
theories different from linear real arithmetic, too.

Acknowledgements

The results presented in this paper were developed in the context of the Tran-
sregional Collaborative Research Center ‘Automatic Verification and Analysis
of Complex Systems’ (SFB/TR 14 AVACS) supported by the German Research
Council (DFG). We worked in close cooperation with our colleagues from the
‘First Order Model Checking team’ within subproject H3 and we would like to
thank W. Damm, H. Hungar, J. Pang, and B. Wirtz from the University of
Oldenburg, and S. Jacobs and U. Waldmann from the Max Planck Institute for
Computer Science at Saarbrücken for numerous ideas and helpful discussions.
Moreover, we would like to thank J. Eisinger from the University of Freiburg
for providing the formula parser used in our experiments and A. Griggio from
University of Trento for his support enabling the integration of MathSAT into
our tool.

References

1. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. Journal on Symbolic Logic 22(3), 269–285 (1957)

2. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer 1(1–2), 110–122 (1997)

3. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

4. Damm, W., Disch, S., Hungar, H., Pang, J., Pigorsch, F., Scholl, C., Waldmann,
U., Wirtz, B.: Automatic verification of hybrid systems with large discrete state
space. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 276–291.
Springer, Heidelberg (2006)

5. Damm, W., Disch, S., Hungar, H., Jacobs, S., Pang, J., Pigorsch, F., Scholl, C.,
Waldmann, U., Wirtz, B.: Exact state set representations in the verification of
linear hybrid systems with large discrete state space. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 425–440.
Springer, Heidelberg (2007)

Computing Optimized Representations 397

6. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-
like data-structures. IEEE Trans. on Software Engineering 31(1), 38–52 (2005)

7. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36(5), 450–462 (1993)

8. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal on Symbolic Logic 62(3), 981–998 (1997)

9. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

10. Eisinger, J., Klaedtke, F.: Don’t care words with an application to the automata-
based approach for real addition. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 67–80. Springer, Heidelberg (2006)

11. Griss, M.L.: The reduce system for computer algebra. In: ACM 1975: Proceedings
of the 1975 annual conference, pp. 261–262. ACM Press, New York (1975)

12. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic.
SIGSAM Bull. 31(2), 2–9 (1997)

13. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

14. Stump, A., Barrett, C.W., Dill, D.L.: CVC: A cooperating validity checker. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 500–504.
Springer, Heidelberg (2002)

15. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The math-

SAT 4 SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 299–303. Springer, Heidelberg (2008)

16. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: A unifying
representation for logic synthesis and verification. Technical report, EECS Dept.,
UC Berkeley (2005)

17. Pigorsch, F., Scholl, C., Disch, S.: Advanced unbounded model checking by using
AIGs, BDD sweeping and quantifier scheduling. In: FMCAD, pp. 89–96 (2006)

18. Sebastiani, R.: Lazy satisability modulo theories. JSAT 3, 141–224 (2007)
19. Lee, C.C., Jiang, J.H.R., Huang, C.Y., Mishchenko, A.: Scalable exploration of

functional dependency by interpolation and incremental SAT solving. In: ICCAD,
pp. 227–233 (2007)

20. Tseitin, G.: On the complexity of derivations in propositional calculus. In: Studies
in Constructive Mathematics and Mathematical Logics (1968)

21. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 541–638. Springer, Heidelberg (2004)

22. Damm, W., Mikschl, A., Oehlerking, J., Olderog, E.-R., Pang, J., Platzer, A.,
Segelken, M., Wirtz, B.: Automating verification of cooperation, control, and de-
sign in traffic applications. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal
Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 115–169. Springer,
Heidelberg (2007)

23. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2 (2006), http://

combination.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf

24. Barrett, C., Deters, M., Oliveras, A., Stump, A.: Satisfiability Modulo Theories
Competition (SMT-COMP) 2008: Rules and Precedures (2008), http://smtcomp.
org/rules08.pdf

25. Detlefs, D., Nelson, G., Saxe, J.: Simplify: A theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

http://combination.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf
http://combination.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf
http://smtcomp.org/rules08.pdf
http://smtcomp.org/rules08.pdf

All-Termination(T)�

Panagiotis Manolios and Aaron Turon

Northeastern University
{pete,turon}@ccs.neu.edu

Abstract. We introduce the All-Termination(T) problem: given a
termination solver T and a collection of functions F , find every sub-
set of the formal parameters to F whose consideration is sufficient to
show, using T , that F terminates. An important and motivating appli-
cation is enhancing theorem proving systems by constructing the set of
strongest induction schemes for F , modulo T . These schemes can be
derived from the set of termination cores, the minimal sets returned
by All-Termination(T), without any reference to an explicit measure
function. We study the All-Termination(T) problem as applied to the
size-change termination analysis (SCT), a PSpace-complete problem
that underlies many termination solvers. Surprisingly, we show that All-

Termination(SCT) is also PSpace-complete, even though it substan-
tially generalizes SCT . We develop a practical algorithm for
All-Termination(SCT), and show experimentally that on the ACL2
regression suite (whose size is over 100MB) our algorithm generates
stronger induction schemes on 90% of multiargument functions.

1 Introduction

Reasoning about recursion requires induction. But there may be several induc-
tion schemes that apply to a given recursive function, and different theorems
may require the use of different induction schemes. Finding induction schemes
for a given function is particularly important for automated theorem provers that
perform induction heuristically. In this context, Boyer and Moore explored the
strong relationship between termination and both recursion and induction [1].
They showed that proving termination is the key to justifying function defini-
tions and induction schemes, and developed methods for doing so mechanically.
This was one of the major insights that led to the success of the Boyer-Moore
family of theorem provers, which includes ACL2 [2].

In this paper, we introduce a generalization of the classic termination problem:
All-Termination. The motivating application for this problem is its use in
mechanically deriving and justifying as many induction schemes for a function
as possible, using methods like Boyer and Moore’s. Each induction scheme is
closely tied to the pattern of recursion in the function, so the schemes are likely
to be useful in automated reasoning about the function.
� This research was funded in part by NASA Cooperative Agreement NNX08AE37A

and NSF grants CCF-0429924, IIS-0417413, and CCF-0438871.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 398–412, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

All-Termination(T) 399

We begin with a few examples, first using traditional induction schemes, and
then describing the schemes we can derive through All-Termination analysis.
Consider the function even, which determines whether a natural number is even:

even n = if n = 0 then T else if n = 1 then F else even (n - 2)

To show the correctness of even, there are a few induction principles we might
apply. An obvious first choice is standard induction over the naturals. However,
this principle does not suffice for proving the theorem, because it is not possible
to prove that even(n) is correct assuming only that even(n − 1) is correct; we
need instead that even(n − 2) is correct. On the other hand, we could employ
strong induction on the naturals. We would then have to show

〈∀m < n :: even(m) iff +m/2, = m/2〉 =⇒ (even(n) iff +n/2, = n/2)

where n is implicitly universally quantified, a shorthand we will use throughout
this section. While this is a reasonable choice of induction scheme, it is a bit ad
hoc. In particular, it is hard to see how to derive such an induction scheme from
the definition of even in an automated way.

What Boyer and Moore propose instead is to derive an induction scheme
from the pattern of recursion in the function body. For the even function, we
can derive following induction scheme for proving 〈∀n :: ϕ(n)〉:

ϕ(0), ϕ(1), n �= 0, n �= 1, ϕ(n− 2) =⇒ ϕ(n)

How do we know that the induction scheme is sound? By proving that even
terminates on all inputs. Since the induction scheme corresponds directly to the
recursion of even, knowing that the recursion terminates allows us to apply well-
founded induction and soundly derive the induction scheme above. Notice that
the induction scheme can be applied to any ϕ, not just ϕ involving even. But
the derivation of the scheme was mechanically guided by the definition of even.

Now we turn to a more interesting example: the function zip, which takes a
pair of lists and produces a list of pairs:

zip xs ys = if nil?(xs) or nil?(ys) then nil
else cons (head x, head y) (zip (tail xs) (tail ys))

Recall that a measure µ on a function f is another function, on the same domain,
that maps into a well-ordered structure1 such that whenever f(a) calls f(b), we
have µ(a) > µ(b). Because the successive values of µ cannot decrease infinitely, f
cannot recur infinitely. We say a set P of formal parameter names for a function
is measurable if there exists a measure on that function that uses only those
arguments. Suppose length measures the length of a list. For zip, the sets
{xs, ys}, {xs}, and {ys} are measurable, because length(xs) + length(ys),
length(xs), and length(ys), respectively, are measures. Ignoring the measures
themselves, we can use measurable sets of a function to derive induction schemes.
For instance, here are two induction schemes for zip:
1 A set with a total order that has no infinite descending chains x1 > x2 > · · · .

400 P. Manolios and A. Turon

Measurable set: P = {xs, ys} Measurable set: P = {xs}
1. ϕ([], ys) 1. ϕ([], ys)
2. ϕ(xs, []) 2. ϕ(xs, [])
3. ϕ(xs, ys) =⇒ ϕ(x:xs, y:ys) 3′. 〈∀zs :: ϕ(xs, zs)〉 =⇒ ϕ(x:xs, y:ys)

The intuition is that, if a parameter like ys does not appear in a measurable
set, then that parameter can vary freely without affecting termination; hence,
the parameter can be instantiated freely during induction without invalidating
the induction scheme. The induction scheme based on {xs} is stronger than the
one for {xs, ys}: any theorem proved using the latter can be proved using the
former, but not vice versa.

In practice, Boyer-Moore theorem provers use complex heuristics to propose
an induction scheme that is likely needed to prove a given theorem. The proposed
scheme must then be justified. The key point is that, just as with the simple
examples above, the justification is based on measurable sets. Users can introduce
new measurable sets, but only through a manual process involving a termination
proof. Our goal is to automate the process of justifying induction schemes by
computing all the measurable sets for a given function.

We thus define All-Termination as follows: given a recursive function f ,
find its measurable sets. The All-Termination problem is a generalization of
the classic termination decision problem: a program is terminating iff it has at
least one measurable set. Therefore, All-Termination is undecidable. How-
ever, decades of work on termination have yielded powerful, but decidable,
termination analyses. For any such termination analysis, T , we can pose the
All-Termination(T) problem: given a function f and a termination solver, T ,
find as many measurable sets as possible using T .

In this paper, we focus on the size-change termination analysis (SCT [3])
because several powerful termination analyses depend on it (see Section 5 for
examples). An introduction to the size-change framework is given in Section 3.
Then, in Section 4, we study All-Termination(SCT) in detail and show that
its complexity is the same as the complexity of SCT : they are both PSpace-
complete problems. We also develop an algorithm, using dual-horn minimization.
We have implemented this algorithm on a prototype basis, and executed it on
the ACL2 regression suite, consisting of over 11,000 functions. We found that
over 90% of multiargument functions have at least one measurable set that was
smaller than the full set of arguments to the function, and 7% of the multi-
argument functions had multiple, incomparable measurable sets. These results
suggest that All-Termination can increase automation in theorem provers.

An important practical consideration is the tension between termination anal-
ysis and All-Termination analysis. Since termination analysis tends to be ex-
pensive, and theorem provers often require functions to be shown terminating
before they can be admitted, the goal is to decide termination as quickly as
possible, using the simplest analysis [4]. On the other hand, we can get better
All-Termination results by employing heavyweight methods, even when sim-
pler methods suffice to show termination—but this involves more work. The algo-
rithm we develop takes this tension into account and is responsive: it

All-Termination(T) 401

answers the basic termination question first, without incurring any additional
overhead. Only after termination is settled does it proceed with the full All-

Termination(T) analysis. This approach allows a theorem prover to use spare
CPU cycles or cores to detect new induction schemes in the background, after
the function is determined to terminate. It also allows the theorem prover to use
All-Termination(T) analysis in a demand-driven way, asking for induction
schemes when the need arises.

A version of this paper with more detail and full proofs is available online [5].

2 All-Termination(T)

We postulate a universe of programs Prog, but do not specify a particular
syntax or semantics. Intuitively, a program F ∈ Prog is a mutually-recursive
nest of functions; F terminates iff each function in F terminates on every input.
Formally, we require that for every program F ∈ Prog, there is a corresponding
transition system CF , called the semantic call graph of F , which terminates
iff F does and whose states are function names with actual arguments. Given
universes of function names F , parameter names P , and values V , we say:

Definition 1. A semantic call graph C is a pair (S,→) with S ⊆ F×(P⇀V)
the set of states and → ⊆ S × S the transition relation. The elements of
P ⇀ V are the partial functions from P to V.

Definition 2. A semantic call graph C is terminating if it contains no infinite
sequence of transitions s1→s2→· · · .
The Fibonacci function and its semantic call graph are:

fib 0 = 1
fib 1 = 1
fib n = fib(n-1) + fib(n-2)

fib(0) fib(1) fib(2)

�������� ��������
fib(3)

������
��

������
��

· · ·

A semantic call graph records the actual function calls made in order to compute
a given function application. In general, CF is an infinite, undecidable structure:
even determining whether there is a transition between two states is undecid-
able. We can express termination of semantic call graphs in terms of measure
functions, the standard tool for proving termination, as follows.

Proposition 1. (S,→) is terminating iff there exists a well-ordered set (W,>)
and a measure µ, i.e., a map µ : S →W such that if s→t then µ(s) > µ(t).

This proposition follows from basic results in set theory, showing that every
terminating relation can be extended to a well-order and that every well-order
is order-isomorphic to a unique ordinal number.

If (f, V) is a state in a semantic call graph C, the values of the formal ar-
guments in dom(V) are the observations available to a measure on C. Thus, to
restrict the arguments a measure can observe, and thereby force it to ignore
certain arguments, we restrict the domain of V :

402 P. Manolios and A. Turon

Definition 3. Given V : P ⇀ V, f ∈ F and P ⊆ P, we define the restrictions

(V �P)(x) =

{
V (x) x ∈ dom(V) ∩ P,

undefined otherwise
(f, V)�P = (f, V �P)

Informally, a set of formal parameter names P is measurable if there is a measure
that “uses” only those arguments. We can formalize this idea using restriction.

Definition 4. P is a measurable set for C = (S,→) if there exists a measure
µ : S →W such that, if s, t ∈ S and s�P = t�P , then µ(s) = µ(t).

Note that if C has any measurable set, then in particular C is terminating. Ter-
mination analyses are usually formulated so that they imply the termination of
a program, but not the existence of any particular measurable set. To define
All-Termination(T), we need to limit the analysis T to “use” only a certain
set of formal parameters, just as for measures.

Definition 5. A termination analysis T is a predicate such that, if T (F, P),
then P is a measurable set for CF .

Finally, given a termination analysis T and a program F , the termination cores
of F modulo T are the minimal P such that T (F, P). That is,

All-Termination(T)(F) = min{P ⊆ P : T (F, P)}

3 The Size-Change Framework

The semantic call graph CF precisely captures the recursive behavior of F , at the
cost of undecidability. A fruitful approach to termination analysis is to consider
safe approximations of CF . This section describes the size-change framework
of Lee, Jones, and Ben-Amram [3]. The main result, Theorem 1, is not new.
However, our presentation of the framework includes some innovations that are
needed for studying All-Termination(SCT): we give a fuller account of the
connection between SCT and semantic call graphs (including a notion of simu-
lation), and we make explicit the notion of evaluation.

Example. Consider the well-known total function ack:

ack 0 n = n+1
ack m 0 = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))

Traditionally, to prove that ack terminates, a measure µ is introduced corre-
sponding to a lexicographic order on the arguments. The size-change framework
takes an alternative perspective, focusing on the change in size of each argu-
ment independently, without having to concoct a single measure on the tuple of
arguments. We first observe that in every recursive call to ack, either the first

All-Termination(T) 403

argument decreases, or the first argument does not increase while the second
decreases. We display this size-change data as follows:

G1:
m

> �� m

n n

G2:
m

≥ �� m

n
> �� n

It follows that any putative infinite recursion would involve an infinite sequence
of argument size changes of the form above—but we can show that this is not
possible. If size change G1 occurs infinitely often, then m decreases infinitely,
which is impossible under a well-order. Otherwise, since we are considering an
infinite sequence of size changes, it must be that size change G2 occurs unin-
terrupted as an infinite suffix of the sequence. But then n decreases infinitely,
which is again impossible. Hence, ack terminates. The size-change framework
reformulates such reasoning into a decidable analysis.

For simplicity, we postulate a single well-ordering > on all values in V .2 The
notion of size-change “data” above is formalized into a structure called a size-
change graph. An annotated call graph (ACG) is a directed graph with function
names as nodes, and an edge from f to g for each call to g that occurs in the
body of f . The edges of an ACG are labeled by size-change graphs, which record
the size relationship between the arguments of f and g. More formally, we write

p, q, r ∈ Lab = {>,≥} size-change label
G,H ∈ SCG = 2P×Lab×P size-change graph
G,H ∈ ACG = 2F×SCG×F annotated call graph

We write x
r−→ y for (x, r, y) ∈ G and f

G−→ g for (f,G, g) ∈ G. We also sometimes
write G ∈ G for f

G−→ g if the function names f and g are unimportant.

The annotated call graph for ack is: ackG1 �� G2�� . The intuitive demon-
stration that ack terminates was based on sequences of argument size changes
during recursive function calls. A potential sequence of function calls is just a
path through an ACG.

Definition 6. A multipath π through an ACG G is a (potentially infinite)
sequence of edges from G, connected at nodes: π = f0

G1−−→ f1
G2−−→ f2

G3−−→ · · · .
We write Gω for the set of nonempty multipaths over G and G+ for the set
of finite, nonempty ones. We sometimes write G1, G2, . . . or 〈Gi〉 to describe a
multipath when the function names are irrelevant.

The reason π = 〈Gi〉 is a multipath and not just a path is that the elements
Gi of the sequence are themselves graph structures. In particular, a multipath
may contain many threads through its size-change graphs.

Definition 7. A thread in a multipath π = 〈Gi〉 is a sequence of size-change
edges 〈xi−1

ri−→ xi〉 such that xi−1
ri−→ xi ∈ Gi for all i > 0.

2 Multiple orders can also be handled [4].

404 P. Manolios and A. Turon

For example, consider the multipath ack
G1−−→ ack

G2−−→ ack
G1−−→ ack in Gack.

Its only thread is m
>−→ m

≥−→ m
>−→ m. On the other hand, the multipath

ack
G2−−→ ack

G2−−→ ack has two threads: m
≥−→ m

≥−→ m and n
>−→ n

>−→ n.
Threads track a given value as it flows through the arguments of successive

function calls. A value being tracked by a thread can never increase, but it
must decrease any time it passes through a >-labeled size-change edge. Size-
change termination analysis works by considering all potential infinite multipaths
through an ACG, and demonstrating that each of them contains an infinite
thread that forces its value to decrease infinitely often. By well-foundedness,
such infinite decreases cannot occur, and so all infinite multipaths are ruled out.

Definition 8

(1) An infinite thread 〈xi−1
ri−→ xi〉 has infinite descent if ri = > for infinitely-

many i.
(2) A multipath π has infinite descent if it has a thread with infinite descent.
(3) G is size-change terminating if every infinite multipath π ∈ Gω has a

suffix with infinite descent.

We have motivated ACGs in terms of function calls, but it remains to formally
connect ACGs to semantic call graphs. An ACG G can be seen as a finite de-
scription of a semantic call graph CG that relates states according to the possible
size changes given in G:

Definition 9. The semantic call graph determined by G is CG = (S,→),
where S = F × (P ⇀ V) and

(f, V)→(g, U) iff 〈∃f G−→ g ∈ G :: 〈∀x r−→ y ∈ G :: V (x) r U(y)〉〉
In order to use the size-change termination of G to show the termination of F ,
we must relate CG and CF . The relation we use is a form of simulation.

Definition 10. Given two semantic call graphs C1 = (S1,→1) and C2 =
(S2,→2), a simulation between C1 and C2 is a relation R ⊆ S1 × S2 such
that

– for each s1 there is some s2 with s1 R s2
– if s1 R s2 then s1 = (f, V) and s2 = (f, U) with f ∈ F and U = V �dom(U)
– if s1 R s2 and s1→1s

′
1 then there exists an s′2 such that s2→2s

′
2 and s′1 R s′2

We say C′ simulates C, written C � C′, if there exists a simulation R between C
and C′. Intuitively, if C′ simulates C, then C′ admits at least as many behaviors
as C. We say G is safe for F if CF � CG . In general, finding a safe ACG G for
a program F is difficult, and is a problem that the size-change framework does
not address (but see [4]). For our purposes, it is sufficient to postulate a function
analyze : Prog→ ACG such that analyze(F) is safe for F .

The next two propositions allow us to conclude that if G is safe for F and G
is size-change terminating then F terminates.

All-Termination(T) 405

Proposition 2. G is size-change terminating iff CG is terminating.

Proposition 3. If C � C′ and C′ is terminating then C is terminating.

Deciding size-change termination for an ACG G is a PSpace-complete problem,
but the standard algorithm used in practice needs exponential space in the worst
case [3]; we present this algorithm next.

Suppose G is an ACG. If f0
G1−−→ · · · Gn−−→ fn is a multipath in G+, we know

that according to G, a call to f0 could result in a call to fn. But what can we say
about the size of the arguments to fn in terms of the arguments to f0? What
we want is a way to compose size-change graphs along a multipath.

Definition 11. We define composition of size-change labels and graphs by

p · q =

{
≥ p = ≥ and q = ≥
> otherwise.

G ·H = {x p·q−−→ z : x
p−→ y ∈ G, y

q−→ z ∈ H}

Definition 12. The evaluation of π = 〈G1, . . . , Gn〉 ∈ G+ is �π� = G1 · · · · ·
Gn.

Note that composition is associative, so evaluation is well-defined. The evaluation
of a multipath π is useful because it compactly summarizes the threads in π:

Proposition 4. x
r−→ y ∈ �π� iff there exists a thread 〈x r1−→ z1

r2−→ · · · rn−1−−−→
zn−1

rn−→ y〉 in π, with r = r1 · · · · · rn.

The key step for the size-change termination algorithm is to compute the closure
of an annotated call graph G under composition: the set {�π� | π ∈ G+}. The
closure is formally defined as a least fixpoint. The algorithm looks for certain
“maximal” size-change graphs in the closure, called idempotents.

Definition 13.

(1) The closure of G under · is the smallest set satisfying

cl(G) = G ∪ {f G·H−−−→ h : f
G−→ g, g

H−→ h ∈ cl(G)}

(2) A size-change graph G is idempotent if G ·G = G.

Theorem 1 (Lee et al. [3]). G is size-change terminating iff for every f
G−→

g ∈ cl(G) such that G is idempotent, there is an edge x
>−→ x ∈ G.

Example. Consider the following function perm, which permutes its two argu-
ments, decreasing one of them, until one of them is zero.

perm 0 y = y
perm x 0 = x
perm x y = perm (y - 1) x

406 P. Manolios and A. Turon

How can we use the theorem above to show that perm terminates? First, we need
to construct Gperm. Since there is only one recursive call in perm, Gperm has only
one node and one edge. The size-change graph G for perm and its powers are:

G:
x ≥

������� x

y >

������� y
G2:

x
> �� x

y > �� y
G3:

x >

������� x

y >

������� y
G4:

x
> �� x

y > �� y

Note that G2 is idempotent, so G4 = G2. Consequently, the only distinct size-
change graphs in cl(Gperm) are G, G2, and G3. Since G2 has an edge x

>−→ x, and
G2 is the only idempotent graph in cl(Gperm), Gperm is size-change terminating.

The standard algorithm for deciding size-change termination is based on
Theorem 1: compute cl(analyze(F)) as a least fixpoint, and check the strict
self-edge condition on the idempotent elements. To adapt this algorithm for all-
termination, we will record some additional information as size-change graphs
are composed, and build a constraint system from this information after the al-
gorithm finishes. The minimal solutions to these constraints will be exactly the
termination cores of F .

4 All-Termination(SCT)

Recall that a termination analysis is a predicate T (F, P) that holds only if P is a
measurable set for F . Thus, the first step in studying All-Termination(SCT)
is to formulate such a predicate SCT (F, P), with the property that 〈∃P ::
SCT (F, P)〉 holds exactly when F is size-change terminating. Size-change anal-
ysis, like many termination analyses, does not explicitly construct a measure
witnessing termination; it only implies the existence of one.3 We need a way to
restrict size-change analysis to a set of parameters P , such that this implied mea-
sure only uses parameters from P . To do this, we derive an ACG analyze(F) �
P whose size-change termination implies that P is a measurable set of F .
This restricted ACG simply drops any size-change information not related to
parameters in P .

Definition 14. Given G, G, and P , we define the restrictions

G�P = {x r−→ y ∈ G : x, y ∈ P} G �P = {f G�P−−→ g : f
G−→ g ∈ G}

Similarly, we introduce a notion of restriction on semantic calls graphs, which
will allow us to derive a useful new characterization of measurable sets.

Definition 15. Given C = (S,→) and P , we define the restriction

C �P =
({(f, V �P) : (f, V) ∈ S},�)

where s�t iff there exist s′, t′ ∈ C such that s = s′ �P , t = t′ �P , and s′→t′.
3 It is possible to effectively construct a measure from size-change analysis, and thereby

extract a single measurable set, but the size of the measure is exponential [6].

All-Termination(T) 407

Proposition 5. For all C, G and P ⊆ P we have

(1) P is a measurable set for C iff C �P is terminating,
(2) C � C �P ,
(3) if C � C′ then C �P � C′ �P , and
(4) CG �P ≈ CG�P , where (≈) = (�) ∩ (.).

We now have all the pieces needed to define the SCT predicate:

SCT (F, P) ⇐⇒ analyze(F)�P is size-change terminating

Theorem 2. SCT is a termination analysis.

Proof. Using Proposition 5, CF �P � Canalyze(F) �P ≈ Canalyze(F)�P . If SCT (F, P)
holds then analyze(F) � P is size-change terminating, so Canalyze(F)�P is termi-
nating, and hence so is CF �P . By Proposition 5, P is a measurable set of F .

Deciding SCT (F, P) is PSpace-complete, since the restriction of an ACG to P
can be computed in polynomial time, after which the problem reduces to size-
change termination. Somewhat surprisingly, All-Termination(SCT) has the
same complexity.

Theorem 3. All-Termination(SCT) is PSpace-complete.

Proof. All-Termination(SCT) is PSpace-hard because 〈∃P :: SCT (F, P)〉
can be reduced to All-Termination(SCT)(F) in constant space by executing
All-Termination(SCT)(F) until it either halts with no output or produces
its first output, and 〈∃P :: SCT (F, P)〉 is PSpace-hard. On the other hand, the
following algorithm solves All-Termination(SCT) in polynomial space:

All-Termination(SCT)(F)
for P ⊆ P do

if SCT (F, P) and 〈∀Q ⊂ P :: SCT (F, Q) = False〉 then output P

The algorithm uses polynomial space because SCT (F, P) is in PSpace, and all
of the loops can be implemented using counters whose size is logarithmic in the
size of 2P , hence linear in the size of P , where P is the set of parameters to
functions in F .

This theorem generalizes to any PSpace-complete termination analysis. Having
settled the basic complexity question, we now turn to practical considerations.
The algorithm above executes SCT at least 2|P| times. The algorithm we in-
troduce below runs SCT once, gathering information from which it extracts
the termination cores. The key to the algorithm is understanding the threads
and multipaths in (G �P)+ in terms of those in G+. We first observe that each
multipath in (G �P)+ is the restriction of a multipath in G+, as follows.

Definition 16. Given a multipath π = f0
G1−−→ · · · Gn−−→ fn in G+, the restric-

tion of π to P ⊆ P is π � P = f0
G1�P−−−→ · · · Gn�P−−−→ fn, which is a multipath in

(G �P)+.

408 P. Manolios and A. Turon

Proposition 6. Let P ⊆ P.

(1) If π ∈ (G �P)+ then there exists a π′ ∈ G+ such that π = π′ �P .
(2) If π ∈ G+ then the threads of π �P are exactly the threads 〈x0

r1−→ · · · rn−→ xn〉
of π such that each xi is in P .

Notice that as size-change graphs are composed, some information about the
possible threads within them is lost. For example, if x

≥−→ z ∈ G · H , we know
that there is some y for which x

p−→ y ∈ G and y
q−→ z ∈ H with pq = ≥, but

given only the composed graph G·H it is not possible to determine which choices
of y would suffice. More generally, given a multipath π ∈ G+, we can determine
all of its threads; but, given only x

r−→ y ∈ �π�, the most we can say is that there
is some thread in π from x to y (by Proposition 6). Thus, if we want to reason
about the threads of π �P (and hence the edges in �π �P �) in terms of �π�, we
need to keep track of which variables contribute to each edge x

r−→ y ∈ �π�. We
do this using annotated size-change graphs :

G, H ∈ ASCG = 2P×(Lab×2P)×P annotated size-change graphs

Intuitively, if an edge x
r−→
Q

y is in an ASCG G, then there is some thread relating

x to y with size-change r, involving at most the parameters in Q.
If G is a size-change graph in G, and x

r−→ y ∈ G, the only parameters needed
to show that there is a thread from x to y are x and y themselves. Thus we have
a simple way of producing initial ASCGs from SCGs:

Definition 17. The ASCG for G is +G, = {x r−−−→
{x,y}

y : x
r−→ y ∈ G}.

Just as with SCGs, we have composition, evaluation, and closure for ASCGs.

Definition 18

(1) Annotated composition and evaluation are defined as follows:

G/H = {x pq−−−→
P∪Q

z : x
p−→
P

y ∈ G, y
q−→
Q

z ∈ H}
+G1, . . . , Gn, = +G1, / · · · / +Gn,

(2) The annotated closure of G under / is the least set satisfying

acl(G) = {f �G�−−→ g : f
G−→ g ∈ G} ∪{f G�H−−−→ h : f

G−→ g, g
H−→ h ∈ acl(G)}

We can now reason about the multipaths of (G �P)+ in terms of G+:

Proposition 7. Let π ∈ G+. Then x
r−→ y ∈ �π �P � iff there exists a Q ⊆ P

such that x
r−→
Q

y ∈ +π,.

All-Termination(T) 409

Example. Returning to the perm example, we ask: is {x} a measurable set for
perm? No: a function taking only the x parameter for perm cannot possibly be a
measure. To see why, consider that perm 1 2 calls perm 1 1. Thus, a measure µ
for perm using only x would have to have the property that µ(1) > µ(1) which is
clearly impossible. A similar argument shows that {y} is not a measurable set.
We can now reanalyze the perm function in using annotated size-change graphs,
to see how they are used to discover that {x} and {y} are not measurable sets.
We begin with the same graph G we had before, but with annotated edges.

G:

x ≥
{x,y}

���
���

��
� x

y >
{x,y}

���������
y

G�G:
x

>

{x,y}
�� x

y >

{x,y}
�� y

As before, G/G is idempotent. The annotations on the edges of G/G, however,
tell us that to justify a decrease from, e.g., x to x in G / G, we must consider
the formal argument y as well.

The next result shows that we have completely characterized size-change ter-
mination for any G �P in terms of the annotated closure acl (G).

Theorem 4. G �P is size-change terminating iff for every f
G−→ g ∈ acl(G) such

that G is idempotent, there is an edge x
>−→
Q

x ∈ G with Q ⊆ P .

Corollary 1. Let I = {G ∈ acl(analyze(F)) : G idempotent}. We have
All-Termination(SCT)(F) = {P ⊆ P : 〈∀G ∈ I :: 〈∃x >−→

Q
x ∈ G :: Q ⊆ P 〉〉}.

We can use Corollary 1 as the basis for an algorithm as follows. First, compute
acl(analyze(F)) as a least fixpoint, and extract the set of idempotent ASCGs
as I. Then, for each G ∈ I, construct the constraint

∨
x

>−→
Q

x∈G

∧
y∈Q y. The

collection (conjunction) of these constraints is a constraint system ΦF whose
solutions are the elements of All-Termination(SCT). It turns out that by
introducing variables, this constraint system can be expressed in dual-horn form.

This is a useful observation because there is an output-sensitive algorithm for
enumerating the minimal solutions to dual-horn formulas [7]. Output sensitiv-
ity means that the running time of the algorithm is bounded by the number of
outputs it produces, and more-over provides “pay-as-you-go” enumeration. For
dual-horn minimization, the time is exponential in the number of outputs; more-
over, the constraint system ΦF may have an exponential number of minimal so-
lutions. In practice, however, functions have very few termination cores (no more
than 3 in our experiment), whereas they often have many arguments (sometimes
more than 20 in our experiment). Hence we much prefer the annotation-based
algorithm (exponential in the former) than the naive algorithm (exponential in
the latter). Finally, we have developed a version of dual-horn minimization based
on incremental SAT-solving, which we hope will perform well when faced with
a larger number of cores.

410 P. Manolios and A. Turon

The algorithm described above has another appealing property: it can be made
responsive, by which we mean it can answer the basic termination problem as
quickly as the standard size-change algorithm. If the program cannot be shown
to terminate, there is no need to continue. If termination is established, then re-
sponsiveness can be exploited by the theorem prover in various ways, including
the following two. First, the theorem prover can run the All-Termination(T)
algorithm to completion. For interactive theorem proving applications, this can
be done using spare CPU cycles (e.g., by using an underutilized CPU core), be-
cause the user is free to continue as soon as termination has been established, and
any new induction schemes found can be quietly recorded by the theorem prover.
Second, the theorem prover can suspend the All-Termination(T) algorithm,
coming back to it only when it needs new induction schemes, thereby using the
analysis in a demand-driven way. Responsiveness is obtained by controlling the
least fixpoint computation of acl (analyze(F)) so that the size change graphs
needed to compute cl(analyze(F)) are generated first. This process differs from
the basic size-change algorithm only in that we record the size-change graph
annotations required for the annotated closure. Once termination is established,
the fixpoint computation for the annotated closure proceeds.

Experimental Results

We have implemented our All-Termination(SCT) algorithm in ACL2, an
industrial-strength theorem proving system. Our implementation served as a
new back-end for the calling context graph (CCG) termination analysis, which
is implemented in the ACL2 Sedan [4,8]. Normally, CCG analysis uses SCT as a
back-end; by using All-Termination(SCT) instead, we are able to determine
the measurable sets for a function. ACL2 has a large regression suite, with over
11,000 function definitions, each of which must be proved terminating in order to
be admitted into the logic. The regression suite is particularly appealing because
it arises from the work of researchers around the world, with examples ranging
from bit-vector libraries used by AMD, to set theory libraries, graph algorithms
and model checkers. In short, the code in the regression suite provides a large,
realistic sample of ACL2 programs.

We executed our analysis on the entire regression suite The time running All-

Termination(SCT) was negligible compared to the time spent within CCG’s
static analysis, which involves theorem proving. We collected data on the 1,728
recursive, multiargument functions in the suite. More than 90% of the func-
tions had at least one termination core that did not include all the arguments
to the function, and about 7% of the functions had more than one termina-
tion core. These findings attest to the utility of All-Termination: the 90%
of functions with nontrivial termination cores can be given a stronger induction
scheme, using All-Termination, than would otherwise be possible. Thus, by
generating stronger induction schemes, our analysis has the potential to extend
the automation provided by theorem provers [1,2].

All-Termination(T) 411

5 Related Work

The termination problem dates back to Turing, who called it the “Printing Prob-
lem” [9], and there has been steady interest in termination ever since. Here we
can only briefly touch upon the work most directly related to ours.

Boyer and Moore’s work [1], developing the strong relationship between ter-
mination and both recursion and induction the context of automated theorem
proving, provided the impetus for the work we have presented. The idea of All-

Termination, too, can be traced back to Boyer and Moore [1]. However, the
approach they used to find measurable subsets just iterates over their termi-
nation analysis in the naive way: it has exponential complexity and little in
common with the work presented here, beyond the initial motivation. We know
of no other work studying All-Termination.

Termination analysis is currently an active area of research. There is much in-
terest in termination in the context of term-rewrite systems and logic programs
[10,11,12,13]. There is also interest in proving termination of programs written in
imperative languages, such as C. This work tends to focus on semi-algebraic func-
tions, whose termination behavior is governed by integer arithmetic. Most of it has
been even more narrowly defined, dealing only with systems whose behavior is lin-
ear [14], though there are extensions to programs with polynomial behavior [15].
Also, abstraction-refinement has been applied to termination analysis, and subse-
quently used to find bugs in device drivers [16].

This paper has focused on size-change termination analysis [3], which was
introduced in the setting of an applicative language and has since served as
a framework for several other analyses. This includes work on termination in
term-rewrite systems that combines size-change analysis with the dependency
pair method and recursive path orderings [12]. Tools based on these ideas include
AProVE [11]. Another example is work on calling context graphs and measures,
which is used to prove termination of functional programs [4], and has been
implemented in ACL2s [8] and Isabelle [17].

Recently, the problem of conditional termination has been studied [18]. While
we are interested in how we can add behaviors to programs while maintaining
termination, conditional termination asks how to remove behaviors to ensure
termination. This leads to the obvious question: what about All-Conditional-

Termination(T)? Similarly, the non-termination problem [19] gives rise to the
All-Non-Termination(T) problem.

6 Conclusions and Future Work

We introduced the All-Termination(T) problem and analyzed the complexity
when T is size-change (SCT) analysis. We showed that All-Termination(SCT)
is a PSpace-complete problem, and introduced an algorithm for solving it. The al-
gorithm imposes no overhead on solving the basic termination problem, and it can
be used to generate a subset of all possible termination cores (up to a user provided
bound). We implemented our algorithm in ACL2 and ran it on the ACL2 regres-
sion suite, consisting of over 100MB of code developed over several decades by a

412 P. Manolios and A. Turon

worldwide user base. Our experiments showed that on over 90% of multiargument
functions in the regression suite,wewere able toprovide stronger induction schemes
than those obtained with size change analysis. Our primary focus for future work
is analyzing the All-Termination(T) problem for other termination analyses.

Acknowledgements. Alec Heller gave helpful feedback on several drafts.

References

1. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, London (1979)
2. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-

proach. Kluwer Academic Publishers, Dordrecht (2000)
3. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program

termination. In: POPL, pp. 81–92. ACM Press, New York (2001)
4. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In:

Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer,
Heidelberg (2006)

5. Manolios, P., Turon, A.: All-Termination(T). Technical Report NU-CCIS-09-01,
Northeastern University (2009)

6. Ben-amram, A.M., Lee, C.S.: Ranking functions for size-change termination II. In:
RDP-WST (2007)

7. Ben-Eliyahu, R., Dechter, R.: On computing minimal models. Annals of Mathe-
matics and Artificial Intelligence 18, 3–27 (1996)

8. Dillinger, P.C., Manolios, P., Vroon, D., Moore, J.S.: ACL2s: The ACL2 Sedan.
ENTCS 174(2), 3–18 (2007)

9. Turing, A.: On computable numbers, with an application to the entscheidungsprob-
lem. Proceedings of the London Mathematical Society 42(2), 230–265 (1936)

10. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236, 133–178 (2000)

11. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination
proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp.
210–220. Springer, Heidelberg (2004)

12. Thiemann, R., Giesl, J.: Size-change termination for term rewriting. Technical
Report AIB-2003-02, RWTH Aachen (January 2003)

13. Codish, M., Taboch, C.: A semantic basis for the termination analysis of logic
programs. The Journal of Logic Programming 41(1), 103–123 (1999)

14. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)

15. Cousot, P.: Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI
2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

16. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI, pp. 415–426. ACM Press, New York (2006)

17. Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007.
LNCS, vol. 4603, pp. 460–475. Springer, Heidelberg (2007)

18. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
328–340. Springer, Heidelberg (2008)

19. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving
non-termination. In: POPL, pp. 147–158. ACM, New York (2008)

Ground Interpolation for the Theory of Equality

Alexander Fuchs1, Amit Goel2, Jim Grundy2, Sava Krstić2, and Cesare Tinelli1

1 Department of Computer Science, The University of Iowa
2 Strategic CAD Labs, Intel Corporation

Abstract. Given a theory T and two formulas A and B jointly unsat-
isfiable in T , a theory interpolant of A and B is a formula I such that
(i) its non-theory symbols are shared by A and B, (ii) it is entailed by
A in T , and (iii) it is unsatisfiable with B in T . Theory interpolants
are used in model checking to accelerate the computation of reachability
relations. We present a novel method for computing ground interpolants
for ground formulas in the theory of equality. Our algorithm computes
interpolants from colored congruence graphs representing derivations in
the theory of equality. These graphs can be produced by conventional
congruence closure algorithms in a straightforward manner. By working
with graphs, rather than at the level of individual proof steps, we are
able to derive interpolants that are pleasingly simple (conjunctions of
Horn clauses) and smaller than those generated by other tools.

1 Introduction

The Craig Interpolation Theorem [4] asserts—for every inconsistent pair of first-
order formulas A, B—the existence of a formula I that is implied by A, incon-
sistent with B, and written using only logical symbols and symbols that occur
in both A and B.

Analogues of this result hold for a variety of logics and logic fragments.
Recently, they have found practical use in symbolic model checking. Applica-
tions, starting with the work by McMillan [7], involve computation of inter-
polants in propositional logic or in quantifier-free logics with (combinations of)
theories such as the theory of equality, linear real arithmetic, arrays, and fi-
nite sets [8,14,6,3]. There are now techniques that use interpolants to obtain
property-driven approximate reachability sets or transition relations, and also
to compute refinements for predicate abstraction. Experimental results show
that interpolation-based techniques are often superior to previous ones.

An important functionality in much of this work is the computation of ground
interpolants in the theory of equality, also known as the theory of uninterpreted
functions (EUF). The ground interpolation algorithm for this theory used in
existing interpolation-based model checkers was developed by McMillan [8]. It
derives interpolants from proofs in a formal system that contains rules for the
basic properties of equality.

In this paper, we present a novel method for ground EUF interpolation. We
compute interpolants from colored congruence graphs that compactly represent

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 413–427, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

414 A. Fuchs et al.

EUF derivations from two sets of equalities, and can be produced in a straight-
forward manner by conventional congruence closure algorithms. Working with
graphs makes it possible to exploit the global structure of proofs in order to
streamline the interpolant generation. Our interpolants are conjunctions of Horn
clauses, the simplest conceivable form for this theory. In most cases, they are
smaller and logically simpler than those produced by McMillan’s method.

Our interpolation algorithm is described and proved correct in §5. In §4, we
give a series of examples to highlight important aspects of the algorithm. Its
inherent game-like structure is explained at a high level in §3. A detailed com-
parison with McMillan’s method is given in §6, together with experimental data
on a set of benchmarks derived from the SMT-LIB suite.

2 Ground Theory Interpolation

Interpolation is a property of fragments of logical theories. To state it for a
fragment F , we need know only the following:

– a partition of symbols used to build formulas in F into logical and non-logical
– the entailment relation A |= B between formulas in F

Let F(X) be the set of all formulas in F whose non-logical symbols belong to
X . By definition, F has the interpolation property if for every A ∈ F(X)
and B ∈ F(Y) such that A,B |= false, there exists I ∈ F(X ∩ Y) such that
A |= I and B, I |= false. The formula I will be called the interpolant for the
pair A,B. Note the asymmetry: ¬I is an interpolant for the pair B,A.

The classic Craig’s theorem says that the set of first-order logic formulas has
the interpolation property. (The non-logical symbols are the predicate and func-
tion symbols, and variables.) It also implies a “modulo theory” generalization,
where, for a given first-order theory T over a signature Σ, F is the set of all
Σ-formulas, |= is the T -entailment, and the symbols of Σ are treated as logical.
The case where T and Σ are empty is Craig’s original theorem.

Of particular interest is the interpolation property for quantifier-free frag-
ments of theories. It may or may not hold, depending on the theory. Take, for
example, the quantifier-free fragment of integer arithmetic, and let A = {x =
2u}, B = {x = 2v +1}. A and B are inconsistent in this theory, and the formula
(∃u)(x = 2u) is an interpolant. However, there is no quantifier-free interpolant.

By definition, a theory has the ground interpolation property if its
quantifier-free fragment has the interpolation property. Aside from EUF , several
other theories of interest in model checking have this property [6].

If we want an efficient algorithm for ground T -interpolation, it suffices to have
one that works for inputs A and B that are conjunctions of ground literals. To
see this, refer to [8,3] for a description of a general mechanism to combine such
a restricted interpolation procedure with a method for computing interpolants
in propositional logic [12,7].

Example 1. The sets of inequalities A = {3x − z − 2 ≤ 0, −2x + z − 1 ≤ 0}
and B = {3y − 4z + 12 ≤ 0, −y + z − 1 ≤ 0} are mutually inconsistent, as

Ground Interpolation for the Theory of Equality 415

witnessed by the linear combination with positive coefficients 2 · (3x − z − 2 ≤
0)+3·(−2x+z−1 ≤ 0)+1·(3y−4z+12 ≤ 0)+3·(−y+z−1 ≤ 0) that simplifies to
2 ≤ 0. The A-part of this linear combination 2·(3x−z−2 ≤ 0)+3·(−2x+z−1 ≤ 0)
gives us the interpolant I = (z − 7 ≤ 0) for A,B. Generalizing what goes on
in this example, one can obtain a ground interpolation procedure for the linear
arithmetic with real coefficients. See, e.g., [3].

3 Interpolation as a Cooperative Game

There is a way to compute interpolants in a theory T as a cooperative game
between two deductive provers for T—possibly two copies of the same prover.
We give an informal description of the ground interpolation game. The same
idea applies with minor modifications to other interpolation problems, but the
success of the method is not guaranteed in general.

Let A and B be two sets of ground formulas such that A∪B is T -unsatisfiable.
We allow A and B to contain free symbols, i.e., predicate and function symbols
not in the signature Σ of T . Let ΣI be the shared signature, the expansion of Σ
with the free symbols occurring in both A and B.

The interpolation game. The participants are the A-prover and the B-prover.
The game starts with SA = SB = ∅ and proceeds so that at each turn one of
the following happens:

– the A-prover adds to SA a new ground ΣI -clause C such that A,SB |=T C
– the B-prover adds to SB a new ground ΣI -clause C such that B,SA |=T C

The game ends when the B-prover could add false to SB. An interpolant for A
and B can then be computed as follows.

Let C be a clause of SA and let C1, . . . , Cn be the clauses of SB actually used
by the A-prover to derive C. Let us call C1, . . . , Cn the B-premises of C and
call the formula C1 ∧ · · · ∧ Cn ⇒ C the A-justification of C. Similarly, we
can define the set A-premises of each clause C ∈ SB. For C ∈ SB, define the
cumulative set of premises P(C) recursively by

P(C) = {C} ∪⋃{P(D) |D is a B-premise of an A-premise of C}
It can be shown that the conjunction of A-justifications of A-premises of clauses
in P(false) is an interpolant for A,B.

For some theories with the ground interpolation property, the game admits
complete strategies, guaranteed to end the game when A and B are jointly un-
satisfiable in the theory. Depending on the theory, these strategies can be con-
siderably more restrictive in the choice of clauses to propagate from one prover
to the other. For instance, by results of [13], when the theory is Σ-convex,1 it is
enough to propagate just positive unit clauses in all rounds of the game except
1 A theory is convex if L |=T p1 ∨ · · · ∨ pk implies L |=T pi for some i, where L is

any set of ground literals and the pi are any positive literals.

416 A. Fuchs et al.

possibly the last. In that case, all interpolants computed will be conjunctions of
Horn clauses.

The interpolation method we describe in §5.5 for the theory of equality can
be understood as an implementation of this interpolation game, with clause
propagation restricted to (positive) equalities. The method does not literally
use two provers; it rather takes a proof of unsatisfiability of A ∪ B, treats it
as if cooperatively generated by an A-prover and a B-prover, and extracts an
interpolant from it as sketched above.

Remark 1. Nelson and Oppen’s method for combining decision procedures [9] is
similar to the interpolation game. The main differences are that for the Nelson-
Oppen procedure (i) the input sets of formulas A1 and A2 need not be jointly
T -unsatisfiable; (ii) the goal is not to produce interpolants for A1 and A2 but just
to witness the T -unsatisfiability of A1∪A2; (iii) T is the union of two signature-
disjoint theories T1 and T2; (iv) each formula Ai is built from the symbols of Ti

and free constants; (v) each Ai-prover works just over Ti instead of the whole T ;
(vi) additional restrictions on T1 and T2 guarantee termination when A1 ∪A2 is
T -satisfiable. A description of a Nelson-Oppen combination framework in terms
similar to our interpolation game can be found in [5].

4 EUF Interpolation Examples

Let us fix the terminology first. A ground EUF term is either a free constant or
(inductively) an application f(t1, . . . , tn) of an n-ary function symbol f to terms
t1, . . . , tn. An EUF literal is an equality s = t between terms, or the negation
s �= t of it (a disequality). We use = also to write equalities at the meta-level,
relying on the context to disambiguate. For convenience, we treat all equalities
modulo symmetry: an equality s = t will stand indifferently for s = t or t = s.

Example 2. The picture in Figure 1(a) demonstrates the inconsistency of A =
{z1 = x1, x1 = z2, z2 = x2, x2 = f(z3), f(z3) = x3, x3 = z4} and B = {z1 =
y1, y1 = f(z2), f(z2) = y2, y2 = z3, z3 = y3, y2 �= z4} that follows by tran-
sitivity of equality. The interpolant is the equality z1 = z4 that summarizes
the A-chain. For the variation in Figure 1(b), the interpolant is the conjunction
z1 = z2 ∧ f(z3) = z4 ∧ f(z2) = z3 of summaries of A-chains. For yet another
variation, modify Figure 1(b) by moving the disequality sign to the edge 〈x3, z4〉.
The interpolant changes to z1 = z2 ∧ f(z3) �= z4 ∧ f(z2) = z3. In light of the in-
terpolation game (§3) where the A-prover and the B-prover alternate in deriving
sets of equalities, we can see that in all these example the game can end after
the second round: A generates some implied literals in the shared language, and
B is inconsistent with their conjunction. (Here and elsewhere in this section, a
round of the game is a sequence of steps done by the same prover.)

Example 3. When the inconsistency of A ∪ B requires congruence reasoning,
an interpolant in the form of a conjunction of equalities need not exist. Let
A = {u1 = x · u0, v1 = x · v0} and B = {u0 = v0, u1 �= v1}. (The dot is an infix

Ground Interpolation for the Theory of Equality 417

f()3z

z1

z2

z3

z4

x1 x2 x3

y1 2y 3y
=/

f()2z

f()3z

z1

z2

z3

z4

x1 x3

y1 3y
=/

2y

x2f()2z

(b)(a)

Fig. 1. Transitivity chains with dark (light) edges representing A-literals (B-literals).
For the vertex coloring convention, see Example 9.

function symbol.) There are no equalities implied by A that do not contain x.
The transitivity chain u1 = x · u0 = x · v0 = v1 contradicts u1 �= v1 ∈ B, but its
middle equality is not implied by A. However, A does imply it under the condition
u0 = v0 that B provides. That gives us the interpolant u0 = v0 ⇒ u1 = v1. The
game can take 3 rounds in which u0 = v0 is derived first (by B), then u1 = v1
(by A), then false (by B).

Example 4. Generalizing the previous example, consider this matrix-organized
set of literals:

u0 = v0
x1 · u0 = u1
x1 · v0 = v1

x2 · u1 = u2
x2 · v1 = v2

. . . xn · un−1 = un

xn · vn−1 = vn
un �= vn

Let A be the set of equalities occurring in the odd-numbered columns (count
columns starting from one!) of this matrix, and B be the set of the remaining
equalities; see Figure 2. The shared symbols are u0, v0, . . . , un, vn, the symbols
local to A are x2, x4, . . ., and the symbols local to B are x1, x3,

The game takes n + 2 rounds. It begins with the A-prover adding u0 = v0 to
SA. Then, using the equalities from the second column, the B-prover can derive
u1 = v1, and add it to SB. Now, the A-prover can use this equality together with
equalities from the third column to derive u2 = v2 and add it to SA. Assuming
n is even, the last equality un = vn will be derived by the A-prover, after which
B derives false. Collecting justifications of all equalities derived by A, we obtain
the interpolant

(u0 = v0) ∧ (u1 = v1 ⇒ u2 = v2) ∧ · · · ∧ (un−1 = vn−1 ⇒ un = vn).

Example 5. With A = {x = z1, x · z2 = z3} and B = {y = z2, z1 · y �= z3},
pictured in Figure 3, we can derive inconsistency from the chain z3 = x · z2 =
z1 · y �= z3, where the congruence reasoning that produces the middle equality
uses an equality from A and an equality from B (x = z1 and z2 = y), and cannot
be derived by either A or B alone. A simple split of the problematic equality
into two produces a chain in which every literal follows from either A or B:
z3 = x · z2 = z1 · z2 = z1 · y �= z3. The summary z3 = z1 · z2 of the A-chain is
our interpolant. The upshot is that creating an interpolant may require terms
(in this case z1 · z2) that do not occur in either A or B. See Lemma 1 below.

418 A. Fuchs et al.

0u

0v

1u 2u

0u1x
1x 0v 2x 1v

n−1unx

nx n−1v

nv

nu

=/1u2x

v21v

.

. .
.
.

.

Fig. 2. A long derivation. (Example 4)

1z y

2zx

3z

=/

1z

2z

x

y

.

.

Fig. 3. Who derives x · x2 = z1 · y?
(Example 5)

5 Interpolants From Congruence Closure

5.1 Congruence Closure

Satisfiability of sets of EUF literals can be determined by the congruence

closure algorithm. The algorithm takes as inputs a finite subterm-closed
set T of ground terms and a finite set E of ground equalities. Its state is an
undirected graph Γ , initialized so that its vertex set is T and its edge set is
empty. We write u ∼ v to mean that u and v are connected by a path in Γ . The
algorithm proceeds as follows.

(cc1) Choose s, t ∈ T such that s �∼ t and either
(a) (s = t) ∈ E; or
(b) s is f(s1, . . . , sk), t is f(t1, . . . , tk), and s1 ∼ t1, . . . , sk ∼ tk.
Then add the edge 〈s, t〉 to Γ .

(cc2) Repeat (cc1) for as long as possible.

Theorem 1. [10,11] Let ∼ be the equivalence relation obtained by running the
congruence closure algorithm above. For every s, t ∈ T , one has E |= s = t if
and only if s ∼ t. Moreover, the set E ∪ {s �= t | s �∼ t} is satisfiable. �

Let L be an arbitrary set of ground EUF literals. We have L = L= ∪L 	=, where
the literals in L= and L 	= are equalities and disequalities respectively. To check
whether L is satisfiable, it suffices to run the congruence closure algorithm with
E = L= and T being the set of all terms occurring in L. By Theorem 1, L is
satisfiable if and only if s �∼ t holds for every disequality s �= t in L 	=. Note that
L is unsatisfiable if and only if L= ∪ {δ} is unsatisfiable for some δ ∈ L 	=—the
convexity property of EUF .

5.2 Congruence Graphs

Define a congruence graph over E to be any intermediate graph Γ obtainable
by the congruence closure algorithm above. The assumption s �∼ t in (cc1)
ensures that every congruence graph is acyclic. Thus, if u ∼ v in a congruence

Ground Interpolation for the Theory of Equality 419

graph Γ , then there is a unique path connecting them. This path is denoted uv.
Empty paths are those of the form uu.

The edges of Γ introduced by step (cc1-a) will be called basic; those intro-
duced in step (cc1-b) are derived. A derived edge 〈f(u1, . . . , uk), f(v1, . . . , vk)〉
has k parent paths u1v1,. . . ,ukvk, some (but not all) of which may be empty.

Example 6. Each of the graphs in Figures 1–3, when we delete from it the edge
marked with the �= symbol, is a congruence graph over the appropriate set of
equalities (A ∪ B)=. All edges in these graphs are basic; the arrows indicate
where derived edged can be added.

Example 7. Let A = {x1 = z1, z2 = x2, z3 = f(x1), f(x2) = z4, x3 = z5, z6 =
x4, z7 = f(x3), f(x4) = z8}, B = {z1 = z2, z5 = f(z3), f(z4) = z6, y1 = z7, z8 =
y2, y1 �= y2}, and E = (A ∪ B)=. Figure 4(b) depicts a congruence graph over
E. The basic edges are shown in Figure 4(a); each corresponds to an equality in
E. Since f is unary, each of the three derived edges has one parent path.

5.3 Colorable Congruence Graphs

Let A and B be sets of literals and let ΣA and ΣB be the sets of symbols that
occur in A and B respectively. Terms, literals, and formulas over ΣA will be
called A-colorable. Define B-colorable analogously, and then define AB-

colorable to mean both A-colorable and B-colorable. Colorable entities are
those that are either A-colorable or B-colorable.

Example 8. In Example 5, ΣA = {x, z1, z2, z3, ·} and ΣB = {y, z1, z2, z3, ·}.
Terms and equalities without occurrences of either x or y are AB-colorable.
The term x · y and the equality x · z2 = z1 · y are not colorable.

Extend the above definitions to edges of congruence graphs over A∪B so that
an edge 〈s, t〉 has the same colorability attributes as the equality s = t. Finally,
define a congruence graph to be colorable if all its edges are colorable. Note
that basic edges are always colorable.

Example 9. The congruence graphs derived from graphs in Figures 1–3 by remov-
ing their disequality edges are colorable. Half-filled vertices are AB-colorable, the
dark ones are A-colorable but not B-colorable, and the light ones are B- but not
A-colorable. If we add the derived edges 〈xi · ui−1, xi · vi−1〉 to the graph in Fig-
ure 2, they will be colorable; but if we add the derived edge 〈x · z2, z1 · y〉 to the
graph in Figure 3, it will not be colorable.

Lemma 1. If s and t are colorable terms and if A,B |= s = t, then there exists
a colorable congruence graph over (A ∪B)= in which s ∼ t.

Proof. (Sketch) This is essentially Lemma 2 of [14], and the proof is construc-
tive. Start with any congruence graph Γ with colorable vertices in which s ∼ t
holds. If there are uncolorable edges, let e = 〈f(u1, . . . , uk), f(v1, . . . , vk)〉 be a
minimal such edge in the derivation order. Thus, the parent paths uivi are all

420 A. Fuchs et al.

colorable, and each of them connects an A-colorable vertex with a B-colorable
one. It follows that there exists an AB-colorable vertex wi on each path uivi

(which may be one of its endpoints). The term f(w1, . . . , wk) is AB-colorable,
so we can replace e in Γ with two edges 〈f(u1, . . . , uk), f(w1, . . . , wk)〉 and
〈f(w1, . . . , wk), f(v1, . . . , vk)〉, both of which are colorable. Now repeat the pro-
cess until all uncolorable edges of Γ are eliminated. �

5.4 Colored Congruence Graphs

Assume (without loss of generality) that the literal sets A,B are disjoint. A
coloring of a colorable congruence graph over (A ∪B)= is an assignment of a
unique color A or B to each edge of the graph, such that

– basic edges are assigned the color of the set they belong to
– every edge colored X has both endpoints X-colorable (X ∈ {A,B})

Thus, to color a colorable congruence graph, the only choice we have is with
AB-colorable derived edges, and each of them can be colored arbitrarily. In the
terminology of the interpolation game of §3, this means choosing which prover
derives an AB-equality in a situation when either of them could do it. In Fig-
ure 4(b,c) we have two colored congruence graphs. They differ only in the coloring
of 〈f(z3), f(z4)〉—the only derived edge with AB-colorable endpoints.

3xf() f()4x z8z7 y2y1

f()3z f()4z

1xf() f()2x
z5 z6x3 x4

1x x2
z1 z2

z3 z4

3xf() f()4x z8z7 y2y1

f()3z f()4z

1xf()
z5 z6x3 x4

1x x2
z1 z2

z3 z4

3xf() f()4x z8z7 y2y1

f()3z f()4z

1xf() f()2x
z5 z6x3 x4

1x x2
z1 z2

z3 z4

f()2x

(a) (b) (c)

Fig. 4. Congruence graphs over (A ∪ B)=, with A and B from Example 7. The con-
nection between a derived edge and its parent is indicated by a pair of arrows.

In a colored graph, we can speak of A-paths (whose edges are all colored
A), and B-paths. There is also a color-induced factorization of arbitrary paths,
where a factor of a path is a maximal subpath consisting of equally colored
edges. Clearly, every path can be uniquely represented as a concatenation of its
factors, the consecutive factors having distinct colors.

5.5 The Interpolation Algorithm

A path uv in a congruence graph represents the equality u = v between its
endpoints. We will write �π� to denote the equality represented by the path π.
More generally, if P is a set of paths, �P � is the corresponding set of equalities.

Ground Interpolation for the Theory of Equality 421

For every path π in a colored congruence graph, define the associated B-

premise set B(π), the A-justification J(π), and the interpolant I(π):

B(π) =

⎧⎨⎩
⋃{B(σ) |σ is a factor of π} if π has ≥ 2 factors
{π} if π is a B-path⋃{B(σ) |σ is a parent of an edge of π} if π is an A-path

(1)

J(π) = (
∧

�B(π)�) ⇒ �π�

I(π) =

⎧⎨⎩
∧{I(σ) |σ is a factor of π} if π has ≥ 2 factors∧{I(σ) |σ is a parent of an edge of π} if π is a B-path
J(π) ∧ ∧{I(σ) |σ ∈ B(π)} if π is an A-path

Empty parent paths σ in the definitions of B(π) and I(π) can be ignored
because �σ� = J(σ) = I(σ) = true when σ is empty.

We also need a modified interpolant function I ′, expressed in terms of I as
follows. The argument path π is first decomposed as π = π1θπ2, where θ is the
largest subpath with B-colorable endpoints, or an empty path if there are no
B-colorable vertices on π; then we define

I ′(π) = I(θ) ∧ ∧{I(τ) | τ ∈ B(π1) ∪ B(π2)} ∧
(∧

�B(π1) ∪ B(π2)� ⇒ ¬�θ�
)

This is well defined because π1, θ, π2 are uniquely determined by π if θ is not
empty, and if θ is empty, the way we write π as π1π2 is irrelevant. Note that
when π = θ, we have I ′(π) = I(π) ∧ ¬�π�.

The EUF ground interpolation algorithm, given as inputs jointly in-
consistent (disjoint) sets A,B of literals, proceeds as follows.

(i1) Run the congruence closure algorithm to find a congruence graph Γ
over (A ∪ B)= and a disequality (s �= t) ∈ A ∪B such that s ∼ t in
Γ [§§5.1,5.2].

(i2) Modify Γ if necessary so that it is colorable [§5.3], then color it [§5.4].
(i3) If (s �= t) ∈ B, return I(st); if (s �= t) ∈ A, return I ′(st).

Example 10. Let us run the algorithm for A,B in Example 7, using the colored
congruence graph in Figure 4(b). Since y1 �= y2 ∈ B, the interpolant is I(y1y2) =
I(y1z7) ∧ I(z7z8) ∧ I(z8y2), and the first and third conjuncts are true. Thus,
I(y1y2) = I(z7z8) = J(z7z8) ∧

∧{I(σ) |σ ∈ B(z7z8)}, so we need to compute
B(z7z8). We have B(z7z8) = B(x3x4) = B(x3z5) ∪ B(z5z6) ∪ B(z6x4) = ∅ ∪
{z5z6} ∪ ∅ = {z5z6}. Thus, J(z7z8) = (z5 = z6 ⇒ z7 = z8), which we denote
φ1. Continue the main computation: I(y1y2) = φ1 ∧ I(z5z6) = φ1 ∧ I(z3z4) =
J(z3z4)∧

∧{I(σ) |σ ∈ B(z3z4)}. Now, B(z3z4) = B(x1x2) = B(x1z1)∪B(z1z2)∪
B(z2x2) = ∅∪{z1z2}∪∅ = {z1z2}. Thus, J(z3z4) = (z1 = z2 ⇒ z3 = z4), which
we denote φ2. Back to the main computation, I(y1y2) = φ1 ∧ φ2 ∧ I(z1z2) =
φ1 ∧ φ2 ∧ true = φ1 ∧ φ2. Exercise: Using the graph in Figure 4(c) results in a
different interpolant: I(y1y2) = (z5 = f(z3) ∧ z6 = f(z4) ∧ z1 = z2 ⇒ z7 = z8).

422 A. Fuchs et al.

5.6 Correctness

Theorem 2. With any jointly inconsistent sets A,B of EUF literals as inputs,
the EUF ground interpolation algorithm (§5.5) terminates, returning an inter-
polant for A,B that is a conjunction of Horn clauses.

Termination of our recursive definitions and other inductive arguments are
proved using a well-founded relation ≺ over paths. Define σ ≺′ π to hold when
one of the following holds:

– π has more than one factor, and σ is one of them
– σ is a parent path of an edge of π

Define ≺ as the transitive closure of ≺′. It is not difficult to see that the relation
≺ is well-founded. Note that minimal elements under ≺ are the paths all of
whose edges are basic and of the same color.

The following equations redefine the set B(π) of B-premises and introduce the
analogous set A(π) of A-premises.

A(π) = {A-factors of π} ∪ A({parent paths of B-edges of π}) (2)
B(π) = {B-factors of π} ∪ B({parent paths of A-edges of π}) (3)

Here and in the sequel, we use the convention f(P) =
⋃{f(σ) |σ ∈ P} for

extending a set-valued function f defined on paths to a function defined on sets
of paths. Observe that (3) is just a restatement of (1). Also, the arguments in
the recursive calls are smaller than π under the relation ≺, so termination is
guaranteed. The basic properties of A are collected in the following lemma. The
analogous properties of B follow by symmetry.

Lemma 2. Let π be an arbitrary non-empty path in a congruence graph Γ .

(i) If π is an A-path, then A(π) = {π}; otherwise, σ ≺ π for every σ ∈ A(π).
(ii) If σ ∈ A(π), then A(σ) ⊆ A(π).
(iii) If the endpoints of π are B-colorable, then the endpoints of all paths in A(π)

are AB-colorable.

Proof. All three parts are proved by well-founded induction.
(i) If π is an A-colored path, then π is the only element ofA(π) (by definition).

If π is not an A-colored path and τ is an element of A(π), then τ is either an
A-factor of π and so τ ≺ π holds, or τ ∈ A(σ) for some parent σ of a B-edge of
π. In the latter case, τ ≺ π holds because of σ ≺ π and the consequence τ � σ
of the induction hypothesis.

(ii) If σ is an A-factor of π, then A(σ) = {σ} ⊆ A(π). If σ ∈ A(τ) where τ
is a parent path of a B-edge of π, then A(σ) ⊆ A(τ) ⊆ A(π), the first inclusion
by induction hypohesis, the second from the definition of A.

(iii) Since parent paths of any B-edge must have B-colorable endpoints, for
the inductive argument we only need to check that every A-factor of a path π
with B-colorable endpoints has AB-colorable endpoints. Indeed, A-colorability
of endpoints of A-factors is obvious. For B-colorability, observe that an endpoint
of an A-factor of π is either also an endpoint of a B-factor of π, or an endpoint
of π itself. �

Ground Interpolation for the Theory of Equality 423

The following lemma justifies the names A-premises and B-premises. In accor-
dance with the notation of §3, B-premises are the B-paths whose summaries, if
added to A, make the derivation of �π� possible.

Lemma 3. A, �B(π)� |= �π� and B, �A(π)� |= �π�, for every path π in Γ .

Proof. We prove the first claim only, by well-founded induction based on ≺.
Viewing π as the concatenation of its B-factors and A-edges, we have by tran-
sitivity

�B-factors of π�, �A-edges of π� |= �π�

and then, since A |= �e� for every basic A-edge e (by definition of edge coloring),

A, �B-factors of π�, �derived A-edges of π� |= �π�.

For every derived edge e we have �parents of e� |= �e�. Thus,

A, �B-factors of π�, �parents of A-edges of π� |= �π�,

so it suffices to prove A, �B(π)� |= �σ� for every σ that is either a B-factor of
π or a parent of an A-edge of π. In the first case, the claim clearly holds since
σ ∈ B(π). In the second case, we have σ ≺ π, so the induction hypothesis gives
us A, �B(σ)� |= �σ�. To finish the proof, just use B(σ) ⊆ B(π), which is true by
Lemma 2(ii). �

Define the cumulative set of premises (cf. §3)
P(π) = {π} ∪ P(B(A(π))) (4)

Termination of this recursive definition follows from Lemma 2(i).

Lemma 4. I(π) =
∧ {J(σ) |σ ∈ A(P(π))}.

Proof. Let P ′(π) = A(P(π)). From (4), we have

P ′(π) = A(π) ∪ P ′(B(A(π))) (5)

It suffices to check that

P ′(π) =

⎧⎨⎩
⋃{P ′(σ) |σ is a factor of π} if π has ≥ 2 factors⋃{P ′(σ) |σ is a parent of an edge of π} if π is a B-path
{π} ∪ ⋃{P ′(σ) |σ ∈ B(π)} if π is an A-path

For the first case, suppose π = π1 · · ·πk is the factorization of π. By definition
of A, we have A(π) = A(π1)∪· · ·∪A(πk). The desired equation P ′(π) = P ′(π1)∪
· · · ∪ P ′(πk) then follows from (5). Assume now π = e1 · · · ek is a B-path. By
definition ofA, we haveA(π) = A(E1)∪· · ·∪A(Ek), where Ei is the set of parent
paths of the edge ei. Again, the desired equation P ′(π) = P ′(E1) ∪ · · · ∪ P ′(Ek)
follows from (5). Finally, assume that π is an A-path. Now A(π) = {π} and so
P ′(π) = {π} ∪ P ′(B(π)), again by (5). �

424 A. Fuchs et al.

Lemma 5. B, I(π) |= �π�, for every path π in Γ with B-colorable endpoints.

Proof. We argue by induction along ≺. Let σ be an arbitrary A-premise of π
and τ an arbitrary B-premise of σ. The endpoints of τ are B-colorable, because
in general, every B-premise of any path is a B-factor of some path, and every
B-factor of any path has B-colorable endpoints. Thus, the induction hypothesis
applies to τ and we have B, I(τ) |= �τ�. From equation (5) we have P ′(τ) ⊆
P ′(π), so we can derive I(π) |= I(τ) using Lemma 4. Thus, B, I(π) |= �τ�
for every τ ∈ B(σ). By Lemma 4, I(π) contains J(σ) as a conjunct; therefore,
B, I(π) |= �σ�. Since σ here is an arbitrary element of A(π), the second claim of
Lemma 3 finishes the proof. �

Proof of Theorem 2. The algorithm terminates because all pertinent functions
have been proven terminating.

Let s �= t be the critical disequality obtained in the step (i1) of the algorithm.
Let π be the path st, and let st = π1θπ2, as in the definition of I ′(π). The two
cases to consider, s �= t ∈ B and s �= t ∈ A, will be referred to as Cases 1 and 2
respectively. Let φ be the returned formula—I(π) in Case 1; I ′(π) in Case 2.

(i) φ is an AB-colorable conjunction of Horn clauses. For any σ with AB-
colorable endpoints, J(σ) is an AB-colorable Horn clause. If π has B-colorable
endpoints, then so do all paths in P(π) and so, by Lemma 2(iii), all paths in
A(P(π)) have AB-colorable endpoints. With Lemma 4, this proves Case 1. For
Case 2, observe that if θ is empty, then I(θ) = �θ� = true; otherwise, θ has AB-
colorable endpoints. Also, π1 and π2 are A-paths, so by the dual of Lemma 2(iii),
all paths in B(π1) ∪ B(π2) have AB-colorable endpoints. These facts suffice to
derive the proof of Case 2 from the already proved Case 1.

(ii) A |= φ. By the first claim of Lemma 3, A |= J(σ) holds for every σ. This
suffices for Case 1. For Case 2 then, we only need to check that the last conjunct
of I ′(π) is implied by A, which amounts to showing A, �B(π1)�, �B(π2)� |= ¬�θ�.
This indeed follows from the first claim of Lemma 3, the transitivity entailment
�π1�, �θ�, �π2� |= �π�, and the assumption ¬�π� ∈ A.

(iii) B, φ |= false. In Case 1, we have ¬�π� ∈ B, so Lemma 5 finishes the
proof. In Case 2, Lemma 5 implies B, I ′(π) |= �θ� and B, I ′(π) |= I(τ) for every
τ ∈ B(π1)∪B(π2). These consequences of B ∪ I ′(π) contradict the last conjunct
of I ′(π). �

6 Comparison with McMillan’s Algorithm

Our EUF ground interpolation algorithm is, as far as we know, the only al-
ternative to McMillan’s algorithm [8]. The latter constructs an interpolant for
A,B from the proof of A,B |= false derived in a formal system (E , say) with
rules for introducing hypotheses (equalities from A ∪B), reflexivity, symmetry,
transitivity, congruence, and contradiction (deriving false from an equality and
its negation). The algorithm proceeds top down by annotating each intermedi-
ate derived equality u = v (or false in the final step) with a quadruple of the

Ground Interpolation for the Theory of Equality 425

form [u′, v′, ρ, γ], where u′, v′ are terms and ρ, γ are AB-colorable formulas. The
annotation of each derived equality is obtained from annotations of the equali-
ties occurring in the premises of the corresponding rule application. The exact
computation of annotations is specified by 11 rules, each corresponding to a
case (depending on colors of the terms involved) of one of the original six rules.
An invariant that relates a derived intermediate equality with its annotation is
formulated and all 11 rules are proved to preserve the invariant. The invariant
implies that if [u′, v′, ρ, γ] is the annotation of false, then ρ⇒ γ is an interpolant
for A,B. It can be shown that ρ is always a conjunction of Horn clauses, and γ
is a conjunction of equalities and at most one disequality.

There is a clear relationship between proofs in the formal system E and con-
gruence graphs from which our interpolants are derived. The main difference is
that in congruence graphs, paths condense inferences by reflexivity, symmetry,
and transitivity. A congruence graph provides a big-step proof that, if necessary,
can be expanded into a proof in the system E .

In Example 2 (Figure 1(a)) our algorithm looks at the path y3z4, summarizes
its only A-factor, producing the interpolant z1 = z4. McMillan’s algorithm pro-
cesses the path edge-by-edge, eagerly summarizing A-chains with AB-colorable
endpoints, so that the interpolant it produces is z1 = z2∧z2 = f(z3)∧f(z3) = z4.

For the second difference, consider Example 7 (Figure 4(b)) where McMillan’s
algorithm produces an entangled version (z1 = z2 ∧ (z3 = z4 ⇒ z5 = z6)) ⇒
z3 = z4 ∧ z7 = z8 of our interpolant (z1 = z2 ⇒ z3 = z4) ∧ (z5 = z6 ⇒ z7 =
z8), computed in Example 10. In general, McMillan’s algorithm accumulates B-
justifications (duals of our J(σ)) in the ρ-part of the annotation and keeps them
past their one-time use to derive a particular conjunct of γ.

The third difference is in creating auxiliary AB-terms (“equality interpolants”,
in the terminology of [14]) to split derivations of equalities in which one side is
not A-colorable and the other is not B-colorable, as in Example 5. We introduce
an absolute minimum of such terms in the preliminary step (i2) of our algorithm,
where these terms are added to make the congruence graph colorable. In contrast,
McMillan’s algorithm introduces these terms “on-the-fly”, as in the example
illustrated in Figure 5. When it derives the equality x1 = z2, its annotation is
[z1, z2, true, true], then when it uses the congruence rule to derive f(x1) = f(z2),
this equality gets annotated with [f(z1), f(z2), true, true], and the term f(z1)
becomes part of the final interpolant z3 = f(z1) ∧ f(z2) = z4. On the other
hand, our algorithm recognizes the edge 〈f(x1), f(z2)〉 as A-colorable and does
not split it; the interpolant it produces is z1 = z2 ⇒ z3 = z4.

The final difference is in flexibility. McMillan’s algorithm is fully specified
and leaves little room for variation. On the other hand, the actions in the step
(i2) of our algorithm are largely non-deterministic. Our current implementation
chooses to minimize the number of vertices in the colorable modification of Γ ,
and then colors the graph with a strategy that eagerly minimizes the number of
factors in the relevant paths. Other choices are yet to be explored.

In general, our algorithm produces smaller and simpler interpolants. For ex-
perimental confirmation, we used the state-of-the-art implementation of

426 A. Fuchs et al.

1xf()

1x z1

z3

z2y1

z4x2 y3

f()2z

y2

f()2y f()3y

Fig. 5. A colored congruence graph for A = {x1 = z1, z3 = f(x1), f(z2) = x2, x2 = z4}
and B = {z1 = y1, y1 = z2, y2 = z3, z4 = y3, f(y2) �= f(y3)} with two derived edges
〈f(x1), f(z2)〉 and 〈f(y2), f(y3)〉

Fig. 6. DPT vs. MathSAT on 45 benchmarks from the MathSAT library derived by
partitioning unsatisfiable SMT-LIB benchmarks [2]

McMillan’s algorithm in MathSAT [3] and compared it against our interpolation-
generating extension of the DPT solver [1]. Two other relevant components—the
propositional interpolation algorithm, and the algorithm for combining propo-
sitional and theory interpolation in a DPLL(T) framework [8,3]—are the same
in MathSAT and DPT, and therefore unlikely to substantially affect the com-
parison. The last factor to be accounted for in this comparison is the size of the
resolution proofs derived from the DPLL search within each solver. These sizes
being comparable, we can eliminate the differences in propositional reasoning as
a cause for DPT producing smaller interpolants.

We ran both solvers on 45 EUF interpolation benchmarks selected from the
set of 100 that are used in [3]. (In the remaining 55 benchmarks, either all
formulas in A are B-colorable, or all formulas in B are A-colorable, so one of
the formulas A, ¬B is an easily obtained interpolant.) Both solvers computed
42 interpolants, timing out in 100s on the same three benchmarks. Runtimes
were comparable, with DPT being slightly faster. Figure 6 shows the sizes of
interpolants produced: DPT interpolants are, on average, 3.8 times smaller, in
spite of DPT proofs being, on average, 1.7 times larger.

7 Conclusion

Our analysis of the interpolation for the theory of equality was motivated by the
central role this theory plays in SMT solving, and by the practical applicability

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

D
P

T

MathSAT

Interpolant Size (# Nodes)

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06

D
P

T

MathSAT

Resolution Proof Size (# Nodes)

.

Ground Interpolation for the Theory of Equality 427

of interpolant-producing SMT solvers. The algorithm we obtained is easy to
implement on top of the standard congruence closure procedure. It generates
interpolants of a simple logical form and smaller size than those produced by
the alternative method.

We identified congruence graphs as a convenient structure to represent proofs
in EUF and to derive interpolants. The possibilities for global analysis and
transformations of these graphs go beyond what we have explored. Our algo-
rithm provides a basis for further refinement and multiple implementations.
This flexibility may prove useful when the notion of interpolant quality is better
understood.

Acknowledgment. We thank Alberto Griggio for providing interpolation bench-
marks used in [3], and a MathSAT executable for benchmarking.

References

1. Decision Procedure Toolkit (2008), http://www.sourceforge.net/projects/DPT
2. Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories

Library, SMT-LIB (2008), http://www.SMT-LIB.org
3. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satis-

fiability modulo theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008)

4. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. Journal of Symbolic Logic 22(3), 269–285 (1957)

5. Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning 33(3–4), 221–249 (2005)

6. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In:
Young, M., Devanbu, P.T. (eds.) SIGSOFT FSE, pp. 105–116. ACM, New York
(2006)

7. McMillan, K.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

8. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Sci-
ence 345(1), 101–121 (2005)

9. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

10. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure.
Journal of the ACM 27(2), 356–364 (1980)

11. Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: Giesl, J.
(ed.) RTA 2005. LNCS, vol. 3467, pp. 453–468. Springer, Heidelberg (2005)

12. Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone
computations. Journal of Symbolic Logic 62(3) (1997)

13. Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue
sharing. Journal of Automated Reasoning 30(1), 1–31 (2003)

14. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 353–368. Springer, Hei-
delberg (2005)

http://www.sourceforge.net/projects/DPT
http://www.SMT-LIB.org

Satisfiability Procedures for Combination of
Theories Sharing Integer Offsets

Enrica Nicolini, Christophe Ringeissen, and Michaël Rusinowitch

LORIA & INRIA Nancy Grand Est, France
FirstName.LastName@loria.fr

Abstract. We present a novel technique to combine satisfiability pro-
cedures for theories that model some data-structures and that share the
integer offsets. This procedure extends the Nelson-Oppen approach to a
family of non-disjoint theories that have practical interest in verification.
The result is derived by showing that the considered theories satisfy the
hypotheses of a general result on non-disjoint combination. In partic-
ular, the capability of computing logical consequences over the shared
signature is ensured in a non trivial way by devising a suitable complete
superposition calculus.

1 Introduction

Satisfiability procedures for fragments of Arithmetics and data structures such
as arrays and lists are at the core of many state-of-the-art verification tools,
and their design and correct implementation is a hard task [5]. To overcome this
difficulty, there is an obvious need for developing general and systematic methods
to build decision procedures. Two important approaches have been investigated
based respectively on combination and rewriting.

The combination approach for the satisfiability problem has been initiated
in [14,17]. The methodology is to combine existing decision procedures for com-
ponent theories in order to get a decision procedure for the union of the theories.
In particular, the combination à la Nelson-Oppen is the core of many verifica-
tion tools, even if the implementations often exploit ideas quite far from the
original schema (see, e.g. [12,4]). This method assumes that component theories
have disjoint signatures. An extension to the non-disjoint case has been proposed
in [8,10], where the cooperation between the decision procedures relies on their
capabilities of computing logical consequences built over the shared signature.

The rewriting approach allows us to flexibly build satisfiability procedures [2,1]
based on a general calculus for automated deduction, namely the superposition
calculus [16]. Hence, to obtain satisfiability procedures becomes easy by using
an (almost) off-the-shelf theorem prover implementing superposition.

These two approaches are complementary for two main reasons. First, combi-
nation techniques allow us to incorporate theories which are difficult to handle
using rewriting techniques, such as Linear Arithmetics. Second, rewriting tech-
niques are of prime interest to design satisfiability procedures which can be effi-
ciently plugged into the disjoint combination framework [11]. In some particular

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 428–442, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

FirstName.LastName@loria.fr

Satisfiability Procedures for Combination of Theories Sharing Integer Offsets 429

cases, the rewriting approach is an alternative to the combination approach by
allowing us to build superposition-based satisfiability procedures for combina-
tions of finitely axiomatized theories, including the theory of Integer Offsets [1,3],
but these theories must be over disjoint signatures.

In this paper, we show how to apply a superposition calculus to build decision
procedures that can be plugged into the non-disjoint combination framework.
We focus on theories sharing Integer Offsets. We present a superposition cal-
culus dedicated to this theory and show the soundness of this new calculus for
several non-disjoint extensions of this theory. The interest of combining counter
arithmetic and uninterpreted functions in verification is advocated in [6], where
uninterpreted functions are used for abstracting data and Integer Offsets allows
us to express counters and a form of pointers, thanks to the successor function s
and 0. For instance, the possibility of using Integer Offsets enables us to consider
(and combine) several models of lists:

– We can use the classical model of lists à la LISP, using cons, car, cdr operators,
augmented with a length function � defined as follows: �(cons(e, x)) = s(�(x))
and �(nil) = 0. In general, lists are over arbitrary elements but we may use
also lists over integer elements.

– We can consider lists defined as records with two fields, the first one for the
list itself, and the second one to store its length. Let us consider the operator
rselecti to access to the i-th field of a record, rcons(e, r) denotes the record
obtained by adding an element e to the list of r, and rnil denotes the record
corresponding to the empty list, we have the following axiomatization:

rselect1(rcons(e, r)) = cons(e, rselect1(r)) rselect1(rnil) = nil
rselect2(rcons(e, r)) = s(rselect2(r)) rselect2(rnil) = 0

This model of lists can be seen as a refinement of the first model in which
one has a direct access to its “cardinality”.

The combination framework presented in the paper can be applied to decide
the satisfiability of ground formulas expressed in the union of these two models
of lists (provided both models use distinct names for list operators). Roughly
speaking, such combination is useful to verify for instance that two programs
written using different models of lists are “equivalent”.

Plan of the paper. After this introduction, Section 2 gives the main concepts and
notations related to first-order theories. Section 3 presents the non-disjoint com-
bination framework. In Section 4, we present a superposition calculus dedicated
to the theory of Integer Offsets. In Section 5, we give some examples of theories
for which this superposition calculus can be turned into decision procedures.
In Section 6, we show that this superposition calculus can be also applied to
deduce logical shared consequences. Moreover, all the requirements for applying
the non-disjoint combination framework are satisfied by the extensions of Integer
Offsets we are interested in. Finally, Section 7 concludes with some final remarks
and a description of future work. For lack of space, proofs are omitted and can
be found in [15].

430 E. Nicolini, C. Ringeissen, and M. Rusinowitch

2 Preliminaries

A signature Σ is a set of functions and predicate symbols (each endowed with
the corresponding arity). We assume the binary equality predicate symbol ‘=’
to be always present in any signature Σ (so, if Σ = ∅, then Σ does not contain
other symbols than equality). The signature obtained from Σ by adding a set
a of new constants (i.e., 0-ary function symbols) is denoted by Σa. Σ-atoms,
Σ-literals, Σ-clauses, and Σ-formulae are defined in the usual way. A set of Σ-
literals is called a Σ-constraint. Terms, literals, clauses and formulae are called
ground whenever no variable appears in them; sentences are formulae in which
free variables do not occur. Given a function symbol f , a f -rooted term is a term
whose top-symbol is f .

From the semantic side, we have the standard notion of a Σ-structure M =
(M, I): this is a support set M endowed with an arity-matching interpretation
I of the function and predicate symbols from Σ. Truth of a Σ-formula in M is
defined in any one of the standard ways. If Σ0 ⊆ Σ is a subsignature of Σ and
if M is a Σ-structure, the Σ0-reduct of M is the Σ0-structure M|Σ0 obtained
from M by forgetting the interpretation of function and predicate symbols from
Σ \Σ0.

A collection of Σ-sentences is a Σ-theory, and a Σ-theory T admits quantifier
elimination iff for every formula ϕ(x) there is a quantifier-free formula (over the
same free variables x) ϕ′(x) such that T |= ϕ(x) ⇔ ϕ′(x).

In this paper, we are concerned with the (constraint) satisfiability problem
for a theory T , also called the T -satisfiability problem, which is the problem of
deciding whether a Σ-constraint is satisfiable in a model of T (and, if so, we
say that the constraint is T -satisfiable). Notice that a constraint may contain
variables: since these variables may be equivalently replaced by free constants, we
can reformulate the constraint satisfiability problem as the problem of deciding
whether a finite conjunction of ground literals in a simply expanded signature
Σa is true in a Σa -structure whose Σ-reduct is a model of T .

3 Non-disjoint Combination of Theories

We are interested in applying a general method for the combination of satisfi-
ability procedures in unions of non-disjoint theories. This method extends the
Nelson-Oppen combination method known for unions of signature-disjoint the-
ories, and leads to the following result:

Theorem 1. [10] Consider two theories T1, T2 in signatures Σ1, Σ2 and sup-
pose that:

1. both T1, T2 have decidable constraint satisfiability problem;
2. there is some theory T0 in the signature Σ1 ∩Σ2 such that:

– T0 is universal;
– T1, T2 are both T0-compatible;
– T0 is Noetherian;
– T1, T2 are both effectively Noetherian extensions of T0.

Satisfiability Procedures for Combination of Theories Sharing Integer Offsets 431

Then the (Σ1 ∪ Σ2)-theory T1 ∪ T2 also has decidable constraint satisfiability
problem.

The decidability result of Theorem 1 is obtained by relying on the available
decision procedures for T1 and T2, and cooperating them through an exchange
of information over the shared signature Σ1 ∪Σ2. There are three crucial points
in this schema: first of all, one should identify conditions sufficient to guarantee
the correctness of the resulting procedure: this has been addressed requiring that
the component theories must be both compatible with a common sub-theory.
Secondly, one should ensure the capability of computing the information to be
exchanged: this issue is encoded into the requirement that the two theories T1 and
T2 are “effectively Noetherian extensions” of a common subtheory T0. Finally,
one should guarantee that the exchange process eventually halts: the termination
of the whole procedure is ensured thanks to the so called Noetherianity of T0.
Let us explain in more details what the aforementioned requirements are.

Definition 1 (T0-compatibility). Let T be a theory in the signature Σ and
let T0 be a universal theory in a subsignature Σ0 ⊆ Σ. We say that T is T0-
compatible iff T0 ⊆ T and there is a Σ0-theory T ∗

0 such that

(i) T0 ⊆ T

0 ;

(ii) T

0 has quantifier elimination;

(iii) every Σ0-constraint which is satisfiable in a model of T0 is satisfiable also
in a model of T

0 ;
(iv) every Σ-constraint which is satisfiable in a model of T is satisfiable also in

a model of T

0 ∪ T .

The requirements (i) to (iii) make the theory T

0 unique, provided it exists (T

0 is
the so-called model completion of T0). These requirements are a generalization of
the stable infiniteness requirement of the Nelson-Oppen combination procedure:
in fact, if T0 is the empty theory in the empty signature, T

0 is the theory
axiomatizing an infinite domain, so that (iii) holds trivially and (iv) is precisely
stable infiniteness.

Example 1. Let us consider the theory of Integer Offsets TI :

TI rules the behaviour of the successor function s and the constant 0. TI has the
mono-sorted signature ΣI := {0 : int, s : int → int}, and it is axiomatized
as follows:

∀x s(x) �= 0
∀x, y s(x) = s(y)⇒ x = y
∀x x �= t(x) for all the terms t(x) over ΣI that properly contain x

TI is a universal theory that admits model completion: indeed, if we add to TI the
axiom ∀x(x �= 0 ⇒ ∃y x = s(y)), we obtain a theory T

I that admits quantifier
elimination (see, e.g. [7]) and such that every constraint that is satisfiable in a
model of TI is satisfiable also in a model of T

I . To justify the last claim, it is

432 E. Nicolini, C. Ringeissen, and M. Rusinowitch

sufficient to observe that each model of TI can be extended to a model of TI

simply by adding recursively to each element different from (the interpretation
of) 0 a “predecessor”. Since this operation does not affect the truth of any
constraint, we obtain that the condition (iii) is satisfied.

Now, for any theory T ⊇ TI over a signature Σ ⊇ ΣI the TI-compatibility
requirement simply reduces to the following condition: every constraint Γ that
is satisfiable in a model of T must be satisfiable also in a model of T ∪ ∀x(x �=
0⇒ ∃y x = s(y)).

The method for cooperating the satisfiability procedures makes use of the ca-
pability of deducing logical consequences over the shared signature. In order to
ensure the termination when deducing those logical consequences, we rely on
Noetherian theories. Intuitively, a theory is Noetherian if there exists only a
finite number of atoms that are not redundant when reasoning modulo T0.

Definition 2 (Noetherian Theory). A Σ0-theory T0 is Noetherian if and
only if for every finite set of free constants a, every infinite ascending chain

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·
of sets of ground Σ

a
0 -atoms is eventually constant modulo T0, i.e. there is an n

such that T0 ∪Θn |= A, for every natural number m and atom A ∈ Θm.

Example 2. (Example 1 continued). Many examples of Noetherian theories come
from the formalization of algebraic structures, but an interesting class of Noethe-
rian theories consists in all the theories whose signature contains only constants
and one unary function symbol [9,18]. Thus, the theory of Integer Offsets TI

enjoys this property.

Let us consider now a theory T ⊇ T0 with signatures Σ ⊇ Σ0, and suppose we
want to discover, given an arbitrary set of ground clauses Θ over Σ, a “complete
set” of logical positive consequences of Θ over Σ0, formalized by the notion of
T0-basis.

Definition 3 (T0-basis). Given a finite set Θ of ground clauses (built out of
symbols from Σ and possibly further free constants) and a finite set of free con-
stants a, a T0-basis for Θ w.r.t. a is a set ∆ of positive ground Σ

a
0 -clauses such

that

(i) T ∪Θ |= C, for all C ∈ ∆ and
(ii) if T ∪Θ |= C then T0 ∪∆ |= C, for every positive ground Σ

a
0 -clause C.

Notice that in the definition of a basis we are interested only in positive ground
clauses: the exchange of positive information is sufficient to ensure the com-
pleteness of the resulting procedure. The interest in Noetherian theories lies in
the fact that, for every set of Σ-clauses Θ and for every set a of constants, a
finite T0-basis for Θ w.r.t. a always exists. Unfortunately, a basis for a Noethe-
rian theory needs not to be computable; this motivates the following definition
corresponding to the last hypothesis of Theorem 1.

Satisfiability Procedures for Combination of Theories Sharing Integer Offsets 433

Definition 4. Given a finite set a of free constants, a T -residue enumerator for
T0 w.r.t. a is a computable function Res

a
T (Γ) mapping a set of Σ-clauses Γ to a

finite T0-basis for Γ w.r.t. a1. A theory T is an effectively Noetherian extension
of T0 if and only if T0 is Noetherian and there exists a T -residue enumerator for
T0 w.r.t. every finite set a of free constants.

Now we are ready to give a more detailed picture of the procedure that is the
core of Theorem 1, and that extends the Nelson-Oppen combination method to
theories over non disjoint signatures.

Algorithm 1. Extending Nelson-Oppen
Step 1. Purify the finite input set of ground literals Γ , thus producing a finite set

Γ1 of ground Σ
a
1 -literals and finite set Γ2 of ground Σ

a
2 -literals s.t. Γ1 ∪ Γ2 is

T1 ∪ T2-equisatisfiable with Γ .
Step 2. Using the Ti-residue enumerator ResTi , check the output of ResTi(Γi):

If ResTi(Γi) = ∆i and ∆i �= ⊥ for each i ∈ {1, 2}, then
Step 2.1. For each D ∈ ∆i such that Tj ∪ Γj �|= D, (i �= j), add D to Γj

Step 2.2. If Γ1 or Γ2 has been changed in Step 2.1, then rerun Step 2
Else return “unsatisfiable”

Step 3. If this step is reached, return “satisfiable”.

In the following we will show how to discover theories that are amenable to be
combined via the above schema and that share the theory of Integer Offsets. More
in detail, we will focus on a particular extension of the superposition calculus
that will proved to be a decision procedure for theories extending TI and that
will provide residue enumerators for TI .

4 Superposition Calculus for Integer Offsets

Recent literature has focused on the possibility of using the superposition cal-
culus in order to decide the satisfiability of ground formulae modulo the theory
of Integer Offsets and some disjoint extensions [1,3]. Contrary to those papers,
we are interested in a superposition-based calculus to deal with non-disjoint ex-
tensions of Integer Offsets, being able to constraint the successor symbol with
additional axioms.

Let us consider the axiomatization of the theory of Integer Offsets TI defined
in Example 1. Our aim is to develop a calculus able to take into account the
axioms of TI into a framework based on superposition. To this aim, let us consider
a presentation of the superposition calculus specialized for reasoning over sets of
literals, whose rules are described in Figures 1 and 2, augmented with the four
more rules over ground terms presented in Figure 3.

Let us adapt the standard definition of derivation to the calculus we are
interested in:
1 If Γ is T -unsatisfiable, then without loss of generality a residue enumerator can

always return the singleton set containing the empty clause.

434 E. Nicolini, C. Ringeissen, and M. Rusinowitch

Superposition
l[u′] = r u = t

(l[t] = r)σ
(i), (ii)

Paramodulation
l[u′] �= r u = t

(l[t] �= r)σ
(i), (ii)

Reflection
u′ �= u

⊥

where σ is the most general unifier of u and u′, u′ is not a variable in Superposition and
Paramodulation, L is a literal, ⊥ is the syntactic sign used to denote the inconsistency
and the following hold: (i) uσ � tσ, (ii) l[u′]σ � rσ.

Fig. 1. Expansion Inference Rules

Subsumption
S ∪ {L, L′}

S ∪ {L} if Lϑ ≡ L′ for some substitution ϑ

Simplification
S ∪ {L[l′], l = r}
S ∪ {L[rϑ], l = r}

if l′ ≡ lϑ, rϑ ≺ lϑ, and
(lϑ = rϑ) ≺ L[lϑ]

Deletion
S ∪ {t = t}

S

where L and L′ are literals and S is a set of literals.

Fig. 2. Contraction Inference Rules

R1
S ∪ {s(u) = s(v)}

S ∪ {u = v} if u and v are ground terms

R2
S ∪ {s(u) = t, s(v) = t}
S ∪ {s(v) = t, u = v}

if u, v and t are ground terms and
s(u) " t, s(v) " t and u " v

C1
S ∪ {s(t) = 0}

S ∪ {s(t) = 0} ∪ ⊥ if t is a ground term

C2
S ∪ {sn(t) = t}

S ∪ {sn(t) = t} ∪ ⊥ if t is a ground term and n ∈ N

where S is a set of literals and ⊥ is the symbol for the inconsistency.

Fig. 3. Ground reduction Inference Rules

Definition 5. Let SPI be the calculus depicted in Figures 1, 2 and 3. A deriva-
tion (δ) with respect to SPI is a (finite or infinite) sequence of sets of literals
S1, S2, S3, . . . , Si, . . . such that, for every i, it happens that:

(i) Si+1 is obtained from Si adding a literal obtained by the application of one
of the rules in Figures 1, 2 and 3 to some literals in Si;

(ii) Si+1 is obtained from Si removing a literal according to one of the rules in
Figures 2 or to the rule R1 or R2.

If we focus on the rules of Simplification, R1 and R2, we notice that the effects
of the application of any of these rules involve two steps in the derivation: in the
former a new literal is added, and in the latter a literal is deleted.

Satisfiability Procedures for Combination of Theories Sharing Integer Offsets 435

If S is a set of literals, let GS be the set of all the ground instances of S. A
literal L is said to be redundant with respect to a set of literals S if, for all the
ground instances Lσ of L, it happens that {E | E ∈ GS & E < Lσ} |= Lσ. We
notice that in our derivations only redundant literals are deleted.

Fact. If in a derivation Si+1 is equal to Si \ {L}, then L is redundant with
respect to Si.

Proof. The claim above is well known if Si+1 is obtained from Si applying one
of the rules in Figure 2, and it follows immediately in the case we are applying
R1 or R2.

So, as usual, we label with S∞ the set of literals generated during a derivation
δ (in symbols, S∞ =

⋃
i Si), and with Sω the set of persistent literals of δ:

Sω =
⋃

i

⋂
j>i Sj . We adopt the standard definition for a rule π of the calculus

being redundant with respect to a set of clauses S whenever, for every ground
instance of the rule πσ it happens that {E | E ∈ GS & E < Cmσ} |= Dσ,
where Cmσ is the maximal clause in the antecedent, and Dσ is the consequent
of the rule. According to this definition, a derivation w.r.t. SPI is fair if, for
every literal L1, L2, . . . , Lm ∈ Sω, every rule that has L1, . . . , Lm as premises is
redundant w.r.t. S∞.

Suppose now to take into account a fair derivation δ. We notice that, if a
literal L is added at a certain step of the derivation, say Si+1, then L is either a
logical consequence of some literals in Si, or it is a consequence of some literals
in Si and the axioms of the theory TI . Thus:

Proposition 1. If the set of persistent literals Sω contains ⊥, then Sω is un-
satisfiable in any model of TI.

On the other hand, since the reduction rules we can apply during the derivation
satisfy the general requirements about the redundancy, we have that:

Proposition 2. If the set of persistent literals Sω does not contain ⊥, then Sω

is satisfiable.

What remains to show is that this calculus is refutationally complete with respect
to the models of TI (namely the structures in which the function s is injective,
acyclic and such that 0 does not belong to the image of s). We want to identify
in the following at least one case in which the calculus in Figures 1, 2 and 3 is
not only refutationally complete w.r.t. TI , but it is complete, too.

Remark 1. Since the satisfiability of Sω is equivalent to the satisfiability of S∞,
and since the satisfiability of each step Si+1 in the derivation implies the satisfi-
ability of Si, we have in particular that if Sω is satisfiable, then S0 is satisfiable.
Moreover, it is immediate to check that the unsatisfiability in the models of TI

of Sω implies the unsatisfiability of S0 in the same class of structures. So, in case
it happens that the calculus described in Figures 1, 2 and 3 is complete, we can
proceed as usual when considering procedures based on saturation methods: an
initial set of literals S0 will be satisfiable (in a model of TI) if and only if its
saturation Sω does not contain ⊥.

436 E. Nicolini, C. Ringeissen, and M. Rusinowitch

4.1 Completeness

From now on, we assume that the ordering we consider when performing any
application of SPI is TI-good :

Definition 6. We say that an ordering 1 over terms on a signature containing
ΣI is TI-good whenever it satisfies the following requirements:

(i) 1 is a simplification ordering that is total on ground terms;
(ii) 0 is minimal;
(iii) whenever two terms t1 and t2 are not s-rooted it happens that sn1(t1) 1

sn2(t2) iff either t1 1 t2 or (t1 ≡ t2 and n1 is bigger than n2).

Proposition 3. Assuming TI-good ordering 1 over terms, if the set of persis-
tent literals Sω satisfies the following assumptions:

– Sω does not contain ⊥,
– s-rooted terms can be maximal just in ground equations in Sω

then Sω is satisfiable in a model of TI .

Collecting all the results obtained so far, we can conclude that:

Theorem 2. Let T be a Σ-theory presented as a finite set of unit clauses such
that Σ ⊇ ΣI , and assume to put an ordering over terms that is TI-good. SPI

induces a decision procedure for the constraint satisfiability problem w.r.t. T ∪TI

if, for any set G of ground literals:

– the saturation of Ax(T) ∪G w.r.t. SPI is finite,
– the saturation of Ax(T)∪G w.r.t. SPI does not contain non-ground equalities

whose maximal term is s-rooted.

4.2 Termination

Proposition 4. For any set G of ground literals over a signature extending ΣI ,
any saturation of G w.r.t. SPI is finite.

Proof. Each step either adds a literal that is smaller than (at least) one literal
already present in the saturation, or delete one literal, hence the multiset of
literals decreases according to the well-founded ordering ((1)mul)mul .

Corollary 1. SPI induces a decision procedure for the constraint satisfiability
problem w.r.t. the union of TI and the theory of equality.

5 Examples of Integer Offsets Extensions

We investigate theories sharing symbols of TI in a specific way, thanks to ax-
ioms of the form g(f(. . . , x, . . .)) = s(g(x)) where f, g are function symbols not
occurring in ΣI . Despite this restricted form of axioms, we are already able to
consider interesting examples of Integer Offsets extensions.

Satisfiability Procedures for Combination of Theories Sharing Integer Offsets 437

5.1 Lists with Length

Let us consider TLLI , the theory of lists endowed with length. TLLI can be
axiomatized as the union of the theories TL, T� and TI , where TI is the theory
of Integer Offsets of Example 1 and:2

TL has the multi-sorted signature of the theory of lists: ΣL is the set of function
symbols {nil : lists, car : lists→ elem, cdr : lists→ lists, cons : elem×
lists→ lists} plus the predicate symbol atom : lists, and it is axiomatized
as follows:

¬atom(x) ⇒ cons(car(x), cdr(x)) = x
car(cons(x, y)) = x ¬atom(cons(x, y))
cdr(cons(x, y)) = y atom(nil)

T� is the theory that gives the axioms for the function length � : lists→ int:

�(nil) = 0
�(cons(x, y)) = s(�(y))

We want to show that the constraint satisfiability problem for TLLI is decidable
via the calculus described in the previous section.

First: Reduction. We start addressing the problem of checking the satisfia-
bility of a constraint w.r.t. TLLI. Let G be a set of ground literals over ΣTLLI ;
we can associate to G the set of formulae G′ obtained by replacing all the lit-
erals in G ∪ {atom(nil)} in the form ¬atom(t) and atom(t′) with respectively
t = cons(sk1, sk2) and ∀x0, x1 t′ �= cons(x0, x1), where t and t′ are ground terms
of sort lists and sk1, sk2 are fresh constants of the appropriate sort (this is the
same reduction used in [2]).

Let now TL′ be the subtheory of TL whose axioms are just the first two
(equational) axioms of TL. We have that:

Proposition 5. G is satisfiable w.r.t. TLLI if and only if G′ is satisfiable w.r.t.
TL′ ∪ T� ∪ TI .

Second: Saturation. According to Proposition 5 and applying at most some
standard steps of flattening, we can focus our attention to sets of literals of
the following kinds (x is a variable of sort elem, y is a variable of sort lists,
h, l, a, f, g, l1, l2, e, d, e1, e2, i, i1, i2 are constants of the appropriate sorts and the
symbol "# is a shortening for both = and �=), and the left-hand side of all the
literals is the maximal one.

2 All the axioms should be considered as universally quantified.

438 E. Nicolini, C. Ringeissen, and M. Rusinowitch

i.) equational axioms for lists
a) car(cons(x, y)) = x;
b) cdr(cons(x, y)) = y;

ii.) reduction for ¬atom
a) cons(x, y) �= h;
b) cons(x, y) �= nil;

iii.) axioms for the length
a) �(nil) = 0;
b) �(cons(x, y)) = s(�(y));

iv.) ground literals over the sort lists

a) cons(e, l) = c;

b) cdr(f) = g;
c) l1 "# l2;

v.) ground literals over the sort elem

a) car(h) = d;
b) e1 "# e2;

vi.) ground literals over the sort int

a) �(a) = sm(i);
b) sm(i1) �= sn(i2);
c) sn(i1) = i2;
d) i1 = sn(i2).

Let us choose, as ordering over the terms, a LPO ordering 1 whose underlying
precedence over the symbols of the signature respects the following requirements:

– cons > cdr > car > c > e > � for every constant c of sort lists and every
constant e of sort elem;

– � > i > 0 > s for every constant i of sort int;

These requirements over the precedence guarantee that every compound term
of sort lists is bigger than any constant, any compound term over the sort elem

is bigger than any constant, and that 1 is a TI -good ordering.
We require that the rules in Figures 2 and 3 are applied, whenever possible,

before the rules in Figure 1 (in other words we require that the contraction rules
have a higher priority).

Proposition 6. For any set G of ground literals, any saturation of Ax(TLLI)∪G
w.r.t. SPI is finite.

The key observations, in order to prove termination, are that the non-ground
set of literals is already saturated, every equation obtained by the application
of a rule to ground factors is smaller in the ordering w.r.t. the biggest factor in
the antecedent of the rule, and every application of a rule of the calculus to a
ground and a non-ground literal produces a ground literal that is smaller than the
ground factor. In other terms, every literal produced during the saturation phase
is ground and it is strictly smaller than the biggest ground literal in the input
set. Since the ordering on the literals is the multiset extension of a terminating
ordering, it is terminating too.

Moreover, since in the saturation no non-ground equation whose maximal
term is s-rooted is generated, we can conclude by Theorem 2 that SPI is a
decision procedure for the constraint satisfiability problem w.r.t. TLLI.

5.2 Lists over Integer Elements

Let us consider now lists whose elements are integers. The reduction of Section
5.1 works without any changes, so we can check if the calculus developed in
Figures 1, 2 and 3 is still a decision procedure for the constraint satisfiability
problem of lists with length and integer elements. We can apply at most some

Satisfiability Procedures for Combination of Theories Sharing Integer Offsets 439

standard steps of flattening and we focus our attention to sets of literals of the
kinds i—iv) defined in Section 5.1 plus the new following one which merges the
kinds v—vi) of Section 5.1:

v.) ground literals over the sort int

a) car(h) = sn(i);
b) �(a) = sm(i);
c) sm(i1) �= sn(i2);

d) sn(i1) = i2;

e) i1 = sn(i2).

Let us put over the symbols of the signature an order that respects the same
requirements we have asked in Section 5.1. The same remarks about termination
and the shape of the saturated set of the previous section apply also to this case,
guaranteeing that SPI provides a decision procedure.

5.3 Records with Increment

Let us consider records in which all the attribute identifiers are associated to
the same sort int, and suppose we want to be able to increment by a unity
every value stored into the record. To formalize this situation, we can choose a
signature as follows: let Id = {id1, id2, . . . , idn} a set of attribute identifiers and
let us name rec the sort of records; for every attribute identifier id1, id2, . . . , idn

we have a couple of functions rselecti : rec→ int and rstorei : rec× int→ rec;
moreover, there is also the increment function incr : rec→ rec. The axioms of
the theory of integer record with increment, TIRI , are the following:

TIRI : for every i, j such that 1 ≤ i �= j ≤ n

rselecti(rstorei(x, y)) = y

rselectj(rstorei(x, y)) = rselectj(x)
∧n

i=1(rselecti(x) = rselecti(y)) ⇒ x = y (extensionality)
rselecti(incr(x)) = s(rselecti(x))

In order to check the satisfiability of a set of ground literals w.r.t. TIRI , we
notice that every literal of the kind r1 �= r2 is equivalent to a clause of the kind∨n

i=1 rselecti(r1) �= rselecti(r2), so can we substitute every disequation between
records with the corresponding clause and then check the satisfiability of the
resulting set of clauses by case split.

So we can restrict our attention to sets of literals in which no disequation
between records appears. In this case, following the same argument used in [1],
it is possible to check the satisfiability forgetting the extensionality axioms (the
presence of the function incr does not affect the argument). Thus we are reduced
to consider the saturation of sets of literals of the following kind:

440 E. Nicolini, C. Ringeissen, and M. Rusinowitch

i.) equational axioms for records
a) rselecti(rstorei(x, y)) = y;
b) rselectj(rstorei(x,y))= rselectj(x);
c) rselecti(incr(x)) = s(rselecti(x));

ii.) ground literals over the sort rec

a) r1 = r2;
b) rstorei(r1, s

n(k)) = r2;

c) incr(r1) = r2;
iii.) ground literals over the sort int

a) rselecti(r) = sn(k);
b) sn(k1) = k2;
c) k1 = sn(k2);
d) sn(k1) �= sm(k2).

where x is a variable of sort rec, y is a variable of sort int, and r, r1, r2, k, k1,
k2 are constants of appropriate sorts. As usual, let us consider a LPO ordering
over terms such that the underlying precedence over the symbols in the signa-
ture satisfies the following requirements: for all i, j in {1, . . . , n}, incr > rstorei,
rstorei > rselectj, rselecti > c for every constant c and every constant c is such
that c > 0 > s.

Proposition 7. For any set G of ground literals, any saturation of Ax(TIRI)∪G
w.r.t. SPI is finite.

The completeness of the calculus can be shown relying on the observation that
no non-ground literals involving the function symbol s are generated, and that
the chosen ordering is a TI -good one.

6 Combination of Theories Sharing Integer Offsets

In the previous section we have collected examples of theories extending the theo-
ries of the Integers Offsets TI and whose constraint satisfiability problem is decid-
able. We have already noticed that TI admits a model completion T

I and that it is
a Noetherian theory; to guarantee that the theories that have been studied can be
combined all together it is sufficient to show that they fully satisfy the requirement
of being TI -compatible and effectively Noetherian extension of TI .

6.1 TI-Compatibility

Being for a theory T ⊇ TI a TI -compatible theory means that every constraint
that is satisfiable w.r.t. T is satisfiable also in a model in which the axiom
∀x(x �= 0 ⇒ ∃y x = s(y)) holds. To see that actually it is the case for all the
theories considered in Section 5, it is sufficient to check that any model of that
theories can always be extended, if needed, adding recursively to each element
that is different from (the interpretation of) 0 its predecessor and, in case it is
needed, modifying accordingly the remaining part of the structure; and to check
that this enlargement does not affect the validity both of the constraints that
are verified in the structure and of the axioms of the theory. For example, we
consider in [15] the case of the theory of lists over integer elements with length.
Using similar (or simpler) arguments as the ones for this case, it is possible to
verify that all the theories in Section 5 are TI-compatible.

Satisfiability Procedures for Combination of Theories Sharing Integer Offsets 441

6.2 Derivation of TI-Basis

We have considered Horn Σ′-theories T ′ = T ∪ TI extending TI with some
theories T axiomatized by unit clauses. We have shown under which assumptions
the Superposition Calculus SPI is complete in order to check T ′-satisfiability of
sets of ground literals. Let us show that SPI allows us to derive TI-basis. Assume
that G(a, b) is a set of ground literals over an expansion of Σ′ with the finite
sets of fresh constants a, b. Our claim is the following: if Sω is the saturation of
Ax(T) ∪ G(a, b) and assuming a TI -good order over the terms in the signature
Σ′ ∪ {a, b} such that every term over the subsignature Σ

a
I is smaller than any

term that contains a symbol in (Σ′ \ ΣI) ∪ {b}, then the subset of OGSω over
the signature Σ

a
I , denoted by ∆(a), is a TI -basis. Since T ′ is a Horn theory, it is

convex and so we can focus our attention just over equations instead of positive
(ground) clauses.

Proposition 8. If l = r is an equation over Σ
a
I implied by T ′ ∪ G(a, b), then

l = r is already implied by TI ∪∆(a)

Proof. From what we have shown in the previous paragraphs we have that T ′ ∪
G(a, b) ∪ {l �= r} has a model iff a saturation of Ax(T) ∪ G(a, b) ∪ {l �= r} does
not contain ⊥. A saturation of Ax(T)∪G(a, b)∪{l �= r} is equal to a saturation
of Sω ∪ {l �= r}. Since Sω does not contain ⊥, the only alternative way to derive
⊥ is by reducing l �= r to ⊥ using equations from ∆(a), since l �= r is defined
on the signature s ∪ 0 ∪ a and no equation in Sω containing a symbol different
from s, 0, a can be used to rewrite a term on signature s, 0, a by our choice of
the reduction ordering. Hence the saturation of Ax(T) ∪ G(a, b) ∪ {l �= r} does
not contain ⊥ iff the saturation of ∆(a) ∪ {l �= r} does not contain ⊥. Since
∆(a)∪ {l �= r} is a set of ground literals, Theorem 2 applies, and the saturation
of ∆(a) ∪ {l �= r} does not contain ⊥ iff ∆(a) ∪ {l �= r} has a TI-model.

7 Conclusion

We have shown how to apply a superposition calculus to build decision proce-
dures for some theories sharing Integer Offsets. These theories and the related
decision procedures satisfy all the requirements for their applications in a non-
disjoint combination framework. To the best of our knowledge, this paper is the
first contribution showing the interest of a superposition calculus for non-disjoint
combinations. This paper paves the way of using non-disjoint combinations (with
a shared fragment of Arithmetics) in the context of verification. There are sev-
eral research directions we want to investigate. Currently, the soundness of the
superposition calculus is proved manually for each theory considered in the pa-
per. It would be very interesting to have an automatic proof mechanism using
for instance a meta-saturation calculus [13]. Moreover, the considered fragment
of Arithmetics is not very expressive and we have some limitations on the form
of axioms we are able to handle. Further works are needed to go beyond these
restrictions.

442 E. Nicolini, C. Ringeissen, and M. Rusinowitch

References

1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Transactions on Computational Logic 10(1)

2. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Information and Computation 183(2), 140–164 (2003)

3. Bonacina, M.P., Echenim, M.: On variable-inactivity and polynomial T -
satisfiability procedures. Journal of Logic and Computation 18(1), 77–96 (2008)

4. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., van Rossum,
P., Sebastiani, R.: Efficient theory combination via boolean search. Information and
Computation 204(10), 1493–1525 (2006)

5. Bradley, A., Manna, Z.: The Calculus of Computation. Springer, Heidelberg (2007)
6. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a

logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92.
Springer, Heidelberg (2002)

7. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York
(1972)

8. Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning 33(3-4), 221–249 (2004)

9. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Noetherianity and combination
problems. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS, vol. 4720, pp. 206–
220. Springer, Heidelberg (2007); extended version at http://homes.dsi.unimi.

it/~zucchell/publications/conference/GhiNiRaZu-FroCoS-07.pdf

10. Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive combination framework.
ACM Transactions on Computational Logic 9(2), 1–54 (2008)

11. Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.-K.: On superposition-based sat-
isfiability procedures and their combination. In: Van Hung, D., Wirsing, M. (eds.)
ICTAC 2005. LNCS, vol. 3722, pp. 594–608. Springer, Heidelberg (2005)

12. Krstić, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo para-
metric theories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 618–631. Springer, Heidelberg (2007)

13. Lynch, C., Tran, D.-K.: Automatic Decidability and Combinability Revisited. In:
Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 328–344. Springer, Heidelberg
(2007)

14. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transaction on Programming Languages and Systems 1(2), 245–257 (1979)

15. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Satisfiability Procedures for Combi-
nation of Theories Sharing Integer Offsets. Report, INRIA, RR-6697 (2008)

16. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol. I, pp. 371–
443. Elsevier Science, Amsterdam (2001)

17. Shostak, R.E.: Deciding combinations of theories. J. of the ACM 31, 1–12 (1984)
18. Zucchelli, D.: Combination Methods for Software Verification. PhD thesis, Univer-

sità degli Studi di Milano and Université Henri Poincaré - Nancy 1 (2008)

http://homes.dsi.unimi.it/~zucchell/publications/conference/GhiNiRaZu-FroCoS-07.pdf
http://homes.dsi.unimi.it/~zucchell/publications/conference/GhiNiRaZu-FroCoS-07.pdf

Bridging the Gap Between Model-Based
Development and Model Checking�

Steven P. Miller

Rockwell Collins, Cedar Rapids IA 52498, USA
spmiller@rockwellcollins.com

Abstract. The growing power of model checking is making it feasible
to use formal verification for important classes of software systems. How-
ever, for this to be practical it is necessary to bridge the gap between the
commercial modeling tools industrial developers prefer to use and the
input languages of the formal verification tools. This paper describes a
translator framework that makes it possible to use several popular for-
mal verification tools with commercial modeling tools. The practicality of
this approach is illustrated by four case studies in which model checking
was successfully used in the development of avionics software.

1 Introduction

Great strides have been made in the development of model checking tools over the
last few years. However, there have been relatively few instances reported of their
successful application to industrial problems outside of the realm of hardware
engineering. In fact, software and system engineers are often completely unaware
of the opportunities these tools offer.

One of the main reasons for this has been the difficulty of producing software
or system design models that can be analyzed by these tools. Typically, users
of a model checker must first create a separate model in the input language
of the model checker that they believe replicates the behavior of the original
design. Besides introducing significant cost and delay, this also undermines the
developer’s confidence in the analysis since it is not performed on the actual
code or design.

This situation is rapidly changing with the growing popularity of Model-Based
Development (MBD) for the design of embedded systems. Tools such as MAT-
LAB Simulink R© [1] and Esterel Technologies SCADE SuiteTM [2] are achieving
widespread use in the avionics and automotive industry. The graphical models
produced by these tools provide a formal, or nearly formal, specification that is
often amenable to formal analysis.

� This work was supported in part by the NASA Langley Research Center under
contract NCC-01001 of the Aviation Safety Program (AvSP) and the Air Force
Research Lab under contract FA8650-05-C-3564 of the Certification Technologies
for Advanced Flight Control Systems program (CerTA FCS) 88ABW-2009-0146.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 443–453, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

444 S.P. Miller

This paper describes a translator framework developed by Rockwell Collins
and the Critical Systems Research Group at the University of Minnesota that
bridges this gap and allows production Simulink and SCADE models to be auto-
matically translated to a variety of popular model checkers and theorem provers.
Four case studies are presented in which model checking was used to find errors
in early requirements and design models, sometimes years before the final code
could be integrated and tested on a system rig.

2 Background

The value proposition for formal verification is changing due to the convergence of
two trends, the growing popularity of Model-Based Development for the develop-
ment of embedded systems and the growing power of model checkers. This section
provides a brief introduction to Model-Based Development and to model checking.

2.1 Model-Based Development

Model-Based Development refers to the use of domain specific, graphical mod-
eling languages that can be executed and analyzed before the actual system is
built. MBD allows developers to create a model of a system, execute it on their
desktop, analyze it with automated tools for the required behavior, and use it
to automatically generate code and test cases. In the automotive and avionics
industry, MBD generally refers to the use of synchronous data flow languages
such as MATLAB Simulink or Esterel Technologies SCADE Suite. Synchronous
languages latch their inputs at the start of a computation step, compute their
outputs and the next system state as a single atomic step, and communicate
between components using data flow signals. This differs from the more general
class of modeling notations that include support for asynchronous execution of
components and communication using message passing.

2.2 Model Checking

Model checkers are formal verification tools that evaluate an input model to
determine if it satisfies a given set of properties [3]. A model checker will consider
every possible combination of inputs and state, making the verification equivalent
to exhaustive testing of the model. If a property is not true, the model checker
will produce a counterexample showing how the property can be falsified. While
model checkers cannot be used to verify as large a class of models as theorem
provers, they are often easier to use and in many cases can provide results in
seconds or minutes. This makes them very attractive for use in industrial settings
where software designers may not have the expertise or the time to complete a
proof using a mechanical theorem prover.

There are many types of model checkers, each with their own strengths and
weaknesses. Explicit state model checkers such as SPIN [4] construct a search-
able representation of the design model and store a representation of each state
visited. Implicit state (symbolic) model checkers such NuSMV [5] use compact

Bridging the Gap Between Model-Based Development and Model Checking 445

representations (such as Binary Decision Diagrams) of sets of states to describe
regions of the model state space that satisfy the properties being evaluated. This
often allows them to handle much larger state spaces than explicit state model
checkers. Satisfiability modulo theories (SMT) model checkers such as SAL [6]
and Prover R© Plug-In [7] use a form of induction to reason about models contain-
ing real numbers and unbounded arrays. While SMT-based model checkers can
deal with infinite state systems, their properties need to written in such a way
that they can be proven by induction over an unfolding of the state transition
relationship. For this reason, they tend to be more difficult to use than explicit
and implicit state model checkers.

3 The Translator Framework

To bridge the gap between industrial modeling tools and some of the more
popular model checkers and theorem provers, Rockwell Collins and the Critical
Systems Research Group at the University of Minnesota developed a product
family of translators [8] as part of the NASA Aviation Safety Program. An
overview of this translator framework is shown in figure 1.

SCADE

Lustre

 NuSMV

 PVS
Safe State
Machines

 SAL Symbolic
 Model Checker

SAL

Simulink Simulink
Gateway

StateFlow

Reactis ACL2

 Prover

Simulink
Gateway

 C, Ada

 SAL Infinite
 Model Checker

 SAL Bounded
 Model Checker

Rockwell Collins/U of Minnesota

MathWorks

SRI International
Reactive Systems

Esterel Technologies

Fig. 1. Translator Framework

The translators work primarily with the Lustre formal specification language
[9], but this is hidden from the tool users. The typical user first creates a model
in Simulink, StateFlow, or SCADE Suite. Since Lustre is the underlying speci-
fication language of SCADE, the initial translation into Lustre is immediate for
SCADE models. Simulink and StateFlow users can translate their models into
Lustre using either the Simulink Gateway provided by Esterel Technologies or by
importing their models into the Reactis R© [10] test case generator developed by
Reactive Systems and using a translator developed by Rockwell Collins. While
Simulink does not have a full, formal semantics, developers of safety-critical

446 S.P. Miller

systems routinely restrict themselves to a safe subset of the language and it is
usually possible to assign a formal semantics to this subset.

Once in Lustre, the specification is read into an abstract syntax tree (AST)
and a number of transformation passes are applied to it. Each transformation
pass produces a valid Lustre AST that is syntactically closer to the target specifi-
cation language and preserves the semantics of the original Lustre specification.
This allows all Lustre type checking and analysis tools to be used after each
transformation pass. When the AST is sufficiently close to the target language,
a pretty printer is used to output the target specification.

The translator framework is actually a product family of translators in that
many transformation passes are reused in the translators for each target lan-
guage. Pre-conditions for each transformation specify the properties a Lustre
specification must satisfy for the translation to be valid and post-conditions de-
fine the properties of the generated specification. Reuse of the transformation
passes makes it much easier to support a variety of target languages and allows
new translators to be developed in a matter of days. The number of transforma-
tion passes depends on how similar the source and target languages are and on
how many optimizations need to be made. Currently, the number of transforma-
tion passes ranges from a dozen for a simple C code generator to over sixty for
an optimized translation to NuSMV.

The translators produce highly optimized models appropriate for the target
language. For example, when translating to the NuSMV model checker, the
translator produces a specification that is difficult for a human to read, but
very efficient for model checking. When translating to the PVS theorem prover,
the specification is optimized for readability and to support the development of
proofs in PVS. When generating executable C code, the translation is optimized
for execution speed on the target processor. Many of these optimizations can have
a dramatic effect on the target analysis tools. For example, optimization passes
incorporated into the NuSMV translator reduce the time required for NuSMV
to check one model from over 29 hours to less than a second, an improvement
of over five orders of magnitude.

Tools have also been developed to present the counter examples produced by
the model checkers into two formats that are easier to understand. The first is a
simple spreadsheet format that shows the inputs and outputs of the model for
each step of the counter example. The second is a test script that can be used
to step the Reactis tool forward and backward through the counter example.
As shown in figure 1, the translator framework currently supports input models
written in MATLAB Simulink and Stateflow and Esterel Technologies SCADE
Suite and generates models for the NuSMV, SAL, and PROVER model-checkers,
the PVS and ACL2 theorem provers, and C and Ada source code.

4 Case Studies

This section describes four case studies in which model checking was used to find
errors in early requirements and design models. The use of industrial models has
proven invaluable in selecting the features to be added to the translator framework.

Bridging the Gap Between Model-Based Development and Model Checking 447

4.1 FCS 5000 Mode Logic

The first application of model checking to an actual product at Rockwell Collins
was to the mode logic of the FCS 5000 Flight Control System [11]. The FCS 5000
is a family of Flight Control Systems (FCS) developed by Rockwell Collins for
use in business and regional jet aircraft. The Flight Guidance System (FGS) is a
component of the FCS that compares the measured state of an aircraft (position,
speed, and attitude) to the desired state and generates pitch and roll guidance
commands to minimize the difference between the measured and desired state.
The mode logic is a component of the FGS that determines which lateral and
vertical flight modes are armed and active at any time.

While inherently complex and difficult to get right, the mode logic consists
almost entirely of Boolean and enumerated types. As described in [11], Rockwell
Collins developed an in-house format that produces a very compact specification
of the mode logic that can be directly implemented in Simulink. This made the
FCS 5000 mode logic ideally suited for analysis using the translator framework
and a symbolic model checker such as NuSMV.

The mode logic analyzed consisted of five mode transitions diagrams with a
total of 36 modes, 172 events, and 488 transitions. Changes in the state of each
mode diagram affect at least one, and often more, of the other mode diagrams.
While each individual diagram is straightforward to understand, grasping all
the interactions between them can be difficult. In fact, the most interesting
requirements to be checked defined relationships to be maintained between the
mode machines, for example, ensuring that the active vertical flight mode was
not “Approach” unless the active lateral flight mode was already “Approach”.

Analysis of a very early specification of the FCS 5000 mode logic with NuSMV
found 26 errors in the mode logic. Seventeen of these were found by the model
checker, six were found in the process of translating the informal requirements
into the Simulink model, and three were found during inspections performed to
develop the properties to be checked. Of the 17 errors found using the model
checker, 13 were classified as being possible to be missed by traditional verifica-
tion techniques such as testing and inspections, and one was classified as being
likely to be missed by traditional techniques.

One of the main advantages of this analysis was that it could be done early in
the development process when the requirements were still under development.
Finding and correcting errors at this stage is far more cost effective than waiting
until executable code is ready for unit and integration testing.

4.2 ADGS-2100 Window Manager

One of the largest and most successful applications of model checking at Rockwell
Collins was to the ADGS-2100 Adaptive Display and Guidance System Window
Manager [12]. In modern aircraft, the primary way that aircraft status is provided
to the pilots is through computerized display panels in the cockpit. These panels
replace the dozens of mechanical switches and dials found in earlier aircraft and
present a unified interface to critical flight information.

448 S.P. Miller

The ADGS-2100 is a Rockwell Collins product that provides the heads-down
and heads-up displays and display management software for next generation
commercial aircraft. The pilots can switch each panel between several differ-
ent displays of information such as primary flight displays, navigational maps,
aircraft system status, and flight checklists. However, some information is con-
sidered critically important and must always be displayed. For this reason, the
ADGS-2100 provides redundant implementations of all its critical functions.

The Window Manager (WM) ensures that data from the different displays
applications is routed to the correct display panel. In normal operation, the
WM determines which applications are being displayed in response to the pi-
lot selections. However, in the case of a component failure, the WM decides
which information is most critical and routes this information from one of the
redundant sources to the most appropriate display panel. The WM is essential
to the safe flight of the aircraft. If the WM contains logic errors, critical flight
information could be made unavailable to the flight crew.

Like the FCS 5000 mode logic, the WM is specified in Simulink using only
Booleans and enumerated types, but it is surprisingly complex. The WM is com-
posed of five main components that can be analyzed independently. As shown in
table 1, these five components contain a total of 16,117 primitive Simulink blocks
that are grouped into 4,295 instances of Simulink subsystems. The reachable state
space of the five components ranges from 9.8× 109 to 1.5× 1037 states.

Table 1. Window Manager Analysis Results

Subsystem Basic Reachable Number of Errors
Component Instances Blocks State Space Properties Found

GG 2,831 10,699 9.8× 109 43 56
PS 144 398 4.6× 1023 152 10
CM 139 1,009 1.2× 1017 169 10
DUF 879 2,941 1.5× 1037 115 8
MFD 301 1,100 6.8× 1031 84 14
Totals 4,295 16,117 563 98

To begin the analysis, a set of properties that formally state the WM re-
quirements were develped in CTL, one of the property specification languages of
NuSMV. Developing the properties to be checked was a gradual process of study-
ing the WM requirements and talking with the WM developers. Some properties
were straightforward to write. For example, in a simplified version of the WM
with only two Display Units (DU), the requirement

If a DU is available, then it shall display some application.

would be stated as the two CTL properties

AG(LEFT DU AVAILABLE -> LEFT DU APPLICATION != BLANK)

AG(RIGHT DU AVAILABLE -> RIGHT DU APPLICATION != BLANK)

Bridging the Gap Between Model-Based Development and Model Checking 449

Other properties required discussion with the WM developers to clarify nu-
ances or resolve the ambiguity inherent in English textual requirements.

At the start of the project, the translator chain did not work with the ver-
sion of Simulink being used by the development team and the models required
several hours of hand tweaking before they could be translated from Simulink
to NuSMV. As a result, the early analysis was done entirely by the model
checking team.

However, as the project progressed, improvements were made to the tool chain
so that the translation only took a few minutes and was completely automated.
Also, optimizations to the translator reduced the time required for NuSMV to
check each property to roughly 20 seconds. Gradually, the developers began to see
that model checking could find errors faster, more easily, and more thoroughly
than testing or reviews. This motivated them to start writing and checking
CTL properties on their own. Eventually, the developers completely took over
the model checking and began relying on the model checking team only for
consultation and tool improvements.

Ultimately, 563 properties about the WM were developed and checked, and
98 design errors in the model were found and corrected (see table 1). As with
the FGS mode logic, this verification was done early in the design process as
the design and the requirements were still evolving. In fact, by the end of the
project, the WM developers were checking the properties several times each day,
usually after each design change.

4.3 CerTA FCS Phase I

The third case study was sponsored by the Air Force Researh Labs (AFRL)
Wright Patterson RD Directorate under the Certification Technologies for Ad-
vanced Flight Control Systems (CerTA FCS) program [13]. In this study, the
translation framework and model checking tools were applied to the Opera-
tional Flight Program (OFP) for an Unmanned Aerial Vehicle (UAV) created
by Lockheed Martin Aero. The OFP is an adaptive flight control system that
modifies its behavior in response to flight conditions.

Phase I of the project focused on investigating the roles of testing and formal
verification, and in particular, determining if formal verification could be used to
replace some tesing. To this end, two verification teams were set up. One team,
based at Lockheed Martin, focused on traditional testing of the OFP. The other
team, based at Rockwell Collins, focused on the use of model checking. Neither
team communicated directly with the other team and both teams started with
identical models and specifications of the requirements.

To ensure the effectiveness of testing was being compared to a mature formal
verification technology, the model checking in Phase I was restricted to the Re-
dundancy Management (RM) logic of the OFP. Like the FCS 5000 mode logic
and the ADGS-2100 WM, the RM logic is based almost entirely on Boolean and
enumerated types. This makes it ideal for analysis with a BDD-based model
checker such as NuSMV. However, the RM logic also contained several model
constructs that had not been encountered in the FCS 5000 mode logic and the

450 S.P. Miller

ADGS-2100 WM, including Stateflow models and truth tables. Extensions to
the translator framework to support these features took about two thirds of the
total time spent model checking the RM logic. However, the Lockheed Martin
team also made comparable investments in enhancing their testing environment.
These one time, non-recurring costs were factored out of the final comparison of
the effectiveness of testing and model checking.

Like the ADGS-2100 WM, the RM logic is organized into three components
that could be analyzed individually (see table 2). While these components are
smaller than those in the ADGS-2100 WM, they are replicated once for each of
the ten control surfaces on the aircraft and collectively represent a significant
portion of the OFP logic.

Table 2. OFP Redundancy Manager Analysis Results

Charts/
Subsystem Basic Transitions/ Reachable Number of Errors

Component Instances Blocks TT Cells State Space Properties Found
Triplex Voter 10 96 3/35/198 6.0× 1013 43 5
Failure Processing 7 42 0/0/0 2.1× 104 6 3
Reset Manager 6 31 2/26/0 1.3× 1011 8 4
Totals 23 169 5/61/198 62 12

To compare the effectiveness of model checking and testing at discovering
errors, the formal verification team developed a total of 62 properties from the
OFP requirements. While these properties only partially specifed the required
behavior of the RM logic, checking them with the model checker uncovered 12
errors in the RM logic. Of these 12 errors, four were classified as severity 3 (only
severity 1 and 2 can affect the safety of flight), two were classified as severity
4, two resulted in requirements changes, one was redundant, and three resulted
from requirements that had not yet been implemented in that release of the
software.

In similar fashion, the testing team developed a series of tests from the same
OFP requirements. Even though the testing team invested almost half again as
much time in testing as the formal verification team spent in model checking,
testing failed to find any errors, including those found through model checking.
The conclusion of both teams was that in this case, model checking was more
effective than testing in finding design errors.

4.4 CerTA FCS Phase II

The purpose of Phase II of the CerTA FCS project was to investigate whether
model checking could be used to verify large, numerically intensive models. In
this study, the translation framework and model checking tools were used to
verify important properties of the Effector Blender (EB) logic of an OFP for
a UAV similar to that verified in Phase I. The EB is a central component of
the OFP that generates the actuator commands for the aircraft’s six control

Bridging the Gap Between Model-Based Development and Model Checking 451

surfaces. It is a large, complex piece of logic that repeatedly manipulates a
3 × 6 matrix of floating point numbers. It inputs 32 floating point inputs and a
3 × 6 matrix of floating point numbers and outputs a 1 × 6 matrix of floating
point numbers. It contains over 2,000 basic Simpulink blocks organized into 166
Simulink subsystems, many of which are Stateflow models.

Because of its extensive use of floating point numbers and enormous state space,
the EB cannot be verified using a BDD-based model checker such as NuSMV. In-
stead, the EB was analyzed using the Prover SMT-solver from Prover Technolo-
gies. Even with the additional capabilities of Prover, several new issues had to be
addressed in Phase II, the hardest being dealing with floating point numbers.

While Prover has powerful decision procedures for linear arithmetic with real
numbers and bit-level decision procedures for integers, it does not have decision
procedures for floating point numbers. Translating the floating point numbers
into real numbers was rejected since much of the arithmetic in the EB is in-
herently non-linear. Also, the use of real numbers would mask floating point
arithmetic errors such as overflow and underflow.

Instead, the translator framework was extended to convert floating point num-
bers to fixed point numbers using a scaling factor provided by the OFP designers.
The fixed point numbers were then converted to integers using bit-shifting to
preserve their magnitude. While this allowed the EB to be verifed using Prover’s
bit-level integer decision procedures, the results were unsound due to the loss of
precision. Even so, if errors were found in the verified model, it was very likely
that they would also be found in the original model. This allowed the verification
to be used as a highly effective debugging step, even though it did not guarantee
correctness.

Determining what properties to verify was also a difficult problem. The require-
ments for the EB are actually specified for the combination of the EB and the
aircraft model, but checking both the EB and the aircraft model exceeded the ca-
pabilities of the Prover model checker. After extensive consultation with the OFP
designers, the verification team decided to verify whether the six actuator com-
mands would always be within a dynamically computed upper and lower limit.
Violation of these properties would indicate a design error in the EB logic.

Even with these adjustments, the EB logic was large enough that it had to be
decomposed into a hierarchy of components several levels deep. The leaf nodes of
this hierarchy were then verified using Prover and their composition was manu-
ally verified using through simple manual proofs. This approach also ensured that
unsoundness could not be introduced through circular reasoning since Simulink
enforces the absence of cyclic dependencies between atomic subsystems.

Ultimately, five errors in the EB design logic were discovered and corrected
through verification of these properties. In addition, several potential errors that
were being masked by defensive design practices were found and corrected.

5 Conclusions and Future Directions

The case studies described in this paper demonstrate that model checking can
be effectively used to find errors early in the development process for many

452 S.P. Miller

classes of models. In particular, even very complex models can be verified with
BDD-based model checkers if they consist primarily of Boolean and enumerated
types. Every industrial system we have studied contains large portions of logic
that either meet this constraint or that can be made to meet it with some
alteration.

For this class of models, the tools are simple enough for developers to use
them routinely and without extensive training. In our experience, a single day of
training and a low level of ongoing mentoring is usually sufficient. This also makes
it practical to perform model checking early in the development process while
a model is still changing. Running a set of properties after each model revision
is a quick and easy way to see if anything has been broken. We encourage our
developers to “check your models early and check them often.” The time spent
model checking is recovered several times over by avoiding rework during unit
and integration testing.

Since model checking examines every possible combination of input and state,
it is also far more effective at finding design errors than testing, which can only
check a small fraction of the possible inputs and states. When combined with the
ease of use discussed above, this makes it very cost effective approch to defect
detection. As demonstrated by the CerTA FCS Phase I case study, it can be
more cost effective than testing.

However, there are still many areas for further research. As illustrated in the
CerTA FCS Phase II study, numerically intensive models still pose a challenge
for model checking. In fact, even a handful of integers can render BDD-based
model checking ineffective. SMT-based model checkers hold great promise for
verification of these systems, but the need to write properties that can be verified
through induction over the state transition relation make them more difficult for
developers to use. More work is needed to make them simpler and more intuitive.

Most industrial models used to generate code make extensive use of floating
point numbers. As discussed in the CerTA FCS Phase II study, simply using real
numbers instead of floating point numbers may not be acceptable, either because
of the inherent non-linearity of the system or because of the masking of floating
point arithmetic errors. Other models, particularly those that deal with spacial
relationships such as navigation, make extensive use of trigonometric and other
transcendental functions. A simple way of model checking such systems would
be very helpful.

It can also be difficult to determine how many properties need to be checked.
Our experience has been that checking even a few properties will find errors,
but that checking more properties will find more errors. Unlike testing for which
many objective coverage criteria have been developed [14], completeness criteria
for properties do not seem to exist. Techniques for developing or measuring the
adequacy of a set of properties would be very helpful, particularly when seeking
certification credit for the use of formal methods.

As discussed in the CerTA FCS Phase II case study, the verification of very
large models may be achieved by using model checking on subsystems and more
traditional reasoning to compose the subsystems. Combining model checking and

Bridging the Gap Between Model-Based Development and Model Checking 453

theorem proving in this way could be a very effective approach, but introducing
even this limited use of theorem proving into an industrial development process
poses many challenges unless it can be made quicker and more intuitive.

Finally, most safety critical systems must be designed using redundancy to
meet their reliability requirements. These systems are typically implemented as
globally asynchronous/locally synchronous systems in which synchronous com-
ponents, each with their own clock, communicate asynchronously with each
other. Verification of such quasi-synchronous systems [15] pose many challenges
to model checking. However, these are also precisely the type of systems that
would benefit the most from a formal approach to verification.

References

1. The Mathworks, Simulink Product Description, http://www.mathworks.com
2. Esterel Technologies, SCADE Suite Product Description,

http://www.estereltechnolgies.com

3. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge
(2001)

4. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, Reading (2003)

5. The NuSMV Model Checker, http://nusmv.irst.itc.it
6. SRI International, Symbolic Analysis Laboratory, http://sal.csl.sri.com
7. Prover Technology, Prover Plug-In Product Description, http://www.prover.com
8. Miller, S., Tribble, A., Whalen, M., Heimdahl, M.: Proving the Shalls. International

Journal on Software Tools for Technology Transfer (STTT) 8(4-5), 303–319 (2006)
9. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The Synchronous Dataflow

Programming Language Lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)
10. Model-Based Testing and Validation with Reactis,

http://www.reactive-systems.com

11. Miller, S., Anderson, E., Wagner, L., Whalen, M., Heimdahl, M.: Formal Verifica-
tion of Flight Critical Software. In: Proceedings of the AIAA Guidance, Naviga-
tion and Control Conference and Exhibit, AIAA-2005-6431. American Institute of
Aeronautics and Astronautics (2005)

12. Whalen, M., Innis, J., Miller, S., Wagner, L.: ADGS-2100 Adaptive Display &
Guidance System Window Manager Analysis. NASA Contractor Report CR-2006-
213952 (2006), http://shemesh.larc.nasa.gov/fm/fm-collins-pubs.html

13. Whalen, M., Cofer, D., Miller, S., Krogh, B., Storm, W.: Integration of Formal
Analysis into a Model-Based Software Development Process. In: Leue, S., Merino,
P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 68–84. Springer, Heidelberg (2008)

14. Chilenski, J., Miller, S.: Applicability of Modified Condition/Decision Coverage to
Software Testing. IEE Software Engineering Journal 9(5), 193–200 (1994)

15. Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincent, A., Caspi, P., Di
Natale, M.: Implementing Synchronous Models on Loosely Time Triggered Archi-
tectures. IEEE Transactions on Computers 57(10), 1300–1314 (2008)

http://www.mathworks.com
http://www.estereltechnolgies.com
http://nusmv.irst.itc.it
http://sal.csl.sri.com
http://www.prover.com
http://www.reactive-systems.com
http://shemesh.larc.nasa.gov/fm/fm-collins-pubs.html

Author Index

Aan de Brugh, Niels H.M. 170
Atig, Mohamed Faouzi 107

Bakewell, Adam 62
Bernardi, Simona 50
Berwanger, Dietmar 58
Biere, Armin 174
Bjørner, Nikolaj 307
Bouajjani, Ahmed 107
Bozga, Marius 337
Brummayer, Robert 174
Bultan, Tevfik 322

Chatterjee, Krishnendu 58
Chen, Feng 246
Chen, Yu-Fang 31
Clarke, Edmund M. 31

De Wulf, Martin 58
Disch, Stefan 383
Doyen, Laurent 58

Emmi, Michael 352

Farzan, Azadeh 31, 155
Fogarty, Seth 16
Fuchs, Alexander 413

Ghica, Dan R. 62
Ĝırlea, Codruţa 337
Goel, Amit 413
Gofman, Mikhail I. 46
Gribaudo, Marco 50
Grundy, Jim 413
Gupta, Aarti 124
Gupta, Ashutosh 262

Hamez, Alexandre 1
Henzinger, Thomas A. 58

Ibarra, Oscar H. 322
Iosif, Radu 337

Jhala, Ranjit 352

Kahlon, Vineet 124
Kavraki, Lydia E. 368
Kohler, Eddie 352
Kordon, Fabrice 1
Krstić, Sava 413
Kugler, Hillel 77
Kuijper, Wouter 92
Kupferschmid, Sebastian 186
Kupferschmid, Stefan 383

Le Goues, Claire 292
Leroux, Jérôme 182
Lime, Didier 54
Luo, Ruiqi 46

Madhusudan, P. 155
Majumdar, Rupak 262, 352
Manolios, Panagiotis 398
Mateescu, Radu 215
Miller, Steven P. 443

Nguyen, Viet Yen 170, 201
Nicolini, Enrica 428
Nori, Aditya V. 178

Orzan, Simona 230

Pacini Naumovich, Elina 50
Piessens, Frank 277
Pigorsch, Florian 383
Plaku, Erion 368
Podelski, Andreas 186
Point, Gérald 182
Poitrenaud, Denis 1

Qadeer, Shaz 107

Rajamani, Sriram K. 178
Ringeissen, Christophe 428
Roşu, Grigore 246
Roux, Olivier H. 54
Rusinowitch, Michaël 428
Ruys, Theo C. 170, 201
Rybalchenko, Andrey 262

456 Author Index

Sankaranarayanan, Sriram 124
Scholl, Christoph 383
Segall, Itai 77
Seidner, Charlotte 54
Solomon, Ayla C. 46
Stoller, Scott D. 46

Tetali, SaiDeep 178
Thakur, Aditya V. 178
Thierry-Mieg, Yann 1
Tillmann, Nikolai 277, 307
Tinelli, Cesare 413
Traonouez, Louis-Marie 54
Tsay, Yih-Kuen 31
Turon, Aaron 398

van de Pol, Jaco 92
Vanoverberghe, Dries 277

Vardi, Moshe Y. 16, 368
Vechev, Martin 139
Voronkov, Andrei 307

Wang, Bow-Yaw 31
Wehrle, Martin 186
Weimer, Westley 292
Wesselink, Wieger 230
Wijs, Anton 215
Willemse, Tim A.C. 230

Yahav, Eran 139
Yang, Ping 46
Yorsh, Greta 139
Yu, Fang 322

Zhang, Yingbin 46

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Model Checking I
	Hierarchical Set Decision Diagrams and Regular Models
	Introduction
	Context
	Set Decision Diagrams
	Operations and Homomorphisms

	Instantiable Transition System
	ITS Definition
	A Composite Type
	An Elementary Type
	An Extended Composite Type

	Hierarchical Modeling Strategies
	Comparative Performance Analysis
	Conclusion
	References

	B\"{u}chi Complementation and Size-Change Termination
	Introduction
	Preliminaries
	Ramsey-Based Universality
	Rank-Based Complementation
	Size-Change Termination

	Size-Change Termination and Ramsey-Based Containment
	Ramsey-Based Containment with Supergraphs
	Strongly Suffix Closed Languages
	From Ramsey-Based Containment to Size-Change Termination

	Empirical Analysis
	Towards an Empirical Comparison
	Experimental Results

	Reverse-Determinism
	Conclusion
	References

	Learning Minimal Separating DFA’s for Compositional Verification
	Introduction
	Preliminaries
	Overview of Learning a Minimal Separating DFA
	The L^{Sep} Algorithm
	Correctness
	Complexity Analysis

	Automated Compositional Verification
	Experiments
	Experiment 1
	Experiment 2

	Discussion and Further Work
	References

	Tools I
	RBAC-PAT: A Policy Analysis Tool for Role Based Access Control
	Introduction
	Preliminaries
	Tool Description
	Hierarchy Converter
	Policy Analysis Engine
	Case Studies

	References

	ITPN-PerfBound: A Performance Bound Tool for Interval Time Petri Nets
	Introduction
	Overall Architecture and Main Functionalities
	Applications and Conclusion
	References

	Romeo: A Parametric Model-Checker for Petri Nets with Stopwatches
	Introduction
	PresentationofRomeo
	New Functionalities
	Conclusion
	References

	Alpaga: A Tool for Solving Parity Games with Imperfect Information
	Introduction
	Games and Algorithms
	Implementation
	References

	Game-Theoretic Approaches
	Compositional Predicate Abstraction from Game Semantics
	Introduction
	The Language
	Syntax and Operational Semantics
	Game Semantics

	Predicate Abstraction
	Formal Properties

	Heuristics
	Internal and External Compositionality
	Flexibility and Efficiency
	Predicate Scope
	Counter-Example Guided Scope Refinement

	FurtherWork
	References

	Compositional Synthesis of Reactive Systems from Live Sequence Chart Specifications
	Introduction
	Preliminaries
	Live Sequence Charts
	Game Structures and Strategies

	The Synthesis Problem
	The Representation
	The LSC Game Structure
	Monotonicity

	The Synthesis Algorithm
	Strategy Composition
	The Composition Algorithm
	Sound Composition
	Augmented Strategies
	Complete Composition
	Towards a Sound and Complete Algorithm

	Results
	Related Work
	References

	Computing Weakest Strategies for Safety Games of Imperfect Information
	Introduction
	Safety Games of Imperfect Information
	A Datastructure for Representing Antitone Functions
	An Algorithm for Computing Weakest Strategies
	Experiments and Conclusion
	References

	Verification of Concurrent Programs
	Context-Bounded Analysis for Concurrent Programs with Dynamic Creation of Threads
	Introduction
	Preliminaries
	Dynamic Networks of Concurrent Systems
	Syntax
	Semantics
	Reachability Problems

	Analysis of Dynamic Networks of Concurrent Finite-State Systems
	Analysis of Dynamic Networks of Concurrent Pushdown Systems
	Simulating Threads with Finite-State Automata
	From DCPS to DCFS

	Conclusion
	References

	Semantic Reduction of Thread Interleavings in Concurrent Programs
	Introduction
	Program Model
	Preliminaries

	Transaction Graphs
	Generation of Sound Invariants
	Refinement of Transaction Graphs
	Applications
	Experimental Results
	Related Work and Conclusions
	References

	Inferring Synchronization under Limited Observability
	Introduction
	Main Contributions
	A Simple Motivating Example

	Preliminaries
	Maximally-Permissive Programs
	Removing Transitions under Limited Observability
	Implementability
	Maximally Permissive Programs
	EXHAUSTIVE Algorithm
	GREEDY Algorithm
	Challenges in Inferring Synchronization under Abstraction

	Prototype Implementation
	Reducing Synchronization Cost

	Related Work
	References

	The Complexity of Predicting Atomicity Violations
	Introduction
	Modeling Runs of Concurrent Programs
	Model Checking Atomicity for Concurrent Programs without Synchronizations
	Straight-Line and Regular Programs
	Recursive Programs

	Programs with Lock Synchronization
	A Lower Bound on Checking Atomicity of Lock Synchronized Regular Programs

	Conclusion and Future Work
	References

	Tools II
	{\sc MoonWalker}: Verification of .NET Programs
	Introduction
	MoonWalker1.0
	Conclusions
	References

	Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays
	Introduction
	Architecture
	Selected Features
	Conclusion
	References

	The {\sc Yogi} Project: Software Property Checking via Static Analysis and Testing
	Introduction
	Architecture
	Empirical Results
	Current Status
	References

	TaPAS: The Talence Presburger Arithmetic Suite
	The Mixed Additive Theory
	TAPAS at a Glance
	SATAF: Shared-Automata and the Synthesis of Formulae
	Experimenting the Automata to Formulae Algorithm
	Conclusion and Future Work
	References

	Model Checking II
	Transition-Based Directed Model Checking
	Introduction
	Related Work
	Preliminaries
	Notation
	DirectedModel Checking

	Transition-Based Directed Model Checking
	Useless and Relatively Useless Transitions
	DirectedModel Checking with Relatively Useless Transitions
	Discussion

	Evaluation
	The Distance Estimation Functions
	The Benchmark Set
	Experimental Results

	Conclusion
	References

	Memoised Garbage Collection for Software Model Checking
	Introduction
	Background
	Garbage Collection for Symmetry Reduction
	Incremental Shortest Path

	Memoised Garbage Collection
	Implementation
	Time Complexity

	Experimental Evaluation
	Bandera’s Models
	Java Grande Forum Benchmarks
	Setup
	Results

	Future Work
	Conclusions
	References

	Hierarchical Adaptive State Space Caching Based on Level Sampling
	Introduction
	Preliminaries
	BFS with State Space Caching
	Partial Storage of Explored States and Termination
	Maximising the Efficiency of Partial Duplicate Detection

	Implementation, Caching Setups, and Experiments
	BFS Experiments
	DFS with Caches

	Related Work
	Conclusion and Future Work
	References

	Parametric Analysis
	Static Analysis Techniques for Parameterised Boolean Equation Systems
	Introduction
	Preliminaries
	Data
	Parameterised Boolean Equation Systems

	Predicate Formula Normal Form
	Redundant and Constant Parameter Detection and Elimination
	Parameter Elimination
	Detection of Constants

	Experiments
	Summary
	References

	Parametric Trace Slicing and Monitoring
	Introduction and Motivation
	Parametric Trace Slicing for Monitoring
	Events, Traces and Properties
	Algorithm for Online Parametric Trace Slicing

	Online Parametric Trace Monitoring
	Monitors and Parametric Monitors
	Algorithm for Online Parametric Trace Monitoring
	Optimized Online Monitoring Algorithm

	Implementation and Evaluation
	Related Work
	Concluding Remarks and Future Work
	References

	Generative Approaches
	From Tests to Proofs
	Introduction
	Example
	Preliminaries
	Constraint Simplification
	Experiences
	References

	Test Input Generation for Programs with Pointers
	Introduction
	Background: Dynamic Symbolic Execution
	Motivating Example
	Types
	Memory Representations
	Enforcing Disjointness
	Optimizations
	Two-Phase Solving
	Alignment

	Evaluation
	Related Work
	Conclusion
	References

	Specification Mining with Few False Positives
	Introduction
	Temporal Safety Specifications
	Specification Mining
	Our Approach: Code Trustworthiness
	Trustworthiness Metrics
	Mining Algorithm Details

	Experiments
	Trustworthiness Metrics: Learning Cutoffs and Coefficients
	Trust Matters for Trace Quality
	Trustworthy Specification Mining
	Threats to Validity

	Related Work
	Conclusion
	References

	Program Analysis
	Path Feasibility Analysis for String-Manipulating Programs
	Introduction
	Path Feasibility and String Constraints
	The Core String Language
	Library Language Decidability and Undecidability Results
	Solving Constraint Satisfaction Problems in the Library Language
	Implementation in Pex and Integration with the SMT Solver Z3
	Experiments
	Conclusion
	References

	Symbolic String Verification: Combining String Analysis and Size Analysis
	Introduction
	Length Automata Construction
	Composite Verification
	Verification Framework
	Implementation

	Experiments
	Conclusion
	References

	Iterating Octagons
	Introduction
	Related Work

	Difference Bounds
	Difference Bound Constraints
	Difference Bound Relations

	Octagonal Constraints
	Octagonal Relations
	Implementation and Experience
	Conclusions
	References

	Verifying Reference Counting Implementations
	Introduction
	Verification Technique
	Case Studies
	Related Work
	References

	Hybrid Systems
	Falsification of LTL Safety Properties in Hybrid Systems
	Introduction
	Preliminaries
	Incorporating LTL into Motion-Planning Approaches
	{\tt TemporalHyDICE}
	Experiments and Results
	Discussion
	References

	Computing Optimized Representations for Non-convex Polyhedra by Detection and Removal of Redundant Linear Constraints
	Introduction
	Preliminaries
	Representation of Non-convex Polyhedra
	Quantifier Elimination

	Redundant Linear Constraints
	Redundancy Detection and Removal for Convex Polyhedra
	Detection of Redundant Constraints for Non-convex Polyhedra
	Removal of Redundant Linear Constraints

	Experimental Results
	Conclusions and Future Work
	References

	Decision Procedures and Theorem Proving
	All-Termination(T)
	Introduction
	All-Termination(T)
	The Size-Change Framework
	All-Termination(SCT)
	Related Work
	Conclusions and Future Work
	References

	Ground Interpolation for the Theory of Equality
	Introduction
	Ground Theory Interpolation
	Interpolation as a Cooperative Game
	EUF Interpolation Examples
	Interpolants From Congruence Closure
	Congruence Closure
	Congruence Graphs
	Colorable Congruence Graphs
	Colored Congruence Graphs
	The Interpolation Algorithm
	Correctness

	Comparison with McMillan’s Algorithm
	Conclusion
	References

	Satisfiability Procedures for Combination of Theories Sharing Integer Offsets
	Introduction
	Preliminaries
	Non-disjoint Combination of Theories
	Superposition Calculus for Integer Offsets
	Completeness
	Termination

	Examples of Integer Offsets Extensions
	Lists with Length
	Lists over Integer Elements
	Records with Increment

	Combination of Theories Sharing Integer Offsets
	T_I-Compatibility
	Derivation of $TI-Basis

	Conclusion
	References

	Invited Contribution
	Bridging the Gap Between Model-Based Development and Model Checking
	Introduction
	Background
	Model-Based Development
	Model Checking

	The Translator Framework
	Case Studies
	FCS 5000 Mode Logic
	ADGS-2100 Window Manager
	CerTA FCS Phase I
	CerTA FCS Phase II

	Conclusions and Future Directions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

