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In this chapter we propose re-conceptualizing the field of mathematics education
research as that of a design science akin to engineering and other emerging interdis-
ciplinary fields which involve the interaction of “subjects”, conceptual systems and
technology influenced by social constraints and affordances. Numerous examples
from the history and philosophy of science and mathematics and ongoing findings of
M&M research are drawn to illustrate our notion of mathematics education research
as a design science. Our ideas are intended as a framework and do not constitute
a “grand” theory. That is, we provide a framework (a system of thinking together
with accompanying concepts, language, methodologies, tools, and so on) that pro-
vides structure to help mathematics education researchers develop both models and
theories, which encourage diversity and emphasize Darwinian processes such as: (a)
selection (rigorous testing), (b) communication (so that productive ways of thinking
spread throughout relevant communities), and (c) accumulation (so that productive
ways of thinking are not lost and get integrated into future developments).

A Brief History of Our Field

Mathematics education is still in its “infancy” as a field of scientific inquiry. This
is evident in the fact that the first journals devoted purely to research only started
appearing in the 1960’s, prominent among which were the Zentralblatt für Didak-
tik der Mathematik (ZDM) and Educational Studies in Mathematics (ESM). In the
early 1970’s, there was an explosion of new journals devoted to research—including
the Journal for Research in Mathematics Education (JRME) and the Journal für
Mathematik Didaktik (JMD). Until this time period we had no professional or-
ganization for researchers; and, we had few sharable tools to facilitate research.
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Arguably there were journals such as the l’Enseignment Mathematique (founded
in 1899 in Geneva), The Mathematics Teacher (founded in 1901 by the NCTM)
and The Mathematical Gazette (founded in 1894 in the UK), and the Zeitschrift
für Mathematischen und Naturwissenschaftlichen Unterricht (founded in 1870 in
Germany) all of which were supposed to address the teaching and learning of math-
ematics. However, a survey of the papers appearing in these journals suggests that
few were aimed at advancing what is known about mathematics problem solving,
leaning, or teaching. A detailed history of the birth of journals worldwide is found
in Coray et al. (2003), which the interested reader is urged to look up.

For the purpose of our discussion, research as we mean it today only started in
the 1960’s and depended mainly on theory borrowing (from other fields such as
developmental psychology or cognitive science). We really had no stable research
community—with a distinct identity in terms of theory, methodologies, tools, or
coherent and well-defined collections of priority problems to be addressed. Only
recently have we begun to clarify the nature of research methodologies that are
distinctive to our field (Biehler et al. 1994; Bishop et al. 2003; Kelly and Lesh 2000;
Kelly et al. 2008; English 2003); and, in general, assessment instruments have not
been developed to measure most of the constructs that we believe to be important.
These facts tend to be somewhat shocking to those who were not firsthand witnesses
to the birth of our field or familiar with its history—and whose training seldom
prepares them to think in terms of growing a new field of inquiry.

One of the most important challenges that nearly every newly evolving field
confronts is to develop a sense of its own identity and the inability of our field
to do so has been a source of criticism (Steen 1999). Should mathematics educa-
tion researchers think of themselves as being applied educational psychologists, or
applied cognitive psychologists, or applied social scientists? Should they think of
themselves as being like scientists in physics or other “pure” sciences? Or, should
they think of themselves as being more like engineers or other “design scien-
tists” whose research draws on multiple practical and disciplinary perspectives—
and whose work is driven by the need to solve real problems as much as by the need
to advance relevant theories? In this chapter, we argue that mathematics education
should be viewed as being a design science.

What Is a Design Science?

The following characteristics of “design sciences” are especially relevant to mathe-
matics education.

(a) The “Subjects” being Investigated tend to be Partly Products of Human Cre-
ativity. Unlike physics and other natural sciences (where the main “subjects” be-
ing investigated were on-the-scene before the dawn of human history, and have not
changed throughout human history), the most important “subjects” (or systems) that
design scientists need to understand and explain tend to be partly or entirely de-
signed, developed, or constructed by humans. For example, in mathematics educa-
tion, these “subjects” range from the conceptual systems that we try to help students
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or teachers develop, to the ways of thinking that are embodied in curriculum mate-
rials or innovative programs of instruction.

(b) The “Subjects” being Investigated are (or Embody) Complex Systems.1 In
engineering and biology, such systems often are visible in the design documents
that are developed for artifacts such as space shuttles, skyscrapers, growth models
and computer information processing systems; and, in mathematics education, sim-
ilar systems sometimes can be seen in the design documents that describe when,
where, why, how and with whom curriculum materials or programs of instruction
need to be modified for use in a variety of continually changing situations. How-
ever, in mathematics education, it also may be the case that attention focuses on the
development of conceptual systems themselves, rather than on artifacts or tools in
which these conceptual systems may be expressed. Thus, there are two basic types
of situations where “design research” is especially useful.

• Attention focuses on concrete artifacts or tools. In these cases, the researcher may
want to develop (and/or study the development of) resources that can be used to
support teaching, learning, or assessment. But, in both engineering and educa-
tion, complex artifacts and conceptual tools seldom are worthwhile to develop
if they are only intended to be used a single time, by a single person, for a sin-
gle purpose, in a single situation. In general, high quality products need to be
sharable (with others) and reusable (in a variety of continually changing situa-
tions). So, they need to be modularized and in other ways made easy to modify.
This is one reason why underlying design principles are important components
of the artifact + design that needs to be produced.

• Attention focuses on conceptual systems. In these cases, the researcher may want
to develop (and/or study the development of) some complex conceptual system
which underlies the thinking of student(s), teacher(s), curriculum developer(s) or
some other educational decision maker(s). But, in order to develop useful concep-
tions about the nature of relevant conceptual systems, the “subjects” need to ex-
press their thinking in the form of some thought-revealing artifact (or conceptual
tool), which goes through a series of iterative design cycles of testing and revi-
sion in order to be sufficiently useful for specified purposes. In this way, when the
artifact is tested, so are the underlying conceptual systems; and, an auditable trail
of documentation tends to be generated that reveals significant information about
the evolving ways of thinking of the “subject”. We can draw on the evolution
of mathematics to show evolving ways of thinking of the community over time.
The evolution of mathematics reveals the series of iterative designs what artifacts
went through before the dawn of symbolism. Moreno and Sriraman (2005) have
argued that human evolution is coextensive with tool development and reveals the
series of iterative designs, which artifacts undergo over time. They write:

Take the example of a stone tool: The communal production of those tools implied that
a shared conception of them was present. But eventually, somebody could discover a

1Here, the term “complex” is being interpreted close to the mathematical sense of being a system-
as-a-whole which has emergent properties that cannot simply be deduced from properties of ele-
ments (or agents) within the system.
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new use of the tool. This new experience becomes part of a personal reference field that
re-defines the tool for the discoverer; eventually, that experience can be shared and the
reference field becomes more complex as it unfolds a deeper level of reference. . . thus,
tool production was not only important for plain survival, but also for broadening the
mental world of our ancestors–and introducing a higher level of objectivity.

(c) Researchers should DESIGN for Power, Sharability and Reusability; They
don’t just TEST for It. Survival of the useful is a main law that determines the con-
tinuing existence of innovative programs and curriculum materials; and, usefulness
usually involves going beyond being powerful (in a specific situation and for a spe-
cific purposes) to also be sharable (with other people) and re-usuable (in other situa-
tions). . . . What is the half-live of a good textbook or course syllabus? Truly excellent
teachers continually make changes to the materials that they use; and, truly excel-
lent curriculum materials are designed to be easy to modify and adapt to suit the
continually changing needs of students in specific courses. So, even if the teacher
wrote the book that is being used in a given course, significant changes tend to be
made each year – so that the materials often are nearly unrecognizable after only a
few years.

(d) The “Subjects” to be Understood are Continually Changing—and so are the
Conceptual Systems needed to Understand and Explain Them. One reason this is
true is because the conceptual systems that are developed to make sense of a relevant
systems also are used to make, mold, and manipulate new system. Therefore, as
soon as we understand a system, we tend to change it; and, when we change it, our
understandings also generally need to evolve.

(e) “Subjects” being Investigated are Influenced by Social Constraints and Affor-
dances. Design “specs” for the systems (and accompanying artifacts or tools) that
engineers develop are influenced as much by peoples’ purposes as by physical or
economic aspects of the contexts in which they are used. Therefore, because peo-
ples’ purposes continually change, and because people often use tools and artifacts
in ways that their developers never imagined, the artifacts and tools tend to change
as they are used. For examples of this phenomenon, consider personal computers,
microwave ovens, and sport utility vehicles. Similarly, in mathematics education,
the nature of artifacts (software, curriculum materials, instructional programs) is in-
fluenced as much by socially generated capital, constraints, and affordances as by
the capabilities of individuals who created them—or by characteristics of the con-
texts in which they originally were designed to be used.

(f) No Single “Grand Theory” is likely to Provide Realistic Solutions to Realis-
tically Complex Problems. This claim is true even for the “hard” sciences. In realis-
tic decision-making situations that involve the kind of complex systems that occur
in engineering and mathematics education, there almost never exist unlimited re-
sources (time, money, tools, consultants). Furthermore, relevant stake holders often
have partly conflicting goals (such as low costs but high quality). Therefore, in such
situations, useful ways of thinking usually need to integrate concepts and concep-
tual systems drawn from more a single practical or disciplinary perspective. Most
will need to involve models which integrate ways of thinking drawn from a variety
of theories and practices.
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(g) Development Usually Involves a Series of Iterative Design Cycles. In order
to develop artifacts + designs that are sufficiently powerful, sharable, and reusable,
it usually is necessary for designers to go through a series of design cycles in which
trial products are iteratively tested and revised for specified purposes. Then, the de-
velopment cycles automatically generate auditable trails of documentation which
reveal significant information about the products that evolve. The birth of numerical
analysis and analysis of algorithms as domains of applied mathematics research pro-
vides numerous examples of the revision of historical products for use today. Con-
sider the Archimedean technique for approximating the value of π that relies on the
two lemmas (traceable to Proposition 3 of The Elements Book VI). Archimedes es-
sentially inscribed and circumscribed the circle with regular polygons up to 96 sides
to compute an approximation for π . Traditional history of mathematics courses typ-
ically involve the exercise of employing the algorithms outlined in Lemma 1 and
Lemma 2 to hand calculate the value of π . This exercise leads one to the realization
of the superb computational abilities Archimedes must have possessed! However,
the necessity of a 21st century computational tool becomes very obvious when one
analyzes the computational complexity of Archimedes’ algorithm. It is clear that
each step of this algorithm requires taking an additional square root, which was
dealt by Archimedes via the use of a “magical” rational approximation. It was mag-
ical in the sense that it required knowing how to compute square roots in that period,
something Archimedes never explicitly revealed. Comparing the computational ef-
ficiency (or inefficiency) of the Archimedean technique to that of modern recursion
techniques is a very useful mathematical exercise. The computational inefficiency
becomes obvious when one sees that a nine-digit approximation of π requires 16
iterations and requires a polygon of 393216 sides! Extensions of the Archimedean
algorithm include generating a class of geometric figures to which the technique
would be applicable and result in an approximation of a related platonic constant.
Besides the domain of approximation techniques and computation, there is an abun-
dance of problems in the history of mathematics that reveal the need for the contin-
ual creation of better and powerful abstract and computational tools.

The arguments made in (a)–(g) in our view of mathematics education research
as a design science also parallel the mutation of methodological perspectives in
the history of science. Modern science, especially the progression of research in
physics and biology reveals that learning is a complex phenomenon in which the
classical separation of subject, object, and situation is no longer viable. Instead,
reality is characterized by a “non-linear” totality in which the observer, the ob-
served, and the situation are in fact inseparable. Yet, at the dawn of the 21st cen-
tury, researchers in our field are still using theories and research methodologies
grounded in the information-processing premise that learning is reducible to a list
of condition-action rules. While physicists and biologists are involved in the study
of complex systems (in nature) via observation, experiment, and explanation, design
scientists are involved in studying and understanding the growth of knowledge that
occurs when students, teachers and researchers are confronted with problem situ-
ations involving making sense of complex situations. Complex systems are those
which involve numerous elements, “arranged in structure(s) which can exist on
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many scales. These go through processes of change that are not describable by a
single rule nor are reducible to only one level of explanation . . . these levels often
include features whose emergence cannot be predicted from their current specifi-
cations” (Kirschbaum). In other words scientists today have embraced a view of
nature in which processes have supplanted things in descriptions and explanations
and reaffirmed the dynamic nature of the “whole” reflected in paradoxes encoun-
tered by ancient cultures. For instance biologists have found that methodological
reductionism, that is going to the parts to understand the whole, which was cen-
tral to the classical physical sciences, is less applicable when dealing with living
systems. According to the German molecular biologist, Friedrich Cramer, such an
approach may lead to a study not of the ‘living’ but of the ‘dead’, because in the
examination of highly complex living systems “Only by ripping apart the network
at some point can we analyze life. We are therefore limited to the study of ‘dead’
things.”2

Analogously, the challenge confronting design scientists who hope to create
models of the models (and/or underlying conceptual systems) that students, teach-
ers and researchers develop to make sense of complex systems occurring in their
lives is: the mismatch between learning science theories based on mechanistic in-
formation processing metaphors in which everything that students know is method-
ologically reduced to a list of condition-action rules, given that characteristics of
complex systems cannot be explained (or modeled) using only a single function—or
even a list of functions. As physicists and biologists have proposed, characteristics
of complex systems arise from the interactions among lower-order/rule-governed
agents—which function simultaneously and continuously, and which are not simply
inert objects waiting to be activated by some external source.

Observations about Mathematics Education as a Distinct Field
of Scientific Inquiry

Mathematics education research often is accused of not answering teachers’ ques-
tions, or not addressing the priority problems of other educational decision-makers.
. . . If this claim is true, then it surely is not because of lack of trying. Most math-
ematics education researchers also ARE practitioners of some type—for example,
expert teachers, teacher developers, or curriculum designers. But: When you’re up
to your neck in alligators, it’s difficult to think about draining the swamp! This is
why, in most mature sciences, one main purpose of research is to help practition-
ers ask better questions—by focusing on deeper patterns and regulations rather than
to surface-level pieces of information. Furthermore, the challenge to “solve prac-
titioners’ problems” ignores the fact that very few realistically complex problems
are going to be solved by single isolated studies. In a survey of the impact of edu-
cational research on mathematics education, Wiliam (2003) outlines the two major

2Friedrich Cramer (1993): Chaos and Order, VCH Publishers, New York, 214.
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“revolutions” in mathematics education in the recent past with the caveat that such
a characterization may not be universally true given the heterogeneity of changes
within different nations. However the two revolutions he mentions apply well to
the United States. These are the “technological revolution” and the “constructivist
revolution”. The canon of studies within the former reveal the mismatch between
research and practice. While specific site-based studies reveal the success of inte-
grating technology in the teaching of mathematics, in general this remains untrue.
The second revolution has resulted in “we are all constructivists now” (Wiliam 2003,
p. 475). However, the tiny islands where classroom practice is “constructivist” and
often reported by research, are by and large surrounded by oceans of associationist
tendencies.

As we have suggested earlier single isolated studies seldom result in any large
scale changes. In general, such problems will require multiple researchers and prac-
titioners, representing multiple perspectives, and working at multiple sites over ex-
tended periods of time. This is why, in mature sciences, researchers typically devote
significant amounts of time and energy to develop tools and resources for their own
use. In particular, these tools and resources generally include instruments for observ-
ing and assessing “things” that are judged to be important; and, they also include
the development of productive research designs, language, operational definitions of
key concepts, and theory-based and experience-tested models for explaining com-
plex systems. In particular the role of operational definitions needs to be critically
examined for theories that purport to explain complex systems. In science, the role
of operational definitions is to reach agreement on terms used based on a series
of measurements which can be conducted experimentally. In spite of the popular
misconception of the “iron-clad” nature of definitions in the physical sciences, it
is important to realize that even “physical” concepts are by and large dependent
on mutually agreed upon quantification. For instance the operational definition of
an “electron” is “a summary term for a whole complex of measurables, namely
4.8 × 10−10 units of negative charge, 9.1 × 10−23 grams of mass etc.” (Holton
1973, p. 387). Now imagine the difficulty of reaching agreement on operational
definitions in quantum mechanics where the difficulty is compounded by paradoxes
arising when the state of a “system” is dependent on the observer, who simplistically
speaking, destroys the state in order to make a measurement. At the sub-atomic level
measurements of position, momentum, etc are also not independent of one another.
In spite of these profound difficulties “physicists have learned that theoretical terms
have to be defined operationally, that is they have to describe nature via theories in
which terms are accepted only if they can be defined/backed up via experimenta-
tion” (Dietrich 2004). The question we pose (at this stage philosophically) is: how
can similar approaches be adapted by design scientists? Before defining theoretical
terms, we should first attempt to gain consensus on “observational” terms. That is,
how can we operationally define observational terms (namely perceived regularities
that we attempt to condense into theories, or as Piaget attempted—to phylogeneti-
cally evolved mental cognitive operators)?

Operational definitions are routinely used in physics, biology, and computer sci-
ence. As we mentioned earlier, in quantum mechanics, physicists are able to define
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(philosophically intangible) sub-atomic phenomenon by making predictions about
their probability distributions. It is important to note that physicists do not assign
a definite value per se to the observable phenomenon but a probability distribution.
The implication for design scientists is that the notion of operational definitions
can be adapted to the study of modeling by making predictions on the range of ob-
servable “processes” that students will engage in when confronted by an authentic
model eliciting situation and the range of conceptual systems emerging from this
engagement. Unlike psychology which has tried to operationally define intangible
and controversial constructs such as intelligence, supposedly measurable by an IQ
score our goal (analogous to physics) ought to be to operationally define tangible
constructs relevant to the learning sciences, in terms of a distribution of clearly
observable processes and conceptual systems within the specific model eliciting sit-
uation (see Lesh and English 2005 for further details). In this respect we preserve
the whole by not attempting to measure each individual process and adhere to John
Stuart Mill’s wise suggestion that we move away from the belief that anything that is
nameable should refer to a “thing”. We later use the example of a double pendulum
to demonstrate the shortcoming of traditional approaches to researching learning in
mathematics education.

Preliminary Implications for Mathematics Education

In mathematics education, very few research studies are aimed at developing tools
that build infrastructure (so that complex problems can be solved in the long run);
and, our funding agencies, professional organizations, research journals, and doc-
toral education have largely ignored their responsibilities to build infrastructure—or
to support those who wish to try. In fact, they largely emphasize simplistic “quick
fix” interventions that are precisely the kind practitioners do NOT need.

The USA’s Department of Education says: “Show us what works!!!” . . . Yet,
when discussing large and complex curriculum innovations, it is misleading to label
them “successes” or “failures”—as though everything successful programs did was
effective, and everything unsuccessful programs did was not effective. In curricu-
lum development and program design, it is a truism that: “Small treatments produce
small effects; and, large treatments do not get implemented fully.” “Nothing works
unless you make it work!” . . . Consequently, when developing and assessing cur-
riculum innovations, it is not enough to demonstrate THAT something works; it
also is important to explain WHY and HOW it works, and to focus on interactions
among participants and other parts of the systems. This is why the underlying design
(which describes intended relationships and interactions among parts of the relevant
systems) is one of the most important components of any curriculum innovation
that is designed; and, it is why useful designs are those that are easy to modify
and adapt to continually changing circumstances. So, in successful curriculum in-
novations, modularity, modifiability and sharability are among the most important
characteristics to design in—and assess.
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All programs have profiles of strengths and weaknesses; most “work” for achiev-
ing some types of results but “don’t work” for others; and, most are effective for
some students (or teachers, or situations) but are not effective for others. In other
words, most programs “work” some of the time, for some purposes, and in some
circumstances; and, none “work” all of the time, for all purposes, in all circum-
stances. So, what practitioners need to know is when, where, why, how, with whom,
and under what circumstances are materials likely to work. For example: When the
principal of a school doesn’t understand or support the objectives of a program, the
program seldom succeeds. Therefore, when programs are evaluated, the characteris-
tics and roles of key administrators also should be assessed; and, these assessments
should not take place in a neutral fashion. Attempts should be made to optimize
understanding and support from administrators (as well as parents, school board
members, and other leaders from business and the community); and, during the
process of optimization, auditable documentation should be gathered to produce a
simple-yet-high-fidelity trace of continuous progress.

The success of a program depends on how much and how well it is implemented.
For example, if only half of a program is implemented, or if it is only implemented
in a half-hearted way, then 100% success can hardly be expected. Also powerful
innovations usually need to be introduced gradually over periods of several years.
So, when programs are evaluated, the quality of the implementation also should
be assessed; and, again, this assessment should not pretend to be done in a neutral
fashion. Optimization and documentation are not incompatible processes. In fact, in
business settings, it is considered to be common knowledge that “You should expect
what you inspect!” . . . In other words, all assessments tend to be self-fulfilling.
That is, they are powerful parts of what educational testing enthusiasts refer to as
“treatments”.

Similar observations apply to teacher development. It is naive to make com-
parisons of teachers using only a single number on a “good-bad” scale (without
identifying profiles of strengths and weaknesses, and without giving any attention
to the conditions under which these profiles have been achieved, or the purposes
for which the evaluation was made). No teacher can be expected to be “good” in
“bad” situations (such as when students do not want to learn, or when there is no
support from parents and administrators). Not everything “experts” do is effective,
and not everything “novices” do is ineffective. No teacher is equally “experienced”
across all grade levels (from kindergarten through calculus), with all types of stu-
dents (from the gifted to those with physical, social, or mental handicaps), and in
all types of settings (from those dominated by inner-city minorities to those dom-
inated by the rural poor). Also, characteristics that lead to success in one situation
often turn out to be counterproductive in other situations. Furthermore, as soon as
a teacher becomes more effective, she changes her classroom in ways that require
another round of adaptation. So, truly excellent teachers always need to learn and
adapt; and, those who cease to learn and adapt often cease to be effective. . . . Fi-
nally, even though gains in student achievement should be one factor to consider
when documenting the accomplishments of teachers (or programs), it is foolish to
assume that great teachers always produce larger student learning gains than their
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less great colleagues. What would happen if a great teacher chose to deal with only
difficult students or difficult circumstances? What would happen if a great teacher
chose to never deal with difficult students or difficult circumstances?

In virtually every field where researchers have investigated differences between
experts and novices, it has become clear that experts not only DO things differ-
ently, but they also SEE (or interpret) things differently; and, this applies to student
development as well as to teacher development or program development. Conse-
quently, when we assess student development, we should ask What kind of situations
can they describe (or interpret) mathematically? at least as much as we ask What
kind of computations can they do? . . . Thinking mathematically involves more than
computation; it also involves mathematizing experiences—by quantifying them, by
coordinatizing them, or by making sense of them using other kinds of mathemat-
ical systems. Therefore, if researchers wish to investigate the nature of students’
mathematical sense-making abilities, then they generally need to focus on problem
solving situations in which interpretation is not trivial; and, this creates difficulties
for simple-minded studies aimed at showing what works.

Most modern theories assume that interpretation is influenced by both (internal)
conceptual systems and by (external) systems that are encountered; and, this implies
that:

– Two students who encounter the same task may interpret it quite differently. So:
What does it mean to talk about a “standardized” task?

– In non-trivial tasks that involve interpretation, several levels and types of descrip-
tions always are possible. So, tasks that involve simple right-wrong answers are
unlikely to involve significant types of interpretation.

– In a series of tasks in which similar interpretations need to be developed, the very
act of developing an interpretation of early tasks implies that the nature of later
tasks will change. So: What does it mean to talk about “reliability”—if this means
that repeated measures should yield the same results?

In general, when assessment shifts attention beyond computation (and deduction)
toward interpretation (and communication), then a phenomena occurs that is remi-
niscent of Heiserberg’s Indeterminancy Principle. That is: To measure it is to change
it! Consider high stakes standardized testing. Such tests are widely regarded as pow-
erful leverage points which influence (for better or worse) both what is taught and
how it is taught. But, when they are used to clarify (or define) the goals of instruc-
tion, such tests go beyond being neutral indicators of learning outcomes; and, they
become powerful components of the initiatives themselves. Consequently, far from
being passive indicators of non-adapting systems, they have powerful positive or
negative effects, depending on whether they support or subvert efforts to address
desirable objectives. Therefore, when assessment materials are poorly aligned with
the standards for instruction, they tend to create serious impediments to student de-
velopment, teacher development and curriculum development.

At a time when countries throughout the world are demanding accountability
in education, it is ironic that many of these same countries are adopting without
question the most powerful untested curriculum theory that has ever been imposed
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on schools, teachers, and children. This untested theory is called teaching-to-the-
test; and, it is not only untested but it also is based on exceedingly questionable
assumptions. For examples, readers need only imagine the next course that they
themselves are likely to teach; and, they can think about what would be likely to
happen if (a) they based grades for the course entirely on the final examination, and
(b) they passed out the final examination to students at the start of the course.

Most of the Systems We Need to Understand Are Complex,
Dynamic, and Continually Adapting

The USA’s Department of Education states: The Secretary considers random assign-
ment and quasi-experimental designs to be the most rigorous methods to address the
question of project effectiveness.

In most mature sciences, the most important criteria which should be that deter-
mines the scientific quality of a research methodology is based on the recognition
that every methodology presupposes a model; so, above all, the scientific merit of a
methodology depends on whether the model makes assumptions that are inconsis-
tent with those associated with the “subject” being investigated.

Our observations in the preceding section suggest, random assignment and
quasi-experimental designs tend to be based on a variety of assumptions that are
inconsistent the kind of complex, dynamic, interacting, and continually adapting
systems that are of greatest interest to mathematics educators. To see what we mean
by this claim, consider the following situation. It involves one of the simplest sys-
tems that mathematicians describe as being a complex adaptive system. It involves
a double pendulum; and, simulations of such systems can be seen at many internet
web sites. For example, the one shown in Fig. 1 came from http://www.maths.tcd.
ie/~plynch/SwingingSpring/doublependulum.html. We will use it to simulate a typ-
ical study that involves “control groups” in education.

We begin our simulated study by creating two identical browser windows on two
identical computers; and, in each window, we set the initial state of the double pen-
dulum so they are identical (see Fig. 1). . . . We will think of these two systems as
being the “control group” and the “treatment group” in a study where the “treat-
ment” is actually a placebo. In other words, we are setting up a study where we’ll
investigate whether doing nothing produces a reliable and significant effect. Alter-
natively, we can think of ourselves as setting up a study to show that, when investi-
gating complex adaptive systems, the whole idea of a “control group” is nonsense.
To test our hypothesis, we can set the settings so that each of the two systems pro-
duces a trace to show the position of the motion of the tip of the second pendulum
in each of the two windows. Then, in each of the two windows, we can punch the
start buttons at exactly the same moment; and, after a brief period of time (e.g., 10
seconds in Fig. 2, 20 seconds in Fig. 3), we can stop the two systems at exactly the
same time. Then, we can examine the paths of the two pendulum points. . . . Clearly,
the paths are not the same; and, it is easy to produce a quantitative measure of these

http://www.maths.tcd.ie/~plynch/SwingingSpring/doublependulum.html
http://www.maths.tcd.ie/~plynch/SwingingSpring/doublependulum.html
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Fig. 1 Two identical starting points for a double pendulum system

differences.3 In fact, if the two systems are allowed to run for longer periods of time
(e.g., more than 20 seconds), then the differences between the two paths begin to
be the same as for two paths whose initial positions were completely random (see
Fig. 3). In other words, the systems begin to behave as if nothing whatsoever had
been ”controlled” in the initial states of the two systems!

Why did these systems behave in this way? Like all complex adaptive systems,
one significant fact about a double pendulum is that, even though each of its two
components obeys simple rules, when the components function simultaneously and
interact, the interactions lead to feedback loops that produce chaotic behavior which
is unpredictable in the sense that it never repeats itself and cannot be described by a
single rule.

One distinguishing characteristic of mathematically complex systems is that the
systems-as-a-whole have “emergent properties” which cannot be deduced from
properties of elements of the system. In particular, these “emergent properties”
cannot be described using single-function models—or even using lists of single-
function models. . . . This is significant because researchers in the educational, so-
cial, and cognitive sciences have come to rely heavily of models that are based on

3One easy way to do this is to: (a) superimpose the paths of the two double pendulum systems, (b)
mark the locations of the points at equal intervals (e.g., at 1 second, 2 seconds, 3 seconds, and so
on), and (3) to measure the distances between corresponding pairs of points.
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Fig. 2 Stopping the two systems after 10 seconds

simple functions—where independent variables (A,B,C, . . .N ) go in, and depen-
dent variables (X, Y , and Z) come out.

The point that we want to emphasize here is NOT that such systems are com-
pletely unpredictable; they are simply not predictable using single-formula models
whose inputs are initial conditions of the system and it’s elements. In fact, web sites
such as http://ccl.northwestern.edu/netlogo/ and http://cognitrn.psych.indiana.edu/
rgoldsto/ give many examples of systems which are far more complex, and in some
ways just as unpredictable, as double pendulums; yet, these same systems also often
involve some highly predictable system-level behaviors. For example:

– In simulations of automobile traffic patterns in large cities, it is relatively easy to
produce wave patterns, or gridlock.

– In simulations of flying geese, groups of geese end up flying in a V pattern in
spite of the fact that there is no “head” goose.

– In simulations of foraging behaviors of a colony of ants, the colony-as-a-whole
may exhibit intelligent foraging behaviors in spite of the fact that there is no “head
ant” who is telling all of the other ants what to do.

For the purposes of this paper, the points that are most noteworthy about the pre-
ceding systems are that: (a) at one level, each system is just as unpredictable as
a double pendulum, (b) at another level, each system has some highly predictable
“emergent properties” which cannot be derived or deduced from properties of ele-
ments themselves—but which results from interactions among elements in the sys-

http://ccl.northwestern.edu/netlogo/
http://cognitrn.psych.indiana.edu/rgoldsto/
http://cognitrn.psych.indiana.edu/rgoldsto/
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Fig. 3 Stopping the two systems after 20 seconds

tem. Consequently, if the goal is to control such systems, then what needs to be
controlled are the interactions—not just the initial conditions. . . . Consider the Pa-
per Tearing Experiment described in Fig. 4. Now consider the kind of systems that
mathematics educators need to understand and explain—such as: complex programs
of instruction, plus complex learning activities in which the complex conceptual sys-
tems of both students and teachers or students will be functioning, and interacting,
and adapting. . . . Within such a systems, it is clear that the system will involve feed-
back loops (where A impacts B which impacts C which returns to impact A) and
where the systems-as-a-whole develop patterns and properties which result from
interactions among elements of the systems, and which cannot be derived or de-
duced from properties of elements themselves plus properties of any “treatment”
that might be used.

In spite of the obvious complexities in educational systems, a prototypical study
in education tends to be thought of as one that shows what works—even in situations
where (a) nobody was clear about what “it” really was that worked, nor what “work-
ing” really should have meant, and (b) the assessments themselves were among the
most powerful un-tested parts of the “treatment” that presumably were being tested.
. . . In fact, as we observed earlier, most tests are chosen precisely because they
were intended to influence outcomes. So, in cases where the things they assess are
not consistent with the goals of curriculum innovations that they are being used to
assess, then they become important parts of the treatments themselves. Furthermore,
if they are only used as pre-tests and post-tests, then they neglect to measure the sin-
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Take a standard 8.5′′ × 11′′ printer
paper, and mark it as shown in the
Fig. 2. Then, make a small cut at
point “C” as shown. Next, hold the
paper with your two
hands—pinching it between your
thumb and pointer finger at points A
and B. Finally, close your eyes and
try to tear the paper into two
pieces—so that the tear ends at point
“T” on the opposite side of the piece
of paper. . . . Now, repeat the
procedure several more times using
several sheets of paper, and conduct
the following experiment. . . . The
goal of the experiment is to answer
this question: What is the best
possible place to make the cut “C”
so that the tear ends at point “T” on
the opposite side of the sheet of
paper? (note: One answer is given in
the footnote below.5)

Fig. 1: 8.5′′ × 11′′ Printer Paper

A C

B

T

Fig. 4 A paper tearing experiment

gle most important parts of the situations being assessed—that is, the interactions.
In other words, the situation becomes very similar to tearing paper with your eyes
closed in the Paper Tearing Problem.

What Kind of Explanations are Appropriate for Comparing Two
Complex Systems?

The preceding section focused mainly on complex systems such as those that char-
acterize large curriculum innovations. But, similar observations also apply to the
kind of complex systems that characterize the thinking of experts or novices in stud-
ies of students or teachers. For example, in virtually every field where ethnographic
studies have been conducted to compare experts and novices, results have shown
that experts not only do things differently than novices but they also see things dif-
ferently. Experts not only do things right but they also do the right things—by doing
them at the right time, with the right situations, and for the right purposes. Yet, in

5Perhaps the “best” answer to the question is: If you open your eyes almost any point will work as
well as any other for the cut “C”.
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spite of these observations, students, teachers, and programs continue to be devel-
oped (and assessed) as if “excellence” was captured in some cookbook-style list of
rules.

Example (Expert Cooks See (and Taste) Differently Than Novices!) Even if a
cook’s goal involves nothing more complex than making a Margarita Pizza, truly
exceptional cooks tend to use high protein bread flour rather than all-purpose flour,
baker’s yeast rather than dried yeast packages, freshly ground rock salt rather than
preprocessed and chemically treated salt, water that isn’t simply tap water, and so
on. Furthermore, if possible, they use freshly picked basil rather than dried herbs,
and tomatoes that are home grown, and in season, and freshly picked. And, they
recognize that: (a) there are many types of tomatoes, cheeses, olive oils, herbs, and
yeasts—and that the best of these vary widely in the ways that they need to be han-
dled, and (b) combining such ingredients isn’t simply a matter of following rules,
it involves tasting and adapting. Finally, outstanding cooks recognize that different
ovens, sauce pans, and burners behave very differently, and that the performance
of such tools often is strongly influenced by factors such as altitude and humidity.
Consequently, results from a given set of ingredients may vary considerably from
one season to another, from one location to another, and depending on the tastes of
diners. (Do your guests prefer strong asiago cheeses with heavy sourdough crusts;
or, do they prefer mild mozzarella cheeses or non-dairy cheese-like substances with
cracker-thin grilled crusts?). So, great pizza chefs select the best available ingre-
dients; they compose their sauces and pizzas by testing and adapting (rather than
blindly following rules); they pay attention to patterns (rather than just pieces) of
information; and, they continually adapt their thinking as well as their products to
fit changing circumstances. They don’t simply create their pizzas using fixed for-
mulas; and, even though most of them usually end up being very skillful at using
tools such as knives and sauce pans, they didn’t learn to be great chefs by waiting to
make whole meals until after they become skillful at using every tool at http://www.
cooking.com/.

Example (Single Formulas Solutions Don’t Work!) If any recipe could claim the
prize for “working best”, then it might be the recipe for Toll House Chocolate Chip
Cookies. Yet, if the standard tried-and-true recipe from a bag of Hershey’s Choco-
late Bits is given to twenty professional mathematicians, then the result is sure to be
twenty batches of cookies that are very different from one another—even thought
the mathematicians probably are not incompetent at measuring and following rules.
Conversely, if twenty superb cooks make Toll House Chocolate Chip Cookies, then
they are sure to modify the recipe to suit their own preferences, current resources,
and cooking environments—as well as the preferences of the people who are ex-
pected to eat their cookies. This is another reason why, malleability, not rigidity,
tends to be one of the most important hallmarks of both great recipes, great cooks,
and great curriculum materials. In fact, even if a cookbook is written by the cook
who is using it, the book tends to be filled with notes about possible modifications
for different situations. So, the half-life of cookbooks (as an actual plans of action)

http://www.cooking.com/
http://www.cooking.com/


Re-conceptualizing Mathematics Education as a Design Science 139

tends to be no longer than the half-life of a useful syllabus for a course that is taught
by a truly excellent teacher (who continually adapts her behaviors to meet the needs
of specific and continually changing students and classroom communities).

Therefore, because of the continuing power of this “cooking” metaphor, we be-
lieve that it might be useful to examine it more carefully. . . . Even though few peo-
ple would deny that cooking involves a great many formulaic recipes that need to
be mastered, it also is obvious that cooking is an activity where a great deal more is
involved than simply following fixed formulas. For example: Excellent cooks usu-
ally have large collections of cookbooks; and, they know that no recipe or cookbook
“works” for all situations—or for all levels and types of chefs or guests. An entry
level cookbook is not the same as an advanced cookbook; and, excellent cooks gen-
erally are not victims of a single, inflexible style. They are able to manipulate their
personae to suit changing circumstances—which include the preferences of guests,
and the availability of fresh and high quality ingredients.

Excellent cooks need to do more than follow recipes in cookbooks that use stan-
dardized off-the-shelf ingredients. They generally need to: (a) make substitutions
and adaptations in recipes in order to use ingredients that are freshest and best,
(b) understand relationships that make harmonious tastes so that exciting and cre-
ative compositions can be made, (c) taste what is being composed and adapt recipes
accordingly, and (d) understand difficult-to-control things such as heat flow in their
ovens and pans.

Again, examples from cooking are similar to the situation described in the Paper
Tearing Problem that was described in the preceding section of this chapter. That
is, a cook who doesn’t taste-and-adjust is like a paper tearing by a person who
only works with his eyes closed—or like non-adaptive “treatments” in curriculum
innovation.

Lack of Cumulativeness is Our Foremost Problem

One of the foremost reasons why mathematics education research has failed to an-
swer teachers’ questions is because its results have a poor record of accumulation.
Lack of accumulation is an important issue because most realistically complex prob-
lems will only be solved using coordinated sequences of studies, drawing on mul-
tiple practical and theoretical perspectives, at multiple sites, over long periods of
time (Lesh et al. 2005; Kelly and Lesh 2000). However, this failure to accumu-
late tends to be portrayed as a problem in which “the field” had not agreed on ba-
sic definitions and terminology (Kilpatrick 1969a, 1969b; Begle 1979; Silver 1985;
Lester 1994; Lester and Kehle 2003; Schoenfeld 1993). So, nobody in particular is
to blame. Whereas, shortcomings that most need to change are more closely related
to the work of individuals who: (a) continually introduce new terms to recycle old
discredited ideas—without any perceivable value added, (b) continually embellish
ideas that “haven’t worked”—rather than going back to re-examine foundation-level
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assumptions, and (c) do not develop tools to document and assess the constructs they
claim to be important.

Consider the research literature on problem solving. In the 1993 Handbook for
Research on Mathematics Teaching and Learning (Grouws 1993), Schoenfeld de-
scribed how, in the United States, the field of mathematics education had been sub-
ject to approximately 10-year cycles of pendulum swings between basic skills and
problem solving. He concluded his chapter with optimism about the continuation of
a movement that many at that time referred to as “the decade of problem solving” in
mathematics education. However, since the time that the 1993 handbook was pub-
lished, the worldwide emphasis on high-stakes testing has ushered in an especially
virulent decade-long return to basic skills.

Assuming that the pendulum of curriculum change again swings back toward
problem solving, the question that mathematics educators should consider is: Have
we learned anything new so that our next initiatives may succeed where past ones
have failed? . . . Consider the following facts.

Polya-style problem solving heuristics—such as draw a picture, work back-
wards, look for a similar problem, or identify the givens and goals—have long
histories of being advocated as important abilities for students to develop (Pôlya
1945). But, what does it mean to “understand” them? Such strategies clearly have
descriptive power. That is, experts often use such terms when they give after-the-
fact explanations of their own problem solving behaviors—or those of other people
that they observe. But, there is little evidence that general processes that experts
use to describe their past problem solving behaviors should also serve well as pre-
scriptions to guide novices’ next-steps during ongoing problem solving sessions.
Researchers gathering data on problem solving have the natural tendency to exam-
ine the data in front of them through the lens of a priori problem solving mod-
els. Although there is great value in doing so, does such an approach really move
problem-solving research forward? If one examines the history of problem solv-
ing research, there have been momentous occasions when researchers have realized
the restricted “heuristic” view of problem solving offered by the existing problem
solving research “toolkits” and have succeeded in re-designing existing models with
more descriptive processes. However the problem remains that descriptive processes
are really more like names for large categories of skills rather than being well de-
fined skills in themselves. Therefore, in attempts to go beyond “descriptive power”
to make such processes more “prescriptive power”, one tactic that researchers and
teachers have attempted is to convert each “descriptive process” into longer lists of
more-restricted-but-also-more-clearly-specified processes. But, if this approach is
adopted, however, then most of what it means to “understand” such processes in-
volves knowing when to use them. So, “higher order” managerial rules and beliefs
need to be introduced which specify when and why to use “lower order” prescriptive
processes. . . . The obvious dilemma that arises is that, on the one hand, short lists of
descriptive processes have appeared to be too general to be meaningful; on the other
hand long lists of prescriptive processes tend to become so numerous that knowing
when to use them becomes the heart of understanding them. Furthermore, adding
more metacognitive rules and beliefs only compounds these two basic difficulties.
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Begle’s (1979) early review of the literature on problem solving concluded that

(N)o clear cut directions for mathematics education are provided by the findings of these
studies. In fact, there are enough indications that problem-solving strategies are both
problem- and student-specific often enough to suggest that hopes of finding one (or a few
strategies) which should be taught to all (or most students) are far too simplistic. (p. 145)

Similarly, Schoenfeld’s (1993) review of the literature concluded that attempts to
teach students to use general problem-solving strategies (e.g., draw a picture, iden-
tify the givens and goals, consider a similar problem) generally had not been suc-
cessful. He recommended that better results might be obtained by (a) developing and
teaching more specific problem-solving strategies (that link more clearly to classes
of problems), (b) studying how to teach metacognitive strategies (so that students
learn to effectively deploy their problem-solving strategies and content knowledge),
and (c) developing and studying ways to eliminate students’ counter-productive be-
liefs while enhancing productive beliefs (to improve students’ views of the nature
of mathematics and problem solving). Schoenfeld’s classroom-based research indi-
cated some measures of success using the preceding approach. But, when assess-
ing these results, one needs to keep in mind that the instruction was implemented
by a world-class teacher who was teaching within a complex and lengthy learning
environment where many different factors were at play. Thus, even though some
indicators of success were achieved, the reasons for success are difficult to sort out.
As Silver (1985) pointed out long ago, even when a particular problem-solving en-
deavor has been shown to be successful in improving problem solving performance,
it is not clear why performance improved. The reason may have nothing to do with
problem solving heuristics.

A decade later, in another extensive review of the literature, Lester and Kehle
(2003) again reported that little progress had been made in problem solving
research—and that problem solving still had little to offer to school practice. Their
conclusions agreed with Silver (1985), who long ago put his finger on what we con-
sider to be the core of the problem in problem solving research. That is, the field
of mathematics education needs to go “beyond process-sequence strings and coded
protocols” in our research methodologies and “simple procedure-based computer
models of performance” to develop ways of describing problem solving in terms of
conceptual systems that influence students’ performance (p. 257).

When a field has experienced more than fifty years of pendulum swings between
two ideologies, both of which both have obvious fundamental flaws, perhaps it’s
time to consider the fact that these are not the only two options that are available.
For example, one alternative to traditional problem solving perspectives is emerging
from research on models & modeling perspectives on mathematics problem solving,
learning and teaching. For the purposes of this chapter, however, the details of mod-
els & modeling perspectives are not important. Instead, what we will emphasize is
that models & modeling perspectives have gone back to re-examine many of the
most fundamental beliefs that have provided the foundations of problem solving re-
search in mathematics education; and, in almost every case, what we have found is
that we need to reconceptualize our most basic notions about the nature of problem
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solving—and about the kind of “mathematical thinking” that is needed for success
beyond school classroom.

Models & modeling perspectives developed out of research on concept devel-
opment more than out of research on problem solving. So, we focus on what it
means to “understand” and on how these understandings develop. We also in-
vestigate how to help students function better in situations where they need to
modify/adapt/extend/refine concepts and conceptual systems that ALREADY ARE
AVAILABLE (at some level of development) rather than trying to help them func-
tion better in situations where relevant ways of thinking are assumed to be LOST
OR MISSING (i.e., What should they do when they’re stuck?).

Summary—Comparing Ideologies, Theories and Models

Having developed only slightly beyond the stage of continuous theory borrowing,
the field of mathematics education currently is engaged in a period in its devel-
opment which future historians surely will describe as something akin to the dark
ages—replete with inquisitions aimed at purging those who don’t vow allegiance to
vague philosophies (e.g., “constructivism”—which virtually every modern theory of
cognition claims to endorse, but which does little to inform most real life decision
making issues that mathematics educators confront and which prides itself on not
generating testable hypotheses that distinguish one theory from another)—or who
don’t pledge to conform to perverse psychometric notions of “scientific research”
(such as pretest/posttest designs with “control groups” in situations where nothing
significant is being controlled, where the most significant achievements are not be-
ing tested, and where the teaching-to-the-test is itself is the most powerful untested
component of the “treatment”) (also states in other chapters by editors).

With the exception of small schools of mini-theory development that occasion-
ally have sprung up around the work a few individuals, most research in mathematics
education appears to be ideology-driven rather than theory-driven or model-driven.

Ideologies are more like religions than sciences; and, the “communities of prac-
tice” that subscribe to them tend to be more like cults than continually adapting and
developing learning communities (or scientific communities).

Their “axioms” are articles of faith that are often exceedingly non-obvious—
and that are supposed to be believed without questioning. So, fatally flawed ideas
repeatedly get recycled.

Their “theorems” aren’t deducible from axioms; and, in general, they aren’t even
intended to inform decision-making by making predictions. Instead, they are in-
tended mainly to be after-the-fact “cover stories” to justify decisions that already
have been made. . . . They are accepted because they lead to some desirable end, not
because they derive from base assumptions.

New ideas (which generally are not encouraged if they deviate from orthodoxy)
are accepted mainly on the basis of being politically correct—as judged by the in-
group of community leaders. So, when basic ideas don’t seem to work, they are
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made more-and-more elaborate—rather than considering the possibility that they
might be fundamentally flawed.

Theories are cleaned up bodies of knowledge that are shared by a community.
They are the kind of knowledge that gets embodied in textbooks. They emphasize
formal/deductive logic, and they usually try to express ideas elegantly using a single
language and notation system.

The development of theory is absolutely essential in order for significant ad-
vances to be made in the thinking of communities (or individuals within them). But,
theories have several shortcomings.

Not everything we know can be collapsed into a single theory. For example,
models of realistically complex situations typically draw on a variety of theories.

Pragmatists (such as Dewey, James, Pierce, Meade, Holmes) argued that it is
arrogant to assume that a single “grand theory” will provide an adequate basis for
decision-making for most important issues that arise in life (Lesh and Sriraman
2005).

• Models are purposeful/situated/easily-modifiable/sharable/re-useable/multi-dis-
ciplinary/multi-media chunks of knowledge.

• Models are both bigger than and much smaller than theories.
• Here are some ways that models are bigger than theories.

– They often (usually) integrate ideas from a variety of theories.
– They often (usually) need to be expressed using a variety of representational

media.
– They are directed toward solving problems (or making decisions) which lie

outside the theories themselves—so the criteria for success lie outside the rel-
evant theories.

• Here are some ways that models are much smaller than theories.
– They are situated. That is, they are created for a specific purpose in a specific

situation. On the other hand, they not only need to be powerful for the this one
specific situations. Models are seldom worth developing unless they also are
intended to be:

– Sharable (with other people)
– Re-useable (in other situations)

• So, one of the most important characteristics of an excellent model is that it should
be easy to modify and adapt.

Concluding Points

The powerful pull of ideology is becoming apparent even in the popular press—and
even with respect to domains of knowledge that have nothing to do with emerging
fields of scientific inquiry. For example, consider George Lakoff’s best selling book,
Don’t Think of an Elephant, which attempts to explain why, in the last presidential
election in the USA, so many citizens clearly voted against their own best interests.
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Fig. 5 A conceptual schematic of MMP’s

. . . Says Lakoff:

People make decisions . . . based on their value systems, and the language and frames that
invoke those values. (p. xii)

Frames are mental structures that shape the way we see the world. (p. xv)

They are . . . structures in our brains that we cannot consciously access, but though we
know by their consequences . . . People think in frames. . . . To be accepted, the truth must
fit people’s frames. If the facts do not fit a frame, the frame stays and the facts bounce
off. . . . Neuroscience tells us that each of the concepts we have—the long-term concepts
that structure how we think—is instantiated in the synapses of our brains. Concepts are not
things that can be changed just by someone telling us a fact. We may be presented with
facts, but for us to make sense of them, they have to fit what is already in the synapses of
the brain. (p. 18)

The experiential world of the 21st century student is characterized by complex
systems such as the internet, multi-medias, sophisticated computing tools, global
markets, virtual realities, access to online educational environments etc. In spite
of the rapidly changing experiential world of today’s student, our approaches to
studying learning are still archaic. As discussed in this paper, setting up contrived
experiments to understand how students’ think/process mathematical content is in-
teresting but conveys a uni-dimensional picture of learning with very limited impli-
cations for pedagogy and for future research. Today’s students are more likely to
be engaged in professions that calls for competencies related to understanding com-
plex real world phenomena, team work, communication and technological skills.
So, in essence there are three kinds of complex systems: (a) “real life” systems
that occur (or are created) in everyday situations, (b) conceptual systems that hu-
mans develop in order to design, model, or make sense of the preceding “real life”
systems, and (c) models that researchers develop to describe and explain students’
modeling abilities. These three types of systems correspond to three reasons why
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the study of complex systems should be especially productive for researchers who
are attempting to advance theory development in the learning sciences. In mathe-
matics and science, conceptual systems that humans develop to make sense of their
experiences generally are referred to as models. A naive notion of models is that
they are simply (familiar) systems that are being used to make sense of some other
(less familiar) systems—for some purpose. For example, a single algebraic equa-
tion may be referred to as a model for some system of physical objects, forces,
and motions. Or, a Cartesian Coordinate System may be referred to as a model of
space—even though a Cartesian Coordinate System may be so large that it seems
to be more like a language for creating models rather than being a single model in
itself. In mathematics and science, modeling is primarily about purposeful descrip-
tion, explanation, or conceptualization (quantification, dimensionalization, coordi-
natization, or in general mathematization)—even though computation and deduction
processes also are involved. Models for designing or making sense of such complex
systems are, in themselves, important “pieces of knowledge” that should be em-
phasized in teaching and learning—especially for students preparing for success in
future-oriented fields that are heavy users of mathematics, science, and technology.
Therefore, we claim that modeling students modeling is the study of a complex liv-
ing system with layers of emerging ideas, sense making and a continuous evolution
of knowledge, which suggests we adopt a phylogenetic approach to modeling the
growth of knowledge and learning. The field of economics is an interesting case
study which reveals paradigmatic shifts in theories from archaic models for simple
agricultural economies to more complicated industrial economies onto the modern
day integration of game theory, evolutionary biology and ecology that characterize
current economic theories. A phylogenetic approach to the study of domain-specific
knowledge has been embraced by linguists, biologists, physicists, political scien-
tists, so why not the learning sciences, which attempts to study the growth of ideas.
The conceptual system that we refer to as models & modeling (see Lesh and English
2005) is not intended to be a grand theory. Instead, it is intended to be a framework
(i.e., a system of thinking together with accompanying concepts, language, method-
ologies, tools, and so on) that provides structure to help mathematics education re-
searchers develop both models and theories (notice that we’ve used plurals here). We
do not strive for orthodoxy. We encourage diversity. But, we also emphasize other
Darwinian processes such as: (b) selection (rigorous testing), (c) communication (so
that productive ways of thinking spread throughout relevant communities), and (d)
accumulation (so that productive ways of thinking are not lost and get integrated
into future developments).
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