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Abstract. We propose a two-step biclustering approach to mine co-regulation
patterns of a given reference gene to discover other genes that function in a com-
mon biological process. Currently, several successful methods utilize Pearson
Correlation Coefficient (PCC) based gene expression analysis across all samples
in datasets. However, microarray datasets are fraught with spurious samples or
samples of diverse origin, and many genes/proteins that function in the same bi-
ological pathway may be missed. The novel PCC based biclustering algorithm
introduced in this paper identifies subsets of genes with high correlation by strin-
gently filtering the data and reducing false negatives due to spurious or unrelated
samples in a dataset. Then, correlation information extracted from resulting bi-
clusters are synthesized. We applied our method using the breast cancer associ-
ated tumor suppressors, BRCA1 and BRCA2, as the reference proteins to reveal
genes and proteins important in the complex process of breast tumor formation.
Experiments on 20 very large datasets showed that the top-ranked genes were
remarkably enriched for genes that regulate the mitotic spindle and cytokinesis.
The results imply that BRCA1 and BRCA2 proteins, which are considered to be
DNA repair factors, have critical function regarding the mitotic spindle as well.
Initial biological verification reveal that this identified factor function to control
both centrosome dynamics, and also, surprisingly, DNA repair. Thus, this biclus-
tering approach is successful at identifying proteins with highly related function
from extremely complex datasets, and permits novel insights into gene function.

1 Introduction

Proteins that function in concert in a given cellular process often have their encoding
mRNA co-expressed [1]. Therefore, examining transcription levels of genes under dif-
ferent conditions provides insight about functions of genes, and eventually development
and treatment of complex diseases. DNA microarray technology has become the cen-
tral enabling technology in genomic research by allowing measurement of expression
levels of thousands of genes in parallel. In a microarray experiment, expression lev-
els of genes in various samples are arranged in a matrix called gene expression data.
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Fig. 1. Overview of the proposed approach

Samples are usually collected from different individuals and may correspond to dif-
ferent environmental conditions. Mining gene expression data to discover biologically
relevant knowledge is a challenging task and has been the focus of many research ef-
forts [2,3,4,5].

In this work, our objective is to develop a method that utilizes multiple gene expres-
sion datasets to identify genes exhibiting co-regulation with respect to a reference gene.
Identifying genes co-regulated with a gene of important function is crucial to under-
stand biochemical and genetic pathways in which the gene participates. A straightfor-
ward approach towards this aim is to cluster genes in each dataset using a correlation
or similarity metric such as Pearson Correlation Coefficient (PCC) [6]; then count the
number of times each gene co-occurs in the same cluster with the reference gene over
all datasets. PCC is a very effective and widely used metric in this type of analysis to
quantify co-regulation between pairs of genes [3,5].

A major drawback in this approach is that the entire set of samples in a dataset
are used to decide cluster membership or correlation with the reference gene. Since
samples are usually collected from diverse sources, genes and proteins that function
together may only be similarly expressed in a subset of the samples. Moreover, most
clustering techniques generate exclusive partitions of genes, therefore disregard the fact
that a single gene may be involved in more than one biological pathway. To overcome
these limitations we propose a new biclustering algorithm, called Correlated Pattern
Biclusters (CPB), that identifies groups of genes highly correlated with a given refer-
ence gene in empirically defined subsets of samples. We introduce novel techniques in
CPB to address two important issues in biclustering of gene expression data: (1) min-
ing datasets only to discover correlated patterns that contain the given reference gene,
(2) extension of the use of PCC in biclustering context. In addition, CPB algorithm
allows overlapping clusters and also captures negative correlation through use of PCC.

To reach our ultimate goal of identifying genes that consistently exhibit correlation
with the reference gene, we also propose a method to extract correlation information
from identified biclusters in an intuitive way. The proposed method evaluates unique-
ness of information captured in each bicluster and computes a correlation score for
each gene based on how frequently and in how distinct biclusters it co-occurs with the
reference gene. Then, correlation scores from all datasets are combined to filter out
inconsistent information. The overview of our approach is illustrated in Figure 1.

Our motivating application was from breast cancer research, where there are two im-
portant reference proteins, BRCA1 and BRCA2, highly penetrant breast cancer specific
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Table 1. A sample dataset and biclusters identified by several methods from this dataset. (a) Sam-
ple matrix (b) Additive model (c) Multiplicative model (d) proposed CPB algorithm (e) OPSM.

1 2 3 8 95
2 3 4 9 21
5 6 7 12 51
2 4 6 16 18
3 6 9 24 30

15 14 13 8 7
(a)

1 2 3 8
2 3 4 9
5 6 7 12

(b)

1 2 3 8
2 4 6 16
3 6 9 24

(c)

1 2 3 8
2 3 4 9
5 6 7 12
2 4 6 16
3 6 9 24

15 14 13 8
(d)

1 2 3 8 95
2 3 4 9 21
5 6 7 12 51
2 4 6 16 18
3 6 9 24 30

(e)

tumor suppressors. Both of these proteins function in the repair of DNA damage. In
addition, BRCA1 also functions at an organelle called centrosome, which is critical for
cell division. To determine genes co-regulated with BRCA1 and BRCA2 we applied
the method proposed in this paper on very large datasets publicly available at Gene
Expression Omnibus (GEO) database [7]. The results are given in Section 5.

2 Background

Biclustering was first introduced to gene expression data analysis by Cheng and Church
[8]. This is followed by numerous biclustering algorithms to identify additive, multi-
plicative [9,10], or even more complex relationships [2,11,12,13,14] between the rows
and columns of a data matrix. In additive (multiplicative) models, the difference (ratio)
between corresponding elements of any two rows and the difference (ratio) between
corresponding elements of any two columns in a bicluster are constants. In general,
additive models are useful to capture shifting patterns, whereas multiplicative models
are useful to capture scaling patterns in the data. However, neither of them can identify
shifting and scaling patterns simultaneously. Furthermore, these models are too restric-
tive in the sense that constant difference (ratio) constraints are applied on both row and
column dimensions. In Table 1b and 1c, example biclusters that can be identified re-
spectively by additive and multiplicative models from the sample matrix in Table 1a are
shown.

In this work, we propose the CPB algorithm that utilizes statistical co-expression
measure PCC as a similarity metric between rows of a bicluster. PCC is a strong metric
to evaluate positive as well as negative co-regulation between rows, and is commonly
used in clustering gene expression data [3,5] due to its power in capturing both shifting
and scaling patterns. In Table 1d, an example bicluster identified by the CPB algorithm,
where there is perfect correlation (or negative correlation) between each pair of rows is
given. As shown in this figure, PCC allows capturing both shifting and scaling patterns
that would be separately identified by additive and multiplicative models, respectively.

Application of PCC in biclustering context is not a trivial task and requires over-
coming two challenges. Firstly, PCC lacks transitivity property. Therefore, instead of
measuring closeness to a reference pattern, one has to compute all pairwise PCC val-
ues between rows in the same bicluster to measure quality. To tackle this problem, we
empirically show that if two rows have a sufficiently high correlation with a reference
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pattern, there is a lower bound for PCC between each these two rows. The second
challenge is that, PCC is only meaningful to measure coherence between rows but is
too restrictive if it is used to measure coherence between columns simultaneously. For
instance, in the example in Table 1, if high PCC between each pair of columns was also
enforced, only the biclusters that were identified by additive and multiplicative mod-
els would be found to match the ensuing criteria. In CPB algorithm, we enforce the
coherence between columns by including a column in a bicluster only if it does not de-
crease correlation among the rows in the bicluster. To estimate the impact of including
a column, we map columns to real numbers and capture tendency of gene expression
changes in the bicluster. Then, we compute root mean squared error (RMSE) for each
column to evaluate the fit of the column to this tendency pattern.

Mapping columns to real numbers induces an ordering of the columns similar to
OPSM [2] and OP-cluster [11] algorithms. In a bicluster identified by OPSM algo-
rithm, the direction of expression level change between any two columns is the same
for all rows in the bicluster. OP-cluster is an extension to OPSM such that equivalence
levels are defined to tolerate small differences between expression levels. Example of
biclusters that would be identified by these algorithms for the example matrix in Ta-
ble 1a is illustrated in Table 1e. In OPSM, the coherence between columns is defined in
a more loose sense than CPB, and results in inclusion of a relatively less related column
(column 5) in the bicluster. In addition to considering the direction of change, using
PCC in CPB algorithm allows considering magnitude of change as well to eliminate
inclusion of such columns. Moreover, it allows capturing negative correlation which is
not handled by these algorithms. To the best of our knowledge, our work is the first
work that uses PCC as an objective function for biclustering.

3 Correlated Pattern Biclusters Algorithm

Let R and C denote the set of rows and columns of a data matrix A , respectively, and
each element arc represents the relation between row r and column c . A bicluster B =
(X, Y ) can be defined by a subset of rows X = {x1, . . . , xn} and a subset of columns
Y = {y1, . . . , ym} , where n ≤ N , and m ≤ M [4]. In our algorithm, we use PCC
metric to decide membership of a row to a bicluster B = (X, Y ) . We denote absolute
value of PCC between rows r, s ∈ R with respect to columns in Y by pcc(r, s, Y ) .
For a row r to be included in X , we require pcc(r, xi, Y ) to be greater than a threshold
for all xi ∈ X . We also impose a constraint on the minimum size of Y to avoid getting
large PCC values merely by chance. The objective of the proposed CPB algorithm can
be formally defined as follows. Given a data matrix A , reference row rr , PCC threshold
ρ and minimum number of columns γ , identify a set of biclusters B = (X, Y ) such
that rr ∈ X , m ≥ γ and pcc(xi, xj , Y ) ≥ ρ for all rows xi, xj ∈ X .

3.1 The Algorithm

Algorithm 1 outlines the proposed biclustering algorithm CPB. The algorithm starts
with an initial bicluster B = (X, Y ) and improves it by iteratively moving rows and
columns in and out of the bicluster using a search technique similar to mean-shift [15].
In mean-shift, the goal is to find the densest region with a certain radius (window size)in



A Biclustering Method to Discover Co-regulated Genes 155

Algorithm 1. Correlated Pattern Biclusters.
1: function CPB(A, rr, w, γ, ρ′ )
2: step ← 1 ; B = (X, Y ) where X = {rr} and Y is a random subset of columns of A.
3: repeat � Outer loop
4: Bsave ← B ; ρ′

c ← 2/3ρ′ ; ρ′
Δ = 1/12ρ′ ; γ = m ; γΔ = m−γ

4
5: repeat
6: Compute reference vector T and normalization parameters
7: if step mod 2 = 1 then
8: Update X such that pcc(xi, T, Y ) > ρ′

c for all xi ∈ X
9: else

10: Let r be the row with smallest pcc(r, T, Y ) > ρ′
c

11: Update Y such that RMSE(yk) > RMSE(r) for all yk ∈ Y
12: ρ′

c ← ρ′
c + ρ′

Δ ; γc ← γc − γΔ

13: until ρ′
c > ρ′

14: step ← step + 1
15: until step > 20 or B = Bsave

16: return B = (X, Y )

the search space. At each iteration, the center of mass of the points that are at a distance
smaller than the given radius to the center of the current solution is computed. Then,
the center of the solution is moved to this computed center of mass and the process
is repeated until convergence. Similarly in CPB algorithm, we compare PCC between
each row and a reference vector T =< t1, . . . , tm > that represents general tendency
of rows in X with respect to the columns in the bicluster while deciding which rows
to move. Vector T is analogous to cluster center in k-means or mean-shift techniques.
If pcc(r, T, Y ) for a row r is above a certain threshold, we include r into set X and
update T by only considering the rows in X . On the other hand, using a similar crite-
rion for columns is too restrictive for our objective as explained in Section 2. Instead, a
good criterion for inclusion of a column c into Y should measure the impact of c on
PCC between rows xi ∈ X . For this purpose, we use root mean squared error (RMSE)
to evaluate similarity of tendencies of rows in X with respect to column c .

In each iteration of CPB, first, reference vector T and parameters related to normal-
ization of data values are computed; then, either set X or set Y are updated. We do not
update both sets simultaneously to avoid large fluctuations in the bicluster structure, that
may slow down or prevent convergence. In the spirit of the mean-shift technique, while
updating X , we include into X each row r that has pcc(r, T, Y ) above PCC thresh-
old ρ′c . While updating Y , we first determine row r that has the smallest pcc(r, T, Y )
above threshold ρ′c . Then we include each column c into Y that has smaller RMSE
than row r . Iterations to update bicluster end when neither X nor Y changes at an
iteration or after 20 iterations (convergence is usually achieved in 5-10 iterations). We
use the CPB algorithm with different parameters and initializations to discover possibly
overlapping clusters that contain rows correlated with the reference row.

3.2 Computing Normalization Parameters and the Reference Vector

In order to make tendency of rows in X comparable, we apply normalization to ac-
count for different scaling and shifting patterns of rows in the bicluster. We compute a
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Fig. 2. (a) Distribution of PCC between pairs of 200 random vectors with e elements that have
PCC with reference vector greater than a threshold ρ1 . (b) Relationship between PCC and RMSE
on random vectors.

normalized data value âxiyk
= axiyk

−αxi

βxi
for each xi ∈ X and yk ∈ Y , where αxi

and βxi are shifting and scaling parameters associated with row xi , respectively. Then,
each element tk of reference vector T is computed as the arithmetic mean of âxiyk

on all rows xi ∈ X . We compute T , αxi and βxi using an iterative process. Initially
we set αxi = 0 and βxi = 1 , and compute T . Then, we apply least squares fitting
on pairs {(t1, axiy1), . . . , (tm, axiym)} to obtain the best shifting and scaling parame-
ters that maximize alignment of each row xi with the reference vector T . We assign
intercept and slope obtained in least squares fitting to αxi and βxi , respectively. T is
updated using these parameters, and the process iterates until convergence.

3.3 Updating Rows of a Bicluster

For a row r to be a member of set X , we require pcc(r, xi, Y ) > ρ for all xi ∈ X .
To avoid testing this condition against all xi ∈ X , we utilize the reference vector T ,
and only test whether pcc(r, T, Y ) is greater than another threshold ρ′ instead. ρ′ is
selected such that pcc(r, T, Y ) > ρ′ must ensure pcc(r, xi, Y ) > ρ for all xi ∈ X .
However, PCC lacks transitivity property [16] and has a fairly complex formula that
strongly depends on the values and the length of the vectors. Therefore, it is difficult,
if not impossible, to analytically compute a lower bound for ρ′ as a function of ρ . To
empirically determine the value of ρ′ for a given ρ , we designed a simple experiment.
First, we generated a reference random vector with e elements. Then we generated
more random vectors and kept only those having absolute value of PCC with the refer-
ence vector greater than ρ′ . After generating 200 such vectors we plotted the distribu-
tion of the absolute value of PCC between each pair of these vectors (see Figure 2a).
The distributions verify that a lower bound for ρ′ exists and increases with ρ .

In Algorithm 1, we start with a relaxed threshold ρ′ and slowly tighten it at Line 12.
While tightening ρ′ , we relax the constraint on minimum number of columns. This
allows sweeping the search space between two extreme combinations of these param-
eters. In our code we use 5 tightening steps and initial values for ρ′c and γc are set to
2/3ρ′ , and the number of columns in the initial bicluster, respectively (Line 4).
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3.4 Updating Columns of a Bicluster

We use RMSE to assess coherence of tendencies of rows xi ∈ X in a given column.

RMSE(yk) for a column yk ∈ Y is computed as
√

1
n

∑n
i=1(âxiyk

− tk)2 . For a

column c /∈ Y , we compute RMSE(c) in a similar way, by using a value tc analogous
to tk that quantifies tendency of rows xi ∈ X in column c .

In CPB, only the columns having RMSE below a threshold ε are included in the bi-
cluster. In order to have control on the ratio of the number of rows to the
number of columns in the bicluster, we select ε in relation to ρ′ . To establish this
relation, first we note that RMSE can also be computed for rows, and it is a compa-
rable metric for rows and columns. For a row xi ∈ X , RMSE(xi) is computed as√

1
m

∑m
k=1(âxiyk

− tk)2 . Then, we observe that RMSE(r) generally implies a high

pcc(r, T, Y ) (see Figure 2b). Therefore, by setting ε to the RMSE of row r that has
the smallest pcc(r, T, Y ) above threshold ρ′c (Line 10), we expect that the ratio n/m
in the resulting bicluster is close to the ratio N/M . In order to obtain biclusters with
different n/m ratios, we use parameter κ . Then, when updating set Y , κ times the
number of columns with RMSE above the threshold are included into Y .

To ensure that the reference row rr has a larger impact in decision mechanisms of
the algorithm, we assign a larger weight to the reference row when computing the vector
T and RMSE values. Total contribution from rows except rr is multiplied by (1−ω)
and contribution from rr is multiplied by ω , where ω is an input parameter. Large
values for ω allows discovering patterns that more closely resemble rr ; whereas small
values increase sensitivity, hence offers higher tolerance to noise.

4 Combining Correlation Information

In this section, we explain our method to extract correlation information from identi-
fied biclusters. For this purpose, first we quantify uniqueness of information captured
by each bicluster. Then, for each row we compute a correlation score based on co-
occurrence frequency and uniqueness information associated with the row with respect
to the reference row. Finally, we combine correlation scores from different datasets.

If two biclusters Bv = (Xv, Yv) and Bw = (Xw, Yw) do not overlap except for the
reference row rr , then these two biclusters represent two distinct relationships between
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Fig. 4. 1/|IR(r, xi)∩IC(c, yk)| values for each xi ∈ X1 and yk ∈ Y1 for (a) r = r2 , c = c4 ,
(b) r = r5 , c = c4 . (c) OS(r, c) for each row r and column c .

rows and columns of the data matrix. In the context of gene expression, this may corre-
spond to two different biological functions associated with the reference gene. On the
other hand, if Xw ⊆ Xv and Yw ⊆ Yv the relationship in Bw is already captured by
Bv . In the latter case we discard Bw from the result set.

Let IR(. . .) denote the set of biclusters that contain all rows specified in the argu-
ment list. Similarly, let IC(. . .) denote the set of biclusters that contain all columns
specified in the argument list. Consider a row r , a column c and a bicluster Bv =
(Xv, Yv) such that r ∈ Xv and c ∈ Yv . To measure uniqueness of information in Bv

with respect to other biclusters in set IR(r)∩IC(c) on the relationship between r and
c , we define a bicluster uniqueness measure BU(Bv, r, c) as follows.

BU(Bv, r, c) =

∑
xi∈Xv−{rr}

∑
yk∈Yv

1
|IR(r, xi) ∩ IC(c, yk)|

(|Xv| − 1)|Yv|
(1)

If Bv does not overlap with any other bicluster at row r and column c , then IR(r, xi)
∩ IC(c, yk) only contains Bv for all xi ∈ X and yk ∈ Yv in (1). In this case
BU(Bv, r, c) takes its maximum possible value of 1 . This means that Bv captures
the relationship between row r and column c exclusively. BU(Bv, r, c) decreases as
overlap between Bv and biclusters in IR(r) ∩ IC(c) increases. In the case that Bv

completely overlaps with all clusters in IR(r)∩IC(c) , information on the relationship
between row r and column c is shared between all of these clusters. Then BU(Bv, r, c)
takes its minimum value of 1/|IR(r) ∩ IC(c)| (note that this case is not actually
possible since we remove biclusters that are subsets of other biclusters beforehand).
Computing cluster uniqueness as given in (1) is useful to avoid some relationships to
be over-emphasized due to convergence of biclustering algorithm to solutions close to
each other in the search space.

An example matrix and three biclusters are shown in Figure 3. Consider bicluster
B1 = (X1, Y1) and row r2 and column c4 of the matrix . Since IR(r2) ∩ IC(c4) =
{B1, B2} , overlaps between B1 and B2 need to be considered when computing
BU(B1, r2, c4) . Figure 4a shows values 1/|IR(r2, xi)∩IC(c4, yk)| for each xi ∈ X1
and yk ∈ Y1 . Applying these values to (1) gives BU(B1, r2, c4) = 0.91 . Correspond-
ing values to compute BU(B1, r5, c4) are given in Figure 4b. Here IR(r5)∩IC(c4) =
{B1, B2, B3} , thus BU(B1, r5, c4) = 0.9 .
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Using bicluster uniqueness measure, we compute an overlap score OS(r, c) for ev-
ery row-column pair (r, c) to quantify the amount of different relationships identified
between r and c . We compute OS(r, c) by summing BU(Bv, r, c) for all biclusters
in IR(r) ∩ IC(c) . In other words, OS(r, c) =

∑
Bv∈IR(r)∩IC(c) BU(Bv, r, c) . Then,

the we compute a correlation score CS(r) for each row r by summing overlap scores
of the pairs (r, c) across all columns, i.e. CS(r) =

∑
c∈C OS(r, c) . Summing over-

lap scores across columns gathers total evidence on how frequently and in how distinct
relationships row r is correlated with the reference row rr .

In Figure 4c, OS(r, c) is given for pair (r, c) Summing these values across columns
gives CS(r1) = CS(r4) = 4 , CS(r7) = CS(r8) = 5 , CS(r2) = CS(r3) = 7.8 and
CS(r5) = 12.6 . As expected, rows that appear in larger number of biclusters and in
more diverse relationships together with the reference row have larger correlation score.

To increase significance and consistency of our findings, we apply our method on
different datasets separately and combine correlation scores. To achieve this in a mean-
ingful way, we require datasets to have the same row labels. In gene expression data
analysis, this requirement can be met by merging results only from datasets obtained
using the same microarray chip. Even though such datasets could be combined into a
single data matrix, this approach requires undoing any normalization previously carried
out on each dataset. Since data are collected from different sources, this approach may
not be practical or even possible if information about the normalization procedures are
unavailable. As an alternative approach, we use the following three-step method: First,
for each dataset, we divide correlation score of each row by that of the reference row in
the same dataset. Then, in order to make contribution from each dataset equal, we scale
correlation scores such that sum of the scores in each dataset is the same. Finally, we
sum the scaled scores across datasets to compute a total score for each row.

5 Experimental Results

5.1 Experiments on Synthetic Data

To demonstrate the effectiveness of CPB, we generated datasets with embedded biclus-
ters and applied CPB to find these biclusters. We first generated a 10000 × 100 matrix
and a reference row vector of length m , filled with random real numbers between 0
and 100. Then, we generated n − 1 additional vectors, each having perfect positive
or negative correlation with the reference vector. These vectors together represent an
n × m bicluster. Next, we added a random number between 0 and K chosen from nor-
mal distribution to each entry in the bicluster to simulate noise in the data. Finally, we
embedded the bicluster into randomly selected n rows and m columns of the dataset.

As with most clustering algorithms, there is no single set of parameter values of CPB
that will suit to all datasets. Therefore, when using CPB, we consider a range of values
for each parameter to scan the search space thoroughly. In our experiments on synthetic
datasets we generated 10 datasets for every combination of n = {30, 60, 90, 120, 150} ,
m = {30, 60, 90} and K = {0, 1, 2} . First, we applied the CPB algorithm with row
column ratio parameter κ = 1 , ρ′ = 0.9 and relative weight ω of reference gene
selected from {0.1, 0.25, 0.5, 0.75} . For each value of ω we applied CPB 21 times
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Table 2. Datasets we used in our experiments from GEO [7] database

GDS dataset ID 534 596 715 1067 1209 1220 1284 1375 1479 1615
Number of samples 75 158 87 52 54 54 50 70 60 127

GDS dataset ID 1781 1815 1956 1975 2113 2190 2255 2362 2373 2643
Number of samples 104 100 121 85 76 61 58 71 130 56

Table 3. Intersection of top-25 lists of BRCA1 and BRCA2 reference probe sets

Affymetrix probe set ID Associated protein Affymetrix probe set ID Associated protein
201292 at TOP2A 210052 s at TPX2
202095 s at BIRC5 214710 s at CCNB1
202705 at CCNB2 218009 s at PRC1
204962 s at CENPA 218039 at NUSAP1
209642 at BUB1 218355 at KIF4A

using different initial clusters. The value of threshold ρ corresponding to ρ′ = 0.9
was 0.65 . This value is obtained by the method explained in Section 3. We consider
an embedded bicluster identified, if the returned bicluster consists of at least half of the
rows and half of the columns of the embedded bicluster. If all rows and columns of the
embedded bicluster are returned, we call the bicluster perfectly identified. When there
was no noise in the data, CPB algorithm perfectly identified 148 of the 150 embedded
biclusters. When some noise is added, the bicluster structure is more difficult to discover
due to reduced PCC values between the rows. Furthermore, it is likely that some of the
rows will no longer have PCC above 0.9 with the reference row. In our experiments
with K = 1 , CPB was able to identify 145 of the 150 biclusters. Of these, 140 were
perfectly identified, and the for the remaining ones, all rows and at least 90% of the
columns were returned by the CPB algorithm. Finally, when K was 2, there was a
more pronounced impact of noise resulting in much reduced PCC between the rows.
Still, CPB algorithm successfully identified 131 of the 150 embedded biclusters. For 91
of these biclusters, CPB returned at least two thirds of the columns and two thirds of
the rows.

Next, we applied a PCC based clustering approach to identify rows having PCC
greater than 0.65 with the reference row over all columns. Even in the best case, at most
27% of the columns in a bicluster were successfully identified by this approach. This
shows that considering all columns to compute PCC prevents detection of biclusters.

5.2 Identifying Genes Co-regulated with BRCA1 and BRCA2

For real data experiments we selected 20 large datasets each obtained using Affymetrix
HG U133 GeneChip Array and having at least 50 samples (Table 2). This array has
22,215 probe sets including two probe sets for each of BRCA1 (204531 s at ,
211851 x at) and BRCA2 (208368 s at , 214727 at). For each run of CPB, κ is se-
lected from {1, 3, 5, 7, 9} ; ω from {0.25, 0.5, 0.75} ; and ρ′ was set to 0.9 . We exe-
cuted the algorithm for every combination of these values, and for each parameter set
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Table 4. GO term enrichment results using 90 genes obtained by intersecting top-500 lists of
reference genes. n and N represent the number of genes associated with the GO term in the set
of identified genes and in the Affymetrix chip, respectively.

GO term ID GO term p-value n N
GO:0000910 cytokinesis < 1.0 × 10−12 8 40
GO:0007049 cell cycle < 1.0 × 10−12 38 720
GO:0007067 mitosis < 1.0 × 10−12 34 205
GO:0031577 spindle checkpoint < 1.0 × 10−12 3 3
GO:0040001 establishment of mitotic spindle localization < 1.0 × 10−12 4 4
GO:0045842 positive regulation of mitotic metaphase/anaphase transition < 1.0 ×10−12 3 3
GO:0051301 cell division < 1.0 × 10−12 29 266
GO:0051303 establishment of chromosome localization < 1.0 × 10−12 3 3
GO:0007051 spindle organization and biogenesis 2.9 × 10−12 5 9
GO:0031503 protein complex localization 7.6 × 10−12 6 8
GO:0031536 positive regulation of exit from mitosis 1.0 × 10−11 4 7

we generated 21 random initial clusters. We applied the analysis four times using one
of the BRCA1 or BRCA2 probe sets as the reference each time. In Table 3, we present
genes that appeared in top-25 highest correlated gene list of each of the four reference
probe sets.

There are 90 genes that were common in top-500 list for all four reference probe sets.
Analysis of Gene Ontology (GO) terms associated with these 90 genes statistically sup-
ports the extraordinary clustering of proteins that function in mitosis. The top-ranked
genes are remarkably enriched for genes that regulate the mitotic spindle and cytoki-
nesis. As given in Table 4, of these 90 genes, 38 control the cell cycle, 34 relate to
mitosis and 29 involved in cell division. The enrichment of cell cycle, mitosis, and
cellular assembly are exactly what would be predicted for control by the centrosome.
DNA replication and repair would be predicted to be a part of the BRCA1 and BRCA2
module, and this pathway would also impact the centrosome.

The results show that our algorithm is successful at identifying from extremely com-
plex datasets proteins with highly related function. While our results did reveal known
factors for the repair of DNA damage as expected, the most significant results were en-
riched for centrosome and mitotic spindle related processes. This implies that BRCA1
and BRCA2, which are considered to be DNA repair factors, also have critical func-
tion regarding the mitotic spindle. Biological testing of this point is in progress, but in
initial tests a gene of unknown function identified by our method is found to control
centrosome1. If confirmed, this will imply that control of the mitotic spindle is a criti-
cal control element in breast cancer. In addition, several of the identified proteins that
function to control the centrosome were found to also control a DNA repair assay. This
was an unanticipated finding. Thus, biological validation in progress is revealing that
this biclustering tool both reveals proteins that function together to control centrosomes
and also to participate in a second process of DNA damage repair.

We have also tested this method for false positives by applying the biclustering tool
on seven more genes to verify that our method avoids systematic errors. Two of the

1 A recent work of J. D. Parvin, unpublished.
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genes we used for this analysis are RB1 and TP53, tumor suppressor genes involved
in many cancers. The other five genes were CCNB2, FGD2, TAF7, SRP54 and CHPF,
which were ranked 1st , 5000th , 10000th , 15000th and 20000th , respectively, when
correlation scores of four reference probe sets are combined. We used each of these
selected genes as anchors and applied our analysis to determine top-25 lists for high
correlation for each of these genes. This analysis verified that BRCA1, BRCA2, as well
as the number one hit CCNB2 are correlated with a similar set of genes. For each pair
of these genes there were 16 to 20 genes at the intersection of top-25 lists. On the other
hand, the genes we selected for verification had at most one gene in common in the
top-25 list of either of BRCA1, BRCA2 or CCNB2.

6 Conclusion and Future Work

In this work, we proposed a two-step approach to mine co-regulation patterns, relative to
a set of reference genes, that may only exist in a subset of samples. First, co-regulation
patterns in microarray datasets are discovered using a novel PCC-based biclustering
algorithm. Then, correlation information is combined to compute a correlation score
with respect to the reference gene. In our experiments we used BRCA1 and BRCA2
as our reference genes. Analysis of the top-ranked genes using GO terms revealed an
extraordinary clustering of proteins that function in mitosis. In the future, we plan to
compare the CPB algorithm with other biclustering algorithms in terms of both objec-
tive functions and optimization techniques. Furthermore, we will evaluate significance
of our findings by testing the algorithm on various real datasets.
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