

Lecture Notes in Computer Science 5461
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Pil Joong Lee Jung Hee Cheon (Eds.)

Information Security
and Cryptology –
ICISC 2008
11th International Conference
Seoul, Korea, December 3-5, 2008
Revised Selected Papers

13

Volume Editors

Pil Joong Lee
Pohang University of Science and Technology (POSTECH)
Department of Electronic and Electrical Engineering
San 31 Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
E-mail: pjl@postech.ac.kr

Jung Hee Cheon
Seoul National University, Department of Mathematical Sciences
599 Gwanakno, Gwanak-gu, Seoul 151-742, Korea
E-mail: jhcheon@snu.ac.kr

Library of Congress Control Number: Applied for

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, F.2.1, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-00729-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00729-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12631810 06/3180 5 4 3 2 1 0

Preface

ICISC 2008, the 11th International Conference on Information Security and
Cryptology, was held in Seoul, Korea, during December 3–5, 2008. It was orga-
nized by the Korea Institute of Information Security and Cryptology
(KIISC). The aim of this conference was to provide a forum for the presentation
of new results in research, development, and applications in the field of informa-
tion security and cryptology. It also served as a place for research information
exchange.

The conference received 131 submissions from 28 countries, covering all areas
of information security and cryptology. The review and selection processes were
carried out in two stages by the Program Committee (PC) of 62 prominent
researchers via online meetings, using the We-Submission-and-Review software
written by Shai Halevi, IBM. First, at least three PC members blind-reviewed
each paper, and papers co-authored by the PC members were reviewed by at
least five PC members. Second, individual review reports were revealed to PC
members, followed by detailed interactive discussion on each paper. Through this
process, the PC finally selected 26 papers from 14 countries. The acceptance rate
was 19.8%. The authors of selected papers had a few weeks to prepare for their
final versions based on the comments received from more than 136 external
reviewers. These revised papers were not subject to editorial review and the
authors bear full responsibility for their contents.

The conference featured one tutorial and two invited talks. The tutorial was
given by Masayuki Abe from NTT. The invited speakers for two talks were
Vincent Rijmen from K.U.L. & Graz University of Tech and Jong-Deok Choi
from Samsung Electronics.

There are many people who contributed to the success of ICISC 2008. We
would like to thank all the authors who submitted papers to this conference. We
are deeply grateful to all 62 members of the PC members. It was a truly nice
experience to work with such talented and hard-working researchers. We wish to
thank all the external reviewers for assisting the PC in their particular areas of
expertise. Thanks to Shai Halevi for allowing us to use their convenient software.
Finally, we would like to thank all the participants of the conference who made
this event an intellectually stimulating one through their active contribution.

December 2008 Pil Joong Lee
Jung Hee Cheon

ICISC 2008

The 11th Annual International Conference
on Information Security

December 3–5, 2008
Sungkyunkwan University, Seoul, Korea

Organized by
Korea Institute of Information Security and Cryptology (KIISC)

http://www.kiisc.or.kr

In cooperation with
Ministry of Knowledge Economy (MKE)

http://www.mke.go.kr

General Chair

Hong-sub Lee KIISC, Korea

Program Co-chairs

Pil Joong Lee POSTECH, Korea
Jung Hee Cheon Seoul National University, Korea

Program Committee

Joonsang Baek Institute for Infocomm Research, Singapore
Liqun Chen Hewlett-Packard Laboratories, UK
Nicolas T. Courtois University College London, UK
Michel Cukier University of Maryland, USA
Frederic Cuppens Telecom Bretagne, France
Bart De Decker Katholieke Universiteit Leuven, Belgium
Mario Marques Freire University of Beira Interior, Portugal
Philippe Golle Palo Alto Research Center, USA
Guang Gong University of Waterloo, Canada
Vipul Goyal UCLA, USA
Kil-Chan Ha Sejong University, Korea
Eduardo B. Fernandez Florida Atlantic University, USA
Dowon Hong ETRI, Korea
Jin Hong Seoul National University, Korea
Seokhie Hong Korea University, Korea
Stanislaw Jarecki University of California, Irvine, USA
Jaeyeon Jung Intel Research, USA

VIII Organization

Kwangjo Kim ICU, Korea
Yongdae Kim University of Minnesota, Twin Cities, USA
Christopher Kruegel University of California, Santa Barbara, USA
Taekyoung Kwon Sejong University, Korea
Byoungcheon Lee Joongbu University, Korea
Dong Hoon Lee Korea University, Korea
Mun-Kyu Lee Inha University, Korea
Yingjiu Li Singapore Management University, Singapore
Chae Hoon Lim Sejong University, Korea
Javier Lopez University of Malaga, Spain
Keith Martin Royal Holloway, University of London, UK
Sjouke Mauw University of Luxembourg, Luxembourg
Atsuko Miyaji JAIST, Japan
SangJae Moon Kyungpook National University, Korea
David Naccache Ecole Normale Superieure, France
Jesper Buus Nielsen Aarhus University, Denmark
DaeHun Nyang Inha University, Korea
Tatsuaki Okamoto NTT, Japan
Rolf Oppliger eSECURITY Technologies, Switzerland
Paolo D’Arco University of Salerno, Italy
Je Hong Park ETRI, Korea
Sangjoon Park Sungkyunkwan University, Korea
Sangwoo Park ETRI, Korea
Jacques Patarin Versailles University, France
Raphael C.-W. Phan Loughborough University, UK
Bart Preneel Katholieke Universiteit Leuven,Belgium
Jean-Jacques Quisquater UCL, Belgium
Vincent Rijmen K.U.L., Belgium and Graz University of

Technology, Austria
Ahmad-Reza Sadeghi Ruhr University Bochum, Germany
Kouichi Sakurai Kyushu University, Japan
Mahmoud Salmasizadeh Sharif University of Technology, Iran
Palash Sarkar Indian Statistical Institute, India
JungHwan Song Hanyang University, Korea
Rainer Steinwandt Florida Atlantic University, USA
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Future University Hakodate, Japan
Yukiyasu Tsunoo NEC Corporation, Japan
Jozef Vyskoc VaF s.r.o., Slovakia
Sung-Ming Yen National Central University, Taiwan
Jeong Hyun Yi Samsung, Korea
Hyunsoo Yoon KAIST, Korea
Dae Hyun Yum POSTECH, Korea
Moti Yung Google Inc. and Columbia University, USA
Fangguo Zhang Google Inc. and Columbia University, USA
Alf Zugenmaier DoCoMo Euro-Labs, Germany

Organization IX

Organizing Chair

Seungjoo Kim Sungkyunkwan University, Korea

Organizing Committee

Dong Kyue Kim Hanyang University. Korea
Ki Young Moon ETRI, Korea
Chang-Seop Park Dankook University, Korea
Young Ik Eom Sungkyunkwan University, Korea
Heekuck Oh Hanyang University, Korea
Dong Hoon Lee Korea University, Korea
Im-Yeong Lee Soonchunhyang University, Korea

External Reviewers

Frederik Armknecht
Maryam Rajabzadeh

Assar
Man Ho Au
Jean-Philippe Aumasson
Fabien Autrel
Behnam Bahrak
Shane Balfe
Lejla Batina
Aurelie Bauer
Robin Berthier
Jean-Luc Beuchat
Annalisa De Bonis
Antoon Bosselaers
Yacine Bouzida
Wouter Castryck
Dario Catalano
Donghoon Chang
Ku Young Chang
Byong-Deok Choi
Jae Tark Choi
Jeong Woon Choi
Sherman Chow
Danielle Chrun
Carlos Cid
Ed Condon
Nora Cuppens-Boulahia
M. Prem Laxman Das

Ton van Deursen
Gwenael Doerr
Dang Nguyen Duc
Thomas Eisenbarth
Yehia Elrakaiby
Jonathan Etrog
Kazuhide Fukushima
Xinxin Fan
Joaquin Garcia-Alfaro
Benedikt Gierlichs
Henri Gilbert
Yoshiaki Hori
JaeCheul Ha
Daewan Han
Honggang Hu
Xinyi Huang
Junbeom Hur
Jung Yeon Hwang
Sebastiaan Indesteege
Hoda Jannati
Keith Jarrin
Ikrae, Jeong
Nam-su Jho
Takeshi Kawabata
Chano Kim
Jihye Kim
Jongsung Kim
Takayuki Kimura

Divyan M. Konidala
Heejin Park
Hiroyasu Kubo
Jeong Ok Kwon
Jorn Lapon
HoonJae Lee
Ji-Seon Lee
JongHyup Lee
Jun Ho Lee
Jung-Keun Lee
Kwangsu Lee
Minsoo Lee
Youngsook Lee
Jin Li
Wei-Chih Lien
Hsi-Chung Lin
Kuan-Jen Lin
Hans Loehr
Carolin Lunemann
Florian Mendel
Hideyuki Miyake
Abedelaziz Mohaisen
Amir Moradi
Tomislav Nad
Vincent Naessens
Akira Nozawa
Satoshi Obana
Chihiro Ohyama

X Organization

Katsuyuki Okeya
Claudio Orlandi
Kyosuke Osaka
Omkant Pandey
Jun Pang
Chanil Park
Hyun-A Park
YongSu Park
Young-Ho Park
Axel Poschmann
Roberto De Prisco
Sasa Radomirovic
Christian Rechberger
Mohammad Reza

Reyhanitabar
Chunhua Su
Minoru Saeki

Teruo Saito
Somitra Kumar

Sanadhya
Riccardo Scandariato
Martin Schläffer
Jae Woo Seo
Maki Shigeri
Masaaki Shirase
Haya Shulman
Masakazu Soshi
Miroslava Sotakova
Takahiko Syouji
Tamer
Julien Thomas
Joe-Kai Tsay
Etsuko Tsujihara
Frederik Vercauteren

Pieter Verhaeghe
Ivan Visconti
Camille Vuillaume
Christian Wachsmann
Yamin Wen
Jian Weng
Bo-Ching Wu
Chi-Dian Wu
Lingling Xu
OkYeon Yi
Yves Younan
Ng Ching Yu
Aaram Yun
Chang-An Zhao
Xingwen Zhao
Tieyan Li

Sponsoring Institutions

BCQRE
Chungnam National University Internet Intrusion Response Technology

Research Center (CNU IIRTRC), Korea
Electronics and Telecommunications Research Institute (ETRI), Korea
IglooSecurity, Korea
Korea Electronics Technology Institute (KETI), Korea
Korea Information Security Agency (KISA), Korea
BK21 Information Security in Ubiquitous Environment, Korea
Mobile Network Security Technology Research Center (MSRC), Korea
LG-CNS, Korea
LOTTE Data Communication Company, Korea
SNU-BK21 Mathematical Sciences Division, Korea
Sungkyunkwan University Authentication Technology Research Center

(SKKU ARTC), Korea

Table of Contents

Public Key Encryption

Simple CCA-Secure Public Key Encryption from Any Non-Malleable
Identity-Based Encryption . 1

Takahiro Matsuda, Goichiro Hanaoka, Kanta Matsuura, and
Hideki Imai

Distributed Attribute-Based Encryption . 20
Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert

Improved Partial Key Exposure Attacks on RSA by Guessing a Few
Bits of One of the Prime Factors . 37

Santanu Sarkar and Subhamoy Maitra

Simple Algorithms for Computing a Sequence of 2-Isogenies 52
Reo Yoshida and Katsuyuki Takashima

Key Management and Secret Sharing

Survival in the Wild: Robust Group Key Agreement in Wide-Area
Networks . 66

Jihye Kim and Gene Tsudik

Visual Secret Sharing Schemes with Cyclic Access Structure for Many
Images . 84

Miyuki Uno and Mikio Kano

Privacy and Digital Rights

The Swiss-Knife RFID Distance Bounding Protocol 98
Chong Hee Kim, Gildas Avoine, François Koeune,
François-Xavier Standaert, and Olivier Pereira

Protecting Location Privacy through a Graph-Based Location
Representation and a Robust Obfuscation Technique 116

Jafar Haadi Jafarian, Ali Noorollahi Ravari, Morteza Amini, and
Rasool Jalili

Anonymous Fingerprinting for Predelivery of Contents 134
Kazuhiro Haramura, Maki Yoshida, and Toru Fujiwara

Instruction Set Limitation in Support of Software Diversity 152
Bjorn De Sutter, Bertrand Anckaert, Jens Geiregat,
Dominique Chanet, and Koen De Bosschere

XII Table of Contents

Digital Signature and Voting

Non-interactive Identity-Based DNF Signature Scheme and Its
Extensions . 166

Kwangsu Lee, Jung Yeon Hwang, and Dong Hoon Lee

How to Balance Privacy with Authenticity . 184
Pairat Thorncharoensri, Willy Susilo, and Yi Mu

Efficient Vote Validity Check in Homomorphic Electronic Voting 202
Kun Peng and Feng Bao

Side Channel Attack

Secure Hardware Implementation of Non-linear Functions in the
Presence of Glitches . 218

Svetla Nikova, Vincent Rijmen, and Martin Schläffer

Novel PUF-Based Error Detection Methods in Finite State Machines . . . 235
Ghaith Hammouri, Kahraman Akdemir, and Berk Sunar

Partition vs. Comparison Side-Channel Distinguishers: An Empirical
Evaluation of Statistical Tests for Univariate Side-Channel Attacks
against Two Unprotected CMOS Devices . 253

François-Xavier Standaert, Benedikt Gierlichs, and
Ingrid Verbauwhede

Hash and MAC

A Single-Key Domain Extender for Privacy-Preserving MACs and
PRFs . 268

Kan Yasuda

Extended Models for Message Authentication . 286
Liting Zhang, Wenling Wu, and Peng Wang

A Preimage Attack for 52-Step HAS-160 . 302
Yu Sasaki and Kazumaro Aoki

Primitives and Foundations

Essentially Optimal Universally Composable Oblivious Transfer 318
Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi

Generalized Universal Circuits for Secure Evaluation of Private
Functions with Application to Data Classification . 336

Ahmad-Reza Sadeghi and Thomas Schneider

Table of Contents XIII

Proving a Shuffle Using Representations of the Symmetric Group 354
Soojin Cho and Manpyo Hong

On Formal Verification of Arithmetic-Based Cryptographic
Primitives . 368

David Nowak

Block and Stream

A New Technique for Multidimensional Linear Cryptanalysis with
Applications on Reduced Round Serpent . 383

Joo Yeon Cho, Miia Hermelin, and Kaisa Nyberg

Almost Fully Optimized Infinite Classes of Boolean Functions Resistant
to (Fast) Algebraic Cryptanalysis . 399

Enes Pasalic

Higher Order Differential Attacks on Reduced-Round MISTY1 415
Yukiyasu Tsunoo, Teruo Saito, Maki Shigeri, and Takeshi Kawabata

Author Index . 433

Simple CCA-Secure Public Key Encryption from
Any Non-Malleable Identity-Based Encryption

Takahiro Matsuda1, Goichiro Hanaoka2, Kanta Matsuura1, and Hideki Imai2,3

1 The University of Tokyo, Tokyo, Japan
{tmatsuda,kanta}@iis.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
{hanaoka-goichiro,h-imai@}@aist.go.jp

3 Chuo University, Tokyo, Japan

Abstract. In this paper, we present a simple and generic method for
constructing public key encryption (PKE) secure against chosen cipher-
text attacks (CCA) from identity-based encryption (IBE). Specifically,
we show that a CCA-secure PKE scheme can be generically obtained by
encrypting (m||r) under identity “f(r)” with the encryption algorithm
of the given IBE scheme, assuming that the IBE scheme is non-malleable
and f is one-way. In contrast to the previous generic methods (such as
Canetti-Halevi-Katz), our method requires stronger security for the un-
derlying IBE schemes, non-malleability, and thus cannot be seen as a
direct improvement of the previous methods. However, once we have an
IBE scheme which is proved (or can be assumed) to be non-malleable,
we will have a PKE scheme via our simple method, and we believe that
the simpleness of our proposed transformation itself is theoretically in-
teresting. Our proof technique for security of the proposed scheme is also
novel. In the security proof, we show how to deal with certain types of
decryption queries which cannot be handled by straightforwardly using
conventional techniques.

Keywords: public key encryption, identity-based encryption, IND-CCA
security, non-malleability, NM-sID-CPA security.

1 Introduction

1.1 Background

Studies on constructing and understanding efficient public key encryption (PKE)
schemes secure against chosen ciphertext attacks (CCA) [42,21] are important
research topics in the area of cryptography.

In [15], Canetti, Halevi, and Katz showed a generic construction of CCA
secure PKE schemes from any semantically secure identity-based encryption
(IBE) and one-time signature. This construction is fairly simple, and specifically,
its ciphertext consists of (χ, vk, σ) where χ is a ciphertext of the underlying IBE
scheme (under identity “vk”), vk is a verification key of a one-time signature
scheme, and σ is a valid signature of χ (under verification key vk). However,

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 1–19, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 T. Matsuda et al.

due to the use of a one-time signature, ciphertext length of the resulting scheme
becomes longer than that of the underlying IBE scheme for |vk| and |σ|, which
might result in significantly large ciphertexts. This method was later improved
by Boneh and Katz [11], but its ciphertext length is still not sufficiently short
compared with existing practical CCA secure PKE schemes, e.g. [19,32].

Hence, it is still desired to further shorten ciphertext length of the Canetti-
Halevi-Katz (CHK) transformation without loosing generality.

1.2 Our Contribution

In this paper, we present a new simple IBE-to-PKE transformation which is
fairly generic and practical. In contrast to the previous transformations [15,11]
which require semantic security [26] for the underlying IBE scheme, our proposed
method requires non-malleability [21].

Informally, for a given IBE scheme IBE, we generate a ciphertext χ of a PKE
scheme which is converted from IBE via our method as follows:

χ = 〈f(r), IBE.Enc(prm, “f(r)”, (m||r))〉,

where the second component is an encryption of (m||r) with the encryption al-
gorithm of IBE under the identity “f(r)”, and f is a one-way function (OWF). 1

It should be noticed that only a OWF is directly used as an additional building
block and thus fairly simple while in [15,11] more complicated tools, e.g. one-
time signatures, are required (though these tools can be obtained from OWFs
in theory). As seen in the above construction, ciphertext overhead of our con-
struction is that of IBE plus |r|+ |f(r)| = (256-bit) for 128-bit security, and this
is fairly efficient compared to the Boneh-Katz (BK) construction [11].

An obvious and crucial disadvantage of our proposed transformation is that it
requires a stronger assumption for the underlying IBE scheme, non-malleability.
It is well known that non-malleability is a significantly stronger notion of security
than semantic security, and in fact, except for CCA secure IBE schemes, no
practical non-malleable IBE scheme is currently known. 2 Thus, we have to
honestly remark that our proposal cannot be seen as a direct improvement of the
previous generic IBE-to-PKE transformations [15,11]. However, once we have an
IBE scheme which is proved (or can be assumed) to be non-malleable, an efficient
CCA secure PKE scheme can be immediately obtained via our transformation.
Also, we believe that the simpleness of our transformation itself is theoretically
interesting.

Our proof technique for the proposed method will be of another theoretical
interest. Since in the security proof, there exists a non-trivial issue which can-
not be treated by straightforward application of known techniques, we have to
concurrently carry out a totally different proof strategy. Hence, we develop a
dedicated proof technique for handling two different strategies simultaneously.
1 Details of the notations are explained in Section 2.
2 In theory, it is possible to construct non-malleable IBE schemes generically from any

semantically secure IBE schemes (while it is not known how to generically construct
CCA secure IBE schemes). We discuss this in the full version of our paper.

Simple CCA-Secure PKE from Any Non-Malleable IBE 3

Though there are several definitions for non-malleability so far [21,2,6,39,1],
non-malleability of IBE our transformation requires is the weakest among them,
i.e, (comparison-based) non-malleability against selective identity, chosen plain-
text attacks (NM-sID-CPA security).

1.3 Related Works

CCA Security of PKE. The notion of CCA security of PKE scheme was first
introduced by Naor and Yung [37] and later extended by Rackoff and Simon [42]
and Dolev, Dwork, and Naor [21]. Naor and Yung [37] proposed a generic con-
struction of non-adaptive CCA secure PKE schemes from semantically secure
PKE schemes, using non-interactive zero knowledge proofs which yield ineffi-
cient and complicated structure and are not practical. Based on the Naor-Yung
paradigm, some generic constructions of fully CCA secure PKE schemes were
also proposed [21,43,33]. The first practical CCA secure PKE scheme is proposed
by Cramer and Shoup [19], and they also generalized their method as universal
hash proof technique [20] as well as some other instantiations of it. Kurosawa
and Desmedt [32] further improved efficiency of the Cramer-Shoup scheme.

In [15], Canetti, Halevi, and Katz proposed a novel methodology for achieving
CCA security (see below), and from this methodology some practical CCA secure
PKE schemes are also produced, e.g. [12].

Recently, Peikert and Waters [41] proposed yet another paradigm to obtain
CCA secure PKE schemes using a new primitive called lossy trapdoor functions.

In the random oracle methodology [3], several generic methodologies (e.g.,
[4,22,38]) and concrete practical schemes are known. However, since the results
from several papers, such as [13], have shown that this methodology has some
problem, in this paper we focus only on the constructions in the standard model.

IBE and the CHK Transformation. As mentioned above, one promising approach
for constructing CCA secure PKE schemes is to transform an IBE scheme via
the CHK paradigm. Here, we briefly review IBE schemes and applications of the
CHK paradigm.

The concept of the identity-based encryption was introduced by Shamir [46].
Roughly speaking, an IBE scheme is a PKE scheme where one can use an arbi-
trary string (e.g., an email address) as one’s public key. Boneh and Franklin [10]
proposed a first efficient scheme (in the random oracle model) as well as the
security models for IBE schemes. Sakai, Ohgishi, and Kasahara [44] indepen-
dently proposed an IBE scheme with basically the same structure as the Boneh-
Franklin IBE scheme (without proper security discussions). In the same year,
Cocks [18] also proposed an IBE scheme based on the decisional quadratic resid-
uosity problem. Horwitz and Lynn [28] introduced a notion of the hierarchical
IBE (HIBE) which supports hierarchical structure of identities and Gentry and
Silverberg [25] achieved the first scheme in the random oracle model. Canetti,
Halevi, and Katz [14] introduced a weaker security model called selective iden-
tity security, and proposed an IBE scheme with this security without using
random oracles. Boneh and Boyen [8] proposed two efficient selective identity

4 T. Matsuda et al.

secure IBE schemes in the standard model, and following this work, Boneh and
Boyen [9] and Waters [47] proposed fully secure IBE schemes. Based on the Wa-
ters scheme (and thus based on the Boneh-Boyen scheme), many variants are
proposed [35,17,30,16,45,31]. Gentry [24] proposed a practical IBE scheme which
provides tight security reduction as well as anonymity of identities. A variant of
this scheme was proposed in [31].

Canetti, Halevi, and Katz [15] proposed a generic method for obtaining CCA
secure PKE schemes. Following [15], there have been some attempts to construct
practical CCA secure PKE schemes by using specific algebraic properties of
underlying IBE schemes, and especially, based on this approach Boyen, Mei,
and Waters [12] proposed the currently best known CCA secure PKE schemes
in terms of ciphertext length by using certain specific IBE schemes [8,47]. Boneh
and Katz [11] improved the efficiency of [15]. Kiltz [29] showed that the CHK
paradigm can be generically applied to tag-based encryption (TBE) schemes [34],
which are weaker primitives than IBE schemes.

2 Preliminaries

Here, we review the definitions of the terms and security used in this paper.

Notations. In this paper, “x← y” denotes that x is chosen uniformly at random
from y if y is a set or x is output from y if y is a function or an algorithm. “x||y”
denotes a concatenation of x and y. “|x|” denotes the size of the set if x is a
finite set or bit length of x if x is an element of some set. “x-LSB(y)” denotes
x-least significant bits of y. For simplicity, in most cases we drop the security
parameter (1κ) for input of the algorithms considered in this paper.

2.1 Public Key Encryption

A public key encryption (PKE) scheme Π consists of the following three (prob-
abilistic) algorithms:

PKE.KG: A key generation algorithm that takes 1κ (security parameter κ) as
input, and outputs a pair of a secret key sk and a public key pk.

PKE.Enc: An encryption algorithm that takes a public key pk and a plaintext
m ∈M as input, and outputs a ciphertext χ ∈ X .

PKE.Dec: A decryption algorithm that takes a secret key sk and a ciphertext χ
as input, and outputs a plaintext m ∈ M∪ {⊥}.

where M and X are a plaintext space and a ciphertext space of Π , respectively.
We require PKE.Dec(sk, PKE.Enc(pk, m)) = m hold for all (sk, pk) output from
PKE.KG and all m ∈ M.

IND-CCA Security. Indistinguishability against adaptive chosen ciphertext at-
tacks (IND-CCA) of a PKE scheme Π is defined using the following IND-CCA
game between an adversary A and the IND-CCA challenger C:

Simple CCA-Secure PKE from Any Non-Malleable IBE 5

Setup. C runs PKE.KG(1κ) and obtains a pair of sk and pk. C gives pk to A
and keeps sk to itself.

Phase 1. A can adaptively issue decryption queries (χ1, χ2, . . . , χq1) to C (at
most q1 times). C responds to each query χi by running PKE.Dec(sk, χi) to
obtain mi ∈M∪ {⊥} and returning mi to A.

Challenge. A chooses two distinct plaintexts (m0, m1) of equal length and
sends them to C. C flips a coin bC ∈ {0, 1} uniformly at random, computes
a challenge ciphertext χ∗ ← PKE.Enc(pk, mbC), and sends χ∗ to A.

Phase 2. A can issue decryption queries in the same way as Phase 1 (at most
q2 times), except that A is not allowed to issue χ∗ as a decryption query.

Guess. A outputs a bit bA as its guess for bC .

Let qD = q1 + q2 be the number of A’s decryption queries. We define the IND-
CCA advantage of A attacking Π as: AdvIND-CCA

Π,A = |Pr[bA = bC]− 1
2 |.

Definition 1. We say that a PKE scheme Π is (t, qD, ε)-IND-CCA secure if
we have AdvIND-CCA

Π,A ≤ ε for any algorithm A running in time less than t and
making at most qD decryption queries.

2.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme Π consists of the following four
(probabilistic) algorithms.

IBE.Setup: A setup algorithm that takes 1κ (security parameter κ) as input, and
outputs a pair of a master secret key msk and global parameters prm.

IBE.Ext: A key extraction algorithm that takes global parameters prm, a master
secret key msk, and an identity ID ∈ I as input, and outputs a decryption
key dID corresponding to ID.

IBE.Enc: An encryption algorithm that takes global parameters prm, an identity
ID ∈ I, and a plaintext m ∈M as input, and outputs a ciphertext χ ∈ X .

IBE.Dec: A decryption algorithm that takes a decryption key dID and a cipher-
text χ as input, and outputs a plaintext m ∈M∪ {⊥}.

whereI,M, andX are an identity space, a plaintext space anda ciphertext space of
Π , respectively.We require IBE.Dec(IBE.Ext(prm, msk, ID), IBE.Enc(prm, ID, m))=
m hold for all (msk, prm) output from IBE.Setup, all ID ∈ I, and all m ∈ M.

NM-sID-CPA Security. Non-malleability against selective identity, chosen plain-
text attacks (NM-sID-CPA) of an IBE scheme Π is defined using the following
NM-sID-CPA game between an adversary A and the NM-sID-CPA challenger C:

Init. A commits the target identity ID∗.
Setup. C runs IBE.Setup(1κ) and obtains a pair of msk and prm. C gives prm to

A and keeps msk to itself.
Phase 1. A can adaptively issue extraction queries (ID1, ID2, . . . , IDq1) to C

(at most q1 times), except that A is not allowed to issue the target iden-
tity ID∗ as an extraction query. C responds to each query IDi by running
IBE.Ext(prm, msk, IDi) to obtain dIDi and returning dIDi to A.

6 T. Matsuda et al.

Challenge. A chooses a probabilistic distribution over an arbitrary subset of
the plaintext space M∗(⊆M) where all elements in M∗ are of equal length,
and sendsM∗ to C. C chooses m∗ and m∗̄ inM∗ according to its distribution,
computes a challenge ciphertext χ∗ ← IBE.Enc(prm, ID∗, m∗), sends χ∗ to A,
and keeps m∗̄ to itself. 3

Phase 2. A can issue extraction queries in the same way as Phase 1 (at most
q2 times).

Output. A outputs a vector of ciphertexts −→χ ′ = (χ′
1, χ

′
2, . . . , χ

′
l), where each

χ′
i is an encryption of m′

i under the target identity ID∗ (i.e., χ′
i ← IBE.Enc

(prm, ID∗, m′
i) for 1 ≤ i ≤ l), and a description of a relation R(·, ·) of arity

(l + 1), where the first input is a scalar and the second input is a vector of
length l where l is polynomial in κ. C runs dID∗ ← IBE.Ext(prm, msk, ID∗) to
obtain dID∗ , decrypts all elements in −→χ ′ by running m′

i ← IBE.Dec(dID∗ , χ′
i)

for 1 ≤ i ≤ l, and obtains −→m′ = (m′
1, m

′
2, . . . , m

′
l).

Let qE = q1 + q2 be the number of A’s extraction queries. We define R∗ as
an event that [χ∗ /∈ −→χ ′ ∧ ⊥ /∈ −→m′ ∧ R(m∗,−→m′) = true]. We also define R∗̄ in
the same way as R∗ except that m∗ is replaced with m∗̄. We then define the
NM-sID-CPA advantage of A attacking Π as: AdvNM-sID-CPA

Π,A = Pr[R∗]−Pr[R∗̄].

Definition 2. We say that an IBE scheme Π is (t, qE , ε)-NM-sID-CPA secure
if we have AdvNM-sID-CPA

Π,A ≤ ε for any algorithm A running in time less than t
and making at most qE extraction queries.

Remark. NM-sID-CPA security of an IBE scheme we use in this paper is from
[23,1]. This type of non-malleability is called comparison-based non-malleability
[6,7], which was first introduced in [2] for PKE schemes and shown to be equiv-
alent to or weaker than simulation-based non-malleability [21] depending on
attacks. Note that our definition of the NM-sID-CPA game does not allow the
adversary to output invalid ciphertexts (which decrypt to ⊥). It was shown in
[40] that this non-malleability is, depending on attacks, equivalent to or weaker
than the one where the adversary is allowed to output invalid ciphertexts. More-
over, it was shown in [23] that the selective identity security is strictly weaker
than adaptive identity security for IBE schemes. Thus, in summary, NM-sID-
CPA security we use is the weakest among non-malleability for IBE schemes
considered so far.

2.3 One-Way Function

Let f : D → R be a function. (In this paper, we only consider the case where
all elements in D and R are of equal length.) We define the advantage of an
adversary A against one-wayness of f as follows:

AdvOW
f,A = Pr[x ← D; y ← f(x); x′ ← A(f, y) : f(x′) = y].

3 Without loss of generality, we assume |M∗| ≥ 2 and m∗ and m∗̄ are always distinct.
The reason why we can assume this is similar to the case of the indistinguishability
games where we can assume that an adversary always outputs two distinct messages
in Challenge phase. For more details, see [2].

Simple CCA-Secure PKE from Any Non-Malleable IBE 7

Definition 3. We say that f is a (t, ε)-one-way function (OWF) if we have
AdvOW

f,A ≤ ε for any algorithm A running in time less than t.

3 Proposed Transformation

In this section, we give the details of the construction of our simple IBE-to-PKE
transformation from any NM-sID-CPA secure IBE scheme.

The idea behind the construction is as follows. Suppose f is a OWF. In our
construction, a randomness r is encrypted as a part of a plaintext of the under-
lying non-malleable IBE scheme using f(r) as an identity. In the decryption, the
relation between r and f(r) is then used to check the validity of the ciphertext.
Constructed like this, it seems hard to make a valid ciphertext without know-
ing the exact value of r. Moreover, due to non-malleability of the IBE scheme
and one-wayness of f , an adversary given a target ciphertext cannot make any
alternation on it with keeping the consistency of r and f(r).

3.1 Construction

Let Π = (IBE.Setup, IBE.Ext, IBE.Enc, IBE.Dec) be a non-malleable IBE scheme
and f : {0, 1}γ → I be a OWF, where I is the identity space of Π . Then
we construct a PKE scheme Π ′ = (PKE.KG, PKE.Enc, PKE.Dec) as in Fig. 1.
Suppose the plaintext space of Π ′ is MΠ′ , then we require that the plaintext
space MΠ of the underlying IBE scheme Π satisfy MΠ′ × {0, 1}γ ⊆ MΠ . We
also require that length of all elements in I, the output space of f as well as
the identity space of Π , be of equal length and fixed. Typically, length γ of the
randomness will be the security parameter κ.

In terms of the construction of the transformation, ours is fairly simpler com-
pared to other generic IBE-to-PKE transformations [15,11], since only a OWF
f , the weakest primitive, is directly used as an additional building block.

3.2 Security

Before going into a formal security proof, we give an intuitive explanation on how
CCA security is proved. In the securityproof, we construct a simulatorwhichbreaks
NM-sID-CPA security using an IND-CCA adversary attacking the PKE scheme
Π ′. The simulator’s task is to output a ciphertext y′ and a relation R such that R
holds between the plaintext of y′ and that of simulator’s challenge ciphertext y∗.

Roughly, the proof strategy of the previous generic IBE-to-PKE transforma-
tions [15,11] is that the decryption queries encrypted under identities different
from the target identity of the simulator are responded perfectly due to simula-
tor’s own extraction queries, and the probability that an adversary issues a valid
ciphertext under the target identity as a decryption query is bounded due to the
properties of the underlying building blocks.

This “previous strategy” seems to work in our proof. But it is not sufficient
because there seems to be a chance for the adversary to confuse our simulator by
submitting a decryption query of the form 〈f(r∗), y〉 where f is a OWF, f(r∗) is

8 T. Matsuda et al.

PKE.KG(1κ) :
(msk, prm)← IBE.Setup(1κ)
Pick a OWF f .
SK ← msk, PK ← (prm, f)
Output (SK, PK).

PKE.Enc(PK, m) :
r ← {0, 1}γ ; ID← f(r)
y ← IBE.Enc(prm, ID, (m||r))
χ← 〈ID, y〉
Output χ.

PKE.Dec(SK, χ) :
Parse χ as 〈ID, y〉.; dID ← IBE.Ext(prm, msk, ID)
(m||r) / ⊥ ← IBE.Dec(dID, y) (if ⊥ then output ⊥ and stop.)
Output m if f(r) = ID. Otherwise output ⊥.

Fig. 1. The Proposed IBE-to-PKE Transformation

submitted as a simulator’s target identity, and y �= y∗. Seeing such a query, the
simulator cannot tell whether it is a valid ciphertext or not and only it can do
is to return “⊥”. If this query is a valid ciphertext, then the simulation for the
adversary becomes imperfect by the improper response ⊥ (if this is not the case,
then the simulation is still perfect). However, notice that if the ciphertext of the
form 〈f(r∗), y〉 where y �= y∗ is valid, then the simulator can break NM-sID-CPA
security by outputting y with a relation such that “the |r∗|-significant bits are
mapped to the same value by f .” Namely, suppose y is an encryption of (mA||rA)
under the target identity “f(r∗)”, then a valid ciphertext satisfies f(rA) = f(r∗),
which can be used for the relation R. (We call this “new strategy”.)

The difficult point is that the simulator cannot know whether the decryption
query under the target identity is a valid ciphertext or not when the adversary
issues such a query. Therefore, we further show how to handle both the “previ-
ous” and “new” strategies so that our simulator can always gain the advantage
of breaking NM-sID-CPA security from the adversary’s IND-CCA advantage.

Theorem 1. If the underlying IBE scheme Π is (t, q, εnm)-NM-sID-CPA secure
and f is a (t, εow)-OWF, then the proposed PKE scheme Π ′ is (t, q, 2q(εnm +
εow))-IND-CCA secure.

Proof. Suppose A is an adversary that breaks (t, q, εcca)-IND-CCA security of
Π ′, which means that A with running time t makes at most q decryption queries
and wins the IND-CCA game with probability 1

2 + εcca. Then we construct a
simulator S who can break (t, q, 1

2q εcca − εow)-NM-sID-CPA security of the
underlying IBE scheme Π using A and the (t, εow)-OWF f . We use the weakest
case of NM-sID-CPA security where an attacker outputs a binary relation R
and only a single ciphertext y′ in Output phase, because it is sufficient for our
proof. Without loss of generality, we assume q > 0. Our simulator S, simulating
the IND-CCA game for A, plays the NM-sID-CPA game with the NM-sID-CPA
challenger C as follows.

Setup. S generates a public key for A as follows. Pick a OWF f . Choose r∗ ∈
{0, 1}γ uniformly at random and compute ID∗ ← f(r∗). Commit ID∗ as
S’s target identity in the NM-sID-CPA game and obtain prm from C. Give
PK = (prm, f) to A.

Simple CCA-Secure PKE from Any Non-Malleable IBE 9

Phase 1. S responds to A’s decryption queries χi = 〈IDi, yi〉i∈{1,...,q1} by re-
turning mi generated depending on IDi as follows.
If IDi = ID∗: Set mi = ⊥.
Otherwise: Issue IDi as an extraction query to C and obtain dIDi

. Compute
IBE.Dec(dIDi

, yi) and set mi = ⊥ if the decryption result is ⊥. Otherwise,
check whether f(ri) = IDi holds or not for the decryption result (mi||ri).
If this holds, then this mi is used as a response to A, otherwise, set
mi = ⊥.

Challenge. When A submits (m0, m1) to S, S returns the challenge ciphertext
χ∗ to A generated as follows. Flip a coin bS ∈ {0, 1} uniformly at random.
Choose a random message m′ ∈ MΠ′ (equal length to mbS). Choose r′ ∈
{0, 1}γ uniformly at random. Set MbS = (mbS ||r∗) and M1−bS = (m′||r′)
∈ MΠ . Define M∗

Π as a uniform distribution over {M0, M1}. Submit M∗
Π

to C as S’s challenge and obtain y∗ from C. Give χ∗ = 〈ID∗, y∗〉 to A.
Phase 2. S responds to A’s decryption queries in the same way as Phase 1.
Guess. A outputs bA. S outputs a ciphertext y′ and a description of a relation

R depending on bA as follows.
If bA = bS: Set a binary relation R(·, ·) as “R(a, b) = true iff γ-LSB(a) =

γ-LSB(b).” Pick m′′ ∈ MΠ′ (equal length to mbS) randomly. Choose r′′ ∈
{0, 1}γ uniformly at random. Flip a biased coin bα ∈ {0, 1} where bα = 1
holds with probability α. If bα = 1, compute y′ ← IBE.Enc(prm, ID∗,
(m′′||r∗)), otherwise compute y′ ← IBE.Enc(prm, ID∗, (m′′||r′′)).

Otherwise: Set a binary relation R(·, ·) as “R(a, b)=true iff f(γ-LSB(a))=
f(γ-LSB(b)).” Pick uniformly one ciphertext χi in A’s decryption queries
{χj = 〈IDj , yj〉}j∈{1,...,q} and set y′ = yi.

We remain probability α unknown here, and discuss later in this proof. Note
that Pr[bα = 1] = α and Pr[bα = 0] = 1 − α, according to our definition. Note
also that the description of the relation R that S uses is different depending on
A’s guess bit bA.

Next, we estimate S’s NM-sID-CPA advantage AdvNM-sID-CPA
Π,S . In our con-

struction of S, S’s challenge M∗
Π is always a uniform distribution over two

messages. Thus, for convenience, we assume that the NM-sID-CPA challenger
C flips its own coin bC ∈ {0, 1} uniformly at random and chooses MbC as
a challenge message M∗ (and M1−bC as M ∗̄) in Challenge phase. Note that
Pr[bS = bC] = Pr[bS �= bC] = 1

2 holds since bC and bS are independent. Note
also that S’s simulation for A becomes imperfect if [bS �= bC] occurs, since with
overwhelming probability the challenge ciphertext given to A is not an encryp-
tion of either of (m0, m1) submitted by A.

We say that a ciphertext χ is valid if χ decrypts to an element in the plaintext
space MΠ′ (i.e., not ⊥) according to the decryption process of Π ′. Let Valid be
an event that A issues a decryption query which forms χ = 〈ID∗, y〉 and is valid.
Note that S’s simulation for A becomes imperfect if Valid occurs, because in this
case S cannot return an appropriate plaintext to A.

We also note that throughout the simulation S cannot know whether [bS �= bC]
and Valid have occurred or not.

10 T. Matsuda et al.

In the following, we consider six cases depending on bA, bS , bC , and Valid:

– Case 1: bA = bS ∧ bS = bC ∧ Valid
– Case 2: bA = bS ∧ bS = bC ∧ Valid
– Case 3: bA = bS ∧ bS �= bC

– Case 4: bA �= bS ∧ bS = bC ∧ Valid
– Case 5: bA �= bS ∧ bS = bC ∧ Valid
– Case 6: bA �= bS ∧ bS �= bC

These cases cover all possibilities. Let [i©] denotes an event that Case i occurs.
We denote S’s advantage in Case i as Advi and define it as: Advi = Pr[R∗ ∧
i©]−Pr[R∗̄ ∧ i©] = (Pr[R∗| i©]−Pr[R∗̄| i©]) ·Pr[i©], where R∗ and R∗̄ are defined
in Section 2.2. According to the definition of the NM-sID-CPA advantage, we
obviously have AdvNM-sID-CPA

Π,S =
∑6

i=1 Advi.
Now, we introduce the following lemmas.4 In the following, just for notational

convenience, we define two conditional probabilities Pv = Pr[Valid|bS = bC] and
Pk = Pr[bA = bS |bS = bC ∧ Valid], and use them for describing the lemmas.

Lemma 1. Adv1 ≥ 1
2α(1

2 + εcca)(1 − Pv)− 1
2γ Pr[1©].

Lemma 2. Adv2 ≥ 1
2αPkPv − 1

2γ Pr[2©].

Lemma 3. Adv3 ≥ − 1
4α− 1

2γ Pr[3©].

Lemma 4. Adv4 ≥ −εow Pr[4©].

Lemma 5. Adv5 ≥ 1
2q (1 − Pk)Pv − εow Pr[5©].

Lemma 6. Adv6 ≥ −εow Pr[6©].

Then, before proving the lemmas, we first calculate AdvNM-sID-CPA
Π,S .

AdvNM-sID-CPA
Π,S =

6∑
i=1

Advi

≥ 1
2
α(

1
2

+ εcca)(1 − Pv) +
1
2
αPkPv −

1
4
α +

1
2q

(1− Pk)Pv

− 1
2γ

(Pr[1©] + Pr[2©] + Pr[3©])− εow(Pr[4©] + Pr[5©] + Pr[6©])

≥ 1
2
α(

1
2

+ εcca)(1 − Pv) +
1
2
αPkPv −

1
4
α +

1
2q

(1−Pk)Pv−εow,

where, in order to sum up the terms regarding Pr[i©] into one term εow in the
last inequality, we used the fact that

∑6
i=1 Pr[i©] = 1 and the following claim.

Claim 1. 1
2γ ≤ εow.

Proof of Claim 1. Consider the adversary A′ against one-wayness of f
who on input f(r), where r is chosen uniformly from {0, 1}γ, runs as follows.
Choose r′ uniformly at random from {0, 1}γ and output r′ as the solution
of the one-way experiment. Since r and r′ are independent, we have
4 Here, we purposely remain each Pr[i©] as it is for the later calculation of

AdvNM-sID-CPA
Π,S .

Simple CCA-Secure PKE from Any Non-Malleable IBE 11

AdvOW
f,A′ = Pr[f(r) = f(r′)] ≥ Pr[r = r′] = 1

2γ . According to the definition
of εow, we have AdvOW

f,A ≤ εow for any adversary A (including A′). Thus, we have
1
2γ ≤ εow. ��

Now, focusing on the second and the fourth terms of the right side member of
the above inequality, we can define α = 1

q , which will cancel out all the terms
regarding Pk . Using this α, we have

AdvNM-sID-CPA
Π,S ≥ 1

2q
(εcca + Pv (

1
2
− εcca))− εow ≥

1
2q

εcca − εow,

where the right side inequality is due to the definition of the IND-CCA advantage
and the fact that Pv ≥ 0.

Consequently, assuming A has advantage εcca in breaking IND-CCA security
of the proposed PKE scheme Π ′ and f is a (t, εow)-OWF, S can break NM-sID-
CPA security of the underlying IBE scheme Π with the above advantage, using
above α.

To complete the proof, we prove the lemmas in order.

Proof of Lemma 1: In Case 1, an event [1©] = [bA = bS ∧ bS = bC ∧ Valid]
occurs. In this case, we have M∗ = (mbS ||r∗) and M ∗̄ = (m′||r′). First, we
estimate Pr[R∗| 1©].

Pr[R∗| 1©] ≥ Pr[R∗ ∧ bα = 1| 1©] = Pr[bα = 1] · Pr[R∗| 1©∧ bα = 1] = α,

where we used the following.

Claim 2. Pr[R∗| 1©∧ bα = 1] = 1.

Proof of Claim 2. [bS = bC] implies that the plaintext of S’s challenge ciphertext
y∗ is M∗ = (mbS ||r∗), and thus γ-least significant bits of M∗ is r∗. And when
[bA = bS ∧ bα = 1] occurs, S outputs y′ such that γ-least significant bits of its
plaintext is also r∗. Thus, S always outputs a ciphertext y′ such that R∗ occurs
and we have Pr[R∗| 1©∧bα = 1] = 1. ��

Next, we estimate Pr[R∗̄| 1©].

Claim 3. Pr[R∗̄| 1©] = 1
2γ .

Proof of Claim 3. Recall that γ-LSB(M ∗̄) = r′. Recall also that γ-least significant
bits of the plaintext of y′ is either r∗ or r′′, depending on the value bα. Since r′,
r∗ and r′′ are independently chosen by S, we have

Pr[R∗̄| 1©] = Pr[r′ = r∗∧bα = 1]+Pr[r′ = r′′∧bα = 0] =
1
2γ
·α+

1
2γ
·(1−α) =

1
2γ

.

��
Finally, we estimate Pr[1©]. We have

Pr[1©] = Pr[bA = bS ∧ bS = bC ∧ Valid]

=
1
2

Pr[bA = bS |bS = bC ∧ Valid] · Pr[Valid|bS =bC]=
1
2
(
1
2

+ εcca)(1−Pv),

where we used the following.

12 T. Matsuda et al.

Claim 4. Pr[bA = bS |bS = bC ∧ Valid] = 1
2 + εcca.

Proof of Claim 4. If both Valid and [bS �= bC] do not occur, then S perfectly
simulates the IND-CCA game for A, and the view of A is identical to that when
attacking Π ′. Thus in this case A wins his IND-CCA game perfectly simulated
by S with ordinary probability 1

2 + εcca. ��

Consequently, S’s advantage in Case 1 is estimated as: Adv1 = (Pr[R∗| 1©] −
Pr[R∗̄| 1©]) ·Pr[1©] ≥ 1

2α(1
2 + εcca)(1−Pv)− 1

2γ Pr[1©], which completes the proof
of Lemma 1. ��

Proof of Lemma 2: In Case 2, an event [2©] = [bA = bS ∧ bS = bC ∧ Valid]
occurs. In this case, we have M∗ = (mbS ||r∗) and M ∗̄ = (m′||r′). With the same
discussion in the proof of Lemma 1, we have Pr[R∗| 2©] ≥ α and Pr[R∗̄| 2©] = 1

2γ .
As for Pr[2©], we have Pr[2©] = Pr[bA = bS ∧ bS = bC ∧ Valid] = 1

2 Pr[bA =
bS |bS = bC ∧ Valid] · Pr[Valid|bS = bC] = 1

2PkPv .
Consequently, S’s advantage in Case 2 is estimated as: Adv2 = (Pr[R∗| 2©] −

Pr[R∗̄| 2©])·Pr[2©] ≥ 1
2αPkPv− 1

2γ Pr[2©], which completes the proof of Lemma 2.
��

Proof of Lemma 3: In Case 3, an event [3©] = [bA = bS ∧ bS �= bC] occurs.
In this case, we have M∗ = (m′||r′) and M ∗̄ = (mbS ||r∗). We first estimate
Pr[R∗̄| 3©].

Pr[R∗̄| 3©] = Pr[R∗̄ ∧ bα = 1| 3©] + Pr[R∗̄ ∧ bα = 0| 3©]
= Pr[bα = 1] · Pr[R∗̄| 3©∧ bα = 1] + Pr[bα = 0] · Pr[R∗̄| 3©∧ bα = 0]

≤ α + Pr[R∗̄| 3©∧ bα = 0] ≤ α +
1
2γ

,

where we used the following.

Claim 5. Pr[R∗̄| 3©∧ bα = 0] ≤ 1
2γ .

Proof of Claim 5. When [bα = 0] occurs, S chooses r′′ uniformly from {0, 1}γ,
independently of r∗, generates y′ such that γ-least significant bits of the plain-
text is r′′, and outputs it with the relation R in Output phase. Therefore, the
probability that R∗̄ occurs in this scenario is identical to the probability that
r′′ = r∗ occurs and is at most 1

2γ . ��

As for Pr[3©], we have Pr[3©] = Pr[bA = bS ∧ bS �= bC] = 1
2 Pr[bA = bS |bS �=

bC] = 1
4 , where we used the following.

Claim 6. Pr[bA = bS |bS �= bC] = 1
2 .

Proof of Claim 6. When [bS �= bC] occurs, since the challenge ciphertext χ∗ given
to A is not an encryption of either m0 nor m1 that are submitted by A, S’s
simulation for A becomes imperfect. Thus, A’s behavior may become unknown
to S after Challenge phase. However, since bS is information-theoretically hidden
to A, the probability that [bA = bS] occurs is exactly 1

2 . ��

Simple CCA-Secure PKE from Any Non-Malleable IBE 13

Consequently, S’s advantage in Case 3 is estimated as: Adv3 ≥ −Pr[R∗̄| 3©] ·
Pr[3©] ≥ − 1

4α− 1
2γ Pr[3©], which completes the proof of Lemma 3. ��

Proof of Lemma 4: In Case 4, an event [4©] = [bA �= bS ∧ bS = bC ∧ Valid]
occurs. In this case, we have M∗ = (mbS ||r∗) and M ∗̄ = (m′||r′). According to
our construction of S, [bA �= bS] implies that S chooses y′ uniformly from A’s
decryption queries. We estimate Pr[R∗̄| 4©] in the following.

Claim 7. Pr[R∗̄| 4©] ≤ εow.

Proof of Claim 7. Since in this case r′ is information-theoretically hidden to A,
the value f(r′) is also information-theoretically hidden to A. Thus, probability
that A, without seeing f(r′), happens to issue decryption queries such that the
image with f of γ-least significant bits of the plaintext becomes identical to f(r′)
is at most εow. ��

Consequently, S’s advantage in Case 4 is estimated as: Adv4 ≥ −Pr[R∗̄| 4©] ·
Pr[4©] ≥ −εow Pr[4©], which completes the proof of Lemma 4. ��

Proof of Lemma 5: In Case 5, an event [5©] = [bA �= bS∧bS = bC∧Valid] occurs.
In this case, we have M∗ = (mbS ||r∗) and M ∗̄ = (m′||r′). Due to [bA �= bS], S
chooses one ciphertext uniformly from A’s decryption queries and uses it as
its final output in Output phase of the NM-sID-CPA game. First, we estimate
Pr[R∗| 5©]. We prove the following claim.

Claim 8. Pr[R∗| 5©] ≥ 1
q .

Proof of Claim 8. Since S cannot correctly respond to the decryption query
that causes Valid, S’s simulation for A becomes imperfect and A’s behavior may
become unknown to S after such query. However, when Valid occurs, A must
have issued at least one query of the form 〈ID∗, yA〉 such that the plaintext of
yA forms MA = (mA||rA) and f(rA) = f(r∗) = ID∗ holds. Thus, if S chooses
such yA for y′ from A’s decryption queries, R∗ occurs. Since the number of A’s
decryption queries is at most q, the above probability is at least 1

q . ��

With the same discussion in the proof of Lemma 4, we have Pr[R∗̄| 5©] ≤ εow.
We also have Pr[5©] = Pr[bA �= bS ∧ bS = bC ∧ Valid] = 1

2 (1 − Pk)Pv .
Consequently, S’s advantage in Case 5 is estimated as: Adv5 = (Pr[R∗| 5©] −

Pr[R∗̄| 5©]) · Pr[5©] ≥ 1
2q (1 − Pk)Pv − εow Pr[5©], which completes the proof of

Lemma 5. ��

Proof of Lemma 6: In Case 6, an event [6©] = [bA �= bS ∧ bS �= bC] occurs. In
this case, we have M∗ = (m′||r′) and M ∗̄ = (mbS ||r∗). Again, due to [bA �= bS],
S chooses one ciphertext from A’s decryption query. We estimate Pr[R∗̄| 6©].

Claim 9. Pr[R∗̄| 6©] ≤ εow.

14 T. Matsuda et al.

Proof of Claim 9. Recall that we defined that, in the case [bA �= bS], the relation
R(a, b) tests whether f(γ-LSB(a)) = f(γ-LSB(b)) holds. Thus, the event R∗̄ in
this case consists of the following two events: (1) A issues at least one decryp-
tion query 〈ID, y〉 which satisfies the conditions IBE.Dec(dID∗ , y) = (m||r) �= ⊥
and f(r∗) = f(r), where f(r∗) = ID∗ is the first component of the challenge
ciphertext given to A, and (2) S chooses such a query. Note that the first event
above is exactly the same event as Valid. For notational convenience, we denote
by Choice the second event above. Moreover, according to our construction of
S, in the case [bS �= bC], the challenge ciphertext given to A is a “garbage”
ciphertext which forms 〈f(r∗), IBE.Enc(prm, f(r∗), (m′||r′))〉 where r∗ and r′ are
chosen independently and uniformly from {0, 1}γ and m′ is also chosen ran-
domly. Also for notational convenience, we denote by RandomCT an event that
A is given a garbage challenge ciphertext of this form. Suppose that, as S’s final
output, one ciphertext 〈ID, y〉 is chosen from A’s queries. Using these notations,
we have

Pr[R∗̄| 6©]

=Pr[Choice ∧ IBE.Dec(dID∗ , y)=(m||r) 	= ⊥ ∧R((mbS ||r∗), (m||r))|bA 	= bS ∧ bS 	=bC]

=Pr[Choice ∧ IBE.Dec(dID∗ , y)=(m||r) 	= ⊥ ∧ f(r∗) = f(r)|RandomCT]

=Pr[Choice ∧ Valid|RandomCT] ≤ Pr[Valid|RandomCT].

Thus, all we have to do is to show Pr[Valid|RandomCT] ≤ εow. Now, towards
a contradiction, we assume Pr[Valid|RandomCT] > εow. We construct another
simulator S′ which, using A, breaks one-wayness of f . The description of S′ is
as follows.

Given f and f(r∗) (where r∗ is uniformly chosen from {0, 1}γ and unknown
to S′), S′ first sets ID∗ = f(r∗), then runs (msk, prm) ← IBE.Setup and dID∗ ←
IBE.Ext(msk, ID∗). It gives PK = (prm, f) to A. Since S′ possesses SK = msk,
it can perfectly respond to the decryption queries. When A submits two plain-
texts as a challenge, S′ ignores it and generates the challenge ciphertext χ∗ =
〈ID∗, y∗〉 = 〈f(r∗), IBE.Enc(prm, f(r∗), (m′||r′))〉 where r′ is uniformly chosen
from {0, 1}γ and m′ is also chosen randomly, and gives χ∗ to A. After A outputs
a guess bit, from A’s decryption queries S′ finds one ciphertext 〈ID, y〉 whose
second component y satisfies IBE.Dec(dID∗ , y) = (m||r) �= ⊥ and f(r) = f(r∗),
and outputs such r (if no such query is found then S′ simply aborts).

It is easy to see that S′ perfectly simulates the scenario RandomCT for A.
Moreover, whenever Valid occurs, S′ can find a preimage of f(r∗) and thus breaks
the one-wayness of f . Therefore, AdvOW

f,S′ = Pr[Valid|RandomCT] > εow, which
contradicts that f is a OWF, and thus we must have Pr[Valid|RandomCT] ≤ εow.
This completes the proof of Claim 9. ��

Consequently, S’s advantage in Case 6 is estimated as: Adv6 ≥ −Pr[R∗̄| 6©] ·
Pr[6©] ≥ −εow Pr[6©], which completes the proof of Lemma 6. ��

Above completes the proof of Theorem 1. ��

Simple CCA-Secure PKE from Any Non-Malleable IBE 15

3.3 Extensions

As is the same with the previous generic IBE-to-PKE transformations, our
transformation can be applied to TBE schemes if we appropriately define non-
malleability for TBE schemes. (We discuss this in the full version of our paper.)

Moreover, if we consider non-malleability for HIBE schemes in the same way
as in Section 2.2, then our transformation can be used to obtain adaptive (resp.,
selective) identity CCA-secure t-level HIBE from (t+1)-level HIBE that is non-
malleable against adaptive (resp., selective) identity, CPA.

4 Comparison

Table 1 compares our transformation in Section 3 and other generic IBE-to-PKE
transformations including the CHK transformation (CHK) [15], the BK transfor-
mation (BK) [11], and the BK transformation where the encapsulation scheme5

used in the BK transformation is instantiated by using a target collision resis-
tant hash function (TCRHF) [36,5] and a pairwise-independent hash function
(PIHF) (BK∗).6 In Table 1, the column “IBE” denotes the security requirement
for the underlying IBE schemes (“-sID-CPA” is omitted), the column “Over-
head by Transformation” denotes how much the ciphertext size increases from
that of the underlying IBE scheme (typical sizes for 128-bit security are given
as numerical examples), the column “Required Size for MIBE” denotes how
much size is necessary for the plaintext space of the underlying IBE scheme, the
column “Reduction” denotes the ratios of the advantage of breaking the trans-
formed PKE schemes and that of the underlying IBE schemes, and the column
“Publicly Verifiable?” denotes whether we can check the validity of ciphertexts
publicly (without any secret keys) assuming that of the underlying IBE scheme
can be also checked publicly.

Ciphertext Overhead by Transformations. Here, we mainly compare ours with
BK∗ scheme, because the ciphertext overhead of the original CHK and BK trans-
formations depend on how we construct their additional building blocks.

In our transformation, the size overhead from the ciphertext of the underlying
IBE scheme is caused by a randomness r and its image f(r) with a OWF f . If we
require 128-bit security, we can set each to be 128-bit, and thus we have 256-bit
overhead in total. In BK∗, on the other hand, overhead is caused by a TCRHF
(TCR), a MAC, and a large randomness r′ (because of the use of the Leftover
Hash Lemma [27] with the use of a PIHF in order to get an almost uniformly
distributed value for a MAC key). Because of r′, though size of TCR(r′) and the
tag from MAC can be 128-bit, we need at least 448-bit for the randomness r′,
and the overhead in total needs to be 704-bit.

Observation: IND vs. NM. As we can see, there exists a trade-off between as-
sumptions on security of the underlying IBE schemes and ciphertext overhead.
5 An encapsulation scheme is a special kind of commitment scheme. See [11] for defi-

nitions.
6 This construction of the encapsulation scheme is introduced in [11].

16 T. Matsuda et al.

Table 1. Comparison among Generic IBE-to-PKE Transformations

IBE Overhead by Transformation † Required Size Reduc- Publicly
(Numerical Example (bit)) for MIBE tion Verifiable?

CHK IND |vk|+ |sig| (—) |mPKE | tight yes
BK IND |com|+ |dec|+ |MAC| (—) |mPKE |+ |dec| tight —
BK∗ IND |TCR(r′)|+ |r′|+ |MAC| (704) |mPKE |+ |r′| tight —
Ours NM |f(r)|+ |r| (256) |mPKE |+ |r| 1/2q —

† |vk| and |sig| denote the size of the verification key and the signature of the one-time
signature in the CHK transformation. |com| and |dec| denote the size of the commitment
and the decommitment of the encapsulation scheme, and |MAC| denotes the size of the
tag of MAC in the BK transformation. |mPKE | is a plaintext size of a transformed
PKE scheme.
————————

Roughly speaking, if we see the OWF in our transformation as a hash function,
then our transformation is obtained by getting rid of the PIHF and the MAC
from BK∗. And the lost power is supplied by the property of non-malleability
of the underlying IBE scheme. But it is not easy with a brief consideration to
come up with an efficient NM-sID-CPA secure IBE scheme from a combination
of an IND-sID-CPA secure IBE scheme, a PIHF, and a MAC. Thus, this relation
between ours and BK∗ could be seen as a concrete (but qualitative) evidence
that shows the (huge) gap between what IND achieves and what NM achieves
(at least, for selective identity, chosen plaintext attacks for IBE schemes).

References

1. Attrapadung, N., Cui, Y., Galindo, D., Hanaoka, G., Hasuo, I., Imai, H., Matsuura,
K., Yang, P., Zhang, R.: Relations among notions of security for identity based
encryption schemes. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006.
LNCS, vol. 3887, pp. 130–141. Springer, Heidelberg (2006)

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proc. of CCS 1993, pp. 62–73. ACM, New York (1993)

4. Bellare, M., Rogaway, P.: Optimal asymmetric encryption — how to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

5. Bellare, M., Rogaway, P.: Collision-resistant hashing: Towards making UOWHFs
practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 320–335.
Springer, Heidelberg (1997)

6. Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two notions,
and indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)

7. Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two no-
tions, and indistinguishability-based characterization (2006); full version of [6],
eprint.iacr.org/2006/228

eprint.iacr.org/2006/228

Simple CCA-Secure PKE from Any Non-Malleable IBE 17

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

9. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

10. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

11. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

12. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: Proc. of CCS 2005, pp. 320–329. ACM Press, New York
(2005)

13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: Proc. of STOC 1998, pp. 209–218. ACM, New York (1998)

14. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

15. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

16. Chatterjee, S., Sarkar, P.: HIBE with short public prarameters without random
oracle. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 145–
160. Springer, Heidelberg (2006)

17. Chatterjee, S., Sarkar, P.: Trading time for space: Towards an efficient IBE scheme
with short(er) public parameters in the standard model. In: Won, D.H., Kim, S.
(eds.) ICISC 2005. LNCS, vol. 3935, pp. 424–440. Springer, Heidelberg (2006)

18. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, p. 360. Springer,
Heidelberg (2001)

19. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

20. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

21. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: Proc. of STOC
1991, pp. 542–552. ACM Press, New York (1991)

22. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999)

23. Galindo, D.: A separation between selective and full-identity security notions
for identity-based encryption. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan,
C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS,
vol. 3982, pp. 318–326. Springer, Heidelberg (2006)

24. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

18 T. Matsuda et al.

25. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

26. Goldwasser, S., Micali, S.: Probabilistic encryption. J. of Computer and System
Sciences 28(2), 270–299 (1984)

27. H̊astad, J., Impagliazzo, R., Levin, L., Luby, M.: Construction of a pseudorandom
generator from any one-way function. SIAM J. Computing 28(4), 1364–1396 (1999)

28. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

29. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

30. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracles. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP
2006. LNCS, vol. 4058, pp. 336–347. Springer, Heidelberg (2006)

31. Kiltz, E., Vahlis, Y.: CCA2 secure IBE: Standard model efficiency through au-
thenticased symmetric encryption. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS,
vol. 4964, pp. 221–238. Springer, Heidelberg (2008)

32. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

33. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 241–254. Springer, Heidelberg (2003)

34. MacKenzie, P., Reiter, M.K., Yang, K.: Alternatives to non-malleability: Def-
initions, constructions and applications. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 171–190. Springer, Heidelberg (2004)

35. Naccache, D.: Secure and practical identity-based encryption (2005),
eprint.iacr.org/2005/369

36. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proc. of STOC 1989, pp. 33–43. ACM, New York (1989)

37. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: Proc. of STOC 1990, pp. 427–437. ACM, New York (1990)

38. Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–174. Springer, Heidelberg (2001)

39. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a Non-malleable Encryp-
tion Scheme from Any Semantically Secure One. In: Dwork, C. (ed.) CRYPTO
2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)

40. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations Among Notions of Non-
malleability for Encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 519–535. Springer, Heidelberg (2007)

41. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proc.
of STOC 2008, pp. 187–196. ACM, New York (2008)

42. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

43. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proc. of FOCS 1999, pp. 543–553. IEEE Computer Society
Press, Los Alamitos (1999)

eprint.iacr.org/2005/369

Simple CCA-Secure PKE from Any Non-Malleable IBE 19

44. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over elliptic
curve (in japanese). In: Proc. of SCIS 2001 (2001)

45. Sarkar, P., Chatterjee, S.: Construction of a hybrid HIBE protocol secure against
adaptive attacks (without random oracle). In: Susilo, W., Liu, J.K., Mu, Y. (eds.)
ProvSec 2007. LNCS, vol. 4784, pp. 51–67. Springer, Heidelberg (2007)

46. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

47. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

Distributed Attribute-Based Encryption

Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert

Technische Universität Darmstadt
Hochschulstr. 10

D– 64289 Darmstadt
{mueller,eckert}@sec.informatik.tu-darmstadt.de,
katzenbeisser@seceng.informatik.tu-darmstadt.de

Abstract. Ciphertext-Policy Attribute-Based Encryption (CP-ABE)
allows to encrypt data under an access policy, specified as a logical com-
bination of attributes. Such ciphertexts can be decrypted by anyone with
a set of attributes that fits the policy. In this paper, we introduce the
concept of Distributed Attribute-Based Encryption (DABE), where an
arbitrary number of parties can be present to maintain attributes and
their corresponding secret keys. This is in stark contrast to the classic
CP-ABE schemes, where all secret keys are distributed by one central
trusted party. We provide the first construction of a DABE scheme; the
construction is very efficient, as it requires only a constant number of
pairing operations during encryption and decryption.

1 Introduction

Emerging ubiquitous computing environments need flexible access control mech-
anisms. With a large and dynamic set of users, access rules for objects cannot
easily be based on identities, and the conditions under which access to an object
is granted need to take into account information like the context and the history
of a subject. Due to these shortcomings of traditional access control mechanisms,
cryptographically enforced access control receives increasing attention.

One of the most interesting approaches is Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) [1]. In this scheme, users possess sets of attributes (and
corresponding secret attribute keys) that describe certain properties. Ciphertexts
are encrypted according to an access control policy, formulated as a Boolean
formula over the attributes. The construction assures that only users whose
attributes satisfy the access control policy are able to decrypt the ciphertext with
their secret attribute keys. The construction is required to satisfy a collusion-
resistance property: It must be impossible for several users to pool their attribute
keys such that they are able to decrypt a ciphertext which they would not be
able to decrypt individually.

Common to most previous ABE schemes is the existence of a central trusted
authority (master) that knows a secret master key and distributes secret at-
tribute keys to eligible users. However, for many attribute-based scenarios, it
is much more natural to support multiple authorities [8,7]. The limitation to a

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 20–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Distributed Attribute-Based Encryption 21

http://db.mycompany.org : isAdmin OR

http://db.mycompany.org : hasFullAccess OR

(http://www.openid.org : is18OrOlder AND

(http://www.contprov1.com : article1234.hasPaidFor OR

http://www.contprov2.com : article4325.hasPaidFor OR

http://www.contprov3.com : articleABC.hasPurchased))

Fig. 1. An example policy

single central authority for attribute generation is neither realistic nor desirable
in applications where no single entity has the authority to grant secret keys for
arbitrary attributes.

We can, for exemplary purposes, illustrate one such scenario as follows. Con-
sider a company that hosts DRM protected media files. Users can purchase li-
censes from various content providers that issue usage licenses which contain the
keys required to decrypt the protected files. Let us assume that three such con-
tent providers are contprov1.com, contprov2.com, and contprov3.com. The
usage license (see Figure 1) can be expressed as a Boolean formula over at-
tributes. Here, attributes consist of an URL that specifies a party who has au-
thority over an attribute and an identifier describing the attribute itself, both
represented as strings and concatenated with a single colon character as sepa-
rator. The intuition behind this sample policy is that the protected file should
only be decrypted by someone who either is an administrator of the company
database db.mycompany.org, has the rights to download all files, or is at least 18
years old (which is established by an identification service www.openid.org) and
has purchased licenses from at least one of the given content providers. Note that
the same media file might be identified by different product codes in different
providers’ databases.

It is difficult to use this policy in a standard CP-ABE scheme, since there
is no central authority who maintains and controls all attributes; in the above
example, www.contprov1.com is solely responsible for maintaining the attribute
article1234.hasPaidFor, while db.mycompany.org has authority over the at-
tribute isAdmin. While it is possible that a third party is set up to which the
maintenance of all attributes is delegated, this solution obviously does not scale.
In addition, this solution is problematic if the entities mutually distrust each
other.

1.1 Distributed ABE

We propose Distributed Attribute-Based Encryption (DABE) to mitigate this
problem. DABE allows an arbitrary number of authorities to independently
maintain attributes. There are three different types of entites in a DABE scheme:
a master, attribute authorities and users.

The master is responsible for the distribution of secret user keys. However, in
contrast to standard CP-ABE schemes, this party is not involved in the creation
of secret attribute keys; the latter task can independently be performed by the
attribute authorities.

22 S. Müller, S. Katzenbeisser, and C. Eckert

Attribute authorities are responsible to verify whether a user is eligible of a
specific attribute; in this case they distribute a secret attribute key to the user.
(Note that determining the users’ eligibility is application-dependent and thus
beyond the scope of this work.) In our scheme every attribute is associated with
a single attribute authority, but each attribute authority can be responsible for
an arbitrary number of attributes. Every attribute authority has full control over
the structure and semantics of its attributes. An attribute authority generates a
public attribute key for each attribute it maintains; this public key is available to
every participant. Eligible users receive a personalized secret attribute key over
an authenticated and trusted channel. This secret key, which is personalized to
prevent collusion attacks, is required to decrypt a ciphertext.

Users can encrypt and decrypt messages. To encrypt a message, a user first for-
mulates his access policy in the form of a Boolean formula over some attributes,
which in our construction is assumed to be in Disjunctive Normal Form (DNF).
The party finally uses the public keys corresponding to the attributes occurring
in the policy to encrypt. In DNF, all negations are atomic, so attribute author-
ities should be able to issue negative attributes as well in order to make use of
the full expressive power of DNF formulas.

To decrypt a ciphertext, a user needs at least access to some set of attributes
(and their associated secret keys) which satisfies the access policy. If he does not
already possess these keys, he may query the attribute authorities for the secret
keys corresponding to the attributes he is eligible of.

To illustrate the use of a DABE scheme, we return to the above mentioned
example of the protection of media files. Figure 2 shows the policy of Figure 1
in DNF. The policy consists of five conjunctions over different sets of attributes.
A user needs all secret attribute keys of at least one of the conjunctive terms to
be able to decrypt a ciphertext that was encrypted with this access policy.

A user who downloads the ciphertext analyzes the policy and tests if he has a
sufficient set of attributes to decrypt. The user may contact attribute authorities
for secret attribute keys he does not already have in his possession but he is
eligible of. For instance, he may query www.openid.org for a secret attribute
key corresponding to is18OrOlder and contprov3.com for a secret attribute
key corresponding to the attribute articleABC.hasPurchased. In this case he
is able to satisfy the last conjunction. It may be necessary for him to perform
additional steps if he is not yet eligible for an attribute. For example, he might
decide to buy the article articleABC from contprov3.com to get the respective
attribute.

Note that every attribute authority independently decides on the structure
and semantics of its attributes. For instance, the authority db.mycompany.org
offers the attribute isAdmin. The meaning of this attribute and the semantics
(i.e., the decision who is eligible of it) is entirely up to db.mycompany.org.
Whoever includes the attribute in an access policy needs to trust the respective
authority to correctly determine eligibility.

Note that a DABE scheme must be collusion-resistant: if a user u has a friend
v who possesses an attribute that u does not have, it is not possible for u to

Distributed Attribute-Based Encryption 23

http://db.mycompany.org : isAdmin

OR

http://db.mycompany.org : hasFullAccess

OR

(http://www.openid.org : is18OrOlder AND

http://www.contprov1.com : article1234.hasPaidFor)

OR

(http://www.openid.org : is18OrOlder AND

http://www.contprov2.com : article4325.hasPaidFor)

OR

(http://www.openid.org : is18OrOlder AND

http://www.contprov3.com : articleABC.hasPurchased)

Fig. 2. Policy of Figure 1 in DNF

use the corresponding secret attribute key of v. Neither can u give any of his
attribute keys to v. All secret attribute keys are bound to their owner, making
them unusable with keys issued for other users.

1.2 Our Contribution

In this paper we introduce the concept of Distributed Attribute-Based En-
cryption (DABE), i.e., a fully distributed version of CP-ABE, where multiple
attribute authorities may be present and distribute secret attribute keys. Fur-
thermore, we give the first construction of a DABE scheme, which supports
policies written in DNF; the ciphertexts grow linearly with the number of con-
junctive terms in the policy. Our scheme is very simple and efficient, demonstrat-
ing the practical viability of DABE. We furthermore provide a proof of security
in the generic group model, introduced by [2]; even though this proof is weaker
than the proofs of some more recent CP-ABE schemes [3,4,5], our scheme is
much more efficient, requiring only O(1) pairing operations during encryption
and decryption.

The remainder of this document is structured as follows: In Section 2 we
discuss related work. Section 3 contains a description of DABE as well as a
formal definition of the required security property. Our construction is detailed
in Section 4. We discuss its security and performance in Section 5. Finally we
conclude in Section 6. A detailed security proof in the generic bilinear group
model is given in the appendix.

2 Related Work

Attribute-Based Encryption was first proposed by Goyal et al. [6] in the form
of key-policy attribute-based encryption (KP-ABE), based on the work of Sahai
and Waters [7]. In KP-ABE, users are associated with access policies and cipher-
texts are encrypted with sets of attributes. The access policies describe which
ciphertexts users can decrypt.

24 S. Müller, S. Katzenbeisser, and C. Eckert

The first CP-ABE scheme was presented by Bethencourt, Sahai and Wa-
ters [1], followed by some cryptographically stronger CP-ABE constructions that
allowed reductions to the Decisional Bilinear Diffie Hellman Problem [5,4], but
imposed restrictions that the original CP-ABE does not have. Recently, Waters
proposed three CP-ABE schemes that are as expressive as [1], rather efficient
and provably secure under strong cryptographic assumptions [3].

There is only one attempt at multi-authority CP-ABE, proposed by Chase [8]
as an extension of her multi-authority threshold ABE construction. This exten-
sion is rather limited. The policy is written as a set of threshold gates, which
are connected by another outer threshold gate. The threshold of the outer gate
is fixed. (However, one could run several parallel instances to support different
thresholds.) Each of the inner threshold gates is controlled by one of the author-
ities, and contains only attributes of that authority. The threshold of each inner
gate is fixed, even though dummy attributes can be used to support different
thresholds, as described in [7]. If the policy can only be formulated in a way
where some attributes occur in more than one of the inner threshold gates, these
attributes must be copied between the respective authorities, so in this case the
involved authorities need to mutually trust each other.

Another restriction of Chase’s scheme is that all authorities are managed
centrally by a trusted authority. Whenever a new authority is added, the global
system key changes and has to be propagated to all users who want to use
attributes of the authority. This includes encryptors who want to use attributes
from that authority in the policy.

Techniques similar to CP-ABE were proposed for many applications like
Attribute-Based Access Control (ABAC, used in SOA) [9], Property-Based
Broadcast Encryption (used in DRM) [10], and Hidden Credentials [11,12]. Note
that the techniques used in these applications are not collusion-resistant, so they
can not be classified as ABE. It remains to be examined if ABE techniques can
be used to improve the solutions.

3 DABE

In this section we formally define the concept of DABE and introduce the re-
quired keys and algorithms. Our construction will be detailed in Section 4. Ta-
ble 1 on the next page provides a quick reference of the most relevant keys.

3.1 Users, Attributes and Keys

During setup, a public master key PK and a secret master key MK are generated;
PK is available to every party, whereas MK is only known to the master. Every
user u maintains a public user key PKu, which is used by attribute authorities
to generate personalized secret attribute keys, and a secret key SKu, which is
used in the decryption operation. Generation and distribution of PKu and SKu

is the task of the master, who is also required to verify the identity of the users
before keys are issued. The keys SKu and PKu of a user u are bound to the

Distributed Attribute-Based Encryption 25

Table 1. Summary of DABE keys

Key Description Usage

PK Global key Input for all operations
MK Master key Creation of user keys
SKa Secret key of attribute authority a Creation of attribute keys
PKA Public key of attribute A Encryption
SKA,u Secret key of attribute A for user u Decryption
PKu Public key of user u Key Request
SKu Secret key of user u Decryption

identity and/or pseudonyms of the user by the master. This binding is crucial
for the verification of the user’s attributes.

Every attribute authority maintains a secret key SKa which is used to issue
secret attribute keys to users. An attribute is a tuple consisting of an iden-
tifier of an attribute authority (e.g. an URL) and an identifier describing the
attribute itself (an arbitrary string). We will denote the public representation
of the attribute as A and use aA as the identifier of the attribute authority
present within A. For every attribute with representation A there is a public
key, denoted PKA, which is issued by the respective attribute authority and is
used to encrypt messages. The corresponding secret attribute keys, personalized
for eligible users, are issued by the attribute authorities to users who request
them (after determining their eligibility). To prevent collusions, every user gets
a different secret attribute key that only he can use. A secret attribute key of
an attribute A, issued for a user u is denoted by SKA,u. We call the set of secret
keys that a user has (i.e., the key SKu and all keys SKA,u) his key ring.

3.2 The DABE Scheme

The DABE scheme consists of seven fundamental algorithms: Setup, Crea-
teUser, CreateAuthority, RequestAttributePK, RequestAttributeSK, Encrypt and
Decrypt. The description of the seven algorithms is as follows:

Setup. The Setup algorithm takes as input the implicit security parameter 1k.
It outputs the public key PK and the master key MK.

CreateUser(PK, MK, u). The CreateUser algorithm takes as input the public
key PK, the master key MK, and a user name u. It outputs a public user
key PKu, that will be used by attribute authorities to issue secret attribute
keys for u, and a secret user key SKu, used for the decryption of ciphertexts.

CreateAuthority(PK, a). The CreateAuthority algorithm is executed by the
attribute authority with identifier a once during initialization. It outputs a
secret authority key SKa.

RequestAttributePK(PK,A, SKa). The RequestAttributePK algorithm is
executed by attribute authorities whenever they receive a request for a pub-
lic attribute key. The algorithm checks whether the authority identifier aA

26 S. Müller, S. Katzenbeisser, and C. Eckert

of A equals a. If this is the case, the algorithm outputs a public attribute
key for attribute A, denoted PKA, otherwise NULL.

RequestAttributeSK(PK,A, SKa, u, PKu). The RequestAttributeSK algo-
rithm is executed by the attribute authority with identifier a whenever it
receives a request for a secret attribute key. The algorithm checks whether
the authority identifier aA of A equals a and whether the user u with public
key PKu is eligible of the attribute A. If this is the case, RequestAttributeSK
outputs a secret attribute key SKA,u for user u. Otherwise, the algorithm
outputs NULL.

Encrypt(PK, M, A, PKA1 , . . . , PKAN). The Encrypt algorithm takes as input
the public key PK, a message M , an access policy A and the public keys
PKA1 , . . . , PKAN corresponding to all attributes occurring in the policy A.
The algorithm encrypts M with A and outputs the ciphertext CT.

Decrypt(PK, CT, A, SKu, SKA1,u, . . . , SKAN ,u). The Decrypt algorithm takes
as input a ciphertext produced by the Encrypt algorithm, an access policy
A, under which CT was encrypted, and a key ring SKu, SKA1,u, . . . , SKAN ,u

for user u. The algorithm Decrypt decrypts the ciphertext CT and outputs
the corresponding plaintext M if the attributes were sufficient to satisfy A;
otherwise it outputs NULL.

Note that this scheme differs from CP-ABE [1] in that the two algorithms
CreateAuthority and RequestAttributePK were added, and CP-ABE’s algorithm
KeyGen is split up into CreateUser and RequestAttributeSK. It is crucial that
RequestAttributeSK does not need any components of the master key MK as
input, so that every attribute authority is able to independently create attributes.
However, we still require that a trusted central party maintains users (executes
CreateUser), as otherwise collusion attacks would be possible.

3.3 Security Model

We model the security of DABE in terms of a game between a challenger and
an adversary, where the challenger plays the role of the master and all attribute
authorities.

Setup. The challenger runs the Setup algorithm and gives the global key PK
to the adversary.

Phase 1. The adversary asks the challenger for an abitrary number of user
keys. The challenger calls CreateUser for each requested user and returns
the resulting public and private user keys to the adversary. For each user the
adversary can request an arbitrary number of secret and public attribute
keys, that the challenger creates by calling RequestAttributeSK or Request-
AttributePK, respectively. Whenever the challenger receives a request for an
attribute A of authority a, he tests whether he has already created a secret
key SKa for a. If not, he first calls CreateAuthority to create the appropriate
authority key (note that SKa will not be made available to the adversary).

Distributed Attribute-Based Encryption 27

Challenge. The adversary submits two messages M0 and M1 and an access
policy A such that none of the users that he created in Phase 1 satisfy A. (If
any user from Phase 1 satisfies A, the challenger aborts.) As before, the chal-
lenger may have to call CreateAuthority to initialize attribute authorities.
The challenger flips a coin b, encrypts Mb under A, and gives the ciphertext
CT to the adversary.

Phase 2. Like in Phase 1, the adversary may create an arbitrary number of
users. He can also request more secret attribute keys for the users he created
in Phase 1 and 2, but if any secret attribute key would give the respective
user a set of attributes needed to satisfy A, the challenger aborts. As before,
the adversary can always request any public attribute key.

Guess. The adversary outputs a guess b′ of b.

The advantage of the adversary in this game is defined as Pr[b′ = b]− 1
2 , where

the probability is taken over all coin tosses of both challenger and adversary.
A DABE scheme is secure if all polynomial time adversaries have at most a
negligible advantage in the above game.

4 Our Construction

We construct an efficient DABE scheme as follows:

Setup. The Setup algorithm chooses a bilinear group G of order p and a pairing
e : G × G → GT [13]. Next it chooses a generator g ∈ G, a random point
P ∈ G and a random exponent y ∈ Zp. The public key of the system is PK =
{G, GT , e, g, P, e(g, g)y}, while the secret master key is given by MK = gy.

CreateUser(PK, MK, u). The algorithm CreateUser chooses a secret mku ∈
Zp and outputs the public key PKu := gmku and the private key SKu :=
MK ·Pmku = gy · Pmku for user u.

CreateAuthority(PK, a). The algorithm CreateAuthority chooses uniformly and
randomly a hash function Hxa : {0, 1}∗ → Zp from a finite family of hash
functions, which we model as random oracles. It returns as secret key the index
of the hash function SKa := xa.

RequestAttributePK(PK,A, SKa). If A is handled by the attribute authority a
(i.e., aA = a), RequestAttributePK returns the public attribute key of A, which
consists of two parts:

PKA :=
〈

PK′
A := gHSKa (A), PK′′

A := e(g, g)y HSKa (A)
〉

.

This public key can be requested from the attribute authority by anyone, but
RequestAttributePK can only be executed by the respective authority, because
it requires the index of the hash function SKa as input.

28 S. Müller, S. Katzenbeisser, and C. Eckert

RequestAttributeSK(PK,A, SKa, u, PKu). After determining that the attribute
A is handled by a (i.e., aA = a), the authority tests whether user u is eligible for
the attribute A. If this is not the case, RequestAttributeSK returns NULL, else it
outputs the secret attribute key

SKA,u := PKu
HSKa (A) = gmku HSKa (A).

Note that the recipient u can check the validity of this secret key by testing if

e(SKu, PK′
A) = PK′′

A ·e(P, SKA,u) .

Encrypt(PK, M, A, PKA1 , . . . , PKAN). A policy in DNF can be written as

A =
n∨

j=1

⎛⎝ ∧
A∈Sj

A

⎞⎠ ,

where n (not pairwise disjoint) sets S1, . . . , Sn denote attributes that occur in the
j-th conjunction of A. The encryption algorithm iterates over all j = 1, . . . , n,
generates for each conjunction a random value Rj ∈ Zp and constructs CTj as

CTj :=
〈
Ej := M · (

∏
A∈Sj

PK′′
A)Rj ,

E′
j := PRj ,

E′′
j := (

∏
A∈Sj

PK′
A)Rj

〉
. (1)

The ciphertext CT is obtained as tuple CT := 〈CT1, . . . , CTn〉.

Decrypt(PK, CT, A, SKu, SKA1,u, . . . , SKAN ,u). To decrypt a ciphertext CT, De-
crypt first checks whether any conjunction of A can be satisfied by the given
attributes, i.e., whether the input SKA1,u, . . . , SKAN ,u contains secret keys for
all attributes occurring in a set Sj for some 1 ≤ j ≤ n. If this is not the case,
the algorithm outputs NULL, otherwise

M = Ej ·
e(E′

j ,
∏

i∈Sj

SKi,u)

e(E′′
j , SKu)

.

It is easy to see that the decryption is correct. Let aj :=
∑

A∈Sj
HSKaA (A).

Then Ej = M · e(g, g)yajRj , E′′
j = gajRj and

Ej ·
e(E′

j ,
∏

i∈Sj

SKi,u)

e(E′′
j , SKu)

= M · e(g, g)yajRj · e(PRj , gmku aj)
e(gajRj , gy · Pmku)

= M · e(g, g)yajRj · e(P, g)Rj mku aj

e(P, g)Rj mku aj · e(g, g)yajRj
= M .

Distributed Attribute-Based Encryption 29

5 Discussion

In this section, we first comment on the performance of the proposed DABE
scheme, give a security proof in the generic group model and finally comment
on the delegation property.

5.1 Performance

Compared to other ABE schemes, the proposed DABE construction is very effi-
cient. Nearly all operations are group operations in G and GT . The only compu-
tationally expensive operation—the pairing e : G × G → GT —is needed during
decryption exactly two times, no matter how complex the access policy is. No
pairings are needed for any other algorithms. In all other known ABE schemes,
the number of pairings grows at least linearly with the minimum number of
distinct attributes needed for decryption.

5.2 Security

We first give an intuitive security argument. Clearly, to decrypt a ciphertext CT
without having access to a sufficient set of secret attribute keys, an adversary
needs to find e(g, g)yajRj for some 1 ≤ j ≤ n which allows him to obtain M
from Ej (note that M only occurs in Ej). He thus must compute a pairing of
gα and gyβ for some α, β ∈ Zp, such that αβ = ajRj .

To create such a pairing, the adversary can only use keys that he has obtained
before in a security game as defined in Section 3.3. We will show that, assuming
the adversary has not enough secret keys to satisfy A, he is not able to compute
this value.

The only occurrence of gy (aside from e(g, g)y) is in the secret user keys, so
the adversary has to use some SKu for the pairing, yielding

e(gα, γ SKu) = e(gα, gy) · e(gα, Pmku) · e(gα, γ) ,

for some γ. Given all values that the adversary knows, the only useful choice for
gα is E′′

j = gajRj for some conjunction
∧

A∈Sj
A. Pairing E′′

j with SKu gives:

e(E′′
j , SKu) = e(g, g)yajRj · e(g, P)mku ajRj .

To obtain e(g, g)yajRj , the second factor has to be eliminated. However, all three
exponents of e(g, P)mku ajRj are unknown to the adversary, and no combination
of two publicly known values or secret user keys holds exactly the desired com-
ponents (assuming that the adversary does not have all required secret attribute
keys), so this value cannot be computed by the adversary.

For a more thorough security proof of our construction, we will use the generic
group model [2]. In this model, the elements of G and GT are encoded as arbitrary
strings that (from the adversary’s point of view) appear random. All operations
are computed by oracles, so the adversary is limited to the group operations, the

30 S. Müller, S. Katzenbeisser, and C. Eckert

pairing, and equality tests. A scheme proven secure this way is called generically
secure and can only be broken by exploiting specific properties of the groups
that are used to implement it.

Theorem 1. Let Adv be a generic adversary who plays the DABE security game
and makes q oracle queries. Then Adv has advantage at most O(q2/p) in the
generic group model, where p is the order of the bilinear group.

A proof of this theorem is given in the appendix.

5.3 Delegation

The CP-ABE schemes [1] and [4] support an additional mechanism called Dele-
gate that allows a user to create a new key ring that contains a subset of his secret
attribute keys. In a DABE scenario with separate CreateUser and RequestAttri-
buteSK algorithms, delegation between users cannot be supported since it allows
collusions. To see this, consider a user u who is eligible of a set of attributes Su

and a user v who is eligible of a set of attributes Sv �= Su. Now let S be a set of
attributes such that S ⊂ Su ∪ Sv, but Su �⊆ S and Sv �⊆ S. To decrypt a cipher-
text encrypted with a conjunction consisting of all attributes in S, the user u
would use CreateUser and RequestAttributeSK to get all attributes of Su, then
call Delegate to create a key ring for v that contains S∩Su. Finally, v would then
use RequestAttributeSK to add all remaining attributes S′

v := Sv \(S∩Su). This
is possible as in a DABE scheme, the RequestAttributeSK can be called at any
time to add private attribute keys to key rings. Subsequently, v could decrypt
any ciphertext encrypted with S. For this reason, delegation is not allowed in
DABE. In our scheme, key rings can be re-randomized in the same way as [1] and
[3], so a new keyring containing a subset of the attributes of the old keyring can
be generated that is usable for decryption. However, all values of the resulting
keyring will contain a random mku that is not bound to any identity, so the user
will not be able to add new attributes to it.

6 Conclusion

In this paper, we proposed the concept of Distributed Attribute-Based Encryp-
tion (DABE) as an extension of Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) that supports an arbitrary number of attribute authorities and al-
lows to dynamically add new users and authorities at any time. We provided
an efficient construction of DABE that uses only two pairing operations in the
decryption algorithm and no pairing operation in any other algorithm.

A limitation of our construction is that access policies need to be in DNF form.
We leave it as an open question to design a more expressive DABE scheme, while
preferably maintaining the O(1) number of pairings that our construction offers.

Distributed Attribute-Based Encryption 31

Acknowledgements

The authors wish to thank the reviewers of this paper on the ICISC 2008 program
committee for some very helpful comments and suggestions.

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer
Society, Los Alamitos (2007)

2. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W.
(ed.) EUROCRYPT1997. LNCS, vol. 1233, pp. 256–266. Springer,Heidelberg (1997)

3. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. Technical report, SRI International (2008) (to ap-
pear)

4. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: ICALP (2008)

5. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: Ning, P.,
di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and
Communications Security, pp. 456–465. ACM, New York (2007)

6. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) ACM Conference on Computer and Communications Security, pp.
89–98. ACM, New York (2006)

7. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

8. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

9. Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In:
ICWS, pp. 561–569. IEEE Computer Society, Los Alamitos (2005)

10. Adelsbach, A., Huber, U., Sadeghi, A.R.: Property-based broadcast encryption for
multi-level security policies. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS,
vol. 3935, pp. 15–31. Springer, Heidelberg (2006)

11. Kapadia, A., Tsang, P.P., Smith, S.W.: Attribute-based publishing with hidden
credentials and hidden policies. In: Proceedings of The 14th Annual Network and
Distributed System Security Symposium (NDSS), pp. 179–192 (March 2007)

12. Bradshaw,R.W.,Holt, J.E., Seamons,K.E.:Concealing complex policieswith hidden
credentials. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conference on
Computer and Communications Security, pp. 146–157. ACM, New York (2004)

13. Boneh, D.: A brief look at pairings based cryptography. In: FOCS, pp. 19–26. IEEE
Computer Society, Los Alamitos (2007)

14. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

A Security Proof

We closely follow the structure of the proof of [1]: First we show how to reduce
any adversary who plays the DABE game of Section 3.3 (denoted Adv1 in the

32 S. Müller, S. Katzenbeisser, and C. Eckert

following) to an adversary in a modified game (denoted Adv2). Then we show
that no Adv2 has non-negligible advantage, so there can be no Adv1 with non-
negligible advantage, either.

Let adversary Adv1 be an adversary who plays the DABE game defined in
Section 3.3 using our construction from Section 4. We define a modified game
as follows: The phases Setup, Phase 1, and Phase 2 are equal to the DABE
game. In the Challenge phase, the adversary submits an access policy A such
that none of the users that he created in Phase 1 satisfy A. The challenger flips
a coin b, and creates a ciphertext for the access policy A according to Equation
1, but instead of computing Ej := M · e(g, g)yajRj , he computes Ej as

Ej =

{
e(g, g)yajRj , if b = 1
e(g, g)θj , if b = 0 ,

where all θj are uniformly and independently chosen random elements of Zp.
Given an adversary Adv1 that has advantage ε in the DABE game, we can

construct Adv2 as follows: In the phases Setup, Phase 1, and Phase 2, Adv2

forwards all messages he receives from Adv1 to the challenger and all messages
from the challenger to Adv1. In the Challenge phase, Adv2 receives two messages
M0 and M1 from Adv1 and the challenge C (which is either e(g, g)yajRj or
e(g, g)θj) from the challenger. He flips a coin β and sends C′ := Mβ ·C to Adv1.
When Adv1 outputs a guess β′, Adv2 outputs as its guess 1 if β′ = β, or 0 if β′ �= β.
If C = e(g, g)yajRj , then Adv2’s challenge is a well-formed DABE ciphertext and
Adv1 has advantage ε of guessing the correct β′ = β. If C = e(g, g)θj , the
challenge is independent of the messages M0 and M1, so the advantage of Adv2

is 0. Thus, we have

Pr[Adv2 succeeds] = Pr[C = e(g, g)yajRj] Pr[β′ = β |C = e(g, g)yajRj] +
Pr[C = e(g, g)θj] Pr[β′ �= β |C = e(g, g)θj]

≤ 1
2
(
1
2

+ ε) +
1
2
· 1
2

=
1 + ε

2

and the overall advantage of Adv2 is ε
2 , as required. The existence of any suc-

cessful Adv1 implies the existence of an adversary Adv2 who succeeds with non-
negligible advantage as well.

Our next step is to show that no Adv2 can distinguish between e(g, g)yajRj

and e(g, g)θj in polynomial time. A combination of both results implies that no
Adv1 can have non-negligible advantage, either.

To show this, we use the generic group model from [2], with the extensions
for bilinear groups with a pairing e : G1 × G2 → GT developed in [14], which
we simplify slightly for our case where G1 = G2. For groups G and GT of prime
order p, the simulator chooses an arbitrary generator g̃ ∈ G and uses random
maps ξ, ξT : Zp → {0, 1}�logp� that encode any g̃x or e(g̃, g̃)x as a random string.
The maps ξ and ξT must be invertible, so the simulator can map representations
back to elements of G and GT . The simulator gives the adversary two oracles that
compute the group operations of G and GT and another oracle that computes the

Distributed Attribute-Based Encryption 33

pairing e. All oracles take as input string representations of group elements. The
adversary can only perform operations on group elements by interacting with the
oracles. For example, given two string representations A := ξT (a) and B := ξT (b)
of elements of group GT , the adversary can query the group oracle for the result
of the group operation A ·B in GT . The simulator will map A and B back to the
respective elements of GT using ξ−1

T , then execute the group operation and map
the result to a string using ξT . From the view of the adversary, the simulator can
simply return ξ(a) · ξ(b) = ξ(a+ b) or ξT (a) · ξT (b) = ξT (a+ b) for multiplication
and ξ(a)/ξ(b) = ξ(a − b) or ξT (a)/ξT (b) = ξT (a − b) for division. Note that
no oracle will accept input from different encodings (for example, one cannot
compute ξ(a) · ξT (b)). The oracle for e can be implemented easily: Given two
encodings A = ξ(a) and B = ξ(b) for some a, b ∈ Zp, the encoding of the pairing
of A and B is ξT (ab). We assume that the adversary only makes oracle queries
on strings previously obtained from the simulator.

The simulator plays the DABE game as follows:

Setup. The simulator chooses G, GT , e, g̃ and random exponents y, p̃ ∈ Zp,
as well as two encoding functions ξ, ξT and oracles for the group operations
in G, GT , and the pairing as described above. The public parameters are
g := ξ(1), P := ξ(p̃), and Y := ξT (y).

Phase 1. When the adversary calls CreateUser for some u, the simulator
chooses a random mku ∈ Zp and returns PKu := ξ(mku) and SKu :=
ξ(y + p̃ · mku). Whenever the simulator gets a request involving an at-
tribute A that the adversary has not used before, he chooses a new, unique
random value mkA, which simulates the term HSKa

(A) of an attribute A
with attribute authority a = aA. (The association between values mkA
and attributes A is stored for future queries). For every public attribute
key request for an attribute A, the simulator returns PK′

A := ξ(mkA) and
PK′′

A := ξT (y mkA). If queried for a secret attribute key, the simulator re-
turns SKA,u = ξ(mku mkA).

Challenge. When the adversary asks for a challenge, the simulator flips a coin
b. Then he chooses a random Rj ∈ Zp for each conjunction Aj and computes
aj =

∑
A∈Sj

mkA. If b = 0, he sets θj to a random value from Zp, otherwise
θj := yajRj . Finally he computes the ciphertext components of CTj as〈

Ej := ξT (θj), E′
j := ξ(p̃Rj), E′′

j := ξ(ajRj)
〉

,

which he returns as ciphertext.
Phase 2. The simulator behaves as in Phase 1. However, the simulator refuses

any secret attribute key that would give the respective user a set of attributes
satisfying A.

All values that the adversary knows are either encodings of random values of
Zp (namely 1, p̃, y, mku, mkA and θ), combinations of these values given to him
by the simulator (for example SKA,u = ξ(mku mkA)), or results of oracle queries
on combinations of these values. We keep track of the algebraic expressions used
to query the oracles; all queries can thus be written as rational functions. We

34 S. Müller, S. Katzenbeisser, and C. Eckert

assume that different terms always result in different string representations. This
assumption can only be false if due to the choice of the random encodings two
different terms “accidentally” result in the same string representation. Similar
to the proof in [1] it can be shown that the probability of this event is O(q2/p)
where q is the number of oracle queries that the adversary makes. In the following
we will condition that no such event occurs.

Now, under this assumption consider how the adversary’s views differ between
the case where the θj are random (b = 0) and the case where θj = yajRj (b = 1).
We claim that the views are identically distributed for both cases and therefore
any adversary has no advantage to distinguish between them in the generic group
model. To proof this claim, assume the opposite. Since the adversary can only
test for equality of string representations he receives (and all representations of
group elements are random), the only possibility for the views to differ is that
there exist two different terms that result in the same answer in the view where
θj = yajRj (b = 1), for at least one j, and in different answers in the view
corresponding to b = 0. Call two such terms ν1 and ν2 and fix one relevant
j. Since θj only occurs as Ej := ξT (θj) and elements of ξT cannot be paired,
the adversary can only construct queries where θj appears as an additive term.
Thus, ν1 and ν2 can be written as

ν1 = γ1θj + ν′
1

ν2 = γ2θj + ν′
2 ,

for some ν′
1 and ν′

2 that do not contain θj . Since by assumption θj = yajRj

results in ν1 = ν2, we have γ1yajRj + ν′
1 = γ2yajRj + ν′

2. Rearranging the
equation yields

ν′
1 − ν′

2 = (γ2 − γ1)yajRj .

Thus, the adversary can construct an oracle query for a term γyajRj (which we
can, without loss of generality, add to the queries of the adversary).

It remains to be shown that, without having a sufficient set of attributes
satisfying A, the adversary cannot construct a query of the form ξT (γyajRj) for
any γ and j from the information that he has. This contradicts the assumption
that the views in the modified game are not identically distributed.

After Phase 2, the adversary has received the following information from the
simulator:

– The tuple PK.
– PKu and SKu for an arbitrary number of users.
– PK′

A and PK′′
A for an arbitrary number of attributes.

– SKA,u for an arbitrary number of attributes and users, with the restriction
that for no u, he has a sufficient set of secret attributes keys that satisfies A.

– Ej , E′
j , and E′′

j of the challenge ciphertext.

Furthermore, he possibly obtained encodings of arbitrary combinations of these
values through queries to the five oracles that implement the group operations
and the pairing. Since all Rj and y are random, the only way to construct

Distributed Attribute-Based Encryption 35

Table 2. Results of pairings

Source Term Pairing with SKu Pairing with E′
j

PKu′ mku′ mku′ y + p̃mku mku′ mku p̃Rj

SKu′ y + p̃mku′ y2 + yp̃(mku′ +mku) + p̃2 mku mku′ yp̃Rj + p̃2 mku Rj∏
A∈Sj

PK′
A aj yaj + p̃ mku aj aj p̃Rj

E′
j p̃Rj yp̃Rj + p̃2 mku Rj p̃2R2

j

E′′
j ajRj yajRj + p̃mku ajRj aj p̃R2

j

ξT (γyajRj) is to pair two values from G by querying the pairing oracle, so that
each of the components is contained in any of the terms.

First we show how the adversary can find representations of terms that con-
tain aj . Aside from Ej and E′′

j , aj can only be constructed by querying the
multiplication oracle for encodings of the terms containing mkA for all A ∈ Sj

and some j with 1 ≤ j ≤ n. These values occur only in PK′
A, PK ′′

A, and SKA,u.
Since PK ′′

A ∈ GT , it cannot be used as input of the pairing. Multiplying repre-
sentations of PK′

A for some A and SKA,u for some u and A yields terms with
exponents of the form

∑
u

(
γu mku

∑
A

γA,u mkA

)
+ γ′

∑
A

mkA ,

for some γu, γA,u and γ′. Since the adversary does not have all secret at-
tribute keys corresponding to any one user u to satisfy any conjunction, no sum∑

A γA,u mkA will yield any aj . Furthermore, the simulator chooses all mkA
randomly, so any oracle query involving any sum over

∑
A mkA with a set of

attributes that does not precisely correspond to the attributes of the challenge
A gives no information about aj . The only way that the sum γ′∑

A mkA eval-
uates to aj for some j is as a product of corresponding public attribute keys,
which is obtained by querying the multiplication oracle with all representations
of PK′

A,A ∈ Sj, yielding ξ(aj). It follows that to construct a term containing
aj , the adversary has no other option than to use either Ej , E′′

j , or
∏

A∈Sj
PKA

for any j. Other terms containing mkA are not useful for him.
Next we consider how to obtain terms containing y and Rj . All Rj and y are

random, so the only way to construct a relevant pairing is to pair two represen-
tations of terms from G by querying the pairing oracle, such that both y and
one Rj are contained in one of the terms. The only values in G that contain y
are SKu. We examine all possible results from pairing some γ SKu with some
other value. As shown above, we need not consider terms where the adversary
has some mkA, but not all to create a value aj .

The first three columns of Table 2 list all remaining combinations. It can be
seen that the only result that contains all y, aj and Rj is the pairing of some
SKu and some E′′

j which results in

ξT (p̃Rj mku aj + yajRj) .

36 S. Müller, S. Katzenbeisser, and C. Eckert

In order to obtain the required term ξT (γyajRj), the adversary will have to
eliminate the first term, p̃Rj mku aj . To construct this, he needs to pair a term
containing p̃ with another term. Thus we need to examine all possible results
from pairing SKu or E′

j (the only terms depending on p̃) with another value. Once
again, Table 2 on the previous page lists all possible combinations not containing
terms involving results of the hash oracle. (Including terms given by the oracles
one gets terms of the above form that will not help, either.) We can conclude from
the case analysis that no term of the form ξT (p̃Rj mku aj) can be constructed.

Thus, the term ξT (yajRj) cannot be constructed by the adversary, which con-
tradicts the assumption that the views in the modified game are not identically
distributed. Thus, any Adv2 will have negligible success to win the game. In turn,
a successful Adv1 cannot exist either, which proves the theorem. ��

Improved Partial Key Exposure Attacks on RSA
by Guessing a Few Bits of One of the Prime

Factors

Santanu Sarkar and Subhamoy Maitra

Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India
{santanu r,subho}@isical.ac.in

Abstract. Consider RSA with N = pq, q < p < 2q, public encryption
exponent e and private decryption exponent d. We study cryptanalysis of
RSA when certain amount of the Most Significant Bits (MSBs) or Least
Significant Bits (LSBs) of d is known. This problem has been well stud-
ied in literature as evident from the works of Boneh et. al. in Asiacrypt
1998, Blömer et. al. in Crypto 2003 and Ernst et. al. in Eurocrypt 2005.
In this paper, we achieve significantly improved results by modifying the
techniques presented by Ernst et. al. Our novel idea is to guess a few
MSBs of the secret prime p (may be achieved by exhaustive search over
those bits in certain cases) that substantially reduces the requirement of
MSBs of d for the key exposure attack.

Keywords: Cryptanalysis, Factorization, Lattice, LLL Algorithm, RSA,
Side Channel Attacks, Weak Keys.

1 Introduction

RSA [19] is one of the most popular cryptosystems in the history of cryptology.
Here, we use the standard notations in RSA as follows:

– primes p, q, with q < p < 2q;
– N = pq, φ(N) = (p− 1)(q − 1);
– e, d are such that ed = 1 + kφ(N), k ≥ 1;
– N, e are publicly available and message M is encrypted as C = Me mod N ;
– the secret key d is required to decrypt the cipher as M = Cd mod N .

Though RSA is quite safe till date if applied with proper cryptographic prac-
tices, the literature related to its cryptanalysis is quite rich. RSA is found to
be weak when the prime factors of any one of p ± 1, q ± 1 is small [18,25].
In [11], it has been pointed out that short public exponents may cause weakness
if the same message is broadcast to many parties. One very important result
regarding RSA weak keys has been presented in [24], where it has been shown
that N can be factored from the knowledge of N, e if d < 1

3N
1
4 . Though it has

been shown [21] that the idea of [24] cannot be substantially extended further

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 37–51, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 S. Sarkar and S. Maitra

than the bound of d as O(N
1
4), many papers [3,9,23,26] used the idea of Con-

tinued Fraction (CF) expression to get different kinds of weak keys in RSA (one
may follow the material from [20, Chapter 5] for basics of CF expression and
related results). The seminal idea of [8] using lattice based techniques has also
been exploited in great detail [5,1] to find weak keys of RSA when d < N0.292.
An outstanding survey on the attacks on RSA before the year 2000 is avail-
able in [4]. For very recent results on RSA, one may refer to [2,13,14] and the
references therein.

One important model of cryptanalysis is the side channel attack such as fault
attacks, timing attacks, power analysis etc. [6,15,16], by which an adversary may
obtain some bits of the private key d. In [6], it has been studied how many bits
of d need to be known to mount an attack on RSA. The constraint in the work
of [6] was the upper bound on e which is

√
N . The study attracted interest and

the idea of [6] has been improved in [2] where the bound of e was increased upto
N0.725. Then the work of [10] improved the result for full size public exponent e.
We present further improvement over the work of [10] noting that if one guesses a
few MSBs of p, then the requirement on the number of bits in d gets substantially
reduced.

As an example (see Example 1 later) with practical parameters, for a specific
1024 bit N and 309 bit d, the idea of [10] requires 112 many MSBs of d to be
exposed, whereas, our idea requires only 80 MSBs of d with a guess of 21 bits of
MSBs in p. First of all, the total requirement of bits to be known in our case is
80 + 21 = 101, which is 11 bits less than the 112 many bits to be known in [10].
More importantly, one needs to know the bits of d by side channel attacks and
a reduction of 112− 80 = 32 bits makes the chance of this kind of attack more
realistic. Further, with higher lattice dimension we get even more interesting
results where as less as 53 many MSBs of d are required with the knowledge of
21 many MSBs of p.

One may note that given the constraint q < p < 2q, a few bits of p, q can
be known in polynomial time (e.g., around 7 bits for 1024 bit N and 9 bits for
2048 bit N following the work of [22]). This will indeed reduce the search effort
further for guessing a few MSBs of p.

As we use different notations in this paper compared to [10], let us list
the results of [10] with our notations here. Let d be of bitsize δ log2 N . Given
(δ − γ) log2 N many MSBs of d, the product N can be factored in probabilistic
polynomial time [10] (we ignore the term ε as given in [10]) if

1. γ ≤ 5
6 −

1
3

√
1 + 6δ, or

2. γ ≤ 1
3λ + 1

2 −
1
3

√
4λ2 + 6λ, where λ = max{γ, δ − 1

2}

There are also some results in [10], where cryptanalysis of RSA is studied when
some LSBs of d are known.

In this paper we use similar kind of analysis as in [10] and explain different
cases relevant to the attacks. The theoretical results are presented in Theo-
rems 2, 3 and 4. The advantages of our work over [10] are as follows.

Improved Partial Key Exposure Attacks on RSA 39

1. Given that a few MSBs of p can be guessed, the requirement of MSBs of d
in our attack is less than that of [10] (where no guess on p is made).

2. The total amount of bits, to be known considering the MSBs of both p, d
in our case, is less than the number of MSBs to be known for d as reported
in [10].

3. In Theorem 4, we have also studied the cryptanalysis of RSA when some
MSBs of p along with the LSBs of d are known and our results is better than
that of [10].

Our theoretical results are supported by experimental evidences. We have im-
plemented the programs in SAGE 2.10.1 over Linux Ubuntu 7.04 on a computer
with Dual CORE Intel(R) Pentium(R) D CPU 2.80 GHz, 1 GB RAM and 2 MB
Cache.

While comparing our experimental results with that of [10], we implement
the idea of [10] on our own platform. As all the parameters for the experiments
in [10] may not be the same with our implementations, the results may vary a
little. We point out the exact experimental values presented in [10] as and when
required.

1.1 Preliminaries

Let us present some basics on lattice reduction techniques. Consider the lin-
early independent vectors u1, . . . , uw ∈ Zn, when w ≤ n. A lattice, spanned by
< u1, . . . , uw >, is the set of all linear combinations of u1, . . . , uw, i.e., w is the
dimension of the lattice. A lattice is called full rank when w = n. Let L be a lat-
tice spanned by linearly independent vectors u1, . . . , uw, where u1, . . . , uw ∈ Zn.
By u∗

1, . . . , u
∗
w, we denote the vectors obtained by applying the Gram-Schmidt

process to the vectors u1, . . . , uw. It is known that given a basis u1, . . . , uw of
a lattice L, LLL algorithm [17] can find a new basis b1, . . . , bw of L with the
following properties.

– ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for 1 ≤ i < w.
– For all i, if bi = b∗i +

∑i−1
j=1 μi,jb

∗
j then |μi,j | ≤ 1

2 for all j.

– ‖ b1 ‖≤ 2
w
2 det(L)

1
w , ‖ b2 ‖≤ 2

w
2 det(L)

1
w−1 .

By b∗1, . . . , b
∗
w, we mean the vectors obtained by applying the Gram-Schmidt

process to the vectors b1, . . . , bw.
The determinant of L is defined as det(L) =

∏w
i=1 ||u∗

i ||, where ||.|| denotes
the Euclidean norm on vectors. Given a polynomial g(x, y) =

∑
ai,jx

iyj , we

define the Euclidean norm as ‖ g(x, y) ‖=
√∑

i,j a2
i,j and infinity norm as

‖ g(x, y) ‖∞= maxi,j |ai,j |.
In [8], techniques have been discussed to find small integer roots of polynomials

in a single variable mod n, and of polynomials in two variables over the integers.
The idea of [8] extends to more than two variables also, but the method becomes
probabilistic. The following theorem is also relevant to the idea of [8].

40 S. Sarkar and S. Maitra

Theorem 1. [12] Let g(x, y, z) be a polynomial which is a sum of ω many
monomials. Suppose g(x0, y0, z0) = 0 mod n, where |x0| < X , |y0| < Y and
|z0| < Z. If ‖ g(xX, yY, zZ) ‖< n√

ω
, then g(x0, y0, z0) = 0 holds over integers.

Thus, the condition 2
w
2 det(L)

1
w−1 < n√

ω
implies that if polynomials b1, b2 (cor-

responding to the two shortest reduced basis vectors) have roots over 0 mod n,
then those roots hold over integers also. The solutions corresponding to each
unknown is achieved by calculating the resultant of two polynomials (if they are
algebraically independent) and then finding the solution of the resultant.

2 MSBs of d and p Known

In this section we consider that certain amount of MSBs of both d, p will be
available. We will study to methods following the ideas of [10].

2.1 Method I

Let us start with the following result.

Theorem 2. Let d ≤ N δ and consider that d0, p0 are exposed such that |d−d0| <
Nγ and |p−p0| < Nβ. Then one can factor N (in probabilistic polynomial time)
when

γ ≤ 1− β + 2
√

β(β + 3δ)
3

.

Proof. Let q0 = �N
p0
�. We have ed − 1 = kφ(N) = k(N − (p + q − 1)). Now

writing d = d0 + d1, the above equation can be written as e(d0 + d1) − 1 =
k(N − p0− q0 − (p + q− p0 − q0 − 1)). This can be rewritten as ed1 − (N − p0−
q0)k + k(p + q − p0 − q0 − 1) + ed0 − 1 = 0. Let us consider the corresponding
polynomial fMSB1 = ex − (N − p0 − q0)y + yz + R, where R = ed0 − 1, and
d1 is renamed as x, k is renamed as y and p + q − p0 − q0 − 1 is renamed as z.
Hence, we have to find the solution (x0, y0, z0) = (d1, k, p + q − p0 − q0 − 1) of
the polynomial fMSB1 = ex− (N − p0 − q0)y + yz + R.

Let X = Nγ , Y = N δ, Z = Nβ , and one can check that they are the upper
bounds of x0, y0, z0. Note that k (renamed as y) is less than d = N δ. Also, the
bound Z should be |p + q − p0 − q0|, which is actually less than 2Nβ (however,
we ignore the constant term in the proof as in [10]).

Let us fix the lattice parameters m, t. Define W = ||fMSB1(xX, yY, zZ)||∞
and n = (XY)mZm+tW . In order to work with a polynomial having the constant
term 1, we define

f ≡ R−1fMSB1(x, y, z) mod n ≡ 1 + ax + by + cyz.

(During the experiments, as long as gcd of R, n is not 1, we keep on increasing
n by 1.) Then we use the shifts

Improved Partial Key Exposure Attacks on RSA 41

gijk = xiyjzkf(x, y, z)Xm−iY m−jZm+t−k,

for i = 0, . . . , m; j = 0, . . . , m− i; k = 0, . . . , j;

hijk = xiyjzkf(x, y, z)Xm−iY m−jZm+t−k,

for i = 0, . . . , m; j = 0, . . . , m− i; k = j + 1, . . . , j + t;

g′ijk = nxiyjzk,

for i = 0, . . . , m + 1; j = m + 1− i; k = 0, . . . , j;

h′
ijk = nxiyjzk,

for i = 0, . . . , m + 1; j = m + 1− i; k = j + 1, . . . , j + t.

Now we build a lattice L with the basis elements coming from the coefficient vec-
tors of gijk(xX, yY, zZ), hijk(xX, yY, zZ), g′ijk(xX, yY, zZ) and h′

ijk(xX, yY, zZ)
following the idea of [10]. The vectors are ordered in such a manner that the ma-
trix corresponding to the lattice L becomes triangular, and the diagonal entries
of g and h are equal to (XY)mZm+t. Then we follow the similar computation
as in [10, Appendix A], taking t = τm. If

X1+3τY 2+3τZ1+3τ+3τ2 ≤W 1+3τ , (1)

we get polynomials f1 and f2 (the first two elements after lattice reduction
using LLL algorithm) that satisfy the Howgrave-Graham bound as described in
Theorem 1.

Now we construct two resultants G1, G2 taking two different pairs from
fMSB1, f1, f2 (in our experiments, mostly, G1 is constructed using fMSB1, f1

and G2 is constructed using fMSB1, f2). Then we construct the resultant of
G1, G2 to get G. The integer root of G provide z0, which in turn gives the
primes. We assume that the resultant computations for multivariate polynomi-
als constructed in our approach yield non-zero polynomials. This is successful in
most of the cases in our experiment. However, as this step involves some prob-
ability of success, we consider the algorithm as probabilistic. As each of lattice
reduction, resultant computation and root finding is polynomial time algorithm
in log2 N , the product N can be factored in probabilistic polynomial time given
the constraints in this theorem.

Here X = Nγ , Y = N δ, Z = Nβ, and

W = max(eX, (N − p0 − q0)Y, Y Z, R) ≥ (N − p0 − q0)Y ≈ NY = N1+δ.

So the inequality 1 holds if,

X1+3τY 2+3τZ1+3τ+3τ2 ≤ (NY)1+3τ ⇔
Nγ(1+3τ)N δ(2+3τ)Nβ(1+3τ+3τ2) ≤ N (1+δ)(1+3τ) ⇔

3βτ2 + (3β + 3γ − 3)τ + (γ + δ + β − 1) ≤ 0.

42 S. Sarkar and S. Maitra

Putting the optimal value of τ , which is τ = 1−β−γ
2β in the above inequality we

get the required condition γ ≤ (3−β)−
√

4β2+12βδ

3 . ��
One may note that putting β = 1

2 in Theorem 2, we get the same bound γ ≤
5
6 −

1
3

√
1 + 6δ as in [10, Theorem 1]. As we have the knowledge of a few MSBs

of p, the value of β decreases below 1
2 in our case, increasing the value of γ. As

δ − γ proportion of bits of d needs to be known for the attack, we require less
number of MSBs of d to be exposed than [10].

We present some numerical values first. Consider 1024 bits N , i.e., log2 N =
1024 and δ = 0.35, i.e., log2 d = 359. Thus, the upper bound of γ using the
formula γ ≤ 5

6 −
1
3

√
1 + 6δ of [10] comes to be 0.24644. Then the requirement

of MSBs of d to be known is (0.35− 0.24644)× 1024 = 106 bits. If we consider
that 0.039 proportion of MSBs of p (i.e., 0.0195 proportion of log2 N) is known,
then β = 0.5 − 0.0195 = 0.4805. In this case 20 many MSBs of p is required
to be guessed. Using our Theorem 2, the value of γ becomes 0.26813. Thus the
requirement of MSBs of d to be known is (0.35− 0.26813)× 1024 = 84 bits.

One should note that the total requirement of bits to be known in our case
is 84 + 20 = 104, which is less than the requirement of 106 bits in [10]. The
number of MSBs of d to be exposed in [10] is (δ− γ1) log2 N (we denote γ by γ1

here). In our case, the requirement of MSBs in p is (0.5− β) log2 N and that of
d is (δ − γ2) log2 N (we denote γ by γ2 here), and adding them we get the total
requirement of MSBs (considering both p, d) is (0.5 − β + δ − γ2) log2 N . One
may check that (δ − γ1) log2 N of [10] is greater than (0.5 − β + δ − γ2) log2 N
when β < 1

2 . This theoretically justifies the advantage of our technique.
Based on Theorem 2, we get the following probabilistic polynomial time al-

gorithm.
As we will work with low lattice dimensions, the actual requirement of MSBs

to be known will be higher in experimental results than the numerical values
arrived from the theoretical results. Let us first present an example with all the
relevant data that highlights our improvement.
Example 1. We consider 1024 bits N , where p, q are as follows:
1250761923527510411315070094600953191518914882053874630138572721
3379453573344337203378689178469455622775349446752309018799383711
357854132188009573705320799, and
1107912156937047618049134072984642192716736685911164684230293246
8333166003839167447110681747873414798648020740448967643538057644
289251761907013886499799383.

The public encryption exponent e and the private decryption exponent d(> N0.3)
are as follows:
4111419531482703302213152215249820199365297610317452985558572767
9733063464769115345985695600033379618093485626368069580331701437
1713991035411585833035097935179306334968838354246222965614977094
4387175979120739327961832949244693262147095449404161561854523749
0828036465397182668742616838575576909861473509095701, and
9112600460700982254642303117750528735697464727643378038053035839
34395253129269343722635765941.

Improved Partial Key Exposure Attacks on RSA 43

Algorithm 1.

Inputs: N, e; MSBs of d, p, i.e., d0, p0; Parameters γ, β, δ.
Steps:

0. If γ 	≤ 1− β+2
√

β(β+3δ)

3
then exit with failure.

1. Construct polynomial fMSB1 = ex− (N − p0 − q0)y + yz + R where
q0 = N

p0
, and R = ed0 − 1.

2. Initialize X = Nγ , Y = Nδ , Z = Nβ .
3. Fix the lattice parameters m, t.
4. Calculate W = ||fMSB1(xX, yY, zZ)||∞ and n = (XY)mZm+tW .
5. Construct f ≡ R−1fMSB1(x, y, z) mod n ≡ 1 + ax + by + cyz.
6. Construct the lattice L from f , i.e., with the coefficients of the shift

polynomials gijk(xX, yY, zZ), hijk(xX, yY, zZ), g′
ijk(xX, yY, zZ)

and h′
ijk(xX, yY, zZ), where g, h, g′, h′ are constructed from f .

7. Reduce L using LLL algorithm to get the first two elements f1, f2.
8. Calculate the resultant G1 using fMSB1, f1

and the resultant G2 using fMSB1, f2.
9. If both G1, G2 are nonzero

then calculate the resultant G of G1, G2;
else

exit with failure.
10. If G is nonzero

then solve G to get the integer root z0 = (p + q − p0 − q0 − 1);
else

exit with failure.

First we work with the case m = t = 1, i.e., getting a lattice with dimension
w = 16 which corresponds to a 16 × 16 matrix (one may refer to [10, Section
4.1.1, Page 378] for the exact matrix). Factoring N requires the knowledge of 112
many MSBs of d using the method of [10], whereas, our technique requires 80 many
MSBs of d and 21 many MSBs of p. Both the techniques require around 1.5 seconds
on our platform. Following the idea of [22], around 7 MSBs of p may be known
in polynomial time and hence we need 221−7 many guesses for p, which requires
less than 7 hours in our experimental set-up. The existing works on partial key
exposure attacks will not work with the knowledge of only 80 bits of MSBs that we
achieve here.

Considering a higher lattice dimension, m = t = 2, i.e., w = 40, factoring
N requires knowledge of 110 many MSBs of d using the idea of [10]. This requires
53.03 seconds. According to experimental results in [10, Figure 5], this should require
around 93 MSBs of d. In our case, we require only 53 MSBs of d and 21 MSBs of p
to factor N that requires 46.25 seconds; thus the total requirement is 53 + 21 = 74
many bits. Considering that 7 many MSBs of p may be known using the idea of [22],
the overall attack will take a day in a cluster of 9 machines.

One may also consider guessing MSBs of p + q rather than p as the polynomial
fMSB1 deals with p + q rather than p and q. Experimental results of [22] show
that around 12 many MSBs of p + q can be estimated correctly for the 1024-bit
N , whereas the estimation gives around 7 many MSBs for p. Consider that b1

44 S. Sarkar and S. Maitra

Table 1. Our results for 1024 bits N with lattice dimension m = 1, t = 1, i.e., w = 16

308-bit d and # MSBs of d revealed in our case is 80 bits
MSBs of d [10] 112 112 107 111 122 114 115 114 113 113
MSBs of p (our) 21 22 26 27 33 20 23 27 24 17

359-bit d and # MSBs of d revealed in our case is 150 bits
MSBs of d [10] 213 213 224 221 210 213 213 209 214 209
MSBs of p (our) 55 58 64 63 56 58 58 60 57 64

many MSBs of p are known (p is estimated by p′) and we estimate q by q′ = �N
p′ �.

Further, let us assume that the estimation p′ + q′ has b2 many MSBs identical
with the exact value p + q. Then experimentally we observed that b2 > b1 in
general and for b1 = 7, we get b2 = 12 on an average. This shows that the effect
of guessing the MSBs of p or p + q are same.

In Table 1, we consider different 1024 bits N and present the results of 10
runs of Algorithm 1 for two cases, one when d > N0.3 (308-bit d) and the
other when d > N0.35 (359-bit d). Let MSBd, MSBp be the number of MSBs
exposed in d, p respectively and bd, bN be the number of bits in d, N respectively.
For the experiments, we have taken X = 2bd−MSBd−τ + 3, Y = 2bd−τ + 3
and Z = 2

bN
2 −1−MSBp−τ + 3, where τ is assigned to either 0 or 1. As already

discussed, m = 1, t = 1, i.e., w = 16.
First, we consider that only 80 MSBs of d will be leaked and studied the

requirement of the MSBs of p for the attack. In each case, the algorithm of [10]
has also been executed and the requirement of the minimum number of MSBs
for d is presented. Next, we consider that 150 MSBs of d will be exposed for our
attack. The results of Table 1 clearly identifies the improvement through our
approach over the idea of [10].

2.2 Method II

We start this section with the following theorem.

Theorem 3. Let d ≤ N δ and consider that d0, p0 are exposed such that |d−d0| <
Nγ and |p−p0| < Nβ. Then one can factor N (in probabilistic polynomial time)
when

γ ≤ 1 +
1
3
λ− β − 2

3

√
λ
√

λ + 3β,

where λ = max{γ, δ − 1
2}.

Proof. Note that the attacker can compute k0 = � ed0−1
N �. Let k1 = k − k0, the

unknown part of k. It can be shown similar to [2] that |k1| < e
φ(N) (N

γ +3N δ− 1
2).

So we get |k1| < 4Nλ, where λ = max{γ, δ − 1
2}.

Now, ed−1 = k(N +1−p−q)⇔ e(d0 +d1)−1 = (k0 +k1)(N−(p+q−1)) ⇔
e(d0 +d1)−1 = (k0 +k1)(N−p0−q0−(p+q−p0−q0−1))⇔ ed1−(N−p0−q0)

Improved Partial Key Exposure Attacks on RSA 45

k1 +k1(p+q−p0−q0−1)+k0(p+q−p0−q0−1)+ed0−1−(N−p0−q0)k0 = 0.
Hence we have to find the solution of the polynomial

fMSB2(x, y, z) = ex− (N − p0 − q0)y + yz + k0z + R,

where R = ed0 − 1 − (N − p0 − q0)k0. That is, the root of fMSB2(x, y, z) is
(x0, y0, z0) = (d1, k1, p + q − p0 − q0 − 1).

Let X = Nγ , Y = Nλ, Z = Nβ , and one can check that they are the upper
bounds of x0, y0, z0 neglecting the small constant multipliers.

Let us fix the lattice parameters m, t. Define W = ||fMSB2(xX, yY, zZ)||∞
and n = XmY m+tZmW . In order to work with a polynomial with constant term
1, we define

f ≡ R−1fMSB2(x, y, z) mod n ≡ 1 + ax + by + cyz + dz.

(During the experiments, as long as gcd of R, n is not 1, we keep on increasing
n by 1.) Then we use the shifts

gijk = xiyjzkf(x, y, z)Xm−iY m+t−jZm−k,

for i = 0, . . . , m; j = 0, . . . , m− i; k = 0, . . . , m− i;

hijk = xiyjzkf(x, y, z)Xm−iY m+t−jZm−k,

for i = 0, . . . , m; j = m− i + 1, . . . , m− i + t; k = 0, . . . , m− i;

g′ijk = nxiyjzk,

for i = 0, . . . , m + 1; j = 0, . . . , m + t + 1− i; k = m + 1− i;

h′
ijk = nxiyjzk,

for i = 0, . . . , m; j = m + t + 1− i; k = 0, . . . , m− i.

Now we build a lattice L with the basis elements coming from the coefficient vec-
tors of gijk(xX, yY, zZ), hijk(xX, yY, zZ), g′ijk(xX, yY, zZ) and h′

ijk(xX, yY, zZ)
following the idea of [10]. The vectors are ordered in such a manner that the ma-
trix corresponding to the lattice L becomes triangular, and the diagonal entries
of g and h are equal to XmY m+tZm. Now we follow the similar computation as
in [10, Appendix B], taking t = τm. If

X2+3τY 3+6τ+3τ2
Z3+3τ ≤W 2+3τ , (2)

we get polynomials f1 and f2 (the first two elements after lattice reduction
using LLL algorithm) that satisfy the Howgrave-Graham bound as described in
Theorem 1.

Now we construct two resultants G1, G2 taking two different pairs from
fMSB2, f1, f2 (in our experiments, mostly, G1 is constructed using fMSB2, f1

and G2 is constructed using fMSB2, f2). Then we construct the resultant of
G1, G2 to get G. The integer root of G provide z0, which in turn gives the prime.

46 S. Sarkar and S. Maitra

We assume that the resultant computations for multivariate polynomials con-
structed in our approach yield non-zero polynomials. This is successful in most
of the cases in our experiment. However, as this step involves some probability
of success, we consider the algorithm as probabilistic. As each of lattice reduc-
tion, resultant computation and root finding is polynomial time algorithm in
log2 N , the product N can be factored in probabilistic polynomial time given
the constraints in this theorem.

Here X = Nγ , Y = Nλ, Z = Nβ, and

W = max(eX, (N − p0 − q0)Y, Y Z, k0Z, R) ≥ (N − p0 − q0)Y ≈ NY = N1+λ.

So the Inequality 2 holds if,

X2+3τY 3+6τ+3τ2
Z3+3τ ≤ (NY)2+3τ ⇔

Nγ(2+3τ)Nλ(3+6τ+3τ2)Nβ(3+3τ) ≤ N (1+λ)(2+3τ) ⇔
3λτ2 + (3β + 3γ + 3λ− 3)τ + (2γ + λ + 3β − 2) ≤ 0

Putting the optimal value of τ , which is τ = 1−β−γ−λ
2λ , in the above inequality

we get the required condition γ ≤ (6+2λ−6β)−
√

16λ2+48λβ

6 . ��

Putting β = 1
2 in Theorem 3, we get the same bound as in [10, Theorem 1]. As

we have the knowledge of a few MSBs of p, the value of β decreases below 1
2

in our case, increasing the value of γ. As δ − γ proportion of bits of d needs to
be known for the attack, we require less number of MSBs of d to be exposed
than [10]. Similar to Algorithm 1 corresponding to Theorem 2, one can devise a
probabilistic polynomial time algorithm following Theorem 3.

Let us now present an example with all the relevant data that highlights our
improvement.

Example 2. We consider 1024 bits N , where p, q are as follows:
1290095499900537520738592018141635641890236846803915011513383767
0209874471258016282936211171026387975852074650577973638061666975
875608252293476946503643153 and
1000185093298659356464364006344214401803451809699327990511143534
6245976401541951947605527101001219415058383887802017319402268231
678260119183689118701599291.

The public encryption exponent e and the private decryption exponent d(>
N0.635) are as follows:
2646427944963705290832001040264321064518330644014272781901176692
1275747995184991062700504366357036237348582610659452376574441390
6848604272574339602928280657237457953663021451655943042945578450
1024196163634859652923753819307713107254668118838014524484407975
5319955227511927745024777291417353383785591531787203 and
7161023303467486069671927956706449459095092348532240745792204228
8486408905849760078536669744740852203765618495942126675467606851
0587072867279932328546936990058795097878469904141410558285066558
9707.

Improved Partial Key Exposure Attacks on RSA 47

First we work with the case m = t = 1, i.e., lattice dimension w = 20. Factoring
N requires the knowledge of 572 many MSBs of d using the method of [10], whereas,
our technique requires 517 many MSBs of d and 31 many MSBs of p. Both the
techniques require around 7.5 seconds on our platform. Following the idea of [22],
around 7 MSBs of p may be known in polynomial time and hence we need 231−7

many guesses for p, which requires around a day in a cluster of 210 machines. The
existing works on partial key exposure attacks will not work with the knowledge
of only 517 bits of MSBs that we achieve here. Further the total requirement of
unknown bits in our case is 517 + 31 = 548 which is less than 572.

With higher lattice dimension, m = t = 2, i.e., w = 50, factoring N requires 527
many MSBs of d using the idea of [10]. This takes 859.64 seconds. In our case, it
is enough to know 494 MSBs of d with 31 MSBs of p. The time required is 887.22
seconds.

We now present the experimental details of 10 runs with 10 different 1024 bits
N in Table 2. We consider that only 517 many MSBs of d will be leaked and
then study the requirement of the MSBs of p for our attack. In each case, the
algorithm of [10] has also been executed and the requirement of the minimum
number of MSBs for d is presented. The results of Table 2 clearly identifies the
improvement through our approach over the idea of [10].

Table 2. Our results for 1024 bits N with lattice dimension m = 1, t = 1, i.e., w = 20

651-bit d and # MSBs of d revealed in our case is 517 bits
MSBs of d [10] 572 573 572 573 573 571 570 569 578 575
MSBs of p (our) 31 34 35 35 35 32 38 33 33 35

2.3 Comparison of Methods I and II

Let us first concentrate on Theorem 3. We get γ ≤ 1 + 1
3λ− β − 2

3

√
λ
√

λ + 3β,
where λ = max{γ, δ − 1

2}.
Now λ = γ implies that γ ≤ 3(1−β)2

4 . This bound of γ is valid when δ− 1
2 ≤ γ,

i.e., when δ ≤ 1
2 + 3(1−β)2

4 .
If λ = δ − 1

2 , we get that γ ≤ 5
6 − β + δ

3 −
1
3

√
4δ2 − 4δ + 1 + 12βδ − 6β. We

consider this bound for δ > 1
2 + 3(1−β)2

4 .
We need (δ−γ) log2 N many MSBs of d to factor N and thus when the upper

bound of γ is larger, one gets the better result. Thus from Theorem 3, we get,

1. γ ≤ 3(1−β)2

4 , when δ ≤ 1
2 + 3(1−β)2

4 ;
2. γ ≤ 5

6 − β + δ
3 −

1
3

√
4δ2 − 4δ + 1 + 12βδ − 6β, when δ > 1

2 + 3(1−β)2

4 .

Now we compare the item 1 above with the bound of Theorem 2. In Theorem 2,

we have γ ≤ 1− β+2
√

β(β+3δ)

3 .

Note that 3(1−β)2

4 ≤ 1−β+2
√

β(β+3δ)

3 iff δ ≤ 1
12β (81

16β4− 63
4 β3+ 39

8 β2+ 21
4 β+ 9

16).

One can check 1
12β (81

16β4− 63
4 β3+ 39

8 β2+ 21
4 β+ 9

16) ≤ 1
2 + 3(1−β)2

4 , for β > 0.07. In

48 S. Sarkar and S. Maitra

our analysis, we generally consider β is very close to 0.5, i.e., β > 0.07. Thus for
the required range of values for β, we have, 1

12β (81
16β4− 63

4 β3+ 39
8 β2+ 21

4 β+ 9
16) ≤

1
2 + 3(1−β)2

4 .
Hence, we can conclude that Method I (corresponding to Theorem 2) is more

effective when δ ≤ 1
12β (81

16β4− 63
4 β3 + 39

8 β2 + 21
4 β + 9

16), but for higher values of
δ, Method II (corresponding to Theorem 3) will perform better.

3 LSBs of d and MSBs of p Known

In [10, Theorem 3], the cryptanalysis of RSA has been studied when some LSBs
of d are exposed. We here extend the idea with the additional idea that a few
MSBs of p are also known. This gives the following theorem. We present the
proof briefly as the technique is similar to our Theorem 2.

Theorem 4. Let d < N δ. Given (δ − γ) log2 N many LSBs of d and p0 when
|p− p0| < Nβ, N can be factored in probabilistic polynomial time when

γ ≤ 1− β + 2
√

β(β + 3δ)
3

.

Proof. Consider that d0 is the integer corresponding to the exposed LSBs of d.
Thus, d0 ≡ d mod M for some M , i.e., d = d0 + d1M , for some d1. Now we have
ed−1 = k(N−(p+q−1)), which can be written as e(d0+d1M)−1 = k(N−p0−
q0−(p+q−p0−q0−1))⇔ eMd1−(N−p0−q0)k+k(p+q−p0−q0−1)+ed0−1 = 0.
Hence we have to find the solution of the polynomial

fLSB(x, y, z) = eMx− (N − p0 − q0)y + yz + R,

where R = ed0 − 1. So, the root of fLSB(x, y, z) is (x0, y0, z0) = (d1, k, p + q −
p0 − q0 − 1). This polynomial is same as the polynomial fMSB1 in the proof of
Theorem 2. Thus, using similar analysis as in the proof of Theorem 2, we get
the constraint as

X1+3τY 2+3τZ1+3τ+3τ2
≤W 1+3τ .

Putting X = Nγ , Y = N δ, Z = Nβ we get γ ≤ 1− β+2
√

β(β+3δ)

3 . ��

Putting β = 1
2 in Theorem 4, we get the same bound as in [10, Theorem 3].

As we have the knowledge of a few MSBs of p, the value of β decreases below
1
2 in our case, increasing the value of γ. As δ − γ proportion of bits of d needs
to be known for the attack, we require less number of LSBs of d to be exposed
than [10]. Similar to Algorithm 1 corresponding to Theorem 2, one can devise a
probabilistic polynomial time algorithm following Theorem 4.

Let us now present an example with all the relevant data that highlights our
improvement.

Improved Partial Key Exposure Attacks on RSA 49

Table 3. Our results for 1024 bits N with lattice dimension m = 1, t = 1, i.e., w = 16

308-bit d and # LSBs of d revealed in our case is 80 bits
LSBs of d [10] 115 107 105 108 109 109 114 116 112 108

MSBs of p (our) 23 24 23 29 24 27 30 27 20 19

Example 3. We consider 1024 bits N , where p, q are as follows:
1203455554520496513092964312290781154515021150114637321974273660
4036604551051432401698923375314223219352776116668992562953977601
494812370217390511745064609 and
1170162232428076043275963242092394902992044041699922765182745491
1687794587069471939459107891700953238765852825589195765523177221
061363437357581056385345193.

The public encryption exponent e and the private decryption exponent d(> N0.30)
are as follows:
9262840848832818099725923231290910682284377479861057935159238392
2152908007127148216664565531845550317794995167278441598392908149
4300715331067535008047871523708599866902351068839273181735190226
3333864097908955752096238221073594906199364950641439860998004693
1029715538636463760752793958294478936586780899434369 and
5009727027589508051673544277436160282160739874039432019366401679
69825484681181534595620036481.

First we work with the case m = t = 1, i.e., lattice dimension w = 16. Factoring
N requires the knowledge of 115 many LSBs of d using the method of [10], whereas,
our technique requires 80 many LSBs of d and 23 many MSBs of p. Both the
techniques requires little less than 1.5 seconds on our platform. Following the idea
of [22], around 7 MSBs of p may be known in polynomial time and hence we need
223−7 many guesses for p, which requires a day in our experimental set-up.

When we work with higher lattice dimension m = t = 2, i.e., w = 40, factoring
N requires 112 LSBs of d using the idea of [10]. It takes 46.39 seconds. In our case,
we need 48 LSBs of d with 25 MSBs of p (requires 38.21 seconds) or 62 LSBs of d
with 23 MSBs of p (requires 39.41 seconds).

We now present the experimental details of 10 runs in Table 3 considering 10
different 1024 bits N . We consider that only 80 many LSBs of d will be leaked
and then study the requirement of the LSBs of p for the attack. In each case, the
algorithm of [10] has also been executed and the requirement of the minimum
number of LSBs for [10] is presented. The results of Table 3 clearly identifies the
improvement through our approach over the idea of [10].

4 Conclusion

In this paper we have studied cryptanalysis of RSA when either certain amount
of MSBs or certain amount of LSBs of d are exposed. Our additional idea is to
guess a few MSBs of the secret prime p. With this additional information, we
find that our technique is more efficient than that of [10] (where no guess on the

50 S. Sarkar and S. Maitra

bits of p is attempted) in terms of the amount of bits of d to be exposed. Our
technique is also better if one considers total number of bits to be known from
d, p together than that of d only in [10]. Our theoretical results are implemented
and we present experimental evidences of 1024 bits N , that can be factored with
the exposure of considerably less amount of bits in d than [10] with a guess of a
few MSBs in p that can be searched exhaustively (say around 20 to 30 bits).

Acknowledgments. The authors like to thank the anonymous reviewers for
detailed comments that improved the technical as well as editorial quality of
this paper. The first author likes to acknowledge the Council of Scientific and
Industrial Research (CSIR), India for supporting his research fellowship.

References

1. Blömer, J., May, A.: Low secret exponent RSA revisited. In: Silverman, J.H. (ed.)
CaLC 2001. LNCS, vol. 2146, pp. 4–19. Springer, Heidelberg (2001)

2. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

3. Blömer, J., May, A.: A generalized wiener attack on RSA. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004)

4. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the
AMS 46(2), 203–213 (1999)

5. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Trans. on Information Theory 46(4), 1339–1349 (2000)

6. Boneh, D., Durfee, G., Frankel, Y.: Exposing an RSA Private Key Given a Small
Fraction of its Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 25–34. Springer, Heidelberg (1998)

7. Boneh, D., DeMillo, R., Lipton, R.: On the importance of checking cryptographic
protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp.
37–51. Springer, Heidelberg (1997)

8. Coppersmith, D.: Small solutions to polynomial equations and low exponent vul-
nerabilities. Journal of Cryptology 10(4), 223–260 (1997)

9. Duejella, A.: Continued fractions and RSA with small secret exponent. Tatra Mt.
Math. Publ. 29, 101–112 (2004)

10. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

11. Hastad, J.: On using RSA with low exponent in public key network. In: Advances
in Cryplogy-CRYPTO 1985 Proceedings. LNCS, pp. 403–408. Springer, Heidelberg
(1985)

12. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

13. Jochemsz, E.: Cryptanalysis of RSA variants using small roots of polynomials. Ph.
D. thesis, Technische Universiteit Eindhoven (2007)

14. Jochemsz, E., May, A.: A Polynomial Time Attack on RSA with Private CRT-
Exponents Smaller Than N0.073 . In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

Improved Partial Key Exposure Attacks on RSA 51

15. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

17. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 513–534 (1982)

18. Pollard, J.M.: Theorems on factorization and primality testing. Proc. of Combridge
Philos. Soc. 76, 521–528 (1974)

19. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public key cryptosystems. Communications of ACM 21(2), 158–164 (1978)

20. Stinson, D.R.: Cryptography – Theory and Practice, 2nd edn. Chapman &
Hall/CRC, Boca Raton (2002)

21. Steinfeld, R., Contini, S., Pieprzyk, J., Wang, H.: Converse results to the Wiener
attack on RSA. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 184–198.
Springer, Heidelberg (2005)

22. Sun, H.-M., Wu, M.-E., Chen, Y.-H.: Estimating the prime-factors of an RSA
modulus and an extension of the wiener attack. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 116–128. Springer, Heidelberg (2007)

23. Verheul, E.R., van Tilborg, H.C.A.: Cryptanalysis of ‘less short’ RSA secret ex-
ponents. Applicable Algebra in Engineering, Communication and Computing 8,
425–435 (1997)

24. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

25. Williams, H.C.: A p+1 method of factoring. Mathematics of Computation 39(159),
225–234 (1982)

26. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Alge-
bra in Engineering, Communication and Computing 13(1), 17–28 (2002)

Simple Algorithms for Computing
a Sequence of 2-Isogenies

Reo Yoshida1 and Katsuyuki Takashima1,2

1 Graduate School of Informatics, Kyoto University,
36-1 Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501 Japan

yoshida@ai.soc.i.kyoto-u.ac.jp
2 Mitsubishi Electric, 5-1-1 Ofuna, Kamakura, Kanagawa, 247-8501 Japan

Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. Recently, some cryptographic primitives have been described
that are based on the supposed hardness of finding an isogeny between
two (supersingular) elliptic curves. As a part of such a primitive, Charles
et al. proposed an algorithm for computing sequences of 2-isogenies.
However, their method involves several redundant computations. We con-
struct simple algorithms without such redundancy, based on very com-
pact descriptions of the 2-isogenies. For that, we use some observations
on 2-torsion points.

1 Introduction

Computing a sequence of isogenies of elliptic curves is a new cryptographic ba-
sic operation in some applications. For example, a cryptographic hash function
from expander graphs, proposed in [CGL07], consists of computing an isogeny
sequence. Moreover, there exists an attempt [RS06] to construct a new type of
public key cryptosystems using such operations. The security of these applica-
tions is based on the supposed hardness of finding an isogeny between two elliptic
curves. To solve such a problem with a quantum computer seems hard [RS06].
Therefore, the above applications are considered as candidates for post-quantum
cryptosystems.

Previously, isogenies between elliptic curves were used in a crucial way for
calculating the cardinality of an elliptic curve over a finite field (see [CF06],
for example). However, in the above, computation of a sequence of isogenies is
used in cryptographic operations, e.g., hashing and encryption/decryption, not
just for some offline operations, e.g., domain (or system) parameter generation.
Therefore, we need to improve the efficiency of this computation to implement
new cryptographic applications.

Charles, Goren and Lauter [CGL07] proposed an algorithm for computing a
sequence of 2-isogenies. Their method is based on Vélu’s formulas, which com-
putes a 2-isogeny explicitly for that purpose. By using supersingular elliptic
curves over Fp2 , all computations can stay in Fp2 , the quadratic extension of a
prime finite field (see Section 3.4). It makes the sequence computation a reason-
able cryptographic operation.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 52–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Simple Algorithms for Computing a Sequence of 2-Isogenies 53

We show two simple methods based on concise expressions using non-trivial
observations in Section 5. The first method is based on the new recurrence
relation (18) between a coefficient and a 2-torsion point of elliptic curves. The
second method only computes 2-torsion points of elliptic curves on the sequence.
Both methods have costs of one multiplication and square root computation of
a field for each 2-isogeny. Moreover, we append another simple method that was
communicated to the authors from an anonymous referee.

In Section 2, we review facts related to elliptic curves. In Section 3, we prepare
notations and facts for 2-isogeny computation. In Section 4, we give the algorithm
of [CGL07]. In Section 5, we propose algorithms for a sequence of 2-isogenies. In
Section 6, we describe a related method told by an anonymous referee. In Section
7, we compare the costs of the proposed methods with that of the existing one.

2 2-Isogenies between Elliptic Curves

We summarize facts about elliptic curves in this section. For details, see [S86],
for example.

2.1 Elliptic Curves

Let p be a prime greater than 3 and Fp be the finite field with p elements. Let Fp

be its algebraic closure. An elliptic curve E over Fp is given by the Weierstrass
normal form

E : y2 = x3 + Ax + B (1)

for A and B ∈ Fp where the discriminant of the RHS of (1) is non-zero. We
denote the point at infinity on E by OE . Elliptic curves are endowed with a
unique algebraic group structure, with OE as neutral element. The j-invariant
of E is j(A, B) = 1728 4A3

4A3+27B2 . Conversely, for j �= 0, 1728 ∈ Fp, set A =
A(j) = 3j

1728−j , B = B(j) = 2j
1728−j . Then, the obtained E in (1) has j-

invariant j. Two elliptic curves over Fp are isomorphic if and only if they have
the same j-invariant. For a positive integer n, the set of n-torsion points of E is
E[n] = {P ∈ E(Fp) |nP = OE}.

Given two elliptic curves E and E′ over Fp, a homomorphism φ : E → E′ is a
morphism of algebraic curves that sends OE to OE′ . A non-zero homomorphism
is called an isogeny, and a separable isogeny with the cardinality � of the kernel
is called �-isogeny.

An elliptic curve E over Fp is called supersingular if there are no points of
order p, i.e., E[p] = {OE}. The j-invariants of supersingular elliptic curves lie in
Fp2 (see [S86, Chap. V, Th. 3.1]).

2.2 Vélu’s Formulas

We compute the 2-isogeny by using Vélu’s formulas. Vélu gave in [V71] the
explicit formulas of the isogeny φ : E → E′ and the equation of the form (1)

54 R. Yoshida and K. Takashima

of E′ when E is given by (1) and C = kerφ is explicitly given. It is for general
degree �. We consider only the degree � = 2 case in this paper. Let C = 〈(α, 0)〉
be a subgroup of order 2 on an elliptic curve E. Then there exists a unique
isogeny φα : E → E′ s.t. C = kerφα, and we denote E′ by E/C. Note that for a
general (i.e., ordinary) elliptic curve, α may be defined over a quadratic or cubic
extension field only. However, in our computations all the 2-torsion points will
always be defined over Fp2 , see Section 3.4.

For a subgroup C = 〈(α, 0)〉 ⊂ E[2], the elliptic curve E/C is given by the
equation

y2 = x3 − (4A + 15α2)x + (8B − 14α3). (2)

Therefore, E/C is also defined over Fp2 when E is supersingular. Moreover, the
isogeny φα: E → E/C is given by

φα : (x, y) �→
(

x +
(3α2 + A)

x− α
, y − (3α2 + A)y

(x− α)2

)
, (3)

φα(OE) = OE/C and φα((α, 0)) = OE/C . Clearly, φα is also defined over Fp2 for
supersingular E.

3 A Walk on a Pizer Graph

We consider a graph consisting of 2-isogenies between supersingular elliptic
curves. The graph has an expanding property (expander graph), and is called a
Pizer graph [P90, CGL07].

3.1 Expander Graph

Let G = (V , E) be a graph with vertex set V and edge set E . We will deal with
undirected graphs, and say a graph is k-regular if each vertex has k edges coming
out of it. A graph G is an expander graph with expansion constant c > 0 if, for
any subset U ⊂ V s.t. |U| ≤ |V|

2 , then |Γ (U)| ≥ c |U| where Γ (U) is the boundary
of U (which is all neighbors of U minus all elements of U). Any expander graph is
connected. A random walk on an expander graph has rapidly mixing property.
After O(log(|V|)) steps, the last point of the random walk approximates the
uniform distribution on V .

Such a property is useful for cryptography. Therefore, there exist several cryp-
tographic constructions using an expander graph ([CGL07, RS06, G00] etc.). For
details of expander graphs, see [G01, HLW06].

3.2 Pizer Graph with � = 2

The Pizer graph G = (V , E) with � = 2 consists of (isomorphism classes of)
supersingular elliptic curves over Fp and their 2-isogenies, i.e.,

V =
{
supersingular elliptic curve E/Fp

}
/ ∼=,

E = {([E], [E′]) | there is a 2-isogeny φ : E → E′} ⊂ V(2)

Simple Algorithms for Computing a Sequence of 2-Isogenies 55

where V(2) denotes the set of unordered pairs of elements of V . This is well-
defined due to the existence of a dual isogeny φ̂. Hereafter, we use an abused
notation E ∈ V for simple presentation.

Then, the graph G is an undirected 3-regular graph. G is known to have
a rapidly mixing property. In particular, this is called a Ramanujan graph, a
special type of expander graph. For details, see [P90, CGL07], for example.

3.3 A Walk without Backtracking

We consider computing a walk

E0
φ0−→ E1

φ1−→ · · · φn−2−→ En−1
φn−1−→ En (4)

in G without backtracking, i.e., φi �= φ̂i+1 for i = 0, . . . , n− 2 and Ei ∈ V . The
supersingular elliptic curve

Ei : y2 = fi(x) := x3 + Aix + Bi (5)

is defined over Fp2 .
As the graph G is 3-regular and the walk we consider has no backtracking, we

have 2 possibilities to proceed to the next vertex in V at i ≥ 1. When i = 0, we
choose 2 edges from E0 at the beginning. Therefore, we associate a walk data
ω = b0b1 · · · bn−1 ∈ W = {0, 1}n with a walk (4). Then, the correspondence is
bijective (see [CGL07]) as follows:

W = {0, 1}n ←→
{

a sequence (4) of 2-isogenies φi starting from
E0 without backtracking

}
where (4) starts from one of the edges chosen as above (see (7)). Our goal
is to compute the j-invariant jn = j(En) from j0 = j(E0) and a walk data
ω ∈ W = {0, 1}n that determines which edge is selected.

3.4 Why All Computations Stay in Fp2

First, we note that j = 0 (resp. j = 1728) is a supersingular j-invariant if and
only if p ≡ 2 mod 3 (resp. p ≡ 3 mod 4). If we start the walk from j0 = 0
(resp. j0 = 1728) for such a prime p, then we use a Weierstrass model E0 over
the prime field Fp, e.g., E0 : Y 2 = X3 + 1 (resp.E0 : Y 2 = X3 + X). Otherwise,
if we start it from a supersingular j0 �= 0, 1728, then we use any Weierstrass
model E0/Fp2 with j0. We will show that all computations remain in Fp2 .

Suppose that we have an elliptic curve E/Fp2 with �E(Fp2) = p2 ± 2p + 1.
A theorem by Schoof [Sc87, Lemma 4.8] asserts that the group structure of
a curve with that many points is of the form (Z/(p± 1)Z)2. In particular, all
2-torsion points of E are defined over Fp2 , or in other words, the right hand
side of a Weierstrass equation (1) for E factors over Fp2 . By Vélu’s formulas,
this means that the three 2-isogenies leaving E are defined over Fp2 , as well are

56 R. Yoshida and K. Takashima

the destination curves. By Tate’s theorem [T66], these destination curves again
have p2 ± 2p + 1 points, and by applying Schoof’s theorem again, they have full
2-torsion over Fp2 . Then, the above reasoning can be applied repeatedly.

This already shows that, if the starting curve E0/Fp2 has �E0(Fp2) = p2±2p+1
points, then all computations will stay in Fp2 .

For the starting model E0 with j0 = 0, 1728, then �E0(Fp) = p + 1, and
�E0(Fp2) = (p + 1)2, e.g., see [S86, Exercise 5.10 (b)]. Therefore, it remains to
show that if we start from j0 �= 0, 1728, then any model E0/Fp2 with j0 will
have such a number of points. We follow the argument in the proof of [AT02,
Prop.2.2]. Let π be the p2-th power Frobenius on E0. Because multiplication
by p on E0 is purely inseparable of degree p2 = deg π, it factors as ψ · π for
some automorphism ψ of E0 (see [S86, Chap. II, Cor.2.12]). The condition that
j �= 0, 1728 implies ψ = ±1, hence π = ±p ∈ End(E0) and E0(Fp2) = E0[1 −
π](Fp) = E0[p± 1](Fp) ∼= (Z/(p± 1)Z)2, in particular, �E0(Fp2) = p2 ± 2p + 1.

This proves our statement.

3.5 Notations for 2-Torsion Points

We fix notations of the x-coordinates of three 2-torsion points on Ei correspond-
ing to a walk data ω = b0b1 · · · bn−1 ∈ {0, 1}n as in Table 1.

In this paper, we call the map φα given by (3) the isogeny associated with α.
Then, for i ≥ 0, αi is used as being associated with the i-th isogeny i.e.,

φi = φαi : Ei → Ei+1 = Ei/〈(αi, 0)〉.

The 2-torsion point on Ei which induces the dual isogeny of φi−1 on Ei is
called a backtracking point, and we denote the backtracking point as (βi, 0) in
the following.

Finally, the other 2-torsion point remains. We denote this as (γi, 0).

Table 1. Notation of the x-coordinates of the 2-torsions of Ei

the point associated with the i-th isogeny φi αi

the i-th backtracking point βi

the other point on Ei γi

3.6 Selector Function

We must choose the next step during a walk in G. For that purpose, we assign
1 bit b ∈ {0, 1} to the 2 non-backtracking edges emanating from a vertex in V .

First, we recall that each edge is associated with α ∈ Fp2 (see (3)). Then we
can use an order in Fp2 . For example, fixing a generator τ s.t. Fp2 = Fp[τ] =
Fp +Fpτ ∼= (Fp)

2, we use a natural lexicographic order of (Fp)
2. For λ0, λ1 ∈ Fp2

and b ∈ {0, 1}, we define the selector function as follows:

select(λ0, λ1, b) =
{
min(λ0, λ1) if b = 0,
max(λ0, λ1) if b = 1 (6)

Simple Algorithms for Computing a Sequence of 2-Isogenies 57

according to the above order in Fp2 . As explained in Section 3.3, we take an
exceptional selection select0 at the starting vertex E0. Since we can take any
two 2-torsion points on E0 to start a walk, we choose them in the following way.
For three roots λ0, λ1, λ2 of f0(x) = x3 + A0x + B0 = 0,

select0(A0, B0, b)=(α0, β0)=
{

(mid(λ0, λ1, λ2), max(λ0, λ1, λ2)) if b = 0
(max(λ0, λ1, λ2), mid(λ0, λ1, λ2)) if b = 1 (7)

according to the above order.

4 Charles et al.’s Algorithm

Charles et al. [CGL07] proposed an algorithm for computing a sequence (4) of
2-isogenies. It was based on Vélu’s formulas (2) and (3), and the following lemma
which describes the (i + 1)-th backtracking point.

Lemma 1. Let (αi, 0), (βi, 0), (γi, 0) be three 2-torsion points on an elliptic
curve Ei : y2 = x3 + Aix + Bi over Fp2 . Then

(βi+1, 0) = φi((βi, 0)) = φi((γi, 0)) (8)

where φi = φαi is given by (3). That is, the (i + 1)-th backtracking point can be
calculated by using αi, Ai, and βi (or γi).

4.1 Description of Algorithm

The algorithm computes a 2-isogeny repeatedly, precisely saying, it computes
(αi, βi, Ai, Bi) w.r.t. Ei in (4) repeatedly (Algorithm 1). That is, it consists of
the iteration of Algorithm 2, i.e.,

j0 → (A0, B0, α0, β0)→ (A1, B1, α1, β1) → · · ·
→ (An−1, Bn−1, αn−1, βn−1)→ (An, Bn)→ jn. (9)

The outline of Algorithm 2 is as follows:

1. Using Vélu’s formulas (2), calculate the equation of the next elliptic curve
Ei+1, i.e. (Ai+1, Bi+1).

2. Using Lemma 1 and the formula (3), calculate the backtracking point
(βi+1, 0) on Ei+1.

3. Calculate the remaining two 2-torsion points by solving a quadratic equation.
4. According to the select bit bi+1, choose αi+1, which determines the next

isogeny φi+1, from the two roots.

Algorithms 1 and 2 describe a natural one which computes the sequence (4)
using Vélu’s formulas (2) and (3). Algorithm 1 iterates a subroutine CGLIsog
(Algorithm 2). Additionally, select0 and coversion functions between (A, B)
and j-invariant (see Section 2.1) are used.

58 R. Yoshida and K. Takashima

Algorithm 1. CGLIsogSeq : Computation of a sequence of 2-isogenies
Input : j0 = j(E0), walk data ω = b0b1 . . . bn−1.
Output : jn = j(En).
1: (A0, B0)← (A(j0), B(j0)), (α0, β0)← select0(A0, B0, b0).
2: for i← 0 to n− 2 do
3: (Ai+1, Bi+1, αi+1, βi+1)← CGLIsog(Ai, Bi, αi, βi, bi+1).
4: end for
5: ξ ← α2

n−1, An ← −(4An−1 + 15ξ), Bn ← 8Bn−1 − 14αn−1ξ, jn ← j(An, Bn).
6: return jn.

Algorithm 2. CGLIsog : Computation of a 2-isogeny
Input : Ai, Bi, αi, βi, select bit bi+1.
Output : Ai+1, Bi+1, αi+1, βi+1.
1: ξ ← α2

i .
2: Ai+1 ← −(4Ai + 15ξ), Bi+1 ← 8Bi − 14αiξ. /* by Vélu’s formula (2) */
3: ζ ← 3ξ + Ai, βi+1 ← βi + ζ

βi−αi
. /* by Lemma 1 */

4: u′ ← −βi+1
2

, v ← Ai+1 + β2
i+1, ζ′ ← (u′)2 − v, η′ ← (ζ′)

1
2 .

5: λ0 ← u′ + η′, λ1 ← u′ − η′.
6: αi+1 ← select(λ0, λ1, bi+1).
7: return Ai+1, Bi+1, αi+1, βi+1.

Details of Algorithm 2 are as follows: At steps 1 and 2, we calculate (Ai+1,Bi+1)
from Ai, Bi, αi using the formula (2). At step 3, we calculate the x-coordinate of
the backtracking point on Ei+1 using (8) and (3). At step 4 and 5, we calculate the
x-coordinates of the 2-torsion points other than the backtracking point by solving

gi+1(x) = x2 + ux + v (10)

where u = ui+1 = βi+1, v = vi+1 = Ai+1 + β2
i+1. Here, gi+1(x) is a quadratic

factor of fi+1(x) = x3+Ai+1x+Bi+1 = (x−βi+1)gi+1(x). At step 6, we calculate
αi+1 according to the select bit bi+1 using the selector function select defined
by (6). Then, return (Ai+1, Bi+1, αi+1, βi+1).

Remark 1. As Bn = −8αn−1An−1 − 22α3
n−1, and all the other Bi where i =

0, . . . , n− 1 are not needed for CGLIsog (Algorithm 2), we can immediately see
that the above algorithms can be simplified to compute the following chain

j0 → (A0, α0, β0)→ (A1, α1, β1)→ · · · → (An−1, αn−1, βn−1)→ (An, Bn) → jn.

We will see that it can be simplified further in Section 5.3 (see the chain (11))
using a non-trivial observation (Proposition 1).

4.2 Cost Estimate of Algorithm 2

Charles et al. gave a rough cost estimate of their algorithm. A more careful
analysis shows that it in fact involves 8 field multiplications and 1 square root
computation (see Algorithm 2). Our algorithms in Section 5, need only 1 multi-
plication plus 1 square root for each 2-isogeny.

Simple Algorithms for Computing a Sequence of 2-Isogenies 59

5 Proposed Methods

We will describe two versions of our proposed methods based on Proposition 1
and Theorem 1, which give simple formulas for 2-torsion points on Ei in (4).

The first method (Algorithms 3 and 4) in Section 5.3 is a simplification of the
method of [CGL07] (Algorithms 1 and 2). That is, we show that we need only
(Ai, αi) w.r.t. Ei for computing the last En in the sequence (4). We compute the
following chain instead of the chain (9).

j0 →(A0, α0)→ (A1, α1) → · · · → (An−1, αn−1)→ (An, Bn)→ jn. (11)

The second method (Algorithms 5 and 6) in Section 5.4 is a variant of the
above method. It computes only the x-coordinates of three 2-torsion points
(αi, βi, γi) on Ei repeatedly, without calculating (Ai, Bi). These are enough for
computing jn in (9). We compute the following chain instead of the chain (9).

j0 → (α0, β0, γ0)→ (α1, β1, γ1)→ · · · → (αn−1, βn−1, γn−1) → (An, Bn) → jn.

We will show Proposition 1 and Theorem 1 to establish these methods in
Section 5.2. They give simple expressions of (αi+1, βi+1, γi+1) using (αi, βi, γi),
the previous x-coordinates of the 2-torsions. They are simplifications of Vélu’s
formulas for the sequence (4) of 2-isogenies. In particular, Proposition 1 which
shows that βi+1 = −2αi is the key to our construction. In Section 5.1, we show
preliminary lemmas (Lemmas 2 and 3) for the propositions.

5.1 Basic Lemmas

In the following Lemmas, let αi, βi, γi be the x-coordinates of the three 2-torsion
points on Ei : y2 = fi(x) = x3 + Aix + Bi described in Table 1. The relations of
the roots and the coefficients of fi(x) are as follows:

σ1(αi, βi, γi) := αi + βi + γi = 0,

σ2(αi, βi, γi) := αiβi + βiγi + γiαi = Ai, (12)
σ3(αi, βi, γi) := αiβiγi = −Bi

where σt is the t-th elementary symmetric polynomial for t = 1, 2, 3. The follow-
ing Lemma 2 gives the key equation of Proposition 1 and Theorem 1.

Lemma 2
(βi − αi)(γi − αi) = 3α2

i + Ai. (13)

Proof From (12), −αiβi − β2
i = α2

i + Ai and γi =−αi− βi hold. Then, the LHS
of (13) is as follows:

(βi − αi)(γi − αi) = (βi − αi)(−2αi − βi) = 2α2
i − αiβi − β2

i = 3α2
i + Ai. ��

60 R. Yoshida and K. Takashima

Lemma 3. The x-coordinates αi+1 and γi+1 of non-backtracking points on Ei+1

are given using βi+1 and Ai+1 as follows:

αi+1, γi+1 = −βi+1

2
±
(
−

3β2
i+1

4
−Ai+1

) 1
2

. (14)

Proof. Let δ be αi+1 or γi+1. In the following proof, we use β, A, B to denote
βi+1, Ai+1, Bi+1, respectively, for readability.

Then, from the equation (12) on Ei+1, β2δ + βδ2 − B = 0. Adding −Aβ
to both sides of the equation, and using −Aβ − B = β3 yield the equation
β3 + β2δ + βδ2 = −Aβ. Therefore,

β(β2 + βδ + δ2 + A) = 0.

If β �= 0, then β2 + βδ + δ2 + A = 0, and we obtain (14). This equation (14)
also holds if β = 0 because Ei+1 is given by the equation y2 = x(x2 +A) in that
case. ��

5.2 Simple Formulas for 2-Torsion Points

Lemma 1 shows that the (i+1)-th backtracking point (βi+1, 0) can be calculated
by using the i-th backtracking point. It is a key observation for the algorithm in
[CGL07].

We will show that the point can be calculated much more easily in Proposition
1. The proposition is a key to our algorithms (Algorithms 3, 4 and Algorithms
5, 6). That is, the (i + 1)-th backtracking point is given by just αi.

Proposition 1. The x-coordinate βi+1 of the backtracking point on Ei+1 is
given by

βi+1 = −2αi. (15)

Proof. From Lemma 1 and Lemma 2,

βi+1 = βi +
(3α2

i + Ai)
βi − αi

= βi + γi − αi = −2αi. ��

Theorem 1. The x-coordinates αi+1 and γi+1 of non-backtracking points on
Ei+1 are given, using αi, βi, γi, as follows:

αi+1, γi+1 = αi ± 2 [(βi − αi)(γi − αi)]
1
2 = αi ± 2

(
3α2

i + Ai

) 1
2 . (16)

Proof. From Vélu’s formula (2), we obtain Ai+1 = −(4Ai +15α2
i). Using βi+1 =

−2αi in Lemma 3, the equation (14) is as follows:

αi+1, γi+1 = −−2αi

2
±
{
−3(−2αi)2

4
−
[
−(4Ai + 15α2

i)
]} 1

2

= αi ± 2
(
3α2

i + Ai

) 1
2 .

Then, from Lemma 2, we obtain formula (16). ��

Simple Algorithms for Computing a Sequence of 2-Isogenies 61

Corollary 1. ζ′ = 4ζ in Algorithm 2.

Proof. From (16),
(αi+1 − γi+1)2 = 16

(
3α2

i + Ai

)
. (17)

The LHS of (17) is the discriminant of the quadratic polynomial gi+1(x) given
by (10), and it is 4ζ′. The RHS of (17) is 16ζ. Therefore, (17) leads to ζ′ = 4ζ
as the characteristic p of the finite field is not 2. ��

5.3 Proposed Method 1

From Vélu’s formula (2) and Theorem 1, (Ai, αi) are determined by the following
recurrence formulas.

Ai+1 = −(4Ai + 15α2
i), αi+1 = αi ± 2

(
3α2

i + Ai

) 1
2 (18)

where the plus-minus sign remains ambiguous in the second formula. Precisely,
the second formula is presented as follows:

αi+1 ← select(αi + 2
(
3α2

i + Ai

) 1
2 , αi − 2

(
3α2

i + Ai

) 1
2 , bi+1).

We make Algorithms 3 and 4 using formulas (18).

Algorithm 3. OurIsogSeq1 : Computation of a sequence of 2-isogenies
Input : j0 = j(E0), walk data ω = b0b1 . . . bn−1.
Output : jn = j(En).
1: (A0, B0)← (A(j0), B(j0)), (α0, β0)← select0(A0, B0, b0).
2: for i← 0 to n− 2 do
3: (Ai+1, αi+1)← OurIsog1(Ai, αi, bi+1).
4: end for
5: ξ ← α2

n−1, An ← −(4An−1 + 15ξ), Bn ← −αn−1(8An−1 + 22ξ), jn ← j(An, Bn).
6: return jn.

Algorithm 4. OurIsog1 : Computation of a 2-isogeny
Input : Ai, αi, select bit bi+1.
Output : Ai+1, αi+1.
1: ξ ← α2

i , ζ ← 3ξ + Ai, η ← ζ
1
2 .

2: Ai+1 ← −(4Ai + 15ξ). /* by Vélu’s formula (2) */
3: λ0 ← αi + 2η, λ1 ← αi − 2η. /* by Theorem 1 */
4: αi+1 ← select(λ0, λ1, bi+1).
5: return Ai+1, αi+1.

In particular, we can omit steps 3 and 4 in Algorithm 2 by using βi+1 = −2αi

and ζ′ = 4ζ. The result is Algorithm 4. We can omit the calculation of Bi in
Algorithm 4 as we already observed in Remark 1. Here, “ζ in Algorithm 4” is
equivalent to “ζ = ζ′/4 in Algorithm 2”.

62 R. Yoshida and K. Takashima

Algorithm 3 iterates a subroutine OurIsog1 (Algorithm 4).
Details of Algorithm 4 are as follows. At step 1, intermediate variables are

calculated. At step 2, we calculate Ai+1 based on Vélu’s formula (2). At step 3,
we calculate the x-coordinates of the 2-torsion points other than the backtracking
point using already the obtained η. At step 4, we calculate αi+1 according the
select bit bi+1 using the selector function select defined by (6). Finally, return
(Ai+1, αi+1).

5.4 Proposed Method 2

From Proposition 1 and Theorem 1, (αi, βi, γi) are determined by the recurrence
formulas (15) and (16). Precisely, the second formula is presented as follows:

αi+1 ← select(αi + 2η, αi − 2η, bi+1), γi+1 ← select(αi + 2η, αi − 2η, bi+1)

where η = [(βi − αi) (γi − αi)]
1
2 . We make Algorithms 5 and 6 by using these

formulas. Algorithm 5 iterates a subroutine OurIsog2 (Algorithm 6).
The proposed algorithm computes the sequence of x-coordinates of 2-torsion

points on Ei only, without calculating (Ai, Bi).
The difference between Algorithms 4 and 6 lies in the way of calculating ζ.

ζ = 3α2
i + Ai in Algorithm 4 can be expressed as ζ = (βi − αi) (γi − αi) using

Lemma 2. We use the latter expression in Algorithm 6.
Details of Algorithm 6 are as follows. At step 1, intermediate variables are

calculated. At step 2, we calculate βi+1 using (15). At step 3, we calculate the
x-coordinates of the 2-torsion points other than the backtracking point using the

Algorithm 5. OurIsogSeq2 : Computation of a sequence of 2-isogenies
Input : j0 = j(E0), walk data ω = b0b1 . . . bn−1.
Output : jn = j(En).
1: (A0, B0)← (A(j0), B(j0)), (α0, β0)← select0(A0, B0, b0).
2: for i← 0 to n− 2 do
3: (αi+1, βi+1, γi+1)← OurIsog2(αi, βi, γi, bi+1).
4: end for
5: ξ ← α2

n−1, An ← − [4σ2(αn−1, βn−1, γn−1) + 15ξ],
Bn ← −8σ3(αn−1, βn−1, γn−1)− 14αn−1ξ, jn ← j(An, Bn).

6: return jn.

Algorithm 6. OurIsog2 : Computation of a 2-isogeny
Input : αi, βi, γi, select bit bi+1.
Output : αi+1, βi+1, γi+1.
1: ζ ← (βi − αi) (γi − αi), η ← ζ

1
2 .

2: βi+1 ← −2αi. /* by Proposition 1 */
3: λ0 ← αi + 2η, λ1 ← αi − 2η. /* by Theorem 1 */
4: αi+1 ← select(λ0, λ1, bi+1), γi+1 ← select(λ0, λ1, bi+1).
5: return αi+1, βi+1, γi+1.

Simple Algorithms for Computing a Sequence of 2-Isogenies 63

already obtained η. At step 4, we calculate αi+1 and γi+1 according the select
bit bi+1 using select. Finally, return (αi+1, βi+1, γi+1).

5.5 Costs of Proposed Methods

The total cost of Algorithms 4 and 6, respectively, can be estimated easily. There
are one field multiplication, and one square root computation.

Remark 2. In the proposed method 1, if the coefficient Ai+1 of x in (5) for Ei+1

is zero (i.e., j(Ei+1) = 0), then, Lemma 3 and Proposition 1 shows that αi+1

is given by αi + αi (−3)
1
2 or αi − αi (−3)

1
2 . Then at the vertex Ei+1, further

improved computation can be done.

6 Another Method Using the Modular Polynomial

We are told by an anonymous referee that there is another efficient method by
using the modular polynomial Φ2(x, y) = x3 + y3 − x2y2 + 1488(x2y + xy2) −
162000(x2 + y2) + 40773375xy + 8748000000(x+ y)− 157464000000000. We de-
scribe it briefly and compare it with our methods in Section 7.

Two (supersingular) elliptic curves E1/Fp2 and E2/Fp2 are related by a 2-
isogeny if and only if Φ2(j(E1), j(E2)) = 0. So what one should do is: consider
the polynomial Φ2(x, ji) = 0 where ji is the i-th j-invariant in a walk on the
Pizer graph, which has three roots, one being ji−1. Then factor the remaining
quadratic and select the right ji+1 according to the select bit. Because supersin-
gular j-invariants are in Fp2 , all operations are done in Fp2 .

We estimate the cost of the above method as 3 multiplications, 1 square
root computation and 5 multiplications with constants (which are coefficients in
Φ2(x, y)).

7 Comparison

Table 2 shows the costs of Algorithm 2, the method in Section 6, Algorithm
4 OurIsog1, and Algorithm 6 OurIsog2. In Table 2, “Mult.”,“Sq. root”, and
“Const. Mult.” columns indicate the number of field multiplications, square
roots, field multiplications with a constant, respectively. Here, 1 field inversion
counts as 5 field multiplications as in [CGL07].

Each row of Table 2 shows the cost estimates of the algorithms given in this
paper. Our proposed methods are a little more efficient than others, however,
square root computation is dominant in all algorithms in Table 2. Its precise cost
depends on the characteristic p, and its rough estimate is O(log p) multiplications
in Fp2 .

8 Example

Let p = 1048583. The polynomial h(T) := T 2 +653340 T +920973 is irreducible
over Fp. Thus, we use the representation Fp2 ∼= Fp[τ] where h(τ) = 0 here.

64 R. Yoshida and K. Takashima

Table 2. Costs for each 2-isogeny

Field operation Mult. Sq. root Const. Mult.
CGLIsog 8 1 –
Method using Φ2 3 1 5
OurIsog1 1 1 –
OurIsog2 1 1 –

Table 3. Example Input/Output of Algorithm 6

i αi βi γi

0 775166 381302 940698
1 704826 546834 845506
2 833407 τ + 922311 687514 215176 τ + 487341

We will give examples of computing the sequence with n = 3. We want to
calculate j3 from j0 = 54000 and the walk data ω = 001. Then, we start with
E0 : y2 = x3 + A0x + B0 over Fp2 where A0 = 1013916, B0 = 675944. Table 3
lists the example input/output data of Algorithm 6, which gives the sequence of
αi, βi, γi iteratively.

While running Algorithm 5, we don’t know the values Ai and Bi where i =
1, 2. However, we can obtain finally j(E3) = j(A3, B3) = 286275 τ + 443480 as
in step 7 in Algorithm 5.

9 Conclusion

We have proposed compact algorithms for computing a sequence of 2-isogenies.
They are based on observations on 2-torsion points. The algorithms are also in-
teresting from the viewpoint of security evaluations.

Acknowledgments. We would like to thank an anonymous referee for his (or
her) valuable comments and telling us the contents in Section 6 and permission
to include it. Moreover, we would like to thank Tatsuaki Okamoto and Yoshifumi
Manabe for their helpful comments and valuable discussions.

References

[AT02] Auer, R., Top, J.: Legendre elliptic curves over finite fields. J. Number
Theory 95, 303–312 (2002)

[CGL07] Charles, D.X., Goren, E.Z., Lauter, K.E.: Cryptographic hash functions
from expander graphs. To appear in Journal of Cryptology, electronically
(2007), http://www.springerlink.com/

[CF06] Cohen, H., Frey, G., et al.: Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Chapman and Hall, Boca Raton (2006)

http://www.springerlink.com/

Simple Algorithms for Computing a Sequence of 2-Isogenies 65

[HLW06] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applica-
tions. Bull. AMS 43(4), 439–561 (2006)

[G00] Goldreich, O.: Candidate one-way functions based on expander graphs.
Elect. Colloq. on Computational Complexity (ECCC) 7(090) (2000)

[G01] Goldreich, O.: Randomized Methods in Computation - Lecture Notes
(2001), http://www.wisdom.weizmann.ac.il/~oded/rnd.html

[P90] Pizer, A.K.: Ramanujan graphs and Hecke operators. Bull. AMS 23(1),
127–137 (1990)

[RS06] Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies
(preprint, 2006), http://eprint.iacr.org

[Sc87] Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Comb. Th.,
Series A 46, 183–211 (1990)

[S86] Silverman, J.H.: The Arithmetic of Elliptic Curves, GTM 106. Springer,
Heidelberg (1986)

[T66] Tate, J.: Endomorphisms of Abelian varieties over finite fields. Inv. Math. 2,
134–144 (1966)

[V71] Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de
l’Académie des Sciences 273, 238–241 (1971)

http://www.wisdom.weizmann.ac.il/~oded/rnd.html
http://eprint.iacr.org

Survival in the Wild: Robust Group Key
Agreement in Wide-Area Networks

Jihye Kim and Gene Tsudik

University of California, Irvine
{jihyek,gts}@ics.uci.edu

Abstract. Group key agreement (GKA) allows a set of players to es-
tablish a shared secret and thus bootstrap secure group communication.
GKA is very useful in many types of peer group scenarios and appli-
cations. Since all GKA protocols involve multiple rounds, robustness to
player failures is important and desirable. A robust group key agreement
(RGKA) protocol runs to completion even if some players fail during
protocol execution.

Previous work yielded constant-round RGKA protocols suitable for
the LAN setting, assuming players are homogeneous, failure probabil-
ity is uniform and player failures are independent. However, in a more
general wide-area network (WAN) environment, heterogeneous hard-
ware/software and communication facilities can cause wide variations in
failure probability among players. Moreover, congestion and communi-
cation equipment failures can result in correlated failures among subsets
of GKA players.

In this paper, we construct the first RGKA protocol that supports
players with different failure probabilities, spread across any LAN/WAN
combination, while also allowing for correlated failures among subgroups
of players. The proposed protocol is efficient (2 rounds) and provably
secure. We evaluate its robustness and performance both analytically
and via simulations.

1 Introduction

The last decade has witnessed a sharp spike in the popularity of collaborative
applications, such as multi-media conferencing, distributed simulations, multi-
user games and replicated servers. Such application often operate across the
insecure and unstable “wilderness” of the global Internet. To be effective, col-
laborative applications need robust and secure communication. However, basic
security services (such as confidentiality, integrity and authentication) require
key management as the foundation.

A number of group key management techniques have been proposed. They
generally fall into three categories: 1) centralized, 2) distributed and 3) contrib-
utory.

Centralized group key management involves a single entity that generates
and distributes keys to group members via a pair-wise secure channel estab-
lished with each group member. This is generally inappropriate for secure peer

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 66–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Survival in the Wild: Robust Group Key Agreement in Wide-Area Networks 67

group communication, since a central key server must be, continuously available
and present in every possible subset of a group in order to support continued op-
eration in the event of arbitrary network partitions. Continuous availability can
be addressed by using fault-tolerance and replication techniques. Unfortunately,
the omni-presence issue is difficult to solve in a scalable and efficient manner.1

Distributed group key management is more suitable to peer group communica-
tion over unreliable networks. It involves dynamically selecting a group member
that acts as a key distribution server. Although robust, this approach has a no-
table drawback in that it requires a key server to maintain long-term pairwise
secure channels with all current group members in order to distribute group
keys. Some schemes take advantage of data structures to minimize the num-
ber of encryption operations and messages generated whenever the group key
changes. When a new key server is selected all these data structures need to be
constructed.

In contrast, contributory group key agreement requires every group member
to contribute an equal share to the common group secret, computed as a function
of all members’ contributions. This is particularly appropriate for dynamic peer
groups since it avoids the problems with the single point(s) of trust and failure.
Moreover, some contributory methods do not require establishing pairwise se-
cret channels among group members. Also, unlike most group key distribution
protocols, they offer strong key management security properties such as key in-
dependence and perfect forward secrecy (PFS) [11]. More detailed discussion can
be found in [10].

In the rest of this paper we focus on contributory group key agreement and
refer to it as GKA from here on.

1.1 Prior Work on Robust GKA

Most early work in GKA focused on security and efficiency. A number of basic
protocols were proposed , notably: STR [14,10], BD [4], GDH [15] and TGDH
[9]. All of these protocols are provably secure with respect to passive adversaries
(eavesdroppers). Each protocol is efficient in its own way, while none is efficient in
all respects (e.g., number of messages, rounds and cryptographic operations). To
protect against active adversaries, authenticated versions of the above protocols
were later constructed, e.g., [8,2,3].

All current GKA protocols involve multiple communication rounds. Since no
one-round GKA has ever been proposed, the issue of robustness applies to all
current GKA protocols; in fact, none of them is inherently robust. In this context,
robustness means the ability to complete the protocol despite player and/or
communication failures during protocol execution.

The robustness issue has been identified several years ago. In 2001, Amir, et
al. [1] proposed the first robust GKA (RGKA) technique based on a (non-robust)
1 However, that the centralized approach works well in one-to-many multicast sce-

narios since a trusted third party (TTP) placed at, or very near, the source of
communication, can support continued operation within an arbitrary partition as
long as it includes the source.

68 J. Kim and G. Tsudik

group key agreement protocol (called GDH) by Steiner, et al. [15], and a view-
based group communication system (GCS) which provides the abstraction of
consistent group membership. Since the GCS can detect crashes among players
during the execution of GKA, the protocol can react accordingly. However, its
round complexity is O(n) and it requires O(n2) broadcasts where n is the number
of players.

Subsequently, Cachin and Strobl (CS) proposed a very different constant-
round RGKA technique operating over asynchronous networks [5]. It tolerates
both player and link failures. The exact communication and infrastructure as-
sumptions of the CS protocol depend on the choice of the consensus sub-protocol
which the CS protocol invokes. However, assuming a reliable broadcast channel,
the CS protocol takes 2 rounds, each player broadcasts O(n)-sized messages and
performs O(n) public key operations.2

More recently, Jarecki, et al. [7] proposed a 2-round RGKA protocol (called
JKT) which operates over a reliable broadcast channel, and tolerates up to O(T)
player failures using O(T)-sized messages, for any T < n. It achieves a natural
trade-off between message size and desired level of fault-tolerance. However, JKT
assumes that: (1) every player has the same fault probability, and (2) all fault
probabilities are random and independent.

1.2 Starting Point

The JKT protocol is well-suited for a local area network (LAN) environment.
This is because the assumption of independent and random faults is valid in
a typical LAN, where a group of players communicate directly via broadcast
and are not directly bothered by failures of other players. Furthermore, JKT is
geared for a homogeneous environment where each player runs on the same hard-
ware/software platform. These two assumptions limit its scope. Specifically, JKT
is a poor match for settings where players with heterogeneous hardware/software
are spread across a wide-area network (WAN).

By allowing each player to piggyback its individual fault probability onto
its first broadcast message, JKT can be used in a heterogeneous environment
by trivially replacing the fault probability of every player by the highest fault
probability. Such a protocol would be safe in terms of robustness, but it would
cause larger messages, incurring higher costs than necessary for a specified level
of robustness. Moreover, if there is a player with a very high fault probability,
the protocol will always produce a maximum-sized messages for full robustness.

Also, a router failure in the WAN (e.g., due to a misconfiguration or con-
gestion) increases the probability of network partitioning [12], which in turn
increases the failure probability of the GKA protocol. Specifically, router fail-
ure results in the communication failure of all players which use that router as
2 Assuming reliable broadcast, the CS protocol works as follows: First every player

broadcasts its public encryption key. Then every player picks its contribution to the
shared key, encrypts it under each broadcasted public key, and broadcasts a message
containing the resulting n ciphertexts. The shared key is computed by each player
as the sum of all broadcasted contributions.

Survival in the Wild: Robust Group Key Agreement in Wide-Area Networks 69

a gateway. Assuming the router’s fault probabilities are given (e.g., from his-
torical statistics), one naive solution might be to determine a player’s overall
fault probability by combining player failure and router failure probabilities and
then computing the suitable message size according to the result. However, it
is unclear how to combine these two different types of probabilities: individual
player’s faults are independent, while player faults stemming from router crashes
are correlated. Moreover, performance is not only determined by fault probabil-
ities, but also by the order of the players. For example, there is a higher chance
of partition for the same-sized message if players are randomly ordered, as in [7].
This prompts the question of how to order players and how to treat two different
failures in order to obtain good performance.

1.3 Scope

We consider applications where a peer group of players is distributed over any
combination of LANs and WANs (including the Internet). The group is a long-
term entity and a group-wide secret key is needed to bootstrap secure com-
munication. We assume that router failure probability can be computed from
historical statistics. Examples of the kind of groups we focus on are as follows:

– Collaborative workspace system. A collaborative workspace is a dis-
tributed environment, wherein participants in geographically spread loca-
tions can access each other’s data and interact as if they were at a single
location. A group of people, e.g., covering America, Europe, and Asia, can
cooperate to brainstorm, take a note, and develop source code. Softwares
supporting group collaboration include: CoOffice (working in MS Office pro-
grams), SubEthaEdit (a real-time editor designed for MAC OS X), Gobby
(available on Windows and Unix-like platforms), and UNA (a development
environment for software engineers). Many such settings are real-time in
nature and better GKA performance improves the overall QoS of group
communications.

– The Border Gateway Protocol (BGP) is the core routing protocol of the
Internet and a group of Internet BGP routers operates in one autonomous
domain. From a security perspective, they need to function as a single entity
and hence must agree on a common key. Extraneous tasks (such as key
management) are often the bottleneck (and pure overhead) for high-speed
routers. Saving bandwidth and rounds is a real concern.

– Consider a group of entities (routers or servers) in extreme environments,
such as deep-space, that lack continuous network connectivity.3 In such a set-
ting, re-starting a GKA protocol, because a single participant failed, results
in inordinately expensive costs.

3 Note that IETF/IRTF for several years already have a working group called Delay-
Tolerant Networking Research Group to explore issues (including security) in the
context of very-long-distance (and hence high-delay) networking.

70 J. Kim and G. Tsudik

– Security policies usually dictate that group keys must be refreshed peri-
odically.4 Thus, a GKA protocol needs to be re-run (perhaps often) and
improving GKA performance is essential.

1.4 Contributions

First, we investigate how to efficiently use prior work in a setting with hetero-
geneous players and construct a protocol that supports more flexible control
parameters. We localize the message size parameter for each player and allow a
player to compute its message size adaptively depending on reliability level of
its neighbors.

Second, we address the challenge of combining two different types of fault
probabilities (individual player and sub-group of players) by treating each type
at a different layer. Basically, we plug two types of control parameters into
our protocol: one (computed from a player fault probability) increases player
connectivity within a clustered subgroup, and the other (computed from a router
fault probability) increases connectivity among subgroups.

Third, since player ordering affects performance in a heterogeneous setting,
we determine – through step-by-step simulations – which ordering is preferable
in order to maximize efficiency. Simulation results show that random player
ordering in the same subgroup outperforms non-random order, e.g., topological
order or fault probability increasing order. In addition, keeping the topological
order of a player among subgroups outperforms random order of players beyond
its subgroup range.

Finally, we construct the first RGKA protocol that supports players with
different failure probabilities, spread across any LAN/WAN combination, while
also allowing for correlated failures among subgroups of players. The proposed
protocol is efficient (2 rounds) and provably secure. We evaluate its robustness
and performance both analytically and via simulations.

1.5 Organization

The rest of this paper is organized as follows: Section 2 presents our terminology,
notation, communication and adversarial models, as well as necessary security
definitions and cryptographic assumptions. Next, Section 3 describes the new
RGKA protocol. Section 4 evaluates its performance and section 5 concludes
the paper.

4 Keys can be compromised in many ways, including by brute-force deciphering or
so-called ”lunch-hour attacks”, a difficult-to-detect form of espionage where key in-
formation is obtained by physical means from within. Once a key is compromised,
all of the information transmitted over the communication link is vulnerable until
the key is refreshed. For systems with very low (or zero) key-refresh rates, a com-
promised key provides an eavesdropper full access to information encrypted with
that key.

Survival in the Wild: Robust Group Key Agreement in Wide-Area Networks 71

2 Preliminaries

2.1 Terminology and Notation

We now summarize our notation and terminology.

– Players. Participating set of n players are denoted: P1, ..., Pn where the
ordering is determined by the protocol itself.

– Sub-group. A subset of players who can communicate directly, i.e., those
on the same LAN.

– (Border) Router. A device that forwards data between sub-groups. It
might be a player. Router failure causes the entire sub-group to fail (become
disconnected) from the perspective of other players.

– Failures/Faults. Any player and any router can crash. A player crash re-
sults from hardware/software failure. A router crash results from network
misconfiguration or traffic congestion and causes the communication failure
of all players that use that router as a gateway to the rest of the world.

– Multicast Communication. We assume that all communication takes
place over reliable and authenticated multicast channels [13,6] where all non-
faulty players have the same view of the broadcasted message (which can be
null if the sender is faulty). We assume weak synchrony, i.e., players have
synchronized clocks and execute the protocol in synchronized rounds. Mes-
sages from non-faulty players must arrive within some fixed time window,
which we assume is large enough to accommodate clock skews and reasonable
communication delays.

– Adversary. We assume an honest-but-curious outside adversary which can
also impose arbitrary stop faults on the (otherwise honest) players. (We
note, however, that using standard zero-knowledge proofs our protocols can
easily be strengthened to tolerate malicious insiders at the price of a small
constant increase in communication and computation.) Also, although the
adversary can make each player stop at any time during protocol execu-
tion, such player failure can not violate the contract imposed by the reliable
multicast assumption. The goal of the adversary is to learn the group key(s).

2.2 System Model

Figure 1 illustrates our system model. Our security model is a standard model for
GKA protocols executed over authenticated links5. Since players in our setting do
not use long-term secrets, we define GKA security (following [4,8,7]), as semantic
security of the session key created in a single instance of the GKA protocol
executed among honest parties. Specifically, the adversary can not distinguish
between the key and a random value (with probability negligibly over 1/2). The
formal definition is as follows:
5 Note that there are standard and inexpensive “compilation” techniques which con-

vert any GKA protocol into an authenticated GKA protocol [8].

72 J. Kim and G. Tsudik

Fig. 1. System Model

Definition 1. (GKA Security) Consider an adversarial algorithm A which
observes an execution of the GKA protocol between n honest players, and, de-
pending on bit b, is given the session key computed by this protocol (if b = 1) or
a random value chosen from the same domain as the session key (if b = 0). The
adversary A outputs a single bit b′. We define adversary’s advantage:

AdvGKA
A = |Pr[b′ = b]− 1/2 |

where the probability goes over the random execution of the protocol, the adver-
sary A, and the random choice of bit b.

We call a GKA protocol secure if, for all adversaries A, AdvGKA
A is negligible.

2.3 Cryptographic Setting

We now describe our cryptographic assumptions. This section is included for the
sake of completeness and can be skipped without any loss of continuity.

Let G be a cyclic group of prime order q, and let g be its generator. We assume
that both Decision Diffie-Hellman (DDH) and Square-DDH problems are hard
in G. For example, G could be a subgroup of order q in the group of modular
residues Z

∗
p s.t. p− 1 divides q, |p| = 1024 and |q| = 160, or it can be a group of

points on an elliptic curve with order q for |q| = 160.

Definition 2. The DDH problem is hard in G, if, for every algorithm A, we
have: |Pr[x, y ← Zq : A(g, gx, gy, gxy) = 1] − Pr[x, y, z ← Zq : A(g, gx, gy, gz) =
1]| ≤ ε and ε is negligible.

Definition 3. The Square-DDH problem is hard in G if for every A we have:
|Pr[x← Zq : A(g, gx, gx2

) = 1] −Pr[x, z ← Zq : A(g, gx, gz) = 1]| ≤ ε and ε is
negligible.

3 Robust Group Key Agreement Protocol in a WAN

In this section, we show the construction of a WAN-oriented RGKA protocol.
As mentioned earlier, our work builds on [7]. We thus begin by describing the
JKT protocol in more detail.

Survival in the Wild: Robust Group Key Agreement in Wide-Area Networks 73

3.1 Overview of JKT Protocol

JKT is basically a robust version of the 2-round GKA protocol by Burmester and
Desmedt (BD) [4]. (We describe the BD protocol in appendix A.) BD succeeds
only if the second-round message values we call gadgets form a circular path
through the graph of all “live” players. The idea behind adding robustness is
simple: In the second round, players send out additional gadgets, such that,
even if some players fail in the broadcast stage, messages broadcasted by the
live players can still compute a key. In the following, we briefly describe a T -
robust GKA protocol and then a fully robust GKA protocol which repeats the
T -robust protocol until it succeeds.

T-robust GKA Protocol. As in [7], this protocol operates in two rounds
assuming n players are ordered cyclically and randomly: P1,...,Pn. In practice,
the order can be determined by the hash of the first-round message: each player
Pi broadcasts a public version zi = gti of its (secret) contribution ti to the
group key. (We assume, for simplicity and without loss of generality, that all
players survive the first round of the protocol.) In the second round, each Pi

broadcasts gadget values: X[k,i,i′] = (zk/zi)ti for |k− i| ≤ T . (Note that gadgets
X[k,i,j] for |k − i| ≤ T and |j − i| ≤ T can be also constructed since X[k,i,j] =
X[k,i,i′]/X[j,i,i′].)

For the better delivery of the protocol description, following [7], we rede-
fine the gadget value using a graph terminology and explain how gadgets are
used to agree upon a key. A gadget X[k,i,j] corresponds to the path of length
two connecting players Pk, Pi, and Pj . Two gadgets are connectable if there
exists a overlapping path. For example, for every i, gadgets X[ai−1,ai,ai+1] and
X[ai,ai+1,ai+2] are connectable because the path of Pai and Pai+1 overlaps. If we
virtually split a node into two nodes as shown in the node-doubling technique
[7], we add dash ′ to denote the index of the other node. For example, node i is
split into node i and node i′. For example, for every i, gadgets X[ai−1,ai,ai′] and
X[ai+1,ai,ai′] are connectable because the path of Pai and Pai′ overlaps.

Each player ends up computing the same group key if the sequence of gadgets
sent by all live players forms a circular path through the graph of all live players.
If all live players form a path, a cycle can be also constructed by visiting every
player twice as described in [7]. Let Pa1 , ..., Pam denote the players who survive
after the second broadcast round and form a circular path. Each Pai computes
session key as:

skai = (zai−1)
m·tai ·Xm−1

ai
·Xm−2

ai+1
· · · · ·Xai−2 = sk = gta1 ta2+ta2 ta3+...+tam ta1

where Xai = X[ai−1,ai,ai′]/X[ai+1,ai,ai′]. The actual protocol – as viewed by a
single player – is shown in Figure 2.

Fully Robust GKA with Homogeneous and Random Faults. A fully
robust (but not constant-round) GKA protocol simply repeats the T -robust
protocol above, with some parameter T , which we fix from the player fault
probability and the expected number of rounds, until the T -robust protocol suc-
ceeds. Repeating the protocol increases the number of rounds and the protocol

74 J. Kim and G. Tsudik

[Round 1]:
1.1 Each Pi picks a random ti ∈ Zq and broadcasts zi = gti .

[Round 2]:
2.1 Let ActiveList be the list of indices of all players who complete Round
1.
2.2 Each Pi broadcast gadgets: X[k,i,i′] = (zi/zk)ti for T nearest neigh-
bors to the right and T nearest neighbors to the left, among players
k ∈ ActiveList. Define X[i,i′,k] as (X[k,i,i′])−1.

[Key Computation]:
3.1 Let ActiveList be the list of indices of all players who complete Round
2.
3.2 Every Pi sorts ActiveList in the same order and connects each pair
of connectable gadgets. The session key can be computed only if Pi can
construct a cycle either from a true Hamiltonian cycle or from a Hamil-
tonian path taken twice; wlog, we assume that the path is formed as
{Pa1 , ..., Pam}, where for some i, j we have ai = aj and m ≤ n.
3.3 Each Pai computes skai = (zai−1)

m·tai · Xm−1
ai

· Xm−2
ai+1 · · · · ·Xai−2

where Xai = X[ai−1,ai,ai′] ·X[ai,ai′ ,ai+1].

(Note that skai = gta1 ta2+ta2 ta3+...+tamta1 .)

Fig. 2. The robust GKA Protocol with homogeneous players in a LAN

communication complexity, i.e., given protocol failure probability f and the mes-
sage size per player T , EXP(R)= 1 + 1/(1 − f), EXP(MS)= 1 + 2T/(1 − f),
respectively6. Assuming that player faults happen independently on the ν rate,
the protocol failure probability is upper-bounded by: f ≤ n2/2 ∗ ν2T .

Therefore, given n, ν, and f , we can compute a minimal gadget size – T – with
which the protocol fails with probability at most f . As a result, the protocol will
have at most 1 + 1/(1− f) rounds. This is described in Algorithm 1.

The JKT protocol can upper-bound protocol failure probability f and com-
pute optimal message size T using approximation techniques, assuming homoge-
neous players. However, it is not clear how to compute f and T in a heterogenous
player model. Moreover, while individual player faults are independent, subgroup
faults are correlated.

Even if we could compute optimal message size, it would work only for a
particular order of participating players. In other words, for each message size,
the order of players changes the performance of the protocol. Recall that the
JKT protocol computes gadgets for T nearest neighbors hoping that at least
one of them survives all protocol steps. If a given player is surrounded by other
players with high fault probabilities and gadgets connects only those players, the
said player will very likely end up disconnected.

In the following two sections, we explore how to order players and how to
compute the message size heuristically.

6 Note that the protocol restarts only the second round since the messages from the
first round are safely reusable.

Survival in the Wild: Robust Group Key Agreement in Wide-Area Networks 75

Algorithm 1. Optimal T Selection in random fault model
Input: (n, ν, f)
Output: T
for (T ′ ← 1 to n/2) do

1.1 f ′ ← n2/2 ∗ ν2T

1.2 if f ′ < f then
break

2 MinMS ← 1 + 2T ′/(1− f ′)
for (T ′ ← T ′ + 1 to n/2) do

3.1 f ′ ← n2/2 ∗ ν2T

3.2 MS ← 1 + 2T ′/(1− f ′)′

3.3 if MinMS > MS then
MinMS ←MS

return T

3.2 Random or Non-random Order?

Heterogeneous Players on a LAN. Basically, there are two extreme cases:
ordering players by their fault probabilities and ordering them randomly.7 For
the same number of gadgets T , to see which way of ordering provides better per-
formance, we simulate the protocol for each case, compute the expected number
of rounds and the expected message size, and then compare them.

We use a simple scenario with two subgroups of 25 players with a low and a
high fault probability, respectively. In this scenario step, we assume that every
player is on the same LAN and thus do not consider router failures. We denotes
by μ router failure probability (or subgroup fault probability).

Table 1. Scenario: two subgroups of players with different but independent fault prob-
abilities, Results: expected number of rounds and expected message size with three
different T values on two different player orders

Group ID A B
n 25 25
ν 0.01 0.3
μ 0 0

Ordering Topological Order Random Order
T 2 3 4 2 3 4

EXP(R) 2.913 2.052 2.005 2.266 2.010 2.000
EXP(MS) 8.652 7.312 9.040 6.064 7.060 9.000

The summary of this scenario and the results are summarized in Table 1. We
simulate the scenario with three different values of T (2, 3, and 4) in topological
and random orders, respectively. For every T , random order outperforms topo-
logical order. We believe that this is because random order uniformly distributes
players with low fault rate and increases the probability for every player to have
non-faulty players among its T nearest neighbors. Thus, random order can be a
practical solution for players with different, but independent, fault probabilities.
7 Of course, other ordering criteria are possible, e.g., by bit error rates of player inter-

faces. However, there is considerably less intuitive justification for considering these
criteria.

76 J. Kim and G. Tsudik

Table 2. Scenario: two subgroups of players are given with different but correlated fault
probabilities, Results: expected number of rounds and expected message size with three
different T values, with two player orders

Group ID A B
n 25 25
ν 0 0
μ 0.01 0.3

Ordering Topological Order Random Order
T 2 3 4 2 3 4

EXP(R) 2.000 2.000 2.000 2.427 2.427 2.007
EXP(MS) 5.000 7.000 9.000 6.708 9.562 9.056

Heterogeneous Players in a WAN. To see how correlated failures affect per-
formance, we simulate another scenario with two subgroups of 25 players. Each
subgroup connects to the WAN via a router. We assume that one router has
low, and the other – high, failure probability. Since we now focus on correlated
failures, we also assume that an individual player never fails, but only its com-
munication can fail due to the failure of the router connecting its subgroup to
the WAN.

The summary of this scenario and the results are summarized in Table 1. We
simulate the scenario with three different values of T (2, 3, and 4) in topological
and random orders, respectively. For every T , random order outperforms topo-
logical order. We believe that this is because random order uniformly distributes
players with low fault rate and increases the probability for every player to have
non-faulty players among its T nearest neighbors. Thus, random order can be a
practical solution for players with different, but independent, fault probabilities.

Heterogeneous Players in a LAN/WAN. As shown above, random player
order improves performance with independent player faults, while topological
order achieves better performance with correlated subgroup faults. The natu-
ral next step is to consider the case of both independent and correlated faults,
e.g., in a mixed LAN/WAN setting. To this end, we simulate a scenario with 4
subgroups, each composed of 15 players. Each player has an independent fault
probability (among players) and each subgroup also has an independent fault
probability (among subgroups). A player thus fails either alone or as part of
its subgroup failure. In the latter case, the disconnected subgroup (containing a
given player) might still complete the protocol; however, from the perspective of
outside players, all players in the failed subgroup are gone.

This scenario and simulation results are described in Table 3. They show
that topological order has fewer expected rounds and lower expected message

Table 3. Scenario: 4 subgroups of 15 players each with different fault probabilities,
Results: expected number of rounds and message size with 3 T values, with two different
player orders

Group ID A B C D
n 15 15 15 15
ν 0.2 0.01 0.1 0.3
μ 0.01 0.1 0.3 0.1

Ordering Topological Order Random Order
T 2 3 4 2 3 4

EXP(R) 3.371 2.165 2.045 3.701 2.404 2.165
EXP(MS) 10.484 7.99 9.360 11.804 9.424 10.32

Survival in the Wild: Robust Group Key Agreement in Wide-Area Networks 77

size. We conclude that, to obtain better performance, players should be ordered
topologically by subgroups and randomly within a subgroup.

3.3 Player-Specific Message Size

In this section, we describe how to compute optimal message sizes for different
players. We assume that players are grouped into subgroups topologically and
randomly within subgroups. We determine message size in terms of both player-
to-player and subgroup-to-subgroup communication, respectively.

Player-to-Player. Our approach is to localize T depending on the reliability
of neighboring players. Specifically, a player has a larger T with less reliable
neighbors, and a lower T with more reliable neighbors. If player fault probabilities
are evenly distributed, we can obtain the best performance by simply letting
each player compute the same number of gadgets T using algorithm 1. Whereas,
more realistically, if player fault probabilities are unevenly spaced, to make every
point equally reliable, each player has to adaptively compute the number of
gadgets depending on the robustness of its neighbors. (Recall that a player is
disconnected if all T nearest neighbors fail.)

We introduce three new variables:

– OTi: optimal number of gadgets, applicable to both right- and left-side neigh-
bors of Pi, assuming that each player has the same fault probability as Pi.

– RTi and LTi: localized numbers of gadgets applicable to Pi’s right and left
side neighbors, respectively.

We estimate Pi’s robustness from its OTi value. For example, a player with
OT = 1 is most robust, while a player with OT = n/2 is least robust (where
n is the number of players in a subgroup. In our algorithm, whenever a player
computes a gadget which makes a connection to one of its neighbors, the ro-
bustness level of the player increases in inverse proportion to its neighbor’s OT .
Pi computes RTi and LTi according to its right and left neighbor’s OT values
(OTi−1, OTi+1), respectively, until its robustness level reaches a specified level,
which is 1 in our algorithm. A more precise description is shown in Algorithm 2.

Note that a gadget that a player computes for one neighbor can not be
used if the neighbor does not compute a reciprocal gadget. (Recall that gad-
gets are connectable if there exists a overlapping path.) In fact, in Algorithm
2, for a given pair of players, either both compute a gadget for each other or
neither does.

Proposition 1. In Algorithm 2, if a player computes a gadget for a neighbor,
then the neighbor computes a reciprocal gadget.

Proof. Since RT and LT are symmetric, we focus only on RT . Assume that
Pi computes RTi = k. Since Pi+k is added as one of its right-side neigh-
bors, the summation of reliability from Pi+1 to Pi+k−1 is less than one, i.e.,
,
∑i+k−1

j=i+1
1

OTj
< 1. Therefore, Pi+k computes LTi+k ≥ k including Pi as one of

its left neighbors, since
∑i+k−1

j=i+1
1

OTj
< 1.

78 J. Kim and G. Tsudik

Algorithm 2. T Localization on player-to-player basis
Input: (n, ν1, · · · , νn, f)
Requirement 1: P1, · · · , Pn are randomly ordered within subgroups and
topologically across subgroups.
Requirement 2: n is the number of players and indices cycle modulo n, i.e.
Pn+1 = P1

Requirement 3: Pi’s fault probability is νi

Ensure: for each Pi, compute RTi and LTi

for (i← 1 to n) do
Compute optimal OTi using Algorithm 1 on input (n, νi, f)

for (i← 1 to n) do
reliability ← 0
RTi ← 0
for (j ← i + 1; reliability ≥ 1 or j − i ≥ n/2; j ← j + 1) do

RTi ← RTi + 1 (Add Pj to the list of Pi’s right neighbors)
reliability ← reliability + 1/OTj

reliability ← 0
LTi ← 0
for (j ← i− 1; reliability ≥ 1 or i− j ≥ n/2; j ← j − 1) do

LTi ← LTi + 1 (Add Pj to the list of Pi’s left neighbors)
reliability ← reliability + 1/OTj

Subgroup-to-Subgroup. In the proposed algorithm, we logically treat each
subgroup as a kind of a super-player. Specifically, in each subgroup, a player with
the lowest fault probability becomes a representative and sends out extra gadgets
for other representatives. A representative player becomes faulty if either the
player itself or its subgroup fails. Thus, given player failure rate ν and subgroup
failure rate μ, the failure probability 8 of a representative player is: ν + μ− νμ.
The algorithm is described in Algorithm 3.

Proposition 2. In Algorithm 3, if a representative player computes a gadget
value for a representative neighbor then the representative neighbor also computes
a gadget value for the representative player.

Proof. Identical to the proof of Proposition 1.

3.4 RGKA in a LAN/WAN Setting

Based on Algorithms 2 and 3, we propose a W-RGKA protocol for heterogeneous
players. W-RGKA allows each player to adaptively compute its message size de-
pending on the reliability level of its neighbors. W-RGKA automatically defaults
to the JKT protocol [7] in a setting with homogeneous players. Note that the
8 At the player-to-player level, a player also fails from either its own or its subgroup

fault. However, since players are topologically ordered and gadgets connect only
nearest neighbors, the subgroup fault is not considered in the player-to-player level
robustness.

Survival in the Wild: Robust Group Key Agreement in Wide-Area Networks 79

Algorithm 3. T Localization in subgroup-to-subgroup level
Input: (m, ν1, · · · , νm, μ1, · · · , μm, f)
Requirement 1: P1, · · · , Pm are a set of representative players
Requirement 2: m is the number of subgroups and indices cycle mod m, i.e.
Pm+1 = P1

Requirement 3: Pi’s fault probability and subgroup fault probability are νi

and μi, respectively
Ensure: for each Pi, compute RTi and LTi

for (i← 1 to m) do
Compute optimal OTi using Algorithm 1 on input (m, (μi + νi − μi · νi), f)

for (i← 1 to m) do
reliability ← 0
RTi ← 0
for (j ← i + 1; reliability ≥ 1 or j − i ≥ m/2; j ← j + 1) do

RTi ← RTi + 1 (Add Pj to the list of Pi’s right neighbors)
reliability ← reliability + 1/OTj

reliability ← 0
LTi ← 0
for (j ← i− 1; reliability ≥ 1 or i− j ≥ m/2; j ← j − 1) do

LTi ← LTi + 1 (Add Pj to the list of Pi’s left neighbors)
reliability ← reliability + 1/OTj

homogeneous player setting is a special case of Algorithm 2, where every player
computes the same OT = RT = LT . In other words, we succeed in extending
the JKT protocol without losing its optimality in a homogeneous setting.

We also relax the way the key is computed such that any circular path that
connects all live players can be used for key computation. The resulting graph
that gadgets draw in two levels is more complex than the one (called T -th power
of a circle) shown in the JKT protocol which builds either a Hamiltonian cycle
or a Hamiltonian path on all live players. To enable stronger robustness, we relax
the way of finding a circular path, so that the key is associated not necessarily
with a Hamiltonian cycle or a Hamiltonian path, but any circular path where a
player can be visited more than once. If there is no partition, there is a always
a circular path. The resulting W-RGKA protocol is shown in Figure 3.

Theorem 1. Assuming that the DDH problem and Square-DDH problem are
hard, protocol W-RGKA is a secure Group Key Agreement.

The security of the W-RGKA protocol which broadcasts RT and LT sized mes-
sages is implied by the security argument for the RGKA protocol in [7] which
broadcasts maximum sized messages, thus revealing maximum amount of infor-
mation. The only difference is that the resulting key in W-RGKA might contain
each contribution of the form tai , tai+1 more than once. However, the resulting
key equation is still linearly independent from the equations generated from gad-
gets. Thus, the key value is independent from gadgets values and the adversary
cannot learn anything about the key from the messages it observes. For details,
refer to Section 6.2 in [7].

80 J. Kim and G. Tsudik

[Round 1]:
1.1 Same as in Figure 2 except that each Pi also broadcasts its fault

probability νi.
[Round 2]: same as in Figure 2 except:

2.2 Each player Pi computes RTi and LTi using Algorithm 2 and broad-
cast gadgets X[k,i,i′] = (zi/zk)ti for RTi nearest neighbors to the right
and LTi nearest neighbors to the left among players k ∈ ActiveList.
*2.3 Each representative Pi computes RTi and LTi using Algorithm 3

and broadcast gadgets X[k,i,i′] = (zi/zk)ti for RTi nearest neighbors to the
right and LTi nearest neighbors to the left among representative players
k ∈ ActiveList.

[Key Computation]: Same as in Figure 2 except:
3.2 The session key can be computed if there exists a circular path where
every player is visited at least more than once. Wlog, we assume that the
path is formed as {Pa1 , · · · , Pam}, where for some i, j we can have ai = aj .

* Executed only by representative players

Fig. 3. W-RGKA protocol with heterogeneous players in a LAN/WAN setting

4 Performance Evaluation

We first summarize the relevant aspects of protocol efficiency.

– Round Complexity: number of protocol rounds.
– Communication Complexity: (expected) total bit-length of all messages

sent in the protocol.
– Computational Complexity: computation that must be performed by

each player.

REMARK: In the specific GKA protocols we compare, computational complexity
increases in proportion to communication complexity. Generally, one message
unit incurs one exponentiation (which dominates computational cost). Thus we
do not separate computational complexity from communication complexity in
the following comparison.

We compare W-RGKA with the fully robust JKT protocol [7], as described
in section 3.1. To make W-RGKA fully robust we repeat it until it succeeds; this
is the same approach used to obtain a fully robust version of JKT in [7]. We
denote our fully robust version as W-RGKA* and the fully robust JKT version
by RGKA*. However, since RGKA* works in a homogeneous setting, we simulate
RGKA* by taking the average of all player fault probabilities.

We analyze how player heterogeneity and correlated faults affect performance.
We evaluate the protocols in a setting of 5 subgroups with 10 players for each.
In the first simulation, we generate subgroup fault probabilities such that the
average subgroup fault probability is around 0.1 (with a standard deviation less
than 0.1) and generate 10 players for each group with random fault probabil-
ity, such that the standard deviation varies between 0 and 0.4. Note that the

Survival in the Wild: Robust Group Key Agreement in Wide-Area Networks 81

 0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
X

P
(R

ou
nd

)

STD of Node Fault Rate

W-RGKA*
RGKA*

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
X

P
(M

es
sa

ge
 S

iz
e)

STD of Node Fault Rate

W-RGKA*
RGKA*

(a) expected number of rounds (b) expected message size

Fig. 4. W-RGKA* vs. RGKA* for different standard deviations of player fault rate
distribution. Results are based on simulating over 100 runs.

standard deviation of player fault probability distribution indirectly shows the
heterogeneity of the set of players. In the second simulation, we generate players
randomly but with a small deviation (less than 0.1) and change subgroup fault
probabilities such that the average ranges from 0 to 0.4.

Figure 4 shows the expected number of rounds (a) and expected message
size (b) for each protocol with different standard deviations. Overall, W-RGKA*
outperforms RGKA* in both round and communication complexity. The number
of rounds in W-RGKA* tops out at 2.01, compared with 2.2 in RGKA*. This
might seem insignificant, however, considering that the underlying non-robust
BD protocol always takes 2 rounds, the difference becomes more substantial. We
also observe that the communication cost of W-RGKA* is far lower than that
of RGKA*, particularly, with higher standard deviation in player fault rates.

 0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
X

P
(R

ou
nd

)

Average of Subgroup Fault Rate

W-RGKA*
RGKA*

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
X

P
(M

es
sa

ge
 S

iz
e)

Average of Subgroup Fault Rate

W-RGKA*
RGKA*

(a) expected number of rounds (b) expected message size

Fig. 5. W-RGKA* vs. RGKA* for different average subgroup fault rates. Results are
based on simulating over 100 runs.

82 J. Kim and G. Tsudik

Figure 5 shows the expected number of rounds (a) and expected message size
(b) for both protocols, taking into account subgroup fault rates. Once again, W-
RGKA* exhibits better performance on both counts. The number of rounds in
W-RGKA* still lies below 2.01. Whereas, for RGKA*, the number of rounds in-
creases proportionally to averaged correlated fault rates, and thus quickly shoots
up to 2.5. Also, communication complexity of RGKA* increases as the average
of correlated fault rates grows. This is mainly because RGKA* does not consider
correlated faults in its design.

5 Conclusions

This paper started off with the state-of-the-art in robust GKA protocols. Having
identified certain limitations of prior work, i.e., assumptions about independent
failures and homogeneous players, we demonstrated a step-by-step construction
of a new protocol W-RGKA suitable for a mixed LAN/WAN setting. While
the proposed protocol inherits the attractive features of its predecessor (JKT),
it also heuristically determines per-player optimal message sizes and handles
heterogeneous fault probabilities as well as correlated failures. Simulations help
determine the preferred player order for different scenarios.

One obvious item for future work is to conduct a more extensive set of exper-
iments and simulations. Another issue is that the current protocol does not take
into account inter-subgroup delay. It is natural to consider this variable (assum-
ing it is known ahead of time) in determining the optimal subgroup order.

References

1. Amir, Y., Nita-Rotaru, C., Schultz, J., Stanton, J., Kim, Y., Tsudik, G.: Exploring
robustness in group key agreement. In: ICDCS, pp. 399–408 (2001)

2. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group diffie-
hellman key exchange - the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, p. 290. Springer, Heidelberg (2001)

3. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.: Provably authenticated
group Diffie-Hellman key exchange. In: ACM CCS (November 2001)

4. Burmester, M., Desmedt, Y.G.: A secure and efficient conference key distribution
system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

5. Cachin, C., Strobl, R.: Asynchronous group key exchange with failures. In: PODC,
pp. 357–366 (2004)

6. Floyd, S., Jacobson, V., Liu, C., McCanne, S., Zhang, L.: A reliable multicast
framework for light-weight sessions and application level framing. IEEE/ACM
ToN 5(6), 784–803 (1997)

7. Jarecki, S., Kim, J., Tsudik, G.: Robust group key agreement using short broad-
casts. In: ACM CCS, pp. 411–420 (2007)

8. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. Jour-
nal of Cryptology 20(1), 85–113 (2007)

Survival in the Wild: Robust Group Key Agreement in Wide-Area Networks 83

9. Kim, Y., Perrig, A., Tsudik, G.: Simple and fault-tolerant key agreement for dy-
namic collaborative groups. In: ACM Conference on Computer and Communica-
tions Security, pp. 235–244 (2000)

10. Kim, Y., Perrig, A., Tsudik, G.: Group key agreement efficient in communication.
IEEE ToC 33(7) (2004)

11. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

12. Moser, L., Amir, Y., Melliar-Smith, P., Agarwal, D.: Extended virtual synchrony.
In: ICDCS, pp. 56–65 (1994)

13. Paul, S., Sabnani, K., Lin, J., Bhattacharya, S.: Reliable multicast transport pro-
tocol (rmtp). IEEE JSAC 15(3), 407–421 (1997)

14. Steer, D.G., Strawczynski, L., Diffie, W., Wiener, M.: A secure audio teleconference
system. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 520–528.
Springer, Heidelberg (1990)

15. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups.
IEEE TPDS 11(8), 769–780 (2000)

A Burmester-Desmedt GKA

The BD GKA protocol proceeds in two rounds (see Figure 6): First each player
Pi broadcasts a public counterpart zi = gti of its contribution ti to the key. In
the second round each Pi broadcasts gadget X[i−1,i,i+1] = gtiti+1−ti−1ti (which
it can compute as X[i−1,i,i+1] = (zi+1/zi)ti). Given the set of gadget values
X[n,1,2], X[1,2,3], ..., X[n−1,n,1], each player Pi can use its contribution ti to locally
compute the common session key sk = gt1t2+t2t3+...+tnt1 .

[Round 1]:
Each player Pi picks a random ti ∈ Zq and broadcasts zi = gti .

[Round 2]:
Each Pi broadcasts its gadget value X[i−1,i,i+1] = (zi+1/zi−1)ti ,
where the indices are taken in a cycle.

[Key Computation]:
Each Pi computes the key as ski = (zi−1)nti · Xn−1

i ·
Xn−2

i+1 · · ·Xi−2, where Xi = X[i−1,i,i+1].

(Note that for all i we have ski = gt1t2+t2t3+...+tnt1 .)

Fig. 6. Burmester-Desmedt’s Group Key Agreement Protocol (BD GKA)

As we explain in section 3.1, a sequence of gadgets forms a path through
the graph if each two consecutive gadgets in the sequence are connectable. By
inspecting the formula for deriving the secret key in the BD GKA protocol we
can observe that each player derives the same key because the set of gadgets
broadcasted in the second round of the protocol forms a Hamiltonian cycle (i.e.
a circular path) through the graph of all players.

Visual Secret Sharing Schemes with Cyclic
Access Structure for Many Images

Miyuki Uno and Mikio Kano

Department of Computer and Information Sciences
Ibaraki University, Hitachi, Ibaraki, 316-8511 Japan
uno.miyuki@gmail.com, kano@mx.ibaraki.ac.jp

http://gorogoro.cis.ibaraki.ac.jp/

Abstract. We consider a visual secret sharing scheme with cyclic access
structure for n secret images and n shares, where two consecutive shares
decode one secret image. This secret sharing scheme can be constructed
by using Droste’s method. However the contrast of its scheme is 1/(2n).
In this paper, it is shown that for every integer n ≥ 4, there exists
no construction of such a visual secret sharing scheme having a perfect
black reconstruction and contrast at least 1/4. Also for every even integer
n ≥ 4, a new construction of such a visual sharing scheme that satisfies
a slightly weaker condition and has a contrast 1/4 is given.

1 Introduction

A visual secret sharing scheme (VSS scheme), which is also called a visual cryp-
tography scheme (VCS), was introduced by Naor and Shamir [9]. Since then, it
have been studied in many papers including [1,2,3,6]. A VSS scheme is a special
kind of secret sharing scheme in which the secret is an image comprised of black
and white pixels and encoded into n shares, where each share is usually printed
on a transparency. In k-out-of-n VSS scheme, the secret image can be obtained
only by stacking k of the shares, but we cannot get any information about the
secret image from fewer than k shares.

Droste [5] introduced the following generalized VSS scheme and gave its
construction. Let F be a family of non-empty subsets of {1, 2, . . . , n}, and
{Image(X) | X ∈ F} be a set of |F| secret images, each of which corresponds
to an element of F . Then we can construct n shares Share(1), Share(2), . . . ,
Share(n) so that for any element X ∈ F , a stack of the shares in {Share(i) | i ∈
X} recovers the secret image Image(X), and we cannot get any information
about Image(X) from a set {Share(i) | i ∈ Y } for X �⊆ Y ⊂ {1, 2, . . . , n}. The
family F is called the access structure of the VSS scheme.

If we apply this construction to a VSS scheme with cyclic access struc-
ture given below, then each pixel is split into 2n subpixels and its contrast
is 1/(2n). Thus this VSS scheme loses a lot of contrast in reconstructed images
when n is large.

In this paper, we first prove that for every n ≥ 4, there exists no construction
of a VSS scheme with cyclic access structure that has a perfect black recon-
struction and contrast greater than or equal to 1/4. Next, for every even n ≥ 4,

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 84–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

VSS Schemes with Cyclic Access Structure for Many Images 85

we give a new construction of a VSS scheme with cyclic access structure that
satisfies a slightly weaker condition and has a contrast 1/4. For n = 3, we give
a similar results with contrast 1/6.

We now explain a VSS scheme with cyclic access structure and another such
a VSS scheme satisfying a slightly weaker condition. They consist of n shares
Share(1), . . . , Share(n) and n secret images Image(1), . . . , Image(n) and
posses the following properties either (a),(b),(c) or (a),(b*),(c):

(a) for every 1 ≤ i ≤ n, a stack of Share(i) and Share(i + 1) reconstructs
Image(i), where Share(n + 1) = Share(1);
(b) for every 1 ≤ k ≤ n, a set {Share(i) | 1 ≤ i ≤ n, i �= k} of n− 1 shares gives
us no information about Image(k − 1) and Image(k);
(b*) for every 1 ≤ k ≤ n, a set {Share(i) | 1 ≤ i ≤ n, i �= k, k + 1} of n − 2
shares gives us no information about Image(k − 1), Image(k), Image(k + 1) ;
and
(c) this VSS scheme is perfect, that is, it has a perfect black reconstruction. So
every black pixel of a secret image is recovered into a pure black region in the
reconstructed image.

The condition (b*) says that if two consecutive shares Share(k) and Share(k+1)
are missing, then any information about three images Image(k− 1), Image(k),
Image(k + 1) cannot be obtained. It is obvious that a VSS scheme having the
property (b) satisfies (b*), and so in this sense, we say that the condition (b*) is
slightly weaker than (b). As we shall show, it is impossible to construct a VSS
scheme with cyclic access structure satisfying (a), (b), (c) and having contrast at
least 1/4 for every n ≥ 4. Keeping a high contrast 1/4, we give a new construction
of a VSS scheme with cyclic access structure satisfying (a), (b*), (c) for every
even n ≥ 4.

We now explain the contrast of a VSS scheme with perfect black reconstruc-
tion. Consider such a VSS scheme in which each pixel of secret images is split into
m subpixels in a share. We say that such a perfect VSS scheme has a contrast
δ if for every white pixel of secret images, at least δm subpixels of the corre-
sponding pixel in the reconstructed images are white, and for a certain white
pixel of a secret image, exactly δm subpixels of the corresponding pixel in the
reconstructed images are white.

This paper is organized as follows: In Sect. 2, a construction of cyclic VSS
scheme that satisfies (a), (b), (c) is given where n = 3. In Sect. 3, it is proved
that for every n ≥ 4, non-existence of the VSS scheme that satisfies (a),(b),(c)
and has contrast greater than or equal to 1/4. In Sect. 4, for every even n ≥ 4, a
construction of the VSS scheme satisfying (a), (b*), (c) and having contrast 1/4
is proposed. In appendix A, it is proved that for n = 3 non-existence of the VSS
scheme satisfying (a), (b), (c) and having contrast greater than 1/6. In appendix
B, an example of the VSS scheme for n = 6 and with contrast 1/4 is shown.

Other results on VSS scheme with many secret images can be found in [6],
[10] and etc.

86 M. Uno and M. Kano

2 Preliminaries and a VSS Scheme with Cyclic Access
Structure for n = 3

We first introduce some notations and definitions used throughout this paper.
Consider a VSS scheme with cyclic access structure consisting of n secret images
Image(1), . . . , Image(n) and n shares Share(1), . . . , Share(n). All the secret
images are comprised of black and white pixels. Each pixel of secret images is
split into m subpixels in a share.

Hereafter we consider any fixed pixel x of secret images, and denote its color
in Image(i) by img(i) = imgx(i), and by S(i) = Sx(i) the set of subpixels of
Share(i) corresponding to the pixel x. Then the pixel x corresponds to the m×n
subpixels S(1) ∪ S(2) ∪ · · · ∪ S(n). These m × n subpixels can be expressed by
a m × n (0, 1)-matrix B = [bij], where bij = 1 if the i-th subpixel of S(j) is
black, otherwise bij = 0. Namely, the j-th column vector of B corresponds to
S(j), and we also use S(j) to denote the j-th column vector of B. The matrix
B is called a basis matrix of the VSS scheme, which is the transposed matrix of
usually used basis matrix. For convenience, this matrix is used in this paper. A
2× 2 (0, 1)-matrix

M(i) =
[
mi1 mi3

mi2 mi4

]
is randomly chosen from the two matrices of the following (1) if the pixel of a
secret image is black, and otherwise it is randomly chosen from (2).{[

1 0
0 1

]
,

[
0 1
1 0

]}
, (1){[

0 0
1 1

]
,

[
1 1
0 0

]}
. (2)

A VSS scheme with cyclic access structure for three secret images and three
shares is presented as Fig. 1.

We adopt the Droste’s method. Each pixel is split into six subpixels, and the
6× 3 (0, 1)-matrix B = [bij] is defined as follows:

B =

⎡⎢⎢⎢⎢⎢⎢⎣
m11 m13 1
m12 m14 1
1 m21 m23

1 m22 m24

m33 1 m31

m34 1 m32

⎤⎥⎥⎥⎥⎥⎥⎦ = [S(1), S(2), S(3)],

which contains M(1), M(2) and M(3) as submatrices.
Consider any fixed pixel x of images. If img(1) is black, then M(1) is chosen

from (1), and so perfect black region is reconstructed by S(1) and S(2), otherwise
M(1) is chosen from (2), and thus one common subpixels of S(1) and S(2) are
white, and hence a white region is reconstructed. For other images, the colors are

VSS Schemes with Cyclic Access Structure for Many Images 87

Fig. 1. The secret images and the shares correspond to the edges and the vertices,
respectively

reconstructed in the same way by using M(2) and M(3). The security condition
(b) is proved in [5].

We will prove in the appendix that it is impossible to construct a cyclic VSS
scheme satisfying (a), (b), (c) and having contrast greater than 1/6.

3 Non-existence of the VSS with Contrast at Least 1/4

In this section we shall show that if n ≥ 4, then the contrast of a VSS scheme
with cyclic access structure for n images satisfying the conditions (a), (b), (c) is
less than 1/4. Namely, we prove the following theorem.

Theorem 1. Let n ≥ 4 be an integer. Then there exists no construction of a
VSS scheme with cyclic access structure for n secret images that satisfies (a),
(b), (c) and has contrast greater than or equal to 1/4.

Proof. Assume that there exists a construction of a VSS scheme with cyclic
access structure for n images which satisfies (a), (b), (c) and whose contrast is
greater than or equal to 1/4. We consider a fixed pixel x of images, and use the
same notation as in the previous section. Namely, we write img(i) for the color
of x in Image(i), and S(i) for the set of subpixels of Share(i) corresponding to
x. Suppose that each pixel is split into m subpixels. Let Wi, Bi ⊆ {1, 2, · · · , m}
denote the indices of white subpixels and black subpixels of S(i), respectively,
as follows (Fig. 2):

Wi = {k | the k-th subpixel of S(i) is white},
Bi = {k | the k-th subpixel of S(i) is black}.

Put |Wi| = wi and |Bi| = bi. Then m = wi + bi for every i.
Let λ denote the minimum number of |Wi ∩Wi+1| such that img(i) is white

and 1 ≤ i ≤ n. Since the contrast is greater than or equal to 1/4, we have
λ/m ≥ 1/4, and thus

m ≤ 4λ. (3)

First consider the case that n is even. Without loss of generality, we may
assume that w1 is maximum among all w1, w3, . . . , wn−1 with odd suffixes. Take
a triple (S1(1), S1(2), S1(3)) so that |W1 ∩W3| is maximum among all triples
(S(1), S(2), S(3)). Let t = |W1∩W3| for the (S1(1), S1(2), S1(3)) (Fig. 2 (i), (iv)).

88 M. Uno and M. Kano

S(1) S(2) S(2) S(3)

Fig. 2. The sets S(1), S(2), S(3) of pixels

Assume w3−t < λ. If img(2) is white, then |W2∩W3| ≥ λ and so W1∩W2∩W3 �=
∅. Since our VSS scheme is perfect, this implies that S1(1) and S1(2) must decode
a white pixel. Namely, from (S1(1), S1(3)), we can obtain the information that
(img(1), img(2)) = (black, white) never occurs. This contradicts the security
condition (b). Hence w3 − t ≥ λ. By the choice of w1, we obtain

w1 ≥ w3 ≥ λ + t. (4)

Consider a triple (S2(1), S2(2), S2(3)) decoding (img(1), img(2)) = (white,
white) (Fig. 2 (i), (iii), (iv)). Then for these S2(i), it follows that |W1 ∩W2| ≥ λ
and |W2 ∩W3| ≥ λ, and so

|W2| ≥ 2λ− |W1 ∩W3| ≥ 2λ− t (5)

by the maximality of t. By considering a triple (S3(1), S3(2), S3(3)) decoding
(img(1), img(2)) = (black, black) (Fig. 2 (i),(ii),(iv)), we have W2 ⊆ B1 ∩ B3

since the VSS scheme is perfect. Therefore it follows from Fig. 2 (iv), (4), (5)
and the maximality of t that

m = |S3(3)| ≥ |W1 ∩B3|+ |B1 ∩B3|+ |W3|
≥ |W1 ∩B3|+ |W2|+ |W3|
≥ (w1 − t) + (2λ− t) + (λ + t)
≥ λ + 2λ− t + λ + t = 4λ.

This inequality together with (3) implies m = 4λ, |W1 ∩ B3| = w1 − t = λ,
|B1 ∩ B3| = |W2| = 2λ − t and |W3| = λ + t. Hence the following equality (6)
and statement (7) hold.

w1 = w3 = λ + t, w2 = 2λ− t. (6)

If (img(1), img(2)) = (black, black) then

|W1 ∩W3| = t and B1 ∩B3 = W2. (7)

VSS Schemes with Cyclic Access Structure for Many Images 89

Notice that if the contrast is greater than 1/4, then m > 4λ in (3), and so we
derive a contradiction. Namely, hereafter we consider the case that the contrast
is exactly 1/4.

By applying the same argument to (S(3), S(4), S(5)), we obtain

w3 = w5 = λ + t′, w4 = 2λ− t′, (8)

where t′ is the maximum value of |W3 ∩W5|. Hence it follows from (6) and (8)
that t = t′ and

w1 = w3 = w5 = λ + t, w2 = w4 = 2λ− t.

By repeating the above argument for (S(j), S(j + 1), S(j + 2)), where j =
5, . . . , n− 1, we have

w1 = w3 = · · · = wn−1 = λ + t, (9)
w2 = w4 = · · · = wn = 2λ− t. (10)

Let s = |W2∩W4| be the maximum value among all triples (S(2), S(3), S(4)).
Then by the same argument as above, we obtain

w2 = w4 = · · · = wn = λ + s, (11)
w1 = w3 = · · · = wn−1 = 2λ− s. (12)

Moreover, it follows from (7) and the symmetry of t and s that if (img(2),
img(3)) = (black, black) then

|W2 ∩W4| = s and B2 ∩B4 = W3. (13)

Therefore it follows from (9), (10), (11) and (12) that for every integer 1 ≤ i ≤ n/2,

λ = s + t, w2i−1 = λ + t, w2i = λ + s.

By m = 4λ = 4(s + t) and the symmetry of s and t, we may assume that
t ≥ 1. Consider a sequence (S(1), S(2), S(3), S(4)) decoding (img(1), img(2),
img(3)) = (white, black, black) (Fig. 3). If |W1 ∩W3| �= t, then by (7) we can
get the information from S(1) and S(3) without S(2) that (img(1), img(2)) =
(black, black) does not occur. This contradicts the condition (b). Hence

|W1 ∩W3| = t. (14)

Since |W1∩W2| ≥ λ, W2∩W3 = ∅, (14) and |W1| = λ+t, we have |W1∩W2| = λ
(Fig. 3 (ii)). By (13), we have B2 ∩B4 = W3 and |W2 ∩W4| = s. Hence

|W1 ∩W4| = |W1 ∩W2 ∩W4| ≤ |W2 ∩W4| = s. (15)

Next consider a sequence (S(1), S(2), S(3), S(4)) decoding (img(1), img(2),
img(3)) = (black, black, black) (Fig. 4). Then |W1 ∩W3| = t and B1 ∩B3 = W2

90 M. Uno and M. Kano

S(1) S(4)S(3)S(2)

Fig. 3. (S(1), S(2), S(3), S(4)) for (img(1), img(2), img(3))=(white, black, black)

S(1) S(4)S(3)S(2)

Fig. 4. (S(1), S(2), S(3), S(4)) for (img(1), img(2), img(3)) = (black, black, black)

by (7). Hence the structure of (S(1), S(2), S(3)) is determined as Fig. 4. Since
t ≥ 1 and B2 ∩B4 = W3 by (13), we obtain

|W1 ∩W4| = λ = s + t > s. (16)

Therefore by (15) and (16), we can get the information from (S(1), S(4)) that
if |W1 ∩W4| = λ, then (img(1), img(2), img(3)) = (white, black, black) does
not occur. This contradicts the security condition. Hence the proof is complete
in this case.

Suppose that n is odd. By the same argument as (9) and (10), we can show
that the following holds.

λ + t = w1 = w3 = . . . = wn (17)
= w2 = w4 = . . . = wn−1 = 2λ− t. (18)

By applying the same argument as above, we can derive a contradiction. Con-
sequently the theorem is proved.

VSS Schemes with Cyclic Access Structure for Many Images 91

4 A New Construction of VSS Scheme with Cyclic
Access Structure for Even n ≥ 4

In this section, for every even integer n ≥ 4, a new construction of VSS scheme
with cyclic access structure for n images that satisfies (a), (b*) and (c) is given.
It has contrast 1/4, and every pixel of the images is split into four subpixels in
each share.

Let n = 2r ≥ 4. Hereafter, for any fixed pixel x of images, we consider the
colors img(1), · · · , img(n) and the sets S(1), · · · , S(n) of subpixels corresponding
to x. For every 1 ≤ i ≤ r, let A(i) and B(i) denote two column vectors consisting
of four entries. For convenience, let A(r + 1) = A(1) and B(r +1) = B(1). Then
by these A(i) and B(i), S(i)’s are randomly determined in one of the following
two ways (Fig. 5).

(S(1), S(2), · · · , S(n)) =
{

(A(1), B(1), A(2), B(2), · · · , A(r), B(r)) or,
(B(r), A(1), B(1), A(2), · · · , A(r)).

For every 1 ≤ i ≤ r, the four row vectors of [A(i)A(i + 1)] consist of

[0 0], [0 1], [1 0], [1 1]. (19)

Namely, [A(i)A(i + 1)] is obtained from the following matrix by a permutation
on the four row vectors: ⎡⎢⎢⎣

0 0
0 1
1 0
1 1

⎤⎥⎥⎦ .

On the other hand, B(i) is a column vector consisting of one 0 entry and three
1’s entries, and is determined by the colors of two consecutive colors (img(2i−
1), img(2i)) or (img(2i), img(2i + 1)) according to the decision of S(i)’s.

Example. Assume that n = 2r = 6 and (S(1), · · · , S(6)) = (A(1), B(1), A(2),
B(2), A(3), B(3)). Then we first determine three column vectors A(1), A(2), A(3)
so that every [A(i)A(i + 1)] consisting of four row vectors of (19). For example,
the following three column vectors satisfy this condition.

[A(1)A(2)A(3)] =

⎡⎢⎢⎣
0 0 1
0 1 0
1 1 1
1 0 0

⎤⎥⎥⎦ .

Assume that (img(1), img(2), · · · , img(6)) are (white, black, black, black,
black, white). Then B(1) is determined by a pair (white, black) of colors so
that the second row vector [0, 1] of [A(1), A(2)] works in the reconstruction of
img(1) and img(2). Namely,

B(1) =

⎡⎢⎢⎣
1
0
1
1

⎤⎥⎥⎦ and [A(1)B(1)A(2)] =

⎡⎢⎢⎣
0 1 0
0 0 1
1 1 1
1 1 0

⎤⎥⎥⎦

92 M. Uno and M. Kano

img(1)

img(4)

img(2)

img(6)

img(5)

img(3)

A(2)

B(1)

A(3)

A(1)

B(2)

B(3)

Fig. 5. The graph representing a VSS scheme with cyclic access structure for 6 images

Similarly, B(2) and B(3) are determined to reconstruct (black, black) and (black,
white) by [A(2), B(2), A(3)] and [A(3), B(3), A(1)], respectively.
Hence

[A(1)B(1)A(2)B(2)A(3)B(3)] =

⎡⎢⎢⎣
0 1 0 1 1 0
0 0 1 1 0 1
1 1 1 0 1 1
1 1 0 1 0 1

⎤⎥⎥⎦ ,

and thus the desired colors are reconstructed.

We now prove that a similar construction is always possible for every even integer
n ≥ 4. In order to do so, we need the next lemma.

Lemma 1. Let r ≥ 2 be an integer. Then a sequence (X1, X2, · · · , Xr) of r
column vectors having the following properties can be constructed.
(i) Each X(i) consists of two 0 entries and two 1 entries.
(ii) For every 1 ≤ i ≤ r, [X(i)X(i + 1)] consist of

[0 0], [0 1], [1 0], [1 1].

(iii) For any integer 1 ≤ k ≤ r, we cannot guess X(k) from the set {X(i) | 1 ≤
i ≤ r, i �= k} of r − 1 vectors.

Proof. We first take X(1) as

X(1) =

⎡⎢⎢⎣
0
0
1
1

⎤⎥⎥⎦ .

If r = 2, then X(2) is determined as one of the following four vectors :

X(2) =

⎡⎢⎢⎣
a
b
c
d

⎤⎥⎥⎦ , where {a, b} = {c, d} = {0, 1}.

VSS Schemes with Cyclic Access Structure for Many Images 93

Assume r ≥ 3. If X(j), j ≥ 1, is given, then X(j + 1) is obtained from X(j)
by independently and randomly replacing[

0
0

]
and

[
1
1

]
by

[
0
1

]
or

[
1
0

]
.

Thus there exist four distinct X(j + 1). By this method, we can obtain X(1),
X(2), · · · , X(r − 1). The last vector X(r) is randomly determined as follows
depending on both X(r − 1) and X(1). By symmetry, we may assume that
X(r − 1) is one of the following vectors

X(r − 1) =

⎡⎢⎢⎣
0
0
1
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
1
0

⎤⎥⎥⎦ or

⎡⎢⎢⎣
1
1
0
0

⎤⎥⎥⎦ .

Then determine

X(r) =

⎡⎢⎢⎣
a
b
c
d

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
a
b
a
b

⎤⎥⎥⎦ or

⎡⎢⎢⎣
a
b
c
d

⎤⎥⎥⎦ , respectively,

where {a, b} = {c, d} = {0, 1}. Finally permute all the entries of all X(i) simul-
taneously by any permutation on {1, 2, 3, 4}.

We now prove the condition (iii). For any integer 1 ≤ k ≤ r, consider the set
{X(i) | 1 ≤ i ≤ r, i �= k}. Without loss of generality, we may assume that

X(k − 1) =

⎡⎢⎢⎣
0
0
1
1

⎤⎥⎥⎦ and

X(k + 1) =

⎡⎢⎢⎣
0
0
1
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
1
0

⎤⎥⎥⎦ or

⎡⎢⎢⎣
1
1
0
0

⎤⎥⎥⎦ .

Then

X(k) =

⎡⎢⎢⎣
a
b
c
d

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
a
b
a
b

⎤⎥⎥⎦ or

⎡⎢⎢⎣
a
b
c
d

⎤⎥⎥⎦ , respectively,

where {a, b} = {c, d} = {0, 1}. Hence we cannot guess X(k) from {X(i) | 1 ≤
i ≤ r, i �= k}.

We are now ready to give a construction of the whole sequence. By Lemma 1,
first take a random sequence (A(1), A(2), . . . , A(r)). Then each B(i) is cho-
sen from the following four vectors so that (A(i), B(i), A(i + 1)) reconstructs

94 M. Uno and M. Kano

(img(2i − 1), img(2i)) or (img(2i), img(2i + 1)) according to the decision of
S(i)’s. Namely, we apply the same procedure in the case of n = 6.⎡⎢⎢⎣

0
1
1
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
0
1
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
1
0
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
1
1
0

⎤⎥⎥⎦ .

We now discuss the security. Assume that (A(1), B(1), A(2), . . . , B(r)) =
(S(1), S(2), . . . , S(n)). It is easy to see that if B(i) is missing, then we cannot
get any information about img(2i − 1) and img(2i). So we shall next show
that if two consecutive shares A(k), B(k) or B(k), A(k + 1) are missing, then
we cannot get any information about the three secret images (Image(2k − 2),
img(2k−1), img(2k)) or (img(2k−1),img(2k), img(2k+1)). By symmetry, we
may assume that A(k) and B(k) are missing. It is clear that no information about
(img(2k − 1), img(2k)) leaks because of a missing of B(k). By the statement
(iii) of Lemma 1, we cannot guess A(k) from {A(i) | 1 ≤ i ≤ r, i �= k}, which
implies no information about img(2k−2)) leaks. Consequently, the construction
of VSS scheme with cycle access structure for even number images is secure in
the sense (b*).

We conclude the paper with the following problem.

Problem. For every odd integer n ≥ 5, can we construct a VSS scheme with cyclic
access structure for n images that satisfies (a), (b*), (c) and has contrast 1/4?

References

1. Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual Cryptography for
General Access Structures. Information and Computation 129, 86–106 (1996)

2. Blundo, C., De Bonis, A., De Santis, A.: Improved schemes for visual cryptography.
Designs, Codes and Cryptography 24, 255–278 (2001)

3. Blundo, C., De Santis, A., Stinson, D.R.: On the Contrast in Visual Cryptography
Schemes. J. Cryptology 12, 261–289 (1999)

4. Blundo, C., De Santis, A.: Visual cryptography schemes with perfect reconstruction
of black pixels. Computer and Graphics 22(4), 449–455 (1998)

5. Droste, S.: New results on visual cryptography. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 401–415. Springer, Heidelberg (1996)

6. Iwamoto, M., Yamamoto, H.: A construction method of visual secret sharing
schemes for plural secret image. IEICE Trans. Fundamentals E86-A(10), 2577–
2588 (2003)

7. Koga, H., Ueda, E.: The optimal (t, n)-threshold visual secret sharing scheme with
perfect reconstruction of black pixels. Designs, Codes and Cryptography 40(1),
81–102 (2006)

8. Koga, H.: A general formula of the (t, n)-threshold visual secret sharing scheme.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 328–345. Springer,
Heidelberg (2002)

9. Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

VSS Schemes with Cyclic Access Structure for Many Images 95

10. Uno, M., Kano, M.: Visual Cryptography Schemes with Dihedral Group Access
Structure for Many Images. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS,
vol. 4464, pp. 344–359. Springer, Heidelberg (2007)

11. Yi, F., Wang, D., Luo, P., Huang, L., Dai, Y.: Multi secret image color visual
cryptography schemes for general access structures. Progr. Natur. Sci. (English
Ed.) 16(4), 431–436 (2006)

A Appendix A: Non-existence of the VSS Scheme with
Contrast Greater Than 1/6 Where n = 3

We now prove that for the VSS of three secret images, the contrast 1/6 is best
possible. Consider any construction of a perfect VSS scheme with cyclic ac-
cess structure for three shares and three secret images. We shall use the same
notations as in Section 3. Assume that S(i) consists of m subpixels, namely,
each pixel is split into m subpixels, where m ≥ 2. Let us define two subsets
Wi, Bi ⊆ {1, 2, · · · , m} as in Section 3. Put |Wi| = wi and |Bi| = bi. Then
m = wi + bi for every i ∈ {1, 2, 3}. Let λ denote the minimum number of
|Wi ∩Wi+1| such that img(i) is white and 1 ≤ i ≤ 3.

By considering the colors (img(1), img(2), img(3)) = (black, black, black),
we have that Wi and Wj are disjoint for i �= j, that is, S(i) and S(j) have no
white subpixels in common (Fig. 6 (i),(ii),(iv)). Thus

m = |S(i)| ≥ |W1|+ |W2|+ |W3|. (20)

Similarly, by considering the colors (img(1), img(2), img(3)) = (white, white,
black), we have that |W1 ∩W2| ≥ λ, |W2 ∩W3| ≥ λ and W3 ∩W1 = ∅ (Fig. 6
(i),(iii),(iv)). Hence |W2| ≥ 2λ. By considering other similar colors, we can obtain
that |W1| ≥ 2λ and |W3| ≥ 2λ. Therefore it follows from (20) that m = |S(i)| ≥
6λ , which implies that λ/m ≤ 1/6. Hence the contrast of a VSS scheme for
three images satisfying the conditions (a), (b), (c) is less than or equal to 1/6.

S(1) S(2) S(2) S(3)

>=

>=

Fig. 6. Wi and Bi denote the indices of white and black subpixels of S(i), respectively

96 M. Uno and M. Kano

A Appendix B: An Example of Cyclic VSS Scheme
Where n = 6

An example of VSS scheme with cyclic access structure for six shares and six
secret images are shown below. Here we encode secret images of 100×100 pixels.
Two shares Share(i) and Share(i + 1) recover Image(i), where Share(1) =
Share(7).

Fig. 7. The secret image Image(2)

Fig. 8. A reconstructed image Image(1)

VSS Schemes with Cyclic Access Structure for Many Images 97

Fig. 9. A reconstructed image Image(2)

The Swiss-Knife RFID
Distance Bounding Protocol

Chong Hee Kim�, Gildas Avoine, François Koeune�,
François-Xavier Standaert��, and Olivier Pereira��

Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

Abstract. Relay attacks are one of the most challenging threats RFID
will have to face in the close future. They consist in making the verifier
believe that the prover is in its close vicinity by surreptitiously forward-
ing the signal between the verifier and an out-of-field prover. Distance
bounding protocols represent a promising way to thwart relay attacks,
by measuring the round trip time of short authenticated messages. Sev-
eral such protocols have been designed during the last years but none of
them combine all the features one may expect in a RFID system.

We introduce in this paper the first solution that compounds in a
single protocol all these desirable features. We prove, with respect to the
previous protocols, that our proposal is the best one in terms of security,
privacy, tag computational overhead, and fault tolerance. We also point
out a weakness in Tu and Piramuthu’s protocol, which was considered
up to now as one of the most efficient distance bounding protocol.

1 Introduction

Radio Frequency Identification (RFID) is a ubiquitous technology that enables
identification of non-line-of-sight objects or subjects. Based on cheap RF - micro-
circuits – called tags – apposed on or incorporated into the items to identify, the
RFID technology is widely deployed in our everyday lives. Several billion RFID
tags are spread every year, in applications as diverse as pet identification, supply
chain managment, Alzheimer’s patient tracking, cattle counting, etc. RFID tags
suited to such applications do not cost more than 0.20 USD.

The impressive potential of the RFID is not only exploited in identification
solutions, but also in more evolved applications like access control, public trans-
portation, payment, ePassport, etc. that require the tag to be cryptographically
authenticated by the reader. To do so, a cipher and a pseudo-random number
generator can be implemented on the tag while keeping its cost low – e.g. no more
than 1 USD for a public transportation pass – but the number of calls to these
cryptographic functions must be small enough to keep the authentication delay
reasonable. Preserving privacy is also an expected feature of these protocols.

In practice, sensitive applications like those mentioned above rely on 2-pass
or 3-pass challenge-response authentication protocols based on symmetric-key
	 Research supported by the Walloon Region project E-USER (WIST program).

		 Research Associates of the Fonds de la Recherche Scientifique - FNRS.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 98–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Swiss-Knife RFID Distance Bounding Protocol 99

building blocks, typically block ciphers, although solutions based on asymmetric
primitives have also been proposed. Such a design is secure in theory, but the
real life is a bit different when dealing with RFID. Indeed, a tag is quite a
simple device that automatically answers to any authentication query from a
reader without alerting its holder. Hence the reader has no means to decide
whether the tag’s holder agreed to authenticate. Because the maximum reader-
tag communication distance can not exceed a few decimeters with cryptography-
compliant tags, the presence of the tag in the close environment of the reader
is considered as an implicit authentication agreement from its holder. Providing
the reader with a means to decide whether the distance to the tag is less than
a given threshold is thus of the utmost importance to achieve practical security
in RFID systems.

We introduce in this paper an RFID authentication protocol that allows such
a verification. It is the first protocol that combines all the expected properties at
the same time: it resists against both mafia fraud and terrorist attacks, reaches
the best known false acceptance rate, preserves privacy, resists to channel errors,
uses symmetric-key cryptography only, requires no more than 2 cryptographic
operations to be performed by the tag, can take advantage of precomputation on
the tag, and offers an optional mutual authentication. As an additional result,
we also point out a weakness in the recent Tu and Piramuthu distance bounding
protocol.

In Section 2, we introduce the relay attacks and the existing distance bounding
protocols. We show that they all offer interesting features, but no one was yet
able to combine all these features. We show in Section 3 a new attack against
one of these protocols. We then describe our proposal in Section 4 and analyze
it in Section 5. Finally, we provide a security and efficiency analysis.

2 Relay Attacks and Distance Bounding Protocols

2.1 Relay Attacks

There are two types of relay attacks: mafia fraud attack and terrorist fraud at-
tack. Mafia fraud attack was first described by Desmedt [5]. In this attack
scenario, both the reader R and the tag T are honest, but a malicious adver-
sary is performing man-in-the-middle attack between the reader and the tag by
putting fraudulent tag T and receiver R. The fraudulent tag T interacts with
the honest reader R and the fraudulent reader R interacts with the honest tag
T . T and R cooperate together. It enables T to convince R as if R communicates
with T , without actually needing to know anything about the secret information.
Terrorist fraud attack is an extension of the mafia fraud attack. The tag T
is not honest and collaborates with fraudulent tag T . The dishonest tag T uses
T to convince the reader that he is close, while in fact he is not. T does not
know the long-term private or secret key of T . The problem with Mafia fraud
attack is that this attack can be mounted without the notice of both the reader
and the tag. It is difficult to prevent since the adversary does not change any
data between the reader and the tag. Therefore mafia fraud attack cannot be

100 C.H. Kim et al.

Fig. 1. Mafia and terrorist fraud attacks

prevented by cryptographic protocols that operate at the application layer. Al-
though one could verify location through use of GPS coordinates, small resource
limited devices such as RFID tags do not lend themselves to such applications.
Distance bounding protocols are good solutions to prevent such relay attacks.
These protocols measure the signal strength or the round-trip time between
the reader and the tag. However the proof based on measuring signal strength
is not secure as an adversary can easily amplify signal strength as desired
or use stronger signals to read from afar. Therefore many works are devoted
to devise efficient distance bounding protocols by measuring round-trip time
[2,3,7,10,11,4,14,15,16].

2.2 Distance Bounding Protocols

In 1993, Brands and Chaum presented their distance bounding protocol [2]. It
consists of a fast bit exchange phase where the reader sends out one bit and starts
a timer. Then the tag responds to the reader with one bit that stops the timer. The
reader uses the round trip time to extract the propagation time. After series of n
rounds (n is a security parameter), the reader decides whether the tag is within the
limitation of the distance. In order to extract the propagation time, the processing
time of the tag must be as short and invariant as possible. The communication
method used for these exchanges is different from the one used for the ordinary
communication. It does not contain any error detection or correction mechanism
in order to avoid the introduction of variable processing cycles.

Although the idea has been introduced fifteen years ago, it is only quite re-
cently that distance-bounding protocols attracted the attention of the research
community. In 2005, Hancke and Kuhn proposed a distance bounding protocol
(HKP) [7] that has been chosen as a reference-point because it is the most pop-
ular distance bounding protocol in the RFID framework. As depicted in Fig. 2,
the protocol is carried out as follows. After exchanges of random nonces (Na

and Nb), the reader and the tag compute two n-bit sequences, v0 and v1, using
a pseudorandom function (typically a MAC algorithm, a hash function, etc.).

The Swiss-Knife RFID Distance Bounding Protocol 101

Reader Tag
(secret x) (secret x)

Pick a random Na
Na−−−−−−−−→ Pick a random Nb
Nb←−−−−−−−−

v0‖v1 := h(x, Na, Nb)
with ‖v0‖ = ‖v1‖ = n

Start of rapid bit exchange
for i = 1 to n

Pick Ci ∈ {0, 1}
Start Clock

Ci−−−−−−−−→
Ri =

{
v0

i , if Ci = 0
v1

i , if Ci = 1

Stop Clock
Ri←−−−−−−−−

Check correctness of
Ri’s and �ti ≤ tmax

End of rapid bit exchange

Fig. 2. Hancke and Kuhn’s protocol

Then (and repeating this step n times) the reader sends a random bit. Upon
receiving a bit, the tag sends back a bit from v0 if the received bit Ci equals 0.
If Ci equals 1, then it sends back a bit from v1. After n iterations, the reader
checks the correctness of Ri’s and computes the propagation time. In each round,
the probability that adversary sends a correct response is not 1

2 but 3
4 . This is

because the adversary could slightly accelerate the clock signal provided to the
tag and transmit an anticipated challenge C′

i before the reader sends its chal-
lenge Ci. In half of all cases, the adversary will have the correct guesses, that is
C′

i = Ci, and therefore will have obtained in advance the correct value Ri that
is needed to satisfy the reader. In the other half of all cases, the adversary can
reply with a guessed bit, which will be correct in half of all cases. Therefore, the
adversary has 3

4 probability of replying correctly.
Since this protocol’s publication, several solutions have been proposed to im-

prove its effectiveness and/or enhance its functionalities.
A solution to reduce the aforementioned probability below 3

4 is to include
a signing message (or message authentication code) as used in other protocols
[2,14,15]. However a signing message could not be sent with the channel for fast
bit exchanges as it is very sensitive to the background noise. It should be sent
by normal communication method with error detection or correction technique.
Therefore this approach would put an overhead on computation of a tag as well
as communication, which causes the protocol to be slower.

In 2006, Munilla et al. modified the Hancke and Kuhn protocol by applying
“void challenges” in order to reduce the success probability of the adversary

102 C.H. Kim et al.

[10]. Their protocol is the first and only approach not using any additional
signing message to reduce the success probability of the adversary. However the
disadvantage of their solution is that it requires three (physical) states: 0, 1, and
void, which is practically very difficult to implement.

HKP is vulnerable to the terrorist fraud attack but this can be solved, as
proposed by Reid et al. in [13], making the bit-strings, v0 and v1, and the long-
term key x intermingled (v0 = Encv1(x)). Thus, if a legitimate tag wants to
reveal the secret, then it will allow the adversary to impersonate it in more than
a single run of the protocol. However, Reid et al.’s protocol does not provide
privacy as it sends identities without any protection. Furthermore, as described
by Piramuthu [12], the probability of the success for an attack is higher than
for HKP.

In 2007, Tu and Piramuthu proposed a protocol to reduce the success probabil-
ity of an adversary [15]. They used four for-loop iterations for fast bit exchanges,
which made the success probability of an adversary equal to (9/16)n. That is,
the reader sends different hash values after n/4-bit exchanges. They also used
the combination of “v0 = v1⊕x” to prevent terrorist fraud attack. However, we
will show in Section 3 that their protocol is in fact not secure against an active
adversary.

Capkun et al. extended Brands and Chaum’s protocol to mutual authentica-
tion, so called MAD (mutual authentication with distance-bounding) in 2003 [4].
However their protocol is not resilient to bit errors during the fast bit exchanges.

Singelée and Preneel proposed a noise resilient protocol in 2007 [14]. They used
error correcting code (ECC) and MAC for the sake of channel error resistance,
but this made the protocol slower.

Recently Nikov and Vauclair proposed a protocol [11]. They used more than
a bit for fast exchanges. However it is susceptible to channel noise. Furthermore
the tag needs to compute 2k secret key functions (HMAC or AES) and store the
result.

Finally, Waters and Felten [16] and Bussard and Bagga [3] proposed dis-
tance bounding protocols using public key cryptography respectively. However
the adoption of public key cryptography in a small device such as low-cost RFID
is not applicable yet.

3 New Attack on Tu and Piramuthu Protocol

We show in this section an attack against the protocol described by Tu and
Piramuthu [15].

3.1 The Protocol

The protocol is depicted in Figure 3 (for convenience, we use the same notations
as in the original paper). The Reader first generates a nonce rB and sends x⊕rB

to the tag, where x is a shared long-term secret. Similarly, the tag generates a
random nonce rA and sends x⊕rA. The reader and the tag then derive a common
session key k = h(rA, x||rB) and use this key to split the secret x in two shares,

The Swiss-Knife RFID Distance Bounding Protocol 103

Reader Tag

Pick a random rB
x⊕rB−−−−−−−−−−→ Pick a random rA
x⊕rA←−−−−−−−−−−

k = h(rA, x||rB) k = h(rA, x||rB)
c = k ⊕ x c = k ⊕ x

for (u, v) = {(rA, rA), (rB , rB),
(rB , rA), (rA ⊕ rB , rA ⊕ rB)}

for i = 1 to n/4
Pick qi ∈ {0, 1}

Start clock
qi−−−−−−−→

Ci =
{

ki, if qi = 0
ci, if qi = 1

Stop clock
Ci←−−−−−−−−

Check Ci,�ti

If Ci,�ti invalid, abort process
End for

ktemp = h(u, x||v)
ktemp−−−−−−−−−−→ Verify ktemp = h(u, x||v)

If invalid, abort process
End for

Fig. 3. Tu and Piramathu’s protocol

k and c = k ⊕ x. Then an outer loop is iterated four times, for four different
combination values of (u, v), namely (rA, rA), (rB , rB), (rB , rA), (rA ⊕ rB, rA ⊕
rB). During each iteration of this outer loop, an inner loop is iterated n/4 times.
The inner loop is a rapid bit exchange consisting in a challenge bit qi being sent
by the reader and the corresponding answer Ci being sent by the tag, where
Ci = ki (resp. Ci = ki ⊕ xi) if the challenge was equal to 0 (resp. 1). After this
inner loop, a reader verification is performed by the tag by having the reader
compute and transmit a value ktemp = h(u, x||v), which is then verified by the
tag (this verification step is thus performed 4 times, one at each iteration of the
outer loop). The idea of this verification step is to have the reader validated by
the tag at intermediary steps of the rapid bit exchange, in order to prevent an
adversary from sending queries (random) qi’s and retrieving corresponding Ci’s
in advance. According to [15], this step can also use bit streaming and clocking
to measure (on tag’s side) the distance between tag and reader.

3.2 Our Attack

We show an attack allowing an adversary to recover the long-term key x. To
learn bit xi of that key, the attacker can, during the fast bit exchange, toggle
the value of challenge bit qi when it is transmitted from reader to tag and leave
all other messages untouched. The attacker then observes the reader’s reaction.
As a matter of fact, if the reader accepts the tag, it means that the tag’s answer
Ci was nevertheless correct, and thus that ci = ki. As ci = ki⊕xi, the adversary

104 C.H. Kim et al.

can conclude that xi = 0. Similarly, if the reader refuses the tag, the adversary
can conclude that xi = 1.

4 Proposed Scheme

4.1 Adversary

We consider an active adversary who entirely controls the channel. That is,
she can eavesdrop, intercept, modify or inject messages. She can also increase
the transmission speed on the channel up to a given bound. We define this
bound as the speed of light. On the other hand, we consider that our adversary
cannot correctly encrypt, decrypt, or sign messages without knowledge of the
appropriate key. We assume that she has no way to obtain such keys except
those of colluding tags.

We assume that the communication protocols are public, enabling an adver-
sary to potentially communicate with a reader or a tag. While communicating
with a tag, the adversary is able to increase or decrease its clock frequency and
thus the computation speed.

We define a neighborhood as a geographical zone around a reader whose limits
are clearly defined and publicly known. We consider that a tag present in a
neighborhood agrees to authenticate. We say that a tag T has been impersonated
if an execution of the protocol convinced a reader that it has authenticated
T while the latter was not present inside the neighborhood during the said
execution. In the same vein, a reader can be impersonated.

4.2 Goals

Authentication. The primary goal of the protocol is to ensure tag authentication,
that is, at the end of the execution of the protocol, the reader gets the conviction
that it communicates with the claimed entity. Mutual authentication is achieved
if the tag also gets the conviction that it communicates with the claimed reader.

Mafia fraud attack resistance. A tag cannot be impersonated, except if it colludes
with the adversary.

Terrorist fraud attack resistance. A tag cannot be impersonated, except if it
reveals its secret key to the adversary.

Low computation complexity. In order to get a practical authentication delay,
the number of cryptographic operations performed by the tag during the authen-
tication process must be as small as possible. Due to their efficiency compared to
asymmetric cryptography, the use of symmetric primitives is certainly desirable
in this respect.

When several tags are present in the field of the reader, each tag must be
singulated through a collision-avoidance protocol before starting the authenti-
cation protocol. During this process when tags are powered but mostly idled, or
whenever tags can be powered without having to authenticate, they are able to
perform some precomputation “for free”.

The Swiss-Knife RFID Distance Bounding Protocol 105

Low false acceptance rate. In order to get a practical authentication delay, the
number of rounds of the fast phase and the total number of bits exchanged
between the tag and the reader must be kept as small as possible for a given
false acceptance rate. For accuracy reason on the round trip time, we assume
that only one bit can be included per message in the fast phase.

Privacy. The protocol should not reveal the tag identifier except to the legiti-
mate reader.1 Moreover, given any set of recorded protocol executions, only the
legitimate reader should be able to determine whether a tag is involved in two
or more executions.

Channel error resistance. We assume that the channel used during the slow
phase is error-free. This assumption is quite realistic in the sense that there is
no specific time-constraint on that channel. An error-correcting mechanism can
therefore be used.

However, the channel used during the fast phase may suffer from Byzantine
errors. In such a case, the authentication property must be ensured up to a given
error rate threshold. Above this threshold, the reader must abort the protocol.

4.3 Description

Our authentication protocol is based on the MAP1 protocol of Bellare and Rog-
away [1], in the MAP1.1 variant proposed by Guttman et al. [6]. To this protocol,
which provides mutual authentication, a rapid bit exchange step has been added
in order to achieve distance-bounding, and some cleartext information has been
removed to ensure the privacy of the tag.

The MAP1.1 protocol works as follows. Tag and reader are assumed to share
a secret key x.

1. The reader chooses a random nonce NA and transmits it to the tag.
2. The tag chooses a random nonce NB and transmits [[ID, NA, NB]]x to the

reader, where [[m]]x means m‖fx(m), f is a pseudorandom function (PRF),
x is the key of the tag, and ID is the concatenation of the reader’s and tag’s
identifier.

3. The reader computes [[NB]]x and transmits it to the tag. Note that this
extra step is only required if mutual authentication must be achieved. If it
is not necessary for the tag to authenticate the reader, this last step can be
discarded.

Reader
NA ��

��

Tag

��
•
��

•
[[ID, NA, NB]]x��

��
•

[[NB]]x �� •
1 Note that this is in fact not the most stringent notion of privacy that can be con-

sidered. A stronger notion, in which even the reader does not learn the identity of
the tag, can also be useful in some contexts.

106 C.H. Kim et al.

Taking this protocol as our starting point, four adaptations are proposed.

1. Since tags do not make any difference between the readers, we simply rep-
resent the identity of teh readers as the empty string.

2. Since we want to preserve the privacy of the tags, we do not transmit their
identity in clear. The reader will then need to access a database storing the
identity and key (x, ID) of each tag and to perform an exhaustive search
over this DB, trying all possible keys until a match is found.2

3. Since honest tags and readers are not involved in concurrent sessions, we
can also avoid repeating the transmission of nonces in clear after their initial
transmission, so NA (resp. NB) does not need to be transmitted in clear
during the second (resp. third) round.

4. Since we want our protocol to be distance bounding, a rapid bit exchange
phase is added. The role of this phase is to prove to the reader that it is
directly interacting with the tag, preventing relay attacks.

It can be observed that the first three adaptations do not have any impact on
the authentication properties of the protocol, keeping the analyzes of [1,6] valid.
The last adaptation will be designed in such a way that it does not interfere
with the other parts of the protocol.

Basic version. We first describe a basic version of our protocol and discuss its
security. A more efficient variant is discussed in Section 5.2.

First a preparation phase is performed, involving the generation of nonces, one
application of the PRF and a few XORs. We will discuss below how precomputing
can be used for low-resource devices. No delays are measured during this phase.

– Following the MAP1.1 protocol, the reader chooses a random nonce NA and
transmits it to the tag.

– The tag chooses a random NB and computes a temporary key a :=fx(CB , NB)
using its permanent secret key x and NB (here CB is just a system-wide
constant).

– The tag splits his permanent secret key x in two shares by computing Z0 :=
a, Z1 := a⊕ x.

– The tag transmits NB to the reader (which constitutes the first part of the
second message of the MAP1.1 protocol).

After this preparation, the rapid bit exchange phase starts. This phase is
repeated n times, with i varying from 1 to n, and the challenge-response delay
is measured for each step. As explained in Section 2.2, this communication goes
over a channel that does not contain any error detection or correction mechanism,
so we must take into account the fact that channel errors might occur (either
randomly or by action of the attacker) in this phase. Moreover, the protocol

2 Note that the protocol is always initiated on reader’s side, so that a reflection attack,
in which a genuine answer from one execution of the protocol is used by an attacker
in another one, is not possible here.

The Swiss-Knife RFID Distance Bounding Protocol 107

must involve as few tag operations as possible in this phase, and we make this
number of operations fairly minimal: in each round, the tag only needs to select
one out of two pre-computed bits.

– The reader chooses a random bit ci, starts a clock and transmits ci to the tag.
We will denote by c′i the (possibly incorrectly transmitted) value received by
the tag.

– The tag answers by r′i := Z
c′i
i . We will denote by ri the value received by the

reader.
– Upon receiving ri, the reader stops the clock, stores the time delay �ti and

answer received (note that answer’s correctness is not checked at this time),
and moves to the next step.

After the rapid bit exchange phase, the final phase begins. This phase also
involves significant computing overhead, and no delays are measured during it.

– The tag computes tB := fx(c′1, . . . , c
′
n, ID, NA, NB) and transmits tB and

the challenges c′1, . . . , c
′
n it received during the rapid bit exchange phase.

Together with the sending of NB that took place earlier, this is the second
round of the MAP1.1 protocol, with the addition that tB also authenticates
the challenges c′1, . . . , c

′
n received during the rapid bit exchange phase.

– The reader performs an exhaustive search over its tag database until it finds
a pair (ID, x) such that tB := fx(c′1, . . . , c′n, ID, NA, NB)).

– The reader computes the values Z0 and Z1.
– The reader checks the validity of the responses made during rapid bit ex-

change phase, i.e.:
• it counts the number errc of positions for which ci �= c′i;
• it counts the number of positions errr for which ci = c′i, but ri �= Zci

i ;
• it counts the number of positions errt for which ci = c′i and ri = Zci

i ,
but the response delay �ti is above the time threshold tmax;

• if errc + errr + errt is above the fault tolerance threshold T , authenti-
cation fails and the protocol aborts.

– The reader computes tA := fx(NB) and transmits it to the tag (this is the
last step of the MAP1.1 protocol).

– The tag checks the correctness of tA. As stated before, the last two steps are
only required if mutual authentication must be achieved. If it is not necessary
for the tag to authenticate the reader, they can be omitted. Still, in both
cases, privacy is guaranteed.

5 Analysis

5.1 Security

To make the security discussion easier, let us first ignore the fault tolerance
parameter. That is, we will consider that the threshold T is 0. The effect on
security of a larger threshold will be discussed in Section 5.3.

108 C.H. Kim et al.

Reader Tag
(x, ID)

Pick a random NA
NA−−−−−−−−→

Pick a random NB

a := fx(CB, NB){
Z0 := a,
Z1 := a⊕ x

NB←−−−−−−−−

Start of rapid bit exchange
for i = 1 to n

Pick ci ∈ {0, 1}
Start Clock

c′i−−−−−−−→
r′i :=

{
Z0

i , if c′i = 0
Z1

i , if c′i = 1
Stop Clock

ri←−−−−−−−

Store ri,�ti

End of rapid bit exchange

tB := fx(c′1, . . . , c′n,
ID, NA, NB)

tB ,c′1,...,c′n,←−−−−−−−−−
Check ID via DB.
Compute Z0, Z1.

Compute errc := �{i : ci 	= c′i},
errr := �{i : ci = c′i∧ ri 	= Zci

i },
errt := �{i : ci = c′i∧ �ti > tmax}.

If errc + errr + errt ≥ T ,
then REJECT.

tA := fx(NB)
tA−−−−−−−−→

Compute and
compare tA

Fig. 4. Our basic authentication protocol secure against relay attacks

Authentication. The security of the basic authentication protocol has been stud-
ied in [1] and [6]. Basically, the presence of NA – a fresh nonce generated by the
reader – in the input of the PRF f authenticates the tag to the reader (as only
the tag and the reader know the value x used to key f). Similarly, the presence of
NB as an argument of fx in fx(NB) guarantees the tag that it was successfully
authenticated by the reader. We refer to the aforementioned papers for more
details.

The Swiss-Knife RFID Distance Bounding Protocol 109

Let us show that our modifications to MAP1.1 do not modify the security of
the protocol. We did the following modifications to MAP1.1:

– some values that were transmitted in clear in MAP1.1 (e.g., the tag and
reader ID) are not transmitted anymore;

– the values (c1, . . . , cn) are additionally transmitted in clear during the rapid
bit exchange phase, and included as additional argument of the function f .

It is obvious that removing the cleartext transmissions from the protocol
cannot harm security.

The (c1, . . . , cn) bits do not depend on any secret parameter involved in the
protocol, and they are transmitted in the authenticated text transmission mode
proposed for the MAP1 protocol [1].

Considering the rapid bit exchange, we will first argue that a passive obser-
vation of the rapid bit exchange does not reveal any information on x. If we
consider the PRF as a random oracle, a can be seen as a pure random string,
and the construction of Z0, Z1 is a classical secret sharing of x. As only one
share of each bit is revealed during the rapid bit exchange, no information on x
is disclosed by the responses ri. Besides, no information on x can be revealed by
the challenges ci, as these do not depend on x.

Things get a bit different when we consider an active adversary, allowed to
manipulate the messages exchanged during the rapid bit exchange. As in the
attack described in Section 3, if the reader checked for the correctness of ri

without verifying the value of the challenge bits used by the tag (using tB), one
easy attack would be for the adversary to flip one bit ci during transmission from
reader to tag, and then to simply forward the answer of the tag to the reader.
If the authentication is successful, the attacker can conclude that Z0

i = Z1
i

and hence that xi = 0; if the authentication is unsuccessful, she can similarly
conclude that xi = 1. This is the reason why we authenticate the c′i and place the
verification steps after the reception and verification of tB. More precisely, we
protect against active attackers by ensuring that verification is only performed
on bits for which the challenge was not manipulated by the tag. In this way,

– tampering with ci does not reveal any additional information, as the corre-
sponding answer will simply be ignored,3 and

– of course, tampering with answer ri does not reveal any information either.

Tampering with the messages can of course make the protocol fail by DoS,
but, as the attacker anyway knows he is always turning a correct answer into an
incorrect one, he cannot gain any information in this way. We have thus showed
that authentication is well achieved by our protocol.
3 Of course, the adversary will be able to choose which share, Z0

i or Z1
i will be revealed

there, but we already showed that obtaining only one share does not compromise
the secret. Also note that, although the adversary is able to modify the challenges ci

during the rapid bit exchange phase, the presence of tB prevents her from reflecting
this modification in the message sent by the tag, so that the reader will learn which
values were incorrectly received.

110 C.H. Kim et al.

Terrorist fraud resistance. We will show that only a tag knowing at least n− v
bits of the long-term key x is able to answer the requests issued during the
rapid bit exchange phase with success probability at least (3

4)v. As discussed in
Section 4.1, we will consider that only a tag present in the neighborhood of the
reader is able to answer the requests ci in due time (without the possibility to
obtain assistance from any device not present in the neighborhood), and show
that this tag must know x. Considering that, at step i of the protocol, the tag
will have to respond Z0

i with probability 1
2 and Z1

i with probability 1/2, a tag
ignoring the value of v bits of Z0 or Z1 can only succeed with probability (3

4)v.
From the equalities Z0 = a, Z1 = a⊕ x, the knowledge of 2n− v bits of Z0, Z1

immediately yields the knowledge of at least n−v bits of x. This security bound
is for example reached if we consider a terrorist attack in which a genuine, but
distant, tag transmits the value of Z0 to his accomplice: although no bit of x
has been revealed to the accomplice, she has now 3

4 chance to answer correctly
on each step of the rapid bit exchange.

Mafia fraud resistance. It is worth noting that, as opposed to the Hancke and
Kuhn protocol, the attack described in Section 2.2 (anticipated challenge trans-
mission) does not work against our protocol. As a matter of fact, the presence
in tB of the list of challenges received by the genuine tag prevents this attack in
our context. Therefore, we argue that the security bound against mafia attacks
is (1

2)n.

Privacy. We first show that an adversary who does not know the value of x
does not learn any information on ID. The only message depending on ID is
tB = fx(c1, . . . , cn, ID, NA, NB). It is easy to show that any adversary who could
retrieve any information on the input ID could also distinguish fx from a random
function. As f is supposed to be a PRF, we can conclude that no information
on ID is revealed by the protocol. As far as tracking between various protocol
executions is concerned, the values NB, r0, . . . , rn, tB, c0, . . . , cn observable by an
attacker are either random or the output of a PRF with fresh input and unknown
key. It is thus clear that all of them appear as random values to the attacker,
and tracking is not possible.

5.2 A More Efficient Variant

Our protocol, in the version we just presented, involves one rapid bit exchange
step per bit of the key. In a constrained environment, this communication over-
head might be problematic. On the other hand, we cannot for example restrict
the rapid bit exchange to the first m bits of Z0, Z1, because we would then loose
resistance against terrorist attack: a device knowing only the first m bits of the
key x would be able to succeed in the rapid bit exchange phase.

This problem could be solved by having the reader challenge the tag on m
random bit positions of Z0, Z1. However, although very simple, fetching a specific
bit from an integer might be a too complex operation for the minimal overhead
we expect during the rapid bit exchange phase.

The Swiss-Knife RFID Distance Bounding Protocol 111

Yet, there is a possible compromise. Basically, the reader could send a list of
m bit positions (but not the corresponding challenges) to the tag before the rapid
bit exchange phase, enabling the extraction of these positions from Z0 and Z1 and
preserving a fast treatment during the phase itself. Of course, in a terrorist attack,
the genuine device could take advantage of that delay to transmit only the relevant
parts of Z0, Z1 to his accomplice, revealing her only m bits of x. Yet, as the list
changes for each authentication, m random bits of x would have to be revealed for
each authentication, so that the full key would be quickly revealed.

The full protocol is depicted in Figure 5.2. Below we only describe the part
that changed compared to the initial protocol.

– The reader chooses a random NA; it also chooses a random d with hamming
weight m. Intuitively, d corresponds to a mask pointing the positions on
which the tag will be questioned during the rapid bit exchange. The reader
transmits NA and d to the tag.

– The tag chooses a random NB and computes a := fx(CB , NB), Z0 and Z1

as before. Then it prepares the possible answers by extracting the relevant
parts of Z0, Z1 according to the mask d, building the m-bit vectors R0

and R1.
– The remainder of the protocol is unchanged, except that R0, R1 is used

instead of Z0, Z1.

It can be observed that the NA and d protocol parameters could actually be
merged to save bandwidth, by requiring the tag to use NA as a mask. However,
as the hamming weight of m must be fixed to some value (or range of values)
in order to guarantee the appropriate security level for the rapid bit exchange,
the set of admissible nonces of n bits is reduced, and the length of NA must be
increased accordingly.

5.3 Fault Tolerance

Our protocol is tolerant to faults occurring during the rapid bit exchange trans-
missions:4 if some of the bits ci, ri get corrupted during transmission, or get inap-
propriately delayed, authentication can succeed anyway, provided the percentage
of such errors is sufficiently small. Basically the threshold T must be chosen so
that the probability for an adversary to be successful on m−T challenges is ac-
ceptably small. Taking our most pessimistic context, i.e. terrorist fraud attacks,
the chances of success follow a binomial distribution A := Bi(m, 3

4) and we want
Pr[A > m−T] < ε for an appropriate security parameter ε. For example, taking
m = 30 rapid bit exchange steps and tolerating up to two errors (i.e. T = 3)
yields a success probability for the adversary of about 1%. If we consider only
resistance against mafia fraud attacks (so A := Bi(m, 1

2)) and take m = 20 rapid
bit exchange steps, then we can tolerate up to 4 errors and still have less than
1% fraud probability (or tolerate only one error and have the probability shrink
to 0.01%).
4 As stated before, we assume that other transmissions occur over a channel capable

of error detection.

112 C.H. Kim et al.

Reader Tag
(x, ID)

Pick a random NA

Pick a random d s.t. H(d) = m
NA,d−−−−−−−−−−→

Pick a random NB

a = fx(CB, NB){
Z0 = a,
Z1 = a⊕ x

for i = 1 to m{
j : index of the next 1 of d(2),
R0

i = Z0
j , R1

i = Z1
j

NB←−−−−−−−−

Start of rapid bit exchange
for i = 1 to m

Pick ci ∈ {0, 1}
Start Clock

c′i−−−−−−−→
ri :=

{
R0

i , if c′i = 0
R1

i , if c′i = 1
Stop Clock

ri←−−−−−−−

Check: �ti ≤ tmax

End of rapid bit exchange

tB := fx(c′1, . . . , c′n, ID, NA, NB)
tB ,c′1,...,c′n,←−−−−−−−−−

Check ID via DB.
Compute R0, R1.

Compute errc := �{i : ci 	= c′i},
errr := �{i : ci = c′i ∧ ri 	= Zci

i },
errt := �{i : ci = c′i∧

�ti > tmax}.
If errc + errr + errt ≥ T

then REJECT.

tA := fx(NB)
tA−−−−−−−−→

Compute and compare tA

Fig. 5. A more efficient variant of the protocol

5.4 Efficiency

Let us consider the amount of computation to be performed by the most con-
strained device involved in the protocol, i.e. the tag. The most time consuming

The Swiss-Knife RFID Distance Bounding Protocol 113

part of the protocol is the computation of pseudo-random functions f . As shown
in Fig. 4, the function f is used three times on the tag side: in computing a, tB
and tA. If we need not mutual but unilateral authentication from tag to reader,
we need just two computations, a and tB.

As in [8], we can construct an RFID system which allows a precomputation in
a tag. The contents of the input for the computation of a of our proposed proto-
col do not have any information from the reader. Therefore a can be computed
before starting the protocol. Then we need two computations of pseudo-random
functions to achieve mutual authentication (one if we need unilateral authenti-
cation only).

As it involves an exhaustive search in a key database, the workload on reader’s
side is significantly higher, and grows linearly with the number of keys deployed
in the system. To the best of our knowledge, there is no existing method provid-
ing better performance without sacrificing some security, and this is certainly
an interesting subject for further research. In particular, we note that most of
the protocols discussed in Section 2.2 simply consider that the reader knows the
identity of the tag it is questioning, or transmits this identity in clear during the
protocol. Clearly, a variant of our scheme in which a single key is shared through-
out the system would not have this computing overhead while still preserving
privacy regarding outsiders (i.e. without knowledge of the key).

6 Protocols Comparison

Table 1 compares the proposed protocol with previous ones on several points
of view: mafia fraud and terrorist attack resistance, error resistance, privacy
preservation, mutual authentication and computational overhead inside the most
restricted resource, i.e. the tag.

Regarding the security against mafia fraud attack, we compare the success
probabilities for an adversary, in other words, false acceptance ratio against
mafia fraud attack (M-FAR). This is the probability that the reader accepts the
adversary as a legitimate tag. Although Reid et al. claim the M-FAR of their
protocol to be (3/4)n, Piramuthu later showed it to be equal to (7/8)n.

The security against terrorist fraud attack and its success probability for an
adversary (T-FAR) are compared in a similar way.

Then we compare the resilience against channel errors. This resilience is pretty
important for protocol’s robustness, as fast bit exchanges are typically sensitive
to channel errors.

As far as privacy is concerned, Reid et al.’s protocol discloses identities in
cleartext during protocol execution, and is thus not privacy-preserving. Most
of the other protocols assume that the reader knows the identity and secret
key of the tag before starting distance bounding protocol, hence ignoring the
privacy issue or assuming a single secret is shared by all tags. Our protocol
allows the reader to learn the tag’s identity during execution, although we admit
the corresponding overhead is pretty high, since an exhaustive search among all
possible keys is necessary for this identification.

114 C.H. Kim et al.

Table 1. Comparison of distance bounding protocols

Mafia M-FAR Terrorist T-FAR Err. resis. Privacy MA Comp.
BC [2] Yes (1/2)n No - No - No 2
HK [7] Yes (3/4)n No - Yes - No 1

Reid et al. [13] Yes (7/8)n Yes (3/4)v Yes No No 2
SP [14] Yes (1/2)n No - Yes - No 1 + ECC

Capkun et al. [4] Yes (1/2)n No - No - Yes 4
NV [11] Yes (1/2)n No - No - No 2k

Proposed (MA) Yes (1/2)n Yes (3/4)v Yes Yes Yes 3 (2)
Proposed (no MA) Yes (1/2)n Yes (3/4)v Yes Yes No 2 (1)

We measure the amount of computation needed in the tag as the required
number of computation of pseudo-random functions such as hash functions, sym-
metric key encryptions, etc.5 We propose our protocol in two flavors, with and
without mutual authentication. The number of computations of our protocol is
three with mutual authentication and two without it. Additionally, one of these
values can be pre-computed in each case (the values between parentheses in
Table 1 refer to the number of computations that must be computed on-line).

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

2. Brands, S., Chaum, D.: Distance-Bounding Protocols. In: Helleseth, T. (ed.) EU-
ROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

3. Bussard, L., Bagga, W.: Distance-bounding proof of knowledge to avoid real-time
attacks. In: IFIP/SEC (2005)

4. Capkun, S., Buttyan, L., Hubaux, J.-P.: SECTOR: secure tracking of node encoun-
ters in multi-hop wireless networks. In: 1st ACM Workshop on Security of Ad Hoc
and Sensor Networks – SASN 2003, pp. 21–32 (2003)

5. Desmedt, Y.: Major security problems with the “Unforgeable” (Feige)-Fiat-Shamir
proofs of identiy and how to overcome them. In: SecuriCom 1988, pp. 15–17 (1988)

6. Guttman, J.D., Thayer, F.J., Zuck, L.D.: The faithfulness of abstract protocol
analysis: Message authentication. Journal of Computer Security 12(6), 865–891
(2004)

7. Hancke, G., Kuhn, M.: An RFID distance bounding protocol. In: The 1st Interna-
tional Conference on Security and Privacy for Emergin Areas in Communications
Networks (SECURECOMM 2005), pp. 67–73. IEEE Computer Society, Los Alami-
tos (2005)

8. Hofferek, G., Wolkerstorfer, J.: Coupon recalculation for the GPS authentication
scheme. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189,
pp. 162–175. Springer, Heidelberg (2008)

5 We note that Singelée and Preneel’s protocol (SP) requires additional error correct-
ing codes (ECC), which normally requires significant computation overhead.

The Swiss-Knife RFID Distance Bounding Protocol 115

9. Munilla, J., Peinado, A.: Distance bounding protocols with void-challenges for
RFID. In: Workshop on RFID Security - RFIDSec 2006 (2006)

10. Munilla, J., Peinado, A.: Distance bounding protocols for RFID enhanced by us-
ing void-challenges and analysis in noisy channels. Wireless communications and
mobile computing (2008); published online: January 17, 2008, an earlier version
appears in [9]

11. Nikov, V., Vauclair, M.: Yet another secure distance-bounding protocol,
http://eprint.iacr.org/2008/319; an earlier version appears in SECRYPT 2008

12. Piramuthu, S.: Protocols for RFID tag/reader authentication. Decision Support
Systems 43, 897–914 (2007)

13. Reid, J., Nieto, J.G., Tang, T., Senadji, B.: Detecting relay attacks with timing-
based protocols. In: Bao, F., Miller, S. (eds.) Proceedings of the 2nd ACM sympo-
sium on Information, computer and communications security, pp. 204–213. ACM,
New York (2007), http://eprint.qut.edu.au/view/year/2006.html

14. Singelée, D., Preneel, B.: Distance bounding in noisy environments. In: Stajano,
F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp.
101–115. Springer, Heidelberg (2007)

15. Tu, Y.-J., Piramuthu, S.: RFID distance bounding protocols. In: The 1st Interna-
tional EURASIP Workshop in RFID Technology, Vienna, Austria (2007)

16. Waters, B., Felten, E.: Secure, private proofs of location. Princeton Computer
Science, TR-667-03 (2003)

http://eprint.iacr.org/2008/319
http://eprint.qut.edu.au/view/year/2006.html

Protecting Location Privacy through a
Graph-Based Location Representation and a

Robust Obfuscation Technique

Jafar Haadi Jafarian, Ali Noorollahi Ravari, Morteza Amini, and Rasool Jalili

Sharif Network Security Center; Department of Computer Engineering
Sharif University of Technology

Tehran, Iran
{jafarian@ce.,noorollahi@ce.,m_amini@ce.,jalili@}sharif.edu

http://nsc.sharif.edu

Abstract. With technical advancement of location technologies and
their widespread adoption, information regarding physical location of
individuals is becoming more available, augmenting the development
and growth of location-based services. As a result of such availability,
threats to location privacy are increasing, entailing more robust and so-
phisticated solutions capable of providing users with straightforward yet
flexible privacy. The ultimate objective of this work is to design a privacy-
preserving solution, based on obfuscation techniques (imprecision and
inaccuracy), capable of handling location privacy, as required by users
and according to their preferences. To this aim, we propose an intu-
itive graph-based location model, based on which users can express their
regional privacy preferences. We present an obfuscation-based solution
which allows us to achieve location privacy through degradation of loca-
tion information, as well as measuring the reliability of such information.
The proposed approach is robust and efficient, and covers some of the
deficiencies of current obfuscation-based privacy solutions. We also pro-
pose two privacy-aware architectures for our solution.

Keywords: Location Privacy, Obfuscation Techniques, Reliability, Mid-
dleware Architecture, Distributed Architecture.

1 Introduction

With the emergence of low-cost accurate location sensing technologies and their
widespread adoption, information regarding physical locations of individuals is
becoming more available. The temptation to reveal location information, mainly
aroused by services offered by location-based service providers (LBSPs), is
compelling.

Leaked to an unscrupulous entity, information about physical location of indi-
viduals may be abused for stalking, physical harassment, or malicious commercial
activities. Therefore, failure to protect location privacy of individuals can result
in their reluctance to reveal such information or to use location-based services.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 116–133, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://nsc.sharif.edu

Protecting Location Privacy through a Robust Obfuscation Technique 117

Location privacy is a special type of information privacy which concerns the
claim of individuals to determine for themselves when, how, and to what ex-
tent location information about them is communicated to others [1,2]. Location
privacy can be provided through obfuscation; i.e. deliberately degrading the
accuracy and quality of information about an individual’s location.

The ultimate objective of this work is to design an obfuscation-based tech-
nique able to handle location privacy, as required by users according to their
preferences. To this aim, a graph-based location representation based on the
concept of region is introduced. A region represents a spatial area characterized
by a symbolic name, such as 22nd Street. The set of regions create a directed
acyclic graph (DAG) in which nodes represent regions and edges represent con-
tainment relationships among them.

Privacy preferences of users are expressed in terms of regions and managed by
DAG of regions. Specifically, to obfuscate an individual’s location information,
her measured location is mapped to a region and the region is obfuscated based
on the privacy preferences specified by the user for that region.

Key to this work is the concept of reliability as the metric for the reliabil-
ity (accuracy and precision) of location information. Reliability allows service
providers to distinguish reliable location information from unreliable one, re-
sulting in more appropriate and reliable service provision.

We also explain how our solution can be deployed on distributed and
middleware-based architectures, and also describe the advantages and short-
comings of both approaches. Moreover, as a case study and to exemplify how
our solution may interact with an LBSP, an integration of our middleware archi-
tecture with a location-based access control engine is presented. The case shows
how reliability metrics provided by the solution can be exploited by an LBSP to
provide more reliable services.

The remainder of this paper is organized as follows. Section 2 presents a
background on categories and techniques of location privacy followed by related
work. Section 3 introduces the way locations are handled in our solution. Section
4 illustrates our approach for defining location privacy preferences, introduces the
concept of reliability, and presents our obfuscation technique. Section 5 presents
two privacy-aware architectures for our solution. In section 6 we study how our
solution can be exploited in satisfying the needs of a common LBSP such as a
location-based access control engine. Section 7 addresses some of the key issues,
challenges, and benefits in adoption of our solution, and section 8 concludes the
paper and gives future work.

2 Background and Related Work

Although location information can be effectively used to provide enhanced
location-based services, sensitivity of such information concern users about their
privacy. Failure to protect location privacy allows exploitation of such informa-
tion for unethical purposes such as stalking, physical harassment, or malicious
commercial activities [3]. As a result of such threats, location privacy issues are
the subject of growing research efforts.

118 J.H. Jafarian et al.

Location privacy techniques can be partitioned into three main classes:
anonymity-based, policy-based, and obfuscation-based [3,4]. The main branch
of research on location privacy relies on anonymity-based techniques. Beresford
and Stajano [5] present mix zones as a technique to provide location privacy
managed by trusted middlewares. In this solution, each user has some unreg-
istered geographical regions, called mix zones, where she cannot be tracked.
Bettini et al. [6] present a framework capable of evaluating the risk of sensitive
location-based information dissemination, and a technique aimed at supporting
k-anonymity. Gruteser and Grunwald [7] define k-anonymity in location obfus-
cation, and present a middleware architecture and an adaptive algorithm to
adjust location information resolution, in spatial or temporal dimensions, based
on specified anonymity requirements.

Another branch of research on location privacy aims at protecting user privacy
through the definition of complex rule-based policies [8,9]. Although suitable for
privacy protection, such policies are often hard to understand and manage by
end users.

The branch of research closest to our work aims at adoption of obfuscation
techniques in protection of location privacy. In obfuscation-based techniques,
instead of anonymizing user identities, location privacy is protected through
intentional degradation of the accuracy of information regarding an individual’s
location. Duckhum and Kulic [3] define a distributed architecture that provides a
mechanism for balancing individual needs for high-quality information services
and location privacy. The model assumes a graph-based representation of the
environment, and degrades location information by adding n nodes with the
same probability of being the real user position. The main drawback of the model
is that it ignores measurement errors and assumes the geographical coordinates
of user’s location is known with high precision and accuracy, which is hardly
satisfiable by current technologies.

Other proposals rely on a trusted middleware, a gateway between location
providers and LBSPs, for enforcing privacy on location information. Openwave
[10] includes a location gateway that obtains users’ information from multiple
sources, enforces user preferences if available, and disseminates it to other par-
ties. Bellavista et al. [11] proposes a middleware-based solution that is based
on points of interest with symbolic location granularity (e.g. country, city). The
main drawback of the model is its excessive rigidness in specification of privacy
requirements of services, and its lack of adaptability to privacy preferences of
users. Furthermore, the model does not take measurement errors and unreliabil-
ity of location information into consideration.

Ardagna et. al [4,12,13,14,15] present a middleware-based privacy-enhanced
location-based access control model, capable of managing location-based access
control policies and enforcement of user privacy preferences. In order to take mea-
surement errors into consideration, the solution assumes that location of users
is measured as circular areas, the accuracy of which depends on the deployed
technology. Users specify their privacy requirements through the definition of a
relative privacy preference. The model introduces three obfuscation techniques;

Protecting Location Privacy through a Robust Obfuscation Technique 119

namely enlarging the radius, shifting the center, and reducing the radius of
user’s circular location measurement. The techniques can also be mixed to pro-
vide more robust privacy. The solution also measures the accuracy of obfuscated
information by introducing the concept of relevance as a adimensional metric
for location accuracy. The main shortcoming of the solution is that it does not
consider situations where a user might require different obfuscation levels in dif-
ferent locations. Also, efficient deployment of the solution requires users to gain
some technological knowledge about geographical coordinates of locations.

3 Location Representation

In presenting the obfuscation algorithms, we adopt a discrete model of geographic
space in which the world is a planar (2-D) coordinate space consisting of a non-
empty set of unique areas called regions.

Definition 1. (Region). A region is a unique spatial area identified with four
elements: a symbolic label, a geographical representation, a region type, and a set
of parent regions. Uniqueness property implies that no two regions can have the
same symbolic labels or geographical representations.

The symbolic label indicates the name by which the region is known in the
real world; e.g. 22nd street, Sharif network security center, etc. Figure 1 shows
possible regions of a hospital.

The geographical representation of a region specifies the actual location of the
region on the map. To represent the geographical location of a region, different
approaches can be adopted. Regions might be represented as circles using a point
and a radius, as rectangles using a pair of points, as polygons using a non-empty
set of points, or even as a range of IP addresses. Furthermore, each point is a 2-
dimensional coordinate which might represent a global location, such as latitude
and longitude, or a location on a local map.

Region types indicate the nature or main functionality of a region; e.g. hos-
pital, city, street, etc. For instance, the region type of all hospitals in the world
may be selected as hospital.

Definition 2. (Region type). A region type is a symbolic label describing a set
of regions with identical properties.

The set of parent regions of a region r determines the set of regions in which r
is geographically contained (The containment relationship is shown by ⊆). Note
that, if ri and rj belong to the set of parent regions of r, then neither ri ⊆ rj

nor rj ⊆ ri. Specifically, if ri and rj contain r, and rj contains ri, then only ri

is included in the set.
Containment relationship between regions form a directed graph, G = (V, E),

in which V is the set of regions, and every edge (r, w) represents membership of
w in the parent set of r (Figure 2). Since containment relationship is asymmetric
and no two regions have a same geographical representation, graph G does not
include any cycle, and therefore it is a directed acyclic graph (DAG). Moreover,

120 J.H. Jafarian et al.

Fig. 1. Example of regions in a hospital

G contains no transitive edges, because according to the above restriction if r,u,
w ∈ V and (r, u),(u, w) ∈ E, then (r, w) �∈ E.

4 Location Obfuscation and User Preferences

Location obfuscation is the means of intentionally degrading the accuracy of in-
formation about an individual’s location information still maintaining associa-
tion with the real user identity. Location obfuscation can be achieved by imposing
deliberate imprecision on spatial information. Three distinct types of imperfec-
tion in spatial information are commonly identified in the literature: inaccuracy,
imprecision, and vagueness [3]. Inaccuracy involves a lack of correspondence be-
tween information and reality; imprecision involves a lack of specificity in informa-
tion; and vagueness involves the existence of boundary cases in information [16,17].

Potentially, any or all of these types of imperfection couldbeused to obfuscate an
individual’s location. For instance, for User A located at the corner of 22nd Street
and 23rd Street, the following obfuscations of her location might be provided:

– User A is located at the corner of 22nd Street and 21st Street (inaccuracy)
– User A is in the city (imprecision)
– User A is near 22nd Street (vagueness)

In this paper, we consider the use of imprecision and inaccuracy in location ob-
fuscation. Deliberately introducing inaccuracy into location information raises
serious questions, since it essentially requires the obfuscation system to lie about
an individual’s location. While supporting inaccuracy-based obfuscation, our so-
lution provides a specific reliability metric which determines the level of inaccu-
racy introduced in the location information. Specifically, if the obfuscated region

Protecting Location Privacy through a Robust Obfuscation Technique 121

Fig. 2. Example of regions in a region graph

has no intersection with user’s location measurement, the accuracy metric tends
to zero, indicating the highest level of inaccuracy in spatial information.

4.1 Location Measurement

Location measurement of a user is the area returned as user’s current location.
Since the result of each location measurement is inevitably affected by errors,
a spatial circular area is returned, rather than a single point. This assumption
represents a good approximation for actual shapes resulting from many location
technologies [8]; e.g. cellular phones location.

Definition 3. (Location measurement). A location measurement of a user u,
represented by LMu, is a circular area Circle(r, xc, yc), centered on the coordi-
nate (xc, yc) and with radius r, which includes the real user’s position (xu, yu)
with probability P ((xu, yu) ∈ Circle(r, xc, yc)) = 1 [15].

Another assumption is that the probability distribution of points within an area
or region is uniform. Specifically, the probability that a random point (x, y)
belongs to a region is uniformly distributed. Formally, fr(x, y), the probability
density function (pdf) of a region or location measurement r, is:

fr(x, y) =
{ 1

s(r) (x, y) ∈ r

0 otherwise

where s(r) represents the area of r.

122 J.H. Jafarian et al.

The Same assumption can be found in other works [15,18] on this topic.
Assuming a uniform distribution simplifies the model with no loss of generality.

4.2 User Preferences

There is always a trade-off between expressiveness and usability in expression of
user preferences. Complex policy specifications, fine-grained configurations, and
explicit technological details discourage users from fully exploiting the provided
functionalities.

Many solutions presented in the literature [3,10] allow users to express privacy
preferences using a minimum distance and radius enlargement techniques. The
solution presented in [15] provides an intuitive variation of this technique by
letting users specify a relative privacy preference λ; e.g. λ = 0.2 means 20% of
degradation. While providing a simple policy specification and avoiding explicit
technological details, the solution does not consider common cases where a user
might require different obfuscation in different locations. For example, the pri-
vacy a doctor needs at hospital may differ from the privacy she needs at home.
Also, accurate assignment of values to λ requires users to possess technological
knowledge about these regions; e.g. in order to conceal her presence in restricted
zone of a hospital and obfuscate it to the hospital, the doctor must have some
knowledge about their geographical properties.

The objective of our solution is to let users specify their privacy preferences
using symbolic labels of the regions and the containment relationship among
them. Such solution avoids any technological complexity and makes policy spec-
ification straightforward. Since in practice, users usually require the same pri-
vacy preferences except for some specific regions (e.g. home, office), fine-grained
configurations can be easily avoided using default preferences.

To this aim, we first introduce the function obf which allows users to deter-
mine their privacy preferences by mapping regions or region types to their obfus-
cated region/region type; e.g. obf(Hospital) = Zone simply means that for this
user, hospital regions must be obfuscated to their enclosing Zones. Therefore, four
types of obfuscation are possible, mentioned here in order of priority: obfuscating
a region to another region; obfuscating a region to a region type; obfuscating a
region type to a region, and obfuscating a region type to another region type.

Obfuscating a region to another region. When region A is specified to be
obfuscated to region B (obf(A) = B) by a user u, it simply means that if u is
in A and her current location is queried, B will be returned.

Obfuscating a region to a region type. When region A is specified to be
obfuscated to region type C (obf(A) = C) by a user u, it means that if u is in
A and her current location is queried, the nearest ancestor of A with type C
(including itself) is returned. If no such ancestor is found, A will be returned. If
two qualified ancestors with the same distance to A are found, one of them will
be randomly selected as the result (Figure 2).

Obfuscating a region type to a region. When region type C is specified to
be obfuscated to region B (obf(C) = B) by a user u, it means that if u is in

Protecting Location Privacy through a Robust Obfuscation Technique 123

an arbitrary region A of type C and the region itself has no privacy preference
(obf(A) = ⊥), B is returned as the result of a query about current location of u.

Obfuscating a region type to another region type. When region type C
is specified to be obfuscated to a region type D (obf(C) = D) by user u, it
means that if u is in an arbitrary region A of type C, and A itself has no privacy
preference (obf(A) = ⊥), the nearest ancestor of A with type D (including itself)
is returned. Again, if no such ancestor is found, A will be returned. Also, if two
qualified ancestors with the same distance to A are found, one of them will be
randomly selected as the result.

The following algorithm provides obfuscation using user preferences:

ObfuscateRegion(region A)
{returns a region}

t := A
if obf(A) �= ⊥ then t := obf(A)
else if obf(RgnType(A)) �= ⊥ then t := obf(RgnType(A))
if t is a region then

return t
else if t is a region type then

Queue q
q.enqueue(A)
while q is not emtpy

s := q.dequeue
if RgnType(s) = t then

return s
foreach region w in ParentSet(s) in a random order

q.enqueue(w)
return A

The algorithm takes a region as input, and returns its corresponding ob-
fuscated region according to user preferences. To this aim, firstly obfuscation
preference of the user, t, is selected based on values of obf(A), obf(RgnType(A)),
and A. In case t is a region, the result is simply t. Otherwise, the nearest
ancestor of A with type t must be chosen. To this aim, a breadth-first search
started from A is used on the region graph.

Since privacy preferences of users are expressed in terms of regions, location
measurement of the user must be mapped into a region. Before addressing this
issue, we need to introduce reliability metrics of our solution.

4.3 Reliability

To evaluate the accuracy and precision of location information, the concept of
reliability is introduced as the adimensional metric of both the reliability and
the privacy of location information. The idea of such metrics has been taken
from Ardagna et al.’s work [15]. A reliability metric μ is a value in (0, 1] as-
sociated with location information, which depends on the measurement errors

124 J.H. Jafarian et al.

and privacy preferences of users. The reliability metric tends to 0 when loca-
tion information must be considered unreliable for application providers; it is
equal to 1 when location information has the best accuracy and precision; and a
reliability value in (0, 1] corresponds to some degree of reliability. Accordingly,
the location privacy provided by an obfuscated location is evaluated by (1− μ),
since in our solution, privacy is the result of imprecision and inaccuracy. In our
solution, all locations have an associated reliability attribute, from an initial lo-
cation affected by a measurement error to all possible subsequent manipulations
to provide privacy. Three reliability values are introduced in our solution:

– Technological reliability (μTech). The metric for the reliability of a user
location measurement as returned by the sensing technology. In [19], avail-
able sensing technologies such as E-OTD for GSM, OTDOA for WCDMA,
and Cell-ID are introduced.

– Mapping reliability (μMap). The metric for the accuracy achieved in map-
ping user location measurement to a region.

– Obfuscation reliability (μObf). The metric for the reliability of an obfus-
cated region and therefore the level of privacy provided to the users.

Among these reliability values, μTech is assumed to be known. In [15] a technique
for evaluating the reliability of the area returned by a sensing technology is
proposed. μMap is calculated based on user location measurement and the region
to which it is mapped. μObf is derived from the privacy preferences of the user.
In other words, μObf represents the reliability of the obfuscated region that is
calculated starting from the location measurement with reliability μTech and by
degrading its reliability according to the privacy preferences of user.

4.4 Obfuscation Technique

Since privacy preferences of users are specified in terms of regions, user location
measurement must be mapped into a region. Obviously, the selected region is the
one having the largest intersection with user location measurement, compared to
other regions. If two regions have same intersection with location measurement
in terms of area, either of them is contained in the other one, or there exists no
containment relationship between them. In the former case, the contained region
will be selected, while in the latter case, one of them will be randomly chosen.

The following algorithm takes user location measurement of a user u (shown
by LMu) and maps it into the desired region (called regionu). Note that s(a)
represents the area of a.

function MapLMtoRegion(LMu)
{returns a region}

v := ∅
reg := ∅
foreach region r where (r ∩ LMu �= ∅)

v′ := r ∩ LMu

if s(v′) > s(v) or (s(v′) = s(v) and v′ ⊂ v) then

Protecting Location Privacy through a Robust Obfuscation Technique 125

v := v′

reg := r

Map := s(v)
s(LMu)

return reg

The algorithm determines the desired region by computing the intersec-
tion area of all regions with LMu. It also computes mapping reliability; i.e.
μMap. In fact, μMap represents the probability that the real user’s position
belongs to the chosen region:

μMap = P ((xu, yu) ∈ (LMu ∩ regionu)|(xu, yu) ∈ LMu)
μMap = s(LMu ∩ regionu)

s(LMu)

Since the obfuscation technique used in our solution is based on regionu, inac-
curate mapping may have serious repercussions. Therefore, μMap is proposed
as a reliability criterion for the LBSPs to distinguish and filter mapping errors
based on a predefined threshold. In the strictest case, an LBSP might reject
location information with μMap lower than 1; i.e. no mapping error is tolerated.

Having determined current region of the user, the next step is to apply its pri-
vacy preferences using the algorithm presented in 4.2. The returned obfuscated
region is referred to as regionPriv. Obfuscation reliability, μObf , is measured
after the algorithm is applied.

Beginning from the reliability of user location measurement, μObf represents
the reliability (precision and accuracy) of an obfuscated region. To measure the
obfuscation effect, two probabilities must be composed: i) the probability that
the real user’s position belongs to the intersection of LMu and regionPriv, and
ii) the probability that a random point selected from the whole obfuscated area
belongs to the intersection.

μObf = P ((xu, yu) ∈ (LMu ∩ regionPriv)|(xu, yu) ∈ LMu)
P ((x, y) ∈ (LMu ∩ regionPriv)|(x, y) ∈ regionPriv)μTech

Based on the placement of LMu and regionPriv, the formula for obfuscation
reliability changes:

if LMu ⊆ regionPriv

P ((xu, yu) ∈ (LMu ∩ regionPriv)|(xu, yu) ∈ LMu) = 1
P ((x, y) ∈ (LMu ∩ regionPriv)|(x, y) ∈ regionPriv) = s(LMu)

s(regionP riv)

μObf = s(LMu)
s(regionP riv)μTech

if LMu ⊃ regionPriv

P ((xu, yu) ∈ (LMu ∩ regionPriv)|(xu, yu) ∈ LMu) = s(regionP riv)
s(LMu)

P ((x, y) ∈ (LMu ∩ regionPriv)|(x, y) ∈ regionPriv) = 1
μObf = s(regionP riv)

s(LMu) μTech

if LMu �⊆ regionPriv and LMu �⊃ regionPriv

P ((xu, yu) ∈ (LMu ∩ regionPriv)|(xu, yu) ∈ LMu) = s(LMu ∩ regionP riv)
s(LMu)

P ((x, y) ∈ (LMu ∩ regionPriv)|(x, y) ∈ regionPriv) = s(LMu ∩ regionP riv)
s(regionP riv)

126 J.H. Jafarian et al.

μObf = s(LMu ∩ regionP riv)2

s(LMu)s(regionP riv) μTech

Note that if the obfuscated region has no intersection with the user loca-
tion measurement (LMu ∩ regionPriv = ∅), then μObf will be equal to 0,
showing maximum unreliability of location information.

5 Privacy-Aware Architectures

One typical approach in the design of privacy-aware architectures is to provide
a location middleware acting as a trusted gateway between sensing technology
and LBSPs. Such a component is in charge of managing all interactions with
sensing technology and enforcing privacy preferences of users. Ardagna et al. in
[13,14,15] present a privacy-aware middleware architecture.

On the other hand, some works such as [3] present a distributed obfuscation
architecture which allows an individual to connect directly with an LBSP, with-
out the need to use a broker or other intermediary. In such architectures it is
assumed that the client device provides required information about the client’s
location.

Both architectures have their advantages and drawbacks. The former is less
distributed, and therefore unsuitable for ad-hoc networks and pervasive envi-
ronments. However, the burden of privacy management falls on the shoulder of
location middleware, relieving the user device of the responsibility. The latter
architecture is more lightweight and distributed which makes it compatible with
mobile ad-hock networks and pervasive environments. But since the device is in
charge of location sensing and managing privacy preferences of individuals, the
devices require more resources such as energy and processing capability.

5.1 A Middleware Architecture

Our solution can be integrated with both architectures. Figure 3 shows our
privacy-aware architecture based on a location middleware. Location middle-
ware is in charge of low-level communications with the location provider and
enforcement of both the privacy preferences of the user and measurement of
location and mapping reliability needed by LBSPs.

In this approach, the region graph and user preferences are stored in the loca-
tion middleware. User location measurement is supplied to location middleware
by location providers, and location middleware is in charge of mapping location
measurement to region, obfuscating the region and calculating mapping and
obfuscation reliability metrics.

LBSPs communicate with location middleware. When an LBSP queries
current location of a user, the middleware replies with a triple:
〈user′s current location, μMap, μObf 〉. The location-based service provider
might then compare μMap and μObf to some predefined thresholds in order to
decide about accepting or rejecting middleware’s reply. In section 6 we explain
how such architecture can be integrated with an LBSP such as a location-based
access control engine.

Protecting Location Privacy through a Robust Obfuscation Technique 127

Fig. 3. Middleware Architecture

Fig. 4. Distributed Architecture

5.2 A Distributed Architecture

The distributed architecture can also be adopted by the solution presented in
this paper. Figure 4 shows our distributed privacy-aware architecture in which
user devices are in charge of providing user’s location, applying user privacy pref-
erences and low-level communication with LBSPs. In this approach, user device
is in charge of storing region graph and preferences of the user, and calculating
mapping and reliability metrics. When an LBSP queries current location of the
user, the user device responses with a triple 〈user′s current location, μMap,
μObf 〉. Again, the location-based service provider can use μMap and μObf to
decide about accepting or rejecting client’s request.

6 Integrating Middleware Architecture with a
Location-Based Access Control Engine

As explained in section 5.1, in our middleware architecture, location middle-
ware is the core component of the model acting as a trusted gateway between

128 J.H. Jafarian et al.

sensing technology and LBSPs. One specific LBSP which has received consider-
able attention in recent works is a location-based access control engine in charge
of evaluating location-based predicates. The location-based predicates might be
composed using the language presented in [12]. This language identifies three
main classes of location-based conditions in composition of access control poli-
cies: position-based conditions on the location of the users; movement-based
conditions on the mobility of the users; and interaction-based conditions re-
lating multiple users or entities. Location-based access control policies can be
considered as a means of enriching the expressive power of existing access control
languages [12].

To evaluate location-based predicates such as InRegion(u, rgn) which queries
the presence of user u in region rgn, the access control engine requests the
location middleware to determine current location of u. Location middleware
queries location provider and receives LMu and μTech in response, determines
user’s current region (regionu) and mapping reliability (μMap) according to the
location measurement, obfuscates current region of the user (regionPriv) using
her privacy preferences, and measures obfuscation reliability metric (μObf). After
that, it sends 〈regionPriv, μMap, μObf 〉 to the access control engine.

The access control engine introduces three reliability values to evaluate the re-
sponse of location middleware: i) mapping reliability threshold, μthr Map, to de-
termine the acceptability of mapping reliability, ii) evaluation reliability, μEval,
to measure the reliability of predicate evaluation, and iii) evaluation reliability
threshold, μthr Eval, to determine the acceptability of evaluation reliability.

Among these values, the response of location measurement is rejected if the
condition μthr Map ≤ μMap and μthr Eval ≤ μEval does not hold; i.e. if the
mapping reliability and evaluation reliability is below the thresholds acceptable
by the access control engine. μEval is computed based on obfuscation reliability.

Evaluation reliability represents the reliability of predicate evaluation. Specif-
ically, it represents the probability that the real user’s position, (xu, yu), belongs
to rgn; i.e. the region requested in the predicate. Evaluation reliability can be
measured using the following probabilities: i) the probability that the real user’s
position belongs to the intersection of LMu and regionPriv, ii) the probability
that a random point selected from the whole obfuscated area belongs to the in-
tersection of LMu and regionPriv, and iii) the probability that a random point
selected from the whole obfuscated region belongs to the rgn.

μEval = P ((x, y) ∈ (LMu ∩ regionPriv)|(x, y) ∈ regionPriv)
P ((xu, yu) ∈ (LMu ∩ regionPriv)|(xu, yu) ∈ LMu)
P ((x, y) ∈ (rgn ∩ regionPriv)|(x, y) ∈ regionPriv)
μTech

The first two probabilities and μTech were already considered in measuring μObf .
Therefore μEval can be simplified as follows:

μEval = P ((x, y) ∈ (rgn ∩ regionPriv)|(x, y) ∈ regionPriv)μObf

μEval = s(rgn ∩ regionP riv)
s(regionP riv) μObf

Protecting Location Privacy through a Robust Obfuscation Technique 129

As an example, assume that the directed acyclic graph of regions is as de-
picted in Figure 2. User Jane, a doctor at the hospital, subscribes to location
middleware by setting her privacy preferences in the following way:

..., obf(CCU) = ICU , ...
After that, Jane requests the location-based access control engine for permis-
sion, like logging into a local network of hospital, which would be granted to
her if she is currently in the hospital (InRegion(JaneID, xHospital)). Figure 1
shows hospital regions and location of Jane. Access control engine queries loca-
tion middleware. Location middleware receives LMJane and μTech = 0.9 from
location provider. Since CCU contains LMJane and is contained in all the other
nominated regions, it is selected as regionJane and therefore μMap is equal to
1. After that, based on privacy preferences of Jane, her current region is obfus-
cated to ICU . Assume LMJane occupies about one-forth of ICU . Since LMJane

⊆ ICU , μObf will be computed in the following way:
μObf = s(LMJane)

s(ICU) μTech

μObf = 0.225
So the triple 〈ICU, 1, 0.225〉 will be sent to access control engine as reply to
its query about current location of user Jane. Access control engine, computes
μEval as follows:

μEval = s(xHospital ∩ ICU)
s(ICU) μObf

μEval = μObf = 0.225
Assume μthr Map = 0.9 and μthr Eval = 0.2. Under such assumptions, conditions
μthr Map ≤ μMap and μthr Eval ≤ μEval hold, InRegion(JaneID, xHospital) is
evaluated to true, and the requested permission is granted.

Now assume μthr Map = 0.9 and μthr Eval = 0.5. Under such assumptions,
condition μthr Map ≤ μMap holds, but condition μthr Eval ≤ μEval fails, and
although InRegion(JaneID, xHospital) is evaluated to true, the result of eval-
uation is considered invalid. Several policies may be adopted here. The simplest
approach is to query the location middleware about LMJane again, until a valid
reply is received. If no valid reply is received after a certain number of steps, the
requested permission will be rejected.

7 Issues, Challenges, and Benefits

In this section, we discuss some of the key issues, challenges and benefits in
adoption of our solution.

7.1 Mapping Errors

One of the key challenges of our solution is the problems that may be caused
by incorrect mapping of location measurement. To this aim, mapping reliabil-
ity metric is introduced in the solution, showing the accuracy of mapping; i.e.
for values lower than 1, mapping reliability implies possibility of mapping er-
rors. In noncritical cases, such mapping errors can be tolerated to some extent.
For instance, assume an LBSP disseminates price list of a restaurant to nearby

130 J.H. Jafarian et al.

individuals. However, if the price list is mistakenly sent to an individual not so
close to the restaurant, she will probably ignore the message.

On the other hand, in critical uses, the repercussions of incorrect mapping may
be catastrophic. For instance, consider an LBSP such as the location-based access
control engine introduced in section 6. Incorrect mapping may result in granting
user access to unauthorized resources, which would undermine the whole legit-
imacy of the system. To make our solution applicable to such applications, two
measures must be adopted. Firstly, critical LBSPs must be warned to reject lo-
cation information that are associated with mapping reliability values less than
1. Secondly, region granularity and measurement technology must be chosen
carefully so that location measurements are substantially smaller than regions
in terms of area; i.e. the probability of location measurements being totally con-
tained in a region approaches 1.

7.2 Space Complexity

Although assignment of obfuscated region to every region or region type theoret-
ically entails considerable space overhead (O(nu) where n and u are the number
of regions and users respectively), but it can be alleviated in practice, since an
individual hardly requires obfuscation setting for every region of the world, and
an efficient implementation method can substantially decrease space overhead.

In the middleware architecture all user preferences are stored on location
middleware, while in the distributed architecture privacy preferences of each
user is stored on her device. In the later case, complexity of space needed on
each user device is O(n).

7.3 Time Complexity

When a query about current location of a user is received, the following com-
putational steps are taken: i) mapping user location measurement to a region
using MapLMToRegion algorithm, ii) obfuscating this region according to user
privacy preferences using ObfuscateRegion algorithm , and iii) computing re-
liability metrics.

Assuming that area calculation can be done in O(c), c being any value, the
time complexity of MapLMToRegion is Θ(nc) where n indicates the number of
regions.

ObfuscateRegion uses a breadth-first search on the graph of regions. Remind
from section 3 that the directed graph of regions has two restrictions: i) it is
acyclic, and ii) it includes no transitive edge. Therefore, in breadth-first search
every node (region) is enqueued at most once, so time complexity of the al-
gorithm is O(n). Reliability metrics can also be computed in O(c). Therefore,
the total computational time needed for responding to a given query is Θ(nc):

O(n) + O(c) + Θ(nc) = Θ(nc)
In practice, many improvements can be made, such as i) Use of simpler ge-

ographical representations for regions; e.g. regions can be modeled as circular
areas, ii) Pre-calculating the areas of regions and their intersections, iii) Use
of dynamic programming and optimization [20], and iv) Exploiting statistical

Protecting Location Privacy through a Robust Obfuscation Technique 131

methods in area computation, since in practice our solution only requires an
approximation of these areas, not their exact values.

7.4 Contribution

The location modeling approach adopted in our work is intuitively simple both
for users and LBSPs. On one hand, the graph-based model allows users to express
their privacy preferences for each region in a straightforward way, which makes
preference specification user-friendly and customizable. Allowing users to define
different privacy preferences for different regions is totally in line with the real
world privacy needs of users. On the other hand, regional approach to locations is
beneficial to many LBSPs. Service provision in proximity location-based services
(e.g. finding the nearest hospital) [17] or predicate evaluation in LBAC (e.g.
Inarea(John, Hospital)) [12] are examples of applications for which such region-
based model can be beneficial.

Another contribution of our work is introduction of reliability metrics which
allow service providers to distinguish reliable location information from unreli-
able one, resulting in more appropriate and reliable service provision.

Also our solution can be deployed on both distributed and middleware ar-
chitectures, which makes it applicable to client-server environments as well as
ad-hock mobile networks and pervasive environments.

8 Conclusion and Future Work

We presented an obfuscation-based technique for preservation of location privacy
based on the concept of regions. Our proposal aims at achieving a solution that
measures reliability of location information, which is critical to reliable service
provision, as well as providing ease of privacy management for the users. We
also proposed two different privacy-aware architectures for our solution, namely
a middleware architecture and a distributed architecture, and discussed their
advantages and drawbacks. We also described how an exemplary LBSP such as
a location-based access control engine can exploit our solution for provision of
access control services. Finally, we addressed the key challenges to our solution,
as well as evaluating its time and space complexity. Issues to be investigated
in future include analysis of our solution assuming non-uniform distributions,
robustness of the solution against privacy attacks, and use of vagueness in pro-
viding privacy.

References

1. Duckham, M., Kulik, L.: Location privacy and location-aware computing. In: Dy-
namic & Mobile GIS: Investigating Change in Space and Time, pp. 35–51. CRC
Press, Boca Raton (2006)

2. Krumm, J.: A survey of computational location privacy. In: Workshop On Ubicomp
Privacy Technologies, Innsbruck, Austria (2007)

132 J.H. Jafarian et al.

3. Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location
privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005.
LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)

4. Ardagna, C., Cremonini, M., Vimercati, S.D.C.d., Samarati, P.: Privacy-enhanced
location-based access control. In: Gertz, M., Jajodia, S. (eds.) Handbook of
database security: Applications and trends, pp. 531–552. Springer, Heidelberg
(2007)

5. Beresford, A.R., Stajano, F.: Mix zones: User privacy in location-aware services.
In: 2nd IEEE Annual Conference on Pervasive Computing and Communications
Workshops (PERCOMW 2004), pp. 127–131. IEEE Computer Society Press, Los
Alamitos (2004)

6. Bettini, C., Wang, X.S., Jajodia, S.: Protecting privacy against location-based per-
sonal identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674,
pp. 185–199. Springer, Heidelberg (2005)

7. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: 1st International Conference on Mobile Systems,
Applications, and Services, pp. 31–42. ACM, New York (2003)

8. Hauser, C., Kabatnik, M.: Towards privacy support in a global location service. In:
Workshop on IP and ATM Traffic Management (WATM/EUNICE 2001), Paris,
France, pp. 81–89 (2001)

9. Langheinrich, M.: A privacy awareness system for ubiquitous computing environ-
ments. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498,
pp. 237–245. Springer, Heidelberg (2002)

10. Openwave: Openwave location manager (2006), http://www.openwave.com
11. Bellavista, P., Corradi, A., Giannelli, C.: Efficiently managing location information

with privacy requirements in wi-fi networks: a middleware approach. In: 2nd Inter-
national Symposium on Wireless Communication Systems (ISWCS 2005), Siena,
Italy, pp. 91–95 (2005)

12. Ardagna, C., Cremonini, M., Damiani, E., Vimercati, S.D.C.d., Samarati, P.: Sup-
porting location-based conditions in access control policies. In: ACM Symposium
on Information, Computer and Communications Security (ASIACCS 2006), Taipei,
Taiwan, pp. 212–222. ACM Press, New York (2006)

13. Ardagna, C., Cremonini, M., Damiani, E., Vimercati, S.D.C.d., Samarati, P.: Man-
aging privacy in lbac systems. In: Second IEEE International Symposium on Per-
vasive Computing and Ad Hoc Communications (PCAC 2007), Niagara Falls,
Canada, pp. 7–12. IEEE Computer Society, Los Alamitos (2007)

14. Ardagna, C., Cremonini, M., Damiani, E., Vimercati, S.D.C.d., Samarati, P.: A
middleware architecture for integrating privacy preferences and location accuracy.
In: 22nd IFIP TC-11 International Information Security Conference (SEC 2007),
Sandton, South Africa, vol. 232, pp. 313–324. Springer, Heidelberg (2007)

15. Ardagna, C.A., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Sama-
rati, P.: Location privacy protection through obfuscation-based techniques. In:
Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602,
pp. 47–60. Springer, Heidelberg (2007)

16. Beresford, A., Stajano, F.: Location privacy in pervasive computing. IEEE Perva-
sive Computing 2, 46–55 (2003)

17. Duckham, M., Mason, K., Stell, J., Worboys, M.: A formal approach to imperfec-
tion in geographic information. Computers, Environment and Urban Systems 25,
89–103 (2001)

http://www.openwave.com

Protecting Location Privacy through a Robust Obfuscation Technique 133

18. Mokbel, M., Chow, C.Y., Aref, W.: The new casper: Query processing for location
services without compromising privacy. In: 32nd International Conference on Very
Large Data Bases, Korea, pp. 763–774 (2006)

19. Sun, G., Chen, J., Guo, W., Liu, K.R.: Signal processing techniques in network-
aided positioning: A survey of state-of-the-art positioning designs. IEEE Signal
Processing Magazine 22, 12–23 (2005)

20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Dynamic programming. In:
Introduction to Algorithms, 2nd edn., pp. 323–370 (2001)

Anonymous Fingerprinting for
Predelivery of Contents

Kazuhiro Haramura, Maki Yoshida, and Toru Fujiwara

Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{k-haramr,maki-yos,fujiwara}@ist.osaka-u.ac.jp

Abstract. Anonymous fingerprinting schemes aim to protect privacy
and copyright in the contents delivery services. The schemes protect pri-
vacy by enabling buyers to purchase digital goods anonymously unless
they redistribute purchased goods. The schemes also protect copyright by
enabling the merchant of digital goods to identify the original buyer of a
redistributed copy and convince an arbiter of this fact. The key idea of
copyright protection is to embed some information which is linkable with
the buyer into the contents. This paper presents a new anonymous finger-
printing scheme for a predelivery service where predelivered goods are en-
crypted by a timed-release encryption scheme so that the buyers can view
the contents only after each release date. The major feature of our scheme
is to allow the merchant to identify the original buyer of a redistributed
ciphertext without decrypting it. Our idea is to force a buyer to attach
the embedded information to a purchased ciphertext when the buyer re-
distributes it before the release date. We call this idea self-enforcing. This
paper also proposes two constructions based on previous efficient anony-
mous fingerprinting schemes. These constructions realize self-enforcing in
such a way that the merchant encrypts a purchased copy before encrypt-
ing by a timed-release encryption scheme so that the embedded data is
needed for decryption. Note that no additional data needs to be sent by
the buyer for self-enforcing because data sent by the buyer in the previous
schemes is used as an encryption key. This implies efficient countermea-
sure against redistribution before the release date.

1 Introduction

Recently, various kinds of videos such as movies become available through online
services. For some videos, a number of buyers access to the merchant on the re-
lease date. In such a case, the buyers cannot smoothly view the videos. One of
the promising solutions to this problem is to enable the merchant to predeliver
videos before the release date in such a way that buyers can view the videos only
after the release date. Such predelivery can be realized by using a timed-release en-
cryption scheme [1,3,4,5,6,7,8,10,12,16,17] which allows the merchant to encrypt
digital goods so that they can be decrypted only after each release date.

The goal of this paper is to realize both privacy and copyright protection in
a predelivery service where predelivered digital goods are encrypted by using a

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 134–151, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Anonymous Fingerprinting for Predelivery of Contents 135

timed-release encryption scheme. The privacy protection means that buyers can
purchase digital goods anonymously unless they redistribute purchased goods.
The copyright protection means that the merchant of digital goods can iden-
tify the original buyer of a redistributed copy and convince an arbiter of this
fact. These two security requirements are common to contents delivery services
and considered to be satisfied. In fact, in [2,14,15], cryptographic schemes which
satisfy both security requirements are proposed for the delivery services where
digital goods are delivered only after each release date, that is, a buyer can
view them soon after purchase. These schemes, called anonymous fingerprint-
ing schemes, protect privacy by preventing the merchant from linking purchases
of an honest buyer. In addition, the anonymous fingerprinting schemes protect
copyright by enabling the merchant to sell a slightly different copy where the
difference from the original contents represents some information, called embed-
ded data, which enables the merchant not only to identify the original buyer but
also to prove the correctness of the identification.

The previous anonymous fingerprinting schemes work fine in the predeliv-
ery services if identification is needed only after the release date. It is because
the merchant can decrypt an encrypted copy and extract the embedded data.
However, if identification is postponed after the release date, a fraudulent buyer
can widely redistribute purchased copies without a risk to be identified before
the release date. That is, the buyer can make much money and escape before
identification. This means that the merchant’s sales decreases and the merchant
cannot even arrest the fraudulent buyer.

To solve this problem, the merchant should be able to obtain the embedded
data even before the release date. This requirement is met by the timed-release
encryption schemes with pre-open capability in [7,10], which allow only the mer-
chant to decrypt an encrypted copy even before its release date. However, the
use of pre-open capability requires decryption and extraction in order to obtain
the embedded data. To counter redistribution of encrypted copies efficiently, it
is more preferable that the merchant can obtain the embedded data directly
without decryption and extraction.

Our contribution is to present a new anonymous fingerprinting scheme which
enables the merchant to obtain the embedded data of an encrypted copy directly
without decryption and extraction when the encrypted copy is redistributed. The
key idea is to force a buyer to attach the embedded data to an encrypted copy
when she redistributes it. We call this idea self-enforcing. Our method to realize
self-enforcing is to encrypt a purchased copy so that any receiver of the ciphertext
needs to use the embedded data of the copy for decrypting it on the release
date. We present two constructions based on the previous efficient anonymous
fingerprinting schemes. One is based on the scheme in [15] which uses a digital
coin, and the other is based on the scheme in [2] which uses a group signature. To
realize encryption for self-enforcing efficiently, our constructions use some data
which is sent from the buyer to the merchant at purchase in the previous schemes
as an encryption key. Thus, no additional data is needed for the buyer to send for
self-enforcing. In addition, to reduce the computational complexity, we employ

136 K. Haramura, M. Yoshida, and T. Fujiwara

hybrid encryption, which is a basic technique to improve efficiency. That is, a
purchased copy is encrypted by a symmetric key encryption, and then the key is
encrypted for self-enforcing and timed-release. Thus, additional computation for
self-enforcing is needed only for a much smaller data compared with purchased
contents. In this way, the proposed anonymous fingerprinting schemes efficiently
realize self-enforcing for predelivery of contents.

The rest of this paper is organized as follows. In Section 2, we define an anony-
mous fingerprinting scheme for predelivery of contents. In Section 3, we briefly re-
view definitions of building blocks, which are a timed-release encryption scheme,
the previous anonymous fingerprinting schemes in [2,15], and a symmetric en-
cryption scheme. In Section 4, we define an encryption scheme for self-enforcing
and propose a construction of the anonymous fingerprinting scheme for prede-
livery of contents using encryption for self-enforcing. In Section 5, we present
two different constructions of an encryption scheme for self-enforcing based on
the previous different anonymous fingerprinting schemes in [2,15]. Concluding
remarks are given in Section 6.

2 Model

The model of a new anonymous fingerprinting scheme for predelivery of contents
is based on those of the previous anonymous fingerprinting schemes of [2,15] and
the time-server based timed-release encryption schemes of [1,3,4,5,7,8,10,12,17].

Participants. An anonymous fingerprinting scheme for predelivery of contents
involves merchants, buyers, registration centers, a time server, and arbiters, de-
noted by M, B, RC, T S, and AR, respectively. M has some digital product P0

whose release date t0 has been set. B has her identity IDB and registers herself
to RC. Before the release date t0, B buys an encrypted copy of P0 from M,
whereas after the release date t0, B buys a copy of P0 from M. T S periodically
broadcasts a common absolute time reference including a time specific trapdoor
which triggers decryption. If M finds a redistributed copy, M can identify its
original buyer and convince AR the correctness of the identification regardless
of whether the copy is an encrypted form or a decrypted one. Note that there is
no special restriction on AR.

Algorithms. An anonymous fingerprinting scheme for predelivery of contents,
denoted AFPC, consists of the following nine probabilistic polynomial-time al-
gorithms/protocols.

– AFPC-RCKeyGen is a key generation algorithm run by RC before the first
purchase. It takes as input a security parameter 1l and outputs a secret key
xRC and its public key yRC , which is published authentically.

– AFPC-TSKeyGen is a key generation algorithm run by T S before the first
purchase. It takes as input a security parameter 1l and outputs a secret key
xT S and its public key yT S , which is published authentically.

Anonymous Fingerprinting for Predelivery of Contents 137

– AFPC-TstGen is a time specific trapdoor generation algorithm run by T S
for each date instance. It takes as input T S’s key pair (xT S , yT S and a date
t, and outputs a time specific trapdoor tstt for t, which is broadcasted on t.

– AFPC-Reg is a registration protocol (AFPC-Reg-RC, AFPC-Reg-B) run byRC
and B before the first or each purchase of B. Their common input consists
of B’s identity IDB and RC’s public key yRC . RC’s input is its secret key
xRC . B’s output consists of some secret xB and related information yB. RC
also obtains yB and stores (IDB, yB).

– AFPC-Enc is a predelivery protocol (AFPC-Enc-B, AFPC-Enc-M) run by B
andM at purchases before the release date t0. Their common input consists
of a text text which describes the purchased product and licensing conditions,
the public keys yRC and yT S , and the release date t0 of P0. M’s secret input
consists of P0 and a transaction number j, and his output is a transaction
record recj . M stores recj . B’s secret input consists of her secret xB and the
related information yB and her output consists of an encrypted copy Ct0,PB
of a copy PB into which some data emb is embedded, the embedded data
emb, and some decryption information dec, where Ct0,PB can be decrypted
if and only if all of tstt0 , emb, and dec are obtained.

– AFPC-Dec is a decryption algorithm run by B on the release date t0. B’s
input consists of T S’s public key yT S , the time specific trapdoor tstt0 , the
embedded data emb, the decryption information dec, and the encrypted copy
Ct0,PB . B’s output is the copy PB into which emb is embedded.

– AFPC-Fin is a purchasing protocol (AFPC-Fin-B, AFPC-Fin-M) run by B and
M at purchases after the release date t0. Their common input consists of a
text text and RC’s public key yRC . M’s secret input consists of P0 and a
transaction number j, and his output is a transaction record recj . M stores
recj . B’s secret input consists of her secret xB and the related information yB
and her output consists of a copy PB into which some data emb is embedded.

– AFPC-Ide is an identification protocol (AFPC-Ide-M, AFPC-Ide-RC) run by
M and RC when M finds a redistributed copy P ′ which closes to P0 or an
encrypted copy C′ with emb and dec. Their common input is RC’s public key
yRC .RC’s secret input consists of its secret key xRC and the list {(IDB, yB)}.
M’s secret input consists of the digital product P0, all transaction records
{recj}, and either P ′ or emb.M’s output consists of a/the fraudulent buyer’s
identity and a proof p that this buyer indeed bought a copy of P0, or ⊥ in
case of failure.

– AFPC-Tri is a trial algorithm run by AR after a fraudulent buyer is identified
by AFPC-Ide. It takes as input the identity IDB of the fraudulent buyer,RC’s
public key yRC , and the proof p, and outputs 1 if and only if p is valid.

We require that the following conditions hold.

Correctness: All algorithms/protocols should terminate successfully whenever
its players are honest (no matter how other players behaved in other protocols).
Roughly speaking, B should be able to get PB from tstt0 , emb, dec, and Ct0,PB ,
and M should be able to identify the buyer B from any of a redistributed copy

138 K. Haramura, M. Yoshida, and T. Fujiwara

P ′ which closes to PB and B’s embedded data emb itself, and get a valid proof
p even when buyers collude.

Privacy protection (Anonymity and unlinkability): Without obtaining a
close copy to particular PB or the embedded data emb itself, M (even when
colluding with RC) must not be able to identify B of the corresponding pur-
chase. Furthermore, M (even when colluding with RC) must not be able to tell
whether two purchases were made by the same buyer. In other words, all data
stored by M and RC and M’s view of runs of AFPC-Enc and AFPC-Fin must be
(computationally) independent of B’s secret input xB and yB.

Copyright protection (Prevention of framing buyers): No coalition of
buyers, M, and RC should be able to generate a proof p̃ such that AFPC-
Tri(IDB, yRC , p̃) = 1, if B was not present in the coalition.

Control of decryption (Timed-release and self-enforcing): No one should
be able to decide whether an encrypted copy emanates from digital product P0

or P ′
0 if some of the corresponding time specific trapdoor tstt0 , embedded data

emb, and decryption information dec are not obtained, where P0 and P ′
0 are

chosen by her/him.
From the control of decryption, B needs to attach emb to Ct0,PB in order to

enable anyone to decrypt Ct0,PB on t0. Thus, self-enforcing is realized.

3 Building Blocks

3.1 Timed-Release Encryption

The timed-release encryption aims to control the timing of decryption, which
was first mentioned by May [11] and discussed in detail by Rivest et. al. [16].
Recently, in [1,3,4,5,7,8,10,12,17], efficient schemes based on a time server have
been proposed, where the time server periodically provides a common absolute
time reference including a time specific trapdoor which triggers decryption. In
these time-sever based schemes, the release date can be set precisely, and more-
over the time server does not need to interact with another participant. In this
paper, we use such time server based scheme.

Participants. A timed-release encryption scheme involves senders, receivers,
and a time server. A sender can encrypt a message m so that the receiver can
decrypt it with the time specific trapdoor of the release date t0 broadcasted by
the time server.

Algorithms. A timed-release encryption scheme, denoted TRE, is a tuple of four
probabilistic polynomial-time algorithms (TRE-KeyGen, TRE-TstGen, TRE-Enc,
TRE-Dec), where the input/output of TRE-KeyGen and TRE-TstGen are the same
as those of AFPC-TSKeyGen and AFPC-TstGen, respectively. The input/output
of TRE-Enc and TRE-Dec are given as follows.

– TRE-Enc, an encryption algorithm, takes as input the time server’s public
key yT S , a release date t0, and a message m, and outputs a ciphertext Ct0,m.

Anonymous Fingerprinting for Predelivery of Contents 139

– TRE-Dec, a decryption algorithm, takes as input the time server’s public key
yT S , a time specific trapdoor tstt0 , and a ciphertext Ct0,m, and outputs m.

We require that the following conditions hold.

Correctness: All algorithms should terminate successfully whenever its players
are honest. Roughly speaking, the receiver should be able to decrypt m from
tstt0 and Ct0,m.

Control of decryption: No one should be able to decide whether a ciphertext
emanates from message m0 or m1 if the corresponding time specific trapdoor
tstt0 is not obtained, where m0 and m1 are chosen by her/him.

3.2 Anonymous Fingerprinting

Participants. An anonymous fingerprinting scheme involves merchants, buyers,
registration centers, and arbiters, denoted by M, B, RC, and AR, respectively.
M has some digital product P0. B has her identity IDB and registers herself
to RC. Then, B buys a close copy of P0 from M. If M finds a redistributed
copy, M can identify its original buyer and convince AR the correctness of the
identification. There is no special restriction on AR.

Algorithms. An anonymous fingerprinting scheme, denoted AF, is a tuple of
five probabilistic polynomial-time algorithms/protocols (AF-RCKeyGen, AF-Reg,
AF-Fin, AF-Ide, AF-Tri) where the input/output of these algorithms/protocols are
almost the same as those of the corresponding algorithms/protocols of AFPC.
The only difference is that M’s secret input of AF-Ide consists of the digital
product P0, all transaction records {recj}, and a redistributed copy P ′ which
closes to P0, that is, emb is not directly taken as input.
We require that the following conditions hold.

Correctness: All algorithms/protocols should terminate successfully whenever
its players are honest. Roughly speaking, M should be able to identify B from
a redistributed copy P ′ which closes to PB, and get a valid proof p even when
buyers collude.

Privacy protection (Anonymity and unlinkability): Without obtaining a
close copy to particular PB, M (even when colluding with RC) must not be
able to identify B of the corresponding purchase. Furthermore, M (even when
colluding with RC) must not be able to tell whether two purchases were made
by the same buyer. In other words, all data stored by M and RC and M’s view
of a run of AF-Fin must be (computationally) independent of B’s secret input
xB and yB.

Copyright protection (Prevention of framing buyers): No coalition of
buyers, M, and RC should be able to generate a proof p̃ such that AFPC-
Tri(IDB, yRC , p̃) = 1, if B was not present in the coalition.

140 K. Haramura, M. Yoshida, and T. Fujiwara

3.3 Symmetric Encryption

Algorithms. A symmetric encryption scheme (or a data encapsulation mech-
anism), denoted DEM, consists of the following three deterministic polynomial-
time algorithms.

– DEM-KeyDer, a deterministic key derivation algorithm, takes as input a seed
s. It outputs a symmetric key K.

– DEM-Enc, an encryption algorithm, takes as input the message m and the
symmetric key K and outputs a ciphertext Cm.

– DEM-Dec, a decryption algorithm, takes as input the ciphertext Cm and the
symmetric key K and outputs the message m.

We require that the following conditions hold.

Correctness: All algorithms should terminate successfully whenever its players
are honest. Roughly speaking, anyone should be able to decrypt Cm and get m
with the seed s or the symmetric key K.

Secrecy: No one should be able to decide whether a ciphertext emanates from
message m0 or m1 if neither the seed s nor the symmetric key K is obtained,
where m0 and m1 are chosen by her/him.

4 Proposed Construction of Anonymous Fingerprinting

In this section, first, we overview a proposed construction of AFPC. Secondly, we
define an encryption scheme for self-enforcing, denoted by ESE. Then, we present
a construction of AFPC using an ESE. Finally, we briefly show its security and
efficiency.

The algorithms/protocols of the proposed AFPC except for AFPC-Enc and
AFPC-Dec are the same as the corresponding algorithms/protocols of TRE and
AF. In contrast, we construct AFPC-Enc and AFPC-Dec by modifying AF-Fin
based on its concrete constructions in [2,15]. AF-Fin in [2,15] consists of four
subprocedures, request by B, committing and proving by B, embedding by M,
and decommitting by B. More specifically, B first generates an embedded data
emb randomly or based on her secret input, and then requests purchase by
sending some data which is related to emb and used for linking emb and the
purchase (i.e., the text text). Secondly, B generates secret/public parameters
of commitment and commits to emb. The commitment of emb is denoted by
com(emb). She then proves to M that what is contained in the commitment
com(emb) is sound. Upon this, M runs the embedding process of [14] to obtain
a committed copy com(PB) of PB into which emb is embedded. Finally, B receives
the committed copy com(PB) and obtains PB by decommitting com(PB) using
the secret parameter of commitment.

To realize self-enforcing induced by control of decryption, it is sufficient to
enable M to encrypt the committed copy com(PB) so that B can decrypt it if
and only if emb is obtained. Once such encryption is realized, M first encrypts

Anonymous Fingerprinting for Predelivery of Contents 141

the committed copy com(PB) by this encryption, and then encrypt the obtained
ciphertext, denoted by Ccom(PB), by TRE-Enc. The final ciphertext is sent to
B as Ct0,PB . From this order of encryption, B first needs to decrypt Ct0,PB by
TRE-Dec and then decrypt Ccom(PB) by using emb as the decryption key. Then,
B can obtain PB by decommitting using the secret parameter of commitment.
In other words, emb can be used only after using the time specific trapdoor tstt0
which is obtained on the release date. In this way, B needs to attach emb to
Ct0,PB in order to enable anyone to decrypt Ct0,PB on the release date t0, that
is, self-enforcing is realized.

We note that AF-Fin of the previous anonymous fingerprinting schemes makes
emb known to B only in order to satisfy copyright protection. So, the next
question is how to enable M to encrypt com(PB) without knowing emb itself.
Our answer is to use the data which is sent at request by B and used for linking
emb and the purchase. A scheme of such encryption for self-enforcing is based on
the concrete constructions of AF-Fin. We present two different constructions in
Section 5. Here, we only define an encryption scheme for self-enforcing, denoted
ESE, as a tuple of the following two algorithms.

– ESE-Enc, an encryption algorithm, takes as input some data pkemb which
links emb and the corresponding purchase and a message M , and outputs a
ciphertext CM .

– ESE-Dec, a decryption algorithm, takes as input the embedded data emb
and the ciphertext CM , and outputs the message M .

We require that the following conditions hold.

Correctness: All algorithms should terminate successfully whenever its players
are honest. Roughly speaking, anyone should be able to get the message M from
the embedded data emb and a ciphertext CM .

Secrecy: No one should be able to decide whether a ciphertext emanates from
message M0 or M1 if he does not obtain the embedded data emb, where M0 and
M1 are chosen by her/him.

Note that we propose an ESE which provides secrecy not against adaptive
chosen ciphertext attacks (CCA2), but against chosen plaintext attacks (CPA).
That is, if an ESE is used alone, an adversary can modify an obtained ciphertext
into a different one which is decrypted by some data generated from emb (i.e.,
emb itself is not needed for decryption). However, in the proposed AFPC, a
ciphertext of an ESE is encrypted by a DEM. Thus, no adversary can modify the
(encrypted) ciphertext before the release date and emb is needed for decryption.
So, CPA-security is enough for the proposed AFPC.

Summarizing the above, the proposed AFPC is given as follows.

– AFPC-RCKeyGen(1l): RC runs AF-RCKeyGen(1l).
– AFPC-TSKeyGen(1l): T S runs TRE-KeyGen(1l).
– AFPC-TstGen(xT S , yT S , t): T S runs TRE-KeyGen(xT S , yT S , t).
– AFPC-Reg-RC(IDB, yRC , xRC), AFPC-Reg-B(IDB, yRC): RC runs AF-Reg-
RC(IDB, yRC , xRC) and B runs AF-Reg-B(IDB, yRC).

142 K. Haramura, M. Yoshida, and T. Fujiwara

– AFPC-Enc-B(text, yRC, yT S , t0, xB, yB), AFPC-Enc-M(text, yRC, yT S , t0,
P0, j):
Request of AF-Fin. B first generates an embedded data emb randomly or
based on the secret input xB and yB. Then, B generates data including pkemb.
B sends the generated data except for emb to M as request for purchase.
Committing and proving of AF-Fin. B generates secret/public parame-
ters of commitment and commits to the embedded data emb. The obtained
commitment is denoted by com(emb). She then proves to M that what is
contained in the commitment com(emb) is sound.
Embedding of AF-Fin. M runs the embedding process and obtains the
committed copy com(PB) of PB into which emb is embedded.
Encryption for self-enforcing. We assume that the seed space of DEM
is the union of the message spaces of ESE and TRE. M randomly chooses
a seed s1 from the message space of ESE, runs DEM-KeyDer(s1), and ob-
tains a symmetric encryption key K1. M runs DEM-Enc(K1, com(PB)) to
encrypt com(PB). The obtained ciphertext is denoted by Ccom(PB). Then,
M runs ESE-Enc(pkemb, s1) to encrypt the seed s1. The obtained ciphertext
is denoted by Cs1 .
Encryption for timed-release. M randomly chooses a seed s2 from the
message space of TRE, runs DEM-KeyDer(s2), and obtains a symmetric en-
cryption key K2. M runs DEM-Enc(K2, Cs1) to further encrypt the cipher-
text Cs1 . The obtained ciphertext is denoted by CCs1

. Then, M runs TRE-
Enc(pkT S , t0, s2) to encrypt the seed s2. The obtained ciphertext is denoted
by Cs2 .
The encrypted copy Ct0,PB and decryption information dec of B’s output are
(Cs2 , CCs1

, Ccom(PB)) and the secret parameter of commitment, respectively.
The transaction record of M’s output is that of AF-Fin.

– AFPC-Dec(yT S , tstt0 , emb, dec, Ct0,PB):
Decryption for timed-release. For Ct0,PB = (Cs2 , CCs1

, Ccom(PB)), B runs
TRE-Dec(yT S , tstt0 , Cs2) and obtains the seed s2. B runs DEM-KeyDer(s2)
and obtains the symmetric encryption key K2. Then, B runs DEM-Dec(K2,
CCs1

) and obtains the ciphertext Cs1 .
Decryption for self-enforcing. B runs ESE-Dec(emb, Cs1) and obtains the
seed s1. B runs DEM-KeyDer(s1) and obtains the symmetric encryption key
K1. Then, B runs DEM-Dec(K1, Ccom(PB)) and obtains the committed copy
com(PB).
Decommitting of AF-Fin. B decommits com(PB) with dec and obtains PB.

– AFPC-Fin-B(text, yRC, xB, yB), AFPC-Fin-M(text, yRC , P0, j): B runs AF-Fin-
B(text, yRC , xB, yB) andM runs AF-Fin-M(text, yRC , P0, j).

– AFPC-Ide-M(yRC , P0, {recj}, P ′ or emb), AFPC-Ide-RC(yRC , xRC , {(IDB,
yB)}): If M’s input contains P ′ but not emb, M runs AF-Ide-M(yRC , P0,
{recj}, P ′) and RC runs AF-Ide-RC(yRC , xRC , {(IDB, yB)}). Otherwise, M
runs AF-Ide-M(yRC, P0, {recj}, emb) except the extracting process. and RC
runs AF-Ide-RC(yRC , xRC , {(IDB, yB)})

– AFPC-Tri(IDB, yRC, p): AR runs AF-Tri(IDB, yRC, p).

Anonymous Fingerprinting for Predelivery of Contents 143

We briefly prove that the privacy protection and the copyright protection hold
in the proposed AFPC if the corresponding conditions also hold in the used AF.
And we prove that the control of decryption holds in the proposed AFPC if the
control of decryption holds in the used TRE and the secrecy holds in the used
DEM and the proposed ESE.

Privacy protection and copyright protection. In the proposed AFPC, the
data that M and RC obtain at purchases and registrations consists of those
in the used AF and the public data of TRE. Here, the data of the used AF is
independent of the data of TRE. Thus, information about buyers that M and
RC obtain in the proposed AFPC is the same as that in the used AF. Thus, if
the privacy protection and the copyright protection hold in the used AF, the
corresponding conditions also hold in the proposed AFPC.

Control of decryption. In the proposed AFPC, if the control of decryption
holds in the used TRE and the secrecy holds in the proposed ESE and the used
DEM, the encrypted copy Ct0,PB that B obtains first needs to be decrypted by
TRE-Dec with tstt0 and DEM-Dec, and then needs to be decrypted by ESE-Dec
with emb and DEM-Dec. Finally, PB can be obtained by decommitting using
dec. Thus, the control of decryption holds in AFPC. We recall that self-enforcing
is resulted by the above order of decryption.

We note that there is a possibility that the attached data is not the embedded
one. Even so, the proposed AFPC can deter the redistribution, because the at-
tached data is either an embedded data generated by one of the colluded buyers
or data meaningless to decryption. For the former case, M can identify one of
the colluded buyers and gather evidence of the redistribution. For the latter case,
the redistribution is not a threat. In addition, no one would buy such encrypted
copy which may not be correctly decrypted by using the attached data. To make
self-enforcing more effective, we can extend the proposed AFPC so that M can
verify that the attached data is really embedded in the encrypted copy. The idea
for making self-enforcing verifiable is to use TRE with pre-open capability and
modify encryption for timed-release as follows:

1. After deriving the symmetric encryption key K2, M generates a hash value
hash of Ccom(PB). M generates a signature sigM of hash and obtains a B’s
signature sigB of hash, where sigB is anonymous and its signing/verification
keys are used at request of AF-Fin. Then, M runs ESE-Enc(pkemb, hash) and
obtains Chash.

2. M runs DEM-Enc(K2, (Cs1, Chash, sigM, sigB)) instead of DEM-Enc(K2, Cs1).
The obtained ciphertext is used as CCs1

. And then, Cs2 is generated in the
same way of the proposed construction.

If M finds the redistributed encrypted copy (emb, dec, Cs2 , CCs1
, Ccom(PB)), M

verifies emb by using Cs2 , CCs1
, and the hash value of Ccom(PB).M first decrypts

CCs1
using the pre-open capability and obtains Cs1 , Chash, sigM, and sigB.

Then, M decrypts Chash using the attached data emb. If the obtained hash is
the same as the hash value of Ccom(PB) and both signatures are valid, then the
attached data emb is really the embedded one. Because of the unforgeability of

144 K. Haramura, M. Yoshida, and T. Fujiwara

signature sigM, no coalition of buyers can generate (emb, Cs2 , CCs1
, Ccom(PB))

such that emb is not the embedded one but M verifies that emb is embedded.
If some of emb, Cs2 , CCs1

, and Ccom(PB) are altered, then M can detect the
altering. In the case that emb is altered, Chash cannot be correctly decrypted.
In the case that Cs2 , CCs1

, and Ccom(PB) are altered, the decrypted hash and
signatures are changed because of the secrecy of the TRE. In this way, we can
make self-enforcing verifiable. Furthermore, M can prove that emb is really
embedded one by using sigB to link emb with Ccom(PB). A concrete construction
is our future work.

We also evaluate additional complexities of required communication, mem-
ory, and computation of the proposed AFPC compared with the straightforward
combination of the used AF, TRE, and DEM which does not realize self-enforcing.

Communication: The proposed AFPC requires B to send no additional data.
In contrast, M needs to send (Cs2 , CCs1

, Ccom(PB)) instead of (Cs1 , Ccom(PB)),
where Cs1 denote a ciphertext of s1 by TRE. The size of Cs2 is the same as that
of Cs1 . Thus, the increased amount of communication is the size of CCs1

which
is that of three elements of a finite group in the both proposed constructions of
ESE. The size of an element of the finite group is small compared with the size
of of PB. Therefore, the additional complexity of communication is small.

Memory: The proposed AFPC requires no additional memory to M. In con-
trast, B needs to hold emb, dec, and (Cs2 , CCs1

, Ccom(PB)) instead of dec and
(Cs1 , Ccom(PB)), where Cs1 denote a ciphertext of s1 by TRE. Thus, the increased
amount of memory is the size of emb and CCs1

which is that of five elements of
a finite group. Thus, additional complexity of memory is also small.

Computation: The proposed AFPC requires additional computation to both
B and M. The additional computation of B is the computation of DEM-Dec
for CCs1

, ESE-Dec for Cs1 , and DEM-KeyDer for s1. On the other hand, the
additional computation of M is the computation of DEM-KeyDer and ESE-Enc
for s1 and DEM-Enc for Cs1 . Thus, the increased amount of computation is that
for CCs1

, Cs1 , and s1 where these size is that of six elements of some finite groups,
in the both proposed constructions of ESE. Thus, the additional complexity of
computation is small.

5 Proposed Constructions of Encryption for
Self-Enforcing

This section presents the main part of the proposed AFPC, an encryption scheme
for self-enforcing ESE. Specifically, Sections 5.1 and 5.2 present different con-
structions based on the coin-based AF of [15] and the group signature based AF
of [2], respectively. As mentioned in Section 4, it is enough for the proposed ESEs
to provide secrecy against chosen plaintext attacks (CPA). It is readily proved
that the proposed ESEs provide secrecy against chosen plaintext attacks (CPA)
under the decisional (bilinear) Diffie-Hellman assumption because the proposed
ESEs are a simple generalization of ElGamal and ElGamal is CPA-secure. A

Anonymous Fingerprinting for Predelivery of Contents 145

proof of the security of the coin-based ESE is given in Appendix A. Here we
omit a proof of the security of the group signature based ESE, because the proof
of the group signature based ESE is essentially the same as the proof of the
coin-based one.

5.1 Coin Based Construction

First, we briefly recall the scheme of [15] and then present a construction of ESE.

Coin-based anonymous fingerprinting scheme of [15]. The anonymous
fingerprinting scheme of [15] uses a digital cash system with double-spender iden-
tification, where the double-spender of coins can be identified as a fraudulent
buyer(the “coins” only serve as cryptographic primitive and have no monetary
value). Specifically, registration AF-Reg corresponds to withdrawing a coin. Dur-
ing purchasing AF-Fin, an unused coin and data which link the coin and data
to be embedded is given to M, and in principle a first payment with the coin
is made. So far, the untraceability of the cash system should guarantee that
the views of RC and M are unlinkable. Then, a second payment with the same
coin is started. Now, instead of giving B’s response to M, it is embedded in the
digital products as emb. This embedding is both secret and verifiable. After a
redistribution,M can extract the second response from the digital product, and
identify the fraudulent buyer as the double-spender of the corresponding coin.

Proposed encryption scheme for self-enforcing. To realize an encryption
scheme for self-enforcing, we use the data which link the coin and emb as pkemb.
Let Gq be a group of prime order q.

In the coin-based scheme, emb and pkemb are given by

emb = (is, s), pkemb = gis
1 gs

2,

where i, s ∈ Z∗
q , g1, g2 ∈ Gq. Here, emb and pkemb can be considered as a de-

cryption key and its encryption key of a generalized ElGamal encryption scheme,
respectively. Therefore, we present the following ESE.

– ESE-Enc(pkemb, M): For pkemb = gis
1 gs

2 and M ∈ Gq, it randomly chooses
an element l ∈ Z∗

q , and computes C1 = M · pkl
emb, C2 = gl

1, and C3 = gl
2.

The output ciphertext is CM = (C1, C2, C3).
– ESE-Dec(emb, CM): For emb = (is, s) and CM = (C1, C2, C3), it outputs

M = C1 · C−is
2 · C−s

3 .

5.2 Group Signature Based Construction

First, we briefly recall the scheme of [2] and then present a construction of ESE.

Group signature based anonymous fingerprinting scheme of [2]. A group
signature scheme allows an user to sign a message on the group’s behalf. The
scheme protects the privacy of signers by preventing the verifier from determin-
ing which member originated a signature or whether two signatures issued by the

146 K. Haramura, M. Yoshida, and T. Fujiwara

same signer. However, to handle special cases of misuse by some user, there is a
designated revocation manager who can identify the signature’s originator. The
idea underlying the group signature based anonymous fingerprinting is to have
the buyer issuing a group signature on a text text describing the purchased prod-
uct and licensing conditions. Opposed to an ordinary group signature scheme,
there is no revocation manager. Instead, B chooses a secret and public key pair
(skRM, pkRM) for the revocation manager. This public key pkRM is then used
for issuing the group signature, whereas the secret key skRM gets embedded into
digital products as emb. Thus, finding a redistributed copy puts M in the po-
sition of the revocation manager for that particular group signature and he can
identify the fraudulent buyer as the signature’s originator. Due to the properties
of group signature schemes, each buyer must register only once.

Note that a group signature scheme which can be used for AF of [2] should
have a feature that the key setup of the revocation manager can run after the
registration of group members. Recently, such group signature schemes are pro-
posed in [9,13,18,19]. Among these schemes, we use the scheme of [13], which is
the most secure and efficient.

Proposed encryption scheme for self-enforcing. To realize an encryption
scheme for self-enforcing, we use the public key pkRM for the revocation manager
as the encryption key pkemb. Let G be a cyclic additive group of prime order
p, and GM be a cyclic multiplicative group with the same order p. And let
e : G×G → GM be a bilinear paring.

In the group signature based scheme, emb and pkemb are given by

emb = skRM = (x′
a, x′

b),

pkemb = pkRM = (Θa, Θb) = (e(G, G)x′
a , e(G, G)x′

b),

where x′
a, x′

b ∈ Z∗
p and G ∈ G. Here, emb and pkemb can be also considered as

a decryption key and its encryption key of a generalized ElGamal encryption
scheme, respectively. Therefore, we present the following ESE.

– ESE-Enc(pkemb, M): For pkemb = (Θa, Θb) = (e(G, G)x′
a , e(G, G)x′

b) and
M ∈ GM , it randomly selects the value ra, rb ∈ Z∗

p, and computes C1 =
M · Θra

a · Θrb

b , C2 = e(G, G)ra , and C3 = e(G, G)rb . The output ciphertext
is CM = (C1, C2, C3).

– ESE-Dec(emb, CM): For emb = (x′
a, x′

b) and CM = (C1, C2, C3), it outputs
M = C1 · C−x′

a
2 · C−x′

b
3 .

5.3 Efficiency

The both constructions require the same amount of the additional communica-
tion, computation, and memory to realize self-enforcing in the proposed AFPC.
However, the group signature based construction is more efficient than the coin-
based construction in terms of communication and memory. This follows from
the fact that the group signature based AF is more efficient than the coin-based

Anonymous Fingerprinting for Predelivery of Contents 147

AF in the same sense. In addition, the group signature based construction has
the good property that each buyer must register only once, while the coin-based
construction requires registration once per purchase.

Therefore, if each merchant has enough computing power to provide the pre-
delivery service for a number of buyers, the group signature construction works
better. Otherwise, the coin-based construction works better.

6 Conclusion

In this paper, we have introduced a new anonymous fingerprinting scheme for
a predelivery service where digital goods are predelivered in a form of timed-
release encryption so that a buyer can view the contents only after the release
date. The advantage of the proposed scheme is to realize “self-enforcing” to deter
redistribution of an encrypted copy before the release date. The self-enforcing
here means that the buyer is forced to attach the embedded data to an encrypted
copy when she redistributes it. Our idea of realizing self-enforcing is to encrypt a
purchased copy so that any receiver of the ciphertext needs to use the embedded
data of the copy for decrypting it on the release date. Then, we have presented
two constructions based on the coin based anonymous fingerprinting scheme in
[15] and the group signature based anonymous fingerprinting schemes in [2].
A possible future work is to present another effective and efficient method to
deter redistribution of an encrypted copy or to consider another type of contents
delivery services.

References

1. Blake, I.F., Chan, A.C.-F.: Scalable, Server-Passive, User-Anonymous Timed Re-
lease Public Key Encryption from Bilinear Pairing. In: ICDCS 2005, pp. 504–513
(2005)

2. Camenisch, J.: Efficient Anonymous Fingerprinting with Group Signatures. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 415–428. Springer,
Heidelberg (2000)

3. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Timed-Release and Key-Insulated
Public Key Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 191–205. Springer, Heidelberg (2006)

4. Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved Anonymous Timed-
Release Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 311–326. Springer, Heidelberg (2007)

5. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and Non-Interactive Timed-
Release Encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)

6. Chalkias, K., Stephanides, G.: Timed Release Cryptography from Bilinear Pair-
ings Using Hash Chains. In: Leitold, H., Markatos, E.P. (eds.) CMS 2006. LNCS,
vol. 4237, pp. 130–140. Springer, Heidelberg (2006)

7. Dent, A.W., Tang, Q.: Revisiting the Security Model for Timed-Release Encryption
with Pre-Open Capability. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R.
(eds.) ISC 2007. LNCS, vol. 4779, pp. 158–174. Springer, Heidelberg (2007)

148 K. Haramura, M. Yoshida, and T. Fujiwara

8. Hristu-Varsakelis, D., Chalkias, K., Stephanide, G.: Low-cost Anonymous Timed-
Release Encryption. In: IAS 2007, pp. 77–82 (2007)

9. Huang, X., Susilo, W., Mu, Y.: Breaking and Repairing Trapdoor-free Group Sig-
nature Schemes from Asiacrypt 2004. JCST 42(1), 71–74 (2005)

10. Hwang, Y.H., Yum, D.H., Lee, P.J.: Timed-Release Encryption with Pre-Open
Capability and Its Application to Certified E-Mail System. In: Zhou, J., López,
J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer,
Heidelberg (2005)

11. May, T.C.: Timed-Release Crypto (1993),
http://cypherpunks.venona.com/date/1993/02/msg00129.html

12. Nali, D., Adams, C., Miri, A.: Time-Based Release of Confidential Information in
Hierarchical Settings. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005.
LNCS, vol. 3650, pp. 29–43. Springer, Heidelberg (2005)

13. Nguyen, L., Safavi-Naini, R.: Efficient and Provably Secure Trapdoor-Free Group
Signature Schemes from Bilinear Pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)

14. Pfitzman, B., Sadeghi, A.-R.: Coin-Based Anonymous Fingerprinting. In: Stern,
J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 150–164. Springer, Heidelberg
(1999)

15. Pfitzman, B., Sadeghi, A.-R.: Anonymous Fingerprinting with Direct Non-
Repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–
414. Springer, Heidelberg (2000)

16. Rivest, R.L., Shamir, A., Wagner, D.A.: Time Lock Puzzles and Timed Release
Crypto. In: MIT/LCS/TR-684 (1996)

17. Rabin, M.O., Thorpe, C.: Time-Lapse Cryptography. Technical Report TR-22-06,
Harvard University School of Engineering and Computer Schience (2006)

18. Wei, V.K.: Short (resp. Fast) CCA2-Fully-Anonymous Group Signatures using
IND-CPA-Encrypted Escrows. Cryptology ePrint Archive, Report 2005/410

19. Zhong, J., He, D.: A New Type of Group Signature Scheme. Cryptology ePrint
Archive, Report 2006/440

A Proof of Security of the Coin-Based Construction

In this section, we prove that the proposed ESE in Section 5.1 provides the se-
crecy in the proposed AFPC in the sense of “Indistinguishability against Chosen-
Plaintext Attacks (IND-CPA)” under the decisional Diffie-Hellman assumption.

Let G1 be a group instance generator that takes as input a security parameter
1l and returns an uniformly random tuple t = (q, Gq), including a prime number
q of size l, and the unique subgroup Gq of prime order q of the multiplicative
group Z∗

p where p is a prime with q|(p− 1).

Decisional Diffie-Hellman assumption. For every PPT algorithm ADDH,
the following function AdvDDH(l) is negligible.

AdvDDH(l) = |Pr[ADDH(t, g′, g′x, g′y, g′xy) = 1]− Pr[ADDH(t, g′, g′x, g′y, g′z) = 1]|,

where t = (q, Gq)← G1, g′ is chosen uniformly random from Gq and x, y, and z
are chosen uniformly random from Z

∗
q .

http://cypherpunks.venona.com/date/1993/02/msg00129.html

Anonymous Fingerprinting for Predelivery of Contents 149

An adversary here considered is a receiver B′ of an encrypted copy which is
redistributed with its decryption information but not with the embedded data.
He tries to find two messages m0, m1 for which he can distinguish Cs1 = ESE-
Enc(emb, s1) of Ct0,PB with s1 = m0 from that with s1 = m1 in the environment
that he can obtain the public parameters of the proposed AFPC, which are five
generators of Gq denoted by (g, g1, g2, g3, g4), and the public keys yRC and yT S ,
has any identity IDB′ �= IDB (i.e., B′ is not the original buyer of an encrypted
copy), and is allowed to register himself to RC, purchase products from M
before/after the release date, and receive all time specific trapdoors from T S.

We start with the definition of the CPA attack.

Setup. The challenger first generates the public parameters which are given to
all algorithms and protocols as the common input. Then, the challenger runs
AFPC-RCKeyGen(1l) and AFPC-TSKeyGen(1l) to obtain random instances of
secret and public key pairs (xRC , yRC) and (xT S , yT S). It gives the public
parameters and the public keys to the adversary.

Query phase 1. The adversary has adaptive access to four oracles: registra-
tion oracle, predelivery oracle, purchase oracle, and time specific trapdoor
oracle corresponding to AFPC-Reg, AFPC-Enc, AFPC-Fin, and AFPC-TstGen,
respectively. The challenger simulates these oracles.

Challenge. The adversary outputs two (equal length) messages m0 and m1.
The challenger picks a random b ∈ {0, 1} and sets s1 = mb. Then, the
challenger generates an encrypted copy Ct0,PB = (Cs2 , CCs1

, Ccom(PB)) and
decryption information dec where s2 is a randomly and uniformly chosen
seed, PB is any digital product, and dec is the secret parameter of randomly
generated parameters of commitment.

Query phase 2. The adversary continues to be access to the four oracles as in
Query phase 1.

Guess. The adversary outputs its guess b′ ∈ {0, 1} for b and wins the game if
b = b′.

We refer to this interaction as the ESE-CPA game, and define the advantage of
an adversary AESE as AdvCPAAESE

(l) = |Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]|. We
say that ESE provides the secrecy if the advantage of any PPT adversary AESE

is negligible.

Lemma 1. The proposed ESE provides the secrecy in the proposed AFPC if the
decisional Diffie-Hellman assumption holds.

Proof. Suppose there is a PPT algorithm AESE which breaks the secrecy of
the proposed ESE. We build a PPT algorithm ADDH that breaks the decisional
Diffie-Hellman assumption. Algorithm ADDH is given as input a random 4-tuple
(g′, g′x, g′y, g′z), that is sampled either from the distribution of “true” instances
where g′z = g′xy, or from the distribution of “false” instances where g′z is uniform
and independent in Gq. Algorithm ADDH’s goal is to output 1 if g′z = g′xy and
0 otherwise. Algorithm ADDH works by interacting with AESE in an ESE-CPA
game as follows:

150 K. Haramura, M. Yoshida, and T. Fujiwara

Setup. Algorithm ADDH randomly chooses g, g3, g4 ∈ Gq and a ∈ Z∗
q , and

sets g1 = g′a and g2 = g′. ADDH runs AFPC-RCKeyGen(1l) and AFPC-
TSKeyGen(1l) and obtains random instances of secret and public key pairs
(xRC , yRC) and (xT S , yT S). It gives the public parameters (g, g1, g2, g3, g4)
and the public keys (yRC , yT S) to AESE.

Query phase 1. Algorithm ADDH responds to four kinds of queries (registra-
tion queries, predelivery queries, purchase queries, and time specific trapdoor
queries) as follows.
– Registration query. ADDH runs AFPC-Reg in the position of RC using

the secret and public keys (xRC , yRC), that is, runs AFPC-Reg-RC(IDB′ ,
yRC , xRC).

– Predelivery query. ADDH runs AFPC-Enc in the position ofM for any
digital product P0, that is, runs AFPC-Enc-M(text, yRC, yT S , t0, P0, j).

– Purchase query. ADDH runs AFPC-Fin in the position of M for any
digital product P0, that is, runs AFPC-Fin-M(text, yRC , P0, j).

– Time specific trapdoor query for date t. ADDH runs AFPC-TstGen(
xT S , yT S , t) in the position of T S using the secret and public keys (xT S ,
yTS) and sends tstt to AESE.

Challenge. Algorithm AESE will next submit two messages m0 and m1. Al-
gorithm ADDH flips a fair coin, b, sets s1 = mb, and generates an en-
crypted copy Ct0,PB = (Cs2 , CCs1

, Ccom(PB)) and decryption information dec
as
follows.

1. Generation of a committed copy and a decryption information.
The ADDH generates Ccom(PB) as a commitment of any digital product
PB for randomly generated secret/public parameters of commitment, and
sets the secret parameter of commitment as dec.

2. Generation of a ciphertext of ESE. First, ADDH runs DEM-
KeyDer(s1), and obtains a symmetric encryption key K1. ADDH runs
DEM-Enc(K1,
com(PB)) to encrypt com(PB) and obtains a ciphertext Ccom(PB). Then,
ADDH randomly chooses a′ ∈ Z∗

q and sets pkemb = ga′
1 · g′x = ga′

1 · gx
2 .

Thus, the corresponding (unknown) emb is (a′, x). ADDH computes
C1 = s1 ·(g′y)aa′ ·g′z = s1 ·ga′y

1 ·gz
2 , C2 = (g′y)a = gy

1 , and C3 = g′y = gy
2 .

ADDH sets Cs1 = (C1, C2, C3).
3. Generation of an encrypted copy. First, ADDH randomly chooses a

seed s2 from the message space of TRE, and runs DEM-KeyDer(s2) and
obtains a symmetric encryption key K2. Secondly, ADDH runs DEM-
Enc(K2, Cs1) and obtains a ciphertext CCs1

. Then, ADDH runs TRE-
Enc(yT S , t0, s2) and obtains a ciphertext Cs2 . ADDH sets Ct0,PB = (Cs2 ,
CCs1

, Ccom(PB)).

ADDH gives the challenge (Ct0,PB , dec) to AESE.
Query phase 2. Algorithm AESE continues to issue any queries. Algorithm

ADDH responds as in Query phase 1.

Anonymous Fingerprinting for Predelivery of Contents 151

Guess. Algorithm AESE outputs its guess b′ ∈ {0, 1}. Algorithm ADDH sets own
output b′′ = 1 if b′ = b, and otherwise b′′ = 0, where b′′ = 1 means that it
guesses that g′z = g′xy.

In the case that the input (g′, g′x, g′y, g′z) to ADDH above satisfies g′xy = g′z,
the ciphertext Cs1 which AESE sees is distributed exactly like an ESE encryption
of mb under the public key pkemb. We use this to see that

Pr[ADDH(t, g′, g′x, g′y, g′xy)=1]=
1
2
· Pr[b′=0|b=0] +

1
2
· (1− Pr[b′ = 0|b = 1])

=
1
2

+
1
2
AdvCPAAESE

(l). (1)

In the case that g′z is uniform and independent in Gq, the inputs g′, g′x, g′y,
and g′z to ADDH above are all uniformly distributed over G. Algorithm AESE sees
the ciphertext Cs1 = (mb ·(g′y)aa′ ·g′z, g′ya, g′y). Since g′z is selected uniformly at
random, mb ·(g′y)aa′ ·g′z is also an uniform random value. Here, with probability
at least 1 − 1/q it is true that z �= xy mod q. Assuming this is true, the reply
to query gives AESE no information about b. So

Pr[ADDH(t, g′, g′x, g′y, g′z) = 1] ≤ 1
2
·
(

1− 1
q

)
+

1
q

=
1
2

+
1
2q

. (2)

The 1/q term accounts for the probability that z = xy mod q. Subtracting
Equations (1) and (2), we get

AdvDDH(l) = Pr[ADDH(t, g′, g′x, g′y, g′xy) = 1]− Pr[ADDH(t, g′, g′x, g′y, g′z) = 1]

≥ 1
2
· AdvCPAAESE

(l)− 1
2q

.

As AESE can break the secrecy of the proposed ESE, ADDH outputs the correct
b′′ with non-negligible probability.

Instruction Set Limitation in Support of
Software Diversity

Bjorn De Sutter�, Bertrand Anckaert, Jens Geiregat, Dominique Chanet,
and Koen De Bosschere

Ghent University, Electronics and Information Systems Department
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

bjorn.desutter@elis.ugent.be

Abstract. This paper proposes a novel technique, called instruction set
limitation, to strengthen the resilience of software diversification against
collusion attacks. Such attacks require a tool to match corresponding
program fragments in different, diversified program versions. The pro-
posed technique limits the types of instructions occurring in a program
to the most frequently occurring types, by replacing the infrequently
used types as much as possible by more frequently used ones. As such,
this technique, when combined with diversification techniques, reduces
the number of easily matched code fragments. The proposed technique
is evaluated against a powerful diversification tool for Intel’s x86 and an
optimized matching process on a number of SPEC 2006 benchmarks.

Keywords: diversity, binary rewriting, code fragment matching, soft-
ware protection.

1 Introduction

Collusion attacks on software involve the comparison of multiple versions of
an application. For example, an attacker can learn how encryption keys are
embedded in an application by comparing two or more versions that embed
different keys. Similarly, an attacker can compare two application versions to
discover how fingerprints are embedded in them. Or an attacker can compare
an application before a security patch has been applied to the same application
after the patch has been applied to discover the vulnerability that was addressed
by the patch, and then use that information to attack unpatched versions.

Attackers also want to distribute their cracks of popular software. These cracks
are nothing more than scripts that automate the attack that was devised manu-
ally by the attacker. Generating these scripts is rather easy: it suffices to perform
a checksum on the application on which the script will be applied to make sure
that that application is identical to the one originally cracked, and to apply the
necessary transformations as simple offset-based binary code patches.
	 The authors want to thank the Fund for Scientific Research - Flanders (FWO), the

Institute for the Promotion of Innovation by Science and Technology in Flanders
(IWT), and Ghent University for their support.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 152–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Instruction Set Limitation in Support of Software Diversity 153

In the above scenarios attackers exploit the valid assumption that different
copies of the software are lexically equivalent where they are semantically equiva-
lent. So a natural way to defend against these attacks is to break this assumption.
The goal of diversification is therefore to make sure that semantically equivalent
code fragments are not lexically equivalent, and that the semantically equiva-
lent, corresponding code fragments constituting two program versions are not
easily recognized as being corresponding fragments. If diversification is success-
ful, more effort will be needed to discover true semantical differences between
program versions (in the form of keys, fingerprints or patched vulnerabilities),
and it will make it much harder to develop an automated script that applies a
crack to all versions of some application.

A defender can start from one single master copy of an application, and make
diversified copies of the master by applying a unique set of transformations
to each copy. These transformations include compiler transformations such as
inlining, code factoring, tail duplication, code motion, instruction rescheduling,
register reallocation, etc. as well as transformations that have been developed
for obfuscating programs, such as control flow flattening, branch functions, and
opaque predicates. For each copy, the transformations can be applied at different
locations, or with different parameters. While none of these transformations
in isolation make it very hard to match corresponding fragments in diversified
programs, the combined application of all these techniques does make it harder.

In this paper, we propose a novel transformation for software diversification
that will make the matching even harder. Instruction set limitation (ISL) re-
places infrequently occurring types of instructions in programs with more fre-
quently occurring types of instructions. By itself, this transformation does not
make programs more diverse. But by eliminating infrequently occurring instruc-
tions, this technique does limit the number of easier targets for a tool that tries to
match corresponding fragments in diversified program versions. As such, the pro-
posed technique strengthens the resilience of existing diversification techniques
against tools for matching program fragments.

The remainder of this paper is structured as follows. Section 2 provides back-
ground information and related work on program fragment matching, diversify-
ing transformations, and instruction selection. The concept of ISL is discussed in
Section 3, and an algorithm is proposed in Section 4. ISL is evaluated on native
Intel’s x86 code in Section 5, and conclusions are drawn in Section 6.

2 Background

In any of the above attacks against diversified software, an attacker first has to
try to match corresponding code fragments in different software versions. For any
non-trivial program and any non-trivial diversity, automated support is needed
in the form of a tool that generates a list of estimated matches between code
fragments. The accuracy of such a matcher can be described in terms of false
positives and false negatives. These are the fractions of the estimated matches
that are not real matches, and the fraction of the real matches that are not

154 B. De Sutter et al.

included in the estimated matches. Any diversification should try to increase
the false positive matching rate and the false negative matching rate. In the
remainder of this section, we briefly introduce the inner workings of matchers,
of diversification tools, and of the role of instruction selection in these tools.

The attack model we will use here is that of an attacker that can observe
a program or a program’s execution in every detail. In this malicious host at-
tack model, the attacker has full control over the host machine(s) running the
software under attack. These might be real machines, or virtual machines, or a
combination of both, that can run, for example, binary instrumentation tools
such as valgrind [1] or Diota [2].

2.1 Code Matching

Attackers are most often only interested in understanding or changing the be-
havior of software. They are not interested in parts of the software that do not
contribute to its behavior. Hence attackers are only interested in the code that
actually gets executed. This implies that attackers can run a program, observe
it, collect data on the executed code, and then use that data in a matching tool.
In other words, the matching tool can be guided by dynamic information. A
formal description of how to construct matchers using dynamic information is
presented in [3]. Here we focus on the fundamental concepts.

Several kinds of information can be used by a matching tool to compare code
fragments such as instructions or basic blocks. The instruction encodings can
be considered, which consist of opcodes and type of operands. Furthermore,
the values of data produced and consumed by instructions can be used. Or the
execution count, i.e. the number of times that an instruction is executed for a
specific input to the program. An excellent base for comparison is also provided
by the first execution count: i.e. the order in which instructions are executed
for the first time. And a matcher can consider the locations at which system
calls occur, together with the arguments passed to the operating system. Using
any combination of these types of information, a matcher can assign confidence
levels to instruction pairs, indicating with what confidence the matcher believes
the pair to be an actual match. The final estimated mapping then consists of all
those pairs of which the confidence level surpasses a certain threshold. Obviously,
when the threshold is increased, fewer false positives will be found, but this will
likely be at the expense of increasing the false negative rate. And vice versa.

None of the above types of matching information take context into account.
Instead they describe local properties of single instructions. On top of that,
control flow and data flow information can be considered. Suppose that we
already have an estimated mapping based on the local information. By observing
a program’s execution, an attacker can reconstruct a dynamic control flow graph
(including only the executed code and executed control transfers), and a dynamic
data dependence graph. The existing mapping can then be refined by taking
into account, for each instruction or basic block in these graphs, how well their
context matches. For example, consider two instructions in two program versions
that the matcher considers as potential matches, albeit at a very low confidence

Instruction Set Limitation in Support of Software Diversity 155

level. The matcher can then take into account these instructions’ successors and
predecessors in the control flow graph and data flow graph of both program
versions. If the successors and predecessors were previously matched with high
confidence, the matcher can increase the confidence of the match between the
two instructions themselves as well.

There are four mechanisms to combine matchers based on different types of in-
formation: combination, limitation, iteration, and bounding. First, matchers can
take into account combinations of confidence levels, and use combined thresholds
instead of thresholds on the individual confidence levels. Secondly, matchers can
limit the number of estimated matching pairs per instruction to a certain upper
limit. This limitation heuristic relies on the assumption that an instruction in
one program version usually corresponds to at most a few instructions in another
version. Besides resulting in more accurate results, limitation can also speed up
the matching because smaller sets of possible matching candidates will be con-
sidered. This is particularly the case in iterative matchers. In each iteration, an
iterative matcher either extends the existing estimated mapping by adding new
pairs that surpass its confidence level, or it can filters the existing mapping by
throwing out pairs that fall below its confidence threshold. Finally, bounding
can be used to speed up the matching process, and to consider more contextual
information of instructions. With bounding, matchers are first applied to basic
blocks instead of instructions. There are much fewer basic blocks, so matching
basic blocks will be a faster process. Furthermore, considering a fixed number
of successor or predecessor basic blocks in the control flow graphs or data de-
pendency graphs will take into account much more context than considering the
same number of successor or predecessor instructions.

During our research on matching and diversification, we developed the match-
ing system described in Table 1. This system was developed and optimized by
means of an interactive tool that enables easy exploration of the matching system
design space and that shows statistical results on false rates, as well as individual
cases of false matches. A more detailed discussion of all the material discussed in
this section and the components of our prototype system, including the merits
and caveats of different types of matchers, are discussed in detail in [3].

2.2 Diversification

Many program transformations have been developed in compiler research. By
applying them selectively in different places, different versions of an application
can be generated starting from the master program. To implement this, it suffices
to add an additional precondition (i.e., a validity check) for each transformation
that is based on two parameters. One of them will be a user-specified probability
p, which can be different for each type of transformation, and the other will be
a number n generated by a pseudo-random generator. If the generated numbers
are in the interval [0, 1] and the added precondition is n >= p, then p denotes
the probability with which a transformation will be applied. The diversity is
maximized by maximizing p(1− p), which happens for p = 0.5.

156 B. De Sutter et al.

Table 1. Settings of the default matching system: 21 matchers are applied iteratively,
some of which combine difference types of information. The first 9 operate at the
basic block level, the next 5 perform the transition from basic blocks to instructions
by executing instruction-level matchers bound by the basic block result. Finally, 7
matching steps are performed at the instruction level, not bound by the basic block
results. All confidence thresholds are for a confidence scale of [0, 1]. For each iteration,
the maximum number of selected matches is presented. For the context-aware matchers,
the direction is given in which neighboring nodes are traversed, and the distance, i.e.
the length of that traversal. UP refers to predecessors, DOWN to successors.

Iteration Granularity Phase #Matches Classifier Threshold Direction Δ
1 bbl Init 1 Syscalls 0.3
2 bbl Extend 1 Encoding 0.5

Data 0.5
Order 0.5
Freq. 0.5

3 bbl Extend 2 Encoding 0.1
CF 0.1 BOTH 3

4 bbl Filter CF 0.1 UP 3
5 bbl Filter CF 0.1 DOWN 3
6 bbl Filter DF 0.1 UP 3
7 bbl Filter DF 0.1 DOWN 3
8 bbl Extend 2 Data 0.7

DF 0.3 BOTH 3
9 bbl Extend 2 Encoding 0.7

CF 0.3 BOTH 3
10 trans Init 1 Syscalls 0.3
11 trans Extend 1 Encoding 0.5

Data 0.5
Order 0.5
Freq. 0.5

12 trans Extend 2 Encoding 0.1
CF 0.1 BOTH 3

13 trans Extend 2 DATA 0.7
DF 0.3 BOTH 3

14 trans Extend 2 Encoding 0.7
CF 0.3 BOTH 3

15 ins Extend 3 Encoding 0.6
CF 0.1 BOTH 5

16 ins Filter CF 0.1 BOTH 5
17 ins Filter DF 0.1 BOTH 5
18 ins Filter Encoding 0.1
19 ins Filter Data 0.1
20 ins Filter Freq. 0.1
21 ins Extend 1 Encoding 0.1

CF 0.5 BOTH 5

In some cases, more than two alternatives (to transform or not to transform)
are available. For example, code schedulers can generate many different sched-
ules, much more than two per code fragment, and many different types of opaque
predicates can be inserted. In those cases, slightly more complex decision logic
needs to be implemented. Still, they all can be normalized to binary choices.

As some transformations involve the insertion of extra code in a program or
code duplication, applying all transformations with probability 0.5 may slow
down or bloat the program code significantly. To limit the overhead, two ap-
proaches can be taken. First of all, smaller values for p can be used. Secondly,
the application of the transformations that insert overhead in the program can
be limited to certain parts of the program that are determined by profiling the

Instruction Set Limitation in Support of Software Diversity 157

programs. For example, to limit the code size overhead, one can limit the trans-
formations to those code fragments that are executed for most of the common
(types of) program input. Or to limit the performance overhead, one can limit
the transformations to code that is executed only infrequently.

Finally, one needs to take into account the practicality of selectively apply-
ing transformations as a diversification technique. For example, applied transfor-
mations should likely survive later transformations, rather than being undone.
Furthermore, as recompiling a whole application for each sold copy is not viable,
applied transformations should not require an entire recompilation. For these rea-
sons, we believe that the feasible transformations are limited to compiler back-end
transformations or to transformations that can be applied in a post-pass program
rewriter, such as a link-time rewriter. Our prototype diversifier is based on the x86
backend of the Diablo link-time rewriting framework [4,5] that has previously been
used for obfuscation [6,7] and steganography [8]. This prototype diversifier applies
the following transformations. Inlining [9], tail duplication [9] and two-way pred-
icate insertion [10] involve code duplication. Identical function elimination, basic
block factoring and function epilogue factoring [11] all involve the replacement of
duplicate code fragments by a single copy. All of those transformations not only
generate diversity, they also break the assumption that there is a one-to-one map-
ping between two program versions’ instructions. Thus, they can fool matchers
that limit the number of accepted matches as discussed in Section 2.1. Further-
more, our prototype applies control-flow flattening [12], branch indirection through
branch functions [13], and opaque predicate insertion [10]. These transformations
originate from the field of program obfuscation. Fundamentally, they add unreal-
izable control paths of which it is hard to recognize their unrealizability. As such,
they make the number of paths in the control flow graph explode, and thus make it
much harder for control flow based matchers. Finally, our prototype implements a
number of randomized compiler back-end tasks [9]: randomized instruction selec-
tion (see the next section), randomized instruction scheduling, and randomized
code layout. The latter two transformations thwart matchers that rely on fixed
static instruction orders.

2.3 Instruction Selection

Compilers map source code operations onto the operations supported in their
intermediate representation, and then map those operations onto instructions
available in the instruction set architecture (ISA) for which they generate as-
sembly code. During that second step, they often have multiple choices avail-
able, because usually many sequences of instructions are semantically equivalent.
Compilers are deterministic, however, and strive not only for semantic correct-
ness, but also optimal performance and code size, so they typically reuse the
same instructions and instruction patterns a lot. Because some instructions are
more useful than others for more frequently occurring operations, some instruc-
tions will be used much more frequently than others.

This instruction selection and its resulting non-uniform instruction frequency
are important for two reasons. Relying on a tool like a superoptimizer that

158 B. De Sutter et al.

generates all possible different, but semantically equivalent code sequences, we
can replace the deterministic behavior of a compiler’s code selection by a ran-
domized selection to diversify programs, as mentioned in Section 2.2. In our
prototype diversifier, we randomized the instruction selection by selectively re-
placing single instructions by alternative single instructions. The alternatives are
taken from a list of equivalent instructions that was produced by a superopti-
mizer [14].

Secondly, it is important to understand that the non-uniform distribution of
instruction frequencies can be exploited by a matcher. For any matcher based on
instruction encoding, the infrequently occurring instruction types will be easy
targets, as the matcher has to find matches among less candidates than it needs
to do for frequently occurring instructions. As a defense against collusion attacks
and matchers, we hence propose to remove as many of the infrequently occurring
instructions as possible by applying ISL. This will not only make it harder for
instruction encoding based matchers, but it will also do so for matchers based
on control flow and data flow. The latter will happen when single instructions
are replaced by sequences of multiple instructions, as this replacement inserts
new instructions and new data flow. Because of the new instructions, limiting
matchers as discussed in Section 2.1, will also be hampered.

We should note that, to some extent, ISL can undo the diversification obtained
through randomized instruction selection. This effect can be limited, however,
by applying the ISL to different instruction types. Consider for example, the lea
(load effective address) instruction in the x86 ISA. This (large) general-purpose
instruction combines a lot of computations, and can be used as an alternative to
many, more specific, shorter instructions during instruction selection randomiza-
tion. As the lea instruction occurs frequently, however, it is not a good candidate
for instruction set elimination.

3 Instruction Set Limitation

Figure 1 depicts a histogram for instructions occurring in the bzip2 benchmark.
Some of the infrequently occurring instructions cannot easily be replaced by
other instructions, such as the x86 instructions hlt, cpuid, in, int, iret, lmsw,
out, and smsw. These instructions have very specific semantics for doing IO, for
communicating with the operating system, and for accessing special processor
components. Other instructions, however, can easily be replaced by alternative
instruction sequences that contain only more frequently occurring instructions.

In theory, almost all of the potential candidates can be replaced by more
frequently occurring instructions. The URISC computer’ ISA consists of only
one instruction (subtract and branch conditionally) which corresponds to two
instructions on the x86. However, replacing all instructions is not practically fea-
sible, as it would result in unacceptably slow and large programs. As an example,
just imagine how slow a multiplication implemented by means of subtracts and
conditional jumps would be.

On the other hand, ISL should not be limited to infrequently occurring in-
structions. Consider the test instruction in Figure 1. This instruction occurs

Instruction Set Limitation in Support of Software Diversity 159

Fig. 1. Number of occurrences for each instruction in the bzip2 benchmark

Table 2. Candidate instructions for limitation. Instructions between brackets denote
instructions that are not needed in all cases.

Instruction Condition Replacement
add overflow and carry flags are dead sub, (sub, push, mov, pop)
call direct call push, jmp
cmovcc jcc, mov, (mov)
dec/inc carry flag is dead sub/add
jcc jcc, (jmp)
leave mov, pop
neg sub, mov, mov
pop/push flags are dead mov, add/sub
ret free register available pop, jmp
sbb jcc, sub, sub
setcc jcc, mov, mov
test and
xchg program is single-threaded mov, mov, mov

about five times more frequently than the and instruction. Still it makes sense
to replace the test instruction by and instructions. Because all test instruc-
tions can be replaced with the and instruction, the final result will be that there
will be six times more and instructions in the program, but not a single test in-
struction anymore. So even by replacing frequently occurring instructions, better
distributions can be obtained to defend against matching tools.

For these reasons, we have selected the 16 instructions from Table 2 as can-
didates for ISL. Their replacements are shown, and the conditions in which the
limitations can be applied. Some limitations can only be applied if condition flags
are dead. This is the case for instructions of which the replacement sets more
flags than the instruction that is replaced. Since the xchg instruction is used for
atomic read-update-write memory accesses, it cannot be replaced by a sequence
of mov instruction in multithreaded programs. On top of the instructions used
in the replacement, additional instructions might be inserted to spill registers,
i.e to free registers that are needed in the replacement code.

4 An Algorithm
Let us define the quality Q of the intruction type distribution of a program p as
the sum of squares of the instruction occurrence frequencies:

160 B. De Sutter et al.

Q(p) =
∑

instruction types i

f(i, p) f(i, p). (1)

in which f(i, p) denotes the number of times an instruction type i occurs in
program p.

Then consider the simple case where we want to replace x instructions of type i
by x instructions of type j. This will be profitable for Q(p) if x > f(i, p)−f(j, p).
Since x is by definition positive, this condition is always true if there are less
instructions of type i than of type j. Otherwise, x has to be high enough to
improve the quality of the type distribution.

Let us further define the cost of a program as the number of executed instruc-
tion is a program. This number can be obtained by profiling a program to collect
basic block execution counts. While the number of executed instructions is usu-
ally not a correct measure of program execution time, it is good enough for our
purpose, and it reduces the complexity of the optimization problem we are facing
considerably.1 This problem consists of optimizing the quality of the instruction
type distribution given a cost budget, i.e. a maximal allowed increase in num-
ber of executed instructions. Replacing a single instruction I by a sequence of k
other instructions involves a cost of (k− 1) ∗ e(I), in which e(I) is the execution
frequency of the replaced instruction, which will also be the execution frequency
of the replacements. Please note that k does not only depend in the type of I
but also on its context, as in some cases it might be necessary to insert spill code
to free registers or condition flags. Please also note that we will only consider
instructions I of which e(I) > 0 as observed in the profiling runs. This follows
from the fact that attackers are only interested in code that is actually executed,
and hence we as defenders should also only take those instructions into account.

The algorithm we propose to solve our optimization problem works as follows.
It is an iterative approach in which each iteration consists of 4 steps:

1. For each instruction type i, sort all its instructions in the program and their
possible replacements in ascending order of replacement cost. Instructions I
with e(i) = 0 are not considered at all.

2. Per instruction type i, compute the smallest set of instructions for which
replacing the whole set results in a positive gain ΔQ in distribution type
quality. Per type i, this set is built greedily by first considering the singleton
set of the first instruction in the ordered list of step 1, and by adding the
next instruction from that ordered list until the set becomes large enough to
have a positive effect ΔQ on Q(p) when all instructions in the set would be
replaced.

3. From all such sets for all instruction types i, exclude sets of which the total
replacement cost Cost, i.e. the summation of all the replacement costs of
all instructions in that set, would result in exceeding the global cost budget
(taking the cost of already performed replacements into account).

1 Modeling execution time correctly for measuring the effects of static code transfor-
mations is practically infeasible.

Instruction Set Limitation in Support of Software Diversity 161

4. From all remaining sets, take the one with the highest fraction of gain over
cost ΔQ

Cost , and replace all instruction in that set. If there is no remaining set,
the ISL terminates, otherwise it continues with step 1.

The reason why we only consider replacement cost in step 1, and not the
gain in distribution quality is that the gain depends on the order in which re-
placements are made, while cost does not. Computing the gains correctly for all
possible replacement orders is too expensive and not worthwhile.

This algorithm may apply replacements that only have a positive ΔQ because
a single instruction is replaced by multiple instructions. Since such replacements
will always have a higher cost than replacements that do not increase the number
of instructions, this is not problematic. Cheeper replacements will be chosen first
if they are available.

5 Experimental Evaluation

To evaluate the strength of our proposed instruction set elimination as a tech-
nique to fool matching tools, we performed the following experiment. For each
of five SPECint20006 benchmarks, we generated two versions A and B. On each
of them, we applied instruction set limitation with cost budgets of 0%, 10%,
20% and 50%, generating binaries A0, A10, A20, A50, B0, B10, B20, B50. With a
50% budget, the instruction set limitation is allowed to increase the estimated
number of instructions (obtained through profiling) with 50%. For each of these
pairs Ai and Bi, we measured their code size growth compared to A and B, their
execution time increase, and their increase in distribution quality as defined by
equation 1. Furthermore, for all of the program versions pairs, we measured the
false positive rates and false negative rates obtained with the matching system
presented in Table 1. The results are depicted in figures 2 to 7.

As can be seen from Figure 2 a cost budget of 10% already allowed to perform
almost all possible instruction replacements. Only the sjeng benchmark required
a higher budget to perform all possible replacements that help in instruction set
limitation. The resulting code size increases as depicted in Figure 3 have very
similar graph shapes, albeit with slightly lower numerical values. So on aver-
age, the replacement are slightly less than twice as big as the instructions they
replace.

The fact that the curves in Figure 4 are monotonically increasing when big
slowdowns are seen (as for libquantum and sjeng) learns us that the cost used
in Section 4 can be used to control the slowdown. And for all benchmarks but
sjeng, the performance penalty is lower than or equal to the budget used. How-
ever, this is more due to lack of replacement opportunities than to the accuracy
of our cost function. Indeed, sjeng shows that our cost function is not an ac-
curate predication of the actual slowdown. New research for better cost func-
tions is hence definitely needed. More research is also needed to understand the
slight performance improvement witnessed for the 0% budget. We believe this
to be a side-effect of the complex interaction between the different diversifying

162 B. De Sutter et al.

0%

1%

2%

3%

4%

5%

6%

0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 2. The fraction of replaced instructions per cost budget

0%

1%

2%

3%

4%

5%

0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 3. The resulting code size increase

-10%

0%

10%

20%

30%

40%

50%

60%

0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 4. Slowdown per cost budget

transformations applied by our tool and the ISL, but so far we have not been
able to find the exact reason.2

The influence on the matching capabilities of our matching system described
in Table 1 is depicted in Figures 5 and 6. First, in can be observed that the
false negative rates increase significantly. This means that the matcher finds far
fewer corresponding instruction pairs in the two diversified program versions.
The false negative rates after ISL are roughly between 55% and 70%, while they
were between about 25% and 35% before ISL, with the exception of sjeng, which
already was at 54%. Thus, we can conclude that ISL indeed makes it harder for
a matcher to find corresponding instructions in diversified program versions.

2 Using performance counters, we were able to rule out accidental changes in branch
predictor performance and cache performances.

Instruction Set Limitation in Support of Software Diversity 163

20%

30%

40%

50%

60%

70%

80%

no ISL 0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 5. False-negative rates of our matcher

20%

22%

24%

26%

28%

30%

32%

34%

no ISL 0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 6. False-positive rates of our matcher

0

5,000

10,000

15,000

20,000

25,000

no ISL 0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 7. Computation times (in seconds) required by the matcher

To some extent, this is the result of our matchers in iterations 2, 3, 9, 11, 12,
14, 15, 18 and 21, which rely on instruction types. However, without the these
matchers, the false rates would have been worse when no ISL was applied at all.
Furthermore, the small increment when using a 0% cost budget indicates that
ISL only helps when all, or close to all, replaceable instructions are replaced.

The false positive ratios increase much less than the false negative ratios.
The reason is that our matcher is rather conservative, and will not likely match
instructions of different types. Given that we only change a small fraction of
the instructions in a program, ISL will not make the matcher match much more
instruction. The fact that the false positive rates are not monotonically increasing

164 B. De Sutter et al.

results from the complex and unpredictable interaction between the different
iterations in our matching system.

Finally, it is clear from Figure 7 that ISL not only thwarts the matcher to the
extent that it produces much higher false results, it also requires the matcher to
perform much more computations. As a result, it requires up to 72 % more time
to execute our matcher (programmed in non-optimized C#, and executed on a
2.8 GHz P4) after ISL has been applied. This is due to the fact that the sets
of instructions that are compared to each other in the different iterations, are
considerably larger when ISL has been applied. Thus, an attacker not only gets
less useful results from his matching tool, he also needs to wait for them longer.

6 Future Work and Conclusions

This paper proposed instruction set limitation. By itself, this is not a strong
software protection technique, but when it is used in combination with soft-
ware diversification, our experiments have shown that instruction set limitation
succeeds in making it more difficult for an automated matching system to find
corresponding code fragments in diversified software versions. This thwarting
happens at acceptable levels of performance overhead.

Future work includes developing specific attacks against instruction set limita-
tion, and finding techniques to limit instruction sequences rather than individual
instructions. The latter will make it much harder to develop effective attacks.

References

1. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI 2007: Proceedings of the 2007 ACM SIGPLAN confer-
ence on Programming language design and implementation, pp. 89–100 (2007)

2. Maebe, J., Ronsse, M., De Bosschere, K.: DIOTA: Dynamic Instrumentation, Op-
timization and Transformation of Applications. In: Compendium of Workshops
and Tutorials in Conjunction with the 11th International Conference on Parallel
Architectures and Compilation Techniques (2002) (count 11)

3. Anckaert, B.: Diversity for Software Protection. PhD thesis, Ghent University
(2008)

4. De Bus, B.: Reliable, Retargetable and Extensivle Link-Time Program Rewriting.
PhD thesis, Ghent University (2005)

5. De Sutter, B., Van Put, L., Chanet, D., De Bus, B., De Bosschere, K.: Link-time
compaction and optimization of ARM executables. Trans. on Embedded Comput-
ing Sys. 6(1), 5 (2007)

6. Madou, M., Anckaert, B., De Sutter, B., De Bosschere, K.: Hybrid static-dynamic
attacks against software protection mechanisms. In: Proceedings of the 5th ACM
workshop on Digital Rights Management, pp. 75–82. ACM Press, New York (2005)

7. Madou, M., Van Put, L., De Bosschere, K.: Loco: An interactive code
(de)obfuscation tool. In: Proceedings of ACM SIGPLAN 2006 Workshop on Partial
Evaluation and Program Manipulation, PEPM 2006 (2006),
http://www.elis.ugent.be/diablo/obfuscation

http://www.elis.ugent.be/diablo/obfuscation

Instruction Set Limitation in Support of Software Diversity 165

8. Anckaert, B., De Sutter, B., Chanet, D., De Bosschere, K.: Steganography for
executables and code transformation signatures. In: Park, C.-s., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 425–439. Springer, Heidelberg (2005)

9. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Francisco (1997)

10. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th Conference on Principles
of Programming Languages, pp. 184–196. ACM, New York (1998)

11. De Sutter, B., De Bus, B., De Bosschere, K.: Sifting out the mud: low level C++
code reuse. In: OOPSLA 2002: Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pp. 275–
291 (2002)

12. Wang, Z., Pierce, K., McFarling, S.: Bmat – a binary matching tools for stale profile
propagation. The Journal of Instruction-Level Parallelism 2, 1–20 (2000)

13. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static
disassembly. In: Proceedings of the 10th ACM Conference on Computer and Com-
munications Security, pp. 290–299. ACM Press, New York (2003)

14. Massalin, H.: Superoptimizer: a look at the smallest program. In: Proceedings of the
2nd International Conference on Architectual Support for Programming Languages
and Operating Systems, pp. 122–126. IEEE Computer Society Press, Los Alamitos
(1987)

Non-interactive Identity-Based DNF Signature
Scheme and Its Extensions�

Kwangsu Lee, Jung Yeon Hwang, and Dong Hoon Lee

Graduate School of Information Management and Security,
Korea University, Seoul, Korea

{guspin,videmot,donghlee}@korea.ac.kr

Abstract. An ID-based DNF signature scheme is an ID-based signa-
ture scheme with an access structure which is expressed as a disjunctive
normal form (DNF) with literals of signer identities. ID-based DNF sig-
nature schemes are useful to achieve not only signer-privacy but also a
multi-user access control. In this paper, we formally define a notion of
a (non-interactive) ID-based DNF signature and propose the first non-
interactive ID-based DNF signature schemes that are secure under the
computational Diffie-Hellman and subgroup decision assumptions. Our
first scheme uses random oracles, and our second one is designed without
random oracles. To construct the second one, we use a novel technique
that converts a non-interactive witness indistinguishable proof system of
encryption of one bit into a corresponding proof system of encryption of
a bit-string. This technique may be of independent interest. The second
scheme straightforwardly yields the first ID-based ring signature that
achieves anonymity against full key exposure without random oracles.
We finally present two extensions of the proposed ID-based DNF signa-
ture schemes to support multiple KGCs and different messages.

Keywords: Identity-Based Signature, Disjunctive Normal Form, Signer
Anonymity, Access Structure.

1 Introduction

The notion of a digital signature is one of the most fundamental and useful inven-
tions of modern cryptography. Since the first public key cryptosystem in [10] was
introduced, various signature schemes have been suggested to meet various needs
in practical circumstances. In particular, combining an access structure with a
signature scheme enables users to achieve important cryptographic goals such as
user anonymity and multi-user access control, etc. Traditionally, in large-scale
computer systems, the security for the important resources is achieved by access
controls that describe which user or component of a system is allowed to access
what resources. One way to describe the access control is to use an access struc-
ture which is defined as a collection of subject sets that can access to the object.
In signature systems, a signature may be viewed as a resource and a signer who
	 This work was supported by the Second Brain Korea 21 Project.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 166–183, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Non-interactive ID-Based DNF Signature Scheme and Its Extensions 167

generates the signature as a subject. That is, the access structure can be used to
describe a collection of signer sets who participate in generating a signature. For
examples, a public-key signature system implicitly includes an access structure
that describes only one signer. A multi-signature system implicitly includes an
access structure that describes multiple signers who participate in generating a
signature. A ring signature system implicitly includes access structure such that
any signer in members of a signer set generates a signature.

By applying ID-based cryptography to a signature scheme, we can construct
an ID-based signature scheme in which user identity is used as a user public
key [22,15,8,2]. Particularly, an ID-based signature scheme is more suitable for
dealing with a complex access structure to represent an authorized set of sign-
ers, because it does not require additional information like certificates to verify
a signature. In this paper, as a cryptographic primitive for more generalized ac-
cess structure, we study an ID-based DNF signature scheme, that is an ID-based
signature scheme associated with an access structure expressed as a disjunctive
normal form (DNF) with “OR” and “AND” operators and an identity ID as a
literal. An ID-based DNF signature is valid only if the evaluation of the cor-
responding DNF is true. A literal ID is evaluated to be true when a signature
generated by a signer with ID is valid and false when the signature is invalid or
no signature is provided. While several ID-based DNF signature schemes have
been proposed [14,9], previously known schemes require interactive co-operation
among signers in the access structure. That is, each signer broadcasts his random
commitment and generates his own individual signature using others’ random
commitments. Individual signatures are then sent to a representor of signers
who generates a final signature by combining the access structure. Since many
parties participate in signing process, this interactive communication requires
costly communication complexity with respect to system efficiency. Hence, it is
highly desirable for an ID-based DNF signature scheme to be non-interactive.

Applications. An ID-based DNF signature scheme is a generalization of an
ID-based multi-party signature scheme such as ID-based ring signature, multi-
signature, designated-verifier signature, and threshold signature schemes. Thus
an ID-based DNF signature scheme can be applied to various applications where
an ID-based multi-party signature scheme is applied. Additionally, we can also
apply it to other applications to which previous ID-based multi-party signature
schemes are not suited because of inefficiency or inadequacy. For example, we
may consider the situation that at least two valid signatures are necessary to
guarantee the validity of a message without revealing the identities of the signers.
A naive approach might be to use a ring signature scheme twice and generate two
ring signatures, one for each signer. In case of using an ID-based DNF signature,
two identities can be simply paired by “AND” operator in the access structure.
Hence, to verify the validity of a message, we need only one signature, which in
turns reduces the verification time of the signature.

Our Results. In this paper, we first give a formal definition of a non-interactive
ID-based DNF signature scheme. To capture the non-interactive property, we

168 K. Lee, J.Y. Hwang, and D.H. Lee

allow individual signature queries to the adversary. Our unforgeability model
captures the attacker of insider corruption and anonymity model captures the
attacker of full key exposure. To construct ID-based DNF signature schemes, we
extend Groth, Ostrovsky, and Sahai’s non-interactive witness indistinguishable
(NIWI) proof system [13] of encryption of 0 or 1 bit to encryption of two bit-
strings. This extended GOS NIWI proof may be of independent interest. We use
this extended one to facilitate all-or-nothing encryption of signer identities in
our ID-based DNF signature without random oracles. Next we propose two non-
interactive ID-based DNF signature schemes. Our first construction is efficient
and the size of a signature is compact. The security of the construction is proven
under the computational Diffie-Hellman (CDH) and the subgroup decision (SD)
assumptions in the random oracle model. Our second construction is proven
secure under the same assumptions without random oracles, while it is relatively
inefficient and the size of a signature is not compact, compared to the first
one. We note that the second construction directly yields the first ID-based
ring signature to achieve signer anonymity against full key exposure without
random oracles, because an ID-based ring signature scheme is a special case
of an ID-based DNF signature scheme. Finally, we extend our ID-based DNF
signature scheme with random oracles to support multiple key generation centers
or different messages. Our first extension for multiple KGCs enables signers from
different KGCs to generate a signature. Our second extension allows that each
signer can independently generates individual signature of his own message.

Related Works. Bresson et al. [7] proposed the first signature scheme with
an access structure by extending Rivest et al.’s ring signature scheme [18]. They
called their scheme as ad-hoc group signature. Recently, Boyen [6] proposed Mesh
signature that allows each signer to generate a signature for different messages by
extending the access structure. To overcome the certificate management problem
in public key signatures, ID-based signature was proposed [22,24,8,14,9,16]. The
certificate management is a critical burden in signature schemes with an access
structure, because the access structure contains many certificates to be verified.
Thus an ID-based signature scheme with an access structure may be one of
prominent solutions to resolve this problem. Herranz and Sáez [14] constructed
the first ID-based signature with an access structure by extending their ID-
based ring signature. Chow et al. [9] proposed another ID-based signature with
an access structure by extending their ID-based ring signature that is based
on Cha-Cheon ID-based signature scheme [8]. However previous two schemes
require interactive communication between signers and are secure in the random
oracle model. As noted above, interaction between signers greatly deteriorates
the efficiency of system.

Another line of research that uses access structures is attribute-based encryp-
tion (ABE) schemes [19,12,4,17]. In attribute-based encryption schemes, the ci-
phertext is represented with multiple attributes and the user’s private key is
associated with an access structure that specifies what kinds of attributes are
accepted as valid one. If attributes in the ciphertext satisfies the access structure
in the user’s private key, then the user can decrypt the ciphertext; otherwise,

Non-interactive ID-Based DNF Signature Scheme and Its Extensions 169

the user can’t decrypt the ciphertext. The attribute-based encryption schemes
are easily integrated with the role-based access control (RBAC) system [20],
because roles in the RBAC are used for attributes in the ABE. The main dif-
ference between attribute-based systems and ID-based DNF systems is that in
attribute-based systems, a user has a private key for multiple attributes, while
in ID-based DNF systems, a user has a private key for a single attribute. So the
non-interactiveness is not needed in attribute-based systems, but the collusion
resistance that prevents the construction of new private key from different user’s
private keys is essential in attribute-based systems.

2 Backgrounds

We review the access structure, the disjunctive normal form, the bilinear groups
and the complexity assumptions that our schemes are based on.

2.1 Access Structure

Let {P1, P2, · · · , Pn} be a set of parties. A collection A ⊆ 2{P1,P2,··· ,Pn} is mono-
tone if ∀B, C : if B ∈ A and B ⊆ C then C ∈ A. An access structure (respectively,
monotone access structure) is a collection (respectively, monotone collection) A

of non-empty subsets of {P1, P2, · · · , Pn}, i.e., A ⊆ 2{P1,P2,··· ,Pn}\{∅} [1]. The
sets in A are called the authorized sets, and the sets not in A are called the
unauthorized sets.

For ID-based systems, the parties are replaced as a set of identities, Thus the
access structure A contains the authorized set of identities.

2.2 Disjunctive Normal Form

A logical formula ψ is in disjunctive normal form (DNF) if and only if it is a
disjunction (∨) of one or more conjunctions (∧) of one or more literals where
literal is an atomic formula (atom) or its negation. We define a DNF formula ψ
as a logical formula ψ in disjunctive normal form with restriction that literal is
an identity. That is, ψ = ∨a

i=1 ∧bi

j=1 IDi,j where IDi,j is an identity. We say that
a set S of identities satisfies a DNF formula ψ if and only if there exist a set
S′ ⊆ S such that ψ(S′) = 1.

Note that an access structure A can be represented as a DNF formula ψ.
That is, the conjunction and the disjunction of the DNF formula ψ are used
to represent the subset of parties and the collection of subsets in the access
structure A respectively.

2.3 Bilinear Groups of Composite Order

Let n = pq where p and q are prime numbers. Let G and GT be two multicative
cyclic groups of same composite order n and g a generator of G. The bilinear
map e : G×G → GT has the following properties:

170 K. Lee, J.Y. Hwang, and D.H. Lee

1. Bilinearity: ∀u, v ∈ G and ∀a, b ∈ Zn, we have e(ua, vb) = e(u, v)ab where
the product in the exponent is a defined modulo n.

2. Non-degeneracy: e(g, g) �= 1 and is thus a generator of GT with order n.

We say that G is a bilinear group if the group operations in G and GT as well as
the bilinear map e are all efficiently computable. Note that e(·, ·) is symmetric
since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.4 Complexity Assumptions

We define two complexity assumptions: the Computational Diffie-Hellman and
the Subgroup Decision assumptions.

Computational Diffie-Hellman (CDH) Assumption. Let G be a bilinear
group of composite order n = pq. Let Gp be a subgroup of order p of G with
a generator gp ∈ Gp. The CDH assumption in Gp with the composite order
setting is that there is no probabilistic polynomial-time algorithm A that, given
a tuple (gp, g

a
p , gb

p) additionally with the description of bilinear group G and its
factorization (p, q) of order n, computes gab

p with non-negligible advantage. The
advantage of A is defined as follows:

AdvCDH
A,G,Gp

= Pr
[
A((n, p, q, G, GT , e), gp, g

a
p , gb

p) = gab
p

]
where the probability is taken over the random choice of the generator gp ∈ Gp

and a, b ∈ Zp, and the random bits consumed by A.

Subgroup Decision (SD) Assumption. Let G be a bilinear group of compos-
ite order n = pq. Let Gq be a subgroup of order q of G. The Subgroup Decision
(SD) assumption is that there is no probabilistic polynomial-time algorithm A
that, given the description of G and h selected at random either from G or from
Gq, decides whether h ∈ Gq or not with non-negligible advantage. The advantage
of A is defined as follows:

AdvSD
A,G,Gq

=
∣∣∣ Pr

[
h ∈R G : A((n, G, GT , e), h) = 1

]
−

Pr
[
h ∈R Gq : A((n, G, GT , e), h) = 1

] ∣∣∣
where the probability is taken over the random choice of h and the random bits
consumed by A.

3 Definitions

Informally, an ID-based DNF signature scheme is an identity-based signature
scheme expressing that the signature was generated by a signer set that satisfies
a DNF formula, but it does not leak any information about the signer set. An
ID-based DNF signature scheme should satisfy two security properties, namely,
unforgeability and anonymity. Unforgeability is satisfied if an adversary cannot
construct a valid signature on a DNF formula when he does not know private

Non-interactive ID-Based DNF Signature Scheme and Its Extensions 171

keys that satisfy the DNF formula. Anonymity is satisfied if an adversary cannot
distinguish which signer set generated the signature. For security model, we
adopt the strong definitions of ring signatures, namely, unforgeability against
insider corruption and anonymity against full key exposure in [3].

3.1 Definition of Scheme

An ID-based DNF signature (IBDNFS) scheme consists of five algorithms (Setup,
KeyGen, Sign, Merge, Verify). Formally it is defined as:

– Setup(1λ). The setup algorithm takes as input the security parameter, out-
puts a public parameters PP and a master secret key MK.

– KeyGen(ID, MK, PP). The key generation algorithm takes as input an iden-
tity ID, the master secret key MK and the public parameters PP, outputs a
private key SKID.

– Sign(M, ψ, SKID, PP). The individual signing algorithm takes as input a mes-
sage M , a DNF formula ψ, the private key SKID and the public parameters
PP, then outputs an individual signature θ for M and ψ.

– Merge(M, ψ, SS, PP). The merge algorithm takes as input a message M ,
a DNF formula ψ = ∨a

i=1 ∧bi

j=1 IDi,j , the individual signature set SS =
{(IDi∗,j , θi∗,j) | i∗ ∈ {1, . . . , a}}1≤j≤bi∗ and the public parameters PP, then
outputs the ID-based DNF signature σ.

– Verify(σ, M, ψ, PP). The verification algorithm takes as input a signature σ,
a message M , a DNF formula ψ and the public parameters PP, then outputs
“accept” or “reject”, depends on the validity of the signature.

For non-interactive ID-based DNF signature schemes, we separated the signa-
ture generation algorithm as Sign and Merge algorithms. Thus each user individ-
ually generates its own signature (without interactions), then someone merges
the whole individual signatures as an ID-based DNF signature. For interactive
ID-based DNF signature schemes, it is possible to combine Sign and Merge al-
gorithms.

If a DNF formula is represented as ψ = ∨1
i=1∧bi

j=1 IDi,j , then the ID-based DNF
signature of ψ equals with the ID-based multi-signature. If ψ = ∨a

i=1 ∧1
j=1 IDi,j ,

then the ID-based DNF signature of ψ equals with the ID-based ring signature.
In case of the ID-based threshold signature, the t-out-of-n threshold can be
restated as a DNF formula ψ.

3.2 Definition of Security

Unforgeability against insider corruption is defined via the following game be-
tween a challenger C and an adversary A:

Setup: C runs the setup algorithm and keeps the master secret key MK to itself,
then it gives the public parameters PP to A.

Queries: Adaptively, A can request any queries described below.
– Private key extraction query:A requests the private key on the identity ID.

172 K. Lee, J.Y. Hwang, and D.H. Lee

– Individual signature query: A requests an individual signature for a mes-
sage M , a DNF formula ψ and the identity ID.

– Signature query: A requests a signature for a message M and a DNF
formula ψ.

C accepts or responds to each request before accepting the next one. Amakes
qE private key extraction queries, qS signature queries (including individual
signature queries).

Output: Finally, A outputs a pair (σ∗, M∗, ψ∗) and wins the game if (1) the
corrupted identities set C = {IDi}1≤i≤qE by private key extraction queries
does not satisfy the DNF formula ψ∗; (2) let S be the set of identities that
was requested an individual signatures queries for (M∗, ψ∗), then S∪C does
not satisfy the DNF formula ψ∗; (3) A did not request a signature for a pair
(M∗, ψ∗); (4) Verify(σ∗, M∗, ψ∗, PP) = “accept”.

Let Succ be the event that A wins the above game. The advantage ofA is defined
as AdvIBDNFS-UF

A = Pr[Succ] where the probability is taken over the coin tosses
made by A and C.
Definition 1. An adversary A is said to (t, ε, qE , qS)-break an ID-based DNF
signature scheme if A runs in time at most t, A makes at most qE private key
extraction queries and at most qS signing oracle queries, and AdvIBDNFS-UF

A is at
least ε. An ID-based DNF signature scheme is (t, ε, qE , qS)-unforgeable if there
exists no adversary that (t, ε, qE , qS)-breaks it.

Anonymity against full key exposure is defined via the following game between
a challenger C and an adversary A.

Setup: C runs the setup algorithm and keeps the master secret key MK to itself,
then it gives the public parameters PP to A.

Queries: Adaptively, A can request any queries described below.
– Private key extraction query: A requests the private key on the identity

ID.
– Individual signature query: A requests an individual signature for a mes-

sage M , a DNF formula ψ and the identity ID.
– Signature query: A requests a signature for a message M and a DNF

formula ψ.
C accepts or responds to each request before accepting the next one. Amakes
qE private key extraction queries, qS signature queries (including individual
signature queries).

Challenges: A submits a challenge values (M, ψ, i0, i1) where ψ = ∨a
i=1 ∧bi

j=1

IDi,j and 1 ≤ i0 �= i1 ≤ a. C chooses a random coin c ∈ {0, 1} and computes
σ = Merge(M, ψ, SSc, PP) where SSc = {(IDic,j , θic,j)}1≤j≤bic

such that θic,j

is an individual signature for (M, ψ) by the private key of IDic,j . Then C
gives σ to A.

Output: Finally, A outputs a guess c′ of c and wins the game if c′ = c.

Let Succ be the event that A wins the above game. The advantage ofA is defined
as AdvIBDNFS-AN

A =
∣∣Pr[Succ] − 1

2

∣∣ where the probability is taken over the coin
tosses made by A and the challenger.

Non-interactive ID-Based DNF Signature Scheme and Its Extensions 173

Definition 2. An adversary A is said to (t, ε, qE , qS)-break an ID-based DNF
signature scheme if A runs in time at most t, A makes at most qE private key
extraction queries and at most qS signing oracle queries, and AdvIBDNFS-AN

A is at
least ε. An ID-based DNF signature scheme is (t, ε, qE, qS)-anonymous if there
exists no adversary that (t, ε, qE , qS)-breaks it.

4 Extended GOS Proof

Boneh, Goh, and Nissim [5] proposed an encryption scheme that has homo-
morphic property that allows computations on ciphertexts involving arbitrary
additions and one multiplication. Groth, Ostrovsky, and Sahai [13] constructed
efficient non-interactive witness-indistinguishable proof system based on BGN
encryption system. In this section, we construct an extended GOS proof system
for encryption of two l-bit strings (0, . . . , 0) and (1, . . . , 1). Later, we use it for
our construction of a DNF signature. The extended GOS proof is described as
follows.

Setup(1λ): The setup algorithm takes as input a security parameter λ, then it
generates a bilinear group G of composite order n = pq where p and q are
random primes of bit size Θ(λ), and it selects random generators g ∈ G and
h ∈ Gq. Then the common reference string is set by CRS = (n, G, GT , e, g, h).

Statement: Let A = (0, . . . , 0)l ∈ Zl
p and B = (1, . . . , 1)l ∈ Zl

p where l < p. The
statement is a ciphertext C = (C1, . . . , Cl), and the claim is that there exists
a witness W = (M = (m1, . . . , ml), Z = (z1, . . . , zl)) ∈ {A, B} × Zl

n such
that mi ∈ {0, 1} and Ci = gmihzi .

Prove(C, W, CRS): To generate a proof on the ciphertext C = (C1, . . . , Cl) with

the witness W = (M = (m1, . . . , ml), Z = (z1, . . . , zl)), it first checks M
?
∈

{A, B} and Ci
?= gmihzi for all i ∈ {1, . . . , l}. Next it defines f as f = 0

if M = A and f = 1 if M = B. Then it outputs a proof of the claim as
P =

(
π1 = gm1hz1 , . . . , πl = gmlhzl , π = (gl(2f−1) · hΣl

i=1zi)Σl
i=1zi

)
.

Verify(C, P, CRS): To verify the proof P = (π1, . . . , πl, π) for the ciphertext C =
(C1, . . . , Cl), it checks e(Ci, Ci/g) ?= e(h, πi) for all i ∈ {1, . . . , l}, and checks
e(
∏l

j=1 Cj ,
∏l

j=1(Cj/g)) ?= e(h, π). If all tests are successful, then it outputs
“accept”; otherwise it outputs “reject”.

Remark 1. For A = 0 and B = 1 with bit-length 1, our extended GOS proof is
exactly the original GOS proof.

Theorem 1. The above extended GOS proof satisfies perfect completeness, per-
fect soundness, and computational witness indistinguishability under the sub-
group decision assumption.

The proof is omitted due to space constraints.

174 K. Lee, J.Y. Hwang, and D.H. Lee

5 Construction with Random Oracles

In this section, we construct a non-interactive ID-based DNF signature scheme
and prove the security of our scheme in the random oracle model. Design intuition
for our construction is consistently combining Shacham-Waters ring signature
scheme [21] with Gentry-Ramzan multi-signature scheme [11]. To combine these
two schemes, we work in a bilinear group of composite order.

5.1 Description

Our construction is described as follows.

Setup(1λ): The setup algorithm first generates a bilinear group G of composite
order n = pq where p and q are random primes of bit size Θ(λ). Next, it
chooses random generators g, w ∈ G, h ∈ Gq, and a random exponent s ∈ Zn.
Finally it chooses cryptographic hash functions H1, H2 : {0, 1}∗ → G. Then
the public parameters PP and the master secret key MK are set by

PP =
(
n, G, GT , e, g, g1 = gs, h, h1 = hs, w, H1, H2

)
, MK = s.

KeyGen(ID, MK, PP): To generate a private key for the identity ID using the
master secret key MK, the keygen algorithm computes QID = H1(ID) and
generates the private key SKID = Qs

ID.
Sign(M, ψ, SKID, PP): To generate an individual signature for a message M and

a DNF formula ψ under the private key SKID = Qs
ID, the sign algorithm

first computes Hm = H2(M, ψ) and chooses a random r ∈ Zn. Then the
individual signature is constructed as,

θ = (V, R) =
(
Qs

ID ·Hr
m, gr

)
∈ G

2.

Merge(M, ψ, SS, PP): The merge algorithm takes a message M , a DNF formula
ψ = ∨a

i=1 ∧bi

j=1 IDi,j , an individual signature set SS = {(IDi∗,j , θi∗,j)}1≤j≤bi∗
where i∗ is an index such that 1 ≤ i∗ ≤ a and θi∗,j is an individual signature
(Vi∗,j , Ri∗,j) that was generated by IDi∗,j . Let {fi}1≤i≤a be such that fi = 1
if i = i∗ and fi = 0 if i �= i∗. To generate a signature, it proceeds as follows:
1. First, the set SS is used to create a multi-signature of the message M as

Ṽ =
∏bi∗

j=1 Vi∗,j and R̃ =
∏bi∗

j=1 Ri∗,j .
2. For all i ∈ {1, . . . , a}, it computes Yi =

∏bi

j=1 H1(IDi,j) and chooses a ran-
dom zi ∈ Zn, then calculatesCi =(Yi/w)fihzi andπi =((Yi/w)2fi−1hzi)zi .

3. To convert (Ṽ , R̃) as a blinded one that is verifiable and anonymous, it
computes z =

∑a
i=1 zi and sets σ1 = Ṽ · hz

1 and σ2 = R̃.
4. The final signature is output as,

σ =
(
σ1, σ2, {(Ci, πi)}1≤i≤a

)
∈ G

2a+2.

Verify(σ, M, ψ, PP): The verify algorithm takes as input a signature σ, a message
M and a DNF formula ψ = ∨a

i=1 ∧bi

j=1 IDi,j , then proceeds as follows.

Non-interactive ID-Based DNF Signature Scheme and Its Extensions 175

1. For all i ∈ {1, . . . , a}, it computes Yi =
∏bi

j=1 H1(IDi,j) and checks if

e(Ci, Ci/(Yi/w)) ?= e(h, πi).
2. Next, it computes Hm=H2(M, ψ) and checks if e(g, σ1)

?=e(g1, w
∏a

i=1 Ci)·
e(σ2, Hm).

3. If all tests are successful, then it outputs “accept”; otherwise it outputs
“reject”.

5.2 Correctness

The correctness of the signature is obtained by the following equation:

e(g, σ1) = e(g,

bi∗∏
j=1

(Qs
IDi∗,j

·Hrj
m) · hz

1) = e(g, (
bi∗∏
j=1

QIDi∗,j
)s · (hz)s) · e(g,

bi∗∏
j=1

Hrj
m)

= e(gs, Yi∗ · hz) · e(
bi∗∏
j=1

grj , Hm) = e(g1, w

a∏
i=1

Ci) · e(σ2, Hm)

where QIDi∗,j
= H1(IDi∗,j) and Hm = H2(M, ψ).

5.3 Security

Theorem 2. The above ID-based DNF signature scheme satisfies unforgeability
under the CDH assumption on Gp in the random oracle model.

Theorem 3. The above ID-based DNF signature scheme satisfies anonymity
under the SD assumption in a bilinear group G of composite order n.

The proofs are omitted due to space constraints.

6 Construction without Random Oracles

In this section, we construct an ID-based DNF signature without random oracles.

Design Principle. The main idea of our construction to remove random oracles
is combining Shacham-Waters ring signature scheme [21] with Waters two-level
signature scheme [23]. However, a simple combination of the two schemes does
not lead to a provably secure scheme, because Waters two-level signature scheme
reveals the number of actual signers through the size of signature. To overcome
the problem, we first construct an ID-based DNF signature where the number
of identities in conjunctions is same and then we remove the restriction.

For the construction where the number of identities in conjunctions is same,
each signer first generates Waters two-level signature by re-randomizing the pri-
vate key to break linkability of the signature. Next, a representor of signers
combines these signatures to generate a DNF signature associated with a DNF
formula ψ = ∨a

i=1 ∧b
j=1 IDi,j . This DNF formula ψ can be represented as a b× a

176 K. Lee, J.Y. Hwang, and D.H. Lee

matrix where each column has identities in conjunction of ψ. We use Shacham-
Waters ring signature techniques for each row by constructing BGN encryptions
and GOS proofs for each entry in the matrix. To guarantee that the actual
signers come from the same column in the matrix, we apply our extended GOS
proof technique to each column. Additionally, we construct BGN encryptions
and GOS proofs for each bit value of actual signers. Since the product of BGN
encryptions of each bit value is same with the product of BGN encryption of
rows in the matrix, these are redundant values. However we need these values
for our security proof. The construction is described as follows.

6.1 Description

Setup(1λ): The setup algorithm first generates a bilinear group G of composite
order n = pq where p and q are random primes of bit size Θ(λ). Next, it
chooses random generators g, g2, u

′, u1, . . . , ul, v
′, v1, . . . , vm, w ∈ G, h ∈ Gq,

a random exponent α ∈ Zn, and a collision-resistant hash function H :
{0, 1}∗ → {0, 1}m. Then the public parameters PP and the master secret
key MK are set by

PP =
(
n, G, GT , e, g, g1 = gα, g2, h, u′, u1, . . . , ul, v

′, v1, . . . , vm, w, H
)
,

MK = gα
2 .

KeyGen(ID, MK, PP): To generate a private key for an identity ID=(κ1, . . . , κl) ∈
{0, 1}l using the master secret key MK, the keygen algorithm selects a ran-
dom exponent s1 ∈ Zn, and outputs

SKID = (K1, K2, K3) =
(
gα
2 · (u′

l∏
i=1

uκi

i)s1 , gs1 , hs1
)
∈ G

3.

Sign(M, ψ, SKID, PP): To generate an individual signature for a message M and a
DNF formula ψ using the private key SKID, the sign algorithm first computes
(μ1, . . . , μm) = H(M, ψ) and chooses random exponents s2, r ∈ Zn, then it
creates V = K1 · (u′∏l

i=1 uκi

i)s2 · (v′
∏m

j=1 v
μj

j)r, S = K2 · gs2 , T = K3 ·hs2 ,
and R = gr. If we let s = s1 + s2, then we have the individual signature as

θ =
(
V, S, T, R

)
=

(
gα
2 · (u′

l∏
i=1

uκi

i)s · (v′
m∏

j=1

v
μj

j)r, gs, hs, gr
)
∈ G

4.

Merge(M, ψ, SS, PP): The merge algorithm takes a message M , a DNF formula
ψ = ∨a

i=1 ∧b
j=1 IDi,j , an individual signature set SS = {(IDi∗,j , θi∗,j)}1≤j≤b

where i∗ is an index such that 1 ≤ i∗ ≤ a and θi∗,j is an individual signature
(Vi∗,j , Si∗,j, Ti∗,j , Ri∗,j) that was generated by IDi∗,j . Let {fi}1≤i≤a be such
that fi = 1 if i = i∗ and fi = 0 if i �= i∗. To generate a signature, it proceeds
as follows.
1. First, the set SS is used to create a multi-signature of the message M as
{(Ṽj = Vi∗,j, S̃j = Si∗,j, T̃j = Ti∗,j , R̃j = Ri∗,j)}1≤j≤b.

Non-interactive ID-Based DNF Signature Scheme and Its Extensions 177

2. For all i ∈ {1, . . . , a}, it defines Yi,j = u′∏l
k=1 u

κi,j,k

k where IDi,j =
(κi,j,1, . . . , κi,j,l) ∈ {0, 1}l, and chooses random zi,1, . . . , zi,b ∈ Zn, then it
computes {(Ci,j = (Yi,j/w)fihzi,j , πC

i,j = ((Yi,j/w)2fi−1hzi,j)zi,j)}1≤j≤b.

Next it constructs πcol
i = ((

∏b
j=1(Yi,j/w))2fi−1hzcol

i)zcol
i where zcol

i =∑b
j=1 zi,j.

3. For all j ∈ {1, . . . , b}, it chooses random tj,1, . . . , tj,l−1 ∈ Zn and sets
tj,l =

∑a
i=1 zi,j −

∑l−1
k=1 tj,k, then it constructs {(Dj,k = u

κi∗,j,k

k · htj,k ,

πD
j,k = (u2κi∗,j,k−1

k · htj,k)tj,k)}1≤k≤l for IDi∗,j = (κi∗,j,1, . . . , κi∗,j,l).
4. To convert {(Ṽj , S̃j , T̃j, R̃j)}1≤j≤b as a blinded one that is verifiable and

anonymous, it computes {zrow
j =

∑a
i=1 zi,j}1≤j≤b and sets {(σ1,j = Ṽj ·

T̃
zrow

j

j , σ2,j = S̃j , σ3,j = R̃j)}1≤j≤b.
5. The final signature is output as,

σ =
(
{(σ1,j , σ2,j , σ3,j}1≤j≤b, {({(Ci,j , π

C
i,j)}1≤j≤b, πcol

i)}1≤i≤a,

{(Dj,k, πD
j,k)}1≤j≤b,1≤k≤l

)
∈ G

2ab+a+3b+2lb.

Verify(σ, M, ψ, PP): The verify algorithm takes as input a signature σ, a message
M , and a DNF formula ψ = ∨a

i=1 ∧b
j=1 IDi,j , then it proceeds as follows.

1. For all i ∈ {1, . . . , a}, it computes Yi,j = u′∏l
k=1 u

κi,j,k

k where IDi,j =

(κi,j,1, . . . , κi,j,l), then it checks that e(Ci,j , Ci,j/(Yi,j/w)) ?= e(h, πC
i,j)

for all j ∈ {1, . . . , b} and e(
∏b

j=1 Ci,j ,
∏b

j=1(Ci,j/(Yi,j/w))) ?= e(h, πcol
i).

2. For all j ∈ {1, . . . , b}, it checks that e(Dj,k, Dj,k/uk) ?= e(h, πD
j,k) for all

k ∈ {1, . . . , l} and u′∏l
k=1 Dj,k

?= wj

∏l
i=1 Ci,j .

3. Next, it computes (μ1, . . . , μm) = H(M, ψ) and checks that

∀j ∈ {1, . . . , b}, e(g, σ1,j)
?= e(g1, g2) · e(σ2,j , w

a∏
i=1

Ci,j) · e(σ3,j , v
′

m∏
i=1

vμi
j).

4. If all tests are successful, then it outputs “accept”; otherwise it outputs
“reject”.

6.2 Correctness

The correctness of the signature is obtained by the following equation:

e(g, σ1,j) = e(g, gα
2 · (u′

l∏
k=1

u
κi∗,j,k

k)sj · (v′
m∏

k=1

vμk

k)rj · hsj ·zrow
j)

= e(g1, g2) · e(σ2,j , w

a∏
i=1

Ci,j) · e(σ3,j , v
′

m∏
k=1

vμk

k)

where w
∏a

i=1 Ci,j = (u′∏l
k=1 u

κi∗,j,k

k) · hzrow
j .

178 K. Lee, J.Y. Hwang, and D.H. Lee

6.3 Security

Theorem 4. The above ID-based DNF signature scheme satisfies unforgeability
under the CDH assumption on Gp and the collision-resistant hash function H.

The proof is given in the appendix A.

Theorem 5. The above ID-based DNF signature scheme satisfies anonymity
under the SD assumption in a bilinear group G of composite order n.

The proof is omitted due to space constraints.

6.4 Removing the Restriction

The restriction that the number of identities in all conjunctions should be same
can be removed by adding dummy private keys of dummy identities to the public
parameters. Suppose that ψ is an original DNF formula such that the number
of identities in conjunctions are not same, then we define ψ′ as the number of
identities in conjunctions are same by adding dummy identities to ψ. Note that
we should not expand the number of disjunctions by adding dummy identities,
because it is trivial to forge the signature of ψ′ that contains a conjunction
of dummy identities only. Since private keys for dummy identities are known to
everyone, the individual signatures for dummy identities can be generated by the
merge algorithm. Unforgeability and anonymity are follows from the facts that
dummy private keys can be regarded as extracted private keys, dummy private
keys alone can’t satisfy ψ′, and security models considers insider corruption and
full key exposure.

Theorem 6. The modified ID-based DNF signature scheme with dummy identi-
ties satisfies unforgeability and anonymity if the original ID-based DNF signature
scheme in the section 6.1 satisfies unforgeability and anonymity.

The proof is omitted due to space constraints.

7 Extensions

In this section, we present two extensions of our ID-based DNF signature with
random oracles.

Multiple KGCs. One drawback of ID-based system is that the master secret
key is only kept in the Key Generation Center (KGC). This lags the scalability
of the system, thus multiple KGCs will be needed to overcome the scalability
problem. Our construction with random oracles can be modified to support mul-
tiple KGCs. The idea is extending ID-based multi-signature to support multiple
KGCs and using our extended GOS proof for zero or one bit-strings to guarantee
that the hidden identities come from the same signers group.

Different Messages. In ID-based DNF signatures, all actual signers should
generate individual signatures on a same message. However it is natural to allow

Non-interactive ID-Based DNF Signature Scheme and Its Extensions 179

each signer to generate an individual signature for it’s own message. Recently,
Boyen proposed similar signature scheme in public key system [6]. The idea to
construct an ID-based DNF signature for different messages is using Gentry-
Ramzan’s ID-based aggregate signature scheme [11] as a building block. In the
ID-based aggregate signature scheme, given n signatures on n distinct messages
from n distinct users, all these signatures can be aggregated into a single short
signature.

8 Conclusion

We presented the first non-interactive ID-based DNF signatures that are secure
under the CDH and subgroup decision assumptions. Our first construction uses
random oracles, but it is efficient and the size of signature is compact. Our
second construction does not use random oracles, but the size of signature is not
compact. We note that the second construction directly yields the first ID-based
ring signature to achieve signer anonymity against full key exposure without
random oracles, because an ID-based ring signature scheme is a special case
of an ID-based DNF signature scheme. Additionally we presented extensions of
our scheme that support multiple KGCs and different messages. One interesting
open problem is to construct a compact ID-based DNF signature without random
oracles.

References

1. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

2. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identifi-
cation and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

3. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2007)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 321–334
(2007)

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–342. Springer, Heidelberg
(2005)

6. Boyen, X.: Mesh signatures How to leak a secret with unwitting and unwilling
participants. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 210–
227. Springer, Heidelberg (2007)

7. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to
ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480.
Springer, Heidelberg (2002)

8. Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman groups.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidel-
berg (2003)

180 K. Lee, J.Y. Hwang, and D.H. Lee

9. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In:
Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
499–512. Springer, Heidelberg (2005)

10. Diffe, W., Hellman, M.E.: New directions in cryptgraphy. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

11. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273.
Springer, Heidelberg (2006)

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute based encryption for fine-
graned access control of encrypted data. In: ACM conference on Computer and
Communications Security (ACM CCS), pp. 89–98 (2006)

13. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

14. Herranz, J., Sáez, G.: New identity-based ring signature schemes. In: López, J.,
Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 27–39. Springer,
Heidelberg (2004)

15. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidel-
berg (2003)

16. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

17. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM conference on Computer and Communi-
cations Security (ACM CCS), pp. 195–203 (2007)

18. Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

19. Sahai, A., Waters, B.: Fuzzy identity based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

20. Sandhu, R.S., Coyne, E.J., Youman, C.E.: Role-based access control models. IEEE
Computer 29(2), 38–47 (1996)

21. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

22. Shamir, A.: Identity-based cryptosystems and signaure shcemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

23. Waters, B.: Efficient identity-based encryption without random oralces. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

24. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

A Proof of Theorem 4

Proof. In this proof, we suppose that the adversary does not cause hash colli-
sion. That is, it does not issue two message pair (M, ψ) and (M ′, ψ′) such that
(M, ψ) �= (M ′, ψ′) but H(M, ψ) = H(M ′, ψ′). Note that if the adversary causes

Non-interactive ID-Based DNF Signature Scheme and Its Extensions 181

hash collision, it can be converted to an adversary for collision-resistant hash
functions. Thus we can divide the adversary as two types according to their
forgery as follows:

1. Type-1 adversary A1 is one of which forgery is not such that exactly one of
the exponents {fi} equals 1, that is,

∑a
i=1 fi �= 1.

2. Type-2 adversary A2 is one of which forgery is such that exactly one of the
exponents {fi} equals 1, that is,

∑a
i=1 fi = 1.

For each type of adversary A1 and A2, we will construct algorithms B1 and B2

respectively. The proof easily follows from following two lemmas and facts that
the CDH attacker can be constructed from the discrete logarithm attacker and
Waters two-level signature is secure under CDH assumption. ��

Lemma 1. If there exists a type-1 adversary A1, then there exists an algorithm
B1 that solves the discrete logarithm problem on Gp.

Proof. Suppose there exists a type-1 adversary A1 that breaks unforgeability of
our ID-based DNF signature scheme. The algorithm B1 that solves the discrete
logarithm problem using A1 is given: The description of the bilinear group G,
the factorization p, q of order n, and the tuple (gp, g

α
p) where gp is a generator

of Gp. Its goal is to compute α. Then B1 that interacts with A1 is described as
follows.

Setup: The algorithm B1 selects random generators (g, g2, v
′, v1, . . . , vm) ∈

Gm+3, h ∈ Gq, and random exponents (γ, x′, x1, . . . , xl, y) ∈ Zl+3
n with re-

striction that y mod p �= 0. Next it selects a collision-resistant hash function
H and sets PP = (n, G, GT , e, g, g1 = gγ , g2, h, u′ = gx′

, u1 = gx1, . . . , ul =
gxl , v′, v1, . . . , vm, w = (gα

p h)y, H) and MK = gγ
2 .

Queries: B1 can correctly response to A1’s various queries, since it knows the
master secret key.

Output: Finally,A1 outputs (σ∗, M∗, ψ∗) where σ∗ = ({(σ1,j , σ2,j , σ3,j)}1≤j≤b,
{({(Ci,j , π

C
i,j)}1≤j≤b, π

col
i)}1≤i≤a, {(Dj,k, πD

j,k)}1≤j≤b,1≤k≤l) and ψ∗ =
∨a

i=1 ∧b
j=1 IDi,j .

If (1) the corrupted identities set C = {IDi}1≤i≤qE by private key extraction
queries satisfies the DNF formula ψ∗; or (2) let S be the set of identity that
was requested an individual signatures queries for (M∗, ψ∗), then S ∪C satisfies
the DNF formula ψ∗; or (3) A did request a signature for a pair (M∗, ψ∗); or
(4) Verify(σ∗, M∗, ψ∗, PP) �= “accept”, then B1 stops the simulation because A1

was not successful. Otherwise, B1 can solve the given problem as follows: First,
it recovers {fi}1≤i≤a by setting fi = 0 if C

δp

i,j = 1 or fi = 1 otherwise. Let
f =

∑a
i=1 fi, then f �= 1, because A1 is a type-1 adversary. Let I be a set of

index i such that fi = 1 and Yi,j = u′∏l
k=1 u

κi,j,k

k . We obtain

w

a∏
i=1

Ci,j = w ·
∏
i∈I

(Yi,j/w) · hzrow
j = w1−f ·

∏
i∈I

Yi,j · hzrow
j .

182 K. Lee, J.Y. Hwang, and D.H. Lee

Since the signature is valid one, it should satisfy the verification equation by un-
known identity. That is, there exists ID+

j =(κ+
j,1, . . . , κ

+
j,l) such that w

∏a
i=1 Ci,j =

Y +
j · hzrow

j where Y +
j = u′∏l

k=1 u
κ+

j,k

k , because of the equation

w

a∏
i=1

Ci,j = u′
l∏

k=1

Dj,k = u′
l∏

k=1

u
κ+

j,k

k · hzrow
j = Y +

j · hzrow
j .

Then B1 recovers the identity ID+
j from {(Dj,k, πD

j,k)} by setting κ+
j,k = 0 if

D
δp

j,k = 1 or κ+
j,k = 1 otherwise. Let F (IDi,j) = x′ +

∑l
k=1 κi,j,k · xk where

IDi,j = (κi,j,1, . . . , κi,j,1). We obtain the following equation from the above two
equations by raising δp to both sides,(

w(1−f)
)δp =

(
Y +

j /
∏
i∈I

Yi,j

)δp =
(
gF (ID+

j)−Σi∈IF (IDi,j)
)δp

.

Additionally, we have w = (gα
p h)y, y mod p �= 0, and f �= 1. Therefore it solves

the given discrete logarithm problem as follows:

α = (F (ID+
j)−

∑
i∈I

F (IDi,j)) · y−1 · (1− f)−1 mod p.

Analysis. Let AdvDL
B1

be the advantage of B1 that breaks the discrete logarithm
problem. Since B1 succeeds whenever A1 does, we have AdvDL

B1
≥ AdvIBDNF-UF

A1
.

This completes our proof. ��

Lemma 2. If there exists a type-2 adversary A2, then there exists an algorithm
B2 that breaks the unforgeability of Waters two-level signature scheme.

Proof. Suppose there exists a type-2 adversary A2 that breaks unforgeability
of our ID-based DNF signature scheme. The algorithm B2 that forges Waters
two-level signature using A2 is given: The description of the bilinear group G,
the factorization p, q of order n, and the public parameter of Waters two-level
signature as P̃P = (p, Gp, GTp , e, g̃, g̃1, g̃2, ũ

′, ũ1, . . . , ũl, ṽ
′, ṽ1, . . . , ṽm, H) where

all is in subgroups of order p. Then B2 that interacts with A2 is described as
follows.

Setup: The algorithm B2 selects random (f, f2, h, γ′, γ1, . . . , γl, ν
′, ν1, . . . , νm) ∈

Gl+m+5
q , w ∈ G, and a random exponent β ∈ Z∗

q . Next it sets PP =
(n, G, GT , e, g = g̃f, g1 = g̃1f

β, g2 = g̃2f2, h, u′ = ũ′γ′, u1 = ũ1γ1, . . . , ul =
ũlγl, v

′ = ṽ′ν′, v1 = ṽ1ν1, . . . , vm = ṽmνm, w, H) and gives PP to A2. The
PP are correctly distributed.

Queries: For a private key extraction query on ID, B2 first asks the private key
of Waters two-level signature and receives S̃KID = (K̃1, K̃2) ∈ G2

p, then it
chooses a random s ∈ Zq and constructs the private key as SKID = (K1 =
K̃1 · fβ · (γ′∏l

i=1 γκi

i)s, K2 = K̃2 · fs, K3 = hs).

Non-interactive ID-Based DNF Signature Scheme and Its Extensions 183

For an individual signature query on (M, ψ, ID), B2 first asks the signature of
Waters two-level signature and receives θ̃ = (θ̃1, θ̃2, θ̃3), then it chooses ran-
dom s, r ∈ Zq and constructs the signature as θ = (V = θ̃1·fβ ·(γ′ ∏l

i=1 γκi

i)s·
(ν′ ∏m

i=1 νμi

i)r, S = θ̃2 · fs, T = hs, R = θ̃3 · f r).

For a signature query on (M, ψ) where ψ = ∨a
i=1 ∧bi

j=1 IDi,j , B2 first selects
an arbitrary index i∗ and constructs individual signatures of IDi∗,j for all j,
then it creates the final signature using Merge algorithm.

Output: Finally,A2 outputs (σ∗, M∗, ψ∗) where σ∗ = ({(σ1,j , σ2,j , σ3,j)}1≤j≤b,
{({(Ci,j , π

C
i,j)}1≤j≤b, π

col
i)}1≤i≤a, {(Dj,k, πD

j,k)}1≤j≤b,1≤k≤l) and ψ∗ =
∨a

i=1 ∧b
j=1 IDi,j .

If (1) the corrupted identities set C = {IDi}1≤i≤qE by private key extraction
queries satisfies the DNF formula ψ∗; or (2) let S be the set of identity that
was requested an individual signatures queries for (M∗, ψ∗), then S ∪C satisfies
the DNF formula ψ∗; or (3) A did request a signature for a pair (M∗, ψ∗); or
(4) Verify(σ∗, M∗, ψ∗, PP) �= “accept”, then B2 stops the simulation because A2

was not successful. Otherwise, B2 can convert the signature to Waters two-level
signature as follows: First, it recovers {fi}1≤i≤a by setting fi = 0 if C

δp

i,j = 1
or fi = 1 otherwise. Since A2 is a type-2 adversary, there is exactly one index
i∗ such that fi∗ = 1. Using the index i∗, the signers identities {IDi∗,j}1≤j≤b

can be reconstructed from ψ. Let the index j∗ be such that neither the private
key extraction for IDi∗,j∗ and an individual signature on (M∗, ψ∗) by IDi∗,j∗

was queried by A2. By the conditions of A2’s valid forgery, the index j∗ always
exists. We obtain from the verification equation by raising δp,

e(g̃, σ
δp

1,j∗) = e(g̃1, g̃2) · e(σδp

2,j∗ , (w
a∏

i=1

Ci,j∗)δp) · e(σδp

3,j∗ , (v′
m∏

i=1

vμi

j∗)δp)

= e(g̃1, g̃2) · e(σδp

2,j∗ , ũ′
l∏

i=1

ũκi

j∗) · e(σ
δp

3,j∗ , ṽ
′

m∏
i=1

ṽμi

j∗).

Thus (σδp

1,j∗ , σ
δp

2,j∗ , σ
δp

3,j∗) is a valid Waters two-level signature on (M∗, ψ∗) by the
identity IDi∗,j∗ . Then B2 outputs it and halts.

Analysis. Let AdvW-IBS
B2

be the advantage of B2 that breaks Waters two-level
signature scheme. Since B2 succeeds whenever A2 does, we have AdvW-IBS

B2
≥

AdvIBDNF-UF
A2

. This completes our proof. ��

How to Balance Privacy with Authenticity�

Pairat Thorncharoensri, Willy Susilo, and Yi Mu

Centre for Computer and Information Security
School of Computer Science & Software Engineering

University of Wollongong, Australia
{pt78,wsusilo,ymu}@uow.edu.au

Abstract. In several occasions, it is important to consider the privacy
of an individual together with the authenticity of the message produced
by that individual or hold by that individual. In the latter scenario,
the authenticity of the message enables one to prove that the message
that he/she holds is authentic to other people. Nonetheless, this will
normally incur that the privacy of the signer will be exposed at the same
time. In this paper, we consider a situation where the authenticity of
the message will be ensured together with the privacy of the signature
holder, if and only if the signature is designated once to a third party.
However, as soon as there is more than one designation occurs, then the
privacy of the signer (and the signature holder) will cease. We consider
real scenarios where this type of notion is required. We formalize this
notion as a one-time universal designated verifier signature, and for the
first time in the literature, we provide a concrete scheme to realize this
primitive.

Keywords: privacy, authenticity, universal designated verifier signature
schemes, one time, non-transferability.

1 Introduction

Consider a real life scenario where a patient Henry has been identified with
some sensitive disease, such as AIDS, by the doctor Susan. Susan will provide a
statement for Henry so that Henry can be referred to a specialist, who will be
able to help Henry. Nonetheless, due to the medical restriction, Henry is only
permitted to see one specialist who will conduct further test on him. In this case,
we can observe that there are two important properties attached to this scenario,
namely the privacy of the patient together with the authenticity provided by
Susan. Firstly, Susan needs to provide an authenticated statement to Henry so
that Henry can convince a specialist of his choice, but with limitation that this
statement can only be used once. Therefore, there must be a mechanism to stop
Henry to use this authentication statement for more than once. We envisage that
this scenario can be realized if there is a primitive that will behave as follows.
Susan can issue a message m and sign the message using her secret key SKS ,
	 This work is partially supported by ARC Linkage Project Grant LP0667899.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 184–201, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

How to Balance Privacy with Authenticity 185

to produce a signature σ. Note that σ can be verified publicly using Susan’s
public key PKS , but this signature will only be provided to Henry via a secure
and authenticated channel, and hence, nobody can verify the authenticity of
this signature. When Henry wants to convince a specialist, say Charlie, then
Henry will designate Susan’s signature, i.e. to convert σ to σ̃, to Charlie, such
that only Charlie will be convinced with the authenticity of σ̃. This process
should be guaranteed such that σ̃ will not allow anyone other than Charlie
to be convinced about the authenticity of the message m, issued originally by
Susan. Nonetheless, we have to also restrict Henry so that he can only designate
the signature once. That means, if Henry issues another designated signature
σ̄ on the same σ, then the knowledge of σ̄ and σ̃ should be able to be used
to derive σ. This way, Henry’s privacy will not be provided any longer, if he
misbehaves. This problem seems quite intriguing but unfortunately, there is no
existing cryptographic primitive that can be used to realize this scenario. We
will demonstrate that there exist a few primitives in the literature that is quite
close to this scenario, but unfortunately they cannot be used adequately to solve
this problem.

The second motivating example is derived from the online game known as
Ragnarok1. This online game provides a way to allow the users to trade their
items during its gameplay. We note that this feature is not unique to Ragnarok,
but it also appears in some other online games, such as Gaiaonline2, etc. The
normal requirement in the trading in these games is there is no information
of the traders in the game itself. The scenario is as follows. Suppose a player,
Hugh, wants to convince another player, Vicky, that he indeed has some money
(or points) or some rare items in the online game and he would like to trade
it with her. The online game administrator is the one who provides a signature
on Hugh’s items. Here, Hugh has to convince Vicky (and only Vicky) when the
trade happens. If Hugh wants to cheat, then he will try to convince another
person but this will indeed reveal his privacy on the administrator’s signature.

Previous Works
As mentioned earlier, there is no primitive that provides what is required in the
above scenario. Nonetheless, there are some related primitives in the literature
that are closely related to what is required above.

The notion of designated verifier signatures was introduced by Jakobsson,
Sako and Impagliazzo in [4]. In this notion, a signature does not provide only
authentication of a message but it also provides the deniability property that
allows the signer to deny the signature (since the verifier can also generate such a
signature). Only the designated verifier will be convinced with the authenticity
of the signature on the message, since the verifier can always construct this
signature by himself. The topics on designated verifier signatures areas have
been widely studied, for example [8,7,10,11,1,13].

In Asiacrypt 2003, Steinfeld, Bull, Wang and Pieprzyk [12] introduced
an interesting cryptographic primitive called “Universal Designated-Verifier
1 http://ragnarok-online-2.com/game/guide/items
2 http://www.gaiaonline.com

186 P. Thorncharoensri, W. Susilo, and Y. Mu

Signature (UDVS) Scheme”. A UDVS scheme is an ordinary signature scheme
with an additional functionality that provides a privilege to a signature holder
to designate the signature to any verifier that is chosen by him. To protect
the privacy of the original signer, a designated verifier signature generated by
the signature holder is designed to convince only the designated verifier. UDVS
provides a very close feature that is required in the above application.

The first UDVS scheme without random oracle model was proposed by Zhang,
Furukawa and Imai in [15]. In SCN 2006, Laguillaumie, Libert and Quisquater
proposed two efficient UDVS scheme in the standard model [6]. Introduced by
Huang et al. in [3], the restricted UDVS scheme is a UDVS scheme with addi-
tional functionality to limit a power of signature holder in generating a UDVS
signature for only k times. If the signature holder generated more than k times
then k UDVS signatures are used to deduce a standard signature. In this setting,
a signature holder is the one who controls the limited number(k) of designated
verifier signature and coefficients in polynomial used to limit the number of des-
ignations. In ISC 2007, Laguillaumie and Vergnaud argued that the restricted
UDVS scheme in [3] has failed to achieve the restriction property [9]. Nonethe-
less, there is no way to limit the ability of the signature holder to only convince
one single verifier.

Our Contributions
In this paper, we introduce the notion of One-Time Universal Designated Verifier
Signature (OT-UDVS) scheme to capture the above requirements. We provide a
model to capture this notion and present a concrete scheme and its security proof
to show that our scheme is secure in our model. Additionally, our security model
also captures a collusion between a malicious signer and a malicious verifier.

Organization of The Paper
The paper is organized as follows. In the next Section, we will review some
preliminaries that will be used throughout this paper. In Section 3 and 4, the
definition of OT-UDVS and its security model will be presented. In Section 5,
we will present the overview of the building blocks required for constructing
our concrete OT-UDVS scheme. We present our OT-UDVS scheme in Section
6. Then, the security proof of our concrete scheme is presented in Section 7.
Finally, we conclude the paper.

2 Preliminaries

2.1 Notation

The following notations will be used throughout the paper. We denote a proba-
bilistic polynomial-time algorithm by PPT. When a PPT algorithm F privately
accesses and executes another PPT algorithm E, we denote it by FE(.)(.). Let
poly(.) be a deterministic polynomial function. We say that q is polynomial-time
in k if q ≤ poly(1k) for all polynomials poly(k) for all sufficiently large k. If a
function f : N → R is said to be negligible, then f(n) < 1

nc holds for all constant
c > 0 and for all sufficiently large n. The operation of picking l at random from

How to Balance Privacy with Authenticity 187

a (finite) set L is denoted by l
$← L. We said a collision of a function h(.) to refer

to the case where there are message pair m, n of distinct points in its message
space such that h(m) = h(n). The symbol || denotes the concatenation of two
strings (or integers).

2.2 Bilinear Pairing

Let G1 and G2 be cyclic multiplicative groups generated by g1 and g2, respec-
tively. The order of both generators is a prime p. Let GT be a cyclic multiplicative
group with the same order p. Let ê : G1 ×G2 → GT be a bilinear mapping with
the following properties:

1. Bilinearity: ê(ga
1 , gb

2) = ê(g1, g2)ab for all g1 ∈ G1, g2 ∈ G2 , a, b ∈ Zp.
2. Non-degeneracy: There exist g1 ∈ G1 and g2 ∈ G2 such that ê(g1, g2) �= 1.
3. Computability: There exists an efficient algorithm to compute ê(g1, g2) for

all g1 ∈ G1, g2 ∈ G2.

Note that there exists ϕ(.) function which maps G1 to G2 or vice versa in one
time unit.

2.3 Complexity Assumptions

Definition 1 (Computation Diffie-Hellman (CDH) Problem). Given a
3-tuple (g, gx, gy) as input, output gx·y. An algorithm A has advantage ε in
solving the CDH problem if

Pr [A(g, gx, gy) = gx·y] ≥ ε

where the probability is over the random choice of x, y ∈ Z∗
q and the random bits

consumed by A.

Assumption 1. (t, ε)-Computation Diffie-Hellman Assumption. We
say that the (t, ε)-CDH assumption holds if no PPT algorithm with time com-
plexity t(.) has advantage at least ε in solving the CDH problem.

3 One-Time Universal Designated Verifier Signature
Schemes (OT-UDVS)

We assume that all parties must comply a registration protocol with a certifi-
cate authority CA to obtain a certificate on their public parameters. We give a
definition of one time universal designated verifier signature scheme as follows.

Definition 2. A one time universal designated verifier signature scheme Σ is an
8-tuple(SKeyGen, Sign, V erify, V KeyGen, Delegate, DV erify, DSimulate,
Open) such that

Signature Scheme Setup: A signature scheme comprises of three PPT algo-
rithms (SKeyGen, Sign, V erify).

188 P. Thorncharoensri, W. Susilo, and Y. Mu

– Signer’s Public Parameters and Secret Key Generator (Σ.SKeyGen):
Σ.SKeyGen is a PPT algorithm that, on input a security parameter K,
outputs the secret key (skS) and the public parameter (pkS) of signer.
That is {pkS, skS} ← Σ.SKeyGen(1K).

– Signature Signing (Σ.Sign):
On input a signing secret key skS , public parameters pkS, a message m,
Σ.Sign outputs signer’s signature σ. That is σ ← Σ.Sign(m, skS, pkS).

– Signature Verification (Σ.V erify):
On input signer’s public parameters pkS, a message m and a signature
σ, output a verification decision d ∈ {Accept, Reject}. That is d ←
Σ.V erify(m, σ, pkS).

Verifier’s Public Parameters and Key Generator (Σ.V KeyGen):
Σ.V KeyGen is a PPT algorithm that, on input a security parameter K,
outputs strings (skV , pkV) where they denote the secret key and the public
parameter of signer, respectively. That is {pkV , skV } ← Σ.V KeyGen(1K).

Signature Delegation (Σ.Delegate) : On input verifier’s public parameters
pkV , signer’s public parameters pkS, a signer’s signature σ, and a mes-
sage m, Σ.Delegate outputs a designated verifier signature σ̂. That is
σ̂ ← Σ.Delegate(m, σ, pkV , pkS).

Delegated Signature Verification (Σ.DV erify) : On input verifier’s pub-
lic parameters pkV , verifier’s secret key skV , signer’s public parameters pkS,
a message m and a designated verifier signature σ̂, Σ.DV erify outputs a
verification decision d ∈ {Accept, Reject}. That is

d← Σ.DV erify(m, σ̂, pkV , skV , pkS).

Simulation of a Delegated Signature (Σ.DSimulate): On input verifier’s
public parameters pkV , verifier’s secret key skV , signer’s public parame-
ters pkS, and a message m, Σ.DSimulate outputs a designated verifier
signature σ̄ such that V alid ← Σ.DV erify(m, σ̄, pkV , skV , pkS). That is
σ̄ ← Σ.DSimulate(m, pkV , skV , pkS).

Opening a Delegated Signature (Σ.Open) : Σ.Open is a PPT algorithm
that takes two designated verifier signatures σ̇, σ̈ and their designated ver-
ifier’s public parameters pkV̇ , pkV̈ , signer’s public parameters pkS, and a
message m as inputs. It outputs a signer signature σ. That is

σ ← Σ.Open(σ̇, σ̈, pkV̇ , pkV̈ , pkS , m).

For all K ∈ N, all (pkS , skS) ∈ Σ.SKeyGen(1K), all (pkV , skV) ∈
Σ.V KeyGen(1K) and all messages m, Σ must satisfy the following properties:

Completeness of a Signature:

∀σ ∈ Σ.Sign(m, skS, pkS), Pr[Σ.V erify(m, σ, pkS) = V alid] = 1. (1)

Completeness of a Designated Verifier Signature:

∀σ̂ ∈ Σ.Delegate(m, σ, pkV , pkS),
Pr[Σ.DV erify(m, σ̂, pkV , skV , pkS) = V alid] = 1. (2)

How to Balance Privacy with Authenticity 189

Completeness of a Simulated Designated Verifier Signature:

∀σ̄ ∈ Σ.DSimulate(m, pkV , skV , pkS),
Pr[Σ.DV erify(m, σ̄, pkV , skV , pkS) = V alid] = 1. (3)

Completeness of an Opened Signature:

∀σ̇ ∈ Σ.Delegate(m, σ, pkV̇ , pkS); ∀σ̈ ∈ Σ.Delegate(m, σ, pkV̈ , pkS) :
Σ.DV erify(m, σ̇, pkV , skV , pkS) = V alid;
Σ.DV erify(m, σ̈, pkV , skV , pkS) = V alid;
σ ← Σ.Open(σ̇, σ̈, pkV̇ , pkV̈ , pkS , m),
Pr[Σ.V erify(m, σ, pkS) = V alid] = 1. (4)

We refer to a signature to be ‘open’ if there are two valid designated signa-
tures dedicated to two different designated verifiers issued by the signature
holder.

Source Hiding:

∀σ̂ ∈ Σ.Delegate(m, σ, pkV , pkS); ∀σ̄ ∈ Σ.DSimulate(m, pkV , skV , pkS) :
Σ.DV erify(m, σ̂, pkV , skV , pkS) = V alid;
Σ.DV erify(m, σ̄, pkV , skV , pkS) = V alid;

σ
$← {σ̂, σ̄}, |Pr[σ = σ̂]− Pr[σ = σ̄]| is negligible. (5)

In the next section, we will provide the details of formal definitions of the
security models for OT-UDVS scheme. These include the unforgeability, the sin-
gle designatability and the non-transferability privacy (which implies the source
hiding property). The completeness of signature, designated verifier signature,
simulated designated verifier signature and opened signature are straightforward
as the above properties, and hence, it will be omitted.

4 Security Models of OT-UDVS Schemes

The following subsection describes the formal definitions of the unforgeability,
the non-transferability privacy and the single designatability. The unforgeabil-
ity and the non-transferability privacy are introduced in [12]. For the single
designatability, this property is firstly introduced in this paper to capture the
requirement of the OT-UDVS scheme. The single designatability property cap-
tures the sense that no signature holder can convince more than one designated
verifier or produce more than one designated verifier signature. If he/she did it,
then the original signature will be revealed, as the proof of this misbehaviour.

4.1 Unforgeability

It is mentioned in [12,2] that there are actually two types of unforgeability prop-
erties to consider which are “standard signature unforgeability” and “designated

190 P. Thorncharoensri, W. Susilo, and Y. Mu

verifier unforgeability”. It is also concluded that “designated verifier unforgeabil-
ity” always implies “standard signature unforgeability” [2]. Hence, for the rest
of this paper, when we discuss about unforgeability property, it indeed refers
to “designated verifier unforgeability”. To capture a collusion attack that is
launched by a malicious signature holder, malicious signers and malicious veri-
fiers, chosen public key attacks play a significant role in this security model. This
attack simulates a situation that in addition to the target signer and the target
verifier, an adversary possesses the knowledge of secret keys of other signers or
verifiers, and designated verifier signatures prior to the attack. This attack re-
flects the same situation where a collusion happens among a malicious signature
holder, malicious signers and malicious verifiers.

The unforgeability property provides a security against existential unforgeabil-
ity under adaptive chosen message and chosen public key attack. It intentionally
prevents an attacker corrupted with signature holder to generate an (OT-U)DVS
signature σ̂∗ on a new message M∗. Formally, the unforgeability provides an as-
surance that given the signer public parameters pkS and an access to signing
oracle, delegation oracle, and (designated verifier) verification oracle, one, ac-
cessing oracles with its arbitrarily choice of verifier’s public parameters pkV and
choice of message m as inputs, should be unable to produce a designated verifier
signature on a new message. We denote by CM -CPK-A the adaptively chosen
message and chosen public key attack, and by EUF -OT -UDV S the existential
unforgeability of OT-UDVS scheme. Let ACM−CPK−A

EUF−OT−UDV S be the adaptively
chosen message and chosen public key adversary and let F be a simulator. The
following game between F and A is defined to describe the existential unforge-
ability of OT-UDVS scheme:

SKeyGen queries : At most qSKG, A can make a query for a public key of
signer. In response, F runs the Σ.SKeyGen algorithm to generate a secret
key skS and public parameters pkS of signer. F replies A with pkS .

Sign queries : At most qS , A can make a query for a signature σ on its choice
of message m under its choice of signer public parameters pkS . In response,
F runs the Σ.Sign algorithm to generate a signature σ on a message m
corresponding with pkS . F then returns σ, m to A.

V erify queries : At most qV , A can make a query for the verification of a
signature σ on a message m with its corresponding public parameters pkS .
In response, F runs the Σ.V erify algorithm to verify a signature σ on a
message m corresponding with pkS F outputs Accept if a signature σ on a
message m is valid regrading to pkS , otherwise, it outputs Reject.

V KeyGen queries : At most qV KG, A can make a query for public parameters
pkV of verifier In response, F runs the Σ.V KeyGen algorithm to generate a
secret key skV and public parameters pkV of a verifier. F replies A with pkV .

Delegate queries : At most qD, A can make a query for a designated verifier
signature σ̂ on its choice of message m under its choice of signer public
parameters pkS and verifier public parameters pkV . In response, F runs
the Σ.Delegate algorithm to generate a designated verifier signature σ̂ on a
message m corresponding with pkS , pkV . F then returns σ̂, m to A.

How to Balance Privacy with Authenticity 191

DV erify queries : At most qDV , A can make a query for the verification of a
designated verifier signature σ̂ (or σ̄) on its chosen message m with its cor-
responding public parameters pkS , pkV . In response, F runs the Σ.DV erify
algorithm to verify a designated verifier signature σ̂ (or σ̄) on a message m
corresponding with pkS , pkV F outputs Accept if a designated verifier sig-
nature σ̂ (or σ̄) on a message m is valid regrading to pkS , pkV , otherwise, it
outputs Reject.

DSimulate queries : At most qDS , under its choice of signer public parameters
pkS and verifier public parameters pkV , A can make a query for a (simulated)
designated verifier signature σ̄ on its choice of message m which σ̄ must
indeed generated by verifier. In response,F runs the Σ.DSimulate algorithm
to generate a (simulated) designated verifier signature σ̄ on a message m
corresponding with pkS , pkV . F then returns σ̄, m to A.

Open queries : At most qO, under its choice of signer public parameters pkS

and verifier public parameters pkV̇ , pkV̈ , A can make a query to open a
signature σ on a message m from two designated verifier signature σ̇, σ̈. In
response, F runs the Σ.Open algorithm to open a signature σ on a message m
from σ̇, σ̈ and its corresponding pkS , pkV̇ , pkV̈ . F outputs σ if σ̇, σ̈ signatures
on a message m is valid regrading to pkS , pkV̇ , pkV̈ , otherwise, it outputs
Reject.

Key queries : At most qK , A can make a query for secret key skS (or skV)
corresponding to public parameters pkS (or pkV) of signer (or verifier). In
response, F replies A with a corresponding secret key skS (or skV).

At the end of the above queries, we assume that A outputs a forged signature σ̂∗
on a message M∗ with respect to the public parameters pk∗

S , pk∗
V . We say that

A win the game if

1. Accept← Σ.DV erify(M∗, σ̂∗, pk∗
V , sk∗

V , pk∗
S).

2. Neither pk∗
S nor pk∗

V has been submitted as input of a query for a secret key
to Key queries.

3. A never made a request for a signature on input M∗, pk∗
S to Sign queries.

4. A never made any request for a designated verifier signature on input
M∗, pk∗

S to Delegate queries.
5. A never made any request for a designated verifier signature on input

M∗, pk∗
V to DSimulate queries.

Let SuccCM−CPK−A
EUF−OT−UDV S(.) be the success probability function of that

ACM−CPK−A
EUF−OT−UDV S wins the above game.

Definition 3. We say that OT-UDVS scheme is
(t,qH ,qSKG,qS ,qV ,qV KG,qD,qDV , qDS,qO,qK ,ε)-secure existentially unforgeable
under a chosen message and chosen public key attack if there are no PPT
CM -CPK-A adversary ACM−CPK−A

EUF−OT−UDV S such that the success probability
SuccCM−CPK−A

EUF−OT−UDV S(k) = ε is negligible in k, where ACM−CPK−A
EUF−OT−UDV S runs in

time at most t, make at most qH , qSKG, qS, qV , qV KG, qD, qDV , qDS, qO,
and qK queries to the random oracle, SKeyGen queries, Sign queries, V erify

192 P. Thorncharoensri, W. Susilo, and Y. Mu

queries, V KeyGen queries, Delegate queries, DV erify queries, DSimulate
queries, Open queries, and Key queries, respectively.

4.2 Non-transferability Privacy

The source hiding property claims that, given verifier’s public parameters pkV ,
verifier’s secret key skV , signer’s public parameters pkS , and a message m, one
can compute a (simulated) designated verifier signature indistinguishable from
a designated verifier signature generated by a signature holder. In addition,
this property does not imply the non-transferability privacy property which is
introduced in [12] and clarified in [2].

In addition to the requirement of the source hiding property, the non-transfer-
ability privacy property is required even one can obtain or review many desig-
nated verifier signatures σ̂1, ..., σ̂q on the same message m designated to both
same or different verifiers, where σ̂1, ..., σ̂q are generated by the same sig-
nature holder using the same signature σ. However, in our OT-UDVS, the
non-transferability privacy property is different from above description since
signature holder can generated only one designated verifier signature σ̂ per mes-
sage per verifier. The original signature σ is otherwise revealed when one obtains
two or more designated verifier signatures generated from the same signature σ.
Hence, the non-transferability privacy property for OT-UDVS scheme is pro-
vided that (1) it is implied the source hiding property and, (2) even one can
obtain or review many designated verifier signatures σ̂1, ..., σ̂q on its choices of
message m1, ..., mq designated to both same or different verifiers, it is hard to
convince other party that a signer indeed generated a signature σ̂ ∈ {σ̂1, ..., σ̂q}
on a message m ∈ {m1, ..., mq}.

We denote by ENT -OT -UDV S the existential non-transferable privacy of
OT-UDVS scheme. Let ACM−CPK−A

ENT−OT−UDV S be the adaptively chosen message and
chosen public key distinguisher and let F be a simulator. The following game
between F and A is defined to describe the existential non-transferable privacy
of OT-UDVS scheme:

The game is divided into two phases. F first defines SKeyGen, Sign, V erify,
V KeyGen, Delegate, DV erify, DSimulate, Open, Key queries and their re-
sponses in the same way as defined in the model of unforgeability. Then the game
is run as follows:

1. Phase 1 : A can submit a request to SKeyGen, Sign, V erify, V KeyGen,
Delegate, DV erify, DSimulate, Open, Key queries. The queries response
as their design.

2. Challenge : When A decides to challenge F , it puts forward M∗, pk∗
S , pk∗

V

with the constraints that
a. A never made a request for a signature on input M∗, pk∗

S to Sign queries.
b. A never submitted a request for a designated verifier signature on input

M∗, pk∗
S to Delegate queries.

How to Balance Privacy with Authenticity 193

c. A never submitted a request for a designated verifier signature on input
M∗, pk∗

V to DSimulate queries.
d. pk∗

S has never been submitted as input of a query for a secret key to
Key queries.

In return, F chooses bit b
$← {0, 1}. If b = 1 then F returns

σ̂ ← Σ.Delegate(M∗, σ, pk∗
V , pk∗

S) from Delegate queries. Otherwise, F re-
turns σ̄ ← Σ.DSimulate(M∗, pk∗

V , sk∗
V , pk∗

S) from DSimulate queries.
3. Phase 2 : A can arbitrarily return to Phase 1 or Challenge as many as it

want. The only constraint is that A must have at least one set of challenge
M∗, pk∗

S , pk∗
V such that

a. A never submitted a request for a signature on input M∗, pk∗
S to Sign

queries.
b. A never submitted a request for a designated verifier signature on input

M∗, pk∗
S to Delegate queries.

c. A never submitted a request for a designated verifier signature on input
M∗, pk∗

V to DSimulate queries.
d. A never submitted a request for a secret key sk∗

S corresponding with
pk∗

S to Key queries.
4. Guessing : On the challenge M∗, pk∗

S , pk∗
V , A finally outputs a guess b′.

The distinguisher wins the game if b = b′.

Let SuccCM−CPK−A
ENT−OT−UDV S(.) be the success probability function of that

ACM−CPK−A
ENT−OT−UDV S wins the above game.

Definition 4. We say that OT-UDVS scheme is
(t,qH ,qSKG,qS ,qV ,qV KG,qD,qDV ,qDS ,qO,qK ,ε)-secure existentially non-
transferable privacy under a chosen message and chosen public key attack
if there are no PPT CM -CPK-A distinguisher ACM−CPK−A

ENT−OT−UDV S such that the
success probability SuccCM−CPK−A

ENT−OT−UDV S(k) = |Pr[b = b′] − Pr[b �= b′]| = ε is
negligible in k, where ACM−CPK−A

ENT−OT−UDV S runs in time at most t, make at most
qH , qSKG, qS, qV , qV KG, qD, qDV , qDS, qO, and qK queries to the random
oracle, SKeyGen queries, Sign queries, V erify queries, V KeyGen queries,
Delegate queries, DV erify queries, DSimulate queries, Open queries, and
Key queries, respectively.

4.3 Single Designatability

A similar property is “Opening” which is introduced in [2] and analyzed by
Laguillaumie and Vergnaud in [9]. They concentrated on the multi-time re-
stricted delegation. However, Laguillaumie and Vergnaud argued there is always
a proof for the restricted UDVS scheme in [2] that a signature holder can gener-
ate a designated verifier signature from a signature without getting a penalty for
over spending. We argue that, for our OT-UDVS scheme, the signature holder
can be restricted such that he/she can only convince one verifier with one des-
ignated verifier signature without getting a penalty.

194 P. Thorncharoensri, W. Susilo, and Y. Mu

The single designatability property provides security against existential sin-
gle designatability under adaptive chosen message and chosen public key attack.
Institutively, it prevents an attacker corrupted with signature holder to generate
two (one-time universal) designated verifier signatures σ̇, σ̈ on a message m such
that both signatures are valid on the same message generated by the same sig-
nature holder, however, they could not be opened to reveal a original signature
σ generated by the signer.

We denote by ESD-OT -UDV S the existential single designatablility of OT-
UDVS scheme. Let ACM−CPK−A

ESD−OT−UDV S be the adaptively chosen message and cho-
sen public key adversary and let F be a simulator. The following game between
F and A is defined to describe the existential single designatability of OT-UDVS
scheme:

To initiate a simulation, F first defines SKeyGen, Sign, V erify, V KeyGen,
Delegate, DV erify, DSimulate, Open, Key queries and their responses in the
same way as defined in the model of unforgeability. A can access arbitrarily to
an random oracle and the above queries. At the end of the above queries, we
assume that A outputs two designated verifier signatures σ̇, σ̈ on a message M∗

regarding to public parameters pk∗
S , pkV̇ , pkV̈ . Let σ be a signature produced by

Sign queries on input M∗, pk∗
S . We say that A wins the above game if:

1. (Accept← Σ.DV erify(M∗, σ̇, pkV̇ , skV̇ , pk∗
S))∧

(Accept← Σ.DV erify(M∗, σ̈, pkV̈ , skV̈ , pk∗
S))∧

σ � Σ.Open(σ̇, σ̈, pkV̇ , pkV̈ , pk∗
S , M∗).

2. pk∗
S has never been submitted as input of a query for a secret key corre-

sponding to signer public parameters to Key queries.
3. A could make just one request for a designated verifier signature on input

M∗, pk∗
S , pkV̇ or on input M∗, pk∗

S , pkV̈ to Delegate queries or DSimulate
queries, respectively.

Let SuccCM−CPK−A
ESD−OT−UDV S(.) be the success probability function of that

ACM−CPK−A
ESD−OT−UDV S wins the above game.

Definition 5. We say that OT-UDVS scheme is (t,qH ,qSKG,qS,qV ,qV KG,qD,
qDV , qDS,qO,qK ,ε)-secure existentially single designatable under a chosen mes-
sage and chosen public key attack if there are no PPT CM−CPK−A adversary
ACM−CPK−A

ESD−OT−UDV S such that the success probability SuccCM−CPK−A
ESD−OT−UDV S(k) = ε is

negligible in k, where ACM−CPK−A
ESD−OT−UDV S runs in time at most t, make at most qH ,

qSKG, qS, qV , qV KG, qD, qDV , qDS, qO, and qK queries to the random oracle,
SKeyGen queries, Sign queries, V erify queries, V KeyGen queries, Delegate
queries, DV erify queries, DSimulate queries, Open queries, and Key queries,
respectively.

5 Primitive Tools

5.1 Trapdoor Commitment Scheme

A trapdoor commitment scheme TC comprises of three PPT algorithms which
are Setup, Tcom and Topen.

How to Balance Privacy with Authenticity 195

Setup(1K) is a algorithm that takes a security parameter K as an input and
generates public parameters pk and a trapdoor (secret) key sk.

Tcom(pk, m, r) is a algorithm that takes pk, m, r as inputs and outputs a com-
mitment value T .

Topen(sk, pk, m, m′, r) is a algorithm that takes pk, m, r as inputs and reveals
r′ such that T = Tcom(pk, m, r) = Tcom(pk, m′, r′).

The detail of the idea in transforming an identification scheme into a trapdoor
commitment scheme can be found in [5]. For clarification, we provide the de-
tail of the Schnorr trapdoor commitment scheme transformed from the Schnorr
identification scheme as follows.

Setup : On input a security parameter K, Setup randomly selects a prime l
such that l ≈ poly(1K). After that, a generator gl ∈ Gl, where Gl be a
group of prime order l and a number y ∈ Z∗

l are randomly selected. Let
param = (l, gl) denote system parameters and let Y = gy

l denote a public
key. Setup, thereafter, outputs public parameters pk = (param, Y) and a
secret trapdoor key sk = y.

Tcom : On input public parameters pk and two integers m, r ∈ Z∗
l , Tcom

computes an output T = gr
l Y

m and returns T .
Topen : On input public parameters pk, a secret key sk and three integers

m′, m, r ∈ Z∗
l , Topen responses with r′ such that T = gr

l Y
m = gr′

l Y m′
.

Considering that a trapdoor commitment scheme is used as a component of
our one-time universal designated verifier signature scheme in the next section.
Hence, we supply the security of the above trapdoor commitment scheme as
follows.

Definition 6. We say that a trapdoor commitment scheme TC is secure if ,on
input pk, it is computationally infeasible to compute (m, r) and (m′, r′) such that
Tcom(pk, m, r) = Tcom(pk, m′, r′) where m �= m′. [5]

Theorem 1. The above trapdoor commitment scheme is secure if the discrete
logarithm assumption is hold.

Proof. The proof can be found in [5].

6 OT-UDVS Scheme

6.1 Concrete Scheme

Let H : {0, 1}∗ → G1 be a random one-way function that maps any string to
group G1 and let h : {0, 1}∗ → Z∗

p be a collision-resistant hash function. We
denote by G1, G2 groups of prime order p. Assume that there exists an efficient
computationally bilinear mapping function ê map G1 to G2. The above mapping
function is defined as ê : G1 ×G1 → G2. The scheme is as follows.

196 P. Thorncharoensri, W. Susilo, and Y. Mu

Σ.SKeyGen : On input a security parameter K, a signer S randomly chooses
a prime p ≈ poly(1K). Select a random generator g ∈ G1. We denote by
param = (p, ê, g, H, h) the system parameters. Now, a private key and public
parameters are generated as follows. Select a random integer x ∈ Zp. Let
X = gx denote a public key. Therefore, SKeyGen returns skS = x as a
private key of signer and pkS = (param, X) as public parameters of signer.

Σ.V KeyGen : On input a security parameter K, a verifier V runs a trap-
door commitment scheme’s setup function Setup(1K) to obtain l, gl, Y =
gy

l , skV = y. Let h̄ : {0, 1}∗ → Z∗
l be a collision-resistant hash function

selected by V . V then publishes pkV = (param = (l, gl, h̄), Y) as public
parameters of verifier and keeps skV as a private key of verifier.

Σ.Sign : Given skS , pkS and a message M , S computes a signature σ on mes-
sage M as follows.

r1
$← Zp,

σ1 = gr1 ,

M ′ = M ||σ1||pkS ,

σ2 = H(M ′)x,

σ3 = H(M ′)r1 .

The signature on message M is σ = (σ1, σ2, σ3).
Σ.V erify : Given pkS , σ and a message M , a signature holder SH first com-

putes M ′ = M ||σ1||pkS and then checks whether

ê(σ2, g) ?= ê(H(M ′), X)
∧

ê(σ3, g) ?= ê(H(M ′), σ1)

holds or not. If not, then output reject. Otherwise, output accept.
Delegate : Choose a random integer r2 ∈ Zp. Given pkV , σ and a message M ,

SH computes a designate verifier signature σ̂ on message M as follows.

M ′ = M ||σ1||pkS ,

TV = h(gr2
l Y h̄(M ′)),

hV = h(pkS ||pkV ||M ||TV),
R′ = σ2 · σhV

3 ,

σ̂1 = σ1,

σ̂2 = σTV
2 · R′.

Output the designated verifier signature on message M as σ̂ = (σ̂1, σ̂2, r2).
DV erify : Given pkS , pkV , skV , σ̂ and a message M , the designated ver-

ifier V first computes M ′ = M ||σ̂1||pkS , TV = h(gr2
l Y h̄(M ′)), hV =

h(pkS ||pkV ||M ||TV), and R = X · σ̂hV
1 . Then V checks whether

ê(σ̂2, g) ?= ê(H(M ′), XTV)ê(H(M ′), R)

holds or not. If not, then output reject. Output accept, otherwise.

How to Balance Privacy with Authenticity 197

DSimulate : On input skV , pkV , pkS and a message M , V first randomly chooses
a generater K ∈ G1 and integers k, r̄2 ∈ Zp. V then computes as follows.

M̄ = M ||K||pkS,

TV = h(gr̄2
l Y h̄(M̄)),

hV = h(pkS ||pkV ||M ||TV),

σ̂1 = (gk ·X−TV ·X−1)
1

hV ,

M ′ = M ||σ̂1||pkS ,

r2 = r̄2 + y · h̄(M̄)− y · h̄(M ′),
σ̂2 = H(M ′)k.

A designated verifier signature on message M is σ̂ = (σ̂1, σ̂2, r2).
Open : On input pkV̇ , pkV̈ , pkS and two valid designated verifier signatures

where the first signature σ̇ = (σ̇1, σ̇2, ṙ2) is designated to a verifier V̇ and
the other signature σ̈ = (σ̈1, σ̈2, r̈2) is designated to another verifier V̈ , Open
computes the necessary parameters as follows.

M ′ = M ||σ̇1||pkS = M ||σ̈1||pkS ,

TV̇ = h(ġṙ2

l̇
Ẏ ḣ(M ′)),

hV̇ = h(pkS ||pkV̇ ||M ||TV̇),

TV̈ = h(g̈r̈2

l̈
Ÿ ḧ(M ′)),

hV̈ = h(pkS ||pkV̈ ||M ||TV̈).

We denote by (ġl̇, l̇, Ẏ , ḣ) and (g̈l̈, l̈, Ÿ , ḧ) as the public parameters of V̇ and
V̈ , respectively. Note that σ̇1 = σ̈1 always holds, if σ̇ and σ̈ are generated from
the same signature. Therefore, for two (or more) simulated designated verifier
signatures or a pair of both simulated designated verifier signature and valid
designated verifier signature, a designated verifier signature is highly unlikely
to share the first part of signature with other designated verifier signatures.
From the Lagrange interpolating polynomial, we then calculate the Lagrange
coefficient from hV̇ and hV̈ as follows.

cV̇ =
−hV̈

hV̇ − hV̈

,

cV̈ =
−hV̇

hV̈ − hV̇

.

Now, Open computes a signature from two valid UDVS signatures as follows.

σ1 = σ̇1 = σ̈1 = gr1 ,

σ2 = (σ̇cV̇

2 · σ̈cV̈

2)
1

T
V̇

·c
V̇

+T
V̈

·c
V̈

+1 = H(M ′)x,

σ3 = σ̇2 · σTV̇
2 = σ̈2 · σTV̈

2 = H(M ′)r1 .

Hence, a signature on M is σ = (σ1, σ2, σ3). Therefore, Open outputs σ.

198 P. Thorncharoensri, W. Susilo, and Y. Mu

7 Security Proof

7.1 Completeness

Completeness of a Signature and a Designated Verifier Signature:
They are straightforward, and hence, it will be omitted.

Completeness of a Simulated Signature: Given public parameters of
signer pkS , public parameters of designated verifier pkV , a secret key of des-
ignated verifier skV , a message M and a designate verifier signature σ̂, First
compute M ′ = M ||σ̂1||pkS , TV = h(gr2

l Y h̄(M ′)), hV = h(pkS ||pkV ||M ||TV) ,
and R = X · σ̂hV

1 . Then check

ê(σ̂2, g) ?= ê(H(M ′), XTV)ê(H(M ′), R)

ê(H(M ′)k, g) ?= ê(H(M ′), XTV)ê(H(M ′), X · σ̂hV
1)

ê(H(M ′)k, g) ?= ê(H(M ′), XTV)ê(H(M ′), X · ((gk ·X−TV ·X−1)
1

hV)hV)

ê(H(M ′)k, g) ?= ê(H(M ′), XTV)ê(H(M ′), gk ·X−TV)

ê(H(M ′)k, g) ?= ê(H(M ′), gk).

Therefore, the above statements show that the simulated signature indeed
holds.

Completeness of an Opened Signature:

ê(H(M ′), X) ?= ê(σ2, g)

ê(H(M ′), X) ?= ê((σ̇cV̇

2 · σ̈cV̈

2)
1

T
V̇

·c
V̇

+T
V̈

·c
V̈

+1 , g)

ê(H(M ′), X) ?= ê((H(M ′)TV̇ ·x ·H(M ′)x ·H(M ′)r1·hV̇)
−h

V̈
h

V̇
−h

V̈

·(H(M ′)TV̈ ·x ·H(M ′)x ·H(M ′)r1·hV̈)
−h

V̇
h

V̈
−h

V̇ , g)
1

T
V̇

·c
V̇

+T
V̈

·c
V̈

+1

ê(H(M ′), X) ?= ê((H(M ′)
(TV̇ ·(

−h
V̈

h
V̇

−h
V̈

)+TV̈ ·(
−h

V̇
h

V̈
−h

V̇
))·x

) ·

(H(M ′)
(

−h
V̈

h
V̇

−h
V̈

+
−h

V̇
h

V̈
−h

V̇
)·x

) ·

(H(M ′)
r1·(hV̇ ·

−h
V̈

h
V̇

−h
V̈

+hV̈ ·
−h

V̇
h

V̈
−h

V̇
)
), g)

1

T
V̇

·(
−h

V̈
h

V̇
−h

V̈
)+T

V̈
·(

−h
V̇

h
V̈

−h
V̇

)+1

ê(H(M ′), X) ?= ê(H(M ′)
x·(TV̇ ·(

−h
V̈

h
V̇

−h
V̈

)+TV̈ ·(
−h

V̇
h

V̈
−h

V̇
))

·H(M ′)x, g)

1

T
V̇

·(
−h

V̈
h

V̇
−h

V̈
)+T

V̈
·(

−h
V̇

h
V̈

−h
V̇

)+1

ê(H(M ′), gx) ?= ê(H(M ′)x, g).

The above statements show that a opened signature is complete.

How to Balance Privacy with Authenticity 199

7.2 Unforgeability

Theorem 2. In the random oracle model, our one-time universal designated
verifier scheme is existentially unforgeable under an adaptive chosen message
and chosen public key attack if the CDH assumption holds.

Due to the page limitation, please find the proof for Theorem 2 in the full version
of this paper [14].

7.3 Non-transferability Privacy

Theorem 3. In the random oracle model, the purposed one-time universal des-
ignated verifier scheme is existentially non-transferable privacy against adap-
tively chosen message and chosen public key distinguisher ACM−CPK−A

ENT−OT−UDV S.

Due to the page limitation, please find the proof for Theorem 3 in the full version
of this paper [14].

7.4 Single Designatability

Theorem 4. Our one-time universal designated verifier scheme is existentially
single designatable under an adaptive chosen message and chosen public key
attack if the hash function is collision resistant.

Proof. (sketch) Let assume that the hash function h of our OT-UDVS scheme is a
collision resistent hash function. We denote by A a forger algorithm and let F de-
note an adversary searching for a collisionmessage-pair for hash functionh through
A. Due to the completeness of an opened signature, the only designated verifier
signatures pair (σ̇, σ̈) that can open is when σ̇1 = σ̈2, σ̇2 = σ̈2 and ṙ2 �= r̈2 or
pkV̇ �= pkV̈ . The collision of hash function h will occur if such an event happens.

From the above statement, we construct the simulation as follows. First, since
F can arbitrarily generate a public-secret key pair for A, F constructs straight-
forwardly queries as described in Section 6.1. A is given access to those queries.
At the end of the above queries, we assume thatA outputs two designated verifier
signatures σ̇, σ̈ on a message M∗ regrading to public parameters pk∗

S , pkV̇ , pkV̈ .
F pronounces that A wins the game if both signatures are accepted by DV erify
queries, and a secret key corresponding to pk∗

S has never been revealed by Key
queries and only one designated verifier signature on message M∗ can be queried.
F then computes TV̇ = h(ġṙ2

l̇
Ẏ ḣ(M∗||σ̇1||pk∗

S)); TV̈ = h(g̈r̈2

l̈
Ÿ ḧ(M∗||σ̈1||pk∗

S)).
Next, F sets Ṁ = pk∗

S ||pkV̇ ||M∗||TV̇ ; M̈ = pk∗
S ||pkV̈ ||M∗||TV̈ and computes

hV̇ = hV̈ = h(Ṁ) = h(M̈).
We note that both TV̇ and hV̇ are required to be equal to TV̈ and hV̈ , respec-

tively. This is because of σ̇1 = σ̈1 and σ̇2 = σ̈2 as we mentioned earlier. However,
TV̇ = TV̈ is easy to achieve since A possessed the verifier secret keys and it can
arbitrarily compute h(ġṙ2

l̇
Ẏ ḣ(M∗||σ̇1||pk∗

S)) = h(g̈r̈2

l̈
Ÿ ḧ(M∗||σ̈1||pk∗

S)). On the other
hand, hV̇ is hard to make itself equivalent to hV̈ since Ṁ �= M̈ in every cases.

Hence, F outputs Ṁ and M̈ as messages that lead to a collision of hash value
h(Ṁ) = h(M̈). This completes the proof. ��

200 P. Thorncharoensri, W. Susilo, and Y. Mu

8 Conclusion

We introduced a one time universal designated verifier signature (OT-UDVS)
scheme that allows a signature holder to designate a legitimate signature that
he holds once to any designated verifier of his choice. Nonetheless, if the signature
holder designates this signature for more than once, this will enable any third
party to “revoke” the original signature from the designated signatures, and
hence, reveal the privacy provided by the original signature that was issued by
the signer only to the signature holder. We formally defined the security notion
for a OT-UDVS scheme. We also presented a concrete OT-UDVS scheme and
provided a security analysis of this scheme including the unforgeability, the single
designatability and the non-transferability privacy. An interesting open problem
is to extend our primitive to a k-times universal designated verifier signature
which constraints a signature holder to generate within only k-designated verifier
signatures. This problem seems very interesting in theory but we are also to find
a good and practical problem that will require this primitive.

References

1. Huang, X., Mu, Y., Susilo, W., Zhang, F.: Short designated verifier proxy signature
from pairings. In: Enokido, T., Yan, L., Xiao, B., Kim, D.Y., Dai, Y.-S., Yang, L.T.
(eds.) EUC-WS 2005. LNCS, vol. 3823, pp. 835–844. Springer, Heidelberg (2005)

2. Huang, X., Susilo, W., Mu, Y., Wu, W.: Universal designated verifier signature
without delegatability. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 479–498. Springer, Heidelberg (2006)

3. Huang, X., Susilo, W., Mu, Y., Zhang, F.: Restricted universal designated verifier
signature. In: Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.) UIC 2006. LNCS,
vol. 4159, pp. 874–882. Springer, Heidelberg (2006)

4. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their
Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

5. Kurosawa, K., Heng, S.-H.: The power of identification schemes. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 364–
377. Springer, Heidelberg (2006)

6. Laguillaumie, F., Libert, B., Quisquater, J.-J.: Universal designated verifier sig-
natures without random oracles or non-black box assumptions. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 63–77. Springer, Heidelberg (2006)

7. Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: Anonymity and
efficient construction from any bilinear map. In: Blundo, C., Cimato, S. (eds.)
SCN 2004. LNCS, vol. 3352, pp. 105–119. Springer, Heidelberg (2005)

8. Laguillaumie, F., Vergnaud, D.: Multi-designated verifiers signatures: anonymity
without encryption. Inf. Process. Lett. 102(2-3), 127–132 (2007)

9. Laguillaumie, F., Vergnaud, D.: On the soundness of restricted universal desig-
nated verifier signatures and dedicated signatures. In: Garay, J.A., Lenstra, A.K.,
Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 175–188. Springer,
Heidelberg (2007)

10. Li, Y., Lipmaa, H., Pei, D.: On delegatability of four designated verifier signatures.
In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783,
pp. 61–71. Springer, Heidelberg (2005)

How to Balance Privacy with Authenticity 201

11. Lipmaa, H., Wang, G., Bao, F.: Designated verifier signature schemes: Attacks, new
security notions and a new construction. In: Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 459–471.
Springer, Heidelberg (2005)

12. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier sig-
natures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (2003)

13. Susilo, W., Zhang, F., Mu, Y.: Identity-based strong designated verifier signature
schemes. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS,
vol. 3108, pp. 313–324. Springer, Heidelberg (2004)

14. Thorncharoensri, P., Susilo, W., Mu, Y.: How to balance privacy with authenticity
(full version) (2008); Can be obtained from the first author

15. Zhang, R., Furukawa, J., Imai, H.: Short signature and universal designated verifier
signature without random oracles. In: Ioannidis, J., Keromytis, A.D., Yung, M.
(eds.) ACNS 2005. LNCS, vol. 3531, pp. 483–498. Springer, Heidelberg (2005)

Efficient Vote Validity Check in Homomorphic
Electronic Voting

Kun Peng and Feng Bao

Institute for Infocomm Research, Singapore
dr.kun.peng@gmail.com

Abstract. Homomorphic electronic voting is very popular but has an
efficiency bottleneck: vote validity check, which limits application of e-
voting, especially in large-scale elections. In this paper two efficient vote
validity check mechanisms are designed for homomorphic e-voting, both
of which are much more efficient than the existing vote validity check
procedures. Especially, the second vote validity check mechanism is flex-
ible, honest-verifier zero knowledge and highly efficient. With the tech-
nique, efficiency of homomorphic e-voting is greatly improved and can
be employed in election applications with more critical requirement on
performance.

1 Introduction

Electronic voting is a popular application of cryptographic and network tech-
niques to e-government. An e-voting scheme should satisfy the following prop-
erties.

– Correctness: all the valid votes are counted without being tampered with.
– Privacy: no information about any voter’s choice in the election is revealed.
– Robustness: any abnormal situation can be detected and solved without

revealing any vote.
– Flexibility: various election rules are supported.

Most of the existing e-voting schemes can be classified into two categories: mix
net voting and homomorphic voting. Mix net voting [32,14,1,13,29,30,17,38,33,
20,35,41,16] employs a mix network to shuffle the encrypted votes before they are
decrypted (opened) so that the opened votes cannot be traced back to the vot-
ers. Homomorphic voting schemes include [3,28,40,19,4,21,10,22,26,27, 37, 15],
which exploit homomorphism of certain encryption algorithms (e.g. Paillier en-
cryption [31]) to decrypt the sum of the votes while no separate vote is decrypted.
Tallying in homomorphic voting only costs one single decryption operation for
each candidate, so is much more efficient than tallying in mix net voting, which
includes a costly mix network. However, correctness of homomorphic voting de-
pends on validity of the votes. An invalid vote can compromise correctness of a
homomorphic voting scheme, so must be detected and deleted before the tallying
phase. Unfortunately, vote validity check is very costly (both for the voters to

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 202–217, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Efficient Vote Validity Check in Homomorphic Electronic Voting 203

prove validity of their votes and for a tallier (and other verifiers) to verify valid-
ity of the votes) and becomes an efficiency bottleneck in homomorphic e-voting.
Some homomorphic e-voting schemes [26,27, 15] adjust the vote format and the
corresponding vote validity check mechanism such that a large number of checks
in small ranges are replaced by a smaller number of checks in larger ranges.
However, their improvement in efficiency is not obvious. An attempt [7] is made
to improve efficiency of vote validity check in homomorphic e-voting. However,
it only reduces the cost in computation and communication by one fourth to one
half, so is still not efficient enough for large-scale election applications.

An interesting technique called batched bid validity check [36,39] is inspiring.
Some sealed-bid e-auction schemes [23,25,8,24] exploit homomorphism of certain
bid sealing functions to determine the winning bid without opening any separate
bid. They are called homomorphic auction schemes. Similar to the situation in
homomorphic e-voting, correctness of the homomorphic auction schemes depend
on validity of the bids and thus the bids must be proved and verified to be valid.
It is noticed in [36, 39] that the previous bid validity check mechanisms are in-
efficient. A new vote validity check mechanism is designed in [36,39] to improve
efficiency of bid validity check. Using batch verification to improve efficiency
is not a new idea. The batch zero knowledge proof and verification technique
in [36] is an extension of the traditional batch verification techniques [5,6,2,34].
Although it is interesting to adapt the bid validity check mechanism in [36, 39]
into a new vote validity check mechanism, this idea is confined by three draw-
backs. Firstly, it employs different sealing (encryption) functions and parameter
settings and it is unknown whether it can suit the frequently employed Pail-
lier encryption or its distributed version [12] in homomorphic e-voting schemes.
Secondly, it only supports one-candidate Yes/No election so has a very limited
application range in e-voting. Thirdly, it is still not efficient enough for large-scale
election applications.

Two new vote validity check mechanisms are proposed in this paper. Their
improvement on efficiency is more advanced than that in [7]. They not only in-
tegrate proof of validity of multiple votes like in [7] (using a different method of
course) but also integrate the operations within each proof of validity of vote.
They are called Protocol 1 and Protocol 2. Both of them can guarantee validity
of vote with an overwhelmingly large probability and are much more efficient
than the existing vote validity check mechanisms. They are general solutions to
homomorphic e-voting schemes and is not limited to special election rules (e.g.
approval voting, divisible voting and Borda voting in [15]). Protocol 1 modifies
and extends the batched bid validity check in [36, 39] to homomorphic e-voting
applications, which employ different primitives and setting. So proof and veri-
fication techniques different from those in [36, 39] are developed in Protocol 1
to suit the new application. It greatly improve efficiency of vote validity check
in computation in homomorphic e-voting when only one candidate is selected in
a vote. More formal security model than that in [36, 39] is used in Protocol 1
to illustrate its privacy. However, Protocol 1 cannot work when more than one
candidate is selected in a vote. So Protocol 1 is not flexible and can only be used

204 K. Peng and F. Bao

in a special case. Moreover, Protocol 1 needs six rounds of communication in
vote validity check and may be too interactive for some applications. In addi-
tion, Protocol 1 is still not efficient enough for large-scale election applications.
Protocol 2 is completely novel and does not inherit the idea of [7] or [36, 39]. It
does not limit the number of selected candidates in a vote, so is more flexible.
Moreover, it is more efficient in computation than Protocol 1. In addition, it
needs fewer rounds of communication and is more efficient in communication
than Protocol 1. Before Protocol 1 and Protocol 2 are presented, a key crypto-
graphic primitive, batched ZK proof and verification of N th residue, is designed
and analysed in Section 3. Then the two protocols are proposed in Section 4 and
Section 5 respectively, both of which employ batched ZK proof and verification
of N th residue.

Although both Protocols employ Paillier encryption, application of the new
vote validity check technique is not limited to votes encrypted with Paillier en-
cryption. Although Paillier encryption is the most popular choice in homomor-
phic e-voting, other additive homomorphic encryptions (e.g. variants of ElGamal
encryption) can also be used in homomorphic e-voting. The new vote validity
check technique can be slightly adjusted to fit those encryption algorithms. Due
to space limit, application to those encryption algorithms is not described in this
paper and left to interested readers.

2 Preliminary and Background

The following symbols and denotations will be used in this paper.

|x| the bit length of integer x
KN(x) knowledge of x
V a challenger in a zero knowledge proof protocol (an independent third

party, cooperating multiparties or a random oracle, which may be im-
plemented through a hash function)

P (E) the probability that event E happens
x ∈R S an integer x randomly chosen from a set S

Usually, homomorphic e-voting schemes employ an additive homomorphic
encryption algorithm with a distributed decryption function. An encryption algo-
rithm with decryption function D() is additive homomorphic if D(c1) + D(c2) =
D(c1c2) for any ciphertexts c1 and c2. A typical additive homomorphic encryption
algorithm with a distributed decryption function is distributed Paillier encryption
proposed by Fouque et al [12], which is recalled as follows.

1. Key generation:
N = pq, p = 2ṕ + 1 and q = 2q́ + 1 where p and q are primes and
gcd(N, ϕ(N)) = 1. Integers a, b are randomly chosen from Z∗

N and g =
(1 + N)a + bN mod N2. The private key is βṕq́ where β is randomly chosen
from Z∗

N . The public key consists of N , g and θ = aβṕq́. P1, P2, . . . , Pm

are the private key holders. Let F (x) =
∑t−1

k=0 fkxk where f0 = βṕq́ and

Efficient Vote Validity Check in Homomorphic Electronic Voting 205

f1, f2, . . . , ft−1 are random integers in Zṕq́. The share dj = F (j) mod ṕq́N
is distributed to Pj for j = 1, 2, . . . , m. G is the cyclic subgroup contain-
ing all the quadratic residues in Z∗

N2 . Random integer v is a generator of
G and vj = vΔdj mod N2 for j = 1, 2, . . . , m where Δ = m!. v and vj for
j = 1, 2, . . . , m are published.

2. Encryption:
A message s ∈ ZN is encrypted to c = gsrN mod N2 where r is randomly
chosen from Z∗

N .
3. Partial decryptions of ciphertext c:

For j = 1, 2, . . . , m, Pj provides his part of decryption sj = c2�dj and proves
logc4� s2

j = logvΔ vj .
4. Combination of partial decryptions:

The final decryption result can be recovered as s = L(
∏

j∈S s2ui

j) × 1
4�2θ

where set S contains the indices of t correct partial decryptions and uj =
Δ
∏

1≤j′≤n,j′ =j
j′

j′−j .

The complete decryption function in the distributed Paillier encryption includ-
ing the partial decryptions and the combination is denoted as D(). An integer y in
ZN2 is an N th residue if there exist an integer x such that xN = y mod N2. With
this encryption algorithm to seal the votes, most of the existing homomorphic e-
voting schemes can be abstracted into the following protocol.

1. Suppose there are n voters and each voter has to choose μ parties from w
candidates in his vote. It is required that w < q, which is satisfied in any
practical election.

2. Each voter Vi chooses his voting vector (mi,1, mi,2, . . . , mi,w) where mi,l = 0
or mi,l = 1 for l = 1, 2, . . . , w. A rule is followed: mi,l = 1 iff Vi chooses the
lth candidate.

3. The distributed Paillier encryption recalled above is employed to encrypt the
votes where the private key is shared among talliers A1, A2, . . . , Am. Each
vote (mi,1, mi,2, . . . , mi,w) is encrypted into (ci,1, ci,2, . . . , ci,w) where ci,l =
gmi,lsN

i,l mod N2 and si,l is randomly chosen from Z∗
N for l = 1, 2, . . . , w.

4. As w < q, each Vi illustrates validity of his vote through proof of

KN [c
1/N
i,l] ∨ KN [(ci,l/g)1/N] for l = 1, 2, . . . , w (1)

and

KN [((
w∏

l=1

ci,l)/gμ)1/N] (2)

(1) is implemented by running the proof protocol Figure 1 (which is a com-
bination of ZK proof of knowledge of root [18] and ZK proof of partial
knowledge [9]) for l = 1, 2, . . . , w. (2) is a proof of knowledge of N th root
and can be easily and efficiently implemented using ZK proof of knowledge
of root in [18].

5. t honest talliers among A1, A2, . . . , Am cooperate to decrypt
∏n

i=1 ci,l for
l = 1, 2, . . . , w into the number of votes for the lth candidate. After the
decryption, each Aj proves that his partial decryption is correct.

206 K. Peng and F. Bao

Correctness and soundness of ZK proof of knowledge of root [18] and ZK
proof of partial knowledge [9] guarantee that with a overwhelmingly large prob-
ability a voter’s vote is valid iff his proof of (1) and (2) can pass public veri-
fication. Honest verifier zero knowledge property of ZK proof of knowledge of
root [18] and ZK proof of partial knowledge [9] guarantee that no vote is re-
vealed in vote validity check. In this prototype, tallying is very efficient and
only cost each tallier 3w full-length exponentiations. The cost of vote encryp-
tion is acceptable while each voter cost 2w full-length exponentiations. However,
vote validity check is too inefficient. Although implementation of (2) is efficient,
repeating the the proof and verification protocol in Figure 1 for w times to
prove and verify (1) is inefficient. Vote validity check costs each voter much
higher a cost than vote encryption and a verifier at least O(wn) full-length ex-
ponentiations. So vote validity check is the efficiency bottleneck of homomorphic
e-voting.

1. Vi publishes ami,l = rN mod N2

a1−mi,l = uN
1−mi,l

/(ci,l/g1−mi,l)v1−mi,l mod N2

where r ∈ Z∗
N , v1−mi,l ∈ ZN , and u1−mi,l ∈ Z∗

N are randomly chosen.
2. V publishes an integer v randomly chosen from ZN .
3. Vi publishes u0, u1, v0 and v1 where

umi,l = rs
vmi,l

i,l mod N2

vmi,l = v − v1−mi,l mod ZN

Public verification:

uN
0 = a0c

v0
i,l mod N2

uN
1 = a1(ci,l/g)v1 mod N2

v = v0 + v1 mod ZN

Fig. 1. Repeated w times to implement proof and verification of (1)

3 Batched ZK Proof and Verification of N th Residue

A novel batched zero knowledge proof and verification technique is proposed in
this section as a cryptographic primitive to be used in optimisation of vote va-
lidity check later in this paper. In batched zero knowledge proof and verification,
a security parameter L is used, which is smaller than p and q. L will be used in
the rest of this paper. Theorem 1 illustrates that multiple integers can be proved
and verified to be N th residues in a batch.

Theorem 1. Suppose y1, y2, . . . , yn are in ZN2 . If
∏n

i=1 yti

i is an N th residue
with a probability larger than 2−L where integers t1, t2, . . . , tn are randomly cho-
sen from {0, 1, . . . , 2L − 1}, then y1, y2, . . . , yn are N th residues.

Efficient Vote Validity Check in Homomorphic Electronic Voting 207

Proof:
∏n

i=1 yti

i is an N th residue with a probability larger than 2−L implies
that for any given integer v in {1, 2, . . . , n} there must exist integers t1, t2, . . . ,
tn, t′v ∈ {0, 1, . . . , 2L − 1}, x and x′ such that∏n

i=1 yti

i = xN mod N2 (3)

(
∏v−1

i=1 yti

i)yt′v
v
∏n

i=v+1 yti

i = x′N mod N2 (4)

Otherwise, for any combination of t1, t2, . . . , tv−1, tv+1, . . . , tn, all in {0, 1, . . . ,
2L − 1}, there is at most one tv in {0, 1, . . . , 2L − 1} such that

∏n
i=1 yti

i is an
N th residue. This implies that among the 2nL possible choices of t1, t2, . . . , tn
(combination of 2(n−1)L possible choices of t1, t2, . . . , tv−1, tv+1, . . . , tn and 2L

possible choices of tv) there is at most 2(n−1)L choices to construct N th residue∏n
i=1 yti

i , which is a contradiction to the assumption that
∏n

i=1 yti

i is an N th

residue with a probability larger than 2−L. Thus, a contradiction is found when
(3) and (4) are not satisfied, which implies they must be satisfied.

(3) and (4) imply that

y
tv−t′v
v = (x/x′)N mod N2

According to Euclidean algorithm there exist integers α and β to satisfy β(tv−
t′v) = αN + GCD(N, tv − t′v). GCD(N, tv − t′v) = 1 as tv < 2L, t′v < 2L and
2L < min(p, q). So y

β(tv−t′v)
v = yαN

v yv. Namely,

yv =y
β(tv−t′v)
v /yαN

v =(ytv−t′v
v)β/yαN

v =(x/x′)Nβ/(yα
v)N =((x/x′)β/yα

v)N mod N2

So yv is an N th residue. Therefore, y1, y2, . . . , yn are N th residues as v can be
any integer in {1, 2, . . . , n}. �

According to Theorem 1, proof and verification that yi for i = 1, 2, . . . , n are
N th residues can be batched to proof and verification that (

∏n
i=1 yti

i) is an N th

residue when t1, t2, . . . , tn are randomly chosen. If any integer in {y1, y2, . . . , yn}
is not an N th residue,

∏n
i=1 yti

i is an N th residue with only negligible probability.

4 Efficiency Optimisation: Protocol 1

When only one candidate is selected in each vote (or more precisely μ = 1),
(1) in the prototype can be implemented using batch proof-verification tech-
niques. For simplicity suppose mi,δ = 1 and mi,l = 0 for l = 1, 2, . . . , δ −
1, δ + 1, . . . , w. (1) is implemented by the proof and verification protocol in
Figure 2. The first three steps in Figure 2 can be regarded as an oblivious trans-
fer [11]. The three steps transfer tδ from V to Vi while δ is not revealed to V
and t1, t2, . . . , tδ−1, tδ+1, . . . , tw are not revealed to Vi. Vi needs tδ to calculate
its commitment in Step 4. The last three steps implement a batched proof of
knowledge of N th root. The protocol in Figure 2 proves

ci,l is an N th residue for w − 1 instances of l where l ∈ {1, 2, . . . , w}

208 K. Peng and F. Bao

without revealing the vote. This proof and verification is much more efficient
than repeating the proof and verification in Figure 1 w times, and is effective in
vote validity check when μ = 1. In addition to

KN [((
w∏

l=1

ci,l)/g)1/N] (5)

the proof in Figure 2 guarantees that

– D(ci,l) = 0 for w − 1 cases of l ∈ {1, 2, . . . , w};
– D(ci,l) = 1 for 1 case of l ∈ {1, 2, . . . , w}.

Correctness of the optimised vote validity check in Figure 2 is straightfor-
ward: when Vi is honest his proof can successfully pass the verification. Other

1. V → Vi : N ′

sl = tl − (
∏|w|

k=1 ek,bl,k
) mod N ′ for l = 1, 2, . . . w

ck ∈R ZN′ for k = 1, 2, . . . |w|
e = d−1 mod φ(N ′)

where N ′ = p′q′, N ′ < N , d ∈R Z∗
N′ , tl ∈R {0, 1, . . . , 2L−1} for l = 1, 2, . . . , w,

ek,j ∈R ZN′ for k = 1, 2, . . . , |w| and j = 0, 1, bl,k denotes the kth bit of l and
p′, q′ are large primes.

2. Vi → V : yk,j for k = 1, 2, . . . , |w| and j = 0, 1
where

yk,bδ,k
= τ e

k mod N ′ for k = 1, 2, . . . , |w|
yk,1⊕bδ,k

= yk,bδ,k
ck mod N ′ if bδ,k = 0 for k = 1, 2, . . . , |w|

yk,1⊕bδ,k
= yk,bδ,k

/ck mod N ′ if bδ,i = 1 for k = 1, 2, . . . , |w|
τk ∈R N ′ for k = 1, 2, . . . |w| and ⊕ stands for XOR.

3. V → Vi : Ek,j = yd
k,jek,j mod N ′ for k = 1, 2, . . . , |w| and j = 0, 1

4. Vi → V : a = rNg
sδ+(

∏ |w|
k=1 Ek,bδ,k

)/
∏ |w|

k=1 τk mod N2

where r is randomly chosen from Z∗
N .

5. V → Vi : t1, t2, . . . , tw.

6. Vi → V : z =
∏w

l=1 stl
i,l/r mod N2

Public verification:

N ′ < N

yk,1 = ckyk,0 mod N ′ for k = 1, 2, . . . , |w|∏w
l=1 ctl

i,l = azN mod N2

Fig. 2. Proof and verification in Protocol 1

Efficient Vote Validity Check in Homomorphic Electronic Voting 209

more complicated security properties of this protocol like soundness and zero
knowledge are proved in the following theorems.

Theorem 2. The proof protocol in Figure 2 is honest-verifier zero knowledge.

Proof: The proof transcript in Figure 2 includes integers N ′; sl for l = 1, 2, . . . , w;
ck for k = 1, 2, . . . , |w|; e; yk,j for k = 1, 2, . . . , |w| and j = 0, 1; Ek,j for k =
1, 2, . . . , |w| and j = 0, 1; a; t1, t2, . . . , tw; z. Any party without any secret knowl-
edge can simulate this proof transcript as follows.

1. Randomly choose large primes p′ and q′ such that their product is smaller
than N . Calculate and publish N ′ = p′q′.

2. Randomly choose ek,j ∈R ZN ′ for k = 1, 2, . . . , |w| and j = 0, 1 and tl ∈R

{0, 1, . . . , 2L−1} for l=1, 2, . . . , w. Publish tl and sl = tl−(
∏|w|

k=1 ek,bl,k
) mod

N ′ for l = 1, 2, . . . , w.
3. Randomly choose yk,0 and ck from ZN ′ for k = 1, 2, . . . , |w|. Publish yk,0,

ck and yk,1 = ckyk,0 mod N ′ for k = 1, 2, . . . , |w|.
4. Randomly choose e from Z∗

N ′ . Calculate d = e−1 mod φ(N ′). Publish e and
Ek,j = yd

k,jek,j mod N ′ for k = 1, 2, . . . , |w| and j = 0, 1.
5. Randomly choose z from Z∗

N . Publish z and a = (
∏w

l=1 ctl

i,l)/zN mod N2.

So if the verifier is honest and chooses the challenges randomly in the proof
protocol in Figure 2, both the simulated transcript and the proof transcript in
Figure 2 have the same distribution (as detailed in Table 1) and satisfy the
following conditions.

– N ′ < N .
– yk,1 = ckyk,0 mod N ′ for k = 1, 2, . . . , |w|.
–

∏w
l=1 ctl

i,l = azN mod N2.
– ∃ d uniformly distributed in Z∗

N ′ and ek,j uniformly distributed in ZN ′

for k = 1, 2, . . . , |w| and j = 0, 1 such that sl = tl − (
∏|w|

k=1 ek,bl,k
) mod

N ′ for l = 1, 2, . . .w and Ek,j = yd
k,jek,j mod N ′ for k=1, 2, . . . , |w| and j=

0, 1.

Therefore, the two transcripts have the same distribution and are indistin-
guishable if the verifier is honest. �

Theorem 3. The proof protocol in Figure 2 is sound. More precisely, if V ′ has
only polynomial computation capability and his proof passes the verification in
Figure 2 with a probability no smaller than 2−wL + 2−L, the proof in Figure 2
together with (5) guarantees that (1, 0, 0 . . . , 0) is permuted and encrypted in
ci,1, ci,2, . . . , ci,w.

To prove Theorem 3, Lemma 1 is proved first.

Lemma 1. In the first three steps of the protocol in Figure 2, a polynomial Vi

can calculate at most one of the w integers t1, t2, . . . , tw.

210 K. Peng and F. Bao

Table 1. Distribution of the variables in both transcripts

Variable Distribution
N ′ uniformly in {x | x = p′q′, p′ and q′ are large primes, p′q′ < N}
e uniformly in Z∗

N′

tl uniformly in {0, 1, . . . , 2L − 1}
sl uniformly in ZN′

ck uniformly in ZN′

yk,0 uniformly in ZN′

yk,1 uniformly in ZN′

Ek,0 uniformly in ZN′

Ek,1 uniformly in ZN′

z uniformly in Z∗
N

a uniformly in {x | D(x) = tδ}

Proof: In the protocol in Figure 2

Ek,j = yd
k,jek,j mod N ′ for k = 1, 2, . . . , |w| and j = 0, 1 (6)

sl = tl − (
∏|w|

k=1 ek,bl,k
) mod N ′ for l = 1, 2, . . . w (7)

(6) implies

ek,j = Ek,j/yd
k,j mod N ′ for k = 1, 2, . . . , |w| and j = 0, 1 (8)

(7) and (8) imply that

tl = sl + (
∏|w|

k=1 Ek,bl,k
)/

∏|w|
k=1 yd

k,bl,k
mod N ′ for l = 1, 2, . . . w

If in the first three steps of the protocol in Figure 2, a polynomial Vi can
calculate more than one of the w integers t1, t2, . . . , tw, then there exists k′ in
{1, 2, . . . , |w|}, such that the polynomial Vi can calculate both yd

k′,0 and yd
k′,1.

Public verification of yk,1 = ckyk,0 mod N ′ for k = 1, 2, . . . , |w| guarantees that
yk′,1 = ck′yk′,0 mod N ′. Thus the polynomial Vi can calculate cd

k′ . So a contra-
diction to the RSA assumption (when the factorization of N ′ is unknown, it is
impossible to calculate the eth root in polynomial time) is found. Therefore, a
polynomial Vi can calculate at most one of the w integers t1, t2, . . . , tw. �

Proof of Theorem 3
As Lemma 1 guarantees that Vi can calculate at most one of the w integers
t1, t2, . . . , tw, suppose Vi cannot calculate t1, t2, . . . , tρ−1, tρ+1, . . . , tw. Namely,
when Vi calculates a, it does not know t1, t2, . . . , tρ−1, tρ+1, . . . , tw. As Vi can
pass the verification in the protocol in Figure 2 with a probability larger than
2−wL + 2−L, there must exist two different sets of challenges t1, t2, . . . , tw and
t′1, t

′
2, . . . , t

′
ρ−1, tρ, t

′
ρ+1, . . . , t

′
w to the same commitment a, such that Vi can give

two responses z and z′ to satisfy∏w
l=1 ctl

i,l = azN mod N2 (9)

(
∏ρ−1

l=1 c
t′l
i,l)c

tρ

i,ρ

∏w
l=ρ+1 c

t′l
i,l = az′

N mod N2 (10)

Efficient Vote Validity Check in Homomorphic Electronic Voting 211

with a probability larger than 2−L. Otherwise, with commitment a the prover
can give correct response to at most one challenge with a probability larger
than 2−L. This deduction implies that when a random challenge is raised the
probability that the prover can pass the verification is no more than

0× P (E0) + p1P (E1) + p2P (E2)

where p1 is larger than 2−L, p2 is no larger than 2−L, E0 denotes the event that
the prover can give correct response to no challenge with a probability larger
than 2−L, E1 denotes the event that the prover can give correct response to just
one challenge with a probability larger than 2−L and that challenge happens to
be chosen, E2 denotes the event that the prover can give correct response to
just one challenge with a probability larger than 2−L and that challenge is not
chosen. As

0× P (E0) + p1P (E1) + p2P (E2) = p12−wL + p2(1− 2−wL) < 2−wL + 2−L,

there is a contradiction to the assumption that the prover can pass the verifica-
tion in the protocol in Figure 2 with a probability no smaller than 2−wL + 2−L.
Thus, a contradiction is found when (9) and (10) are not satisfied, which implies
they must be satisfied.

(9) divided by (10) yields∏
1≤l≤w,l =ρ c

tl−t′l
i,l = (z/z′)N mod N2,

which is correct with a probability larger than 2−L. So (
∏

1≤l≤w,l =ρ c
tl−t′l
i,l) is an

N th residue with a probability larger than 2−L.
As the challenges t1, t2, . . . , tρ−1, tρ+1, . . . , tw and t′1, t

′
2, . . . , t

′
ρ−1, t

′
ρ+1, . . . , t

′
w

are randomly chosen, t1− t′1, t2− t′2, . . . , tρ−1− t′ρ−1, tρ+1− t′ρ+1, . . . , tw− t′w are
random. So according to Theorem 1, ci,1, ci,2, . . . , ci,ρ−1, ci,ρ+1, . . . , ci,w are N th

residues. Note that (5) guarantees that
∑w

l=1 D(ci,l)=1. Therefore, (1, 0, 0 . . . , 0)
is encrypted in ci,1, ci,2, . . . , ci,w after being permuted. �

This new proof and verification of vote validity costs O(|w|) full-length expo-
nentiations, which is much more efficient than the proof and verification of vote
validity in the prototype and in [7]. Although it is required that each voter can
only select one candidate in Protocol 1, this requirement is satisfied in some
election applications.

5 Advanced Efficiency Optimisation: Protocol 2

Although Protocol 1 improves efficiency of vote validity check in homomorphic e-
voting, it has several drawbacks. Firstly, it limits that each voter can only select
one candidate and thus has only a limited range of applications. Secondly, its vote
validity check requires too many rounds (six rounds) of communication, which
is a drawback in many circumstances. Thirdly, vote validity check in Protocol

212 K. Peng and F. Bao

1 is still not efficient enough in computation. Especially, verification of validity
of all the votes is still a costly operation. So any verifier without a powerful
computation capability still feels difficult to verify validity of the election. To
solve these problems, Protocol 2 is proposed, which employs a more advanced
vote validity check mechanism. In Protocol 2, to illustrate validity of his vote Vi

has to use the proof protocol in Figure 3 to prove

∧w
l=1 (D(ci,l) = 0 ∨D(ci,l) = 1) (11)

where (2) is a proof of knowledge of N th root and can be easily and efficiently
implemented using ZK proof of knowledge of root in [18].

1. V publishes random integers tl,0, tl,1 ∈R {0, 1, . . . , 2L − 1} for l = 1, 2, . . . , w.
2. Vi publishes

a = rN
w∏

l=1

(ci,lg
mi,l−1)tl,1−mi,l

vl,1−mi,l mod N2

where vl,1−mi,l
∈ {0, 1, . . . , 2L−1} for l = 1, 2, . . . , w and r ∈ Z∗

N are randomly
chosen.

3. V publishes random integer v ∈ {0, 1, . . . , 2L − 1}.
4. Vi publishes vl,0, vl,1 for l = 1, 2, . . . , w and u where

vl,mi,l
= v − vl,1−mi,l

mod 2L for l = 1, 2, . . . , w

u = r
∏w

l=1 s
tl,mi,l

vl,mi,l

i,l mod N2

Public verification:

uN = a
∏w

l=1 c
tl,0vl,0
i,l (ci,l/g)tl,1vl,1 mod N2

v = vl,0 + vl,1 mod 2L for l = 1, 2, . . . , w

Fig. 3. Proof and verification in Protocol 2

Correctness of Protocol 2 is straightforward. Other more complicated security
properties of this protocol like soundness and zero knowledge are proved in the
following theorems.

Theorem 4. The protocol in Figure 3 is honest-verifier zero knowledge.

Proof: A party without any secret knowledge can generate a proof transcript
containing vl,0, vl,1, tl,0, tl,1 for l = 1, 2, . . . , w; u; v and a as follows.

1. Randomly choose vl,0 ∈ {0, 1, . . . , 2L − 1}, tl,0 ∈ {0, 1, . . . , 2L − 1}, tl,1 ∈
{0, 1, . . . , 2L − 1} for l = 1, 2, . . . , w, v ∈ {0, 1, . . . , 2L − 1} and u ∈ Z∗

N .
2. Calculate vl,1 = v − vl,0 mod 2L for l = 1, 2, . . . , w.
3. Calculate a = uN/(

∏w
l=1 c

tl,0vl,0
i,l (ci,l/g)tl,1vl,1) mod N2.

Efficient Vote Validity Check in Homomorphic Electronic Voting 213

If the verifier is honest and randomly chooses the challenges in the proof pro-
tocol in Figure 3, in both the simulated transcript and the proof transcript in
Figure 3, vl,0, vl,1, tl,0, tl,1 for l = 1, 2, . . . , w and v are uniformly distributed in
{0, 1, . . . , 2L−1}, u is uniformly distributed in Z∗

N and a is uniformly distributed
in the ciphertext space of the employed Paillier encryption. Therefore, the two
transcripts have the same distribution and are indistinguishable. �

Theorem 5. The proof protocol in Figure 3 is sound. More precisely, if the chal-
lenges are random and the proof passes the verification in the protocol in Figure 3
with a probability no smaller than 21−L, then ∧w

l=1(D(ci,l) = 0 ∨D(ci,l) = 1) is
true.

Proof: As the prover can pass the verification in the protocol in Figure 3 with
a probability larger than 21−L, the prover must be able to give two responses
(vl,0 for l = 1, 2, . . . , w; vl,1 for l = 1, 2, . . . , w; u) and (v′l,0 for l = 1, 2, . . . , w;
v′l,1 for l = 1, 2, . . . , w; u′) to two different challenges v and v′ to the same
commitment a and same integers tl,0, tl,1 for l = 1, 2, . . . , w, such that

uN = a
∏w

l=1 c
tl,0vl,0
i,l (ci,l/g)tl,1vl,1 mod N2 (12)

v = vl,0 + vl,1 mod 2L for l = 1, 2, . . . , w (13)

u′N = a
∏w

l=1 c
tl,0v′

l,0
i,l (ci,l/g)tl,1v′

l,1 mod N2 (14)

v′ = v′l,0 + v′l,1 mod 2L for l = 1, 2, . . . , w (15)

with a probability larger than 2−L. Otherwise, the prover can give a correct
response to at most one challenge with a probability larger than 2−L. This
deduction implies when a random challenge is raised the probability that the
prover can pass the verification is no more than

0× P (E0) + p1P (E1) + p2P (E2)

where p1 is larger than 2−L, p2 is no larger than 2−L, E0 denotes the event that
the prover can give correct response to no challenge with a probability larger
than 2−L, E1 denotes the event that the prover can give correct response to just
one challenge with a probability larger than 2−L and that challenge happens to
be chosen, E2 denotes the event that the prover can give correct response to
just one challenge with a probability larger than 2−L and that challenge is not
chosen. As

0× P (E0) + p1P (E1) + p2P (E2) = p12−L + p2(1 − 2−L) < 2−L + 2−L = 21−L

there is a contradiction to the assumption that the prover can pass the verifica-
tion in the protocol in Figure 3 with a probability no smaller than 21−L. Thus,
a contradiction is found when (12), (13), (14) and (15) are not satisfied, which
implies that they must be satisfied.

(12) divided by (14) yields

(u/u′)N =
w∏

l=1

c
tl,0(vl,0−v′

l,0)

i,l (ci,l/g)tl,1(vl,1−v′
l,1) mod N2 (16)

214 K. Peng and F. Bao

Subtracting (15) from (13) yields

v − v′ = (vl,0 − v′l,0) + (vl,1 − v′l,1) mod 2L for l = 1, 2, . . . , w (17)

Equation (16) implies that
∏w

l=1 c
tl,0(vl,0−v′

l,0)

i,l (ci,l/g)tl,1(vl,1−v′
l,1) is an N th

residue with a probability larger than 2−L. Note that tl,0 and tl,1 are ran-

domly chosen for l = 1, 2, . . . , w. So according to Theorem 1, c
vl,0−v′

l,0
i,l and

(ci,l/g)vl,1−v′
l,1 for l = 1, 2, . . . , w are N th residues.

As v and v′ are different integers in {0, 1, . . . , 2L−1} and thus v �= v′ mod 2L,
Equation (17) implies that for any l in {1, 2, . . . , w}, (vl,0 − v′l,0) mod 2L and
(vl,1 − v′l,1) mod 2L cannot be zeros at the same time. As vl,0, v′l,0, vl,1, v′l,1 are
smaller than 2L, for any l in {1, 2, . . . , w}, vl,0 − v′l,0 and vl,1 − v′l,1 cannot be
zeros at the same time.

Suppose vl,π(l) − v′l,π(l) �= 0 and (ci,l/gπ(l))vl,π(l)−v′
l,π(l) = xN

l mod N2 for l =
1, 2, . . . , w where π() is a function from {1, 2, . . . , w} to {0, 1}. According to
Euclidean algorithm there exist integers αl and βl to satisfy βl(vl,π(l)−v′l,π(l)) =
αlN +GCD(N, vl,π(l)−v′l,π(l)) for l = 1, 2, . . . , w. GCD(N, vl,π(l)−v′l,π(l)) = 1 for

l = 1, 2, . . . , w as vl,π(l), v′l,π(l) < 2L < min(p, q). So (ci,l/gπ(l))βl(vl,π(l)−v′
l,π(l)) =

(ci,l/gπ(l))αlN (ci,l/gπ(l)) mod N2. Namely,

ci,l/gπ(l) = (ci,l/gπ(l))βl(vl,π(l)−v′
l,π(l))/(ci,l/gπ(l))αlN

= ((ci,l/gπ(l))(vl,π(l)−v′
l,π(l)))βl/(ci,l/gπ(l))αlN

= (xN
l)βl/(ci,l/gπ(l))αlN

= (xβl

l /(ci,l/gπ(l))αl)N mod N2 for l = 1, 2, . . . , w

So, ci,l/gπ(l), namely ci,l or ci,l/g, is an N th residue for l = 1, 2, . . . , w. Therefore,
∧w

l=1(D(ci,l) = 0 ∨D(ci,l) = 1) is true. �

Theorem 5 together with (2) guarantees that in each vote there are μ ones and
w−μ zeros. The proof and verification in Protocol 2 only costs O(1) full-length
exponentiations, which is much more efficient than the proof and verification of
vote validity check in the existing homomorphic e-voting schemes and Protocol 1.
With the advanced optimised vote validity check in Figure 3. Moreover, Protocol
2 does not limit the number of selected candidates in a vote and is flexible. So
Protocol 2 is more advanced than Protocol 1.

6 Comparison and Conclusion

A comparison is made between the existing e-voting schemes (mix net voting
and homomorphic voting) and homomorphic voting with optimised vote validity
check (Protocol 1 and Protocol 2) in this paper. In mix net voting, suppose
the talliers cooperate to shuffle the votes, decrypt them and prove validity of
their operations. The number of multiplications is counted when computational

Efficient Vote Validity Check in Homomorphic Electronic Voting 215

Table 2. Comparison of e-voting schemes

Scheme ZK Flexible Cost of a voter Cost of a tal- Cost of verification of

encryption vote validity proof lier in tallying vote validity tallying

Mix net Some Yes ≥ 1.5K + 1 unnecessary ≥ 7nK unnecessary ≥ 6tnK

voting = 1537 = 71680000 = 184320000

Existing Some Yes ≥ ≥ w(4.5K + 3L + 2) ≥ w ≥ nw(3K + 3L + 3) ≥ tw

homomorphic (1.5K + 1)w +1.5K + 1.5L + 2 (4.5K + 1) +1.5K + 1.5L + 2 (3K + 3L + 2)

voting = 24592 = 77098 = 73744 = 525380000 = 153312

Yes Yes (1.5K + 1)w w(3K + 3L + 2) w(4.5K + 1) nw(1.5K + 3L + 3) tw×

[7] +1.5K + 1.5L + 2 +1.5(w + 1)K + 1.5L (3K+3L+2)

= 24592 = 52522 = 73744 +2 = 279644576 = 153312

No No (1.5K + 1)w w(0.5L + 2)+ w(4.5K + 1) nw(0.5L + |w|+ tw×

Protocol 1 (0.75K + 1.5)|w| 1) + (3K + 2)|w| (3K+3L+2)

+7.5K + 3 +4.5K + 2

= 24592 = 11113 = 73744 = 173060000 = 153312

Protocol 2 Yes Yes (1.5K + 1)w 1.5K + 6wL + 2w w(4.5K + 1) n(1.5K + 6wL + 3w) tw(3K + 3L

= 24592 = 5424 = 73744 = 54240000 +2) = 153312

cost is analysed. K is the length of a full-length integer (e.g. 1024 bits). L is
the length of challenges used in ZK proofs. t is the number of honest talliers
needed in tallying. As suggested in [5], 1.5x modulo multiplications are needed to
calculate a modulo exponentiation with an x-bit exponent and y+0.5yx modulo
multiplications are needed to calculate the product of y modulo exponentiations
with x-bit exponents. An example is given in Table 2, where K = 1024, L = 40,
n = 10000, t = 3 and w = 16. It is clearly illustrated in Table 2

– Protocol 1 improves efficiency, but is not flexible and is still not efficient
enough;

– Protocol 2 is flexible and highly efficient.

In summary, vote validity check in homomorphic e-voting is optimised in this
paper. Two new vote validity check procedures, Protocol 1 and Protocol 2, are
designed. Both of them are more efficient than the existing vote validity check
mechanisms. Both of them achieve correctness, privacy and robustness. Protocol
2 is especially advanced. It is correct, zero knowledge private, robust, flexible and
highly efficient.

References

1. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks.
In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg
(2001)

2. Aditya, R., Peng, K., Boyd, C., Dawson, E.: Batch Verification for Equality of Dis-
crete Logarithms and Threshold Decryptions. In: Jakobsson, M., Yung, M., Zhou, J.
(eds.) ACNS 2004. LNCS, vol. 3089, pp. 494–508. Springer, Heidelberg (2004)

3. Adler, J.M., Dai, W., Green, R.L., Neff, C.A.: Computational details of the votehere
homomorphic election system. Technical report, VoteHere Inc. (2000) (last accessed
June 22, 2002), http://www.votehere.net/technicaldocs/hom.pdf

http://www.votehere.net/technicaldocs/hom.pdf

216 K. Peng and F. Bao

4. Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., Poupard, G.: Practical
multi-candidate election system. In: Twentieth Annual ACM Symposium on Prin-
ciples of Distributed Computing, pp. 274–283 (2001)

5. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

6. Boyd, C., Pavlovski, C.: Attacking and repairing batch verification schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 58–71. Springer, Hei-
delberg (2000)

7. Chida, K., Yamamoto, G.: Batch processing for proofs of partial knowledge and
its applications. IEICE Trans. Fundamentals E91CA(1), 150–159 (2008)

8. Chida, K., Kobayashi, K., Morita, H.: Efficient sealed-bid auctions for massive
numbers of bidders with lump comparison. In: Davida, G.I., Frankel, Y. (eds.) ISC
2001. LNCS, vol. 2200, pp. 408–419. Springer, Heidelberg (2001)

9. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

10. Damgåard, I., Jurik, M.: A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

11. Fischer, M.J., Micali, S., Rackoff, C.: A secure protocol for the oblivious transfer
(extended abstract). Journal of Cryptology 9(3), 191–195 (1996)

12. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001)

13. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

14. Golle, P., Zhong, S., Boneh, D., Jakobsson, M., Juels, A.: Optimistic mixing for
exit-polls. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 451–465.
Springer, Heidelberg (2002)

15. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005)

16. Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007)

17. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003)

18. Guillou, L.C., Quisquater, J.J.: A “paradoxical” identity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, Heidelberg (1990)

19. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000)

20. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans-
actions 88-A(1), 172–188 (2005)

21. Katz, J., Myers, S., Ostrovsky, R.: Cryptographic counters and applications to
electronic voting. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 78–92. Springer, Heidelberg (2001)

22. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer,
Heidelberg (2002)

Efficient Vote Validity Check in Homomorphic Electronic Voting 217

23. Kikuchi, H., Harkavy, M., Tygar, J.D.: Multi-round anonymous auction. In: Pro-
ceedings of the First IEEE Workshop on Dependable and Real-Time E-Commerce
Systems, pp. 62–69 (June 1998)

24. Kikuchi, H.: (m+1)st-price auction protocol. In: Syverson, P.F. (ed.) FC 2001.
LNCS, vol. 2339, pp. 291–298. Springer, Heidelberg (2002)

25. Kikuchi, H., Hotta, S., Abe, K., Nakanishi, S.: Distributed auction servers resolving
winner and winning bid without revealing privacy of bids. In: Proc. of International
Workshop on Next Generation Internet (NGITA 2000), pp. 307–312. IEEE, Los
Alamitos (2000)

26. Lee, B., Kim, K.: Receipt-free electronic voting through collaboration of voter and
honest verifier. In: JW-ISC 2000, pp. 101–108 (2000)

27. Lee, B., Kim, K.: Receipt-free electronic voting scheme with a tamper-resistant
randomizer. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 389–
406. Springer, Heidelberg (2003)

28. Andrew Neff, C.: Conducting a universally verifiable electronic election using ho-
momorphic encryption. White paper, VoteHere Inc. (2000)

29. Andrew Neff, C.: A verifiable secret shuffle and its application to e-voting. In: ACM
Conference on Computer and Communications Security 2001, pp. 116–125 (2001)

30. Andrew Neff, C.: Verifiable mixing (shuffling) of elgamal pairs (2004),
http://theory.lcs.mit.edu/ rivest/voting/papers/

Neff-2004-04-21-ElGamalShuffles.pdf
31. Paillier, P.: Public key cryptosystem based on composite degree residuosity classes.

In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999)

32. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
248–259. Springer, Heidelberg (1994)

33. Peng, K., Aditya, R., Boyd, C., Dawson, E., Lee, B.: A secure and efficient mix-
network using extended binary mixing gate. In: Cryptographic Algorithms and
their Uses 2004, pp. 57–71 (2004)

34. Peng, K., Boyd, C.: Batch zero knowledge proof and verification and its applica-
tions. ACM TISSEC 10(2), Article No. 6 (May 2007)

35. Peng, K., Boyd, C., Dawson, E.: Simple and efficient shuffling with provable cor-
rectness and ZK privacy. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004.
LNCS, vol. 3089, pp. 188–204. Springer, Heidelberg (2004)

36. Peng, K., Boyd, C., Dawson, E.: Batch verification of validity of bids in homomor-
phic e-auction. Computer Communications 29, 2798–2805 (2006)

37. Peng, K., Boyd, C., Dawson, E., Lee, B.: Multiplicative homomorphic e-voting. In:
Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp.
61–72. Springer, Heidelberg (2004)

38. Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: A correct, private and efficient
mix network. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 439–454. Springer, Heidelberg (2004)

39. Peng, K., Dawson, E.: Efficient bid validity check in elgamal-based sealed-bid e-
auction. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp.
209–224. Springer, Heidelberg (2007)

40. Schoenmakers, B.: Fully auditable electronic secret-ballot elections. XOOTIC Mag-
azine (July 2000)

41. Wikstrom, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg
(2005)

http://theory.lcs.mit.edu/~rivest/voting/papers/Neff-2004-04-21-ElGamalShuffles.pdf
http://theory.lcs.mit.edu/~rivest/voting/papers/Neff-2004-04-21-ElGamalShuffles.pdf

Secure Hardware Implementation of Non-linear
Functions in the Presence of Glitches�

Svetla Nikova1, Vincent Rijmen1,2, and Martin Schläffer2

1 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT,
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

2 Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

martin.schlaeffer@iaik.tugraz.at

Abstract. Hardware implementations of cryptographic algorithms are
still vulnerable to side-channel attacks. Side-channel attacks that are
based on multiple measurements of the same operation can be coun-
tered by employing masking techniques. In the presence of glitches, most
of the currently known masking techniques still leak information dur-
ing the computation of non-linear functions. We discuss a recently in-
troduced masking method which is based on secret sharing and results
in implementations that are provable resistant against first-order side-
channel attacks, even in the presence of glitches. We reduce the hardware
requirements of this method and show how to derive provable secure im-
plementations of some non-linear building blocks for cryptographic al-
gorithms. Finally, we provide a provable secure implementation of the
block cipher Noekeon and verify the results.

Keywords: DPA, masking, glitches, sharing, non-linear functions,
S-box, Noekeon.

1 Introduction

Side-channel analysis exploits the information leaked during the computation of
a cryptographic algorithm. The most common technique is to analyze the power
consumption of a cryptographic device using differential power analysis (DPA)
[13]. This side-channel attack exploits the correlation between the instantaneous
power consumption of a device and the intermediate results of a cryptographic
algorithm. A years-long sequence of increasingly secure designs and increasingly
sophisticated attack methods breaking again these designs suggests that the
problem won’t be solved easily. Therefore, securing hardware implementations
against advanced DPA attacks is still an active field of research.

In order to counteract DPA attacks several different approaches have been
proposed. The general approach is to make the intermediate results of the cryp-
tographic algorithm independent of the secret key. Circuit design approaches
	 The work in this paper has been supported in part by the Austrian Government

(BMVIT) through the research program FIT-IT Trust (Project ARTEUS) and by
the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy).

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 218–234, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Secure Hardware Implementation of Non-linear Functions 219

[26,27] try to remove the root of the side-channel leakage by balancing the power
consumption of different data values. However, even small remaining asymme-
tries make a DPA possible. Another method is to randomize the intermediate
values of an algorithm by masking them. This can be done at the algorithm level
[2,4,9,20], at the gate level [10,28] or even in combination with circuit design ap-
proaches [21].

However, recent attacks have shown that masked hardware implementations
(contrary to software implementations [24,23]) can still be attacked using even
first-order DPA. The problem of most masking approaches is that they were de-
signed and proven secure in the assumption that the output of each gate switches
only once per clock cycle. Instead, glitches [22] occur in combinational CMOS cir-
cuits and each signal switches several times. Due to these glitches, these circuits
are vulnerable to DPA attacks [15,16]. Furthermore, the amount of informa-
tion leaked cannot be easily determined from the mathematical description of a
masked function. It depends too much on the used hardware technology and the
way the circuit is actually placed on a chip.

All these approaches start from compact but rather insecure implementations.
Subsequently the designers try to solve the known security issues by adding as
little hardware as possible. In [19] and in this paper, a different type of approach
is followed. The idea is to first start from a very secure implementation and
then, make this approach more practical by minimizing the hardware require-
ments while still maintaining the security level. The approach is based on only a
single assumption about the implementation technology, namely: the existence
of memory cells that completely isolate the switching characteristics of their in-
puts from their outputs (e.g. registers). Therefore, it holds for both, FPGAs and
ASICs. Secret sharing schemes and techniques from multiparty computation are
used to construct combinational logic which is completely independent of the
unmasked values.

In this approach the hardware requirements increase with the number of
shares and for each non-linear part of a circuit at least three shares (or masks)
are needed. Constructing secure implementations of arbitrary functions using
only a small number of shares, is a difficult task. In [19] the inversion in GF(16)
has been implemented using 5 shares. In this paper we analyze which basic non-
linear functions can be securely implemented using only three shares and present
a method how to construct such shared Boolean functions. We show that the
multiplication in GF(4) and the block cipher Noekeon can be implemented using
three shares as well and present the first verification of this method based on
computer simulations.

In the next section we give a short overview on simulation based DPA attacks
to motivate sharing. Section 3 reformulates and extends the sharing approach of
[19]. In Sect. 4 we show which non-linear functions can be securely implemented
using three shares. In Sect. 5 we give a provable secure implementation of the
S-box of the block cipher Noekeon using three shares. Computer simulations
confirm that this shared S-box is not vulnerable to DPA, even in the presence
of glitches.

220 S. Nikova, V. Rijmen, and M. Schläffer

2 DPA Attacks on Masking

Masking is a side-channel countermeasure which tries to randomize the interme-
diate values of a cryptographic algorithm [18]. Then, the (randomized) power
consumption does not correlate with the intermediate values anymore. The most
common masking scheme is Boolean or linear masking where the mask is added
by an XOR operation. However, one problem of masking is that cryptographic
algorithms like AES [7] or ARIA [14] combine linear and non-linear functions.
Thus, many different hardware masking schemes and masked gates have been
proposed [2,4,20,29] but all of them have been broken already [1,9,16,30]. Even
though no wire carries an unmasked value, the power consumption correlates
with the unmasked intermediate results of the algorithm.

2.1 Glitches

The problem of these hardware masking schemes is that the effect of glitches has
not been considered. Glitches have first been analyzed in [15] and a technique to
model glitches has been presented in [25]. Glitches occur because the signals of a
combinational circuit can switch more than once if an input changes. The amount
of glitches depends on the specific hardware implementation and on the input
values of a combinational logic. Since the power consumption of CMOS circuits
strongly depends on the amount of glitches, it depends on all inputs as well.
The reason why most masking schemes can be attacked is that they combine
masks and masked values into the same combinational logic. Since they are
not processed independently, it depends on the actual hardware implementation
whether a design is secure and cannot be proven during the design process.

2.2 Simulation Based Attacks and Gate Delays

Although it is difficult to verify whether a design or a masking scheme is secure,
different simulation techniques have been developed to verify the security of a
design. A simple method to analyze a design is by using the assumption that
there is no delay at the inputs and inside of a combinational logic. In this case,
each signal and output switches at most once and even simple masking schemes
are secure using this model. However, in [17] it has been shown by means of
computer simulations, that most masked gates can be attacked if the input
signals of the combinational logic arrive at different moments in time.

In [8] a model is used where each of the n input signals of a gate can arrive at
a different time. Thus, the output can switch up to n times. Although the model
does not allow delays inside the gate it takes glitches into account. In their paper
a gate is defined to be G-equivalent, if there is no correlation between the number
of output transitions and the unmasked value. Since it is not possible to build
any non-linear gate which is G-equivalent using standard masking, the weakened
requirement of semi-G-equivalence has been defined. Using this notation it is
possible to define non-linear masked gates which can be used to build arbitrary
circuits. However, the big disadvantage of this method is that semi-G-equivalent

Secure Hardware Implementation of Non-linear Functions 221

circuits still have routing constraints and it depends on the implementation
whether a circuit is secure.

Another disadvantage of the previous model is that it does not take delays
inside the gate into account. Therefore, a more detailed power consumption
model is to count all transitions which occur in a combinational logic. A common
method is to use unit delay for all gates and an even more accurate method is
to derive the delay of a circuit by back-annotated netlists [12]. In this case,
different timing information for different gates and wire lengths are considered.
Most secure masking schemes can be broken by performing attacks based on
these simulations.

However, none of these methods can prove that a circuit is secure in the
presence of glitches because each method takes only special cases into account.
Therefore, these methods can only be used to attack masking schemes. In the
following sections we examine a masking scheme based on secret sharing which
is provable secure in the presence of glitches.

3 Sharing

In this section we recall the most important elements of the approach in [19].
The idea is to build combinational blocks which are completely independent of
the unmasked values. This can be achieved by avoiding that masked values and
masks are used as an input to the same combinational circuit. Each function is
shared into combinational blocks which are independent of at least one share.
Hence, also the number of glitches and the power consumption is independent of
any unmasked value. This method can be extended to counter even higher-order
attacks by increasing the number of shares [19].

3.1 Terminology

We denote a vector of s shares xi by x = (x1, x2, . . . , xs) and split a variable x
into s additive shares xi with x =

⊕
i xi. Since we are only using linear or XOR

masking, the addition x + y is always computed over GF(2n) in the remainder
of this paper. Further, we will only use (s, s) secret sharing schemes, hence all
s shares are needed in order to determine x uniquely. More precisely, we use
secret sharing schemes where the conditional probability distribution Pr(x|x) is
uniform for every possible sharing vector X = (X1, X2, . . . , Xs):

Pr(x = X) = c Pr(x =
⊕

i

Xi) (1)

with c a normalization constant, which ensures that
∑

X Pr(x = X) = 1. In
words, any bias present in the joint distribution of the shares x is only due to
a bias in the distribution of the unshared variable x. This means, that for each
unshared value of x, all possible sharing vectors X = (X1, X2, . . . , Xs) with
x =

⊕
i Xi need to occur equally likely.

222 S. Nikova, V. Rijmen, and M. Schläffer

3.2 Realization

Assume we want to implement a vectorial Boolean function z = f(x) with the
n-bit input x and the m-bit output z. Then we need a set of functions fi which
together compute the output of f. We call this a realization and get the following
property:

Property 1 (Correctness [19]). Let z = f(x) be a vectorial Boolean function.
Then the set of functions fi(x) is a realization of f if and only if

z = f(x) =
s⊕

i=1

fi(x) (2)

for all shares x satisfying
⊕s

i=1 xi = x.

Alternatively, we will denote the n components of x by (a, b, . . .) and the m
components of z by (e, f, . . .). We define the vectorial Boolean function of z =
f(x) by:

(e, f, . . .) = f(a, b, . . .) (3)

and its m Boolean component functions fj(x) of f(x) as follows:

e = f1(x) = f1(a, b, . . .)
f = f2(x) = f2(a, b, . . .) (4)

To construct a shared implementation of the function f, each element of the
input x and of the result z is divided into s shares. To divide the function f, we
need to split each component function fj into s shared functions with:

e = e1 + · · ·+ es = f1((a1 + · · ·+ as), (b1 + · · ·+ bs), . . .)
f = f1 + · · ·+ fs = f2((a1 + · · ·+ as), (b1 + · · ·+ bs), . . .)

(5)

3.3 Non-completeness

The next property is important to prove the security of a realization of a function.
We denote the reduced vector (x1, . . . , xi−1, xi+1, . . . , xs) by xi.

Property 2 (Non-completeness [19]). Every function is independent of at least
one share of the input variable x and consequently, independent of at least
one share of each component. Without loss of generality, we require that zi is
independent of xi:

z1 = f1(x2, x3, . . . , xs) = f1(a1, b1, . . .)
z2 = f2(x1, x3, . . . , xs) = f2(a2, b2, . . .)

. . .

zs = fs(x1, x2, . . . , xs−1) = fs(as, bs, . . .)

(6)

Secure Hardware Implementation of Non-linear Functions 223

Theorem 2 and Theorem 3 of [19] are essential. These theorems state that the
shared components fi of a function z = f(x) are independent of the input x
and output z, as long as the shared realization satisfies Property 2 and the in-
put vectors satisfy (1). Therefore, also the mean power consumption, or any
other characteristic of an implementation of each component fi is independent
of the unmasked values x and z, even in the presence of glitches or the de-
layed arrival time of some inputs. More general, to counter DPA attacks of
order r, each shared component function needs to be independent of at least
r shares.

When partitioning each Boolean component function fj , we need to ensure
that Property 2 is satisfied for each component. As we have defined in Property 2,
each output share with index i needs to be independent of all input shares with
the same index i, namely independent of ai, bi, . . .

ei = f1i (ai, bi, . . .)
fi = f2i (ai, bi, . . .)

3.4 Uniform

In principle, Property 2 is sufficient to construct secure implementations of ar-
bitrary (vectorial) Boolean functions. However, the number of required shares,
and thereby the size of the circuit, grows rapidly with the algebraic degree of
the function. This can be reduced by splitting the function into stages. The
only requirement is that the switching characteristics between each stage are
isolated. This can be achieved by a pipelined implementation, where the differ-
ent stages are separated by registers or latches. In order to design the different
stages separately, we need to ensure (1) for the input shares x of each stage.
Since every output of a stage is used as the input in the next stage we need to
make assumptions about the probability distribution of the output shares z of a
shared function as well. The following property ensures that if the input-share
distribution satisfies (1), also the output-share distribution does:

Property 3 (Uniform [19]). 1 A realization of z = f(x) is uniform, if for all
distributions of the inputs x and for all input share distributions satisfying (1),
the conditional probability

Pr(z = Z|z =
⊕

i

Zi) (7)

is constant.

4 Sharing Non-linear Functions Using 3 Shares

In [19] it has been proven, that at least three shares are needed to fulfill Prop-
erty 2 for any non-linear function. However, in their paper the best result was a
1 This property is called Balance instead of Uniform in [19].

224 S. Nikova, V. Rijmen, and M. Schläffer

uniform implementation for the inversion in GF(16) using 5 shares. In this sec-
tion we analyze which basic non-linear functions can be shared using only three
shares and present a method to construct them, such that all three properties
are fulfilled. Finally, we show how the multiplication in GF(4), which is often
used in the implementation of the AES S-box [5], can be successfully shared
using three shares.

4.1 Constructing Non-linear Shared Functions

We construct non-linear shared functions by splitting the shared function, such
that only Property 1 and 2 are fulfilled first. In [19] it has been proven that this
is always possible for any function of algebraic degree two. If we continue with
the notation of Sect. 3.3 terms of degree two can only be placed in the share with
the missing index. For example, the term a1b2 can only be a part of function (or
share) f3 since f1 has to be independent of a1 and f2 of b2. However, all linear
terms and quadratic terms with equal index i can be placed in one of the two
shared functions fj with i �= j.

Usually, Property 3 is not fulfilled after this step. To change the output-share
distribution we can add other terms to the non-complete shared functions. These
correction terms must not violate the first two properties but can be used to fulfill
Property 3. Hence, only a special set of correction terms can be added to the
individual shares. To maintain Property 1, it is only possible to add the same
term to an even number of different shares. This ensures that the correction
terms cancel out after adding the shares. To retain Property 2 we can only add
terms which are independent of at least two shares. Therefore, only linear terms
and terms with equal index i can be used as correction terms.

4.2 Sharing Non-linear Functions with 2 Inputs

In [19] it has been shown that no shared AND gate using three shares exists
which fulfills all three properties. Note that using any single non-linear gate we
would be able to build arbitrary circuits. Hence, we generalize the idea in this
section.

Theorem 1. No non-linear gate or Boolean function with two inputs and one
output can be shared using three shares.

Proof. All non-linear Boolean functions with two inputs and one output can
be defined in algebraic normal form (ANF) by the following 8 functions with
parameters k0, k1, k2 ∈ {0, 1} and index i = k0 · 4 + k1 · 2 + k2:

fi(a, b) = k0 + k1a + k2b + ab. (8)

To share these non-linear Boolean functions using three shares, we first split
the inputs a and b into three shares and get the following functions:

Secure Hardware Implementation of Non-linear Functions 225

e1 + e2 + e3 = fi(a1 + a2 + a3, b1 + b2 + b3)
= k0 + k1(a1 + a2 + a3) + k2(b1 + b2 + b3)

+ (a1 + a2 + a3) · (b1 + b2 + b3)
= k0 + k1(a1 + a2 + a3) + k2(b1 + b2 + b3)

+ a1b1 + a1b2 + a1b3 + a2b1 + a2b2 + a2b3 + a3b1 + a3b2 + a3b3.

Then, terms with different indices are placed into the share with the missing
index and the share for all other terms can be chosen freely.

To satisfy Property 3, the shared-output distribution of (e1, e2, e3) needs to be
uniform for each unshared input value (a, b). In other words, each possible shared
output value has to occur equally likely.The input of the unshared functions can
take the 4 values (a, b) ∈ {00, 01, 10, 11}. In the case of the shared multiplication
with f(a, b) = ab, we get for the input (a, b) = 00 the output e = e1 +e2 +e3 = 0
and the distribution of its shared output values (e1, e2, e3) ∈ {000, 011, 101, 110}
has to be uniform.

For each of the 8 non-linear functions all possible correction terms are the
constant term, the 6 linear terms a1, a2, a3, b1, b2, b3 and the 3 quadratic terms
a1b1, a2b2, a3b3. Due to the small number of correction terms we can evaluate
all possibilities and prove that no combinations leads to a uniform shared repre-
sentation. It follows that a shared non-linear function with 2 inputs, one output
and 3 shares does not exist. ��

4.3 Sharing Non-linear Functions with 3 Inputs

The result of the previous section leads to the question if there are any non-linear
functions that can be shared using three shares. To answer this question we look
at the class of non-linear Boolean functions with 3 inputs and one output bit:

fi(a, b, c) = k0 + k1a + k2b + k3c + k4ab + k5ac + k6bc + k7abc (9)

with k0, . . . , k7 ∈ {0, 1}. As shown in [19, Theorem 1], a Boolean function of
algebraic degree 3 can never be shared using three shares. Therefore, we always
require k7 = 0. To get a non-linear function at least one of the coefficients with
degree two (k4, k5, k6) needs to be non-zero and we get 112 non-linear functions.
To share these 112 functions, we split each input and output into three shares
and get:

e1 + e2 + e3 = fi(a1 + a2 + a3, b1 + b2 + b3, c1 + c2 + c3)
= k0 + k1(a1 + a2 + a3) + k2(b1 + b2 + b3) + k3(c1 + c2 + c3)

+ k4(a1b1 + a1b2 + a1b3 + a2b1 + a2b2 + a2b3 + a3b1 + a3b2 + a3b3)
+ k5(a1c1 + a1c2 + a1c3 + a2c1 + a2c2 + a2c3 + a3c1 + a3c2 + a3c3)
+ k6(b1c1 + b1c2 + b1c3 + b2c1 + b2c2 + b2c3 + b3c1 + b3c2 + b3c3)

These functions can be shared using the same method as in the previous section
but we can now use the following 22 correction terms:

226 S. Nikova, V. Rijmen, and M. Schläffer

linear: 1, a1, a2, a3, b1, b2, b3, c1, c2, c3

degree 2: a1b1, a2b2, a3b3, a1c1, a2c2, a3c3, b1c1, b2c2, b3c3

degree 3: a1b1c1, a2b2c2, a3b3c3

By adding at least three correction terms, many uniform shared functions for all
of the 112 non-linear functions can be found.

4.4 Shared Multiplication in GF(4)

In this section we show that the multiplication in GF(4) can be successfully
shared using three shares. We have implemented the multiplication in GF(4)
using normal bases. The used normal basis is (v, v2) and the two elements are
represented by v = 01 and v2 = 10. The zero element is represented by 00 and
the one element by 11. We define the multiplication in GF(4) using this normal
basis by:

(e, f) = (a, b)× (c, d)
e = ac + (a + b)(c + d)
f = bd + (a + b)(c + d)

and get the following multiplication tables:

× 0 1 v v2

0 0 0 0 0
1 0 1 v v2

v 0 v v2 1
v2 0 v2 1 v

× 00 11 01 10
00 00 00 00 00
11 00 11 01 10
01 00 01 10 11
10 00 10 11 01

To construct a shared multiplication in GF(4), each of the 4 inputs a, b, c and
d and the results e and f are divided into three shares:

(e1 + e2 + e3) = (a1 + a2 + a3)(c1 + c2 + c3)
+ ((a1 + a2 + a3) + (b1 + b2 + b3))((c1 + c2 + c3) + (d1 + d2 + d3))

(f1 + f2 + f3) = (b1 + b2 + b3)(d1 + d2 + d3)
+ ((a1 + a2 + a3) + (b1 + b2 + b3))((c1 + c2 + c3) + (d1 + d2 + d3))

After expanding the multiplication formulae, each term of the two component
functions is placed into one of the three output shares (see App. A). Since the
multiplication in GF(4) consists only of quadratic terms it is always possible to
fulfill Property 2.

To fulfill Property 3 we need a uniform output-share distribution for each of
the 16 unshared input values (a, b, c, d). For example, the input (a, b, c, d) = 0111
results in the output (e, f) = 01. The shared result is uniform, if each possible
value of (e1, e2, e3, f1, f2, f3) with e1 + e2 + e3 = 0 and f1 + f2 + f3 = 1 occurs
equally likely. We have 24 unshared and 212 shared input values and hence, we
get 212−4 = 28 values for each unshared output (e, f). Since two bits of the

Secure Hardware Implementation of Non-linear Functions 227

shares (e1, e2, e3, f1, f2, f3) have already been determined, each of the remaining
24 shares has to occur 28−4 = 24 times.

The input of the shared multiplication are the 12 variables ai, bi, ci and di with
i ∈ {1, 2, 3}. When searching for uniform functions, we can add only correction
terms which have the same index i in all of its elements. We get 1 constant,
4 linear and 6 quadratic terms, 4 terms of degree 3 and 1 term (aibicidi) of
degree 4. This gives 16 possible correction terms for each shared component
function of e and f . The search space of finding a uniform representation can be
reduced by allowing only a limited number of correction terms. Further, ei and fi

are rotation symmetric and each Boolean shared function needs to be balanced.
Using at most 6 linear or quadratic correction terms, we have found thousands of
uniform realizations of the multiplication in GF(4) using three shares. Hence, a
hardware designer has still lots of freedom to choose an efficient implementation
and we give an example for found correction terms in App. A.

5 Noekeon

Noekeon [6] is a block cipher with a block and key length of 128 bits, which
has been designed to counter implementation attacks. It is an iterated cipher
consisting of 16 identical rounds. In each round 5 simple round transformations
are applied. The cipher is completely linear except for the non-linear S-box
Gamma. The linear parts can be protected against first-order DPA using one
mask (two shares), whereas for the non-linear part this is not possible. In this
section we show how the non-linear S-box Gamma can be successfully shared
using 3 shares. Finally, we show that this shared function is secure in the presence
of glitches by performing a simulation based on a back-annotated netlist.

5.1 The S-Box Gamma

The non-linear 4-bit S-box Gamma is defined by Table 1) and consists of two
equal non-linear layers NL(x), separated by a linear layer L(x):

S(x) = NL(L(NL(x)) (10)

The non-linear layer (e, f, g, h) = NL(a, b, c, d), which consists of only one AND,
one NOR and two XOR operations, and the linear layer (i, j, k, l) = L(a, b, c, d)
are defined by:

h = d i = a

g = c j = a + b + c + d

f = b + ¬(c ∨ d) = 1 + b + c + d + cd k = b

e = a + (b ∧ c) = a + bc l = d

Table 1. The substitution table of the 4-bit S-box Gamma of the block cipher Noekeon

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 7 A 2 C 4 8 F 0 5 9 1 E 3 D B 6

228 S. Nikova, V. Rijmen, and M. Schläffer

5.2 Sharing the Noekeon S-Box Using 3 Shares

Since the algebraic degree of this function is 3, the whole function cannot be
shared using 3 shares. However, if we split Gamma into two stages with algebraic
degree two, we can share it using 3 shares again. We split Gamma after the
linear layer and combine the first non-linear layer with the linear layer to get
y = L(NL(x)) and z = NL(y). This results in less complex formulae and we
get for the ANF of the resulting 8 Boolean component functions (i, j, k, l) =
L(NL(a, b, c, d)) and (e, f, g, h) = NL(i, j, k, l):

i = d e = i + jk

j = 1 + b + c + d + cd f = 1 + j + k + l + kl

k = 1 + a + b + bc + cd g = k

l = a + bc h = l

To share these functions we need to share the 4 inputs and outputs of each
layer and get 24 shared Boolean functions. We place the terms depending on
their index into the regarding output share which results already in uniform
shared functions for both stages of Gamma. The formulae for the two steps of
the shared Noekeon S-box using three shares are shown in App. B. We have
implemented both the protected and the unprotected Noekeon S-box using a
0.35μm standard cell library [3]. A schematic of the shared Noekeon S-box is
shown in Fig. 1. In a straight forward implementation using just the ANF of
the functions, the protected S-box is approximately 3.5 times larger than the
unprotected S-box (188 gate equivalents compared to 54 gate equivalents). Since
there is room for further improvements and the linear parts of the Noekeon
cipher can be implemented using two shares only, the overall size of the cipher
can still be less than 3.5 times larger. This shows that shared implementations
can already compete with other hardware countermeasures.

x1

x2

x3

y3

y2

y1

z1

z2

z3

f3

f2

f1

g1

g2

g3

x1 +x2 +x3 =x y1+y2+y3 =
y = L(NL(x))

z1 +z2 +z3 =
z=NL(y)

L O NL = f1 + f2 + f3 NL = g1 + g2 +g3

Fig. 1. A schematic of the shared Noekeon S-box using three shares

Secure Hardware Implementation of Non-linear Functions 229

a b c d i j k l e f g h
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4
x 10

−4

HD of unmasked values

co
rr

el
at

io
n

Fig. 2. The correlation of the computer simulated attack on the two implementations
of the Noekeon S-box. The solid line shows the result for the S-box without registers,
and the dashed line for the S-box with registers in between the two stages.

5.3 Simulation Based on the Transition Count Model

Any shared implementation of these two stages of the S-box with registers in
between is secure even in the presence of glitches. Further, we do not have any
timing constraints or the need for balanced wires. The resulting shared compo-
nent functions can be implemented on any hardware and optimized in any form,
as long as there is a glitch resistant layer in between and the functionality stays
the same. In order to study the resistance of this implementation in the presence
of glitches, we have synthesized the circuit and performed a simulation of an
attack using the transition count model. We have used a back-annotated netlist
to derive the timing delays. Note that this is only one example of an implemen-
tation. However, by computing the correlation coefficient between the unmasked
values and the number of transitions, we can show that the implementation with
registers in between is secure in this model, whereas the implementation without
registers between the two stages is not.

The shared S-box has 12 inputs and outputs. To verify if a circuit is secure we
count the total number of transitions for each possible input transition. Every
input can perform one out of 4 transitions, 0 → 0, 0→ 1, 1→ 0, 1→ 1. Thus, we
need to simulate 412 = 16.777.216 transitions. We do not need to simulate dif-
ferent arrival times since glitches occur due to the internal gate delays. Figure 2
shows the correlation between the number of transitions and the Hamming Dis-
tance (HD) of the unmasked values before and after the input transition. The
correlation for both implementations with and without registers between the
two stages is shown. These results demonstrate the DPA resistance of a shared
implementation using three shares in the presence of glitches. However, the final

230 S. Nikova, V. Rijmen, and M. Schläffer

confirmation for the security of this method can only be provided by an on-chip
implementation which is clearly out of scope of this paper.

6 Conclusion

In the side-channel resistant implementation method proposed in [19] the num-
ber of shares grows with the complexity of the function to be protected. Conse-
quently, also the number of gates required increases. In this paper we have an-
alyzed which basic non-linear functions can be securely implemented using the
minimum of three shares and presented a method to construct shared Boolean
functions. We have implemented the block cipher Noekeon using only three
shares by introducing pipelining stages separated by latches or registers. Finally,
we have presented the first verification of this implementation method based on
computer simulations.

In this work we have shown that it is possible to implement cryptographic
functions using much less hardware requirements than proposed in [19]. By
varying the number of shares between non-linear and linear layers, the hard-
ware requirements for a full cipher can even be further reduced. This makes the
shared implementation method more competitive with other countermeasures
while maintaining its high security level. Future work is to further reduce the
hardware requirements and securely implement more complex non-linear func-
tions such as the AES or ARIA S-boxes [11], which is still a mathematically chal-
lenging task. A reasonable trade-off between the number of shares and pipelining
stages needs to be found. Further analysis is required to investigate the practical
resistance of shared implementations against higher-order and template attacks.

References

1. Akkar, M.-L., Bevan, R., Goubin, L.: Two Power Analysis Attacks against One-
Mask Methods. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
332–347. Springer, Heidelberg (2004)

2. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

3. Austria Microsystems. Standard Cell Library 0.35μm CMOS (C35),
http://asic.austriamicrosystems.com/databooks/c35/databook_c35_33

4. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

5. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

6. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal: NOEKEON.
Submitted as an NESSIE Candidate Algorithm (2000),
http://www.cryptonessie.org

7. Daemen, J., Rijmen, V.: AES proposal: Rijndael. Submitted as an AES Candidate
Algorithm. Submitted as an AES Candidate Algorithm (2000),
http://www.nist.gov/aes

http://asic.austriamicrosystems.com/databooks/c35/databook_c35_33
http://www.cryptonessie.org
http://www.nist.gov/aes

Secure Hardware Implementation of Non-linear Functions 231

8. Fischer, W., Gammel, B.M.: Masking at Gate Level in the Presence of Glitches. In:
Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 187–200. Springer,
Heidelberg (2005)

9. Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

10. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

11. Kim, C., Schläffer, M., Moon, S.: Differential Side Channel Analysis Attacks on
FPGA Implementations of ARIA. Electronics and Telecommunications Research
Institute (ETRI) in Daejeon, South Korea 30(2), 315–325 (2008)

12. Kirschbaum, M., Popp, T.: Evaluation of Power Estimation Methods Based on
Logic Simulations. In: Posch, K.C., Wolkerstorfer, J. (eds.) Proceedings of Aus-
trochip 2007, October 11, 2007, Graz, Austria, pp. 45–51. Verlag der Technischen
Universität Graz (October 2007) ISBN 978-3-902465-87-0

13. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon,
E.-J., Lee, S., Lee, J., Chee, S., Han, D., Hong, J.: New Block Cipher: ARIA. In:
Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer,
Heidelberg (2004)

15. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

16. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

17. Mangard, S., Schramm, K.: Pinpointing the Side-Channel Leakage of Masked AES
Hardware Implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 76–90. Springer, Heidelberg (2006)

18. Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

19. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

20. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

21. Popp, T., Mangard, S.: Masked Dual-Rail Pre-charge Logic: DPA-Resistance With-
out Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 172–186. Springer, Heidelberg (2005)

22. Rabaey, J.M.: Digital Integrated Circuits: A Design Perspective. Prentice-Hall,
Inc., Upper Saddle River (1996)

23. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. In: Nyberg, K. (ed.) FSE 2008.
LNCS, vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

24. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

232 S. Nikova, V. Rijmen, and M. Schläffer

25. Suzuki, D., Saeki, M., Ichikawa, T.: DPA Leakage Models for CMOS Logic Circuits.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 366–382. Springer,
Heidelberg (2005)

26. Tiri, K., Verbauwhede, I.: Securing Encryption Algorithms against DPA at the
Logic Level: Next Generation Smart Card Technology. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg
(2003)

27. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Re-
sistant ASIC or FPGA Implementation. In: DATE, pp. 246–251. IEEE Computer
Society Press, Los Alamitos (2004)

28. Trichina, E., Korkishko, T., Lee, K.-H.: Small Size, Low Power, Side Channel-
Immune AES Coprocessor: Design and Synthesis Results. In: Dobbertin, H., Ri-
jmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 113–127. Springer,
Heidelberg (2005)

29. Trichina, E., De Seta, D., Germani, L.: Simplified Adaptive Multiplicative Masking
for AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 187–197. Springer, Heidelberg (2003)

30. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

Secure Hardware Implementation of Non-linear Functions 233

A Formulas for the Multiplication in GF(4)

An example of the formulae in ANF for the shared Multiplication in GF(4) using
3 shares together with the correction terms e′1, e

′
2, e

′
3 and f ′

1, f
′
2, f

′
3:

e1 = a2d2 + a2d3 + a3d2 +
b2c2 + b2c3 + b3c2 +
b2d2 + b2d3 + b3d2

f1 = a2c2 + a2c3 + a3c2 +
a2d2 + a2d3 + a3d2 +
b2c2 + b2c3 + b3c2

e2 = a1d3 + a3d1 + a3d3 +
b1c3 + b3c1 + b3c3 +
b1d3 + b3d1 + b3d3

f2 = a1c3 + a3c1 + a3c3 +
a1d3 + a3d1 + a3d3 +
b1c3 + b3c1 + b3c3

e3 = a1d1 + a1d2 + a2d1 +
b1c1 + b1c2 + b2c1 +
b1d1 + b1d2 + b2d1

f3 = a1c1 + a1c2 + a2c1 +
a1d1 + a1d2 + a2d1 +
b1c1 + b1c2 + b2c1

e′1 = a3 + b2c2 + b3c3 + a2c2

e′2 = a1 + a3 + d1 + b1c1 + b3c3 + a1d1

e′3 = a1 + d1 + b1c1 + b2c2 + a2c2 + a1d1

f ′
1 = c3 + d3 + a2c2 + a3c3 + b2d2 + b3d3

f ′
2 = c3 + d1 + d3 + a3c3 + b1d1 + b3d3

f ′
3 = d1 + a2c2 + b1d1 + b2d2

234 S. Nikova, V. Rijmen, and M. Schläffer

B Formulas for the Noekeon S-Box Using 3 Shares

The formulae in ANF of the shared Noekeon S-box or non-linear function Gamma
using 3 shares. The first step combines the first non-linear layer with the linear
layer:

i1 = d2

i2 = d3

i3 = d1

j1 = 1 + b2 + c2 + d2 + c2d2 + c3d2 + c2d3

j2 = b3 + c3 + d3 + c3d1 + c1d3 + c3d3

j3 = b1 + c1 + d1 + c1d1 + c2d1 + c1d2

k1 = 1 + a2 + b2 + b2c2 + b3c2 + b2c3 + c2d2 + c3d2 + c2d3

k2 = a3 + b3 + b3c1 + b1c3 + b3c3 + c3d1 + c1d3 + c3d3

k3 = a1 + b1 + b1c1 + b2c1 + b1c2 + c1d1 + c2d1 + c1d2

l1 = a2 + b2c2 + b3c2 + b2c3

l2 = a3 + b3c1 + b1c3 + b3c3

l3 = a1 + b1c1 + b2c1 + b1c2.

The second step consists only of the second non-linear layer:

e1 = i2 + j2k2 + j3k2 + j2k3

e2 = i3 + j3k1 + j1k3 + j3k3

e3 = i1 + j1k1 + j2k1 + j1k2

f1 = 1 + j2 + k2 + l2 + k2l2 + k3l2 + k2l3

f2 = j3 + k3 + l3 + k3l1 + k1l3 + k3l3

f3 = j1 + k1 + l1 + k1l1 + k2l1 + k1l2

g1 = k2

g2 = k3

g3 = k1

h1 = l2

h2 = l3

h3 = l1.

Novel PUF-Based Error Detection Methods in
Finite State Machines�

Ghaith Hammouri, Kahraman Akdemir, and Berk Sunar

Worcester Polytechnic Institute
100 Institute Road, Worcester, MA 01609-2280

{hammouri,kahraman,sunar}@wpi.edu

Abstract. We propose a number of techniques for securing finite state
machines (FSMs) against fault injection attacks. The proposed security
mechanisms are based on physically unclonable functions (PUFs), and
they address different fault injection threats on various parts of the FSM.
The first mechanism targets the protection of state-transitions in a spe-
cific class of FSMs. The second mechanism addresses the integrity of
secret information. This is of particular interest in cryptographic FSMs
which require a secret key. Finally, the last mechanism we propose in-
troduces a new fault-resilient error detection network (EDN). Previous
designs for EDNs always assume resilience to fault injection attacks with-
out providing a particular construction. The PUF-based EDN design is
suitable for a variety of applications, and is essential for most fault re-
silient state machines. Due to the usage of PUFs in the proposed archi-
tectures, the state machine will enjoy security at the logical level as well
as the physical level.

Keywords: Fault-resilience, state-machines, adversarial-faults, PUF.

1 Introduction

Over the last decade, side-channel attacks drew significant attention in the field
of cryptography. This class of attacks mainly depend on leaking secret informa-
tion through implementation specific side-channels. Various attack mechanisms
and countermeasures have been published in this domain, yet this is still an
active field of research both in academia and industry. Roughly speaking, side-
channel attacks can be classified into two main categories which are passive and
active attacks.

Passive attacks depend on observing and analyzing the implementation spe-
cific characteristics of the chip. Power and timing analysis are the most powerful
and common attacks in this branch. In these attack mechanisms, power and tim-
ing information of the cryptographic hardware is measured/observed at various
steps and a following statistical analysis reveals information about the secret in
the system [24,25]. On the other hand, in an active attack the adversary actually
	 This material is based upon work supported by the National Science Foundation

under NSF Grants No. CNS-0831416 and CNS-0716306.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 235–252, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

236 G. Hammouri, K. Akdemir, and B. Sunar

changes the state/value of specific data in the chip in order to gain access to the
secret information. In other words, the attacker injects faults to specific parts
of an integrated circuit (IC) through side-channels and uses the injected flaw to
gain access to the secret information such as the cryptographic key. Boneh et
al. [8] demonstrated the effectiveness of these attacks on breaking otherwise im-
penetrable cryptographic systems. Some of the most crucial active fault attack
mechanisms discussed in the literature are external voltage variations, external
clock transients, temperature variations and bit-flips using highly dense optical
laser beams [38,36]. For more information on the details of side-channel attacks
the reader is referred to [4,31].

Due to their strength, side-channel attacks create a serious and crucial threat to
the existing cryptographic infrastructure. Especially active attacks, even though
harder to introduce, are very effective. Various counter-measures have been sug-
gested to counter act this class of attacks and to provide secure/fault-resilient
cryptographic hardware designs. Most of the solutions proposed to secure against
fault injection attacks utilize some form of a concurrent error detection (CED)
mechanism [6,22,12]. Non-linear error detection codes, a version of CED, arose as
the most effective of these defense mechanisms. These codes provide a high level of
robustness (the maximum error masking probability is minimized over all possible
error vectors) with a relatively high hardware cost [20,28,27,19,21].

Another countermeasure proposed against side-channel attacks is the dual-
rail encoding. In these schemes, a data value is represented by two wires. In this
case, two out of four states represent the data and the two extra states which are
“quiet” and “alarm” can be used for security purposes. Consequently, utilizing
the dual railing for the cryptographic designs can potentially provide security
against active and passive side-channel attacks [39,9,42].

A different interesting approach to protect against active attacks in authenti-
cation schemes are Physically Unclonable Functions (PUFs) [10,33,37]. A PUF is
a physical pseudo-random function which exploits the small variances in the wire
and gate delays inside an integrated circuit (IC). Even when the ICs are designed
to be logically identical, the delay variances will be unique to each IC. These
variances depend on highly unpredictable factors, which are mainly caused by
the inter-chip manufacturing variations. Hence, given the same input, the PUF
circuit will return a different output on different chipsets [30]. Additionally, if
the PUFs are manufactured with high precision, any major external physical
influence will change the PUF function and therefore change the output. These
features are indeed very attractive for any low cost scheme hoping to achieve
tamper-resilience against active attacks.

In this paper, we focus our attention on active attacks and present a CED de-
sign based on PUFs. As we will see in the next section we focus our attention on
error detection in the control logic of hardware implementations. The remainder
of this paper is organized as follows: Section 2 discusses our motivation and con-
tributions. Section 3 introduces the necessary background on PUF circuits. Our
PUF-based approach to secure known-path state machines is discussed in Sec-
tion 4. Next, the key integrity scheme utilizing PUFs is described in Section 5. In

Novel PUF-Based Error Detection Methods in Finite State Machines 237

Section 6, a PUF-based secure error detection network (EDN) is presented and
conclusions are summarized in Section 7.

2 Motivation

Almost all of the research related to CED focused on protecting the datapath
of the cryptographic algorithms. However, control unit security against active
fault attacks was mostly neglected and therefore has led to a significant security
breach in many cryptographic hardware implementations. A literature review
indicates that there is not much work done about this topic, except some simple
single-bit error detection and correction scheme descriptions in the aerospace
and communications areas [26,5]. These schemes are proposed against naturally
occurring faults (for example due to radioactive radiation and mostly single
event upsets) on the control units and are not nearly sufficient when a highly
capable adversary is considered. For example, the encryption states in a finite
state machine (FSM) can be bypassed and the secret information can be easily
revealed by this type of an adversary. Similarly, the state which validates the
login information can be skipped and the attacker can directly impersonate a
valid user with a limited effort. At the end of the day, the states in a control
unit are implemented using flip-flops, which are vulnerable to bit flips and fault
injection attacks.

After observing this gap in control unit fault-tolerance, Gaubatz et al. [13]
conducted an initial study on this issue. In their paper, the authors describe an
attack scenario on the control structure of the Montgomery Ladder Algorithm.
In this scenario the adversary can easily access to the secret information by
actively attacking to the controller segment of the hardware. As a solution to
this problem, the authors propose applying linear error detection codes on the
control units of cryptographic applications. Although the presented approach is
quite interesting, it can only provide a limited level of security and robustness.

Our Contribution: In this paper, we present a high level description of a tech-
nique which uses PUFs to secure a class of finite state machines against fault injec-
tion attacks. Our proposal offers a two-layer security approach. In the first layer
the PUF’s functionality is used to produce a checksum mechanism on the logical
level and in the second layer, the intrinsic sensitivity of the PUF construction is
used as a protection mechanism on the physical level. An injected error has a high
probability of either causing a change in the checksum, or causing a change in the
PUF characteristics, therefore signaling an attack. With this dual approach our
proposal opens an interesting area of research which explores hardware specific
features of state machines. The proposed design integrates with a finite state ma-
chine in three different ways: 1) It provides a checksum mechanism for the state
transitions 2) It provides key integrity protection for any secrets used by the state
machine 3) It provides a novel fault-resilient implementation of the error detection
network. Our work here is the first study on utilizing PUFs to secure the control
logic in hardware implementations. In addition, the utilization of PUFs proved to
be extremely suitable when the hardware resources are limited.

238 G. Hammouri, K. Akdemir, and B. Sunar

3 Physically Unclonable Functions

A PUF is a challenge-response circuit which takes advantage of the interchip
variations. The idea behind a PUF is to have the same logical circuit produce
a different output depending on the actual implementation parameters of the
circuit. The variations from one circuit implementation to another are not con-
trollable and are directly related to the physical aspects of the fabrication en-
vironment. These aspects include temperature, pressure levels, electromagnetic
waves and quantum fluctuations. Therefore, two identical logical circuits sitting
right next to each other on a die in a fabrication house might still have quite
different input-output behavior due to the nature of a PUF.

The reason one might seek to explore such a property is to prevent any abil-
ity to clone the system. Additionally, because of the high sensitivity of these
interchip variations it becomes virtually impossible for an attacker to accurately
reproduce the hardware. Another major advantage of the PUF’s sensitivity is to
prevent physical attacks on the system. Trying to tap into the circuit will cause a
capacitance change therefore changing the output of the PUF circuit. Removing
the outer layer of the chip will have a permanent effect on these circuit variables
and again, it will change the output of the PUF circuit. Briefly, we can say that
a well-built PUF device will be physically tamper-resilient up to its sensitivity
level. Multiple designs have been proposed in the literature to realize PUFs.
Optical PUFs were first introduced in [34]. Delay-based PUFs or more known
as silicon PUFs were introduced in [10]. Coating PUFs were introduced in [40].
More recently, FPGA SRAM PUFs were introduced in [14]. Surface PUFs were
proposed in [33,41] and further developed in [37]. In general, so far the usage of
PUFs has focused on the fact that they are unclonable. In this paper we focus
our attention to the delay-based PUF first introduced in [10].

A delay based PUF [10] is a {0, 1}n → {0, 1} mapping, that takes an n-
bit challenge (C) and produces a single bit output (R). The delay based PUF
circuit consists of n stages of switching circuits as shown in Figure 1. Each
switch has two input and two output bits in addition to a control bit. If the
control bit of the switch is logical 0, the two inputs are directly passed to
the outputs through a straight path. If on the other hand, the control bit to
the switch is 1, the two input bits are switched before being passed as output
bits. So based on the control bit of every switch, the two inputted signals will
take one of two possible paths. In the switch-based delay PUF, there are n
switches where the output of each switch is connected to the input of the fol-
lowing switch. At the end, the two output bits of the last switch are connected
to a flip-flop, which is called the arbiter. The two inputs to the first of these
switches are connected to each other, and then connection is sourced by a pulse
generator.

The delay PUF can be described using the following linear model [10,15],

R = PUFY (C) = sign

(
n∑

i=1

(−1)piyi + yn+1

)
. (1)

Novel PUF-Based Error Detection Methods in Finite State Machines 239

Arbiter

2cc1

0

1

1

0 0

1

0

1

0

1

1

0

c

Data

Clock

R

n

Fig. 1. A basic delay based PUF circuit

where Y = [y1 . . . yn+1] with yi as the delay variation between the two signal
paths in the ith stage and yn+1 captures the setup time and the mismatch of
the arbiter. Sign(x) = 1 if x > 0, and 0 if x ≤ 0. pi = ci ⊕ ci+1 ⊕ . . . ⊕ cn,
where ci is the ith bit of C. Note that the relation between P = [p1 . . . pn] and
C = [c1 . . . cn] can be described using the equation (P = UC). The strings C and
P are represented as column vectors, U is the upper triangular matrix with all
non-zero entries equal to 1 and the matrix multiplication is performed modulo
2. Equation 1 captures the ideal PUF response. However, due to race conditions
which will sometimes cause the two signals inside the PUF paths to have very
close delays, the output of the PUF will sometimes be random. We refer to these
random outputs as metastable outputs. This happens with a certain probability
depending on the sensitivity of the arbiter. For typical flip-flops a 64-bit PUF
will have about 1 metastable output for every 1000 outputs [29].

The variables yi capture the secret maintained in the hardware, and which
cannot be measured directly. These variables are usually assumed to be inde-
pendent with each following a normal distribution of mean 0 and some variance
which can be assumed to be 1 without loss of generality [30]. We note here that
the independence of these variables will highly depend on the manufacturing
process. For example in an FPGA implementation it is much harder to get al-
most independent yi variables. In an ASIC implementation the yi variables seem
to be closer to independence. However, to simulate an independent response one
might average over multiple independent challenges. In this study, we will work
under the assumption that the yi variables are independent.

With the independence assumption one can derive the probability distribution
of two inputs C(1) and C(2) producing the same PUF output over all possible
outputs as follows,

Prob[PUFY (C(1)) = PUFY (C(2))] = 1− 2
π

arctan

(√
d

n + 1− d

)
. (2)

where d is the Hamming distance between P (1) = UC(1) and P (2) = UC(2).
For the full derivation the reader is referred to [16,15]. This relation carries the
important fact that the correlations in the PUF output are solely dependent on
the Hamming distance.

240 G. Hammouri, K. Akdemir, and B. Sunar

It is important to mention that due to the linear nature of the PUF circuit,
given a number of challenge-response pairs (C, R), an attacker can use linear
programming [35,32,10] to approximate for the unknown vector Y . To solve this
problem we have one of two options. First, hide the output R such that it is
not accessible to an adversary. Our second option is to use non-linearization
techniques such as the feed-forward scheme presented in [10,29]. For simplicity
we will assume that the output R is not available to an adversary. This only
means that the attacker cannot read R, but he still can inject a fault. We will
shortly see from the coming sections that this is quite a reasonable assumption.

Adversarial Fault Model: In this paper, we do not put a limit on the possible
fault injection methods that can be used by the attacker. In other words, the
adversary can utilize any attack mechanism on the device in order to successfully
inject a fault. The injected fault on a specific part of the circuit manifests itself
at the output as an erroneous result. Consequently, the error e becomes the
difference between the expected output x and the observed output x̃=x + e.
This error can be characterized either as logical or arithmetic depending on the
functions implemented by the target device. If the target area of the device is
mostly dominated by flip-flops, RAM, registers, etc. then using the logical model,
where the error is expressed as an XOR operation (x̃=x⊕e), is more appropriate.
If on the other hand, the targeted region of the device is an arithmetic circuit,
then it is more useful to use the arithmetic model where the error may be
expressed as an addition with carry (x̃=x + e mod 2k, where k is the data
width). In this paper, we are mostly concerned with secure FSMs and key storage.
As a result, it is more appropriate to use the logical fault model. It is also
important to note that since the analysis conducted in this paper does not assume
attacker’s inability to read the existing data on the circuit before injecting a fault,
overwriting and jamming errors can also be modeled as logical error additions.
In addition, note that one additional assumption for the fault model of Section
5 is described by Assumption 1.

4 Securing Known-Path State Machines

In this section we address the security of state machines against adversarial fault
attacks. We focus our attention to the state machines which are not dependent
upon input variables. Such machines are quite common in cryptographic appli-
cations which typically contain a limited number of states and perform functions
which require a long sequence of states. We now formally define the class of state
machines which we address in this section.

Definition 1. A known-path state machine, is a state machine in which state
transitions are not dependent upon the external input. The state-sequence which
the state machine goes through is known beforehand, and can be considered a
property of the state machine.

An example of an algorithm that can be implemented with a known-path state
machine is the “always multiply right-to-left binary exponentiation” [17] which

Novel PUF-Based Error Detection Methods in Finite State Machines 241

Algorithm 1. Always multiply Right-to-Left Binary Exponentiation Algorithm
[17]
Require: x, e=(et−1, ..., e0)2
Ensure: y = xe

R0 ← 1 INIT

R1 ← x LOAD

for i = 0 upto t− 1 do
b = 1− ei

Rb ← R2
b SQUARE

Rb ← Rb · Rei MULTIPLY

end for
y ← R0 RESULT

is shown above. The associated state diagram for this algorithm is shown in
Figure 2 with a possible fault injection attack (indicated by the dotted line). As
can be observed, once the start signal is received, the transitions will follow a
specific pattern and are independent from any kind of input except i which is
a predetermined value. Another example of a known-path state machine is the
“Montgomery ladder exponentiation” which is commonly used for RSA signature
generation [18]. The PUF based security mechanism which we describe in this
section defines a generic approach to secure this class of state machines. We
now rigorously define our approach and derive the probability of detecting an
injected error.

Let F be a known-path state machine with m states. We refer to the known-
path of states which the state machine goes through in a full operation as the
state-sequence and we denote it by SΩ. Here, Ω represents the encoded states
in the state-sequence observed by F . We define f to be the encoding function
for our states. The function f is also assumed to produce a binary output.
Let n be the bit size of the output of f and k the number of states in Ω.

S5

S4 S3

S2

S1S0
Init

Load

SquareMult

Result

Idle

start=0

start=1

i t−1
i t−1

Fig. 2. State Diagram Representation of Left-to-Right Exponentiation Algorithm with
Point of Attack

242 G. Hammouri, K. Akdemir, and B. Sunar

So for example, if F enters the state-sequence s1, s2, s3, s4, s3, s4, s5 then Ω =
[f(1), f(2), f(3), f(4), f(3), f(4), f(5)]. If the encoding scheme is a simple binary
encoding then Ω = [001, 010, 011, 100, 011, 100, 101], n = 3 and k = 7.

With the above definitions our proposal’s main goal becomes to finger-print
the state-sequence SΩ. The way we achieve this is by adding a PUF circuit
to the state machine logic. The straightforward idea of the scheme works as
follows: at initialization time the circuit calculates the PUF output for each of
the encodings in Ω. This output which we label ω is then securely stored for
future comparisons. The ith bit of ω which we label ωi is calculated as

ωi = PUFY (Ω(i))

where Ω(i) is the ith entry in Ω. This equation means that an n-bit PUF needs
to be utilized, and that ω will be a k-bit string. This straightforward approach
captures the essential idea of the proposal. However, there are problems with
the efficiency of this approach. One can imagine a simple state machine going
into a 3-state loop for 1000 cycles. This would mean that ω contains at least
3000 bits of a repeating 3-bit sequence. If secure storage is not an issue, or if k
is a small number, then the straightforward approach should suffice. However,
when a state machine is expected to have large iterations over various cycles a
different approach should be explored.

To solve this problem we take a deeper look into the state-sequences that we
expect to observe in the known-path state machines. Such state-sequences can
be broken into q different sub-sequences each of which contain pi states and is
repeated for ci cycles. We can now rewrite the overall state-sequence as

Ω = [{Ω1}c1 | {Ω2}c2 | . . . | {Ωq}cq] ,

where | stands for concatenation of sequences, and {Ωi}ci indicates the repetition
of the sub-sequence Ωi for ci times. Note that k = c1p1 + c2p2 + . . .+ cqpq. With
the new labeling, we can see that the checksum does not need to be of length
k. It should suffice for the checking circuit to store the constants ci and pi in

2

3

q

1

p1

M
ul

tip
le

xe
r

D
ec

od
er

Current State

PUF

EDN

n

Error Flag

f

Y

Control Unit
log(q)

p

pq

3

p2

Clockwoi

Fig. 3. PUF-based circuit for protecting FSMs

Novel PUF-Based Error Detection Methods in Finite State Machines 243

addition to the bits ωi,j = PUFY (Ωi(j)) for i = 1 . . . q and j = 1 . . . ci. We can
write

ω = [ω1 | ω2 | . . . | ωq] ,

where ωi will contain pi bits. With only having to store the ωi strings, the scheme
will be efficient in terms of storage. We next explain how the checking circuit
works.

As can be seen in Figure 3, the checking circuit stores each of the ωi strings in a
separate shift register with the output (the most significant bit) connected to the
input (the least significant bit) of the register. The outputs of the shift registers
are also connected to a multiplexer, whose log(q) select signals connected to
a small control unit. The control unit’s main task is to maintain a counter
C which will indicate how far along the state-sequence is the state machine,
therefore generating the select signals for the multiplexer. When C ≤ c1p1 the
first register’s output is selected. Once the counter exceeds c1p1 the control
unit will select the second register, and will maintain the same output until
the counter reaches c1p1 + c2p2. The control unit will essentially chose the ith

register as long as c1p1 + c2p2 + . . . + ci−1pi−1 < C ≤ c1p1 + c2p2 + . . . + cipi.
The checking circuit continues in this fashion until the counter reaches k =
c1p1 + c2p2 + . . . + cqpq at which point the counter resets to zero since the
state machine will be back to its initial state. We will label the output of the
multiplexer at ith state of the state-sequence as ωo

i . For the registers to generate
the right output, the select signals produced by the control unit also need to
be fed into a decoder which will produce the clock signals of the registers. The
input of the decoder will be the master clock signal, and the outputs of the
decoder will be connected to the clock inputs of the shift registers. Note that
these signals will only be high when the corresponding register is being used,
therefore causing the register to shift accordingly.

At every clock cycle the current check bit xi = PUFY (f(Si)) is generated,
where Si is the current state of the state machine. The checking circuit will
verify the condition ωo

i = xi. Whenever this condition is violated the checking
circuit can issue a signal to indicate a fault injection. We have mentioned earlier
that the output of a PUF circuit will not be consistent for a certain percentage
of the inputs. This percentage will set a tolerance threshold labeled L for the
checking circuit. If the number of violations detected by the checking circuit is
more than L, the checking circuit can signal an attack, therefore halting the
circuits operation.

To calculate the probability of an attack actually being detected, we note
that the PUF output is uniform. A fault injected by the attacker will change
the current state, and will consequently change the following states. We label
the states in the fault-free sequence SΩ as ideal states, and we label the states
which are different as a result of the fault injection as faulty states. The fault-
free sequence and the new faulty sequence will have t different states, t ≤ k.
We are interested in calculating the probability of the new faulty states actually
yielding a different PUF output than that of the ideal states. Equation 2 shows
that when the Hamming distance between the two PUF inputs is about n/2,

244 G. Hammouri, K. Akdemir, and B. Sunar

this probability is 0.5. With this in mind, we can choose the encoding function
f and the size of its output n such that the encodings of any two states have a
Hamming distance of n/2. Even more efficiently, if the encoding is assumed to
be secret, the Hamming distance between the encoded state vectors would be
averaged over all possible encodings, therefore also yielding an effective Hamming
distance of n/2 between any two state vectors. In either case, the probability of
a faulty state generating the same PUF output as an ideal state will effectively
be 0.5. With these factors, we can expect the detection probability of an injected
fault which causes a total of t state changes to be

Pt = 1− 2−(t−L) .

Naturally, t is assumed to be larger than L since otherwise the detection proba-
bility would be zero. If the fault injected causes a small number of state changes
t, this probability will not be sufficient to secure the system. Although it is
expected that an injected fault will cause a large number of state changes, for
completeness we next handle the case when t is small.

We propose two approaches to solve this problem. The first is to utilize a
number of PUF circuits each of which storing a separate array of checksums.
And the second is to use a single PUF but calculate the check bits for different
encoding functions of the states. Essentially one can use a single encoding and
then apply a permutation to generate a variant encoding. Whether we use d
PUFs or we use d different encodings, in either case we will be adding d-levels
of check bits. Regardless of which of the two approaches we use the detection
probability of a fault causing t state changes will be

Pt = 1− 2−(td−L) .

Using error control techniques for the PUF circuit such as majority voting [29],
the error rate in the PUF output can be reduced to as low as 1 in 1000. This
means that for state machine where k < 1000 states, the probability of error
detection becomes Pt = 1− 21−td. Naturally, this probability does not take into
account the probability of inducing a change in the internal PUF parameters.
Such a change will have an effect on the PUF output and will therefore increase
the error detection probability.

In order to estimate the hardware overhead incurred by the proposed error
detection mechanism, we carry out the following analysis. The number of flip-
flops required for storing the checksums will be equivalent to the number of
flip-flops used in the current state register. As mentioned earlier, the counter
C constitute the main part of the control unit, which is also the case for the
state machine. Therefore, we can argue that the size of the control unit and the
checksum storage will be approximately the same as the state machine, implying
a 100% overhead.

The encoding function f will typically have an output size which is on the
order of the total number of states m. Consequently, we can assert that the
function f will on average use about 2m combinational gates. The same applies
to the PUF circuit which will also require about 2m gates. Finally, the size of

Novel PUF-Based Error Detection Methods in Finite State Machines 245

the decoder and the multiplexer shown in Figure 3 is expected to be on the
order of log(q) gates. Although q can be of any size, in a typical state machine
q will not be larger than 2m. Hence, the number of gates associated with the
multiplexer and the decoder will be about 2m. Adding these numbers results
in a total gate count of 6m. This is the same number of gates used by the
current state register (Note that m flip-flops are approximately composed of 6m
universal gates). In general, it is safe to assume that the current state register
will consume approximately 50% of the total state machine area, which implies
an area overhead of 50%.

As a result, the total area overhead introduced by the proposed error de-
tection scheme will be approximately 150%, with a high error detection rate
even against strong adversaries. When compared to the simpler error detection
schemes such as Triple Modular Redundancy (TMR) and Quadruple Modular
Redundancy (QMR) (which only replicate the existing hardware, implement the
same function concurrently, and do a majority voting to check if an error has been
injected), the proposed scheme provides a higher level of security even against
advanced adversaries because an attacker can simply inject the same error to all
replicas of the original hardware and mask the error in these detection schemes.
The area overhead associated with these trivial detection mechanisms will be at
least 200% for TMR and 300% for QMR which is also higher than the overhead
of the proposed mechanism. As a comparison to a more advanced error detection
scheme, the study conducted by Gaubatz et al. [13], which utilizes linear codes
for error detection, reports an area overhead of more than 200%. However, their
fault model assumes weak adversaries and the error detection scheme becomes
vulnerable against strong attackers. It is important to note that, finite state
machines usually constitute a very small part of the entire circuit. Therefore,
although the reported area overhead might appear to be large, the effective in-
crease in the overall area is reasonable. To sum up, PUF-based error detection
mechanism discussed in this paper accomplishes a higher level of security with
a reduced area overhead.

5 Key Integrity

In [7], Biham and Shamir extended the fault injection attacks to block-ciphers
and reported that they can recover the full DES key of a tamper-proof encryptor
by examining 50 to 200 cipher-texts. In their paper, they also described a method
to break an unknown (unspecified) cryptosystem by utilizing the asymmetric
behavior associated with the used memory device. Basically, their fault model
assumes that the applied physical stress on the memory device, which contains
the key bits, could only cause one to zero transitions1. Using this attack, the
secret key can be obtained using at most O(n2) encryptions. Similarly, Kocar
[23] reports a method to estimate the key bits of a cryptographic device by
employing the charge shifting characteristic of EEPROM cell transistors after
1 This one-way characteristic can also cause zero to one transitions depending on the

asymmetry of technology used to fabricate the memory device.

246 G. Hammouri, K. Akdemir, and B. Sunar

Key CheckSumSecret Key

PERMUTE

PUF

t

k

n

Fig. 4. Key integrity check using PUF

baking. In addition, in [3] authors describe an EEPROM modification attack
where they can recover the DES key by overwriting the key bits one by one and
checking for parity errors. Same authors, in [2], also discuss example attacks
on PIC16C84 microcontroller and DS5000 security processor in which security
bits can be reset by modifying the source voltages. The key overwrite attacks
also constitute a crucial risk on smart cards where the key is stored inside the
EEPROM. To summarize, fault injection attacks on secret keys stored on-chip
memory pose a serious threat in many cryptographic hardware implementations.

In this section, we propose utilizing PUFs as a solution to this important
problem. The main idea here is similar to that of the previous section. Basically,
we generate a secret key fingerprint or checksum for the correct secret key using
a PUF circuit. As outlined earlier, the checksums are assumed to be stored
secretly while allowing fault injection. Regularly, the checking circuit can check
and verify the integrity of the key. If the checksum value for the current key does
not match the checksum value for the correct secret key, this can be interpreted
as an error injection to the key. As a result, an error message can be issued and
the secret data can be flushed or the device can be reseted to prevent any kind
of secret leakage. This mechanism is briefly shown in Figure 4. This figure shows
part of the memory which contains a secret key of size k × n. Each row of this
key block is labeled ri and is treated as an input to the PUF circuit. If the rows
are directly fed to the PUF circuit, an attacker can carefully choose his errors
such that the Hamming distance between the actual variables (P) defined in
Equation 1 is minimal. Recall that this would mean that the PUF output will
not be able to detect the injected error. If the size of the checksum for each key
row is a single bit, the error detection probability for an injected error would be
0.5 as the PUF can only provide an output of {0, 1}. In this case, the success
rate for the attacker is considerably high. This is why we utilize a permutation
block as shown in Figure 4.

The permutation block will essentially permute each input row ri by a pre-
determined permutation ρj where j = (1, . . . , t) and t < n. Consequently, ρj(ri)
is fed to the PUF in order to generate the (i, j) bit of the checksum. In short,
for the secret key array S with size k× n and rows ri, we calculate the (i, j) bit
of the checksum Sw as

Sw(i, j) = PUFY (ρj(ri)) (3)

Novel PUF-Based Error Detection Methods in Finite State Machines 247

where the ρj ’s are random permutations pre-chosen secretly and Sw is of
size k × t.

When this model is applied to secure the cryptographic devices against mem-
ory overwrite attacks, the robustness and security measure of the error detection
scheme becomes a direct function of t, the number of the permutations used for
each row. The probability of an error being detected is essentially the probability
of an error changing the PUF output. However, we have seen in the previous
section that the PUF output will sometimes be metastable. Therefore, we will
again define an acceptable level of errors which will be a property of the system
and which will not raise an alarm. Similar to the previous section we define this
level as L. Now we can define the event for an error being detected. In particular,
an error injected to row ri will be detected provided that the following equation
will not hold for more than L of the row’s t checking bits.

PUFY (ρj(ri)) = PUFY (ρj(ri + e)) (4)

where e indicates an error injected to the ith row, e.g. bit flip of some memory
cells. We now calculate this probability. Equation 4 is essentially the probabil-
ity calculated in Equation 2. Therefore, we will again have to refer back to the
Hamming distance between the ideal and the attacked PUF inputs. Because the
permutations ρj are taken over all possible permutations, the attacker cannot
control the effective location of his injected errors. To simplify the calculation
we make the following assumption.

Assumption 1: We assume an attacker model where the number of faults in-
jected by the attacker is uniform over all possible number of faults.

With Assumption 1 we can calculate the expected value of the Hamming distance
between the P values of the original data and the faulty data when taken over
all permutations to be equal to n/2. Going back to Equation 2 for this particular
Hamming distance the probability for Equation 3 to hold will be 0.5. With this,
the detection probability of an error becomes 1− 2−(t−L).

At this point, it is important to note the trade-off between the area overhead
and security level of the suggested mechanism. As the number of permutations
t for each row increases, the security of the device gets stronger because the
error detection probability increases. However, the area overhead also increases
linearly with t due to the checksum storage space. The optimal value for t is
an application dependent issue and can be adjusted according to the required
security level or allowed area overhead.

Note that one can use error correcting codes to address the integrity issue.
However, such a solution would require substantially more hardware for decoding
the code words. Moreover, the PUF circuit has built-in fault resilience due to its
sensitive characteristics. Consequently, any kind of fault injection or perturbation
of the hardware will modify the result of the PUFs. This brings an additional
level of security to the proposed key integrity and protection scheme. In addition,
the solution we present here views the separate memory rows as independent

248 G. Hammouri, K. Akdemir, and B. Sunar

entities. It is an interesting problem to explore combinations of the rows and
columns, which might improve the error detection probability. Finally, the model
here assumes that the checksum is hidden secretly. If a designer wishes to relax
this condition different PUF designs should then be explored.

6 Error Detection Network Security

Concurrent error detection (CED) is one of the most common solutions against
active fault attacks. The basic idea in these schemes is to calculate the expected
result using predictor circuits in parallel to the main hardware branch, and
compare if the predicted value of the result matches the actual value calculated
in the main branch. A good overview along with elaborate examples about this
mechanism can be found in [11]. An error signal is issued when these two paths
do not produce agreeing results. This comparison along with the error signal
generation are conducted by the error detection network (EDN) modules.

While the attackers are always assumed to target the main or predictor branch
of a cryptographic device, the EDN network which is in fact the weakest link in
the design is always assumed to be completely fault resilient. An attacker can
deactivate the EDN by preventing an error signal from being issued or by just
simply attacking the inputs of the EDN. Therefore, totally disabling/bypassing
the error detection mechanism. To tackle this problem, we propose utilizing PUF
structures to design secure and fault tolerant EDN blocks.

The suggested PUF based EDN mechanism is shown in Figure 5. Basically,
the results coming from the main and predictor branches of the computation are
first XOR-ed together. In the absence of an injected fault, the result will be the
zero vector. The circuit starts by producing a fingerprint of the PUF response
to an all zero bit challenge right before the circuit is deployed. This fingerprint
is stored as the checksum bit. Throughout the circuit’s operation, the XOR-ed
results are continuously permuted and fed into the PUF circuit. This permutation
block implements the same functionality as in Section 5. In the absence of an

t

E
D

N

XOR

Pr
ed

ic
to

r

PUF

nn

M
ai

n

Permute

Fig. 5. PUF based EDN

Novel PUF-Based Error Detection Methods in Finite State Machines 249

error, the permutation will have no effect on the all zero vector, Therefore the
output should always match the stored checksum bit. However, when an error is
injected the output of the XOR will not be the all zero vector. This will cause
the permutations to generate different challenge vectors which will consequently
produce PUF outputs which are different from the checksum bit.

When the circuit detects a mismatch between the output of the PUF and
the checksum bit an injected fault is assumed and an error signal can be issued.
Similar to the analysis conducted in the previous two sections, the error detection
capability of the EDN is dependent upon the number of applied permutations t,
and can be formulated as 1− 2−(t−L). As in the previous sections, L here is the
acceptable threshold of errors in the PUF response. The trade-off between the
security and area overhead discussed in Section 5 also exists in this PUF based
EDN methodology too.

Note that any attempt by the attacker to modify the voltage levels of the
wires located inside the EDN will affect and change the result of the PUF due
to its high sensitivity. This intrinsic tamper resistance of the PUF circuit acts
as assurance against fault attacks targeting the EDN.

7 Conclusion

In this paper, we explored the integration of PUFs into the building blocks of
finite state machines to provide security. In particular, we addressed the security
of state-transitions (next-state logic) against fault-injection attacks, the integrity
of secret information, and finally fault-resilience in error detection networks.
We proposed PUF-based architectures for the security of these modules in a
control unit, and showed that the probability of error detection is high. More
importantly, the solution we propose provides security on the physical level as
well as the logical level. Even if the adversary can find the appropriate fault to
inject, there will still be a good chance of being detected by the change in the
PUF behavior. The designs we propose in this paper are described from a higher
level and therefore are far from being final solutions ready for implementation.
Rather, these solutions are mainly intended to open a new door for research in
the area of unclonable protection of FSMs. Such mechanisms can provide strong
error detection with a relatively low hardware overhead. Our work here is a first
step in this direction.

References

1. Agmon, S.: The relaxation method for linear inequalities. Canadian J. of Mathe-
matics, 382–392 (1964)

2. Anderson, R., Kuhn, M.: Tamper resistance: a cautionary note. In: WOEC 1996:
Proceedings of the 2nd conference on Proceedings of the Second USENIX Workshop
on Electronic Commerce, Berkeley, CA, USA, p. 1. USENIX Association (1996)

3. Anderson, R.J., Kuhn, M.G.: Low cost attacks on tamper resistant devices. In:
Proceedings of the 5th International Workshop on Security Protocols, London,
UK, pp. 125–136. Springer, London (1998)

250 G. Hammouri, K. Akdemir, and B. Sunar

4. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE 94, 370–382 (2006)

5. Berg, M.: Fault tolerant design techniques for asynchronous single event upsets
within synchronous finite state machine architectures. In: 7th International Mil-
itary and Aerospace Programmable Logic Devices (MAPLD) Conference. NASA
(September 2004)

6. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard. IEEE Transactions on Computers 52(4), 492–505 (2003)

7. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

9. Cunningham, P., Anderson, R., Mullins, R., Taylor, G., Moore, S.: Improving
Smart Card Security Using Self-Timed Circuits. In: Proceedings of the 8th in-
ternational Symposium on Asynchronus Circuits and Systems, ASYNC, p. 211.
IEEE Computer Society, Washington (2002)

10. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Delay-based Circuit Authenti-
cation and Applications. In: Proceedings of the 2003 ACM Symposium on Applied
Computing, pp. 294–301 (2003)

11. Gaubatz, G., Sunar, B., Karpovsky, M.G.: Non-linear residue codes for robust
public-key arithmetic. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P.
(eds.) FDTC 2006. LNCS, vol. 4236, pp. 173–184. Springer, Heidelberg (2006)

12. Gaubatz, G., Sunar, B.: Robust finite field arithmetic for fault-tolerant public-key
cryptography. In: Breveglieri, L., Koren, I. (eds.) 2nd Workshop on Fault Diagnosis
and Tolerance in Cryptography - FDTC 2005 (September 2005)

13. Gaubatz, G., Sunar, B., Savas, E.: Sequential Circuit Design for Embedded Crypto-
graphic Applications Resilient to Adversarial Faults. IEEE Transactions on Com-
puters 57(1), 126–138 (2008)

14. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic pUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

15. Hammouri, G., Ozturk, E., Sunar, B.: A Tamper-Proof, Lightweight and Secure
Authentication Scheme (under review)

16. Hammouri, G., Sunar, B.: PUF-HB: A Tamper-Resilient HB Based Authentication
Protocol. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
2008. LNCS, vol. 5037, pp. 346–365. Springer, Heidelberg (2008)

17. Joye, M.: Highly Regular Right-to-Left Algorithms for Scalar Multiplication. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, p. 135. Springer,
Heidelberg (2007)

18. Joye, M., Yen, S.M.: The Montgomery Powering Ladder. In: Cryptographic Hard-
ware and Embedded Systems-Ches 2002: 4th International Workshop, Redwood
Shores, CA, USA: Revised Papers, August 13-15 (2002)

19. Karpovsky, M., Kulikowski, K.J., Taubin, A.: Differential fault analysis attack re-
sistant architectures for the advanced encryption standard. In: Proc. World Com-
puting Congress (2004)

Novel PUF-Based Error Detection Methods in Finite State Machines 251

20. Karpovsky, M., Kulikowski, K.J., Taubin, A.: Robust protection against fault-
injection attacks on smart cards implementing the advanced encryption standard.
In: DSN 2004: Proceedings of the 2004 International Conference on Dependable
Systems and Networks (DSN 2004), Washington, DC, USA, p. 93. IEEE Computer
Society Press, Los Alamitos (2004)

21. Karpovsky, M., Taubin, A.: A new class of nonlinear systematic error detecting
codes. IEEE Trans. Info. Theory 50(8), 1818–1820 (2004)

22. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for
fault-based side-channel cryptanalysis of symmetric block ciphers. IEEE Transac-
tions on computer-aided design of integrated circuits and systems 21(12), 1509–
1517 (2002)

23. Kocar, O.: Estimation of keys stored in cmos cryptographic device after baking
by using the charge shift. Cryptology ePrint Archive, Report 2007/134 (2007),
http://eprint.iacr.org/

24. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in
Cryptology-Crypto 1999: 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999 Proceedings (1999)

25. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

26. Krasniewski, A.: Concurrent error detection in sequential circuits implemented
using fpgas with embedded memory blocks. In: Proceedings of the 10th IEEE
International On-Line Testing Symposium (IOLTS 2004) (2004)

27. Kulikowski, K.J., Karpovsky, M., Taubin, A.: Robust codes for fault attack resis-
tant cryptographic hardware. In: Workshop on Fault Diagnosis and Tolerance in
Cryptography 2005 (FTDC 2005) (2005)

28. Kulikowski, K.J., Karpovsky, M., Taubin, A.: Fault attack resistant cryptographic
hardware with uniform error detection. In: Breveglieri, L., Koren, I., Naccache, D.,
Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 185–195. Springer, Heidelberg
(2006)

29. Lee, J.W., Daihyun, L., Gassend, B., Suhamd, G.E., van Dijk, M., Devadas, S.: A
technique to build a secret key in integrated circuits for identification and authen-
tication applications. In: Symposium of VLSI Circuits, pp. 176–179 (2004)

30. Lim, D., Lee, J.W., Gassend, B., Edward Suh, G., van Dijk, M., Devadas, S.:
Extracting secret keys from integrated circuits. IEEE Trans. VLSI Syst. 13(10),
1200–1205 (2005)

31. Naccache, D.: Finding faults. IEEE Security and Privacy 3(5), 61–65 (2005)
32. Ozturk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for

pervasive devices. In: PERCOM 2008: Proceedings of the Sixth IEEE International
Conference on Pervasive Computing and Communications (2008)

33. Posch, R.: Protecting Devices by Active Coating. Journal of Universal Computer
Science 4(7), 652–668 (1998)

34. Ravikanth, P.S.: Physical One-Way Functions. PhD thesis, Massachusetts Institute
Of Technology (2001)

35. Roos, C., Terlaky, T., Vial, J.-P.: Interior Point Methods for Linear Optimization,
2nd edn. Springer, Heidelberg (2005)

36. Schmidt, J.M., Hutter, M.: Optical and em fault-attacks on crt-based rsa: Con-
crete results. In: Austrochip 2007: Proceedings of the 15th Austrian Workshop on
Microelectronics (2007)

37. Skoric, B., Maubach, S., Kevenaar, T., Tuyls, P.: Information-theoretic Analysis
of Coating PUFs. Cryptology ePrint Archive, Report 2006/101 (2006)

http://eprint.iacr.org/

252 G. Hammouri, K. Akdemir, and B. Sunar

38. Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction Attacks. In: Crypto-
graphic Hardware and Embedded Systems-Ches 2002: 4th International Workshop,
Redwood Shores, CA, USA, Revised Papers, August 13-15 (2002)

39. Sokolov, D., Murphy, J., Bystrov, A.V., Yakovlev, A.: Design and Analysis of Dual-
Rail Circuits for Security Applications. IEEE Transactions on Computers 54(4),
449–460 (2005)

40. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

41. Tuyls, P., Skoric, B.: Secret Key Generation from Classical Physics: Physical Un-
cloneable Functions. In: Mukherjee, S., Aarts, E., Roovers, R., Widdershoven, F.,
Ouwerkerk, M. (eds.) AmIware: Hardware Technology Drivers of Ambient Intelli-
gence. Philips Research Book Series, vol. 5. Springer, Heidelberg (2006)

42. Waddle, J., Wagner, D.: Fault Attacks on Dual-Rail Encoded Systems. In: Proceed-
ings of the 21st Annual Computer Security Applications Conference, pp. 483–494.
ACSAC. IEEE Computer Society, Washington (2005),
http://dx.doi.org/10.1109/CSAC.2005.25

http://dx.doi.org/10.1109/CSAC.2005.25

Partition vs. Comparison
Side-Channel Distinguishers:

An Empirical Evaluation of Statistical Tests for
Univariate Side-Channel Attacks against Two

Unprotected CMOS Devices�

François-Xavier Standaert1,��, Benedikt Gierlichs2, and Ingrid Verbauwhede2

1 UCL Crypto Group, Université catholique de Louvain, B-1348 Louvain-la-Neuve
2 K.U. Leuven, ESAT/SCD-COSIC and IBBT

fstandae@uclouvain.be,{bgierlic,iverbauw}@esat.kuleuven.be

Abstract. Given a cryptographic device leaking side-channel informa-
tion, different distinguishers can be considered to turn this informa-
tion into a successful key recovery. Such proposals include e.g. Kocher’s
original DPA, correlation and template attacks. A natural question is
therefore to determine the most efficient approach. In the last years, var-
ious experiments have confirmed the effectiveness of side-channel attacks.
Unfortunately, these attacks were generally conducted against different
devices and using different distinguishers. Additionally, the public liter-
ature contains more proofs of concept (e.g. single experiments exhibiting
a key recovery) than sound statistical evaluations using unified criteria.
As a consequence, this paper proposes a fair experimental comparison of
different statistical tests for side-channel attacks. This analysis allows us
to revisit a number of known intuitions and to put forward new ones. It
also provides a methodological contribution to the analysis of physically
observable cryptography. Additionally, we suggest an informal classifi-
cation of side-channel distinguishers that underlines the similarities be-
tween different attacks. We finally describe a new (but highly inspired
from previous ones) statistical test to exploit side-channel leakages.

1 Introduction

Showing the effectiveness of a side-channel attack usually starts with a proof of
concept. An adversary selects a leaking device of his choice and exploits the avail-
able physical information with a distinguisher. Recovering a cryptographic key
(e.g. from a block cipher) is then used to argue that the attack works. But as for
any experimental observation, a proof of concept has to be followed by a sound

	 Work supported in part by the IAP Programme P6/26 BCRYPT of the Belgian
State, by FWO projects G.0475.05 and G.0300.07, by the European Commission
under grant agreement 216646 ECRYPT NoE phase II, and by K.U. Leuven-BOF.

		 Associate researcher of the Belgian Fund for Scientific Research (F.R.S.-FNRS).

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 253–267, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

254 F.-X. Standaert, B. Gierlichs, and I. Verbauwhede

statistical analysis. For example, one can compute the number of queries to a
target cryptographic device required to recover a key with high confidence. Even
better, one can compute the success rate or guessing entropy of a side-channel
adversary in function of this number of queries. Various experimental and the-
oretical works describing different types of side-channel attacks can be found in
the open literature. However, they are generally conducted independently and
therefore are not straightforward to compare. Hence, we believe that a unifying
analysis of actual distinguishers is important to enhance our understanding.

The contribution of this paper is threefold. First, we propose an informal clas-
sification of side-channel distinguishers into two categories, namely partition and
comparison distinguishers. Second, we describe an alternative statistical test for
partitioning attacks based on the sample variance. Most importantly and follow-
ing the framework in [18], we provide a fair empirical comparison of statistical
tests for univariate side-channel distinguishers against two unprotected software
implementations of the AES Rijndael [5]. It includes Kocher’s original Differen-
tial Power Analysis (DPA) [10], Pearson’s correlation coefficient [2] and template
attacks [3] as well as the recently proposed Mutual Information Analysis (MIA)
[6]. Our results demonstrate the wide variety of flexibility vs. efficiency tradeoffs
that can be obtained from different distinguishers and the effectiveness of tem-
plate attacks when exploiting good leakage models. Additionally, they illustrate
that claims on the efficiency of a given attack highly depend on an adversarial
or implementation context. These results suggest that any new proposal of side-
channel attack should come with a similar evaluation in order to show how these
new proposals behave compared to former attacks. Note that we do not claim the
novelty of our conclusions. As a matter of fact, several works already discussed
similar comparison goals (see e.g. [4,11]). However, we believe that the approach,
metrics and number of experiments proposed in this paper allow improving the
evaluation of side-channel attacks and pinpointing their limitations.

The rest of the paper is structured as follows. Sections 2 and 3 describe our
target implementations and the side-channel adversaries that will be used in
our comparisons. Section 4 proposes an informal classification for side-channel
distinguishers and details the different statistical tests that we will consider in our
comparisons. It additionally describes a variance-based statistical test for side-
channel attacks. Section 5 defines our evaluation metrics. Section 6 discusses the
limitations and features of our classification and methodology. The description
of our experiments and results are in Section 7 and conclusions are in Section 8.

2 Target Implementations

We target two implementations of the AES-128 in two 8-bit RISC-based micro-
controllers. In the first setup, we used a PIC 16F877 running at a frequency
around 4 MHz. In the second setup, we used an Atmel ATmega163 in a smart
card body, clocked at 3.57 MHz. In both cases, our attacks aim to recover the
first 8 bits of the block cipher master key k. We denote this part of the key
as a key class s. The physical leakages were acquired with a digital oscillo-

Partition vs. Comparison Side-Channel Distinguishers 255

0 500 1000 1500 2000 2500 3000
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

time in samples at 250 MS/s

le
ak

ag
e

S(x
i
⊕ s)

max

0.09 0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13
0

20

40

60

80

100

120

140

leakage value

fr
eq

ue
nc

y
of

 o
cc

ur
en

ce

Fig. 1. Left: exemplary PIC power trace and selection of the meaningful samples. Right:
Histogram for the statistical distribution of the electrical noise in the PIC leakages.

scope, respectively a Tektronix 7140 with a 1 GHz bandwidth running at a 250
MS/s sampling rate for the PIC and an Agilent Infinium 54832D with a 1GHz
bandwidth running at a 200 MS/s sampling rate for the Atmel. We note that
although the PIC and Atmel devices seem to be very similar, their leakages are
substantially different, as will be confirmed in the following sections.

3 Side-Channel Adversary

The present analysis aims to compare different statistical tests for side-channel
attacks. But statistical tests are only a part of a side-channel adversary. A fair
comparison between such tests consequently requires that the other parts of
the adversary are identical. Following the descriptions and definitions that are
introduced in [18], it means that all our attacks against a given target device
exploit the same input generation algorithm, the same leakage function and the
same leakage reduction mapping. In addition, in order to illustrate the wide
variety of tradeoffs that can be considered for such adversaries, we used slightly
different settings for our two devices (i.e. PIC and Atmel). Specifically:

– We fed both devices with uniformly distributed random (known) plaintexts.
– We provided the statistical tests with the same sets of leakages, monitored

with two similar measurement setups (i.e. one setup by target device).
– Only univariate side-channel adversaries were considered in our comparison.

• For the PIC device, we used a reduction mapping R that extracts the
leakage samples corresponding to the computation of S(xi ⊕ s) in the
traces (this clock cycle is illustrated in the left part of Figure 1), where
S is the 8-bit substitution box of the AES and xi the first 8 bits of the
plaintext. Then, only the maximum value of this clock cycle was selected.
Hence, to each input plaintext vector xq = [x1, x2, . . . , xq] corresponds a
q-sample leakage vector R(lq) = [R(l1), R(l2), . . . , R(lq)].

• For the Atmel implementation, all the samples corresponding to the
computation of the first AES round were first tested independently in

256 F.-X. Standaert, B. Gierlichs, and I. Verbauwhede

Fig. 2. Selection of the meaningful time samples for the Atmel

order to determine the sample giving rise to the best results, for each
statistical test. Then, the actual analysis was only applied to this sample.
Figure 2 illustrates this selection of time samples for two statistical tests
to be defined in the next section, namely the Difference of Means (DoM)
and Pearson’s correlation coefficient. In other words, we used a different
reduction mapping for each of the statistical tests in this case.

We mention that these choices are arbitrary: the only goal is to provide each
statistical test with comparable inputs, for each target device. They also corre-
spond to different (more or less realistic) attack scenarios. For the PIC device, we
assume that one knows which sample to target: it considerably reduces the at-
tack’s time and memory complexities. But the selected time sample may not be
optimal for a given attack. For the Atmel, no such assumption is made.

4 Classification of Distinguishers

In this section, we propose to informally classify the possible side-channel dis-
tinguishers as partition-based or comparison-based. More specifically:

– In a partition-based attack and for each key class candidate s∗, the adversary
defines a partition of the leakages according to a function of the input plain-
texts and key candidates. We denote such partitions as: P(s∗,vq

s∗), where
vq

s∗ = V(s∗,xq) are some (key-dependent) values in the implementation that
are targeted by the adversary. For example, the S-box output S(xi ⊕ s∗) is
a usual target. Then, a statistical test is used to check which partition is
the most meaningful with respect to the real physical leakages. We denote
this test as T(P(s∗,vq

s∗), R(lq)). For example, Kocher’s original DPA [10]
partitions the leakages according to one bit in the implementation.

– In comparison-based attacks, the adversary models a part/function of the
actual leakage emitted by the target device, for each key class candidate s∗.
Depending on the attacks, the model can be the approximated probability
density function of a reduced set of leakage samples denoted: M(s∗, R(lq)) =
P̂r[s∗|R(lq)], as when using templates [3]. Or the model is a deterministic

Partition vs. Comparison Side-Channel Distinguishers 257

function (e.g. the Hamming weight) of some values in the implementation:
M(s∗,vq

s∗), as in correlation attacks [2]. Then, a statistical test is used to
compare each model M(s∗, .) with the actual leakages. Similarly to partition-
ing attacks, we denote this test as T(M(s∗, .), R(lq)).

We note that the previous classification is purely informal in the sense that it
does not relate to the capabilities of an adversary but to similarities between
the way the different attacks are performed in practice. As the next sections
will underline, it is only purposed to clarify the description of different statis-
tical tests. As a matter of fact, one can partition according to (or model the
leakage of) both single bits and multiple bits in an implementation. In both
partition and comparison attacks, the expectation is that only the correct key
class candidate will lead to a meaningful partition or good prediction of the ac-
tual leakages. Hence, for the two types of attacks, the knowledge of reasonable
assumptions on the leakages generally improves the efficiency of the resulting
key recovery. With this respect, the choice of the internal value used to build
the partitions or models highly matters too. For example, one could use the
AES S-box inputs xi ⊕ s∗ or outputs S(xi ⊕ s∗) for this purpose. But using the
outputs generally gives rise to better attack results because the of the S-box
non-linearity [14].

4.1 Statistical Tests for Partition Distinguishers

In a partition attack, for each key class candidate s∗ the adversary essentially
divides the leakages in several sets and stores them in the vectors p1

s∗ , p2
s∗ ,

. . . , pn
s∗ . These sets are built according to a hypothetical function of the internal

values targeted by the adversary that we denote as H. It directly yields a variable
hq

s∗ = H(vq
s∗). In general, H can be any surjective function from the target values

space V to a hypothetical leakage space H. Examples of hypothetical leakages
that can be used to partition a 16-element leakage vector R(l16) include:

– a single bit of the target values (i.e. n = 2),
– two bits of the target values (i.e. n = 4),
– the Hamming weight of 4 bits of the target values (i.e. n = 5).

Such partitions are illustrated in Table 1 in which the indices of the R(li) val-
ues correspond to the input plaintexts [x1, . . . , x16]. In a 1-bit partition, the 16
leakage values are stored in the vector p1

s∗ if the corresponding hypothetical
leakage (e.g. one bit of S(xi ⊕ s∗)) equals 0 and stored in p2

s∗ otherwise. As a
result, we have one partition per key class candidate s∗ and n vectors pi

s∗ per
partition.

Kocher’s DoM test. The first proposal for checking the relevance of a leakage
partition is the difference of means test that was initially introduced in [10] and
more carefully detailed in [12]. In this proposal and for each key class candidate
s∗, the adversary only considers two vectors from each partition, respectively

258 F.-X. Standaert, B. Gierlichs, and I. Verbauwhede

Table 1. Examples of 1-bit, 2-bit and Hamming weight partitions

p1
s∗ p2

s∗

R(l1) R(l2)
R(l3) R(l5)
R(l4) R(l7)
R(l6) R(l8)
R(l10) R(l9)
R(l12) R(l11)
R(l14) R(l13)
R(l15) R(l16)

p1
s∗ p2

s∗ p3
s∗ p4

s∗

R(l3) R(l1) R(l5) R(l6)
R(l4) R(l2) R(l9) R(l7)
R(l11) R(l10) R(l8) R(l12)
R(l15) R(l14) R(l16) R(l13)

p1
s∗ p2

s∗ p3
s∗ p4

s∗ p5
s∗

R(l5) R(l2) R(l1) R(l3) R(l14)
R(l7) R(l4) R(l6)
R(l9) R(l8) R(l12)
R(l16) R(l10) R(l13)

R(l11)
R(l15)

denoted as pA
s∗ and pB

s∗ . Applying such a difference of means test simply means
that the adversary computes the difference between the sample means1:

Δs∗ = Ê(pA
s∗)− Ê(pB

s∗) (1)

In single-bit attacks as when using the 1-bit partition in Table 1, the vectors
pA

s∗ and pB
s∗ correspond to the two only columns of the partition. In multiple-bit

attacks as when using the 2-bit partition in Table 1, the vectors pA
s∗ and pB

s∗

either correspond to two columns (out of several ones) in the partition, as in
“all-or-nothing” multiple-bit attacks or they correspond to two combinations of
columns in the partition, as in “generalized” multiple-bit attacks (see [12]). Note
that “all-or-nothing” attacks have the drawback that several leakage samples are
not exploited (i.e. corresponding to the unexploited columns of the partition).
Note also that the best selection of the (combination of) columns requires to
make assumptions about the leakages. For example, “all-or-nothing” attacks
implicitly assume that the behavior of several bits is the same so that “all-or-
nothing” partitions yield the largest Δs. As a result of the attack, the adversary
obtains a vector gq with the key candidates rated according to the test result,
the most likely key corresponding to the highest absolute value for Δs∗ .

MIA. Another proposal for exploiting a leakage partition in a more generic
way than using a difference of means test has been described in [6]. It notably
aims to exploit all the samples in a multiple-bit partition, without making any
assumption on the leakage model. For this purpose, the adversary attempts to
approximate the mutual information between the hypothetical leakages hq

s∗ and
the actual leakages R(lq). For each vector pi

s∗ , he first builds histograms in order
to evaluate the joint distribution P̂r[R(Lq),H

q
s∗] and the marginal distributions

P̂r[R(Lq)] and P̂r[Hq
s∗], for each key class candidate. Then, he estimates:

Î(R(Lq);H
q
s∗) = Ĥ[R(Lq)] + Ĥ(Hq

s∗)− Ĥ[R(Lq),H
q
s∗]

1 In statistical textbooks, Difference of Means tests usually refer to more complex
hypothesis tests. We use this simple version for illustration because it was extensively
used in the cryptographic hardware community.

Partition vs. Comparison Side-Channel Distinguishers 259

As in a difference of means test, the adversary obtains a vector gq containing
the key candidates rated according to the test result, the most likely key corre-
sponding to the largest value for the mutual information.

4.2 Statistical Tests for Comparison Distinguishers

Pearson’s correlation coefficient. In a correlation attack, the adversary es-
sentially predicts a part/function of the leakage in the target device, for each key
class candidate s∗. As a result, he obtains q-element vectors mq

s∗ = M(s∗,vq
s∗).

For example, if a device is known to follow the Hamming weight leakage model,
the vector typically contains the Hamming weights of the values S(xi⊕s∗). Since
the reduced leakage vector R(lq) also contains q elements, the test can estimate
the correlation between these two vectors, e.g. using Pearson’s coefficient:

ρs∗ =
∑q

i=1(R(li)− Ê(R(lq))) · (mi
s∗ − Ê(mq

s∗))√∑q
i=1(R(li)− Ê(R(lq)))2 ·

∑q
i=1(m

i
s∗ − Ê(mq

s∗))2
(2)

Again, the adversary obtains a vector gq with the key candidates rated according
to the test result, the most likely key corresponding to the highest correlation.

Bayesian analysis. In template attacks, the adversary takes advantage of a
probabilistic model for the leakages. He exploits an estimation of the conditional
probabilities Pr[R(lq)|s]. From such an estimation, a straightforward strategy is
to apply Bayes theorem and to select the keys according to their likelihood:

λs∗ = P̂r[s∗|R(lq)] (3)

It yields the same key candidate vector gq as in the previous examples. Note that
these attacks correspond to a stronger adversarial context than the other sta-
tistical tests in this section and require an estimation of the leakage probability
distribution (i.e. to build templates). They should therefore be seen as a limit
of what a side-channel adversary can achieve. We also note that in our simple
context, the construction of templates was assumed to be unbounded2. But in
more challenging scenarios, i.e. if the construction of templates is bounded, the
use of stochastic models can be necessary for this purpose [15].
2 Following [3], we assumed the leakages to be drawn from a normal distribution:

N (R(li)|μi
s, σ

i
s) =

1
σi

s

√
2π

exp
−(R(li)− μi

s)2

2σi
s
2 , (4)

in which the means μi
s and standard deviations σi

s specify completely the noise
associated to each key class s. In practice, these means and standard deviations were
estimated during a preliminary profiling step in which the adversary characterizes
the target device (we constructed one template for each value of S(s⊕ xi)). That is,
the probabilities Pr[s∗|R(li)] are approximated in our attacks using Bayes theorem
and the estimated Gaussian distribution P̂r[R(li)|s∗] = N (R(li)|μ̂i

s∗ , σ̂i
s∗), where μ̂i

s∗

and σ̂i
s∗ respectively denote the sample mean and variance for a given leakage sample.

260 F.-X. Standaert, B. Gierlichs, and I. Verbauwhede

4.3 An Alternative Partition Distinguisher Using a Variance Test

The previous section described a number of statistical tests to evaluate the qual-
ity of a leakage model or partition. Of course, this list is not exhaustive: various
other approaches have been and could be proposed. In this section, we suggest
that under the common hypothesis of Gaussian noise in the physical leakages
(confirmed in Figure 1 for the PIC), one can propose an alternative to the mu-
tual information distinguisher [6]. Indeed, since in this context, the entropy of
a good partition only depends on its variance, one can save the construction of
histograms. Such a variance test can be described as follows. Let us denote the
sample variance of the leakage and partition vectors as σ̂2(R(lq)) and σ̂2(pi

s∗).
From those variances, we compute the following statistic for each partition:

σ2
s∗ =

σ̂2(R(lq))∑n
i=1

#(pi
s∗)

q · σ̂2(pi
s∗)

(5)

where #(pi
s∗) denotes the number of elements in a vector pi

s∗ of the partition.
The most likely key is the one that gives rise to the highest variance ratio. Note
that variance tests have been used in the context of timing attacks (e.g. in [9]).
However, we could not find a reference using a similar test in the context of
power analysis attacks. Any suggestion is welcome.

We finally mention that partition-based attacks generally require the parti-
tions corresponding to different key candidates to be made of meaningful vectors
pi

s∗ . For example, an attack against the 8 key-bits corresponding to the first S-
box of the AES using an 8-bit partition will give rise to vectors pi

s∗ containing
only the leakages corresponding to one input xi. Therefore, these partitions will
not allow discriminating the key candidates. In other words, partition attacks
cannot use bijective hypothetical leakage functions [6].

5 Evaluation Metrics

We propose to quantify the effectiveness of our distinguishers with two security
metrics, namely the success rates of order o and guessing entropy. Let gq be the
vector containing the key candidates sorted according to the test result after a
side-channel attack has been performed: gq := [g1, g2, . . . , g|S|]. A success rate
of order 1 (resp. 2, . . .) relates to the probability that the correct key class is
sorted first (resp. among the two first ones, . . .) by the adversary. More formally,
we define the success function of order o against a key class s as: So

s(gq)=1 if
s ∈ [g1, . . . , go], else So

s(gq)=0. It leads to the oth-order success rate:

Succo
S = E

s
E
lq

So
s(gq) (6)

Similarly, the guessing entropy measures the average number of key candidates
to test after a side-channel attack has been performed. Using the same notations
as for the success rate, we define the index of a key class s in a side-channel

Partition vs. Comparison Side-Channel Distinguishers 261

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
1−bit partition

number of queries

su
cc

es
s

ra
te

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
2−bit partition

number of queries

su
cc

es
s

ra
te

0 50 100 150
0

0.2

0.4

0.6

0.8

1
3−bit partition

number of queries

su
cc

es
s

ra
te

0 50 100 150
0

0.2

0.4

0.6

0.8

1
4−bit partition

number of queries
su

cc
es

s
ra

te

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Hamming weight partition

number of queries

su
cc

es
s

ra
te

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Templates

number of queries

su
cc

es
s

ra
te

DoM and σ2 tests
 overlap

8 bins

16 bins

Fig. 3. PIC: 1st-order SR for different statistical tests, partitions, models (dotted: DoM
test, dash-dotted: correlation test, dashed: MIA, solid: variance test)

attack as: Is(gq) = i such that gi = s. It corresponds to the position of the
correct key class s in the candidates vector gq. The guessing entropy is simply
the average position of s in this vector:

GES = E
s

E
lq

Is(gq) (7)

Intuitively, a success rate measures an adversarial strategy with fixed com-
putational cost after the physical leakages have been exploited. The guessing
entropy measures the average computational cost after this exploitation. For a
theoretical discussion of these metrics, we refer to [18].

6 Limitations of Our Classification and Methodology

Before moving to the description of our experimental results, let us emphasize
again that the previous classification of attacks is informal. It is convenient to
consider partition-based attacks since they all exploit a division of the leakages
such as in Table 1. But as far as the adversarial capabilities are concerned, the
most important classification relates to the need (or lack thereof) of a leakage
model. For example, template attacks require the strongest assumptions, i.e. a

262 F.-X. Standaert, B. Gierlichs, and I. Verbauwhede

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
1−bit partition

number of queries

su
cc

es
s

ra
te

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
2−bit partition

number of queries

su
cc

es
s

ra
te

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
3−bit partition

number of queries

su
cc

es
s

ra
te

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
4−bit partition

number of queries
su

cc
es

s
ra

te

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
Hamming weight partition

number of queries

su
cc

es
s

ra
te

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Templates

number of queries

su
cc

es
s

ra
te

8 bins

16 bins

bivariate attack

univariate attack

trivariate attack

hexavariate attack

Fig. 4. Atmel: 1st-order SR for different statistical tests, partitions, models (dotted:
DoM test, dash-dotted: correlation test, dashed: MIA, solid: variance test)

precise characterization of the target device. Other attacks do not need but can
be improved by such a characterization (e.g. correlation in [17]), with more or
less resistance to a lack of knowledge on the target device. With this respect,
the mutual information analysis is the most generic statistical test in the sense
that it does not require any assumption on the leakage model.

Also, all our evaluations depend on the target implementations and attack
scenarios, and hence are only valid within these fixed contexts. As will be shown
in the next section, even two implementations of the same algorithm on similar
platforms may yield contrasted results. Similarly, changing any part of the adver-
sary in Section 3 (e.g. considering adaptively selected input plaintexts, another
reduction mapping, . . .) or modifying the measurement setups could affect our
conclusions. Importantly, these facts should not be seen as theoretical limitations
of the proposed framework but as practical limitations in its application, related
to the complex device-dependent mechanisms in side-channel attacks. Hence, it
motivates the repetition of similar experiments in various other contexts.

7 Experimental Results

In this section, we present the different experiments that we carried out against
our two target devices. We investigated partition distinguishers with DoM tests,

Partition vs. Comparison Side-Channel Distinguishers 263

0 50 100 150 200 250
0

20

40

60

80

100

120
1−bit partition

number of queries

gu
es

si
ng

 e
nt

ro
py

0 50 100 150 200
0

20

40

60

80

100

120
2−bit partition

number of queries

gu
es

si
ng

 e
nt

ro
py

0 50 100 150
0

50

100

150
3−bit partition

number of queries

gu
es

si
ng

 e
nt

ro
py

0 50 100 150
0

50

100

150
4−bit partition

number of queries

gu
es

si
ng

 e
nt

ro
py

0 5 10 15 20 25
0

50

100

150
Hamming weight partition

number of queries

gu
es

si
ng

 e
nt

ro
py

0 5 10 15 20 25
0

10

20

30
Templates

number of queries

gu
es

si
ng

 e
nt

ro
py

DoM and σ2 tests
 overlap

8 bins

16 bins

Fig. 5. PIC: Guessing entropy for different statistical tests, partitions, models (dotted:
DoM test, dash-dotted: correlation test, dashed: MIA, solid: variance test)

MIA and variance tests. We also evaluated correlation attacks using Pearson’s
coefficient and template attacks. For this purpose and for each device, we gener-
ated 1000 leakage vectors, each of them corresponding to q=250 random input
plaintexts. Then, for each of the previously described statistical tests, we com-
puted different success rates and the guessing entropy for:

– various number of queries (1 ≤ q ≤ 250),
– various partitions and models (1-bit, 2-bit, . . . , Hamming weight).

For each value of q, our metrics were consequently evaluated from 1000 samples.
The results are represented in Figures 3, 4, 5, 6, 7, (the latter ones in Appendix)
and lead to a number of observations that we now detail.

1. The two devices have significantly different leakage behaviors. While the PIC
leakages closely follow Hamming weight predictions (e.g. Figure 3, correlation
test, lower left part), the Atmel leakages give rise to less efficient attacks in
this context (e.g. Figure 4, correlation test, lower left part).

2. By contrast 1-bit and 2-bit partitions give rise to more efficient attacks
against the Atmel device than against the PIC (e.g. Figures 3 and 4 again).

The assumed reason for these observations is that different bits in the Atmel
implementation contribute differently to the overall leakage. In particular, we

264 F.-X. Standaert, B. Gierlichs, and I. Verbauwhede

0 50 100 150 200
0

20

40

60

80
1−bit partition

number of queries

gu
es

si
ng

 e
nt

ro
py

0 50 100 150 200
0

50

100

150
2−bit partition

number of queries

gu
es

si
ng

 e
nt

ro
py

0 50 100 150 200
0

50

100

150
3−bit partition

number of queries

gu
es

si
ng

 e
nt

ro
py

0 50 100 150 200
0

50

100

150
4−bit partition

number of queries

gu
es

si
ng

 e
nt

ro
py

0 50 100 150 200
0

50

100

150
Hamming weight partition

number of queries

gu
es

si
ng

 e
nt

ro
py

0 5 10 15 20 25 30
0

20

40

60

80
Templates

number of queries

su
cc

es
s

ra
te

8 bins
16 bins

univariate attack

bivariate attack

trivariate attack

hexaivariate attack

Fig. 6. Atmel: Guessing entropy for different statistical tests, partitions, models (dot-
ted: DoM test, dash-dotted: correlation test, dashed: MIA, solid: variance test)

observed experimentally that 1-bit attacks were the most efficient when targeting
the S-box output LSB against the Atmel (the success rate was significantly lower
with other bits). This assumption also explains why multiple-bit attacks lead to
relatively small improvement of the attacks, compared to the PIC.

3. As far as the comparison of distinguishers is concerned, the main observation
is that template attacks are the most efficient ones against both devices,
confirming the expectations of [3,18]. However, it is worth noting that while
univariate templates directly lead to very powerful attacks against the PIC
implementation, the exploitation of multiple samples significantly improves
the success rate in the Atmel context (e.g. Figure 4, lower right part). Note
again that the unbounded construction of our templates has a significant
impact on this observation. The effect of a bounded construction of templates
to the final attack effectiveness has been studied in [7].

4. By contrast, no general conclusions can be drawn for the non-profiled distin-
guishers (DoM and variance tests, correlation attack, MIA). This confirms
that different adversarial contexts (e.g. types of leakages, distributions of the
noise, selections of the meaningful samples, . . .) can lead to very different
results for these attacks. A distinguisher can also be fast to reach low success
rates but slow to reach high success rates. Or different distinguishers could
be more or less immune to noise addition or other countermeasures against

Partition vs. Comparison Side-Channel Distinguishers 265

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
1−bit partition

number of queries

su
cc

es
s

ra
te

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
2−bit partition

number of queries

su
cc

es
s

ra
te

0 50 100 150
0

0.2

0.4

0.6

0.8

1
3−bit partition

number of queries

su
cc

es
s

ra
te

0 50 100 150
0

0.2

0.4

0.6

0.8

1
4−bit partition

number of queries
su

cc
es

s
ra

te

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Hamming weight partition

number of queries

su
cc

es
s

ra
te

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Templates

number of queries

su
cc

es
s

ra
te

8 bins

16 bins

DoM and σ2 tests
 overlap

Fig. 7. PIC: 4th-order SR for different statistical tests, partitions, models (dotted: DoM
test, dash-dotted: correlation test, dashed: MIA, solid: variance test)

side-channel attacks. For example, in our experiments the DoM test shows
an effectiveness similar the other distinguishers against the PIC with 1-bit
partitions while it is the least efficient against the Atmel.

Next to these general observations, more specific comments can be made, e.g.:

– The results for the DoM test against the PIC (Figure 3) experimentally
confirm the prediction of Messerges in [13]: in the context of “all-or-nothing”
multiple-bit attacks using a DoM test, the best partition size is 3 bit out of
8 if the leakages have strong Hamming weight dependencies. It corresponds
to the best tradeoff between the amplitude of the DoM peak (that increases
with the size of the partition) and the number of traces that are not used
by the test because not corresponding to an “all zeroes/ones” vector.

– The different metrics introduced, although correlated, bring different insights
on the attacks efficiencies: Figures 5, 6 illustrate the guessing entropies of
different attacks for our two devices; Figure 7 contains the 4th-order suc-
cess rates for the PIC. Interestingly, the variance test using 4-bit partitions
against the Atmel allows a better 1st-order success rate than guessing en-
tropy, compared to other distinguishers (e.g. Figures 4, 6: middle right parts).

– The number of bins used to build the histograms in the MIA has a signif-
icant impact on the resulting attack efficiency. More bins generally allow a

266 F.-X. Standaert, B. Gierlichs, and I. Verbauwhede

better estimation of the mutual information Î(R(Lq);H
q
s∗) but can lead to

less discriminant attacks if the number of leakage samples is bounded. In
general, we use as many bins as the number of vectors in our partitions.
For the 4-bit partitions, we additionally considered 8-bins-based attacks to
illustrate the impact of a change of this parameter. The optimal selection of
these bins and their number is an interesting scope for further research.

This list of comments is of course not exhaustive and only points out exemplary
facts that can be extracted from our experiments. We finally emphasize the im-
portance of a sufficient statistical sampling in the approximation of the success
rates or guessing entropy in order to provide meaningful conclusions. While an
actual adversary only cares about recovering keys (i.e. one experiment may be
enough for this purpose) the evaluation and understanding of side-channel at-
tacks requires confidence in the analysis of different statistical tests. In practice,
such evaluations are obviously limited by the amount of traces that one can ac-
quire, store and process. With this respect, we computed our success rates and
guessing entropies from sets of 1000 samples (i.e. 1000 leakage vectors of 250
encrypted plaintexts each). Both the smoothness of the curves in our figures and
the confidence intervals that can be straightforwardly extracted for the success
rates confirm that this sampling was enough to obtain sound observations.

8 Conclusions

This paper describes a fair empirical comparison of different side-channel dis-
tinguishers against two exemplary devices. Our results essentially highlight the
implementation-dependent nature of such comparisons. It shows that any conclu-
sion about the efficiency of a side-channel attack is only valid within a specific
context. Therefore it emphasizes the importance of performing similar evalu-
ations against various other implementations. In particular, countermeasures
against side-channel attacks (e.g. masked [8] or dual-rail circuits [19]) are an
interesting evaluation target. Other scopes for further research include the inte-
gration of more complex side-channel attacks in the comparisons, e.g. based on
collisions [16] or the investigation of advanced statistical tools for key extraction,
e.g. [1]. The methodology described in this work is expected to prevent wrong
general claims on side-channel attacks and to allow a better understanding of
both the target devices and the attacks used to exploit physical leakages.

References

1. Batina, L., Gierlichs, B., Lemke-Rust, K.: Comparative Evaluation of Rank Cor-
relation based DPA on an AES Prototype Chip. In: Wu, T.-C., Lei, C.-L., Rijmen,
V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 341–354. Springer, Heidelberg
(2008)

2. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

Partition vs. Comparison Side-Channel Distinguishers 267

3. Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

4. Coron, J.S., Naccache, D., Kocher, P.: Statistics and Secret Leakage. In: Frankel,
Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001)

5. FIPS 197, Advanced Encryption Standard, Federal Information Processing Stan-
dard, NIST, U.S. Dept. of Commerce, November 26 (2001)

6. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis - A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

7. Gierlichs, B., Lemke, K., Paar, C.: Templates vs. Stochastic Methods. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg
(2006)

8. Goubin, L., Patarin, J.: DES and Differential Power Analysis. In: Koç, Ç.K., Paar,
C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)

9. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

10. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Heidelberg
(2007)

12. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining Smart-Card Security un-
der the Threat of Power Analysis Attacks. IEEE Transactions on Computers 51(5),
541–552 (2002)

13. Messerges, T.S.: Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms, PhD Thesis, University of Illinois at Urbana Champaign (2000)

14. Prouff, E.: DPA Attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)

15. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side-
Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 30–46. Springer, Heidelberg (2005)

16. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Com-
bining Side Channel and Differential Attack. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

17. Standaert, F.-X., Peeters, E., Macé, F., Quisquater, J.-J.: Updates on the Security
of FPGAs Against Power Analysis Attacks. In: Bertels, K., Cardoso, J.M.P., Vas-
siliadis, S. (eds.) ARC 2006. LNCS, vol. 3985, pp. 335–346. Springer, Heidelberg
(2006)

18. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks, Cryptology ePrint Archive, Report 2006/139

19. Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand DPA on Smart Cards.
In: The proceedings of ESSCIRC 2003, Estoril, Portugal (September 2003)

A Single-Key Domain Extender
for Privacy-Preserving MACs and PRFs

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midoricho Musashino-shi, Tokyo 180-8585 Japan

yasuda.kan@lab.ntt.co.jp

Abstract. We present a CBC (cipher block chaining)-like mode of op-
eration for MACs (message authentication codes) using a hash func-
tion. The new construction iCBC (imbalanced CBC) does not follow the
Merkle-Damg̊ard design but rather iterates the underlying compression
function directly in a CBC-like manner. Many of the prior MAC construc-
tions, including HMAC, assume PRF (pseudo-random function) proper-
ties of the underlying primitive. In contrast, our iCBC-MAC makes only a
PP-MAC (privacy-preserving MAC) assumption about the compression
function. Despite the fact that PP-MAC is a strictly weaker requirement
than PRF, iCBC-MAC works with a single key like HMAC and runs as
efficiently as HMAC. Moreover, iCBC-MAC becomes even faster than
HMAC, depending on the choice of security parameters. Additionally,
iCBC-MAC is multi-property-preserving in the sense that it operates as
a domain extender for both PP-MACs and PRFs.

Keywords: imbalanced cipher block chaining, iCBC, message authen-
tication code, MAC, privacy-preserving, domain extension.

1 Introduction

HMAC [1] is a popular, widely-used mode of operation for message authentica-
tion codes (MACs). It is based on the Merkle-Damg̊ard structure which iterates
a hash compression function. HMAC is single-keyed and provably secure [2] in
the sense that it is a pseudo-random function (PRF) on the assumption that the
underlying compression function is a PRF.

Being a PRF is a strictly stronger condition than being a secure MAC. For the
purpose of message authentication, PRF properties are not necessarily required.
Moreover, the strong PRF assumptions might not hold true for some of the
actual compression functions in use.

In practice, several dedicated compression functions, including md4, md5 and
sha-0, turn out to be not PRFs. These facts are demonstrated by the successive
attacks [3,4,5,6] on the instantiations of NMAC/HMAC with those “weak” com-
pression functions. The attacks do not violate the security proof of HMAC but
merely show that HMAC is indeed vulnerable when the underlying assumption
becomes void.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 268–285, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Single-Key Domain Extender for Privacy-Preserving MACs and PRFs 269

The case of HMAC reminds us that it is desirable to base the security of con-
structions on weaker assumptions about the building block. In particular, PRF
assumptions about the primitive seem to be inessential to constructing secure
MACs, especially as there already exist a few secure constructions of MACs
that require only a weaker-than-PRF property of the underlying compression
function.

Weakening PRF assumption. The NI construction [7] provides a secure
MAC on the sole assumption that the underlying compression function is a
secure MAC. NI requires two independent keys, and this problem is resolved by
the newer CS construction [8].

The major drawback of the NI and CS constructions is inefficiency due to their
dependence on the keyed Merkle-Damg̊ard structure. Consider for example md5 :
{0, 1}128+512 → {0, 1}128. The usual, unkeyed Merkle-Damg̊ard iteration can
process 512 bits of a message per invocation to the md5 compression function.
In contrast, the keyed Merkle-Damg̊ard iteration consumes (say) 128 bits for a
key at each invocation and hence processes only 384 bits of a message per block.
Thus, the NI and CS constructions perform at the rate of about 384/512 = 75%
to HMAC in this particular case. We are interested in resolving this dilemma
between weakening the assumption and achieving efficiency:

Q. Can we construct a single-key mode of operation satisfying
the following requirements?
• The mode provides a secure MAC based on a weaker-than-

PRF assumption about the underlying compression func-
tion, and

• The mode runs as fast as or faster than HMAC.

Our Results. We aim at the privacy-preserving MAC (PP-MAC) property, a
notion that lies between that of a PRF and that of a secure MAC.1 By doing
so, we successfully weaken the PRF assumption about the compression function
without losing overall performance. The key idea is that owing to the privacy-
preserving property we become able to employ a new iterative structure that is
more efficient than the keyed Merkle-Damg̊ard construction.

We call the new configuration “imbalanced” cipher block chaining (iCBC). It
is similar to the usual CBC that iterates a block cipher. The obvious difference
from the normal CBC lies in the fact that the hash size n is always smaller than
the block size b, as we are dealing with a compression function. We can easily
resolve the mismatch by padding each hash value with 0’s to b bits before xor-ing
it into the next message block.

Adopting the iCBC method rather than the Merkle-Damg̊ard iteration, our
mode of operation, iCBC-MAC, accomplishes the following features:

1 It turns out that the “non-PRF” compression functions md4, md5 and sha-0 are
not even PP-MAC, but we shall show that in theory there is a significant difference
between the two notions of PRF and PP-MAC. See Sect. 4.

270 K. Yasuda

1. Extending PP-MAC Property. We show that iCBC-MAC is a PP-MAC
based on the sole assumption that the underlying compression function is
a PP-MAC. This means that for the purpose of message authentication,
iCBC-MAC does not require its compression function to be a PRF.

2. Extending PRF Property. We also show that iCBC-MAC is a PRF under
the condition that the compression function is a PRF. Hence, one can replace
HMAC with iCBC-MAC without losing the functionality as a PRF.

3. Keeping High Performance. The iCBC configuration is as efficient as the
unkeyed Merkle-Damg̊ard construction. Depending on the key size κ and the
hash size n, iCBC becomes even faster than the unkeyed Merkle-Damg̊ard
iteration (i.e., when κ < n).

4. Being “Truly” Single-Keyed. The iCBC-MAC scheme provides a single-
key solution. Every invocation to the compression function takes the same
secret key.2

The disadvantage of iCBC-MAC may be the fact that it requires direct access
to the compression function. It means that iCBC-MAC cannot make good use of
off-the-shelf hash functions that are already implemented in the Merkle-Damg̊ard
style. However, several studies [9,10,11,12] reveal various structural defects in the
Merkle-Damg̊ard construction as a mode of operation for hash functions, which
leads us to question whether the Merkle-Damg̊ard construction will maintain its
dominant position.

Organization. In Sect. 2 we review related work in the field. Section 3 provides
notation and terminology used in the paper. Section 4 defines security notions,
including PRFs and PP-MACs. Section 5 is devoted to proving the main lemma
concerning the security of iCBC configuration. In Sect. 6 we define the iCBC-
MAC construction and prove its security, using the result of the main lemma.
In Sect. 7 we mention techniques for further optimization of the iCBC-MAC
construction. We discuss the efficiency of iCBC-MAC in Sect. 8, making a per-
formance comparison with HMAC.

2 Prior Work

In this section we go over previous modes of operation for MACs and PRFs.
Some of the prominent ones are listed in Table 1 with their security results.

There are a few domain extensions of MACs, such as NI, CS, ESh [13],
MDP [16] and enciphered CBC [17]. All of them are subject to performance
loss as compared to PRF-based constructions. NI, CS, ESh and MDP (in its
MAC mode) iterate a compression function in the keyed Merkle-Damg̊ard style.
The enciphered CBC iterates a length-preserving primitive (e.g., a block cipher),
and it is twice as slow as an ordinary, PRF-based CBC-MAC such as OMAC [18].

2 In the single-key scenario a folklore technique is to stretch a key to its double length
using a PRF (as in the derivation of HMAC from NMAC [2]). This technique is
inapplicable to our case of PP-MAC compression functions.

A Single-Key Domain Extender for Privacy-Preserving MACs and PRFs 271

Table 1. Comparison among HMAC, iCBC-MAC and other MACs. PRF(two) stands
for PRF against two queries. Note that HMAC and BNMAC are in the keyless setting,
while CS and iCBC-MAC are in the dedicated-key setting [13].

Performance Goal Assumption Ref.

CS <HMAC MAC MAC [8]
HMAC =HMAC MAC MAC+CR+PRF(two) [1]

MAC NM+PRF(two) [14]
PP-MAC PP-MAC+PRF(two) [2]

PRF PRF [2]
iCBC-MAC ≥HMAC PP-MAC PP-MAC —

PRF PRF —

BNMAC >HMAC PRF PRF(related key) [15]

There are several proofs known for the security of HMAC. All of them more or
less rely on a PRF property of the compression function. The original proof [1] de-
mands that the compression function be MAC-secure and collision-resistant (CR),
along with a PRF assumption for key derivation. The recent work [14] provides a
security proof of NMAC based on non-malleability (NM), which is a weaker condi-
tion than PRF. Still, the proof requires a PRF assumption for key derivation in the
case of HMAC. The refined proof [2] by one of the designers shows that NMAC is a
PP-MAC under the condition that the compression function is a PP-MAC and its
Merkle-Damg̊ard iteration is computationally almost universal (cAU). The cAU
property is derived from a PRF property of the compression function. To prove
that HMAC is a PP-MAC, the proof requires again a PRF assumption for key
derivation. The work [2] also proves that HMAC is a PRF based on PRF assump-
tions about the compression function.

ENMAC [19], MDP and BNMAC [15] are modes of operation with improved
performance over HMAC. ENMAC essentially inherits security results of HMAC.
MDP (in its PRF mode) and BNMAC require even stronger requirements of PRF
under related-key attacks.

3 Preliminaries

General Notation. Given two strings x, y ∈ {0, 1}∗, we write x‖y for the
concatenation of x and y. We write |x| = n when x ∈ {0, 1}n. The xor x⊕y is
defined for two strings x and y of equal length, i.e., |x| = |y|. Given a string
x ∈ {0, 1}∗ with |x| ≥ n, we define [x]n as the string consisting of the leftmost
n bits of x, so that [x]n ∈ {0, 1}n. We write 0n for the string 00 · · ·0 ∈ {0, 1}n

and likewise 1m. The symbol ‖ is often omitted, e.g., 0n1m = 0n‖1m.
The notation x ← y means the operation of assigning the value y to variable x.

Given a set X , we write x
$← X for selecting an element from X uniformly at

random and assigning its value to variable x. We write x, y
$← X to mean x

$← X ,
y

$← X . Given two positive integers α and β with α ≤ β, [α, β] denotes the set
of integers i such that α ≤ i ≤ β. The notation 〈i〉n represents some canonical
n-bit encoding of a positive integer i.

272 K. Yasuda

Compression Functions and iCBC. We pick a compression function gk :
{0, 1}b → {0, 1}n with keys k ∈ {0, 1}κ. For function gk to be compressing, we
require b > n. For the moment we assume no other relations between b, n, and κ.
Throughout the paper we fix g and hence b, n and κ.

Given a message M ∈ {0, 1}∗, we first need to pad M so that its length
becomes a multiple of b bits. Put λ =

⌈
(|M | + 1)/b

⌉
. λ is the length of M

in blocks. Divide M into b-bit blocks as M = m1‖m2‖ · · · ‖mλ−1‖m̃λ, so that
|m1| = |m2| = · · · = |mλ−1| = b and 0 ≤ |m̃λ| ≤ b − 1. Then the message
M is padded as M ← M‖10b−|m̃λ|−1. We write M ← M‖10∗ as shorthand
for this padding process. Given a string M whose length is equal to bλ bits,
the notation m1‖m2‖ · · · ‖mλ ← M means dividing the string M into b-bit
blocks and assigning the value of each block to variables m1, m2, . . . , mλ, so that
m1‖m2‖ · · · ‖mλ = M .

Given gk we construct its iCBC iteration Hk : {0, 1}∗ → {0, 1}n as follows:3

Algorithm Hk(M)
M ←M‖10∗; m1‖m2‖ · · · ‖mλ ← M ; y1 ← 0n

For i = 1, 2, . . . , λ do ȳi ← yi‖0b−n, xi ← ȳi⊕mi, yi+1 ← gk(xi) endFor
Output yλ+1.

Adversaries, Games and Resources. An adversary A is a probabilistic al-
gorithm with access to zero or more oracles. We write AO to indicate the fact
that adversary A interacts with oracle O. We let AO also denote the value that
adversary A outputs after its interaction with oracle O. The notation x ← AO

means assigning variable x the value output by A. We write AO = σ to indicate
the event that the value output by A happens to be equal to σ.

We write G(A) for running adversary A as described in game G. We let G(A)
also denote the value returned by game G. We write x ← G(A) and G(A) = σ
likewise. Games often involve flags. All flags are assumed to be initially set to
0 prior to execution of the games. For example, for a flag Flag we omit the
initialization step Flag ← 0 in the description of the game. Flag gets set with
the statement Flag ← 1. With abuse of notation we let Flag represent also the
event “G(A) sets Flag” when game G and adversary A are clear from the context.

A security property defines its associated advantage function Adv∗∗∗
f (A) (see

Sect. 4 for specific definitions), measuring the advantage of adversary A attacking
the ∗ ∗ ∗ property of scheme f . We define

Adv∗∗∗
f (t, q, �) def= max

A
Adv∗∗∗f (A),

where max runs over all adversaries A having running time at most t, making
at most q queries to its oracles, each query being at most � blocks, outputting a
set of values, each value being at most � blocks. To measure time complexity we

3 Note that this definition of H gives just a “raw” iCBC. In particular, H does not
provide a secure MAC. In order to make it secure, we shall “envelope” H with a
specialized invocation to g for our iCBC-MAC in Sect. 6.

A Single-Key Domain Extender for Privacy-Preserving MACs and PRFs 273

fix a model of computation. The running time of adversary A includes its code
size. The symbol Tf (�) represents the time complexity needed to perform one
computation of f on an �-block input. One or more of the resource parameters
t, q, � may be irrelevant in some cases, in which the unnecessary parameters are
omitted from the notation.

4 Security Definitions: PRF vs. PP-MAC

In this section we give definitions of PRF and PP-MAC notions. Intuitively, PRF
requires that the output distribution should “look” uniformly random regardless
of inputs, whereas PP-MAC requires that, in addition to being secure as a MAC,
the output distribution should look the same (but not necessarily random) for
all inputs. The practical compression functions md4, md5 and sha-0, which are
not PRFs, also fail to be PP-MAC (The attacks [3,4,5,6] give this fact). Still,
we believe that the gap between the two notions is of theoretical significance as
explained below.

PRF. A prf-adversary A attacking a family of functions fk : X → Y tries to dis-
tinguish between the Real oracle and the Random oracle. The Real oracle picks a
key k

$← K at the beginning of each experiment and returns the value fk(x) to A
upon query x ∈ X . The Random oracle picks a function ϕ : X → Y uniformly at
random (from the space of all functions X → Y) at the beginning of each exper-
iment and returns the value ϕ(x) to A upon query x ∈ X . Define Advprf

f (A) def=
Pr

[
AReal = 1

]
−Pr

[
ARandom = 1

]
, where the probabilities are over all coins of the

oracle and the adversary (This principle applies to all probabilities below).

PP-MAC. The notion of PP-MAC [2] is a combination of unforgeability and left-
or-right indistinguishability. We start with defining the latter notion of privacy
preservation. Let fk : X → Y be a function family. The Left oracle picks a key k

$←
K at the beginning of each experiment and replies y ← fk(x) upon query (x, x′),
whereas the Right oracle replies fk(x′) upon query (x, x′). Define Advind

f (A) def=
Pr

[
ALeft = 1

]
−Pr

[
ARight = 1

]
, where we demand that ind-adversary A’s queries

be legitimate. Let (x1, x
′
1), (x2, x

′
2), . . . represent the queries made by adversaryA.

We say that the queries made by A are legitimate if “xi = xj implies x′
i = x′

j” and
“x′

i = x′
j implies xi = xj .” This means that the values x1, x2, . . . are all distinct,

and so are x′
1, x

′
2, . . ., except when A repeats its queries.

The notion of privacy preservation itself is not a demanding property, as
already pointed out by [2]. For example, a function that always outputs fk(x) =
00 · · ·0 is privacy-preserving.

For the notion of unforgeability, we adopt the standard one-time-verification
model.4 A mac-adversary A is given access to the oracle fk(·) and outputs a pair
of values (x∗, y∗). The adversary A wins if fk(x∗) = y∗ and x∗ is new. We say

4 It suffices to consider only the one-time verification model in the current work,
because we are dealing with deterministic MACs [20].

274 K. Yasuda

that x∗ ∈ X is new if it has not been queried by A to its oracle fk(·). Succinctly,
define Advmac

f (A) def= Pr
[
x∗ is new and fk(x∗) = y∗ ∣∣ (x∗, y∗) ← Afk(·)].

PRF ⇒ PP-MAC but PRF �⇐ PP-MAC. Let fk : X → {0, 1}n be a
function family with keys k ∈ K. If f is a PRF, then it is a PP-MAC. Indeed,
we have Advind

f (t, q, �) ≤ 2 · Advprf
f (t, q, �) [2] and

Advmac
f (t, q, �) ≤ Advprf

f (t′, q + 1, �) + 1
2n , (1)

where t′ = t + Tf (�) [20].
On the other hand, being a PP-MAC does not necessarily imply being a

PRF. For example, define f ′
k : X → {0, 1}n+1 as f ′

k(x) def= fk(x)‖0 for k ∈ K and
x ∈ X . If f is a PP-MAC, then so is f ′. However, f ′ is clearly not a PRF.

5 Main iCBC Lemma

In this section we analyze the security of the “raw” iCBC construction H and
obtain a main lemma that is used to prove security results for iCBC-MAC.

Higher-Order AU. We introduce the notion of higher-order almost univer-
sal (HOAU) functions. A hoau-adversary A, given access to its oracle gk(·),
outputs a pair of messages M, M ′ ∈ {0, 1}∗. A’s goal is to come up with such
a pair as Hk(M) = Hk(M ′), where H is the iCBC that is constructed of g. In
order for A to succeed, we demand (i) M �= M ′, and (ii) M and M ′ be fresh.
We say that a message M is fresh if in its computation of Hk(M) all the input
values to g are new, i.e., none of the input values to g has been queried by A to
its oracle gk(·) (The input values correspond to the values x1, x2, . . . , xλ in the
definition of the iCBC H). Succinctly, define

Advhoau
g (A) def= Pr

[
M, M ′ are fresh, M �= M ′ and Hk(M) = Hk(M ′)∣∣ (M, M ′)← Agk(·)].

Note that when the maximum number q of queries to the oracle is equal to 0,
the notion of HOAU corresponds to that of cAU [2] for H .

Lemma 1 (Main iCBC Lemma). Let gk : {0, 1}b → {0, 1}n be a compres-
sion function with keys k ∈ {0, 1}κ. If g is a secure MAC, then g is HOAU.
Specifically, we have

Advhoau
g (t, q, �) ≤ 7�2

2 ·Advmac
g (t′, q + 2�− 1),

where t′ = t + (2�− 1) · Tg.5

Proof. Let A be an adversary, attacking the HOAU property of g, having running
time at most t, making at most q queries to the gk(·) oracle, outputting a pair
of messages, each being at most � blocks. Let M, M ′ denote the two messages

A Single-Key Domain Extender for Privacy-Preserving MACs and PRFs 275

Adversary S Adversary O1

Sub Q; Choose α
$← [1, λ′] Sub Q; Choose α

$← [1, λ] and β
$← [1, λ′]

Sub R′(α) Sub R(α + 1); Sub R′(β)
Output (x′

α, 0n) as a forgery Output (x′
β, yα+1) as a forgery

Adversary O2 Adversary I1

Sub Q Sub Q

Choose α∗, β∗ $← [1, λ] with α∗ < β∗ Choose α
$← [1, λ] and β

$← [1, λ′]
Sub R(β∗) Sub R(α); Sub R′(β); τ ← [xα⊕m′

α+λ′−λ]n

Output (xβ∗ , yα∗+1) as a forgery Output (x′
β, τ) as a forgery

Adversary I2 Adversary I3

Sub Q Sub Q

Choose α, β
$← [1, λ] with β < α− 1 Choose α∗, β∗ $← [1, λ] with α∗ < β∗

Sub R(α− 1) Sub R(β∗ − 1)
τ ← [ȳβ+1⊕m′

α+λ′−λ⊕mα]n τ ← [xα∗⊕mβ∗]n

Output (xα−1, τ) as a forgery Output (xβ∗−1, τ) as a forgery

Subroutine Q

(M,M ′)← Agk(·); M ←M‖10∗; M ′ ←M ′‖10∗

m1‖m2‖ · · · ‖mλ ←M ; m′
1‖m′

2‖ · · · ‖m′
λ′ ←M ′

Subroutine R(α) Subroutine R′(α)
y1 ← 0n; ȳ1 ← 0b; x1 ← m1 y′

1 ← 0n; ȳ′
1 ← 0b; x′

1 ← m′
1

For i = 2, 3, . . . , α do For i = 2, 3, . . . , α do
Make a query yi ← gk(xi−1) Make a query y′

i ← gk(x′
i−1)

ȳi ← yi‖0b−n; xi ← ȳi⊕mi endFor ȳ′
i ← y′

i‖0b−n; x′
i ← ȳ′

i⊕m′
i endFor

Fig. 1. Six adversaries used in main iCBC lemma

that A outputs. Without loss of generality we assume that |M | ≤ |M ′|, so that
we have λ ≤ λ′ in the definition of subroutine Q in Fig. 1.

Using the adversary A, we construct adversaries that break the MAC security
of g. Specifically, we come up with the six adversaries defined in Fig. 1. These
adversaries simply simulate the gk(·) oracle for A using their gk(·) oracle as
in the definition of subroutine Q. Note that these queries do not affect the
forgery probabilities of the six adversaries, owing to the freshness requirement
of HOAU. The six adversaries correspond to certain specific events that occur
when adversary A succeeds in outputting a fresh, colliding pair (M, M ′). In the
following we describe these events and relate them to the six adversaries.

Let variables mi, m′
i, xi, x′

i, yi, y′
i be as in the definition of subroutines Q,

R and R′. We observe that whenever adversary A succeeds, at least one of the
following events occurs:

Clear-Cut Suffix: This is the case when mi = m′
i+λ′−λ for all i ∈ [1, λ] (i.e.,

M is a suffix of M ′) and y′
1+λ′−λ = 0n. It also implies that xi = x′

i+λ′−λ

and yi = y′
i+λ′−λ for all i ∈ [1, λ].

5 This lemma only claims that g is HOAU and particularly its iCBC H cAU. Note
that H is not a secure MAC, as already illustrated by [7] for CBC-MACs.

276 K. Yasuda

Output Collision: In this case there exists an index α ∈ [1, λ] such that xα �=
x′

α+λ′−λ and yα+1 = y′
α+1+λ′−λ.

Input Collision: This last case is when there exists an index α ∈ [1, λ] such
that xα = x′

α+λ′−λ and yα �= y′
α+λ′−λ. Note that y1 = y′

1 = 0n by definition.
In this case we also have mα �= m′

α+λ′−λ.

If M is not a clear-cut suffix of M ′, then it means that either (i) there exists
an index j ∈ [1, λ] such that mj �= m′

j+λ′−λ, or (ii) y′
1+λ′−λ �= 0n. Together with

the fact that yλ+1 = y′
λ′+1, (i) or (ii) guarantees that either an output collision

or an input collision occurs.
We start with the case Clear-Cut Suffix. We let Suff denote the event that

this case occurs, over random choice of keys k
$← {0, 1}κ and internal coins

of A. The event Suff implies y′
1+λ′−λ = 0n and hence gk(x′

λ′−λ) = 0n. So let
α ∈ [1, λ′ − λ] be the smallest index such that x′

α = x′
λ′−λ. Then we see that

adversary S succeeds in producing a forgery at least when S guesses the correct
value of α. The choice of value α in the description of adversary S is independent
of event Suff, so we obtain Advmac

g (S) ≥ 1
� · Pr

[
Suff

]
.

We next treat the case Output Collision, in which we have xα �= x′
α+λ′−λ

and yα+1 = y′
α+1+λ′−λ for some α ∈ [1, λ]. We divide the case into two smaller

cases:

Case xi �= x′
α+λ′−λ for all i ∈ [1, α]. We set OutColl1 to be the event

that this case occurs. Let β ∈ [1, α + λ′ − λ] be the smallest index such
that x′

β = x′
α+λ′−λ. Then observe that upon event OutColl1 adversary O1

succeeds in producing a forgery at least when value (α, β) is guessed correctly.
We therefore obtain Advmac

g (O1) ≥ 1
�2 · Pr

[
OutColl1

]
.

Case xβ = x′
α+λ′−λ for some β ∈ [1, α − 1]. We write OutColl2 for the

event that this case occurs. Let i ∈ [1, α] be the smallest index such that
xi = xα and j ∈ [1, β] the smallest index such that xj = xβ . The condition
xα �= xβ assures that i �= j. Put α∗ ← min{i, j} and β∗ ← max{i, j}. The
adversary O2 succeeds in breaking the MAC security of g at least when
adversary O2 guesses values (α∗, β∗) correctly upon event OutColl2. Thus
we get Advmac

g (O2) ≥ 1

(�
2)
· Pr

[
OutColl2

]
.

We finally proceed to the case Input Collision. Recall that in this case we
have xα = x′

α+λ′−λ and yα �= y′
α+λ′−λ for some α ∈ [1, λ]. Note that this case

also implies that mα �= m′
α+λ′−λ. We divide this case into the following two

cases:

Case xi �= x′
α−1+λ′−λ for all i ∈ [1, α − 1]. Let InColl1 represent the event

that this case occurs. We set β ∈ [1, α−1+λ′−λ] to be the smallest index such
that x′

β = x′
α−1+λ′−λ. We then see that adversary I1 succeeds in producing

a forgery at least when event InColl1 occurs and I1 guesses values (α, β)
correctly. So we obtain Advmac

g (I1) ≥ 1
�2 · Pr

[
InColl1

]
.

Case xβ = x′
α−1+λ′−λ for some β ∈ [1, α − 2]. We further divide this case

into the following two situations:

A Single-Key Domain Extender for Privacy-Preserving MACs and PRFs 277

Case xj �= xα−1 for all j ∈ [1, α − 2]. Write InColl2 for the event of this
case. This case guarantees that adversary I2 never makes the query xα−1

to its oracle. Thus, adversary I2 successfully forges upon event InColl2,
when values (α, β) are guessed correctly. Therefore we get Advmac

g (I2) ≥
1

(�
2)
· Pr

[
InColl2

]
.

Case xγ = xα−1 for some γ ∈ [1, α − 2]. We let InColl3 denote the
event that this case occurs. Define a set U def=

{
(i, j)

∣∣ 1 ≤ i < j ≤
λ, xi = xj

}
. The fact that we are in case OutColl3 guarantees that U

is non-empty, because (γ, α − 1) is indeed in the set U . We introduce a
linear order $ to the set U : Given two elements (i, j), (i′, j′) ∈ U , define
(i, j) $ (i′, j′) ⇔ “j < j′” or “j = j′ and i ≤ i′.” Let (α∗, β∗) represent
the minimum element of U . We have xα∗ = xβ∗ , and the value xβ∗−1

never appears in {x1, x2, . . . , xβ∗−2}, due to the fact that (α∗, β∗) is the
minimum. Thus we see that adversary I3 always succeeds upon event
InColl3, provided that the values (α∗, β∗) are guessed correctly. Hence
we have Advmac

g (I3) ≥ 1

(�
2)
· Pr

[
InColl3

]
.

Collecting the six cases considered above, we get

Advhoau
g (A) ≤ Pr

[
Suff ∨OutColl1 ∨OutColl2 ∨ InColl1 ∨ InColl2 ∨ InColl3

]
≤ Pr

[
Suff

]
+ Pr

[
OutColl1

]
+ Pr

[
OutColl2

]
+ Pr

[
InColl1

]
+ Pr

[
InColl2

]
+ Pr

[
InColl3

]
≤ � ·Advmac

g (S) + �2 · Advmac
g (O1) +

(
�
2

)
·Advmac

g (O2)

+ �2 ·Advmac
g (I1) +

(
�
2

)
·Advmac

g (I2) +
(

�
2

)
· Advmac

g (I3)

≤ 7�2

2 · Advmac
g (t′, q + 2�− 1),

where t′ = t + (2�− 1) · Tg. ��

6 Description and Security of iCBC-MAC

In this section we define our iCBC-MAC scheme and provide its security results.
Define the iCBC-MAC mode of operation Gk : {0, 1}∗ → {0, 1}n as:

Algorithm Gk(M)
y ← Hk(1b‖M); ξ ← 0n‖y‖0b−2n; τ ← gk(ξ); Output τ .

Note that we add a special finalization step in the iteration. This step is
crucial to the security of the scheme. Also, this (and only this) invocation is
where privacy preservation is required. We remark that this construction requires
b ≥ 2n (We shall discuss this constraint in Sect. 7). See Fig. 2 for an illustration
of G (We have λ =

⌈
(|M |+ 1)/b

⌉
in Fig. 2).

278 K. Yasuda

0
b−2n

1
b

0
n

‖

kkkkkk

‖ ‖

0
b−n

⊕⊕⊕‖

0
b−n

τg g

m1

g

mλ‖10
∗

g

m2

0
b−n

g g

˜

Fig. 2. Description of iCBC-MAC

Game G1(A) Game G2(A)
k

$← {0, 1}κ; y1 ← gk(1b); Y ← ∅

(M∗, τ∗)← A(·) where upon A’s i-th query M do
M ←M‖10∗; m1‖m2‖ · · · ‖mλ ←M

For j = 1, 2, . . . , λ do ȳj ← yj‖0b−n; xj ← ȳj⊕mj

If [xj]n = 0n then Zero← 1; Return 1 endIf
yj+1 ← gk(xj) endFor

y(i) ← yλ+1; If y(i) ∈ Y then Coll← 1; Return 1 endIf
Y ← Y ∪ {y(i)}; ξ ← 0n‖ 〈i〉n ‖0b−2n; ξ ← 0n‖y(i)‖0b−2n

τ ← gk(ξ); Reply τ to A
M∗ ←M∗‖10∗; m∗

1‖m∗
2‖ · · · ‖m∗

λ∗ ←M∗; y∗
1 ← y1

For i = 1, 2, . . . , λ∗ do ȳ∗
i ← y∗

i ‖0b−n; x∗
i ← ȳ∗

i⊕m∗
i

If [x∗
i]

n = 0n then Zero← 1; Return 1 endIf
y∗

i+1 ← gk(x∗
i) endFor

y(q+1) ← y∗
λ∗+1; If y(q+1) ∈ Y then Coll← 1; Return 1 endIf

ξ∗ ← 0n‖y(q+1)‖0b−2n; If gk(ξ∗) = τ∗ then Forge← 1 endIf ; Return 0

Fig. 3. Game G1 with boxed statements and game G2 without the boxed statements

Theorem 1 (Security of iCBC-MAC). Let Gk : {0, 1}∗ → {0, 1}n be the
iCBC-MAC mode constructed of a compression function gk : {0, 1}b → {0, 1}n

with b ≥ 2n. If g is a PP-MAC, then so is G.6 Specifically, we have

Advmac
G (t, q, �) ≤ Advmac

g (t′, 4�q) + Advind
g (t′, 4�q) + 4�2q2 ·Advmac

g (t′′, 2� + q),
(2)

Advind
G (t, q, �) ≤ 3 · Advind

g (t′, 4�q) + 9�2q2 · Advmac
g (t′′, 2� + q), (3)

where t′ = t + 4�q · Tg and t′′ = t + (2� + q) · Tg. Also, if g is a PRF, then so
is G. Specifically, we have

Advprf
G (t, q, �) ≤ Advprf

g (t′, 4�q) + 9�2q2

4 · 1
2n . (4)

6 Our construction requires that the underlying compression function be PP-MAC
(rather than just a secure MAC). The construction would not be secure on the sole
assumption that the compression function is a secure MAC—The counterexample
of attacks on CBC-MACs by [7] can be extended to iCBC-MAC.

A Single-Key Domain Extender for Privacy-Preserving MACs and PRFs 279

Proof. As a typical case we prove (2). Proofs for (3) and (4) are sketched in
App. A and B. So let A be an adversary, attacking G in the MAC sense, having
running time at most t, making exactly (rather than at most) q queries to its
oracle, each query being at most � blocks, outputting a forgery attempt (M∗, τ∗),
M∗ being at most � blocks. Without loss of generality we assume that A never
repeats a query.

Consider the two games defined in Fig. 3. We see that if adversary A succeeds
in forgery, then at least one of the events Forge, Zero or Coll occurs in game G1.
Note that these events are so defined as they are disjoint (As soon as one of the
events occurs the game terminates), and therefore

Advmac
G (A) ≤ Pr

[
G1(A) sets Forge, Zero or Coll

]
= Pr

[
G1(A) sets Forge

]
+ Pr

[
G1(A) sets Zero or Coll

]
− Pr

[
G2(A) sets Zero or Coll

]
+ Pr

[
G2(A) sets Zero or Coll

]
= Pr

[
Forge

]
+ Pr

[
G1(A) = 1

]
− Pr

[
G2(A) = 1

]
+ Pr

[
G2(A) sets Zero

]
+ Pr

[
G2(A) sets Coll

]
.

In the following we bound each of these quantities as

Pr[Forge] ≤ Advmac
g (t′, �q + � + q + 1) ≤ Advmac

g (t′, 4�q), (5)

Pr
[
G1(A) = 1

]
− Pr

[
G2(A) = 1

]
≤ Advind

g (t′, �q + � + q + 1)

≤ Advind
g (t′, 4�q), (6)

Pr
[
G2(A) sets Zero

]
≤ (q + 1) ·

(
�+1
2

)
·Advmac

g (t′′, � + q)

≤ �2q2

2 · Advmac
g (t′′, 2� + q), (7)

Pr
[
G2(A) sets Coll

]
≤

(
q+1
2

)
·Advhoau

g (t′′′, q, �)

≤ 7�2q2

2 · Advmac
g (t′′, 2� + q), (8)

where t′ = t + (�q + � + q + 1) · Tg, t′′ = t + (� + q) · Tg and t′′′ = t + q · Tg.
We begin with proving (5). Consider the adversary F defined in Fig. 4. Ob-

serve that the event Forge, which is disjoint with Zero and with Coll in game
G1 by definition, assures that adversary F succeeds in producing a forgery. Thus
we get Pr

[
Forge

]
≤ Advmac

g (F). The running time of F is at most t + (�q + � +
q + 1) · Tg, and F makes at most �q + � + q + 1 queries. This proves (5).

We next prove (6). Consider the adversary D defined in Fig. 4. If the oracle O
with which adversary D interacts is the Left gk oracle, then running DO coincides
with G1(A). Similarly, if oracle O is the Right gk oracle, then DO coincides
with G2(A). Note that queries made by D are legitimate, because D terminates
as soon as Zero or Coll occurs. Thus we get Pr

[
G1(A) = 1

]
− Pr

[
G2(A) = 1

]
=

Pr
[
DLeft = 1

]
− Pr

[
DRight = 1

]
= Advind

g (D) ≤ Advind
g (t′, �q + � + q + 1). This

proves (6).
We proceed to proving (7). We use the adversary Z defined in Fig. 5. Consider

the event Zero in game G2. This occurs at A’s α-th query for some α ∈ [1, q +1].

280 K. Yasuda

Adversary F Adversary D

Y ← ∅; Make a query y1 ← gk

(
1b

)
y1 ← O

(
1b, 1b

)
(M∗, τ∗)← A(·) where upon A’s i-th query M do

M ←M‖10∗; m1‖m2‖ · · · ‖mλ ←M
For j = 1, 2, . . . , λ do

ȳj ← yj‖0b−n; xj ← ȳj⊕mj ; If [xj]n = 0n then output 1 endIf
Make a query yj+1 ← gk(xj) yj+1 ← O(xj , xj) endFor

If yλ+1 ∈ Y then output 1 else Y ← Y ∪ {yλ+1} endIf
ξ ← 0n‖yλ+1‖0b−2n; ξ′ ← 0n‖ 〈i〉n ‖0b−2n

Make a query τ ← gk(ξ) τ ← O(ξ, ξ′) ; Reply τ to A

M∗ ←M∗‖10∗; m∗
1‖m∗

2‖ · · · ‖m∗
λ∗ ←M∗; y∗

1 ← y1

For i = 1, 2, . . . , λ∗ do
ȳ∗

i ← y∗
i ‖0b−n; x∗

i ← ȳ∗
i⊕m∗

i ; If [xi]n = 0n then output 1 endIf
Make a query y∗

i+1 ← gk(x∗
i) y∗

i+1 ← O(x∗
i , x∗

i) endFor
If y∗

λ∗+1 ∈ Y then output 1 else output 0 endIf
ξ∗ ← 0n‖y∗

λ∗+1‖0b−2n; Output (ξ∗, τ∗) as a forgery

Fig. 4. Bold statements apply only to the definition of forger F while boxed statements
only to distinguisher D

Adversary Z

Choose α
$← [1, q + 1]

Run A(·) and upon its i-th query (i < α) do
ξ ← 0n‖ 〈i〉n ‖0b−2n; Make a query τ ← gk(ξ); Reply τ to A
until A makes its α-th query M // This is (M, τ) when α = q + 1

M ←M‖10∗; m1‖m2‖ · · · ‖mλ ←M ; Choose γ, β
$← [0, λ] so that γ < β; x0 ← 1b

For j = 1, 2, . . . , γ do
Make a query yj ← gk(xj−1); ȳj ← yj‖0b−n; xj ← ȳj⊕mj endFor

Output (xγ , [mβ]n) as a forgery

Adversary C

Choose α, β
$← [1, q + 1] so that α < β

Run A(·) and upon its i-th query Mi (i < β) do
If i = α then M ←Mi endIf
ξ ← 0n‖ 〈i〉n ‖0b−2n; Make a query τ ← gk(ξ); Reply τ to A
until A makes its β-th query Mβ // This is (Mβ , τ) when β = q + 1

M ′ ←Mβ ; Output (M, M ′)

Fig. 5. Definition of adversaries Z and C

Let M be the α-th query, and put m1‖m2‖ · · · ‖mλ ← M . Let x1, x2, . . . , xλ be
the variables as usual. Then the event Zero occurs at xβ for some β ∈ [1, λ]. In
such a case we have gk(xβ−1) = [mβ]n. Now let γ ∈ [0, β − 1] be the smallest
index such that xγ = xβ−1. Then we observe that adversary Z wins if it cor-
rectly guesses the values α, β, γ upon event Zero in game G2. Therefore, we get
Advmac

g (Z) ≥ 1
q+1 ·

1

(�+1
2) · Pr

[
G2(A) sets Zero

]
. Z makes at most q + � queries

and runs in time at most t + (� + q) · Tg. This proves (7).

A Single-Key Domain Extender for Privacy-Preserving MACs and PRFs 281

Lastly we prove (8). Consider the adversary C defined in Fig. 5. Given two
integers i, j such that 1 ≤ i < j ≤ q + 1, let Coll i,j denote the event that the
flag Coll in game G2 gets set at A’s j-th query in such a way as y(i) = y(j). Note
that the events Coll i,j are disjoint. Now observe that adversary C wins in the
HOAU sense if the guessed values α, β coincide with i, j, because the message
pair (M, M ′) is guaranteed to be fresh owing to the fact that Coll and Zero are
disjoint in game G2 by definition. Therefore, Advhoau

g (C) ≥ Pr
[∨

i,j

(
Coll i,j ∧

(i, j) = (α, β)
)]

=
∑

i,j Pr
[
Coll i,j∧(i, j) = (α, β)

]
=

∑
i,j Pr

[
Coll i,j

]
·Pr

[
(i, j) =

(α, β)
]

= 1

(q+1
2) ·Pr

[
G2(A) sets Coll

]
. C makes at most q queries and runs in time

at most t + q · Tg. This proves (8). ��

7 Further Optimization of iCBC-MAC Construction

In this section we mention three techniques to alter the iCBC-MAC construction.
The first two are for better efficiency, while the third one is for more general
applicability.

Reducing the IV Size. In our iCBC-MAC scheme, the first block is computed
as y1 ← gk(1b), and it takes no bits of a message. We can improve performance
by replacing y ← Hk(1b‖M) with y ← Hk(1r‖M) in the definition of G. Here,
any positive integer r such that 1 ≤ r ≤ b works. A preferred choice might be
r = 1, 8, 32, etc..

Improving the Padding 1∗0. When the original size of a message happens
to be exactly equal to a multiple of b bits, the padding M ← M‖10∗ produces
an extra block consisting of 10b−1, which might be undesirable. We can get rid
of this extra block by “tweaking” the last invocation to g. Recall that in iCBC-
MAC the last invocation to g is done as ξ ← 0n‖yλ+1‖0b−2n, τ ← gk(ξ). The
following is an example of such tweaking: (i) If |M | is not a multiple of b, then
compute τ as in the original G, and (ii) if |M | happens to be equal to a multiple
of b, then compute ξ ← 0n−11‖yλ‖0b−2n, τ ← gk(ξ) instead.

Getting Rid of the Constraint b ≥ 2n. The iCBC-MAC construction
requires b ≥ 2n. This is not a serious limitation in practice, but one might want
to eliminate this constraint. This can be resolved at the expense of performance:
Given a message M ∈ {0, 1}∗, pad M ← M‖10∗ in such a way as the length
of the padded message becomes a multiple of b − 1 bits. Divide the message as
m1‖m2‖ · · · ‖mλ ← M with the block length of b − 1 bits, which yields |m1| =
|m2| = · · · = |mλ| = b − 1. Put M ′ ← m1‖1‖m2‖1‖ · · · ‖mλ−1‖1‖mλ so that
|M ′| = bλ− 1. Compute y ← Hk(M ′), ξ ← y‖0b−n and τ ← gk(ξ).

8 Performance Issues

Both κ and n correspond to security parameters. When κ = n, the iCBC iteration
should be as efficient as the unkeyed Merkle-Damg̊ard construction if we neglect

282 K. Yasuda

the cost of an xor operation per block. It makes sense to set κ < n, especially
2κ = n, due to the birthday attacks [21] on MACs and wide-pipe designs [12]
for hash functions (The final tag size may be truncated in these cases). For
example, consider the case of sha-256 : {0, 1}256+512 → {0, 1}256 with a 128-
bit key. HMAC processes 512 bits per block in such a case, but iCBC-MAC
can process 256 + 512− 128 = 640 bits per invocation, yielding a 25% increase
in performance. Additionally, note that the single-key structure of the iCBC
construction accommodates primitives that might be equipped with a heavy
key-schedule algorithm like block ciphers.

Acknowledgments

The author would like to thank ICISC 2008 anonymous referees for their valuable
comments. The author is grateful especially to one of the referees for conduct-
ing a thorough review of the manuscript and pointing out some typos in the
proofs. The author also wishes to express his appreciation to Liting Zhang at
the conference for pointing out a couple of typos in the security definition.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

2. Bellare, M.: New proofs for NMAC and HMAC: Security without collision resis-
tance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer,
Heidelberg (2006)

3. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the security of HMAC and NMAC
based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (Extended abstract). In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer,
Heidelberg (2006)

4. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

5. Fouque, P.A., Leurent, G., Nguyen, P.Q.: Full key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

6. Wang, L., Ohta, K., Kunihiro, N.: New key-recovery attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 237–253. Springer, Heidelberg (2008)

7. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message authen-
tication under weakened assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

8. Maurer, U.M., Sjödin, J.: Single-key AIL-MACs from any FIL-MAC. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 472–484. Springer, Heidelberg (2005)

9. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

A Single-Key Domain Extender for Privacy-Preserving MACs and PRFs 283

10. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

11. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

12. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

13. Bellare, M., Ristenpart, T.: Hash functions in the dedicated-key setting: Design
choices and MPP transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A.
(eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)

14. Fischlin, M.: Security of NMAC and HMAC based on non-malleability. In: Malkin,
T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 138–154. Springer, Heidelberg
(2008)

15. Yasuda, K.: Boosting Merkle-Damg̊ard hashing for message authentication. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 216–231. Springer,
Heidelberg (2007)

16. Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damg̊ard scheme
with a permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

17. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers
and length-preserving MACs. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 198–219. Springer, Heidelberg (2008)

18. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

19. Patel, S.: An efficient MAC for short messages. In: Nyberg, K., Heys, H.M. (eds.)
SAC 2002. LNCS, vol. 2595, pp. 353–368. Springer, Heidelberg (2003)

20. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in mes-
sage authentication and authenticated encryption. Cryptology ePrint Archive: Re-
port 2004/304 (2004)

21. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

A Proof Sketch of (3)

Let A be an ind-adversary attacking G, having running time at most t, making
at most q queries, each query being at most � blocks. Without loss of generality
we assume that A never repeats a query. Consider the five games defined in
Fig. 6. Of the five games defined, game GL coincides with the Left game for A,
while game GR does with the Right game. We let Zero and Coll be the events
as usual. We have

Advind
G (A) = Pr

[
ALeft = 1

]
− Pr

[
ARight = 1

]
= Pr

[
ALeft = 1

]
− Pr

[
G×

L (A) = 1
]

(9)

+ Pr
[
G×

L (A) = 1
]
− Pr

[
G×

R (A) = 1
]

(10)

+ Pr
[
G×

R (A) = 1
]
− Pr

[
ARight = 1

]
. (11)

284 K. Yasuda

Game GL(A) and Game G×L (A) Game GR(A) and Game G×R (A)
k

$← {0, 1}κ; YL ← ∅; YR ← ∅ k
$← {0, 1}κ; YL ← ∅; YR ← ∅

σ ← A(·,·) where on query (ML, MR) do σ ← A(·,·) where on query (ML, MR) do
yL ← Hk(ML); yR ← Hk(MR) yL ← Hk(ML); yR ← Hk(MR)
If yL ∈ YL or yR ∈ YR If yL ∈ YL or yR ∈ YR

then Coll← 1; Return 1 endIf then Coll← 1; Return 1 endIf
If yL = 0n or yR = 0n If yL = 0n or yR = 0n

then Zero← 1; Return 1 endIf then Zero← 1; Return 1 endIf
YL ← YL ∪ {yL}; YR ← YR ∪ {yR} YL ← YL ∪ {yL}; YR ← YR ∪ {yR}
ξ ← 0n‖yL‖0b−2n; τ ← gk(ξ) ξ ← 0n‖yR‖0b−2n; τ ← gk(ξ)
Reply τ to A Reply τ to A

Return σ Return σ

Game G3(A)
k

$← {0, 1}κ; YL ← ∅; YR ← ∅; i← 0
A(·,·) where on query (ML, MR) do

yL ← Hk(ML); yR ← Hk(MR)
If yL ∈ YL or yR ∈ YR then Coll← 1; Return 1 endIf
If yL = 0n or yR = 0n then Zero← 1; Return 1 endIf
YL ← YL ∪ {yL}; YR ← YR ∪ {yR}; i← i + 1; ξ ← 0n‖ 〈i〉n ‖0b−2n; τ ← gk(ξ)
Reply τ to A

Return 0

Fig. 6. Definitions of five games. Note that games G×L , G×R are with boxed statements
and games GL, GR are without them.

We bound (9) as

Pr
[
ALeft = 1

]
− Pr

[
G×

L (A) = 1
]
≤ Pr

[
ALeft sets Zero or Coll

]
= Pr

[
ALeft sets Zero or Coll

]
− Pr

[
G3(A) sets Zero or Coll

]
+ Pr

[
G3(A) sets Zero or Coll

]
≤ Advind

g (t′, 2�q + q + 1)

+ 2q ·
(
�+1
2

)
· Advmac

g (t′′, � + q)

+ 2 ·
(
q
2

)
·Advhoau

g (t′′′, q, �)

≤ Advind
g (t′, 4�q) + 9�2q2

2 ·Advmac
g (t′′, 2� + q),

where t′ = t + (2�q + q + 1) · Tg, t′′ = t + (� + q) · Tg and t′′′ = t + q · Tg. We do
a similar analysis for (11).

To bound (10), we see that

Pr
[
G×

L (A) = 1
]
− Pr

[
G×

R (A) = 1
]
≤ Advind

g (t′, 2�q + q + 1) ≤ Advind
g (t′, 4�q).

Thus we have shown that G is privacy-preserving on the assumption that g is a
PP-MAC. ��

A Single-Key Domain Extender for Privacy-Preserving MACs and PRFs 285

B Proof Sketch of (4)

Let A be a prf-adversary attacking G, having running time at most t, making
at most q queries, each query being at most � blocks. Let γ : {0, 1}b → {0, 1}n

be a random function, and construct Γ : {0, 1}∗ → {0, 1}n as:

Algorithm Γ (M)
y1 ← γ(1b)
M ←M‖10∗; m1‖m2‖ · · · ‖mλ ← M
For i = 1, 2, . . . , λ do ȳi ← yi‖0b−n; xi ← ȳi⊕mi; yi+1 ← γ(xi) endFor
ξ ← 0n‖yλ+1‖0b−2n; τ ← γ(ξ); Output τ .

Now we see that

Advprf
G (A) = Pr

[
AReal = 1

]
− Pr

[
ARandom = 1

]
= Pr

[
AG = 1

]
− Pr

[
AΓ = 1

]
+ Pr

[
AΓ = 1

]
− Pr

[
ARandom = 1

]
.

Then we get

Pr
[
AG = 1

]
− Pr

[
AΓ = 1

]
≤ Advprf

g (t′, �q + q),

where t′ = t + (�q + q) · Tg.
Let Zero and Coll be defined similarly as in game G1. Observe that Γ behaves

just like a truly random function unless Zero or Coll occurs. Hence

Pr
[
AΓ = 1

]
− Pr

[
ARandom = 1

]
≤ Pr

[
AΓ sets Zero or Coll

]
≤ q ·

(
�+1
2

)
· 1

2n + 7�2

2 ·
(
q
2

)
· 1

2n

≤ 9�2q2

4 · 1
2n .

Thus we have proven that G is a PRF under the condition that g is a PRF. ��

Extended Models for Message Authentication

Liting Zhang1,2, Wenling Wu1, and Peng Wang2

1 State Key Laboratory of Information Security
Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China

{zhangliting,wwl}@is.iscas.ac.cn
2 State Key Laboratory of Information Security

Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
wp@is.ac.cn

Abstract. In recent years, several side channel attacks have been given
to some provably secure Message Authentication (MA) schemes. These
side channel attacks help adversaries to get some information about se-
cret values (such like internal states) in MA-schemes, which is beyond
the original models consider about, so the provable security completely
lose. To fix this problem, we extend the original models for message au-
thentication, taking the information about secret values in MA-schemes
into account. The extended models can not only provide a framework
under which one can discuss security of MA-schemes facing side channel
attacks, but also give us an insight view of MA-schemes. As an example,
we consider the security of f9 (a MA-scheme in 3GPP) and its variants in
an extended model. The result helps us to know f9 better, e.g. how to use
it safely and what measures need to be taken in case of potential attacks.

Keywords: Security Model, Message Authentication, Side Channel At-
tack, Provable Security.

1 Introduction

1.1 Message Authentication

Message authentication is to provide data integrity and data origin authentica-
tion, and it is widely used in practice, e.g. the Internet security protocols like
SSL, SSH and IPSEC. Normally, a Message Authentication (MA) scheme is a
symmetric primitive, which implies that the users should agree on a secret key
K in advance. When the sender wants to send a message M , he/she runs the
tag generation algorithm TG in a MA-scheme with K and M as input, and gets
the output as Tag. Then he/she sends M and Tag to the receiver. On receipt of
them, the receiver runs the verification algorithm VF in the same MA-scheme,
verifying whether Tag is corresponding to M .

1.2 The Security of MA-schemes

Security Models. A MA-scheme is said to be secure, if it is unforgeable. Roughly
speaking, adversaries have access to the MA-scheme, and they can adaptively

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 286–301, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Extended Models for Message Authentication 287

input messages they choose into its TG algorithm, getting the corresponding
tags. In the end, they are asked to output a pair of legal (M, T), where M ’s tag
equals to T , and M has never been input to TG or T has never been output by
VF in the MA-scheme. If all the adversaries can do this within only negligible
probability, the MA-scheme is deemed to be secure, or unforgeable.

Sometimes, adversaries are allowed to challenge more than once. That is, they
can try a series of challenging (M i, T i) and are deemed to be successful if at least
one of them is legal. Thus, according to whether M is new or T is new in the forgery
and whether the adversaries are allowed to challenge more than once or not, there
are four specific security models. The relationships among them have been ana-
lyzed in [1], but we point out that all these four security models treat the MA-
schemes as a whole. That is, the adversaries are not allowed to get information
about the secret values (such like internal states, etc.) in the MA-schemes.

In the four security models mentioned above, many MA-schemes have been
proved to be secure, usually bounding their security to the total length of queries,
such like [2].

Attacks on MA-schemes. On the other hand, many attacks have been given
to those provably secure MA-schemes, and almost all these attacks take the
following strategy: (1) try to find internal collisions by birthday paradox, and
then (2) transform these internal collisions into forgeries, such as done in [3,4].

However, there is another kind of attack emerging in the past few years.
As far as our present knowledge, Okeya and Iwata are the first to give side
channel attacks to MA-schemes [5]. Similar to the attacks mentioned above,
their attacks try to get some information (partial or complete values) about the
secret values (including internal states and secret masks) in MA-schemes first,
and then use them to make forgeries successfully. However, the way they get
information about the secret values is not by birthday paradox, but by some
kinds of side channel attacks, i.e. Simple Power Analysis (SPA) and Differential
Power Analysis (DPA). Thanks to these two special methods, their attacks are
much more efficient than the others. Since then, several side channel attacks
have been given to other MA-schemes [6,7], and what is more, all of them are
generic, because they take no advantage of the underlying primitives but assume
them to be secure against side channel attacks.

A common character of all the attacks mentioned above is that they try to
get some information (collisions, partial or complete values, and so on) about
the secret values (including internal states, etc.) in MA-schemes first, and then
make forgeries by the information they get.

Thus, it seems that the information about secret values in MA-schemes have
some influence on the security of MA-schemes. However, it is natural to ask, how
important are they? What would happen to MA-schemes if any one of them leaks
out? Are there some MA-schemes whose security keeps unchanged even if some
of them were obtained by adversaries?

Work to be done. Now we have got an overview of the issues in message authen-
tication: on one hand, the current security models all make the MA-scheme a
block box to adversaries, not allowing adversaries to get information about the

288 L. Zhang, W. Wu, and P. Wang

secret values (including internal states, etc.) in MA-schemes; on the other hand,
many attacks to MA-schemes have been given based on some information (par-
tial or complete values, and so on) about the secret values in the MA-schemes,
usually by side channel attacks. So, the current models are not sufficient to
discuss the security of MA-schemes now, and it is necessary to introduce new
security models for MA-schemes, taking the information about the secret values
in MA-schemes into account.

1.3 Our Contributions

In the remaining of this paper, we extend the basic security models to some new
ones, consider the influence of information about the secret values, and study
how important they are on the security of MA-schemes. In doing this, we first
give some general models to illustrate the idea, and then give a specific one,
studying the security of f9 in 3GPP as an example.

The general models not only answer the question that why those MA-schemes
provably secure in the original models still have been attacked, but also provide
a framework of security models, under which one can study the security of their
MA-schemes in different aspects freely and naturally, and in the end get a better
understanding of their MA-schemes.

The discussions of f9-like MA-schemes in the specific model help us to know
f9 better. In a short, we get the knowledge that how to use f9 safely and what
measures should be taken on it in case of potential attacks.

2 Preliminaries

2.1 Notations and Definitions

Suppose A is a set, then #A denotes the number of different elements in set

A, and x
$←A denotes that x is chosen from set A uniformly at random. In the

rest of this paper, every time we say “random”, we mean “uniformly random”.

When A is an algorithm, x
$←A stands for A outputs x by taking some random

inputs. If a, b ∈ {0, 1}∗ are strings of equal length then a⊕b is their bitwise XOR.
If a, b ∈ {0, 1}∗ are strings, then a||b denotes their concatenation. However, we
sometimes write ab for a||b if there is no confusion.

If M ∈ {0, 1}∗ is a string then |M | stands for its length in bits, while
||M ||n = max{1, %|M |/n&}. For any bit string M ∈ {0, 1}∗, we let pad(M) =
M10n−1−|M| mod n; for any bit string M ∈ {0, 1}ln, we let partition(M) =
M1M2 · · ·Ml such that M1 · · ·Ml = M , |Mi| = n for 1 ≤ i ≤ l.

Definition 1. A message authentication scheme MA = (KG, TG, VF) consists
of three algorithms, as follows:

1. The key generation algorithm KG is a randomized algorithm that returns a

key K; we write K
$←KG.

Extended Models for Message Authentication 289

2. The tag generation algorithm TG is a (possibly randomized or stateful) al-
gorithm that takes the key K and a message M to return a tag T ; we write

T
$←TGK(M).

3. The verification algorithm VF is a deterministic algorithm that takes the
key K, a message M , and a candidate tag T for M to return a bit; we write
d← VFK(M, T).

Associated to the scheme is a message space Plaintexts from which M is allowed
to be drawn. We require that VFK(M, TGK(M)) = 1 for all M ∈ Plaintexts.

2.2 f9 and Its Generalized Version f9
′

Within the security architecture of 3GPP system, there is a standardized
MA-scheme called f9 as specified in the left side of Fig. 1. f9 takes the block
cipher KASUMI [8] as its underlying primitive, and a 128-bit constant KM=
0xAA· · ·AA as key modifier. The tag generation algorithm TG in f9 takes a
128-bit key K, a 32-bit counter COUNT, a 32-bit random number FRESH, a
1-bit direction identifier DIRECTION, and a message M ∈ {0, 1}∗ as inputs, re-
turning a 32-bit tag T . Moreover, the verification algorithm VF works by running
the tag generation algorithm TG again. For more details, see [9].

Algorithm f9K(M) Algorithm f9
′
K(M)

M ←COUNT||FRESH||M ||DIRECTION
M ←pad(M) M ←pad(M)
M1M2 · · ·Ml ←partition(M) M1M2 · · ·Ml ←partition(M)
Y0 ← 0n, C0 ← 0n Y0 ← 0n, C0 ← 0n

for i← 1 to l do for i← 1 to l do
Xi ←Mi ⊕ Yi−1 Xi ←Mi ⊕ Yi−1

Yi ←KASUMIK(Xi) Yi ← EK(Xi)
Ci ← Ci−1 ⊕ Yi Ci ← Ci−1 ⊕ Yi

end for end for
Tag←KASUMIK⊕KM(Cl) Tag← EK⊕�(Cl)
return the leftmost 32 bits of Tag return the leftmost t bits of Tag

Fig. 1. Specification of f9 and f9
′
, where � is a non-zero k-bit key modifier. For any

bit string M ∈ {0, 1}∗, pad(M) = M10n−1−|M| mod n; for any bit string M ∈ {0, 1}ln,
partition(M) = M1M2 · · ·Ml such that |Mi| = n for 1 ≤ i ≤ l.

Based on the structure of f9, researchers give a generalized version of it,
f9

′
[2]. As specified in the right side of Fig. 1, f9

′
removes COUNT, FRESH,

DIRECTION in f9, making it a deterministic one.

2.3 Basic Security Models for MA-schemes

The security of MA-schemes, in the basic security models, is evaluated by how
unforgeable the MA-schemes are. To be concrete, let MA=(KG,TG,VF) be a

290 L. Zhang, W. Wu, and P. Wang

Experiment Expuf−1
MA,A Experiment Expsuf−1

MA,A
K

$←KG; K
$←KG;

while A makes a query M to TGK(·), do while A makes a query M to TGK(·), do

Tag
$←TGK(M); return Tag to A; Tag

$←TGK(M); return Tag to A;
if A makes a query (M, T) to VFK(·, ·) if A makes a query (M, T) to VFK(·, ·)

s.t. VFK(M, T) returns 1 and s.t. VFK(M, T) returns 1 and
M was never queried to TGK(·); T was never returned by VFK(·, ·)

in response to query M ;
then return 1 else return 0. then return 1 else return 0.

Fig. 2. Basic experiments defining security of MA-schemes, here the adversaries are
allowed to challenge only once

MA-scheme and type ∈ {uf − 1, suf − 1} and let A be an adversary that has
access to two oracles TGK(·) and VFK(·, ·); then, consider the experiments in
Fig. 2:

Let Advtype
MA,A be the probability that experiment Exptype

MA,A returns 1, then
for any t, q, μ let

Advtype
MA (t, q, μ) = max

A
{Advtype

MA,A}

where the maximum is over all A running in time t, making at most q oracle
queries, and such that the sum of the lengths of all oracle queries plus the length
of the message M in the output forgery is at most μ bits.

We say that MA=(KG,TG,VF) is type-secure if the function
Advtype

MA (t, q, μ) is negligible for any polynomial time adversary A.
When the adversaries are allowed to challenge more than once, similar exper-

iments and security definitions can be given from above, or refer to [1]. Further-
more, in [1] Bellare, etc. have analyzed the relationships among the four basic
models.

However, all these four basic models treat the MA-schemes as a whole, not
allowing the adversaries to obtain some information about the secret values in
the MA-scheme. Now, considering the various attacks have been presented here
and there [5,6,7], it seems that the four basic models are not sufficient, since
the adversaries would not like to obey the rules in these models. So, why not
extend them to some new ones, give the adversaries more power, and reconsider
the security of MA-schemes from a new point of view?

3 Extended Security Models for MA-schemes

In this section, we extend the basic security models for MA-schemes, taking some
information about the secret values in MA-schemes into account, and result in
some stronger models. In these new models, adversaries not only have access to
the tag generation algorithms and verification algorithms in MA-schemes, but
also can obtain some information (partial or complete values, and so on) about

Extended Models for Message Authentication 291

the secret values (including internal states, etc.) in MA-schemes. At last, they
are still asked to make a legal forgery, and MA-schemes are deemed to be secure
if all adversaries can do this within only negligible probability.

We first introduce the general models; however, since they are not specific
enough to solve problems, we then give a specific one.

3.1 The General Models

To be concrete, let MA=(KG,TG,VF) be a MA-scheme and type+ ∈ {uf+ −
1, suf+ − 1}. Let A be an adversary that has access to three oracles TGK(·),
VFK(·, ·) and an extra information oracle O+

K(·), where O+
K(·) takes the same

input as TGK(·), and outputs some information about the secret values during
the operations of TGK(·). Furthermore, A is not allowed to query O+

K(·) in-
dependently of TGK(·), because in the general models O+

K(·) is to simulate the
leakage of secret values when TGK(·) is running. Then, consider the experiments
in Fig. 3:

Experiment Expuf+−1
MA,A Experiment Expsuf+−1

MA,A
K

$←KG; K
$←KG;

while A makes a query M to TGK(·), do while A makes a query M to TGK(·), do

Tag
$←TGK(M); return Tag to A; Tag

$←TGK(M); return Tag to A;

s
$←O+

K(M); return s to A; s
$←O+

K(M); return s to A;
if A makes a query (M, T) to VFK(·, ·) if A makes a query (M, T) to VFK(·, ·)

s.t. VFK(M, T) returns 1 and s.t. VFK(M, T) returns 1 and
M was never queried to TGK(·); T was never returned by VFK(·, ·)

in response to query M ;
then return 1 else return 0. then return 1 else return 0.

Fig. 3. Extended experiments defining security of MA-schemes, here the adversaries
are allowed to challenge only once

Let Advtype+

MA,A be the probability that experiment Exptype+

MA,A returns 1, then
for any t, q, μ let

Advtype+

MA (t, q, μ) = max
A
{Advtype+

MA,A}

where the maximum is over all A running in time t, making at most q oracle
queries, and such that the sum of the lengths of all oracle queries plus the length
of the message M in the output forgery is at most μ bits.

We say that MA=(KG,TG,VF) is type+-secure if the function
Advtype+

MA (t, q, μ) is negligible for any polynomial time adversary A.
When the adversaries are allowed to challenge more than once, similar exper-

iments and security definitions can be given from above.
The general models add an extra information oracle O+

K(·) to the four basic
ones, implying adversaries have more power now. For discussing security of spe-
cific MA-schemes, one has to make O+

K(·) a specific one. We note that if O+
K(·)

is not properly restricted, maybe there is no MA-scheme secure in that model.

292 L. Zhang, W. Wu, and P. Wang

However, this is not the point. The purpose of the general models is to provide
a framework of security models, under which one can study how properly can
he/she do to restrict the extra information oracle O+

K(·), and then consider the
security of their MA-scheme in such a model, and finally get a better under-
standing of the security about their MA-scheme. That is, by making different
restrictions on O+

K(·), one knows under what conditions their MA-scheme is se-
cure and under what conditions it is not, thus he/she knows better about their
MA-scheme.

Moreover, review the attacks have been presented, such like [5,6,7], the general
models can explain why these attacks are able to win. To do this, just specify the
extra information oracle O+

K(·) as those attacks do, then consider the security of
MA-schemes in these models. Obviously, the attacked MA-schemes are no longer
secure in these models.

Nevertheless, we stress that insecurity of a MA-scheme in some specific models
does not necessarily imply insecurity of the MA-scheme in practice, since the cost
to obtain the extra information may be expensive. That is, it is possibly too hard
to realize O+

K(·) of the model in practice.
Now, we give an example to show how to use the general models.

3.2 A Specific Model

Follow the framework in the general models, we now specify the extra information
oracle O+

K(·) in the left side of Fig. 3, resulting in a specific one that is suitable
to solve some problems.

O+
K(·) is defined as follows: every time after adversary A queries M , we let

O+
K(·) output one of the internal states at some particular position when the tag

generation algorithm TGK(·) is processing M .
From an engineering point of view, since SPA and DPA have already been

presented in [5,6,7], it is possible and practical for O+
K(·) to output some internal

states in this specific model. Furthermore, notice that the practical SPA and DPA
have to repeat the same operations lots of times to obtain some secret values,
thus letting O+

K(·) output only one internal state each time is reasonable and
enough.

From a theoretical point of view, it seems that such a model is too strong that
no MA-scheme can survive, since the internal states have great influence over
the security of MA-schemes [3,4,5,6,7]. However, as we will prove later, different
internal states play different roles in the security of MA-schemes, and if the
“particular position” is properly restricted, a nonce-based f9 is secure in such a
model.

Nevertheless, the security results of nonce-based f9 in our specific model can
tell us more than that. Since the nonce-based f9 is insecure in our specific model
if O+

K(·) is not restricted to the particular position, we know special measures
should be taken to protect the vulnerable positions. Thus, we give some advice
on the implementation of f9 in the real world.

The detailed discussions of f9-like MA-schemes in our specific model are given
in the next section.

Extended Models for Message Authentication 293

4 The Security of f9-like in the Specific Model

We now consider the security of f9-like MA-schemes in the specific model. In
doing this, we will consider every position in the operations of these MA-schemes,
and if it is insecure, we give an attack; otherwise, we give a security proof.

4.1 Negative Results

Let f9
′
P1,P2

be an algorithm that replaces the underlying block ciphers EK and
EK⊕� with P1 and P2, where P1 and P2 are two independently random permu-
tations over {0, 1}n.

Theorem 1. If the extra information oracle O+
K(·) outputs only one of the in-

ternal states Xi for i = 2, 3, · · · , l or Yi for i = 1, 2, · · · , l or Ci for i = 1, 2, · · · , l
after each query (l = ||M ||n), then f9

′
P1,P2

is not secure in the specific model.

Proof. We prove this theorem by giving some attacks on f9
′
P1,P2

, where the
adversary can make a forgery with probability 1.

If the adversary can obtain a Yi after each query (s = Yi in Expuf+−1
MA,A), then

we launch a forgery attack on f9
′
P1,P2

as follows:

1. Adversary A selects a message M ∈ {0, 1}∗ at random, and queries the
oracle TGK(·) and the extra information oracle O+

K(·). TGK(·) returns T to
A, and O+

K(·) returns Yi to A.
2. Amakes a forgery (M

′
, T), where pad(M)=M1||M2|| · · · ||Ml and pad(M

′
)=

M1|| · · · ||Mi||Yi ⊕M1||M2|| · · · ||Mi||Yi ⊕M1||M2|| · · · ||Ml.

It is easy to check that the forgery (M
′
, T) is always legal, according the

algorithm of f9
′
P1,P2

; thus adversary A makes a forgery with probability 1.
If adversary A can obtain any Xi for i = 2, 3, · · · , l, he/she can make a forgery

similarly, since Xi = Mi ⊕ Yi−1.
Furthermore, notice that if adversaryA can obtain Ci and Ci+1 in two queries

whose first r (r ≥ i) blocks are the same, then A can obtain Yi+1 = Ci+1 ⊕ Ci,
a similar attack can be launched. ��

4.2 Positive Results

Now we prove that a nonce-based f9, N -f9 as defined in Fig. 4, is secure in the
specific model, where nonce N ∈ {0, 1}n. For convenience, we do not consider
the tag truncation here.

Let N -f9P1,P2 be an algorithm that replaces the block ciphers EK and EK⊕�
with P1 and P2 in N -f9, where P1 and P2 are two independently random per-
mutations over {0, 1}n. First we note that if adversary A can obtain one of the
internal states Xi for i = 2, 3, · · · , l + 1 or Yi for i = 1, 2, · · · , l + 1, similar at-
tacks as given above also apply to N -f9P1,P2 , so N -f9P1,P2 is insecure in such
conditions. However, if only one of Cj (j ≥ 2) is obtained by A, then N -f9P1,P2

is provably secure.

294 L. Zhang, W. Wu, and P. Wang

Algorithm N-f9 : TGK(N, M) Algorithm N-f9 : VFK(N, M, T)
M ←pad(N ||M) M ←pad(N ||M)
M1M2 · · ·Ml+1 ←partition(M) M1M2 · · ·Ml+1 ←partition(M)
Y0 ← 0n, C0 ← 0n Y0 ← 0n, C0 ← 0n

for i← 1 to l + 1 do for i← 1 to l + 1 do
Xi ←Mi ⊕ Yi−1 Xi ←Mi ⊕ Yi−1

Yi ← EK(Xi) Yi ← EK(Xi)
Ci ← Ci−1 ⊕ Yi Ci ← Ci−1 ⊕ Yi

end for end for
Tag← EK⊕�(Cl+1) Tag← EK⊕�(Cl+1)
return Tag if (Tag=T) return 1, else return 0

Fig. 4. The specification of N-f9

Theorem 2. Suppose the extra information oracle O+
K(·, ·) outputs only one of

the internal states Cj for j = 2, 3, · · · , ||M ||n + 1 after each query M (s = Cj in
Expuf+−1

MA,A). Let A be a nonce-respecting (A never makes a query with a nonce
appeared before.) adversary which asks at most q queries, having aggregate length
of at most σ blocks. Then

Advuf+−1
N−f9P1,P2

≤ σ2+2q2+2σq
2n

To prove Theorem 2, let us review the definition of pseudorandom functions first;
as we will show later, N -f9 :TGK(·, ·) is in fact a nonce-based variable-length
input pseudorandom function from {0, 1}n × {0, 1}∗ to {0, 1}2n in the specific
model. Furthermore, notice that it has been proved a pseudorandom function is
a secure MA-scheme [10], thus N -f9 is a secure MA-scheme.

Let R(·, ·) be a random function on inputs (N, M) returns a random string of
2n bits, where N ∈ {0, 1}n and M ∈ {0, 1}∗. A nonce-respecting adversary A is
asked to distinguish FK(·, ·) (with a randomly chosen key K) from the random
function R(·, ·). We define the advantage of A as⎧⎨⎩Advviprf

F (A)
def= |Pr(K

$←KF : AFK(·,·) = 1)− Pr(AR(·,·) = 1)|,
Advviprf

F (t, q, σ)
def= max

A
{Advviprf

F (A)}.

where the maximum is over all adversaries who run in time at most t, and make at
most q queries, having aggregate length of at most σ blocks (σ =

∑q
i=1 ||M i||n).

We say that FK(·, ·) is a viprf (Variable-length Input PseudoRandom Function)
if Advviprf

F (t, q, σ) is negligible.
Without loss of generality, adversaries are assumed to never ask a query out-

side the domain of the oracle.
The pseudorandomness of N -f9 is proved by the counting method, which has

been used for many times, e.g. [11,2]. To make the whole proof for N -f9 more
clear and structural, we first give two lemmas.

Extended Models for Message Authentication 295

Lemma 1. Define set M
def= {(M1, M2, · · · , M q)|M i ∈ {0, 1}∗} and set

N
def= {(N1, N2, · · · , N q)|N i ∈ {0, 1}n, N i �= N j , 1 ≤ i < j ≤ q}, if there ex-

ists a set T = {(T 1, T 2, · · · , T q)|T i ∈ {0, 1}2n, 1 ≤ i ≤ q} and a function family
F : KF × {0, 1}n × {0, 1}∗ → {0, 1}2n such that,

1) #T ≥ 22qn(1− ε1),
2) ∀(N1, N2, · · · , N q) ∈ N, ∀(M1, M2, · · · , M q) ∈M, ∀(T 1, T 2, · · · , T q) ∈ T,

Pr(K
$←KF : T i = FK(N i, M i)) ≥ 1−ε2

22qn

then for any nonce-respecting adversary A (computationally unbounded) asking
q queries,

|Pr(K
$←KF : AFK(·,·) = 1)− Pr(AR(·,·) = 1)| ≤ ε1 + ε2.

The idea to prove Lemma 1 is from [11,2], and the detailed proof is in the full
version of this paper [12].

Lemma 2 is a mathematical property of N -f9.

Lemma 2. Define sets M , N as in Lemma 1 and T
def= {(Ci, Si)|Ci∈{0, 1}n, Ci �=

Cj , Si ∈ {0, 1}n, 1 ≤ i < j ≤ q}. Let Rand(n, n) be the set of all functions from
{0, 1}n to {0, 1}n, and g1, g2 ∈Rand(n, n) be the underlying functions in N -
f9g1,g2 . Let TGg1,g2(·, ·) be the tag generation algorithm in N -f9g1,g2 . Then the
number of functions (g1, g2) satisfying
∀(N1, N2, · · · , N q) ∈ N, ∀(M1, M2, · · · , M q) ∈M, ∀(T 1, T 2, · · · , T q) ∈ T,

1) Si = TGg1,g2(N i, M i), 1 ≤ i ≤ q, and
2) Ci

ji
is an internal state of TGg1,g2(N i, M i) at position ji ,for 1 ≤ i ≤ q

and 2 ≤ ji ≤ ||M i||n + 1
is at least Ng1,g2 ≥ (1− σ2+q2+2σq−σ−q

2n+1)× (2n)2
n+1−2q, where σ =

∑q
i=1 ||M i||n.

For the proof of Lemma 2, refer to Appendix A.
Based on the two lemmas given above, let us prove Theorem 2.

Proof. According to Lemma 2, we get

Pr(g1, g2
$←Rand(n, n) : conditions 1 and 2 hold)

≥
(1 − σ2+q2+2σq−σ−q

2n+1)× (2n)2
n+1−2q

(2n)2n × (2n)2n

=
1− σ2+q2+2σq−σ−q

2n+1

22qn
,

which indicates ε2 = σ2+q2+2σq−σ−q
2n+1 in Lemma 1.

Furthermore, notice that #T = 22qn(1−
(

q
2

)
2−n), which means ε1 = q2−q

2n+1 .

Applying Lemma 1, it follows that

|Pr(g1, g2
$←Rand(n, n) : ATGg1,g2(·,·) = 1)− Pr(AR(·,·) = 1)|

296 L. Zhang, W. Wu, and P. Wang

≤ ε1 + ε2

=
σ2 + 2q2 + 2σq − σ − 2q

2n+1
. (1)

Moreover, we can obtain

|Pr(ATGg1,g2 (·,·) = 1)− Pr(ATGP1,P2 (·,·) = 1)|

≤ |Pr(g1, g2
$←Rand(n, n) : BA

(g1(·),g1(·)) = 1)

−Pr(P1, P2
$←Perm(n) : BA

(P1(·),P2(·)) = 1)| (2)

≤
(

σ + q
2

)
2−n +

(
q
2

)
2−n (3)

=
σ2 + 2q2 + 2σq − σ − 2q

2n+1
, (4)

Inequality (2) holds because for every adversary A distinguishing TGg1,g2(·, ·)
and TGP1,P2(·, ·), we can construct another adversary BA to distinguish (g1, g2)
and (P1, P2), by running A. According to the “PRP and PRF Switching Lemma”
[10], inequality (3) holds, where the adversary queries g1(·) (or P1(·)) σ+q times,
and queries g2(·) (or P2(·)) q times.

Then, by inequalities (1) and (4), we get

Advviprf
N−f9P1,P2

= |Pr(P1, P2
$←Perm(n) : ATGP1,P2 (·,·) = 1)− Pr(AR(·,·) = 1)|

≤ σ2 + 2q2 + 2σq − σ − 2q

2n

Now we have proved that TGP1,P2 is a viprf from {0, 1}n×{0, 1}∗ to {0, 1}2n.
Obviously, if we abandon the random bits Ci

ji
, TGP1,P2 is a viprf from {0, 1}n×

{0, 1}∗ to {0, 1}n.
Finally, we can conclude that N -f9P1,P2 is a secure MA-scheme, by the fact

that a pseudorandom function is a secure MA-scheme [10],

Advuf+−1
N−f9P1,P2

≤ Advviprf
N−f9P1,P2

+
1
2n

<
σ2 + 2q2 + 2σq

2n
.

��

Corollary 1. Suppose the underlying block cipher E in N -f9 is a secure PRP-
RKA (this implies that, for any key K, EK and EK⊕� are indistinguishable
from two independently random permutations P1 and P2), and suppose the extra
information oracle O+

K(·, ·) outputs only one of the internal states Cj for j =
2, 3, · · · , ||M ||n + 1 after each query M . Let A be a nonce-respecting adversary
which asks at most q queries, having aggregate length of at most σ blocks. Then

Advuf+−1
N−f9 ≤ Advprp−rka

E + σ2+2q2+2σq
2n

The proof for Corollary 1 is easy, or refer to [2].

Extended Models for Message Authentication 297

A B

KASUMI

�
�⊕

�
�

�32 / MAC-I

MUX

�

�IN2

�⊕

�IN1

�

PADDED MESSAGE

�
IK or
IK⊕KM

KASUMI�IK⊕KM

�32 / MAC-I

�
MUX

� � LB

⊕��

B

KASUMI�IK
�
⊕��

A

PADDED MESSAGE

(a) (b)

Fig. 5. Two implementations of f9 from [14,15], where “A” and “B” are two registers,
“MUX” is a selector and “LB” denotes Last Block

4.3 Application of the Results in the Specific Model

Notice that f9 has already been used in practice, and the first block it processes
is COUNT||FRESH, which can be seen as a nonce. Furthermore, its underlying
block cipher, KASUMI, can be seen as a secure PRP-RKA (a PseudoRandom
Permutation that is secure against a certain kind of Related-Key Attacks [2])
although it has been theoretically broken out [13], because adversaries are not
allowed to take related-key attacks on KASUMI in practical environments of f9.
Thus, N -f9 is indeed close to the real world. Nevertheless, we suggest KASUMI
be replaced by more stronger block ciphers, if feasible.

In Fig. 5, we illustrate two implementations of f9 ((a) Section 3.3 in [14] and
(b) Section 4.3 in [15]), which major on higher efficiency in practice. Then, the
results in the specific model can fulfill their works, in the aspect of security:

1. From an engineering point of view, register A in Fig. 5 should been specially
protected, in case that adversaries try to acquire some (partial or complete)
secret values (Xi and Yi) to launch an attack.

2. From an attacker’s point of view, attacking register A to reveal some infor-
mation about Xi and Yi will give them great chances to make a successful
attack; while attacking register B they have little probability to win (except
that they can obtain some information about C1).

It is interesting to consider the security of other MA-schemes in this specific
model; however, as far as we have done, no other MA-scheme secure in this
model has been found. We stress that this result does not imply the other MA-
schemes are insecure in practice, since the practical environments may not allow
adversaries to launch an attack in the specific model. Nevertheless, the result
tells us that, from the point of view in the specific model, f9 is stronger than
the others in practice.

298 L. Zhang, W. Wu, and P. Wang

5 Conclusions

To sum up, we extend the basic security models for message authentication
in this paper, based on the fact that many attacks on MA-schemes have been
presented by some ways that are outside of the basic models consider about, and
finally get some extended ones suitable to fix the problem. The general models
introduced here offer the users great freedom to consider the security of their
MA-schemes in different aspects, thus help them to get a better understanding
of their MA-schemes. While the security discussions of f9-like MA-schemes in
the specific model give us more knowledge about how to use f9 safely.

Acknowledgments. The authors would like to thank the anonymous referees
for their valuable comments. Furthermore, this work is supported by the National
High-Tech Research and Development 863 Plan of China (No. 2007AA01Z470),
the National Natural Science Foundation of China (No. 60873259 and
No. 90604036), and the National Grand Fundamental Research 973 Program
of China (No. 2004CB318004).

References

1. Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Mes-
sage Authentication and Authenticated Encryption. Cryptology ePrint Archive:
Report 2004/309

2. Iwata, T., Kohno, T.: New Security Proofs for the 3GPP Confidentiality and In-
tegrity Algorithms. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
427–445. Springer, Heidelberg (2004)

3. Preneel, B., van Oorschot, P.: On the Security of Iterated Message Authentication
Codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)

4. Knudsen, L.R., Mitchell, C.J.: Analysis of 3GPP-MAC and Two-Key 3GPP-MAC.
Discrete Applied Mathematics 128(1), 181–191 (2003)

5. Okeya, K., Iwata, T.: Side Channel Attacks on Message Authentication Codes.
In: Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS 2005. LNCS, vol. 3813, pp.
205–217. Springer, Heidelberg (2005)

6. Okeya, K.: Side Channel Attacks against HMACs based on Block-Cipher based
Hash Functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 432–443. Springer, Heidelberg (2006)

7. Gauravaram, P., Okeya, K.: An Update on the Side Channel Cryptanalysis of
MACs based on Cryptographic Hash Functions. In: Srinathan, K., Rangan, C.P.,
Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 393–403. Springer, Hei-
delberg (2007)

8. ETSI TS 35.202 V7.0.0: Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 2: KASUMI Specification,
http://www.3gpp.org/ftp/Specs/html-info/35201.htm

9. ETSI TS 35.201 V7.0.0: Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 1: f8 and f9 Specification,
http://www.3gpp.org/ftp/Specs/html-info/35201.htm

10. Bellare, M., Kilian, J., Rogaway, P.: The Security of Cipher Block Chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994)

http://www.3gpp.org/ftp/Specs/html-info/35201.htm
http://www.3gpp.org/ftp/Specs/html-info/35201.htm

Extended Models for Message Authentication 299

11. Patarin, J.: A Proof of Security in O (2ˆ n) for the Xor of Two Random Permuta-
tions. Cryptology ePrint Archive: Report 2008/010

12. Zhang, L., Wu, W., Wang, P.: Extended Models for Message Authentication (full
version), available from the authors

13. Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the
Full KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005)

14. Kitsos, P., Sklavos, N., Koufopavlou, O.: UMTS Security: System Architecture and
Hardware Implementation. Wireless Communications and Mobile Computing 7(4),
483–494 (2007)

15. Marinis, K., Moshopoulos, N.K., Karoubalis, F., Pekmestzi, K.Z.: On the Hard-
ware Implementation of the 3GPP Confidentiality and Integrity Algorithms. In:
Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 248–265. Springer,
Heidelberg (2001)

A Proof for Lemma 2

Proof. To prove Lemma 2, we give a method to find a class of functions (g1, g2)
such that 1) Si = TGg1,g2(N i, M i), 1 ≤ i ≤ q, and 2) Ci

ji
is an internal state of

TGg1,g2(N i, M i) at position ji for 1 ≤ i ≤ q and 2 ≤ ji ≤ ||M i||n + 1.
To do this, we start from two undefined functions (g1, g2), and run TGg1,g2(·, ·).

By making the inputs to (g1, g2) pairwise distinct all the time, we can completely
control the outputs of (g1, g2), which are used to control the next inputs to (g1, g2).
Finally, we can establish a bridge between every (N i, M i) and (Ci

ji
, Si) for i =

1, 2, · · · , q. Then, we count the number of functions (g1, g2) by the input-output
limitations we have made.

Concretely, consider the program in Fig. 6.
At the beginning, we make functions g1 and g2 undefined. Domain2 denotes

the domain of g2, so it is empty (line 00). Then, we select q nonces, which are
going to be used in TGg1,g2(·, ·). Since all the nonces are the inputs to g1, we let
Domain1 ← {N1, N2, · · · , N q} (line 00).

Then, for every (N i, M i) (i = 1, 2, · · · , q), we establish a bridge between
(N i, M i) and (Ci

ji
, Si) by three steps. The program in Fig. 6 follows TGg1,g2(·, ·)

naturally, and we only explain some key points.

Step 1. We deal with the first ji − 2 blocks in M i. Since g1(X i
j) for j =

1, 2, · · · , ji−2 has not been defined, we can randomly select Y i
j (lines 07 and 08)

such that the next input to g1, X i
j+1 = Y i

j ⊕M i
j+1 /∈Domain1. Notice that Y i

j

has 2n −#Domain1 choices.

Step 2. To satisfy condition 2) Ci
ji

is an internal state of TGg1,g2(N i, M i) at
position ji for 1 ≤ i ≤ q and 2 ≤ ji ≤ ||M i||n + 1, we have to randomly
select Y i

ji−1 (lines 12 and 14) satisfying not only the next input to g1, X i
ji

=
Y i

ji−1⊕M i
ji

/∈Domain1 but also the further input to g1, X i
ji+1 = Y i

ji−1⊕Ci
ji−2⊕

Ci
ji
⊕M i

ji+1 /∈Domain1. Notice that Y i
ji−1 has 2n−(#Domain1 +#Domain1 +1)

choices and Y i
ji

has only one choice (line 17).

300 L. Zhang, W. Wu, and P. Wang

00. g1 ←undefined, g2 ←undefined, Domain2 ← φ, Domain1 ← {N1, N2, · · · , Nq}.
01. for i← 1 to q do

02. M i ←pad(N i||M i)
03. M i

1M
i
2 · · ·M i

li+1 ←partition(M i)
04. Y i

0 ← 0n, Ci
0 ← 0n

05. for j ← 1 to ji − 2 do

06. Xi
j ← Y i

j−1 ⊕M i
j , Domain1 ← {Xi

j}∪Domain1

07. Y i
j

$←{0, 1}n
08. while (Y i

j ⊕M i
j+1 ∈Domain1) do Y i

j
$←{0, 1}n end while

09. Ci
j ← Ci

j−1 ⊕ Y i
j , g1(Xi

j)← Y i
j

10. end for

11. Xi
ji−1 ← Y i

ji−2 ⊕M i
ji−1, Domain1 ← {Xi

ji−1}∪Domain1

12. Y i
ji−1

$←{0, 1}n
13. while (Y i

ji−1 ⊕M i
ji
∈Domain1 or Y i

ji−1 ⊕ Ci
ji−2 ⊕ Ci

ji
⊕M i

ji+1 ∈Domain1)

14. do Y i
ji−1

$←{0, 1}n end while
15. Ci

ji−1 ← Ci
ji−2 ⊕ Y i

ji−1, g1(Xi
ji−1)← Y i

ji−1

16. Xi
ji
← Y i

ji−1 ⊕M i
ji

, Domain1 ← {Xi
ji
}∪Domain1

17. Y i
ji
← Ci

ji−1 ⊕ Ci
ji

, g1(Xi
ji

)← Y i
ji

18. for j ← ji + 1 to li + 1 do

19. Xi
j ← Y i

j−1 ⊕M i
j , Domain1 ← {Xi

j}∪Domain1

20. Y i
j

$←{0, 1}n
21. while (j < li + 1 and Y i

j ⊕M i
j+1 ∈Domain1) do Y i

j
$←{0, 1}n end while

22. while (j = li + 1 and Y i
li+1 ⊕ Ci

li
∈Domain2)

23. do Y i
li+1

$←{0, 1}n end while
24. Ci

j ← Ci
j−1 ⊕ Y i

j , g1(Xi
j)← Y i

j

25. end for
26. Domain2 ← {Ci

li+1}∪Domain2, g2(Ci
li+1)← Si

27. end for

Fig. 6. A program searching for (g1, g2) satisfying Lemma 2

Step 3. Then we deal with the last li + 1− ji blocks in M i. First, we randomly
select Y i

j for j = ji + 1, ji + 2, · · · , li (lines 20 and 21) such that the next input
to g1, X i

j+1 = Y i
j ⊕ M i

j+1 /∈Domain1, and Y i
j has 2n − #Domain1 choices.

Then, we randomly select Y i
li+1 (lines 20 and 23) such that the next input to g2,

Ci
li+1 = Y i

li+1⊕Ci
li

/∈Domain2. Notice that Y i
li+1 has 2n−#Domain2 = 2n−(i−1)

choices and Ci
li+1 has only one choice (line 26).

Finally, we have established a bridge between every (N i, M i) and (Ci
ji

, Si)
for i = 1, 2, · · · , q, and left function g1 2n − (σ + q) elements in its domain un-
defined and function g2 2n − q elements in its domain undefined. Since these
elements have nothing to do with the two requirements in Lemma 2, we ran-
domly select a value from {0, 1}n for each of them. In other words, they have 2n

choices each.

Extended Models for Message Authentication 301

Now, we count the number of (g1, g2). Let Di = #Domain1 just before
TGg1,g2(N i, M i) is going to work. Then it is easy to check that D1 = q, D2 =
D1+l1, D3 = D2+l2, · · ·, Dq = Dq−1+lq−1. Let σ =

∑q
i=1 li, so Dq = q+σ−lq .

Let

N i
g1

= (2n −Di)× (2n − (Di + 1))× · · · × (2n − (Di + ji − 2 + 1))
×(2n − (Di + ji − 2)− (Di + ji − 1))× 1× (2n − (Di + ji))
×(2n − (Di + ji + 1))× · · · × (2n − (Di + li − 1))× (2n − (i− 1)),

then the number of g1 satisfying Lemma 2 is

Ng1 =
q∏

i=1

N i
g1
× (2n)2

n−(σ+q)

≥ ((2n)σ − (1 + 2 + · · ·+ (q + σ − 1))× (2n)σ−1)× (2n)2
n−(σ+q)

= (1 − σ2 + q2 + 2σq − σ − q

2n+1
)× (2n)2

n−q.

On the other hand, M i (i = 1, 2, · · · , q) adds one element to Domain2 each,
so the number of g2 satisfying Lemma 2 is Ng2 = 1q × (2n)2

n−q.
Finally, the number of (g1, g2) satisfying Lemma 2 is

Ng1,g2 = Ng1 ×Ng2 ≥ (1− σ2 + q2 + 2σq − σ − q

2n+1
)× (2n)2

n+1−2q.

��

A Preimage Attack for 52-Step HAS-160

Yu Sasaki and Kazumaro Aoki

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midoricho, Musashino-shi, Tokyo 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. In this paper, we propose preimage attacks on the hash
function HAS-160, which is standardized in Korea. We propose two
approaches to generate a preimage of step-reduced HAS-160 faster
than a brute force attack, which costs 2160. The first approach is a
simple application of previously known techniques, which are so-called
splice-and-cut ant partial-matching techniques. This approach generates
a pseudo-preimage of 48 steps of HAS-160 with a complexity of 2128

and a preimage with a complexity of 2145. In the second approach, we
consider a variant of so-called local-collision technique. This approach
generates a pseudo-preimage of 52 steps of HAS-160 with a complexity
of 2144 and a preimage with a complexity of 2153. To the best of our
knowledge, this is the first paper that analyzes the preimage resistance
of HAS-160.

Keywords: HAS-160, splice-and-cut, hash function, local collision, one-
way, preimage.

1 Introduction

Hash functions are important cryptographic primitives that generates a rela-
tively short bit-string from an arbitrary-length input message. They are used
for various purposes in the modern society, for example, digital fingerprinting
or digital signatures. Let H be a hash function, and x and y be an input and
output of H . Hash functions are required to satisfy following three properties.

– Preimage resistance: For given y, it must be hard to find x s.t. H(x) = y.
– 2nd-preimage resistance: For given x, it must be hard to find

x′ s.t. H(x′) = y, x �= x′.
– Collision resistance: It must be hard to find a pair of (x, x′) s.t. H(x) =

H(x′), x �= x′.

Let the length of y be n-bit. In preimage resistance, it is obvious that if hash
values of 2n different messages are computed, one of them will be matched with
given y with high probability. Therefore, a method computing a preimage faster
than 2n is a threat for hash functions. Such a method is called preimage attack.

HAS-160 is a hash function developed in Korea, and was standardized by
Korean government in 2000 [14]. The design of HAS-160 is similar to MD5 [11]

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 302–317, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Preimage Attack for 52-Step HAS-160 303

Table 1. Comparison of attacks on HAS-160

Attack type Reference Step number Complexity
Pseudo-preimage Preimage

Collision Attack [16] 45 212

[4] 53 255

[7] 53 235

[7] 59 255

Preimage Attack Ours (Approach 1) 48 2128 2145

Ours (Approach 2) 52 2144 2153

and SHA-1 [15], in particular, the step function of HAS-160 is very similar to
SHA-1. However, the message expansion is a mixture of designs of MD5 and
SHA-1, which is faster than that of SHA-1. Since several attacks on MD5 and
SHA-1 have already been known, the security analysis of HAS-160 is interesting
to know the security contribution of its design.

So far, only a few papers analyze the security of HAS-160. The first cryptanal-
ysis on HAS-160 was presented by Yun et al. [16] at ICISC 2005. They found that
a collision for HAS-160 reduced to 45 steps could be generated in a very small
complexity. This was improved by Cho et al. [4] at ICISC 2006, which reported
that a collision attack could be theoretically applied until 53 steps. This was fur-
ther improved by Mendel and Rijmen [7] at ICISC 2007, where a real collision
until 53 steps was generated and a differential path yielding a 59-step collision
was shown. As far as we know, no paper analyzed the preimage resistance of
HAS-160 so far. On the other hand, preimage resistance of other MD4-based
hash functions have been analyzed recently, for example, preimage attacks on
full-round MD4 [6,1], step-reduced MD5 [5,12,2,1], full-round HAVAL-3 [2,13],
full-round HAVAL-4 and step-reduced HAVAL-5 [13], and step-reduced SHA-0
and step-reduced SHA-1 [3]. There is another hash function named HAS-V [10],
which has the similar structure to HAS-160. Preimage attack on HAS-V has also
been discovered by Mendel and Rijmen at ICISC 2007 [8]. Therefore, the preim-
age resistance of HAS-160 needs to be evaluated by recent attack techniques.

Our results

In this paper, we propose two approaches to generate a preimage of step-reduced
HAS-160. The first approach is a simple application of previously known tech-
niques, which are so-called splice-and-cut ant partial-matching techniques. To
improve the number of steps that can be attacked, we develop another approach
which is similar to the local-collision technique. 52-step of HAS-160 are attacked
with the second approach. The complexity of our attacks is summarized in Ta-
ble 1. For comparison, we also list the previous collision attacks in Table 1. To
the best of our knowledge, this is the first paper that analyzes the preimage
resistance of HAS-160.

304 Y. Sasaki and K. Aoki

Organization of this paper is as follows. In Section 2, we describe the spec-
ification of HAS-160. In Section 3, we summarize the techniques in previous
preimage attacks. In Section 4, we propose the preimage attack on 48-step
HAS-160 by approach 1. In Section 5, we consider a variant of the local-
collision technique to attack 52-step HAS-160. Finally, we conclude this paper in
Section 6.

2 Description of HAS-160

HAS-160 [14] is a hash function that takes an arbitrary length message as input
and outputs a 160-bit hash value. The design of HAS-160 is similar to those of
SHA-1 [15] and MD5 [11].

HAS-160 has the Merkle-Damg̊ard structure, which uses 160-bit (5-word)
chaining variables and a 512-bit (16-word) message block to compute a com-
pression function.

First, an input message M is processed to be a multiple of 512 bits by the
padding procedure. A single bit 1 is appended followed by 0s until the length
becomes 448 modulo 512. Finally, the binary representation of the length of M
is appended at the last 64 bits.

Padded message is separated into 512-bit messages (M0, M1, . . . , Mn−1). Let
CF : {0, 1}160 × {0, 1}512 → {0, 1}160 be the compression function of HAS-160.
A hash value is computed as follows.

1. H0 ← IV ,
2. Hi+1 ← CF (Hi, Mi) for i = 0, 1, . . . , n− 1,

where Hi is a 160-bit value and IV is the initial value defined in the specification.
Finally, Hn is output as a hash value of M .

Table 2. Computation of m16 to m19 in each round

Round 1 Round 2 Round 3 Round 4
m16 m[0, 1, 2, 3] m[3, 6, 9, 12] m[12, 5, 14, 7] m[7, 2, 13, 8]
m17 m[4, 5, 6, 7] m[15, 2, 5, 8] m[0, 9, 2, 11] m[3, 14, 9, 4]
m18 m[8, 9, 10, 11] m[11, 14, 1, 4] m[4, 13, 6, 15] m[15, 10, 5, 0]
m19 m[12, 13, 14, 15] m[7, 10, 13, 0] m[8, 1, 10, 3] m[11, 6, 1, 12]

m[i, j, k, l] denotes mi ⊕mj ⊕mk ⊕ml.

Table 3. Message order in each step

Round 1: X0, X1, . . . , X19 18 0 1 2 3 19 4 5 6 7 16 8 9 10 11 17 12 13 14 15
Round 2: X20, X21, . . . , X39 18 3 6 9 12 19 15 2 5 8 16 11 14 1 4 17 7 10 13 0
Round 3: X40, X41, . . . , X59 18 12 5 14 7 19 0 9 2 11 16 4 13 6 15 17 8 1 10 3
Round 4: X60, X61, . . . , X79 18 7 2 13 8 19 3 14 9 4 16 15 10 5 0 17 11 6 1 12

A Preimage Attack for 52-Step HAS-160 305

Step Message index
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 ∗ ∗ ∗ ∗
1 ∗
2 ∗
3 ∗
4 ∗
5 ∗ ∗ ∗ ∗
6 ∗
7 ∗
8 ∗
9 ∗

10 ∗ ∗ ∗ ∗
11 ∗
12 ∗
13 ∗
14 ∗
15 ∗ ∗ ∗ ∗
16 ∗
17 ∗
18 ∗
19 ∗
20 ∗ ∗ ∗ ∗
21 ∗
22 ∗
23 ∗
24 ∗
25 ∗ ∗ ∗ ∗
26 ∗
27 ∗
28 ∗
29 ∗
30 ∗ ∗ ∗ ∗
31 ∗
32 ∗
33 ∗
34 ∗
35 ∗ ∗ ∗ ∗
36 ∗
37 ∗
38 ∗
39 ∗
40 ∗ ∗ ∗ ∗
41 ∗
42 ∗
43 ∗
44 ∗
45 ∗ ∗ ∗ ∗
46 ∗
47 ∗
48 ∗
49 ∗
50 ∗ ∗ ∗ ∗
51 ∗
52 ∗
53 ∗
54 ∗
55 ∗ ∗ ∗ ∗
56 ∗
57 ∗
58 ∗
59 ∗
60 ∗ ∗ ∗ ∗
61 ∗
62 ∗
63 ∗
64 ∗
65 ∗ ∗ ∗ ∗
66 ∗
67 ∗
68 ∗
69 ∗
70 ∗ ∗ ∗ ∗
71 ∗
72 ∗
73 ∗
74 ∗
75 ∗ ∗ ∗ ∗
76 ∗
77 ∗
78 ∗
79 ∗

∗ denotes message words used in each step. For m16 to m19, we
write original four messages producing them in the table.

Fig. 1. A figure describing message expansion of HAS-160

306 Y. Sasaki and K. Aoki

Compression Function

HAS-160 iteratively computes a step function 80 times to compute a hash value.
Steps 0-19, 20-39, 40-59, and 60-79 are called the first, second, third, and fourth
rounds, respectively. Let (Hi, Mi) be the input of the compression function.

Message expansion. First, Mi is divided into sixteen 32-bit message-words
m0, . . . , m15. The message expansion of HAS-160 is a permutation of 20 message
words in each round, which consists of m0, . . . , m15 and four additional messages
m16, . . . , m19 computed from m0, . . . , m15. The computation of m16, . . . , m19 is
shown in Table 2.

Let X0, X1, . . . , X79 be the message used in each step. The message mj as-
signed to each Xj is shown in Table 3. The message expansion is also schemati-
cally written in Figure 1.

Step update function. The output of the compression function Hi+1 is com-
puted as follows.

1. p0 ← Hi.
2. pj+1 ← Rj(pj , Xj) for j = 0, 1, . . . , 79,
3. Output Hi+1(= p80 + Hi), where “+” denotes 32-bit word-wise addition. In

this paper, we similarly use “−” to denote 32-bit word-wise subtraction.

Rj is the step function for Step j. Let aj , bj , cj , dj , ej be 32-bit values that
satisfy pj = (aj , bj, cj , dj , ej). Rj for HAS-160 is defined as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

aj+1 = (aj ≪ s1j) + fj(bj , cj , dj) + ej + Xj + kj

bj+1 = aj

cj+1 = bj ≪ s2j

dj+1 = cj

ej+1 = dj

where fj , kj , and ≪ s2j are bitwise Boolean function, constant, and s2j-bit left
rotation defined in Table 4, and ≪ s1j is s1j-bit left rotation defined in the
specification.

Table 4. Function f , constant k, and rotation s2 of HAS-160

Round Function fj(X, Y, Z) Constant kj Rotation s2j

Round 1 (x ∧ y) ∨ (¬x ∧ z) 0x00000000 10
Round 2 x⊕ y ⊕ z 0x5a827999 17
Round 3 y ⊕ (x ∨ ¬z) 0x6ed9eba1 25
Round 4 x⊕ y ⊕ z 0x8f1bbcdc 30

We show a graph of the step function in Figure 2. Note that R−1
j (pj+1, Xj)

can be computed in almost the same complexity as that of Rj .

A Preimage Attack for 52-Step HAS-160 307

aj bj cj dj ej

aj+1 bj+1 cj+1 dj+1 ej+1

<<< s2j

<<< s1j

Xj

kj

fj

Fig. 2. Step function of HAS-160

3 Related Work

3.1 Converting Pseudo-preimages to a Preimage

For a given hash value y, pseudo-preimage is a pair of (x, M), x �= IV such that
CF (x, M) = y. For the Merkle-Damg̊ard hash functions, there is a generic algo-
rithm that converts a pseudo-preimage attack to a preimage attack [9, Fact9.99].
Let the complexity of a pseudo-preimage attack be 2k. The procedure of this at-
tack when the hash value is n-bit long is as follows.

1. Generate 2(n−k)/2 pseudo-preimages at the complexity of 2k · 2(n−k)/2.
2. Generate 2(n+k)/2 messages that start from the IV , and compute their hash

values.

One of these hash values are expected to be matched. The complexity of this
attack is 2k · 2(n−k)/2 + 2(n+k)/2 = 21+(n+k)/2. Therefore, a pseudo-preimage
attack with a complexity less than 2n−2 can be converted to a preimage attack.

3.2 Splice-and-Cut, Partial-Matching, and Partial-Fixing
Techniques

Splice-and-cut, partial-matching, and partial-fixing techniques were developed
by Aoki and Sasaki [1] to launch preimage attacks on MD4 and MD5. These
techniques enabled them to attack 63 steps of MD5 with a complexity of 2121

and full-round of the compression function of MD4 with a complexity of 2107.
The splice-and-cut technique is a kind of meet-in-the-middle attack. They

first consider the first and last steps as consecutive steps, and divide the attack
target into two chunks of steps so that each chunk includes independent message
words from the other chunk. Such message words are called neutral words. Then,
a pseudo-preimage is computed by the meet-in-the-middle attack.

The partial-matching technique enables an attacker to skip several steps of
an attack target when they search for good chunks. Assume that one of divided

308 Y. Sasaki and K. Aoki

chunks provides the value of pi, where pi = (ai, bi, ci, di) and the other chunk
provides the value of pi+3, where pi+3 = (ai+3, bi+3, ci+3, di+3), and ai = di+3.
pi and pi+3 cannot be directly compared to be matched, however, a part of these
values, that is, ai and di+3 can be compared immediately. In such a case, we can
ignore messages used in Steps i, i + 1, and i + 2 when we run the meet-in-the-
middle attack.

The partial-fixing technique enables an attacker to skip more steps. The idea is
fixing a part of neutral words, for example, fixing lower 16 bits of neutral words.
By this effort, the attacker can partially compute a chunk even if a neutral word
for the other chunk appears.

3.3 Combination of Splice-and-Cut and Local-Collision Techniques

A combination of the meet-in-the-middle and local collision was first proposed by
Aumasson et al. [2]. This was further improved by Sasaki and Aoki by combining
the splice-and-cut and the local-collision techniques instead of the simple meet-
in-the-middle attack [13], and attacked the full-round of HAVAL-3, HAVAL-4,
and the step-reduced HAVAL-5 based on this technique.

The key idea is selecting two neutral words that can form a local collision at
the beginning of chunks. This means that the attacker chooses two neutral words
in suitable positions so that changes of these neutral words will be offset each
other without affecting other chaining variables. To prevent the difference from
propagating to the other chaining variables, values of other chaining variables
are fixed so that input differences of f -function can be ignored in the output
value. Such properties are called absorption properties.

Since a local collision of HAVAL can be formed by only changing two mes-
sage words and f -function has many absorption properties, the local-collision
technique can be effectively applied to HAVAL.

4 Approach 1: Simple Application of Previous Techniques

In this section, we propose a preimage attack on HAS-160 by applying the splice-
and-cut, partial-matching, and partial-fixing techniques. First, we analyze how
well each technique can be applied to HAS-160. Second, we show the best selec-
tion of chunks discovered by a machine experiment.

Splice-and-cut technique. Different from MD5 and HAVAL, HAS-160 uses
expanded messages m16 to m19 to compute a step function. However, the appli-
cation of splice-and-cut technique for HAS-160 is straightforward. For the steps
where m16 to m19 are used, we consider that four message words used to compute
m16 to m19 appear at the same time.

Partial-matching technique. In the step update function of HAS-160, four
chaining variables out of five chaining variables are just the copy of previous
chaining variables or rotation of themselves. Therefore, essentially, only one
chaining variable is updated in every step. Due to this property, the partial-
matching technique can skip up to four steps.

A Preimage Attack for 52-Step HAS-160 309

Partial-fixing technique. In the forward computation and backward compu-
tation of step update function of HAS-160, a part of updated chaining variables
can be computed even if a part of a message word and chaining variables are not
known. Hence, we can apply the partial-fixing technique to skip more steps. To
estimate how many steps can be skipped, we need to check details of the step func-
tion. Let the symbol A(n)

j represent the variable A where the lower n bits are known
and upper (32− n) bits are unknown. We can compute following expressions.

Forward computation:

(a(32)
j , b

(32)
j , c

(32)
j , d

(32)
j , e

(32)
j), X(n)

j

Rj−→ (a(n)
j+1, b

(32)
j+1 , c

(32)
j+1 , d

(32)
j+1 , e

(32)
j+1)

Inverse computation:

(a(32)
j+1 , b

(32)
j+1 , c

(32)
j+1 , d

(32)
j+1 , e

(32)
j+1), X(n)

j

R−1
j−→ (a(32)

j , b
(32)
j , c

(32)
j , d

(32)
j , e

(n)
j)

(a(32)
j+1 , b

(32)
j+1 , c

(32)
j+1 , d

(32)
j+1 , e

(n)
j+1), X

(n)
j

R−1
j−→ (a(32)

j , b
(32)
j , c

(32)
j , d

(n)
j , e

(n)
j)

(a(32)
j+1 , b

(32)
j+1 , c

(32)
j+1 , d

(n)
j+1, e

(n)
j+1), X

(n)
j

R−1
j−→ (a(32)

j , b
(32)
j , c

(n)
j , d

(n)
j , e

(n)
j)

(a(32)
j+1 , b

(32)
j+1 , c

(n)
j+1, d

(n)
j+1, e

(n)
j+1), X

(n)
j

R−1
j−→ (a(32)

j , b
(n−s2j)
j , c

(n)
j , d

(n)
j , e

(n−s2j)
j)

Finally, we can conclude that nine steps in total can be skipped by combining
the partial-matching and partial-fixing techniques. Note, a few more steps can
be skipped with a lower probability if the number of s2j is suitable. However, we
omit details of this analysis since any suitable application could not be found.

Preimage attacks on 48-step HAS-160 by approach 1. By considering all
of the techniques described in this section, we searched for the best selection of
chunks. As a result, we found two selections of chunks that can attack 48 steps
out of 80 steps. These selections are shown in Figures 4 and 5 at the last part
of the paper.

We explain attack details, where the corresponding selection of chunks is
shown in Figure 4. We choose Steps 1-48 as an attack target and divide it so
that Steps 1-13 and 32-48 are the first chunk with a neutral word m8, Steps 14-28
are the second chunk with a neutral word m11, and Steps 29-31 are skipped. Our
attack first finds pseudo-preimages, and convert them to a preimage. Therefore,
our attack finds a 2-block preimage, so first, the appropriate padding strings for
2-block messages are set in m13, m14, and m15. For a given hash value H2, an
attack procedure is as follows. Note, since the number of skipped steps is only
three, we do not use the partial-fixing technique.

Attack procedure
1. Fix mi(i �∈ {8, 11, 13, 14, 15}) and p14 to randomly chosen values.
2. For all m11, do the following:

pj+1 ← Rj(pj , Xj) for j = 14, 15, . . . , 28.

310 Y. Sasaki and K. Aoki

3. Make a table of (m11, p29)s which are computed in the last step.
4. For all m8, do the following:⎧⎨⎩

pj ← R−1
j (pj+1, Xj) for j = 13, 12, . . . , 1,

p49 ← H2 − p1,
pj ← R−1

j (pj+1, Xj) for j = 48, 47, . . . , 32.

and check whether (d32 ≫ s230) and (e32 ≫ s229) are matched with a29

and b29 in the table.
5. If matched, we compute p31 to p29 by the corresponding mi, and check

whether all values are matched.
6. If matched, the corresponding message and p1 is a pseudo-preimage.

The computational complexity of the above attack procedure is about 232 (=
232 15

48 + 232 30
48), and the success probability is about 2−96 (= 232 · 232/2160).

Thus, by iterating the above procedure 296 times, we expect to find a pseudo-
preimage (H1, M1), and its complexity is about 2128 (= 296 · 232). By applying
the technique in Section 3.1, a preimage of 48-step HAS-160 can be computed
in 2145(= 21+(160+128)/2).

To generate a pseudo-preimage, a memory is used to store 232 (m11, p29)s in
step 3 of the above procedure. To generate a preimage, 216 pseudo-preimages
are stored. Therefore, the memory complexity of this attack is 232 × 6 words.

5 Approach 2: Extension of Local-Collision Technique

As we considered in Section 4, no more than 48 steps can be attacked only with
the previous techniques. Therefore, we need to consider another approach to
extend the attack.

The idea is using the local-collision technique, which was considered by Sasaki
and Aoki [13] to attack HAVAL. Their success lies in the specific structure of
HAVAL, where a local collision can be formed with a straightforward method and
f -function has many absorption properties. However, making a local collision in
HAS-160 is more difficult than HAVAL since three message words are needed
to make a local collision in HAS-160 and absorption properties are available
only in the first round and a part of the third round. In fact, we searched for
good chunks under such strong limitations, but no good chunk was discovered.
However, we found that by selecting X29 and X31 as neutral words, Steps 29-31
can be considered to have the same properties as a local collision.

In this section, we first explain the overall strategy of our attack. Then, we
explain why Steps 29-31 have the same properties as a local collision. Finally, we
explain the attack procedure using the property of steps 29-31 and complexity
estimation.

5.1 Overall Strategy

We show the overall strategy by using Figure 3 showing Steps 29-31. Note, in Step
30, we applied an equivalent transformation that changes the order of addition
of e30 + f30 + (a30 ≪ s130).

A Preimage Attack for 52-Step HAS-160 311

a32 b32 c32 d32 e32

a31 b31 c31 d31 e31

<< s231

<< s131

X31
k31

a30 b30 c30 d30 e30

<< s230

<<s130

X30
k30

a29 b29 c29 d29 e29

<<s229

<<s129

X29
k29

1 chunk

2 chunk

t29

t30

Fig. 3. Steps 29-31 forming a structure similar to local collision

1. We choose c29 and X31 as neutral words for the first chunk and a32 and X29 as
neutral words for the second chunk. Therefore, both chunks have 264 free bits.

2. For each choice of (c29, X31), compute a29, b29, d29, e29 so that the choice
of (c29, X31) does not give any influence to the value of the second chunk,
namely, the values of b32, c32, d32, e32.

3. For each choice of (X29, a32), compute b32, c32, d32, e32 so that the choice of
(X29, a32) does not give any influence to the value of the first chunk, namely,
the values of a29, b29, d29, e29.

4. Compute the first chunk for all free bits of (c29, X31) and compute the second
chunk for all free bits of (X29, a32). Finally, perform the meet-in-the-middle
attack to search for pairs where results of the chunk computation are matched
and (c29, X31, X29, a32) can correctly satisfy their relationship in Steps 29-31.

312 Y. Sasaki and K. Aoki

Step Message index
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 ∗
2 ∗
3 ∗
4 ∗
5 ∗ ∗ ∗ ∗
6 ∗
7 ∗

fi
rst

ch
u
n
k

8 ∗
9 ∗

10 ∗ ∗ ∗ ∗
11 ◦
12 ∗
13 ∗ ↑
14 • ↓
15 ∗ ∗ ∗ ∗
16 ∗
17 ∗
18 ∗
19 ∗
20 ∗ ∗ • ∗
21 ∗

se
c
o
n
d

ch
u
n
k

22 ∗
23 ∗
24 ∗
25 ∗ ∗ ∗ ∗
26 ∗
27 ∗
28 ∗
29 ◦
30 ∗ ∗ ∗ ∗

sk
ip

31 •
32 ∗
33 ∗
34 ∗
35 ∗ ∗ ◦ ∗
36 ∗
37 ∗
38 ∗
39 ∗
40 ∗ ∗ ∗ ∗

fi
rst

ch
u
n
k

41 ∗
42 ∗
43 ∗
44 ∗
45 ∗ ∗ ◦ ∗
46 ∗
47 ∗
48 ∗

Fig. 4. Selected chunks by approach 1 (Type 1)

Therefore, we need to realize the independency of a29, b29, d29, e29 and neutral
words for the second chunk, and the independency of b32, c32, d32, e32 and neutral
words for the first chunk.

5.2 Computation for Steps 29 to 31

To make the first and second chunk independent each other, we need to guarantee
that a29 and d32, b29 and e32, d29 and b32, and e29 and c32 are always consistent
regardless of the values of neutral words. This can be achieved as follows.

A Preimage Attack for 52-Step HAS-160 313

Step Message index
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 ∗
22 ∗
23 ∗
24 ∗
25 ∗ ∗ ∗ ∗
26 ∗
27 ∗

fi
rst

ch
u
n
k

28 ∗
29 ∗
30 ∗ ∗ ∗ ∗
31 •
32 ∗
33 ∗ ↑
34 ◦ ↓
35 ∗ ∗ ∗ ∗
36 ∗
37 ∗
38 ∗
39 ∗
40 ◦ ∗ ∗ ∗
41 ∗

se
c
o
n
d

ch
u
n
k

42 ∗
43 ∗
44 ∗
45 ∗ ∗ ∗ ∗
46 ∗
47 ∗
48 ∗
49 •
50 ∗ ∗ ∗ ∗

sk
ip

51 ◦
52 ∗
53 ∗
54 ∗
55 ∗ ∗ ∗ •
56 ∗
57 ∗
58 ∗
59 ∗

fi
rst

ch
u
n
k

60 ∗ ∗ ∗ ∗
61 ∗
62 ∗
63 ∗
64 ∗
65 ∗ ∗ • ∗
66 ∗
67 ∗
68 ∗

Fig. 5. Selected chunks by approach 1 (Type 2)

– We fix a29 and b29 to a randomly chosen value. Then, we fix d32 to (a29 ≪
s230) and e32 to (b29 ≪ s229) to guarantee the consistency of these variables.

– To guarantee that the relationship of d29 and b32 are satisfied, we fix the value
of t30, which is indicated in Figure 3. Since b30 and c30 are fixed values,
the value of f30(b30, c30, d30) are uniquely determined by the selection of
c29(= d30). Therefore, for each selection of c29, we compute e30 ← t30 − f30

so that t30 is fixed. Note, when we compute a31 for the second chunk, we use
the expression a31 ← (a30 ≪ s130) + t30 + X30 + k30.

314 Y. Sasaki and K. Aoki

Step Message index
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 ∗
13 ∗
14 •
15 ∗ ∗ ∗ ∗
16 ∗
17 ∗
18 ∗
19 ∗

fi
rst

ch
u
n
k

20 ∗ ∗ • ∗
21 ∗
22 ∗
23 ∗
24 ∗
25 ∗ ∗ ∗ ∗
26 ∗
27 ∗
28 ∗ ↑
29 ◦
30 ∗ ∗ ∗ ∗
31 •

sk
ip

32 ∗ ↓
33 ∗
34 ∗
35 ∗ ∗ ◦ ∗
36 ∗
37 ∗
38 ∗
39 ∗
40 ∗ ∗ ∗ ∗

se
c
o
n
d

ch
u
n
k

41 ∗
42 ∗
43 ∗
44 ∗
45 ∗ ∗ ◦ ∗
46 ∗
47 ∗
48 ∗
49 •
50 ∗ ∗ ∗ ∗
51 ∗

sk
ip

52 ∗
53 ∗
54 ∗
55 ∗ ∗ ∗ •
56 ◦
57 ∗
58 ∗
59 ∗
60 ∗ ∗ ∗ ∗
61 ∗
62 ∗
63 ∗

fi
rst

ch
u
n
k

Fig. 6. Selected chunks by approach 2 (52 steps)

– To guarantee that the relationship of e29 and c32 are satisfied, we fix the
value of t29, which is indicated in Figure 3. Considering a29, b29 are fixed,
and d29 is uniquely computed for each c29, for each selection of c29, we
compute e29 ← t29 − f29 − (a29 ≪ s129) so that t29 is fixed. Note, when
we compute a30 for the second chunk, we use the expression a30 ← (a29 ≪
s129) + t29 + X29 + k29.

A Preimage Attack for 52-Step HAS-160 315

The relationship of (c29, X31, X29, a32) can be written as follows. Neutral
words for the first and second chunks are stressed by 1st and 2nd, respec-
tively.

a322nd

?= c291st
+ (a31 ≪ s131) + f31(b31, c31, d31) + X311st

+ k31, (1)

where, a31 = (a30 ≪ s130) + t30 + X30 + k30,

a30 = (a29 ≪ s129) + t29 + X292nd
+ k29.

This equation is satisfied with a probability of 2−32 for a randomly chosen
(c29, X31, X29, a32).

5.3 Preimage Attack on 52-Step HAS-160

The entire structure of our attack on 52-step HAS-160 is shown in Figure 6.
This attack finds a pseudo-preimage of 52 steps (Steps 12-63) of HAS-160 with
a complexity of 2144, and a preimage with a complexity of 2153. The attack is a
2-block attack. The procedure for a given target hash value H2 is as follows.

Attack procedure
1. Fix mi, (i �∈ {8, 11, 13, 14, 15}) and lower 16 bits of m8 to randomly chosen

values and fix m11 in bit positions 7-22 to be 0. Fixed bit positions are
optimized for matching decision, namely, they are fixed so that their positions
become lower 16 bits after s251(= 25) left rotation.

2. Fix chaining variables in steps 29-31 as described in Section 5.2.
3. For all 32 bits of a32 and higher 16 bits of m8,

(a) Compute a30 and a31 as described in Section 5.2.
(b) Compute followings:

pj+1 ← Rj(pj , Xj) for j = 32, 33, . . . , 48.

(c) Compute 16 bits of a50 by using partially fixed m11. This computation
is an addition operation. Since we know only bits 7-22 of m11, we cannot
know the carry effect from bit 6 to bit 7. Therefore, we compute 16 bits
of a50 for both cases.

(d) When a32 and higher 16-bits of m8 are selected, equation 1 can be written
as

c291st
+ X311st

?= Const2nd, (2)

for a uniquely computed Const2nd. Compute the value of such a
Const2nd.

(e) Make a table of (m8, p49, (16-bits of a50 ≪ s251), Const2nd)s. Since we
have 48 free bits in neutral words, and 2 candidates of partial a50, we
have 249 items in the table.

4. For all 32-bits of c29 and not-fixed 16-bits of m11, do the following:
(a) Compute e30 and e29 as described in Section 5.2.

316 Y. Sasaki and K. Aoki

(b) Do the following:⎧⎨⎩
pj ← R−1

j (pj+1, Xj) for j = 28, 27, . . . , 12,
p64 ← H2 − p12,
pj ← R−1

j (pj+1, Xj) for j = 63, 62, . . . , 57.

(c) Compute the lower 16-bits of e56, e55, and e54 with the partially fixed m8.
(d) Compute Const1st ← c291st

+ X311st
.

(e) For each item in the table, check whether the lower 16-bits of e54 and
Const1st are matched with 16-bits of (a50 ≪ s251) and Const2nd, re-
spectively.

(f) If matched, compute p50 to p57 by the corresponding message word,
and check whether all values from both chunks are matched. This is
performed step by step.

(g) If all bits are matched, the corresponding message and p12 is a pseudo-
preimage.

The computational complexity of steps 3a, 3b, 3c, and 3d of the procedure is
248 2

52 + 248 17
52 + 248 1

52 + 248 3
52 , and the complexity of steps 4a, 4b, 4c, and 4d

is 248 2
52 + 248 24

52 + 248 3
52 + 248 1

52 . In step 4e, 297(= 249 · 248) pairs are tested to
be matched and 249(= 297 · 2−48) pairs will be matched. In step 4f, computation
of p50 costs 244(≈ 249 1

52), and 248 pairs out of 249 pairs will be left by checking
the correctness of the carry in a50. Then, computation of p51 costs 243(≈ 248 1

52),
and 232 pairs out of 248 pairs will be left by partially matching a51 and e55.
Then, computation of p52 costs 232 1

52 , and 216 pairs will be left by partially
matching a52 and e56. Complexity for computing of p53 and p57 are negligible,
and finally 2−96 pair will be matched for all bits. Therefore, by repeating the
above procedure 296 times, a pair will be matched for all bits, in other words, a
pseudo-preimage will be found. The complexity of the attack is approximately
2144(= 248 × 296). At the last, this pseudo-preimage attack is converted to a
preimage attack with a complexity of 2153 by using the conversion algorithm
described in Section 3.1.

In this attack, we use a memory to store 249 (m8, p49, (16-bits of a50 ≪
s251), Const2nd)s in step 3e. This memory size can be reduced by storing both
a50 with carry and a50 without carry in the same address of the table. Therefore,
the memory complexity of this attack is 248 × 9 words.

6 Conclusion

In this paper, we proposed two approaches for the preimage attacks on the hash
function HAS-160. The first approach is a simple application of previously known
techniques, which generates a pseudo-preimage of 48 steps of HAS-160 with a
complexity of 2128 and a preimage with a complexity of 2145. To further improve
the number of steps that can be attacked, we considered a variant of the local-
collision technique to skip several steps at the beginning of the chunks. This
enabled us to find a pseudo-preimage of 52 steps of HAS-160 with a complexity
of 2144 and a preimage with a complexity of 2153. To the best of our knowledge,
this is the first paper that analyzes the preimage resistance of HAS-160.

A Preimage Attack for 52-Step HAS-160 317

References

1. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Workshop Records of SAC 2008, Sackville, Canada, pp. 82–98 (2008)

2. Aumasson, J.-P., Meier, W., Mendel, F.: Preimage attacks on 3-pass HAVAL and
step-reduced MD5. In: Workshop Records of SAC 2008, Sackville, Canada, pp. 99–
114 (2008); ePrint version is available at IACR Cryptology ePrint Archive: Report
2008/183, http://eprint.iacr.org/2008/183.pdf

3. De Cannière, C., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Heidel-
berg (2008); slides on preliminary results were appeared at ESC 2008 seminar,
http://wiki.uni.lu/esc/

4. Cho, H.-S., Park, S., Sung, S.H., Yun, A.: Collision search attack for 53-step HAS-
160. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 286–295.
Springer, Heidelberg (2006)

5. De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion attacks on secure hash
functions using sat solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007.
LNCS, vol. 4501, pp. 377–382. Springer, Heidelberg (2007)

6. Leurent, G.: MD4 is not one-way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

7. Mendel, F., Rijmen, V.: Colliding message pair for 53-step HAS-160. In: Nam, K.-
H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 324–334. Springer, Heidelberg
(2007)

8. Mendel, F., Rijmen, V.: Weaknesses in the HAS-V Compression Function. In: Nam,
K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 335–345. Springer, Hei-
delberg (2007)

9. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press, Boca Raton (1997)

10. Park, N.K., Hwang, J.H., Lee, P.J.: HAS-V: A new hash function with variable
output length. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 202–216. Springer, Heidelberg (2001)

11. Rivest, R.L.: Request for Comments 1321: The MD5 Message Digest Algorithm.
The Internet Engineering Task Force (1992),
http://www.ietf.org/rfc/rfc1321.txt

12. Sasaki, Y., Aoki, K.: Preimage attacks on step-reduced MD5. In: Mu, Y., Susilo,
W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 282–296. Springer, Hei-
delberg (2008)

13. Sasaki, Y., Aoki, K.: Preimage attacks on 3, 4, and 5-pass HAVAL. In: Pieprzyk,
J.P. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 253–271. Springer, Heidelberg
(2008)

14. Telecommunications Technology Association. Hash Function Standard Part 2:
Hash Function Algorithm Standard, HAS-160 (2000)

15. U.S. Department of Commerce, National Institute of Standards and Technology.
Announcing the SECURE HASH STANDARD (Federal Information Processing
Standards Publication 180-3) (2008),
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

16. Yun, A., Sung, S.H., Park, S., Chang, D., Hong, S.H., Cho, H.-S.: Finding collision
on 45-step HAS-160. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935,
pp. 146–155. Springer, Heidelberg (2006)

http://eprint.iacr.org/2008/183.pdf
http://wiki.uni.lu/esc/
http://www.ietf.org/rfc/rfc1321.txt
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

Essentially Optimal Universally Composable
Oblivious Transfer

Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi

BRICS, Department of Computer Science, Aarhus University,
Åbogade 34, 8200 Århus, Denmark
{ivan,jbn,orlandi}@cs.au.dk

Abstract. Oblivious transfer is one of the most important cryptographic
primitives, both for theoretical and practical reasons and several protocols
were proposed during the years. We propose a protocol which is simultane-
ously optimal on the following list of parameters: Security: it has univer-
sal composition. Trust in setup assumptions: only one of the parties needs
to trust the setup (and some setup is needed for UC security). Trust in
computational assumptions: only one of the parties needs to trust a com-
putational assumption. Round complexity: it uses only two rounds. Com-
munication complexity: it communicates O(1) group elements to transfer
one out of two group elements. The Big-O notation hides 32, meaning that
the communication is probably not optimal, but is essentially optimal in
that the overhead is at least constant. Our construction is based on pair-
ings, and we assume the presence of a key registration authority.

Keywords: Oblivious Transfer, Universally Composable Security.

1 Introduction

An oblivious transfer (OT) involves two parties, a sender and a receiver. The
sender has two secret messages. The receiver selects to retrieve one of them,
without disclosing which one. At the same time the receiver is not allowed to
learn more than one secret. Oblivious transfer was first introduced by Wiesner
[Wie83] in the late seventies under the name of conjugate coding. However, the
importance of this primitive in the cryptographic field was first pointed out by
Rabin in [Rab81].

OT is the base for many secure multiparty computation (SMC) protocols
[Yao86, GMW87], where several instances of OT are run at the same time. How-
ever, many of the proposed OT protocols do not give any guarantee on the
security under composition. Our protocol is secure in the universally compos-
able [Can01] model, using just two rounds of communication and having only a
constant overhead, i.e. O(k) bits are communicated to do an OT of k bits.

In addition we do not need to assume a common reference string. Instead,
the receiver R once and for all has to register a public key with a key regis-
tration authority KR and prove to KR that he knows the corresponding secret
key. After this any sender S can retrieve the public key and perform an OT to

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 318–335, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Essentially Optimal Universally Composable Oblivious Transfer 319

R — in particular, S does not need a public key or trust any common reference
string, giving our construction the same flavor as a PKI for public-key encryp-
tion, where also just R registers a public key, after which all S can transfer
messages securely to R. The public-key flavor of our protocol makes it ideal for
asymmetric settings, where e.g. one party is a server, which can afford the time
and cost of registering a public key for the given application. Clients then only
need to retrieve the public key of the server to perform UC OT with the server.

As a final feature, our protocol is perfectly secure for the sender. It can there-
fore be viewed as optimal in four aspects:

1. It is secure under general composition.
2. It uses two rounds. Clearly there exists no one-round OT protocol.
3. Only one party has to trust the setup — S has to trust that KR checks that

R knows its secret key. Since OT is impossible in the plain UC model, some
setup must be trusted, and having only one party do so is optimal.

4. Only one party has to trust a computational assumption. In particular, S
has perfect security. No OT for the classical model can have perfect security
for both parties.

The communication complexity is probably not optimal. Under the decisional
linear (DLIN) assumption, we send 32 group elements to transfer one out of
two group elements. This gives a constant overhead, but is probably far from
optimal. This seems, so far, to be the unfortunate price to pay for the other fully
optimal properties.

Our OT protocol is primarily based on homomorphic encryption in pairing
friendly groups, which we use to give a new instantiation of the notion of mixed
commitments from [DN02]. This instantiation is constructed to work well with
the efficient non-interactive witness indistinguishable (NIWI) proofs by Groth,
Ostrovsky and Sahai [GOS06, GS08], which are in turn based on paring-based
cryptography. We put ourselves in the hybrid UC model, where all parties have
access to secure and authenticated channels and to a key registration authority
(KR). This model was presented and motivated in [BCNP04].

Related Work. Examples of two-round OT can be found in [NP01, AIR01,
Kal05]. However, none of these protocols achieve UC security. If we consider
UC security, OT protocols are known, but they require more rounds of interac-
tion [Gar04, JS07] or other parties helping the computation [Fis06].

As a witness that a secure and efficient OT is of primary importance, sev-
eral attempts were made in the last years. Lindell [Lin08] has a very general
construction that achieves full simulation, based on the existence of homomor-
phic encryption solely. Camenisch, Neven and shelat [CNS07] built a protocol for
adaptive k-out-of-n OT, providing full simulation with specific number-theoretic
assumptions. Upon this work Green and Hohenberger [GH07] constructed an-
other adaptive OT, which requires weaker assumptions. Recently the same au-
thors proposed another adaptive OT [GH08], this time achieving UC security.

Independently from our work, Peikert, Vaikuntanathan and Waters [PVW07]
presented a two round UC OT protocol. However, their protocol works in the

320 I. Damg̊ard, J.B. Nielsen, and C. Orlandi

common reference string model (CRS), and uses different computational assump-
tions. Therefore, these two works can be seen as complementary.

2 Main Ideas

In this section we are going to give the main ideas, leaving all the details to
the following sections. We first present an attack that motivates the need of a
composable OT, then we sketch the protocol.

We have two players called the sender and the receiver. The sender has two
secrets x0, x1, while the receiver has a selection bit b. At the end of the protocol
R gets xb while S gets nothing.

2.1 Insecurity of OT Composition

We can describe a round optimal OT (i.e. 2 round OT) in the following way:

Choose: R computes a message c = Choose(b), and sends c to S.
Transfer: S computes a message t = Transfer(c, x0, x1) and sends it to R.
Retrieve: R retrieves xb = Retrieve(t).1

The security of such a protocol is usually stated like:

Receiver’s privacy: the output of the Choose phase, c, does not reveal any
information about b to S.

Sender’s privacy: the output of the Transfer phase, t, does not reveal anything
about x1−b to R.

This kind of security definition works in the case of a stand-alone OT exe-
cution, but fails dramatically in the case of even a sequential composition, and
even for very generic reasons. We consider the following composed protocol to
illustrate it: R and S run a first OT protocol. R inputs b, S inputs x0, x1, and R
gets xb. Then R and S run a second OT protocol. R inputs b′, S inputs x′

0, x
′
1,

and R gets x′
b′ . Finally R sends x′

b′ to S. Now instantiate this protocol with a
two-message OT which is secure according to the previous definition:

1. (a) R computes c = Choose(b), and sends c to S.
(b) S computes t = Transfer(c, x0, x1) and sends it to R.
(c) R retrieves xb = Retrieve(t).

2. (a) R computes c′ = Choose(b′), and sends c′ to S.
(b) S computes t′ = Transfer(c′, x′

0, x
′
1) and sends it to R.

(c) R retrieves x′
b′ = Retrieve(t′).

3. R sends x′
b′ to S.

1 Note that this is the only possible order of the messages. If we build a protocol where
S sends the first message and then R computes xb from this message, then clearly R
can choose to learn both x0 and x1.

Essentially Optimal Universally Composable Oblivious Transfer 321

A cheating S could use the first Choose message in the second Transfer phase,
i.e. he could compute t′ = Transfer(c, x′

0, x
′
1). Therefore, R retrieves x′

b instead
of x′

b′ without noticing it. In the 3rd step, he will send x′
b to S, clearly revealing

information about b, which an ideal implementation would not.
Note that, despite the fact that the protocol presented is an ad-hoc con-

structed counterexample, this vulnerability is actually quite important and has
many consequences: when parties run more OT instances, the receiver cannot be
sure that the Transfer messages contain his choice. A protocol that is not secure
against this attack is the one in [AIR01].

Intuitively this problem arises from the fact that the security of the sender
and the security of the receiver are analyzed separately, and therefore there is
no “link” between the Choose phase and the Transfer phase2. Another common
definition for the security of OT protocols is the half-simulation, as in [NP05]. In
this scenario we usually require strong (simulation) security against the receiver,
but just stand-alone privacy against the sender. Note that this would not protect
against the attack sketched above. This relaxation is usually justified by saying
that the sender is commonly a server or a service provider, and therefore it can
be controlled better or more than the receiver, who represents any user. As the
above example shows, this motivation assumes that the server chooses not to
learn information, which he could in fact learn by deviating only so slightly from
the implementation.3 Under such an assumption (essentially that the server is
at most passively corrupted) things become much simpler. Here we want active
security for both parties.

2.2 Our Protocol

We are going to present the main intuition behind our protocol in 5 steps.

Step 1: OT based on Homomorphic Encryption. Assume an additively homomor-
phic cryptosystem is available, i.e. a cryptosystem that satisfies the following:

2 A way to fix this problem, as some OT protocols do, is to change the structure of
the protocol, allowing Choose to output also a piece of trapdoor information k that
will be later used during the Retrieve phase. In this case, the protocol will be of
the form: (c, k) = Choose(b); t = Transfer(c, x0, x1); xb = Retrieve(t, k). We prefer,
instead of fixing just this problem, to develop our protocol in the UC framework,
for it provides us stronger guarantees. In particular, UC security protects against ill
effects of composition as those described above, while still allowing us to analyze the
protocol in isolation.

3 This motivation is also not so strong given that in several applications the role of
the sender and the receiver can be swapped. Moreover, in some applications like
authentication, it is the server that plays the role of the receiver, while the user
plays the role of the sender. This could in principle be handled by using that OT is
symmetric: an OT from S to R can be turned into an OT from R to S without further
assumptions. This transformation however, adds another round of communication,
and it always produces a one-bit OT. For applications where two-round OT or string-
OT is needed, “turning the OT around” is therefore not a practical solution.

322 I. Damg̊ard, J.B. Nielsen, and C. Orlandi

D(E(x)E(y)) = x + y, where E, D represent the encryption and the decryption
functions4. Then the following is a simple OT construction, if the parties are
semi-honest:

Choose: The receiver encrypts c1 = E(b) and sends it to the sender.
Transfer: The sender computes c0 = E(1)c−1

1 = E(1 − b) and d = cx0
0 cx1

1 and
sends d it to the receiver.

Retrieve: The receiver decrypts xb = D(d).

The idea is that the receiver lets (c0, c1) be an encryption of the vector (1, 0), if
he wants to get the first secret or (0, 1), if he wants the second one. The sender
computes, exploiting the homomorphic property: cx0

0 cx1
1 =E((1−b)x0+bx1)=E(xb).

Step 2: Managing a Malicious Receiver. The protocol is intuitively correct and
private, if both parties follow the protocol. However, in the case of malicious
adversaries there are many evident security flaws. First of all, if the receiver is
not honest, he could send an encryption of b �∈ {0, 1}. If for instance he sends
an encryption of b = 2, at the end of the protocol he will get 2x1 − x0, which
leaks both x0 and x1 if they are bits. Therefore the receiver has to prove that
the message is well formed, by using a NIWI proof.

Step 3: Managing a Malicious Sender. A sender, even behaving maliciously,
cannot break the privacy of the receiver without breaking the security of the
underlying encryption scheme. In fact, he just sees a ciphertext. The receiver,
however, has no way to check if the sender is inputting a “fresh” ciphertext,
obtained through the expected computation, or just a chosen ciphertext that
came from somewhere else. The actual problem is that we do not check if the
sender knows what he is inputting or not, and so the output may not even depend
at all on the Choose message. This kind of problem does not allow the sender
to learn more than what he is supposed to in a single execution of the protocol.
But, as described in Section 2.1, if more than one instance of the protocol is
run, the loss of security is dramatic. Therefore, we have to ask also the sender
to prove that the message is well formed, using a NIWI proof.

Step 4: Achieving UC. To achieve UC we need to be able to simulate the view of
the parties in the real protocol, by having access just to the ideal functionality. It
is well known that it is impossible to achieve UC OT in the plain model [CF01],
and therefore we will assume to have access to a KR authority [BCNP04]. The
protocol then consists of two phases. In the registration phase the receiver once
and for all registers an encryption key ek at the KR and proves that he knows the
corresponding decryption key dk. In the communication phase the parties then
perform the actual OTs using the encryption scheme E = Eek. In the simulation
it is the simulator who simulates the KR authority, which allows it to extract the
decryption key dk known by the receiver. This allows the simulator to compute
from c1 the choice bit used by a corrupted receiver.
4 Note that by repeating this operation we can also achieve that D(E(x)a) = ax.

Essentially Optimal Universally Composable Oblivious Transfer 323

In the case of a malicious sender things are more difficult. In fact, to be able to
simulate, we need to extract both x0, x1 from the message d. But a well formed
d contains no information at all about one of the two secrets. To deal with this
we need the receiver to register another key ck with the KR, where ck is a public
key for a commitment scheme. Then the sender commits to x0 and x1 under ck
and gives a NIWI proof that the commitments indeed contain messages used
to compute the reply d from c0, c1. By using a perfectly hiding commitment
scheme, the receiver will not be able to learn anything from these commitments
in the real protocol. In the simulation we will, however, let the simulator cheat
and use an extractable commitment scheme, which allows it to extract x0 and
x1 from the commitments.

Step 5: The Final Protocol. The UC functionality we want to implement is:

Choose: R inputs (choose, otid, b) to the ideal functionality, where otid must
be a fresh OT identifier.

Transfer: The ideal functionality outputs (chosen, otid) to S. S can then any
number of times input a message of the form (transfer, otid, x0, x1) into
the ideal functionality.

Retrieve: Each time the ideal functionality outputs (retrieve, S, otid, xb) to R.

This ideal functionality slightly generalizes the standard one in that S can trans-
fer several times using the same Choose message from R. This e.g. allows OT
of longer strings efficiently. Collecting the above five steps we get the following
protocol:

Key-Registration: R registers an encryption key ek and a commitment key ck
and proves that he knows the decryption key dk (corresponding to ek), and
that ck is a key for a perfect hiding commitment scheme. If so, the public
keys ek and ck are given to S.

Choose: R gets his selection bit b. He encrypts c1 = Eek(b). He computes a NIWI
proof πchoose that c1 contains either 0 or 1, and sends (c1, πchoose) to S.

Transfer: S gets his two inputs x0, x1. He gets c1, πchoose and he aborts if
πchoose is invalid. If not, he computes c0 = E(1)c−1

1 and d = cx0
0 cx1

1 . Then
he computes C0 = Commck(x0), C1 = Commck(x1). He finally computes a
NIWI πtransfer that proves that d is computed correctly from c1 and the
values inside the commitments C0, C1. He sends everything to R.

Retrieve: R gets d, C0, C1, πtransfer and he aborts if the check on πtransfer

fails. If not, he decrypts Ddk(d) = xb and outputs it.

There are a number of technical issues which we solved to make the above
approach work: The “encryption scheme” used is in fact a mixed commitment
scheme, that is built on top of Boneh, Boyen and Shacham [BBS04] cryptosys-
tem. Next, this mixed commitment scheme has no efficient decryption, i.e. the
receiver gets an element of the form gxb , with the message xb that the sender
inputs in the OT. We will therefore start with the description of a bit OT pro-
tocol, where this is clearly not an issue. If we want to transmit more data, we

324 I. Damg̊ard, J.B. Nielsen, and C. Orlandi

can think of our protocol as a random OT, where the sender picks x0 and x1

at random and the receiver receives K0 = gx0 or K1 = gx1 . Even though the
sender cannot choose K0 and K1 as he desires, he can compute them on his
side. Together with the second message the sender then sends EK0(m0) and
EK1(m1), where (m0, m1) are the actual messages of the OT and EKb

(mb) is an
encryption of mb under the key Kb. In this way we avoid the discrete logarithm
problem. Another issue is that the NIWI proofs from [GOS06, GS08] work in
the CRS model, while we prefer to put ourselves in the KR model to have just
one party trust the setup. We deal with this by noting that the NIWI proofs
can be instantiated with either perfect soundness or perfect WI, depending on
how the CRS is created. We let R register two CRSs, one of each flavor, as part
of his public key. When R proves, he uses the scheme with perfect soundness.
When S proves, he uses the scheme with perfect witness indistinguishable.

3 Preliminaries

3.1 Pairing-Based Cryptography

In the last years pairing-based cryptography gained more and more interest.
Since its introduction in [Jou00]5, pairings were used in several applications and
allowed to achieve strong goals, like IBE [BF01].

In pairing-based cryptography we can define bilinear maps between groups of
points on elliptic curves as follows:

Definition 1. Let G, G1, be two multiplicative cyclic groups of finite order n,
and let g be a generator for G. Then we say that e : G × G → G1 is a bilinear
map if:

Bilinear: e is bilinear, i.e., for all x, y ∈ G, a, b ∈ Z we have that e(xa, yb) =
e(x, y)ab.

Non-Degenerate: For all x ∈ G, x �= 1, e(x, x) generates G1.
Computable: For all x, y ∈ G, the pairing e(x, y) can be computed efficiently.

There are several computational assumptions in the world of pairing-based cryp-
tography. In this paper we will reduce the security of our protocol to the following:

Definition 2 (Decisional Linear (DLIN) Assumption [BBS04]). Let
G, G1 be groups of prime order p with a bilinear map e as defined above. The de-
cisional linear assumption states that given three random generators f, h, g and
f r, hs, gt, it is hard to distinguish the case t = r + s from a random t.

3.2 Universally Composable Security Framework

If we want to prove that a protocol is secure, we first need to define what se-
cure means. The universally composable security framework, defined by Canetti
5 In fact, pairings were used even before in cryptography, in order to break the discrete

logarithm problem (the MOV attack [MOV93]).

Essentially Optimal Universally Composable Oblivious Transfer 325

[Can01], is becoming a standard definition if one wants proper security guaran-
tees. The strength of this framework relies in the universally composable theo-
rem, which states that if a protocol is secure in the UC model, then this protocol
will preserve the same security even if composed with an arbitrary number of
copies of itself or with other protocols.

The price to pay for such a result is the impossibility of constructing any non-
trivial protocol that is secure in the UC model6. In order to develop interesting
protocols in the UC model we need some kind of setup assumptions. We put
ourselves in the key registration authority scenario, first introduced in [BCNP04].
In this model, that has the flavor of a public-key infrastructure, we assume that
there exists a trusted registration authority where parties can register public
keys associated with their identities, while demonstrating that they have access
to the corresponding secret keys. Alternatively, parties can let the authority
choose public keys for them, in scenarios where the corresponding secret keys
need not be revealed, even to the owners of the public keys. Then, parties can
query the authority for a party identity and obtain the registered public key for
that identity. Any ideal functionality can be UC realized by interactive protocols
in the KR model under standard computational hardness assumptions.

An advantage of the KR assumption, in respect to other setup assumptions
like the common reference string model, is that it is trivial to ensure that all trust
is not concentrated in one single entity. Namely, the receiver can register his key
to several KRs, and the sender retrieves it from all of them. Now the sender only
has to trust that one of the KRs does its job properly to be convinced that the
receiver knows its secret key. A full comparison of the KR model against the
CRS model is out of the scope of this paper, and we refer to [BCNP04] for more
details.

There are several ways to implement a KR in the real world. In particular, as
discussed in [BCNP04], it is possible to implement it with a stand-alone zero-
knowledge proof of knowledge, if we have the guarantee that the proofs are run
in a isolated trusted environment — maybe the registrant shows up at the KR
with the prover on a smartcard, and then the KR runs the smartcard in an
isolated setting. If perfect isolation is not available, it is still possible to run an
UC setup in the case of partial isolation [DNW08], where the parties are allowed
to communicate with the environment, but just a limited amount of data.

We note that our protocol has gracefully degradation, as defined in [BCNP04]:
if the proof of secret key given by the receiver is not UC (maybe because the
assumption that the proof was running in an isolated setting failed), but it is at
least a stand-alone proof of knowledge, then our OT protocol too will be a stand-
alone secure implementation (of the multi-OT functionality) — the simulator will
rewind the stand-alone proof of knowledge from the receiver to get the secret key,
and then proceed as the UC simulator for all the OTs. Even if the proof fails to be
just a stand-alone proof of knowledge, but it is at least a proof of membership, we
will have some security, as the key being well-formed gives unconditional security
for the sender, though without any composition guarantees. The implementation

6 Actually, it is possible to implement symmetric protocols like secure channels [CK02].

326 I. Damg̊ard, J.B. Nielsen, and C. Orlandi

therefore in some sense delivers the best possible security level given the quality
of the trusted setup.

4 Underlying Primitives

4.1 Mixed Commitment Scheme

We use a special kind of commitment called mixed commitment [DN02], which
is a commitment scheme that can be instantiated with two kinds of key, giving
two kinds of security. The first kind is perfectly binding and extractable, while
the second is perfectly hiding and equivocal. A key which produces perfectly
binding commitments will be called an extraction key (X-key) while a key that
produces perfectly hiding commitments will be called an equivocal key (E-key).
These two kinds of keys have to be computationally indistinguishable, in order
for the commitment scheme to be called mixed.

We note that if we always instantiate the commitment scheme with X-keys,
we end up with a commitment scheme that allows extraction, i.e. a public-key
encryption scheme, where some keys (the E-keys) ensure that the “ciphertexts”
contain no information about the plaintexts. We use this as an essential ingre-
dient in our construction.

DLIN based Encryption Scheme. When we build our mixed commitment scheme,
we start from the DLIN based cryptosystem from Boneh, Boyen and Shacham
[BBS04], described now.

Let G be an algorithm that takes a security parameter as input and outputs
(p, G, G1, e, g) such that p is prime, G, G1 are descriptions of groups of order p,
e : G×G → G1 is an admissible bilinear map, and g is a generator of G. Those
are the public parameters of the cryptosystem that works as follows:

Key Generation: Select x, y randomly in Z∗
p, then compute (f, h) = (gx, gy).

The encryption key is ek = (f, h) and the decryption key is dk = (x, y).
Encryption: To encrypt a message M ∈ G, select two random values r, s ∈ Z∗

p.
Then compute the encryption as Eek(M ; r, s) = (α, β, γ) = (f r, hs, gr+sM).

Decryption: The message can be efficiently decrypted as Ddk(α, β, γ) = M =
α−1/xβ−1/yγ.

This encryption scheme is clearly IND-CPA secure under the DLIN assumption.
Note that until now we did not use the pairing at all. The pairing will be used
to prove statements about encryptions.

Mixed Commitment Scheme. We now describe the mixed commitment scheme.
This is the commitment scheme under which the sender commits to x0 and x1

(under an E-key), and when instantiated with an X-key, it is the encryption
scheme used by the receiver to encrypt b. This is an essential trick, as it will
make commitments and encryptions work together nicely.

The keys for the commitment scheme are going to be the ciphertexts of DLIN
cryptosystem. I.e., a commitment key is of the form ck = Eek(M ; r, s). A com-
mitment to m ∈ Zp is then of the form

Essentially Optimal Universally Composable Oblivious Transfer 327

Commek,ck(m; t, u) = ckmEek(1; t, u) .

This is clearly homomorphic in the sense that

Eek(M0; t0, u0)Eek(M1; t1, u1) = Eek(M0M1; t0 + t1, u0 + u1) .

The basic idea of the mixed commitment scheme is then that if ck is an
encryption of 1, then it follows that ckmEek(1; t, u) is a random encryption of
1. And, it is possible to efficiently open this commitment to any m given t and
u and the randomness used to compute ck. On the other hand, if ck is the
encryption of a generator (say g), then

ckmEek(1; t, u)

is a random encryption of gm, and it is therefore perfectly binding. In addition, it
is possible to extract gm from the commitment if the decryption key dk is known.
Thanks to the properties of the cryptosystem, it is computationally infeasible
to decide whether ck is an encryption of 1 or g, which is why it is a mixed
commitment scheme.

This leads to the construction of our scheme as follows:

General key generation: There is a key pair (ek, dk), where ek = (g, f, h) =
(g, gx, gy) is an encryption key and dk = (x, y) the decryption key. A full
public key for the system is of the form (ek, ck), where ck is an encryption
under ek.

Extraction key (X-key): For an X commitment key we have ck = ckX =
Eek(g; r, s) = (f r, hs, gr+s+1), where r and s are random. We will denote
by ckX ← KGX the algorithm that produces an X-key, and we use KX to
denote the set of X-keys. The extraction trapdoor is tX = dk.

Equivocal key (E-key): For an E commitment key we have ck = ckE =
Eek(1; r, s) = (f r, hs, gr+s), where r and s are random and tE = (r, s) is
the equivocation trapdoor. We will denote by ckE ← KGE(r, s) the algo-
rithm that produces an E-key, and we use KE to denote the set of E-keys.

Committing: To commit to a message m ∈ Zp under the general key ek and the
commitment key ck, select t, u ∈R Z∗

p, and compute Commek,ck(m; t, u) =
ckmEek(1; t, u).

Opening: To open a commitment C, the committer releases (m, t, u). The re-
ceiver checks that C = ckmEek(1; t, u).

The general secret key dk allows to efficiently determine if the commitment
key ck is an X-key or an E-key, otherwise, they will be indistinguishable from the
properties of DLIN cryptosystem. Note that this commitment is homomorphic
with respect to addition.

It is clear that the E-keys produce perfectly hiding commitments and that the
X-keys produce perfectly binding commitments. Here is how equivocation and
extraction work:

328 I. Damg̊ard, J.B. Nielsen, and C. Orlandi

Equivocation: A random commitment to m under an E-key ck ∈ KE is of the
form

Commek,ck(m; t, u) = ckmEek(1; t, u)

= (fr, hs, gr+s)m(f t, hu, gt+u) = (frm+t, hsm+u, grm+sm+t+u)

for uniformly random t and u. Given any m′ and letting t′ = r(m −m′) + t
and u′ = s(m−m′) + u, it follows that t′ and u′ are uniformly random and
that

Commek,ck(m′; t′, u′) = (f rm′+t′ , hsm′+u′
, grm′+sm′+t′+u′

)

=(f rm+t, hsm+u, grm+sm+t+u)=Commek,ck(m; t, u) .

I.e., given the randomness used to compute Commek,ck(m; t, u) and the
equivocation trapdoor tE = (r, s) of ck, one can open Commek,ck(m; t, u)
to any value.

Extraction: For ck ∈ KX and c = Commek,ck(m; t, u) = ckmEek(1; t, u) we
have that Ddk(c) = Ddk(ck)m ·Ddk(Eek(1; t, u)) = gm, from which m can be
retrieved by exhaustive searching, if it is from a small known set.

Note that the extraction has a limit on the size of m that can be extracted. In
our first construction, our message set will be just {0, 1} when we need extraction
of m. In our second construction we consider K = gm to be a key and m just a
value used to generate the key. In that case we can extract the key K for any m.

4.2 Efficient NIWI Proofs

Both during the Choose and the Transfer phase we need some non-interactive
(NI) proofs. It turns out that these proofs do not have to be fully zero-knowledge.
It is sufficient that they are witness indistinguishable (WI). Still, using standard
WI proofs will result in increasing dramatically the number of rounds of the
protocol. But also general NIWI proofs, even without increasing the number of
rounds, will let the protocol be impractical. We use instead new NIWI construc-
tions [GOS06, GS08] which allow to prove algebraic relations in bilinear groups.
In particular, we use the following WI proofs:

Proof of Bit: In [GOS06] a composable NIWI to prove that the content of
a commitment is either 0 or 1 is given. We will denote with π0∨1(c)
the proof for the following relations: Rbit = {((ek, ck, c), (m, t, u))|c =
Commek,ck(m; t, u) ∧m ∈ {0, 1}}. The proof consists of 6 group elements.

Proof of Multi-Exponent: In [GS08] a composable NIWI to prove the rela-
tion between the content of a number of commitments and the exponents
of a multi-exponentiation is given. The proof consists of 2 group elements.
We use it for 3 exponents and denote with πMX(c, g1, g2, g3, C1, C2, C3) the
proof for the following relations:

RMX = {((ek, ck, c, g1, g2, g3, C1, C2, C3), (x1, x2, x3, t1, t2, t3, u1, u2, u3))|
c = gx1

1 gx2
2 gx3

3 , ∀i = 1, 2, 3 : Ci = Commek,ck(xi; ti, ui)} .

Essentially Optimal Universally Composable Oblivious Transfer 329

All the proofs are for the CRS model, where the proof assumes that a random
common reference string crs has been honestly generated and it is known by the
prover and the verifier. More precisely crs is sampled as crs ← CRS(rcrs) for a
poly-time algorithm CRS and uniformly random rcrs. In fact, there exist two dif-
ferent such generators CRSS and CRSZ . When crs is generated by CRSS , then
the proofs have perfect soundness and computational WI (under DLIN). When
crs is generated by CRSZ , then the proofs are perfect WI and computationally
sound (under DLIN). The outputs of the two generators are in addition compu-
tationally indistinguishable. We can exploit this to avoid the CRS model at all.
We let the receiver generate two common reference strings crsS = CRSS(rcrs,S)
and crsZ = CRSZ(rcrs,Z) and use the KR authority to verify that crsS and
crsZ were generated in this way. Then the proofs from the sender to the receiver
are done under crsZ , and the sender is guaranteed WI even if crsZ was not gen-
erated at random, as the WI is perfect. Proofs from the receiver to the sender
are done under crsS , and the sender is guaranteed soundness even if crsS was
not generated at random, as the soundness is perfect.

5 Final Protocol

Since the mixed commitment scheme that we use does not have efficient extrac-
tion for arbitrary messages, we at first use it to construct bit OT. Later, we are
discussing how to achieve string OT.

5.1 Parameter Agreement

We assume that all parties agree on the finite groups underlying the encryption
scheme. In practice this would probably happen by the groups being described
in some standard and hard-coded into the software for the OT module. In the
UC model we model it using an ideal functionality which simply outputs a
description of the groups to all parties. This ideal functionality can be thought
of as the standardization body, and be activated with a message (get groups).
It generates a DLIN group by running (p, G, G1, e, g) ← G(1k), and outputs
param = (p, G, G1, e, g) to all parties.

5.2 Key Registration Authority

Next we describe the registration phase. In the registration phase all parties
which later want to act as receivers have to register a public key with a KR
authority and prove knowledge of the corresponding secret key. Later all parties
which want to act as senders can retrieve the public keys of the receivers from
KR. Following [BCNP04] we model this simplistically by having one KR, by
letting the registrants show knowledge of their secret keys by showing them
directly to the KR and letting the KR broadcast the corresponding public keys.

In more detail, the KR is parametrized by some poly-time relation R and ac-
cepts messages of the form (register, pid, pk, sk) from some party Pi. It checks
that (pk, sk) ∈ R and if so sends (Pi, pk) to all parties. The relation R is chosen

330 I. Damg̊ard, J.B. Nielsen, and C. Orlandi

such that (pk, sk) being in R ensures that pk is a well-formed public key and
that sk is the secret key.

In our protocol we use a public key of the form pk = (param, ek, ckX , ckE ,
crsZ , crsS), where param = (p, G, G1, e, g) and ek = (f, h), and we use a secret
key of the form sk = (dk, rX , tE , rcrs,Z , rcrs,S), where dk = (x, y). The relation
R checks that f = gx, h = gy, ckX = KGX(rX), ckE = KGE(tE), crsZ =
CRSZ(rcrs,Z) and crsS = CRSS(rcrs,S). I.e., it checks that ek is a well-formed
public key for DLIN cryptosystem (and that the receiver knows the decryption
key) and that ckX is an X-key for our mixed commitment scheme and that ckE

is an E-key for our mixed commitment scheme (and that the receiver knows the
equivocation trapdoor) and that crsZ is a well-formed common reference string
for the NIWI system giving perfect WI (and that the receiver knows how to
simulate proofs), and that crsS is a well-formed common reference string for the
NIWI system giving perfect soundness.

The receiver Pi lets param be the public parameters agreed upon by all par-
ties, and he generates ek, ckX , ckE , crsZ and crsS at random, thereby learning
the sk expected by KR. After key registration the receiver deletes rX , tE , rcrs,S

and rcrs,Z , as they are not needed in the protocol, and constitute a security
risk if leaked. When the sender receives (Pi, (param′, ek, ckX , ckE , crsZ , crsS))
he checks that param′ is equal to the parameters param agreed upon earlier. If
so, he remembers that the public key of receiver Pi is (ek, ckX , ckE , crsZ , crsS).

5.3 1-Out-of-2 Bit Oblivious Transfer

We now describe the communication phase. Here the parties can perform an
unbounded number of OTs using the established PKI.

Choose: The receiver is given a bit b and an OT identifier otid. He computes
a commitment c1 = (α1, β1, γ1) = Commek,ckX (b). He sends otid, c1 to the
sender. He also sends π0∨1(c1), computed under crsS .

Transfer: The sender is given two secrets x0, x1 and otid. He waits for a
message of the form otid, c1, π0∨1 from the receiver and checks the re-
ceiver’s proofs and, if he accepts, he computes and sends to the re-
ceiver otid, d = cx0

0 cx1
1 Eek(1; r, s) with r and s chosen at random and

with c0 = (α0, β0, γ0) = Eek(1)c−1
1 .7 Note that when the sender

is honest, then d = (α, β, γ) = (αx0
0 αx1

1 f r, βx0
0 βx1

1 hs, γx0
0 γx1

1 gr+s).
In addition, the sender sends commitments C0 ← Commek,ckE (x0),
C1 ← Commek,ckE (x1), C2 ← Commek,ckE (r), C3 ← Commek,ckE (s),
and proofs πMX(α, α0, α1, f, C0, C1, C2), πMX(β, β0, β1, h, C0, C1, C3) and
πMX(γ, γ0, γ1, g, C0, C1, C2C3), to prove that C0, C1, C2, C3 commit to values
x0, x1, r, s used to compute d. The NIWI proofs are performed under crsZ .

Retrieve: The receiver checks the proofs, and, if he accepts, he extracts d using
dk and obtains gxb = Ddk(d). If gxb = 1 he outputs 0, otherwise he outputs 1.

7 Here Eek(1) is some fixed encryption of 1 so that also R can compute c0. This just
saves the sending of c0.

Essentially Optimal Universally Composable Oblivious Transfer 331

The protocol sends the 6 commitments c1, d, C0, C1, C2, C3, each consisting of
3 group elements. Besides this a proof of size 6 is sent and 3 proofs of size 2 are
sent, for a total of 30 group elements.

Theorem 1. Under the assumption that the DLIN problem is hard, the protocol
in Section 5.3 securely realizes FOT in the UC-hybrid model for static corrup-
tions.

Proof: As we deal with static security, the adversary needs to choose which party
to corrupt before the protocol starts. We can therefore address the case of the
malicious sender and the malicious receiver separately.

Security Against Malicious Receiver: The simulator runs the KR phase. If any
of the keys registered by a corrupted receiver are not well formed, it ignores the
registration, as would the real KR. Otherwise, it extracts from the receiver the
secret key (dk, rX , tE , rcrs,Z , rcrs,S).

In the communication phase, when it receives a message otid, c1, π0∨1 from a
corrupted receiver, it checks for the proof to be valid. If yes, it extracts gb =
Ddk(c1). If gb = 1, it inputs 0 to the ideal functionality on behalf of the corrupted
receiver. Otherwise it inputs 1. If the proofs fail, the simulator just ignores the
message.

When the simulator is given xb by the ideal functionality it behaves like an
honest sender, after choosing a random x′

1−b.
This transfer message is perfectly indistinguishable from a protocol one. In fact

d will be exactly the same compared to a real protocol run, being an encryption
of the same message xb. All the commitments C0, C1, C2, C3 have the same
distribution, as ckE is an E-key. The three proofs sent by the sender have the
same distribution, as the proofs are perfect WI when performed under crsZ

— in fact the receiver could have simulated the proofs himself. Note that no
complexity assumption is required here, so the simulation is perfect against a
malicious receiver.

Security Against Malicious Sender: The simulator runs the KR phase. For all
honest receivers it uses a random key (ek, ckX , ckE , crsZ , crsS), where ckX is a
random E-key, ckE is a random X-key, crsZ is generated using CRSS , and crsS

is generated using CRSZ . These four are indistinguishable for the corrupted
sender as E-keys and X-keys are indistinguishable and the output distributions
of CRSZ and CRSS are indistinguishable if DLIN is hard.

In the communication phase, when it has to send a Choose message for some
otid from the honest receiver to a corrupted sender, it does not know the real
choice bit b. Instead it uses b′ = 0.

When it receives otid, d, C0, C1, C2, C3 from the corrupted sender, along with
the three proofs, it checks the proofs as in the protocol. If the proofs are valid,
it extracts gx0 = Ddk(C1) and gx1 = Ddk(C2), and recovers x0, x1 by letting
xi = 0 if gxi = 1 and xi = 1 otherwise, with i = 0, 1. Then it inputs them to the
ideal functionality on behalf of the corrupted sender. Otherwise, it just ignores
the message.

332 I. Damg̊ard, J.B. Nielsen, and C. Orlandi

The Hybrid Argument. The above just sketches the simulator. Showing that the
simulation with this simulator is indistinguishable from the real execution is as
usual done using a hybrid argument.

That the simulation for a malicious receiver is perfect was already argued
above. We therefore focus on the case of a malicious sender. We here sketch the
sequence of hybrids used to go from the simulation to the real protocol.

In the first step the only change is to use b′ = b instead of b′ = 0. Here b
is the real choice bit, which is obtained by inspecting the ideal functionality —
this the simulator cannot do, but we can do it as a mind spiel to define a hybrid
distribution. Note that this step actually does not change the distribution as
ckX is an E-key in the simulation and the distribution of c1 therefore does not
depend on b′ at all — it can be opened to both 0 and 1. Furthermore, the proof
is perfect WI when crsS is generated using CRSZ , and the distribution of the
proof therefore does not depend on which opening of c1 is used.

In the second step we change ckX to be a random X-key instead of a random
E-key and generate crsS using CRSS . This change is indistinguishable to the
corrupted parties as dk is kept secret by the honest receiver and the output
distributions of CRSS and CRSZ are computationally indistinguishable if DLIN
is hard. Note that after these two steps, the messages c1, π0∨1 have the same
distribution as in the real protocol.

In the third step, the simulator computes the output xb of the receiver, not
by extracting x0 and x1 from C1 and C2 and inputting (x0, x1) to the ideal
functionality (to make it output xb), but by extracting a value x′

b from d and
letting the ideal functionality output x′

b. When both ckE and ckX are X-keys, as
they are at this point in the sequence of hybrids, it is straightforward to verify
that if all three statements proved by the sender are true, it will always hold
that x′

b = xb. Since the NIWI proof system has perfect soundness when crsZ is
generated using CRSS , as it is at this point in the sequence of hybrids, it follows
that the third step actually makes no difference in the distribution.

In the last step ckE is changed to be a random E-key instead of a random
X-key and crsZ is generated using CRSZ . Again this is indistinguishable. Now
the distribution is identical to the real protocol. �

5.4 1-Out-of-2 String Oblivious Transfer

In this section we present a protocol for string OT that is more efficient than
achieving string OT by standard composition of bit OT.

The reason why we cannot just OT an n-bit value is that the receiver will not
be able to decrypt the answer anymore. Recall that the value d sent from S to R is
a commitment of the form Commek,ckX (xb). This allows the receiver to efficiently
compute gxb from d using the decryption key dk, as d is a commitment under
the X-key ckX . The problem is that if we let xb be arbitrary, then computing xb

from gxb cannot be done efficiently.
Our idea is to consider our protocol a random OT, where the sender inputs two

random values x0, x1, and the receiver gets a random group element Kb = gxb .
Let us note that the sender cannot choose the values of K0 and K1, as the discrete

Essentially Optimal Universally Composable Oblivious Transfer 333

logarithm problem is assumed to be hard here. However, he can compute himself
the two elements K0, K1, as he knows g, x0, x1. At the end, S and R share a
random group element, that the sender can use as a key to encrypt his messages
M0, M1, encoded as group elements, i.e. the sender computes and sends X0 =
gx0M0, X1 = gx1M1 to the receiver. The receiver can retrieve Mb = XbK

−1
b .

Since K1−b is a uniformly random group element completely unknown by the
receiver, he gets no information on M1−b. The only price paid is that we send
two more group elements, increasing the total communication up to 32 group
elements.

Though intuitively clear, it remains to verify that the security is maintained.
It turns out that the only non-trivial part is to check that the simulator can
still extract the commitments from a malicious S — recall that ckX is an E-key
in the simulation and that the simulator therefore cannot extract d, but must
extract the commitments given by the malicious S. We focus on this part, and
leave the easier details to the reader.

Recall that e.g. the first component of d, being αx0
0 αx1

1 αr, is accompanied
by three commitments C0 ← Commek,ckE (x0), C1 ← Commek,ckE (x1), C2 ←
Commek,ckE (r) and a proof that they commit to values used to compute the
first component of d. Recall that in the simulation ckE is an X-key. This means
that the simulator can use dk to extract gx0 from C0 and gx1 from C1, which
allows to compute K0 = gx0 and K1 = gx1 , as desired. The proofs therefore,
so to say, do not prove that S knows x0 and x1, but that S knows K0 and K1,
which is sufficient to ensure that he knows M0 and M1.

Acknowledgments

We thank the anonymous reviewers from CRYPTO 2008 for the useful com-
ments.

References

[AIR01] Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell
digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 119–135. Springer, Heidelberg (2001)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004)

[BCNP04] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable pro-
tocols with relaxed set-up assumptions. In: FOCS, pp. 186–195. IEEE Com-
puter Society, Los Alamitos (2004)

[BF01] Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001)

[Can01] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145 (2001)

334 I. Damg̊ard, J.B. Nielsen, and C. Orlandi

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg
(2001)

[CK02] Canetti, R., Krawczyk, H.: Universally composable notions of key exchange
and secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 337–351. Springer, Heidelberg (2002)

[CNS07] Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious trans-
fer. In: Naor [Nao07], pp. 573–590

[DN02] Damg̊ard, I., Nielsen, J.B.: Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidel-
berg (2002)

[DNW08] Damg̊ard, I., Nielsen, J.B., Wichs, D.: Isolated proofs of knowledge and
isolated zero knowledge. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 509–526. Springer, Heidelberg (2008)

[Fis06] Fischlin, M.: Universally composable oblivious transfer in the multi-party
setting. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 332–
349. Springer, Heidelberg (2006)

[Gar04] Garay, J.A.: Efficient and universally composable committed oblivious
transfer and applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951,
pp. 297–316. Springer, Heidelberg (2004)

[GH07] Green, M., Hohenberger, S.: Blind identity-based encryption and simulat-
able oblivious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 265–282. Springer, Heidelberg (2007)

[GH08] Green, M., Hohenberger, S.: Universally composable adaptive oblivious
transfer. In: Pieprzyk, Y. (ed.) ASIACRYPT 2008. LNCS vol. 5350, pp.
179–197. Springer, Heidelberg (2008)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: STOC, pp.
218–229. ACM, New York (1987)

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge
for np. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
339–358. Springer, Heidelberg (2006)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008), http://eprint.iacr.org/2007/155

[Jou00] Joux, A.: A one round protocol for tripartite diffie-hellman. In: Bosma,
W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg
(2000)

[JS07] Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on com-
mitted inputs. In: Naor [Nao07], pp. 97–114

[Kal05] Kalai, Y.T.: Smooth projective hashing and two-message oblivious trans-
fer. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95.
Springer, Heidelberg (2005)

[Lin08] Lindell, A.Y.: Efficient fully-simulatable oblivious transfer. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 52–70. Springer, Heidelberg
(2008), http://eprint.iacr.org/2008/035

[MOV93] Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve loga-
rithms to logarithms in a finite field. IEEE Transactions on Information
Theory 39(5), 1639–1646 (1993)

http://eprint.iacr.org/2007/155
http://eprint.iacr.org/2008/035

Essentially Optimal Universally Composable Oblivious Transfer 335

[Nao07] Naor, M. (ed.): EUROCRYPT 2007. LNCS, vol. 4515. Springer, Heidelberg
(2007)

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp.
448–457 (2001)

[NP05] Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryp-
tology 18(1), 1–35 (2005)

[PVW07] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and
composable oblivious transfer. Cryptology ePrint Archive, Report 2007/348
(2007), http://eprint.iacr.org/

[Rab81] Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Re-
port TR-81, Harvard Aiken Computation Laboratory (1981)

[Wie83] Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)
[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).

In: FOCS, pp. 162–167. IEEE, Los Alamitos (1986)

http://eprint.iacr.org/

Generalized Universal Circuits
for Secure Evaluation of Private Functions

with Application to Data Classification

Ahmad-Reza Sadeghi� and Thomas Schneider��

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. Secure Evaluation of Private Functions (PF-SFE) allows two
parties to compute a private function which is known by one party only
on private data of both. It is known that PF-SFE can be reduced to
Secure Function Evaluation (SFE) of a Universal Circuit (UC). Previous
UC constructions only simulated circuits with gates of d = 2 inputs while
gates with d > 2 inputs were decomposed into many gates with 2 inputs
which is inefficient for large d as the size of UC heavily depends on the
number of gates.

We present generalized UC constructions to efficiently simulate any
circuit with gates of d ≥ 2 inputs having efficient circuit representation.
Our constructions are non-trivial generalizations of previously known UC
constructions.

As application we show how to securely evaluate private functions
such as neural networks (NN) which are increasingly used in commercial
applications. Our provably secure PF-SFE protocol needs only one round
in the semi-honest model (or even no online communication at all using
non-interactive oblivious transfer) and evaluates a generalized UC that
entirely hides the structure of the private NN. This enables applications
like privacy-preserving data classification based on private NNs without
trusted third party while simultaneously protecting user’s data and NN
owner’s intellectual property.

Keywords: universal circuits, secure evaluation of private functions,
neural networks, private data classification, privacy.

1 Introduction

Today, a variety of new business models can be provided as electronic services
where customers post their requests to a remote provider who performs specific
knowledge based operations on their data and provides customers with the re-
sults. Examples are expert systems for heath diagnostics, remote data bases,
multimedia data processing, or data classification tools (e.g., for spam). From

	 The first author was supported by the European Union under FP6 project SPEED.
		 The second author was supported by the European Union under FP7 project CACE.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 336–353, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Generalized UCs for PF-SFE with Application to Data Classification 337

security targets point of view customers may send sensitive and security criti-
cal data and hence require the protection (confidentiality and integrity) of their
data, while the service providers may require the protection of their Intellectual
Property (IP), i.e., their expertise embedded in their system.

Hence, the problem can be formulated as follows: two parties, a service re-
quester R (client) and a service provider P (server), are involved in the compu-
tation of a function f (belonging to P) on data x (input by R) where P should
not obtain any information about x and R should not get any useful information
about f besides the result f(x)1.

For arbitrary functions f , this is tackled by Secure Function Evaluation (SFE)
of Private Functions (PF-SFE). SFE protocols [27,12,14,13,9,5] allow two parties
to securely evaluate a common function on private data. Based on this, PF-SFE
[20,16,10] evaluates a Universal Circuit (UC) [25,10] as common function which is
programmed with the private function f . As UC can be programmed to simulate
any function, it entirely hides f while SFE ensures privacy of data x.

Previous UC constructions can simulate circuits with gates of d = 2 inputs
only. For example, circuits performing arithmetic operations like addition, num-
ber comparison, or multiplication are most efficiently implemented from chains of
d = 3 input gates (full adders, and full comparers). When these types of circuits
need to be simulated with known UC constructions (to hide which arithmetic
operations are performed), the large gates must be decomposed into many d = 2
input gates, e.g., five gates per 3-input gate using Shannon’s expansion theorem:
f(a, b, c) = (c ∧ f(a, b)|c=1) ∨ (c̄ ∧ f(a, b)|c=0)).

To overcome this overhead, we generalize previous UC constructions to d ≥ 2
as non-trivial extensions of previous work together with new constructions that
are especially suited to simulate small circuits. Our constructions are much more
efficient than using the straight-forward solution of evaluating %d/2& known UCs
(where d = 2) in parallel. The overhead of our best Generalized UC (GUC)
construction is by a factor of two smaller than the best known UC construction
for the practical example given in §5.4.

As application of our GUC constructions we show how to securely evaluate
private Neural Networks (NN) where each neuron has d inputs. Amongst oth-
ers, NNs are very useful tools for data classification including pattern/sequence
recognition, and sequential decision making. NNs are increasingly becoming im-
portant for deployment in commercial applications like spam filtering [3], speech
recognition [24], and many more [23] where the “expertise” of the provider is
embedded in NN. Neural networks allow to model any function [7], and are ro-
bust against noise. Previous work [15,17] is based on straight forward use of
homomorphic encryption in multiple rounds that cannot hide NN’s structure
completely and is not provably secure. In contrast we show that our solution (i)
is efficient w.r.t. the size of the circuit needed for a reasonable NN, (ii) requires
no or only one round to evaluate a GUC that (iii) hides the underlying NN and
its topology entirely and (iv) is provably secure in the semi-honest model.

1 Clearly, evaluating f on different inputs xi allows R to learn some information on f .
Thus, P should restrict the maximum number of evaluations of f by other means.

338 A.-R. Sadeghi and T. Schneider

1.1 Related Work

Two-Party Secure Function Evaluation (SFE) protocols [27,12,9] allow two par-
ties to evaluate any function represented as boolean circuit which is known to
both of them on their respective private inputs. All of these protocols are prov-
ably secure against semi-honest adversaries and can be extended to be secure
against malicious adversaries via cut-and-choose [14,13,5]. SFE in semi-honest
model is based on Oblivious Transfer (OT) requiring one round of communi-
cation [19,1,8] or a non-interactive implementation based on an extension of
trusted computing modules [6].

NNs can be represented as boolean circuits - threshold NNs with back-
propagation [21] or evolutionary learning algorithms [18] were implemented in
hardware, but were not considered to be evaluated within SFE protocols yet.

SFE can be extended to private functions (PF-SFE) where the private function
is known to one party only and hidden entirely from the other party. PF-SFE
is reduced to SFE of a Universal Circuit (UC) that is programmed with the
private function and entirely hides its structure [20,16,10]. The SFE protocol of
[9] which allows very efficient evaluation of UCs can also be used to improve
evaluation of GUCs of this paper (by a factor between two- and fourfold).

Currently known UC constructions [25,10] can simulate gates with d = 2
inputs only. Gates with more than two inputs can be simulated by decomposing
them into multiple gates with two inputs.

Oblivious training and evaluation of NNs was studied in the context of Oblivi-
ous Polynomial Evaluation (OPE) [2]. The OPE protocol reduces oblivious poly-
nomial evaluation to OT. Based on this protocol, they show how to train and
evaluate NNs in multiple rounds without hiding the structure of the NN. Non-
linear activation functions are either evaluated using a circuit based SFE protocol
or piece-wise approximated as polynomials evaluated via OPE protocol.

Oblivious NN evaluation using homomorphic encryption [15,17] requires mul-
tiple rounds as well - one per layer of the NN. The protocol allows evaluation of
NNs with several activation functions like threshold or sigmoid function. To hide
the structure of the NN, dummy neurons are introduced but this does not en-
tirely hide the structure (e.g., maximal number of neurons per layer and maximal
number of layers are revealed as outlined in their paper). Also, these protocols
are not provably secure as blinding an additively homomorphic encrypted value
with a randomly chosen factor reveals information on the magnitude of the value.

1.2 Our Contributions

In §4 we present practical Generalized Universal Circuit (GUC) constructions
to efficiently simulate circuits of gates with d ≥ 2 inputs having efficient circuit
representations. Former UCs are restricted to d = 2 and decompose larger gates
into multiple gates with two inputs resulting in much more overhead than our
GUC constructions (cf. Table 1 in §5.4). Our constructions are non-trivial gen-
eralizations of known UC constructions that are special cases of ours for d = 2.

Based on these GUC constructions we present protocols to securely evaluate
private Neural Networks (NN) with activation functions implemented as small

Generalized UCs for PF-SFE with Application to Data Classification 339

circuits (such as threshold function) in §5. Unlike previous work, our proto-
cols are provably secure, need a constant number of rounds (one round in the
semi-honest model or even no online communication at all using non-interactive
OT), hide NN’s structure entirely (besides number of in- and outputs, maximum
degree d and number of neurons k) and are still practical.

1.3 Basic Idea and Outline

A Generalized Universal Circuit (GUC) is a circuit which can be programmed
to simulate an arbitrary circuit that consists of gates with d inputs each. These
gates are required to have an efficient circuit representation which is the case in
our example for neurons in §5 or if the size of their function table 2d is small.

A GUC can be thought of as a kind of processor (here: programmable circuit)
that takes as input some data x and a program pf corresponding to a function
(here: input circuit) and evaluates the program on the data (here: input circuit
on data): UC(pf , x) = f(x). As GUC can be programmed with any function
it does not reveal anything about the function. This allows to evaluate arbi-
trary functions privately. In contrast to previous UC constructions we relax the
restriction that input circuits need to consist of gates of d = 2 inputs only.

In §4 we give different methods to construct GUCs in an iterative (§4.1),
modular (§4.2), or graph based (§4.3) way and compare them in §4.4. Definitions
are given in §2, new building blocks in §3.

As practical application where simulation of d input gates is advantageous, we
show how neural networks (NN), described in §5.1, can be expressed as circuits
consisting of d input gates in §5.2. Their structure can be entirely hidden inside a
GUC which allows secure evaluation of private NNs as shown in §5.3. Finally, we
compare our GUC construction and its application to securely evaluate private
NNs to previously known constructions and protocols in §5.4.

2 Definitions and Preliminaries

The following definitions generalize those of [10] to gates with multiple inputs.
A gate G is the implementation of a boolean function {0, 1}d → {0, 1} with d

inputs and one output. The size of a gate G, denoted by |G|, is the multiple of
function table entries needed to implement the gate w.r.t. a 2 input gate, namely
|G| = 2d−2 (e.g., |B|d=1 = 0.5, |B|d=2 = 1, etc.).

We consider acyclic circuits consisting of connected gates with arbitrary fan-
out, i.e., the output of each gate can be used as input to arbitrary many gates.
Further, each output of circuit C is the output of a gate and not a redirected
input of C. The size of a circuit is the sum of the sizes of its gates. Communication
and computation complexity of SFE protocols is linear in the size of the circuit.

A programmable gate is a gate with an unspecified function table. To program
it, a specific function table with 2d entries for each input combination is given.

To simplify presentation we group gates into functional blocks as follows:
A block Bu

v is a sub-circuit with u inputs in1, .., inu and v outputs out1, .., outv.
Bu

v computes a function fB : {0, 1}u → {0, 1}v that maps the input values to the

340 A.-R. Sadeghi and T. Schneider

output values. For simplicity, we identify Bu
v with fB and write: B(in1, .., inu) =

(out1, .., outv). Blocks consist of connected gates and other sub-blocks. The size
of block B, denoted by |B|, is the sum of the sizes of its sub-elements.

A programmable block is a block consisting of programmable gates or pro-
grammable blocks. It is programmed by programming each of its sub-elements.

A generalized Universal Circuit (GUC) UCk,u,v×d is a programmable block
with u inputs and v outputs that can be programmed (denoted by UCC

k,u,v×d) to
simulate any circuit C with up to u inputs, v outputs and k gates with d inputs,
i.e., ∀(in1, .., inu) ∈ {0, 1}u : UCC

k,u,v×d(in1, .., inu) = C(in1, .., inu).
We use programmable block constructions from [10] with the given number

of in- and outputs and the following informal functionalities (see [10] for exact
definitions and constructions): Y switching block (Y 2

1 programmable as left:
out1 = in1 or right: out1 = in2), X switching block (X2

2 programmable as pass:
(out1, out2) = (in1, in2) or cross: (out1, out2) = (in2, in1)), Su

v selection block
(programmable to select for each of the v outputs any of the u inputs including
duplicates). Their sizes and properties are summarized in Table 3 in §B.

Our constructions use different compositions of wires:
A (single) wire has value either 0 or 1 and is drawn as thin arrow ().

A multi wire W consist of ω wires with fixed ordering. The single wires can
be indexed by W [1], .., W [ω]. The value of W is the unsigned integer value w =∑ω

i=1 2i−1W [i]. Multi wires are drawn as filled thick arrows ().
A bundle consists of wires with irrelevant ordering and no duplicates (no two

wires are the output of the same gate). u× d denotes u bundles of d wires each.
Exact calculations of the sizes of our constructions and building blocks with

all intermediate steps are given in the full version of this paper.2

3 Bundle Blocks for GUC Constructions

The main difference of our efficient GUC constructions compared to previous
UC constructions is to switch bundles of d wires instead of single wires only. To
do this, we construct efficient bundle blocks that are used as the fundamental
building blocks of the GUC constructions described in §4.

Cu
d Choice Block. is a programmable block that can be programmed to choose

from the u inputs a bundle of d distinct values as outputs (without recurrence)
where the order of the outputs does not matter. More formally, given a subset
Γ ⊆ {1, .., u}, |Γ | = d, the choice block computes C(in1, .., inu) = (inγ1 , .., inγd

)
where Γ = {γ1, .., γd} (note, the set equality implies irrelevance of ordering and
no duplicate inputs). Of course the definition of a choice block makes only sense
for u ≥ d as Γ is undefined for u < d.

A simple implementation of a Cu
d choice block, Cu,simple

d , is to use d se-
lection blocks Su−d+1

1 in parallel: outi = Su−d+1
1 (ini, .., inu−d+i); i = 1, .., d,

i.e., the first selection block can be programmed to select any of the inputs

2 The full version of this paper is available at http://eprint.iacr.org/2008/453.

http://eprint.iacr.org/2008/453

Generalized UCs for PF-SFE with Application to Data Classification 341

in1, .., inu−d+1, the second any of in2, .., inu−d+2 and so on. This results in
|Cu,simple

d | = d·|Su−d+1
1 | = du−d2. The equation also holds true for u = d where

the choice block consists of wires only and its size is 0. The straight-forward pro-
gramming algorithm works as follows: sort Γ ascendingly; for i = 1, .., d do: let
k be the smallest element in Γ ; program the i-th selection block to select ink;
remove k from Γ ; next i. Correctness and efficiency are easy to verify.

Alternatively, a choice block, Cu,sublin
d , which is much more efficient for larger

d can be derived as a special case of bundle permutation block described next.

BP
u≥vd
v×d Bundle Permutation Block. is a programmable block that can

be programmed to permute the u inputs to v bundled outputs of d wires each
(without duplicates). We define bundle permutation blocks to have at least as
many inputs as outputs: u ≥ vd. More formally, let S ⊆ 1, .., u; |S| = vd be the
subset of inputs that are chosen as outputs and Φ = (Φ1, .., Φv) be an ordered

partition of S with
v⋃

i=1

Φi = S; |Φi| = d, the block computes BP (in1, .., inu) =

(inϕ1,1 , .., inϕ1,d
, .., inϕv,1 , .., inϕv,d

), with Φi = {ϕi,1, .., ϕi,d}; i = 1, .., v.
Our efficient implementation of BPu≥vd

v×d bundle permutation block is based
on the truncated permutation block construction of [10]. A TPu≥v

v truncated
permutation block is a programmable block that can be programmed to permute
its u ≥ v inputs to its v outputs (u and v need not be equal or powers of two as
in [26]). Remaining u− v inputs are discarded (truncated permutation).

TP u
v block is constructed recursively from two TP

u/2
v/2 sub-blocks and u/2− 1

X switching blocks on top that distribute the inputs to the sub-blocks and
v/2 X switching blocks on bottom to distribute their outputs to the outputs
of TPu

v block as shown in Fig. 1(a). W.l.o.g. we assume u and v are even at
each recursion step (otherwise we introduce an unused dummy input or output
with small overhead). Note, that our construction is upside-down compared to
the original construction of [10] to have the saved X blocks on top instead
(the programming algorithm remains the same using the inverse permutation
instead). This modification implies that our GUC construction M3 in special
case d = 2 is more efficient than the original UC construction of [10].

To obtain an efficient BPu≥vd
v×d bundle permutation block, a TPu≥vd

vd truncated
permutation block is constructed without the lowest log d layers of X switching
blocks which can be replaced with wires as the order within each bundle of
d wires is irrelevant. Hence, |BPu

v×d| = |TPu≥vd
vd | − |X | · log d · dv/2 = (u +

dv) log v +(log d+1)u− 3dv+ 2. An efficient programming algorithm for bundle
permutation blocks can easily be derived from the one given in [10].

Our efficient construction of the bundle permutation block is indeed a gener-
alization of the truncated permutation block of [10] which is a special case for
d = 1 of our construction (BPu≥v

v×1 ≡ TPu≥v
v) with exactly the same size

|BPu≥v
v×1 | = |TPu≥v

v | = (u + v) log v + u− 3v + 2.
By fixing the other parameter v = 1, we obtain a more efficient (sub-linear in

the number of outputs d) construction for choice blocks, Cu,sublin
d := BPu≥d

1×d ≡
Cu

d , with size |Cu,sublin
d | = |BPu≥d

1×d | = (log d + 1)u− 3d + 2.

342 A.-R. Sadeghi and T. Schneider

4 Generalized Universal Circuits

A generalized universal circuit (GUC) UCk,u,v×d is a boolean circuit that can be
programmed to simulate any circuit with u inputs, v outputs and k gates with
d ≥ 2 inputs each. Existing UC constructions [25,10] can simulate gates with two
inputs only and can be seen as a special case of our corresponding generalized
constructions for d = 2. UCk,u,v×d has exactly u inputs and v outputs.

Each d input gate of the simulated circuit is simulated within a gate simulation
block, i.e., a programmable block which can be programmed to simulate the
functionality of the gate and has d inputs and 1 output. Gates are simulated in
topologic order which can be computed efficiently by topologic sorting in O(k).

In the following, we assume that the order of the inputs of a gate simulation
block is irrelevant and no inputs are duplicated. This is the case for gate simu-
lation blocks implemented as a d input programmable gate that is programmed
with the same function table as the simulated d input gate of exponential size
|G| = 2d−2. The entries of the function table can be swapped according to an
arbitrary input ordering and duplicate inputs can easily be eliminated. Also for
gate simulation blocks that implement neurons as a circuit the order of inputs is
irrelevant and duplicate inputs can be eliminated as we will explain in §5. The
irrelevance of the input ordering without duplicates is reflected by bundles of d
wires as input into a gate simulation block.

If the order of inputs of the simulated gates is relevant or duplicate inputs
are needed, the following GUC constructions can be extended by replacing the
bundle blocks from §3 with their corresponding non-bundled counterparts where
the order of outputs does matter at the cost of a small overhead:
Cu,simple

d �→ Su
d , Cu,sublin

d �→ Su≥d
d , BPu≥vd

v×d �→ TPu≥vd
vd .

We stress that the sizes of all building blocks and the GUCs presented in the
remainder of this section only depend on the parameters u, v, k, d but neither on
the input data nor the simulated circuit. Hence, dynamic choice of the smallest
implementation for each building block in so called combined constructions re-
spectively choosing smallest GUC construction reveals nothing about the input
data nor the simulated circuit.

4.1 Iterative GUC Constructions

A simple GUC is constructed iteratively by choosing for the i-th gate simulation
block Gi any of the u inputs of the circuit or the output of a previous gate
simulation block G1, .., Gi−1 with Cu+i−1

d choice block. The v outputs of the
GUC can be selected to be any of the outputs of the k gate simulation blocks
using Sk≥v

v selection block.
Using simple Cu,simple

d choice blocks results in a total size of

|UCI1
k,u,v×d| = 0.5dk2 + (du− d2 − 0.5d + |G|+ 1)k + (k + 3v) log v − 4v + 3

∼ 0.5d · k2 + d · uk.

Generalized UCs for PF-SFE with Application to Data Classification 343

With sub-linear Cu,sublin
d choice blocks instead the construction has size

|UCI2
k,u,v×d| = (0.5 log d + 0.5)k2 + (u log d + u− 0.5 log d− 3d + |G|+ 2.5)k

+ (k + 3v) log v − 4v + 3 ∼ 0.5 log d · k2 + log d · uk.

A combination of both approaches chooses the smallest implementation for each
choice block (simple or sub-linear) dynamically.

|UCI
k,u,v×d| ≤ min(|UCI1

k,u,v×d|, |UCI2
k,u,v×d|).

All iterative GUC constructions are only practical for a small number of simu-
lated gates k and few inputs u.

4.2 Modular GUC Constructions

Another approach to construct a GUC is to separate the inputs and the outputs
from the simulation of the gates. This results in modular GUC constructions
which are a generalization of the modular UC construction of [10]. The modular
GUC is composed out of three programmable blocks as shown in Fig. 1(b).
The generalized Universal Block (UB), Uk×d, simulates the k gates, the input
selection block chooses the corresponding inputs and the output selection block
chooses the outputs of the simulated gates as outputs of the modular GUC. The
construction has size

|UCMi
k,u,v×d| = |Su

dk≥u|+ |UMi
k×d|+ |Sk≥v

v | ∼ 2dk log k + dk log u + |UMi
k×d|.

The overall complexity is determined by the complexity of the generalized UB
Uk×d that only depends on the number of simulated gates k and no longer on
the number of inputs u or outputs v. The generalized UB Uk×d has k bundles
of d inputs where the i-th bundle, indi, .., indi+d−1, can be switched to the i-th
gate simulation block Gi; the output of Gi is connected to outi of Uk×d.

Next, we give different constructions for generalized UBs that can be plugged
into the modular GUC construction. The iterative constructions (generalized
from [22, Section 5.3.1]) grow like d·k2 and log d·k2 and the recursive construction
(generalized from [10]) grows like dk log2 k.

Iterative Generalized Universal Block Construction. An iterative con-
struction for a generalized UB is similar to the iterative GUC construction de-
scribed in §4.1 but without the dependancy on the inputs that are handled
efficiently by the input selection block of the modular GUC construction. For
each gate simulation block Gi, a Cd+i−1

d choice block can be programmed to
choose any of the d wires of the i-th input bundle of the generalized UB and the
i− 1 outputs of the previous gate simulation blocks G1, .., Gi−1 as input to Gi.
Using simple Cu,simple

d choice blocks this results in a total size of

|UM1
k×d| = 0.5dk2 − 0.5dk + k · |G| ∼ 0.5d · k2.

344 A.-R. Sadeghi and T. Schneider

TPu/2
v/2TPu/2

v/2

...

out1, ..., outv

X X

out1 out2 out3 outv-1out4 outv

TPu
v

...

X

inu-1inu

...

...

X

in3 in4in1 in2

in1, ..., inu

X

(a) Truncated Permutation Block

Su

dk≥u

in1, . . . , inu

out1, . . . , outv

k

k×d

UCk,u,v×dGeneralized

Universal

Circuit

Output

Selection

Block

Generalized

Universal

Block

Uk×d

Sk≥v
v

Input

Selection

Block

(b) Modular GUC Construction

Fig. 1. Building blocks for GUCs

With sub-linear Cu,sublin
d choice blocks instead the size is

|UM2
k×d| = (0.5 log d + 0.5)k2 + (d log d− 0.5 log d− 2d + |G|+ 1.5)k

∼ 0.5 log d · k2.

Both modular iterative constructions still grow like k2 but are more efficient
than the iterative GUC constructions from §4.1 for circuits with many inputs
due to the efficient handling of inputs with the input selection block.

Recursive Generalized Universal Block Construction. A generalization
of the recursive UB construction of [10] yields a generalized UB of size

|UM3
k×d| = (0.625d + 0.25)k log2 k + (0.5d log d− 0.625d− 1.25)k log k

+ (|G|+ 3)k − 3 ∼ 0.625dk log2 k.

The detailed description of the construction is in the full version of this pa-
per. Compared to the constructions presented before, the recursive construction
grows like k log2 k instead of k2 which is clearly much slower for larger circuits.

Combined Generalized Universal Block Construction. A combination of
these generalized UB constructions uses the smallest generalized UB implemen-
tation (M1, M2 or M3) dynamically. Dynamic Programming avoids recalculation
of the smallest construction for given parameters by caching it in a table.

|UM
k×d| ≤ min(|UM1

k×d|, |UM2
k×d|, |UM3

k×d|)

4.3 Universal Graph Based GUC Construction

A generalization of Valiant’s UC construction [25] which is based on Universal
Graphs results in a GUC construction of size

|UCUG
k,u,v×d| ∼ 4.75d(2k + u +

v

d− 1
) log k.

Generalized UCs for PF-SFE with Application to Data Classification 345

This GUC construction is asymptotically better than those shown before for
large circuits and is based on the following theorem.

Theorem 1. Each circuit of arbitrary fan-out with v outputs and k gates of
d inputs each can be converted into an equivalent circuit with fan-out ≤ d by
adding at most k + v

d−1 gates.

For lack of space, the detailed description of this construction and the proof of
the theorem are given in §A.

4.4 Comparison of GUC Constructions

The sizes of the different GUC constructions for several practical parameters are
shown in Fig. 4 of §B. Which construction is the smallest (and hence should be
used for least overhead) depends on the parameters d, k, u, and v only. Quadratic
constructions (I1, I2, M1, M2) are suitable for small, whereas recursive construc-
tion (M3) is better for mid-size and universal graph based construction (UG)
for large circuits.

5 Secure Evaluation of Private NNs with GUCs

5.1 Structure of NNs

A neural network (NN) is an acyclic directed graph of several neurons. The
neurons are arranged in multiple layers (Fig. 2) in topologic order. Each neuron
has d input bits, one output bit, internal precision of s bits and is structured
as shown in Fig. 3(a). Each input bit ini of a neuron is multiplied with a s-
bit constant weight wi. The Σ block computes the sum σ of these weighted
inputs. The threshold function τ compares σ with a threshold value t and sets
the output: if σ :=

∑d
i=1 wi · ini < t, then out = 0, else out = 1.

The input neurons of the first layer in the NN have only 1 input with multiple
bits m. They can also be realized with a neuron as shown in Fig. 3(a) by setting
the weights correspondingly.

Neurons fulfill the restrictions for d input gates of §4: Inputs can be permuted
arbitrarily by permuting their weights in the same way. Duplicate inputs into
a neuron with the same source can be merged into one input by adding their
weights. Implementation of neurons presented next guarantees that the weights
of neurons remain hidden from requester and hence these modifications are not
detectable for him.

N

N

N

N

N

N

N

N N

N

Fig. 2. NN with 4 layers of k = 10 neurons with degree d = 3 including u = 3 input
neurons and v = 2 outputs

346 A.-R. Sadeghi and T. Schneider

5.2 Circuit Implementation of Neurons

If the number of inputs d is small, each neuron can be implemented as pro-
grammable d input gate of size |Ngate

d,s | = 2d−2 (for arbitrary activation func-
tion), otherwise as programmable d input block (Fig. 3(a)). The neuron can be
programmed depending on the weights ω1, .., ωd and the threshold value t.

w1

w2

wd

τ
∑

in1

in2

ind

out

Nd,s

(a) Neuron

ADDs+2

ADDs+1

ADDs+1

ADDs+2

ADDs+1

ADDs+1

in1

in2

in3

in4

ind

ind−1

ind−2

ind−3

ADDs+log d out

Σ

(b) Sum

W1

W2

Ws

in

out[1]

out[2]

out[s]

w

(c) Weights

HA

FA

FA

ADDs+1

out[1]

out[2]

out[s]

out[s + 1]

in1[1]

in2[1]

in1[2]

in2[2]

in1[s]

in2[s]

c1

c2

cs

(d) Adder

FC

τ

in[1]

in[2]

in[s + log d]

out

c1

c2

HC

FC

cs

(e) Threshold

Fig. 3. Circuit implementation of a neuron

As before we give directly the total size of the building blocks. Exact calcula-
tions with all intermediate steps are given in the full version of this paper.

The w block multiplies its input bit with constant ω of s bits (Fig. 3(c)). The
bits ω[i], i = 1, .., s, determine the programming of the programmable gate Wi: if
ω[i] = 0, then Wi = 0, else Wi = in. The size is |Wi| = 0.5, |w| = s · |Wi| = 0.5s.

The Σ block sums up the d input values of s bits each to a s + log d bit
value by pairwise adding them in a tree (Fig. 3(b)). An adder ADDs+1 to add
two s bit values to an s + 1 bit value is composed as usual from a half adder
HA and s − 1 full adders FA (Fig. 3(d)). The size is |HA| = 2, |FA| = 4,
|ADDs+1| = 4(s + 1)− 6, |Σ| < 4ds + 2d− 4s + 6.

The τ block compares the s + log d bit input with an s + log d bit constant t
(Fig. 3(e)). The carry ci = 0, i = 1, .., s+log d, tells that the i least significant bits
of in are less than the i least significant bits of t: if ((in mod 2i) < (t mod 2i)),
then ci = 0, else ci = 1. Depending on t[1], the programmable half comparer
block HC is programmed: if t[1] = 0, then HC = 1, else HC = in1. The
remaining bits t[i], i = 2, .., s+logd, determine the program of the programmable

Generalized UCs for PF-SFE with Application to Data Classification 347

full comparer blocks FCi: if t[i] = 0, then FCi = ini∨ci−1, else FCi = ini∧ci−1.
The size is |HC| = 0.5, |FC| = 1, |τ | = s + log d− 0.5.

The total size of a neuron implemented as programmable block is
|Nblock

d,s | < 4.5ds + 2d− 3s + log d + 5.5.

5.3 Protocol for Oblivious Evaluation of NNs Using GUCs

Oblivious evaluation of NNs is reduced to SFE of GUCs similar to the reduc-
tion for PF-SFE [10]. A GUC is programmed to simulate the structure of the
NN. Each gate simulation block G is instantiated with a programmable cir-
cuit for a neuron Nd,s programmed with the coefficients of the neuron it sim-
ulates: UCNN = UCk,u,v×d|G=Nd,s

. Programmed GUC simulates the NN and
entirely hides its structure (besides size and number of inputs and outputs):
∀(in1, .., inu) ∈ {0, 1}u : UCNN (in1, .., inu) = NN(in1, .., inu).

When requester evaluates the programmed UCNN with a SFE protocol, he
learns no more about NN than the maximal number of neurons k, maximal
degree of neurons d, internal precision s, inputs u and outputs v.

The protocol needs one round in the semi-honest model (using interactive OT
such as [19,1,8]) or is non-interactive (using non-interactive OT of [6]). Recall,
the reduction from PF-SFE to SFE using UC (resp. GUC in our case) is non-
cryptographic and the security of the PF-SFE protocol is exactly that of the un-
derlying SFE protocol which is provably secure against semi-honest adversaries
(e.g., [27,12,9]). This can be extended to be provably secure against malicious
adversaries by using correspondingly secure SFE protocols (e.g., [14,13,5]) which
need more than one but still a constant small number of rounds.

5.4 Comparison with Previous Work

We compare our GUC constructions with existing UC constructions before com-
paring our protocol for secure evaluation of NNs with existing protocols. As
example for both comparisons we use the practical NN to classify sonar tar-
gets from [4] for which performance results are given in [15]. However, we use
threshold instead of sigmoid as activation function as performance of [15] is al-
most the same independent of the used activation function. Besides this we use
exactly the same parameters for the neural network, namely u = 60 inputs,
v = 2 outputs, k = 12 hidden neurons with an internal resolution s = 20 (cor-
responding to their quantization factor Q = 10−6). In order to obfuscate the
structure of NN they propose to embed NN into a grid of 5 layers with 15 neu-
rons each. Hence, the in-degree of each neuron is d = 15 while the total number
of neurons is hidden to be less than k = 75. This results in neurons of size
|N | = |Nblock

d=15,s=20| ≤ 1, 330 < |Ngate
d=15,s=20| = 8, 192.

We compare three possible alternatives that protect the internal weights and
thresholds of the neurons and incrementally protect the structure of the NN:

(A) Embed NN into a 5× 15 grid to obfuscate its structure (same as [15]):
evaluate 75 · |N | ≤ 99, 750 gates.

348 A.-R. Sadeghi and T. Schneider

(B) Hide the structure of the NN entirely:
simulate NN of k = 12 neurons (12 · |N | ≤ 15, 960 gates) in GUC
(|UCM1

k=12,u=60,v=2×d=15| ≤ 2, 304 gates, cf. Fig. 4(g) in §B).
(C) Additionally hide the number of neurons to be less than 75:

simulate NN of k = 75 neurons (75 · |N | ≤ 99, 750 gates) in GUC
(|UCM2

k=75,u=60,v=2×d=15| ≤ 27, 371 gates, cf. Fig. 4(h) in §B).

Comparison of GUC Construction. As shown in Table 1, the overhead of
our GUC introduced in case (B) and (C) is very moderate compared to known
UC constructions. Applying UC directly results in an overhead which is by a
factor of > 103 times bigger, while using %d/2& = 8 parallel UCs still is by a
factor of more than two times bigger than our solution.

Table 1. Comparison of UC overhead (in number of gates)

UC Parallel UCs GUC
[25] [10] [25] [10] §4

(B): k = 12 4, 242, 114 5, 556, 431 23, 432 6, 577 2, 304
(C): k = 75 31, 482, 358 47, 478, 158 100, 359 58, 618 27, 371

Comparison of Protocol for Secure Evaluation of NNs. We used Fairplay
SFE system [14] implemented in Java as well without cut and choose step to
evaluate a circuit with u = 60 inputs, v = 2 outputs and the given number of
gates within two processes on a notebook with 2.16 GHz Intel Core 2 processor
and 2 GB memory. As [15] do not specify the exact hardware used (“two mid-
level notebooks, connected on a LAN network”), the results of the comparison
shown in Table 2 are qualitative but not necessarily quantitative:

Unlike the protocol in [15], ours are provably secure and approaches (B) and
(C) hide the structure of NN better than just obfuscating it.

The total amount of communication overhead of [15] is by a factor of at least
10 times better than our solutions, however they need multiple rounds (for each
layer of the NN) whereas our solutions need only one round in the semi-honest
model or even no online-communication at all (using non-interactive OT). On
analyzing the communication complexity separately for server and client we see
that in our solutions the amount of data sent by the client is much smaller than
that of the server and only depends on the number of inputs but not on the size
of NN. The amount of data sent by client is by a factor of five less than that
in [15] (as the client in their symmetric protocol sends approximately half of
the total data). This asymmetry in the communication exactly corresponds to
modern communication networks such as mobile networks or the internet, where
the upstream of the client is much slower than its downstream. Downloading the
maximum amount of 5.4 MB in (C) is realistic for today’s mobile networks.

The total time for executing the protocol of (A) and (C) is almost the same
as that of [15] while (B) is almost three times faster. While in [15] client has
to do only 20% of the work, in our protocols, server and client need approxi-
mately the same amount of computation for creating and evaluating the garbled

Generalized UCs for PF-SFE with Application to Data Classification 349

Table 2. Comparison of protocols for secure evaluation of NNs

Protocol [15] (A) (B) (C)
Level of privacy obfuscate obfuscate hide structure hide structure&size
Provably secure no yes
Communication (Total) 76 kB 4.2 MB 0.79 MB 5.4 MB

Server (send) ≈ 38 kB 4.2 MB 0.78 MB 5.4 MB
Client (send) ≈ 38 kB 7.5 kB

Rounds 5 1 (0)
Computation (Total) 11.7 s 11.3 s 4.0 s 13.4 s

Server 9.3 s ≈ 5.7 s ≈ 2.0 s ≈ 6.7 s
Client 2.4 s ≈ 5.7 s ≈ 2.0 s ≈ 6.7 s

circuit. Online-computation of our server can be avoided almost completely by
constructing the garbled circuit in advance while server is idle. This reduces total
execution time of our protocols by half.

Using [9] as underlying SFE protocol or a high-speed SFE implementation
such as [11] written in C with elliptic curve based OT would further improve
communication and computation complexity of our protocols.

Acknowledgments. We thank Vladimir Kolesnikov and anonymous reviewers
for their helpful comments.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural
learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384.
Springer, Heidelberg (2001)

3. Drewes, R.: An artifical neural network spam classifier (August 2002),
http://www.interstice.com/drewes/cs676/spam-nn/

4. Gorman, R.P., Sejnowski, T.J.: Analysis of hidden units in a layered network
trained to classify sonar targets. Neural Networks 1(1), 75–89 (1988)

5. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computa-
tion against covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 289–306. Springer, Heidelberg (2008)

6. Gunupudi, V., Tate, S.R.: Generalized non-interactive oblivious transfer using
count-limited objects with applications to secure mobile agents. In: Tsudik, G.
(ed.) FC 2008. LNCS, vol. 5143, pp. 98–112. Springer, Heidelberg (2008)

7. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Networks 2(5), 359–366 (1989)

8. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

http://www.interstice.com/drewes/cs676/spam-nn/

350 A.-R. Sadeghi and T. Schneider

9. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

10. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008), http://thomaschneider.de/FairplayPF

11. Lindell, Y., Pinkas, B., Smart, N.: Implementing two-party computation efficiently
with security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Vis-
conti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008)

12. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
Cryptology ePrint Archive, Report 2004/175 (2004)

13. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

14. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: USENIX (2004),
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html

15. Orlandi, C., Piva, A., Barni, M.: Oblivious neural network computing via homomor-
phic encryption. European Journal of Information Systems (EURASIP) 2007(1),
1–10 (2007)

16. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. SIGKDD
Explor. Newsl. 4(2), 12–19 (2002)

17. Piva, A., Caini, M., Bianchi, T., Orlandi, C., Barni, M.: Enhancing privacy in
remote data classification. In: New Approaches for Security, Privacy and Trust in
Complex Environments (SEC 2008) (2008)

18. Plagianakos, V.P., Vrahatis, M.N.: Parallel evolutionary training algorithms for
hardware-friendly neural networks. Natural Computing 1(2-3), 307–322 (2002)

19. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report,
Harward University, Available at Cryptology ePrint Archive, Report 2005/187
(1981)

20. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In:
Proc. 40th IEEE Symp. on Foundations of Comp. Science, FOCS 1999, New York,
pp. 554–566. IEEE, Los Alamitos (1999)

21. Sato, K., Hikawa, H.: Implementation of multilayer neural network with threshold
neurons and its analysis. Artificial Life and Robotics 3(3), 170–175 (1999)

22. Schneider, T.: Practical secure function evaluation. Master’s thesis, University of
Erlangen-Nuremberg (2008), http://thomaschneider.de/theses/da/

23. StatSoft, Inc. STATISTICA Automated Neural Networks (2008),
http://www.statsoft.com/products/stat_nn.html

24. Tebelskis, J.: Speech Recognition using Neural Networks. PhD thesis, School of
Computer Science, Pittsburgh (1995)

25. Valiant, L.G.: Universal circuits (preliminary report). In: STOC 1976, pp. 196–203.
ACM Press, New York (1976)

26. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
27. Yao, A.C.: How to generate and exchange secrets. In: FOCS 1986, Toronto, pp.

162–167. IEEE, Los Alamitos (1986)

http://thomaschneider.de/FairplayPF
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html
http://thomaschneider.de/theses/da/
http://www.statsoft.com/products/stat_nn.html

Generalized UCs for PF-SFE with Application to Data Classification 351

A Universal Graph Based GUC Construction

To construct an asymptotically better UC than the practical constructions pre-
sented before we generalize Valiant’s UC construction [25]. Valiant shows how
to construct a UC by embedding the given circuit into a universal graph Γd(k′)
with |Γd(k′)| ∼ 4.75dk′ log k′, where d is the fan-in and fan-out of the simulated
graph and k′ is the number of simulated nodes. A circuit with u inputs and k
gates having fan-in and fan-out maximum d can be represented as such a simu-
lateable graph with k′ = k + u nodes and embedded into this universal graph.
We generalize Valiant’s construction (that uses d = 2 and can simulate circuits
with gates having 2 inputs only) to a GUC that simulates circuits with arbitrary
fixed in-degree d and arbitrary fan-out of size

|UCUG
k,u,v×d| ∼ 4.75d(2k + u +

v

d− 1
) log k.

The circuit is converted from arbitrary fan-out to a circuit with fan-out at most d
which can be embedded into the universal graph Γd(k′). This is done by replacing
each gate with fan-out x > d by a binary tree of % x

d−1& + 1 gates with fan-out
≤ d. At most e = k + v

d−1 extra gates are needed as described in §A.1. Setting
k′ = k + u + e results in the stated complexity for the generalized Valiant’s UC
construction. By setting d = 2 we obtain exactly the asymptotic complexity of
Valiant’s original UC construction.

A.1 Converting Circuit to Fan-Out ≤ d

As described in §A, a circuit with s gates of arbitrary fan-out and m outputs
can be converted into one having gates with fan-out ≤ d only, by replacing each
gate with fan-out x > d by a binary tree of % x

d−1& + 1 gates with fan-out ≤ d
each.

Theorem 1 in §4.3 gives an upper bound for the maximal number of extra
gates e added which we prove similar to [25, Fact 3.1 and Corollary 3.1]:

Fact: Suppose that a graph G with fan-in d has among the nodes of in-degree
zero, n′ nodes of nonzero out-degree, and amongst the rest v′ nodes of out-degree
zero, fi of out-degree i, i = 1, .., d − 1, and g of out-degree greater than d − 1.
Suppose also that e′ =

∑
(out − degree − d) =

∑
x over the set of nodes with

out-degree greater than d. Then e′ ≤
∑d−1

i=1 (d− i)fi + dv′ − n′.

Proof. The total of the out-degrees must equal the total of the in-degrees. The
former is ≥ n′ +

∑d−1
i=1 (ifi)+ dg + e′, and the latter is ≤ d(v′ +

∑d−1
i=1 fi + g). ��

Corollary: e ≤ k + v
d−1

Proof. Any gate with fan-out x + d, x > 0, can be replaced by a binary tree
with % x

d−1&+ 1 ≤ x
d−1 + 2 gates. Hence for any circuit there is an equivalent one

352 A.-R. Sadeghi and T. Schneider

having fan-out d and at most e ≤ e′
d−1 + g more gates. But the total number of

gates k =
∑d−1

i=1 fi + g + v′ and in any minimal circuit v′ ≤ v. Hence at most

e ≤ e′

d− 1
+ g ≤ d

d− 1
v′ +

d−1∑
i=1

d− i

d− 1
fi + g ≤ s +

d

d− 1
v′ − v′ ≤ k +

v

d− 1

extra gates are needed which completes the proof of the corollary and Theorem 1.
��

B Tables and Figures

Table 3. Programmable switching blocks

Block Name of Block Size Dupli- Or-
cates der

Su
1 [10] Selection u− 1 X X

Su
v [10] Selection (simple) v(u− 1) X X

Su
v≥u [10] Selection (efficient) (u + v) log u + 2v log v − 2u− v + 3 X X

Su≥v
v [10] Selection (efficient) (u + 3v) log v + u− 4v + 3 X X

Su
2u [10] Selection (improved) 6u log u + 3 X X

P u
u [26] Permutation 2u log u− 2u + 2 - X

EP u
v≥u [10] Permutation (expanded) (u + v) log u− 2u + 2 - X

Cu,simple
d (§3) Choice (simple) du− d2 - -

Cu,sublin
d (§3) Choice (sub-linear) (log d + 1)u− 3d + 2 - -

BP u≥vd
v×d (§3) Bundle Permutation (u + dv) log v + (log d + 1)u− 3dv + 2 - -

Generalized UCs for PF-SFE with Application to Data Classification 353

(a) d = 2, u = 1024, v = 1, k = 1 . . . 100 (b) d = 2, u = 1024, v = 1, k = 1 . . . 10000

(c) d = 4, u = 1024, v = 1, k = 1 . . . 100 (d) d = 4, u = 1024, v = 1, k = 1 . . . 10000

(e) d = 16, u = 1024, v = 1, k = 1 . . . 100 (f) d = 16, u = 1024, v = 1, k = 1 . . . 10000

(g) d = 15, u = 60, v = 2, k = 1 . . . 13 (h) d = 15, u = 60, v = 2, k = 1 . . . 75

Fig. 4. Comparison of GUC constructions for different parameters

Proving a Shuffle Using Representations of the
Symmetric Group�

Soojin Cho1 and Manpyo Hong2

1 Department of Mathematics, Ajou University,
San5 Woncheon-Dong, Youngtong-Gu, Suwon, 443-749 Korea

chosj@ajou.ac.kr
2 Department of Information and Computer Engineering, Ajou University

San5 Woncheon-Dong, Youngtong-Gu, Suwon, 443-749 Korea
mphong@ajou.ac.kr

Abstract. Shuffling protocol proposed in Crypto 2005 by Peng et al. is
improved so that the number of communication rounds for the verifica-
tion is reduced. We use an idea of linear representations of the symmetric
group and a property of the incidence matrices of 1-subsets and 2-subsets
of a finite set. The proposed protocol is valid for mix networks imple-
mented with Paillier encryption schemes with which we can apply some
known zero-knowledge proofs following the same line of approaches of
Peng et al. [24]. The overall cost for the verification, if we fully imple-
ment our idea, is more expensive than that of the original protocol by
Peng et al. We, however, can control the level of computation cost for
the verification by using the idea of λ-designs properly.

1 Introduction

Since D. Chaum proposed the scheme of mix-net [3] as a primitive for anonymous
communications, enormous amount of research and great improvement on mix-
net has been made in many different perspectives: New encryption schemes were
employed [23,21,14], weaknesses pointed out through many analyses [27,26,18]
of the early construction of mix-net has produced more advanced and securer
mix networks [21,6]. For many different purposes for anonymity, various systems
were developed; for web services, real time systems were developed [9], and for
mailing services non real time systems like babel, mixmaster and mixminion
were cultivated [5]. Network topology and mixing mechanism are some of other
concerns in constructing mix-nets [4,8]. Measuring the anonymity of mix-nets is
another important fundamental work [29,7].

One of the most important matters at present is on the proof of correctness
of the mix net. Roughly speaking, there are two kinds of proof system of mix-
nets; one is optimistic and the other is verifiable proof system. The correctness

	 This research is supported by Foundation of ubiquitous computing and networking
project(UCN) Project, the Ministry of Knowledge Economy(MKE) 21st Century
Frontier R&D Program in Korea and a result of subproject UCN 08B3-B-30S.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 354–367, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Proving a Shuffle Using Representations of the Symmetric Group 355

of the shuffling of the whole mix-net is verified after the mix-net outputs the
shuffling results in plain texts in optimistic proof system [15], while in verifi-
able proof system each mix server provides proofs of correctness of the shuffling
[25,12,1,16,19,20,24,30].

Techniques of verification for mix-nets vary according to the mix-net imple-
mentation and vice versa. Permutation network is the framework of the verifica-
tion protocol proposed by Abe [1], ElGamal re-encryption scheme and Paillier
re-encryption scheme are used for the proof system of Furukawa-Sako [12] and
Nguyen et al. [20] respectively. A more general scheme than ElGamal is allowed
to apply the verification by Neff [19]. In the proof system by Groth [16], addi-
tively homomorphic re-encryption scheme is necessary. In sender verifiable mix-
net based on ElGamal encryption by Wikström, no re-encryption is needed. In
[25], Peng et al. applied the idea of Abe [1] to design a proof system for mix-nets
employing ElGamal re-encryption system and a very carefully designed proof
system by Peng et al. [24] assumes the additively homomorphic (re-)encryption
schemes. A recent work by Groth and Lu [17] is based on the homomorphic en-
cryption scheme also, in which computational complexity has been dramatically
reduced.

The main concern of this article is on the universally verifiable proof system
of re-encryption mix-nets implemented with Paillier encryption scheme [22] as
the work by Peng et al. was done in the same line: We extend the idea of [24]
for the verification of a shuffle by considering pairs of messages as well as single
messages. This enables us to do the verification in two communication rounds
rather than four rounds as in [24]. Computationally improved protocol is also
suggested using the idea of λ-designs.

1.1 Related Works

In their system of proof, Furukawa-Sako [12] describes an equivalent condition
for a matrix to be a permutation matrix which involves quadratic and cubic
relations among the entries of a given matrix. The proof of the shuffle for ElGa-
mal encryption scheme and Paillier encryption scheme have been implemented
in [12] and [20] respectively.

In [25], Peng et al. restrict the set of available permutations and employ
batch verifications of knowledge to reduce the computational cost of the proof.
Recently, Groth and Lu suggested very efficient schemes extending the idea of
previously known works on the verification [17].

In [24], Peng et al. proposed a very carefully designed, efficient proof system
on mix-nets with additively homomorphic re-encryption scheme: Let E(m, r) be
the encryption of the message m with randomizer r and D(c) be the decryption of
ciphertext c. When c1, c2, . . . , cn is the list of cipher texts a shuffling party receives
from the previous shuffling party, let c′1, c

′
2, . . . , c

′
n be the list of outputs of the

current shuffling party that is supposed to be passed to the next shuffling party.
Then, when N is the modulus of the message space, the basic idea of the proof is
to let the shuffling party do the zero-knowledge proof of the followings; for random
integers si, s

′
i, i = 1, 2, . . . , n, (s)he knows ti, t

′
i, i = 1, 2, . . . , n, such that

356 S. Cho and M. Hong

n∑
i=1

siD(ci) =
n∑

i=1

tiD(c′i) (mod N) , (1)

n∑
i=1

s′iD(ci) =
n∑

i=1

t′iD(c′i) (mod N) , (2)

n∑
i=1

sis
′
iD(ci) =

n∑
i=1

tit
′
iD(c′i) (mod N) . (3)

For the proof of (1), (2) and (3), at least four communication rounds are nec-
essary. The main goal of our work is to reduce the number of rounds in the
same framework of Peng et al. while maintaining the reasonable computational
complexity.

1.2 Motivation and the Outline of Our Work

For a positive integer n, permutations of n objects form a group Sn called sym-
metric groups of order n! . Group representations are representations of group
elements as matrices so that the structure of the given group is preserved. To
represent every permutation in Sn as an n×n permutation matrix as in [12] is a
representation of Sn called defining representation [28]. It is known, in represen-
tation theory of symmetric groups1, that every representation of Sn is isomorphic
to a direct sum of irreducible representations indexed by the partitions2 of n.
From this, extending the work of Furukawa-Sako, we may consider some natu-
ral ways to represent the given permutation as a matrix of various dimensions.
Since the representation Furukawa-Sako used is basically corresponding to the
partition (n−1, 1), we may consider the partition (n−2, 2) as a second simplest
case. The representation of type (n − 2, 2) describes how a given permutation
permutes 2-subsets of {1, 2, . . . , n}, while the one of type (n − 1, 1) is to look
at how the given permutation permutes elements (or 1-subsets) of {1, 2, . . . , n}.
This means that the representation of a permutation of type (n − 2, 2) is an(
n
2

)
×
(
n
2

)
matrix. We somehow expect that this type of (linear) representation

would let us explain non-linear relations that are indispensable to prove that a
given matrix is a permutation matrix in zero-knowledge manner: Furukawa-Sako
[12] used quadratic and cubic relations of the entries of a given matrix, and Peng
et al. used a quadratic relation of the entries of a transformation matrix between
two sets of decrypted messages, that a shuffling party used.

Using the idea explained above, we implement a proof system for a shuffling
with only two communication rounds. We have to pay more computational cost
for the verification in general instead. We, however, can control the level of
computation cost by adopting the idea of λ-designs.
1 The theory of representations of group varies depending on the ground field used.

We, however, do not take this issue seriously, since in our case, n can be assumed to
be relatively prime to the modulus in use.

2 A partition of a positive integer n is a non-increasing finite sequence of positive
integers, whose sum is n. For example, (4, 3, 3, 1) is a partition of 11.

Proving a Shuffle Using Representations of the Symmetric Group 357

Our method of proof is to let each shuffling party prove the followings, instead
of equations (1),(2) and (3); for given random integers sij , 1 ≤ i �= j ≤ n, he
knows tij ’s, such that∑

i<j

sij(D(ci) + D(cj)) =
∑
i<j

tij(D(c′i) + D(c′j)) (mod N) ,

∑
i<j

sijD(ci)D(cj) =
∑
i<j

tijD(c′i)D(c′j) (mod N) .

In Section 2, the basics for our mix-net and shuffling is set up and some
basic necessary results are presented. In Section 3, the protocol for the proof is
given, while the proofs of its correctness and privacy is given in Section 4. In
Section 5, we describe an (computationally) improved version of our protocol,
and in Section 6 computational cost of our protocol is calculated. We conclude
with some final remarks on our protocol and Peng et al.’s.

2 Preliminaries

2.1 Encryption System

As the proof system of Peng et al. [24] does, our proof system relies on the prop-
erty of homomorphic encryption. We, therefore, take an additively homomorphic
encryption scheme for the underlying encryption and decryption scheme: We
have E(m1 + m2, r

′) = E(m1, r1)E(m2, r2) when E(m, r) denote the encrypted
message of m with randomizer r. We also assume that our encryption algorithm
is semantically secure so that the permutation of the encrypted messages by
shuffling party is not revealed. We let N be the modulus of the message space,
whose smallest factor is comparatively larger than the number of messages, where
N = plqm is a product of powers of two large primes p < q. As usual, p, q are
one of the security factors of the scheme, so the probability of knowing a factor-
ization of N is negligible. We let α be an integer such that 2α < p, as Peng et
al. did in [24], that is necessary for the arguments of the protocol security, since
we use composite integers for the modulus of the message space.

We use E(m) for the encryption of m with some random number when there
is no need to specify the random number for the encryption. The re-encryption
of a cipher-text c is denoted by RE(c, r) = cE(0, r), and the decryption of a
cipher text c is denoted by D(c).

For the implementation of the main idea, we let Ẽ be another additively ho-
momorphic encryption which use the same method of encryption for E (same
message space and the ciphertext space) but with different parameters (for ex-
ample, different bases of the ciphertext space in case of Paillier scheme). Then
the corresponding decryption D̃ is multiplicatively homomorphic:

D̃(e1e2) = D̃(e1) + D̃(e2) . (4)

358 S. Cho and M. Hong

We make another assumption on E and D̃ for simpler implementation:

D̃(E(0, r)) = 0 for any r . (5)
Paillier Encryption Scheme

Key generation The modulus of the message space is N = pq for two large
primes p < q. A base g ∈ Z∗

N2 is an element of order N� for some � ∈
{1, . . . , λ}, where λ is the least common multiple of p− 1 and q − 1.

Encryption For a message m ∈ ZN , select a random r ∈ Z∗
N . Then the cipher-

text is computed by
c = gm · rN (mod N2) .

Decryption For a given ciphertext c ∈ Z
∗
N2 , the plaintext m is computed by

m =
L(cλ mod N2)
L(gλ mod N2)

(mod N) , where

L is a function defined as L(u) = u−1
N for u ∈ Z∗

N2 such that u = 1 (mod N).

Following proposition is very basic but useful for us to prove the correctness
of our protocol.

Proposition 1. Let E be a Paillier encryption and D be the corresponding de-
cryption. Then the followings are satisfied when 0 ∈ ZN is the additive identity
and 1 ∈ Z∗

N2 is the multiplicative identity:
1. D(1) = 0.
2. D(c1c

−1
2) = D(c1)−D(c2) for all c1, c2 ∈ G2.

Proof. Since E(0, 1) = 1 and the decryption is one-to-one, D(1) = 0 must hold.
For any c ∈ Z∗

N2 , D(cc−1) = D(1) = 0 by the first part. On the other hand,
D(cc−1) = D(c) + D(c−1) by (4). Therefore, we have D(c−1) = −D(c) and the
second part follows. ��
Useful properties of Paillier encryption scheme is stated in the following propo-
sition. (See Lemma 5 in [22].)

Proposition 2. The decrypted message of c ∈ Z∗
N2 is 0 ∈ ZN if and only if

c is an N th residue modulo N2, that is c = xN (mod N2) for some x ∈ Z∗
N2 .

Moreover, the property (5) is satisfied for any choice of bases for E and D̃.

2.2 Mix-Net and Shuffling

We let {m1, m2, . . . , mn} be the set of original messages and {c1, c2, . . . , cn},
ci = E(mi), 1 ≤ i ≤ n, be a set of encrypted messages. Then a mix-net contains
many rounds of shufflings defined as follows.

Shuffling party receives a set {c1, c2, . . . , cn} of encrypted messages from
the previous shuffling party and outputs another set of encrypted messages
{c′1, c′2, . . . , c′n} that is obtained as follows: for any i, c′i = RE(cπ(i), ri) for some
permutation π ∈ Sn and randomizers ri.

A proof of a shuffle is a process to verify, without revealing any information,
that a shuffling party did the shuffling in an honest way; that is there is a
permutation π ∈ Sn such that D(c′i) = D(cπ(i)).

Proving a Shuffle Using Representations of the Symmetric Group 359

Assumption. We make an assumption that the linear ignorance condition for
the set {m1, . . . , mn} of messages and the set {mimj | 1 ≤ i < j ≤ n} of prod-
ucts of messages are satisfied, where the linear ignorance condition is defined as
follows. Linear ignorance condition is assumed in the first protocol of [24]:

Definition 1. A set of messages {m1, m2, . . . , mn} satisfies the linear ignorance
condition if given a set of cipher-texts {c1, c2, . . . , cn} of {m1, m2, . . . , mn}, the
possibility for an adversary to find a non-trivial linear relation of {m1, . . . , mn}
is negligible.

Remark 1. We may drop the assumption on the linear ignorance condition if we
use the method of the second protocol of Peng et al. in [24]. We do not deal with
that matter in the present article though.

2.3 An Important Result by Peng et al.

The following proposition is proved in [24], and we state it for our later use. (See
Lemmas 1, 2, 3 and 4 in [24].) For a given matrix A, we use At for the transpose
matrix of A.

Proposition 3. Suppose that {m1, m2, . . . , mn} satisfies the linear ignorance
condition, and let {c′1, c′2, . . . , c′n} be the corresponding output of {c1, c2, . . . , cn}
by a shuffling party. For random numbers s1, s2, . . . , sn from ZN , if the shuffling
party can find t1, t2, . . . , tn in ZN such that∑

i

siD(ci) =
∑

i

tiD(c′i) (mod N) (6)

with a probability larger than 2−α, then the shuffling party can find an n × n
invertible matrix P such that

[D(c′1), D(c′2), . . . , D(c′n)]t = P [D(c1), D(c2), . . . , D(cn)]t (mod N) , (7)

[t1, t2, . . . , tn]t = P−1 [s1, s2, . . . , sn]t (mod N). (8)

Corollary 1. The matrix P in Proposition 3 is unique.

Proof. If there are two different matrices satisfying Equation (7), then one can
find a non-trivial linear relation of {m1, m2, . . . , mn}. ��

3 Verification Protocol

In this section, we describe our protocol and prove that an honest shuffling party
always can pass the verification.

Suppose that a shuffling party receives {c1, c2, . . . , cn} and the corresponding
output is {c′1, c′2, . . . , c′n}. We let mi = D(ci) and m′

i = D(c′i) for i = 1, 2, . . . , n.
We also suppose that di = D̃(ci) and d′i = D̃(c′i) are published by an authorized
party. The chosen basis for Ẽ and D̃ does not have to be published since D̃ is used
only for the implementation of the protocol and we just need its multiplicatively
homomorphic property:

360 S. Cho and M. Hong

Protocol

1. The verifier randomly chooses sij for 1 ≤ i < j ≤ n from {0, 1, . . . , 2α − 1}
and publishes them.

2. The shuffling party shows, in a zero knowledge manner, that he knows tij for
1 ≤ i < j ≤ n and ri, i = 1, 2, . . . , n, such that, in the space of ciphertext,∏

i

c′j =
∏

i

ciE(0, ri) , (9)∏
i<j

(c′ic
′
j)

tij =
∏
i<j

(cicj)sij (E(0, ri)E(0, rj))tij , (10)

∏
i<j

(c′
d′

j

i c′
d′

i
j)tij =

∏
i<j

(cdj

i cdi

j)sij (E(0, ri)d′
j E(0, rj)d′

i)tij . (11)

Implementation. The same (non-interactive, zero-knowledge) implementation
used in [24] (see section 3) can be adopted for the implementation of our protocol
due to the fact that Equations (9), (10), (11) are essentially the same as the
equations proved in [24] except the number of terms in each product.

Lemma 1. If the shuffling party is honest, then he can pass the verification.

Proof. Suppose c′i = RE(cπ(i), ri) are obtained using a permutation π ∈ Sn.
Then by taking tij = sπ(i)π(j) (sπ(j)π(i) if π(i) > π(j)) the shuffling party can
pass the verification: It is easy to check Equations (9) and (10) and we only
check Equation (11). Observe first that d′i = dπ(i) since

d′i = D̃(c′i) = D̃(cπ(i)E(0,ri)) = D̃(cπ(i)) + D̃(E(0, ri)) = D̃(cπ(i)) ,

where the last equality is from the assumption (5). Now we can finish the proof;∏
i<j

(
c′

d′
j

i c′
d′

i

j

)tij

=
∏
i<j

(
c
dπ(j)

π(i) c
dπ(i)

π(j)

)sπ(i)π(j)
(
E(0, ri)d′

j E(0, rj)d′
i

)tij

=
∏
i<j

(
c
dj

i cdi

j

)sij
(
E(0, ri)d′

j E(0, rj)d′
i

)tij

. ��

4 Proof of the Correctness of Protocol

In this section, we prove that the proposed protocol is a correct verification when
we adopt Paillier encryption.

Lemma 2. When we assume Paillier encryption scheme, equations (9), (10)
and (11) imply the following equations :

∑
i

mi =
∑

i

m′
i (mod N) , (12)

Proving a Shuffle Using Representations of the Symmetric Group 361∑
i<j

sij(mi + mj) =
∑
i<j

tij(m′
i + m′

j) (mod N) , (13)

∑
i<j

sij(mimj) =
∑
i<j

tij(m′
im

′
j) (mod N) . (14)

Proof. The modulus for the equations in the proof vary depending on which
space we are working. The modulus is N if we are working on the space of
messages, while the modulus must be N2 if we are working on the space of
ciphertexts; and we omit the modulus in the proof.

Equations (12) and (13) are immediate from the additively homomorphic
property of our encryption scheme, and we only give a careful proof of Equa-
tion (14): Assume Equation (11) is true. Since E is additively homomorphic and
ci = E(mi), c′i = E(m′

i) for i = 1, . . . , n, we can rewrite Equation (11) as follows.

E

⎛⎝∑
i<j

sij(dimj + djmi)

⎞⎠ = E

⎛⎝∑
i<j

tij(d′im
′
j + d′jm

′
i)

⎞⎠
Encryption is always one-to-one and we obtain∑

i<j

sij(dimj + djmi) =
∑
i<j

tij(d′im
′
j + d′jm

′
i) . (15)

Since di = D̃(ci), d′i = D̃(c′i) for i = 1, . . . , n, and D̃ is multiplicatively homo-
morphic, we can rewrite Equation (15) as follows;

D̃

⎛⎝∏
i<j

c
sijmj

i c
sijmi

j

⎞⎠ = D̃

⎛⎝∏
i<j

c′
tijm′

j

i c′
tijm′

i
j

⎞⎠ .

Proposition 1 now implies that

D̃

⎛⎝ ∏
i<j c

sijmj

i c
sijmi

j∏
i<j c′

tijm′
j

i c′
tijm′

i

j

⎞⎠ = 0 ,

and we obtain ∏
i<j c

sijmj

i c
sijmi

j∏
i<j c′

tijm′
j

i c′
tijm′

i
j

= xN for some x ∈ Z
∗
N2

by Proposition 2. Let x = E(y) for y ∈ ZN then, again by the additively homo-
morphic property of E, we have∑

i<j

sij(mjmi + mimj) =
∑
i<j

tij(m′
jm

′
i + m′

im
′
j) + N · y .

Note that N · y = 0 (mod N). We finally show that Equation (14) is true. ��

362 S. Cho and M. Hong

Remark 2. We assume Paillier encryption in Lemma 2, where some special prop-
erties held in Paillier scheme (Proposition 2) are essentially used in the proof.
In the following argument, we do not assume Paillier encryption. Additively ho-
momorphic property of the encryption scheme and some special properties like
Proposition 2 are used only for the zero-knowledge implementation of (12), (13)
and (14). Therefore, if one can implement a protocol which guarantees (12), (13)
and (14), then the arguments followed show that we have a correct verification
with only two rounds of communications.

We let [n] = {1, 2, . . . , n} be the set of integers from 1 to n. Let W (n) be the
n ×

(
n
2

)
matrix of 0’s and 1’s, the rows and columns of which are indexed by

1-subsets and 2-subsets of [n] respectively;

(W (n))IJ =
{

1 if I ⊂ J ,
0 otherwise .

Throughout the rest of this article, let us fix an order on the set of 2-subsets
of [n] so that the first n of them are {1, 2}, {2, 3}, . . . , {n− 1, n} and {n− 2, n}.
We always use the fixed order on the set of 1-subsets of [n]: {1}, {2}, . . . , {n}.

The following proposition is the main tool that enables us to translate results
on the collection of messages to the collection of pairs of messages and vice versa.

Proposition 4. There is an n by n invertible matrix R over ZN such that
R W (n) = [In |B] (mod N), where In is the n × n identity matrix, and B is
an n× (

(
n
2

)
− n) matrix over ZN .

Proof. Suppose that the rows and columns are indexed in the orders we fixed.
Consider the series of row operations that changes the rows of W (n) into r1,
r2− r1, r3 − r2 + r1, . . ., rn− rn−1 + · · ·+ (−1)n−1r1, where ri is the ith row of
W (n). It is easy to see that for every i = 1, . . . , n− 1, the {i, i + 1}th column of
the new matrix contains only one 1 at the ith row. Moreover, the {n − 2, n}th
column is [0, . . . , 0, 1,−1, 2]t. Note that 2 is a unit in ZN since N is a product
of powers of odd primes. This enables us to multiply the inverse of 2 to the last
row and add it and its negative to the (n − 1)st row and the (n − 2)nd row,
respectively. The composition of series of row operations we used makes R in
the theorem. ��

Remark 3. W (n) is a special case of well known incidence matrices of t-subsets
and k-subsets of [n], where t = 1, k = 2. The rank of incidence matrices are
known over Zp for a prime p (see [31,11]): Our W (n) has full rank n over Zp,
p �= 2. We, however, use N = plqm for the modulus and that is why we need to
give a proof of Proposition 4.

In the rest of the article, every equation is modulo N , the modulus of the message
space. In the following theorems and lemmas, we suppose that a shuffling party can
provide proofs of Equations (9), (10) and (11) with a probability larger than 2−α.

The following theorem is immediate from Proposition 3 since we are assuming
the linear ignorance condition on {mimj | 1 ≤ i < j ≤ n}. Remember that we fix

Proving a Shuffle Using Representations of the Symmetric Group 363

an order of 2-subsets of [n], and we follow the same order for sij ’s, tij ’s, mimj ’s
and m′

im
′
j ’s.

Theorem 1. There is an invertible
(
n
2

)
×
(
n
2

)
matrix P̃ over ZN such that

[m′
1m

′
2, m

′
2m

′
3, . . .]

t = P̃ [m1m2, m2m3, . . .]
t and

[t1 2, t2 3, . . .]
t = (P̃)−1 [s1 2, s2 3, . . .]

t
.

Theorem 2. The shuffling party knows an invertible n × n matrix P over ZN

such that
[m′

1, m
′
2, . . . , m

′
n]t = P [m1, m2, . . . , mn]t .

Proof. By Proposition 4, for random s1, s2, . . . , sn, one always can find sij ’s
in ZN satisfying

∑
k∈{i,j} sij = sk for each k: we just have to solve W (n)X =

[s1, . . . , sn]t for X = [x12, x23, . . .]t. Therefore, the existence of P in the theorem
is guaranteed by Proposition 3, since we assume the linear ignorance condition
on {m1, m2, . . . , mn}. ��

We state two Lemmas without proof which can be done by comparing coefficients
of mi’s or mimj ’s in appropriate equations:

Lemma 3. For any i < j and k < l,

P̃{ij}{kl} = PikPjl + PilPjk . (16)

Lemma 4. When tij ’s are the numbers provided by the shuffling party for given
sij’s, the following equations are satisfied for any i,j and k.∑

k∈{α,β}
sαβ =

∑
α<β

(Pαk + Pβk)tαβ , (17)

(W (n)P̃){k}{i j} = Pik + Pjk . (18)

Theorem 3. The matrix P given in Theorem 2 satisfies the following equations,
and is a permutation matrix with high probability as a consequence.

For all i,

n∑
α=1

Piα = 1 , (19)

for all i < j and k, Pik + Pjk = Pik

∑
α�=k

Pjα + Pjk

∑
α�=k

Piα . (20)

Proof. Equation (19) is immediate from Equation (12) and Theorem 2:

m1 + · · ·+ mn = m′
1 + · · ·+ m′

n = (
∑

α

P1α)m1 + · · ·+ (
∑

α

Pnα)mn .

For any i < j and k, since

Pik + Pjk = Pik

∑
α�=k

Pjα + Pjk

∑
α�=k

Piα = Pik(1− Pjk) + Pjk(1− Pik) ,

364 S. Cho and M. Hong

we have 2PikPjk = 0. In our case, this implies that either Pik = 0 or Pjk = 0
since the factorization of modulus N is assumed to be very hard and, it is not
known to the shuffling parties or N is a prime. Therefore, there can be at most
one non-zero entry in each column of P . Since P is invertible, P can not have
a zero column and each column must have exactly one non-zero entry, that is
there are exactly n non-zero entries in P . Since there can be no zero row in P
there must be exactly one non-zero entry in each row, and Equation (19) proves
that each non-zero entry must be 1. ��

Through the arguments of Theorem 1, Theorem 2 and Theorem 3, we have
shown the following:

Theorem 4. Suppose that a shuffling party can provide proofs of Equations (9),
(10) and (11) with a probability larger than 2−α, and assume the linear ignorance
condition for the set {m1, m2, . . . , mn} and {mimj | i < j}. Then there is a
permutation matrix P such that

[m′
1, m

′
2, . . . , m

′
n]t = P [m1, m2, . . . , mn]t .

5 Computationally Improved Protocol

In the previous sections, we proved that the proposed protocol is a valid veri-
fication that can be implemented with two communication rounds between the
shuffling party and the verifier. But the proposed protocol has a significant draw-
back in computation complexity: The complexity of our protocol is O(n2) while
the one by Peng et al. has O(n) as its computational complexity. This is because
we use all

(
n
2

)
2-subsets of [n] for the verification. We, however, can restrict the

number of nonzero sij ’s so that we obtain a linear complexity: We must be care-
ful to choose nonzero sij ’s so that we do not lose the balance of i’s, though. A
good method to choose {i, j}’s for nonzero sij ’s is to use known λ-designs. A
λ-design is, in our case, a collection of 2-subsets of [n] which contains exactly
λ subsets containing i for each i ∈ [n] (see [2]). Note that we can construct λ-
designs easily as long as either n or λ is even; using all possible 2-subsets means
we use an (n− 1)-design.

By employing the idea of λ-designs, we still can keep the main idea of our
protocol and get a reasonable computation cost also.

6 Computation Cost

The computation cost for a verification process depends on the method of imple-
mentation of zero-knowledge proofs and the encryption scheme. Since we can di-
rectly employ the implementation of (non-interactive) zero-knowledge proofs pro-
posed in [24] for the proofs of (9), (10) and (11), we can calculate computation cost
for the verification as Peng et al. did in [24]. There are more recent works other
than [24], where better efficiencies has been achieved ([17,30]) with at least three

Proving a Shuffle Using Representations of the Symmetric Group 365

rounds though. In [17], the comparison in efficiency has been made among verifi-
cation protocols including the one by Peng et al.[24] and the one by Groth and Lu
[17]. We, hence, compare the efficiency of our protocol with Peng et al.’s only.

In section 4 of [24], it is assumed that the cost of exponentiation with x-bit expo-
nent is 1.5x, and the cost of the product of n exponentiations with x-bit exponent
is at most n + 0.5nx. Assuming that α = 20 and N is 1024 bit number, the cost
of computing di’s and d′i’s is about 2n+ n

256 full length exponentiations since they
are decryption processes in Paillier scheme. A rough (not sharp) upper bound for
the cost of verification is 4λn (full length exponentiations). Therefore, the overall
cost for one shuffling with verification is about (3+4λ)n if a λ-design is employed.

7 Final Remarks

Two conditions in Theorem 3 are sufficient for a matrix P to be a permutation
matrix if the modulus is a prime as in the case of modified ElGamal. But, when
the modulus is a composite integer they do not give sufficient conditions for P to
be a permutation matrix. We, in Theorem 3, conclude P is a permutation matrix
due to hardness of factorization of N . The following example shows that P doesn’t
have to be a permutation matrix without this assumption on the modulus.

Example 1. When N = 1453 · 3019 = 4386607, the following non-permutation
matrix satisfies the conditions in Theorem 3:

P =

⎡⎢⎢⎣
271711 4114897 0 0
4114897 271711 0 0

0 0 271711 4114897
0 0 4114897 271711

⎤⎥⎥⎦ .

By defining P̃ by P̃{ij}{kl} = PikPjl +PilPjk , as in Equation (16) and provid-
ing tij ’s calculated by (P̃)−1[s12, s23, . . .]t , a shuffling party can pass the verifi-
cation while passing contaminated messages: [m′

1, . . . , m
′
n]t = P [m1, . . . , mn]t .

Remark 4. The matrix P in Example 1 can also pass all the verification of Peng
et al. in [24]. Peng et al., however, did not give a correct explanation how this
can happen in [24]: In their proof of the main theorem, they made a wrong
reasoning by overlooking the fact that the message space may have composite
modulus (the third paragraph in p. 197 of [24]). This can be treated though by
taking the same argument we use for the proof of the correctness of our protocol.

References

1. Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Hei-
delberg (1999)

2. Cameron, P.J., van Lint, J.H.: Designs, graphs, codes and their links. London Math-
ematical Society Student Texts, vol. 22. Cambridge University Press, Cambridge
(1991)

366 S. Cho and M. Hong

3. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

4. Danezis, G.: Mix-networks with restricted routes. In: Dingledine, R. (ed.) PET
2003. LNCS, vol. 2760, pp. 1–17. Springer, Heidelberg (2003)

5. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type iii anony-
mous remailer protocol. In: IEEE Symposium on Security and Privacy, pp. 2–15.
IEEE Computer Society, Los Alamitos (2003)

6. Desmedt, Y.G., Kurosawa, K.: How to break a practical MIX and design a new one.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 557–572. Springer,
Heidelberg (2000)

7. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
Dingledine and Syverson [10], pp. 54–68

8. Dingledine, R., Freedman, M.J., Hopwood, D., Molnar, D.: A reputation system
to increase mix-net reliability. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137,
pp. 126–141. Springer, Heidelberg (2001)

9. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: USENIX Security Symposium, pp. 303–320. USENIX (2004)

10. Goldberg, I.: Privacy-enhancing technologies for the internet, II: Five years later.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 1–12.
Springer, Heidelberg (2003)

11. Frankl, P.: Intersection theorems and mod p rank of inclusion matrices. J. Combin.
Theory Ser. A 54(1), 85–94 (1990)

12. Furukawa, J., Sako, K.: An Efficient Scheme for Proving a Shuffle. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

13. Goh, E.-J.: Encryption Schemes from Bilinear Maps, Ph.D. thesis, Department of
Computer Science, Stanford University (September 2007)

14. Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for
mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004)

15. Golle, P., Zhong, S., Boneh, D., Jakobsson, M., Juels, A.: Optimistic mixing for
exit-polls. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 451–465.
Springer, Heidelberg (2002)

16. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)

17. Groth, J., Lu, S.: Verifiable Shuffle of Large Size Ciphertexts. In: Okamoto, T.,
Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg
(2007)

18. Mitomo, M., Kurosawa, K.: Attack for flash MIX. In: Okamoto, T. (ed.) ASIA-
CRYPT 2000. LNCS, vol. 1976, pp. 192–204. Springer, Heidelberg (2000)

19. Andrew Neff, C.: A verifiable secret shuffle and its application to e-voting. In: ACM
Conference on Computer and Communications Security, pp. 116–125 (2001)

20. Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: A formal model
and a paillier-based efficient construction with provable security. In: Jakobsson,
M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 61–75. Springer,
Heidelberg (2004)

21. Ogata, W., Kurosawa, K., Sako, K., Takatani, K.: Fault tolerant anonymous chan-
nel. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 440–444.
Springer, Heidelberg (1997)

22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

Proving a Shuffle Using Representations of the Symmetric Group 367

23. Park, C.-s., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/Nothing
election scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
248–259. Springer, Heidelberg (1994)

24. Peng, K., Boyd, C., Dawson, E.: Simple and efficient shuffling with provable cor-
rectness and ZK privacy. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
188–204. Springer, Heidelberg (2005)

25. Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: A correct, private, and efficient
mix network. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 439–454. Springer, Heidelberg (2004)

26. Pfitzmann, B., Pfitzmann, A.: How to break the direct RSA-implementation of
mixes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS,
vol. 434, pp. 373–381. Springer, Heidelberg (1990)

27. Pfitzmann, B., Schunter, M., Waidner, M.: How to break another “Provably secure”
payment system. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 121–132. Springer, Heidelberg (1995)

28. Sagan, B.E.: The symmetric group, The Wadsworth & Brooks/Cole Mathematics
Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA,
Representations, combinatorial algorithms, and symmetric functions (1991)

29. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine and Syverson [10], pp. 41–53

30. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg
(2005)

31. Wilson, R.M.: A diagonal form for the incidence matrices of t-subsets vs. k-subsets.
European J. Combin. 11(6), 609–615 (1990)

On Formal Verification of
Arithmetic-Based Cryptographic Primitives

David Nowak

Research Center for Information Security, AIST, Japan

Abstract. Cryptographic primitives are fundamental for information
security: they are used as basic components for cryptographic protocols
or public-key cryptosystems. In many cases, their security proofs consist
in showing that they are reducible to computationally hard problems.
Those reductions can be subtle and tedious, and thus not easily check-
able. On top of the proof assistant Coq, we had implemented in previous
work a toolbox for writing and checking game-based security proofs of
cryptographic primitives. In this paper we describe its extension with
number-theoretic capabilities so that it is now possible to write and check
arithmetic-based cryptographic primitives in our toolbox. We illustrate
our work by machine checking the game-based proofs of unpredictabil-
ity of the pseudo-random bit generator of Blum, Blum and Shub, and
semantic security of the public-key cryptographic scheme of Goldwasser
and Micali.

Keywords: machine formalization, cryptographic primitives, CSPRBG,
semantic security.

1 Introduction

Cryptographic primitives are fundamental components for information security.
In many cases, their security proofs consist in showing that they are reducible
to computationally hard problems. Those reductions can be subtle and tedious,
and thus not easily checkable. Bellare and Rogaway even claim in [4] that:

“many proofs in cryptography have become essentially unverifiable. Our
field may be approaching a crisis of rigor.”

As a remedy, they, and also Shoup [15], advocate game-based security proofs.
This is a methodology for writing proofs which makes them easier to read and
check. Halevi goes further by advocating the need for a software which can deal
with the mundane parts of writing and checking game-based proofs [10].

In the game-based approach, a security property is modeled as a probabilistic
program which implements a game to be solved by the attacker. The attacker
itself is modeled as an external probabilistic procedure interfaced with the game.
The goal is then to prove that any attacker has at most a negligible advantage
over a random player. An attacker is assumed to be efficient i.e., it is modeled
as a probabilistic polynomial-time (PPT) algorithm.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 368–382, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Formal Verification of Arithmetic-Based Cryptographic Primitives 369

Related Work. There are tools such as ProVerif [5], CryptoVerif [6] or the proto-
type implementation of [12] which can make automatic proofs of cryptographic
protocols or generic cryptographic schemes. However those tools assume that
some secure cryptographic primitives are given. The security of those primi-
tives cannot be proved automatically. Nevertheless their security proofs can be
checked by a computer.

The game-based proof of the PRP/PRF switching lemma has been formal-
ized in the proof assistant Coq [1]. Although it is not by itself a cryptographic
primitive, this lemma is fundamental in proving security of some cryptographic
schemes. The proof has been made in the random oracle model. The machine
formalization in [1] is a so-called deep embedding: games are syntactic objects;
and game transformations are syntactic manipulations which can be automated
in the language of the proof assistant. The main advantages of this approach are
that one can prove completeness of decision procedures, if any, and get smaller
proof terms. However those advantages are not exploited in [1]. Moreover this
is at the cost of developing a huge machinery for syntactic manipulations. Two
other deep embeddings are currently being developed [2,3].

Previous Work. In cryptographers’ papers, the formal semantics of games is
either left implicit or, at best, informally explained in English. It is not enough
for machine formalization. In previous work, we have (1) proposed a formal
semantics for games, (2) implemented it in the proof assistant Coq, and (3) used
it to prove the semantic security of the ElGamal and Hashed ElGamal public-
key cryptographic schemes [13]. Our machine formalization is a so-called shallow
embedding: games are probability distributions (as advocated by Shoup [15]).
Game transformations can still be automated by going through the metalanguage
of the proof assistant. Compared to [1], We have been very careful in making our
design choices such that our implementation remains light. This is an important
design issue in formal verification because formal proofs grow quickly in size
when one tackles real-world use-cases.

Our toolbox comes in two layers. The first layer extends the standard library
of Coq with mathematical notions and their properties that are fundamental in
cryptography but not available in the standard library of Coq. This consists of a
library for probability distributions, bitstrings, and a small library for elementary
group theory. On top of this, the second layer consists of formal versions of
security definitions and hard problems, and basic game transformations which
can be composed to reduce the security of cryptographic primitives to hard
problems.

By using our toolbox, one is forced to exhibit all the steps in his or her game-
based proof and thus cannot hide assumptions or make proofs by intimidation
such as “Trivial” or “The reader may easily supply the details”. In spite of the
required level of detail, proofs remain human readable and human checkable.

Our contributions. We have extended our toolbox in order to be able to deal
with cryptographic primitives based on number theory. For that purpose we have
added to the first layer a library of definitions and lemmas for integers modulo

370 D. Nowak

n. In particular we have formalized the notions of Legendre and Jacobi symbol,
Blum primes, and their properties which are of fundamental use in cryptography.
This is already by itself a contribution to the theorem proving community.1 We
have also considerably extended and generalized our library on elementary group
theory.2

Then we have used our extension to the first layer in adding to the second layer
the security notion of unpredictability, the quadratic residuosity assumption, and
number-theoretic game transformations.

Finally, we have used our extensions to machine check the proof of unpre-
dictability of the pseudo-random bit generator of Blum, Blum and Shub [7]. We
have also machine checked the proof of semantic security of the public-key cryp-
tographic scheme of Goldwasser and Micali [8]. Our security proofs of those two
primitives are based on the intractability of the quadratic residuosity problem.
To the best of our knowledge, this is the first time that security proofs of cryp-
tographic primitives based on number theory are machine checked. This is also
the first time that a proof of unpredictability is machine checked. None of the
above mentioned related work could be used in their current state to formalize
such proofs because they are missing components for number theory.

Outline. We introduce the proof assistant Coq in Sect. 2. In Sect. 3, we give
formal meaning to games in terms of distributions. We give in Sect. 4 the number-
theoretic facts that we use Sect. 5. In Sect. 5.1 we apply our work to the proof
of unpredictability of the Blum-Blum-Shub generator, and in Sect. 5.2 we apply
it to the proof of semantic security of the Goldwasser-Micali scheme. Finally, we
briefly describe our implementation in Sect. 6 before concluding in Sect. 7.

2 The Coq Proof Assistant

Coq is a proof assistant developed at INRIA since 1984.3 It is based on a kernel
which takes a mathematical statement S and proof term p as input and check
whether p is a correct proof of S. On top of this kernel there are: a tactic language
which allows to build proof terms in an incremental way; and decision procedures
for decidable fragments such as Presburger arithmetic or propositional logic.

Coq is goal-directed. This means that if we are trying to prove that a formula
Q (the goal) is true, and we have an already proved theorem stating that P1 &
P2 implies Q, then we can apply this theorem. Coq will replace the goal Q by
two subgoals P1 and P2. Proofs by induction are also possible. We proceed this
way until we finally reach goals that are either axioms or are true by definition.
On the way, Coq builds incrementally a proof term to be checked later by the
kernel.
1 Tools such as Mathematica can deal with formal computations involving Legendre

and Jacobi symbols, but cannot be used to make formal proofs. In particular they
do not allow reasoning by induction.

2 There are more advanced library on group theory, such as [9], but none of them are
available with the version of Coq that we are using (8.2beta3).

3 http://coq.inria.fr/

http://coq.inria.fr/

On Formal Verification of Arithmetic-Based Cryptographic Primitives 371

return a = {|(a, 1)|} x⇐ δ;
ϕ(x) =

⋃
(a,p)∈δ

p · ϕ(a)

x
R← {a1, . . . , an};

ϕ(x)
=

x⇐ {|(a1,
1
n
), . . . , (an, 1

n
)|};

ϕ(x)

x← a;
ϕ(x) = x

R← {a};
ϕ(x)

Fig. 1. Notations for distributions

The kernel is the only critical part: if a bug outside the kernel causes a wrong
proof term to be built, it will be rejected by the kernel.

In order to be closer to mathematical practice, Coq also provides mechanisms
for introducing notations, or for inferring implicit parameters and subset co-
ercions. It also comes with a standard library of definitions and lemmas, for
instance on elementary arithmetic, analysis or polymorphic lists.

3 Games

We denote a game by a finite probability distribution (from now on, we will
abbreviate this term as distribution). A distribution δ over a set S is defined as
a finite multiset4 of ordered pairs from S×R such that

∑
(a,p)∈δ p = 1. We use

the symbols {| and |} as delimiters of mutisets not to confuse them with sets. We
write p · {|(a1, p1), . . . , (an, pn)|} for the multiset {|(a1, p · p1), . . . , (an, p · pn)|}.

For convenience, we introduce some notations (cf. Fig. 1) for writing distri-
butions so that they will look like probabilistic programs:

– We write return a for the distribution with only the element a of
probability 1.

– We write x⇐ δ; ϕ(x) for the distribution built by picking at random a
value x according to the distribution δ and then computing the distribution
ϕ(x).

– We write x
R← {a1, . . . , an}; ϕ(x) for the distribution built by picking at

random a value x in the set {a1, . . . , an} and then computing the distribution
ϕ(x).

– We abbreviate this last case by x← a; ϕ(x) when the set is a singleton {a}.

Distributions have a monadic structure [14] and thus satisfy the monad laws
(cf. Fig. 2). Those laws state that our notations for distributions behave well.
The first one simply states that the occurences of a deterministically assigned

4 A multiset (a.k.a. a bag) is a generalization of a set: a member of a multiset may be
member more that once. For example, the multisets {|1, 2, 2|} and {|1, 2|} are different;
and the union of {|1, 2, 2, 3|} and {|1, 4, 4|} is equal to {|1, 1, 2, 2, 3, 4, 4|}.

372 D. Nowak

x← a;
ϕ(x) = ϕ(a)

x⇐ δ;
return x

= δ

y ⇐ (
x⇐ δ;
ϕ(x)

);
ψ(y)

=
x⇐ δ;
y ⇐ ϕ(x);
ψ(y)

Fig. 2. Monad laws

variable x can be replaced by their definition (constant propagation). The second
one is a kind of η-reduction. The third one allows to simplify nested sequences.

We write Pr
⎧⎩P (δ)

⎫⎭ for the probability that P holds of an element picked at
random in the distribution δ. Its value is∑

(a,p)∈δ s.t. P (a)

p

We define a notion of indistinguishability for distributions. Security definitions,
hard problems and game transformations will all be defined with this relation.
Two distributions δ1 and δ2 are indistinguishable modulo ε w.r.t. a predicate P ,
written δ1 ≡P

ε δ2, iff:∣∣∣Pr
⎧⎩P (δ1)

⎫⎭ − Pr
⎧⎩P (δ2)

⎫⎭∣∣∣ ≤ ε

≡P
ε is reflexive and symmetric. If δ1 ≡P

ε δ2 and δ2 ≡P
ε′ δ3, then δ1 ≡P

ε+ε′ δ3. If
δ1 ≡P

ε δ2 and ε ≤ ε′, then δ1 ≡P
ε′ δ2. We write ≡ε instead of ≡P

ε when P is the
predicate on booleans such that P (b) holds iff b is equal to true.

Lemma 3.1. If f : S → T is a bijection then, for all ϕ and P ,

x
R← S;

ϕ(f(x))
≡P

0
x

R← T ;
ϕ(x)

It is also true when f is a surjective N -to-one function.

This kind of transformation of one game into another one is at the crux of the
security proofs we are dealing with.

4 Some Elementary Number Theory

Let n be a positive number. We write Zn for the set of integers modulo n. The
multiplicative group of Zn is written Z∗

n and consists of the subset of integers
modulo n which are coprime with n. An integer x ∈ Z∗

n is a quadratic residue
modulo n iff there exists a y ∈ Z∗

n such that y2 ≡ x (mod n). Such a y is called
a square root of x modulo n. We write QRn for the set of quadratic residues
modulo n, and QNRn for its complement i.e., the set of quadratic non-residues
modulo n. We write Z∗

n(+1) (respectively, QNRn(+1)) for the subset of integers
in Z

∗
n (respectively, QNRn) with Jacobi symbol equal to 1.

On Formal Verification of Arithmetic-Based Cryptographic Primitives 373

The quadratic residuosity problem is the following: given an odd composite
integer n, decide whether or not an x ∈ Z∗

n is a quadratic residue modulo n.
Let n be the product of two distinct odd primes p and q. The quadratic

residuosity assumption (QRA) states that the above problem is intractable. In
our framework, this can be stated as:

Assumption 4.1 (QRA). For every attacker A′, there exists a negligible ε such
that

x
R← Z∗

n(+1);
b̂⇐ A′(n, x);
b← b̂ = qr(x);
return b

≡ε
b

R← {true, false};
return b

In the left-side game, an x is picked at random in the set Z∗
n(+1); this x is passed

with n to the attacker A′; the attacker returns its guess b̂ for the quadratic
residuosity (modulo n) of x; this guess is compared with the true quadratic
residuosity (modulo n) qr(x) of x; and the result b of this comparison is returned.
In the rigth-side game, the result is random. QRA states that the advantage ε
of any attacker over a random player is negligible.

Note that the fact that A′ is a randomized algorithm is modeled by the at-
tacker returning a distribution in which b̂ is picked.

In the security proofs, we will need the following well-known mathematical
facts (remember that n is the product of two distinct odd primes p and q):

Fact I. The function which maps an x ∈ Z∗
n to x2 ∈ QRn is a surjective

four-to-one function.

Fact II. For any y ∈ QNRn(+1), the function which maps an x ∈ QRn to
y · x ∈ QNRn(+1) is a bijection.

Fact III. |QRn| = |QNRn(+1)|.

Fact IV. Z∗
n(+1) = QRn ∪QNRn(+1)

Let n be a Blum integer i.e., the product of two distinct prime numbers p and
q, each congruent to 3 modulo 4. In this case, any x ∈ QRn has a unique square
root in QRn which we denote by

√
x and is called the principal square root of x.

And we get the following additional facts [7]:

Fact V. The function which maps an x ∈ QRn to x2 ∈ QRn is a permutation.

Fact VI. The function which maps an x ∈ Z∗
n(+1) to x2 ∈ QRn is a surjective

two-to-one function.

Fact VII. For all x ∈ QRn,
√

x2 = x

Fact VIII. For all x ∈ Z∗
n(+1), x ∈ QRn ⇔ parity(x) = parity(

√
x2)

374 D. Nowak

bbs(len ∈ N, seed ∈ Z
∗
n) =

bbs rec(len, seed2)
bbs rec(len ∈ N, x ∈ QRn) =

match len with
|0⇒ []
|len′ + 1⇒ parity(x) :: bbs rec(len′, x2)
end

Fig. 3. The Blum-Blum-Shub generator

5 Applications

In this section, we apply our work to the proofs of unpredictability of the Blum-
Blum-Shub generator, and to the proof of semantic security of the Goldwasser-
Micali scheme.

5.1 The Blum-Blum-Shub Pseudorandom Bit Generator

The security of many cryptographic systems depends upon a cryptographic prim-
itive for the generation of unpredictable sequences of bits. They are used to gen-
erate keys, nonces or salts. Ideally, those sequences of bits should be random,
that is, generated by successive flips of a fair coin. In practice, one uses a pseu-
dorandom bit generator (PRBG) which, given a short seed, generates a long
sequence of bits that appears random. For the purpose of simulation, one only
requires of a PRBG that it passes certain statistical tests (cf. Chapter 3 of [11]).
This is not enough for cryptography. A PRBG is cryptographically secure iff
it passes all polynomial-time statistical tests: roughly speaking, no polynomial-
time algorithm can distinguish between an output sequence of the generator and
a truly random sequence.

In [7], the Blum-Blum-Shub generator (BBS) is proved left-unpredictable (un-
der the quadratic residuosity assumption). It was proved by Yao in [17] that this
is equivalent to stating that BBS passes all polynomial-time statistical tests. It
is shown in [16] that BBS is still secure under the weaker assumption that n is
hard to factorize. The same authors also show that, for sufficiently large n, more
than one bit can be extracted at each iteration of the algorithm. However, in
this paper, we stick to the original proof of [7].

Let n = p · q be a Blum integer. The BBS generator is defined by the function
bbs given in Fig. 3 which takes as input a length and a seed, and returns a
pseudorandom sequence of bits of the required length.

In our framework, one can state the left-unpredictability of bbs by the follow-
ing definition.

Definition 5.1 (Left-unpredictability). bbs is left-unpredictable iff for all
length len, for every attacker A, there exists a negligible ε such that

seed
R← Z∗

n;
[b0, . . . , blen]← bbs(len + 1, seed);
b̂0 ⇐ A([b1, . . . , blen]);
b← b̂0 = b0;
return b

≡ε
b

R← {true, false};
return b

On Formal Verification of Arithmetic-Based Cryptographic Primitives 375

In the left-side game, a seed is picked at random in the set Z∗
n; the function

bbs is then used to compute a pseudorandom sequence of bits [b0, . . . , blen] of
length len+1; this sequence minus its first bit b0 is passed to the attacker A; the
attacker returns its guess b̂0 for the value of the bit b0; this guess is compared
with b0; and the result b of this comparison is returned. bbs is left-unpredictable
if the advantage ε of any attacker over a random player is negligible.

Before proving that bbs is left-unpredictable, we show that it can be reduced
to the problem of finding the parity of a random quadratic residue modulo n.

Lemma 5.2. If, for every attacker A′, there exists a negligible ε such that

x
R← QRn;

b̂⇐ A′(n, x);
b← b̂ = parity(

√
x);

return b

≡ε
b

R← {true, false};
return b

then bbs is left-unpredictable.

In the left-side game, x is picked at random in the set QRn; this x is passed with
n to the attacker A′; the attacker returns its guess b̂ for the parity of

√
x; this

guess is compared with the true parity of
√

x; and the result b of this comparison
is returned. The above lemma states that if the advantage ε of any attacker over
a random player is negligible, then bbs is left-unpredictable.

Proof (of Lemma 5.2). We proceed by rewriting the left-side game of the left-
unpredictability specification (Def. 5.1).

BBS1. We unfold the definition of bbs:

seed
R← Z

∗
n;

[b0, . . . , blen]← bbs rec(len + 1, seed2);
b̂0 ⇐ A([b1, . . . , blen]);
b← b̂0 = b0;
return b

BBS2. Because of Fact I, we can rewrite the game as:

x
R← QRn;

[b0, . . . , blen]← bbs rec(len + 1, x);
b̂0 ⇐ A([b1, . . . , blen]);
b← b̂0 = b0;
return b

BBS3. x is a quadratic residue, we can thus replace x with
√

x2 (according to
Fact VII).

x
R← QRn;

[b0, . . . , blen]← bbs rec(len + 1,
√

x2);
b̂0 ⇐ A([b1, . . . , blen]);
b← b̂0 = b0;
return b

376 D. Nowak

BBS4. Because of Fact V, we can rewrite the game as:

x
R← QRn;

([b0, . . . , blen])← bbs rec(len + 1,
√

x);
b̂0 ⇐ A([b1, . . . , blen]);
b← b̂0 = b0;
return b

BBS5. By unfolding one step of bbs rec, we get:

x
R← QRn;

[b1, . . . , blen]← bbs rec(len, x);
b̂0 ⇐ A([b1, . . . , blen]);
b← b̂0 = parity(

√
x);

return b

BBS6. We have reduced the game to the left-side one of the hypothesis where
the attacker A′(n, x) is instantiated by:

[b1, . . . , blen]← bbs rec(len, x);
b̂0 ⇐ A([b1, . . . , blen]);
return b̂0 ��

Using the above lemma, we can now prove that bbs is left-unpredictable.

Theorem 5.3. bbs is left-unpredictable (under the quadratic residuosity as-
sumption).

Proof. By Lemma 5.2, we only need to prove that for every attacker A:

x
R← QRn;

b̂⇐ A(n, x);
b← b̂ = parity(

√
x);

return b

≡ε
b

R← {true, false};
return b

We proceed by rewriting the left-side game.

BBS7. Because of Fact VI, we can rewrite the game as:

x
R← Z∗

n(+1);
b̂⇐ A(n, x2);
b← b̂ = parity(

√
x2);

return b

BBS8. By Fact VIII, we can replace the equality test b̂ = parity(
√

x2) by b̂ ⊕
parity(x)⊕1 = qr(x) (where ⊕ is the notation for the exclusive-or XOR).

x
R← Z∗

n(+1);
b̂⇐ A(n, x2);
b← b̂⊕ parity(x) ⊕ 1 = qr(x);
return b

On Formal Verification of Arithmetic-Based Cryptographic Primitives 377

keygen() =
pk ← (n, y);
sk ← (p, q);
return (pk, sk)

encrypt((n, y) ∈ Z× Z
∗
n, b ∈ {0, 1}) =

x
R← Z

∗
n;

c← (if b = 1 then y · x2 else x2);
return c

decrypt((p, q) ∈ Z× Z, c ∈ Z
∗
n) =

e←
(

c
p

)
;

m← (if e = 1 then 0 else 1);
return m

Fig. 4. The Goldwasser-Micali scheme

BBS9. We have reduced the game to the left-sided one of QRA (Assump-
tion 4.1) where the attacker A′(n, x) is instantiated by:

b̂⇐ A(n, x2);
return b̂⊕ parity(x)⊕ 1 ��

5.2 The Goldwasser-Micali Public-Key Cryptographic Scheme

The Goldwasser-Micali public-key cryptographic scheme (GM) was the first
probabilistic one which was provably secure. More precisely it is semantically
secure under the quadratic residuosity assumption [8]. For defining GM , we
need a number n which is the product of two distinct prime numbers p and q,
and a y ∈ QNRn(+1). It is then defined by the three functions given in Fig. 4
where

(
c
p

)
denotes the Legendre symbol of c.

In our framework, one can state the semantic security of the above scheme by
the following definition.

Definition 5.4. GM is semantically secure iff, for every attacker (A1, A2), there
exists a negligible ε such that

(pk, sk)⇐ keygen();
(m1, m2)⇐ A1(pk);
i

R← {1, 2};
c⇐ encrypt(pk, mi);
ı̂⇐ A2(pk, (m1, m2), c);
return ı̂ = i

≡ε
b

R← {true, false};
return b

In the left-side game, a pair (pk, sk) of public and secret keys is generated; the
public key pk is passed to the attacker A1 which returns two messages m1 and
m2; one of them is picked at random and encrypted with the secret key sk; the
obtained cyphertext c is then passed with the public key pk and the pair of
picked messages (m1, m2) to the attacker A2; the attacker returns its guess for
the picked message; whether the attacker is right or not is returned as a result.
A scheme is semantically secure if the advantage ε of any attacker over a random
player is negligible.

378 D. Nowak

Theorem 5.5. The scheme of Goldwasser and Micali is semantically secure
(under the quadratic residuosity assumption).

Proof. We proceed by rewriting the left-side game of the semantic-security spec-
ification (Def. 5.4).

GM1. We unfold definitions of keygen and encrypt:

(m1, m2)⇐ A1(n, y);
i

R← {1, 2};
x

R← Z∗
n;

ı̂⇐ A2((n, y), (m1, m2), if mi = 1 then y · x2 else x2);
return ı̂ = i

GM2. Because of Fact I, we can rewrite the game as:

(m1, m2)⇐ A1(n, y);
i

R← {1, 2};
x

R← QRn;
ı̂⇐ A2((n, y), (m1, m2), if mi = 1 then y · x else x);
return ı̂ = i

GM3. Because of Fact II, we can rewrite the game as:

(m1, m2)⇐ A1(n, y);
i

R← {1, 2};
x

R← QRn;
z

R← QNRn(+1);
ı̂⇐ A2((n, y), (m1, m2), if mi = 1 then z else x);
return ı̂ = i

Note that this transformation is only valid because the result of the game
does not depend on the relation between y · x and x. Indeed, if mi = 1
then only y · x is used while x can be ignored, and vice versa.

Now we consider the different cases for the messages m1 and m2 chosen by
the attacker.

(i) (m1, m2) = (0, 0):
GM4. We can rewrite the game as:

x
R← QRn;

z
R← QNRn(+1);

ı̂⇐ A2((n, y), (0, 0), x);
i

R← {1, 2};
return ı̂ = i

i can be picked randomly after the calls to the attacker. Therefore
ı̂ does not depend on i. Our goal is proved.

On Formal Verification of Arithmetic-Based Cryptographic Primitives 379

(ii) (m1, m2) = (1, 1): This is similar to the previous case except that A2 is
given z instead of x.

(iii) (m1, m2) = (0, 1):

GM5. We can rewrite the game GM3 as:

i
R← {1, 2};

if i = 1 then

x
R← QRn;

ı̂⇐ A2((n, y), (0, 1), x);
return ı̂ = i

else

z
R← QNRn(+1);

ı̂⇐ A2((n, y), (0, 1), z);
return ı̂ = i

GM6. By definition of qr, we can rewrite the game as:

i
R← {1, 2};

if i = 1 then

x
R← QRn;

ı̂⇐ A2((n, y), (0, 1), x);
b̂← ı̂ = 1;
return b̂ = qr(x)

else

z
R← QNRn(+1);

ı̂⇐ A2((n, y), (0, 1), z);
b̂← ı̂ = 1;
return b̂ = qr(z)

GM7. Because of Fact III, we can rewrite the game as:

x
R← QRn ∪QNRn(+1);

ı̂⇐ A2((n, y), (0, 1), x);
b̂← ı̂ = 1;
return b̂ = qr(x)

GM8. Because of Fact IV, we can rewrite the game as:

x
R← Z∗

n(+1);
ı̂⇐ A2((n, y), (0, 1), x);
b̂← ı̂ = 1;
return b̂ = qr(x)

380 D. Nowak

GM9. We have reduced the game to the left-side one of QRA (Assump-
tion 4.1) where the attacker A′(n, x) is instantiated by:

ı̂⇐ A2((n, y), (0, 1), x);
b̂← î = 1;
return b̂

(iv) (m1, m2) = (1, 0): This case is similar to the previous one. ��

6 Implementation

We have extended our toolbox with a module which contains number-theoretic
lemmas on Legendre and Jacobi symbols, and on Blum integers. Based on those
lemmas, we have proved arithmetic-based game transformations in the module
dedicated to transformations. We have added the definition of unpredictability
and the quadratic residuosity assumption in the appropriate modules. We have
then used those extensions to make the formal security proofs of the Blum-Blum-
Shub generator and the Goldwasser-Micali scheme.

Future work. Two standard mathematical results remain to be proved in the
proof assistant Coq. The first one is Fermat’s little theorem. Although there are
proofs of this theorem in the contributions of Coq, they are not compatible with
its standard library. The second one is the fact that if p is a prime number then
the group Z

∗
p is cyclic. Although those theorems are orthogonal to our work, it

would be nice to have them machine checked, if only for the sake of completeness.
For the moment, we have added them as axioms.

We neither compute exact nor asymptotic running time. This is orthogonal
to the verification of game transformations. In the examples we dealt with, the
algorithm A′ we built from the attacker A at the end of Lemma 5.2, Theorem 5.3
and Theorem 5.5 are trivially PPT and thus valid attackers. However this is not
checked by the current implementation.

7 Conclusions

We have extended our toolbox with number-theoretic capabilities. It is thus
now possible to use this toolbox for machine-checking game-based proofs of
arithmetic-based cryptographic primitives. We have shown usability of our imple-
mentation by applying it to the proof of unpredictability of the Blum-Blum-Shub
generator and the proof of semantic security of the Goldwasser-Micali scheme.
This is the first time that a proof of unpredictability is machine checked. Ma-
chine formalization has forced us to make clear all details in those proofs that
are usually either left to the reader or roughly explained in English. In spite of
this level of details, we claim that our proofs remain human readable and are
mechanically human checkable without appealing too much to intuition.

On Formal Verification of Arithmetic-Based Cryptographic Primitives 381

Acknowledgements

We are grateful to Frédérique Oggier and Nicolas Perrin for fruitful discussions.

References

1. Affeldt, R., Tanaka, M., Marti, N.: Formal proof of provable security by game-
playing in a proof assistant. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007.
LNCS, vol. 4784, pp. 151–168. Springer, Heidelberg (2007)

2. Backes, M., Berg, M., Unruh, D.: A formal language for cryptographic pseudocode.
In: 4th Workshop on Formal and Computational Cryptography (FCC 2008) (2008)

3. Barthe, G., Grégoire, B., Janvier, R., Olmedo, F., Béguelin, S.Z.: Formal certifi-
cation of code-based cryptographic proofs. In: 4th Workshop on Formal and Com-
putational Cryptography (FCC 2008) (2008)

4. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331 (2004)

5. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Proceedings of the 14th IEEE Computer Security Foundations Workshop (CSFW-
14), pp. 82–96. IEEE Computer Society, Los Alamitos (2001)

6. Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537–554. Springer, Hei-
delberg (2006)

7. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo random number
generator. SIAM Journal on Computing 15(2), 364–383 (1986); an earlier version
appeared in Proceedings of Crypto 1982

8. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences (JCSS) 28(2), 270–299 (1984); an earlier version appeared in proceed-
ings of STOC 1982

9. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formal-
isation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007.
LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)

10. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint Archive, Report 2005/181 (2005)

11. Knuth, D.E.: The Art of Computer Programming – Seminumerical Algorithms,
vol. 2. Addison-Wesley, Reading (1969)

12. Lafourcade, P., Lakhnech, Y., Ene, C., Courant, J., Daubignard, M.: Towards au-
tomated proofs of asymmetric encryption schemes in the random oracle model.
In: Proceedings of the 2008 ACM Conference on Computer and Communications
Security, ACM, New York (2008) (to appear)

13. Nowak, D.: A framework for game-based security proofs. In: Qing, S., Imai, H.,
Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 319–333. Springer, Heidelberg
(2007); also available as Cryptology ePrint Archive, Report 2007/199

14. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Proceedings of the 29th ACM Symposium on the Principles of
Programming Languages (POPL 2002), pp. 154–165. ACM, New York (2002)

382 D. Nowak

15. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

16. Vazirani, U.V., Vazirani, V.V.: Efficient and secure pseudo-random number gen-
eration. In: Proceedings of the IEEE 25th Annual Symposium on Foundations of
Computer Science (FOCS 1984), pp. 458–463. IEEE Computer Society, Los Alami-
tos (1984)

17. Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of the
IEEE 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982),
pp. 80–91. IEEE, Los Alamitos (1982)

A New Technique for Multidimensional Linear
Cryptanalysis with Applications on Reduced

Round Serpent

Joo Yeon Cho, Miia Hermelin, and Kaisa Nyberg

Helsinki University of Technology,
Department of Information and Computer Science,

P.O. Box 5400, FI-02015 TKK, Finland
{joo.cho,miia.hermelin,kaisa.nyberg}@tkk.fi

Abstract. In this paper, we present a new technique for Matsui’s algo-
rithm 2 using multidimensional linear approximation. We show that the
data complexity of the attack can be reduced significantly by our method
even when the linear hull effect is present. We apply our method to the
key recovery attack on 5-round Serpent and demonstrate that our attack
is superior to previous attacks. We present evidence that it is theoreti-
cally possible to reduce the data complexity of the linear attack against
10 round Serpent by factor of 220 when multiple approximations are used.

Keywords: Block Ciphers, Linear Cryptanalysis, Serpent, Multidimen-
sional Linear Approximation.

1 Introduction

Linear cryptanalysis is one of the most important methods of attack against
block ciphers. Since Matsui introduced the linear cryptanalysis on DES in 1993,
several attempts to generalize linear attack have been published. One approach
is to use multiple linear approximations for the linear attack. In 1994, Kaliski
and Robshaw [9] showed that the efficiency of the attack could be improved
by using multiple linear approximation depending on the same key parity bit.
In 2004, Biryukov, et al., [4] proposed a statistical framework for Matsui’s al-
gorithm 1 and 2 using multiple linear approximations and assuming similarly
to [9] that the approximations are statistically independent. More rigorous sta-
tistical framework was proposed independently by Baignères, et al., in [2]. In
2008, Hermelin, et al., proposed a multidimensional statistical framework for
Matsui’s algorithm 1, for which the assumption on statistical independence is
not needed [8].

In 2008, Collard, et al., [6] presented experimental results on the linear attack
of Biryukov, et al., against reduced round Serpent. They showed that a linear
attack on Serpent using Matsui’s algorithm 1 could be improved significantly by
exploiting multiple linear approximations, whereas a similar reduction of data
complexity was not achieved using Matsui’s algorithm 2. Authors claimed that

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 383–398, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

384 J.Y. Cho, M. Hermelin, and K. Nyberg

this inconsistency was caused by the lack of good theoretical estimations of the
correlations of the approximations due to the linear hull effect [10].

In this paper, we propose new techniques for Matsui’s algorithm 2 using multi-
ple linear approximations. In a similar way as in [8], we focus on the distribution
of the multiple approximations rather than individual correlations. We present an
efficient algorithm to apply the relative entropy between distributions for finding
the right key in Matsui’s algorithm 2. We also show that the maximum entropy
of the distributions can be used to improve the efficiency of the key recovery at-
tack when the distributions satisfy a certain general condition. We apply our tech-
niques to reduced round Serpent and demonstrate that our method can reduce the
data complexity of the attack significantly compared to the results of [6]. Hence,
it seems to us that the linear hull effect is not the only reason to account for the
experimental results of Matsui’s algorithm 2 presented in [6].

This paper is organized as follows. In Section 2, the technical background of
our attack method is presented. In Section 3, multiple linear approximations
for reduced round Serpent are set up and the dependency of the theoretical
advantage of the attack is illustrated for different cases according to the number
of linearly independent linear approximations. In Section 4, previously proposed
generalizations of linear attacks are described and the experimental results are
shown. In Section 5, the new techniques are applied to reduced round Serpent
and the experimental results are presented. Section 6 concludes this paper.

2 Technical Background

The first step in a traditional linear attack using Matsui’s algorithm 2 is to find
a linear approximation for the cipher that has the largest bias. Then, an attacker
collects a large amount of plaintext-ciphertext pairs and counts the number of
pairs that satisfy the linear approximation for each possible key values. The
maximum bias over the counted samples indicates the right key value.

In a multidimensional linear attack, the attacker finds a class of linearly in-
dependent approximations whose biases are non-negligible. We call such linear
independent approximations base approximations. If m linearly independent ap-
proximations are established, then additional 2m−1−m approximations can be
constructed as linear combinations of the m base approximations.

Provided that we have 2m − 1 approximations and their probabilities are
p1, . . . , p2m−1, the capacity of the approximations, which is denoted by C, is
defined as [4]

C =
2m−1∑
i=1

(2pi − 1)2 =
2m−1∑
i=1

c2
i ,

where ci = 2pi − 1 is called the correlation of the ith approximation.
In [2], a generalized statistical framework of the multidimensional linear at-

tack was proposed. Let us consider a process that generates independent random
variables Z1,K , Z2,K , . . . , Z2m,K depending on the key K ∈ GF (2l). Let K0 de-
note the right key and K1, . . . , K2l−1 be the wrong key values. We assume that

A New Technique for Multidimensional Linear Cryptanalysis 385

for K = K0, all variables Zi,K ’s follow the distribution D0, whereas for K �= K0,
all Zi,K ’s follow the distribution D1.

Suppose that we target to recover l-bit last round key. Once m base approx-
imations have been established over all rounds of the cipher except for the last
round, the linear attack using multiple approximations proceeds in four phases.

– Counting Phase. Collect the samples of the plaintext-ciphertext pairs on
the targeted cipher and counts the number of samples which satisfy m-
dimensional linear approximation.

– Analysis Phase. For each of the 2l candidate keys, measure the distance
of the empirical distribution from the theoretical distribution.

– Sorting Phase. Sort 2l candidate keys according to their distances.
– Searching Phase. Exhaustively try all the candidate keys in the sorted

order until the correct key is found.

In the analysis phase, the relative entropy between two distributions is measured
as follows:

Definition 1. The relative entropy or Kullback-Leibler distance between two
distribution D0 and D1 is defined as

D(D0||D1) =
∑
z∈Z

PrD0 [z] log
PrD0 [z]
PrD1 [z]

with the assumptions that p log p
0 = 0 and 0 log 0

p = 0.

Let Δ(D) denote the Squared Euclidean Imbalance [2] of the distribution D of
a random variable taking values in the set Z ⊂ GF (2m). It is defined as

Δ(D) = |Z|
∑
z∈Z

(PrD[z]− 1
|Z|)

2.

Note that C = Δ(D) if D is the probability distribution of m base approxima-
tions as shown in [8].

Let N denote the number of samples and Φ(t) denote the cumulative normal
distribution function that is defined as

Φ(t) =
1√
2π

∫ t

−∞
e−

1
2 u2

du.

We apply the key ranking procedure, originally developed in [2] for the LLR-
statistic, to the Kullback-Leibler distance, and assume that D(D0||D1)|K=K0 −
D(D0||D1)|K �=K0 is approximately normally distributed with mean μ = NΔ(D)
and standard deviation σ =

√
2NΔ(D) [2]. Thus, the probability that a

wrong key K �= K0 has a better rank than K0 is approximately Φ(−μ/σ) =
Φ(−

√
NΔ(D)/2) when the number of samples is large. Since the rank of K0 is

1 +
∑
K

1D(D0||D1)|K=K0<D(D0||D1)|K �=K0

so the expected rank of K0 is 1 + (2l − 1)Φ(−
√

NΔ(D)/2) [12,2].

386 J.Y. Cho, M. Hermelin, and K. Nyberg

In [11], Selçuk provided a statistical analysis of the success probability of linear
cryptanalysis. If the correct value of the l-bit key is ranked at the r-th position
out of 2l possible candidates, the attack obtains an (l− log r)-bit advantage over
exhaustive search [11].1 Therefore, the advantage a of the attack is expressed as

a = l − log r = l − log(1 + (2l − 1)Φ(−
√

NΔ(D)/2)) (1)

3 Multiple Linear Approximations of 4 Round Serpent

Suppose that we have m base approximations which are described as follows:

ui · P ⊕ vi · C = κi ·K, i = 1, . . . , m

where ui, vi and κi stand for the input mask, output mask and the key mask,
respectively. Also, P, C and K represent the plaintext, ciphertext and the key,
respectively. The ”·” operation means a standard inner product. Given γ =
(γ1, . . . , γm) where γi ∈ {0, 1} and γ �= (0, . . . , 0), a combined approximation is
constructed by

m⊕
i=1

γi(ui · P ⊕ vi · C) =
m⊕

i=1

γi(κi ·K).

Hence, we obtain 2m − 1 approximations in total.
We target to attack the 5-round Serpent using Matsui’s algorithm 2. For this,

we need to establish a chain of linear approximations over 4 rounds that has
a significant bias. The best linear approximations for the 4-round Serpent were
presented in [3] and [7]. Due to the structure of the round function of Serpent, one
can obtain several linear approximations that hold with equal or slightly smaller
bias based on the same round approxiamtions. The input and output masks on
the base approximations used for our attack are listed in Table 3 in Appendix
B. The linear approximations start from round 4 (using S-box 4) and end up in
round 7 (using S-box 7). The output mask is chosen in such a way the number
of active S-box in round 8 is minimal. Hence, the multiple approximations use
only a single output mask and it is denoted as v1 in Table 3.

Table 1 shows the correlations and the capacity of approximations for different
numbers m of base approximations by which 2m−1 approximations are obtained
in total. Note that the base approximations are taken from the top of the list from
Table 3 in order. Using Equation (1) and Table 1, we derive, for different values
of m, the relation between the advantage of the attack and data complexity,
which is illustrated in Figure 1.

So far, two types of linear attacks using multiple linear approximations have
been investigated in the literature: linear attack using correlation (or type-I
attack) and linear attack using distribution (or type-II attack). The attacks
presented in [4] and [6] can be classified as type-I attack, whereas the multidi-
mensional attack in [8] is a type-II attack. In the next section, we apply type-I
attack to reduced round Serpent and show the experimental results.
1 A slightly different measure of success was proposed for use in [4] where it was called

as gain.

A New Technique for Multidimensional Linear Cryptanalysis 387

Table 1. The correlations and capacities according to 1, 4, 7, 10 and 12 base approx-
imations

base appr. 1 4 7 10 12
combined appr. 0 11 120 1013 4083

correlation

2−13 1 8 8 8 8
2−14 0 0 32 64 80
2−15 0 0 0 128 256
2−16 0 0 0 0 256

0 0 7 87 823 3495
capacity 2−26 2−23 2−22 2−21 2−20.42

2^23 2^23.5 2^24 2^24.5 2^25 2^25.5 2^26 2^26.5 2^27 2^27.5 2^28
0

2

4

6

8

10

12

number of texts

ad
va

nt
ag

e

Theoretical advantage of the attacks using Squared Euclidean Imbalance

m=1

m=4m=7m=10m=12

Fig. 1. Evaluation of the theoretical advantage of attacks using 1,4,7,10 and 12 base
approximations

4 Linear Attacks Using Correlations of Multiple
Approximations

Suppose that we have M linear approximations with correlations c1, . . . , cM .
The empirical correlations of M approximations by the key K are denoted by
ĉ1,K , . . . , ĉM,K . Then, we consider the sum of the square of the correlations

||ĉK ||2 =
M∑
i=1

ĉ2
i,K , where K = 0, . . . , 2l − 1. (2)

According to the wrong key hypothesis, it is assumed that ĉi,K �=K0 does not
have any correlation (just like a random variable). Thus, the distance ||ĉK ||2
by the correct key K = K0 is expected to be significantly higher than the one
induced by incorrectly guessed key K �= K0. Hence, the correct key can be
recovered by taking K whose ||ĉK ||2 is maximal.

388 J.Y. Cho, M. Hermelin, and K. Nyberg

In this method, it is not important whether the empirical correlations by the
right key are matched to the theoretically calculated values or not. On the other
hand, a method which Biryukov, et al., suggested in [4] is to extend Matsui’s
algorithm 1 for Matsui’s algorithm 2 using multiple approximations. Hence, the
accuracy of theoretically calculated correlations affects the performance of the
attack.

Let us denote the parity key bits of the M approximations by G =
(g1, . . . , gM), that is, ui · P + vi · C = gi where 1 ≤ i ≤ M . For each value
of a pair (K, G), a vector of theoretical correlations is constructed as follows:

cK,G = (0, . . . , 0, (−1)g1c1, . . . , (−1)gM cM , 0, . . . , 0),

where the location of the subvector ((−1)g1c1, . . . , (−1)gM cM) depends on the
value of K. Hence, the vector cK,G has M×2l entries and the number of possible
pairs is 2m×2l. Then, the distance between empirical correlation and theoretical
correlation is measured using the following equation:

||ĉK − cK,G||2 =
M∑

j=1

(ĉj,K − (−1)gj cj)2 +
∑
κ �=K

M∑
j=1

ĉ2
j,κ. (3)

The correct key is recovered by taking the key value whose ||ĉK − cKi,G||2 is
minimal. If the linear hull effect [10] is not present, Equation (3) is slightly
better than Equation (2) since two terms in Equation (3) are distinguishable for
each value of K and G.

We applied two type-I attacks to the 5-round Serpent with various multiple
linear approximations taken from Table 1. The experimental results are displayed
in Figure 2. We can see in this figure that the advantage of the attack is far worse
than the theoretical expectation shown in Figure 1. Furthermore, when more
than 4 base approximations are used, the advantage of the attack becomes worse
even though the capacity increases. This exemplifies that the data complexity
required for the type-I attacks depends not only on the capacity but also on the
distribution of approximations. The (exact) relation between the capacity, the
number of approximations and data complexity required for the type-I attack
remains an open problem.

5 Linear Attacks Using Distribution of Multiple
Approximations

In this section, we propose new techniques on the linear attack using the distri-
bution of multiple approximations. Our attack can be seen as an extension of
the multidimensional linear attack [8] that was applied to Matsui’s algorithm 1.

Suppose we have m base approximations and the boolean values of m approx-
imations are G = (g1, . . . , gm). Using m base approximations, we build 2m − 1
approximations whose correlations are c1, . . . , c2m−1. Then, the theoretical prob-

A New Technique for Multidimensional Linear Cryptanalysis 389

2^23 2^23.5 2^24 2^24.5 2^25 2^25.5 2^26 2^26.5 2^27 2^27.5 2^28
0

2

4

6

8

10

12

Advantage of the attacks using the sum of the squared correlations

number of texts

ad
va

nt
ag

e

m=1, capacity=2−26

m=4, capacity=2−23

m=7, capacity=2−22

m=10, capacity=2−21

2^23 2^23.5 2^24 2^24.5 2^25 2^25.5 2^26 2^26.5 2^27 2^27.5 2^28
0

2

4

6

8

10

12

Advantage of the attacks using Biryukov, et al., method with 1,4,7 and 10 base approximations

number of texts

ad
va

nt
ag

e

m=1, M=1, capacity=2−26

m=4, M=8, capacity=2−23

m=7, M=40, capacity=2−22

m=10, M=200, capacity=2−21

Fig. 2. Type-I linear attacks with 1, 4, 7 and 10 base approximations using Equation
(2) (left) and (3) (right)

ability distribution of approximations is constructed in the following way [8]:

pi,G = 2−m + 2−m
2m−1∑
j=1

(−1)j·i⊕j·Gcj , where i, G ∈ {0, 1}m. (4)

Note that the size of theoretical distribution is 2m × 2m.
Let PG = (p0,G, . . . , p2m−1,G) denote the theoretical distributions by the G.

Then, it is clear from Equation (4) that the distribution G has the following
property:

Property 1. A distribution PG′ is a permutation of PG for all G′ �= G. In
particular, pi,G = pī,Ḡ where X̄ is a bitwise negation of X .

Let us remind that only one output mask is used for the base approximations.
This is a common situation for Matsui’s algorithm 2 using multiple approxima-
tions for minimizing the active S-boxes. Since the output mask vi for all base
approximations is the same, only odd number of combinations of the base ap-
proximations have nonzero correlations among 2m − 1 possible approximations.
Thus, Equation (4) is equivalently expressed as

pi,G = 2−m + 2−m
∑

j∈Vm

(−1)j·i⊕j·Gcj . (5)

where Vm = {ν|0 < ν < 2m, Hamming weight of ν is odd}. From Equation (5),
we can derive the following property:

Property 2. Since ν ·G⊕ ν · Ḡ = 1 for ν ∈ Vm, we have

pi,G =2−m+2−m
∑

j∈Vm

(−1)j·i⊕j·G cj =2−m+2−m
∑

j∈Vm

(−1)j·i⊕j·Ḡ⊕1 cj =2−m+1−pi,Ḡ.

By similar reason, we get pī,G = 2−m+1 − pi,G.

390 J.Y. Cho, M. Hermelin, and K. Nyberg

Since we target to recover l-bit of the last round key, we obtain 2l empiri-
cal distributions for each of candidate key in the counting phase. Let Q̂K =
(q̂0,K , . . . , q̂2m−1,K)denote the empirical distributionby thekeyK. It is knownthat
a relative entropy between two distributions is measured optimally by Kullback-
Leibler distance [2,8]. According to Definition 1, the Kullback-Leibler distance be-
tween the empirical distribution Q̂K = (q̂0,K , . . . , q̂2m−1,K) by K and the theoret-
ical distributions PG = (p0,G, . . . , p2m−1,G) by G is calculated as follows:

D(Q̂K ||PG) =
2m−1∑
i=0

q̂i,K log
q̂i,K

pi,G
. (6)

Once the empirical distribution for each candidate key is obtained, the analysis
phase of our attack proceeds in two steps:

– Step 1: For each K, measure the distances D(Q̂K ||PG) for all candidates of
G ∈ {0, 1}m and sort the candidates of G according to their distances.

– Step 2: For sorted values of G, measure D(Q̂K ||PG) for all candidates of
K ∈ {0, 1}l.

The step 1 applies Matsui’s algorithm 1 to determine the right value of G, whereas
in the step 2, Matsui’s algorithm 2 is applied to recover the right value of K.

5.1 Using the Maximum Distance

In the original Matsui’s algorithm 1, the correct parity key bit has the mini-
mum Euclidean distance, whereas the maximum Euclidean distance indicates
the opposite sign of the correct parity key. When multiple approximations are
applied to Matsui’s algorithm 1, it is natural to think that the correct values of
multiple parity key bits hold the minimum squared Euclidean distance by Equa-
tion (2), whereas the opposite signed key parity bits have the maximum squared
Euclidean distance. In this way, the maximum distance has the same amount of
information as the minimum distance. However, it has been often ignored and
not used for the linear attacks on the block ciphers.

When the distribution of the approximations is taken into account under
the condition that all multiple approximations have the same output masks, a
similar intuition can be applied. Due to Property 1, if pi,G = 2−m + εi, then,
pi,Ḡ = 2−m − εi. Hence, if the right value of G has the minimum value of
D(Q̂K ||PG), then, equivalently, the right value of Ḡ is expected to have the
maximum value of D(Q̂K ||PḠ). This intuition is proved in the following lemma:

Lemma 1. Suppose that only a single output mask is used for m base approxi-
mations. Let Gmin (resp. Gmax) denote the G such that D(Q̂K ||PG) is minimal
(resp. maximal). If K is the correct key, then Gmin and Gmax are expected to have
equivalent information and Gmax = Ḡmin where X̄ is a bitwise negation of X.

Proof. (sketch) For fixed G0, we can write

D(Q̂K ||PG0)−D(Q̂K ||PG) =
2m−1∑
i=0

q̂i,K log
pi,G

pi,G0

=
2m−1∑
i=0

q̂i,K log
pī,Ḡ

pī,Ḡ0

. (7)

A New Technique for Multidimensional Linear Cryptanalysis 391

x

PGmax

x

PGi

x

PLH

*
Q̂K0

x

PGmin

�
�

�

da

db

dc

Fig. 3. An example of the usage of Gmax when linear hull effect is present

It is expected that Q̂K ≈ PG for some G if K is the right key. Thus, by Property
2, we can put q̂i,K ≈ 2−m+1 − q̂ī,K . Then, Equation (7) is approximated by

2m−1∑
i=0

(2−m+1 − q̂ī,K) log
pī,Ḡ

pī,Ḡ0

= −
2m−1∑
i=0

q̂ī,K log
pī,Ḡ

pī,Ḡ0

= −
2m−1∑
i=0

q̂i,K log
pi,Ḡ

pi,Ḡ0

= D(Q̂K ||PḠ)−D(Q̂K ||PḠ0
).

since
∑2m−1

i=0 log pī,Ḡ

pī,Ḡ0
= 0 from Property 1. Hence, for any G �= G0, if

D(Q̂K ||PG0) > D(Q̂K ||PG) , then D(Q̂K ||PḠ) > D(Q̂K ||PḠ0
). ��

However, our experiments showed that Gmax was not always equal to Ḡmin. The
reason is that, in practice, the theoretical distributions (which are constructed
by the theoretical correlations) are not accurate due to the linear hull effect. In
particular, our experiments show that the maximum distance is more reliable
than the minimum distance.

Figure 3 provides an example of this situation. Let us assume that K0 is the
right key and PLH is a true distribution. (LH denotes the linear hull.) Then,
it is expected that an empirical distribution QK0 is close to PLH . If a distribu-
tion PGmin is different from PLH , there exist possibilities that D(Q̂K0 ||PGmin) >
D(Q̂K0 ||PGi) for some Gi �= Gmin. However, in the same situation, the relation
D(Q̂K0 ||PGmax) > D(Q̂K0 ||PGi) persists as illustrated in Figure 3. If the mini-
mum distance is measured, Gi is (wrongly) guessed as a correct G since db > da.
On the other hand, if the maximum distance is measured, Gmax is guessed as a
negation of correct G, since dc > da. Our experimental results also show that a
key recovery attack using Gmax is superior to that using Gmin. Hence, the right
key is more reliably recovered by taking the key value from

max
K

max
G

D(Q̂K ||PG).

This observation is experimentally verified in Figure 4. More discussions on the
experiments will be given in Subsection 5.4.

392 J.Y. Cho, M. Hermelin, and K. Nyberg

5.2 Summary of Our Method for Matsui’s Algorithm 2

Given N plaintext-ciphertext pairs, our attack is described as follows.

– Initialize 2l counters where l denotes the targeted key bits of the last round
key.

– Compute the theoretical distribution of m approximations for each value of
m parity bits and store them in a 2m × 2m-table.

– For each of the l-bit value of the last round key,
• Decrypt the ciphertext partially using the guessed l-bit value of the last

round key.
• Compute the XOR of the input parity and output parity for each ap-

proximation.
• Build an m-bit vector whose coordinates correspond the XORed parity

bits of approximations.
• Increment the counter indexed by both the vector and the l-bit guessed

key.

– For each of the l-bit value of the last round key
• For each of the m-bit value of the parity key, measure the Kullback-

Leibler distance between the empirical distributions indexed by the l-bit
value and the theoretical distribution indexed by the m-bit value.
• Choose the maximum value of D(Q̂K ||PG) for each K and store it as

D(Q̂K ||PGmax).

– Sort all the candidate last round key using their values of D(Q̂K ||PGmax).
– Exhaustively try all keys from the sorted list of all candidate until the correct

key is found.

5.3 Comparison of Time and Memory Complexity

Suppose that the number of base approximations for multidimensional linear
attack is m and the targeted key size is l bits. For type-I attacks, we assume
that M linear dependent approximations are used where m parity key bits are
involved. Thus m ≤M < 2m.

In the counting phase, for each key candidate and for each plaintext-ciphertext
pair, type-I attacks need to update M counters by evaluating M approximations,
while multidimensional attacks need to update one of 2m counters by evaluat-
ing m base approximations. In the analysis phase, type-I attacks evaluate M
correlations for each candidate of the last round key. In the multidimensional
attacks, one distribution consisting of 2m empirical frequencies is compared
with 2m different theoretical distributions by computing KL distances, where
each KL distance has 2m terms. The time complexity of multidimensional at-
tack and type-I attacks using N plaintext-ciphertext pairs are summarized in
Table 2.

A New Technique for Multidimensional Linear Cryptanalysis 393

Table 2. The time complexity of type-I attacks and multidimensional attack

Squared Correlations Sum (Eq. (2)) Biryukov, et al., (Eq. (3)) Multidimensional
Counting phase N ·M · 2l N ·M · 2l N ·m · 2l

Analysis phase M · 2l M · 22l+m 2l+2m

Recovered Key l bits (l + m) bits (l + m) bits

For memory complexity, type-I attacks require 2m storage for counters and
multidimensional attack requires 22m+1 storage for both the counters and the
theoretical distribution.

Note that the multidimensional attack and the method of Biryukov, et al., can
retrieve the information on the last round key K and the key parity G together.
On the other hand, type-I attack using the sum of squares of correlations, see
Equation (2), can recover the last round key K only.

5.4 Experimental Results

We applied our attack algorithm to the 5-round Serpent. We picked up 7, 10 and
12 base approximations from Table 1 and targeted to recovering of 12 bits of the
last round key. The experimental results are displayed in Figure 4 and the results
of type-I attacks are compared to them. In the experiments, the 128-bit secret
keys and plaintexts were randomly generated and ciphertexts were collected by
encrypting the plaintexts using 5-round Serpent.

Figure 4 shows that the advantage of the multidimensional linear attack us-
ing the maximum Kullback-Leibler Distance is significantly higher than for the
other attacks. We also show that multidimensional attack using the minimum
Kullback-Leibler Distance is worse than the other attacks. This suggests that the
linear attack using the minimum distance may be more vulnerable to the linear
hull effect. Finally, we note that our experimental results are still worse than the
theoretical curves in Figure 1 that were drawn by Equation (1). Further research
is required for the statistical modeling of multidimensional linear approximation
and to find the optimal multidimensional extension of Matsui’s algorithm 2 and
to accurately predict its performance.

5.5 Extension for Further Rounds of Serpent

Our attack can be further applied for a larger number of round of Serpent since
we can obtain multiple approximations simply by applying various input masks
in the first round. For instance, the linear attacks on 10-round Serpent in [3] use a
9-round linear approximation with probability of 1

2 (1−2−57). Thus, the capacity
of the best single approximation is 2−2×57 = 2−114. On the other hand, we can
construct multiple linear approximations from the same linear trail of 9-round
Serpent. The first round of the linear trail includes 10 active S-boxes and each
S-box has 10 non-negligible approximations (2 for 2−1 and 8 for 2−2 correlations
for each S-box) for a fixed output. Thus, we can construct in total 1010 ≈ 233

approximations that have non-negligible correlations. The best correlation of the

394 J.Y. Cho, M. Hermelin, and K. Nyberg

2^23 2^23.5 2^24 2^24.5 2^25 2^25.5 2^26 2^26.5 2^27 2^27.5 2^28
0

2

4

6

8

10

12

number of texts

ad
va

nt
ag

e

Comparison of multidimensional attack using KL distance and correlations with m=7

maximum KL
Squared Euclidean Distance
minimum KL

2^23 2^23.5 2^24 2^24.5 2^25 2^25.5 2^26 2^26.5 2^27 2^27.5 2^28
0

2

4

6

8

10

12

number of texts

ad
va

nt
ag

e

Comparison of multidimensional attack using KL distance and correlations with m=10

maximum KL
Squared Euclidean Distance
minimum KL

2^23 2^23.5 2^24 2^24.5 2^25 2^25.5 2^26 2^26.5 2^27 2^27.5 2^28
0

2

4

6

8

10

12

number of texts

ad
va

nt
ag

e

Comparison of multidimensional attack using KL distance and correlations with m=12

maximum KL
Squared Euclidean Distance
minimum KL

Fig. 4. Comparison of multidimensional attacks and other attacks with various base
approximations

A New Technique for Multidimensional Linear Cryptanalysis 395

first round approximation is 2−10 and the number of approximations with the
best correlations is 210. In the same way, the second best correlation of the first
round approximation is 2−11 and 10×212 approximations hold such correlation,
and so on. Hence, the capacity of 233 approximations can be computed as

C = 210

(
10
0

)
2−57×2 + 212

(
10
1

)
2−58×2 + · · ·+ 230

(
10
10

)
2−67×2 = 2−94. (8)

Therefore, the data complexity of linear attack on 10 round Serpent can be
reduced theoretically by a factor of 220 at the cost of increased time complexity.

In [5], Collard et al. also presented the multiple linear attacks against 10-round
Serpent. According to [5], the best attack on 10-round Serpent needs 299 known
plaintexts with 299 time complexity and 255 memory for recovering 44 bits of the
last round key. This attack uses M = 211 linear approximations and each approx-
imation has the equal bias of 2−55. Hence, the capacity is (2 · 2−55)2 · 211 = 2−97.

On the other hand, the multidimensional linear attack method allows us to
use all the linear approximation involved in 9-round linear trails within the
span of the base approximations. Since the number of active S-boxes of the
first round is 11 and each S-box has 10 linear approximations, the number of
possible approximations is actually 1011. Hence, the capacity is computed as
211
(
11
0

)
2−54×2+ · · ·+233

(
11
11

)
2−65×2 = 2−86. Therefore, it is theoretically possible

to reduce the data complexity of the attack further by a factor of 211. Instead, the
time complexity increases by around 2l+2m = 2132 with the memory complexity
of around 22m+1 = 289.

6 Conclusion

In this paper, we proposed a new technique for the multidimensional linear at-
tacks. We showed that the multidimensional linear attack could be very powerful
with Matsui’s algorithm 2 when multiple linear approximations are available in
the block ciphers. The improvements we achieved using the new techniques stem
from two reasons. Firstly, we take the distribution of the approximations in a
multidimensional way and we measure the distances between two distributions
using Kullback-Leibler distance instead of the sum of the squared correlations.
Secondly, by taking the maximal value of the distances, our method eliminated
errors in the situation where correlations of individual linear approximations
could not be calculated accurately due to the linear hull effect. However, it is
an open problem whether our heuristic technique is optimal and what is its
expected performance.

References

1. Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the advanced encryp-
tion standard. In: First Advanced Encryption Standard (AES) conference (1998)

2. Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

396 J.Y. Cho, M. Hermelin, and K. Nyberg

3. Biham, E., Dunkelman, O., Keller, N.: Linear cryptanalysis of reduced round Ser-
pent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 219–238. Springer,
Heidelberg (2002)

4. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004)

5. Collard, B., Standaert, F., Quisquater, J.: Improved and multiple linear cryptanal-
ysis of reduced round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt
2007. LNCS, vol. 4990, pp. 47–61. Springer, Heidelberg (2008)

6. Collard, B., Standaert, F., Quisquater, J.: Experiments on the multiple linear crypt-
analysis of reduced round serpent. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 382–397. Springer, Heidelberg (2008)

7. Collard, B., Standaert, F., Quisquater, J. (Accessed on 31.07.2008),
http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip

8. Hermelin, M., Cho, J., Nyberg, K.: Multidimensional linear cryptanalysis of re-
duced round Serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 203–215. Springer, Heidelberg (2008)

9. Kaliski, B., Robshaw, M.: Linear cryptanalysis using multiple approximations. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidel-
berg (1994)

10. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

11. Seluk, A.: On probability of success in linear and differential cryptanalysis. Journal
of Cryptology 21(1), 131–147 (2008)

12. Vaudenay, S.: An experiment on DES statistical cryptanalysis. In: CCS 1996: Pro-
ceedings of the 3rd ACM conference on Computer and communications security,
pp. 139–147. ACM, New York (1996)

A Brief Description of Serpent Algorithm

We use the notation of [1]. Each intermediate value of round i is denoted by B̂i

(a 128-bit value). Each B̂i is treated as four 32-bit words X0, X1, X2, X3 where
bit j of Xi is bit 4 ∗ i + j of the B̂i. Serpent has a set of eight 4-bit to 4-bit S
Boxes S0, . . . , S7 and a 128-bit to 128-bit linear transformation LT . Each round
function Ri uses a single S-box 32 times in parallel.

Serpent ciphering algorithm is formally described as follows.

B̂0 = P
ˆBi+1 = Ri(B̂i)
C = B32

where

Ri(X) = LT (Ŝi(X ⊕ K̂i)), i = 0, . . . , 30
Ri(X) = Ŝi(X ⊕ K̂i)⊕ K̂32, i = 31

The linear transformation LT is described as follows.

X0, X1, X2, X3 = Si(Bi ⊕Ki)

http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip

A New Technique for Multidimensional Linear Cryptanalysis 397

X0 = X0 ≪ 12
X2 = X2 ≪ 3
X1 = X1 ⊕X0 ⊕X2

X3 = X3 ⊕X2 ⊕ (X0 ≪ 3)
X1 = X1 ≪ 1
X3 = X3 ≪ 7
X0 = X0 ⊕X1 ⊕X3

X2 = X2 ⊕X3 ⊕ (X1 ≪ 7)
X0 = X0 ≪ 5
X2 = X2 ≪ 22

Bi+1 = X0, X1, X2, X3

The detailed description of Serpent can be found in [1].

B Linearly Independent Approximations on 4 Round
Serpent

In our experiments, we used 12 base approximations from the linear trail of 4
round Serpent. The linear approximations start from round 4 (using S-box 4)
and end up in round 7 (using S-box 7). Table 3 shows the input and output
masks of the base approximations that are expressed as

ui · P ⊕ vi · C = κi ·K, i = 1, . . . , m

where the ui and vi denote the input and out masks, respectively. Hence, ui is
an input mask of round 4 and vi is an output mask of round 7. We omit the key
mask κi since the exact knowledge of κi is not required for our attack.

Table 3. Input and output masks for the multidimensional linear attack using Matsui’s
algorithm 2

type index mask = (MSB, . . . , LSB)

input mask

u1 (0x70000000, 0x00000000, 0x00000000, 0x07000900)
u2 (0x70000000, 0x00000000, 0x00000000, 0x07000B00)
u3 (0x70000000, 0x00000000, 0x00000000, 0x0B000900)
u4 (0xB0000000, 0x00000000, 0x00000000, 0x07000900)
u5 (0x70000000, 0x00000000, 0x00000000, 0x07000500)
u6 (0x70000000, 0x00000000, 0x00000000, 0x07000600)
u7 (0x70000000, 0x00000000, 0x00000000, 0x07000C00)
u8 (0x70000000, 0x00000000, 0x00000000, 0x01000900)
u9 (0x70000000, 0x00000000, 0x00000000, 0x0A000900)
u10 (0xB0000000, 0x00000000, 0x00000000, 0x03000B00)
u11 (0x10000000, 0x00000000, 0x00000000, 0x07000900)
u12 (0x40000000, 0x00000000, 0x00000000, 0x0B000B00)

output mask v1 (0x00001000, 0x01000000, 0x00000000, 0x00000000)

398 J.Y. Cho, M. Hermelin, and K. Nyberg

The notation of masks are following [3]. For instance, in the input mask

u1 = (0x70000000, 0x00000000, 0x00000000, 0x07000900)

the first 4 bits (which is ’7’) is an input of the leftmost S-Box of the first round.
Hence, there are three active S-boxes in the first round. In the same way, there
are two active S-boxes in the second last round by the output mask v1.

Almost Fully Optimized Infinite Classes of
Boolean Functions Resistant to (Fast) Algebraic

Cryptanalysis

Enes Pasalic

IMFM Ljubljana & University of Primorska, Koper
Slovenia

enespasalic@yahoo.se

Abstract. In this paper the possibilities of an iterative concatenation
method towards construction of Boolean functions resistant to algebraic
cryptanalysis are investigated. The notion of AAR (Algebraic Attack
Resistant) function is introduced as a unified measure of protection
against classical algebraic attacks as well as fast algebraic attacks.
Then, it is shown that functions that posses the highest resistance
to fast algebraic attacks are necessarily of maximum AI (Algebraic
Immunity), the notion introduced in [20] defined as a minimum degree
of functions that annihilate either f or 1 + f . More precisely, if for any
non-annihilating function g of degree e an optimum degree relation
e + d ≥ n is satisfied in the product fg = h (denoting deg(h) = d), then
the function f in n variables must have maximum AI, i.e. for nonzero
function g the relation fg = 0 or (1 + f)g = 0 implies deg(g) ≥ n

2
. The

presented theoretical framework allows us to iteratively construct func-
tions with maximum AI satisfying e + d ≥ n− 1, thus almost optimized
resistance to fast algebraic cryptanalysis. This infinite class for the first
time, apart from almost optimal resistance to algebraic cryptanalysis, in
addition generates the functions that possess high nonlinearity (superior
to previous constructions) and maximum algebraic degree, thus unifying
most of the relevant cryptographic criteria.

Keywords: Fast Algebraic attacks, Algebraic Immunity, Annihila-
tors, Algebraic Attack Resistant, High Degree Product, Stream ciphers,
Boolean function.

1 Introduction

Algebraic cryptanalysis has received a lot of attention recently. The technique
has proved efficient in cryptanalysis of certain LFSR-based stream ciphers such
as LILI-128 proposed in [25] and Toyocrypt1, both successfully cryptanalyzed in
[12]. Apart from its application to LFSR-based stream ciphers algebraic crypt-
analysis is also used as an efficient representation method for certain block cipher
algorithms such as encryption standards DES [11] and AES [13,22].
1 Submission to the Japanese government Cryptrec call for cryptographic primitives.

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 399–414, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

400 E. Pasalic

The design of LFSR-based stream ciphers traditionally resides on the use
highly nonlinear Boolean functions as filtering functions; the two major repre-
sentatives being nonlinear filter generators and nonlinear combiners [21]. For
instance, in the case of nonlinear filter generators n stages of a single Linear
Feedback Shift Registers (LFSRs) (whose initial state consists of the secret key)
are filtered by a nonlinear Boolean function f : GF (2)n → GF (2) to provide the
keystream sequence.

Apart from already established cryptographic criteria such as nonlinearity, al-
gebraic degree, and resiliency, it turned out that the Boolean function must also
have a certain order of algebraic immunity. This is due to recently introduced al-
gebraic attacks based on the low degree annihilation of Boolean functions [8,12].
These attacks reflect the property of certain cipher schemes for which the selec-
tion of function f of high algebraic degree that follows early ideas of Shannon’s
concept of confusion [24], and linear complexity attacks [21], is not a sufficient
criterion any longer. Due to algebraic attacks, instead of setting up a system
of equations of degree determined by the degree of function f , the attacker can
consider a lower degree system if there either exists a low degree function g
(called annihilator) such that fg = 0 or alternatively (1 + f)g = 0 [12,20]. The
minimum degree of nonzero annihilators g of either f or 1+ f is called algebraic
immunity (AI). Algebraic attacks currently present one of the most efficient
cryptanalytic tool in stream cipher cryptanalysis; the applications include many
prominent algorithms such as Bluetooth encryption algorithm E0 analyzed in
e.g. [10].

A few construction methods that generate functions reaching the upper bound
on algebraic immunity �n

2 � (maximum AI) functions) has recently been pro-
posed [6,14,4,15,19]. However, all the known methods do not succeed in opti-
mization of other cryptographic criteria at the same time. Furthermore, though
a high order of AI implies resistance to classical algebraic attacks this property
is only necessary but not sufficient criterion. The emergence of fast algebraic
cryptanalysis [1,9] still successfully invalidates any design for which there exists
low degree function g such that fg = h is of relatively low degree as well. For
instance, fast algebraic attack was successfully applied to eSTREAM [16] pro-
posal Sfinks [3], though the cipher was designed to withstand classical algebraic
attacks. Denoting by e and d the degree of g and h respectively, the resistance
to fast algebraic cryptanalysis is optimized if e + d ≥ n for any non-annihilating
g and e ∈ [1, �n

2 � − 1].
This work is mainly motivated by the fact that at the time being all the

construction methods fail to provide functions unifying all the important cryp-
tographic criteria. This is especially true when the fast algebraic attacks are
taken into account. In this direction we first derive some theoretical results that
relate the notions of algebraic immunity and resistance to fast algebraic attacks.
A unified measure against both fast and classical cryptanalysis is introduced, the
notion that we name AAR (algebraic attack resistance). The notion of AAR
includes the maximum AI property per definition, but it is shown that an-
other related concept high degree product actually includes the maximum AI

Almost Fully Optimized Infinite Classes of Boolean Functions 401

property. This framework is then used in deriving the set of sufficient condi-
tions for a certain recursive, concatenation-based construction to generate AAR
functions. These conditions being extremely hard to satisfy, the optimum re-
quirement e+d ≥ n is slightly relaxed (e+d ≥ n−1 is used instead) which then
enables an iterative method for constructing functions satisfying all the relevant
cryptographic criteria in the design of nonlinear filter generators.

The rest of the paper is organized as follows. Basic definitions and notations
are introduced in Section 2. Section 3 gives a thorough treatment regarding the
algebraic properties of the iterative construction technique based on the con-
catenation of four functions. Furthermore, the new notion of AAR functions
is introduced, and the relationship between the optimal resistance to fast and
to classical algebraic attacks is deduced. These results are then utilized in Sec-
tion 4 for proposing an iterative method for generation of suboptimized AAR
functions, with overall good cryptographic properties. The cryptographic prop-
erties are discussed in details, both from the security and implementation point
of view. Some concluding remarks are given in Section 5.

2 Preliminaries

We denote the Galois field of order 2n by F2n and the corresponding vector
space by Fn

2 . A Boolean function f : Fn
2 → F2 is usually represented via so called

algebraic normal form (ANF),

f(x1, . . . , xn) =
∑

u∈Fn
2

λu

(
n∏

i=1

xui

i

)
, λu ∈ F2 , u = (u1, . . . , un). (1)

For the rest of this paper, if otherwise not stated, x will denote a vector contain-
ing n input binary variables, that is x = (x1, . . . , xn) ∈ F

n
2 . Then the algebraic

degree of f , denoted by deg(f) or sometimes simply d, is the maximal value of
the Hamming weight of u such that λu �= 0. The set of all Boolean functions in n
variables is denoted by Bn, and functions of degree at most one are called affine
functions, whose associated set is denoted An. The nonlinearity of an n-variable
function f is defined as

Nf = ming∈An(dH(f, g)), (2)

where dH is the Hamming distance between two binary vectors, that is the
number of positions where f and g differ.

The support set of function f ∈ Bn, denoted by supp(f), is the set of input
values where f has a nonzero evaluation, that is,

supp(f) = {x ∈ F
n
2 | f(x) = 1}.

A function f is said to be balanced if it outputs equal number of zeros and ones,
that is

#{x ∈ F
n
2 : f(x) = 1} = #{x ∈ F

n
2 : f(x) = 0}.

402 E. Pasalic

3 Theoretical Framework towards Resistance to
Algebraic Attacks

A construction method based on the concatenation of functions from smaller
variable space has been frequently used as an efficient tool in the design of
cryptographically strong Boolean functions. Nevertheless, the known methods
have failed so far in providing good functions resistant to both fast and classical
algebraic cryptanalysis. These classes of functions are also attractive in terms
of an efficient hardware implementation. In this section we study the algebraic
properties of an iterative concatenation method involving four subfunctions. In
addition, a general relation that interlinks the optimum resistance to fast and
classical algebraic cryptanalysis is derived.

3.1 Some Properties of Functions with Maximum AI
The purpose of this section is to identify some basic conditions that any function
with maximum AI must satisfy with respect to its subfunctions. For the rest of
this manuscript we focus on the representation of f ∈ Bn+2 as a concatenation
of four functions, that is, f = f1||f2||f3||f4 ∈ Bn+2, where each fi ∈ Bn has
maximum AI. Using the shortened notation (fi denoting fi(x)), the ANF of
function f is given by:

f = xn+1xn+2(f1 + f2 + f3 + f4) + xn+1(f1 + f2) + xn+2(f1 + f3) + f1. (3)

A similar expression is then valid for any annihilator g of f ,

g = xn+1xn+2(g1 + g2 + g3 + g4) + xn+1(g1 + g2) + xn+2(g1 + g3) + g1, (4)

where gi is arbitrary annihilator of fi (including the trivial annihilation gi = 0).
Let gi denote any minimum degree nonzero annihilator of fi ∈ Bn. If deg(gi) = d
then we also use,

gi(x) = Td(gi(x)) + Td−1(gi(x)) + · · ·+ T0(gi(x)),

where each Tr(gi), for 0 ≤ r ≤ d, contains only degree r monomial terms. Then in
connection to the representation of annihilator g of f given in (4), the following
simple properties are deduced. 2

Lemma 1. Let f = f1||f2||f3||f4, where fi ∈ Bn are functions with maximum
AI. Then any nonzero annihilator g of f represented as in (4) satisfies the
following :
(i) If any gi = 0 then deg(g) ≥ �n

2 �+ 1.

(ii) If any gi is such that deg(gi) > �n
2 � then deg(g) ≥ �n

2 �+ 1.

2 This result was independently derived in [2, Ch. 4]. The author of this article made
this result available on Cryptology eprint archive in 2005, but the paper was soon
withdrawn due to one erroneous result.

Almost Fully Optimized Infinite Classes of Boolean Functions 403

(iii) If there exists g such that deg(g) < �n
2 � + 1 then deg(gi) = �n

2 � for
all i ∈ [1, 4] and furthermore,

Td(g1) = Td(g2) = Td(g3) = Td(g4); Td−1(
4∑

i=1

gi) = 0. (5)

Proof. (i) W.l.o.g. assume g1 = 0, then xn+1(g1 +g2) is of degree at least �n
2 �+1

unless g2 = 0. But g1 = g2 = 0 implies that g3 = 0 due to the term xn+2(g1+g3),
as otherwise deg(g) ≥ �n

2 �+ 1.
(ii) The similar idea is used here. Taking any gi so that deg(gi) > �n

2 �, implies
that deg(g) ≥ �n

2 �+ 1.
(iii) Assuming deg(g) < �n

2 �+ 1 gives that,

Td(
4∑

i=1

gi) = 0 Td−1(
4∑

i=1

gi) = 0 Td(g1 + g2) = 0 Td(g1 + g3) = 0,

and the result easily follows. ��
The result of Lemma 1, in particular item (iii), is a useful tool for establishing
the algebraic properties of given function. Showing that subfunctions f1, . . . , f4

of maximumAI are chosen so that item (iii) above cannot be satisfied for neither
f nor 1 + f is equivalent to proving f = f1||f2||f3||f4 has a maximum AI. It
has been used in [2], where the iterative method of designing the maximum AI
functions was proposed. The construction requires three suitable input functions
f0
1 , f0

2 , f0
3 ∈ F

n0
2 to iteratively generate maximum AI functions,

f i
1 = f i−1

1 ||f i−1
2 ||1 + f i−1

3 ||f i−1
1

f i
2 = f i−1

2 ||1 + f i−1
3 ||f i−1

1 ||f i−1
2 i ≥ 1

f i
3 = 1 + f i−1

3 ||f i−1
1 ||f i−1

2 ||f i−1
3 . (6)

This method generates the maximum AI functions with relatively good non-
linearity, at least the nonlinearity value is superior compared to the construc-
tions in [7,14,6,4,15,19]. A set of initial functions satisfying the conditions for
the above recursion to generate maximum AI is e.g. f0

1 = x1x2 + x3, f
0
2 =

x2x3 + x4, f
0
3 = x2x4 + x1 [2]. The main problem with this construction is its

unknown susceptibility to fast algebraic attacks.

3.2 Functions Resistant to (Fast) Algebraic Attacks

We have already mentioned that functions optimizing the algebraic immunity
does not protect from fast algebraic attacks in case there exists a degree e func-
tion g such that fg = h is of degree d, and e + d < n. The efficiency of the
fast algebraic attack depends on both parameters and finding a tuple (e, d) so
that e + d is substantially smaller than n will result in an overall lower attack
complexity. A more elaborate description of how fast algebraic attacks work
can be found in e.g. [1,9] but for convenience the main steps of algorithm and
corresponding complexities are summarized here.

404 E. Pasalic

1. Search for relations. Finding the low-valued (e, d) equation[s] for f of type
fg = h (sometimes also denoted zXe + Xd [1]). The complexity is roughly(
n
d

)
and is negligible in comparison to other steps.

2. Pre-computation step. For a given LFSR of length L and known characteristic
polynomial, a universal binary string α of length D =

∑d
i=0

(
L
i

)
can be

computed in D log2 D operations [9,1,18].
3. Substitution step. The original degree d equations are rewritten via substitu-

tion process to yield degree e equations. This step takes about 2ED log2 D
operations [18], where E =

∑e
i=0

(
L
i

)
.

4. Solving step. The degree e system of equations is solved by linearization; this
requires Eω operations, where ω is the complexity of solving linear system
(usually ω = 3 as a conservative estimate).

Assuming the existence of small e, the dominating step in terms of complexity
is the substitution step. Therefore the fast algebraic attacks imply reduced com-
putational complexity (compared to classical algebraic attacks) whenever there
exists (e, d) tuple(s) such that 2ED log2 D < Dω

AI , where DAI =
∑AI(f)

i=0

(
L
i

)
.

In [9], it was proved that there always exists a tuple (e, d) (denoting the degree
of functions g and h respectively) if e, d satisfy the bound e + d ≥ n. But the
statement that there are integers e, d meeting this bound, that is e + d = n was
recently disproved [17]. In this paper both the necessary and sufficient conditions
(not only sufficient as in [9] on the existence of such functions meeting the bound
e + d = n was derived. Furthermore, a few examples of so-called degenerated
cases when e + d > n are also provided in [17].

A straightforward relationship between the existence of (e, d)-relations and
the degree of function f can be deduced [9,2].

Theorem 1. [2, Ch.3][9] If f is of degree k then f satisfies a (k, k + i)-relation
for any i < k.

Proof. For any functions f and g of degree k respectively i, deg(fg) ≤ k + i. ��
For a properly chosen algebraic immunity (to resist classical algebraic attacks),
ensuring that (e, d) satisfy e + d ≥ n for any choice of e, d will imply protection
against fast algebraic attacks partially due to the following result:

Lemma 2. [2, Ch.3] For any functions f, g ∈ Bn such that g �= 0 is not an
annihilator of f we have deg(fg) = d ≥ AI(f).

The sufficiency of the condition e + d ≥ n comes from the complexity estimate
of the substitution step above.

Proposition 1. The complexity of the substitution step in the fast algebraic
attack is approximately the same (up to a logarithmic constant) for any choice
of e, d satisfying e + d = n, e ∈ [1,AI(f)− 1], d ∈ [AI(f), n− 1].

Proof. For a given state size S, the complexity of substitution step is 2ED log2 D,
where D =

∑d
i=0

(
S
i

)
, and E =

∑e
i=0

(
L
i

)
. Neglecting the logarithmic term, and

approximating
∑u

i=0

(
S
i

)
≈ Su (for u� S) we have,

2ED log2 D ≈ 2ED = 2SeSd = 2Se+d = 2Sn. ��

Almost Fully Optimized Infinite Classes of Boolean Functions 405

Table 1. Complexity of the substitution step for various (e, d); L = 160 and n = 16

(e, d) (1,15) (2,14) (3,13) (4,12) (5,11) (6,10) (7,9)
2ED log2 D 288 291 293 295 296 296.7 297

Note that in case n is odd, for a function f of maximum AI there will always
exist a tuple (e, d) = (�n

2 � − 1, �n
2 �) and therefore the upper bound on the

security for an LFSR based stream cipher application is estimated through the
complexity of fast algebraic attacks with above (e, d). The goal is to ensure that
(e, d) satisfies e + d ≥ n for any 1 ≤ e ≤ AI(f)− 1, and d ≥ AI(f).

The constant behavior of 2ED log2 D is illustrated in the following practical
context of usage. Assume that a nonlinear filtering generator uses an LFSR of
length 160 and a filtering Boolean function f : F16

2 → F2. In case the generator
is designed for 80 bits security and e + d ≥ 16 then the complexity of the
substitution step is given in Table 1. Thus, it seems to be well-motivated to
introduce a new quantity that would measure the resistance of function to both
algebraic and fast algebraic attacks.

Definition 1. Let f be a Boolean function on Fn
2 , with n of arbitrary parity.

Then the function f is called algebraic attack resistant (AAR) if f has a maxi-
mum AI, that is AI(f) = �n

2 �, and furthermore for any non-annihilating func-
tion g of degree e, 1 ≤ e ≤ �n

2 �−1, we necessarily have that deg(fg) = d satisfies
e + d ≥ n. The latter property is referred to as HDP (High Degree Product) of
order n.

The property of HDP is irrelevant to the complement operation.

Proposition 2. If function f ∈ Bn satisfies the HDP property of order n so
does the function 1 + f .

Proof. By assumption for any non-annihilating function g of degree e and h = fg
of degree d, we have e + d ≥ n. Then for any deg(g) = e function g,

(1 + f)g = fg + g = h + g,

and consequently deg((1 + f)g = deg(g + h). Since deg(h) ≥ n− e, then for any
e ∈ [1, �n

2 � − 1] we have n− e > e and therefore deg(g + h) = deg(h). ��

The AAR property appears to be somewhat related to the concept of algebraic
immunity through the result given by Lemma 2. Indeed, there is an explicit
relationship connecting the notions of AI and HDP (the upper bound on the
e + d). It turns out that the functions satisfying the HDP property of order n
automatically achieve the maximum AI.

Theorem 2. Let f ∈ Bn. Assume that fg = h satisfies e+d ≥ n for any choice
of non-annihilating function g of degree e, and h of degree d, for e ∈ [1,AI(f)],
and d ∈ [AI(f), n− 1]. Then f has maximum AI.

406 E. Pasalic

Proof. On contrary assume that AI(f) < �n
2 �, i.e. f has not maximum AI(f).

When n is odd AI(f) = n+1
2 if and only if deg(An(f)) = n+1

2 , that is
deg(An(f)) = deg(An(1 + f)) = n+1

2 [5] (for even n the relationship be-
tween An(f) and An(1 + f) is an open problem). Let g̃ ∈ An(1 + f) such
that deg(g̃) < �n

2 �. Then,

(1 + f)g̃ = 0 =⇒ f g̃ = g̃.

Since deg(g̃) < �n
2 � we have actually found (e, d) not satisfying e + d ≥ n (as

e = d = deg(g̃) < �n
2 �), contradicting the assumption on f .

For n even we consider two cases. If g̃ ∈ An(1+f) such that deg(g̃) < �n
2 � then

the proof is exactly the same as above. For g̃ ∈ An(f) such that deg(g̃) < �n
2 �,

by Proposition 2 function (1 + f) satisfy the HDP property. That is, for any
g, h of degree e and d respectively, e + d ≥ n in the product (1 + f)g = h. Then
considering the product (1 + f)g̃ = g̃, as f g̃ = 0, would contradict the HDP
property if deg(g̃) < �n

2 �. ��

This result states that HDP(n) ⇒ AI, therefore the criteria for optimum AI
and resistance to fast algebraic analysis is unified through the HDP property,
that is AAR ⇔ HDP(n). Still, a simple attempt to generate AAR function
in n + 1 variables by relating the AAR subfunctions in n variables will fail as
demonstrated by the example below.

Example 1. Let f ∈ Bn be an AAR function, for n odd. Since f is an AAR
function then it is easy to show that f ′ = f ||1+f has maximum AI. Now for any
non-annihilating function g of fixed degree e we have to prove that d ≥ n+1− e,
where deg(f ′g) = d. Note that e ∈ [1, n+1

2 −1], as trivially there is a tuple (e, d) =
(n+1

2 , n+1
2), and we are interested in cases e < d, with d ≥ AI(f ′) = n+1

2 . Any
function g ∈ Bn+1 can be written as,

g(x, xn+1) = xn+1(g1(x) + g2(x)) + g1(x), g1, g2 ∈ Bn.

Then, f ′g = xn+1[g2+f(g1+g2)]+fg1 and taking g1 = g2 gives f ′g = [xn+1+f]g1

which only satisfies the relation e+d ≥ n but not e+d ≥ n+1. Hence the function
f ′ = f ||1 + f is of maximum AI but not necessarily an AAR function.

4 An Iterative Design of Almost Optimal AAR Functions

In general, when f and g are represented as a concatenation of four functions (cf.
equations (3) and (4)), the product fg ∈ Bn+2 can be after some simplification
written as,

xn+2xn+1

[
g4

4∑
j=1

fj + (f1 + f2 + f3)
4∑

j=1

gj + (f1 + f2)(g1 + g3) + (f1 + f3)

(g1 + g2)
]
+ xn+1(f1g1 + f2g2) + xn+2(f1g1 + f3g3) + f1g1 = fg (7)

Almost Fully Optimized Infinite Classes of Boolean Functions 407

The only way to analyze the behavior of the above product is to put certain
restrictions on the form of the subfunctions fj . In order to simplify the above
expression we select three distinct function on Fn

2 , denoting them f1, f2, f4 and
introduce the dependency on f3, that is f3 = 1 + f1. Then, the derived class of
functions on F

n+2
2 is closely related to the construction given by (6).

Theorem 3. Let f = f1||f2||f3||f4 be a function on F
n+2
2 , n even, whose sub-

functions fi ∈ Bn satisfy the following:

1. f1, . . . , f4 are AAR functions with f3 = 1 + f1

2. For any function g = g1||g2||g3||g4 of degree e, the functions f2, f4 satisfy
deg(g3 + f2g2 + f4g4) ≥ n− e, where not both functions g2, g4 are zero and
e ∈ [1, �n

2 �].

Then, f ∈ Bn+2 is an AAR function.

Proof. To prove the AAR property, by Theorem 2 we only need to show that f
satisfies degree relation e + d ≥ n + 2.

Due to the AAR assumption on fi, we have deg(figj) ≥ n− e for any degree
e function gj , e ∈ [1, �n

2 �]. Using the relation f3 = 1 + f1 the product fg in (7)
may be written as,

fg = xn+2xn+1[g3 + f4g4 + f1(g1 + g3) + f2g2] + xn+1[f1g1 + f2g2]
+xn+2[g3 + f1(g1 + g3)] + f1g1.

We want to show that any nonzero choice of function g of fixed degree e, e ∈
[1, �n

2 �], implies that deg(fg) = d ≥ n + 2− e. Recall that,

g = xn+1xn+2(g1 + g2 + g3 + g4) + xn+1(g1 + g2) + xn+2(g1 + g3) + g1.

implying deg(gi) ≤ e. Consider the coefficient g3 + f1(g1 + g3) of xn+2 in the
product fg. Obviously, we must have deg(g1 + g3) ≤ e − 1 as otherwise the
degree of g is greater than e, due to the term xn+2(g1 +g3). The AAR condition
on f1 implies that deg(f1ga) ≥ n − e for any nonzero degree e function ga. By
Lemma 2, n− e ≥ �n

2 �.
We now show that deg(f1(g1+g3)) > deg(g3) for any choice of g1, g3 such that

g1+g3 �= 0. The condition deg(g1+g3) ≤ e−1 implies deg(f1(g1+g3)) ≥ n−(e−
1) = n + 1− e, and therefore deg(fg) ≥ n− e + 2. Since f1 is an AAR function
n− e ≥ �n

2 �. Then n+1− e > �n
2 � and consequently deg(f1(g1 + g3)) > deg(g3),

as deg(g3) ≤ �n
2 �. Hence, the degree of g3+f1(g1+g3) is governed by f1(g1+g3),

and because deg(f1(g1 + g3)) ≥ n + 1 − e the function fg is an AAR function
unless g1 = g3.

The subcase g1 = g3 = 0 results in an AAR function f due to the following.
The term xn+1(g1 + g2) in function g implies that deg(g2) ≤ e − 1 assuming
g1 = 0. Consequently deg(f2g2) ≥ n + 1− e and fg is of degree ≥ n + 2− e due
to xn+1[f1g1 +f2g2]. Thus, g1 = g3 = 0 would imply g2 = 0, implying restriction
deg(g4) = e − 2 (because g is of degree e), so that deg(fg) ≥ n + 4 − e due to
the term xn+2xn+1[g3 + f4g4 + f1(g1 + g3) + f2g2].

408 E. Pasalic

Hence if f is not an AAR function we must necessarily have g1 = g3 �= 0, and
we get somewhat simplified expressions for g and fg,

g = xn+1xn+2(g2 + g4) + xn+1(g1 + g2) + g1,

fg = xn+2xn+1[g3 + f4g4 + f2g2] + xn+1[f1g1 + f2g2] + xn+2g3 + f1g1. (8)

By assumption deg(g3 + f2g2 + f4g4) ≥ n− e, implying fg ≥ n + 2− e. ��

Remark 1. The second condition in Theorem 3 may be slightly relaxed by re-
quiring that deg(f2g2 + f4g4) ≥ n − e. In this case the above result holds for
any e ∈ [1, �n

2 � − 1] except for the case e = �n
2 �, as there may exist g1, . . . , g4,

deg(gi) = �n
2 � such that deg(g3 + f2g2 + f4g4) < n− e = �n

2 �. This would imply
the possibility of finding tuple (e, d) = (�n

2 �, �
n
2 �+1), thus violating e+d ≥ n+2.

4.1 Iterative Construction of Maximum AI Functions with
e + d ≥ n − 1

To use the result of Theorem 3 recursively the conditions on initial functions turn
out to be extremely hard to satisfy. Note first, that a similar set of constraints
is obtained after the replacement f1 ← f2, f2 ← 1 + f2, f3 ← f1, f4 ← f3, thus
referring to the function f i

2 in (6). The product f i
2g can then be written as,

f i
2g = xn+2xn+1[g2 + f1g3 + f3g4 + f2(g1 + g2)] + xn+1[f2(g1 + g2) + g2]

+xn+2[f2g1 + f1g3] + f2g1.

Similarly to the proof of Theorem 3, we get that the condition g1 = g2 �= 0 from
the term xn+1[f2(g1+g2)+g2] then implies that deg(g2+f1g3+f3g4) ≥ n−e for
any choice of g3 and g4. Thus, a very similar condition as in Theorem 3 applies
here, only different subfunctions being involved.

The main question now is what kind of conditions the set of initial functions
must satisfy so that the AAR property is preserved in the recursion given by (6).
In other words, assuming that the functions f i−1

1 , f i−1
2 , f i−1

3 satisfy particular
set of conditions we would like to show that the AAR property holds also for
f i
1, f

i
2, f

i
3. One can show that these conditions for f i

1, f
i
2, f

i
3 become rather com-

plicated involving the all three subfunctions and multiplicand g as well, yielding
the degree constraint of the form,

deg[
4∑

j=1

ajg
i−1
j + f i−1

1 (
4∑

j=1

bjg
i−1
j) + f i−1

2 (
4∑

j=1

cjg
i−1
j) + f i−1

3 (
4∑

j=1

djgj)] ≥ n− e,

(9)
for some binary coefficients ai, . . . , di.

However, the main obstacle in satisfying such initial conditions turns out to
be the term

∑4
j=1 ajg

i−1
j . As already indicated in Remark 1 the conditions are

“slightly” relaxed if we allow a small deviation from optimality. That is, allowing
the initial functions to satisfy e+d ≥ n−1 (instead of e+d ≥ n) in the product
fg = h, we may much easier find suitable initial functions to be used in a

Almost Fully Optimized Infinite Classes of Boolean Functions 409

recursive manner. The condition that e + d ≥ n − 1 implies that the degree of
the expression gi+fjgk for functions gi, fj , gk ∈ Bn is always dominated by fjgk.
This is because we now only consider e ∈ [1, �n

2 � − 1] and regardless the parity
of n we have,

deg(fjgk) ≥ AI(fj) = �n
2
� > e.

We notice that allowing the suboptimized case of degree relation e+d ≥ n−1,
Theorem 2 is not applicable any longer and we are now forced to induce the op-
timality of AI through the construction. A class of function achieving maximum
AI and satisfying the relation e+d ≥ n−1 is then called suboptimizedAAR class.
Therefore, we utilize the design ideas given in (6) but in a different manner. We
slightly refine the construction to enable the usage of nonbalanced functions as
initial functions too, though generating balanced functions in subsequent itera-
tions. This modification will have a great impact on the cryptographic properties
of the functions. In the first place the nonlinearity is improved, the functions are
of maximum algebraic degree, optimized AI and they satisfy the HDP property
of order n− 1.

The most suitable configuration of subfunctions that allows the use of non-
balanced initial functions seems to be the following one,

f i
1 = f i−1

1 ||f i−1
2 ||1 + f i−1

1 ||f i−1
3

f i
2 = f i−1

2 ||1 + f i−1
3 ||f i−1

1 ||1 + f i−1
2

f i
3 = 1 + f i−1

3 ||f i−1
1 ||f i−1

2 ||f i−1
3 . (10)

One may readily check that selecting f0
i ∈ Bn such that their Hamming weight

equal to wt(f0
1) = wt(f0

3) = 2n−1 − c, and wt(f0
2) = 2n−1 + c will result in

balanced functions f i
j . It remains to show that a suitable selection of the input

functions will initiate the recursion so that any f i
j , i ≥ 0 and j = 1, 2, 3, is a

maximum AI satisfying e + d ≥ n− 1.

Theorem 4. Let f0
1 , f0

2 , f0
3 ∈ Bn be maximum AI functions satisfying the set

of conditions given in Lemma 1 (iii) with respect to the configuration in (10).
In addition, let for any g = g0

1 ||g0
2 ||g0

3 ||g0
4 ∈ Bn+2 of degree e ∈ [1, �n

2 � − 1] the
following is satisfied,

deg[f0
1 (

4∑
j=1

bjg
0
j)+f0

2 (
4∑

j=1

cjg
0
j)+f0

3 (
4∑

j=1

djg
0
j)] ≥ n−e−1; bj, cj , dj ∈ F2. (11)

Then the function f i
j ∈ Bn+2i, i ≥ 0 and j = 1, 2, 3, defined by (10), are max-

imum AI functions with almost optimized HDP, that is satisfying e + d ≥
n + 2i− 1 for e ∈ [1, �n

2 �+ i− 1].

Proof. The fact that f i
j have maximum AI follows from hypothesis. The result

concerning the e + d relation is proved by induction. The case i = 0 follows
directly from the assumption. Suppose the conditions are satisfied for all k < i.

410 E. Pasalic

We show that the conditions hold for k+1 as well. By assumption, the functions
fk
1 , fk

2 , fk
3 ∈ Bn+2k are such that,

deg[fk−1
1 (

4∑
j=1

bjg
k−1
j) + fk−1

2 (
4∑

j=1

cjg
k−1
j) + fk−1

3 (
4∑

j=1

djg
k−1
j)] ≥ n + 2k − e− 1,

(12)
where fk−1

j , gk−1
j ∈ Bn+2k−2. W.l.o.g. we consider the function fk+1

1 =
fk
1 ||fk

2 ||1 + fk
1 ||fk

3 . Then for a degree e function gk+1 ∈ Bn+2k+2 we need to
show that, deg(fk+1

1 gk+1) ≥ n + 2k − e + 1 for any e ∈ [1, �n
2 � + k − 1]. Let us

focus on the highest degree term in the product fk+1
1 gk+1 that is,

xn+2k+1xn+2k+2[gk
3 + fk

4 gk
4 + fk

1 (gk
1 + gk

3) + fk
2 gk

2],

where we represent gk+1 = gk
1 ||gk

2 ||gk
3 ||gk

4 . Now since deg(gk
3) ≤ e < n+2k−e−1

for any e ∈ [1, �n
2 � + k − 1], the degree of the terms in the brackets above

is dominated by the sum fk
4 gk

4 + fk
1 (gk

1 + gk
3) + fk

2 gk
2 . This sum when written

in terms of the subfunctions fk−1
j and gk−1

j gives the condition (12) which is
satisfied by induction hypothesis. Thus,

deg{xn+2k+1xn+2k+2[gk
3 + fk

4 gk
4 + fk

1 (gk
1 + gk

3) + fk
2 gk

2]} ≥ n + 2k − e + 1,

which proves the statement. ��

4.2 Cryptographic Properties of the Construction

Through computer simulations (very non-exhaustive) we have found many sets
of initial functions on F4

2 satisfying the conditions of Theorem 4. The set of initial
functions given below gives the best nonlinearity so far.3

f1 = x1 + x1x2 + x3x4 + x1x2x3 + x1x2x3x4,

f2 = x2 + x4 + x1x2 + x2x4 + x3x4 + x1x2x3 + x1x3x4 + x2x3x4 + x1x2x3x4,

f3 = x2 + x3 + x1x2 + x2x3 + x3x4 + x1x2x3 + x1x2x3x4.

Algebraic degree of f i
j : The algebraic degree of any f i is given by the relation

deg(f i) = d0+2i, where d0 is the degree of initial functions. The only assumption
made is that the degree d0 terms in f0

i do not cancel each other in the sum
f0
1 + f0

2 + f0
3 . This is easily verified by considering the ANF of f1

1 (using f3 =
1 + f1) for instance, and the degree of f1 is dominated by xn+1xn+2(f0

2 + f0
3)

Also, the highest degree terms cannot be canceled out in further iterations which
justifies the above statement.

Resistance to probabilistic algebraic attacks: Probabilistic algebraic attacks,
formally introduced as scenarios S4 and S6 in [12], are based on a low degree
3 We have only performed a local search by selecting the three random functions and

then manually modifying few bits in the truth tables of functions. An exhaustive
search would imply checking around 245 different choices for f0

1 , f0
2 , f0

3 .

Almost Fully Optimized Infinite Classes of Boolean Functions 411

Table 2. Comparison of relevant cryptographic criteria

function degree nonlinearity AI (e, d)
φ8/f8/f8

∗ 5/6/7 88/104/104 4 all ?/(2,4)/e + d ≥ 7
φ10/f10/f10

∗ 8/8/9 372/452/452 5 all ?/(3,5)/e + d ≥ 9
φ12/f12/f12

∗ ?/10/11 ?(low)/1884/1890 6 all ?/(1,9)/e + d ≥ 11
φ14/f14/f14

∗ ?/12/13 ?(low)/7696/7780 7 all ?/(2,10)/e + d ≥ 13
φ16/f16/f16

∗ ?/14/15 ?(low)/31296/31766 8 all ?/(1,13)/e + d ≥ 15

approximation of state equations (or filtering function), so that relatively simple
equations that are true with probability close to 1 (preferably) are derived.
This approach was successfully applied in cryptanalysis of Toyocrypt [8] due to
a serious design flaw of Toyocrypt.4 A low degree approximation to a filtering
function constructed using the iterative method described above seems to be
rather unrealistic. This is due to the fact that each iteration step essentially
combine/add the monomials of two different functions, the sum being multiplied
by new variables, cf. equation (3). Thus, it can be easily verified that the
algebraic normal form of the resulting function will contain many high order
terms, and therefore approximating these relation would require guessing many
variables which in turn would reduce the probability that these relations hold.

Nonlinearity: A rather loose lower bound on nonlinearity was derived in
[2], the minimum value is estimated as

Nf ≥ n(f1,1+f1) ·Nf1 + n(f2,1+f2) ·Nf2 + n(f3,1+f3) ·Nf3 ,

where n(fi,1+fi) denotes the number of times the tuple (fi, 1 + fi) appears in
the overall concatenation. A comparison in terms of relevant cryptographic cri-
teria to the iterative construction methods in [7] and in [2] is given in Table 2.
Here the functions φn and fn are optimized AI functions obtained through the
methods in [7] and [2] respectively, and fn

∗ and corresponding bold face entries
denotes our design. Obviously, both fn and fn

∗ are favorable to φn in terms of
the nonlinearity, and degree. Nevertheless, our class is superior to fn, provid-
ing functions satisfying the HDP property of order n− 1 thus providing a better
resistance to fast algebraic attacks, having better nonlinearity and optimized alge-
braic degree. The nonlinearity values related to our construction are obtained by
running a computer program, whereas the algebraic properties (also confirmed
by computer simulations) follows from Theorem 4 and above discussion on the
algebraic degree.

Remark 2. The results given above only consider the construction for even n.
Though the same technique is applicable when n is odd, good initial functions
seem to be harder to find then. The function space B3 is quite insufficient in
this context, whereas selecting f0

j ∈ B5 gives on the other hand far too many

4 Notice that an application of classical algebraic attack on Toyocrypt yields even
lower time complexity compared to probabilistic algebraic attacks.

412 E. Pasalic

possibilities. A suitable set, that generates highly nonlinear functions, is therefore
to be found through sophisticated computer program.

Implementation: In the view of a new version of algebraic attacks introduced in
[23], whose running time is significantly lower than for the fast/classical algebraic
attacks, an efficient implementation of filtering function seems to be of great im-
portance. Since the running time of this attack is approximately D =

∑deg(f)
i=0

(
L
i

)
(L being as before the length of LFSR), the functions of more than 30 variables
are required to guard against different modes of algebraic analysis. Then the im-
plementation issue actually contradicts the fundamental ideas behind the design
of nonlinear filters, as these are designed for restricted hardware environments.
This implies that the filtering function must have a sufficient algebraic structure
for the ease of implementation, especially if the input space of the function is as
large as some 30 variables.

To compute the functions in the i-th iteration step of our construction given
by (10) (this is of course true for the original construction of [2]) the concate-
nation of 22i

initial functions F = {f0
1 , f0

2 , f0
3 , 1 + f0

1 , 1 + f0
2 , 1 + f0

3 } is needed.
Given the input value x = (x1, . . . , xn, xn+1, . . . , xn+2i) it can be shown that a
simple loop of i iterations is required to compute the output value. For instance,
evaluating the function f2

1 ∈ B8 for a given input x = (x1, . . . , x8) ∈ F8
2 is done

by computing the integer value of (x5, . . . , x8) and then evaluating the func-
tion enumerated by this number on the input (x1, . . . , x4) in the concatenated
sequence,

f2
1 = f0

1 ||f0
2 ||f̄0

1 ||f0
3 ||f0

2 ||f̄0
3 ||f0

1 ||f̄0
2 ||f̄1

0||f̄0
2 ||f0

1 ||f̄0
3 ||f̄0

3 ||f0
1 ||f0

2 ||f0
3 .

4.3 Finding Good Initial Functions

Computer simulations indicate that different choices of input functions result
in classes of functions with significantly different nonlinearity values, while in
most of the cases the degree and algebraic resistance remain invariant. For in-
stance, complementing 2 bits in f0

3 given above would yield the nonlinearity
values 1864/7748/31500 compared to the above sequence 1890/7780/31766. The
nonlinearities given here for even n are obtained by manually flipping a few bits
in the truth tables of input functions, and no exhaustive search has been per-
formed. The search for optimum set of initial functions (including larger input
spaces) is in progress.

5 Conclusion

This paper proposes an iterative construction method for designing almost fully
optimized Boolean functions satisfying most of the cryptographic criteria. The
construction is very efficient from the implementation point of view making it
attractive even when the input space exceeds some 30 variables. It remains to
find optimized set of initial functions (especially for odd n) and possibly another
construction configurations (to modify (10)) to further increase the nonlinearity,

Almost Fully Optimized Infinite Classes of Boolean Functions 413

thus making functions (ciphers) more resistant to fast correlation and distin-
guishing attacks.

References

1. Armknecht, F.: Improving fast algebraic attacks. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 65–82. Springer, Heidelberg (2004)

2. Braeken, A.: Cryptographic properties of Boolean functions and S-boxes. Ph. D.
thesis, Katholieke Universiteit Leuven, Belgium (2006)

3. Braeken, A., Lano, J., Mentens, N., Preneel, B., Verbauwhede, I.: Sfinks specifica-
tion and source code. ECRYPT Stream Cipher Project page (2005),
http://www.ecrypt.eu.org/stream/sfinks.html

4. Braeken, A., Preneel, B.: On the algebraic immunity of symmetric boolean func-
tions. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT
2005. LNCS, vol. 3797, pp. 35–48. Springer, Heidelberg (2005)

5. Canteaut, A.: Invited talk: Open problems related to algebraic attacks stream
ciphers. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 120–134. Springer,
Heidelberg (2006)

6. Carlet, C.: Improving the algebraic immunity of resilient and nonlinear functions
and constructing bent functions. Cryptology ePrint Archive, Report 2004/276
(2004), http://eprint.iacr.org/

7. Carlet, C., Dalai, K.D., Gupta, C.K., Maitra, S.: Algebraic immunity for crypto-
graphically significant Boolean functions: Analysis and construction. IEEE Trans.
on Inform. Theory IT-52(7), 3105–3121 (2006)

8. Courtois, N.T.: Higher order correlation attacks,XL algorithm and cryptanalysis
of toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
182–199. Springer, Heidelberg (2003)

9. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

10. Courtois, N.: Algebraic attacks on combiner with memory and several outputs.
In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 3–20. Springer,
Heidelberg (2005)

11. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

12. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 346–359. Springer,
Heidelberg (2003)

13. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

14. Dalai, D.K., Gupta, K.C., Maitra, S.: Cryptographically significant boolean func-
tions: Construction and analysis in terms of algebraic immunity. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 98–111. Springer, Heidelberg
(2005)

15. Dalai, D.K., Maitra, S., Sarkar, S.: Basic theory in construction of Boolean
functions with maximum annihilator immunity. Designs, Codes, and Cryptogra-
phy 40(1), 41–58 (2006)

http://www.ecrypt.eu.org/stream/sfinks.html
http://eprint.iacr.org/

414 E. Pasalic

16. ECRYPT. Call for stream cipher primitives, http://www.ecrypt.eu.org/stream/
17. Gong, G.: Sequences, DFT and resistance against fast algebraic attacks. In:

Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS,
vol. 5203. Springer, Heidelberg (2008)

18. Hawkes, P., Rose, G.G.: Rewriting variables: The complexity of fast algebraic at-
tacks on stream ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 390–406. Springer, Heidelberg (2004)

19. Li, N., Qi, W.-F.: Construction and analysis of boolean functions of 2t+1 variables
with maximum algebraic immunity. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 84–98. Springer, Heidelberg (2006)

20. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

21. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1997)

22. Murphy, S., Robshaw, M.J.B.: Essential algebraic structure within the AES. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg
(2002)

23. Ronjom, S., Helleseth, T.: A new attack on the filter generator. IEEE Trans. on
Inform. Theory IT 53(5), 1752–1758 (2007)

24. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423 (Part I), 623–656 (Part II) (1948)

25. Simpson, L.R., Dawson, E., Golić, J.D., Millan, W.L.: LILI keystream generator.
In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 248–261.
Springer, Heidelberg (2001)

http://www.ecrypt.eu.org/stream/

Higher Order Differential Attacks on
Reduced-Round MISTY1

Yukiyasu Tsunoo1, Teruo Saito2, Maki Shigeri2, and Takeshi Kawabata2

1 NEC Corporation
1753, Shimonumabe, Nakahara-Ku, Kawasaki, Kanagawa 211-8666, Japan

tsunoo@BL.jp.nec.com
2 NEC Software Hokuriku, Ltd.

1, Anyoji, Hakusan, Ishikawa 920-2141, Japan
{t-saito@qh,m-shigeri@pb,t-kawabata@pb}@jp.nec.com

Abstract. MISTY1 is a 64-bit block cipher that has provable security
against differential and linear cryptanalysis. MISTY1 is one of the
algorithms selected in the European NESSIE project, and it has been
recommended for Japanese e-Government ciphers by the CRYPTREC
project. This paper shows that higher order differential attacks can
be successful against 6-round and 7-round versions of MISTY1 with
FL functions. The attack on 6-round MISTY1 can recover a par-
tial subkey with a data complexity of 253.7 and a computational
complexity of 253.7, which is the smallest computational complexity
for an attack on 6-round MISTY1. The attack on 7-round MISTY1
can recover a partial subkey with a data complexity of 254.1 and a
computational complexity of 2120.7, which signifies the first successful at-
tack on 7-round MISTY1 without limiting conditions such as a weak key.

Keywords: block cipher, CRYPTREC, higher order differential attack,
MISTY1, NESSIE.

1 Introduction

MISTY1 [13] has provable security against differential cryptanalysis [3] and lin-
ear cryptanalysis [12]. It is a Feistel-type block cipher that has a block length
of 64 bits and a secret key length of 128 bits, and it achieves provable security
by recursive repetition of the Feistel structure using two types of S-boxes, 9 bits
and 7 bits in size. MISTY1 has good implementability on various platforms. It is
one of the algorithms selected in the European NESSIE project [15] and was rec-
ommended for Japanese e-Government ciphers by the CRYPTREC project [4].
Moreover, it is one of the world’s most widely used block ciphers.

Many methods have been applied to the cryptanalysis of MISTY1 [2, 5, 7, 8,
9,10,17,18]. The strongest of those is the higher order differential attack, which
is effective for ciphers with low-degree variables. MISTY1 uses S-boxes with
low-degree variables to give priority to optimization in hardware.

MISTY1 with the recommended eight rounds has not yet been broken, but
cryptanalysis of modified versions has been successful. The modified versions

P.J. Lee and J.H. Cheon (Eds.): ICISC 2008, LNCS 5461, pp. 415–431, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

416 Y. Tsunoo et al.

can be divided into two broad types in accordance with whether or not the
FL functions were included. MISTY1 is supplemented with FL functions to
counter attacks other than differential cryptanalysis and linear cryptanalysis. It
is therefore important that a model that includes FL functions be evaluated for
its resistance against higher order differential attacks.

The best results for cryptanalysis on MISTY1 with FL functions were
achieved by a higher order differential attack on 6-round MISTY1 [18]. Using a
46th order differential characteristic found in 4-round MISTY1, the attack pre-
sented in [18] successfully recovered a partial subkey using an algebraic method
with a data complexity of 253.7 and a computational complexity of 264.4.

In 2008, Lee et al. proposed a related-key amplified boomerang attack on
7-round MISTY1 with FL functions [10]. This technique uses a 6-round dis-
tinguisher assuming weak-key quartets to make a successful attack with a data
complexity of 254 and a computational complexity of 255.3. The attack presented
here, however, works on rounds 2 to 8 of MISTY1 and can be applied only to
weak keys that have a 2−55 probability of existing. Thus, a number of limiting
conditions are attached to this attack and, up to now, no attacks had been re-
ported on 7-round MISTY1 with FL functions without these limiting conditions.

In this paper, we first make the higher order differential attack on 6-round
MISTY1 with FL functions presented in [18] more efficient. This attack can
recover a partial subkey in 6-round MISTY1 with a data complexity of 253.7 and
a computational complexity of 253.7. The latter value represents the smallest
computational complexity for an attack on 6-round MISTY1. Next, we apply
a higher order differential attack on 7-round MISTY1 with FL functions. This
attack can recover a partial subkey in 7-round MISTY1 with a data complexity
of 254.1 and a computational complexity of 2120.7 marking the first report of
a successful attack on 7-round MISTY1 without limiting conditions such as a
weak key.

Section 2 describes higher order differential attacks. Section 3 explains
MISTY1, Section 4 describes characteristics of MISTY1, and Section 5 describes
the application of such an attack to MISTY1. Section 6 concludes the paper.

2 Higher Order Differential Attacks

Here, we describe both the higher order differential characteristic and the method
for solving the attack equation used in higher order differential attacks.

2.1 Higher Order Differential Characteristic

Let the encryption function be the E(X ; K) defined by Eq. (1) with data X and
key K as input and data Y as output. Here, X ∈ GF (2)n, K ∈ GF (2)s, and
Y ∈ GF (2)m.

Y = E(X ; K) (1)

Let (A1, A2, · · · , Ad) be d linearly independent vectors on GF (2)n, and denote
the subspace of GF (2)d expanded by them as V (d). Then the dth order differential

Higher Order Differential Attacks on Reduced-Round MISTY1 417

with respect to X of E(X ; K) is defined by Eq. (2). Here, the symbol⊕ represents
an exclusive OR operation and

⊕
A∈V (d) the total sum by exclusive OR.

Δ
(d)

V (d)E(X ; K) =
⊕

A∈V (d)

E(X ⊕A; K) (2)

We call the subspace V (d) the variable sub-blocks and the subspace other than
V (d) the fixed sub-blocks. In the following, we abbreviate Δ

(d)

V (d) as Δ(d). If the
Boolean degree of E(X ; K) with respect to X is N , Eq. (3) necessarily holds
without dependence on X .{

Δ(N)E(X ; K) = constant
Δ(N+1)E(X ; K) = 0

(3)

2.2 Attack Equations

This section explains the equations required for an attack using the higher or-
der differential characteristic described in section 2.1. If encryption function E
comprises R rounds of functions F i (1 ≤ i ≤ R), the (R− 1)th round output for
input X is expressed as

Y R−1(X) = FR−1(· · ·F 1(X ; K1) · · · ; KR−1), (4)

where Ki is the subkey input in the ith round. If the Boolean degree of Y R−1(X)
with respect to X is N , Eq. (5) necessarily holds according to Eq. (3).{

Δ(N)Y R−1(X) = constant

Δ(N+1)Y R−1(X) = 0
(5)

Denoting the ciphertext for input X as C(X) and the function for obtaining
Y R−1 from C(X) as F−1, we obtain

Y R−1(X) = F−1(C(X); KR). (6)

Substituting Eq. (6) into Eq. (5), we obtain{⊕
A∈V (N) F−1(C(X ⊕A); KR) = constant⊕
A∈V (N+1) F−1(C(X ⊕A); KR) = 0.

(7)

Equation (7) holds when the final round subkey KR is correct, so the true
key, KR, can be determined by solving Eq. (7). Therefore, Eq. (7) is called the
attack equation.

2.3 Algebraic Method

One method of solving the attack equation presented in section 2.2 is an alge-
braic method. This method regards attack equations as functions on GF (2) and

418 Y. Tsunoo et al.

linearizes them. In other words, it transforms the attack equations into linear
equations [14, 16]. This is accomplished by replacing the higher degree terms
of the key bits with new first-degree unknown terms. This approach has the
potential to reduce the computational complexity of solving attack equations.

Let Eq. (7) be an n-bit attack equation derived using a dth order differential.
Denoting the key contained in the attack equation as KR = (KR1, KR2), we
determine KR1 by an exhaustive search and obtain KR2 by using an algebraic
method. Here, let there be L unknown coefficients in the linear equations relating
to KR2, and let KR1 ∈ GF (2)s1 .

The KR2 for true key KR1 can be obtained by solving the L× (L + 1) coeffi-
cient matrix obtained from L independent linear equations. Here, the coefficient
matrix includes constant terms. Also, if L + m linear equations for obtaining
KR2 have been prepared, the probability of a linear equation for a false key not
being inconsistent is estimated to be 2−m. It is therefore possible to reject false
keys by using L + m linear equations that satisfy 2−m × 2s1 � 1.

Because the attack equation is an n-bit attack equation, n linear equations
are obtained with one set of dth order differentials. Therefore, the number of
plaintexts needed to obtain L + m linear equations is given by

D = 2d ×
⌊

L + m

n

⌋
. (8)

The computational complexity for obtaining n linear equations is estimated to
be the total for 2d × (L + 1) times of the round function. Considering, therefore,
that KR1 is to be determined by an exhaustive search and that the time for trans-
forming the matrix and solving the simultaneous equations is negligibly small,
computational complexity T required to solve the attack equation is given by

T = 2s1 × 2d × (L + 1)×
⌊

L + m

n

⌋
. (9)

Here, computational complexity signifies the number of times the round function
is calculated.

Computational complexity T can be reduced provided that only w bits of the
ciphertext are affected by the linear equations and the relation w < d holds [11].
One attack equation (that is, n linear equations) is calculated by performing an
exclusive OR operation on 2d ciphertexts. Given the property that performing
an exclusive OR operation on the same value an even number of times results in
a value of 0, calculations can be omitted for values appearing an even number of
times. Thus, unknown coefficients of linear equations can be calculated using only
the w-bit value appearing an odd number of times resulting in computational
complexity T as follows.1 Here, as well, computational complexity signifies the
number of times the round function is calculated.

T = 2s1 × 2w−1 × (L + 1)×
⌊

L + m

n

⌋
(10)

1 There are about 2w−1 instances of ciphertext data on average for which the w-bit
value appears an odd number of times.

Higher Order Differential Attacks on Reduced-Round MISTY1 419

3 MISTY1

This section briefly describes the structure and previous cryptanalysis of
MISTY1.

3.1 Structure

MISTY1, which was proposed by Matsui in 1996, is a block cipher that has prov-
able security against differential and linear cryptanalysis. It is a 128-bit secret
key, Feistel-type block cipher with a block length of 64 bits. MISTY1 achieves
provable security by recursive repetition of the Feistel structure using two types
of S-boxes, 9 bits and 7 bits in size. It also uses supplementary FL functions
in a Feistel structure performing logical AND/OR operations with subkeys to
improve resistance to other types of attacks without losing this property of prov-
able security. The number of MISTY1 rounds, n, can be varied in multiples of
4, but the designers recommend eight rounds.

The MISTY1 encryption function is shown in Fig. 1. The FO, FI, and FL
functions that constitute MISTY1 are respectively shown in Fig. 2, Fig. 3, and
Fig. 4. In this paper, bitwise AND, OR, and exclusive OR operations are denoted
respectively as ∩, ∪, and ⊕. We denote plaintext as P and ciphertext as C. We
denote the subkey input to the FOi function as KOi, the subkey input to the
FIij function as KIij , and the subkey input to the FLi function as KLi.

The ith round output data is defined as X i for the internal variables. In 8-
round MISTY1, 0 ≤ i ≤ 8, so X0 = P . Furthermore, we define the data that
follows the FL function output to be X ′j. For 8-round MISTY1, j ∈ {0, 2, 4, 6, 8},
and X ′8 = C.

The 64-bit data Y is separated left and right into two sets of 32-bit data
defined as YL and YR in accordance with the Feistel structure. Other divisions
are also defined with regard to the FI function, which is an asymmetric Feistel
structure:

Y = Y7 ‖ Y6 ‖ · · · ‖ Y1 ‖ Y0,

Yi ∈
{

GF (2)7 : i = even
GF (2)9 : i = odd

.

The ‖ indicates data concatenation. We denote the ith (0 ≤ i < n) bit of Z
as Z[i] and the range from the ith bit of Z to the jth bit of Z as Z[i− j]. For
example, the leftmost 16 bits of plaintext P is denoted as

P [63− 48] = PL[31− 16] = P7 ‖ P6 = X0
7 ‖ X0

6 .

The key schedule divides the 128-bit secret key into 16-bit data blocks Ki

(1 ≤ i ≤ 8) and uses the FI function to generate 16-bit data blocks K ′
i. Table 1

shows how Ki and K ′
i are used in the form of subkeys for each round.

SK = K8 ‖ K7 ‖ · · · ‖ K2 ‖ K1, Ki ∈ GF (2)16

K ′
i = FI(Ki; Ki+1 mod 8) (i = 1, . . ., 8)

420 Y. Tsunoo et al.

P

C

6432

FO1

FL1

FO2

FLn+1 FLn+2

KL1 KL2
KI1, KO1

KI2, KO2

FO3

FL3 FL4

FO4

KL3 KL4
KI3, KO3

KI4, KO4

KLn+1 KLn+2

FL2

32

Fig. 1. MISTY1 encryption function

3216 16

FIi1

KOi1

KIi1

FIi2

KOi2

KIi2

FIi3

KOi3

KIi3

KOi4

Fig. 2. FOi function

3.2 Previous Cryptanalysis

As mentioned in the introduction, MISTY1 with the recommended eight rounds
has not yet been broken, but cryptanalysis of modified versions has been

Higher Order Differential Attacks on Reduced-Round MISTY1 421

169 7

S9

S7

KIij1

S9

zero-extend

truncate

KIij2

zero-extend

Fig. 3. FIij function

3216 16

∩
KLi1

∪
KLi2

Fig. 4. FLi function

Table 1. Use of Ki and K′
i as subkeys for each round

KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLi1 KLi2

Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3 K i+1

2
(odd i) K′

i+1
2 +6

(odd i)

K′
i
2+2

(even i) K i
2+4 (even i)

successful. The modified versions can be broadly divided into two types de-
pending on whether or not the FL functions were included. MISTY1 adds FL
functions to counter attacks other than differential cryptanalysis and linear
cryptanalysis, and a model that includes FL functions should therefore be

422 Y. Tsunoo et al.

evaluated for its resistance against higher order differential attacks. In this sec-
tion, we survey past attacks on MISTY1 with FL functions.

As an attack on MISTY1 with the FL functions, Hatano et al. applied a
higher order differential attack on 5-round MISTY1 in 2003 [5]. It utilized a
14th order differential characteristic of 3-round MISTY1 with the FL functions
to recover the key using an algebraic method. It broke 5-round MISTY1 with a
data complexity of 221.7 and a computational complexity of 228.0. Following this,
a higher order differential attack on 6-round MISTY1 was proposed in 2008 [18].
The attack presented in [18] can break the cipher with a data complexity of
253.7 and a computational complexity of 264.4 by using a 46th order differential
characteristic found in 4-round MISTY1 and recovering a partial subkey using
an algebraic method. To the best of our knowledge, the attack presented in [18]
constituted the strongest attack against MISTY1 with FL functions up to now.

There have also been several proposals for attacks on 6-round and 7-round
MISTY1 with FL functions though under the condition of a weak key. In 2007,
Tanaka et al. proposed a higher order differential attack on 6-round MISTY1 [17].
Using weak-key characteristics taking the key schedule into account, Tanaka
et al. broke the cipher with a data complexity of 218.9 and a computational
complexity of 280.6. This attack, however, can only be applied to a weak key
having a probability of 2−32 of existing. Next, in 2008, Lee et al. proposed a
related-key amplified boomerang attack on 7-round MISTY1 [10]. Using a 6-
round distinguisher assuming weak-key quartets, this attack broke the cipher
with a data complexity of 254 and a computational complexity of 255.3. The
attack proposed by Lee et al., however, works on rounds 2 to 8 of MISTY1 and
can be applied only to weak keys that have a 2−55 probability of existing. These
attacks are successful under the assumption of a weak key, and a successful
attack on 7-round MISTY1 with FL functions without limiting conditions like
a weak key has yet to be reported.

4 Characteristics of MISTY1

This section describes higher order differential characteristics and the equivalent
transformations of MISTY1.

4.1 Higher Order Differential Characteristics of MISTY1

We here describe higher order differential characteristics of MISTY1. First, we
present from [2] Theorem 1 for MISTY1 with no FL functions. Here, α and β
denote fixed and variable sub-blocks, respectively. As for sub-block size, odd-
numbered sub-blocks from the left side are 9 bits while even-number sub-blocks
are 7 bits.

Theorem 1. Given a 7th order differential in the form of chosen plaintext P =
(α, α, α, α, α, α, α, β) in MISTY1 with no FL functions, intermediate data
X3

L satisfies Eq. (11).
Δ(7)X3

L [31− 25] = 0x6d (11)

Higher Order Differential Attacks on Reduced-Round MISTY1 423

Theorem 1 means that the Boolean degree of X3
L[31− 25] is 7. Next, we obtain

Theorem 2 by extending Theorem 1 to MISTY1 with FL functions.2

Theorem 2. Given a 14th order differential in the form of 2nd-round-input
X1 = (α, α, α, α, α, β, α, β) in MISTY1 with FL functions, intermediate
data X4

L satisfies Eq. (12).3

Δ(14)X4
L [31− 25] = 0 (12)

Theorem 3 corresponds to 4-round characteristics obtained by adding one round
to the upper side of Theorem 2 characteristics.

Theorem 3. Given a 46th order differential in the form of chosen plaintext P =
(α, β, α, β, β, β, β, β) in MISTY1 with FL functions, intermediate data X4

L

satisfies Eq. (13).4

Δ(46)X4
L [31− 25] = 0 (13)

4.2 Equivalent Transformations and Equivalent Keys

To simplify the analysis of the attack equations used in section 5, we define
a structure for the FO function whereby subkey KO is moved and treated as
equivalent subkey EKO and a structure for the FI function whereby subkey
KI is moved and treated as equivalent subkey EKI. These newly defined FO
and FI functions are shown in Figs. 5 and 6, respectively.

We now describe the relationship between subkeys relevant to the attack equa-
tions on the basis of key-schedule characteristics. Subkey KO62 and subkey KL82

satisfy the following relation according to Table 1.
KO62 = KL82 = K8 (14)

In addition, subkey KOi and equivalent key EKIi satisfy the following relation
by the equivalent transformation.

KOij = EKIij1 ‖ EKIij2 (1 ≤ i ≤ 8 , 1 ≤ j ≤ 2) (15)

Thus, Eq. (16) holds from Eqs. (14) and (15).

EKI621 ‖ EKI622 = KL82 = K8 (16)

Furthermore, subkeys (KOi, KIi) and equivalent key EKOi satisfy the fol-
lowing relations by the equivalent transformation. Here, X � i means a left shift
of i bits on data X .{

EKOi[31− 16] = A⊕ (A� 9)⊕KOi4

A = KOi1[6− 0]⊕KIi1[15− 9]⊕KOi2[6− 0]⊕KIi2[15− 9] (17){
EKOi[15− 0] = B ⊕ (B � 9)
B = KOi2[6− 0]⊕KIi2[15− 9]⊕KOi3[6− 0]⊕KIi3[15− 9] (18)

2 Theorem 2 has been experimentally verified in [18].
3 See Appendix A for the proof of Theorem 2.
4 See Appendix B for the proof of Theorem 3.

424 Y. Tsunoo et al.

3216 16

FIi1

EKOi

FIi2

FIi3

EKIi1

EKIi2

EKIi3

Fig. 5. Equivalent transformation of the FOi function

169 7

S9

S7

S9

zero-extend

truncate

EKIij1

EKIij3

EKIij2

zero-extend

Fig. 6. Equivalent transformation of the FIij function

Thus, while equivalent key EKOi[31− 16] is an unknown 16-bit variable, equiv-
alent key EKOi[15− 0] can be expressed by only unknown 7-bit variable B. As
a result, the number of bits of subkey EKOi relevant to the attack equations is
essentially reduced to 23 bits.

Higher Order Differential Attacks on Reduced-Round MISTY1 425

5 Higher Order Differential Attacks on Reduced-Round
MISTY1

In this section, we describe higher order differential attacks on 6-round and 7-
round versions of MISTY1 with FL functions.

5.1 Attack on 6-Round MISTY1

First, we describe the attack on 6-round MISTY1 with FL functions. For this
attack, we use attack equation (19) as given in [18].⊕

A∈V (46)

X ′4
L [i] = 0 (i = 31, · · · , 25) (19)

Equation (19) holds only under the assumption that subkey KL52[j] = 1
(j = i − 16). However, the probability that KL52[15 − 9] = 0, that is, that all
7-bit attack equations (19) are inconsistent is 2−7 < 0.01.5 Accordingly, at least
one of those seven attack equations has a very high probability of possessing a
solution.

The X ′4
L [i] can be written in terms of a function F−1

i , 34 bits of ciphertext C,
and the 65 bits of the subkeys TKi = {KO61, KO62, KL8, KL72[j]} as follows.

X ′4
L [i] = F−1

i (C; TKi) (20)

Here, F−1
i : GF (2)34 × GF (2)65 → GF (2). Now, substituting Eq. (20) in Eq.

(19) gives Eq. (21). ⊕
A∈V (46)

F−1
i (C(X ⊕A); TKi) = 0 (21)

Thus, when KL52[j] = 1, the linear equation has a solution for the ith bit of Eq.
(21), which means that the 65 bits of TKi can be recovered while determining
that KL52[j] = 1. When KL52[j] = 0, TKi cannot be recovered but KL52[j] = 0
can be determined.

The number Li of unknown coefficients appearing in Eq. (21) can be derived by
numerical analysis. In addition, if any of the estimated unknown coefficients have
a linear sum relation, both data complexity and computational complexity can be
reduced. Therefore, the number of unknown coefficients considering linear sum
relations is derived as the independent unknown coefficients, li.6 Here, subkeys
EKI621, EKI622, and KL82 are all included in the attack equation. Thus, by
5 For the case of KL52[j] = 0, the attack equation becomes⊕

A∈V (46)

{
X ′4

L [i]⊕X ′4
L [j]

}
= 0 (i = 31, · · · , 25 , j = i− 16).

Here, the number of unknown variables in the attack equation increases thereby
increasing the computational complexity of the attack.

6 Independent unknown coefficients li can be determined using a method described
in [1].

426 Y. Tsunoo et al.

using the relationship of Eq. (16), the number of subkey variables included in
the attack equation can be reduced thereby obtaining a smaller Li compared to
that obtained in [18]. The values of Li and li obtained by numerical analysis are
listed in Table 2.

Table 2. Number of unknown coefficients in attack equation

Eq. (21) Eq. (22)

Bit position, i Li li Li li

25th bit 517 173 2778 173

26th bit 494 169 2537 169

27th bit 574 189 3247 189

28th bit 494 169 2526 169

29th bit 517 173 2809 173

30th bit 527 177 2789 177

31st bit 540 181 2888 181

Total 1665 - 10944 -

The number Di of plaintexts required to collect the linear equations for the
ith bit of Eq. (21) can be determined by substituting the value of li into Eq.
(8). The number D of plaintexts required for the attack is the maximum among
Di’s, and is given as follows.

D = D27 = 246 ×
⌊

l27 + m

n

⌋
Here, n = 1 since this attack solves Eq. (21) for each bit. In addition, although
s1 = 1 assuming KL52[j], the key value is taken to be 1 to solve Eq. (21),
which means that s1 = 0 in effect. Thus, letting m = 10 from the condition
2−m × 2s1 � 1,7 we get

D = 246 × (189 + 10) ≈ 253.64.

Now, to calculate the coefficients of the attack equation, (FL−1
8 + 2 × S9),

(FL−1
8 + 2 × S7), and FL−1

7 /2 must be calculated. These coefficients can be
calculated in 18, 14, and 2 bit widths, respectively, thereby satisfying the relation
w < d. Required computational complexity T1 can therefore be obtained by
substituting the total number of unknown coefficients Li in Eq. (10). Assuming
that the processing times for an FL function and an S-box lookup are equivalent,
we get

T1 = {3× (217 + 213) + 1/2× 21} × 1666× (189 + 10)
≈ 237.02.

7 10−3
 1.

Higher Order Differential Attacks on Reduced-Round MISTY1 427

This computational complexity signifies the number of times an S-box is looked
up. Since S-boxes are looked up nine times per FO function, we get the following
for T1 on converting it to number of 6-round encryptions.

T1 ≈
237.02

9× 6
≈ 231.27

Computational complexity T1 as estimated by Eq. (10) was significantly reduced
compared to estimating it by Eq. (9) in [18]. Given that computational complex-
ity T required to break the cipher is the sum of the time needed to collect data
and the time for calculating coefficients, we get the following expression for T .

T = D + T1 ≈ 253.64

5.2 Attack on 7-Round MISTY1

We here describe an attack on 7-round MISTY1 with FL functions. The struc-
ture of 7-round MISTY1 targeted by this attack is shown in Fig. 7. The attack
equation is given by Eq. (22).⊕

A∈V (46)

F−1
i (FO−1

7 (C(X ⊕A); EK7); TKi) = 0 (i = 31, · · · , 25) (22)

This attack moves equivalent key EKO7 as shown in Fig. 7. We recover the
75 bits of EKI7 by an exhaustive search and EKO7 by an algebraic method.
The number of coefficients Li and li that appear in Eq. (22) are given in Table
2. Here, equivalent key EKO7 can be reduced to 23 bits as shown in section 4.2.
The number D of plaintexts required to collect the linear equations of Eq. (22)
is given as follows for m = 85.

D = 246 × (189 + 85) ≈ 254.10

We note here that a 7-round attack additionally requires calculations for one
round of decryption. Denoting the computational complexity for one round of
decryption as T2, computational complexity T ′ required for calculating the co-
efficients of the linear equations is given as follows.

T ′ = 275 × (T1 + T2)

Here, T1 is as follows.

T1 = {3.5× (217 + 213) + 1/2× 21} × 10945× (189 + 85)
≈ 240.42

Also, while T2 is the processing time for performing one round of decryption
D times, we can think of it as being divided into calculation time for the FO7

function and that for the exclusive-OR operation on the output of that function.
Since calculations for the FO7 function can be completed in 232 times at most,

428 Y. Tsunoo et al.

FO1

FL1 FL2

4 rounds

PL PR

CL

FL7

FO5

FL5 FL6

FO6

KL5

EKI6, EKO6

KL7 KL8

CR

FL8

FO7

EKO7

EKI7

4

L
X

4

R
X

Fig. 7. Seven-round MISTY1

and considering that D � 232, T2 can be said to approximate the time for
performing an exclusive-OR operation D times. Thus, from T1 � T2, T ′ becomes
as follows.

T ′ ≈ 275 × T2 ≈ 2129.10

This computational complexity signifies the number of times an exclusive-OR
operation is performed. Assuming that processing time is equivalent for one S-
box lookup and three exclusive-OR operations, the calculation time for one round
of encryption is equivalent to the processing time of 50 exclusive-OR operations.
Thus, converting T ′ to number of 7-round encryptions, we get

T ′ ≈ 2129.10

50× 7
≈ 2120.65.

Since computational complexity T required to break the cipher is the sum of the
time needed to collect data and the time for determining coefficients, we get the
following for T .

T = D + T ′ ≈ 2120.65

6 Conclusion

This paper reported on higher order differential attacks on 6-round and 7-round
versions of MISTY1 with FL functions. Our attacks can recover a partial subkey

Higher Order Differential Attacks on Reduced-Round MISTY1 429

in 6-round MISTY1 with a data complexity of 253.7 and a computational com-
plexity of 253.7 and a partial subkey in 7-round MISTY1 with a data complexity
of 254.1 and a computational complexity of 2120.7.

As shown by the results in Table 3, the attack on 6-round MISTY1 presented
in this paper achieves the smallest computational complexity for an attack on
6-round MISTY1, and the attack on 7-round MISTY1 represents the first report
of a successful attack on 7-round MISTY1 without any limiting conditions such
as a weak key.

The recommended number of rounds for MISTY1 is eight, so it must be noted
that the method described in this paper is not a direct threat to the security of
MISTY1. At the same time, the results presented here suggest that the security
margin of MISTY1 has been reduced to only one round.

Table 3. Results of attacks on MISTY1

FO FL Key Data Computational Comments

rounds layers conditions complexity complexity

4 3 - 222.25 245 Slicing attack [9]

4 3 - 25 227 Integral attack [7]

5 3 - 234 248 Integral attack [7]

5 4 - 221.7 228.0 HOD attack [5]

6 4 Weak key 218.9 280.6 HOD attack [17]

6 4 - 253.7 264.4 HOD attack [18]

6 4 - 253.7 253.7 HOD attack (this paper)

7∗ 3 Weak key 254 255.3 RKAB attack [10]

7 4 - 254.1 2120.7 HOD attack (this paper)

HOD attack : Higher order differential attack.
RKAB attack : Related-key amplified boomerang attack.
∗The attack in [10] works on rounds 2 to 8 of MISTY1.

References

1. Aoki, K.: Practical Evaluation of Security Against Generalized Interpolation At-
tack. IEICE Transactions 83-A(1), 33–38 (2000)

2. Babbage, S., Frisch, L.: On MISTY1 higher order differential cryptanalysis. In:
Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 22–36. Springer, Heidelberg (2001)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-Like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

4. Cryptography Research and Evaluation Committees (CRYPTREC),
http://www.cryptrec.jp/english/about.html

5. Hatano, Y., Tanaka, H., Kaneko, T.: Optimization for the Algebraic Method and Its
Application to an Attack of MISTY1. IEICE Transactions 87-A(1), 18–27 (2004)

6. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

http://www.cryptrec.jp/english/about.html

430 Y. Tsunoo et al.

7. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

8. Kühn, U.: Cryptanalysis of Reduced-Round MISTY. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 325–339. Springer, Heidelberg (2001)

9. Kühn, U.: Improved Cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 61–75. Springer, Heidelberg (2002)

10. Lee, E., Kim, J., Hong, D., Lee, C., Sung, J., Hong, S., Lim, J.: Weak-Key Classes
of 7-Round MISTY 1 and 2 for Related-Key Amplified Boomerang Attacks. IEICE
Transactions 91-A(2), 642–649 (2008)

11. Lucks, S.: The Saturation Attack - A Bait for Twofish. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

12. Matsui, M.: Linear Cryptanalysis of the Data Encryption Standard. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg
(1994)

13. Matsui, M.: New Block Encryption Algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

14. Moriai, S., Shimoyama, T., Kaneko, T.: Higher Order Differential Attak of CAST
Cipher. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 17–31. Springer,
Heidelberg (1998)

15. New European Schemes for Signature, Integrity, and Encryption (NESSIE),
https://www.cosic.esat.kuleuven.be/nessie/

16. Shimoyama, T., Moriai, S., Kaneko, T., Tsujii, S.: Improved Higher Order Dif-
ferential Attack and Its Application to Nyberg-Knudsen’s Designed Block Cipher.
IEICE Transactions 82-A(9), 1971–1980 (1999)

17. Tanaka, H., Hatano, Y., Sugio, N., Kaneko, T.: Security Analysis of MISTY1. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 215–226.
Springer, Heidelberg (2008)

18. Tsunoo, Y., Saito, T., Nakashima, H., Shigeri, M.: Higher Order Differential Attack
on 6-Round MISTY1. IEICE Transactions 92-A(1) (to appear, 2009)

A Proof of Theorem 2

Proof. An FL function is a Feistel structure consisting only of logical operations,
and variable sub-blocks at the input and output of the FL3 function can be given
by the following bit-wise relations.{

X ′2
4 [i] = X2

4 [i]⊕ (KL31[i] ∩X2
6 [i])

X ′2
6 [i] = X2

6 [i]⊕ (KL32[i] ∪X ′2
4 [i]) (i = 6, · · · , 0)

Fixed sub-blocks can be expressed by bit-wise relations in the same way. Accord-
ingly, since both variable sub-blocks and fixed sub-blocks are bijective, a 14th

order differential in the form of X ′2 = (α, β, α, β, α, α, α, α) can be given via the
FL3 function and FL4 function by giving a 14th order differential in the form of
X ′1 = (α, α, α, α, α, β, α, β). Thus, since the value of the 7th order differential
of Eq. (11) appears 27 times in intermediate data X4

L according to Theorem 1, its
total sum is zero. �

https://www.cosic.esat.kuleuven.be/nessie/

Higher Order Differential Attacks on Reduced-Round MISTY1 431

B Proof of Theorem 3

Proof. As in the proof of Theorem 2, both the variable sub-blocks and fixed
sub-blocks at the input and output of the FL1 are bijective thereby preserving
the 14th order differential. In addition, though 214 values of random data are
output from the FO1 function, a 46th order differential in the form of X ′1 =
(β, β, β, β, α, β, α, β) can be given by giving 1st-round input X0

R exhaustively.
Thus, since the value of the 14th order differential of Eq. (12) appears 232 times
in intermediate data X4

L according to Theorem 2, its total sum is zero. �

Figure 8 shows the higher order differential characteristic of Theorem 3. The
section within the dotted line shows the higher order differential characteristic
of Theorem 2.

FO1

FL1

FO2

FO3

FL3

FO4

FL2

FL4

(α,β,α,β)

(α,β,α,β) (β,β,β,β)

(α,α,α,α)

Δ 4

L

(46) X [31-25]=0

Δ 4

L

(14) X [31-25]=0

Fig. 8. Higher order differential characteristics of MISTY1

Author Index

Akdemir, Kahraman 235
Amini, Morteza 116
Anckaert, Bertrand 152
Aoki, Kazumaro 302
Avoine, Gildas 98

Bao, Feng 202
Bosschere, Koen De 152

Chanet, Dominique 152
Cho, Joo Yeon 383
Cho, Soojin 354

Damg̊ard, Ivan 318

Eckert, Claudia 20

Fujiwara, Toru 134

Geiregat, Jens 152
Gierlichs, Benedikt 253

Hammouri, Ghaith 235
Hanaoka, Goichiro 1
Haramura, Kazuhiro 134
Hermelin, Miia 383
Hong, Manpyo 354
Hwang, Jung Yeon 166

Imai, Hideki 1

Jafarian, Jafar Haadi 116
Jalili, Rasool 116

Kano, Mikio 84
Katzenbeisser, Stefan 20
Kawabata, Takeshi 415
Kim, Chong Hee 98
Kim, Jihye 66
Koeune, François 98

Lee, Dong Hoon 166
Lee, Kwangsu 166

Maitra, Subhamoy 37
Matsuda, Takahiro 1
Matsuura, Kanta 1

Mu, Yi 184
Müller, Sascha 20

Nielsen, Jesper Buus 318
Nikova, Svetla 218
Nowak, David 368
Nyberg, Kaisa 383

Orlandi, Claudio 318

Pasalic, Enes 399
Peng, Kun 202
Pereira, Olivier 98

Ravari, Ali Noorollahi 116
Rijmen, Vincent 218

Sadeghi, Ahmad-Reza 336
Saito, Teruo 415
Sarkar, Santanu 37
Sasaki, Yu 302
Schläffer, Martin 218
Schneider, Thomas 336
Shigeri, Maki 415
Standaert, François-Xavier 98, 253
Sunar, Berk 235
Susilo, Willy 184
Sutter, Bjorn De 152

Takashima, Katsuyuki 52
Thorncharoensri, Pairat 184
Tsudik, Gene 66
Tsunoo, Yukiyasu 415

Uno, Miyuki 84

Verbauwhede, Ingrid 253

Wang, Peng 286
Wu, Wenling 286

Yasuda, Kan 268
Yoshida, Maki 134
Yoshida, Reo 52

Zhang, Liting 286

	Title Page
	Preface
	Organization
	Table of Contents
	Public Key Encryption
	Simple CCA-Secure Public Key Encryption from Any Non-Malleable Identity-Based Encryption
	Introduction
	Background
	Our Contribution
	Related Works

	Preliminaries
	Public Key Encryption
	Identity-Based Encryption
	One-Way Function

	Proposed Transformation
	Construction
	Security
	Extensions

	Comparison
	References

	Distributed Attribute-Based Encryption
	Introduction
	Distributed ABE
	Our Contribution

	Related Work
	DABE
	Users, Attributes and Keys
	The DABE Scheme
	Security Model

	Our Construction
	Discussion
	Performance
	Security
	Delegation

	Conclusion
	References
	A Security Proof

	Improved Partial Key Exposure Attacks on RSA by Guessing a Few Bits of One of the Prime Factors
	Introduction
	Preliminaries

	MSBsof d and p Known
	Method I
	Method II
	Comparison of Methods I and II

	LSBsof d and MSBs of p Known
	Conclusion
	References

	Simple Algorithms for Computing a Sequence of 2-Isogenies
	Introduction
	2-Isogenies between Elliptic Curves
	Elliptic Curves
	V\'{e}lu’s Formulas

	A Walk on a Pizer Graph
	Expander Graph
	Pizer Graph with l = 2
	A Walk without Backtracking
	Why All Computations Stay in \mathbb{F}_{p}^{2}
	Notations for 2-Torsion Points
	Selector Function

	Charles $et al.’s$ Algorithm
	Description of Algorithm
	Cost Estimate of Algorithm 2

	Proposed Methods
	Basic Lemmas
	Simple Formulas for 2-Torsion Points
	Proposed Method 1
	Proposed Method 2
	Costs of Proposed Methods

	Another Method Using the Modular Polynomial
	Comparison
	Example
	Conclusion
	References

	Key Management and Secret Sharing
	Survival in the Wild: Robust Group Key Agreement in Wide-Area Networks
	Introduction
	Prior Work on Robust GKA
	Starting Point
	Scope
	Contributions
	Organization

	Preliminaries
	Terminology and Notation
	System Model
	Cryptographic Setting

	Robust Group Key Agreement Protocol in a WAN
	Overview of JKT Protocol
	Random or Non-random Order?
	Player-Specific Message Size
	RGKA in a LAN/WAN Setting

	Performance Evaluation
	Conclusions
	References
	A Burmester-Desmedt GKA

	Visual Secret Sharing Schemes with Cyclic Access Structure for Many Images
	Introduction
	Preliminaries and a VSS Scheme with Cyclic Access Structure for n = 3
	Non-existence of the VSS with Contrast at Least 1/4
	A New Construction of VSS Scheme with Cyclic Access Structure for Even n \geq 4
	References
	 Appendix A: Non-existence of the VSS Scheme with Contrast Greater Than 1/6 Where n = 3
	Appendix B: An Example of Cyclic VSS Scheme Where n = 6

	Privacy and Digital Rights
	The Swiss-Knife RFID Distance Bounding Protocol
	Introduction
	Relay Attacks and Distance Bounding Protocols
	Relay Attacks
	Distance Bounding Protocols

	New Attack on Tu and Piramuthu Protocol
	The Protocol
	Our Attack

	Proposed Scheme
	Adversary
	Goals
	Description

	Analysis
	Security
	A More Efficient Variant
	Fault Tolerance
	Efficiency

	Protocols Comparison
	References

	Protecting Location Privacy through a Graph-Based Location Representation and a Robust Obfuscation Technique
	Introduction
	Background and Related Work
	Location Representation
	Location Obfuscation and User Preferences
	Location Measurement
	User Preferences
	Reliability
	Obfuscation Technique

	Privacy-Aware Architectures
	A Middleware Architecture
	A Distributed Architecture

	Integrating Middleware Architecture with a Location-Based Access Control Engine
	Issues, Challenges, and Benefits
	Mapping Errors
	Space Complexity
	Time Complexity
	Contribution

	Conclusion and Future Work
	References

	Anonymous Fingerprinting for Predelivery of Contents
	Introduction
	Model
	Building Blocks
	Timed-Release Encryption
	Anonymous Fingerprinting
	Symmetric Encryption

	Proposed Construction of Anonymous Fingerprinting
	Proposed Constructions of Encryption for Self-Enforcing
	Coin Based Construction
	Group Signature Based Construction
	Efficiency

	Conclusion
	References
	A Proof of Security of the Coin-Based Construction

	Instruction Set Limitation in Support of Software Diversity
	Introduction
	Background
	Code Matching
	Diversification
	Instruction Selection

	Instruction Set Limitation
	An Algorithm
	Experimental Evaluation
	Future Work and Conclusions
	References

	Digital Signature and Voting
	Non-interactive Identity-Based DNF Signature Scheme and Its Extensions
	Introduction
	Backgrounds
	Access Structure
	Disjunctive Normal Form
	Bilinear Groups of Composite Order
	Complexity Assumptions

	Definitions
	Definition of Scheme
	Definition of Security

	Extended GOS Proof
	Construction with Random Oracles
	Description
	Correctness
	Security

	Construction without Random Oracles
	Description
	Correctness
	Security
	Removing the Restriction

	Extensions
	Conclusion
	References
	A Proof of Theorem 4

	How to Balance Privacy with Authenticity
	Introduction
	Preliminaries
	Notation
	Bilinear Pairing
	Complexity Assumptions

	One-Time Universal Designated Verifier Signature Schemes (OT-UDVS)
	Security Models of OT-UDVS Schemes
	Unforgeability
	Non-transferability Privacy
	Single Designatability

	PrimitiveTools
	Trapdoor Commitment Scheme

	OT-UDVS Scheme
	Concrete Scheme

	Security Proof
	Completeness
	Unforgeability
	Non-transferability Privacy
	Single Designatability

	Conclusion
	References

	Efficient Vote Validity Check in Homomorphic Electronic Voting
	Introduction
	Preliminary and Background
	Batched ZK Proof and Verification of N^{th} Residue
	Efficiency Optimisation: Protocol 1
	Advanced Efficiency Optimisation: Protocol 2
	Comparison and Conclusion
	References

	Side Channel Attack
	Secure Hardware Implementation of Non-linear Functions in the Presence of Glitches
	Introduction
	DPA Attacks on Masking
	Glitches
	Simulation Based Attacks and Gate Delays

	Sharing
	Terminology
	Realization
	Non-completeness
	Uniform

	Sharing Non-linear Functions Using 3 Shares
	Constructing Non-linear Shared Functions
	Sharing Non-linear Functions with 2 Inputs
	Sharing Non-linear Functions with 3 Inputs
	Shared Multiplication in GF(4)

	Noekeon
	The S-Box Gamma
	Sharing the Noekeon S-Box Using 3 Shares
	Simulation Based on the Transition Count Model

	Conclusion
	References
	A Formulas for the Multiplication in GF(4)
	B Formulas for the Noekeon S-Box Using 3 Shares

	Novel PUF-Based Error Detection Methods in Finite State Machines
	Introduction
	Motivation
	Physically Unclonable Functions
	Securing Known-Path State Machines
	KeyIntegrity
	Error Detection Network Security
	Conclusion
	References

	Partition vs. Comparison Side-Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univariate Side-Channel Attacks against Two Unprotected CMOS Devices
	Introduction
	Target Implementations
	Side-Channel Adversary
	Classification of Distinguishers
	Statistical Tests for Partition Distinguishers
	Statistical Tests for Comparison Distinguishers
	An Alternative Partition Distinguisher Using a Variance Test

	Evaluation Metrics
	Limitations of Our Classification and Methodology
	Experimental Results
	Conclusions
	References

	Hash and MAC
	A Single-Key Domain Extender for Privacy-Preserving MACs and PRFs
	Introduction
	Prior Work
	Preliminaries
	Security Definitions: PRF vs. PP-MAC
	Main iCBC Lemma
	Description and Security of iCBC-MAC
	Further Optimization of iCBC-MAC Construction
	Performance Issues
	References
	A Proof Sketch of (3)
	B Proof Sketch of (4)

	Extended Models for Message Authentication
	Introduction
	Message Authentication
	The Security of MA-schemes
	Our Contributions

	Preliminaries
	Notations and Definitions
	f9 and Its Generalized Version $f9'$
	Basic Security Models for MA-schemes

	Extended Security Models for MA-schemes
	The General Models
	A Specific Model

	The Security of $f9$-like in the Specific Model
	Negative Results
	Positive Results
	Application of the Results in the Specific Model

	Conclusions
	References
	A Proof for Lemma 2

	A Preimage Attack for 52-Step HAS-160
	Introduction
	Description of HAS-160
	Related Work
	Converting Pseudo-preimages to a Preimage
	Splice-and-Cut, Partial-Matching, and Partial-Fixing Techniques
	Combination of Splice-and-Cut and Local-Collision Techniques

	Approach 1: Simple Application of Previous Techniques
	Approach 2: Extension of Local-Collision Technique
	Overall Strategy
	Computation for Steps 29 to 31
	Preimage Attack on 52-Step HAS-160

	Conclusion
	References

	Primitives and Foundations
	Essentially Optimal Universally Composable Oblivious Transfer
	Introduction
	Main Ideas
	Insecurity of OT Composition
	Our Protocol

	Preliminaries
	Pairing-Based Cryptography
	Universally Composable Security Framework

	Underlying Primitives
	Mixed Commitment Scheme
	Efficient NIWI Proofs

	Final Protocol
	Parameter Agreement
	Key Registration Authority
	1-Out-of-2 Bit Oblivious Transfer
	1-Out-of-2 String Oblivious Transfer

	References

	Generalized Universal Circuits for Secure Evaluation of Private Functions with Application to Data Classification
	Introduction
	Related Work
	Our Contributions
	Basic Idea and Outline

	Definitions and Preliminaries
	Bundle Blocks for GUC Constructions
	Generalized Universal Circuits
	Iterative GUC Constructions
	Modular GUC Constructions
	Universal Graph Based GUC Construction
	Comparison of GUC Constructions

	Secure Evaluation of Private NNs with GUCs
	Structure of NNs
	Circuit Implementation of Neurons
	Protocol for Oblivious Evaluation of NNs Using GUCs
	Comparison with Previous Work

	References
	A Universal Graph Based GUC Construction
	A.1 Converting Circuit to Fan-Out $\leq d$

	B Tablesand Figures

	Proving a Shuffle Using Representations of the Symmetric Group
	Introduction
	Related Works
	Motivation and the Outline of Our Work

	Preliminaries
	Encryption System
	Mix-Net and Shuffling
	An Important Result by Peng et al.

	Verification Protocol
	Proof of the Correctness of Protocol
	Computationally Improved Protocol
	Computation Cost
	Final Remarks
	References

	On Formal Verification of Arithmetic-Based Cryptographic Primitives
	Introduction
	The Coq Proof Assistant
	Games
	Some Elementary Number Theory
	Applications
	The Blum-Blum-Shub Pseudorandom Bit Generator
	The Goldwasser-Micali Public-Key Cryptographic Scheme

	Implementation
	Conclusions
	References

	Block and Stream
	A New Technique for Multidimensional Linear Cryptanalysis with Applications on Reduced Round Serpent
	Introduction
	Technical Background
	Multiple Linear Approximations of 4 Round Serpent
	Linear Attacks Using Correlations of Multiple Approximations
	Linear Attacks Using Distribution of Multiple Approximations
	Using the Maximum Distance
	Summary of Our Method for Matsui’s Algorithm 2
	Comparison of Time and Memory Complexity
	Experimental Results
	Extension for Further Rounds of Serpent

	Conclusion
	References
	A Brief Description of Serpent Algorithm
	B Linearly Independent Approximations on 4 Round Serpent

	Almost Fully Optimized Infinite Classes of Boolean Functions Resistant to (Fast) Algebraic Cryptanalysis
	Introduction
	Preliminaries
	Theoretical Framework towards Resistance to Algebraic Attacks
	Some Properties of Functions with Maximum \mathcal{AI}
	Functions Resistant to (Fast) Algebraic Attacks

	An Iterative Design of Almost Optimal \mathcal{AAR} Functions
	Iterative Construction of Maximum $\mathcal{AI} Functions with $e+d \geq n-1$
	Cryptographic Properties of the Construction
	Finding Good Initial Functions

	Conclusion
	References

	Higher Order Differential Attacks on Reduced-Round MISTY1
	Introduction
	Higher Order Differential Attacks
	Higher Order Differential Characteristic
	Attack Equations
	Algebraic Method

	MISTY1
	Structure
	Previous Cryptanalysis

	Characteristics of MISTY1
	Higher Order Differential Characteristics of MISTY1
	Equivalent Transformations and Equivalent Keys

	Higher Order Differential Attacks on Reduced-Round MISTY1
	Attack on 6-Round MISTY1
	Attack on 7-Round MISTY1

	Conclusion
	References
	A Proof of Theorem 2
	B Proof of Theorem 3

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

