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Lester (2005) addresses a crucial weakness of the current scientific culture in math-
ematics education research (MER)—the lack of attention to theory and philosophy.
He indicates several major problems that contribute to this weakness, one of which
is the widespread misunderstanding among researchers of what it means to adopt
a theoretical or conceptual stance toward one’s work. He offers a model to think
about educational research in MER. The model is an adaptation of Stokes’ (1997)
“dynamic” model for thinking about scientific and technological research, which
blends two motives: “the quest for fundamental understanding and considerations
of use” (p. 465). According to this model, the essential goals of MER are to under-
stand fundamental problems that concern the learning and teaching of mathematics
and to utilize this understanding to investigate existing products and develop new
ones that would potentially advance the quality of mathematics education.

Another weakness, not addressed by Lester, is that attention to mathematical
content is peripheral in many current frameworks and studies in mathematics edu-
cation. Perhaps the most significant contribution of mathematics education research
in the last three decades is the progress our field has made in understanding the spe-
cial nature of the learning—and therefore the teaching—of mathematical concepts
and ideas (Thompson 1998). The body of literature on whole number concepts and
operations, rational numbers and proportional reasoning, algebra, problem solving,
proof, geometric and spatial thinking produced since the 70s and into the 90s has
given mathematics education research the identity as a research domain, a domain
that is distinct from other related domains, such as psychology, sociology, ethnog-
raphy, etc. In contrast, many current studies, rigorous and important in their own
right as they might be, are adscititious to mathematics and the special nature of
the learning and teaching of mathematics. Often, upon reading a report on such a
study, one is left with the impression that the report would remain intact if each
mention of “mathematics” in it is replaced by a corresponding mention of a differ-
ent academic subject such as history, biology, or physics. There is a risk that, if this
trend continues, MER will likely lose its identity. As Schoenfeld (2000) points out,
the ultimate purpose of MER is to understand the nature of mathematical thinking,
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teaching, and learning and to use such understanding to improve mathematics in-
struction at all grade levels. A key term in Schoenfeld’s statement is mathematics:
It is the mathematics, its unique constructs, its history, and its epistemology that
makes mathematics education a discipline in its own right.

DNR-based instruction in mathematics is a conceptual framework that is con-
sistent with Lester’s model, in that (a) it is a research-based framework, (b) it at-
tempts to understand fundamental problems in mathematics learning and teaching,
and (c) it utilizes this understanding to develop new potentially effective curricular
products. This paper discusses the origins of DNR, outlines its structure and goals,
and demonstrates its application in mathematics instruction. The paper is organized
around five sections. The first section outlines the research studies from which DNR
was conceived. The second section describes an actual mathematical lesson guided
by the DNR framework. The goal of this section is to give the reader a background
image of this framework and of its possible application in mathematics instruction.
The analysis of the lesson in terms of the DNR framework will be presented in the
fourth section, after discussing the framework in the third section. DNR has been
discussed at length elsewhere (Harel 2001, 2008a, 2008b, 2008c), and so the third
section only presents essential elements of DNR, those that are needed to demon-
strate its consistency with the above three characteristics.

Research-Based Framework

My research interest has revolved around two areas, the Multiplicative Conceptual
Field (MCF) and Advanced Mathematical Thinking (AMT). Initially, my work in
AMT focused on the learning and teaching of linear algebra. The goals of this work
include: understanding students’ difficulties with key linear algebra concepts; iden-
tifying essential characteristics of existing teaching approaches in linear algebra
and examining their relative efficacy; and offering alternative experimentally-based
approaches. Gradually, my interest in these two areas expanded to students’ con-
ceptions of justification and proof in mathematics. This was likely the result of at-
tempts to build consistent models for students’ justifications for their actions and
responses to mathematical tasks. With funding from the National Science Founda-
tion, I conducted a research project, called PUPA, whose aim was to investigate
students’ proof understanding, production, and appreciation. One of the main prod-
ucts of the PUPA project was a taxonomy of students’ conceptions of proof, called
proof schemes, which refer to how an individual (or community) assures oneself or
convinces others about the truth of a mathematical assertion. This project also in-
cluded the design and implementation of instructional treatments aimed at helping
students gradually modify their proof schemes toward those held and practiced in
the mathematics community. This work was guided by systematic observations of
students’ mathematical behaviors during a series of teaching experiments, by analy-
ses of the development of proof in the history of mathematics, and by other related
research findings—my own and others’—reported in the literature (e.g., Balacheff
(1988), Chazan (1993), Hanna and Jahnke (1996), Fischbein and Kedem (1982),
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and Boero et al. (1996)). Additional critical inputs in the formation of these instruc-
tional treatments were findings from my earlier studies in AMT and MCF; they
included: the learning and teaching of linear algebra at the high school level and at
the college level (e.g., Harel 1985, 1989); the concept of proof held by elementary
school teachers (e.g., Martin and Harel 1989); the development of MCF concepts
with middle school students (e.g., Harel et al. 1992); and the mathematical knowl-
edge of prospective and inservice elementary school teachers, with a particular focus
on their knowledge of MCF concepts (e.g., Harel and Behr 1995; Post et al. 1991).
The results of these instructional treatments were largely successful in that students
gradually developed mathematically mature ways of thinking, manifested in their
ability to formulate conjectures and use logical deduction to reach conclusions. To-
gether with this conceptual change, the students developed solid understanding of
the subject matter taught (see, for example, Harel and Sowder 1998; Harel 2001;
Sowder and Harel 2003).

This success was a source of encouragement to return to my earlier effort to
identify and formulate the most basic foundations, the guiding principles, of the
instructional treatments I have employed in various teaching experiments over the
years—an effort that began in the mid eighties (see Harel 1985, 1989, 1990) and
continued until late nineties with the conclusion of the PUPA study. The result of
this effort was a conceptual framework I labeled DNR-based instruction (or DNR,
for short) because of the centrality of three instructional principles in the framework:
Duality, Necessity, and Repeated Reasoning. The framework implemented in the
studies of the eighties was gradually refined in subsequent studies, a process that
stabilized at the end of the PUPA study but is continuing to this day.

Together with the PUPA study, I began in 1997 a series of teaching experiments
to study the effectiveness of DNR-based instruction in professional development
courses for inservice mathematics teachers. The main goal of these teaching ex-
periments was to advance teachers’ knowledge base. Observations from these ex-
periments suggest that here too the instructional treatments employed have brought
about a significant change in teachers’ knowledge base, particularly in their knowl-
edge of mathematics, in their use of justification and proof, and in their understand-
ing of how students learn.

In 2003 I embarked on an NSF-funded project, which aimed at systematically
examining the effect of DNR-based instruction on the teaching practices of alge-
bra teachers and on the achievement of their students. More specifically, the DNR
project addressed the question: Will a DNR-based instruction be effective in de-
veloping the knowledge base of algebra teachers? By and large the answer to this
question was found to be affirmative. Teachers made significant progress in their
understanding of mathematics, how students learn mathematics, and how to teach
mathematics according to how students learn it. Three observations from this study
are worth highlighting: First, the development of teachers’ knowledge concerning
how students learn mathematics and how to teach it accordingly seems to be condi-
tioned by the development of and reflection on their own mathematical knowledge.
Second, institutional constraints (e.g., demand to cover a large number of topics
and excessive attention to standardized testing) are major inhibitors for a success-
ful implementation of DNR-based instruction. Third, even intensive professional
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development spanning a two-year period is not sufficient to prepare teachers to be
autonomous in altering their current curricula to be consistent with DNR. We found
that it is necessary to provide teachers with supplementary DNR-based curricular
materials in order for them to be able to implement DNR in their classes more suc-
cessfully.

In all, the formation of DNR-based instruction in mathematics has been impacted
by various experiences, formal and informal. The formal experiences comprise a
series of teaching experiments in elementary, secondary, and undergraduate mathe-
matics courses, as well as teaching experiments in professional development courses
for teachers in each of these levels.

One of the most valuable lessons from all these experiences is the realization that
indeed, as Piaget claimed, learning is adaptation—it is a process alternating between
assimilation and accommodation directed toward a (temporary) equilibrium, a bal-
ance between the structure of the mind and the environment. This view of learning
is central in the conceptual framework presented here, and is present in all of my
reports on these teaching experiments and teaching experiences.

DNR-Based Lesson

This section outlines an actual mathematical lesson guided by the DNR framework.
The goal is to give the reader a concrete background image of this framework and of
its application in mathematics instruction. The lesson was conducted several times,
both with in-service secondary teachers in professional development institutes and
with prospective secondary teachers in an elective class in their major. In the dis-
cussion of this lesson, all learners are referred to as students. The lesson will be de-
scribed as a sequence of four segments of students’ responses and teacher’s actions.
Each segment is further divided into fragments to allow for reference in the analysis
that follows. For ease of reference, the fragments are numbered independently of the
segments in which they occur. The first segment, Segment 0, describes the problem
around which the lesson was organized. For this section to have its intended effect,
the reader is strongly encouraged to solve this problem before proceeding to read
the subsequent segments.

Segment 0: The Problem

1. The students were asked to work in small groups or individually (their choice)
on the following problem:

A farmer owns a rectangular piece of land. The land is divided into four rec-
tangular pieces, known as Region A, Region B, Region C, and Region D, as in
Fig. 1.

One day the farmer’s daughter, Nancy, asked him, what is the area of our land?
The father replied: I will only tell you that the area of Region B is 200 m2 larger
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Fig. 1 The rectangular land

than the area of Region A; the area of Region C is 400 m2 larger than the area of
Region B; and the area of Region D is 800 m2 larger than area of Region C.

What answer to her question will Nancy derive from her father’s statement?

Segment I: Students’ Initial Conclusion

2. All students translated the farmer’s statement into a system of equations similar
to the following (where A, B , C, and D represent the areas of Regions A, B,
C, and D, respectively). The non-italicized letters A, B, C, and D are the names
of the four regions, and the italicized letters A, B , C, and D represent their
corresponding areas. {

B = A + 200
C = B + 400
D = C + 800

3. Some constructed the following fourth equation by adding the previous three
equations and then tried to solve the system by substitution or elimination of
variables.

B + C + D = (A + 200) + (B + 400) + (C + 800)

4. Their declared intention was to have a fourth equation to correspond to the four
unknowns, A, B , C, and D. They manipulated the four equations in hope to
determine a unique value of each unknown.

5. The teacher asked the different groups to present their solutions. After the first
presentation, the class’ conclusion was rather uniform: Namely, Nancy cannot
determine the areas of the land on the basis of her father’s statement because
“there isn’t enough information.” A further discussion, led by the teacher, of the
implication of this conclusion led to the following consensus:

Total Area = 4A + 2200. Hence, there are infinitely many values for the area
of the land, each is dependent on the choice of a value for A.

Segment II: Necessitating an Examination of the Initial
Conclusion

6. Building on this shared understanding, the teacher presented the students with a
new task:
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Offer two values for the total area. For each value, construct a figure that illus-
trates your solution.

7. At first, the students just offered two values for the total area, which they obtained
by substituting two random values for A in the function, Total Area = 4A+2200.
After some classroom discussion, the students realized that this is not enough:
one must show that the areas of the four regions entailed from a choice of A must
be so that the given geometric configuration of the regions, A, B, C, and D, is
preserved.

8. The students seemed confident that this can be achieved easily. Their plan was:
Select any (positive) value for the length of A and determine the width of this
region from its area. Now, repeat the same process for B, C, and D.

Segment III: The Examination and Its Outcomes

9. The teacher set to pursue this approach with the entire class: He asked for a
value for A and one of the dimensions of Region A. The following is an outline
of the classroom exchange that took place. One of the students offered to take
A = 100 and the length of A to be 5 (units for these values were included in the
class discussion but for simplicity they are omitted in this presentation). Ac-
cordingly, the areas of the other three regions were determined from the above
system of equations to be: B = 300, C = 700, D = 1500. Following this, the
dimensions of each region was accordingly determined. The teacher recorded
the results on the blackboard as shown in Fig. 2: [The parenthetical letters in
this and in the figures that follow represent the order in which the dimensions
of the regions were determined by the students. For example, in the figure, the
students began with A = 100 and, accordingly, determined from the set of the
three equations, B = 300, C = 700, and D = 1500. Following this, they (a) of-
fered the length of A to be 5, which they used to determine (b) the width of A
to be 20. This led (c) the length of B to be 15 and, in turn (d) the width of C to
be 140.]

The students immediately realized that 5 cannot be the length of Region A
since 15 × 140 �= 1500, so they set to try a different value. They chose 10, but
it, too, was found to be invalid since 30 × 70 �= 1500 (Fig. 3).

10. This trial and error process of varying values for the length of A and determin-
ing the dimensions of the four regions from the corresponding areas continued
for some time. The variation of values, however, remained within whole num-
bers.

Fig. 2 Trial with integer
dimensions
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Fig. 3 Another trial with
integer dimensions

Fig. 4 Trial with rational
dimensions

Fig. 5 Trial with irrational
dimensions

Fig. 6 Dimensions
represented by algebraic
expressions involving a
variable

11. The teacher indicated this fact to the students, which prompted them to offer
fractional values and later irrational values. Figures 4 and 5 depict these ex-
changes (with the value 2/3 and

√
2, respectively).

12. After these repeated attempts, some students expressed doubt as to whether
dimensions for the four regions that preserve the given configuration can be
found. The teacher responded by recapitulating the solution process carried out
thus far, and concluded with the following question, which he wrote on the
board:

Can a figure representing the problem conditions be constructed for A =
100?

The students were asked to work on this question in their small working
groups.

13. A few minutes later, one of the groups suggested searching for the length of A
by substituting a variable t for it. The teacher followed up on this suggestion.
An outline of the exchange that ensued follows (Fig. 6).
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We are looking for positive t for which:

(3t) · 700

t
= 1500

Clearly, no such t exists.
Hence, the figure is not constructible for A = 100.

14. The students responded to this result by saying something to the effect: It didn’t
work for A = 100, so let’s try a different value.

15. The last response (“let’s try a different value”) was against the teacher’s expec-
tation, because, on the one hand, the students’ earlier conclusion was that for
any (positive) value of A, the total area is determinable (by the function: To-
tal Area = 4A + 2200) and, on the other hand, their last conclusion is that for
the value A = 100 the figure is not constructible, and, hence, the total area is
not determinable.1 In addition, the students did seem to notice that the area of
Region D is constant in all the cases they examined.

16. Instead of raising these issues with the students, the teacher decided to let the
class pursue their approach in their small working groups after, again, recapitu-
lating in general terms what has been achieved this far by the class, concluding
with the following statement, which he wrote on the board:

The figure cannot be constructed for A = 100. We will be looking for a value
of A different from 100 for which the figure is constructible.

17. The working groups varied in their approaches. Some set out by taking A as a
variable to be determined; others chose a particular value for A different from
100 and, as before, substituted different values for its dimension and, accord-
ingly, computed the dimensions of the four regions. However, after some time
all the groups were pursuing the first approach. At this point, the teacher re-
sumed a public discussion. An outline of the main elements of the exchange
that issued follows (Fig. 7).

We are looking for positive number A and t for which:

(A + 600)

t
· (A + 200)t

A
= A + 1400

Fig. 7 Dimensions
represented by algebraic
expressions involving a
parameter

1This behavior may suggest a weak understanding of the concept of function as an input-output
process. However, since this issue was not pursued in the lesson, it will not be discussed in the
lesson’s analysis.
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Solving:

(A + 600)

� t · (A + 200) � t
A

= A + 1400

A2 + 800A + 120000 = A2 + 1400A

A2 + 800A + 120000 = A2 + 1400A

120000 = 600A

A = 200

Conclusion: The figure is constructible only for A = 200.

Segment IV: Lesson(s) Learned

18. The teacher turned to the class with the question:

Why was the system of equations (in Segment 1) insufficient to solve the prob-
lem?

It took some discussion for the students to understand this question. The dis-
cussion revolved around the meaning of equation, system of equations, solution
set, and solution process. An outcome of this discussion relevant to the question
at hand was that the original system of equations yielded an infinite number of
solutions, but only one solution exists (A = 200), and, hence, there must have
been a condition in the problem statement not represented by the system. The
question then was: What is that condition?

19. After some further class discussion, one of the working groups suggested that
the constraint of the geometric configuration of the land is not represented by
this system of equations. That is, the system only represents the relationship
between the areas of the four regions, not the constraint that each two neighbor-
ing regions share a common side. The regions could be scattered as in Fig. 8, in
which case there are infinitely many values for the area of the land.

20. The lesson ended with the following homework problems:
1. Your initial system needed an additional equation to represent the geomet-

ric condition about the equal dimensions of adjacent regions. Find such an
equation and show that your new system has a unique solution.

Fig. 8 Scattered regions
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2. We found that the area of the land is 200 m2. What is the perimeter of the
rectangular land?

3. Is the perimeter of the land unique? If not, is there a smallest value or a
largest value for the perimeter? If there is a smallest value or a largest value,
is it unique?

4. When you become a teacher, will you offer this problem to your classes?
If you were to teach this problem, what would you hope for the students to
learn from it? Be specific.

5. Will you offer this problem in classes that have not been exposed to systems
of equations?

In the section ‘Analysis of the Lesson’ we return to analyze this lesson in terms of
the DNR framework. The questions addressed in this analysis will include: What are
the instructional objectives of the lesson? What are the instructional principles that
guided the teacher’s moves? What is the nature of the mathematics that the students
seem to have learned as a result of these moves?

DNR Structure2

Lester (2005) defines a research framework as

. . . a basic structure of the ideas (i.e., abstractions and relationships) that serve as the basis
for a phenomenon that is to be investigated. These abstractions and the (assumed) interrela-
tionships among them represent the relevant features of the phenomenon as determined by
the research perspective that has been adopted. The abstractions and interrelationships are
then used as the basis and justification for all aspects of the research. (p. 458)

Following Eisenhart (1991), Lester also points out that

. . . conceptual frameworks are built from an array of current and possibly far-ranging
sources. The framework used may be based on different theories and various aspects of
practitioner knowledge, depending on what the researcher can argue will be relevant and
important to address about a research problem. (p. 460)

In the macro level, the phenomena DNR aims at are two fundamental questions:
(a) what is the mathematics that should be taught in school and (b) how should
that mathematics be taught? The basic structure of the DNR ideas that serve as the
basis the formulation and investigation of these questions and their instantiations is
a system consisting of three categories of constructs:

1. Premises—explicit assumptions underlying the DNR concepts and claims.
2. Concepts—referred to as DNR determinants.
3. Instructional principles—claims about the potential effect of teaching actions on

student learning.

In the rest of this section, these three constructs are discussed in this order.

2This section is an abridged and modified version of several sections in the papers Harel (2008a,
2008b, 2008c).
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Premises

DNR is based on a set of eight premises, seven of which are taken from or based on
known theories. The premises are loosely organized in four categories:

1. Mathematics

• Mathematics: Knowledge of mathematics consists of all ways of understand-
ing and ways of thinking that have been institutionalized throughout history
(Harel 2008a).

2. Learning

• Epistemophilia: Humans—all humans—possess the capacity to develop a de-
sire to be puzzled and to learn to carry out mental acts to solve the puzzles
they create. Individual differences in this capacity, though present, do not re-
flect innate capacities that cannot be modified through adequate experience.
(Aristotle, see Lawson-Tancred 1998)

• Knowing: Knowing is a developmental process that proceeds through a contin-
ual tension between assimilation and accommodation, directed toward a (tem-
porary) equilibrium (Piaget 1985).

• Knowing-Knowledge Linkage: Any piece of knowledge humans know is an
outcome of their resolution of a problematic situation (Piaget 1985; Brousseau
1997).

• Context Dependency: Learning is context dependent.

3. Teaching

• Teaching: Learning mathematics is not spontaneous. There will always be a
difference between what one can do under expert guidance or in collaboration
with more capable peers and what he or she can do without guidance (Vygot-
sky’s 1978).

4. Ontology

• Subjectivity: Any observations humans claim to have made is due to what their
mental structure attributes to their environment (Piaget’s constructivism the-
ory, see, for example, von Glasersfeld 1983; information processing theories,
see, for example, Chiesi et al. 1979; Davis 1984).

• Interdependency: Humans’ actions are induced and governed by their views
of the world, and, conversely, their views of the world are formed by their
actions.

These premises—with the exception of the Mathematics Premise, which is dis-
cussed in length in Harel (2008a)—are taken from or based on known theories,
as the corresponding references for each premise indicate. As a conceptual frame-
work for the learning and teaching of mathematics, DNR needs lenses through
which to see the realities of the different actors involved in these human activities—
mathematicians, students, teachers, school administrators. In addition, DNR needs a
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stance on the nature of the targeted knowledge to be taught—mathematics—and of
the learning and teaching of this knowledge.

Starting from the end of the premises list, the two Ontology Premises—
Subjectivity and Interdependency—orient our interpretations of the actions and
views of students and teachers. The Epistemophilia Premise is about humans’
propensity to know, as is suggested by the term “epistemophilia:” love of epis-
teme. Not only do humans desire to solve puzzles in order to construct and impact
their physical and intellectual environment, but also they seek to be puzzled.3 The
Epistemophilia Premise also claims that all humans are capable of learning if they
are given the opportunity to be puzzled, create puzzles, and solve puzzles. While
it assumes that the propensity to learn is innate, it rejects the view that individ-
ual differences reflect innate basic capacities that cannot be modified by adequate
experience.

The Knowing Premise is about the mechanism of knowing: that the means—the
only means—of knowing is a process of assimilation and accommodation. A failure
to assimilate results in a disequilibrium, which, in turn, leads the mental system to
seek equilibrium, that is, to reach a balance between the structure of the mind and
the environment.

The Context Dependency Premise is about contextualization of learning. The
premise does not claim that learning is entirely dependent on context—that knowl-
edge acquired in one context is not transferrable to another context, as some scholars
(Lave 1988) seem to suggest. Instead, the Context Dependency Premise holds that
ways of thinking belonging to a particular domain are best learned in the context
and content of that domain. Context dependency exists even within sub-disciplines
of mathematics, in that each mathematical content area is characterized by a unique
set of ways of thinking (and ways of understanding).

The Teaching Premise asserts that expert guidance is indispensible in facilitat-
ing learning of mathematical knowledge. This premise is particularly needed in
a framework oriented within a constructivist perspective, like DNR, because one
might minimize the role of expert guidance in learning by (incorrectly) inferring
from such a perspective that individuals are responsible for their own learning or
that learning can proceed naturally and without much intervention (see, for exam-
ple, Lerman 2000). The Teaching Premise rejects this claim, and, after Vygotsky,
insists that expert guidance in acquiring scientific knowledge—mathematics, in our
case—is indispensable to facilitate learning.

Finally, the Mathematics Premise comprises its own category; it concerns the
nature of the mathematics knowledge—the targeted domain of knowledge to be
taught—by stipulating that ways of understanding and ways of thinking are the con-
stituent elements of this discipline, and therefore instructional objectives must be
formulated in terms of both these elements, not only in terms of the former, as cur-
rently is largely the case, as we will now explain.

3The term “puzzle” should be interpreted broadly: it refers to problems intrinsic to an individual
or community, not only to recreational problems, as the term is commonly used. Such problems
are not restricted to a particular category of knowledge, though here we are solely interested in the
domain of mathematics.
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Concepts

This section focuses mainly on two central concepts of DNR: way of understanding
and way of thinking. As was explained in Harel (2008a), these are fundamental
concepts in DNR, in that they define the mathematics that should be taught in school.

Judging from current textbooks and years of classroom observations, teachers at
all grade levels, including college instructors, tend to view mathematics in terms of
“subject matter,” such as definitions, theorems, proofs, problems and their solutions,
and so on, not in terms of the “conceptual tools” that are necessary to construct
such mathematical objects. Undoubtedly, knowledge of and focus on subject matter
is indispensable for quality teaching; however, it is not sufficient. Teachers should
also concentrate on conceptual tools such as problem-solving approaches, believes
about mathematics, and proof schemes.

What exactly are these two categories of knowledge? To define them, it would
be helpful to first explain their origin in my earlier work on proof. In Harel and
Sowder (1998, 2007), proving is defined as the mental act a person (or commu-
nity) employs to remove doubts about the truth of an assertion. The proving act is
instantiated by one of two acts, ascertaining and persuading, or by a combination
thereof. Ascertaining is the act an individual employs to remove her or his own
doubts about the truth of an assertion, whereas persuading is the act an individual
employs to remove others’ doubts about the truth of an assertion. A proof is the
particular argument one produces to ascertain for oneself or to convince others that
an assertion is true, whereas a proof scheme is a collective cognitive characteris-
tic of the proofs one produces. For example, when asked why 2 is an upper bound

for the sequence,
√

2,
√

2 + √
2,

√
2 +

√
2 + √

2, . . . , some undergraduate students

produced the proof: “
√

2 = 1.41,
√

2 + √
2 = 1.84,

√
2 +

√
2 + √

2 = 1.96 [five
more items of the sequence were evaluated] we see that [the results] are always less
than 2, . . . Hence, all items of the sequence are less than 2.” Other students produced
the proof: “Clearly,

√
2 is less than 2. The second item is less than 2 because it is

the square root of a number that is smaller than 4, this number being the sum of
2 and a number that is smaller than 2. The same relationship exists between any
two consecutive terms in the sequence.” These two proofs are products resulting
from carrying out the proving act, either in the form of ascertainment or persua-
sion. They may suggest certain persistent characteristics of these students’ act of
proving. For example, on the basis of additional observations of proofs produced by
these two groups of students, we may characterize the proving act of the first group
as empirical and that of the second group as deductive, if the respective proofs they
produce are similar in nature to the ones presented here. Thus, we have here a triad
of concepts: proving act, proof, and proof scheme. A proof is a cognitive product
of the proving act, and proof scheme is a cognitive characteristic of that act. Such a
characteristic is a common property among one’s proofs. Based on students’ work
and historical development, Harel and Sowder (1998) offered a taxonomy of proof
schemes consisting of three classes: External Conviction, Empirical, and Deductive.
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As I engaged deeply in the investigation of students’ conceptions of proof, I came
to realize that while the triad, proving, proof, and proof scheme, is useful, even crit-
ical, to understanding the processes of learning and teaching mathematical proof, it
is insufficient to document and communicate clinical and classroom observations.
This is so because proving itself is never carried out in isolation from other mental
acts, such as “interpreting,” “connecting,” “modeling,” “generalizing,” “symboliz-
ing,” etc. As with the act of proving, we often wish to talk about the products and
characteristics of such acts. Thus, the following definitions:

A person’s statements and actions may signify cognitive products of a mental act carried
out by the person. Such a product is the person’s way of understanding associated with
that mental act. Repeated observations of one’s ways of understanding may reveal that they
share a common cognitive characteristic. Such a characteristic is referred to as a way of
thinking associated with that mental act.

It is clear from these definitions that a proof is a way of understanding, whereas
a proof scheme is a way of thinking. Likewise, in relation to the mental act of in-
terpreting, for example, a particular interpretation one gives to a term, a statement,
or a string of symbols is a way of understanding, whereas a cognitive characteris-
tic of one’s interpretations is a way of thinking associated with the interpreting act.
For example, one’s ways of understanding the string y = −3x + 5 may be: (a) an
equation—a constraint on the quantities, x and y; (b) a number-valued function—for
an input x, there corresponds the output y = −3x + 5; (c) a truth-valued function—
for an input (x, y), there corresponds the output “True” or “False”; and (d) “a thing
where what you do on the left you do on the right.” The first three ways of un-
derstanding suggest a mature way of thinking: that “symbols in mathematics rep-
resent quantities and quantitative relationships.” On the other hand, the fourth way
of understanding, which was provided by a college freshman, is likely to suggest a
non-referential symbolic way of thinking—a way of thinking where mathematical
symbols are free of coherent quantitative or relational meaning. Other examples of
ways of understanding and ways of thinking will emerge as the paper unfolds.

Mathematicians, the practitioners of the discipline of mathematics, practice
mathematics by carrying out mental acts with particular characteristics—ways of
thinking—to produce particular constructs—ways of understanding. Accordingly,
in DNR, mathematics is defined as a discipline consisting of these two sets of knowl-
edge. Specifically:

Mathematics is a union of two sets: The first set is a collection, or structure, of structures
consisting of particular axioms, definitions, theorems, proofs, problems, and solutions. This
subset consists of all the institutionalized4 ways of understanding in mathematics through-
out history. The second set consists of all the ways of thinking that are characteristics of the
mental acts whose products comprise the first set.

The main pedagogical implication of this definition is that mathematics curricula
at all grade levels, including curricula for teachers, should be thought of in terms

4Institutionalized ways of understanding are those the mathematics community at large accepts as
correct and useful in solving mathematical and scientific problems. A subject matter of particular
field may be viewed as a structure of institutionalized ways of understanding.
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of the constituent elements of mathematics—ways of understanding and ways of
thinking—not only in terms of the former, as currently is largely the case.

There is also an important implication for research in mathematics education
concerning ways of thinking. Humans’ reasoning involves numerous mental acts
such as interpreting, conjecturing, inferring, proving, explaining, structuring, gener-
alizing, applying, predicting, classifying, searching, and problem solving. Humans
perform such mental acts, and they perform them in every domain of life, not just
in science and mathematics. Although all the aforementioned examples of mental
acts are important in the learning and creation of mathematics, they are not unique
to mathematics—people interpret, conjecture, justify, abstract, solve problems, etc.
in every area of their everyday and professional life. Professionals from different
disciplines are likely to differ in the extent they carry out certain mental acts; for
example, a painter is likely to abstract more often than a carpenter, a chemist to
model more often than a pure mathematician, and the latter to conjecture and justify
more often than a pianist. But a more interesting and critical difference among these
professionals is the ways of thinking associated with mental acts they perform. A bi-
ologist, chemist, physicist, and mathematician all carry out problem-solving acts in
every step in their professional activities and attempt to justify any assertions they
make. The four, however, are likely to differ in the problem-solving approaches and
in the nature of their justifications. Hence, an important goal of research in mathe-
matics education is to identify these ways of thinking and recognize, when possible,
their development in learners and in the history of mathematics, and, accordingly,
develop and implement mathematics curricula that target them.

Instructional Principles

This section discusses DNR’s three foundational instructional principles, duality,
necessity, and repeated reasoning, in this order.

The Duality Principle. This principle asserts:

1. Students develop ways of thinking through the production of ways of understand-
ing, and, conversely,

2. The ways of understanding they produce are impacted by the ways of thinking
they possess.

Students do not come to school as blank slates, ready to acquire knowledge inde-
pendently of what they already know. Rather, what students know now constitutes a
basis for what they will know in the future. This is true for all ways of understanding
and ways of thinking associated with any mental act; the mental act of proving is no
exception. In everyday life and in science, the means of justification available to hu-
mans are largely limited to empirical evidence. Since early childhood, when we seek
to justify or account for a particular phenomenon, we are likely to base our judgment
on similar or related phenomena in our past (Anderson 1980). Given that the num-
ber of such phenomena in our past is finite, our judgments are typically empirical.
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Through such repeated experience, which begins in early childhood, our hypothe-
sis evaluation becomes dominantly empirical; that is, the proofs that we produce to
ascertain for ourselves or to persuade others become characteristically inductive or
perceptual. If, during early grades, our judgment of truth in mathematics continues
to rely on empirical considerations, the empirical proof scheme will likely dominate
our reasoning in later grades and more advanced classes, as research findings clearly
show (Harel and Sowder 2007). While unavoidable, the extent of the dominance of
the empirical proof scheme on people is not uniform. Children who are raised in an
environment where sense making is encouraged and debate and argumentation are
an integral part of their social interaction with adults are likely to have a smoother
transition to deductive reasoning than those who are not raised in such an environ-
ment.

A simple, yet key, observation here is this: the arguments children produce to
prove assertions and account for phenomena in everyday life impact the kind and
robustness of the proof schemes they form. Proofs, as was explained earlier, are
ways of understanding associated with the mental act of proving, and proof schemes
are ways of thinking associated with the same act. Hence, a generalization of this
observation is: for any mental act, the ways of understanding one produces impact
the quality of the ways of thinking one forms.

Of equal importance is the converse of this statement; namely: for any mental act,
the ways of thinking one has formed impact the quality of the ways of understand-
ing one produces. The latter statement is supported by observations of students’
mathematical behaviors, for example, when proving. As was indicated earlier, the
empirical proof scheme does not disappear upon entering school, nor does it fade
away effortlessly when students take mathematics classes. Rather, it continues to
impact the proofs students produce.

This analysis points to a reciprocal developmental relationship between ways of
understanding and ways of thinking, which is expressed in the Duality Principle.
The principle is implied from the Interdependency Premise. To see this, one only
needs to recognize that a person’s ways of thinking are part of her or his view of
the world, and that a person’s ways of understanding are manifestations of her or
his actions. Specifically, the statement, ways of understanding students produce are
impacted by the ways of thinking they possess, is an instantiation of the premise’s
assertion that humans’ actions are induced and governed by their views of the world,
whereas the statement, students develop ways of thinking through the production of
ways of understanding, is an instantiation of the premise’s assertion that humans’
views of the world are formed by their actions. Furthermore, the Context Depen-
dency Premise adds a qualification to this statement: ways of thinking belonging to
a particular discipline best develop from or are impacted by ways of understanding
belonging to the same discipline.

The Necessity Principle. This principle asserts:
For students to learn the mathematics we intend to teach them, they must have a

need for it, where ‘need’ here refers to intellectual need.
There is a lack of attention to students’ intellectual need in mathematics curric-

ula at all grade levels. Consider the following two examples: After learning how



DNR-Based Instruction in Mathematics as a Conceptual Framework 359

to multiply polynomials, high-school students typically learn techniques for factor-
ing (certain) polynomials. Following this, they learn how to apply these techniques
to simplify rational expressions. From the students’ perspective, these activities are
intellectually purposeless. Students learn to transform one form of expression into
another form of expression without understanding the mathematical purpose such
transformations serve and the circumstances under which one form of expression is
more advantageous than another. A case in point is the way the quadratic formula is
taught. Some algebra textbooks present the quadratic formula before the method of
completing the square. Seldom do students see an intellectual purpose for the latter
method—to solve quadratic equations and to derive a formula for their solutions—
rendering completing the square problems alien to most students (see Harel 2008a
for a discussion on a related way of thinking: algebraic invariance). Likewise, linear
algebra textbooks typically introduce the pivotal concepts of “eigenvalue,” “eigen-
vector,” and “matrix diagonalization” with statements such as the following: “The
concepts of “eigenvalue” and “eigenvector” are needed to deal with the problem of
factoring an n × n matrix A into a product of the form XDX−1, where D is diago-
nal. The latter factorization would provide important information about A, such as
its rank and determinant.”

Such introductory statements aim at pointing out to the student an important
problem. While the problem is intellectually intrinsic to its poser (a university in-
structor), it is likely to be alien to the students because a regular undergraduate
student in an elementary linear algebra course is unlikely to realize from such state-
ments the nature of the problem indicated, its mathematical importance, and the
role the concepts to be taught ( “eigenvalue,” “eigenvector,” and “diagonalization”)
play in determining its solution. What these two examples demonstrate is that the
intellectual need element in (the DNR definition of) learning is largely ignored in
teaching. The Necessity Principle attends to the indispensability of intellectual need
in learning:

The Repeated Reasoning Principle. This principle asserts:
Students must practice reasoning in order to internalize desirable ways of under-

standing and ways of thinking.
Even if ways of understanding and ways of thinking are intellectually necessi-

tated for students, teachers must still ensure that their students internalize, retain,
and organize this knowledge. Repeated experience, or practice, is a critical factor in
achieving this goal, as the following studies show: Cooper (1991) demonstrated the
role of practice in organizing knowledge; and DeGroot (1965) concluded that in-
creasing experience has the effect that knowledge becomes more readily accessible:
“[knowledge] which, at earlier stages, had to be abstracted, or even inferred, [is] apt
to be immediately perceived at later stages.” (pp. 33–34). Repeated experience re-
sults in fluency, or effortless processing, which places fewer demands on conscious
attention. “Since the amount of information a person can attend to at any one time
is limited (Miller 1956), ease of processing some aspects of a task gives a person
more capacity to attend to other aspects of the task (LaBerge and Samuels 1974;
Schneider and Shiffrin 1977; Anderson 1982; Lesgold et al. 1988)” (quote from
Bransford et al. 1999, p. 32). The emphasis of DNR-based instruction is on repeated
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reasoning that reinforces desirable ways of understanding and ways of thinking. Re-
peated reasoning, not mere drill and practice of routine problems, is essential to the
process of internalization, where one is able to apply knowledge autonomously and
spontaneously. The sequence of problems given to students must continually call
for thinking through the situations and solutions, and problems must respond to the
students’ changing intellectual needs. This is the basis for the repeated reasoning
principle.

Analysis of the Lesson

In this section we return to the lesson presented in section ‘DNR-Based Lesson’ and
discuss how the design and implementation of this lesson was guided by the DNR
framework. It should be pointed out at the outset that the accounts given here are
based on the teacher’s own retrospective notes taken immediately after the lesson,
combined with an external observer’s notes taken during the lesson. Thus, claims
made in these accounts about students’ conceptualizations, actions, and reactions
should not be held in the same standards of evidence required from a formal teach-
ing experiment. Rather, these accounts should be viewed in the spirit of Steffe and
Thompson’s (2000) notion of exploratory teaching experiment, in that they are the
teacher’s “on the fly” construction of temporal models for the students’ ways of un-
derstanding and ways of thinking needed to inform his teaching actions during the
lesson.

The lesson described in the section ‘DNR-Based Lesson’ is one in a series of
lessons with a recurring theme that both geometry and algebra are systems for draw-
ing logical conclusions from given data. To exploit the power of these systems by
drawing the strongest conclusions, it is necessary to “tell geometry” or “tell alge-
bra” all the given conditions: the conditions must be stated in a form which these
systems can process, and all must be used nontrivially in the reasoning. The lesson
reported here aimed at promoting the way of thinking “when representing a problem
algebraically, all of the problem constraints must be represented.” Our experience
suggests that students usually lack this way of thinking. This is part of a general phe-
nomenon where students either do not see a need or do not know how to translate
verbal statements into algebraic representations and fail, as a result, to make logical
derivations. For example, we observed students working on linear algebra problems
fail to represent all the problem information algebraically. Statements critical to the
problem solution (e.g., “v is in the span of u1 and u2,” “u1 and u2 are linearly inde-
pendent,” “v is in the eigenspace of A”) often are not translated in algebraic terms
by these students even when they seem to understand their meaning.

We refer to the problem-solving approach of representing a given problem alge-
braically and applying known procedures to the algebraic representation (such as
“elimination of variables” to solve systems of equations) in order to obtain a solu-
tion to the problem as the algebraic representation approach. Clearly, representing
all the problem conditions algebraically is an essential ingredient of this approach.
Problem-solving approaches are (one kind of) ways of thinking (see Harel 2008a).
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As is evident from Segment I, the students in this lesson applied the algebraic
representation approach, but only partially, in that they did not represent all the
problem constraints algebraically. The Rectangular Land Problem was designed to
intellectually compel the students to appreciate the need to “tell algebra” all the
conditions stated—sometimes not so explicitly—in the problem. This was done by
bringing the students, in a later segment of the lesson, into a conflict with their own
conclusion that there are infinitely many values for the total area of the land.5

On the basis of the conclusion reached in Segment I, the teacher embarked on the
next phase in the lesson: to necessitate an examination of this conclusion, where he
began by asking the class to provide two of these solutions (Fragment 6). The rea-
son for asking for two solutions was to ensure that the students see that at least one
of their solutions is incorrect, and will experience, as a result, an intellectual per-
turbation that compels them to reflect on and examine their own solution, whereby
utilizing the Necessity Principle.

At first, the students viewed the teacher’s task as unproblematic; they chose two
arbitrary numbers for A and obtained two corresponding values for the total area by
using the formula Total Area = 4A+2200 they had derived earlier from their system
of equations. It took some negotiation with the students for the them to understand
that they must also show that their answer is viable; namely, that their values for A,
B , C, and D correspond to regions A, B, C, and D that fit into the given geometric
configuration (Fragment 7). We note that in none of the lessons on the Rectangular
Land Problem we conducted did this understanding lead the students at this stage of
the lesson to realize that their initial system of equations needs to be amended by an
equation representing the geometric condition given in the figure.

Following this, the students tried to obtain the dimensions of the four regions,
a task they now deemed necessary, though not difficult (Fragment 8). This is the
content of Segment III, the longest in the lesson, which contains the process that led
the students to examine their earlier conclusion. In this process, they concluded that
there is a unique solution to the problem, not infinitely many solutions as they had
previously thought. In this segment, the students first attempted to determine the
dimensions of Region A by substituting different numbers, focusing exclusively on
whole numbers. The teacher accepted the students’ attempts but also prompted them
to vary the domains of these numbers: from whole numbers to rational numbers and
to irrational numbers. This number-domain extension was assumed by the teacher
to be natural to these students since, based on their mathematical experience, they
must have known that in principle the value sought can be non-integer. The repeated
failure to find the missing value may have led the students to doubt the existence
of such value—doubts the teacher formulated in terms of a question: Can a figure
representing the problem conditions be constructed for A = 100? (Fragment 12).
Further, the repeated trials of values from different domains seemed to have trig-
gered the students to represent the missing value by a variable t , and, in turn, to
answer the question by algebraic means; namely, by showing, algebraically, that no
such value exists, they determined that the figure cannot be constructed for A = 100

5Cognitive conflict is not the only means for intellectual necessity (see Harel 2008b).
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(Fragment 13). Still further, this experience seemed to serve as a conceptual basis
for the students’ next step, where they reapplied the same technique but this time
they set both the area of Region A, A, and its length, t , as unknowns. This provided
the opportunity for the teacher (not included in the lesson’s description) to distin-
guish between the status of A and t : while the former is a parameter, the latter is a
variable.

At least two ways of thinking were utilized in this segment: the first has to do with
beliefs about mathematics, that mathematics involves trial and error and proposing
and refining conjectures until one arrives at a correct result; and the second has to
do with proof schemes, that algebraic means are a powerful tool to prove—to re-
move doubts about conjectures. These ways of thinking were not preached to or
imposed on the students; rather, in accordance with the Necessity Principle, they
were necessitated through problematic situations that were meaningful to the stu-
dents. Although the way of thinking about the power and use of algebra in proving
was not foreign to these students, it is evident from the lesson accounts that it was
not spontaneous for them either. With respect to the mental act of proving, the stu-
dents’ actions that were available to the teacher during the lesson were the repeated
attempts by the students to construct a desired figure by (haphazard) substitutions
of different whole-number values for the length of Region A. In the DNR’s termi-
nology, these were the students’ current ways of understanding associated with the
proving act, which the teacher assumed were governed by the students’ empirical
proof scheme (see Harel and Sowder 2007). In accordance with the Duality Princi-
ple, the teacher built on these ways of understanding by prompting the students to
expand the variation of values from other domains of numbers known to them and,
subsequent, necessitate the manipulation of algebraic expression involving these
values (Fragment 11). His goal and hope was that this change in ways of under-
standing (i.e., particular solution attempts) will trigger the application of a different
way of thinking—the deductive proof scheme.

The fourth, and last, segment of the lesson was to help the students account for
the conflicting conclusions they reached about the number of solutions to the prob-
lems. This is a crucial stage, for the design of the lesson was to use the resolution of
this conflict to advance the way of thinking that when representing a problem alge-
braically all the problem constraints must be represented. At this point, the teacher
felt that it was clear to the students that their initial conclusion that there are infi-
nitely many solutions to the problem was wrong, but they did not understand why the
system of equations they initially constructed did not result in the correct answer. At
no point during the lesson did the students realize that absent from their initial sys-
tem is a representation of the geometric constraints entailed from the given figure.
A mathematically mature person would likely have inferred from the discrepancy
between the numbers of solutions—one versus many—that the system with many
solutions is missing at least one equation that is independent of the other equations
in the system. Conceptual prerequisites for this realization include several way of
understanding: that a system of equations is a set of quantitative constraints, that a
solution set of the system is determined by the independent equations in the system,
and that, therefore, to reduce the size of the solution set one must add additional
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independent equations to the system. The teacher operated on the assumption that
the students did not fully possess these ways of understanding. Although they rep-
resented (some) of the problem constraints by equations, whereby they constructed
their initial system, they also constructed a 4th equation as a (linear) combination
of—and therefore dependent on—the previous three equations. In addition, many
of their manipulations of the system’s equations were rather haphazard, unaware of
the fact that a method for solving a system of equation is a process of transforming
the given system into a (simpler) system with the same solution set. A few students
approached the solution process more systematically, by using row reduction for
example.

The discrepancy between the two outcomes that the students faced—infinitely
many solutions versus a single solution—offered the teacher the opportunity to com-
pel the students to revisit their meanings for equation, system of equations, solution
set, dependent and independent equations, and operations on a system to obtain a
solution. The refined ways of understanding of these concepts that resulted from the
classroom discussion (Fragment 17) led the students to review their earlier action
and, in turn, to a realization that there was nothing in their initial system representing
the condition that adjacent regions share one side in common. They even proceeded
to draw the figure in Segment IV to illustrate this observation and explained that
“scattered” regions would indeed entail infinitely many solutions.

In sum, this analysis demonstrates how the entire lesson—its conceptualiza-
tion, design, and implementation—was oriented and driven by the DNR concep-
tual framework. In particular, we see the application of the Duality Principle and
the Necessity Principle, along with adherence to the DNR premises. Absent from
this discussion is the Repeated Reasoning Principle. It is unrealistic to expect that
the students will internalize the lesson’s targeted ways of thinking and other ways
of thinking that the lesson afforded them in a single 90-minute session. To inter-
nalize these ideas, the students must be given the opportunity to repeatedly rea-
son about problem situations where similar ways of thinking and ways of under-
standing are likely to emerge. Indeed, our program for these students included a
sequence of problems whose goals included the targeted ways of thinking discussed
here.

We conclude this section by noting that, in this and in other lessons about the
Rectangular Land Problems, there were other (correct) solutions. In this lesson, they
were expressed in the homework assignments 1 and 5 (Fragment 19). In Problem 1,
for example, some students added the condition A/C = B/D. Question 5 led some
students to approach the problem quantitatively without resorting to algebraic equa-
tions. One of the solutions based such an approach is demonstrated in Fig. 9. To
explain the solution, view the figure as a matrix and use the problem givens. It is
easy to see that a11 cell represents Region A, the union of cells a12 and a13 represent
Region B, the union of cells a21 and a31 represent Region C, and the union of the
remaining cells represent Region D. Now, by considering the dimensions of these
remaining cells, conclude that A = 200.
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Fig. 9 Quantitative approach
to the rectangular land
problem

Final Comments

Formulating instructional objectives in terms of ways of thinking is of paramount
importance in DNR, as is entailed from DNR’s definition of mathematics. The goal
of the Rectangular Land Problem was to enhance the algebraic representation ap-
proach among the targeted population of students; in the lesson reported here, the
students were preservice secondary teachers. However, ways of thinking, according
to the Duality Principle, can develop only through ways of understanding, which,
by the Necessity Principle, must be intellectually necessitated through problematic
situations. On the other hand, intellectual need is not a uniform construct. One must
take into account students’ current knowledge, especially—again, by the Duality
Principle—their ways of thinking. Furthermore, a single problem is not sufficient
for students to fully internalize a way of thinking. It is necessary, by the Repeated
Reasoning Principle, to repeatedly provide the students with situations that neces-
sitate the application of a targeted way of thinking.

This was done by bringing the students into a conflict with their own conclusion
that there are infinitely many values for the total area of the land. This conclusion
was not a consensus in each lesson in which the Rectangular Land Problem was
presented. In some lessons, there were some students who approached the problem
differently, by assigning variables to the dimensions of the regions A, B, C, and D,
and so, by default, represented algebraically the constraints entailed from the given
geometric configuration.6 This approach led them, in turn, to a unique solution to
the problem. Surprisingly perhaps, the presence of these multiple approaches and
their corresponding outcomes never led the students to account for the discrepancy
by attending to the geometric constraints given in the problem. This suggests that the
students’ consideration of the rectangles’ dimensions was “accidental” rather than
with the intention to represent the geometric constraints. Nevertheless, the presence
of multiple solutions did not alter the teacher’s goal of bringing the students to
realize that their system of equations must include the condition entailed from the
particular configuration of the geometric figure. On the contrary: the presence of
conflicting solutions strengthened the intellectual need to reexamine and compare
between the solutions so as to account for the conflict.

In DNR, teaching actions are sequenced so that one action is built on the out-
comes of its predecessors for the purpose of furthering an instructional objective.

6This solution approach occurred more often—not surprisingly—when the problem statement in-
cluded another part: “. . . The farmer’s Son, Dan, asked: What are the dimensions of our land? . . .
What conclusion will Dan conclude from his father’s answer?”
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Many, though not all, of these actions are aimed at intellectually necessitating for
the students the ways of understanding and ways of thinking targeted. How does
one determine students’ intellectual need? DNR provides a framework for address-
ing this question, but detailed methodologies, together with suitable pedagogical
strategies, for dealing with this question are yet to be devised. The framework con-
sists of a classification of intellectual needs into five interrelated categories. Briefly,
these categories are:

• The need for certainty is the need to prove, to remove doubts. One’s cer-
tainty is achieved when one determines—by whatever means he or she deems
appropriate—that an assertion is true. Truth alone, however, may not be the only
need of an individual, and he or she may also strive to explain why the assertion
is true.

• The need for causality is the need to explain—to determine a cause of a phenom-
enon, to understand what makes a phenomenon the way it is.

• The need for computation includes the need to quantify and to calculate values
of quantities and relations among them. It also includes the need to optimize
calculations.

• The need for communication includes the need to persuade others than an asser-
tion is true and the need to agree on common notation.

• The need for connection and structure includes the need to organize knowledge
learned into a structure, to identify similarities and analogies, and to determine
unifying principles.

In general, intellectual need is a subjective construct—what constitute intellec-
tual need for one person may not be so for another. However, in the classroom the
teacher must make an effort to create a collective intellectual need. A necessary
condition for this to happen is that classroom debates are public rather than pseudo
public. To explain, consider the first segment of the lesson. This lesson concluded
with the teacher stating publically the conclusion reached by the class. The teacher’s
effort focused on ensuring that all students share a common understanding of the
conclusion asserted—that are infinitely many solutions to the problem. It was on
the basis of this shared understanding that the teacher carried out the next step in
his lesson plan, whose goal was to bring the students into disequilibrium and, in
turn, to a realization that not all the problem constraints have been represented in
the system of equations (Fragment 5). The teaching practice of ensuring that the en-
tire class reaches a common understanding—though not necessarily agreement—of
the assertion(s) made or the problem(s) at hand is critical in DNR-based instruction.
Without it, any ensuing classroom discussion is likely to be a pseudo public rather
than a genuine public discussion. In a pseudo public debate, the classroom discus-
sion proceeds without all students having formed a common and coherent way of
understanding the issue under consideration. A pseudo public debate manifests it-
self in the teacher communicating individually with different groups of students and
often with a single student while the rest of the class is not part of the exchange.
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