


Lecture Notes in Bioinformatics 5462
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science



Sanguthevar Rajasekaran (Ed.)

Bioinformatics and
Computational Biology
First International Conference, BICoB 2009
New Orleans, LA, USA, April 8-10, 2009
Proceedings

13



Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editor

Sanguthevar Rajasekaran
University of Connecticut, Department of Computer Science and Engineering
257 ITE Building, 371 Fairfield Way, Storrs, CT 06269-2155, USA
E-mail: rajasek@engr.uconn.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.2.8, J.3, I.5, I.2, H.3, F.1-2

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-642-00726-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00726-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12633326 06/3180 5 4 3 2 1 0



Preface

This volume presents the proceedings of the First International Conference on
Bioinformatics and Computational Biology (BICoB 2009). This conference was
supported by the International Society for Computers and Applications (ISCA)
and Springer.

Computational techniques have already enabled unprecedented advances in
modern biology and medicine. This continues to be a vibrant research area
with broadening of computational techniques and new emerging challenges. The
Bioinformatics and Computational Biology (BICoB) conference has the goal of
promoting the advancement of computing techniques and their application to
life sciences. The topics of interest include (and are not limited to):

– Genome analysis: genome assembly; genome and chromosome annotation,
gene finding; alternative splicing; EST analysis and comparative genomics

– Sequence analysis: multiple sequence alignment; sequence search and clus-
tering; function prediction, motif discovery, functional site recognition in
protein, RNA and DNA sequences

– Phylogenetics: phylogeny estimation; models of evolution; comparative bio-
logical methods; population genetics

– Structural Bioinformatics: structure matching, prediction, analysis and com-
parison; methods and tools for docking; protein design

– Analysis of high-throughput biological data: microarrays (nucleic acid, pro-
tein, array CGH, genome tiling, and other arrays); EST; SAGE; MPSS;
proteomics; mass spectrometry

– Genetics and population analysis: linkage analysis; association analysis; pop-
ulation simulation; haplotyping; marker discovery; genotype calling

– Systems biology: systems approaches to molecular biology; multiscale mod-
eling; pathways; gene networks

BICoB is interested in all areas of computing with an impact on life sciences
including (but not limited to) algorithms, databases, languages, systems, and
high-performance computing. Examples include:

– Parallel and high-performance techniques
– Unifying computational techniques
– Data and image mining techniques
– Approximation and randomized algorithms and systems
– Computational biology on emerging architectures and hardware accelerators

In BICoB 2009 there were three keynote speeches, ten invited talks, and 30
contributed presentations (selected from a total of 72 submissions). We are grate-
ful to the keynote speakers and the invited speakers who contributed tremen-
dously to the success of the conference. We are also thankful to all the authors
who submitted papers, especially those who gave presentations at the conference.



VI Preface

The Program Committee members as well as reviewers recruited by them
deserve a special thanks for their meticulous work in selecting the contributed
papers. We are also grateful to Sahar Al Seesi for finalizing the papers for the
proceedings.

April 2009 Sanguthevar Rajasekaran
Srinivas Aluru
Limsoon Wang
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Association Analysis Techniques for
Bioinformatics Problems

Gowtham Atluri, Rohit Gupta, Gang Fang, Gaurav Pandey,
Michael Steinbach, and Vipin Kumar

Department of Computer Science and Engineering, University of Minnesota
{gowtham,rohit,gangfang,gaurav,steinbac,kumar}@cs.umn.edu

http://www.cs.umn.edu/~kumar/dmbio

Abstract. Association analysis is one of the most popular analysis
paradigms in data mining. Despite the solid foundation of association
analysis and its potential applications, this group of techniques is not as
widely used as classification and clustering, especially in the domain of
bioinformatics and computational biology. In this paper, we present dif-
ferent types of association patterns and discuss some of their applications
in bioinformatics. We present a case study showing the usefulness of as-
sociation analysis-based techniques for pre-processing protein interaction
networks for the task of protein function prediction. Finally, we discuss
some of the challenges that need to be addressed to make association
analysis-based techniques more applicable for a number of interesting
problems in bioinformatics.

Keywords: Data Mining, Association Analysis, Bioinformatics, Fre-
quent Pattern Mining.

1 Introduction

The area of data mining known as association analysis1 [1,2,50] seeks to find
patterns that describe the relationships among the binary attributes (variables)
used to characterize a set of objects. The iconic example of data sets analyzed
by these techniques is market basket data, where the objects are transactions
consisting of sets of items purchased by a customer, and the attributes are binary
variables that indicate whether or not an item was purchased by a particular
customer. The interesting patterns in these data sets are either sets of items
that are frequently purchased together (frequent itemset patterns) or rules that
capture the fact that the purchase of one set of items often implies the pur-
chase of a second set of items (association rule patterns). Association patterns,
whether rules or itemsets, are local patterns in that they hold only for a subset
of transactions. The size of this set of supporting transactions, which is known
as the support of the pattern, is one measure of the strength of a pattern. A key

1 Not to be confused with the related, but separate field of statistical association
analysis [3].

S. Rajasekaran (Ed.): BICoB 2009, LNBI 5462, pp. 1–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 G. Atluri et al.

strength of association pattern mining is that the potentially exponential nature
of the search can often be made tractable by using support based pruning of
patterns [1], i.e., the elimination of patterns supported by too few transactions
early on in the search process. Efforts to date have created a well-developed
conceptual (theoretical) foundation [64] and an efficient set of algorithms [2,20].
The framework has been extended well beyond the original application to market
basket data to encompass new applications [8,24,23,57].

Despite the solid foundations of association analysis and the potential eco-
nomic and intellectual benefits of pattern discovery and its various applications,
this group of techniques is not widely used as a data analysis tool in bioinformat-
ics and computational biology. Some prominent examples of these data types are
gene expression data [33] and data on genetic variations (e.g., single nucleotide
polymorphism (SNP) data) [22]. Although the use of clustering and classification
techniques is common for the analysis of these and other biological data sets,
techniques from association analysis are rarely employed (The few exceptions in-
clude the work of researchers [5,13,30,29,40], including ourselves [57,37,35].). For
instance, for the problem of protein function prediction, which is a key problem
in bioinformatics [52], recent surveys [36,48,17] discuss several hundred papers
using clustering and classification techniques, but only a handful using asso-
ciation analysis techniques. Thus, it has to be acknowledged that association
analysis techniques have not found widespread use in this important domain.

In this paper we discuss some applications of association analysis techniques
in bioinformatics and the challenges that need to be addressed to make these
techniques applicable to other problems in this promising area. The rest of the
paper is organized as follows: Section 2 presents a brief overview of various types
of association patterns, which can be very useful for discovering different forms of
knowledge from complex data sets, such as those generated by high-throughput
biological studies. In the next section, we discuss a case study of how an asso-
ciation measure, h− confidence, can be used to address issues with the quality
of the currently available protein interaction data. Section 3 discusses the use
of association patterns for a bioinformatics application, namely addressing the
noise and incompleteness issues with the currently available protein interaction
network data. Section 4 provides concluding remarks and some of the challenges
that needs to be addressed to extend the application of association patterns to
a wide range of problems in bioinformatics.

2 Association Patterns

This section introduces some commonly used association patterns that have been
proposed in the literature.

2.1 Traditional Frequent Patterns

Traditional frequent pattern analysis [50] focuses on binary transaction data, such
as the data that results when customers purchase items in, for example, a grocery
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store. Such market basket data can be represented as a collection of transactions,
where each transaction corresponds to the items purchased by a specific customer.
More formally, data sets of this type can be represented as a binary matrix, where
there is one row for each transaction, one column for each item, and the ijth entry
is 1 if the ith customer purchased the jth item, and 0 otherwise.

Given such a binary matrix representation, a key task in association analysis
is to finding frequent itemsets in this matrix, which are sets of items that fre-
quently occur together in a transaction. The strength of an itemset is measured
by its support, which is the number (or fraction) of transactions in the data set
in which all items of the itemset appear together. Interestingly, support is an
anti-monotonic measure in that the support of an itemset in a given data set can
not be less than any of its supersets. This anti-monotonicity property allows the
design of several efficient algorithms, such as Apriori [2] and FPGrowth [20], for
discovering frequent itemsets in a given binary data matrix. However, an impor-
tant factor in choosing the threshold for the minimum support of an itemset to
be considered frequent is computational efficiency. Specifically, if n is the number
of binary attributes in a transaction data set, there are potentially 2n − 1 possi-
ble non-empty itemsets. Since transaction data is typically sparse, i.e., contains
mostly 0’s, the number of frequent itemsets is far less than 2n − 1. However,
the actual number depends greatly on the support threshold that is chosen.
Nonetheless, with judicious choices for the support threshold, the number of
patterns discovered from a data set can be made manageable. Also, note that,
in addition to support, a number of additional measures have been proposed to
determine the interestingness of association patterns [49].

2.2 Hyperclique Patterns

A hyperclique pattern [61] is a type of frequent pattern that contains items that
are strongly associated with each other over the supporting transaction, and are
quite sparse (mostly 0) over the rest of the transactions. As discussed above, in
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traditional frequent pattern mining, choosing the right support threshold can be
quite tricky. If support threshold is too high, we may miss many interesting pat-
terns involving low support items. If support is too low, it becomes difficult to
mine all the frequent patterns because the number of extracted patterns increases
substantially, many of which may relate a high-frequency item to a low-frequency
item. Such patterns, which are called cross-support patterns, are likely to be spu-
rious. For example, the pattern in Figure 1 (a), {i2, i3, i4, i5, i6} includes a high-
frequency item i2, which does not appear to have any specific association with
other items in the patterns. Hyperclique patterns avoid these cross-support pat-
terns by defining an anti-monotonic association measure known as h-confidence
that ensures a high affinity between the itemsets constituting a hyperclique pat-
tern [61]. Formally, the h-confidence of an itemset X = {i1, i2, . . . im}, denoted
as hconf(X), is defined as,

hconf(X) =
s(i1, i2, . . . , ik)

max[s(i1), s(i2), . . . , s(ik)]

where s(X) is the support of an itemset X . Those itemsets X that satisfy
hconf(X) ≥ α, where α is a user-defined threshold, are known as hyperclique
patterns. These patterns have been shown to be useful for various applications,
including clustering [60], semi-supervised classification [59], data cleaning [58],
and finding functionally coherent sets of proteins [57].

2.3 Error-Tolerant Patterns

Traditional association patterns are obtained using a strict definition of support
that requires every item in a frequent itemset to appear in each supporting
transaction. In real-life datasets, this limits the recovery of frequent itemsets as
they are fragmented due to random noise and other errors in the data. Motivated
by such considerations, various methods [62,38,47,27,11] have been proposed
recently to discover approximate frequent itemsets, which are also often called
error-tolerant itemsets (ETIs). These methods tolerate some error by allowing
itemsets in which a specified fraction of the items can be missing. This error
tolerance can either be specified on the complete submatrix of the collection of
items and transactions or in each row and/or column. For instance, in Figure
1(c), the itemset shown is a error tolerant itemset with 20% error tolerance in
each row. It is important to note that each of the proposed definitions of error
tolerant patterns will lead to a traditional frequent itemset if their error-tolerance
is set to 0. For a detailed comparison of several algorithms proposed to discover
ETIs from binary data sets, and their extensions, the reader is referred to our
previous work [19].

2.4 Discriminative Pattern Mining

A variety of real-life data sets include information about which transactions
belong to which of some pre-specified classes, i.e., class label information. For
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such data sets, patterns of considerable interest are those that occur with dis-
proportionate support or frequency in some classes versus the others. These
patterns have been investigated under various names such as emerging patterns
[16], contrast sets [4] and discriminative patterns [9,18,10], but we will refer
to them as discriminative patterns. Consider the example in Figure 2, which
displays a sample dataset, in which there are 14 items and two classes, each
containing 10 instances (transactions). In this data set, four discriminative pat-
terns can be observed: P1 = {i1, i2, i3}, P2 = {i5, i6, i7}, P3 = {i9, i10} and
P4 = {i12, i13, i14}. Intuitively, P1 and P4 are interesting patterns that occur with
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Fig. 2. Example of interesting discriminative pat-
terns (P1, P4) and uninteresting patterns (P2, P3)

.

differing frequencies in the
two classes, while P2 and
P3 are uninteresting pat-
terns that have a relatively
uniform occurrence across
classes. Furthermore, we ob-
serve that P4 is a dis-
criminative pattern whose
individual items are also
highly discriminative, while
P1 is a discriminative pat-
tern whose individual items
are not.

Discriminative patterns
have been shown to be use-
ful for improving the clas-
sification performance for
transaction data sets when
combinations of features have
better discriminative power
than individual features
[9,55,53]. Discriminative pat-
tern mining has the potential to discover groups of genes or SNPs that are
individually not informative but are highly associated with a phenotype when
considered as a group.

3 Case Study: Association Analysis-Based Pre-processing
of Protein Interaction Networks

One of the most promising forms of biological data that are used to study the
functions and other properties of proteins at a genomic scale are protein interac-
tion networks. These networks provide a global view of the interactions between
various proteins that are essential for the accomplishment of most protein func-
tions. Due to the importance of the knowledge of these interactions, several
high-throughput methods have been proposed for discovering them [25]. In fact,
several standardized databases, such as DIP [56] and GRID [7] have now been
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set up to provide systematic access to protein interaction data collected from a
wide variety of experiments and sources.

It is easy to see that a protein interaction network can be represented as an
undirected graph, where proteins are represented by nodes and protein-protein in-
teractions as edges. Due to this systematic representation, several computational
approaches have been proposed for the prediction of protein function from these
graphs [36,45,46,39,54,26,31]. These approaches can be broadly categorized into
four types, namely neighborhoodbased, global optimization-based, clustering-
based and association analysis-based. Due to the rich functional information in
these networks, several of these approaches have produced very good results, par-
ticularly those that use the entire interaction graph simultaneously and use global
optimization techniques to make predictions [31,54]. Indeed, recently, some stud-
ies have started using protein interaction networks as benchmarks for evaluating
the functional relationships between two proteins, such as [63].

However, despite the advantages of protein interaction networks, they have
several weaknesses which affect the quality of the results obtained from their
analysis. The most prominent of these problems is that of noise in the data,
which manifests itself primarily in the form of spurious or false positive edges
[44,21]. Studies have shown that the presence of noise has significant adverse af-
fects on the performance of protein function prediction algorithms [15]. Another
important problem facing the use of these networks is their incompleteness, i.e.,
the absence of biologically valid interactions even from large sets of interactions
[54,21]. This absence of interactions from the network prevents even the global
optimization-based approaches from making effective use of the network beyond
what is available, thus leading to a loss of potentially valid predictions.

A possible approach to address these problems is to transform the original in-
teraction graph into a new weighted graph such that the weights assigned to the
edges in the new graph more accurately indicate the reliability and strength of
the corresponding interactions, and their utility for predicting protein function.
The usefulness of hypercliques in noise removal from binary data [58], coupled
with the representation of protein interaction graphs as a binary adjacency ma-
trix to which association analysis techniques can be applied, motivated Pandey
et al. [37] to address the graph transformation problem using an approach based
on h − confidence measure discussed earlier. This measure is used to estimate
the common neighborhood similarity of two proteins P1 and P2 as

h − confidence(P1, P2) = min
( |NP1 ∩ NP2 |

|NP1 |
,
|NP1 ∩ NP2 |

|NP2 |
)

(1)

where NP1 and NP2 denote the sets of neighbors of P1 and P2 respectively. As dis-
cussed earlier, this definition of h− confidence is only applicable to binary data
or, in the context of protein interaction graphs, unweighted graphs. However, the
notion of h-confidence can be readily generalized to networks where the edges
carry real-valued weights indicating their reliability. In this case, Equation 1
can be conveniently modified to calculate h− confidence(P1, P2) by making the
following substitutions: (1) |NP1 | → sum of weights of edges incident on P1 (sim-
ilarly for P2) and (2) |NP1 ∩ NP2 | → sum of minimum of weights of each pair
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(b) Results on the DIPCore network

Fig. 3. Comparison of performance of various transformed networks and the input
networks (Best viewed in color and a larger size)

of edges that are incident on a protein P from both P1 and P2. In both these
cases, the h − confidence measure is guaranteed to fall in the range [0, 1].

Now, with this definition, it is hypothesized that protein pairs having a high
h − confidence score are expected to have a valid interaction between them,
since a high value of the score indicates a high common neighborhood sim-
ilarity, which in turn reflects greater confidence in the network structure for
that interaction. For the same reason, interactions between protein pairs hav-
ing a low h − confidence score are expected to noisy or spurious. Accordingly,
Pandey et al [37] proposed the following graph transformation approach for
pre-processing available interaction data sets. First, using the input interaction
network G = (V, E), the h − confidence measure is computed between each
pair of constituent proteins, whether connected or unconnected by an edge in
the input network. Next, a threshold is applied to drop the protein pairs with
a low h − confidence to remove spurious interactions and control the density
of the network. The resultant graph G′ = (V, E′) is hypothesized to be the less
noisy and more complete version of G, since it is expected to contain fewer noisy
edges, some biologically viable edges that were not present in the original graph,
and more accurate weights on the remaining edges.

In order to evaluate the efficacy of the resultant networks for protein func-
tion prediction, the original and the transformed graphs was provided as input
to the FunctionalFlow algorithm [31], which is is a popular graph theory-based
algorithm for predicting protein function from interaction networks. The per-
formance was also compared with transformed versions generated using other
common neighborhood similarity measures for such networks, such as Samanta
et al [45]’s p-value measure. Figure 3 shows the performance of this algorithm
on these transformed versions of two standard interaction networks, namely the
combined data set constructed by combining several popular yeast interaction
data sets (combined) and weighted using the EPR Index tool [14], and the other
being a confident subset of the DIP database [14] (DIPCore). The performance is
evaluated using the accuracy of the top scoring 1000 predictions of the functions
of the constituent proteins generated by a five-fold cross-validation procedure,
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where the functional annoitations are obtained from the classes at depth two of
the FunCat functional hierarchy [43].

The results in Figure 3 show that for both the data sets, the h− confidence-
based transformed version(s) substantially outperform the original network and
the other measures for this task. The margin of improvement on the highly
reliable DIPCore data set is almost consistently 5% or above, which is quite sig-
nificant. Similar results are observed using the complete precision-recall curves.
The interested reader is referred to [37] for more details on the methodology
used and the complete results.

4 Concluding Remarks and Directions for Future
Research

Association analysis has proved to be a powerful approach for analyzing tradi-
tional market basket data, and has even been found useful for some problems in
bioinformatics in a few instances. However, there are a number of other important
problems in bioinformatics, such as finding biomarkers using dense data like SNP
data and real-valued data like gene-expression data, where such techniques could
prove to be very useful, but cannot currently be easily and effectively applied.

An important example of patterns that are not effectively captured by the
traditional association analysis framework and its current extensions, is a group
of genes that are co-expressed together across a subset of conditions in a gene
expression data set. Such patterns have often been referred to as biclusters.
Figure 4 illustrates a classification of biclusters proposed by Madeira et al. [28].
They classified different types of biclusters into four categories: (i) biclusters with
constant values (Figure 4(a)), (ii) biclusters with constant rows or columns (Ex-
ample of a bicluster with constant rows is shown in Figure 4(b)), (iii) biclusters
with coherent values, i.e., each row and column is obtained by addition or multi-
plication of the previous row and column by a constant value (Figure 4(c)), and
(iv) biclusters with coherent evolutions, where the direction of change of values
is important rather than the coherence of the values (Figure 4(d)). Each of these
types of biclusters hold different types of significance for discovering important
knowledge from gene expression data sets.

Since gene expression data is real-valued, traditional association techniques
can not be directly applied since they are designed for binary data. Methods
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Fig. 4. Types of Biclusters: (a) Biclusters with constant values (b) Biclusters with
constant rows (c) Biclusters with coherent values (additive model) (d) Biclusters with
coherent evolutions
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for transforming these data sets into binary form (for example, via discretiza-
tion [5,13,30]) often suffer from loss of critical information about the actual.
Hence, a variety of other techniques have been developed for and/or applied
to this problem. These approaches include a wide variety of clustering tech-
niques: ordinary partitional and hierarchical clustering, subspace clustering, bi-
clustering/co-clustering, projective clustering, and correlation clustering. In ad-
dition, a variety of biclustering algorithms have been developed for finding such
patterns from gene expression data, such as ISA [6], Cheng and Church’s algo-
rithm [12] and SAMBA [51], and more recently, for genetic interaction data [41].
Although these algorithms are often able to find useful patterns, they suffer
from a number of limitations. The most important limitation is an inability to
efficiently explore the entire search space for such patterns without resorting to
heuristic approaches that compromise the completeness of the search. Pandey
et al. [34] have presented one of the first methods for directly mining associa-
tion patterns from real-valued data, particularly gene expression data, that does
not suffer from the loss of information often faced by discretization and other
data transformation approaches [34]. These techniques are able to discover all
patterns satisfying the given constraints, unlike the biclustering algorithms that
may only be able to discover a subset of these patterns. There are several open
opportunities for designing better algorithms for addressing this problem.

Another challenge that has inhibited the use of association analysis in
bioinformatics–even when the data is binary–is the density of several types of
data sets. Algorithms for finding association patterns often break down when
the data becomes dense because of the large number of patterns generated, un-
less a high support threshold is used. However, with a high threshold, many
interesting, low-support patterns are missed. One particularly important cat-
egory of applications with dense data are applications involving class labels,
such as finding connections between genetic variations and disease. Consider
the problem of finding connections between genetic variations and disease using
binarized version of SNP-genotype data, which is 33% dense by design, since
each subject must have one of the three variations of SNP pairs: major-major,
major-minor, minor-minor. Traditional algorithms that do not utlize the class
label information for pruning can only find patterns at high support, thus miss-
ing the low support patterns that are typically of great interest in this domain.
In fact, most of the existing techniques for this problem only apply univariate
analysis and rank individual SNPs using measures like p-value, odds ratio etc
[3,22]. There are some approaches like Multi-Dimensionality Reduction (MDR)
[42] and Combinatorial Partitioning Methods (CPM) [32], which are specially
designed to identify groups of SNPs. However, due to their brute-force way of
searching the exponential search space, these approaches also can only be ap-
plied to data sets with small number of SNPs (typically of the order of few
dozen SNPs). Also, existing discriminative pattern mining algorithms [4,9,18,10]
are only able to prune infrequent non-discriminative patterns, not the frequent
non-discriminative patterns, which is the biggest challenge for dense data sets
like SNP data and gene expression data. New approaches should be designed to
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enable discriminative pattern mining on dense and high dimensional data, where
effectively making use of class label information for pruning is crucial. Extension
of association analysis based approaches to effectively use the available class la-
bel information for finding low-support discriminative patterns is a promising
direction for future research.

In conclusion, significant scope exists for future research on designing novel
association analysis techniques for complex biological data sets and their asso-
ciated problems. Such techniques will significantly aid in realizing the potential
of association analysis for discovering novel knowledge from these data sets and
solve important bioinformatics problems.
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Analyzing and Interrogating Biological Networks
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High-throughput experimental and computational approaches to characterize
proteins and their interactions have resulted in large-scale biological networks
for many organisms, from bacteria to yeast to human. These complex networks
are comprised of a number of distinct types of interactions: these include inter-
actions between proteins that interact physically, that participate in a synthetic
lethal or epistatic relationship, that are coexpressed, or where one phosphory-
lates or regulates another. Though incomplete and noisy, these networks provide
a holistic view of the functioning of the cell and, with appropriate computational
analysis and experimental work, have significant potential for helping to uncover
cellular principles as well as protein functions and pathways.

We introduce a framework for explicitly incorporating known attributes of in-
dividual proteins into the analysis of biological networks. We conceptualize this
with network schemas. A network schema describes a group of proteins with
specific characteristics along with the desired topology and types of interactions
among them. A schema’s matches (or instances) in an interactome are subgraphs
of the interaction network that are made up of proteins having the specified char-
acteristics which interact with one another as dictated by the schema’s topology.
For example, a schema associated with signaling might be a linear path of ki-
nases interacting in succession; its instances in the baker’s yeast S. cerevisiae
include portions of the pheromone response and filamentous growth pathways.

In the first part of this work, we show how to utilize network schemas to un-
cover organizational units corresponding to recurring means with which diverse
biological processes are carried out. We develop algorithms for systematically
uncovering recurring, over-represented schemas in physical interaction networks.
We apply our methods to the S. cerevisiae interactome, focusing on schemas con-
sisting of proteins described via sequence motifs and molecular function annota-
tions and interacting with one another in one of four basic network topologies.
We identify hundreds of recurring and over-represented network schemas of var-
ious complexity, and demonstrate via graph-theoretic representations how more
complex schemas are organized in terms of their lower-order constituents. The
uncovered schemas span a wide-range of cellular activities, with many signaling
and transport related higher-order schemas. We establish the functional impor-
tance of the schemas by showing that they correspond to functionally cohesive
sets of proteins, are enriched in the frequency with which they have instances in
the human interactome, and are useful for predicting protein function.
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In the second part of this work, we introduce a system, NetGrep, for search-
ing protein interaction networks for matches to general network schema queries.
The NetGrep system allows querying with schemas where proteins are described
via a diverse set of features, including Prosite family, Pfam motif, SMART do-
main, Supfam superfamily and Gene Ontology annotations. Proteins may also be
specified via particular protein IDs, homology to other proteins, regular expres-
sions over amino acids, or with unions or intersections over any of the previously
described features. By utilizing these protein attributes in combination with
physical, genetic, phosphorylation, regulatory, and/or coexpression interactions
(as available for the organism of interest via high-throughput experiments), the
network schema queries allowed in NetGrep generalize many previously stud-
ied interaction patterns, including domain-domain interactions, signaling and
regulatory pathways, and network motifs. Network schemas can also be nat-
urally extended to handle approximate matches by specifying optional nodes.
Although the search problem arising from finding all the matches for a given
network schema is a case of the computationally difficult subgraph isomorphism
problem, we have been able to develop algorithms that take advantage of schema
characteristics for biological networks. As a result, NetGrep’s core algorithms are
extremely fast in practice for queries with up to several thousand matches in the
interactomes studied. Our algorithms can thus enable new analysis that charac-
terizes networks with respect to the types and numbers of interaction patterns
found.
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Abstract. Living organisms exhibit systemic or emergent behavior due in large
part to the combinatorial interdependencies among the components in the com-
plex molecular systems that comprise them. Biological networks encode these
interdependencies into convenient structural representations, enabling their anal-
ysis and understanding. Examples include: synergistic behavior of transcription
factors during gene regulation, where several of them act together atomically to
elicit gene expression response; the modular architecture of biological networks
and its relation to function; and the enrichment or certain small topological fea-
tures in the networks, e.g. triangles, called network motifs. Studying the connec-
tion between biological network architecture and function is made possible by
novel methods enabling correct statistical and combinatorial accounting of topo-
logical features in the network systems.

My focus in the past few years has been on characterizing biological networks
in terms of the underlying local topologies or building blocks, and linking those
building blocks to observable function in living organisms. Here I describe a set of
tools and techniques that help us do that, together with results and insights from
our studies. The techniques described come from various scientific disciplines
that have had to deal with networked systems for some time, like social sciences,
statistical mechanics, and complex network theory among others. In all case we
have adapted these tools to biological network analysis and either extended or
improved upon them.

1 Determining the Topological Building Blocks of Biological
Networks

To characterize biological networks in terms of a small set of topological building
blocks we use a family of statistical models called exponential random graph (ERG)
models, also known as p* models [1]. ERG models provide a tool to study the way that
a network’s global structure (and function) depends on a wide range of local structures
such as number of edges, node degree, number of triangles, etc. In this approach, the
full network is modeled as a random sample from a distribution which represents the
observed data best, in which the local features are explanatory variables combined lin-
early, and the dependence of the dependent network on this combination is exponential.
The coefficients in the model can be interpreted as the prominence or importance of
a local feature (variable) for the whole network. Advanced data fitting methods based
on Maximum Likelihood Estimation are used to fit the coefficients in the model to the
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data. We have been able to successfully apply ERG models to identify key features in
biological networks and to subsequently provide a novel way of classifying biological
networks based on the prevalence of their local features. The flexibility, in terms of the
number of available local feature choices, and scalability, in terms of the network sizes,
make this approach ideal for statistical modeling of biological networks.

2 Associating Topologies with Organism Properties

Our next goal was to map or associate discovered prominent topologies to organisms
properties, or even specific function or phenotypes in organisms. To that end, in our
recent work [2] we have undertaken an automated approach using various topological
metrics from network theory to characterize a collection of various kinds of biological
networks and show how the most informative metrics can be used to associate them with
organism characteristics. We built a comprehensive assembly of networks of different
types for many different organisms which we characterized using a suite of network
theory metrics, so as to comprehensively compare them simultaneously, allowing for
a much more in-depth evaluation of network models than is possible using the com-
monly existing practice of comparing one or two particular properties (most commonly
the degree distribution). Using data mining techniques (PCA and clustering) we show
that multiple parameters are necessary and often sufficient to characterize the variabil-
ity in networks meaningfully. Hierarchical linear regression models on logarithmically
adjusted network metrics data successfully identified subsets of network metrics which
associate surprisingly well with organism characteristics, viz. organism class, network
type, genome size, GC content, and modularity. Such classification or cataloging of bio-
logically associated topological features can yield vocabularies which can be consulted
for a given subnetwork, or function.

3 Using the Building Blocks to Predict Missing Links

Knowing that certain network types are characterized with specific topologies, e.g. large
number of shared neighbors between highly connected nodes, we investigated if we
can leverage that knowledge to improve the prediction of missing links in incomplete
protein-protein interaction networks and gene regulation networks. In fact, when ranked
according to their participation in certain topological patterns, and predicting the top
ranked links, the prediction accuracy for missing links grew ten fold compared to con-
sidering gene expression data alone.

The above is joint work with my students Z. Saul, S. Roy, and V. Missirian.
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Abstract. Protein phosphorylation is a crucial regulatory mechanism in various 
organisms. With recent improvements in mass spectrometry, phosphorylation 
site data are rapidly accumulating. Despite this wealth of data, computational 
prediction of phosphorylation sites remains a challenging task. This is particu-
larly true in plants, due to the limited information on substrate specificities of 
protein kinases in plants and the fact that current phosphorylation prediction 
tools are trained with kinase-specific phosphorylation data from non-plant or-
ganisms. In this paper, we proposed a new machine learning approach for phos-
phorylation site prediction. We incorporate protein sequence information and 
protein disordered regions, and integrate machine learning techniques of k-
nearest neighbor and support vector machine for predicting phosphorylation 
sites. Test results on the PhosPhAt dataset of phosphoserines in Arabidopsis and 
the TAIR7 non-redundant protein database show good performance of our pro-
posed phosphorylation site prediction method. 

Keywords: Protein Phosphorylation, Phosphoproteomics, Arabidopsis, Protein 
Disorder, KNN, SVM. 

1   Introduction 

Reversible protein phosphorylation is one of the most pervasive posttranslational 
modification mechanisms, regulating diverse cellular processes in various organisms. 
It has been estimated that about 30% of all proteins in a cell are phosphorylated at any 
given time [1]. In recent years, publicly available protein phosphorylation data have 
rapidly accumulated due to large-scale, mass spectrometry studies of protein phos-
phorylation in different organisms [2-6] and the development of associated phos-
phorylation web resources [7-11]. 
                                                           
∗ Corresponding author. 
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Protein phosphorylation can occur on serine, threonine and tyrosine residues, as 
well as histidine and aspartate residues in the case of two-component phosphorelays. 
However, O-linked phosphorylation, specifically on serine residues, is the most com-
mon form of phosphorylation in eukaryotes. Despite the increasing number of large-
scale phosphorylation studies, experimental identification of phosphorylation sites is 
still a difficult and time-consuming task. Therefore, more efficient methods for pre-
dicting phosphorylation sites in silico are desirable. A number of phosphorylation site 
prediction tools have been developed, including Scansite 2.0 [12], NetPhosK [13], 
PredPhospho [14], DISPHOS [15], KinasePhos [16], PPSP [17], pkaPS [18], Predikin 
[19], GPS 2.0 [20], AutoMotif [21] and CRPhos [22]. However, these tools have 
limitations when predicting phosphorylation sites in plants for two major reasons: (1) 
they were trained mostly on phosphorylation data from non-plant—mainly mammal-
ian organisms; (2) all of them except DISPHOS, were trained on kinase-specific 
phosphorylation data and aimed to predict kinase substrate specificities. Meanwhile, 
the phosphorylation data in plants are not as well annotated as those in mammals, 
with much less information available on the specificity of phosphorylation sites and 
their corresponding kinases. Therefore, there is a clear need to train a reliable phos-
phorylation predictor in plants given the increased frequency of protein kinases in 
plant genomes and the lack of knowledge about their substrate specificities. With the 
recently released PhosPhAt database, potential phosphoserines were predicted for the 
Arabidopsis protein database TAIR7 [23] by support vector machine (SVM) trained 
on the experimental data collected in the database [10]. Nevertheless, there is room 
for improvement in prediction accuracy. 

In this paper, we proposed a new machine learning approach for phosphorylation 
site prediction in plants, which integrates features from protein disorder informa-
tion, nearest neighbors of known phosphorylation sites, and amino acid frequencies 
in the surrounding sequences of phosphorylation sites to train an SVM for phos-
phorylation site prediction. The key differences between our method and the previ-
ous study [10] are that we incorporated protein disorder prediction and nearest 
neighbor information in the prediction. A previous study demonstrated that disorder 
information significantly improved the discrimination between phosphorylation and 
non-phosphorylation sites [15]. With increasing volume of empirical phosphoryla-
tion sites, it is advantageous to use nearest neighbor information. Test results on the 
PhosPhAt [10] dataset of phosphoserines and the TAIR7 [23] non-redundant protein 
database indeed shows the remarkable performance of our proposed phosphoryla-
tion prediction method.  

2   Materials and Methods 

Phosphorylation site prediction can be formulated as a binary classification problem, 
namely each serine/threonine/tyrosine can be classified as either phosphorylation site 
or non-phosphorylation site. As with all general binary classification problems, there 
are three key issues: (1) a well-collected and curated dataset including positive and 
negative data; (2) a set of effective features to characterize the common patterns in 
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each category and the differences between the two categories; (3) a classifier trained 
from the known data, capable of making reliable predictions for new data. In this 
study, datasets were extracted from the TAIR7 protein database and PhosPhAt phos-
phorylation database as discussed in Section 2.1. Outputs from a protein disorder 
predictor, outputs from k-nearest neighbor predictions and amino acid frequencies 
around the phosphorylation sites were taken as features as discussed in Section 2.2. 
We used SVM as the classifier. 

2.1   Phosphorylation Dataset 

Phosphorylation data in the model organism Arabidopsis thaliana collected in Phos-
PhAt [10] and the Arabidopsis thaliana protein database TAIR7 were utilized in this 
study. Sequences with high similarities were first removed from TAIR7 to build a 
non-redundant (NR) protein database using BLASTClust in the BLAST package 
version 2.2.19 with a sequence identity threshold of 30%. As a result, 12,018 repre-
sentative proteins remain in the TAIR NR database. The PhosPhAt phosphorylation 
data were then incorporated resulting in 1152 phosphoproteins in the TAIR NR data-
base, which contain 2050 phosphorylation sites, including 1818 phosphoserines, 130 
phosphothreonines and 102 phosphotyrosines. We only study phosphoserine events in 
this paper because of the large number of available data for training and testing. How-
ever, the proposed method can be applied to all types of phosphorylation sites. 

A 25-residue-long amino acid sequence surrounding each phosphoserine with the 
phosphoserine in the middle was extracted from each phosphoprotein in the TAIR NR 
database. Phosphoserines with upstream or downstream less than 12 residues were 
discarded. As a result, we retrieved a positive set with 1671 sequences surrounding 
phosphoserines. Similarly, the 433,744 sequences surrounding the non-
phosphoserines (serines other than the phosphoserines) were assumed to be the nega-
tive set. Although not all these sites are necessarily true negatives, it is reasonable to 
believe that the vast majority of them are. 

2.2   Feature Extraction and Selection 

2.2.1   K-Nearest Neighbor Features 
Both of the positive and negative sets are very diverse at the sequence level. How-
ever, clusters may exist in the positive set, since each phosphorylation site is the sub-
strate of a specific protein kinase, and one kinase could target multiple substrates. It is 
well known that substrates of the same kinase may share similar patterns in sequence 
[24]. To take advantage of the cluster information when predicting phosphorylation 
for a new site (represented by its surrounding sequence), we extracted features from 
its similar sequences in both positive and negative sets retrieved by a k-nearest 
neighbor (KNN) algorithm as the following procedure. 

i) For a new sequence s, find its k nearest neighbors (NN) in positive and nega-
tive sets respectively according to the sequence distance measure defined as 
follows. For two protein sequences s1={s1(-w), s1(-w+1),…, s1(w-1), s1(w)} 
and s2={s2(-w), s2(-w+1),…, s2(w-1), s2(w)}, define the distance Dist(s1, s2) 
between s1 and s2 as 
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  (1) 
where w is the length of left/right window (w=12) and Sim—amino acid 
similarity matrix—is derived from the normalized BLOSUM62 [25]: 
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where a and b are two amino acids, Blosum is the BLOSUM62 matrix, and 
max/min{Blosum} represent the largest/smallest number in the Blosum ma-
trix. 

ii) The corresponding KNN feature is then extracted as follows 
a) Calculate the average distances from the new sequence s to the k nearest 

neighbors in the positive and negative sets, respectively. 
b) Calculate KNN score—the ratio of the average distance to the nearest 

neighbors in the positive set against that in the negative set. 
iii) To take advantage of different properties of neighbors with different similari-

ties, repeat (i) and (ii) for different k’s to get multiple features for the phos-
phorylation predictor. In this paper, k was chosen to be 0.1%, 0.2%, 0.5%, 
1%, 2%, 5% and 10% of the size of positive/negative sets, and thus 7 KNN 
scores were extracted as features for the phosphorylation prediction. 

2.2.2   Protein Disorder Features 
It was observed that sites of posttranslational modifications, including protein phos-
phorylation sites, are frequently located within disordered regions [15, 26]. In [15], the 
disorder prediction results for the phosphorylation sites were employed as features to 
construct a phosphorylation predictor—DISPHOS. In this study, we extracted the 
disorder information for all surrounding residues of each phosphorylation site and 
combined them to form a set of disorder features in SVM. The procedure is as follows: 

i) For each protein in the TAIR NR database, predict its disordered region using 
VSL2B [27]. 

ii) Extract the disorder prediction scores for the surrounding residues in both 
positive and negative sets, and thus form a vector of 25 scores. 

iii) Take the average scores surrounding the sites with different window sizes as 
features for the phosphorylation predictor. In this paper, we chose the window 
sizes to be 1, 9 and 25, and thus three disorder features were extracted for 
each sequence. 

2.2.3   Amino Acid Frequency Features 
In [15], Iakoucheva et al. analyzed the amino acid composition of the surrounding 
sequences of phosphorylation sites and found that rigid, buried, neutral amino acids 
(W, C, F, I, Y, V and L) are significantly depleted, while flexible, surface-exposed 
amino acids (S, P, E, K) are significantly enriched. This conclusion was confirmed by 
this study as illustrated in Section 3.3. This fact makes the amino acid frequencies  
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good candidates as features for phosphorylation site prediction. In this paper, all 20 
amino acid frequencies in each 25-residue sequence were extracted as features for the 
phosphorylation predictor. 

3   Results and Discussions 

3.1   KNN Scores as Features 

The KNN scores were extracted as features according to the procedure described in 
Section 2.2.1. A KNN score for a sequence of interest actually compares its average 
distance (or dissimilarity) to the nearest neighbors (NNs) in the positive set with that 
in the negative set. A score smaller than 1 means the sequence is more similar to the 
positive set; a score larger than 1 means more similar to the negative set. The smaller 
the KNN score, the more similar the sequence is to known phosphorylation sites, and 
thus the more likely it contains a phosphorylation site. 

Figure 1 compares the KNN scores of phosphoserines with non-phosphoserines. 
Overall the phosphoserines have smaller KNN scores than non-phosphoserines. All of 
the phosphoserines’ average KNN scores with different sizes of NNs are smaller than 
1, which means overall the sequences in the positive set are more similar to their NNs 
in the positive set as expected. It is worth mentioning that such similarities are not due 
to protein homology as there is no significant sequence similarity between any two 
proteins in our non-redundant dataset. This finding confirms that phosphorylation-
related clusters may exist in the positive set as discussed in Section 2.2.1. 

Interestingly, all of the non-phosphoserines’ average KNN scores are around 1, 
which means overall the sequences in the negative set are not predominantly more 
similar to NNs in either the positive or negative sets. This is not surprising, since 
phosphorylation-related clusters are unlikely to exist in the negative set, and thus the 
sequences in the negative set have similar chance to find close neighbors in either 
positive or negative set. 

In short, KNN scores capture the cluster information in phosphoserines, and hence 
distinguish them from non-phosphoserines. Therefore, KNN scores are suitable to 
serve as features for the phosphorylation site prediction. The prediction performance 
of KNNs scores will be demonstrated in Section 3.4. 

3.2   Protein Phosphorylation and Disorder  

In this section, we will demonstrate that phosphoserines in the dataset we used are 
predominantly overrepresented in disordered regions, and hence confirm the effec-
tiveness of the disorder scores as features for phosphorylation prediction. Figures 
2(A) and 2(B) plot the histograms of the disorder scores of phosphoserines and non-
phosphoserines’ surrounding residues, respectively. From Fig. 2(A), the number of 
phosphoserines increases exponentially when the disorder score increases from 0 to 1; 
the number of phosphoserines with disorder scores larger than 0.9 is much higher than 
those in the other sub-ranges. In contrast, from Fig. 2(B), there is no such a pattern for 
the non-phosphoserines. The number of non-phosphoserines with disorder 
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Fig. 1. Comparison of KNN scores in the positive set (1671 sequences around phosphoserines) 
and those in the negative set (randomly selected 1671 sequences around non-phosphoserines). 
The horizontal axis represents the size of nearest neighbors (in percentage relative to the size of 
positive/negative set). The vertical axis represents the KNN score. Each KNN score for one 
sequence is represented by ‘x’ (positive data) or dot (negative data). Each square symbol stands 
for the mean value of KNN scores for each size of NNs.  

scores larger than 0.9 is slightly higher than those in the other sub-ranges. This may 
be because some phosphoserines were not discovered by the experiments in [10] and 
as a result were incorrectly classified as non-phosphoserines. Alternatively, this could 
also reflect the general preference of serine in disordered regions. In any case, it is 
clear that phosphoserines in this dataset are significantly overrepresented in disor-
dered regions. In fact, the majority (~89%) of the phosphoserines have a disorder 
score larger than 0.5 (Note that VSL2B predicts a residue in the disordered region 
when its predicted value is larger than 0.5), while this percentage is only ~57% for 
non-phosphoserines. 

3.3   Amino Acid Frequency Features 

In this section, we will study the amino acid composition surrounding the phos-
phoserines. In Figure 3, from left to right, the amino acids vary from being depleted 
to being enriched in the surrounding sequences of phosphoserines. Similarly as 
observed in [15], amino acids C, W, Y, F, H, I, L are depleted around phosphoseri-
nes, while D, E, R, P and K are enriched. However, S is not significantly enriched 
around the phosphoserines in this dataset, in contrast to the previous study [15]. The 
different composition of amino acids surrounding phosphoserines and non-
phosphoserines justifies the use of amino acid frequencies as features for the phos-
phorylation predictor. 
 



24 J. Gao et al. 

0 0.2 0.4 0.6 0.8 1
0

5

10
x 10

4 (B)

Disorder score

O
cc

ur
en

ce

 

 

0 0.2 0.4 0.6 0.8 1
0

200

400

600
(A)

Disorder score

O
cc

ur
en

ce

-12 -8 -4 0 4 8 12
0

0.5

1
(C)

Position

D
is

or
de

r 
sc

or
e

 

 

Phospho

Non-Phospho

1 5 9 13 17 21 25
0

0.5

1
(D)

Window size

D
is

or
de

r 
sc

or
e

 

 

Phospho

Non-Phospho

-12

-8
-4

0
4

8
12

 

Fig. 2. Preference of phosphorylation sites (serines) in disordered regions. (A) Histogram of 
disorder scores of residues around phosphoserines (1671 in total). The horizontal axis repre-
sents the disorder score predicted by VSL2B, divided into 10 sub-ranges from 0 to 1; the verti-
cal axis represents the occurrence (the number of sequences) in the corresponding disorder sub-
range.  Different grayscale from dark to while in each bar stand for 25 different positions in the 
window from the upstream -12 to downstream 12 as indicated in the color bar on the top right. 
(B) Histogram of disorder scores of residues around non-phosphoserines (433,744 in total). (C) 
Disorder scores in the positive and negative sets. The horizontal axis represents the 25 positions 
(-12 to 12); the vertical axis represents the mean disorder score in the positive set (‘x’) or the 
negative set (dot). (D) Average disorder scores over windows of different lengths. The horizon-
tal axis represents the window size over which to take average of the disorder scores for each 
surrounding sequence. The vertical axis represents the mean of those average scores. 

3.4   SVM Training and Testing 

In this study, an SVM was trained as the classifier between phosphoserines and  
non-phosphoserines. The SVMlight Version 6.02 [28] was used. The parameters were 
optimized as ‘-t 2 -g 1 -c 10 –x 1’, which means selecting the kernel as radial basis 
function with gamma equal to 1, setting C—the tradeoff between training error and 
margin to 10, and computing the leave-one-out estimate. 

As mentioned in Section 2.1, there are 1671 serines in the positive set and 433,744 
in the negative set. Testing of the proposed method was performed using the follow-
ing procedure: 

i) Randomly select 1671 samples from the negative set, together with the posi-
tive set, and form a balanced dataset of 3342 samples. 



 A New Machine Learning Approach for Protein Phosphorylation Site Prediction 25 

C W Y F H I L M Q V T N A S G K P R E D
0

0.02

0.04

0.06

0.08

0.1

0.12

Amino acid

F
re

qu
en

cy

 

 
Phospho

Non-Phospho

 

Fig. 3. Amino acid frequencies in the positive and negative sets (the serines in the middle of the 
25 residues were excluded; all positive and negative data were used). The vertical axis repre-
sents the amino acid frequency. The horizontal axis represents the 20 amino acids sorted in 
ascending order by the ratio between the amino acid’s frequency in the positive set (black) and 
that in the negative set (gray). 

ii) Perform a 10-fold cross validation test: the dataset was partitioned into 10 
subsets; a single subset was retained as validation data and the other 9 sets as 
training data; the cross-validation process is then repeated 10 times, with each 
subset used exactly once as the validation data. The 10 results were then 
combined to produce an average estimation. 

iii) Note: in each training/test, the disorder and frequency features remained the 
same. However, the KNN features of each training or validation needed to be 
re-extracted from the training data, and every time the training data was 
changed. 

The above testing procedure was performed on each separate set of features (amino 
acid features only, disorder features only, or KNN features only) and combined fea-
tures (all three sets of features together) 10 times each. Table 1 shows the area under 
receiver operating characteristic (ROC) curve (AUC) for each test of each set of fea-
tures, and also the mean AUCs and the standard deviations. Figure 4 shows the mean 
ROC curves for these tests. 

Table 1 and Figure 4 show that all of the three sets of features provide certain pre-
dictive powers, but the combined features gave the best test results with the smallest 
variance (standard deviation) among the 10 random tests. This indicates that combin-
ing various features yields more accurate and robust prediction. When testing the 
features separately, the disorder features were not performed as accurately as the 
KNN features and frequency features. This may be partially due to fact that all the 
data came from the same species (Arabidopsis). It is unclear whether similar perform-
ance can be maintained for cross-species prediction (e.g., training with Arabidopsis  
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Table 1. Prediction performance (AUC) for 10 random tests for different sets of features  

Test Frequency only Disorder only KNN only Combined 
1 0.754  0.722  0.816  0.840  
2 0.769  0.707  0.806  0.825  
3 0.768  0.729  0.812  0.825  
4 0.758  0.723  0.796  0.830  
5 0.769  0.727  0.813  0.830  
6 0.764  0.730  0.794  0.823  
7 0.765  0.733  0.813  0.829  
8 0.734  0.719  0.819  0.827  
9 0.771  0.715  0.816  0.828  

10 0.759  0.715  0.793  0.817  
Mean 0.761  0.722  0.808  0.827  

Standard Deviation 0.011  0.008  0.010  0.006  

 

Fig. 4. Mean receiver operating characteristic curves of 10 random tests for different sets of 
features. The horizontal axis represents the false positive rate (the fraction of misclassified 
samples in the randomly selected negative set); the vertical axis represents the true positive rate 
(the fraction of correctly detected samples in the positive set). 

data and predicting phosphorylation sites in soybean). There, the disordered informa-
tion may be more generic and species-independent.  

The phosphoserine predictor in [10] gave a performance of AUC around 0.81 on 
the redundant Arabidopsis TAIR7 protein dataset. It is worth mentioning that for the 
redundant dataset, the test results of our method achieved 0.84-0.85 on AUC, as KNN 
may find sequence neighbors in close homologs of the query protein. 
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4   Conclusion and Future Work 

In this paper, we developed a new approach for predicting protein phosphorylation 
sites in plants. We treated phosphorylation site prediction as a binary classification 
problem, and employed machine learning techniques to solve it. Multiple features 
were first extracted from the dataset, including features from nearest neighbors,  
protein disordered regions and amino acid frequencies. We demonstrated that phos-
phoserines in the PhosPhAt dataset are predominantly overrepresented in disordered 
regions. An SVM was then trained based on these features, and used to predict phos-
phorylation sites in new data. Our method combined both KNN to take advantage of 
similar known sequence fragments around phosphorylation sites to query protein 
sequences and SVM to account for other generic features.  Test results show good 
performance of this proposed phosphorylation prediction method. As more phos-
phorylation sites are experimentally identified, the accuracy of our method is ex-
pected to increase automatically. 

In future work, we plan to apply our method on phosphothreonines and phosphoty-
rosines, as well as to the whole proteomes of Arabidopsis and other plant species. We 
will also develop a standalone application and a web service based on this work. 
 
Acknowledgments. This work was supported by the funding from the National Sci-
ence Foundation-Plant Genome Research Program [grant number DBI-0604439 
awarded to JJT] and the National Institute of Health [grant number R21/R33 
GM078601 awarded to DX]. The authors wish to thank Dr. Predrag Radivojac, Dr. 
Jingfen Zhang, and Zhiquan He for helpful discussion and technical assistance. 

References 

1. Steen, H., Jebanathirajah, J.A., Rush, J., Morrice, N., Kirschner, M.W.: Phosphorylation 
analysis by mass spectrometry: myths, facts, and the consequences for qualitative and 
quantitative measurements. Mol. Cell Proteomics 5(1), 172–181 (2006) 

2. Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., Mann, M.: 
Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. 
Cell 127, 635–648 (2006) 

3. Villén, J., Beausoleil, S.A., Gerber, S.A., Gygi, S.P.: Large-scale phosphorylation analysis 
of mouse liver. Proc. Natl. Acad. Sci. USA 104, 1488–1493 (2007) 

4. Chi, A., Huttenhower, C., Geer, L.Y., Coon, J.J., Syka, J.E., Bai, D.L., Shabanowitz, J., 
Burke, D.J., Troyanskaya, O.G., Hunt, D.F.: Analysis of phosphorylation sites on proteins 
from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. 
Proc. Natl. Acad. Sci. USA 104, 2193–2198 (2007) 

5. Benschop, J.J., Mohammed, S., O’Flaherty, M., Heck, A.J., Slijper, M., Menke, F.L.: 
Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. Mol Cell Pro-
teomics 6, 1198–1214 (2007) 

6. Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K., Ishihama, 
Y.: Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in 
Arabidopsis. Mol. Syst. Biol. 4, 193 (2008) 



28 J. Gao et al. 

7. Diella, F., Gould, C.M., Chica, C., Via, A., Gibson, T.J.: Phospho.ELM: a database of 
phosphorylation sites–update 2008. Nucleic Acids Res. 36(Database issue), D240–D244 
(2008) 

8. Gnad, F., Ren, S., Cox, J., Olsen, J.V., Macek, B., Oroshi, M., Mann, M.: PHOSIDA 
(phosphorylation site database): management, structural and evolutionary investigation, 
and prediction of phosphosites. Genome Biol. 8, R250 (2007) 

9. Tchieu, J.H., Fana, F., Fink, J.L., Harper, J., Nair, T.M., Niedner, R.H., Smith, D.W., 
Steube, K., Tam, T.M., Veretnik, S., Wang, D., Gribskov, M.: The PlantsP and PlantsT 
Functional Genomics Databases. Nucleic Acids Res. 31, 342–344 (2003) 

10. Heazlewood, J.L., Durek, P., Hummel, J., Selbig, J., Weckwerth, W., Walther, D., Schulze, 
W.X.: PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-
specific phosphorylation site predictor. Nucleic Acids Res. 36(Database issue), D1015–
D1021 (2008) 

11. Gao, J., Agrawal, G.K., Thelen, J.J., Xu, D.: P3DB: a plant protein phosphorylation data-
base. Nucleic Acids Res. 37(Database issue), D960–D962 (2009) 

12. Obenauer, J.C., Cantley, L.C., Yaffe, M.B.: Scansite 2.0: Proteome-wide prediction of cell 
signaling interactions using short sequence motifs. Nucleic Acids Res. 31(13), 3635–3641 
(2003) 

13. Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., Brunak, S.: Proteomics. Predic-
tion of post-translational glycosylation and phosphorylation of proteins from the amino 
acid sequence 4(6), 1633–1649 (2004) 

14. Kim, J.H., Lee, J., Oh, B., Kimm, K., Koh, I.: Prediction of phosphorylation sites using 
SVMs. Bioinformatics 20(17), 3179–3184 (2004) 

15. Iakoucheva, L.M., Radivojac, P., Brown, C.J., O’Connor, T.R., Sikes, J.G., Obradovic, Z., 
Dunker, A.K.: The importance of intrinsic disorder for protein phosphorylation. Nucleic 
Acids Res. 32(3), 1037–1049 (2004) 

16. Huang, H.D., Lee, T.Y., Tzeng, S.W., Horng, J.T.: KinasePhos: a web tool for identifying 
protein kinase-specific phosphorylation sites. Nucleic Acids Res. 33(Web Server issue), 
W226–W229 (2005) 

17. Xue, Y., Li, A., Wang, L., Feng, H., Yao, X.: PPSP: prediction of PK-specific phosphory-
lation site with Bayesian decision theory. BMC Bioinformatics 7, 163 (2006) 

18. Neuberger, G., Schneider, G., Eisenhaber, F.: pkaPS: prediction of protein kinase A phos-
phorylation sites with the simplified kinase substrate binding model. Biol. Direct. 2, 1 
(2007) 

19. Saunders, N.F., Kobe, B.: The Predikin webserver: improved prediction of protein kinase 
peptide specificity using structural information. Nucleic Acids Res. 36(Web Server issue), 
W286–W290 (2008) 

20. Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L., Yao, X.: GPS 2.0, a tool to predict kinase-
specific phosphorylation sites in hierarchy. Mol. Cell Proteomics 7(9), 1598–1608 (2008) 

21. Plewczynski, D., Tkacz, A., Wyrwicz, L.S., Rychlewski, L., Ginalski, K.: AutoMotif 
Server for prediction of phosphorylation sites in proteins using support vector machine: 
2007 update. J. Mol. Model 14(1), 69–76 (2008) 

22. Dang, T.H., Van Leemput, K., Verschoren, A., Laukens, K.: Prediction of kinase-specific 
phosphorylation sites using conditional random fields. Bioinformatics 24(24), 2857–2864 
(2008) 

23. Swarbreck, D., Wilks, C., Lamesch, P., Berardini, T.Z., Garcia-Hernandez, M., Foerster, 
H., Li, D., Meyer, T., Muller, R., Ploetz, L., Radenbaugh, A., Singh, S., Swing, V., Tissier, 
C., Zhang, P., Huala, E.: The Arabidopsis Information Resource (TAIR): gene structure 
and function annotation. Nucleic Acids Res. 36(Database issue), D1009–D1014 (2008) 



 A New Machine Learning Approach for Protein Phosphorylation Site Prediction 29 

24. Kennelly, P.J., Krebs, E.G.: Consensus sequences as substrate specificity determinants for 
protein kinases and protein phosphatases. J. Biol. Chem. 266, 15555–15558 (1991) 

25. Henikoff, S.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad Sci. 
USA 89, 10915–10919 (1992) 

26. Dunker, A.K., Oldfield, C.J., Meng, J., Romero, P., Yang, J.Y., Chen, J.W., Vacic, V., 
Obradovic, Z., Uversky, V.N.: The unfoldomics decade: an update on intrinsically disor-
dered proteins. BMC Genomics 9(Suppl. 2), S1 (2008) 

27. Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Dunker, A.K.: Exploiting heterogene-
ous sequence properties improves prediction of protein disorder. Proteins 61(suppl 7), 
176–182 (2005) 

28. Joachims, T.: SVMlight Version 6.0.2 (2008),  
  http://svmlight.joachims.org 

 



Assembly of Large Genomes
from Paired Short Reads

Benjamin G. Jackson1, Patrick S. Schnable2, and Srinivas Aluru1,2

1 Department of Electrical and Computer Engineering
2 Center For Plant Genomics

Iowa State University, Ames, IA 50011, USA

Abstract. The de novo assembly of genomes from high-throughput
short reads is an active area of research. Several promising methods
have been recently developed, with applicability largely restricted to the
smaller and less complex bacterial genomes. In this paper, we present
a method for assembling large genomes from high-coverage paired short
reads. Our method exploits large distributed memory and parallelism
available on multiprocessor systems to handle memory-intensive phases
of the algorithm, effectively allowing scaling to large genomes. We present
parallel algorithms to construct a bidirected string graph that is several
orders of magnitude smaller than the raw sequence data and to extract
features from paired reads. We also present a heuristic method that uses
these features to guide the extension of partial graph traversals corre-
sponding to large genomic contigs. In addition, we propose a simple
model for error correction and derive a lower bound on the coverage
needed for its use. We present a validation of our framework with short
reads from D. melanogaster and S. cervisiae synthetically generated at
300-fold coverage. Assembly of the D. melanogaster genome resulted in
large contigs (50% of the genome covered by contigs larger than 102Kb),
accurate to 99.9% of the bases, in under 4 hours of wall clock time on a
512-node Blue Gene/L.

1 Introduction

For nearly three decades from its invention, Sanger sequencing - which pro-
duces 700 to 1000 base-pair reads - dominated the field of DNA sequencing and
genome assembly. New developments in high-throughput short read sequencing
are proving a disruptive technology that allows concurrent generation of mil-
lions of reads at a significantly lower per base cost, albeit with limitations on
read length (25-50 bp typically, with the exception of 454, which can produce
150 bp reads). Several such platforms are available and seeing rapid adoption
in the community (454 Life Sciences system [13], Illumina Solexa [1], Applied
Biosystems SOLiD [17], and Helicos Biosciences Heliscope [22]).

Short-read technologies were initially aimed at resequencing individuals when
a template genome of the species is known. This allows aligning the reads to the
reference genome, avoiding a de novo assembly, and provides an easy way for
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biological analysis such as identifying Single Nucleotide Polymorphisms (SNPs).
The Solexa system has been used for resequencing [2][19], identifying repeats
[21], and characterizing population diversity [16].

There has been considerable recent interest in the more technically challenging
problem of de novo genome sequencing. Given the multimillion dollar expense
associated with Sanger read based genome sequencing projects, high-throughput
technologies offer the only hope of sequencing a much larger number of species.
Also, de novo assembly is important in cases where significant genomic rearrange-
ments are expected, such as when sequencing multiple inbred lines of the same
plant species. In response to these needs, several short read assemblers have re-
cently been developed – ALLPATHS [3], Euler-SR [4], SHARCGS [5], Shorty
[8], an assembler by Medvedev et al. [14], SSAKE [20], and Velvet [23].

Traditionally, the overlap-layout-consensus paradigm has been the mainstay
of Sanger read based sequencing projects, whereby long overlaps between reads
provide much of the information to shape the assembly. Though graph-based
methods that permit a more global view when resolving repeats have been de-
veloped (de Bruijn [9][18] and string graph models [15]), their reach has not
extended beyond bacterial genomes due to significant memory requirements.

With short reads eliminating the reliability of read overlaps in predicting
genomic co-location, a revival of graph-based methods has underpinned the de-
velopment of short-read assemblers. However, the memory limitations seen previ-
ously are further exacerbated due to the high coverage needed to compensate for
shorter read lengths. As a result, short-read de novo assembly has been demon-
strated on relatively small genome sizes, ranging from single BACs [5][20][23]
to bacterial genomes with a few million bases [4][7][14]. Perhaps the largest re-
ported assembly (39 million bases) was produced in 2 days using a workstation
with 64 GB memory [3].

In this paper, we present a short-read sequence assembly framework that can
successfully assemble large genomes with high coverage. To do so, we rely on par-
allel algorithms and the large distributed memory afforded by high performance
parallel computers for the memory-intensive phases of the assembly. We present
parallel methods for constructing a bidirected de Bruijn graph of k-molecules
and converting this graph into a bidirected string graph. We present a parallel
method for computing features that summarize the distances between paired
reads. We also create weak traversal constraints derived from k-mer frequency
along each edge. We present an algorithm that finds paths corresponding to con-
tigs by starting with unambiguous long edges as seeds, and then extending each
path using heuristic rules that rely on the computed features. As the string graph
is many orders of magnitude smaller than the initial sequence data, and there
are only a few thousand features per edge, this final phase of assembly can be
carried out sequentially for many genomes. Our method advances the state of the
art in short read assembly from the confines of prokaryotic genomes. For exam-
ple, we demonstrate a 99.9% accurate assembly of the Drosophila Melanogaster
genome in four hours, with 50% of the genome covered by contigs of length at
least 102Kb.
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2 Linking Coverage to Error Correction

The two most crucial technical challenges in accurate short read assembly are
eliminating sequencing errors and accurately reconstructing genomic repeats.
High coverage, randomness in error location, and a low error rate are helpful
when dealing with errors. Paired reads obtained by sequencing both ends of
fragments of known approximate size provide distance constraints that are in-
strumental in identifying correct walks in the graph and resolving repeats.

As with other methods, the method we propose is sensitive to errors unless
they are identified prior to assembly. In a manner similar to that proposed by
Pevzner et al. [18], we deal with errors by analyzing k-mer frequency. We wish
to find a threshold such that, with high probability, all k-mers with frequency
below this threshold are artifacts due to sequencing errors. Correspondingly, all
real k-mers should occur at a rate above this threshold. We make the simpli-
fying assumption that the sampling of the genome and the sequencing error
are independent, uniform, random processes. For the initial analysis, we ignore
the increased frequencies of certain k-mers due to the presence of repeats, but
address this subsequently.

Let g the length of the genome, l be the length of each read, r be the sub-
stitution error rate per base, and c be the coverage rate per base. We describe
a k-mer as a tuple s = 〈p1, p2, ..., pk〉. An edit profile is the corresponding tuple
〈c1, c2, ..., ck〉 with ci ∈ [0, 3]. The probability P (ci = 0) is 1− r (i.e., base called
correctly), while the probabilities P (ci = 1) = P (ci = 2) = P (ci = 3) = r

3
(corresponding to each of the three incorrect base call possibilities).

We are interested in two classes of edit profiles: the identity profile, which has
probability (1 − r)k; and the profiles corresponding to a single edit, each with
probability r

3 (1 − r)(k−1). We ignore other profiles given their low probabilities
for practical values of r. The expected rate at which the identity profile occurs
at some location in the genome is λp =

(
c(l−k)

l

)
(1 − r)k. The expected rate at

which a single error edit profile occurs is λd =
(

c(l−k)
l

) (
r
3

)
(1 − r)k−1.

The number of times a particular k-mer (the identity profile at a particular
position) is seen in the data is a Poisson process, with the expected number of
k-mers seen exactly t times given by the equation:

Ct =
(

λp
te−λp

t!

)
g

The expected number of times a single base k-mer edit is seen exactly t times
is defined similarly:

Et =
(

λd
te−λd

t!

)
3kg

Given a genome of length g and an error rate r, we wish to find coverage c
such that good k-mers can be separated from bad k-mers by some threshold τ
with high probability. We create a 3-dimensional plot of Ct and Et given c and
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Fig. 1. Contour lines for Ct and Et when plotted against c and t. We plot log10 Ct =
{−2,−1, 0, and 2} for genome length 300Mb, read length of 40bp, 1% error, and k=30.
We also plot log10 Et = {−2,−1, 0, and 2} for a hypothetical genome repeat decom-
position, superimposed against Ct. We show in the upper left a plot of Et for 300Mb
of unique sequence. We show in the upper right a plot for 60Mb of sequence repeated
twice. We show in the lower left a plot for 1Mb of sequence repeated 4 times. Finally,
we show in the lower right a plot for 20Kb repeated 30 times. These plots indicate
that with 1% sequencing error rate, 30-mers can likely be differentiated using a simple
threshold method at 250-fold to 300-fold coverage.

τ , as shown in the upper left quadrant of Figure 1. Observe that if the genome
is unique, a good separation of 30-mers can be achieved with 200-fold coverage
of length 40bp reads with 1% error.

We can update this analysis given the presence of sampling bias and repeats
by observing that both can be modeled as non-uniform coverage of some genome
with only unique k-mers. We can analyze the k-mers by separating this genome
into sets of k-mers with similar coverage. Our task is to find a single threshold
that separates real k-mers from errors in all sets simultaneously. As shown in
Figure 1, for a genome of length 300Mb, a 1% error rate, and an average read
length of 40, we can expect that 300-fold coverage will achieve separation of
30-mers for many repeats.
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3 Parallel Bidirected String Graph Construction

The first step in the assembly method is the parallel construction of a birected
string graph such that genomic contigs that could be inferred from the reads cor-
respond to paths in the graph. We begin by constructing a bidirected de Bruijn
graphwith nodes corresponding to k-molecules and edges corresponding to (k+1)-
molecules. We assume a distributed memory parallel model where each processor
has its own local memory and access to other processors’ memory is mediated by
an interconnection network. We have previously described a method for construct-
ing a bidirected string graph in parallel[10][11], which we summarize here.

In a bidirected graph, each edge has two directions, one for each endpoint.
There are four possible ways of connecting edges for an ordered pair of nodes
(u, v): u�–�v, u�–�v, u�–�v, and u�–�v. A valid graph traversal requires
that endpoint directions be satisfied when passing through a node; if we enter a
node on an in arrow, we must exit on an out arrow, and vice versa.

Consider each k-molecule in the data (by considering both strands associated
with each k-mer). We call the lexicographically larger of the two strands the
positive (or representative) strand, and the other strand the negative strand.
Consider a de Bruijn graph, where each k-molecule corresponds to a node in the
graph, and two nodes are connected if they share a common (k − 1)-molecule.
There are four ways of connecting edges in the de Bruijn graph, and we use
a bidirected edge to capture these options, as shown in Figure 2. If the posi-
tive strand of the underlying molecule moves into the edge, the corresponding
arrowhead points away from the node. Similarly, if the negative strand of the
underlying molecule moves into the edge, the corresponding arrowhead points
into the node.

We construct the de Bruijn graph edge-by-edge, by looking at all (k + 1)-
molecules in the input data. The representative strand of each molecule is stored
as a 4(k + 1) bit integer in a distributed array. To operate within the confines of
available memory, the sequences are read in stages, updating this representative
list at the end of each phase with the frequency of each molecule in the data,
using parallel sort [6] as the supporting operation.

Also to make efficient use of memory, data is processed in two phases. In
the first phase, we record the frequency of all observed (k + 1)-molecules. Af-
ter enough data has been considered, all real (k + 1)-molecules will have been

Fig. 2. The four ways in which k-molecule nodes can be connected in the bidirected
de Bruijn graph of the data, with the corresponding edge labels that will be used in
creating the string graph
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observed at least once with high probability. At this point, we continue with the
second phase, in which only the frequencies of previously seen (k + 1)-molecules
are updated. After all data has been considered, molecules with frequency below
the threshold indicated in the previous section are discarded.

Once all true (k+1)-molecules are found, the graph can be determined directly
by constructing an edge from each representative. This graph is nearly a de
Bruijn graph, but there can exist nodes in this graph that are not connected but
would be in a true de Bruijn graph, due to the existence of maximal k−1 length
repeats in the underlying genome [10]. We will refer to the graph constructed in
this manner as a de Bruijn graph despite this subtle difference.

We can label the edges in this graph with two characters, each corresponding
to the first base from each strand of the (k + 1)-molecule. We are interested in
compacting chains in the de Bruijn graph, as we have described extensively in
[11]. We solve this problem by transforming the chain compaction problem to
the parallel undirected list ranking problem. During edge compaction, we also
concatenate the edge labels, to produce assembled contigs.

The result of this process is a bidirected string graph [15]. The bidirected
string graph we create is the lowest order graph homeomorphic with the de
Bruijn graph. Each edge in this graph is labeled by some genomic sequence,
which may or may not be repeated multiple times in the genome. We arbitrarily
assign each edge in the graph a forward direction which will be used during the
processing of paired reads. Some traversal of this graph corresponds to the entire
assembled genome, although there are many possible traversals.

4 Paired Read Processing

The reads in the sequence data come in pairs, each read pair coming from the two
ends of a sheared DNA fragment. Typically fragment lengths fall into a specified
range. Our method allows for the consideration of multiple such fragment ranges,
which we call fragment types, and assumes that reads are classified accordingly.

In the bidirected string graph G = {E, V }, edges ei and ej correspond to
genomic sequences si and sj , each sequence occurring one or more times in the
genome. If the genomic distance between these two sequences falls within some
fragment range, there will be evidence of these two sequences’ relative location
in the sequence data. We will summarize this information as a set of features we
term partial (k + 1)-pair clusters, and use these features to finish assembly.

Definition 1. A position in the bidirected graph G is a tuple of the form p =
〈e, f〉, with e ∈ E, f ∈ N, 0 ≤ f < ‖e‖. The field f corresponds to a position
along the edge in its forward direction, indexed from zero.

Note 1. By construction of the string graph, there is a bijection between valid
(k+1)-molecules in the input and the set of all positions in the graph. Therefore
we use p(m) to denote the position corresponding to (k + 1)-molecule m, and
p(m).e and p(m).f to denote the corresponding fields.
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Definition 2. A read pair is a tuple of the form 〈R1, R2, z〉, where R1 and R2
are the reads and z is the fragment type.

Definition 3. A (k + 1)-pair is a tuple of the form π = 〈m1, m2, z〉, where m1
and m2 are molecules.

Note 2. We use 
z� to denote the largest possible distance between observed
(k + 1)-molecules when reading the ends of a fragment of type z, and �z to
denote the smallest possible distance. If zmin is the minimum length of fragment
type z, zmax the maximum fragment length, and l the maximum read length,
�z = zmin − 2l + (k + 1), and 
z� = zmax − (k + 1).

Definition 4. The set of all (k + 1)-pairs is the set Π = {π1, π2, ..., πM}, with
〈m1, m2, z〉 ∈ Π if and only if there exists some read pair 〈R1, R2, z〉 with m1 a
sub-molecule of R1 and m2 a sub-molecule of R2.

Note 3. When we allow duplicates, M = O
(
N(l − k)2

)
, where N is the number

of reads and l the maximum read length.

Definition 5. An edge traversal is a tuple of the form t = 〈e, d〉, with e ∈ E
and d ∈ {F, R}, with F corresponding to traversing the edge in the forward
direction, and R in the reverse direction.

Definition 6. A path is a sequence of edge traversals: T = 〈t1, t2, ..., tl〉.
Note 4. In general, edges in the graph can be traversed multiple times, so there
could exist ti and tj , i �= j and ei = ej . We always assume that paths being
discussed are valid walks in the string graph, as described in the previous section.

Consider some πx = 〈m1x, m2x, zx〉 and traversal T . Let Lx = {ti|ei = p(m1x).e}
be the set of edge traversals in T to which m1x maps. Let Rx = {tj |ej =
p(m2x).e} be the set of all edge traversals to which m2x maps.

Definition 7. For each (ti, tj) ∈ Lx ×Rx, i < j, the observed distance of πx

is:

d(πx, ti, tj) =
j−1∑

h=i+1

‖eh‖ + σi + σj

σi =

{
p(m1).f if di = R

‖p(m1).e‖ − p(m1).f if di = F

σj =

{
p(m2).f if dj = F

‖p(m2).e‖ − p(m2).f if dj = R

Definition 8. πx supports T using ti and tj if and only if �zx ≤ d(πx, ti, tj) ≤

zx�.
Definition 9. ti and tj are supported by Π if and only if there exists some
πx that supports the path using ti and tj.
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Note 5. We call this support weak because the genomic distance between ti and
tj can differ from the path distance by as much as 
zx� − �zx.
Definition 10. The maximum distance expectation for ti and tj and some

fragment type z, denoted by 
(ti, tj, z)�, is calculated as min
(

z�, ∑j

h=i ‖eh‖
)
.

Definition 11. The minimum distance expectation for ti and tj and some

fragment type z, denoted by �(ti, tj, z), is calculated as max
(
�z, ∑j−1

h=i+1 ‖eh‖
)
.

In general, multiple (k+1)-pairs with the same fragment type can support a pair
of edge traversals on a path. Moreover, if the path is correct, we would expect
that, for all zh, support for much of the range [ �(ti, tj , zh), 
(ti, tj, zh)� ] to be
found in the data, assuming the edges are not very short. We wish to formalize
this support expectation.

Definition 12. A (k + 1)-pair cluster is a set of observed distances for ti, tj,
and z. We summarize a cluster using the range α(ti, tj , z) = [min, max], with
min being the minimum observed distance in the cluster and max the maximum
observed distance.

We construct the (k +1)-pair clusters starting from all single element sets taken
from Π and proceeding in two phases of merging. In the first phase, we perform
single linkage clustering, merging two sets αx(ti, tj , z) and αy(ti, tj , z) if and only
if (maxx + R > miny) ∧ (minx − R < maxy), for some parameter R. In the
second stage, we order all clusters by min, and then, considering all consecutive
pairs (αx(ti, tj , z), αy(ti, tj, z)) in this ordered set, merge if maxy −minx < 
z�.
Definition 13. ti and tj are strongly supported by a (k + 1)-pair cluster
α(ti, tj , z) if αmin < �(ti, tj , z) + T and αmax > 
(ti, tj , z)� − T , with T a
sensitivity parameter.

The preceding definition is carefully chosen to allow for an edge to be strongly
supported even if, for example, ti is a repeat and occurs at multiple distances
from tj in the genome. For a visual intuition behind the definition of strongly
supported, see Figure 3.

In practice, we wish to be able to answer the question of whether ti and tj are
strongly supported without having to consider the entire set Π when analyzing
a particular path, but instead preprocess the raw paired reads to extract the
necessary features. This needs to be done without any a priori knowledge of
the nature of the eventual traversal T . In other words, we do not know either
the distance between pairs of edges or their relative orientations at the time of
summarization.

We achieve this goal by calculating, for each tuple 〈ei, ej, z〉, the ranges of
the partial sum σi + σj corresponding to each (k + 1)-pair cluster. As we do not
know the relative orientation of the edges at the time of summation, we track
the range of σi + σj for all four possible orientations of edges, using ffmin and
ffmax to denote this range when ei and ej are traversed forwards, with frmin,
frmax, rfmin, rfmax, rrmin, and rrmax denoting the ranges of other orientations.
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Fig. 3. Candidate path extensions, with the solid lines corresponding to a known path
T and the dashed lines corresponding to some possible path extensions t′j . The bars
above each path correspond to cluster evidence supporting the extension of the edge,
α(ti, t

′
j , zh). Cluster ranges are truncated on the left such that they do not overlap

between edges. The bars at the bottom of the figure correspond to the expected evidence
for each fragment type, [�zh�, �zh�]. In a), we show prototypical strong support for an
extension across all edges. In b), we show support for a repeat that will occur twice in
quick succession. In c), we show lack of support. Finally, in d) we show an example of
lack of support, despite some overlap between clusters and the expected support range.

Definition 14. A partial (k + 1)-pair cluster is a summarization of a set of
observed partial sums σi + σj for edges ei, ej and fragment type z, denoted as
α̂(ei, ej, z) = 〈rfmin, rfmax, ffmin, ffmax〉.
Note 6. The value for rrmin can be calculated as ‖ei‖+‖ej‖−ffmax, and rrmax,
frmin, and frmax can be calculated similarly.

Given a traversal T with edges ti and tj , we calculate the (k + 1)-pair clus-
ters αx(ti, tj , z) corresponding to partial (k + 1)-pair cluster α̂y(ei, ej , z). If
ti.f = F and tj .f = F , minx = ffminy +

∑j−1
h=i+1 ‖eh‖ and maxx = ffmaxy

+
∑j−1

h=i+1 ‖eh‖. The other orientations of ti and tj are handled similarly.
We will now describe a parallel algorithm for computing all partial (k+1)-pair

clusters from Π :

1. Assume that we have, for each (k + 1)-molecule m, a mapping to that
molecule’s corresponding graph position, stored as a distributed tuple ar-
ray of the form 〈m, eID, f, l〉, where l is the length of the edge identified by
eID, and f is the forward position, as described previously.

2. Let C be the a distributed tuple array containing tuples of the form 〈eIDi ,
eIDj , z, ffmin,ffmax, rfmin, rfmax〉, corresponding to partial (k +1)-pair clus-
ters. C is initially empty.

3. To reduce memory consumption, we process the paired reads in R stages. In
each stage we process an N

R subset of the data, N
Rp per processor, if p is the

number of processors.
(a) For each read pair in the data of the form 〈R1, R2, z〉, create (k + 1)-

molecule tuples 〈mi, mj , z〉 for all possible (k+1)-molecule combinations.
(b) Distribute these tuples, based on element mi, to those processors that

have the corresponding (k + 1)-molecule tuple.
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(c) Combine the tuples 〈mi, mj , z〉 and 〈mi, eIDi , fi, li〉 to form the tuple
〈mj , z, eIDi , fi, li〉.

(d) Distribute the tuples, based on element mj , to those processors that have
the corresponding (k + 1)-molecule tuple.

(e) Combine the tuples 〈mj , eIDj , fj, lj〉 and 〈mj , z, eIDi , fi, li〉 to form a
partial (k + 1)-pair cluster 〈eIDi , eIDj , z, ffmin,ffmax, rfmin, rfmax〉 with
ffmin = ffmax = li − fi + fj and rfmin = rfmax = fi + fj .

(f) Merge these partial (k + 1)-pairs with the array C.
(g) Sort C, using eIDi as primary key, eIDj as secondary key z as tertiary

key, and finally by ffmin, forcing all clusters with equivalent (eIDi , eIDj ,
z) onto the same processor.

(h) For each bucket of partial (k + 1)-pair clusters with equivalent (eIDi ,
eIDj , z), merge partial (k+1)-pair clusters in accordance with the single
linkage merging described above, updating all minimums and maximums.
As the clusters are sorted by ffmin, this can be done using a single pass
through the array on each processor.

4. After all stages have completed, consider each bucket of partial (k + 1)-pair
clusters with equivalent (eIDi , eIDj , z), and merge partial (k+1)-pair clusters
in accordance with the phase two merging rule described above, updating
all minimums and maximums. As the clusters are sorted by ffmin, this can
be done using a single pass through the array on each processor.

5. Write the resulting partial clusters.

5 Bidirected Graph Traversal

Given the partial (k + 1)-pair clusters, we wish to find valid walks through the
bidirected string graph. We will describe the process using (k+1)-pair clusters, as
it is more natural to do so, and these can be derived from the partial (k+1)-pair
clusters for any path T .

We assign to each edge e in the graph an expected traversal bound b(e) by
analyzing the coverage seen along that edge. When traversing the graph, we
keep track of the number of times an edge has been traversed as c(e), and use
this information in conjunction with the bound to choose between ambiguous
options. Additionally, we restrict traversal to edges with c(e) < 2b(e). Initially
c(e) = 0 for all edges.

Our method for traversing the graph is one of path extension. Given a likely
partial traversal of the graph as a path T = 〈t1, t2, ...tl〉 with total length greater
than the maximum fragment size, we can determine, by looking at the structure
of the string graph, a set of possible edge traversals that can serve as extensions
of this path: E = {t′1, t′2, ...t′h}, t′j = 〈ej , dj〉. We describe a heuristic method for
choosing the best extension from E by choosing the candidate with the most
strong support among the (k + 1)-pair clusters.

Specifically, consider some extension t′j . Let T ′ be the path created by extend-
ing T with t′j .
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Definition 15. The expected support for ti, t′j, and fragment type zv is:

γijv =

⎧⎪⎨
⎪⎩

γ̂ijv if
(�(ti, t′j, zv) < (
zv� − B)

) ∧ (
(ti, t′j , zv)� > (�zv + B)
)

γ̂ijv if ti and t′j are strongly supported by some α(ti, t′j , zv)
0 otherwise

γ̂ijv = 
(ti, t′j, zv)� − �(ti, t′j , zv)
Where B is a parameter.

Definition 16. The observed support for ti, t′j and fragment type zv is:

ωijv =

{
ω̂ijv if ti and t′j are strongly supported by some α(ti, t′j , zv)
0 otherwise

ω̂ijv = min
(
(t′i, t′j , zv)�, α.max

) − max
(�(t′i, t′j , zv), α.min

)
Definition 17. The extension score of a candidate t′j (for

∑
i,v γijv > 0) is

defined as:

0 ≤ S(t′j) =

∑
i,v ωijv∑
i,v γijv

≤ 1

We say that an extension t′j is unambiguous if S(t′j) > 0 and, for all w with

0 < w ≤ h and w �= j, S(t′w)
S(t′j)

< D (for some specificity parameter D). If there
exists an extension t′j that is unambiguous, then we append t′j to the path and
continue with traversal. If t′j does not exist, we consider only those edges with
b(t′j) > c(t′j), and look for the existence of an unambiguous extension t̂′j . If
neither t′j nor t̂′j exist, we stop extension.

All that remains is to describe how we seed the paths. All edges e with ‖e‖
greater than the maximum fragment size and c(e) = 0 can serve as a seed. As
it is not obvious, for example, that really long edges are better than moderately
long edges as starting points, we simply choose from candidate starting points
in increasing order of edge identifier, until none remain.

6 Experimental Results

We experimentally evaluated the proposed method using synthetic data gen-
erated from previously assembled genomes, downloaded from the NCBI FTP
server. For each genome, we cleaned any ambiguities from the data and con-
catenated multiple contigs from the same chromosome, in the order presented in
the finished FASTA file. In this way, we generate a contiguous sequence for each
chromosome even though the actual data may contain a large number of contigs,
possibly scaffolded. From the input chromosomes, we then generated fragments
and sampled 30bp to 50bp paired short reads from the ends of the fragments.
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Table 1. Assembly quality for five organisms. The first group shows results for se-
quences using protocol I, as described in the text. The second group was assembled
from data matching protocol II. In order, we show the size of the genome in megabases;
the maximum, n50, n75, and n90 lengths, all in kilobases; the number of contigs with
length > 10Kb, the number of missassemblies per megabase, and percentage of the
genome covered by these contigs at > 99.9% identity.

Organism Size Max n50 n75 n90 Count Mis Cov

E. coli 5.4 224 85 43 10 91 0.2 90.0
S. cerevisiae 12.2 225 71 34 11 225 0.8 90.1

C. pneumoniae 1.0 867 867 867 132 2 0.0 99.9
S. pneumoniae 2.1 321 137 92 77 19 0.0 95.5
E. coli 5.4 378 231 104 42 42 0.5 94.0
S. cerevisiae 12.2 290 107 75 25 148 0.8 94.1
D. melanogaster 120.3 855 102 43 12 1,687 1.5 91.2

We used a 0.9% substitution rate and 0.1% deletion rate, for a total error rate of
1%. Fragment sizes were based upon two hypothetical experimental protocols.
Protocol I consisted of two fragment types, {900 ± 100, 4300 ± 600}. Protocol
II consisted of five fragment types {330± 30, 660 ± 60, 1100± 100, 2200± 200,
4400± 400}. All genomes were sampled at 300-fold coverage.

For testing the assembler, data was generated on a workstation, using the
parameters described above. This data was then transferred to a 512-node Blue
Gene/L system with 512 MB memory per node, at which point the parallel
phases of the software were run to produce the intermediate string graph and
features from paired reads. These results were transferred back to a worksta-
tion for production of contigs using bidirected graph traversal. For Drosophila,
this process took ∼50 minutes for data transfer (depending on network conges-
tion), ∼100 minutes for the parallel phases, and ∼20 minutes for the remain-
ing. In the final processing phase of the algorithm, run time was dominated by
file I/O.

Producing long and correctly assembled contigs that cover most of the genome
is the hallmark of a good assembler. We use the nX length measure, which is the
maximum length l such that X percent of the genome is covered by contigs with
length at least l. For validation, we used MUMmer 3.20 [12] to align the finished
contigs back to the reference. The results are presented in Table 1. We present
results on three bacterial genomes as a reference point for comparison with other
work on short read assembly. In addition, we present results on S. cerevisiae and
D. melanogaster. For each genome, we present the length of the maximum con-
tig generated, along with n50, n75 and n90 lengths. We also present the number
of contigs with length > 10Kb, the percentage of the genome that is covered
by these contigs with at least 99.9% identity (typically, four out of five assem-
bled contigs aligned perfectly), and the number of large-scale missassemblies per
megabase.
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7 Discussion and Conclusions

In this paper, we presented a graph-based method for assembly of large genomes
from short reads. Our method can scale to large genomes using distributed mem-
ory multiprocessors. It can naturally handle reads of multiple lengths (short reads
from one or more platforms, Sanger reads, or a mixture), and multiple fragment
sizes used in paired read generation. Experimental results show that our method
produces large (n50 > 100Kb), high quality (>99.9% correct) contigs from syn-
thetic data sets generated with 1% error in a few hours of wall clock time using
a 512-node Blue Gene/L. We have validated our method by generating synthetic
short read data from drosophila, yeast, and a number of bacterial genomes.

Error discovery is an essential part of any de novo short read assembly. While
we have identified errors by counting k-mer frequency for relatively large k, other
promising methods for finding errors have been proposed. Zerbino et al. [23]
describe motifs in the graph that are likely to be due to errors, such as alternate
edges between two nodes, with one edge at much lower coverage. Chaisson et al.
[4] describe methods for preserving sequences with errors by finding good edits.
We are interested in exploring ways to achieve robust error correction using
parallel computers, as this will be necessary to achieve good results at lower
sequence coverage rates.

There is good potential for using the large edges in the graph to decompose the
graph traversal into multiple independent problems. We plan to develop parallel
algorithms for this final assembly stage, leading to the creation of a fully parallel
assembly pipeline. This may be necessary for scaling to very large genomes such
as human, mouse and maize. Using our assembler, it has become easy to experi-
ment with the number and types of paired read lengths. A parameterized study
with multiple experimental protocols, and different sampling errors and cover-
age variance, can be conducted to help plan future de novo genome sequencing
projects.
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Abstract. Spaced seeds have been extensively studied in the homology
search field. A spaced seed can be regarded as a very special type of
hash function on k-mers, where two k-mers have the same hash value
if and only if they are identical at the w (w < k) positions designated
by the seed. Spaced seeds substantially increased the homology search
sensitivity. It is then a natural question to ask whether there is a better
hash function (called hash seed) that provides better sensitivity than the
spaced seed. We study this question in the paper. We propose a strategy
to classify amino acids, which leads to a better hash seed. Our results
raise a new question about how to design the best hash seed.

1 Introduction

The homology search aims to find the approximate local matches between two
DNA or protein sequences (or sequence databases). Since the large sizes of the
DNA and protein sequence databases, a “filtration” is usually applied to rapidly
identify the potential matching locations and then a more accurate but time-
consuming examination is done on the identified locations. Among the first to
adopt this approach in homology search area, the famous BLAST program [1]
uses the exact matches of w-mers (called hits) as the criterion of the filtra-
tion. Then a more careful examination that includes the Smith-Waterman algo-
rithm [31] is used to further examine those hitting locations. Clearly, this speeds
up the homology search as w-mer matches are much easier to identify than ap-
proximate matches. On the other hand, the sensitivity of the homology search is
sacrificed because a highly similar region does not necessarily contain a w-mer
match and then gets lost.

The PatternHunter paper [27] introduced the optimized spaced seed method
to increase the sensitivity. A length-k, weight-w spaced seed is w designated
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positions out of k. A spaced seed can be either given by a set of these w posi-
tions (e.g. {1,2,4} for a weight-3, length-4 seed), or equivalently, a binary string
with only those selected positions equal to 1 (e.g. 1101 for the spaced seed given
above). Two k-mers are hit by the seed if the two k-mers match at the w desig-
nated positions. The PatternHunter program uses these hits to identify potential
homologies and then examine the hitting locations similarly to BLAST. Surpris-
ingly, an optimized spaced seed was demonstrated in [27] and mathematically
proved in [18,24,9] to have much higher sensitivity than using w-mers. Outside
of the context of homology search, some earlier works [29,22] prior to Pattern-
Hunter also proposed to use some discontinuous positions as a filter for similarity
search, without attempting to optimize these positions.

The discovery of optimized spaced seed provoked significant amount of re-
searches in optimizing the spaced seed method. These include the modifications
to the original spaced seed method (see, e.g., [5,23,4,21,12,13]), the algorithms
and complexities to compute seed sensitivities and to optimize spaced seeds and
modified spaced seeds (see, e.g., [28,24,18,26,16,33,17,19,9,11,32,20,10]), and the
use of spaced seeds in different applications (see, e.g., [2,6,25]). The readers are
refered to the review articles on spaced seed method [8,7] for more details.

Among themodifications to the original spaced seedmethod, themultiple spaced
seeds [23] use several spaced seeds simultaneously to improve the sensitivity-speed
tradeoff. The vector seeds [3,5] allow the w designated positions in a spaced seed to
be inexact matches. A threshold is predefined to check whether the inexact match
is “good enough” to be a hit. Vector seeds can be regarded as a combination and
extension of the spaced seed idea with the neighborhood idea used in blastp (a
subprogram of BLAST) or BLASTZ [30]. Brown further designed multiple vector
seeds [6] specialized for protein homology search. The neighbor seeds [13] select 1
or 2 of the w positions to allow them to be mismatches, but at the same time require
1 or 2 additional positions outside the w positions to be matches. This allows to
use slightly different spaced seeds to perform the homology search even after the
index table is built using a given spaced seed.

All these modifications require the change of either the indexing algorithm or
the hits generation algorithm. For multiple spaced seeds, multile index tables,
each for a spaced seed, need to be built. This greatly increases the space com-
plexity. For the vector seeds, the w positions of a k-mer of the query sequence
are regarded as a w-dimension vector, and the “neighbors” within certain dis-
tance to the vector are generated and used for the look up in the index table.
Therefore, multiple queries to the index table are needed for each single location
of the query sequence. This adds overhead to the hits generation, especially if
the hash table is to be stored on secondary storage media. Consequently, only
parameters that cause not too many neighbors are allowed in practical vector
seeds design. For the neighbor seeds, not only the hits generation, but also the
process after a hit is found needs to be changed. The overhead for these changes
is the reason why only 1 or 2 mismatches are used in neighbor seeds.

It was pointed out in [13], and probably widely known, that a weight-w,
length-k, spaced seed is just a special hash function for k-mers. Two k-mers have
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the same hash value if and only if they are identical at the w designated positions
of the given spaced seed. From this point of view, if a different hash function is
used instead of the spaced seed, the original PatternHunter’s algorithm does not
require any changes and no overhead is added. The paper [13] acclaimed that
the spaced seeds just happen to be a simple but good hash functions in terms of
sensitivity-speed tradeoff. For the sake of clarity, we call a k-mer hash function,
when used in lieu of a spaced seed, as a hash seed.

Spaced seeds are only a very special type of hash seeds. It is natural to believe
that there are better hash seeds than spaced seeds for the homology search pur-
pose. However, for general homology search, no better hash seed has been found
to date. In this paper we design such a hash seed for protein homology search.
The hash seed provides noticeably better sensitivity than optimized spaced seed,
at the same false positive level (and therefore same speed). Our contribution in
the paper raises the question of finding the optimal hash seed with the best
sensitivity-speed trade off.

The rest of the paper is organized as follows: Section 2 introduces the idea
of classifying amino acids according to a BLOSUM matrix. Section 3 employs
the amino acid classification to give a simple hash seed. Section 4 discusses the
results and future work.

2 Classfication of Amino Acids

The homology search of protein sequences usually uses the BLOSUM matrices to
measure the similarities between amino acids. BLOSUM matrices was introduced
by Henikoff and Henikoff [14]. The BLOSUM62 matrix was recommended for the
BLAST program. Figure 1 shows the BLOSUM62 matrix.

Note that in Figure 1, we rearranged the amino acids so that the positive
scores are concentrated around the diagonal of the matrix. As a result, it be-
comes apparent that some amino acids with positive scores to each other can
be classified together. Two classification schemes are shown in Figure 1. For the
two classification schemes, the minimum score within a class is 2 and 1, respec-
tively. 1 We call these two classifications as C2 and C1, respectively. For the sake
of clarity, we also call the trivial classification that puts each amino acid in a
different class as C∗.

Let Σ be the alphabet of all amino acids. A classification is defined as C =
{C1, C2, . . . , Ck}. Each Ci is a subset of Σ that satisfies Ci ∩ Cj = ∅ for i �= j,
and

⋃k
i=1 Ci = Σ. We use |C| = k to denote the nubmer of different classes of

the classification, and use C(a) to denote the class that a belongs to. The integer
i is called the class id of Ci or a letter a ∈ Ci.

Although the BLOSUM matrices were obtained purely statistically [14], we
notice that the classifications given in Figure 1 make very much biological sense.
For example, both D and E are poloar, negatively charged, non-hydrophobic

1 In the second classification scheme, it is possible to additionally put N and H into a
new class. However, this has only negligible effects to our results.
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Fig. 1. The BLOSUM62 matrix. The highlighted blocks show an examplary classifi-
cation such that the score within each class is at least 2. The blocks surrounded by
rectangles show an examplary classification such that the score within each class is at
least 1.

amino acids, and they are classified together in Figure 1. However, because the
scores in the BLOSUM matrices are greatly affected by the amino acid frequen-
cies (which do not necessarily reflect the chemical properties of the amino acids),
and were rounded to integers, our classifications based on BLOSUM62 matrix
may not accurately reflect a classification solely using amino acids’ chemical
properties.

Clearly, in the sequence alignment of a homology, if we replace each amino
acid with its class id, the identity level of the alignment will increase. This will
increase the sensitivity of the homology search if the same spaced seed is used.
However, this will also increase the identity level of the match of two random
sequences, resulting into more random hits and slower search speed. We need to
make sure that we gain more from the sensitivity than losing at the speed. This
tradeoff is discussed in greater detail in next section.

3 A Hash Seed Based on Amino Acid Classification

In [14], the score in a BLOSUM matrix was calculated as follows. First, for two
amino acids x and y,

sc(x, y) = 2 log2
pxy

2px · py
,
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where pxy is the (normalized) frequency of observing x and y aligned together
in a real homolog, and px and py are the background frequencies of x and y
in the protein database. Then this sc(x, y) is rounded to the nearest integer to
create the BLOSUM matrix. Therefore, a positive score between two amino acids
indicate that the two amino acids match each other more often in homologies
than they would in random sequence matches. Consequently, if we only classify
positive scoring amino acid pairs together, we will get more hits at the real
homologies than at the random matched sequences. Thus, one idea of designing
a good hash seed is to classify the amino acids and use spaced seeds on sequences
of amino acid classes.

More accurately, let {i1, i2, . . . , iw}⊆ [1, k] be a spaced seed and s=a1a2 . . . ak

be a k-mer. Let C be an amino acid classification. Then our hash function h is
defined as 2

h(s) = C(ai1)C(ai2) . . . C(aiw). (1)

Similarly to the spaced seed, two k-mers generate a hit if and only if they
have the same hash value based on our new hash function.

The false positive rate of a hash seed is defined to be the probability that two
random k-mers have the same hash value. Clearly, a smaller false positive rate
results into higher search speed. Let Fp be the false positive rate, we also refer
to 1

Fp
as the selectivity of the hash seed. Let pa be the background frequency of

an amino acid a. The Fp of the hash seed in Eq. (1) can be calculated easily as

Fp(h) =

⎛
⎝ |C|∑

i=1

( ∑
a∈Ci

pa

)2
⎞
⎠

w

(2)

The sensitivity of the hash seed is calculated by using the real data as follows.
We used Arabidopsis Chromsome 2 and Chromsome 4 as our testing data. The
protein sequences from the two chromsomes are downloaded from NCBI’s website
and put in two separate FASTA format files. The SSearch program [15] was
used to find all the high-scoring local alignments between the two FASTA files.
BLOSUM62 was used as SSearch’s scoring matrix. Then each alignment was
splitted into ungapped alignments at the insertion and deletion locations. These
ungapped alignments are called high-scoring segment pairs (HSPs). The score of
each HSP is recalculated using BLOSUM62. There are 142790 HSPs with scores
greater than or equal to 50. We use the percentage of these HSPs that generate
hits as the sensitivity of the (hash) seed. The pa that is used to compute the Fp

in Eq. (2) is also calculated from these two FASTA files.
By using seeds of different weights, we can trade between sensitivity and

selectivity. Figure 2 show the performance of the hash seed h defined in Eq. (1)
for classification C1, C2, and C∗, respectively. Note that the hash seed for C∗ is
equivalent to the spaced seed.
2 Note that the hash function in Eq. (1) results into a string of amino acid classes

instead of an integer. This can be easily amended by assigning each distinct string
of amino acid classes with a unique integer. For this reason, we will not require a
hash function to have integer values throughout the paper.
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Fig. 2. The sensitivity-selectivity trade off for different hash seeds. Each data point
indicate a hash seed defined in Eq. (1) using a weight-w seed and an amino acid
classification C1, C2, or C∗. The x-axis is log10(selelctivity). The y-axis is the sensitivity
of the hash seed. The sensitivity is calculated using the HSPs with scores greater than
or equal to 50.

From the figure we can see that the hash seed with classification C2 have a
better sensitivity-selelctivity tradeoff than the spaced seed. Whereas the hash
seed with classification C1 has worse performance than spaced seed.

4 Discussion

We presented a hash seed strategy for better sensitivity-speed tradeoff in ho-
mology search. We demonstrated that for protein homology search, where the
alphabet letters are distributed very unevenly, it is possible to design a hash
seed that is better than the optimized spaced seed. Our contribution raised the
interesting question of how to design the best hash seed.

One possibility is to design hash seed by classifying k-mers. Any standard
classification algorithm can be used. For example, a straightforward algorithm
is to greedily group the highest-scoring k-mer pairs together. The authors are
currently examining this possibility.

The hash seed idea can possibly be combined with the vector seed idea to
further improve the sensitivity. But the exact outcome of this combination is
out of this paper’s scope and needs to be examined in future research.

Our designed hash seed takes advantage of the uneven distribution of the 20
different amino acids in protein sequences and alignments. Therefore, our design
does not straightforwardly apply to the situation when the alphabet letters are
uniformly distributed, a situation that resembles the DNA sequences. In fact,
the authors moderately believe that under uniform distribution, the optimized
spaced seed is the optimal hash seed.
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Recent advances in high-throughput sequencing (HTS) technologies have led to
orders of magnitude higher throughput compared to classic Sanger sequencing
(see [3] for a review). Coupled with continuously decreasing sequencing costs,
HTS data provides opportunities to study genome structure, function, and evo-
lution at an unprecedented scale, and is profoundly transforming biomedical
research.

One of the most exciting developments in this area is the advent of individ-
ual genome sequencing. Indeed, several individual genomes have already been
published [2,4,7,8], and there are ongoing efforts to sequence thousands more
[1]. Although technologies such as SNP arrays remain instrumental in genome-
wide association studies that have already led to the discovery of hundreds of
genes associated with common human diseases [5], sequencing provides a much
more complete picture of genetic variation. The ideal outcome of an individual
sequencing project is a diploid genome – i.e., full haplotype sequences for the in-
dividual’s maternal and paternal chromosomes – since only haplotype sequences
provide the detailed context required for accurate functional characterization
of genomic variants [6] and studying genome evolution. However, realizing this
ideal requires the development of novel computational methods capable of re-
constructing full haplotypes from HTS reads that are much shorter and include
a significantly larger percentage of errors compared to Sanger sequencing reads.

This talk will outline computationally efficient algorithms that allow accurate
multi-locus genotype and haplotype reconstruction by integrating HTS data with
linkage disequilibrium (LD) information extracted from a reference population
panel such as Hapmap and present preliminary results on publicly available
454, Illumina, and ABI SOLiD sequencing datasets. We will also discuss future
prospects and remaining challenges in medical sequencing.

This is joint work with S. Dinakar, J. Duitama, Y. Hernandez, J. Kennedy,
and Y. Wu.
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Abstract. This paper presents our computational and measurement
strategy for investigating gene networks from gene expression data using
state space model and dynamic Bayesian network model with nonpara-
metric regression. These methods are applied to gene expression data
based on gene knockdowns and drug responses for generating large global
maps of gene regulation which will light up the geography where drug
target pathways lie down.

1 Introduction

Mining molecular networks from gene expression data, protein-protein interac-
tion data and some other high-throughtput data is an important computational
challenge in Systems Biology. In the last decade, this challenge has received
tremendous attentions and very strong computational methods have been devel-
oped from various viewpoints such as methodology, quality of data, data types,
measurement devices, purpose of applications, computational resources, etc. The
amount of contributions on this topic exceeds the space limit of this paper to
survey them even shortly. The impact of this challenge on gene networks is being
penetrating into biology and its related fields, especially, pharmacogenomics.

We have developed a series of computational methods for inferring gene net-
works and developed a software tool for visualizing and analyzing the molecular
networks, e.g., Cell Illustrator Online (http://cionline.hgc.jp/). For the develop-
ment of computational methods, we used convenient “public data” which were
produced for some biological analyses and are independent of the computational
methodology. In parallel to public data, we have been involved with biological ex-
periment design and production of gene expression data whose purpose is to build
large gene networks from gene expression data based on gene knockdowns and
drug responses [1,4,8,15,16]. Actually, we first succeeded in developing human
gene networks of size more than 1000 from several hundreds gene knockdowns
and drug responses in time course [8].

The purpose of this paper is to show some cases from our work that biolog-
ical measurement experiments were designed in parallel to the development of
computational methods for gene networks so that the computational methods
and data will be harmonized. We present two modeling methods to view gene
networks from gene expression data. One is state space model that has been used
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in a wide variety of areas for modeling time-course data and dynamic systems
in sciences other than biology [10]. Due to the characteristics of biological mea-
surement experiments, there lie difficulties to overcome. The other is Bayesian
network with nonparametric regression [5,6]. Bayesian network for discrete ran-
dom variables was first applied for analyzing the gene network controling cell
cycles of S. cervisiae by Friedman et al. [3]. However, gene expression data are
continuous and relationships between gene expressions are sometimes nonlinear.
Thus we constructed a framework that combine Bayesian network and non-
parametric regression with B-splines and derived an information criterion called
BNRC for searching the best gene networks. Through these two models, gene
networks of HUVEC (human umbilical vein endothelial cell) and SAEC (normal
human small airway epithelial cell) were analyzed against drugs by using the
gene expression data produced for gene networks.

Our conclusive message on gene network inference is obviously simple that
biological measurement experiments should be designed and conducted in ac-
cordance with computational methodology.

2 State Space Model for Modeling Gene Networks

This section defines state space model (SSM) that is used for modeling dynamic
systems of gene regulation. We consider gene expressions of p genes in time-
course. Let N = {0, 1, 2, . . . , T } be the entire set of time points and let Nobs be
the set of time points where gene expressions are observed (measured). The level
of gene expression of a gene g is represented as a real number and is called gene
expression value. For example, when conventional DNA microarrays are used for
observation, the gene expression value of g may represent the amount of mRNA
expressions of g relative to some control. A time-course gene expression data of
p genes is given as a series of p-dimensional vectors yn ∈ Rp with n ∈ Nobs,
where R is the set of real numbers. The set of time points where observations
were not made is denoted by N c

obs. We call yn an observation variable.
When modeling time-course gene expression data with linear Gaussian state

space models, we assume a k-dimensional hidden state variable denoted by xn

for some appropriately chosen dimension k, and consider that the series of ob-
servation vectors YNobs = {yn} (n ∈ Nobs) is generated in the following way:

xn = Fxn−1 + vn for n ∈ N ,
yn = Hxn + wn for n ∈ Nobs,

where the first equation is called the system model, F ∈ Rk×k is the state
transition matrix, the second equation is called the observation model, H ∈
Rp×k is the observation matrix, vn ∼ Nk(0k, Q) and wn ∼ Np(0p, R) are the
system noise and the observation noise, respectively. The initial state vector x0
is assumed to be a Gaussian random vector with mean vector μ0 and covariance
matrix Σ0, i.e., x0 ∼ Nk(μ0, Σ0).

What we need to do is to estimate unknown parameters θ = {H, F, Q, R, μ0}
for the system and observation models. However, the estimation of parameters
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obviously would fail due to overfitting because the number of free parameters
gets larger exponentially as the number p of genes increases. Conventionally, the
length of time-course gene expression data is much shorter than the number of
genes, i.e. N = Nobs � p. Furthermore, the dimension k of state vector is also
unknown and thus need to be determined to the optimal one. In [4,17], these
difficulties were overcome to estimate gene networks underlying the observation
gene expession data, where vector autoregressive models fail to estimate with
the ordinary estimation procedure, e.g., the maximum likelihood estimation pro-
cedure. The parameters are not uniquely determined by the ordinal estimation
procedure, since there are infinitely many parameter values which can yield the
same likelihood. In order to avoid this, we need to reduce the degree of free-
dom of H , F and R. It is proven in [4] that if the following constraints are
imposed on the parameters then the systems become identifiable: (i) Q = I. (ii)
HT R−1H = Λ ≡ diag(λ1, · · · , λk) where λ1 > · · · > λk. (iii) An arbitrary sign
condition is imposed on the elements of the first row of H .

Then we utilize the EM algorithm with the constraints for the parameter
estimation. In the algorithm, the conventional Kalman smoothing estimator of
the state vectors obtained by Kalman filter and smoother algorithms are utilized.
If xn could represent the state of modules of genes, the estimated dimension k
becomes smaller than the number of genes p. In this sense, this method can be
seen as a dimension reduction. The SSM with the parameter θ is denoted by
SSM(θ). Thus the parameter estimation problem is solved for N � p.

The next difficulty is how to represent the interactions between genes. This
is solved as follows: By converting the estimated parameters and the model,
a parsimonious representation of the first order vector autoregressive model is
obtained as

R−1/2(yn − wn) = ΨR−1/2(yn−1 − wn−1) + R−1/2Hvn,

where the autoregressive coefficient matrix is given by Ψ ≡ DT ΛFD with
D = Λ−1HT R−1/2. Since Ψ represents magnitude of interactions between
genes, we can estimate a gene network with this equation. The technical details
are referred to [4,17],

3 Gene Networks Viewed throught State Space Model

This section shows two applications of SSM and their results in [4,16]. One is
for inferring gene networks of human umbilical vein endothelial cells (HUVEC)
undergoing growth factor deprivation-induced apoptosis. The other is an appli-
cation of SSM to predict differences in gene regulatory systems of normal human
small airway epithelial cells (SAEC) against an anti-cancer drug Gefitinib.

3.1 HUVEC Apoptosis Gene Network

Endothelial cell (EC) apoptosis (programmed suicide) may play an important
role in blood vessel development, homeostasis and remodeling. In support of
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this concept, EC apoptosis has been detected within remodeling vessels in vivo,
and inactivation of EC apoptosis regulators has caused dramatic vascular phe-
notypes. The protein-based signaling and cleavage cascades that regulate EC
apoptosis are well known. However, the possibility that programmed transcrip-
tome and glycome changes contribute to EC apoptosis has only recently been ex-
plored. In order to understand the complex cause and effect relationships among
these signals, we measured transcriptome of HUVECs with the time-course gene
expression data [1] which were created using CodeLink 20k arrays and applied
our SSM method to analyze this HUVEC apoptosis gene network.

mRNAs were prepared at 0.5, 1.5, 3, 6, 9, 12, 24h after the induction of apop-
tosis by growth factor deprivation. The experiments were repeated independently
three times (m = 3). Among approximately 20,000 genes, we focused on 1048
genes. These genes are comprised of 48 genes known to play important roles
in apoptosis and blood vessel development and 1000 genes giving the highest
coefficients of variation. The real time set {0.5h, 1.5h, 3h, 6h, 9h, 12h, 24h} is
converted into Nobs = {1, 3, 6, 12, 18, 24, 48} and the entire set of time points is
set to be N = {1, 2, . . . , 47, 48}.

For this data, the BIC curves became monotone decreasing with respect to
the dimension of state variable and we could not determine the dimension k.
Instead, we took a heuristic approach based on the singular value decomposition
of the projection matrix D (see [4] for the details) and reached a conclusion that
it is reasonable to set k = 4. This is also supported by the discussions in [1] that
suggested eight internal clusters of genes. Fig. 1 shows the estimated network
focused on the most representative 50 genes, where the interactions arround
TRAF1 indicate biologically rational facts.

3.2 Systems Differences in SAEC Gefitinib Responses

If the parameters θ and observation data YNobs are given, SSM(θ) can predict
the observation yn with the one-step-ahead prediction estimator

yn|n−1 = Hxn|n−1,

where xn|n−1 = E(xn|Y(n−1)) with Y(n−1) ⊆ YNobs which is the set of observations
obtained before the n-th time step. Namely the prediction estimator predicts fu-
ture observation with the previous observations in time course. The estimators are
calculated sequentially by utilizing Kalman filter algorithm. To identify differen-
tially regulated genes, we developed the following method to search genes which
have unpredictable profiles in the case data by using a model for underlying dy-
namic system of the control data (see [16] for the technical details):

1. SSM(θ) is applied to the time-course gene expression data of the control
Y CTRL
Nobs

= {yCTRL
n }, n ∈ Nobs and the parameters are estimated. As a

result, a model for dynamic system of the control data, SSM(θ̂CTRL), is
obtained.

2. SSM(θ̂CTRL) is applied to predict time-course gene expression data of the
case Y CASE

Nobs
= {yCASE

n }, n ∈ Nobs.
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Fig. 1. HUVEC apoptosis gene network arround TRAF1. Mi+ and Mi− tend to
exhibit the opposite expression patterns for i = 1, . . . , 4.

3. In order to identify differentially regulated genes, we search genes whose
expressions are not well predicted for the case data but well predicted for
the control data by using the control model SSM(θ̂CTRL).

We measured time-course gene expression data of SAECs by using Agilent Whole
Human Genome Oligo Microarray (G4112F) and used Gefitinib (GFT) as a drug
to see its responses. GFT is known as a selective inhibitor of epidermal growth
factor receptor’s (EGFR) signaling pathway. We prepared the following samples:

– SAEC treated with epidermal growth factor (EGF), which is used as control
and labeled with “EGF”.

– SAEC treated with both EGF and GFT, which is used as case and labeled
with “EGF-GFT”.

For each sample, after starvation to synchronize the cell cycle, we took 19 time
points during 48 hours at time 0, 0.5, 1, 2, 3, 4, 9, 12, 15, 18, 21, 24, 27, 30,
33, 36, 39, 43, 48 [hour]. Thus we set Nobs={1, 2, 3, 5, 9, 13, 19, 25, 31, 37, 43,
49, 55, 61, 67, 73, 79, 87, 97} and N = {1, . . . , 97}. GFT was dosed two hours
before the 0 hour to the case sample. EGF was dosed at the 0 hour to the both
samples. We denote the time-course gene expression data for “EGF” and “EFG-
GTF” by Y EGF

Nobs
and Y EGF-GFT

Nobs
, respectively. The parameters θ = {H, F, R, μ0}

were estimated for Y EGF
Nobs

and Y EGF-GFT
Nobs

. During the course of estimation, the
dimension of state vector was determined to k = 9 and we obtained the dynamic
models represented as SSMs for the control data (EGF) and the case data (EGF-
GFT): SSM(θ̂EGF) and SSM(θ̂EGF-GFT).
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(a) (b)

Fig. 2. The time-course profiles of genes: (a) g169, (b) g410. The observed data points
for EGF (EGF-GFT) are represented by × (◦). The predicted observations for EGF
(EGF-GFT) by SSM(θEGF) are represented by dashed (solid) lines.

Fig. 3. Resulting gene networks around a significantly differentially regulated gene g169

(see Fig. 2(a)) estimated from (a) EGF data, and (b) EGF-GFT data using SSMs. The
edges are with the weights |ψij | > 0.015.

With this prediction strategy, we utilized predictability and unpredictability for
gene expression profiles generated from a gene regulatory system by using a dy-
namic gene regulatory model for another system. We identified such unpredictable
genes as candidates for differentially regulated genes from the data sets of SAEC
treated with EGF and GFT. Gene g169 is a typical example which is significantly
differentially regulated while g410 is insignificantly differentially regulated (Fig. 2).
Fig. 3 shows gene regulatory networks around the identified gene g169.

4 Dynamic Bayesian Networks with Nonparametric
Regression

Bayesian network is a mathematical model for representing causal relationships
among random variables by using conditional probabilities. Bayesian network
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assumes a directed acyclic graph (DAG), denoted by G, as a relationship among
random variables, and mostly discrete random variables have been used for mod-
eling causal relationships [3].

4.1 General Framework

We first define a general framework of Bayesian network with nonparametric re-
gression for modeling gene networks form gene expression data based on purter-
bations such as gene knockdowns and drug doses, where a gene is regarded as
a random variable taking a continuous number and a causal relationship means
regulation [5,6]. In this general framework, gene expression data need not be in
time-course.

We consider p genes for gene networks. Then let Xi (i = 1, . . . , p) be a random
variable that takes a value from R. If there is a directed edge eij from Xi to Xj ,
we say that Xi is a parent of Xj . We denote by Pa(Xi) ⊂ {X1, . . . , Xp} the set
of parents of Xi in G. In the DAG G, the random variable Xi only depends on its
direct parents in Pa(Xi) and is independent of other variables, i.e., this offers
the first order Markov property to the relationship among variables described
by G. Using the DAG G and its Markov property, the joint probability of all
random variables can be decomposed as the product of conditional probabilities:

P (X1, . . . , Xp) =
p∏

j=1

P (Xj |Pa(Xj)). (1)

The conditional probabilities P (Xj |Pa(Xj)) describe the parent-child rela-
tionships. If we know the true structure of G a priori, from Eq. 1, we can con-
struct the joint probability function by estimating each conditional probability.
However, in the gene network estimation, the true G is not known and this
problem can be considered as a statistical model selection problem.

Suppose that we have a data set Xn = {x1, . . . , xn} of n values of p-
dimensional random variable vector X =(X1, . . . , Xp)t, where xi =(xi1, . . . , xip)t

corresponds to the vector of p gene expression values by the i-th observation, e.g.,
the i-th microarray measurement. Here at represents the transpose of a. Using
the data Xn, we can rewrite Eq. 1 using densities instead of the probabilistic
measure:

f(x1, . . . , xn|θ, G) =
n∏

i=1

p∏
j=1

fj(xij |pij , θj), (2)

where θ = (θt
1, . . . , θ

t
p)

t is the parameter vector and pij is the gene expression
value vector of the parents of Xj by the i-th observation. The construction of the
conditional probability fj(xij |pij , θj) is equivalent to the problem of the fitting
regression model to the data {(xij , pij) | i = 1, . . . , n} by xij = mj(pij) + εij ,
where mj(·) is a smooth function from R|Pa(Xj)| to R and εij (i = 1, . . . , n) are
independently and normally distributed with mean 0 and variance σ2

j . |Pa(Xj)|
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denotes the number of elements in Pa(Xj). If we set the function mj(·) by
mj(pij) = β0 + βtpij , where β0 and β = (β1, . . . , β|Pa(Xj)|)t are parameters, we
have a linear regression model to capture the relationship between xij and pij

in Friedman et al. [3]. To capture even nonlinear dependencies, Imoto et al. [5,6]
proposed the use of the nonparametric additive regression model of the following
form:

xij = mj,1(p
(j)
i,1 ) + · · · + mj,|Pa(Xj)|(p

(j)
i,|Pa(Xj)|) + εij (3)

where mj,k(·) (k = 1, . . . , |Pa(Xj)|) are smooth functions from R to R and
pij = (p(j)

i,1 , . . . , p
(j)
i,|Pa(Xj)|)

t. We construct mj,k(·) by the basis function expan-

sion method with B-splines: mj,k(p) =
∑Mjk

s=1 γ
(j)
sk b

(j)
sk (p), where γ

(j)
sk are param-

eters, {b(j)
1k (·), . . . , b(j)

Mjkk(·)} is the prescribed set of B-splines, and Mjk is the
number of B-splines.

By combining Eqs. 2 and 3, we have a Bayesian network model with B-spline
nonparametric regression of the form

f(Xn|θ, G) =
n∏

i=1

p∏
j=1

1
(2πσ2

j )1/2 exp

{
− (xij −

∑
k

∑
s γ

(j)
sk b

(j)
sk (p(j)

ik ))2

2σ2
j

}
. (4)

Once a graph structure G is given, the statistical model based on Eq. 4 can
by estimated by a suitable procedure. In order to find the best graph struc-
ture, we define a criterion for evaluating a graph based on our model from
Bayes approach, that is the maximization of the posterior probability of the
graph P (G|Xn). The posterior probability of a graph is written by P (G|Xn) =
p(Xn|G)P (G)/p(Xn) ∝ p(Xn|G)P (G), where P (G) is the prior probability of
the graph and p(Xn) is the normalizing constant and not related to the graph
selection. The likelihood p(Xn|G) is obtained by marginalizing the joint density
p(Xn, θ|G) against θ and given by

p(Xn|G) =
∫

f(Xn, θ|G)dθ =
∫

f(Xn, θ|G)p(θ|λ, G)dθ, (5)

where p(θ|λ, G) is the prior distribution on the parameter θ and λ is the hyper-
parameter vector. Under the Bayes approach, we can choose the optimal graph
such that p(Xn|G) is maximum. A crucial problem for constructing a crite-
rion based on the posterior probability of the graph is the computation of the
high-dimensional integration in Eq. 5. For log p(θ|λ, G) = O(n), the Laplace
approximation for integrals gives an analytical solution:∫

f(Xn|θ, G)p(θ|λ, G)dθ (6)

=
(2π/n)r/2

|Jλ(θ̂|Xn)|1/2
exp{nlλ(θ̂|Xn)}{1 + Op(n−1)},

where r is the dimension of θ, lλ(θ̂|Xn) = {log f(Xn|θ, G) + log p(θ|λ, G)}/n,
Jλ(θ|Xn) = −∂2lλ(θ|Xn)/∂θ∂θt, and θ̂ is the mode of lλ(θ|Xn). Hence, by
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taking minus twice logarithm of P (G|Xn) and substituting Eqs. 5 and 7 into
P (G|Xn), Imoto et al. [5] derived a criterion called BNRC (Bayesian network
and Nonparametric Regression Criterion) for choosing the optimal graph:

BNRC(G) = −2 logP (G) − r log(2π/n) + log |Jλ(θ̂|Xn)| − 2nlλ(θ̂|Xn). (7)

The optimal graph Ĝ is chosen so that the criterion Eq. 7 is minimal. Imoto et al.
[6] also extended the results in [5] to handle the nonparametric heteroscedastic
regression. In practice, the value of BNRC(G) defined in Eq. 7 can be computed
by the sum of the local scores, BNRC(G) =

∑p
j=1 BNRCj , where BNRCj is

defined by the approximation of

−2 logPj(G)
∫ n∏

i=1

fj(xij |pij , θj)pj(θj |λj)dθj

obtained by the Laplace approximation. Here, we assume p(θ|λ, G) =∏p
j=1 pj(θj |λj) and Pj(G) is called the prior probability for the j-th local struc-

ture defined by the j-th random variable and its direct parents. Note that
P (G) =

∏p
j=1 Pj(G) holds.

There is obviously a limit from a biological viewpoint on the gene network con-
struction only from gene expression data (mRNA expression). To overcome this
limit, Imoto et al. [7] also developed a general framework for combining gene ex-
pression data and other biological data such as protein-protein and protein-DNA
interactions, sequences of the binding site of the genes controlled by transcription
regulators, literature and so on.

Finding optimal Bayesian networks is computationally hard. It is known that
determining the optimal network is NP-hard [2]. However, for a small number
of genes such as 30, it is possible to search for optimal graph structures on a
computer with 200 GFLOPS. Ott et al. [11,12] devised an algorithm of time
complexity O(p2p) which runs in practice on such computers, where p is the
number of nodes. For searching large networks, we need to employ greedy hill-
climbing algorithms to learn graph structure such as in [3,5]. Recently, Perrier et
al. [13] devised an algorithm which finds optimal networks with the constraint
on the number of candidate parents in time O(p2M ), where M = maxp

j=1{mj |
mj is the number of candidate parents}. This allows us to compute optimal gene
networks of size 80 on a computer with 200 GFLOPS in practice.

4.2 Dynamic Bayesian Networks

A shortcoming of Bayesian network is that its network structure is acyclic, while
a real gene regulation mechanism has cyclic regulations. The use of the dynamic
Bayesian networks (DBN) is yet useful for constructing a gene network with
cyclic regulations although SSM has already resolved this difficulty. In the con-
text of modeling gene networks by dynamic Bayesian network, we consider a
time-course gene expression data, i.e., the t-th gene expression data xt corre-
sponds to the state of p genes at time t. xt is considered as an observation of the
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p-dimensional random vector Xt. As for the time dependency, we consider the
first order Markov relation described as X1 → X2 → · · ·Xn. Then the joint
probability is decomposed as follows:

P (X1, . . . , XT ) = P (X1)P (X2|X1) · · ·P (XT |XT−1). (8)

The gene regulations can be modeled through the construction of P (Xt|Xt−1)
for t = 2, . . . , T . In this definition of dynamic Bayesian network, it is assumed
that the structure of gene networks are stable through all time points. This
notion of DBN will be used in an extensive manner in Section 5 to capture
the dynamically changing networks structures in time-course. The conditional
probability can also be decomposed into the product of conditional probabilities
of each gene given its parents

P (Xt|Xt−1) =
p∏

j=1

P (Xtj|Pa(Xj)t−1), (9)

where Pa(Xj)t−1 is the set of random variables corresponding to the parent
genes of the j-th gene at time t − 1. By combining Eqs. 8 and 9, we have the
decomposition:

P (X1, . . . , XT ) = P (X1)
T∏

t=2

p∏
j=1

P (Xij |Pa(Xj)t−1). (10)

We can define the BNRC score named BNRCdynamic for dynamic Bayesian net-
work with nonparametric regression in a similar way. This extension of dynamic
Bayesian networks combined with nonparametric regression allows us to detect
nonlinear relationships while the modeling by SSM in Section 2 can capture only
linear features. This is an advantage of DBN with nonparametric regression. The
construction of a graph selection criterion based on the Bayes approach can be
done in the same way as the Bayesian networks in the previous section. The
details of the combination of the dynamic Bayesian networks with the nonpara-
metric regression are described in Kim et al. [9].

5 Gene Networks Viewed through Dynamic Bayesian
Network with Nonparametric Regression

This section shows an application of dynamic Bayesian network to analyze the
activities of autocrine pathways in HUVEC controling transcriptome network
against a drug called Fenofibrate [15].

5.1 Super Dynamic Bayesian Network

For a time-course gene expression data based on drug response, it is often ob-
served that some subnetwork at some time points shows its high activities and
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transmit signals to another subnetwork at some later time points. In order to
model such dynamics of drug response transcriptome networks, we extended the
dynamic Bayesian network with nonparameteric regression called super dynamic
Bayesian network (SDBN) so that it can capture this feature [15]. The idea of
SDBN is to define the active gene set for each time point and to define the
node set at each time point for network modeling. We call this method node-set
separation method. We say that a gene gi is active at time t if it is expressed
differentially comparing with the controls, namely, pv(gi, t) ≤ θt, where pv(gi, t)
is the p-value of gi at time t, and θt is the threshold for time t that could be
determined by using false discovery rate, for example. In our paper [15], the
p-value of gi at time t is computed by comparing triplet expression values of the
gene gi at time t with control four replicate expression values, i.e., expression
data of cells which are not treated with the drug. We denote by At the set of
active genes at time t. Then we define the node set for time t by Nt = At−1 ∪At

for t = 1, ..., T , where A0 is the empty set.
The definition of the node set has the basis on the Markov process of the

dynamic Bayesian networks, i.e., the DBN assumes the first order Markov process
among time-course data as Eq. 8. The transcriptome network at time t, denoted
by Gt, is estimated for the node set Nt by the DBN and nonparametric regression
with whole expression data at time points t = 1, . . . , T . Finally the dynamic
transcriptome network is obtained by G = G1 ∪ · · · ∪ GT . The advantage of
this estimation procedure, i.e., using node set Nt separately instead of using
all nodes N = A1 ∪ · · · ∪ AT as the node set, is not only finding dynamics of
transcriptome networks, but also possibility to reduce false positive edges in the
network, because we can reduce the size of the gene set for each observed time
efficiently and this will increase the accuracy of the structure learning.

5.2 Dynamic Transcriptome Network

This method was applied to search autocrine pathways from time-course drug
response gene expression data and protein-protein interaction (PPI) data [15].
Fenofibrate is an anti-hyperlipidemia drug and it is an agonist of the peroxi-
some proliferator-activated receptor α (PPARα), which is known as a transcrip-
tion factor that induces genes related to the lipid metabolism. Recent studies
revealed that Fenofibrate has anti-inflammatory effects [14]. We aimed at iden-
tifying Fenofibrate-affected autocrine pathways related to its anti-inflammatory
effects, and at elucidation of unknown modes-of-action.

We used CodeLink Human UniSet I 20K arrays for measuring drug-response
time course and 400 siRNA gene knockdown expression data of HUVEC. For the
time-course data, we observed 6 time points including the control, 2, 4, 6, 8 and
18 hours after treated with 25 μM Fenofibrate in 3 or 4 replicates. We excluded
probes which have less than 90% G flags for all 400 arrays from the knockdown
expression data. Missing values which do not have G flags were imputed by
LSimput (http://www.ii.uib.no/̃ trondb/imputation/). For PPI data, we used
the data set publicly available in Genome Network Platform (GNP) (released
on May 27 2008: http://genomenetwork.nig.ac.jp/). By removing proteins which



Gene Networks Viewed through Two Models 65

Fig. 4. Extracted autocrine ligand pathways for G3 (left), G4 (center), and G5 (right).
The top two nodes VEGF and PDGFA are ligand genes in the network. Nodes and
edges in the bottom are the transcriptome network. The middle part contains the
proteins and the extracted significant PPI pathways. The large version of this fig-
ure and complete data are available on the online supplement (http://bonsai.ims.u-
tokyo.ac.jp/̃ tamada/suppl/PSB2009/). Transcriptome network edges are also included
in the middle part since the two ligands are also involved in the transcriptome networks.

do not have the corresponding probes in the microarray, the final PPI network
contains 42,570 edges for 9,016 proteins. This PPI network contains 308 receptor
and 149 ligand (in total 457) proteins.

We selected genes whose SAM q value ≤ 5% and fold change ≥ 1.5 at time t for
At where t = 1, . . . , 5 corresponding to 2hr, 4hr, 6hr, 8hr and 18hr, respectively.
See http://www-stat.stanford.edu/~tibs/SAM/ for SAM. If a gene has more
than one probe in the microarrays, we selected the one that has the smallest
average of SAM p values for all the time points. This is required for the steps to
match each probe in the microarrays to a protein in the PPI network. Finally,
the numbers of genes in At are 14, 5, 144, 129 and 370, respectively. The numbers
of genes in Nt are 14, 19, 144, 200, and 454, respectively. The total number of
unique genes in the network is 527.

The transcriptome networks Gt (t = 1, . . . , 5) were estimated with the prior
networks which were estimated from knockdown gene expression data to incor-
porate transcriptome level changes which can be observed by knockdown genes
by siRNAs [1]. The reliability of the edges in the estimated networks is calculated
by the bootstrap method [8] with 1 000 iterations. Edges whose bootstrap prob-
ability is less than threshold 0.05 were removed from the final transcriptome net-
works. Fig. 4 shows dynamic changes of the networks from which we extracted 23
autocrine-like pathways including VEGF−NRP1−GIPC1−PRKCA−PPARα,
that is one of the most significant ones and contains PPARα, a target of Fenofi-
brate. The details of the computational method are referred to [15].
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Abstract. We study the question of detecting Conserved Protein Inter-
action Modules (CPIMs) in protein-protein interaction (PPI) networks.
We propose a novel algorithm called GraphHopper that analyzes two PPI
networks to find CPIMs. GraphHopper finds CPIMs by “hopping” from
one network to another using orthology relationships. By decoupling the
degree of evolutionary conservation in a CPIM from the reliability of
the PPIs in a CPIM, GraphHopper finds CPIMs with a wide variety of
topologies that previous algorithms cannot detect.

GraphHopper is competitive with NetworkBlast and Match-and-Split,
two state-of-the-art algorithms for computing CPIMs, on the task of re-
capitulating MIPS processes and complexes. Upon applying GraphHop-
per to human, fly, and yeast PPI networks, we find a number of CPIMs
involved in fundamental processes of the cell that are conserved in all
three species. We present the first global map of human-fly CPIMs. This
map sheds light on the conservation of protein interaction modules in
multi-cellular organisms. CPIMs related to development and the nervous
system emerge only in the human-fly comparison. For example, a set of
10 interconnected CPIMs suggest that fly proteins involved in eye devel-
opment may have human orthologs that have evolved functions related
to blood clotting, vascular development, and structural support.

1 Introduction

Protein-Protein Interaction (PPI) networks containing thousands of interactions
are now available for a number of species, including human, yeast, worm, and
fly. Pairwise comparison of these networks enables the computation of groups of
interacting proteins that are conserved in different organisms [1], thus laying the
basis for module-level modeling of cellular processes. Such conserved sets consist
of two connected protein interaction sub-networks (or modules), one in each PPI
network, such that proteins in each module have orthologs in the other module.
In this paper, we call these Conserved Protein Interaction Modules (CPIMs).
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Sharan and Ideker [1] survey many techniques developed to address this prob-
lem. A common feature of a number of these approaches [2,3,4] is the combi-
nation of the PPI networks of two species into a single “alignment graph”. A
node in the alignment graph represents two orthologous proteins, one from each
PPI network. An edge in the alignment graph represents an interaction that is
conserved in both PPI networks. These methods add an edge to the alignment
graph only if the proteins contributing to the nodes are connected through at
most one intermediate protein in the respective PPI networks. The weight of an
edge represents the likelihood that the corresponding interactions are conserved;
this weight depends on the degree of orthology between the proteins and on
assessed confidence estimates that the individual PPIs indeed take place in the
cell. These authors find CPIMs by using various approaches to compute paths,
complexes, and subgraphs of high weight in the alignment network and then
expanding each such subgraph into the constituent PPIs.

Our approach. In this paper, we present a novel algorithm called GraphHopper
for computing CPIMs in two PPI networks. GraphHopper computes two scores
of quality for each CPIM. (i) The conservation score measures the total amount
of sequence similarity among the proteins in the CPIM, averaged over the num-
ber of proteins in the CPIM. (ii) The unreliability score measures our total
confidence in all the PPIs in the CPIM; this measure is useful since it is well
documented that a number of high-throughput assays for detecting PPIs have
high error rates [5]. A “good” CPIM has high conservation score and low unreli-
ability score. Unlike the techniques mentioned earlier, GraphHopper treats the
two PPI networks separately and connects each node in one PPI network to its
potential orthologs in the other PPI network. GraphHopper starts by construct-
ing a number of basis CPIMs, each of which is a pair of orthologous protein-pairs
that directly interact. GraphHopper then expands each basis CPIM into a CPIM
by “hopping” from one PPI network to another. In each hop, GraphHopper adds
proteins and interactions to the current CPIM while ensuring that (i) the conser-
vation score does not decrease and (ii) the unreliability score increases as little
as possible. GraphHopper stops when it cannot add any more proteins without
decreasing the conservation score.

Like GraphHopper, Narayanan and Karp’s Match-and-Split algorithm [6] does
not construct an alignment network. They use combinatorial criteria to de-
cide when the local neighborhoods of a pair of orthologs match. Under their
model, they prove that a given pair of proteins can belong to at most one
CPIM. This observation leads to a top-down partitioning algorithm that finds all
maximal CPIMs in polynomial time. The MULE algorithm developed by Koyu-
turk et al. [7] also keeps PPI networks separate; it uses ortholog contraction and
frequent subgraph detection to identify CPIMs.

Our contributions. We used GraphHopper to analyze all pairwise combina-
tions of human, fly, and yeast PPI networks. Other approaches have considered
the conservation of human PPIs and CPIMs in the networks of other eukary-
otes [3,7,8]. The primary contribution of our work is a significant expansion of
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these results by (i) considering a dataset of human PPIs integrated from multiple
sources, (ii) detecting large functionally-enriched CPIMs with diverse topologies,
and (iii) computing an integrated high-level map of CPIMs conserved only in hu-
man and fly PPI networks. As far as we know, this paper is the first to construct
such a high-level map of human-fly CPIMs. Modules found by Gandhi et al. [8]
were restricted to fundamental processes of life such as DNA replication and
repair and transcription. In contrast, we find many CPIMs with that are en-
riched in functions unique to multi-cellular organisms. For instance, we find a
set of 10 interconnected CPIMs which suggest that fly proteins involved in eye
development may have human orthologs that have evolved functions related to
blood clotting, vascular development, and structural support.

We compared GraphHopper to NetworkBlast [9], a state-of-the-art algorithm
based on alignment networks, and to Match-and-Split [6]. We measured the
ability of these three algorithms to recover MIPS complexes and processes [10].
In general, GraphHopper is competitive with and sometimes outperforms Match-
and-Split in spite of computing a much larger number of CPIMs. GraphHopper
has better precision and recall than NetworkBlast for MIPS processes.

An important feature of GraphHopper is its ability to compute CPIMs of
far more diverse topologies than algorithms based on alignment networks. Algo-
rithms that operate on alignment networks compute (highly weighted) subgraphs
and map them into modules in each PPI network being compared. Since each
such module is likely to have a topology very similar to the subgraph in the
alignment network, the modules themselves have very similar topologies. In con-
trast, GraphHopper keeps the two PPI networks separate, thereby decoupling
the evolutionary conservation of the proteins in a CPIM from the reliability of
the PPIs that connect the proteins. As a result, GraphHopper is able to adapt
to differing patterns of interactions in the two PPI networks, e.g., matching a
module with one topology (say, a star) in one PPI network to a module with
a considerably different topology (say, a complex) in the other PPI network.
GraphHopper outperforms not just NetworkBlast but also Match-and-Split in
this comparison. Match-and-Split only outputs CPIMs with at most 50 proteins;
this restriction may hamper its ability to find CPIMs with diverse topologies.

2 Algorithms

2.1 A Model for CPIMs

We represent the set of PPIs in an organism as an undirected graph G(V, E),
where V is the set of proteins in the organism and each edge (a, b) ∈ E is an
interaction between proteins a and b. We associate a weight le with each edge
e ∈ E. Let G1(V1, E1) and G2(V2, E2) be the PPI networks of two different
organisms. We represent orthologous proteins as a bipartite graph H in which
each edge (a, b) ∈ V1 × V2 represents a pair of orthologous proteins a and b.
Each edge e ∈ H has a weight we equal to the BLASTP E -value between the
connected proteins. We define a Conserved Protein Interaction Module (CPIM)
as a triple (T1, T2, O) where T1 and T2 are connected subgraphs of G1 and G2,
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respectively, and O ⊆ H such that (a, b) ∈ O if and only if a is a node in T1 and
b is a node in T2. Thus, O is the subgraph of H induced by the nodes in T1 and
T2. We define two quantities to measure the quality of a CPIM.

Conservation score. The conservation score of a CPIM (T1, T2, O) measures the
amount of evolutionary similarity (at the amino acid level) between the protein
interaction networks T1 and T2. Let P1 (respectively, P2) be the set of nodes in
T1 (respectively, T2). We define the conservation score of a CPIM (T1, T2, O) as

φ(T1, T2, O) =
∑

e∈O − log(we)
|P1| + |P2| .

The larger this score, the more evolutionary conserved T1 and T2 are since fewer
proteins without orthologs can belong to the CPIM.

Unreliability score. Since many experimental techniques used to detect PPIs are
error-prone, a number of methods have been developed to assess PPI reliabili-
ties [5]. We do not consider methods that use gene expression data, since our
goal is detect conservation purely at the level of PPIs. We also discard techniques
that use functional annotations, since we use this data to assess the biological
information in a CPIM. Therefore, we compute edge weights using the method
proposed by Goldberg and Roth [11]: if the two nodes incident on an edge have
more common neighbors than would be expected by chance, they assigned a high
confidence (low p-value) to that edge. For a PPI e, we compute this p-value pe

using Fischer’s exact test and set le = − log(1−pe). We use Bonferroni’s correc-
tion to adjust for multiple hypotheses testing. We define the unreliability score
q(T1, T2, O) of a CPIM as follows:

q(T1, T2, O) =
∑

e∈T1∪T2

le.

Since pe is a probability, we combine the weights of multiple PPIs by adding
their logarithms (the le values). A CPIM with high confidence edges has a small
unreliability score.

2.2 The GraphHopper Algorithm

The GraphHopper algorithm finds CPIMs with high conservation and low unre-
liability scores. Our inputs are two protein interaction networks G1 = (V1, E1)
and G2 = (V2, E2) and a set of orthologous protein pairs H . We define the light-
ness of a path π of PPIs in G1 or G2 to be |π| =

∑
e∈π le; thus, light paths

contain high-confidence edges.

Computing basis CPIMs. We start by constructing a basis set of CPIMs in
which each CPIM (T1, T2, O) has the following properties: (i) O contains two
edges (a, a′) ∈ H and (b, b′) ∈ H ; (ii) a and b are adjacent in G1 (i.e., T1 is the
edge (a, b)); and (iii) a′ and b′ are adjacent in G1.

Expanding a basis CPIM. GraphHopper processes each CPIM in the ba-
sis set using the following iterative algorithm. Figure 1 displays these steps.
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(a) (b) (c)

Fig. 1. An illustration of how GraphHopper expands a CPIM in iteration k. (a) A
CPIM at the end of iteration k − 1. (b) In iteration k, GraphHopper keeps the blue
network in the CPIM fixed and expands the red network. Arrows mark the two nodes
in the set P computed in Step (i). The node v′ found in Step (iii) is the lower of
these two nodes. In Steps (iv) and (v), GraphHopper adds the thick magenta PPIs and
orthology edges to the CPIM. (c) The CPIM at the end of iteration k.

Let (T 1
1 , T 1

2 , O1) be a basis CPIM. In iteration k > 1 (Figure 1 (a)), we con-
struct a CPIM (T k

1 , T k
2 , Ok) such that (T k−1

1 , T k−1
2 , Ok−1) is a subgraph of

(T k
1 , T k

2 , Ok) and φ(T k
1 , T k

2 , Ok) > φ(T k−1
1 , T k−1

2 , Ok−1). We also attempt to keep
q(T k

1 , T k
2 , Ok) − q(T k−1

1 , T k−1
2 , Ok−1) as small as possible. We keep either T k−1

1
or T k−1

2 fixed and “expand” the other graph. Without loss of generality, we as-
sume that T k

1 = T k−1
1 and T k−1

2 is a subgraph of T k
2 in the following discussion.

We construct (T k
1 , T k

2 , Ok) using the following steps:

(i) We identify a set P ⊆ V2 of nodes such that each node v ∈ P is not a node
in T k−1

2 and is connected by an edge in H to at least one node in T k
1 .

(ii) For each node v ∈ P , we use Dijkstra’s algorithm to compute the lightest
path πv in G2 that connects v to T k−1

2 , i.e., for each node u ∈ T k−1
2 , we

compute the lightest path between u and v in G2, and set πv to be the
lightest of these paths.

(iii) We find the node v′ in P such that πv′ is the lightest among all paths
computed in the previous step.

(iv) We set T k
2 to be the union of T k−1

2 and πv′ (Figure 1 (b)).
(v) We set Ok to be the union of Ok−1 and the set of edges in H incident on

v′ and a node in T k
1 (Figure 1 (b)).

(vi) We compute φ(T k
1 , T k

2 , Ok). If φ(T k
1 , T k

2 , Ok) > φ(T k−1
1 , T k−1

2 , Ok−1), we go
to Step (i) and expand (T k

1 , T k
2 , Ok) while keeping T k

2 fixed (Figure 1 (c)).
Otherwise, we proceed to the next basis CPIM.

We provide the rationale for these steps. To expand the CPIM (T k−1
1 , T k−1

2 , Ok−1)
after setting T k

1 = T k−1
1 , we first identify the set P of nodes in G2 that do not

belong to T k−1
2 but are orthologs of nodes in T k

1 (Step (i)). Each node in P is
a candidate that we can add to T k−1

2 in order to construct T k
2 . However, such

a node v ∈ P may not be adjacent to any node in T k−1
2 , as displayed in Figure

1 (b). Since our goal is to keep q(T k
1 , T k

2 , Ok)− q(T k−1
1 , T k−1

2 , Ok−1) as small as
possible, we would like to connect v to T k−1

2 using the edges with the highest
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possible confidence in G2. A natural candidate for this set of edges is the light-
est path πv connecting v to T k−1

2 , where this minimum is taken over the set
of lightest paths connecting v to each node in T k−1

2 . Therefore, for each node
v in P , we compute the lightest path πv by which we can connect v to T k−1

2
using only edges in G2 (Step (ii)). In Steps (iii) and (iv), we add that path π′

v

to T k−1
2 that is lightest among all the paths computed i.e., v′ = argminv∈P |πv|.

After computing T k
2 , we set Ok to be the subgraph of H induced by the nodes

in T k
1 and T k

2 by adding the edges in H that are incident on v′ and any node in
T k

1 (Step (v)); by construction, no node in π′
v other than v′ is connected by an

edge in H to a node in T k
1 . This step completes the construction of (T k

1 , T k
2 , Ok).

Finally, in Step (vi), we continue expanding (T k
1 , T k

2 , Ok) if its conservation score
is greater than φ(T k−1

1 , T k−1
2 , Ok−1). Otherwise, we stop the iteration and move

on to the next basis CPIM. By induction, the graphs T k
1 , T k

2 and T k
1 ∪ T k

2 ∪ Ok

are connected. Note that q(T k
1 , T k

2 , Ok) implicitly plays a role in the expansion:
since both the unreliability score of a CPIM and the lightness of a path are
defined as the sum of the le values of the edges that appear in the CPIM or
the path, by choosing to add the lightest path πv′ to T k

2 , we are attempting to
minimize q(T k

1 , T k
2 , Ok) − q(T k−1

1 , T k−1
2 , Ok−1).

Merging CPIMs. Following Sharan et al. [9], we compute the statistical sig-
nificance of a CPIM by comparing its conservation score to the distribution of
conservation scores of CPIMs found by GraphHopper in random PPI and orthol-
ogy networks with the same degree distributions as G1, G2, and H . We retain
CPIMs with p-value at most 0.05. The remaining CPIMs may have considerable
overlap. We merge CPIMs by modifying the procedure used by Sharan et al. [9].
For each CPIM C, we compute all the biological functions it is enriched in using
Fischer’s exact test and note the function fC that is most enriched (has smallest
p-value) in C. Let F be the set of all such most-enriched functions. For each
function l ∈ F , we compute a CPIM Cl as the union of all CPIMs C for which
l = fC , i.e., Cl =

⋃
l=fC

C. We report results for these CPIMs. Note that this
method (i) does not require us to provide a cutoff on the overlap of two CPIMs
that should be merged, (ii) allows merged CPIMs to share both proteins and
interactions, and (iii) may yield disconnected CPIMs.

Remarks. There is considerable scope for variation in our algorithm. For in-
stance, we can define the conservation and unreliability scores differently, com-
bine the two scores, use simulated annealing-like techniques to optimize these
scores, or focus on optimizing the unreliability score instead of the conservation
score. We have experimented with a number of such choices (data not shown)
and found that the algorithm presented consistently achieves good results.

3 Results

3.1 Comparison to NetworkBlast and Match-and-Split

We compared GraphHopper to NetworkBlast [9], a state-of-the-art method for
computing CPIMs from alignment networks, and to Match-and-Split [6], which
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Fig. 2. Comparisons of GraphHopper, Match-and-Split, and NetworkBLAST

that like GraphHopper finds CPIMS by keeping the two PPI networks sepa-
rate. Both papers used the same fly and yeast datasets. We downloaded these
datasets and the results obtained by these algorithms from the supplementary
websites accompanying the respective papers. We ran GraphHopper on exactly
the same fly and yeast datasets. We used the procedure suggested by Narayanan
and Karp [6] to compare the algorithms. We computed fly-yeast CPIMs and
considered only the yeast sub-network in each CPIM. We considered two sets
of gold standard modules defined by MIPS process annotations and by MIPS
complex annotations for yeast genes [10]. We defined one set S of proteins as
being covered by another set S′ if |S ∩ S′|/|S| ≥ t, for a threshold 0 ≤ t ≤ 1.1

For a given value of t, we measured the precision of an algorithm as the fraction
of computed CPIMs covered by at least one gold standard module and the recall
of the algorithm as the fraction of gold standard modules covered by at least one
computed CPIM. For each algorithm, we plotted precision and recall at different
values of t. Precision and recall are both equal to 1 for t = 0. Both measures
decrease monotonically with increasing t.

Figure 2 displays these results. For MIPS complexes, all three algorithms
have comparable precision across almost the entire range of the coverage thresh-
old. However, GraphHopper and NetworkBLAST have better recall than Match-
and-Split. Match-and-Split achieves the best precision for MIPS processes. For
this gold standard, GraphHopper has better precision and recall than Network-
BLAST. We obtain results similar to Figure 2(b) for KEGG processes (data
not shown). These results are based on 766 GraphHopper CPIMs, 835 Network-
BLAST modules, and 27 Match-and-Split modules. Thus, Match-and-Split com-
putes many fewer modules than the other two algorithms. On average, Match-
and-Split modules are much smaller than those computed by GraphHopper and
NetworkBLAST. Thus, GraphHopper is competitive with and sometimes out-
performs Match-and-Split in spite of computing a much larger number of CPIMs.

Comparison of topological diversity. To underscore the diversity of the topolo-
gies of the CPIMs computed by GraphHopper, we performed another comparison
1 Narayanan and Karp only considered t = 0.5.
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of the three algorithms. We partitioned each computed CPIM into its two species-
specific components and computed the ratio of the number of proteins in the
larger component and the numbers of proteins in the smaller component. We
observed that both Match-and-Split and NetworkBLAST computed CPIMs for
which these ratios were between one and two. In contrast, GraphHopper com-
puted a number of CPIMs with ratio at least 2.5. An example is a CPIM con-
taining 4 yeast and 11 fly proteins that is enriched in the cellular component
“myosin” (7.8× 10−7)2. Myosin is a protein complex that functions as a molec-
ular motor, using the energy of ATP hydrolysis to move actin filaments or cargo
on actin filaments. This CPIM may suggest how interactions between myosin
proteins have evolved from single-celled to multi-cellular organisms.

3.2 Datasets

In the rest of this section, we present results obtained by GraphHopper on
human, fly, and baker’s yeast protein interaction networks. We obtained 31610
interactions between 7393 human proteins from the IDSERVE database [12].
We removed interactions in the IDSERVE data that were obtained by transfer
from lower eukaryotes based on sequence similarity. We also included 3270 hu-
man interactions derived using large scale yeast two-hybrid experiments from
Stelzl et al. [13], and 6726 human PPIs from Rual et al. [14]. Overall, this hu-
man PPI network contained 7787 proteins and 30703 interactions and represents
interactions from a diverse variety of sources. From the Database of Interact-
ing Proteins [15], we collected 22004 interactions between 7350 fly proteins and
15317 interactions between 5019 yeast proteins. To find orthologous pairs of
proteins, we ran BLASTP on a database containing all human, fly, and yeast
protein sequences and retained only bidirectional hits with E -values less than
10−7. We gathered functional annotations from the Gene Ontology (GO).

3.3 A Global Map of Human-Fly CPIMs

We find 265 human-fly CPIMs enriched in 969 functions, 149 human-yeast
CPIMs enriched in 784 functions, and 34 fly-yeast CPIMs enriched in 273 func-
tions. 161 functions enriched in all three comparisons span a diverse range
of cellular activities including biological process such as cytokinesis, protein
metabolism, and reproduction; molecular functions including microfilament mo-
tor activity, GTPase activity, and cyclin-dependent protein kinase activity; and
cellular components such as the microtubule and the endoplasmic reticulum.

We find 163 functions enriched exclusively in human-fly CPIMs. Many of these
functions are unique to multi-cellular organisms, for example, cell-matrix adhe-
sion (2×10−13), tissue development (3×10−6), cell differentiation (1.2×10−13),
and ectoderm development (1.6×10−10). Several CPIMs are enriched in functions
related to sexual reproduction, such as embryonic development (4.2 × 10−11),
germ-line stem cell division (6.7 × 10−9) and ovarian follicle cell development

2 Numbers in parentheses are Bonferroni-corrected p-values of functional enrichment.
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Fig. 3. A network of functions enriched in human-fly CPIMs. To construct this image,
we associate each human-fly CPIM with the GO function most enriched in that CPIM,
restricting our attention to functions with p-value of 10−4 or better. We ignore a CPIM
c if there is another CPIM c′ such that the GO function associated with c is an ancestor
of the GO function associated with c′. We construct a network where each node is a
CPIM and an edge connects two nodes if their CPIMs overlap. The thickness of an edge
in Figure 3 represents the degree of overlap in terms of fraction of shared proteins (the
ratio of the size of the intersection to the size of the union). We discard CPIMs that had
at most 5% similarity to every other CPIM. We visualize the resulting network using
the Graphviz package [16]. Blue rectangles are GO biological processes, red octagons
are GO molecular functions, and green ellipses are GO cellular components.

(9.03 × 10−8). A number of CPIMs are related to the development of the ner-
vous system, for example, axon guidance (0.03), dopamine receptor activity
(5.6 × 10−17), and voltage-gated potassium channel complex (8.6 × 10−6).

Figures 3 and 4(a) display connected components of a global network of func-
tions enriched only in human-fly CPIMs and connections between these CPIMs.
The largest component of the network in Figure 3 spans a diverse set of processes
and functions, of which many are unique to multi-cellular organisms. The con-
nected component of the human-fly CPIM network in Figure 4(a) connects five
GO biological processes (negative regulation of fusion cell fate specification, Notch
signaling pathway, ommatidial rotation, R3/R4 cell differentiation, and regulation
of R8 spacing) to three GO molecular functions (calcium ion binding, extracellular
matrix structural constituent, and transmembrane receptor protein phosphatase
activity). Three of these CPIMs describe processes involved in eye development
in fly (ommatidial rotation, R3/R4 cell differentiation, and regulation of R8 spac-
ing). These CPIMs are connected by a module enriched in “transmembrane re-
ceptor protein phosphatase activity.” Tyrosine protein phosphatases such as Dlar
play a critical role in controlling motor neuron guidance and targeting R cells cor-
rectly to different layers of the fly compound eye [17]. Other CPIMs are enriched
in the molecular functions “calcium ion binding,” and “extracellular matrix struc-
tural constituent,” which reflect the roles played by the human proteins in these
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Fig. 4. (a) A connected component of the global map of functions enriched in human-fly
CPIMs. (b) A human-fly CPIM conserved in the cellular component integrin complex.
Fly proteins and PPIs are colored in light red, human proteins and PPIs in light green,
and orthologous pairs are connected by dashed edges.

CPIMs. Many of these proteins contain calcium-binding domains and are localized
to the extracellular matrix: fibrinogen beta chain (FGB) is cleaved by thrombin to
form fibrin, which is an important component of blood clots; fubulin 1 (FBLN1)
mediates platelet adhesion by binding fibrinogen; fibulin 5 (FBN5) is expressed in
developing arteries; fibronectin 1 (FN1) is involved in cell adhesion and migration;
aggrecan (ACAN) is an important part of cartilage; and fibrillin 1 (FBN) and fib-
rillin 2 (FBN2) are structural components of calcium-binding microfibrils, which
provide structural support in elastic and nonelastic connective tissue throughout
the body. These CPIMs suggest that fly proteins involved in eye development have
human orthologs that have evolved functions related to blood clotting, vascular
development, and structural support.

Figure 4(b) displays a CPIM enriched in the cellular component integrin com-
plex (6.3×10−62). The fly sub-network in this CPIM contains only six proteins of
which three proteins (mew, if and mys) are members of the fly integrin complex,
while the human sub-network contains 32 proteins of which 22 are members of
the integrin complex. As the integrin complex is involved in cell-matrix adhe-
sion, we would not expect the integrin complex to be present in yeast; indeed no
yeast genes are annotated with this component. The fly PPI network contains
very few interactions between integrins, which are membrane proteins. The fly
PPI network was generated using a large-scale yeast two-hybrid assay [18] and
it is well-known that this assay fails to detect interactions involving membrane
proteins. On the other hand, the interactions between the proteins in the integrin
complex in the human PPI network are manually curated from the literature and
included in the HPRD database [19], which in turn is included in the IDSERVE
dataset [12] used in this paper.
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4 Discussion

Earlier methods [2,4,9] for computing CPIMs have succeeded in detecting com-
plexes and pathways conserved between two or more species. For instance, these
models assume a pathway-like [2] or a complex-like [4] interaction structure
between all the proteins in a module. Methods that integrate multiple PPI net-
works into a single alignment graph [2,3,4] are likely to compute CPIMs where
the constituent protein interaction modules have similar topologies. The Graem-
lin algorithm allows the user to specify the topology of the protein interaction
modules to be aligned; however, both modules in a CPIM must have similar
topologies. An advantage that some previous methods have over GraphHopper
is that they can simultaneously align more than two PPI networks [20,7,9].

CPIMs found by GraphHopper have a wider range of topologies than those
computed by other methods. For example, the CPIM in Figure 4(b) maps the
integrin complex in fly (6 proteins, 5 interactions) to a much larger and more
dense human integrin network (32 proteins, 85 interactions). Such CPIMs are
useful for capturing the increased diversity and complexity of a module of pro-
teins in a higher eukaryote. This CPIM also demonstrates GraphHopper’s ability
to align a clique-like module with a module like a star graph.

We conclude by noting that CPIMs have been used to transfer protein func-
tional annotations from one organism to another [6,9]. Most predicted functions
correspond to fundamental processes of life. Our results, e.g., the suggested evo-
lution of eye development proteins in fly to human proteins involved in blood
clotting and vascular development, indicate the transfer of function for processes
unique to multi-cellular organisms requires new techniques.
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Abstract. This paper focuses on the 2-Interval pattern matching problem for {<, 
⊂}-structured pattern and applies it on scanning for the ncRNAs without pseu-
doknots. Vialette [6] gave an O(mn3 log n) time solution to the problem, where 
m, n are the number of intervals in the pattern and the given 2-interval set. This 
solution however is not practical for scanning the secondary structure in a ge-
nome-wide or chromosome-wide scale. In this paper, we propose an efficient 
algorithm to solve the problem in O(mn log n) time. In order to capture more 
characteristics of the secondary structures of ncRNA families, we define a new 
problem by considering the distance constraints between the intervals and we 
can still solve it without increasing the time complexity. Experiment showed 
that the method to the new defined problem can result in much fewer false posi-
tives. Moreover, if we assume the only possible base pairs are {(A,U), (C,G), 
(U,G)} which are the case for RNA molecule, we can further improve the time 
complexity to O(m q), where q is the length of the input RNA sequences. From 
the experiment, our new method requires a reasonable time (2.5 min) to scan the 
whole chromosome for an ncRNA family. 

1   Introduction 

RNA can be regarded as a sequence of {A, C, G, U} characters (called bases). Bases 
may bind together to form pairs. The base pairs of an RNA molecule define its secon-
dary structure (see Figure 1(a) for an example). The functionality of an RNA mole-
cule is closely related to its secondary structure. Certain substructures (e.g. a hairpin 
loop) in a secondary structure may be critical for the molecule to carry out its biologi-
cal function. So, matching structural patterns in a secondary structure is an important 
subject in RNA study. For example, an important application is to check if a given 
RNA sequence contains a substring which belongs to an ncRNA (non-coding RNA) 
family [1,2]. We refer this problem as the ncRNA scanning problem (see [3-5]). 
Members in the same ncRNA family are believed to be conserved in the secondary 
structures, so to solve the ncRNA scanning problem, one can compare the secondary 
structure of the substrings in the RNA sequence with the consensus secondary struc-
ture of the members in the ncRNA family.  
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In a typical secondary structure of an RNA molecular, consecutive bases may bind 
to another set of consecutive bases forming a stacking pair. Consecutive bases can be 
modeled as an interval and a stacking pair can be modeled as a 2-interval. For exam-
ple, in Figure 1(b), bases 1 to 8 form a stacking pair with bases 65 to 72. Bases 1 to 8 
can be modeled as the interval I = [1..8] while bases 65 to 72 can be modeled as the 
interval J = [65..72], thus this stacking pair can be modeled as the 2-interval (I, J). 
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Fig. 1. 

The representation of 2-intervals for stacking pairs is not new and pattern finding 
problems on 2-interval sets were proposed to study RNA. In particular, the 2-interval 
pattern matching problem was originally studied by Vialette [6], then subsequently in 
[7-9]. In this paper, we consider an important version of the 2-interval pattern match-
ing problem which relates to the secondary structures of RNA molecules without 
pseudoknots. The problem is defined as follows. 

Consider a set D of 2-intervals. A subset of D is said to be {<,⊂}-comparable if 
every two 2-interval (I1,J1) and (I2, J2) in D have one of the followings relations: (i) < 
(precedence), if I1< J1< I2< J2; (ii) ⊂ (nesting), if I1< I2< J2< J1. Let P be a string of 
balanced parenthesis. Note that every pair of balanced parenthesis in P also satisfies 
the precedence and nesting relations and P is called an {<, ⊂}-structured pattern. We 
say that P occurs in D if there exists a precedence and nesting relation preserving 
bisection between a subset of |P|/2 2-intervals in D and the set of |P|/2 balanced pa-
renthesis in P. The 2-interval pattern matching problem is to check if P occurs in D. 

The solution for this problem can be applied to solve the ncRNA scanning problem 
as follows. The pattern P can be the consensus secondary structure of an ncRNA 
family and D is the given RNA sequence, if P occurs in D, it implies that the occur-
rences of P (substrings in D) may be a member of the ncRNA family. In practice,  
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researchers would like to have a fast scanning algorithm so that potential members 
(substrings) in D can be identified and further verified. A good solution should be 
fast, scalable for long sequences with high sensitivity (that is, real answers should not 
be missed) and relative small percentage for false positives. Vialette [6] gave an 
O(m|D|3 log |D|) time solution to the problem, where m is the number of intervals in P. 
This solution is not practical to scan for the secondary structure in a genome-wide or 
chromosome-wide scale. In this paper, we show that this problem can be solved in 
O(m |D| log |D|) time.  

Note that the 2-interval pattern matching problem defined does not capture the size 
of a loop (i.e. the distance of unpaired bases inside hairpin, internal-loop, bulge or 
multi-loop) nor the number of base pairs inside the stacking-pair region. These char-
acteristics are important for the functionality of RNA molecules (for example, the size 
of a hairpin loop may affect the functions of an RNA molecule). Hence, using Vi-
alette’s definition, we may get a lot of false positives when using it to scan a RNA 
sequence for members in an ncRNA family. To handle this issue, we extend the prob-
lem as follows.  

First, we enhance the representation of a secondary structure of an RNA molecule 
to include the size of all the loops such as hairpin, internal-loop, bulge or multi-loop. 
Also, the number of base pairs in a stacking pair will also be included in the represen-
tation. Figure 1(c) shows the enhanced representation. Each base pair in a structure is 
represented by a pair of parenthesis as a 2-interval. The number of unpaired bases in 
between is represented by the same number of dots. In real applications, the size of a 
hairpin loop and the distance between stacking pairs as well as the number of base 
pairs in a stacking pair may vary. These numbers usually represent the minimum 
requirement to be satisfied. Values of these numbers can be estimated from the con-
sensus structure of an ncRNA family. Secondly, to match a substring in D with P, we 
limit the length of the substring to be less than or equal to a threshold lenmax. By intro-
ducing these distance (size) constraints, we have set a more stringent requirement for 
a substring D to be similar to P. We then introduce the 2-interval pattern matching 
problem with distance constraints (to be formally defined in Section 2) to model these 
new requirements.  

According to our knowledge, this newly formulated problem has not been ad-
dressed in the literature. We show that this problem can also be solved in same O(m 
|D| log |D|) time by generalizing our solution to the 2-interval pattern matching prob-
lem. Moreover, if we assume the only possible base pairs are {(A,U), (C,G), (U,G)} 
which are the case for RNA molecule, we can further improve the time complexity to 
O(m q), where q is the length of the input RNA sequences. 

We apply our solution to solve the ncRNA scanning problem and show that it is 
feasible for scanning a long sequence such as a chromosome within a reasonable 
amount of time (2.5 mins) for an ncRNA family. Also, we demonstrate that using our 
extended problem definition, we capture the characteristics of the secondary struc-
tures of ncRNA families better than the original definition, thus having a lot fewer 
false positives. As far as we know, most of the existing solutions (see for examples, 
[10-12]) for ncRNA scanning problem are sequence-based only. Our work represents 
another direction which makes use of the structural information (see also [13]). In 
[13], the authors modeled the application as a 2D (0,1) image pattern matching prob-
lem and showed that the solution is effective with few false positives based on  
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random generated RNA sequences. The performance of their solution in real data sets 
is still an unknown. A comparison on their method will be performed later. 

2   Problem of Definition 

The 2-Interval Pattern problem is defined as follows: 
Given a set of 2-intervals D and a {<, ⊂}-structured pattern P represented by a 

string of balanced parenthesis over the alphabet Σ={ ‘(’ , ‘)’ }, we would like to an-
swer whether these exists a subset of D such that it is exactly the same as P. As shown 
in figure 2, in the other words, the question is: can we obtain pattern P by deleting all 
but |P|/2 2-intervals from D? 

Before we define the second problem, let us define the space-support pattern. The 
space-support pattern includes not only the characters ‘(’ and ‘)’, but also a dot ‘.’. 
The space which is represented by a dot indicates there is at least a unit-distance be-
tween the adjacent characters. For example, a pattern P = “( ) . . ( )” represents a pat-
tern with two 2-intervals and at least 2-units distance between them. Note that a dot 
can appear in any position in P except the first and the last position. Also, if all of the 
dots are removed from P, then P will become a {<, ⊂}-structured pattern. 

 

The 2-Interval Pattern problem with distance constraints is defined as follows: 
 

Given a set of 2-intervals D and a space-support pattern P, check whether there ex-
ists a subset of D such that (1) it is exactly the same as P’ which is the {<, ⊂}-
structured pattern when all of the dots are removed from P; (2) the distance between 
every two consecutive intervals is at least the distance indicated by the number of dots 
inside P. The idea is illustrated in Figure 3. 

3   Method 

3.1   The 2-Interval Pattern Matching Problem for {<, ⊂} 

Consider a set D of 2-intervals and a {<, ⊂}-structured query pattern P. The 2-Interval 
Pattern Matching Problem asks if P occurs in D. This section describes a dynamic 
programming algorithm to solve this problem in O(mn log n) time where m is the 
length of pattern P and n is the number of 2-intervals in the set D. 

We model the {<, ⊂}-structured pattern P as a string of balanced parenthesis over 
the alphabet Σ={ ‘(’ , ‘)’ }. Hence, P satisfies the following property. 

Lemma 1. Given the {<, ⊂}-structured pattern P represented as a balanced parenthe-
sis, P can always be decomposed in one of the following ways: (1) P = VW where V 
and W are two (non-empty) disjoint secondary structure patterns and V=(Y) where Y 
is also a secondary structured pattern (which may be empty); (2) P = (W) where ( ) 
denotes the outermost 2-interval I of P and W is the {<, ⊂}-structured pattern (which 
may be empty) obtained from P by deleting I. 
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This decomposition in Lemma 1 enables us to design a dynamic programming algo-
rithm to solve the problem. Before we describe the recursive formula for the dynamic 
programming, we need some definitions. For any interval I, we denote left(I) be the 
left position of interval I while right(I) be the right position of interval I. Let L={I | 
(I,J)∈D} and R={J | (I,J)∈D}. The intervals inside L are sorted according to their left 
positions in ascending order and each interval I inside L is labeled according to the 
sorted order (i.e. I1, …, In). Also, the intervals inside R are sorted but according to 
their right positions in ascending order. 

For any interval Ii∈L, we define T(Ii, P) be the smallest position x such that P oc-
curs inside the region [left(Ii), x]. Otherwise, set T(Ii,P)=∞. For any y ≥ right(Ii), de-

fine )(),( ki JrightyI =ϕ where Jk is the first interval ∈ R such that left(Jk) ≥ y and 

(Ii, Jk)∈D. Define )(xδ  = Ii where Ii is the first interval ∈ L such that left(Ii) ≥ x. 

Note that if T(In, P)≠∞, P occurs in D. Below Lemma states the recursive formula 
for computing T(Ii, P). 

 

Lemma 2. For any interval Ii in L, depending on whether P is (1) ( ), (2) VW, or (3) 
(V) where V and W are some {<, ⊂}-structured patterns, the recursive formula for 
T(Ii,P) is as follows. 

 

Case 1: When  P=( ), 
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Case 2: When P = VW where W is nonempty and V=(U) where U can be empty, 
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Case 3: When P = (V) where V is nonempty, 
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Fig. 2. The set of 2-intervals D = 
{D1, D2, D3, D4}. A {<, ⊂}-
structured pattern P = “( ( ) )”. P 
occurs in D and P is representative 
of the subset {D2, D4}. 

 

Fig. 3. The set of 2-intervals D = {D1, D2, 
D3, D4}. A space-support pattern P = “( . . . ) 
. . ( . )”. P occurs in D and P is representative 
of the subset {D1, D4}. The distance (1) 
between the two intervals in D1 is 3, (2) 
between D1 and D4 is 5, and (3) two inter-
vals in D4 is 1. All fulfills the minimum 
distance constraints indicated by P, which is 
3 for (1), 2 for (2) and 1 for (3). 
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Proof: For Case 1, there are two situations. In the first situation: Ii is not mapped with 
‘(’, then T(Ii,P)=T(Ii+1,P); In the second situation: Ii is mapped with ‘(’, then T(Ii,P) is 

the first Jk ∈ R such that (Ii, Jk) ∈ D. Thus T(Ii,P)= ))(,( ii IrightIϕ . 
 

For Case 2, let x be the smallest value such that the region [left(Ii), x] contains V, i.e. 

x = T(Ii,V). Let Ik∈L be the first interval such that left(Ik)≥x, i.e. Ik = )),(( VIT iδ . 

Then, T(Ii,P) = T(Ik,W), resulting the smallest value of y such that the region [left(Ik), 
y] contains W. 

For Case 3, there are two situations. In the first situation: Ii is not mapped with ‘(’, 
then T(Ii,P)=T(Ii+1,P); In the second situation: Ii is mapped with ‘(’, then let Im∈L be 

the first interval such that left(Im) ≥ right(Ii), i.e. Im = ))(( iIrightδ . Then, x=T(Im, 

V) is the smallest value such that the region [left(Im), x] contains V. Then locate the 
first Jk∈R such that left(Jk)≥T(Im,V) and (Ii,Jk)∈D, because Jk is mapped with ‘)’. Thus 

)),(,( VITIJ mik ϕ= . Therefore, T(Ii,P) = right(Jk).                                                
 

Based on Lemma 2, we compute T(Ii,U) by scanning the intervals Ii∈L from right to 
left and traversing the substructure U of P from inner to outer. Finally, we compute 
T(I1, P). If T(I1, P)≠∞, then P occurs in D. Below two lemmas conclude the time 
complexity of the algorithm. 

 
Lemma 3. For any 2-interval set D, using O(n log n) time, we can preprocess an 

indexing data-structure so that ),( xIiϕ and )(xδ  can be computed in O(log n) time. 

Proof: The intervals in the list L and R can be sorted according to their starting posi-
tions and ending positions from left to right respectively using O(n log n) time. Re-

garding the data-structure for computing the values of ),( xIiϕ , for each Ii∈L, we 

can create a balanced binary tree to store all the starting positions of Jk∈R such that 

(Ii,Jk)∈D. It takes O(n log n) time to build the data-structure. So, ),( xIiϕ will takes 

O(log n) time to compute the value. 
 

Similarly, for all Ii∈L we can also create a balanced binary tree to store (i, left(Ii)) 
with key left(Ii). It takes O(n log n) time to build the data-structure. Then, )(xδ  can 

be computed in O(log n) time.                                                                                        
 

Lemma 4. For any 2-interval set D and {<, ⊂}-structured P, T(I1, P) can be computed 
in O(m n log n) time. 

Proof: By Lemma 3, we have the data-structure for computing ),( xIiϕ and )(xδ . 

Together with Lemma 2, for any interval Ii∈L and any substructure U of P, the value 
of T(Ii,U) can be computed in O(log n) time. Since there are m×n entries of T(Ii, U). 
In total, the running time is O(mn log n).                                                                       
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3.2   The 2-Interval Pattern Matching Problem with Distance Constraints 

To solve the 2-interval pattern matching problem with distance constraints, we need 
to define an extra function: 

 
Let dot_front(P) = the number of consecutive dots just after the first ‘(’ in P. For 
example, 
If P = “ ( . . ( ) . ) ”, then dot_front(P) = 2, while if P= “ (( . . ( ) . ) ”, then 
dot_front(P)=0. 

 
Let dot_end(P) = the number of consecutive dots just before the last ‘)’ in P. For 
example, 
If P = “ ( . . ( ) . ) ”, then dot_end(P) = 1, while if P= “ (. . ( ) . )) ”, then dot_end(P) = 0. 

Again, for any interval Ii∈L, we define T(Ii, P) be the smallest position x such that 
P occurs inside the region [left(Ii), x]. Otherwise, set T(Ii,P)=∞. Denote “.*” be a 
sequence of ‘.’ of any length. We have the following lemma. 

 
Lemma 5. For any interval Ii in L, depending on whether a space-support pattern P is 
(1) (.*), (2) V .* W, (3) (.*V.*) where V and W are some space-support patterns, the 
recursive formula for T(Ii,P) is as follows. 

 

Case 1: When  P=( .*), let d = dot_front(P) 
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Case 2: When P = V .* W where W is nonempty and V=(U) where U can be 
empty, let d = the number of spaces between V and W. 
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Case 3: When P = ( .* V .*) where V is nonempty and no dot is in the first and the 
end position of V, let d1 = dot_front(P) and d2 = dot_end(P) 
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Proof: For Case 1, there are two situations. In the first situation: Ii is not mapped with 
‘(’, then T(Ii,P)=T(Ii+1,P); In the second situation: Ii is mapped with ‘(’, then T(Ii,P) is 
the first Jk ∈ R such that the distance between right(Ii) and left(Jk) is at least d, and (Ii, 

Jk) ∈ D. Thus T(Ii,P)= ))(,( dIrightI ii +ϕ . 

For Case 2, let x be the smallest value such that the region [left(Ii), x] contains V, 
i.e. x = T(Ii,V). Let Ik∈L be the first interval such that the distance between x and 

left(Ik) is at least d, i.e. Ik = )),(( dVIT i +δ . Then, T(Ii,P) = T(Ik,W), resulting the 

smallest value of y such that the region [left(Ik), y] contains W. 
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For Case 3, there are two situations. In the first situation: Ii is not mapped with ‘(’, 
then T(Ii,P)=T(Ii+1,P); In the second situation: Ii is mapped with ‘(’, then let Im∈L be 
the first interval such that the distance between right(Ii) and left(Im) ≥ d1, i.e. Im = 

))(( 1dIright i +δ . Then, x=T(Im, V) is the smallest value such that the region 

[left(Im), x] contains V. Then locate the first Jk∈R such that the distance between 
T(Im,V) and left(Jk) ≥ d2, and (Ii,Jk)∈D, because Jk is mapped with ‘)’. Thus 

)),(,( 2dVITIJ mik += ϕ . Therefore, T(Ii,P) = right(Jk).                                       

 
Lemma 6. For any 2-interval set D and a space-support pattern P, let Im be the left 
interval of the rightmost 2-interval in D. Then, T(Im, P) can be computed in O(m n log 
n) time. 

Proof: The number of comparisons in dot_front(P) and dot_end(P) is the number of 
consecutive dots just after the first ‘(’ in P plus 1 (i.e. d1+1) and before the last ‘)’ 
plus 1 (i.e. d2+1). Only dot_front(P) is considered in case 1, while both in case 3. 
However, the input pattern for the next iteration will be shortened at least d1+1 in 
case 1 and d1+d2+2 in case 3. Therefore, for each I ∈L, the total time required for 
dot_front(P)+dot_end(P) = O(m). Therefore, the time required altogether for both 
functions is O(m n). 

Similarly, in case 2, the number of comparisons for computing the d value is d+1. 
The pattern is then spitted into two and the sum of the length of the input patterns is 
decreased by d. Therefore, for each I ∈L, the total time required altogether for comput-
ing the d value in case 2 is O(2m) = O(m). So, the time required altogether is O(m n). 

Thus, the overall time complexity is still the same, which is O(m n log n + m n + 
mn) = O(m n log n).                                                                                                        

3.3   The Pattern Matching Problem with Distance Constraints on RNA 

Consider an RNA sequence S[1..q]. Assume every individual base S[i] is an interval 
(i.e. left(S[i])=i and right(S[i])=i+1). Suppose the set D of 2-intervals is {(S[i],S[j]) | 
S[i], S[j] form a base pairs a-u, c-g, or g-u}. In this case, the size of D can be as large 
as q2. Then, by Lemma 5, the pattern matching problem requires O(m q2 log q) time. 
In this section, we show that the problem can be solved in O(m q) time. 

The idea is to replacing the indexing data-structure in Lemma 3 by that of Lemma 
7. Then, it is easy to check that the time complexity is improved to O(m q). 

 
Lemma 7. For any 2-interval set D, using O(q) time, we can preprocess an indexing 

data-structure so that ),( xIiϕ and )(xδ  can be computed in O(1) time. 

Proof: For any base σ in {a, c, g, u}, using O(q) time, let Aσ[x] be a length-q 
array which store the smallest value y≥x such that S[y]=σ. Then, 

][),( xAxa u=ϕ , ][),( xAxc g=ϕ , ]}[],[min{),( xAxAxg uc=ϕ ,and 

]}[],[min{),( xAxAxu ga=ϕ . Hence, ),( xIiϕ can be computed in O(1) time. 



 The 2-Interval Pattern Matching Problems and Its Application to ncRNA Scanning 87 

For )(xδ , since every individual base S[i] is an interval, )(xδ =x if x ≤ q, which 

can be computed in O(1) time.                                                                                     

4   Application to the ncRNA Pattern Scanning 

Rfam is a RNA families database. Any Rfam family has a consensus secondary struc-
ture. Given an input sequence, our aim is to check whether the input sequence can be 
folded into a secondary structure similar to the Rfam consensus. If so, the input se-
quence is possibly a member of the Rfam family. There are two steps in our method: 
firstly, we develop a structural pattern to precisely represent a secondary structure of 
the family; secondly, using the method in Section 3.3, we compute whether there is a 
way for an input sequence to be folded exactly like the structural pattern. The success-
ful input sequence indicates a possible member of the family. 

First, we describe how we obtain a secondary structure pattern for each Rfam fam-
ily. In Rfam, each family has a set of seed members. Based on the multiple alignment 
of the seed members, Rfam already constructed the consensus secondary structure for 
each Rfam family. Figure 4 shows a consensus of secondary structure of an example 
family, from where all the loops like multi-loop (M), bulge (B), internal-loop (I) and 
hairpin (H) can be. Though the multi-loops and hairpins of the Rfam consensus sec-
ondary structure should be conserved in all the seed members, the bulges and internal-
loops may disappear in some of the seed members. To be conservative, we only keep 
those substructures which appear in all the seed members as shown in Figure 5. In 
addition, we also measure the minimum number of unpaired-bases (L) inside every 
hairpin loop, internal loop, and multi loop. For the stacking pair regions, we also 
measure the minimum number of base-pairs (P) in such regions. Those numbers are 
also shown in Figure 5. 

 

                 
 
 
 
 
 
 
 
 
 

Fig. 4. Consensus of secondary struc-
ture of an example family. All loops 
like multi-loop (M), bulge (B), inter-
nal-loop (I) & hairpins (H) can be 
identified. 

Fig. 5. Conserved structure of an example 
family. For instance, some structures say 
I1, I4 and B are removed because they do 
not appear in all seed sequences. L stands 
for minimum-length along the side of 
loop. P stands for minimum number of 
base-pairs along the stacking-pair regions. 
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Fig. 6. The corresponding space-support patterns for the conserved structure in Figure 2 
 
 

Given such consensus secondary structure, we represent its paired bases as a string 
of balanced parenthesis. Moreover, we also use the ‘dots’ to represent the unpaired 
bases. Figure 6 shows the corresponding secondary structure pattern. Given the  
secondary structure pattern P, we apply the method in Section 3.3 to scan the input 
sequences to locate possible members of the Rfam family. In our experiment, we 
assume the possible base-pairs in the input sequence are {a-u, c-g, u-g}. Furthermore, 
we assume the regions which contain the pattern P should be shorter than the maxi-
mum length of all the seed members. Next section presents the experimental result of 
the scanning. 

5   Experimental Result 

We selected five ncRNA families with conserved secondary structure for the experi-
ment. In each family, a pattern is created according to the consensus secondary struc-
ture of the seed sequences as mentioned in Section 4. To evaluate the performance, all 
sequences in the family except the seed sequences are used. (Those sequences are 
denoted as full-members in the Rfam database.) The sensitivity is defined as the per-
centage of full-member sequences regarded as the members of the family by the 
method. On the other hand, we generated 100 random sequences for each family to 
test the false-positive rate (i.e. the percentage of random sequences regarded as the 
members of the family). Thus, higher the sensitivity and lower the false-positive rate 
indicate the better effectiveness of the method. We compared the performance of two 
approaches: (1) pattern with space support; (2) pattern without space support. 

 
Table 1. Comparison between the methods by using pattern with and without dot support. Tp 
(true positive) is the # of full member sequences are regarded as the family member. Fp (false 
positive) is the # of random sequences are wrongly regarded as the family member. The corre-
sponding rate is Tp rate (true-positive rate) and Fp rate (false-positive rate). 

 

 
 
As shown in Table 1, although both methods can identify all the full-member se-

quences as the family members, the method of using pattern with space support has 
significant improvement in the false-positive rate. The average false-positive rate 
among the five chosen families by using pattern with dot support is 10% while that of 
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by using pattern without dot support is 94%. The result indicates the considerable 
necessity of using dot-support pattern. 

We also selected the family RF00111 and scanned through the whole human 
chromosome 14 to locate the possible members of the family. It took only 2.5 minutes 
under the machine with 2.4G CPU with 4G. 
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Abstract. Studying the structure of RNA sequences is an important problem 
that helps in understanding the functional properties of RNA. After being ig-
nored for a long time due to the high computational complexity it requires, 
pseudoknot is one type of RNA structures that has been given a lot of attention 
lately. Pseudoknot structures have functional importance since they appear, for 
example, in viral genome RNAs and ribozyme active sites. In this paper, we 
present a folding framework, TAGRNAInf, for RNA structures that support 
pseudoknots. Our approach is based on learning TAGRNA grammars from train-
ing data with structural information. The inferred grammars are used to inden-
tify sequences with structures analogous to those in the training set and generate 
a folding for these sequences. We present experimental results and comparisons 
with other known pseudoknot folding approaches. 

1   Introduction 

Many new functional RNAs, such as miRNAs and tmRNAs [3] [20] [34] have been 
discovered in recent years. This resulted in speeding up RNA structural analysis and 
determination. Another factor that has led acceleration of RNA structural research is 
the rise of the RNA World Hypothesis [10] which suggests that the current DNA and 
protein world have evolved from an RNA based world. Analysis of the structures of 
RNA sequences is essential in understanding their functional properties. Conse-
quently, it is imperative for creating new drugs and understanding genetic diseases [6] 
[24]. Computational methods can provide less expensive solutions to structure analy-
sis than other methods such as nuclear magnetic resonance and x-ray crystallography. 

Most RNA structure analysis research can be classified into thermodynamic or 
comparative approaches. Thermodynamic approaches use dynamic programming to 
compute the secondary structure with the minimum free energy (mfe) [13] [35]. These 
approaches use experimentally determined parameters for free energies. Comparative 
approaches are based on aligning a set of homologous sequences and computing the 
structure based on the alignment [8] [12]. Recently, a new approach for RNA struc-
ture analysis based on grammatical formalisms has emerged. This approach was in-
spired by David Searls work in the early 90’s where he studied the linguistics of bio-
logical sequences [28]. He suggested the use of formal grammars as a tool to model 
and analyze DNA, RNA, and proteins. The use of grammars has attracted the atten-
tion of many researchers [26] [31] because it can model long range interactions. In 
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addition, grammatical models are concise and easy to understand representation of 
structures of sequence families.  

 A secondary structure for a sequence of length n is a list of base-pairs (bps) in the 
form (i, j) where  1 ≤ i, j ≤ n. Two bps (i, j) and (k, l) are nested if i < k  and l < j. Two 
bps are crossing if i < k  and j < l. Pseudoknot  is one type of RNA structures that  
exhibits crossing bps. It has been proven that predicting RNA structures with pseu-
doknots using free energy minimization is an NP-complete problem [17]. Also, pseu-
doknots cannot be modeled with Context Free Grammars (CFG) due to the crossing 
dependencies of their bps. Consequently, until recently, pseudoknots were ignored in 
RNA secondary structure analysis. Pseudoknot structures have functional importance 
since they appear, for example, in viral genome RNAs [19], ribozyme active sites 
[30], and tmRNA [34]. Among the available research in analyzing pseudoknot struc-
tures are the works of Akutsu [2], Dirks and Pierce [9], Rivas and Eddy [23], the iter-
ated loop matching algorithm (ILM) by Ruan et. al. [25], and pknotsRG by Reeder 
and Giegerich [22]. 

 One of the proposed grammatical models that support pseudoknots is TAGRNA. 
TAGRNA is a submodel of Tree Adjoining Grammars (TAG) [14]. It was proposed by 
Uemura et. al. [31]. They developed a parser for their model, and presented experi-
mental results for using the model to fold RNA sequences with pseudoknot structures. 
Our solution is based on the TAGRNA model.   

Our solution is a grammatical inference approach to RNA structure analysis. 
Among the research that uses grammatical inference in bioinformatics are the works 
of Brazma et. al. [5], Laxminarayana et. al. [16], Takakura et. al. have published [29]. 
Brazma et. al. [5] have proposed an approach to discover simple grammars for fami-
lies of biological sequences, using a subclass of regular grammars. On the use of 
grammatical inference to analyze RNA structures with Pseudoknots, Laxminarayana 
et. al. [16] presented an inference algorithm for Terminal Distinguishable Even Linear 
Grammars (TDELG), and they have shown how to use this algorithm in an Infer-Test 
model for the detection of a pseudoknot structure in an RNA sequence. They address 
the same problem we addressed in [1]. Takakura et. al. [29] use alignment data to in-
fer probabilistic TAGRNA. They use the inferred grammar to find new members of nc-
RNA families. Sakakibara has published [27] in which he discusses the general merits 
of using grammatical inference in bioinformatics. 

The use of grammatical inference to automate the grammar building step is essen-
tial in facilitating the use of grammatical formalism by biologists. Otherwise, the bi-
ologist will always be dependent on a grammar expert. In [1], we presented a gram-
matical inference engine for TAGRNA. We also presented a structure identification 
framework, where the inferred grammars can be used to answer the question of 
whether an RNA input sequence exhibits a certain structure or not. In this paper, we 
present a modification of the framework which is capable of folding1 an RNA se-
quence with identification as a first step in folding. We test our solution on RNA se-
quences from Pseudobase [4], Rfam [11] , and the tmRNA database [34], and we 
compare our results with a representative subset of the available tools that are capable 
of folding RNA sequences including pseudoknots. We compare our results with ILM  
 
                                                           
1 We use the terms structure prediction and folding interchangeably. 
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and, pknotsRG. PknotsRG is an algorithm for folding RNA sequences under the mfe 
model. It requires O(n4) time and O(n2) space. The ILM algorithm is based on the loop 
matching algorithm [18], and it also utilizes thermodynamic parameters. The worst case 
time complexity of ILM is O(n4) and the space complexity is O(n2). We also compare 
our results with TAGRNA which our solution is based on. The folding approach provided 
in [31] using TAGRNA is based on single generic grammar. Our approach is different be-
cause we infer specific grammars and use them to do identification and folding. 
TAGRNA has time and space complexity of O(n5) and O(n4) respectively.  

2   TAG and TAGRNA 

Tree Adjoining Grammars (TAGs) were introduced by Joshi et. al. [14]. Uemura et. 
al. [31] defined a subclass of TAGs, TAGRNA, suitable for modeling RNA pseudoknot 
structures. In this section, we describe TAG and TAGRNA. 

A Tree Adjoining Grammar (TAG) is defined to be a 5-tuple (T ∪ {ε}, N , I, A, S), 
where T is a set of terminal symbols, N is a set of non-terminal symbols, ε is the 
empty string symbol, and S is the starting symbol. I and A are defined as follows: 

I (initial trees): A finite set of finite trees with the internal nodes’ labels belong-
ing to N ∪ {S} , the leaves’ labels belonging to T ∪ {ε}, and the root is 
labeled with S. 

A (auxiliary trees): A finite set of finite trees with the internal nodes’ labels be-
longing to N ∪ {S}, and the leaves’ labels belonging to T ∪ {ε} except 
one leaf node which has the same label as the root. This special leaf node 
is called a foot node. 

I ∪ A constitutes the set of elementary trees. An operation called the adjoining opera-
tion can be used to compose two trees, resulting in a derived tree. The adjoining op-
eration composes an auxiliary tree β with a foot node labeled X with any other tree α, 
elementary or derived, that has some internal node with the same label X. The adjoin-
ing operation works as follows: starting with the tree α, extract the sub-tree rooted at 
the internal node labeled with X (let that sub-tree be γ), and replace it with β. Then at 
the foot node of β, γ is reinserted. The adjoining operation is illustrated in Fig. 1. Let 
T  = { t : ∃ i ∈ I s.t. t can be derived from i}, then L(TAG) consists of the yield of all 
the trees in T. 

In [31], Simple Linear TAG (SLTAG) and Extended Simple Linear TAG 
(ESLTAG) are defined to be two subclasses of TAG with adjoining constraints [33]. In 
these two subclasses, the adjoining operation can occur only at internal nodes tagged  
 

 

Fig. 1. The Adjoining Operation 
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with the symbol *, and the number of these nodes is restricted to one in SLTAG and 
two in ESLTAG. TAGRNA is a sub-class of ESLTAG where only five types of ele-
mentary trees are allowed (Fig. 2). Each type of tree is responsible for a specific kind 
of branching or structural form that an RNA sequence can have.  

3   The Structure Identification/Prediction Framework  

In [1], we presented TAGRNAInf; an RNA structure identification framework. By 
structure identification we mean, given an RNA sequence, we answer the question of 
whether it exhibits a certain structure or not. TAGRNAInf, has a training phase in 
which a grammatical inference engine is fed with a positive training set with struc-
tural information. The inference engine will generate a grammar for each unique 
structure pattern in the sample. Then, the same sample along with a negative sample 
and the grammar(s) generated by the inference algorithm will go through an ESLTAG 
parser. For each input sequence the parser will output a score. We use the maximum 
number of base pairs as the scoring function. The scores will be the input to a thresh-
old function inference module. This module infers a score threshold function Th(l) = 
p. A sequence s of size l is considered to have the RNA structure represented by a 
grammar G iff the parser accepts s under G, with score ps ≥ p. Th(l) is a step function 
defined as follows: 

Th(l) = p ,  i  ≤ l <  j  (1) 

The threshold function inference module infers a function that maximizes the sum 
of sensitivity and specificity for the training data using dynamic programming. The 
time and space complexity for inferring the threshold function are O(n3m2) and 
O(n2m2), where n is the maximum sequence size and m is maximum reported score 
for the training data set. While inferring the threshold function, this module also se-
lects the most informative grammars. As mentioned earlier, the grammatical inference 
engine generates a grammar for each unique structure pattern it encounters. Here, 
nearly redundant grammars or grammars rarely used in the training set are eliminated. 
This enhances the time performance for the identification phase by reducing the num-
ber of grammars representing a training set. Furthermore, the number of grammars 
can be restricted to a preset maximum.  Fore more details refer to [1]. 

The identification module consists of an ESLTAG parser and sets of inferred 
grammars coupled with their threshold functions. Each grammar set represents a cer-
tain structure. Depending on the training set fed to the inference engine, these struc-
tures could be as general as a pseudoknot structure, more specific as an H-type pseu-
doknot structure, or as specific as the structure of Antizyme RNA frameshifting 
stimulation element, for example. Given an input RNA sequence, the user can select 
to check it against a certain set of grammars. The identification module will answer 
the question of whether it belongs to the structure defined by this set of grammars. 

The Identification/Prediction Phase 
In this paper, we present a variant of TAGRNAInf which can be used to fold RNA se-
quences. In the new framework, the training phase remains unchanged. The Identifi-
cation phase is replaced with an identification/prediction phase. In this phase, the  
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Fig. 3. TAGRNAInf : RNA structure identification/prediction framework 

identification question is answered as before. Additionally, if the input sequence is 
identified to have the structure represented by the selected set of grammars, the se-
quence will be folded, and TAGRNAInf will output its structure. If the sequence was 
accepted by more than one grammar in the set, the structure resulting in minimum 
free energy is selected. To calculate the mfe for a certain structure, we use RNAeval 
tool from the Vienna suite [13]. RNAeval does not support pseudoknots. We  
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approximate the free energy of a pseudoknot by the sum of the free energies for its 
two stem-loops as calculated by RNAeval. If a sequence was accepted by the parser, 
resulting in a non-zero score, but was rejected by the threshold function, the user may 
choose to fold the sequence despite its rejection. However, the confidence level for 
this structure is not expected to be high. The framework is illustrated in Fig. 3.  

The bottleneck for the computational complexity of our approach lies in the parser. 
We currently use an implementation of the SLTAG and ESLTAG parses described in 
[31]. If the set of grammars used do not have any TYPE5 trees (see Fig 2) the SLTAG 
parser is used; otherwise, the ESLTAG parser is used. The time complexity of the 
SLTAG and the ESLTAG parsers are O(n5)  and O(n4) respectively. Both parsers 
have O(n4) space complexity. 

4   Experimental Results 

To test the accuracy of folding for TAGRNAInf, we evaluate the sensitivity and speci-
ficity of the predicted structures for a set of H-type pseudoknot sequences. The fold-
ing sensitivity and specificity are defined as follows: 

bpsref

TP
ySensitivitFolding

_
_ =  and 

bpspredicted

TP
ySpecificitFolding

_
_ =  

Where TP, ref_bps, and predicted_bps are the number of correctly predicted bps, 
number of bps in the actual structure, and total number of predicted bps respectively. 

For the training phase of this experiment, we used 105 H-type RNA sequences as 
the +ve training set and 107 non-pseudoknot sequences as the –ve training set. The 
+ve training data set was collected from Pseudobase [4], the tmRNA database [34], 
and Rfam database [11]. We arbitrarily selected sequences from tmRNA and ex-
tracted PK1, PK2, and PK4 from them. The negative training set was driven from the 
non-pseudoknot families in Rfam database, taking into consideration that the lengths 
of these sequences would be in the same range as the positive population. The +ve 
training set resulted in 6 grammars. The test set consists of 36 H-type pseudoknot se-
quences. The test set was driven from the same sources as the +ve training set. It in-
cludes 4 sequences from Rfam, 20 sequenes from Pseudobase, and 12 from the 
tmRNA database. 

We ran three comparative experiments on the test data. The first was an identifica-
tion/structure prediction experiment. In this experiment, the test set was fed to the 
identification engine to check if the structure of each sequence belongs to any of the 
inferred grammars. The identification sensitivity and specificity for the training data 
set are 87.4 and 84.4 respectively. The sensitivity and specificity for identification are 
defined as: 

Table 1. Folding sensitivity and specificity for the 31 sequenced accepted by the H-type 
pseudoknot grammars on TAGRNAInf 

 Sensitivity Specificity 
ILM 69.1 67.7 
pknotsRG (enf) 75.9 77.9 
TAGRNA 83.7 79.3 
TAGRNAInf 83.4 87.4 
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Table 2. .Folding sensitivity and specificity for the whole 36 sequence test set 

 Sensitivity Specificity 
ILM 68.5 67.7 
pknotsRG (enf) 75.5 77.0 
TAGRNA 80.0 75.5 
TAGRNAInf 79.5 85.3 

 

FNTP
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+
=_  and 
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+
=_  

where TP, TN, FP, and FN are the number of true positives, true negatives, false posi-
tives, and false negatives respectively. 

Out of the 36 input sequences, 31 were accepted and 5 were rejected. The struc-
ture generated by TAGRNAInf for the accepted 31 sequences were compared with the 
actual structures for these sequences, taken from the source databases, and fold-
ing_sensitivity and folding_specificity were calculated. We also generated structures 
for the same set of 31 sequences by ILM, pknotsRG, and TAGRNA. pknotsRG was 
tested in enforce mode (enf), which enforces a pseudoknot in the predicted structure. 
Also, Use extended helix plot score option was set for ILM as recommended by the 
ILM website for single sequence structure prediction. All other options for all tools 
were set to their defaults. The grammars generated by TAGRNAInf have default 
minimum stem length of 2 and maximum bulge loop length of 2. Table1 lists the 
comparative results for this experiment. TAGRNAInf results in the best specificity 
with a big margin and the second best sensitivity after TAGRNA with a very small dif-
ference. The high specificity of TAGRNAInf is expected because the grammars used 
for prediction are H-type pseudoknot grammars. Sequences whose structures are not 
expected to follow any of the inferred grammars are excluded in the identification 
phase, as will be illustrated further in the following two experiments. Figure 4 illus-
trate an example where TAGRNAInf gives more accurate structure prediction than 
ILM and pknotsRG.  

 

Fig. 4. Actual [11] and predicted structures for an Antizyme RNA frameshifting regulating se-
quence. Structure images are generated using Pseudoviewer [7] 
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When we compared the structures predicted by TAGRNA and TAGRNAInf, we found 
out that in most cases where TAGRNAInf gave better predictions than TAGRNA, the 
structures predicted by TAGRNA had one bp stems in them. As mentioned earlier the 
default setting for the minimum stem size in TAGRNAInf grammars is two. TAGRNA 
has an option to change the minimum stem size, but we tested all tools under their de-
fault settings. It is worthy to mention here, that the reported results for TAGRNA take 
advantage of the identification phase performed by TAGRNAInf, and these results will 
endure a drop when we eliminate this phase in the second experiment. 

In the second experiment, we included all 36 sequences when calculating folding 
sensitivity and specificity, ignoring the results of the identification phase. The num-
bers in Table 2 show a drop in the results, compared to Table 1, across all prediction 
tools, except for the specificity of ILM. If we look closer to the prediction results for 
the 5 rejected sequences, listed in table 3, we will observe the following: 2 out of the 
5 rejected sequences (BSBV2 and BYDV-NY-RPV) give low sensitivity and specific-
ity values across all prediction tools. Additionally, TRV-PSG and oligo-PK5 give low 
sensitivity on TAGRNAInf, This explains the general improvement achieved when 
these sequences are removed from the test set, specially for TAGRNAInf. Note that ac-
cording to the framework we are presenting, identification must be performed prior to 
structure prediction. Thus, if a sequence was not identified to have a structure that be-
longs to the family of grammars under consideration, the structure predicted for this 
sequence by TAGRNAInf, if any, is considered to have a low confidence level.  

In addition to the previous two experiments, we ran a third experiment in which we 
added two non-pseudoknot RNA grammars to the inferred six grammars. The two 
added grammars were for hair-pin RNA structures. The aim of this experiment was to 
test the effect of broadening the search space beyond the structures of the training set 
and compare it with the other approaches. We realize that the search space of the 
other tools is much broader. It is worth noting here that our approach is structure pre-
diction through grammar learning. In this experiment, the two grammars were added, 
without going through the learning phase. Also, a threshold function was not inferred, 
and no identification was done before the structure prediction.  

Table 4 includes the results for predicting the structure of the 36 input sequences 
with and without the added non-pseudoknot grammars. It also includes the results for 
pknotsRG in enforce pseudoknot mode and mfe mode. The mfe mode predicts the 
minimum free energy structure without trying to enforce a pseudoknot structure. We 
report sensitivity, specificity, and number of sequences whose predicted structure dif-
fered due to introducing the non-pseudoknot grammars for TAGRNAInf, or switching 
to mfe mode in the case of pknotsRG.  

Table 3. Folding sensitivity and specificity for the five sequences rejected by the H-type 
pseudoknot grammars on TAGRNAInf 

Sequence ILM pknotsRG(enf) TAGRNA TAGRNAInf 
 Sen Spec Sen Spec Sen Spec Sen Spec 
TRV-PSG [4][32] 100 92.9 100 100 38.5 35.7 61.5 100 
BSBV2 [4][15] 25.0 27.3 41.7 38.5 83 83 41.7 55.6 
BYDV-NY-RPV[4] 0.0 0.0 22.0 22.0 0.0 0.0 0.0 0.0 
Oligo-PK5 [4] 100 100 100 100 100 100 75.0 100 
Azoacus_BH72(PK1) [34] 100 100 100 100 56.0 45.0 89.0 100 
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Table 4. Folding sensitivity and specificity for the whole 36 sequence test set on pknotsRG in 
both enforce mode (enf) and mfe mode and on TAGRNAInf using the inferred H-type 
pseudoknot grammars (PK) and with the added two hair-pin grammars (nonPK) 

  
 

Sensitivity 

 
 

Specificity 

Affected se-
quences 

 n/36 
pknotsRG (enf) 75.5 77.0 - 
pknotsRG (mfe) 75.0 76.7 5 
TAGRNAInf (PK) 79.5 85.3 - 
TAGRNAInf (nonPK) 78.0 85.7 4 

 

PKnotsRG (enf and mfe)

s1

s2

s3

Actual Structure ILM

TAGRNAInf  (pseudoknot 
grammars)

TAGRNAInf (pseudoknot and 
hair-pin grammars)  

Fig. 5. Actual [32] and predicted structures for TRV-PSG RNA sequence. Structure images are 
generated using Pseudoviewer [7]. 

We notice more stability in the sensitivity and specificity of pknotsRG than 
TAGRNAInf. We found that 5 out of the 36 structures were affected in the case of 
pknotsRG and 4 in the case of TAGRNAInf. There was no overlap between the  
sequences affected for each approach. We also found that 3 out of the 4 affected se-
quences in the case of TAGRNAInf belong to the set of rejected (unidentified)  
sequences reported in Table 3. This once more suggests the benefit of using the iden-
tification before prediction idea as an indicator of the confidence level of the 
 predicted structure. 

To illustrate the advantage of this methodology further, we will present an exam-
ple, TRV-PSG, which gave considerably worse sensitivity and specificity on 
TAGRNAInf, compared to some of the other approaches. The actual structure for  
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TRV-PSG [32], illustrated in Fig. 5, consists of a hair-pin concatenated to a H-type 
pseudoknot. PknotsRG gave perfect structure prediction of TRV_PSG in both enf and 
emf modes. ILM gave almost perfect structure prediction where it predicted one addi-
tional bp in the hair-pin stem (s1). TAGRNAInf with the H-type pseudoknot grammar 
set totally missed the hair-pin structure (s1). On the other hand, with the added two 
hair-pin grammars, TAGRNAInf predicted a hair-pin structure for TRV-PSG, and the 
pseudoknot (s2 and s3) was missed. Notice once more that the identification phase was 
able to recognize that the structure of TRV-PSG does not belong to the structures rep-
resented by the inferred set of grammars. TAGRNAInf could have been able to predict 
the correct structure for TRV-PSG if the training data set included a sequence that had 
a similar structure, a hair-pin concatenated to the pseudoknot.  

5   Conclusion and Future Directions  

In this paper we presented an RNA structure identification/prediction framework, 
TAGRNAInf capable of handling pseudoknot structures. The frame work is a variant of 
our previous work [1]. In this framework, if a certain structure is identified in a se-
quence, a folding is computed for the sequence. Our experimental results show the 
advantage of the identification step to the folding performed by TAGRNAInf as well as 
other folding approaches.  

In this paper and in [1], we discussed two problems related to RNA structure 
analysis, which are structure identification and structure prediction.  In future work, 
we plan to address the problem of structural classification. Our preliminary results 
showed that the use of grammars alone would not be sufficient for classification. We 
plan to investigate the coupling of the grammatical methods with sequence based 
methods to do structural classification. 

As mentioned earlier, the parser used within TAGRNAInf’s identification/prediction 
phase is an implementation of the SLTAG/ESLTAG parsers described in [31]. These 
algorithms use a (n+1)4 matrix and they can be described as metric-centric. Independent 
of the elementary trees in the given grammar, the algorithms step through each entry in 
this matrix to check if any trees can be placed in this entry. This means that even if no 
tree will ever be placed in a matrix entry, some work is done corresponding to this entry. 
In [21], we describe new parsing algorithms for SLTAG and ESLTAG which are tree-
centric. These algorithms are expected to be more time efficient in practice. Addition-
ally, since the matrix used by the parsers is usually sparse, we intend to use other data 
structures that will result in reducing the space requirements as well. We plan to provide 
comparative results to prove the vantage of the new algorithms in practice. Additionally, 
we will work on designing a parallelized version of these algorithms.  
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Abstract. Comparing bacterial genomes implies the use of a dedicated
measure. It relies on comparing circular genomes based on a set of con-
served genes. Following this assumption, the common interval appears
to be a good candidate. For evidences, we propose herein an approach to
compute the common intervals between two circular genomes that takes
into account duplications. Its application on a concrete case, comparing
E. coli and V. cholerae, is accurate. It indeed emphasizes sets of con-
served genes that present high impacts on bacterial functions.

Keywords: comparative genomic, circular genome, common interval.

1 Introduction

The bacterial world is ubiquitous and shows a great diversity [21]. Interestingly,
it is responsible for the major key biological processes, but it remains far from
being well-understood. For a while, understanding the bacterial diversity was
considered as a pointless area because of the complexity and the versatility of
this bacterial world, and because of its dynamic nature. Recent efforts in high-
throughput methods for analyzing bacterial genomes, confirm its dynamic but
emphasize, as well, a more comprehensive picture of the structure of genomes
[12]. It gives various insights for investigating the bacterial complexity [6]. In
particular, Doolittle [7] suggests sets of genes as convenient descriptors for com-
paring two bacterial species. Following this assumption, comparing two bacterial
genomes implies (i) comparing their genes for finding orthologs and (ii) finding
their invariants, which indicates the genes that are conserved in both species.
Furthermore, it highlights common biological properties shared by the compared
bacteria.

Previous points raises several computational questions. The first one deals
with the inherent complexity of comparing one gene of a bacterial genome with
genes from another genome. In [4], Berglund et al. tackled this problem by using
a clustering technique as implemented in the InParanoid software. The second
one concerns the choice of an appropriate measure to compare genome structures.
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Based on a correct mapping of orthologs between species, various approaches
propose a theoretical framework to compute a measure between genomes based
on their structure similarities [5]. They particularly highlight the sets of genes
that are conserved among the genomes.

When applied on prokaryotic world and its particular features, comparing
genomes implies the use of a dedicated protocol. By nature, bacterial genomes are
circular, which must be taken into account by a dedicated measure. In addition,
experimental investigations show evidences of high rates of gene duplications in
bacteria. Based on these assumptions, this paper depicts a in silico protocol for
the bacterial genome comparison. We propose (i) to find bacterial homologies by
using the InParanoid software. We then have to put forward (ii) a dedicated
measure. It relies on comparing circular genomes based on a set of conserved
genes (following the assumption detailed in [7] and mentioned above). In this
purpose, we propose an adaptation of the common interval [20] with a special
emphasis on the circularity and duplications.

The paper is organized as follows. We briefly give notations and definitions
in Section 2. We show in Section 3 how to compute the number of common
intervals between two circular genomes that takes into account duplications.
Based on these theoretical features, we are able to define a complete approach
to compare bacterial genomes. In Section 4, we propose its application on a
concrete case: comparing Escherichia coli and Vibrio cholerae. These well-known
γ-Proteobacteria appear as an appropriate benchmark for testing the measure
(quantitively and qualitatively). Beyond the accuracy of the comparison, the
measure emphasizes sets of genes that are conserved on genomes. These genes
show particular functional properties and belong to operons, which reinforces the
biological relevance of the common interval measure in comparative genomics.

2 Preliminaries

The following section gives some notations and definitions used in the paper.

Notations. Let F be a set of genes, where each gene is represented by an integer.
A circular genome G is represented by an ordered sequence of signed elements
(signed genes) from F , where we consider that the first gene and the last one
are adjacent. Denote ηG the size of genome G. Let G[p], 0 � p � ηG − 1, be
the signed gene that occurs at position p on a genome G. For any signed gene
g, let g be the signed gene having the opposite sign. Let occG(g), g ∈ F , be the
number of occurrences of the gene g in G. Given a genome G without duplicates
(i.e. without signed genes having the same absolute value) and two signed genes
a, b, let G[a, b] be the set of unsigned genes located between genes a and b in
G according to the circular order (G[0] G[1] . . .G[ηG − 1] G[0] . . .) on G. We
also note [a, b]G the substring (i.e. the sequence of consecutive elements) of G
starting by a and finishing by b.

For example, consider the set F = {1, 2, 3, 4, 5, 6} and the circular genome
G = +3− 2 +6 + 4− 1 +5 without duplicates. Then, G[4] = −1 and G[4] = +1,
G[−1, +3] = {1, 3, 5} and [−1, +3]G = −1 + 5 + 3.
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Common intervals. We define here the measure used in the paper. Let G1, G2
be two circular genomes without duplicates and with a similar gene content. A
common interval [20] of (G1, G2) is a substring of G1 such that G2 contains
a permutation of this substring (not taking signs into account). For example,
consider G1 = +1 + 2 + 3 + 4 + 5 and G2 = +2− 4 + 3 + 5 + 1. Then, substring
[+3, +5]G1 is a common interval of (G1, G2). Note that the original definition
of a common interval of [20] is extended here to consider circular sequences.
Therefore, substring [+5, +1]G1 is also a common interval.

Given a set I of common intervals, a common interval I ∈ I is called maximal,
if there is no common interval of I that strictly contains it. We call a straight
interval, a maximal common interval for which the order and the signs of its
genes are identical in G1 and G2. On the contrary, the maximal interval is called
reverse if the order and the signs of genes are reversed in G1 with respect to
G2. Finally, we call an unstructured interval, a maximal common interval that
is neither straight nor reverse.

Genomes with duplicates. When genomes contain duplicates, we cannot directly
compute the number of common intervals, because this measure is defined on per-
mutations. A natural solution consists in i) finding a one-to-one correspondence
(i.e. a matching) between signed genes of G1 and G2, ii) using this correspon-
dence to rename genes of G1 and G2, and iii) deleting the unmatched signed
genes in order to obtain two genomes G′

1 and G′
2 such that G′

2 is a permuta-
tion of G′

1. Computing the measure becomes thus possible. Our study proposes
to focus on two matching models: the exemplar model [15] and the maximum
matching model [18].

– Exemplar model: for each gene g, we keep in the matching only one occur-
rence of g in G1 and in G2.

– Maximum matching model: this model keeps the maximum number of signed
genes in both genomes. In particular, we look for a one-to-one correspondence
between signed genes of G1 and G2 that matches, for each gene g, exactly
min(occG1(g), occG2(g)) occurrences.

For a given model, among all possible matchings, we look for one that optimizes
the number of common intervals. However, given two genomes G1 and G2, the
problem that consists in finding an exemplar (resp. a maximum matching) of
(G1, G2) such that the number of common intervals is maximized, has been
proved to be APX-Hard [1]. This complexity holds even when G1 does not
contain duplicates and each gene appears at most twice in G2.

3 Maximizing the Number of Common Intervals between
Two Circular Genomes

In [2], authors proposed three methods to compare two genomes that are mod-
eled as linear sequences of genes. The first one is an exact algorithm based on
transforming an optimization problem into a 0–1 linear program [16]. The second
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one is a heuristic based on the notion of Longest Common Substring (LCS) and
the third method is an hybrid method that combines both previous approaches.
An approach dedicated to the bacterial genome analysis implies to take into
account the natural circularity of the input genomes. For that, we propose to
show herein how to extend previous works.

3.1 Exact Approach

The principle of this approach is based on (1) transforming an optimization
problem into a 0–1 linear program [16] and (2) run this program on a powerful
solver (e.g. MiniSat+ [8]) in order to obtain optimal solutions. Given two circular
genomes G1 and G2, we detail the above transformation for both exemplar and
maximum matching models.

Variables. We define two types of variables: the match variables and the interval
variables. One match variable is defined for each possible pair of signed genes
that can be matched together. Any such variable will be set to 1 if the pair of
corresponding signed genes is matched, and 0 otherwise. Thus, we define the set
of match variables as follows:

X = {xi
j : 0 � i < ηG1 ∧ 0 � j < ηG2 ∧ |G1[i]| = |G2[j]|}

∀xi
j ∈ X , xi

j ∈ {0, 1}
The interval variables correspond to the possible common intervals. Note that
the whole genome G1 is necessarily a common interval. Hence, we do not consider
these intervals in order to reduce the linear program generated. These variables
are defined as follows:

C = {ci,n
j,m : 0 � i < ηG1 ∧ 0 � j < ηG2 ∧ 0 � n < ηG1 − 1 ∧ 0 � m < ηG2 − 1}

∀ci,n
j,m ∈ C , ci,n

j,m ∈ {0, 1}
A variable ci,n

j,m ∈ C corresponds to the common interval that begins at the
position i on G1 and that contains n+1 signed genes. Its corresponding interval
on G2 begins at the position j and contains m + 1 signed genes.

Objective function. We want to maximize the number of common intervals be-
tween G1 and G2. For that, we define the objective function as the sum of the
interval variables:

maximize
∑

ci,n
j,m∈C

ci,n
j,m

Constraints. We define several constraints to insure that the assigned variables
correspond to a valid matching, according to the considered model. For that, we
first define two constraints to verify that each signed gene cannot be matched
to more than one signed gene on the other genome:
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(C1.a) ∀i, 0 � i < ηG1 ,
∑

0�j<ηG2
|G1[i]|=|G2[j]|

xi
j � 1

(C1.b) ∀i, 0 � j < ηG2 ,
∑

0�i<ηG1
|G1[i]|=|G2[j]|

xi
j � 1

Then, for each gene, we count the number of signed genes that are matched in
order to respect the definition of the model. For the maximum matching model,
we must have:

(C2) ∀g ∈ F ,
∑

0�i<ηG1
|G1[i]|=g

∑
0�j<ηG2
|G2[j]|=g

xi
j = min{occG1(g), occG2(g)}

For the exemplar model, we must have:

(C2′) ∀g ∈ F ,
∑

0�i<ηG1
|G1[i]|=g

∑
0�j<ηG2
|G2[j]|=g

xi
j = min{1, min{occG1(g), occG2(g)}}

In order to the interval variable validity, we introduce a new notation. For any
q ∈ {1, 2}, we let fq(i, p) ≡ (i+p) mod ηGq . This notation is necessary for taking
into account the common intervals that contain both Gq[0] and Gq[ηGq − 1].

First, we must make sure that each extremity of a common interval is matched
with the two following constraints:

(C3.a) ∀ci,n
j,m ∈ C , 2ci,n

j,m−
∑

0�p�m
|G1[i]|=|G2[f2(j,p)]|

xi
f2(j,p)−

∑
0�p�m

|G1[f1(i,n)]|=|G2[f2(j,p)]|

x
f1(i,n)
f2(j,p) � 0

(C3.b) ∀ci,n
j,m ∈ C , 2ci,n

j,m−
∑

0�p�n
|G1[f1(i,p)]|=|G2[j]|

x
f1(i,p)
j −

∑
0�p�n

|G1[f1(i,p)]|=|G2[f2(j,m)]|

x
f1(i,p)
f2(j,m)� 0

Then, we define constraints to insure that each signed gene of G1 inside a com-
mon interval I is correctly matched. For that, we consider two cases. If the
corresponding interval of I on G2 does not contain both G2[0] and G2[ηG2 − 1],
we write:

(C4.a) ∀ci,n
j,m ∈ C , j + m < ηG2 , ∀1 � p < n, ∀0 � r < j,

|G1[f1(i, p)]| = |G2[r]|, ci,n
j,m + xf1(i,p)

r � 1

(C4.b) ∀ci,n
j,m ∈ C , j + m < ηG2 , ∀1 � p < n, ∀j + m < r � ηG2 ,

|G1[f1(i, p)]| = |G2[r]|, ci,n
j,m + xf1(i,p)

r � 1

Else, if the corresponding interval of I on G2 contains both G2[0] and G2[ηG2−1],
we write:

(C4.c) ∀ci,n
j,m ∈ C , j + m � ηG2 , ∀1 � p < n, ∀f2(j, m) < r < j,
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|G1[f1(i, p)]| = |G2[r]|, ci,n
j,m + xf1(i,p)

r � 1

Finally, we also define the three symmetric constraints of (C4.a), (C4.b) and
(C4.c) to consider each signed gene in G2.

3.2 Non-exact Approaches

IILCS heuristic. The IILCS heuristic proposed in [2] is a greedy algorithm
based on the notion of Longest Common Substring (LCS). The program matches
genes of an LCS of the two genomes, up to a complete reversal, and iterates
this process until no gene can be matched (see [2] for more details). We easily
modify this algorithm in order to compare circular genomes by identifying the
LCS that may overlap the end and the beginning of the genomes.

Hybrid method. This approach uses both previous methods. First, a partial
matching is obtained by running IILCS until the size of any LCS is smaller
than a given parameter k, chosen by the user. Then, a 0–1 linear program is
generated in order to match the remaining unmatched genes. Since both previ-
ous methods have been extended for taking into account genome circularity, the
hybrid method is hence adapted to circular genomes.

4 Comparing Bacterial Genomes: A Practical Application

Based on the previous theoretical framework, we are now able to propose a
practical comparison of proteobacterias. Here, we first define the protocol used
and, secondly, put forward a precise analysis of biological results obtained.

4.1 Protocol

The different steps of our comprehensive approach might be described as follow
(see also Figure 1 for illustration).

Step 1. Input data. One selects on the NCBI website two genomes G1 and G2
and transforms the corresponding data into two files in the FASTA format, one
for each genome. These files contain the list of genes, each of which is described
by a label followed by its protein sequence.

Steps 2 and 3. Homologies detection. We call the InParanoid software [13],
which clusters orthologs and inparalogs genes based on a Blastp (step 2). The
output file contains the clusters of the homologous genes. According to these
sets, we tag these homologous genes with a similar label. It hence builds two
intermediate genomes G′

1 and G′
2 (step 3).

Steps 4, 5 and 6. Measure computation. We use one of the approaches described
in Section 3 to obtain a matching between the two genomes (step 4). In this
purpose, two parameters must be specified:
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Step 1) Input :
Two genomes G1 and G2 are obtained
on the NCBI website in FASTA format

G1.fa file
16127995
MKRISTTI. . .
16127996
MRVLKFG. . .

. . .
Step 2) Homologies detection :
InParanoid is applied to detect

homologies between genes of G1 and G2

homologies file
16127995;9786796
1612798;154627;154786
. . .

Step 3) Intermediate genomes
construction :

Genes are renamed according to
homologies to construct G′

1 and G′

2
G′

1

G′

2

1
2

-34
1

-5
6

4

3 -1
7

8
-6

1

435

2
9

-3

5 10 -6

1

Step 4) Matching choice :
A matching between G′

1 and G′

2 is
obtainedG′

1

G′

2

1
2

-34
1

-5
6

4

3 -1
7

8
-6

1

435

2
9

-3

5 10 -6

1

Step 5) Matching application:
G′′

1 , G′′

2 are constructed by renaming
genes and removing unmatched genes G′′

1

G′′

2

1
2

-34
X

-5
6

X

3’ -1’
X

X
-6

1

435

2
X

-3
’

X X X

1’

Step 6) Measure computation :
Common intervals positions of (G′′

1 , G′′

2)
are listed

intervals file
([3, 5], [3, 5])
([2, 5], [3, 6])
. . .

Fig. 1. Step by step description of the bacterial genome analysis

– The model: exemplar or maximum matching model (see Section 2).
– The method: the exact method based on a pseudo-boolean programming

(PSB), the IILCS heuristic or the hybrid method with a parameter k
bounding the size of the LCS (see Section 3).

We generate the list of gene pairs that are matched. Thus, we rename the genes
according to this matching and remove the unmatched genes to construct two
genomes G′′

1 and G′′
2 without duplications and with the same gene content (step

5). We then compute the common intervals of (G′′
1 ,G′′

2) (step 6).

Filtering relevant common intervals. Among the set I of common intervals we
have obtained, we select the relevant common intervals as follows:

1. We remove common intervals that contain all matched signed genes (the
whole genome being a trivial common interval).

2. Since genomes are circular, for each common interval I ∈ I, there exists
a unique common interval I ′ ∈ I, such that I ′ contains all matched signed
genes that do not belong to I. The pair (I, I ′) will be called a complementary
pair. Given any complementary pair (I, I ′), we assume that the smallest
interval Is ∈ {I, I ′} (i.e., the one that contains less signed genes) is the
most biologically informative, and thus we choose to keep only Is in our
set.

3. However, an interval that contains only one gene carries no biological infor-
mation. We thus remove such intervals from our set.
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4.2 Practical Application

We apply our method on a benchmark composed of proteobacteria’s genomes
(Escherichia coli and Vibrio cholerae). Table 1 lists the considered set of genomes
and Table 2 shows quantitative details concerning common intervals under the
maximum matching model. Note that the computational time of InParanoid is
much longer than the one needed to obtain the matching. However, for the
longest sequences (NC 000913 vs NC 002505 or NC 000913 vs NC 009457),
only the IILCS heuristic gives results in an acceptable amount of time. Note
also the distribution of straight, reverse and unstructured intervals (see Table 2).
On average, 41% of maximal common intervals are straight, 49% are reverse and
10% are unstructured.

These quantitative results are computationnaly relevant. We therefore propose
to go further by investigating their qualitative properties. In particular, we focus
on the comparison of the chromosome pair composed by Escherichia coli
(NC 000913) and Vibrio cholerae (NC 009457), for which the quantitative results
are given in Table 2. We consider their comparison as an appropriate benchmark
for testing the biological properties highlighted by the common interval measure.
As shown in Figure 2, it emphasizes three kinds of common intervals:

Straight intervals. They show a perfectly conserved gene arrangements like in Fig-
ure 2 a). Based on experimental knowledges refered in EcoCyc[11], CcmA, CcmB,
CcmC, CcmD, CcmE, CcmF, CcmG and CcmH are the genes that encode for pro-
teins that are sub-units of the cytochrome C complex. These genes belong to the
same operon promoted by ccmAp[17]. In particular, experimental studies show
that mutants of one of these genes are deficient in the ability to produce c-type
cytochromes [19]. Their presence into a unique straight common interval, empha-
sizes the fact that these genes are conserved by their DNA sequence (i.e. homology
shown using InParanoid),but also by their arrangement on the bacterial genomes
(i.e. determination of the common interval). This result confirms the interest to
find highly functionnal genes into a single common interval.

Reverse intervals. They show sets of genes that presents a conservation between
two genomes in a reverse order, like the one in Figure 2 b). This particular inter-
val depicts the pilus gene clusters that encode for extracellular pilus structures.
They are common among bacteria and have been involved in several colonization
functions, like those involved in the intestinal mucosa colonization. For clinical

Table 1. Set of genomes analyzed

NCBI label Name
NC 000913 Escherichia coli K12
NC 002505 Vibrio cholerae 01 biovar eltor str. N16961 chromosome I
NC 002506 Vibrio cholerae 01 biovar eltor str. N16961 chromosome II
NC 009456 Vibrio cholerae 0395 chromosome I
NC 009457 Vibrio cholerae 0395 chromosome II
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Table 2. Relevant common intervals obtained under the maximum matching model by
comparing Escherichia coli (NCBI label NC 000913) with four Vibrio cholerae chro-
mosomes (NC 002505, NC 002506, NC 009456 and NC 009457)
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NC 002505 4243 2742 IILCS 1144 62 3710 275 117(43%) 134(48%) 24(9%)
NC 002506 4243 1093 PSB 638 23 123 50 18(36%) 23(46%) 9(18%)
NC 009456 4243 1133 PSB 651 22 132 55 17(31%) 27(49%) 11(20%)
NC 009457 4243 2742 IILCS 1199 59 3602 278 114(41%) 141(51%) 23(8%)
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Fig. 2. Illustration of the three kinds of common intervals observed between E. coli
(NC 000913) and V. cholerae (NC 009457). Each representation indicates the gene
indexes (e.g., GI16130131), the genes position (e.g., 2121), the available labels of genes
(e.g., CcmH), the gene orientation. Homologies are summarized using colors.

motivations, the homology of these genes is already shown between V. cholerae
and Vibrio fisheri [14]. In [9], Fullner and Mekalanos depict the organization
of the pilus assembly operon with 7 genes. The reverse common interval shown
in Figure 2 b) suggests a conservation of 3 genes only, which is not fully accu-
rate with the experimental assumption. Nevertheless, note that EcoCyc [10] not
shows neither high-quality evidences of a common transcriptionnal unit for the
seven genes, which not invalidates our method.

Unstructured intervals. They represent common intervals which are neither
straight nor reverse. Figure 2 c) illustrates this case. Like in a), this particu-
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lar interval also describes the arrangement of four genes that belong to the same
operon: hisJp operon. It is activated by Hns and repressed by ArgR. It products
a subunit of an ABC Transporter. Note again that ArgR that encodes ArgR
belongs, with mdh, to a single reverse common interval (see Figure 2 d)). mdh
produces Mdh that is a subunit of a malate dehydrogenase. It interacts in several
biological processes (carbohydrate metabolism, gluconeogenesis, glycolysis, tri-
carboxylic acid cycle, tricarboxylic acid cycle intermediate metabolism, malate
metabolism, fermentation, anaerobic respiration, glyoxylate catabolism, carbo-
hydrate catabolism). Again, these results confirm that common intervals might
be associated with operons, but moreover, like in this case, with a set of genes
that controls operons. Assuming that a common interval emphasizes a biologi-
cal function conservation over compared genomes, regulatory function appears
as important as other metabolic functions. Like in this case, common interval
shows a specific regulatory unit that controls distinct biological processes via
distinct operons. It is particularly interesting for studying genomes and their
comparisons from a functionnal viewpoint.

A close look at these qualitative results highlights that common intervals (ei-
ther straight, reverse or unstructured) may indicate the presence of functional
components within bacterial genomes. Such an information is particularly valu-
able for investigating the bacterial functional diversity, in particular in an en-
vironmental context for which the genomic data remain the corner stone for a
better understanding.

5 Extension of the Method to Conserved Intervals

Apart of the common intervals, Bergeron and Stoye introduced in [3] the notion
of conserved intervals. Given two circular genomes G1 and G2 with same gene
content and without duplication, consider two signed genes a and b of G1, with
possibly a = b. Substring [a, b]G1 is called a conserved interval of (G1, G2) if
[a, b]G1 is a common interval and if it satisfies one of the two following properties:
either a and b appear in G2 and G1[a, b] = G2[a, b]; or a and b appear in G2
and G1[a, b] = G2[b, a]. For example, if G1 = +1 + 2 + 3 + 4 + 5 and G2 =
−5 − 4 − 2 + 3 − 1, substrings [+4, +5]G1 and [+4, +1]G1 are two conserved
intervals of (G1, G2).

Our previous approach (see Section 3) can be adapted to compute the con-
served intervals instead of the common intervals. Concerning the exact approach,
since a conserved interval is also a common interval with restrictions on its ex-
tremities, an additional filter on interval variables suffices to consider the num-
ber of conserved intervals. In that case, we change the set C of variables such
that

C = {ci,n
j,m : 0 � i < ηG1 ∧ 0 � j < ηG2 ∧ 0 � n < ηG1 − 1 ∧ 0 � m < ηG2 − 1}∧

( ( G1[i] = G2[j] ∧ G1[f1(i, n)] = G2[f2(j, m)] )∨
( G1[i] = G2[f2(j, m)] ∧ G1[f1(i, n)] = G2[j] ) )

For IILCS and hence for the hybrid method, the process remains the same
in the greedy phase. However, the intervals computation is modified to count
only conserved intervals, which does not affect the complexity of the algorithm.
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6 Conclusion

In this paper, we have presented a comprehensive method to find sets of genes
that are conserved between two circular genomes. We present for that an ap-
proach to compute or approximate the number of common intervals between
two circular genomes. Each resulting interval can be considered as a set of genes
that is conserved between the two genomes during the evolution process. Our
method was tested on Escherichia coli and four chromosomes of Vibrio cholerae.
From these experimentations, the results strongly suggest that common inter-
vals is a measure that provide useful information on bacterial genomes and help
the user to focus on specific sets of genes that possess functionnal and regu-
latory properties. It confirms the interest of the common interval measure for
giving more functionnal insights in comparative genomics studies. A thorough
biological analysis of each maximum common interval, along with tests on larger
benchmarks, are planned in the very next future.

Acknowledgment. the authors thank Dr. Richard A. Long for the fruitful
discussions that initiated this work.
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Abstract. Several applications require the joint display of two phylogenetic trees
whose leaves are matched by inter-tree edges. This issue arises, for example,
when comparing gene trees and species trees or when studying the co-speciation
of hosts and parasites. The tanglegram layout problem seeks to produce a layout
of the two trees that minimizes the number of crossings between the inter-tree
edges. This problem is well-studied for the case when the mappings between the
leaves of the two trees is one-to-one. However, in typical biological applications,
this mapping is seldom one-to-one. In this work we (i) define a generalization of
the tanglegram layout problem, called the Generalized Tanglegram Layout (GTL)
problem, which allows for arbitrary interconnections between the leaves of the
two trees, (ii) provide efficient algorithms for the case when the layout of one
tree is fixed, (iii) discuss the fixed parameter tractability and approximability of
the GTL problem, (iv) formulate heuristic solutions for the GTL problem, and (v)
evaluate our algorithms experimentally.

1 Introduction

The simultaneous examination of a species phylogeny and a gene phylogeny can offer
biologists insights into evolutionary processes — such as gene duplication and loss,
lateral gene transfer, and deep coalescence — that the inspection of either tree alone
cannot provide [6,13,9]. The interaction between a gene tree and a species tree is cus-
tomarily represented by a two-dimensional layout where the leaves of each tree are
drawn on separate parallel lines, and where a straight line, called an inter-tree edge,
connects each leaf (i.e., gene) in the gene tree with the leaf in the species tree (i.e.,
species) from which the gene was sampled. Each leaf in the species tree may in fact
share inter-tree edges with multiple leaves in the gene tree, because a species may have
several associated genes. The number of crossings between the inter-tree edges depends
on the layout of the trees. A layout with many crossings can be nearly impossible to an-
alyze. In extreme cases, the number of crossings in one drawing can be quadratic in the
number of inter-tree edges, while a redrawing of the trees eliminates all crossings. The
tanglegram layout (TL) problem is to find a layout of the two trees that minimizes the
number of crossings.1 As illustrated in Fig. 1, the layout corresponding to an optimum
solution to the TL problem can be a dramatic improvement over an unoptimized layout.

The TL problem has been studied by other researchers (see below); however, previ-
ous work has only dealt with the case where the mapping between the leaves of the two

1 Throughout this work, all trees are assumed to be binary.

S. Rajasekaran (Ed.): BICoB 2009, LNBI 5462, pp. 114–125, 2009.
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Fig. 1. Two layouts of a gene tree and a species tree, displaying the interactions between their
leaves. An arbitrary layout is shown on the left; on the right is the optimized layout that results
from solving the TL problem. Data is from [12].

trees is one-to-one. This special case does not handle the more general, and extremely
useful, case where the mapping is many-to-many. Here, we define and study the general
version of the TL problem.

Background. The version of the TL problem in which the inter-tree edges define a
one-to-one mapping between the leaves of the two trees has been extensively stud-
ied [4,5,8,2,10,7]. We refer to this restricted version as the single-labeled tanglegram
layout (SLTL) problem. It is known that the SLTL problem is NP-hard [5], even when
both the trees are complete [2]. On the positive side, the one-tree version of the SLTL
problem, where the layout of one of the trees is fixed, can be solved in O(n log2 n)
time, where n is the number of leaves in the species tree [5]. Moreover, the existence
of a planar layout can be verified in linear time [5]. The SLTL is also known to be
fixed parameter tractable, where the parameter of interest is the minimum number of
crossings in any layout of the two trees [5,2]. When restricted to complete trees, the
SLTL problem is also known to be 2-approximable [2]. Additionally, there is published
software that attempts to produce a layout where the number of crossings is small [4,7].

Our Contribution. In this paper, we define and study the generalized tanglegram lay-
out (GTL) problem, in which the number of leaves in the trees may be different and a
leaf in either of the trees may share inter-tree edges with multiple leaves in the other
tree. The goal again is to produce a layout that minimizes the number of crossings
between the inter-tree edges. This generalization of the SLTL problem makes it possi-
ble to address not only the gene tree/species tree layout problem, but also those prob-
lems in which the inter-tree edges between the trees can be completely arbitrary; such
general instances arise in several settings, notably in the analysis of host-parasite co-
speciation [11]. The GTL problem has not, to our knowledge, been studied before.

After defining the GTL problem formally, we present two efficient algorithms for
its one-tree version, where the layout of one of the trees is fixed. Our algorithms run in
time O(k log2 k/ log log k) and O(kh), respectively, where k is the number of inter-tree
edges between the two trees, and h is the height of the tree whose layout can change.



116 M.S. Bansal et al.

Note that for the SLTL problem, k equals n, the number of leaves in each tree. Thus,
our first algorithm improves on the best known solution for the one-tree SLTL problem
by a factor of Θ(log log n). Based on the result of Fernau et al. [5], we show that the
existence of a planar layout (i.e., a layout with no crossings) can be verified in O(k)
time. Along the lines of [5,2], we also discuss the fixed parameter tractability of the
GTL problem, along with the approximability of a version of the GTL problem which
seeks to maximize the number of non-crossing edges.

We have found that, in practice, one-tree algorithms produce layouts that leave con-
siderable room for improvement. Thus, we have designed and implemented fast heuris-
tics that exploit our one-tree algorithm to reduce the number of crossings by rearranging
the layouts of both of the input trees. Although our heuristics do not guarantee an opti-
mal layout, we are able to show empirically that they perform quite well for the range
of input sizes that one might expect to encounter in practice. To further strengthen this
claim, we make use of an integer quadratic programming formulation of the two-tree
problem, based on the work of Nöllenburg et al. [10], to solve the GTL problem exactly
for realistic input sizes. Our experiments show that our heuristics perform well in prac-
tice and, in all but a few cases, our most comprehensive heuristic returns optimum or
near-optimum solutions.

2 Basic Notation and Preliminaries

Given a rooted tree T , we write V (T ), E(T ), and L(T ) to denote its node set, edge set,
and leaf set, respectively. A node in V (T ) that is not a leaf is called an internal node.
The root node of T is denoted by rt(T ). Given a node v ∈ V (T ), pa(v) denotes the
parent of v in T , Ch(v) is the set of children of v, and T (v) denotes the subtree of T
rooted at v. If two nodes in T have the same parent, they are called siblings. T is fully
binary if every internal node has exactly two children. Throughout this paper, unless
otherwise noted, the term tree refers to a rooted, fully binary tree.

The generalized tanglegram layout problem. Let S and T be two uniquely leaf-labeled
trees such that L(S) = {1, . . . , m} and L(T ) = {1, . . . , n}. Furthermore, let I(S, T )
be the set of inter-tree edges such that I(S, T ) ⊆ L(S) × L(T ) and each leaf node of
S and T is incident on at least one edge in I(S, T ). Given uniquely leaf-labeled trees
S and T and the set of inter-tree edges I(S, T ), we denote the resulting instance of the
GTL problem by 〈S, T, I(S, T )〉.

Given a tree T , we say that a linear order τ on L(T ) is compatible with T if, for each
v ∈ V (T ), the leaves in T (v) form an interval (i.e., appear in a continuous block) in τ .
We write u <τ v to mean that u ∈ L(T ) appears before v ∈ L(T ) in the order τ .

Given compatible linear orders σ and τ on trees S and T respectively, the number of
crossings between σ and τ with respect to I(S, T ), denoted cr(σ, τ, I(S, T )), is defined
to be |{(u, v) ∈ I(S, T ) : either u <τ v, and v <σ u, or u <σ v, and v <τ u}|.
Problem 1 (GTL Problem). Given an instance 〈S, T, I(S, T )〉, find compatible linear
orders σ and τ on trees S and T , respectively, such that cr(σ, τ, I(S, T )) is minimized.

Next, we define a restricted version of the GTL problem in which the linear order for
one of the input trees is fixed. We call this restricted problem the One-Tree Generalized
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Tanglegram Layout (OT-GTL) Problem. Given uniquely leaf-labeled trees S and T , the
set of inter-tree edges I(S, T ), and a compatible linear order τ on T , we denote the
resulting instance of the OT-GTL problem by 〈S, T, I(S, T ), τ〉.
Problem 2 (OT-GTL Problem). Given an instance 〈S, T, I(S, T ), τ〉, where τ is a
compatible linear order on T , find a compatible linear order σ on the tree S such that
cr(σ, τ, I(S, T )) is minimized.

3 Solving the OT-GTL Problem

In this section, we provide two algorithms for the OT-GTL problem on the instance
〈S, T, I(S, T ), τ〉, one with time complexity O(k log2 k/ log log k) and the other with
O(kh), where k denotes the cardinality of the set I(S, T ) and h is the height of tree S.
We also discuss two important special cases of the OT-GTL problem.

With any given planar layout of a tree, we associate a unique linear order. Therefore,
when talking about the tree S, we assume that the tree is drawn in the plane with the
root node on top and leaves on the bottom. The unique linear order associated with S is
then given by the left-to-right order of the leaf labels. Similarly, when talking about the
tree T , we assume that the tree T is drawn in the plane with the root at the bottom and
the leaves on the top. The unique linear order associated with T is then given by the
left-to-right order of the leaf labels. Also observe that, under this setting, every linear
order compatible with S (T ) defines a unique planar layout for S (T ). Thus, if we rotate
the layout shown in Figure 1 clockwise by 90 degrees then the tree on the top would be
S and the one on the bottom would be T .

We need some notation. Let σ denote the linear order corresponding to some planar
layout of S. For any v ∈ V (S(v)), I(S(v), T ) denotes the set {(u, v) ∈ I(S, T ) : u ∈
L(S(v))}. We define the number of crossings cr(σ, τ, I(S, T ), v) at node v to be |{(u, v)
∈ I(S(v), T ) : either u <τ v, and v <σ u, or u <σ v, and v <τ u}|.

Let σv denote the linear order corresponding to the planar layout of S obtained by
starting with the planar layout corresponding to σ and then swapping the left and right
child at the internal node v ∈ V (S).

The OT-GTL problem seeks to re-draw the tree S such that the linear order σopt

associated with the new layout minimizes the number of crossings cr(σopt, τ, I(S, T )).
The task then is to decide, at each internal node, which one of its two children is to be
the left child and which one the right child. It is easy to show that this decision can be
taken independently at each internal node, irrespective of the decision at the other nodes.
Thus, our algorithm starts with a planar layout of S, with the corresponding linear order
σ, and then computes, at each internal node v of S, the values cr(σ, τ, I(S, T ), v), and
cr(σv , τ, I(S, T ), v). If cr(σ, τ, I(S, T ), v) > cr(σv , τ, I(S, T ), v), then we swap the
left and right child of v. Once this is done at all internal nodes of S, the compatible
linear order associated with the new planar layout of S gives the required solution.

A note on handling the input. Recall that I(S, T ) is the set of inter-tree edges. Our
algorithms assume that given any leaf node in S (or T ), we can access all its p neighbors
in the other tree within O(p) time. This can be easily accomplished by associating with
each leaf node a set of its neighbors in the other tree. It is possible to construct all
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these sets within O(k) time. Since all our algorithms require Ω(k) time, we ignore
this additional additive factor. Note, however, that if the leaf labels are arbitrary (and
not, as we assume, {1, . . . , n} and {1, . . . , m}), then handling the input could require
Θ(k log(nm)) time in the worst case.

3.1 An O(k log2 k/ log log k)-Time Algorithm

Our algorithm uses a data structure Ψ for the subset rank problem [3]. Such a data
structure allows one to maintain a subset A ⊆ {1, . . . , n} under the following oper-
ations: Insert(i, Ψ), which inserts i into Ψ , Delete(i, Ψ), which deletes i from Ψ , and
Rank(i, Ψ), which, given some i ∈ A, returns the number of elements in A that are
less than or equal to i. It is known that each of these operations can be performed in
O(log n/ log log n) time [3].

We will assume, without any loss of generality, that the initial layout of S is such that
at each internal node the number of inter-tree edges incident on leaves of the left subtree
is at least as large as the number of inter-tree edges incident on leaves of the right sub-
tree. The linear order corresponding to this layout of S is σ. Our algorithm computes, at
each internal node v of S, the value cr(σ, τ, I(S, T ), v). Later we explain how a slight
modification allows our algorithm to compute the value cr(σv , τ, I(S, T ), v) as well.
The algorithm proceeds in three different steps:

Step 1: Modify the tree S into a tree S′ as follows: For each x ∈ L(S), let A(x) denote
the set of leaf node neighbors of x according to the set of inter-tree edges I(S, T ). For
each x ∈ L(S), replace the leaf x with an arbitrary tree, X on the leaf set A(x) such
that the linear order associated with X is a subsequence of the order τ . We refer to
this modified version of S as S′. Observe that S′ need not be uniquely leaf-labeled,
and that the number of leaf nodes in S′ must be exactly k (i.e., |I(S, T )|). Observe,
also, that all the internal nodes in S must be internal nodes in S′ as well. The inter-tree
edges between S′ and T now simply connect those leaf nodes of S′ and T that have the
same labels. Now, we uniquely relabel the tree S′ so that the compatible linear order σ′

associated with the layout of S′ becomes the ordered list (1, 2, . . . , k). The set I(S′, T )
of inter-tree edges between S′ and T is correspondingly updated. Note that each leaf
node in S′ must be incident on exactly one edge of I(S′, T ).

This step reduces the instance 〈S, T, I(S, T ), τ〉 of the OT-GTL problem into the
instance 〈S′, T, I(S′, T ), τ〉. The following lemma relates these two instances.

Lemma 1. Given S and S′ and any internal node v ∈ V (S), if v′ is the corresponding
internal node in S′, then cr(σ, τ, I(S, T ), v) = cr(σ′, τ, I(S′, T ), v′).

Thus, to solve the OT-GTL problem on instance 〈S, T, I(S, T ), τ〉 it is sufficient to
solve it on the instance 〈S′, T, I(S′, T ), τ〉.
Step 2: We start with the planar layout of S′ corresponding to the linear order σ′ =
(1, 2, . . . , k) and modify the tree T into a tree T ′ as follows: For each x ∈ L(T ), let
B(x) denote the set of leaf node neighbors of x according to the set of inter-tree edges
I(S′, T ). For each x ∈ L(T ), replace the leaf x with an arbitrary tree, X on the leaf set
B(x) such that the linear order associated with X is a subsequence of the order σ′. We
refer to this modified version of T as T ′, and the corresponding linear order as τ ′. The
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set of inter-tree edges, denoted by I(S′, T ′) now simply connects those leaf nodes in S′

and T ′ that have the same labels. Next, we traverse through S′ in post order, and store
at each internal node of S′, the range of leaf labels in the subtree rooted at that node.
Note: This range can be completely specified by two “bounding” integers.

This step reduces the instance 〈S′, T, I(S′, T ), τ〉 of the OT-GTL problem into the
instance 〈S′, T ′, I(S′, T ′), τ ′〉. The following lemma relates these two instances.

Lemma 2. Given S′, T , and T ′, and any internal node v ∈ V (S′), we must have
cr(σ′, τ, I(S′, T ), v) = cr(σ′, τ ′, I(S′, T ′), v).

It is worth observing that both S′ and T ′ are uniquely leaf labeled, L(S′) = L(T ′) =
{1, . . . , k}, and each leaf node in S′ and T ′ is incident on exactly one edge of I(S′, T ′).
Thus, by performing steps 1. and 2. we have effectively reduced an instance of the OT-
GTL problem into an instance of the one-tree SLTL problem. Our algorithm on this
simplified instance 〈S′, T ′, I(S′, T ′), τ ′〉 of the OT-GTL problem proceeds as follows.

Step 3: Consider the path from the root of S′ to the left most leaf node (in the layout
corresponding to σ′). We now compute the value cr(σ′, τ ′, I(S′, T ′), v) at each internal
node v along this path by calling Procedure COMPUTECROSSINGS on S′, σ′ and τ ′.
Remove all the nodes along this left most path. This decomposes S′ into a forest of
subtrees each having at most k/2 leaves. Also break up the linear order τ ′ into separate
linear orders, each corresponding to a particular subtree and restricted to its leaf set.
Now apply step 3 of this algorithm recursively on each of these subtrees.

Procedure COMPUTECROSSINGS: This procedure takes as input a tree S′ drawn ac-
cording to σ′ and a linear order τ ′, and computes the value cr(σ′, τ ′, I(S′, T ′), v) at
each internal node v along the path P from the root to the left most leaf of S′. Proce-
dure COMPUTECROSSINGS uses the subset rank data structure as follows: Given a leaf
x in the tree S′, suppose x appears in the right subtree of an internal node y on P . Let
z be the largest leaf label in the left subtree of y. Observe that all the leaves in S′ with
a label smaller than z must be in the left subtree of y. We will use the subset rank data
structure to find the number of nodes that appear after the node x in the linear order τ ′,
whose labels are smaller than or equal to z. Each such node, when paired with x, must
be a crossing pair at node y. It can be shown that procedure COMPUTECROSSINGS has
time complexity O(l log l/ log log l), where l = |L(S′)|. Further details are omitted
from this extended abstract.

Our three-step algorithm computes at each internal node v ∈ V (S′), the value
cr(σ′, τ ′, I(S′, T ′), v) in O(k log2 k/ log log k) time. In light of Lemmas 1 and 2, this
immediately yields the value cr(σ, τ, I(S, T ), v) for each internal node v ∈ V (S).

The following lemma shows how our algorithm can also compute, at each internal
node v ∈ V (S), the value cr(σv , τ, I(S, T ), v), yielding Theorem 1.

Lemma 3. Let τ denote the linear order obtained by reversing τ . Then, for any v ∈
V (S), we must have cr(σv, τ, I(S, T ), v) = cr(σ, τ , I(S, T ), v).

Theorem 1. The OT-GTL problem can be solved in O(k log2 k/ log log k) time.
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3.2 An O(kh)-Time Algorithm

We now show that it is possible to solve the OT-GTL problem in O(kh) time, where h is
the height of the tree S. This algorithm asymptotically outperforms our
O(k log2 k/ log log k)-time algorithm when the tree S is (roughly) balanced.

The main idea is to spend at most O(k) time for all the nodes at any fixed level of S.
The algorithm follows:

1. Uniquely relabel the tree S so that the compatible linear order σ associated with
the layout of S becomes the ordered list (1, 2, . . . , m). The set I(S, T ) of inter-tree
edges between S and T is correspondingly updated.

2. Modify the tree T into a tree T ′ as shown in Step 2. of the O(k log2 k/ log log k)-
time algorithm. The set of inter-tree edges, denoted by I(S, T ′), now simply con-
nects those leaf nodes in S and T ′ that have the same labels.

3. Traverse through S in post order, and store at each internal node the range of leaf la-
bels in the subtree rooted at that node. Note: This range can be completely specified
by two “bounding” integers.

4. Let x = rt(S). In the linear order τ ′, for each element i, one can now determine in
constant time whether i is in the left or the right subtree of x in the layout (according
to σ) of S. This can be used to compute the value cr(σ, τ ′, I(S, T ′), x) as follows:

Consider each element i of τ ′ in order. If i is in the left subtree of x then do
nothing and skip to the next i. If i is in the right subtree of x, then, by using
counters (after an initial O(k) preprocessing step), we can obtain in O(1) time
the number of elements j that occur after i in τ ′ such that j is in the left subtree
of x. Set cr(σ, τ ′, I(S, T ′), x) to be the sum of these values over all i in τ ′.

5. Split the linear order τ ′ into two linear orders, one containing all the leaves from the
left subtree of x and the other the leaves from the right subtree. Recursively repeat
steps 4 and 5 of this algorithm on the subtrees S(u) and S(v), where u, v ∈ Ch(x).

Our algorithm computes at each internal node v ∈ V (S), the value cr(σ, τ ′, I(S, T ′), v)
in O(kh) time. The following lemma relates these values to the ones we actually want
to compute, and yields Theorem 2.

Lemma 4. Given S, T and T ′, and any internal node v ∈ V (S), we must have
cr(σ, τ, I(S, T ), v) = cr(σ, τ ′, I(S, T ′), v).

Theorem 2. The OT-GTL problem can be solved in O(kh) time, where h is the height
of the tree S.

3.3 Interesting Special Cases

We discuss two special cases of the OT-GTL problem. The first consists of those in-
stances in which the set of inter-tree edges I(S, T ) is such that each leaf node of S
and T is incident on exactly one edge in I(S, T ). This is exactly the SLTL problem
discussed in the Introduction. The one-tree SLTL problem has been studied in [5,4].
Observe that, in this case, we must have |L(S)| = |L(T )| = |I(S, T )|. The best
known algorithm for this problem runs in O(n log2 n) time [5], where n = |L(S)|
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= |L(T )|. Our O(k log2 k/ log log k) time algorithm for the OT-GTL problem becomes
an O(n log2 n/ log log n)-time algorithm when restricted to this case.

The second case consists of those instances in which the set of inter-tree edges
I(S, T ) is such that each leaf node of S is incident on exactly one edge in I(S, T ). This
restricted version of the OT-GTL problem arises naturally when one or more gene trees
must be visually compared with a species tree. As seen in the Introduction, species trees
have leaves that are labeled uniquely, while each gene trees may have several leaves with
the same leaf label. In this scenario, one wishes to produce a planar layout of each given
gene tree aligned with the species tree, such that if one were to draw edges between the
corresponding leaf labels of the gene tree the species tree, the number of crossings be-
tween these edges is minimized. Thus, the gene tree is the tree S and the species tree
is the tree T . Note that, in this case, |I(S, T )| = |L(S)|. Our O(k log2 k/ log log k)
time algorithm for the OT-GTL problem becomes an O(m log2 m/ log log m)-time al-
gorithm when restricted to this case, where m = |L(S)|. Likewise, our O(kh)-time
algorithm yields an O(mh) time algorithm.

4 The GTL Problem

The GTL problem is NP-hard, even for simpler special cases [5,2]. Nöllenburg et
al. [10] gave an integer quadratic programming (IQP) based exact solution for the re-
stricted version of the GTL problem in which the set of inter-tree edges defines a one-to-
one mapping between the leaves of S and T . Their IQP based approach extends easily
to exactly solve the GTL problem as well.

Recall that our O(k log2 k/ log log k)-time algorithm converts the instance
〈S, T, I(S, T ), τ〉 of the OT-GTL problem into the instance 〈S′, T ′, I(S′, T ′), τ ′〉 of the
one-tree SLTL problem, before applying Step 3. It can be shown that cr(σ, τ, I(S, T ))=
cr(σ′, τ ′, I(S′, T ′)).

Fixed parameter tractability and approximability. Since we have cr(σ, τ, I(S, T )) =
cr(σ′, τ ′, I(S′, T ′)), Fernau et al.’s FPT algorithm for the SLTL problem [5], which
runs in time O∗(cp), where c is a constant and p is the number of crossings in an optimal
layout of the two trees, yields an O∗(cp)-time algorithm for the GTL problem as well.2

The GTL problem is thus fixed parameter tractable. A similar argument shows that,
based on the result of Buchin et al. [2], a dual version of the GTL problem, which seeks
to maximize the number of non-crossing edges, admits a 0.878-approximate algorithm.

Existence of a planar layout. Fernau et al. [5] showed that, for the SLTL problem, the
existence of a planar layout can be verified with-in O(n) time, where n = |L(S)| =
|L(T )|. It can be shown that the instance 〈S, T, I(S, T ), τ〉 of the OT-GTL problem
can be converted into the instance 〈S′, T ′, I(S′, T ′), τ ′〉 of the SLTL problem with-in
O(k) time. Thus, since cr(σ, τ, I(S, T )) = cr(σ′, τ ′, I(S′, T ′)), we have an O(k)-time
algorithm to verify the existence of a planar layout for the GTL problem.

Heuristics. We propose three different heuristic approaches for the GTL problem, which
utilize our fast exact algorithms for the OT-GTL problem.

2 The O∗ notation ignores the polynomial component of the fixed parameter algorithm.
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Alternating Heuristic (AH): This heuristic first optimizes the layout of tree S by solv-
ing the OT-GTL problem, then optimizes the layout of tree T with respect to the new
layout of S, then optimizes S again, and so on. Thus, after each iteration the total num-
ber of crossings decreases. The heuristic terminates when there is no further reduction
in the crossing value.

Local-Search Heuristic (LH): This is a local search based hill-climbing heuristic in
which the local neighborhood is defined by the set of all layouts of T obtained from the
layout of T corresponding to τ by swapping the left and right subtrees at an internal
node. Each of these O(n) trees in the neighborhood is then evaluated by solving the
OT-GTL problem on the tree S with respect to that tree. Among these O(n) layouts
of T , the one which enables the OT-GTL algorithm (when run on tree S) to find the
lowest crossing value, is set to be the new layout of T for the next local search step. The
algorithm terminates when no better layouts can be found during the local search step.

Local-Search Alternating Heuristic (LAH): This heuristic consists of running the
Local-Search Heuristic as described above, until it terminates, and then reversing
the roles of trees S and T and running the Local-Search heuristic again, and so on.
The heuristic terminates when no further improvements in the layout can be observed
by performing the role reversal.

Let us assume that we use an O(x) time algorithm to solve the OT-GTL problem.
Then, the time complexity of (i) AH is O(ax) where a is the number of iterations, (ii)
LH is O(bnx) where b is the number of local search steps, and (iii) LAH is O(cx(m +
n)) where c is the total number of local search steps performed.

5 Experimental Evaluation

To test the effectiveness and utility of our heuristics for the GTL problem, we
implemented and tested them on three kinds of datasets: (i) randomly generated in-
put instances, (ii) gene trees/species trees built using a simple probabilistic model for
gene-duplication/loss, and (iii) a real world gene tree/species tree dataset. To evaluate
the performance of our heuristics, on each dataset, we compute the corresponding per-
formance ratio ρ = (cr + 1)/(OPT + 1), where cr denotes the crossing value for the
heuristic and OPT the number of crossings in an optimum layout.

Our heuristics use our fast exact algorithms for the OT-GTL problem. For our ex-
periments, we chose to use the O(kh)-time algorithm for the OT-GTL problem.3 This
algorithm, as well as the three heuristics were implemented in Python and all experi-
ments we performed on an Intel Core2 Duo 2.4 GHz PC. To test the performance of our
heuristics, we also used the IQP based approach to solve the GTL problem optimally.
The IQP was solved using the mathematical programming software CPLEX.

Random input instances. We first tested the performance of our heuristics on trees
with arbitrary binary topologies and arbitrary inter-tree edges. These instances were

3 Our decision was based on the observation that the O(kh)-time algorithm seems to outperform
the O(k log2 k/ log log k)-time algorithm on the input instance sizes used in our experiments.
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Table 1. Performance of our heuristics on randomly generated input instances. For each n, the
table shows (i) the number k of inter-tree edges, (ii) the number of crossings in a random layout,
(iii) the number of crossings, the number of iterations performed, and the time, in seconds, re-
quired to produce the layout, for the one-tree case (depicted by 1T) and for the three heuristics
AH, LH, and LAH, and (iv) the number of crossings in an optimal layout. All values have been
averaged over 10 runs. Note that we have not reported the number of iterations for LAH; these
were always observed to be between 2 and 3 times the number of iterations for LH. Due to ex-
cessive running times, we did not compute optimal solutions for trees with n > 50, and did not
apply LH and LAH on trees with n > 200.

Input 1T AH LH LAH OPT
n k cr cr time cr iter time cr iter time cr time cr

10 11 24.9 13.5 0.00 7.9 3.1 0.00 6.2 3.4 0.01 5.8 0.04 5.8
20 23 113.3 85.8 0.00 61.6 3.2 0.00 57.5 8.5 0.11 57.1 0.22 56.8
30 34 254.9 209.9 0.00 164.9 3.7 0.00 158.0 13.4 0.43 157.8 0.64 157.1
40 46 500.6 406.6 0.00 339.5 3.8 0.01 324.1 16.5 1.07 323.7 1.51 322.9
50 57 824.3 623.6 0.00 527.9 3.4 0.01 513.6 18.4 2.03 512.8 2.84 510.7

100 115 3283.3 2765.1 0.00 2482.7 3.7 0.04 2431.7 42.0 23.58 2431.5 26.99 -
200 230 12868.7 11806.9 0.01 10938.9 3.9 0.10 10670.9 83.8 226.53 10668.7 249.74 -
400 460 52139.5 48623.3 0.03 45904.9 3.9 0.29 - - - - - -
800 920 211531.8 199728.2 0.12 193667.0 4.1 1.03 - - - - - -

generated as follows: We created two random binary trees, both on n leaves and es-
tablished a random one-to-one correspondence between the leaf sets of the two trees.4

Next, we created an instance of the GTL problem by adding an additional �n · 15/100
randomly selected inter-tree edges. We performed experiments for values of n ranging
from 10 to 800. The results of our experiments are depicted in Table 5. The performance
ratio ρ, averaged over all n ∈ {10, 20, 30, 40, 50}, for one-tree (IT), AH, LH, and LAH,
respectively, are 1.61, 1.12, 1.02, and 1.003. It can be seen that LAH performs remark-
ably well: Out of the 50 input instances for which the optimum solution was known,
LAH found an optimum layout in 41 instances. AH also performs quite well and pro-
duces an optimized layout almost instantaneously even for large input instances.

Simulated gene trees/species trees. Next, we tested the performance of our heuristics
on simulated datasets created by using a simplified birth-death process that mimics
gene duplication and loss (see, for example, [1]). To build our trees, we first gener-
ated a random binary tree S with n leaves. We then generated a simulated gene tree
based on S according to the following probabilistic scheme: At each internal node v
in S, the subtree S(v) either duplicates with probability d, is lost with probability r,
or remains intact with probability 1 − d − r. For our experiments we chose d and r
to be 0.1 and 0.12 respectively. The value of n ranged from 10 to 800. Table 2 de-
picts the results of our experiments. The performance ratio ρ, averaged over all n ∈
{10, 20, 30, 40, 50}, for one-tree (IT), AH, LH, and LAH, respectively, are 1.33, 1.12,
1.0004, and 1.0004. Both LH and LAH perform equally well in this case; in particular,
out of the 50 input instances for which an optimum solution was known, both LH and
LAH found an optimum layout in 48 instances.

4 Each random tree was created by recursively, and randomly, bi-partitioning its set of leaves.
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Table 2. Performance of our heuristics on simulated gene trees/species trees. The layout is iden-
tical to that of Table 5, and m denotes the number of leaves in the gene tree.

Input 1T AH LH LAH OPT
n m cr cr time cr iter time cr iter time cr time cr

10 10.0 15.2 1.2 0.00 1.2 2.0 0.00 1.2 2.0 0.00 1.2 0.02 1.2
20 16.9 44.6 10.5 0.00 6.9 2.1 0.00 5.6 2.4 0.03 5.6 0.10 5.6
30 34.3 390.9 126.8 0.00 125.8 2.1 0.00 92.7 4.5 0.24 92.7 0.52 92.7
40 44.0 631.1 110.6 0.00 109.7 2.2 0.00 83.5 4.1 0.34 83.5 0.79 83.1
50 70.0 2098.1 913.9 0.00 845.2 2.5 0.01 767.5 7.1 1.98 767.5 3.46 767.4

100 93.5 2757.4 815.9 0.00 748.0 2.5 0.02 515.0 8.1 5.04 515.0 7.89 -
200 269.9 31671.8 9128.1 0.02 8407.6 2.8 0.13 7012.0 22.6 172.51 7012.0 219.27 -
400 360.5 35941.7 2942.7 0.02 2823.5 3.1 0.17 - - - - - -
800 741.6 153141.1 29695.2 0.09 27854.6 3.0 0.59 - - - - - -

Fig. 2. Distribution of crossing values for the empirical gene tree/species tree dataset after apply-
ing various tanglegram layout algorithms. The distributions for LH and LAH are almost identical.

Empirical Dataset. Finally, we tested our heuristics on a real-world empirical dataset
[12] on Angiosperms. This data set consists of 588 gene trees with number of leaves
ranging from 4 to 94 and a species tree with 7 taxa. On the unoptimized input, the av-
erage performance ratio ρ for each gene tree/species tree pair is 10.12, while the corre-
sponding values for 1T, AH, LH, and LAH are 2.32, 1.62, 1.02 and 1.0005 respectively.
In particular, there were only one and six input instances, respectively, for which LAH
and LH did not find an optimum layout. On all the 588 input instances together, AH
took 0.21 seconds, LH took 2.4 seconds, and LAH took a total of 12.5 seconds. Figure 5
depicts the distribution of crossing values after applying the one-tree algorithm and the
three heuristics. Indeed, after applying LH and LAH to the dataset, a majority of the
input instances show no crossings, a dramatic improvement over the initial layout.

Comparison against other heuristics. Nöllenburg et al., in [10], introduced a heuristic
for the SLTL problem. This heuristic has a time complexity of O(8h + n2h), where h
is the minimum height of the two trees. Since this is exponential in the height of the
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tree, they also proposed a branch-and-bound algorithm, referred to as rec-split-bb, to
curb the time complexity of the heuristic. As shown earlier, the GTL problem can be
reduced to an instance of the SLTL problem, and consequently, it is possible to use
rec-split-bb as a heuristic for the GTL problem. Though rec-split-bb seems to be quite
efficient in practice, there is no polynomial bound on its running time. All our heuristics
are guaranteed to terminate within polynomial time. Our heuristics LH and LAH also
seem to perform at least as well as the rec-split-bb heuristic (based on the experimental
results reported in [10] for random general input trees), if not significantly better.
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Abstract. We present an approach for the analysis of phenotypic di-
versity in morphology and internal composition of biological specimen
by means of high resolution 3-D models of developing barley grains.
Three-dimensional histological structures are resolved by reconstruct-
ing specimen from large stacks of serially sectioned material, which is
a preliminary for the spatial assignment of key tissues in differentia-
tion. By sampling and constructing models at different developmental
time steps from multiple individuals, we address two aims in a computa-
tional phenomics context: i) Generation of averaging atlases as structural
references for integration of functional data, and ii) building the basis
for a mathematical model of grain morphogenesis. We have established
an algorithmic pipeline for automated processing of large image stacks
towards phenotypic 3-D models and data-integration, comprising regis-
tration, multi-label segmentation, and alignment of functional measure-
ments. The described algorithms allow high-throughput reconstruction
and tissue recognition of datasets comprising thousands of images. The
usefulness of the approach is demonstrated by automated model gen-
eration, allowing volumetric measurements of tissue composition, three-
dimensional analysis of diversity, and the integration of MALDI-IMS
data by mutual information based registration, which is a significant
contribution to a systematic analysis of differentiation and development.

Keywords: Plant Phenotyping, 3-D Modelling, Computational Phe-
nomics, Multimodality Registration.

1 Introduction

Plant species provide an immense diversity in morphology, growth habits, and
useful traits ranging from bulk biomass fuels to pharmaceutically important com-
pounds, where crop plants, particularly cereals, are certainly most relevant. The
description of plant phenotypes has a great tradition in breeding, in connection
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with huge success drastically increasing the worlds food production in the last
century. Today’s high-throughput methods, assaying living systems on all scales
and domains will lead to unprecedented enhancement of our insights into plant
growth and development.

In the post-genomics era, with huge amounts of experimental data available
for specific domains, the aim is to gain a holistic understanding of the complex
systems of life by analysis and integration of observations of different assaying
techniques and modalities.

Apart from combined investigation of genome, proteome, and metabolome
data based on digested material, the observation of intact structure and func-
tion or even their dynamics in vivo have become widely available with technical
advance in the past years. Either scanning, tomographic, or destructive methods
have in common to allow the observation of phenomena in their natural three-
dimensional extension, which literally gives a new dimension to analysis. The
processing of such data often comprises non-trivial signal and image processing
steps in reconstruction towards valid and revealing visualizations. While data–
preprocessing and -reconstruction are often legitimately delegated to engineers
by biologists, the systematic or algorithmic analysis, rather than subjective man-
ual inspection, of reconstructed data itself is of great importance for objective-
ness and reproducibility, thereby requiring knowledge of biological background
as well as computational and mathematical methods.

In the context of analysis and modelling of systems in 3-D, the representa-
tion of inevitable biodiversity amongst observed species is an important topic:
For the integration of functional data, most likely sampled from different indi-
viduals, averaging or interindividual models, reflecting phenotypic diversity are
highly desirable. This also holds for the generation of quasi-continuous spatio-
temporal developmental models based on interpolation of intermediate stages
between physical measurements. Here the identification of common themes and
structures, and discrimination from phenotypic diversity is essential to any
modelling.

We work in the context of modeling growth and development of barley
(Hordeum vulgare) grains (fig. 1) in 3-D, generating high resolution atlases of
relevant tissues and structures for the integration of functional data based on a
multitude of samples covering the observed phenotypic variances of individual
specimen.

2 Related Work

While in medical applications, standards for imaging devices and acquisition ex-
ists to a large extend, 3-D imaging in plant biology is very much application spe-
cific. Non-destructive bio-imaging methods such as laser scanning microscopy,
X-ray or magnetic resonance imaging have been employed to generate models
on microscopic scales, either by direct intensity-based visualizations or further
processing such as tissue or organ labelling, as described in recent publications
[10], [15], and [4]. Tomographic and scanning methods have several drawbacks,
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(a) (b)

Fig. 1. Barley (Hordeum vulgare): 1a: A developing barley grain 7 days after flowering
(DAF ). 1b: Distribution of weights during early grain development, showing large
varinaces in grain phenotypes even under standardized conditions.

particularly in plant systems, delivering coarse spatial resolution for tomographic
methods or limited dye penetration caused by cell walls.

Destructive methods overcome limitations in resolution and sampling depth
by serially sectioning the object, allowing an analysis of histological structure
and functional data, such as gene-specific expression levels as described in [11],
but have comprehensive demands in image reconstruction. In vertebrate
systems the authors of [21] analyze the development of mice embryos, compris-
ing reconstruction algorithms ([12]) and integration of structural information and
gene-expression data in a bioinformatics context ([2]). Algorithms and methods
for reconstruction of section data are discussed in detail in [22] while an appli-
cation in 3-D model generation of plant organs based on individual specimen is
described in [9].

Imaging techniques gain more importance in proteome and metabolome anal-
ysis also (see [13] for a compact review). MALDI imaging mass spectrometry
(MALDI-IMS), as a relatively new technique has received great attention re-
cently (see [8] for an overview), allowing detailed analysis of proteins and small
molecules by resolving full MS spectra spatially, which results in new challenges
in analysis and visualization.

3 Methods

In this section we describe the automated generation of high-resolution 3-D
models from serial section data. We address reconstruction (registration), tis-
sue labelling (segmentation) and integration of multiple samples, for efficient
processing of data-sets comprising several thousands of light-microscopic (LM)
images, and describe a statistical averaging model as well as the integration of
functional data modalities into the obtained 3-D models.
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3.1 Data Reconstruction from Section Images

The object of interest is physically destroyed for digitization, whereby the three-
dimensional coherence of structures is lost by manual slide mounting and digiti-
zation. Since manual or interactive processing is virtually impossible for stacks
comprising several thousand images, all images are registered to recompose the
intact grain structure, i.e. each image is transformed towards an optimal super-
position of structures of all images in the stack.

Automated landmark detection, e.g. using algorithms like SIFT [16] is difficult
in biomedical images, especially in the absence of unique structures in histological
images. While finding an optimal transform based on direct intensity values
is computationally more costly than aligning two sets of coordinates, it can
be generally considered less error prone than matching images based on such
landmarks which could possibly be mis-identified beforehand.

Intensity Based Registration. In the context of intensity-based image reg-
istration a broad range of image-to-image metrics are described in the litera-
ture [20]. While statistical and information theoretic metrics [17] address images
coming from different modalities (inter-modality registration), images R, T : Ω ⊂
R

2 �→ R with similar intensity distributions allow an intuitive and computational
cheap metric by direct comparison of quadratic difference intensity magnitude
at grid points

D(T, R) :=
1
2

∫
Ω

(R(x) − T (x))2 dx. (1)

An optimal superposition of all stack images R := (R1, . . . , RM ) is found by
minimizing the sum of squared differences of images intensities over the space of
linear transformations ϕ = (ϕ1, . . . , ϕM ) for each image:

(R ◦ ϕ) :=
M∑
i=1

∫
Ω

(R(x)i−1 ◦ ϕi−1 − R(x)i ◦ ϕi)
2
dx

!= min. (2)

Extended Image Metric. Stack registration based on pairwise alignment is crit-
ical, since small misalignments are propagated through the whole image stack.
By extending the image metric to incorporate intensity values of images within
a neighborhood N

D(R ◦ ϕ) :=
M∑
i=1

i−1∑
j=i−N

∫
Ω

(Rj(x) ◦ ϕj − Ri(x) ◦ ϕi)
2 dx

!= min (3)

a more robust registration is obtained.

Multiresolution Framework. Due to the textured nature of images, the surface
of metric values in parameter space is unsmooth, possibly causing the search
getting stuck in local optima. Performing registration in a multi-resolution image
hierarchy has the advantage of successively improving the registration result by
choosing appropriate parameters for each scale, thereby
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– Avoiding high metric frequencies using large scales initially
– Optimizing in narrowed search space for smaller scales

while being computationally much more efficient.

Grid Search. Exhaustive search, sampling the whole search space on a regular
grid can be considered unfeasible with large images due to computing times,
but on the other hand guarantees a global optimum at sufficient grid density.
While numerical optimization schemes tend to get stuck in local optima near
the initialization point, i.e. flipped images, an exhaustive search on larger scales
and smaller resolutions finds the correct transform even if metric values differ
only slightly.

Numerical Optimization in Transform Space. The global optimum found via an
extensive search on a low resolution and large scales is used to initialize the
registration on finer level. For further refinement of the registration result, now
gradient descent optimization is employed. Depending on the resolution on scale
level of the hierarchy, optimization parameters such as step length are annealed
when switching to smaller scales.

Gradient descent optimizers are generally susceptible to different scales of the
input variables. Rotation and translation have dynamic ranges differing in two
magnitudes. Algorithms specifically addressing this problem have been proposed
using evolutionary optimization strategies [24], generally showing slower conver-
gence compared with gradient descents. We therefore employ a rescaling of the
gradient vector for a gradient descent search.

The employed registration scheme is robust to image distortions, since the
annealed step widths on finer levels prohibit to skew the overall alignment.

Fig. 2. Grain reconstruction: The intact grain histology is restored by registering the
stack of section images using an SSD based image metric within a local range of consecu-
tive z-slices, as a basis for subsequent tissue labelling. The figure shows two perspectives
of registered voxel dataset comprising approximately 2,000 slices (4 GB).
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3.2 Automated Tissue Recognition

In order to obtain the basis for a quantitative description of tissues and inter-
nal structures (see fig. 2), these must be recognized and labelled within section
data. While the recognition of multiple tissues in histological data is non-trivial
and requiring expert knowledge, automation is highly feasible for objectiveness
and time-saving. This classification is a crucial step in the modelling pipeline:
Here the raw intensity data is abstracted towards the rationale of the mod-
elling process itself, where labelled voxel-data is the basis for quantification and
surface-based modelling of internal structures.

Relevant structures within a section image I : Ω ⊂ R
2 �→ R

+ are assigned a
unique label S : I ⊂ Ω �→ {1, . . . , M} for M tissues or classes. An automatic
segmentation of sections is characterized by several requirements:

– Multiple tissues must be recognized
– Images lack unique structures, edges etc.
– The identification of tissue types needs expert knowledge

Segmentation based on expert created references, or atlases, delivers good seg-
mentation accuracies, when image features are ambiguous. In [3] we describe the
segmentation of large stacks of histological section data into multiple classes by
intensity driven registration and deformation of reference segmentations, per-
forming equally with image-feature based supervised classifiers like support vec-
tor machines and multi layer perceptrons described in e.g. [9] and [5] while being
less computationally costly.

By classification of histological data into three-dimensional tissue mappings of
individual morphology are obtained, which can be visualized by iso-surface render-
ings as in [11] and [9]. This is the prerequisite for inter-individually valid models,
by integration and fusion of such morphological maps from multiple individuals.

3.3 Statistical 3-D Models of Barley Grains

In the context of histological 3-D models, works so far have neglected biodiversity
amongst specimen. A description of diversity amongst multiple objects, allowing
the identification of common themes and structures and statistical description of
variances in phenotypes during development, provides a meaningful framework
for the integration of data acquired from other individuals.

The quantification of inter-individual variability requires the mapping of data
into a common reference frame towards the estimation of ubiquitous tissues
and regions of varying tissue composition. For spatially resolving internal struc-
tures into an averaging model, spatial coordinates are assigned a probability
representing a specific tissue or material. Probabilities are estimated from the
set of multiple individual segmented histology volumes, which generally vary
in orientation and spatial extension. To obtain a transformation invariant to
the actual tissue mapping, datasets are registered into a common coordinate
frame by standardizing first order moments of the mass-centered intensities of
the respective grayscale volumes of sectioned images as suggested in [1] and
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(a) (b) (c) (d)

Fig. 3. Visualization of interindividual tissue compositions: Rendering of statistical
models displaying ubiquitous regions common to all samples (red surface) and tissue-
specific probabilities respectively. 3a: Nucellar Projection, 3b: Endosperm, 3c: Transfer
cells, 3d: Vascular bundle.

[22]. Instead of using registration approaches directly maximizing the correspon-
dence of individual label- or grayscaled volumes with affine mappings, spline, or
free-form deformations, a registration based only on individual image statistics
can be considered un-biased in terms of leaving the inter-individual variances
unaffected.

For each gridpoint x ∈ Ω ⊂ R
3 and tissue M we estimate a probability for x

belonging to tissue M empirically by

px,M :=
1
|S|

|S|∑
i=1

δ(Si(x), M) (4)

from segmented datasets Si.
Thereby, a closed probabilistic description representing the spatial distribu-

tion of tissues and materials amongst specimen terms of a mapping P : Ω �→ R
M

is obtained.
While the spatial distribution of tissue probabilities is not based on assump-

tions of an underlying distribution as with statistical deformation models, it can
directly be related to underlying histological information (intensity volumes) as
indicated in fig. 3.

3.4 Intermodality Registration

Functional data, as different imaging modalities, such as NMRi or MALDI-
IMS, generally do not exhibit structures allowing the spatial assignment of
tissue types, while such an assignment can generally be considered highly de-
sireable especially when elucidating the mechanism of development and
differentiation.

By using multimodality-registration approaches, different assays are registered
based on statistical measures: Since two modalities now have different intensity
(sec. 3.1) distributions, an image-to-image metric must relate to broader cor-
relation using mutual information based metrics introduced in [7] and [25]. An
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optimal registration is obtained by a transformation minimizing the entropy of
the joint histograms of pixel intensities:

MI(R, T ) =
∑
a,b

pRT (a, b) log
(

pRT (a, b)
pR(a)pT (b)

)
. (5)

By rediscretizing the dynamic range to a smaller number of equally sized
bins, the estimation of joint probabilities from (joint) image histograms can be
reduced to a fixed set of spatial samples being considerably smaller than the
full image grid. High-frequency oscillations in the energy surface are avoided by
a weighted bin contribution on interpolation grid points of the image domain,
using a third order interpolation kernel, as suggested in [18].

For the registration of histolgical image data with other modalities such as
MALDI-IMS, linear transformations are optimized for maximal mutual informa-
tion using a gradient descent optimizer, as described by [14] with an implemen-
tation available in the ITK framework.

4 Results

For this work five developing barley (hordeum vulgare) grains at identical de-
velopmental stage (7 DAF) with individual weights ranging from 11 to 19mg
(based on the observered weight variances, fig. 1b) were embedded, contrasted,
sectioned with a microtome and digitized yielding 2, 128 to 2, 736 slice images,
each of size 1200 × 1600 pixels (spatial res. 1.83 × 1.83μm 12 bit single channel
(approx. 30 GB image data).

Intact individual grains were reconstructed from section images using the pro-
posed registration methods. Fig. 2 shows a volume rendering of a registered in-
dividual grain. Reconstructed data was segmented into relevant tissues using the
described registration based algorithm with a subset of expert-created reference
segmentations.

4.1 3-D Averaging Models

For inter-individual description we registered and joined the segmented data in
a common reference, yielding a volume of probabilities for each tissue. Using
the probabilistic modelling, we addressed the biological questions (1.) how are
specific tissues and relevant material varying and (2.) what are ubiquitous themes
amongst individuals. Thus, for an insightful 3-D visualization of probabilistic
models or atlases, we are using a combination of two methods:

1. Volume rendering for the spatial distribution of tissue probability values
2. Surface rendering for ubiquitous regions, i.e. px,M = 1

Fig. 3 shows a combined rendering for four maternal and filial tissues known
to play in important role in early grain development: Nucellar Projection (fig.
3a), Endosperm (fig. 3b), Transfer cells (fig. 3c), and the vascular bundle (fig.
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3d). The transparent outer hull of an individual grain and a virtual lateral slice
are displayed for better intuition.

Although a strong variance in grain phenotypes within a cultivar even under
standardized conditions is observed, as shown by the grain weight variances in
fig. 1b, there are ubiquitous regions for these tissues, where the specific tissues
have different variances in their spatial distribution.

As visualized by the volume-rendering of tissue probabilities, this voxel-based
description has the advantage of allowing the extraction of surface models at
arbitrary probability values, which can be used to predict tissue mappings for
new instances.

4.2 Integration of MALDI-IMS Assays

As a relatively new technique, MALDI-IMS allows spatially resolved mass spec-
troscopy measurements by rasterized laser ionization and detection of matrix
coated sample sections ([6], [19]). By sequentially probing raster points, a 2-D
mass spectroscopic image is obtained, where each pixel holds a full mass spec-
trum, with m/z peak intensities relating to different proteins and metabolites.
The spatial distribution of such functional data is particularly insightful, when
related to structural properties, such as different tissues or material by means
of inter-modality registration, as described in [23] for NMR imaging.

We propose the integration of 2-D MALDI-IMS data into the interindivid-
ual 3-D tissue models described above: The integration of spatial models based
on histological images and functional measurements allows the analysis of co-
localization and gradients over tissues, and thereby the identification of candi-
date molecules.

(a) (b)

Fig. 4. Integration of structural and functional data: Inter-modality registration of a
virtual lateral histological section and a MALDI-IMS scan (m/z = 9595). An optimal
transformation is found by maximizing MI. Fig. 4a shows the joint histogram using
20 bins before and fig.4b after the transformation (1.82 degrees rotation, translation
x = 21.42μm, translation y = −49.8μm), resulting in significantly less uniformity of
the histogram entries and correspondingly higher MI value.
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(a) (b) (c)

Fig. 5. Integration workflow of MALDI-IMS data into structural models: Fig. 5a shows
an image of an MALDI-IMS channel (m/z=9, 595) and the virtual histological section
obtained by MI multimodality registration. Fig. 5b shows the according 3-D rendering
of MALDI-IMS peak intensity distribution at the calculated position into the tissue
atlas based on histological data. Peak intensities are color encoded from blue (low) to
red (high). A differential localization in maternal (green) and filial (gray) tissue can
be observed. Fig. 5c shows the tissue specific normalized peak intensity distribution
for maternal and filial regions, supporting the visual impression that peak intensities
are differentially distributed in maternal and filial tissues (rank-sum p ≈ 0 at 5%
significance).

Inter-Modality Registration. MALDI-IMS measurements were taken from a
barley grain specimen (7 DAF) from a frozen lateral section on a 30μm ionization
raster. The full mass spectra were detected for each raster point.

The peak intensity distribution for an unknown molecular ion [M + H ]+ of
m/z=9, 595 was sampled from mass spectra, composing a single channel 2-D
image. The image was then registered into three-dimensional data maximizing
mutual information between the MALDI-IMS image and histological data by
gradient descent optimization with linear transformations (rotation and transla-
tion), using virtual lateral sections, sampled on an 20μm grid from histological
data (fig. 2). We used 20 equally sized bins for estimation of joint and marginal
probabilities and 10, 000 image grid points which were kept fixed during opti-
mization. The highest mutual information value over all image pairs was chosen
as the correct positioning. Fig. 4 displays the joint histogram frequency counts
{qij} before and after transformation.

Fig. 5b displays a rendering of the aligned MALDI-IMS image at its correct
position in a virtual grain, and according histological section as a projection view.
The rendered tissue surfaces comprise maternal and filial types: Pericarp (green)
and Endosperm (gray). Peak intensities are color encoded (blue correspond to low
red to high peak intensities). The visualization promotes the assumption, that
the distribution of peak intensities at m/z=9, 595 is differentially co-localized
with these two tissue types.
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Localization of MALDI-IMS Peak Intensities. To further investigate the
assumption of differential localization, we evaluated the peak intensity distribu-
tion within the prevailing maternal and filial tissues: Based on tissue labelling
obtained from the registration into the structural 3-D model, peak intensity grid
points were mapped to either tissue.

Fig. 5c displays the distribution of tissue specific normalized relative peak
intensities. The clustering of intensities near zero for filial tissue indicates that
the measured ion is clearly differentially distributed between both tissues (rank-
sum p-value of zero at 5% significance), which makes this ion interesting for
further biochemical characterization, being a putative actor in development of
grains.

5 Discussion and Outlook

In this contribution we have described the automatic generation of interindivid-
ual 3-D models of microscopic plant organs. Delivering superior spatial resolution
and particularly histological information, models are based on serial section im-
ages. We algorithmically address reconstruction and tissue recognition of large
image stacks, which is the basis for fast and reproducible processing of multiple
specimen for statistically valid models.

Analysis of spatial tissue composition amongst different individuals during
growth and development delivers a high value-added for functional assays of tis-
sues exhibiting differential genetic and metabolomic patterns. The usefullness of
3-D models for the integration and analysis of functional measurements is demon-
strated by analyzing differential peak patterns in MALDI-IMS data. Here, 3-D
models and automated data integration by means of multimodality registration
reveal patterns within the observed data, which would have remained obscure
in individual analysis. The analysis of spatial as well as temporal gradients of
molecules (metabolites, expressed genes, or proteins) is a key feature in under-
standing development. In this context, works in spatial or spatio-temporal anal-
ysis is of high relevance prospectively. The identification of candidate molecules
using spatial models and functional data such as full spectrum MALDI-IMS
data seems promising, particularly with measurements on a timeline. For such
digital morphogenesis, averaging models at different physical measurement are
a preliminary.
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Abstract. We give a probabilistic algorithm for Consensus Sequence,
a NP-complete subproblem of motif recognition, that can be described
as follows: given set of l-length sequences, determine if there exists a
sequence that has Hamming distance at most d from every sequence.
We demonstrate that distance between a randomly selected majority
sequence and a consensus sequence decreases as the size of the data set
increases. Applying our probabilistic paradigms and insights to motif
recognition we develop pMCL-WMR, a program capable of detecting
motifs in large synthetic and real-genomic data sets. Our results show
that detecting motifs in data sets increases in ease and efficiency when
the size of set of sequence increases, a surprising and counter-intuitive
fact that has significant impact on this deeply-investigated area.

1 Introduction

Given a number of DNA sequences, motif recognition is the task of discovering
motif instances in sequences without prior knowledge of the consensus or their
placement within the sequence. The following combinatorial formulation of motif
recognition is due to Pevzner and Sze [17]: let S = {S1, . . . , Sn} be a set of DNA
sequences each of length m, and M be the consensus, a fixed and unknown
sequence of length l. Suppose M is a subsequence of Si but is corrupted with
at most d substitutions, so the Hamming distance to M is at most d. The aim
is to determine M and the location of the motif instance in each sequence. This
combinatorial problem has application to finding transcription factor binding
sites in genomic data [22].

Motif recognition is NP-complete and thus, unlikely to be solved in polynomial
time unless P = NP [7]. Nonetheless, there are numerous algorithms developed
to solve specific instances of the problem, including PROJECTION [3], Win-
nower [17], pattern driven approaches [21], MITRA [6], PSM1 [18], PMSprune
[10], the Voting algorithm [4], MCL-WMR [2] and several others. An important
subproblem of motif recognition is formally described as follows:

Consensus Sequence

Instance: a set of n sequences, S = {s1, . . . , sn} over an alphabet Γ , each of
length l, and a positive integer d.

S. Rajasekaran (Ed.): BICoB 2009, LNBI 5462, pp. 139–150, 2009.
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Find: a l-length sequence s∗ over alphabet Γ where H(s∗, si) ≤ d for every si

in S, or declare that no such s∗ exists.
H(si, sj) denotes the Hamming distance for sequences si and sj . Any sequence s

where H(s, si) ≤ d for all si in S is referred to as a consensus; note that a consensus
sequence need not be contained in S nor be unique. This problem is NP-complete,
even when interest is restricted to the binary alphabet [9]. Li et al. [11] give a
polynomial-time approximation scheme (PTAS) forConsensus Sequence, how-
ever, the unfortunate large degree in the computational complexity of the PTAS
makes the algorithm in applicability, though its sampling ideas are insightful.

We give a probabilistic algorithm for solving Consensus Sequence and
demonstrate its application to motif recognition. Given a set of sequences over
the alphabet Γ , the majority symbol for a specific position is the symbol in Γ
that occurs most often at that position, with ties broken arbitrarily. We define
the majority sequence for a given set of l-length sequences as the sequence of l
majority symbols; due to ties the majority sequence is not necessarily unique.
MajorityConsensusAlg begins with a majority sequence s, then successively up-
dates s to make it closer to at least one sequence in S that does not have s as a
consensus. We do a maximum number of kl cumulative updates to s, after this
point if a consensus is not determined then the process is repeated. If a set of
sequences S does not have a consensus then MajorityConsensusAlg will always
return that no consensus exists but if it is a motif set then with some probability
a consensus is returned – this probability is dependent upon the number of times
we repeat the search.

We demonstrate that distance between a randomly selected majority sequence
and a consensus sequence decreases significantly as the size of the data set in-
creases. Our results show that for a large enough value of n the majority sequence
is a consensus and hence, it is typically trivial to solve Consensus Sequence

when the number of sequences is moderately large (for example, when n ≥ 12
for l = 15 and d = 5).

We significantly extend our earlier motif recognition program, MCL-WMR, to
incorporate MajorityConsensusAlg. This new algorithm, pMCL-WMR, detects
motifs in data sets with a large number of sequences. More specifically, pMCL-
WMR efficiently discovers motifs in datat sets that have 30 or more sequences,
and finds regulatory sequences in genomic data.

Lastly, we introduce the concept of a phase transition in Consensus Se-

quence. Such probabilistic analysis in random graph theory shows when a gi-
ant component is almost surely exists [1], and in theoretical computer science,
the point at which a 3-SAT instance is likely to be satisfiable [16]. We analyze
the event that a randomly selected majority sequence is a consensus and give
evidence that this event exhibits a phase transition.

2 A Probabilistic Algorithm for Consensus Sequence

In [20], Schöning considers the following simple probabilistic algorithm for solv-
ing the NP-complete problem of k-SAT: randomly choose a starting assignment
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and subsequently augment this initial assignment until a satisfying one is ob-
tained. Papadimitriou introduced this random paradigm in the context of 2-SAT

and obtained an expected quadratic time bound [14]. These type of algorithms
are referred to as Monte Carlo algorithms with one-sided error. An useful prop-
erty of such a Monte Carlo algorithm is that the error probability can be made ar-
bitrarily small with repeated with independent random repetitions of the search
process [13, page 9].

RandConsensusAlg begins with a sequence s randomly selected from all pos-
sible l-length sequences, and iteratively augments this sequence so it is closer
(i.e. has smaller Hamming distance) to at least one sequence in S that does not
have s as a consensus. This process of augmenting a random sequence until a
consensus is found is repeated kl times; at this point the process is restarted if
no consensus is found.

Algorithm 1 RandConsensusAlg
Input: A pairwise bounded set S of n l-length binary sequences, a degeneration
parameter d.
Output: A consensus for S or the empty sequence if S is a decoy.
Let S be the set of all l-length sequences
Repeat t times:

Select s randomly from S .
Repeat kl times:

If s is a valid consensus for S then return s and terminate;
otherwise select sj ∈ S at random from all sequences where H(sj, s) > d

Let L be the set of positions where s and sj mismatch.
Select a position from L at random, and denote this position as r.
Update s such that s matches with sj at position r.

A set of sequences S is pairwise bounded if for all sequences a, b ∈ S, H(a, b) ≤
2d. A set that is not pairwise bounded cannot have a consensus s so Consensus

Sequence reduces to discerning between pairwise bounded sets that have a
consensus (and if so, finding one such sequence) from those that do not. A set
of sequences S is a motif set if it has a consensus sequence, and is a decoy set if
S is pairwise bounded but does not have a consensus.

We consider a uniquely satisfiable set S, which we define as a set of sequences
S with exactly one consensus, and denote s∗ as the (unique) consensus for S.
The process of augmenting a sequence a bounded number of times or until a
consensus is found can be viewed as a Markov chain; the states of the Markov
chain correspond to the Hamming distance between the current sequence we
are augmenting and the consensus – if the random walk begins at state j then
the terminating state 0 is reached in j steps by correctly choosing the j sites
to augment. We apply the following observation of Schöning [20]: if i positions
are chosen to be augmented that are actually part of the consensus (and hence,
should not change) then in at most 2i+j augmentations a consensus is obtained;
that is, i steps in “wrong” direction in the random walk and i + j steps in the
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correct direction. Hence, RandConsensusAlg considers a maximum of 2i+j ≤ 3l
augmentations to the randomly selected sequence.

Consider an instance S of Consensus Sequence, if S does not have a con-
sensus then false will always be returned on each iteration of the algorithm.
Assume S is uniquely satisfiable then with some probability, denoted as p, a
consensus is determined. The expected number of times a random sequence is
chosen and updated 3l times until a consensus is found is 1/p, and the probabil-
ity that a consensus is not found after t iterations is (1 − p)t, which is bounded
above by e−tp. This will give us the appropriate value of t that corresponds to
an associated error probability. Therefore, if Γ is the binary alphabet, S is a set
of n, l-length sequences that is uniquely satisfiable by sequence s∗, and s is a
random sequence then the number of augmentations of s required to reach s∗ is
within a polynomial factor of

(
2(1 − 1

l

)l [20].
We made the assumption that the set was uniquely satisfiable, however, this

assumption is not needed – the random walk may find another consensus while
not in the terminating state but this possibility only increases the probability
the algorithm terminates. Further, similar results can be obtained for non-binary
alphabet. For |Γ | > 2 and any ε > 0 there exists an algorithm for Consensus

Sequence that has running time O
((

|Γ |(1 − 1
l ) + ε

)l
)

[20]. Lastly, we note
that taking into account that the starting (majority) sequence is not random, a
stronger bound may be obtainable.

2.1 Substituting a Majority Sequence for a Random One

We consider a variant on RandConsensusAlg, referred to as MajorityConsen-
susAlg, that begins with a sequence chosen at random from the set of all majority
sequences. The main difference between RandConsensusAlg and MajorityCon-
sensusAlg is the choice of the starting sequence; we substitute the random choice
of RandConsensusAlg for a sequence that has smaller Hamming distance to a
consensus sequence. The polynomial-time approximation scheme (PTAS) due to
Li et al. also uses the majority sequence but in a different manner; a majority
sequence for a subset of r sequences is obtained, denoted as s, and is used to
determine a set of n sequences that have closest distance to s. The majority
sequence for this new set is obtained and it is determined whether this set is a
motif using this new majority sequence [11].

We consider whether the substitution of the initial sequence will decrease the
number of augmentations required to obtain a consensus from a computational
perspective. We fixed l to be 15, d to be 4, and varied the number of sequences
from 12 to 36. for each value of n, we randomly generated 100 motif sets and for
each set determined the number of augmentations required to obtain a consensus
from starting at a majority sequence and starting at a random sequence. Figure 1
illustrates our data and illustrates that the number of augmentations required
to obtain a consensus starting from a random sequence is significantly larger,
and as the number of sequences increases the disparity between the number
of augmentations of a majority sequence and the number of augmentations of a
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Fig. 1. A comparison of the average number of iterations required to obtain a consensus
starting from a majority sequence (white) to the number required from starting from a
random sequence (black). An average is taken from considering 100 randomly selected
motif sets.

random sequence grows. When the number of sequences increases and a majority
sequence is the initial sequence, the number of augmentations decreases; however,
this trend does not exist when a random sequence is the initial sequence.

When the number of sequences is large enough, the distance between the se-
lected majority sequence and a consensus is equal to zero – implying the majority
sequence is a consensus. Figure 2 demonstrates that there exists a drastic de-
crease in the distance between the selected majority sequence and the consensus
as n increases; namely, this point occurs in the empirical data when the value of
n is around 12, when the ratio between l and d is 3. An important challenge is
to explain this trend analytically.

The following result shows that as the number of sequence increases the prob-
ability that the majority vote sequence is a consensus increases. Corollary 1 is a
direct result of the following theorem and demonstrates how it can be applied to
determine exactly when the size of set of sequences is large enough to guarantee
that the majority sequence is a consensus. Note that the results below concern
motif sets; if the pairwise bounded set is a decoy then with probability 1 the
majority sequence is not a consensus.

Theorem 1. Assume the alphabet is binary. Let l and d remain constant. With
probability at least 1 − ε there exists a majority sequence that is a consensus for
every motif set S of size at least − log(ε/l) · 2( l−d

d ).

Corollary 1. Assume the alphabet is binary, l = 15 and d = 4. With probability
at least 1 − 10−10 there exists a majority sequence that is a consensus for every
motif set S that contains at least 11 sequences.

3 A Phase Transition for Consensus Sequence

A phase transition is a sharp change in the probability that a particular event
occurs and thus, is defined with respect to a specific distribution of instances
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Fig. 2. An illustration of the distance between a randomly chosen majority sequence
s and a consensus sequence found by MajorityConsensusAlg s∗ with respect to n. We
considered the following (l, d) pairs: (12, 3), (15, 5), and (18, 6) and varied n to be
every even value from 4 to 26; for each data point we repeated the experiment 100
times and took an average of H(s, s∗).

of a particular problem. For example, for 3-SAT the critical point is the point
where the probability that a legal, satisfying solution exists is 1/2. It has been
empirically found that the critical point for random 3-SAT with n variables and
m clauses occurs when m = 4.2n + 6.21 [5]. This equation was later explained
analytically by Pennock and Stout [16].

We illustrate a simple phase transition in Consensus Sequence. We aim to
determine when the expected number of consensus sequences for a given motif
set is greater than one. Assume we have a binary alphabet and without loss of
generality, our motif set S has the identity sequence, denoted as s∗ = 0l, as a
consensus. Clearly, each sequence in S has at most d positions not equal to 0. It
follows that the probability that a sequence chosen at random is a consensus is
a function of how many positions are not equal to 0; if the sequence is 0l then
the probability it is a consensus is 1, and if it has greater than 2d non-zeros then
the probability it is a consensus is 0. Choose si to be any sequence in S and let
f(k) be the probability that si has a consensus with k nonzero positions. Let s∗2
be a randomly selected sequence from the set of all sequences with k nonzero
positions. Let A be the subset of k positions that are 1 where s∗2 is equal to 1,
and B be the subset of l − k positions that are equal to 1 where s∗2 is equal
to 0. If k ≤ d then we have that f(k) =

∑k
A=0

(
k
A

) ∑d−A
B=0

(
l−k
B

)
/

∑d
i=0

(
l
i

)
. If

d + 1 ≤ k ≤ 2(d − 1) then we have

f(k) =
∑k/2

A=k−d

(
k
A

) ∑d−k−A
B=0

(
l−k
B

)
∑d

i=0

(
l
i

) +

∑d
A=k/2+1

(
k
A

) ∑d−A
B=0

(
l−k
B

)
∑d

i=0

(
l
i

)
since d − k − A ≤ d − A when 2A ≤ k. Finally, we have for k equal to 2d − 1 or
2d, f(k) =

∑d
A=k−d

(
k
A

) ∑d−A
B=0

(
l−k
B

)
/

∑d
i=0

(
l
i

)
.
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Each sequence in S is selected independently of the others and hence, the
probability that s∗2 is a consensus is f(k)n. Let N denote the expected number
of consensus sequences then N =

∑2d
i=0

(
l
i

)
f(i)n, since

(
l
i

)
is the number of

sequences with exactly i positions not equal to zero. The change in phase occurs
when there exists greater than one consensus for the set S (i.e. N ≥ 2). Therefore,
solving the equation N ≥ 2, we obtain the location of the phase boundary:

− log d

log
(∑d

A=0
∑d−A

B=0

( 2de
A

)A
(

(l−2d)e
B

)B
) ≤ n.

We leave it open as to if there exists a stronger bound on n with respect to l
and d. Next, we consider the expected Hamming distance between a randomly
selected majority sequence and a consensus sequence. We prove there exists a
critical value for n that dictates when the expected distance between a majority
sequence and the closest consensus is 0. We conjecture that analysis of the struc-
ture of the space of satisfying assignments of a random motif will connect these
two phase transitions, showing that if the data set is adequately large, basically
all motif sets are clustered together and are characterized as having one unique
consensus, which is the majority sequence.

Figure 2 suggests that the probability that a majority sequence is a consensus
undergoes a phase transition when the ratio between the number of sequences
and degeneracy parameter d passes a critical point; above this critical value
we expect that there exists some consensus s∗, such that H(s, s∗) = 0 for all
majority sequences s, almost surely. The following is an upper bound on the
value of n and we leave it as an open problem to determine a tighter bound.

Theorem 2. Let S be a uniquely satisfiable set of n, l-length binary sequences.
Assume s is a randomly selected majority sequence and s∗ is consensus then we
consider the event that E[H(s, s∗)] is equal to 0; an approximation to the critical
point with respect to this event for n is 2

(
1 − 1

1+log d

)
.

4 Experimental Results

We performed tests on a PC with a 64-bit 2600 MHz processor and 1 GB of
RAM running Ubuntu. We measure the efficiency as the number of iterations
required to solve a specific instance since this factor dictates both the wall and
floor time and is an accurate measure of the algorithm’s complexity.

4.1 MajorityConsensusAlg

The number of sequences has a substantial effect on the running times for fixed
values of l and d. Table 2 outlines the relationship between the value of n and
the accuracy of the algorithm. The accuracy of the algorithm is the percentage
of times in which the algorithm determined a consensus for the given set.
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Fig. 3. An illustration of the effect of the value of n on the number of iterations
required to find a consensus. Depicted is the data for instances with l equal to 10, d
equal to 3, and n (the number of sequences) is equal to 10 and 18. The maximum
number of updates to the majority sequence is set to 1000.

Table 1. Experimental data describing the changes in the accuracy and efficiency
of MajorityConsensusAlg for varied values of the sequence length l, the degeneracy
parameter d, and number of sequences. The accuracy and number of iterations is an
average taken over the number of iterations and accuracy obtained for 1000 randomly
selected sets of sequences representing a motif.

n = 5 n = 15 n = 20
l d Accuracy Iterations Accuracy Iterations Accuracy Iterations

12 3 86 % 50424 100 % 0 100 % 0
14 4 63 % 181362 99 % 44097 100 % 0
15 4 69 % 174426 99 % 50627 100 % 0
18 6 61 % 316030 96 % 291618 96 % 518385
21 7 62 % 419188 93 % 694584 97 % 529187

Table 1 shows that when n was 20 the number of iterations required to find a
consensus was 0 for the majority of values of l and d, implying that the majority
sequence was a consensus. Table 2 further illustrates the change in accuracy and
efficiency as the number of sequences increases. When l and d are equal to 10 and
3, respectively and the number of sequences is at least 18, all selected majority
sequences were consensus sequences.

Figure 3 illustrates a significant difference in the number of iterations required
by MajorityConsensusAlg when n is equal to 10 and n is equal to 18. The data is
generated from MajorityConsensusAlg with the maximum number of updates to
the majority sequence set to 1000 (we increased the value from 3l to 1000 to em-
phasis this dichotomy). When n is equal to 10, a significant portion of instances
required the maximum number of iterations (and therefore, likely did not find a
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Table 2. Data that illustrates the transition in the accuracy and efficiency when the
number of sequences grows and the length of each sequence and amount of degeneracy
remains fixed. This specific data gives the average accuracy and number of iterations
for varied value of n and when l is equal to 10 and d is equal to 3.

n Accuracy Iterations n Accuracy Iterations
4 57 % 41641 16 99 % 25608
6 86 % 54070 18 100 % 0
8 87 % 83204 20 100 % 0
10 92 % 80007 22 100 % 0
12 98 % 28807 24 100 % 0
14 98 % 39200 26 100 % 0

consensus), whereas when n is 18 the maximum number of iterations were made
on only a very small number of instances, and a large portion of instances that
took zero iterations (implying the majority sequence was a consensus).

Our data demonstrate that as the value of n increases the Hamming distance
between the randomly selected majority sequence and a consensus decreases. All
experimental results show for all values of l and d there exists a threshold value,
say n0, for the number of sequences such that for instances where n ≥ n0 the
determination of a consensus is trivial – the majority sequence is a consensus
sequence.

4.2 pMCL-WMR: An Application of MajorityConsensusAlg

In 2007, MCL-WMR was developed specifically for the problem of detecting
weak motifs in genetic data and works by first building an edge-weighted graph
model of the given motif recognition problem and then using a graph clustering
algorithm to quickly determine important subgraphs that need to be searched
further for valid motifs [2]. These smaller subproblems are then solved optimality
using a dynamic programming algorithm for finding motifs in dense subgraphs.
One of the main contributions of the creation of MCL-WMR is the introduction
of a novel model for motif recognition. Unfortunately, MCL-WMR was unable
to detect motifs beyond when l = 18, d = 6, m ≥ 1000, and n ≥ 20 [2]. Fur-
ther, Eskin and Pevzner reported similar results for various motif-finders [6] and
in 2007, Feng et al. showed limited accuracy for the (15, 4) problem with 20
sequences of length 600 [8]. We investigate the application of MajorityConsen-
susAlg to motif recognition by replacing the dynamic programming algorithm
used in MCL-WMR by MajorityConsensusAlg; pMCL-WMR is the resulting
program. Specific motif recognition instances (i.e. specific values of n, m, l,
and d) have remained intractable, such instances include when l = 25, d = 5,
m ≥ 1000, and n ≥ 20.

Performance of pMCL-WMR on Synthetic Data. We produce problem
instances as follows: we choose a random motif consensus of length l, and pick m
occurrences of the motif by randomly choosing d positions per occurrence and



148 C. Boucher and D.G. Brown

Table 3. Comparison of the performance
of MCL-WMR and pMCL-WMR on syn-
thetic data. The time is given in CPU sec-
onds. In all experiments, n = 1000, m = 20,
and l and d are varied “-” denotes that the
program was unable to solve the specific
problem due to CPU resources.

(l, d) MCL-WMR pMCL-WMR
(15, 4) 220 431
(16, 5) 12200 513
(18, 6) 20605 442
(25, 5) - 771
(28, 8) - 1020
(30, 9 ) - 1106

Table 4. The performance of
pMCL-WMR increasing a number
of sequences. The time is given in
CPU seconds. In all experiments,
l = 15, d = 4, m = 600 and n
ranges from 18 to 30.

n pMCL-WMR
18 399
20 415
24 442
28 523
30 1223

randomly mutating the base at each. We construct m background sequences
of length n and insert the generated motifs into a random position in the se-
quence. For each of the (l, d) combinations, 100 randomly generated sets of input
sequences (n = 20, m = 600) were generated. Table 3 shows the comparison be-
tween the running time of MCL-WMR and that of pMCL-WMR. Two significant
trends are witnessed in the data: pMCL-WMR is capable of solving very hard
instances of motif recognition (i.e. when l = 30 and d = 9) and pMCL-WMR
gives a dramatic improvement over MCL-WMR with respect to the running time
for all values of l and d. The main advantage to our tool is the time required to
solve the extremely difficult challenge problems–from the (18, 6) to the (30, 9)
problem–in substantially better running time and with 100% accuracy.

The computational results of MajorityConsensusAlg inspire the investigation
of solving instances with a significantly large number of sequences – that is, in-
stances where n varies from values greater than 20. Table 4 shows the evaluation
of the performance of MCL-WMR on a range of problems with an increasing
number of sequences. The efficiency on these sets of problems is noteworthy
ranging from 399 (when n = 18) to 1223 (n = 30), as far as we are aware of
these are this first computational experiments where n is substantially large (i.e.
in the range of 20 to 30).

Using pMCL-WMR to find regulatory elements. An important biologi-
cal challenge is to determine regulatory elements in DNA – specifically, binding
sites for transcription factors. In this section, we demonstrate the use of pMCL-
WMR in discovering these DNA sequence “motifs” in data sets with a large
number of DNA sequences. Tompa et al. extensively assess 13 motif recognition
tools [22] using test sets that make use of transcription factor binding sites. The
binding sites were obtained from the TRANSFAC database [23] and contains
only eukaryotic transcription factors. The TRANSFAC database is extremely
comprehensive, containing data from a large variety of species, i.e. species in-
clude yeast, mus, oryctolagus cuniculus, and homo sapiens [23]. For more details
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concerning the data set, including the selection process for transcription factors
and binding sites from TRANSFAC, see Tompa et al. [22].

Each transcription factor gives rise to one set of sequence. The number of
sequences varied from 34 to 6 and the sequence length (parameter m) varied
from 700bp to 2000bp. The transcription factor binding sites vary in length and
thus, in order to assess pMCL-WMR, we ran the program on varied values l
and d. The lengths of the motifs were same as those of the published motifs and
d was varied. Experimental results are shown in Table 4.2. pMCL-WMR was
capable of discovering motifs for these data sets, as well, as many motifs not
yet found by the motif recognition programs assessed by Tompa et. al. [22]. The
known binding sites shown in Table 4.2, as given by the TRANSFAC database
et. al. [22].

Data set Published motif Motif pattern discovered l d Time (CPU sec.)
hm06 CAcgTG TttTccC 7 1 0.85
hm06 CACCCGT GGAcTGCT 8 1 1
hm10 TTTgcCGG TTTcgCGC 8 3 1.23
hm13 AGGCTAGAGTAGA aaAATTatTC 10 2 5.06
hm13 AAGATTATTAAAC tccCcCACAaa 11 1 3.43
hm19 GGTGGGGCGGGGCGGGG tccCcCACAaa 11 2 3.3

5 Conclusion

The data demonstrate that as the number of sequences increases, the number
of iterations required to find a consensus decreases substantially, and show that
solving Consensus Sequence is trivial when the data set is moderately large.
Applying probabilistic methods, we prove a strong connection between the num-
ber of sequences in a given set S, and the ease in finding a consensus quickly. The
implementation of these probabilistic algorithm to motif recognition enables the
development of pMCL-WMR, a motif recognition program capable of quickly
detecting motifs in large data sets.
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Abstract. We propose a two-step biclustering approach to mine co-regulation
patterns of a given reference gene to discover other genes that function in a com-
mon biological process. Currently, several successful methods utilize Pearson
Correlation Coefficient (PCC) based gene expression analysis across all samples
in datasets. However, microarray datasets are fraught with spurious samples or
samples of diverse origin, and many genes/proteins that function in the same bi-
ological pathway may be missed. The novel PCC based biclustering algorithm
introduced in this paper identifies subsets of genes with high correlation by strin-
gently filtering the data and reducing false negatives due to spurious or unrelated
samples in a dataset. Then, correlation information extracted from resulting bi-
clusters are synthesized. We applied our method using the breast cancer associ-
ated tumor suppressors, BRCA1 and BRCA2, as the reference proteins to reveal
genes and proteins important in the complex process of breast tumor formation.
Experiments on 20 very large datasets showed that the top-ranked genes were
remarkably enriched for genes that regulate the mitotic spindle and cytokinesis.
The results imply that BRCA1 and BRCA2 proteins, which are considered to be
DNA repair factors, have critical function regarding the mitotic spindle as well.
Initial biological verification reveal that this identified factor function to control
both centrosome dynamics, and also, surprisingly, DNA repair. Thus, this biclus-
tering approach is successful at identifying proteins with highly related function
from extremely complex datasets, and permits novel insights into gene function.

1 Introduction

Proteins that function in concert in a given cellular process often have their encoding
mRNA co-expressed [1]. Therefore, examining transcription levels of genes under dif-
ferent conditions provides insight about functions of genes, and eventually development
and treatment of complex diseases. DNA microarray technology has become the cen-
tral enabling technology in genomic research by allowing measurement of expression
levels of thousands of genes in parallel. In a microarray experiment, expression lev-
els of genes in various samples are arranged in a matrix called gene expression data.
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Fig. 1. Overview of the proposed approach

Samples are usually collected from different individuals and may correspond to dif-
ferent environmental conditions. Mining gene expression data to discover biologically
relevant knowledge is a challenging task and has been the focus of many research ef-
forts [2,3,4,5].

In this work, our objective is to develop a method that utilizes multiple gene expres-
sion datasets to identify genes exhibiting co-regulation with respect to a reference gene.
Identifying genes co-regulated with a gene of important function is crucial to under-
stand biochemical and genetic pathways in which the gene participates. A straightfor-
ward approach towards this aim is to cluster genes in each dataset using a correlation
or similarity metric such as Pearson Correlation Coefficient (PCC) [6]; then count the
number of times each gene co-occurs in the same cluster with the reference gene over
all datasets. PCC is a very effective and widely used metric in this type of analysis to
quantify co-regulation between pairs of genes [3,5].

A major drawback in this approach is that the entire set of samples in a dataset
are used to decide cluster membership or correlation with the reference gene. Since
samples are usually collected from diverse sources, genes and proteins that function
together may only be similarly expressed in a subset of the samples. Moreover, most
clustering techniques generate exclusive partitions of genes, therefore disregard the fact
that a single gene may be involved in more than one biological pathway. To overcome
these limitations we propose a new biclustering algorithm, called Correlated Pattern
Biclusters (CPB), that identifies groups of genes highly correlated with a given refer-
ence gene in empirically defined subsets of samples. We introduce novel techniques in
CPB to address two important issues in biclustering of gene expression data: (1) min-
ing datasets only to discover correlated patterns that contain the given reference gene,
(2) extension of the use of PCC in biclustering context. In addition, CPB algorithm
allows overlapping clusters and also captures negative correlation through use of PCC.

To reach our ultimate goal of identifying genes that consistently exhibit correlation
with the reference gene, we also propose a method to extract correlation information
from identified biclusters in an intuitive way. The proposed method evaluates unique-
ness of information captured in each bicluster and computes a correlation score for
each gene based on how frequently and in how distinct biclusters it co-occurs with the
reference gene. Then, correlation scores from all datasets are combined to filter out
inconsistent information. The overview of our approach is illustrated in Figure 1.

Our motivating application was from breast cancer research, where there are two im-
portant reference proteins, BRCA1 and BRCA2, highly penetrant breast cancer specific
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Table 1. A sample dataset and biclusters identified by several methods from this dataset. (a) Sam-
ple matrix (b) Additive model (c) Multiplicative model (d) proposed CPB algorithm (e) OPSM.

1 2 3 8 95
2 3 4 9 21
5 6 7 12 51
2 4 6 16 18
3 6 9 24 30

15 14 13 8 7
(a)

1 2 3 8
2 3 4 9
5 6 7 12

(b)

1 2 3 8
2 4 6 16
3 6 9 24

(c)

1 2 3 8
2 3 4 9
5 6 7 12
2 4 6 16
3 6 9 24

15 14 13 8
(d)

1 2 3 8 95
2 3 4 9 21
5 6 7 12 51
2 4 6 16 18
3 6 9 24 30

(e)

tumor suppressors. Both of these proteins function in the repair of DNA damage. In
addition, BRCA1 also functions at an organelle called centrosome, which is critical for
cell division. To determine genes co-regulated with BRCA1 and BRCA2 we applied
the method proposed in this paper on very large datasets publicly available at Gene
Expression Omnibus (GEO) database [7]. The results are given in Section 5.

2 Background

Biclustering was first introduced to gene expression data analysis by Cheng and Church
[8]. This is followed by numerous biclustering algorithms to identify additive, multi-
plicative [9,10], or even more complex relationships [2,11,12,13,14] between the rows
and columns of a data matrix. In additive (multiplicative) models, the difference (ratio)
between corresponding elements of any two rows and the difference (ratio) between
corresponding elements of any two columns in a bicluster are constants. In general,
additive models are useful to capture shifting patterns, whereas multiplicative models
are useful to capture scaling patterns in the data. However, neither of them can identify
shifting and scaling patterns simultaneously. Furthermore, these models are too restric-
tive in the sense that constant difference (ratio) constraints are applied on both row and
column dimensions. In Table 1b and 1c, example biclusters that can be identified re-
spectively by additive and multiplicative models from the sample matrix in Table 1a are
shown.

In this work, we propose the CPB algorithm that utilizes statistical co-expression
measure PCC as a similarity metric between rows of a bicluster. PCC is a strong metric
to evaluate positive as well as negative co-regulation between rows, and is commonly
used in clustering gene expression data [3,5] due to its power in capturing both shifting
and scaling patterns. In Table 1d, an example bicluster identified by the CPB algorithm,
where there is perfect correlation (or negative correlation) between each pair of rows is
given. As shown in this figure, PCC allows capturing both shifting and scaling patterns
that would be separately identified by additive and multiplicative models, respectively.

Application of PCC in biclustering context is not a trivial task and requires over-
coming two challenges. Firstly, PCC lacks transitivity property. Therefore, instead of
measuring closeness to a reference pattern, one has to compute all pairwise PCC val-
ues between rows in the same bicluster to measure quality. To tackle this problem, we
empirically show that if two rows have a sufficiently high correlation with a reference
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pattern, there is a lower bound for PCC between each these two rows. The second
challenge is that, PCC is only meaningful to measure coherence between rows but is
too restrictive if it is used to measure coherence between columns simultaneously. For
instance, in the example in Table 1, if high PCC between each pair of columns was also
enforced, only the biclusters that were identified by additive and multiplicative mod-
els would be found to match the ensuing criteria. In CPB algorithm, we enforce the
coherence between columns by including a column in a bicluster only if it does not de-
crease correlation among the rows in the bicluster. To estimate the impact of including
a column, we map columns to real numbers and capture tendency of gene expression
changes in the bicluster. Then, we compute root mean squared error (RMSE) for each
column to evaluate the fit of the column to this tendency pattern.

Mapping columns to real numbers induces an ordering of the columns similar to
OPSM [2] and OP-cluster [11] algorithms. In a bicluster identified by OPSM algo-
rithm, the direction of expression level change between any two columns is the same
for all rows in the bicluster. OP-cluster is an extension to OPSM such that equivalence
levels are defined to tolerate small differences between expression levels. Example of
biclusters that would be identified by these algorithms for the example matrix in Ta-
ble 1a is illustrated in Table 1e. In OPSM, the coherence between columns is defined in
a more loose sense than CPB, and results in inclusion of a relatively less related column
(column 5) in the bicluster. In addition to considering the direction of change, using
PCC in CPB algorithm allows considering magnitude of change as well to eliminate
inclusion of such columns. Moreover, it allows capturing negative correlation which is
not handled by these algorithms. To the best of our knowledge, our work is the first
work that uses PCC as an objective function for biclustering.

3 Correlated Pattern Biclusters Algorithm

Let R and C denote the set of rows and columns of a data matrix A , respectively, and
each element arc represents the relation between row r and column c . A bicluster B =
(X, Y ) can be defined by a subset of rows X = {x1, . . . , xn} and a subset of columns
Y = {y1, . . . , ym} , where n ≤ N , and m ≤ M [4]. In our algorithm, we use PCC
metric to decide membership of a row to a bicluster B = (X, Y ) . We denote absolute
value of PCC between rows r, s ∈ R with respect to columns in Y by pcc(r, s, Y ) .
For a row r to be included in X , we require pcc(r, xi, Y ) to be greater than a threshold
for all xi ∈ X . We also impose a constraint on the minimum size of Y to avoid getting
large PCC values merely by chance. The objective of the proposed CPB algorithm can
be formally defined as follows. Given a data matrix A , reference row rr , PCC threshold
ρ and minimum number of columns γ , identify a set of biclusters B = (X, Y ) such
that rr ∈ X , m ≥ γ and pcc(xi, xj , Y ) ≥ ρ for all rows xi, xj ∈ X .

3.1 The Algorithm

Algorithm 1 outlines the proposed biclustering algorithm CPB. The algorithm starts
with an initial bicluster B = (X, Y ) and improves it by iteratively moving rows and
columns in and out of the bicluster using a search technique similar to mean-shift [15].
In mean-shift, the goal is to find the densest region with a certain radius (window size)in
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Algorithm 1. Correlated Pattern Biclusters.
1: function CPB(A, rr, w, γ, ρ′ )
2: step ← 1 ; B = (X, Y ) where X = {rr} and Y is a random subset of columns of A.
3: repeat � Outer loop
4: Bsave ← B ; ρ′

c ← 2/3ρ′ ; ρ′
Δ = 1/12ρ′ ; γ = m ; γΔ = m−γ

4

5: repeat
6: Compute reference vector T and normalization parameters
7: if step mod 2 = 1 then
8: Update X such that pcc(xi, T, Y ) > ρ′

c for all xi ∈ X
9: else

10: Let r be the row with smallest pcc(r, T, Y ) > ρ′
c

11: Update Y such that RMSE(yk) > RMSE(r) for all yk ∈ Y
12: ρ′

c ← ρ′
c + ρ′

Δ ; γc ← γc − γΔ

13: until ρ′
c > ρ′

14: step ← step + 1
15: until step > 20 or B = Bsave

16: return B = (X, Y )

the search space. At each iteration, the center of mass of the points that are at a distance
smaller than the given radius to the center of the current solution is computed. Then,
the center of the solution is moved to this computed center of mass and the process
is repeated until convergence. Similarly in CPB algorithm, we compare PCC between
each row and a reference vector T =< t1, . . . , tm > that represents general tendency
of rows in X with respect to the columns in the bicluster while deciding which rows
to move. Vector T is analogous to cluster center in k-means or mean-shift techniques.
If pcc(r, T, Y ) for a row r is above a certain threshold, we include r into set X and
update T by only considering the rows in X . On the other hand, using a similar crite-
rion for columns is too restrictive for our objective as explained in Section 2. Instead, a
good criterion for inclusion of a column c into Y should measure the impact of c on
PCC between rows xi ∈ X . For this purpose, we use root mean squared error (RMSE)
to evaluate similarity of tendencies of rows in X with respect to column c .

In each iteration of CPB, first, reference vector T and parameters related to normal-
ization of data values are computed; then, either set X or set Y are updated. We do not
update both sets simultaneously to avoid large fluctuations in the bicluster structure, that
may slow down or prevent convergence. In the spirit of the mean-shift technique, while
updating X , we include into X each row r that has pcc(r, T, Y ) above PCC thresh-
old ρ′c . While updating Y , we first determine row r that has the smallest pcc(r, T, Y )
above threshold ρ′c . Then we include each column c into Y that has smaller RMSE
than row r . Iterations to update bicluster end when neither X nor Y changes at an
iteration or after 20 iterations (convergence is usually achieved in 5-10 iterations). We
use the CPB algorithm with different parameters and initializations to discover possibly
overlapping clusters that contain rows correlated with the reference row.

3.2 Computing Normalization Parameters and the Reference Vector

In order to make tendency of rows in X comparable, we apply normalization to ac-
count for different scaling and shifting patterns of rows in the bicluster. We compute a
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Fig. 2. (a) Distribution of PCC between pairs of 200 random vectors with e elements that have
PCC with reference vector greater than a threshold ρ1 . (b) Relationship between PCC and RMSE
on random vectors.

normalized data value âxiyk
= axiyk

−αxi

βxi
for each xi ∈ X and yk ∈ Y , where αxi

and βxi are shifting and scaling parameters associated with row xi , respectively. Then,
each element tk of reference vector T is computed as the arithmetic mean of âxiyk

on all rows xi ∈ X . We compute T , αxi and βxi using an iterative process. Initially
we set αxi = 0 and βxi = 1 , and compute T . Then, we apply least squares fitting
on pairs {(t1, axiy1), . . . , (tm, axiym)} to obtain the best shifting and scaling parame-
ters that maximize alignment of each row xi with the reference vector T . We assign
intercept and slope obtained in least squares fitting to αxi and βxi , respectively. T is
updated using these parameters, and the process iterates until convergence.

3.3 Updating Rows of a Bicluster

For a row r to be a member of set X , we require pcc(r, xi, Y ) > ρ for all xi ∈ X .
To avoid testing this condition against all xi ∈ X , we utilize the reference vector T ,
and only test whether pcc(r, T, Y ) is greater than another threshold ρ′ instead. ρ′ is
selected such that pcc(r, T, Y ) > ρ′ must ensure pcc(r, xi, Y ) > ρ for all xi ∈ X .
However, PCC lacks transitivity property [16] and has a fairly complex formula that
strongly depends on the values and the length of the vectors. Therefore, it is difficult,
if not impossible, to analytically compute a lower bound for ρ′ as a function of ρ . To
empirically determine the value of ρ′ for a given ρ , we designed a simple experiment.
First, we generated a reference random vector with e elements. Then we generated
more random vectors and kept only those having absolute value of PCC with the refer-
ence vector greater than ρ′ . After generating 200 such vectors we plotted the distribu-
tion of the absolute value of PCC between each pair of these vectors (see Figure 2a).
The distributions verify that a lower bound for ρ′ exists and increases with ρ .

In Algorithm 1, we start with a relaxed threshold ρ′ and slowly tighten it at Line 12.
While tightening ρ′ , we relax the constraint on minimum number of columns. This
allows sweeping the search space between two extreme combinations of these param-
eters. In our code we use 5 tightening steps and initial values for ρ′c and γc are set to
2/3ρ′ , and the number of columns in the initial bicluster, respectively (Line 4).
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Fig. 3. Example biclusters on an example data matrix with reference row rr = r6

3.4 Updating Columns of a Bicluster

We use RMSE to assess coherence of tendencies of rows xi ∈ X in a given column.

RMSE(yk) for a column yk ∈ Y is computed as
√

1
n

∑n
i=1(âxiyk

− tk)2 . For a

column c /∈ Y , we compute RMSE(c) in a similar way, by using a value tc analogous
to tk that quantifies tendency of rows xi ∈ X in column c .

In CPB, only the columns having RMSE below a threshold ε are included in the bi-
cluster. In order to have control on the ratio of the number of rows to the
number of columns in the bicluster, we select ε in relation to ρ′ . To establish this
relation, first we note that RMSE can also be computed for rows, and it is a compa-
rable metric for rows and columns. For a row xi ∈ X , RMSE(xi) is computed as√

1
m

∑m
k=1(âxiyk

− tk)2 . Then, we observe that RMSE(r) generally implies a high

pcc(r, T, Y ) (see Figure 2b). Therefore, by setting ε to the RMSE of row r that has
the smallest pcc(r, T, Y ) above threshold ρ′c (Line 10), we expect that the ratio n/m
in the resulting bicluster is close to the ratio N/M . In order to obtain biclusters with
different n/m ratios, we use parameter κ . Then, when updating set Y , κ times the
number of columns with RMSE above the threshold are included into Y .

To ensure that the reference row rr has a larger impact in decision mechanisms of
the algorithm, we assign a larger weight to the reference row when computing the vector
T and RMSE values. Total contribution from rows except rr is multiplied by (1−ω)
and contribution from rr is multiplied by ω , where ω is an input parameter. Large
values for ω allows discovering patterns that more closely resemble rr ; whereas small
values increase sensitivity, hence offers higher tolerance to noise.

4 Combining Correlation Information

In this section, we explain our method to extract correlation information from identi-
fied biclusters. For this purpose, first we quantify uniqueness of information captured
by each bicluster. Then, for each row we compute a correlation score based on co-
occurrence frequency and uniqueness information associated with the row with respect
to the reference row. Finally, we combine correlation scores from different datasets.

If two biclusters Bv = (Xv, Yv) and Bw = (Xw, Yw) do not overlap except for the
reference row rr , then these two biclusters represent two distinct relationships between



158 D. Bozdağ, J.D. Parvin, and U.V. Catalyurek

1

1

1

1

1

1

1

1

1

1

1

1

1/2

1/2

1

1/2

r1

r2

r3

r4

r5

c1 c2 c3 c4 c5 c6 c7

(a)

1

1

1

1

1

1

1

1

1

1

1

1

1/2

1/2

1

1/3

r1

r2

r3

r4

r5

r7

r8

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

(b) (c)
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rows and columns of the data matrix. In the context of gene expression, this may corre-
spond to two different biological functions associated with the reference gene. On the
other hand, if Xw ⊆ Xv and Yw ⊆ Yv the relationship in Bw is already captured by
Bv . In the latter case we discard Bw from the result set.

Let IR(. . .) denote the set of biclusters that contain all rows specified in the argu-
ment list. Similarly, let IC(. . .) denote the set of biclusters that contain all columns
specified in the argument list. Consider a row r , a column c and a bicluster Bv =
(Xv, Yv) such that r ∈ Xv and c ∈ Yv . To measure uniqueness of information in Bv

with respect to other biclusters in set IR(r)∩IC(c) on the relationship between r and
c , we define a bicluster uniqueness measure BU(Bv, r, c) as follows.

BU(Bv, r, c) =

∑
xi∈Xv−{rr}

∑
yk∈Yv

1
|IR(r, xi) ∩ IC(c, yk)|

(|Xv| − 1)|Yv|
(1)

If Bv does not overlap with any other bicluster at row r and column c , then IR(r, xi)
∩ IC(c, yk) only contains Bv for all xi ∈ X and yk ∈ Yv in (1). In this case
BU(Bv, r, c) takes its maximum possible value of 1 . This means that Bv captures
the relationship between row r and column c exclusively. BU(Bv, r, c) decreases as
overlap between Bv and biclusters in IR(r) ∩ IC(c) increases. In the case that Bv

completely overlaps with all clusters in IR(r)∩IC(c) , information on the relationship
between row r and column c is shared between all of these clusters. Then BU(Bv, r, c)
takes its minimum value of 1/|IR(r) ∩ IC(c)| (note that this case is not actually
possible since we remove biclusters that are subsets of other biclusters beforehand).
Computing cluster uniqueness as given in (1) is useful to avoid some relationships to
be over-emphasized due to convergence of biclustering algorithm to solutions close to
each other in the search space.

An example matrix and three biclusters are shown in Figure 3. Consider bicluster
B1 = (X1, Y1) and row r2 and column c4 of the matrix . Since IR(r2) ∩ IC(c4) =
{B1, B2} , overlaps between B1 and B2 need to be considered when computing
BU(B1, r2, c4) . Figure 4a shows values 1/|IR(r2, xi)∩IC(c4, yk)| for each xi ∈ X1
and yk ∈ Y1 . Applying these values to (1) gives BU(B1, r2, c4) = 0.91 . Correspond-
ing values to compute BU(B1, r5, c4) are given in Figure 4b. Here IR(r5)∩IC(c4) =
{B1, B2, B3} , thus BU(B1, r5, c4) = 0.9 .
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Using bicluster uniqueness measure, we compute an overlap score OS(r, c) for ev-
ery row-column pair (r, c) to quantify the amount of different relationships identified
between r and c . We compute OS(r, c) by summing BU(Bv, r, c) for all biclusters
in IR(r) ∩ IC(c) . In other words, OS(r, c) =

∑
Bv∈IR(r)∩IC(c) BU(Bv, r, c) . Then,

the we compute a correlation score CS(r) for each row r by summing overlap scores
of the pairs (r, c) across all columns, i.e. CS(r) =

∑
c∈C OS(r, c) . Summing over-

lap scores across columns gathers total evidence on how frequently and in how distinct
relationships row r is correlated with the reference row rr .

In Figure 4c, OS(r, c) is given for pair (r, c) Summing these values across columns
gives CS(r1) = CS(r4) = 4 , CS(r7) = CS(r8) = 5 , CS(r2) = CS(r3) = 7.8 and
CS(r5) = 12.6 . As expected, rows that appear in larger number of biclusters and in
more diverse relationships together with the reference row have larger correlation score.

To increase significance and consistency of our findings, we apply our method on
different datasets separately and combine correlation scores. To achieve this in a mean-
ingful way, we require datasets to have the same row labels. In gene expression data
analysis, this requirement can be met by merging results only from datasets obtained
using the same microarray chip. Even though such datasets could be combined into a
single data matrix, this approach requires undoing any normalization previously carried
out on each dataset. Since data are collected from different sources, this approach may
not be practical or even possible if information about the normalization procedures are
unavailable. As an alternative approach, we use the following three-step method: First,
for each dataset, we divide correlation score of each row by that of the reference row in
the same dataset. Then, in order to make contribution from each dataset equal, we scale
correlation scores such that sum of the scores in each dataset is the same. Finally, we
sum the scaled scores across datasets to compute a total score for each row.

5 Experimental Results

5.1 Experiments on Synthetic Data

To demonstrate the effectiveness of CPB, we generated datasets with embedded biclus-
ters and applied CPB to find these biclusters. We first generated a 10000 × 100 matrix
and a reference row vector of length m , filled with random real numbers between 0
and 100. Then, we generated n − 1 additional vectors, each having perfect positive
or negative correlation with the reference vector. These vectors together represent an
n × m bicluster. Next, we added a random number between 0 and K chosen from nor-
mal distribution to each entry in the bicluster to simulate noise in the data. Finally, we
embedded the bicluster into randomly selected n rows and m columns of the dataset.

As with most clustering algorithms, there is no single set of parameter values of CPB
that will suit to all datasets. Therefore, when using CPB, we consider a range of values
for each parameter to scan the search space thoroughly. In our experiments on synthetic
datasets we generated 10 datasets for every combination of n = {30, 60, 90, 120, 150} ,
m = {30, 60, 90} and K = {0, 1, 2} . First, we applied the CPB algorithm with row
column ratio parameter κ = 1 , ρ′ = 0.9 and relative weight ω of reference gene
selected from {0.1, 0.25, 0.5, 0.75} . For each value of ω we applied CPB 21 times



160 D. Bozdağ, J.D. Parvin, and U.V. Catalyurek

Table 2. Datasets we used in our experiments from GEO [7] database

GDS dataset ID 534 596 715 1067 1209 1220 1284 1375 1479 1615
Number of samples 75 158 87 52 54 54 50 70 60 127

GDS dataset ID 1781 1815 1956 1975 2113 2190 2255 2362 2373 2643
Number of samples 104 100 121 85 76 61 58 71 130 56

Table 3. Intersection of top-25 lists of BRCA1 and BRCA2 reference probe sets

Affymetrix probe set ID Associated protein Affymetrix probe set ID Associated protein
201292 at TOP2A 210052 s at TPX2
202095 s at BIRC5 214710 s at CCNB1
202705 at CCNB2 218009 s at PRC1
204962 s at CENPA 218039 at NUSAP1
209642 at BUB1 218355 at KIF4A

using different initial clusters. The value of threshold ρ corresponding to ρ′ = 0.9
was 0.65 . This value is obtained by the method explained in Section 3. We consider
an embedded bicluster identified, if the returned bicluster consists of at least half of the
rows and half of the columns of the embedded bicluster. If all rows and columns of the
embedded bicluster are returned, we call the bicluster perfectly identified. When there
was no noise in the data, CPB algorithm perfectly identified 148 of the 150 embedded
biclusters. When some noise is added, the bicluster structure is more difficult to discover
due to reduced PCC values between the rows. Furthermore, it is likely that some of the
rows will no longer have PCC above 0.9 with the reference row. In our experiments
with K = 1 , CPB was able to identify 145 of the 150 biclusters. Of these, 140 were
perfectly identified, and the for the remaining ones, all rows and at least 90% of the
columns were returned by the CPB algorithm. Finally, when K was 2, there was a
more pronounced impact of noise resulting in much reduced PCC between the rows.
Still, CPB algorithm successfully identified 131 of the 150 embedded biclusters. For 91
of these biclusters, CPB returned at least two thirds of the columns and two thirds of
the rows.

Next, we applied a PCC based clustering approach to identify rows having PCC
greater than 0.65 with the reference row over all columns. Even in the best case, at most
27% of the columns in a bicluster were successfully identified by this approach. This
shows that considering all columns to compute PCC prevents detection of biclusters.

5.2 Identifying Genes Co-regulated with BRCA1 and BRCA2

For real data experiments we selected 20 large datasets each obtained using Affymetrix
HG U133 GeneChip Array and having at least 50 samples (Table 2). This array has
22,215 probe sets including two probe sets for each of BRCA1 (204531 s at ,
211851 x at) and BRCA2 (208368 s at , 214727 at). For each run of CPB, κ is se-
lected from {1, 3, 5, 7, 9} ; ω from {0.25, 0.5, 0.75} ; and ρ′ was set to 0.9 . We exe-
cuted the algorithm for every combination of these values, and for each parameter set
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Table 4. GO term enrichment results using 90 genes obtained by intersecting top-500 lists of
reference genes. n and N represent the number of genes associated with the GO term in the set
of identified genes and in the Affymetrix chip, respectively.

GO term ID GO term p-value n N
GO:0000910 cytokinesis < 1.0 × 10−12 8 40
GO:0007049 cell cycle < 1.0 × 10−12 38 720
GO:0007067 mitosis < 1.0 × 10−12 34 205
GO:0031577 spindle checkpoint < 1.0 × 10−12 3 3
GO:0040001 establishment of mitotic spindle localization < 1.0 × 10−12 4 4
GO:0045842 positive regulation of mitotic metaphase/anaphase transition < 1.0 ×10−12 3 3
GO:0051301 cell division < 1.0 × 10−12 29 266
GO:0051303 establishment of chromosome localization < 1.0 × 10−12 3 3
GO:0007051 spindle organization and biogenesis 2.9 × 10−12 5 9
GO:0031503 protein complex localization 7.6 × 10−12 6 8
GO:0031536 positive regulation of exit from mitosis 1.0 × 10−11 4 7

we generated 21 random initial clusters. We applied the analysis four times using one
of the BRCA1 or BRCA2 probe sets as the reference each time. In Table 3, we present
genes that appeared in top-25 highest correlated gene list of each of the four reference
probe sets.

There are 90 genes that were common in top-500 list for all four reference probe sets.
Analysis of Gene Ontology (GO) terms associated with these 90 genes statistically sup-
ports the extraordinary clustering of proteins that function in mitosis. The top-ranked
genes are remarkably enriched for genes that regulate the mitotic spindle and cytoki-
nesis. As given in Table 4, of these 90 genes, 38 control the cell cycle, 34 relate to
mitosis and 29 involved in cell division. The enrichment of cell cycle, mitosis, and
cellular assembly are exactly what would be predicted for control by the centrosome.
DNA replication and repair would be predicted to be a part of the BRCA1 and BRCA2
module, and this pathway would also impact the centrosome.

The results show that our algorithm is successful at identifying from extremely com-
plex datasets proteins with highly related function. While our results did reveal known
factors for the repair of DNA damage as expected, the most significant results were en-
riched for centrosome and mitotic spindle related processes. This implies that BRCA1
and BRCA2, which are considered to be DNA repair factors, also have critical func-
tion regarding the mitotic spindle. Biological testing of this point is in progress, but in
initial tests a gene of unknown function identified by our method is found to control
centrosome1. If confirmed, this will imply that control of the mitotic spindle is a criti-
cal control element in breast cancer. In addition, several of the identified proteins that
function to control the centrosome were found to also control a DNA repair assay. This
was an unanticipated finding. Thus, biological validation in progress is revealing that
this biclustering tool both reveals proteins that function together to control centrosomes
and also to participate in a second process of DNA damage repair.

We have also tested this method for false positives by applying the biclustering tool
on seven more genes to verify that our method avoids systematic errors. Two of the

1 A recent work of J. D. Parvin, unpublished.
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genes we used for this analysis are RB1 and TP53, tumor suppressor genes involved
in many cancers. The other five genes were CCNB2, FGD2, TAF7, SRP54 and CHPF,
which were ranked 1st , 5000th , 10000th , 15000th and 20000th , respectively, when
correlation scores of four reference probe sets are combined. We used each of these
selected genes as anchors and applied our analysis to determine top-25 lists for high
correlation for each of these genes. This analysis verified that BRCA1, BRCA2, as well
as the number one hit CCNB2 are correlated with a similar set of genes. For each pair
of these genes there were 16 to 20 genes at the intersection of top-25 lists. On the other
hand, the genes we selected for verification had at most one gene in common in the
top-25 list of either of BRCA1, BRCA2 or CCNB2.

6 Conclusion and Future Work

In this work, we proposed a two-step approach to mine co-regulation patterns, relative to
a set of reference genes, that may only exist in a subset of samples. First, co-regulation
patterns in microarray datasets are discovered using a novel PCC-based biclustering
algorithm. Then, correlation information is combined to compute a correlation score
with respect to the reference gene. In our experiments we used BRCA1 and BRCA2
as our reference genes. Analysis of the top-ranked genes using GO terms revealed an
extraordinary clustering of proteins that function in mitosis. In the future, we plan to
compare the CPB algorithm with other biclustering algorithms in terms of both objec-
tive functions and optimization techniques. Furthermore, we will evaluate significance
of our findings by testing the algorithm on various real datasets.
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Abstract. Glycosylphosphatidylinositol (GPI) lipid modification is an
important protein posttranslational modification found in many organ-
isms, and GPI-anchoring is confined to the C-terminus of the target pro-
tein. We have developed a novel computational protocol for identifying
GPI-anchored proteins, which is more accurate than previously proposed
protocols. It uses an optimized support vector machine (SVM) classifier
to recognize the C-terminal sequence pattern and uses a voting system
based on SignalP version 3.0 to determine the presence or absence of the
N-terminal signal of a typical GPI-anchored protein. The SVM classifier
shows an accuracy of 96%, and the area under the receiver operating
characteristic (ROC) curve is 0.97 under a 5-fold cross-validation test.
Fourteen of 15 proteins in our sensitivity test dataset and 19 of the 20
proteins experimentally identified by Hamada et al. that were not in-
cluded in the training dataset were identified correctly. This suggests
that our protocol is considerably effective on unseen data. A proteome-
wide survey applying the protocol to S. cerevisiae identified 88 proteins
as putative GPI-anchored proteins.

Keywords: GPI-anchored Proteins; SVM; Post-translational
modification.

1 Introduction

Glypiation is an important posttranslational modification in which glycosylphos-
phatidylinositol (GPI) is attached to newly synthesized proteins so that they can
be bound to the plasma membrane. GPI-anchored proteins are found on all eu-
karyotic cells and serve as adhesion molecules [1], enzymes [2] and receptors [3].
They are also related to the pathogenesis of neurodegenerative diseases such as
Scrapie [4] and Creutzfeld-Jacob diseases [5]. Previous studies [6,7] have shown
that a newly synthesized protein destined to receive a GPI anchor has two signal
peptide sequences: a C-terminal sequence required for anchor attachment and
an N-terminal sequence required for transferring the protein into endoplasmic
reticulum (ER).

S. Rajasekaran (Ed.): BICoB 2009, LNBI 5462, pp. 164–175, 2009.
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Experimental investigation of GPI-anchored proteins on the proteomic scale
is a formidable analytical challenge because of the explosion of proteomic data.
Computational approaches will therefore be valuable for dealing with the chal-
lenge and providing critical information rapidly, and several research groups have
reported their works in this area. Caro et al. [8] firstly analyzed the yeast pro-
teome with SignalP-NN [9], which is a classifier trained with a Neural Network
technique for the N-terminal signal prediction, and the consensus rules for the
C-terminal signal prediction, which was described by Nuoffer et al. [10] and by
Udenfriend and Kodukula [7] for screening GPI-anchored proteins. As a result,
they found 58 potential GPI-anchored proteins in the yeast proteome. De Groot
et al. [11] screened the proteomes of S. cerevisiae, C. albicans, Sz. Pombe and N.
crassa for potential GPI-anchored proteins by using a sequence pattern derived
from known GPI-anchored proteins of S. cerevisiae and C. albicans, [NSGDAC]-
[GASVIETKDLF]-[GASV]-X(4,19)-[FILMVAGPSTCYWN](10)>, (where ”>”
marks the C-terminus). They then confirmed the presence of the N-terminal
signal sequence by combining the outputs of the SignalP-NN and the SignalP-
HMM [12]. After then using PSORT II [13] and TMHMM (available at http://
www.cbs.dtu.dk/services/TMHMM/) to eliminate internal transmembrane do-
mains, they finally identified 66 putative proteins for S. cerevisiae, 104 for C.
albicans, 33 for Sz. Pombe and 97 for N. crassa. Eisenhaber et al. [14] devel-
oped a method for identifying the C-terminal signal. Using their method, called
Big-PI and incorporating the SignalP (SignalP-NN) for the N-terminal signal
identification, they found 74 GPI-anchored proteins in the proteome of A. nidu-
lans analyzed the proteome of A. nidulans, 59 in the proteome of S. cerevisiae,
169 in the proteome of C. albicans, 28 in the proteome of Sz. Pombe, and 87 in
the proteome of N. crassa. Fankhauser and Mäser developed a classifier, called
GPI-SOM, which were trained with a Kohonen Self-Organizing Map for the C-
terminal signal prediction [15]. Combining their GPI-SOM with SignalP-HMM,
they investigated GPI-anchored proteins in ten proteomes. Methodologically,
the proposed protocols for identifying GPI-anchored proteins differ mainly in
the method for examining the C-terminal signal. An experimental study in
which decay-accelerating factor was found to be GPI-anchored even after the
C-terminal signal had been replaced with another hydrophobic sequence has re-
vealed that the overall hydrophobicity of the C-terminal signal is more important
than the sequence specificity [16]. Therefore, the method based on a consensus
rule or pattern search is insufficient for identifying GPI-anchored proteins since
amino acid type preferences are not obvious [17]. Big-PI suffers from ambiguous
predictions (i.e., twilight zone) and was pointed out by Fankhauser and Mäser
that Big-PI is difficult to balance false positive and false negative errors.

The support vector machine introduced by Vapnik and his coworkers [18,19] is
known for its outstanding performance in classification and has been successfully
applied in many issues of computational biology [20,21,22]. In this paper we
describe a new SVM-based computational protocol for screening GPI-anchored
proteins on the proteomic scale and report its application on the proteome of S.
cerevisiae.

http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
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2 Materials and Methods

2.1 Computational Protocol for Identifying GPI-anchored Proteins

Our protocol is composed of two modules (see Fig. 1). One is a SVM classi-
fier (here denoted GPI-SVM) screening for the C-terminal signal and the other
is SignalP-Vote screening for the presence of the N-terminal export signal. A
protein is considered to be a potential GPI-anchored protein only if both sig-
nals are identified. For clarity in this paper, we use the naming style ”C”+”N”,
where ”C” is the name of C-terminal prediction method, ”N” is the name of
N-terminal prediction method, and ”+” denotes their combination. Our new
prediction protocol is thus denoted GPI-SVM+SignalP-Vote.

The C-terminal signal prediction of GPI-anchored proteins is formatted into
a two-class SVM classification task: i.e., training the GPI-SVM classifier and,
for a given query protein sequence, using it to answer whether or not the protein
has a potential C-terminal signal. We first collected an approximately balanced
dataset (see section 2.2) and used C-SVM algorithm with a radial basis function
(RBF) kernel (LIBSVM version 2.81 software package [23]). We then used a
hydrophobicity plot to construct a feature vector from a protein sequence in the
following two-step procedure: (1) the 20 standard amino acids were represented
according to a widely applied hydrophobic scale (Kyte-Doolittle scale [24]), and
(2) a fixed-length sliding window moved along the numerical vector obtained in
step (1) one residue at each time and the mean value within the sliding window
was calculated at each position, eventually yielding a feature vector consisting
of these mean values. GPI-SVM performance was optimized by determining the
optimal input length of protein sequences, the size of the sliding window, and
the optimal values of the regularization parameter and the kernel parameter
successively. We initially held 20 residues from the C-terminus for each protein
in the training dataset as the input length and then increased the length of the
input sequence one residue at a time until it reached 80 residues. Throughout
the above process, window size was set to 9 residues and the default values of
LIBSVM were used for C and γ. We chose as the optimal input length the
one that corresponded to the highest prediction accuracy of the SVM classifier
under the 5-fold cross validation (CV) test. Subsequently, by using the optimal

Fig. 1. Flowchart of the GPI-SVM+SignalP-Vote prediction protocol
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input length and default C and γ, a series of sliding window size (odd numbers
ranging from 1 to 21) were investigated with regard to prediction accuracy (also
under the 5-fold CV test) and the value of area under the receiver operating
characteristic curve (AUC). Given the optimal input length and window size,
optimization of the parameters of the classifier is equal to trying to find the
highest accuracy of the 5-fold CV test in the search space of C and γ. We used
the population-based stochastic optimization technique called Particle Swarm
Optimization (PSO) [25] to tune C and γ.

The SignalP-Vote is a voting system which consists of seven binary indicators
obtained from SignalP version 3.0 [26]. Five of the seven indicators belong to the
SignalP-NN and the other two belong to the Signal-HMM. The voting system uses
a simple majority-voting strategy: a protein is considered to have the N-terminal
signal only if that decision is supported by more than three voters.Two widely used
measures, precision and recall, were used for SignalP-Vote to evaluate the quality
of classification.Precisionand recall are defined asRecall=TP/(TP+FN)and Pre-
cision=TP/(TP+FP), where the terms TP,TN,FP and FN mean true positives,
true negatives, false positives and false negatives. To compare SignalP-Vote and
single indicator, we use F-score, which is defined as F-score=2×(Precision×Recall)
/(Precision+Recall).F-score thus is a weighted mean of precision and recall, where
it reaches best value at 1 and worst value at 0.

2.2 Datasets

We collected 587 GPI-anchored proteins from UniProKB/Swiss-Prot by select-
ing those labeled ”GPI-ANCHOR” or ”GPI-LIKE-ANCHOR” in the KW field
in the year of 2005. They covered a wide range of kingdoms, and in the present
study we used the 520 of them that had been annotated with definite comments
about the GPI-anchored modification site (ω-site) in the field of feature table
(FT) and that had a sequence length equal to or greater than 100 residues. The
negative dataset provided by Pascal Mäser [15] includes 441 proteins that had
been selected from GeneBank by text-based searching. The sequence similarity
between any two of them was less than 50%. We selected the 429 proteins that
have a sequence length equal to or greater than 100 residues. They included 105
cytosolic proteins, 63 secreted proteins, 104 N-TM-C proteins (transmembrane
proteins with a hydrophobic C-terminus and an N-terminal export signal pre-
dicted by SignalP), and 157 other transmembrane proteins. The SVM training
dataset thus consisted of 520 positive samples and 429 negative samples.

The performance of SignalP-Vote was compared with that of using single
indicator obtained from SignalP. To this end, we used the test set of eukary-
otic secretory and non-secretory proteins those were selected by Menne et al.
[27] from Swiss-Prot database. This test set consisted of 1158 positive samples
and 1142 negative samples and are available at ftp://ftp.ebi.ac.uk/pub/
contrib/swissprot/testsets/signal.

To evaluate the performance of our prediction protocol on the proteomic scale,
we used the proteome of S. cerevisiae because it has been widely studied in exper-
iment. We retrieved the proteome of S. cerevisiae (6718 protein sequences) from

ftp://ftp.ebi.ac.uk/pub/contrib/swissprot/testsets/signal
ftp://ftp.ebi.ac.uk/pub/contrib/swissprot/testsets/signal
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the Stanford Genome Database (SGD, ftp://genome-ftp.stanford.edu/pub/
yeast/data download/sequence/genomic sequence/orf protein), which
were translated from open reading frames (ORFs).

Searching the feature table (FT) fields of S. cerevisiae proteins in UniProtKB
/Swiss-Prot, we found 40 proteins that possess definite comments about ω-site.
We noted that fifteen of 40 proteins were not included in the SVM training
dataset as described. This 40-protein dataset was used as a sensitivity test
for comparing our prediction protocol with others proposed for screening GPI-
anchored proteins.

3 Results and Discussion

3.1 Results

When the number of input residues was increased as described in section 2.1,
the accuracies of 5-fold CV test increased until the input length reached 60-64
residues (Fig. 2).

Therefore, 60 residues counted from the C-terminus were selected as the op-
timal input length. Table 1 shows that prediction accuracy and AUC value were
highest (respectively 95.50% and 0.96) when the size of the sliding window size
was 9 residues.

Table 1 also shows that the accuracy difference between window sizes 1 and
3 is greater than that between any other consecutive pairs of window sizes. The
optimal parameters C and γ obtained by using the PSO technique were 23.20
and 0.051, respectively. Compared with the use of default C and γ (1.0 and
0.019), GPI-SVM raise the accuracy of 5-fold CV test by 0.5% (96%) and AUC
value by 0.01. With respect to the N-terminal signal identification, SignalP-Vote
measured with Menne’s test dataset has recall of 98.88%, precision of 91.82%,
and an F -score of 0.952 (Table 2). In terms of F -score, SignalP-Vote is better
than any single indicator.

Fig. 2. The relation between accuracy and length of input sequence. The numbers on
the abscissa means Length of input protein sequence and the number on the ordinate
means accuracy under 5-fold CV test.

ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/genomic_sequence/orf_protein
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/genomic_sequence/orf_protein
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Table 1. Window size vs. Prediction accuracy∗

Window size Accuracy(%) AUC

1 70.60 0.7663
3 94.63 0.9570
5 95.36 0.9606
7 95.47 0.9568
9 95.50 0.9631
11 94.94 0.9563
13 94.73 0.9498
15 94.63 0.9561
17 94.63 0.9568
19 94.63 0.9533
21 94.42 0.9579

∗
The default parameters C and
γ provided by LIBSVM were
used,where C was set to one
and γ was the reciprocal of the
length of a feature vector.

The results obtained using four prediction protocols to screen the proteins in
the sensitivity test dataset are summarized in Table 3. With respect to the sensi-
tivity test dataset, GPI-SVM+SignalP-Vote and GPI-SOM+SignalP-HMM [15]
have the same sensitivity of 95%(38/40) and are better than the other two, Big-
PI+SignalP-Vote (40%) and GPI-SOM+Phobius (90%). GPI-SVM+SignalP-
Vote could not predict two proteins, YP056 YEAST and SPS2 YEAST, as GPI-
anchored proteins. These wrong predictions were caused by the wrong classifi-
cations of GPI-SVM and SignalP-Vote, respectively. GPI-SOM+SignalP-HMM
could not predict two proteins, SPS2 YEAST and MKC7 YEAST, as GPI-
anchored proteins. The wrong prediction of SPS2 YEAST was due to SignalP-
HMM, while the wrong prediction of MKC7 YEAST was due to GPI-SOM. And
14 of 15 newly annotated proteins (names in bold font in Table 3), which were
not included in the training dataset, were identified by our protocol.

Our new protocol as well as GPI-SOM+SignalP-HMM were then used in
a proteome-wide investigation on the proteome of S. cerevisiae (Table 4). GPI-
SVM found 298 of the total 6718 protein sequences to have the C-terminal signal
of GPI-anchored proteins, and SignalP-Vote found 105 of this subset to have the
N-terminal signals. After manually removing protein sequences translated from
the dubious open read frames (ORFs), we found GPI-SVM+SignalP-Vote to
have identified 88 of 105 proteins as GPI-anchored proteins. Of these 34 experi-
mentally identified GPI-anchored proteins [28], 20 proteins were not covered by
the GPI-SVM’s training dataset; 19 of these 20 proteins were identified by our
protocol. There were 670 proteins possessing potential C-terminal signal were
selected by GPI-SOM from the whole proteome of S. cerevisiae. One hundred
sixty-seven of 670 proteins were then presumed by SignalP-HMM to have the
N-terminal signals of GPI-anchored proteins. After the dubious ORFs sequences
were removed from the 167 proteins, 124 proteins remained. Thus, only using the
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Table 2. Comparison of SignalP-Vote with single indicator

Method* Recall(%) Precision(%) F-score

SignalP-HMM(Cmax) 80.66 97.60 0.883
SignalP-HMM(Sprob) 91.71 93.90 0.928
SignalP-NN(Cmax) 97.24 84.34 0.903
SignalP-NN(Ymax) 98.96 91.24 0.949
SignalP-NN(Smax) 98.70 88.06 0.931
SignalP-NN(Smean) 98.19 90.38 0.941
SignalP-NN(D-score) 98.70 91.37 0.949

SignalP-Vote 98.88 91.82 0.952
∗

The outputs from SignalP 3.0 comprise seven values
denoted as indicators here, two of which are gener-
ated by SignalP-HMM and five of which are given
by SignalP-NN. A C-score, which is a measure of be-
ing part of the signal peptide, and an S-score, which
indicates a ”cleavage site”, are reported for each po-
sition in the query sequence. Smax: the maximal
S-score; Cmax: maximal C-score; Ymax: derivative
of the C-score combined with the S-score; Smean:
mean of the S-score; D-score: average of the Smean
and Ymax score; Sprob: probability that the query
sequence contains a signal peptide or not.

C-terminal signal prediction, GPI-SOM identified twice as many GPI-anchored
proteins as GPI-SVM did.

Measuring the overlap of the two datasets of proteins identified by GPI-
SVM+SignalP-Vote and GPI-SOM+SignalP-HMM, we found that although the
two protocols had the same sensitivity, their 88-protein and 124-protein datasets
shared 70 predicted proteins. The remaining 54 proteins identified by GPI-
SOM+SignalP-HMM were analyzed by searching the UniProtKB/Swiss-Prot
database for feature descriptions in detail. Twenty-nine of the 54 proteins had
been labeled as proteins possessing transmembrane domain(s) even though 10
of the 70 proteins identified by both GPI-SOM+SignalP-HMM and our proto-
col were found to be annotated as transmembrane proteins. In contrast, 10 of
18 proteins identified by GPI-SVM+SignalP-Vote were found to be annotated
as transmembrane proteins. Overall, GPI-SOM+SignalP-HMM had more false
positives than GPI-SVM+SignalP-Vote did.

3.2 Discussion

Our new computational protocol is a powerful tool for the detection of GPI-
anchored proteins. On the whole, this study shows that machine-learning tech-
niques are more promising than the other methods for identification of GPI-
anchored proteins. Compared with the previous prediction protocols, our proto-
col showed higher sensitivity (95%) on the sensitivity test dataset of 40 known
GPI-anchored proteins selected from S. cerevisiae. Caro et al. predicted 32 of
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Table 3. Name list of the sensitivity test dataset

Entry name Locus name Length ω-site Amino acid

CCW12 YEAST� YLR110C 133 112 G
CCW14 YEAST� YLR390W-A 238 220 N
CRH1 YEAST YGR189C 507 483 G
CRH2 YEAST� YEL040W 467 445 N
CWP1 YEAST� YKL096W 239 217 N
CWP2 YEAST YKL096W-A 92 71 N
DAN1 YEAST YJR150C 298 282 N
DAN4 YEAST YJR151C 1161 1146 N
DCW1 YEAST YKL046C 449 425 S
DFG5 YEAST� YMR238W 458 434 D
FIT1 YEAST YDR534C 528 512 A
FIT2 YEAST� YOR382W 153 124 S
FLO1 YEAST YAR050W 1537 1514 G
GAS1 YEAST YMR307W 559 528 N
GAS2 YEAST YLR343W 555 531 D
GAS3 YEAST YMR215W 524 506 S
GAS4 YEAST YOL132W 471 449 A
GAS5 YEAST YOL030W 484 452 S
HPF1 YEAST YOL155C 967 946 A
KRE1 YEAST� YNL322C 313 288 N
MKC7 YEAST+,× YDR144C 596 575 N
MUC1 YEAST YIR019C 1367 1346 G
PST1 YEAST YDR055W 444 419 N
SAG1 YEAST YJR004C 650 627 G
SED1 YEAST� YDR077W 338 318 N
SPS2 YEAST∗,+,× YDR522C 502 475 N
TIP1 YEAST� YBR067C 210 188 G
TIR1 YEAST� YER011W 254 233 N
TIR4 YEAST� YOR009W 487 465 N
YC048 YEAST YCL048W-A 79 55 G
YD134 YEAST�,× YDR134C 136 115 G
YD24B YEAST YDR524C-B 66 42 G
YL040 YEAST YLR040C 224 203 N
YL042 YEAST YLR042C 161 139 G
YL194 YEAST� YLR194C 254 232 N
YO214 YEAST� YOR214C 236 212 N
YP056 YEAST�,∗,× YPL056C 101 81 S
YPS1 YEAST YLR120C 569 548 N
YPS3 YEAST� YLR121C 508 483 N
YPS6 YEAST YIR039C 537 515 N

Entry names in bold were not included in the GPI-SVM
training dataset.

∗
Predicted incorrectly by GPI-SVM+SignalP-Vote.

×
Predicted incorrectly by GPI-SOM+Phobius (Dora,
http://genomics.unibe.ch/dora/).

+
Predicted incorrectly by GPI-SOM+SignalP-HMM.

�
Predicted correctly by Big-PI+SignalP-Vote.

http://genomics.unibe.ch/dora/
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Table 4. Investigation on the proteome of S. cerevisiae

Prediction protocol � of Ctermc � of Ntermd � of putativese

GPI-SOM+SignalP-HMMa 670 167 124
GPI-SVM+SignalP-Voteb 298 105 88

Of the total 6718 protein sequences:
a

84 proteins were ignored since their sequence lengths are all less
than 32 residues and 39 proteins were not predicted by GPI-SOM.

b

187 proteins were ignored since sequence length of each of the
proteins are not satisfied the requirement of GPI-SVM (less than
60 residues).

c

Number of proteins with the C-terminal signal.
d

Number of putative GPI proteins (include dubious sequences).
e

Number of putative GPI proteins.

the 40 proteins in our sensitivity test dataset by using their NN method. De
Groot et al. predicted other 32 proteins of the 40 proteins. Although the results
of Caro et al. and De Groot et al. had different false positives, their protocol each
has a sensitivity of 80% (32/40). The prediction protocol combining Big-PI with
the SignalP-Vote had a sensitivity of 39%. Big-PI uses a scoring function for
measuring amino acid composition around the GPI-anchoring site and also uses
the probability of an empirical distribution based on the scores. Since a small
size dataset (254 sequences) is used to estimate the parameters of the empirical
distribution, it may not be suitable for our sensitivity test. GPI-SOM+SignalP-
HMM adopted a machine learning technique, self-organizing map, for identifying
the C-terminal signal and had 95% sensitivity that matched our protocol. When
we applied GPI-SOM+SignalP-HMM and our protocol to the proteome of S.
cerevisiae, GPI-SOM+SignalP-HMM gave more false positive predictions than
our protocol did. We owe our success to the feature extraction method from
protein sequences in our protocol except for the consideration of SVM’s known
generalization ability. We will discuss two characteristics in our feature extrac-
tion method, i.e., the window size and the length of input sequence.

The window size of more than one residue seems to be useful for improv-
ing the accuracy of GPI-anchored proteins identification. Caras and Weddell’s
experimental result [16] suggests that GPI attachment depends on the over-
all hydrophobicity of the C-terminal signal rather than specific sequences. In
Fankhauser and Mäser’s work, they had also tried to only use relative hydropho-
bic value (Kyte-Doolittle scale) of 32 positions at the C-terminus to transform
the protein sequence into the numerical sequence; in other words, the window
size was one residue. However, the prediction accuracy was only about 83%. In
this study, we found that a window size greater than one residue can significantly
improve the performance of GPI-SVM (Table 1).

A longer input sequence length may reduce false positives caused by the
integral membrane in spite of no direct evidence. It is just as pointed out
by Fankhauser and Mäser [15] that integral membrane proteins with a trans-
membrane domain at their C-termini cause many false positive predictions. To
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identify the C-terminal signal, 15 residues (from a hydrophobic domain) prox-
imate to the C-terminus of the protein are necessary and indispensable [29].
The determination of the optimal input length carried out in this study indi-
cates that the C-terminal signal can be identified more precisely by using more
residues at the C-terminus. A protein is numerically represented by selecting
22 discrete positions at the C-terminus of the protein in GPI-SOM. In addition
to using the relative hydrophobic value, GPI-SOM uses other two attributes
to generate the numerical representation for a protein. In contrast, 60 residues
counted from the C-terminus were taken as input in GPI-SVM. The shorter in-
put length possibly makes it difficult to distinguish GPI-anchored proteins with
the integral membrane domains. We therefore assume that the input sequence
length may be another reason why GPI-SOM identified about 10% proteins of
the proteome as GPI-anchored proteins whereas a few proteins were identified
by GPI-SVM. Experimental results [30] suggest that the length of C-terminal
signal for the GPI attachment is 29-37 residues. This sequence length is less
than the optimal input sequence length (60 residues). Although no experimen-
tal information is available, we assume that there would be some patterns that
would have not been recognized in the region beyond the 29-37 residues at the
C-terminus.

To improve the ability of the N-terminal signal prediction, we designed
SignalP-Vote on the consideration that the indicators (or classifiers) may provide
complementary information. Measured with Menne’s test dataset, SignalP-Vote
showed better performance than any single indicator did. We therefore consider
it to be another feature for our new protocol.

Over last decade there have been many attempts to identify GPI-anchored
proteins by using computer-based prediction protocols based on protein pri-
mary structure, and the number of identified GPI-anchored proteins stored
in databases has been increasing continually. To identify GPI-anchored pro-
teins on the proteomic scale, we have developed a computational protocol that
uses an optimized classifier trained with the SVM algorithm to
identify the C-terminal signal and uses a majority voting system based on the
SignalP method to identify the N-terminal signal. To represent the characteris-
tics of the overall hydrophobicity of the C-terminal signal, we selected as input 60
continuous positions counted from the C-terminus and depicted the hydropho-
bicity of the residues in these options by using a series of average values with a
fixed-size sliding window (9 residues). Our protocol has remarkable generaliza-
tion ability by virtue of support vector machine algorithm and we believe our
new protocol will be a helpful tool to identify GPI-anchored proteins on the
proteomic scale.
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Abstract. Atomistic molecular dynamics (MD) simulations are a vital
tool in chemical research, as they are able to provide a view of chem-
ical systems and processes that is not obtainable through experiment.
However, large-scale MD simulations require access to multicore clus-
ters or supercomputers that are not always available to all researchers.
Recently, many have begun to explore the power of graphics processing
units (GPUs) for various applications, such as MD. We present prelimi-
nary results of water simulations carried out on GPUs. We compare the
performance gained using a GPU versus the same simulation on a single
CPU or multiple CPUs. We also address the use of more accurate double
precision arithmetic with the newest GPUs and its cost in performance.

Keywords: Molecular dynamics, GPU, CUDA.

1 Introduction

For years, graphics processing units (GPUs) have been used extensively in graph-
ics intensive applications. Their development has been driven strongly by the
economy, particularly the entertainment industry, in order to meet the ever in-
creasing demand for faster, more detailed three-dimensional (3D) graphics in
media such as movies and video games. These devices are designed specifically
to alleviate the load of the main CPU by taking over the expensive operations
required to render detailed 3D graphics. Most of these operations are inherently
data parallel, and since GPUs have been developed with this parallelization in
mind, they have the potential to become powerful tools for scientific computing.
However, until recently GPU hardware has been restricted to operations specific
to graphics processing, limiting their usefulness in other areas. Fortunately, re-
cent efforts have led to the development of general purpose GPUs (GPGPUs)
and language libraries such as NVIDIA’s Compute Unified Device Architecture
(CUDA) [1].

Recent efforts have explored the potential of GPUs for mathematical, scien-
tific, and clinical computing applications. One study has reported coupling GPUs
to magnetic resonance imaging (MRI) hardware for medical diagnostics [2]. In
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the area of molecular modeling, GPUs have been applied to electrostatic poten-
tial calculation [3], ion placement [3], and simulations of van der Waals fluids
and polymers [4]. Particularly in the areas of molecular modeling and molecular
dynamics (MD), accelerating simulations by exploiting parallelism is a major
concern. As with many other applications, MD has been adapted for use with
massively parallel architectures such as compute clusters and supercomputers.
In addition, special purpose hardware has been developed to meet these chal-
lenges, such as Protein Explorer systems with its large-scale integration (LSI)
‘MDGRAPE-3 chip’ [5] and Anton with its 12 identical application-specific inte-
grated circuits (ASICs) designed for MD [6]. However, these architectures target
very specific types of calculations, and in that respect are similar to early gener-
ations of GPUs. In addition, they are not widely available to most researchers.
On the other hand, GPGPUs are cost effective, readily available in recent work-
stations, flexible, and easy to deploy.

MD simulations are an excellent target for GPU acceleration since most aspects
of MD algorithms are easily parallelizable. Enhancing the performance of MD can
allow the simulation of both larger time scales and larger length scales. Figure 1
illustrates some types of calculations that are possible at differing length and time
scales. Ideally, simulations would be able to attain all-atom resolution on time
scales of microseconds to milliseconds. With coarse-grainedresolution, even longer
time scales approaching seconds may be possible. However, the ultimate goal of
any simulation is atomistic resolution of very large length scales over very long
time scales, i.e., essentially continuum physics with atomic detail. The utilization
of parallel architectures such as GPUs constitutes a step towards this goal.

This contribution will discuss ongoing work in our laboratory exploring the
potential applications of GPUs to atomistic MD simulations. Section 2 dis-
cusses some background related to CUDA and some related work with MD

Fig. 1. An illustration of some of the types of theoretical physical calculations that are
possible at varying time and length scales. Figure reproduced from Reference [7].
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using CUDA. Section 3 describes in general our simulations on the CPU and the
GPU. In addition, we outline our implementation of MD in CUDA. In Section 4
we provide further detail on the simulation parameters as well as present results
from two case studies: pure water simulations and sodium iodide (NaI) solution
simulations. Finally, in Section 5 we conclude and discuss future work.

2 Background and Related Work

2.1 Background

In the past, graphics application programming interfaces (APIs) such as OpenGL
were the only means of accessing the computing resources of GPUs. In general,
these APIs were not easy to use for those who were unfamiliar with graphics
processing, as calculations essentially had to be “drawn” and then the result-
ing “images” interpreted to obtain meaningful results. Recently NVDIA has
introduced the CUDA language library. CUDA facilitates the use of GPUs by
providing a minimal set of extensions to the C programming language necessary
to expose the power of GPUs for general purpose applications.

GPUs are massively parallel multithreaded devices capable of executing a large
amount of active threads handled by a hardware thread execution manager that
overlaps computation with communication whenever possible. There are multi-
ple streaming multiprocessors, each of which contains multiple scalar processor
cores. For example, NVIDIA’s G80 GPU architecture contains 16 such multipro-
cessors, each of which contains 8 cores, for a total of 128 cores which can handle
up to 12,288 active threads in parallel. The GPU also has several types of mem-
ory, most notably the main device memory (global memory) and on-chip shared
memory accessible to all cores on a single multiprocessor. From the perspective of
the CUDA programmer, the GPU is treated as a coprocessor to the main CPU.
Programs are written in C and linked to the CUDA libraries. A function that exe-
cutes on the GPU, called a kernel, consists of multiple threads executing code in a
single instruction, multiple data (SIMD) fashion. That is, each thread in a kernel
executes the same code, but on different data. Further, threads can be grouped
into thread blocks. This abstraction takes advantage of the fact that threads ex-
ecuting on the same multiprocessor can share data via on-chip shared memory,
allowing some degree of cooperation between threads in the same block.

As described above, GPU architecture is inherently different than a traditional
CPU. Therefore, code optimization for the GPU involves different approaches than
for the CPU. Such considerations are discussed in more detail elsewhere [1], but
here we will briefly address some typical CUDA optimization strategies. First,
since threads are independent, it isnecessary tomaximize independent parallelism,
i.e., minimize the need for communicationbetween threads. However, it is alsoben-
eficial to take advantage of the per-block shared memory, allowing a small degree
of communication between threads in the same block. A balance of these two is de-
sirable for the best performance. Second, since reading from the global memory is
relatively expensive, it is often more efficient to redundantly compute a value mul-
tiple times rather than compute it once and read it from memory. In other words,
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maximizing the amount of arithmetic intensive computations allows the latency of
communication to be hidden by overlapping with execution. Third, when dealing
with global memory, it is most efficient if reads and writes are coalesced, meaning
that consecutive threads act on contiguous locations in memory. Therefore it is
beneficial to structure the data and algorithms in such a way that this is possible.
If this is difficult or not practical, the texture cache can be used to speed up reads
from memory locations that arenot contiguous. Finally, transfer between the GPU
global memory and the main memory of the CPU is extremely slow compared to
transfer within the GPU, so this should be done only when absolutely necessary.

2.2 Related Work

In this section we will briefly review some related work involving the imple-
mentation of MD on GPUs. One of the first instances reported in the literature
was a study by Yang et al. [8] in which an MD algorithm was programmed for
a GPU using OpenGL, as general purpose GPU programming platforms such
as CUDA were not yet readily available. This required translation of the MD
algorithm into graphics operations. For example, values such as the atomic co-
ordinates were encoded in the color values of pixels. However, their application
to periodic, crystalline solids made neighbor list updates unnecessary, a sim-
plification that is not generalizable to the more fluid, less structurally ordered
systems of interest to our work. Overall, this study provides a proof of concept
demonstrating that implementing MD on GPUs is feasible.

Since the work of Yang et al. there have been several studies of MD using
CUDA. Stone et al. [3] have integrated CUDA into NAMD, adapting nonbonded
force calculations for GPU while retaining the CPU implementations of all other
computations. However, minimizing the transfer of data from the GPU will likely
enhance performance. This was the approach of Anderson et al. [4], who con-
structed MD code from scratch in which all computations were carried out on
the GPU. Their implementation was applied to simple Lennard-Jones liquids
and polymer systems with Lennard-Jones and bonded potentials only. A very
similar study was carried out by van Meel et al. [12], with the most significant
difference being the use of a cell-based list structure vs. a neighbor list structure
as in Anderson’s study. In addition, the study by van Meel compared CUDA
with Cg, a less flexible programming language for graphics processing. Our im-
plementation is most similar to that of Anderson et al. in that all aspects of the
MD algorithm are carried out on the GPU using a neighbor list structure for
the nonbonded calculations. Unlike Anderson, we include angle and electrostatic
potentials, which are necessary to simulate solvent systems such as water.

3 Methodology

3.1 Molecular Dynamics on CPU

Several molecular modeling packages are available, with CHARMM [13], GRO-
MACS [14], and NAMD [15] among the most popular. CHARMM is one of the
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oldest modeling packages available, having been developed for over two decades.
Today, CHARMM still has an active development community, with new simula-
tion algorithms being incorporated constantly. As a result, CHARMM has a wide
variety of algorithms, force fields, and simulation methods available compared
to other packages. In addition, CHARMM has been extensively tested and vali-
dated in the many literature studies that have used it over the years. For these
reasons we use CHARMM both as a model which our GPU implementation
emulates and as the reference to validate the results of our algorithm.

3.2 Molecular Dynamics on GPU

Our current CUDA implementation is modeled after CHARMM in terms of
the force field functional forms, neighbor list structure, and measurement units.
Our water simulations use a modified version of the flexible SPC/Fw water
model [9], which will be discussed in more detail below. Nonbonded interactions
(Lennard-Jones and electrostatics) are calculated by a single kernel in which each
thread iterates through the neighbor list for a single atom i and accumulates the
interactions between i and all its neighbor list entries. The texture cache is used
for reading the coordinates of the neighbor atoms since they are not contiguous
in memory. Shifted force forms are used for the electrostatic and Lennard-Jones
potentials so that both energies and forces go smoothly to zero at the cutoff
rcut. The Verlet list approach [10] is used to construct the neighbor list. Briefly,
a list is constructed for each atom containing all atoms within a cutoff rlist,
where rlist > rcut. This way, the list only needs updating whenever an atom
has moved more than 1

2 (rlist − rcut). The list is constructed on the GPU as
follows. Each thread checks the distance between an atom i and all other atoms,
and adds to i’s neighbor list those atoms that are within rlist of i. This process
is accelerated by having each block take advantage of shared memory using a
previously described tiling approach [11].

Bond and angle potentials are computed using a similar list approach. For
the bonds, each thread iterates through all atoms bonded to an atom i and
accumulates the total bond forces. For the angles, each thread iterates through
the atoms which are involved in an angle with i and calculates the appropriate
interactions. Unlike the nonbonded lists, these lists are constructed once on the
CPU at the beginning of the simulation, copied to the GPU, and never need to
be modified.

4 Computational Experiments

4.1 Platforms

Three different NVIDIA GPUs were used for our simulations: Quadro FX 5600
(1.5GB memory, single precision), GeForce 9800 GX2 (2 GPUs per card, 512MB
memory, single precision), and GTX 280 (1GB memory, double precision). For
our first case study, the pure solvent systems, the GeForce 9800 GX2 was used.
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For the second case, the ionic solutions, performance was compared between all
GPUs, using double precision arithmetic on the GTX 280 and single precision
on the others.

Our reference simulations were run on CHARMM on a Beowulf cluster con-
sisting of compute nodes with Intel Xeon 5150 2.66 GHz (Woodcrest) CPUs. For
the pure solvent simulations a single CPU was used, while for the ionic solution
performance was compared with 1, 2, 4, and 8 CPUs.

4.2 Solvent Simulation

In our simulations we use a modified version of the flexible SPC/Fw water model
developed by Wu et al. [9]. Briefly, the intramolecular potential is:
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As described in Section 3.2, this potential is evaluated on the GPU using bond
and angle lists. The general intermolecular potential consists of a Lennard-Jones
potential modeling the van der Waals forces and a Coulomb potential for the
electrostatic interactions:
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As mentioned in Section 3.2, this potential is shifted smoothly to zero at the
cutoff and pairs separated by a distance greater than a cutoff rcut are neglected.
Furthermore, we have modified the Lennard-Jones parameters slightly to account
for the fact that we neglect long-range electrostatics typically computed using
an Ewald sum.

Starting configurations for our simulations were pre-equilibrated with
CHARMM using the NVT (constant number of particles, constant volume, con-
stant temperature) ensemble. Simulations were then run from these starting
configurations using our CUDA MD code for GPUs using the NVE (constant
number of particles, constant volume, constant energy) ensemble. A Verlet in-
tegrator with 1 femtosecond (fs) timestep was used both on the GPU and in
CHARMM to integrate the equations of motion. Pure solvent systems consisted
of cubic periodic boxes equilibrated to a density of 1.012 g/mL, the calculated
equilibrium density for the SPC/Fw model [9]. Several different system sizes
were used to determine the effect of system size on performance. Figure 2 shows
one of the cubic water boxes used. To measure the performance, we simulated
100,000 MD steps using both CHARMM (on a single processor) and our GPU
code. For the GPU simulations, only one type of GPU, the GeForce 9800 GX2,
was used. Five system sizes were used, consisting of 233, 826, 1981, 3921, and
6845 water molecules. From the total execution time for each simulation, we
determined the number of MD steps per second. This data is shown in Table 1.
On average, our GPU code is ∼7x faster than CHARMM on a single CPU.
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Fig. 2. A snapshot of the cubic water system containing 233 water molecules

Table 1. Performance of our GPU code for the pure water systems compared to
CHARMM on a single CPU. GPU simulations were run on the GeForce 9800 GX2.
The total execution time for 100,000 MD steps was used to obtain this data.

# waters # atoms steps/sec (CHARMM) steps/sec (GPU)
233 699 165.34 609.09
826 2478 43.49 271.2
1981 5943 17.25 159.12
3921 11763 8.52 72.32
6845 20535 4.73 32.47

To ensure that our simulation results are accurate, we ran longer simulations
(several million MD steps for a simulation time of several nanoseconds) with
the 233 water system on both CHARMM and our GPU code. Figure 3 plots
the temperature (a function of kinetic energy) and total potential energy over
the simulation time. Both quantities fluctuate, as expected, around the same
average value, indicating that our GPU implementation does in fact produce
results consistent with CHARMM.

4.3 Ionic Solutions

For our second case study we simulated NaI solutions with a liquid-vapor in-
terface. Only nonbonded interactions are applicable to the ions. Lennard-Jones
parameters for sodium and iodide were transferred from the CHARMM force
field and modified slightly to better reproduce ab initio water interaction ener-
gies [16] with our modified SPC/Fw water model. NaI solution systems consisted
of a non-cubic periodic box (larger z-dimension to create a vapor interface), with
simulation parameters otherwise identical to those of the pure water simulations
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Fig. 3. Energy and temperature profiles over time for the 233 water system simulated
using CHARMM and our CUDA code on a GPU

Fig. 4. Snapshot of the NaI solution system containing 988 waters, 18 Na+, and 18 I−

Here we compared performance among different GPUs and different numbers of
CPUs for a single system size, which consisted of 988 water molecules, 18 Na+

ions and 18 I− ions, for a total of 3000 atoms. Figure 4 shows a snapshot of this
system. As with the previous case study we measure performance by the number
of MD steps per second.

First, we compare the performance of three NVIDIA GPUs: Quadro FX
5600, GeForce 9800 GX2, and GTX 280. This data is shown in Table 2. Sev-
eral observations are apparent from the data in Table 2. Both single precision
GPUs perform about equally well, with the GeForce 9800 GX2 achieving ∼6%
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Table 2. Performance of our GPU code for the NaI solution system compared among
different GPUs and CHARMM on 1, 2, 4, and 8 CPUs. The total execution time for
10 million MD steps (10 nanoseconds simulation time) was used to obtain this data.

steps/sec
GeForce 9800 GX2 260.88
Quadro FX 5600 246.37
GTX 280 31.79
CHARMM (1 CPU) 34.34
CHARMM (2 CPUs) 64.95
CHARMM (4 CPUs) 116.62
CHARMM (8 CPUs) 186.05

better performance. As with the pure water simulations, the speedup of the
single precision GPUs over CHARMM on a single CPU is ∼7x. Regarding
the double precision simulation run on the GTX 280, performance drops by
a factor of ∼8 compared to the single precision. This performance is approxi-
mately equal to that of CHARMM running on a single CPU. We note, however,
that not all of the optimizations we implemented with single precision were
possible with double precision. Specifically, double precision does not support
texture memory in the same way that single precision does. Reading coordi-
nates from the texture memory accounts for a speedup of ∼2–3x in our single
precision code. Therefore, the performance cost of double precision relative to
single precision is closer to ∼3–4x. Even with this consideration, the perfor-
mance cost of using double precision is still significant. Finally, we note that
the single precision GPUs perform better than CHARMM even on 8 CPUs.
By linear extrapolation, we estimate that the performance of the single pre-
cision GPUs is approximately equivalent to that of CHARMM running on 12
CPUs.

5 Conclusions

We have presented results of all-atom MD simulations implemented on NVIDIA
GPUs using CUDA. Despite the fact that our implementation is relatively näıve
and straightforward, we have achieved promising results in terms of perfor-
mance. Our GPU implementation performs ∼7x faster than CHARMM on a
single CPU, which is a speedup approximately equivalent to CHARMM on
12 CPUs. Looking to the future, we plan to expand the MD options possi-
ble by adding potential energy terms such as dihedrals as well as additional
algorithms such as Ewald summation to account for long-range electrostatics.
Furthermore, we anticipate that more code optimizations are possible, leading
to even more efficient performance. Finally, our ultimate goal is to integrate
some GPU acceleration directly into CHARMM, which will be made possi-
ble with the upcoming FORTRAN compiler and libraries for CUDA, towards
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the study of very large systems for long simulation times on the order of 100
nanoseconds.
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Abstract. Simulation techniques used to generate complex biological models 
are recognized as promising research tools especially in oncology. Here, we 
present a computer simulation model that uses an agent-based system to mimic 
the development and progression of solid tumors. The model includes influ-
ences of the tumor’s own features, the host immune response and level of tumor 
vascularization. The interactions among those complex systems were modeled 
using a multi-agent modeling environment provided by Netlogo. The model 
consists of a hierarchy of active objects including cancer cells, immune cells, 
and energy availability. The simulations conducted indicate the key importance 
of the nutrient needs of the tumor cells and of the initial responsiveness of the 
immune system in the tumor progression. Furthermore, the model strongly sug-
gests that immunotherapy treatment will be efficient in individual with sus-
tained immune responsiveness. 

Keywords: self-regulation; self-organization; self-migration; agents; cell  
simulation.  

1   Introduction 

Dynamic and probabilistic modeling of tumor growth, immune responses and angio-
genesis has been active areas of research in the past decade. For example, probabilis-
tic models have been used to simulate active cell growth based on discrete cell cycle 
phases and durations. Continuous system models have also been used to describe cell 
growth in general or cell growth in terms of mathematical equations [1]. Such models 
vary from those that analyze the remodeling of the vasculature while ignoring 
changes in the tumor mass, to those that predict tumor expansion in the presence of a 
non-evolving vasculature [2, 3]. However, it is well accepted that vasculature remod-
eling and tumor growth strongly depend on one another [4, 5]. Gevertz and Torquato 
have developed a two-dimensional hybrid cellular automaton model of early brain 
tumor growth that couples the remodeling of the microvasculature with the evolution 
of the tumor mass [6].  

However, in their modeling, tumor growth is not presented as a self-organizing com-
plex dynamic system but rather as more random process [7]. Alternatively, the tumor 
mass can be recognized as a self-organized and self-regulated system. Such a system 
should encompass not only intrinsic properties of tumor cells (e.g., stem cells, growth, 
migration) but also their interactions with both the immune system and the vascular 
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system. Indeed, the immune system plays a major role in modulating the development 
of cancerous cells, with a key role in destroying tumor cells during the early phases of 
cancer. The blood supply providing nutrient and oxygen is also critical to cancer 
growth. The successful development of the tumor is tightly associated with the intrinsic 
tumor properties and the interactions with both the immune and the vascular systems.  

In addition, to the tumor system, both the immune and the vascular system can be 
modeled as complex system [8-10]. For example, the self-organization of the immune 
system lies in immune cells’ capability to produce signaling molecules (e.g., cyto-
kines, antibodies) in response to environmental encounters, which in turn are recog-
nized and lead to dynamic changes of their activities [11, 12]. Similarly, the blood 
vessel development, or angiogenesis, is controlled by multiple molecules including 
vascular endothelial growth factor and endothelins [13]. The secretion by tumor cells 
of both cytokines and angiogenic factors strongly interferes with both the local im-
mune and angiogenic responses of the immune and vascular system [5]. The sum of 
the interactions between tumor, immune and vascular local systems defines both the 
success and the rate of tumor progression. One of the requirements for self-
organization (i.e., a process of evolution where the development of new, complex 
structures takes place primarily in and through the system itself) is  an interaction of 
the system with its environment. Thus, both the immune system and vasculature 
influence the tumor; the tumor and the vasculature influence the immune system; and 
tumor and the immune system influence the vasculature. Because there is no clear 
cause-and-effect path in the overall system, it is virtually impossible to define 
empirically. Thus, modeling is a plausible way to explore mechanisms by which the 
pieces of the system produce their effects. 

Given the complexity of the interactions between tumor cells, immune cells and 
the vascularization during tumor progression, modeling using agent-based systems 
(ABS) will provide a more dynamic representation of tumor development. Therefore, 
here we present a new agent-based modeling of tumor progression taking into account 
this three-way relationship. The agent-based system approach used here uses continu-
ous updating of agent state as the three-way interactions play out in time. 

2   Materials and Methods 

2.1   Software Platform 

The software was implemented in NetLogo, a cross-platform multi-agent program-
mable modeling environment, which enables exploration of emergent phenomena, 
and was constructed by building on elements from Wilensky’s tumor model in the 
NetLogo library [14]. The software permitted changing the parameters that affect 
tumor progression, immune system response, and vascularization, as described in the 
following sections.  Outputs included the number of living tumor cells and the 
strength of the immune system.  

2.2   Tumor Model  

The model of De Pillis and colleagues [12, 15] was modified in the following ways. 
First, in the present model, tumor cells are allowed to divide, move, or die, depending 
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upon the presence of immune cells, and the nutrient levels associated with amount of 
vascularization. Second, the modifiable immune system parameter was the total num-
ber of immune system cells. By increasing the number of immune cells, the immune 
response is strengthened and the tumor development limited. The model allows for 
the control of the immune cell-cell interactions since the numbers of multiple immune 
cell types are parameters within this dynamic system. All those agents depend not 
only on their intrinsic properties but also on their environment.  

2.3   Parameters 

The procedure includes multiple parameters associated with tumor growth, immune 
response and energy availability. These parameters have been used in previous mod-
els using probabilistic, mathematical methods [11, 15]. Here, as in previous tumor 
models, tumor cells are allowed to divide, move, or die, depending upon energy  
availability (associated with vascularization) and the activity of the immune system. 
Specifically, the following parameters associated with tumor cells (initial number, 
division rate, cell death rate), immune cells (number of lymphocytes and macro-
phages) and the energy availability were included in an agent-based system to de-
velop a tumor progression model.  

2.4   Simulation Procedures 

The simulation procedure1 includes four components: the cell generation, the vascula-
ture development, the proliferation routine in which individual tumor cells divide and 
evolve, and the immune system response. Through an iterative process, the simulation 
procedure is repeated at every time step or tick. 

2.4.1   Cell Generation  
The first step in the simulation procedure is to generate all agents that will participate 
in the initial run of the program. Those cells were tumor cells and two kinds of im-
mune cells (macrophages, lymphocytes). 

2.4.2   Tumor Cells 
In the model, tumor cells are allowed to divide, move, or die, depending on nutrient 
levels, the presence of immune cells, and the passage of time. Tumor cells die in one 
of two ways: either they are killed by lymphocytes or macrophages, or they die due to 
insufficient nutrient. In this model, as in [11, 15], time is measured in simulation 
steps, here called “ticks”  (each tick is composed of 5 equal units of time, e.g., 400 
ticks = 2000 times). In the display (See Fig. 1), cells change their color depending on 
their age: initial tumor cells are blue small circles; very young (age less than 40 ticks) 
are red small circles; young (age between 40 and 70 ticks) are pink small circles; old 
(age between 70 and 90 ticks) are white small circles; and dead tumor cells (age 
above 90 ticks through apoptosis, or through immune system intervention) are grey 
small circles. 

                                                           
1 The detailed procedure is available by contacting the authors. 



190 D. Dréau et al. 

2.4.3   Vasculature Development 
 The most common model of normal capillaries is the Krogh cylinder model, in which 
the capillaries are assumed to be straight, parallel vessels with uniform spacing [9]. 
However, images of the cerebral microvasculature [16] show that the assumption of 
regularly spaced, parallel capillaries is a poor approximation of the brain’s capillary 
network. Therefore, we used a random analog of the Krogh cylinder model to gener-
ate a more physiologically relevant brain microvasculature [17]. The capillary net-
work is allowed to exist on a triangular lattice, which is overlaid on top of the unit 
square containing the participating cells. In order to generate a blood vessel, a random 
site on the triangular lattice is chosen, as is the angle at which the vessel extends 
along the lattice. The vessel created is accepted as part of the vasculature and extends 
from its point of origin until the tissue boundary, provided that it does not violate any 
of the following three constraints: (1) the vessel cannot penetrate a cylinder of radius 
one lattice unit about an existing vessel oriented at the same angle, (2) the vessel 
cannot cause the intersection of three vessels at one lattice site, and (3) the vessel 
must vascularize at least one non-vascularized cell. Although the procedure developed 
take into account the development of blood supplies, in the simulated data presented 
here, the vascularization is simply represented (see Fig 1.) by three regions with low, 
moderate and high vascularization. 

2.4.4   Tumor Cell Proliferation  
Once the vasculature has established itself at a given time, the proliferation simulation 
procedure can be run. The simulation classifies the cells into one of the five types. 
There are two kinds of non-tumor/healthy cells: viable cells that do not actively divide 
and necrotic cells. There are three malignant cell types: proliferative cells that are 
well-vascularized and actively dividing, non-proliferative / hypoxic cells whose oxy-
gen supply is insufficient to support cellular division and necrotic cells. The following 
rules are applied: (1) For each edge on the triangular lattice that holds a blood vessel, 
a rectangle with a length that is two times the diffusion length of oxygen (typically on 
the order of one millimeter) and a width equal to the length of the vessel edge is 
drawn. Two sides of the rectangle run parallel to the edge, and the other two run per-
pendicular to the edge, (2) if a cell falls within this rectangle, the cell is vascularized, 
and (3) if a cell does not fall within this region for any vessel in the vasculature, the 
cell is not well vascularized.  

2.4.5   Immune System Response  
The immune system is a complex system, with numerous actors and the multiple 
interactions involved in immune responses. The immune system exhibits a highly 
distributed, adaptive and self-organizing behavior with three main features: recogni-
tion, learning/ associative memory, and (specific) response [12, 18, 19]. The immune 
system self-regulates the populations of specific cells and their rapid increase follow-
ing a challenge (in this case, tumor presence), and after eliminating the tumor cells, 
their decrease through the stimulation and suppression chains that it can enforce. In 
the present model the immune system response initial strength can be controlled. The 
following immune cell types are used in the current model: macrophages, and lym-
phocytes. The structure of immune system also varies continuously according to dy-
namic changes of the environment, organizing itself to adapt to the specific changes 
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in the surroundings [19]. In the tumor model, the cells communicate to each other 
through stimulation and suppression chains and work as a self and non-self recog-
nizer. The chemical substances released from those cells (e.g., cytokines, antibodies) 
help them to learn from each other and to migrate to tumor site and fight tumor 
growth. All immune cells move randomly within the tumor microenvironment. The 
modeled cells are shown in Fig 1. as colored circles of two kinds: macrophages (big 
green), lymphocytes (yellow small). Recognition of tumor cells by lymphocytes or 
macrophages leads to the destruction of the tumor cell in direct contact.  

2.4.6   Overall Procedure  

2.4.6.1   Summary of the Procedure. Briefly, the general steps associated with the 
model are (1) the generation of cell population: the simulation classifies the cells as 
described above; (2) the generation of the vascular regions: the vascular status is 
arbitrarily generated by the definition of three regions with low, moderate and high 
vascularization. These regions are represented in Fig 1. as adjoining rectangles of 
different colors: low (black), moderate (blue) and high (orange) energy availability 
(oxygen and nutrient contents), respectively; (3) the cell proliferation: the cell prolif-
eration is function of the cell type and surrounding environmental influences using the 
algorithms of De Pillis, et al. [15]; (4) Cell movements: randomly generated, resulting 
in contact with nutrients (in the case of cancer cells) or killing targets (in the case of 
immune cells); (5) Testing nutritive state: for each cell depending on its location in 
the vascular regions, tumor cells are allowed to divide, move, or die, depending upon 
nutrient levels; (6) Action of immune cells is described in previous section. Following 
those steps, the model status (tumor cell number and location; immune cell number 
and location) is updated and recorded and graphs of the number of tumor and immune 
cell over time is part of the output. Time is not absolute, but represents cell cycles, 
following the convention of De Pillis, et al. [15]. The simulations presented here are 
the results of 400 iterations (or 400 ticks = 2000 units of time) of the procedures de-
scribed above.  

2.4.6.2   Initial parameters. The tumor related parameters were introduced into the 
model using formula for tumor mitosis and tumor death, respectively [11, 15]. How-
ever, here the number of cells (N) is the present model was determined by the nutri-
ent/oxygen concentrations within the cell microenvironment. The microenvironment 
is a factor used to calculate the energy availability (i.e., local nutrient concentration). 
Initially, and unless noted the following energy availability was set at 0 (low), 1.25 
(medium) and 3.75 (high), respectively. The tumor cell parameters and equations 
were those described earlier by De Pillis et al. [11, 15]. Tumor cell division was a 
function of a threshold (Nutrient minimum, Nmin set at 0.83) based on nutrient avail-
ability and on the likelihood of cell division (θdiv, 0.0-1.0). The number of cells dy-
ing is determined using a comparable formula with M, the number of dead cells, 
Mmin (the threshold associated with a probability of cell death, set to 0.725) and the 
probability parameter modulating cell death (set at 0.5). The original number of tumor 
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cell was 2. Unless noted, the parameters associated with immune responses were 
initialized to macrophage (21) and lymphocytes (9).  

3   Results 

3.1   Modeling and Visualization of Tumor Growth 

In the present model tumor progression is generated by self-organization and self-
regulation of the tumor cells, the vascularization processes and the immune response 
behaviors. Different parameter sets were tested in the model and the effects on mor-
phology of changing cell consumption rate, angiogenesis and immune response were 
measured. Four sets are presented in Fig. 1. 

Tumor cells with low nutrient needs (low consumption rate θn = 0.01, panel A) 
grew in density without moving far from the initial site of formation. However, tumor 
cells with higher need for nutrient grew more slowly (panel B, θn = 0.5). Further-
more, to divide, the cells moved away from the initial site of the tumor, toward the 
regions of higher nutrient concentration, leading to two “fingered” areas of growth. 
Areas with low nutrients were associated with limited mitosis and subsequent death 
(grey tumor cells in black part of panel). The tumor evolves into a branched structure 
with cells actively searching for new areas with higher nutrient levels, leaving behind 
them necrotic debris caused by tumor cell death due to a lack of nutrients. As the 
intrinsic nutrient needs of the particular tumor cell increase, both the migration toward 
microenvironment with high nutrient content increase and the size of the tumor mass 
decrease (Panel C: θn = 0.75, and Panel D: θn = 1.0). 

3.2   Cell Numbers Associated Food Consumption 

A quantitative view of immune cells and tumor cells associated with the conditions 
presented in Fig 1 is displayed in Fig 2. Tumor cell numbers are plotted in panels A-
D, immune cells in E-H, for 400 iterations (or ticks and there are 5 time units  
per tick). 

 

 
 
 

Fig. 1. Tumor mass following 400 iterations (ticks) of the ABS tumor model using the initial 
parameters (for more details, see the material and methods section) with 4 different nutrient 
consumption rates θn = 0.01(A), 0.5 (B), 0.75 (C) and 1.0 (D). The background represents 
zones of low (black), medium (blue) and high (orange) nutrient levels. Larger cells are immune 
cells (macrophages in green initially set at 21 and lymphocytes in yellow initially set at 9). 
Tumor cells are small circles of different colors depending on their age and whether they are 
dead; see text for explanation. 

A DCB 
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Table 1. Effects of increasing nutrient needs on the initiation of tumor growth (cell numbers 
above 50), simulated tumor burden and associated slope coefficient (from 1st tick with a cell 
number above 50 to 400 ticks). Results are presented as mean ± SE. 

Nutrient 
needs 

Cell # >50 Tumor burden (# cells) Slope 

 at tick# 200 ticks 400 ticks  
0.01   14±6.0 3901±  799   8593±1337 0.95 
0.25   13±2.7 3065±1001   5446±2159 0.76 
0.5   10+2.7 4059±1145 11631±1127 0.55 
0.75   93±7.0 2690±  304   6470±  564 0.30 
1.00 100±22   864±  255   3161±  951 0.25 

 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Number of tumor cells (A-D) and immune cells (E-H) over time (400 ticks, there are 5 
time units per tick) for experiment performed under increasing tumor nutrient needs 0.01 (A, 
E), 0.5 (B, F), 0.75 (C, G) and 1.0 (D, H). The conditions are those described in Fig 1. 

With an immune response somewhat constant (around 30 cells, Fig 2 E-H), the 
generated plot for tumor mass with tumor cells with low nutrient needs (0.01, Fig 2A) 
contained a much larger number of tumor cells when compared to tumor cells with 
higher nutrient needs (0.75 and 1.0, Fig 2C-D). The simulations were repeated (n=3-
5), and in those simplified conditions, the steepness of the slope of the cumulative 
number of tumor cells modeling tumor growth was inversely related to the tumor cell 
need of nutrients (slope coefficient = 0.9855 x (consumption rate)-1.0009, r2=0.9803, 
Table 1.). In addition, with all input parameters being equal, the repeat of the simula-
tion resulted in a broad variability of the number of ticks before the tumor mass reach 
50 cells and tumor cell numbers after 200 and 400 ticks, respectively (Table 1.). Fur-
thermore, the time to reach 50 tumor cells was significantly increased as the tumor 
cell intrinsic energy need increased.   

3.3   Effects of the Initial Immune Cell Number on Tumor Growth 

The simulation presented above (Fig 2 E-H) is a representation associated with different 
and constant immune responses. In the present model, the effect of the host immune 
responsiveness to tumor growth was modeled by simply setting the initial number of 
macrophages and lymphocytes to 21:9 (Fig 3E), 42:18 (Fig 3F), 63:27 (Fig 3G) and 
84:36 (Fig 3H). In these conditions, the model confirms the importance of the initial 
immune responsiveness in slowing the tumor growth and limiting the tumor burden.  

D A B C 

E F G H 



194 D. Dréau et al. 

 

 
 
 
 
 
 
 
 

Fig. 3. Tumor burden (number of tumor cells) over time in a simulated environment with 30 
(A), 50 (B), 100 (C) and 200 (D) initial immune cells, respectively. 

 

Fig. 4. Tumor burden (number of tumor cells) over time associated with increased immune 
responsiveness x2 (A), x3 (B), x4 (C) and x5 (D), respectively.  Using the conditions described 
earlier (see Fig 3) the number of immune cells was modulated every 50 ticks to mimic a routine 
immunotherapy treatment leading to increase in immune cells within the tumor microenviron-
ment. Arrows mark the repeated time of treatment. 

The stronger the initial immune status, i.e., the number of immune cells available 
at the tumor location, the less tumor cells will survive independently of their envi-
ronment. With 30 immune cells (Fig 3A), the tumor grows and starts to growth expo-
nentially at about 1000 time units. With 50 immune cells present (Fig 3B), the tumor 
grew more or less linearly over the entire period shown here. Linear growth with 
lower slopes (Fig 3CD) over the time periods represented here were observed when 
high number of initial immune cells were used in the model. 

3.4   Effects of Repeated Alterations of the Immune Cell Number on Tumor 
Growth 

Immunotherapy is based on the correlation between host immune responses and tumor 
burden. Overall, the stronger the immune response, the less tumor burden as modeled 
earlier (Fig. 3). Therefore, we used the model to mimic the effects of a repeated immu-
notherapy treatment leading to increase in immune cells present within the tumor mi-
croenvironment. The modeled treatment increased the total immune cell number by 2 
(Fig 4E), 3 (Fig 4F), 4 (Fig 4G) and 5 (Fig 4H) folds, respectively. As shown Fig 4., the 
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increase in immune cell numbers was associated with a drastic decrease in the tumor 
burden especially when with 4 and 5 folds the initial immune cell numbers.  

4   Discussion   

Computer simulations have become a useful part of investigating many natural 
systems, to gain insight into the operation of those systems, and to make mechanistic 
predictions about their behavior. Solid tumor progression in particular has been 
modeled extensively, but have had limited success in predicting tumor growth rate, 
recurrence or therapy outcome [2-5, 11, 15]. The agent-based model presented here 
allows the study of inputs associated with tumor intrinsic properties, the immune 
responsiveness and the vascularization (energy availability) in solid tumor progres-
sion. In contrast with other dynamical system approaches, the ABS approach imple-
mented here uses time-dependent interactions. The model presented mimicked the 
growth of tumor mass based on the energy need of a given tumor cell clone, immune 
responsiveness. Furthermore, the exogenous addition of immune cells akin to an im-
munotherapy treatment was associated with a significant decrease in tumor burden 
during time the simulation was run. 

The ABS model used here not only illustrates the tumor, the immune system and 
vascularization processes but also may provide new sets of principles on the quantita-
tive and dynamic relationships among those systems. Each component within such a 
system carries out a simple task, but as a whole such systems are able to carry out 
much more complex tasks than would be possible by the components acting alone. 
Such behavior emerges in a coherent way through the local interactions of the various 
components. These systems are particularly robust, because they adapt to the envi-
ronmental changes, and are able to ensure their own maintenance or repair. By know-
ing more about the system and the properties of the individual agents the tumor model 
can be extended and will be able to mimic individual tumor growth closely. The 
reliability and the trust people put in computer simulations depends on the validity of 
the simulation model. Although the simulations presented appear to mimic the 
development of a generic solid tumor, the model is based on assumptions that overall 
simplify the biology inherent to tumor progression. Nevertheless, the use of tumor 
cell intrinsic needs and immune cells within a simplified vascularization configuration 
still lead to realistic simulations. Furthermore, in the ABS modeling presented here 
due to its stochastic nature, multiple runs using the same initial parameters lead to 
variations in the tumor burden compatible with biological variability. Similar 
observations were made for the number of time unit needed to reach 50 tumor cells. 
However, these variations were not a fundamentally different answer for each 
execution even when the system is adapting to environment and behavior of 
individual elements. These observations indicate that within the present model, the 
results are reproducible. Therefore, the timing to tumor growth and the speed of the 
tumor burden increase may have a specific pattern that can be defined.  

In the present simulation, the environment was arbitrarily divided into three differ-
ent nutrient concentration levels, which is an obvious oversimplification of the “real” 
tumor vascularization dynamic. Nevertheless, this approach provides the bases for the 
development of more heterogeneous vascular environment closer to those observed in 
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solid tumors. Fig. 1 indicates that even with this simplification, a reasonable result 
was obtained, thus validating the simplification. As in previous experiments [11], the 
increased needs of nutrient by the tumor cells effectively lead tumor mass spreading 
within environment providing energy (well vascularized). Indeed, as mimicked by the 
present model, the vascularization of a nascent tumor mass is critical to its growth 
[20]. Improvement to the model will include the generation of a more realistic vascu-
lar network based on both the intrinsic properties of the tumor cells and anatomical 
location.  

Tumor progression is also function of the immune responsiveness of the patient. 
Here, the model uses focuses on macrophages and lymphocytes and their effects on 
tumor growth. The model suggests indicates that as the number immune cells present 
with the vicinity of the tumor early on increase, the tumor burden increase more 
slowly. Although the model utilizes only macrophages and lymphocytes without 
distinguishing the different subsets and roles of each of the immune cell types, the 
simulations appears to mimic observations made in both patients and animal models 
[21, 22].  Furthermore, variations in the immune responses over time and between 
patients are the basis for cancer treatment aimed at boosting the patient immune re-
sponses [21, 22]. Such approaches have been met with only limited success in part 
because of a lack of full understanding of the individual and local immune tumor cells 
interactions [22]. The model presented here allowed simulations of alterations in 
number of immune cells and led to a much slower increase in the tumor burden (Fig 
4.). However, similar simulations conducted using a lower initial number of immune 
cells led to an increase in the tumor burden (data not shown). These simulations 
mimic both clinical and animal studies and support the key role of the initial immune 
responsiveness in the development of valid immunotherapy treatments [21, 22].  

Overall, the agent-based system presented, despite some oversimplifications of the 
system components involved (tumor, immune, vascular), provided a realistic repre-
sentation of the progression over time of the tumor burden that appeared to be compa-
rable with both animal models of solid tumors and human observations [22-24]. In-
deed, the model simulated the role of the intrinsic nutrient needs of the tumor: the less 
nutrient a tumor cell needs, the faster it growths, and the stronger the initial immune 
response, the slower the tumor burden increases. Furthermore, the model also pre-
dicted the tumor burden outcome following immunotherapy treatment in patients with 
low and high in initial immune responsiveness, failure and success in limiting tumor 
growth, respectively. Additional experiments are ongoing to more fully mimic the 
immune microenvironment taking into account more fully the interactions between 
each immune cell types. Whether various alterations in both the nutrient and oxygen 
zone, or in the details of the immune responses will provide additional nuances to the 
modeling procedure is currently being investigated.   

5   Conclusions 

The procedure implemented allows the input of data collected from primary tumor 
mass as initial values for both vascularization and for some of the immune cells pre-
sent within the primary tumor. Whether with additional details or as is the proposed 
procedure allows a decision regarding the likelihood of tumor re-growth or of  
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metastases remains to be assessed. Nevertheless, the procedure, as presented, takes 
advantage of the use of agent-based systems and strongly suggests that it may not 
only provide information as a diagnostic and prognostic tool but also it may clarify 
the multiple interactions associated with the combination of the tumor, immune and 
vascular system all involved in the development of solid tumor growth. Finally, re-
peated simulations provided consistent results with some variations in the number of 
tumor cells without being comparable to the extreme variation observed in cancer 
patients regarding tumor growth. This flexibility intrinsic to the procedure used will 
provide the framework to further detail the key events associated with the develop-
ment of solid tumors. The variations observed in the simulations repeated under simi-
lar conditions points to the flexibility of the agent based approach in developing a 
tumor modeling procedure that would more closely mimic tumor growth in vivo. In 
future work more detailed immune cell populations and stress markers could be in-
cluded in the model as additional factors to the presented solid tumor progression 
model.  
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Abstract. We have designed a drug pathway identification system,which
we called Drug Pathway Decipherer, to generate hypotheses on drug treat-
ment responsive pathway. Decipherer takes in both pre- and post-
treatment gene expression data, and evaluates known biological pathways
against the data. We applied Decipherer to two gene expression datasets
of human nasopharyngeal carcinoma treated with CYC202. Results show
that the identified RAS-ERK pathway and PI3K-NFκB-IAP pathway are
closely associated with treatment outcome. Decipherer is implemented in
Java, and it is available together with supplementary material at http://
www.comp.nus.edu.sg/∼wongls/projects/drug-pathway.

Keywords: gene expression, drug pathway, NPC, CYC202.

1 Introduction

Biological pathways have been incorporated into gene expression analysis to
understand drug treatment response in disease populations [17]. Some works
focus on enrichment analysis of gene groups extracted from pathway [25,2,18].
Zeeberg et. al. [25] and Doniger et. al. [2] use a hypergeometric test to deter-
mine statistically over-represented pathways in a list of differentially expressed
genes in treatment. Subramanian et. al. [18] propose the gene set enrichment
analysis (GSEA), which uses a weighted Kolmogorov-Smirnov statistics to com-
pare two sets of distributions and uses resampling to estimate false discovery
rates (FDR). Other research groups identify responsive genetic networks un-
der drug treatment [26,6,4]. Zien et. al. [26] exhaustively enumerate all possible
gene combinations on a metabolic pathway, and select the most co-expressed
gene group as the responsive pathway. Ideker et. al. [6] follow their work by ex-
tending metabolic pathway to a protein-protein interaction network, and use an
annealed random method to generate candidate gene subnetworks for statistical
evaluation. Guo et. al. [4] follow Ideker et. al. [6], but their evaluation bases on
the co-expression between interacted genes rather than the significance of expres-
sion change of genes in the identified subnetworks. A more recent work is called
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PathwayExpress [3], which is a web-based application to evaluate the change of
gene expression data in framework of KEGG pathway database [7]. However,
most existing works fall short on several issues [17]: these works provide little
information on the interplay between selected genes; the collection of pathways
that can be used, evaluated and ranked against the observed expression data
is limited; and the generated hypotheses are still too general to guide further
research and treatment. In this paper, we present a drug pathway identification
system, which we called Drug Pathway Decipherer (Decipherer), to generate hy-
potheses on drug responsive pathway. CYC202 (Cyclacel Ltd, Dundee, United
Kingdom; Seliciclib; R-roscovitine), a CDK inhibitor, is recently studied for its
anti-tumor effect in human nasopharyngeal carcinoma (NPC) cells in vitro and
in vivo. 3 NPC cell lines and 13 NPC patients were treated with CYC202, and
the expression of selected genes were measured during the process of treatment.
Both cell lines and patients in the study responded to drug treatment differently.
Our target is to understand the drug action of CYC202 in these NPC samples as
well as to identify escape pathways for drug-resistant individuals. We applied De-
cipherer to both NPC datasets. Results reveal that RAS-ERK cell proliferation
pathway and PI3K-NFκB-IAP anti-apoptosis pathway have strong correlations
with treatment outcome. Related medical assays and public publications also
support our conclusions.

2 System and Methods

2.1 Overview

Decipherer is a framework for statistical evaluation of known biological path-
ways against gene expression data. It consists of 4 partitions distributed on two
biological levels. Figure 1 shows the diagram of its workflow.

2.2 Data Source

Both NPC gene expression datasets contain 380 genes selected for apoptosis,
cell proliferation, and cell cycle regulation. For the in vitro dataset, 3 cell lines,
CNE1, CNE2 and HK1 were measured for their gene expression before the treat-
ment of CYC202, and 2, 4, 6, 12 and 24 hours after the treatment, respectively.
As a result, CNE1 responded poorly; CNE2 responded in a limited way; HK1
fully responded. For the in vivo dataset, 12 NPC samples and 1 non-tumor
sample were taken from NPC patients. Gene expression were measured before
and after the treatment of CYC202. 7 patients were reported to have molecu-
lar response to the treatment. (See supplementary material for more details of
patients and cell lines.)

For pathway, we have collected 108 signaling pathways from KEGG pathway
database (September 14, 2008) [7] and 49 signaling pathways from Ingenuity
Pathway database (July 12, 2008) [27]. (See supplementary material for more
details of the collected pathway information.)
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Fig. 1. The workflow of Decipherer. (a) Data source: structured signaling pathways
and drug treatment gene expression data are taken as the input. (b) Data preprocess-
ing: signaling pathways are modeled as graphs, and relative expression indicating gene
expression change under drug treatment are computed. (c) Pathway analysis: pairwise
genetic relationships are extracted from the modeled signaling pathways and evaluated
against the relative expression data. (d) Hypothesis generation: Co-expressed genetic
relationships are selected to be connected into complete genetic pathways, and sta-
tistical tools are performed to generate drug pathway hypotheses. Signaling pathway
status are estimated based on the hypothesized genetic pathways.

2.3 Preprocessing Data Source

To capture gene expression change in response to drug treatment, original gene
expression data are transformed into the relative expression (RE) values. Given
pre- and post-treatment gene expression value e and e′, if e′ � e, then RE is e′/e−
1; otherwise, RE is 1−e/e′. Intuitively, rather than log-ratio transformation, RE
describes expression change in multiples in a linear scale, which allows pairwise
drug effect on gene expression data to be measured by a linear correlation metric.

Signaling pathways are modeled by directed graphs. Formally, A signaling
pathway γ is a directed graph (P, I), with P the vertex set, representing the
collection of proteins in pathway, and I the edge set, representing the collection
of interactions between proteins. An interaction is a triplet i = 〈p1, p2, s〉, with
p1, p2 ∈ P and s ∈ S, where S = {$activation, $inhibition} is the set of terms
used to denote interaction type1.

2.4 Extracting Genetic Relationships

Since protein activity can not be directly observed with gene expression data,
we need to associate an interaction with one or more genetic relationships. For-
mally, a genetic relationship (or simply a relationship) is a triplet q = 〈g1, g2, s〉,
1 Decipherer only considers the simplest interaction types. According to KEGG path-

way database, we reduce other interaction types as: expression → activation, repres-
sion → inhibition, binding (association) → activation, dissociation → inhibition,
ubiquitination → inhibition.
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with g1, g2 ∈ G and and s ∈ S, where G is the whole gene collection and
S is defined in Section 2.3. To extract relationships, proteins in an interac-
tion are mapped into their encoding genes, and the interaction type is reserved
in extracted relationships. As one protein can be encoded by more than one
gene, multiple relationships may be extracted from one interaction. For exam-
ple, 〈Ras,Raf,$activation〉 is an interaction. Since Ras can be encoded by either
HRAS or KRAS, and Raf is encoded only by RAF1, the extracted relationships
are 〈HRAS,RAF1,$activation〉 and 〈KRAS,RAF1,$activation〉.

2.5 Scoring a Genetic Pathway

A genetic pathway is a chain of consecutive relationships, with each of the first
gene of a relationship (except for the first relationship), equaling to the sec-
ond gene of its previous relationship. For example, 〈HRAS,RAF1,$activation〉,
〈RAF1,MAP2K1,$activation〉, and 〈MAP2K1,MAPK1,$activation〉 construct a
genetic pathway. Particularly, the first gene of the first relationship, HRAS in
the example, is called the source gene; the second gene of the last relationship,
MAPK1 in the example, is called the sink gene. Theoretically, a drug can target
any of the known molecules in a biological system, and drug action can be ter-
minated in any way, like with a phenotype, a mutaion, or a negative feedback,
which means we should not impose any requirement on the source and sink
gene. However, this makes the number of genetic pathway candidates increases
exponentially as the length of pathway increases. Thus, we require a source gene
to be a membrane gene and a sink gene to be either a transcription factor, a
feedback, or a phynotype regulator (encoding gene).

To score a genetic pathway ϑ, we first introduce the score function of rela-
tionship. Given a relationship q = 〈g1, g2, s〉, if gene expression are measured at
multiple time points (as our in vitro dataset), the correlation of q is:

Corr(q) = Corr(−→rg1 , −→rg2), (1)

where Corr(−→rg1 , −→rg2) is Pearson’s correlation coefficient between RE vectors of
g1 and g2. If gene expression are only measured at two time points (as our in
vivo dataset), then the correlation is estimated by simply comparing the post-
treatment RE of the two genes:

Corr(q) = sign(rpost
g1

× rpost
g2

) ×
mini=1,2 |rpost

gi
|

maxj=1,2 |rpost
gj |

. (2)

Corr(q) is then transformed into a z-score, z(q), against sample background. z(q)
are then summed up over all k relationships in ϑ into an aggregated z-score, z(ϑ),
for the entire genetic pathway [6]:

z(ϑ) =
1√
k

∑
q∈ϑ

(−1)αz(q), (3)
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where α = 0 if q.type = $activation; α = 1 if q.type = $inhibition, which
means that if type is $inhibition, genes are expected to be regulated on opposite
directions.

Genes in ϑ are permutated for 10000 times to estimate the p-value of z(ϑ), de-
noted by score(ϑ). Intuitively, pathway score represents the consistency between
a genetic pathway and expression change of genes in it.

2.6 Generating Hypotheses

Genetic pathways satisfying statistical requirement of p-value and FDR [5] are
selected as genetic hypotheses. Genetic hypotheses of same signaling pathway
are then integrated to generate hypotheses of signaling pathway status. For a
genetic pathway ϑ, each gene g in ϑ has an impact to the sink gene, denoted
by impactϑ(g). If g is an inhibitor of the sink gene, then impactϑ(g) = −1;
otherwise, impactϑ(g) = 1. In biological system, some genes play dual functions,
namely to be both activator and inhibitor to same downstream gene. However,
this does not conflict with the definition of impact, since in a single genetic
pathway, the role of each gene is fixed.

Thus, for a signaling pathway γ, let ϑ ∼ γ denote the hypothesized genetic
pathway ϑ in γ, and Gϑ denote the gene set in ϑ. The hypothesis of signaling
pathway status Zγ

i at time point i is a weighted average of RE of genes in the
hypothesized genetic pathways of γ, which is in formula:

Zγ
i =

∑
ϑ∼γ

∑
g∈Gϑ

(
1

|Gϑ| × impactϑ(g) × ri
g

)
| ϑ ∼ γ | . (4)

3 Results and Discussion

3.1 Signaling Pathway Database

The current signaling pathway database of Decipherer consists of three parts: 49
pathways manually constructed from Ingenuity Pathway database, 24 pathways
manually constructed from KEGG pathway database, and another 84 pathways
automatically constructed by invoking KEGG pathway database API. These
pathways include 748 distinct genes and 181949 genetic pathways can be com-
piled as candidates for hypothesis generation.

3.2 Application to the in Vitro NPC Dataset

We applied Decipherer to the in vitro NPC datasets with p≤0.05 and FDR≤0.25.
Results are shown in Table 1. RAS-ERK cell proliferation pathway and PI3K-
NFκB-IAP anti-apoptosis pathway are observed in all 3 cell lines, which suggests
CYC202 may directly access to control cell growth and cell death. Figure 2 fur-
ther compares the regulation of these two pathways among the three cell lines.
From the figure, ERK pathway is significantly suppressed in the responder, HK1,
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Table 1. Hypothesized drug pathways by Decipherer and by PathwayExpress in three
NPC cell lines

Decipherer PathwayExpress

Source Pathway p-value FDR Source p-value

CNE1

ErbB signaling pathway BTC→ErbB4→...→ERK→Elk 5.00E-4 0.035 Leukocyte transendothelial migration 3.65E-13

Apoptosis NGF→PI3K→...→NFkB→IAP 1.00E-3 0.035 MAPK signaling pathway 1.01E-12

Regulation of actin cytoskeleton GF→RTK→...→PI3K→PI4P5K 4.9E-3 0.11 Toll-like receptor signaling pathway 2.26E-13

MAPK signaling pathway NF1–�Ras→...→ERK→RSK2 6.00E-3 0.11 Regulation of actin cytoskeleton 3.40E-12

Focal adhesion GF→RTK→...→Rac→Actin 9.70E-3 0.12 ErbB signaling pathway 1.10E-14

CNE2

MAPK signaling pathway NF1–�Ras→...→ERK→Elk1 8.00E-4 0.050 Regulation of actin cytoskeleton 3.40E-12

ErbB signaling pathway EGF→ErbB1→...→JNK→Elk 2.00E-3 0.063 Toll-like receptor signaling pathway 2.26E-13

Focal adhesion GF→RTK→...→Rac→Actin 5.50E-3 0.12 Pathogenic Escherichia coli infection 8.69E-8

Apoptosis TNFA→TNFR1→...→NFkB→IAP 8.60E-3 0.14 Type II diabetes mellitus 7.89E-13

p53 signaling pathway ATM→ATR→...→CASP8→CASP3 1.49E-2 0.19 ErbB signaling pathway 1.10E-14

HK1

GnRH signaling pathway GnRH→GnRHR→...→MKK3/6→p38 9.00E-4 0.046 Small cell lung cancer 1.10E-14

Apoptosis IL-1→IL-1R→...→NFkB→IAP 1.30E-3 0.046 ErbB signaling pathway 1.10E-14

MAPK signaling pathway NGF→TrkA/B→...→ERK→Tau 2.60E-3 0.062 Gap junction 6.8E-14

Fc epsilon RI signaling pathway Lyn→Syk→PKC 6.90E-3 0.098 Melanogenesis 1.94E-13

Regulation of actin cytoskeleton GF→RTK→...→Rac→PAK 6.90E-3 0.098 Toll-like receptor signaling pathway 2.26E-13

Fig. 2. Comparable status of ERK pathway and Apoptosis pathway of the 3 NPC cell
lines along the treatment of CYC202.

Fig. 3. Results of the associated medical assays to measure the cell viability and apop-
tosis level under the treatment of CYC202 for NPC cell lines: (a) The results of trypan
blue test for measuring the cell viability along the drug treatment. (b) The extent of
caspase-dependent apoptosis. zVAD.fmk is a caspase activity inhibitor.
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but less down regulated or almost unchanged in the half-responder, CNE2, and
the resister, CNE1. The apoptosis pathway is on the opposite. ERK pathway reg-
ulates cell survival, proliferation and differentiation. Suppression of this pathway
represses cell viability. Therefore, the observation of ERK pathway in Figure 2
is consistent with known treatment outcome. Apoptosis pathway, on the other
hand, regulates cell death. Since this pathway is induced in HK1, HK1 should
be more sensitive to the treatment. To biologically prove the hypothese of these
two pathways, trypan blue test and tunel assay were used to measure the level
of cell proliferation and apoptosis in these three cell lines. Results support our
conclusions (Figure 3).

We compare our results with that of PathwayExpress [3] (shown in Table 1).
PathwayExpress is a web-based application which evaluates gene expression data
in framework of KEGG pathway database. The main issue of PathwayExpress is
that it does not differentiate regulations within a signaling pathway. In Table 1,
we list the top five pathways identified by each method. Results of Pathway-
Express show a very high statistical significance level. However, we suspect the
correctness of the p-value measurement, since 61 out of 83 signaling pathways
are more significant than 10−4 when we applied PathwayExpress to CNE1. (see
supplementary material for whole results)

3.3 Application to the in Vivo NPC Dataset

We applied Decipherer to the in vivo NPC datasets with p≤0.05 and FDR≤0.25.
Table 2 gives a summary of the hypothesized post-treatment signaling pathway
status (see supplementary material for genetic pathway hypotheses). Pt18 is
a non-tumor sample. Other patients are classified into two groups according to
their treatment response. In Table 2, since Pt18 is a normal sample and pathway
status of Pt18 does not change much after treatment, we consider the pathway
status of Pt18 to be a benchmark to evaluate drug response of other patients. An
interesting observation is that post-treatment status of ERK pathway and apop-
tosis pathway in two responding groups can be almost perfectly separated by
that of Pt18 (except for Pt14 in apoptosis pathway). This observation suggests
suppression of ERK pathway and induction of apoptosis pathway have corre-
lation with effective CYC202 treatment in vivo, and this argument also agrees
with the conclusions from the in vitro dataset.

The leading edge analysis of GSEA selects a subset of genes that mostly
differentiate two phenotype groups. Decipherer generates hypotheses of genetic
pathway, which can be regarded as selecting a subset of genes from the whole gene
set defined by signaling pathway. Thus, we compare Decipherer with the leading
edge analysis of GSEA. The same RE values were taken as input to GSEA. All
parameters were remained with default values. Gene sets were extracted from
Decipherer pathway database.

As shown in Figure 4, we report the results of comparison on apoptosis path-
way since it is one of our main concerned pathways in this study, yet it is
identified by GSEA in both in vivo and in vitro datasets with statistical sig-
nificance (p≤0.05 and FDR≤0.25). For cell lines, both GSEA and Decipherer
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Table 2. Hypothesized post-treatment signaling pathway status in patients

Patient Response ERK Apoptosis Patient Response ERK Apoptosis
Pt5 P(ositive) -2.25 1.34 Pt18 No Tumor -0.15 0.13

Pt8 P - 0.82 Pt1 N(egative) 0.21 -1.00
Pt9 P -0.97 - Pt7 N -0.10 0.11
Pt14 P - -0.86 Pt10 N 1.02 -1.57
Pt16 P -0.20 1.42 Pt15 N - -1.01
Pt17 P -1.02 1.01 Pt20 N 1.30 -1.68
Pt19 P - 0.91

Fig. 4. Contrast results of the genes identified by the leading edge analysis of GSEA
and the pathways identified by Decipherer: (a) GSEA applied to the in vitro dataset.
The identified genes are highlighted. (b) Decipherer applied to the in vitro dataset.
Since the idenfitications of CNE1 and HK1 on Apoptosis pathway are the same, this
is the only highlited pathway in the figure. (c) GSEA applied to the in vivo dataset.
(d) Decipherer applied to the in vivo dataset. Color density represents the frequency
of a genetic pathway being hypothesized in the patients.

identify the pattern of PI3K-NFκB-IAP pathway (Figure 4a and 4b). However,
GSEA misses AKT, and selects some other irrelevant genes. This is because the
leading edge analysis ignores relationships between selected genes. When ap-
plied to the in vivo dataset, GSEA does not identify any strong genetic pathway
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pattern (Figure 4c), but for Decipherer, multiple pathways with different signifi-
cance are identified (Figure 4d). The most significant identification is still PI3K-
NFκB-IAP pathway, which indicates the main genetic response of patients in
apoptosis pathway is similar to that of cell lines. Another discovery is the death
receptor regulated pro-apoptosis pathway. This pathway is previously undiscov-
ered in the in vitro experiments, which means there exists alternative apoptosis
regulation pathway for CYC202 in NPC patients rather than in cell lines. Thus,
we show that, compared with the leading edge analysis of GSEA, Decipherer
generates more biologically meaningful results, which can be used as a guide for
further drug research and disease treatment.

3.4 Biological Reasoning and Discussion

Epstein-Barr Virus (EBV) infection dysregulates NFκB, MAPK, JAK-STAT
and PI3K-AKT pathways [21], and thus plays critical role in NPC pathogene-
sis [12]. Up regulation of NFKB2 and BIRC5 (IAP) induced by EBV increases
resistance of NPC cells to apoptosis, which has been confirmed by RNA interfer-
ence [15]. On the other hand, CYC202 inhibits CDK2, 7 and 9 through competi-
tive inhibition of ATP binding [10]. CDK7 and CDK9 phosphorylate the carboxyl
terminal domain of RNA polymerase II, which initiates the gene transcription.
NFκB regulated genes and IAP family members are greatly affected because of
their short protein halflife [9]. The suppression of genes in ERK pathway and
anti-apoptosis pathway, for example MAPK1, MAPK3, MCL1, BCL2, BIRC4
and BIRC5, are frequently observed in CYC202 treatment [11,22,1,14,16,8]. In
this study, Decipherer identified different regulation of RAS-ERK cell prolifer-
ation pathway and PI3K-NFκB-IAP anti-apoptosis pathway between two out-
come groups both in vitro and in vivo. With the support of literature, we con-
clude that these two pathways are the main drug pathways of CYC202 in human
NPC cells. On the other hand, due to the diversity of individual genetic envi-
ronment of patients, the hypothesized escape pathways are heterogeneous. The
dysregulation of NFκB pathway and MAPK pathway are both commonly ob-
served in CYC202 resisters. Based on these observations, we made an individual
treatment proposal for these CYC202 resisters (See supplementary material for
treatment proposal).

4 Conclusion and Future Work

During the past decade, mRNA microarray techniques have been greatly devel-
oped and have found many significant applications in biomedical research. In
this paper, we present a novel statistical gene expression evaluation framework
to discover drug responsive pathways in treatment gene expression data. We de-
cide to report the method, since we have applied Decipherer to two NPC study
cases and have found some meaningful results, which have been considered to be
applied to improve the CYC202 based NPC treatment in clinic. Thus, we think
of Decipherer to be a potential valuable direction to follow. However, we realize
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that Decipherer has some caveats. We list following caveats as conclusions of
this paper:

– Signaling pathway is a protein level description, while gene expression is an
mRNA level measurement. In Decipherer, we use correlation of expression
of adjacent genes to socre a genetic pathway, which seems to lack enough
biological support. Our explanation is that we try to impose a data-driven
induction that if we can find a pathway satisfying the criteria, then we have
evidence to support the pathway to be interesting. Readers may suspect the
correctness of our criteria. We believe that the criteria are still very initial
and need to be improved.

– We compare pathways from KEGG pathway database, Pathway Ingenuity
database, and WikiPathways database [28]. A surprising observation is that
pathways with same pathway name may have maximal approaching 50%
disagreement with each other (personal communication with Soh). This ob-
servation has questioned our framework since Decipherer is only capable of
evaluating known pathways. We believe that some pathway inferences should
be included into the future version.

– Metabolic pathways are another important data source for drug action hy-
pothesizing. Patients may response differently to treatment because of their
different metabolic rates. For example, two of us recently found, in a colon
cancer study, that Fluorouracil, a pyrimidine analog, affected two different
metabolic pathways: an effective pathway and a drug degradation pathway.
The expression of genes on these two pathways were observed to have strong
correlation with treatment outcome [20]. Thus, we believe that metabolic
pathways should be considered as well.

Currently, a new version of Decipherer is in development. We have made
improvements to overcome some of the caveats listed above:

– A new set of rules has been designed for Decipherer to generate hypothe-
ses. Firstly, a hypothesized pathway should not have broken logic in any
responder. For example, if 〈HRAS,RAF1,$activation〉 is a relationship for
evaluation, we need to exclude the case that HRAS is greatly induced while
RAF1 is significantly repressed. Secondly, a hypothesized pathway should be
significantly perturbated by treatment in all responders. Thirdly, the regula-
tion of a hypothsized pathway should be consistent in all responders. Finally,
a resister should at least violate one of the three criteria above.

– The challange of taking metabolic pathway into the current design of Deci-
pherer is that metabolic pathways are commonly circular systems, and thus
it is difficult to define source and sink genes in a pathway. This issue comes
similar with the problem we have mentioned in Section 2.5 that arbitrarily
taking source and sink genes in signaling pathways makes the number of
hypothesis candidates increase exponentially. To solve the problem, we em-
ploy a dynamic procedure to only keep and extend valid candidates for each
length, rather than generate all candidates at one time.
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Abstract. Recent large scale genome-wide association studies have been
considered to hold promise for unraveling the genetic etiology of com-
plex diseases. It becomes possible now to use these data to assess the
influence of interactions from multiple SNPs on a disease. In this pa-
per we formulate the multiple SNP selection problem for determining
genetic risk profiles of certain diseases by formulating novel 0/1 IP for-
mulations for this problem, and solving them using a new near-optimal
and efficient discrete optimization technique called discretized network
flow that has recently been developed by us. One of the highlights of our
approach to solving the multiple SNP selection problem is recognizing
that there could be different genetic profiles of a disease among the pa-
tient population, and it is thus desirable to classify/cluster patients with
similar genetic profiles of the disease while simultaneously selecting the
right genetic marker sets of the disease for each cluster. This approach
coupled with the DNF technique has yielded results for several diseases
with some of the highest sensitivities seen so far and specificities that
are higher or comparable to state-of-the art techniques, at a fraction of
the runtime of these techniques.

Keywords: Multiple SNPs, Case-Control Study, Optimization,
Discretized Network Flow.

1 Introduction

Recent large-scale, high-density genome-wide association (GWA) studies have
improved our understanding of the genetic basis of many complex traits. Vari-
ous published associations have not been replicated in comparable GWA studies,
possibly due in part to the omission of interactions among disease-associated
loci (called epistasis) from many statistical models [13],[9]. Increasing empirical
evidence suggests that interactions among loci contribute broadly to complex
human diseases. The task in epistatic study is identification of a set of k sin-
gle nucleotide polymorphisms (SNPs) and the corresponding allele types that
are associated with the disease. We call it the k-SNP marker selection problem.
Much of the recent statistical work has focused on interaction models that have
� This work was supported in part by NSF grants CCR-0204097 and CCF-0811855.

�� Corresponding authors.

S. Rajasekaran (Ed.): BICoB 2009, LNBI 5462, pp. 211–223, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



212 S. Dutt et al.

small or no marginal effects at each locus. Since the number of possible inter-
action combinations among the genotyped markers is astronomical for a large
scale case-control association study, it is prohibitive to search one or a very few
disease-related interactions among all these combinations. Several methods based
on brute-force search have been developed, including the combinatorial parti-
tioning method (CPM) [15], and multifactor-dimensionality reduction (MDR)
[17]. While these techniques have been used to effectively analyze data sets of
small scale, they cannot be scaled-up for large data sets. More methods can be
found in a review paper [14]. A result based on a Bayesian statistical model
has indicated feasibility of genome scale epistatic analysis [20]. The model was
applied to an association study set with 96,932 markers genotyped from 146 in-
dividuals (96 affected and 50 controls) for 2-SNP and 3-SNP mark set selections
The run time was about 5 hours on a Pentium M 1.6GHz laptop with 512 Mb
memory.

Brinza and co-authors considered the problems of searching for the most
disease-associated and the most disease-resistant k-SNP marker sets [3],[4]. Com-
binatorial methods, such as greedy algorithms, were proposed to search these
k-SNP marker sets. Using the selected marker set the authors further consid-
ered the disease susceptibility prediction problem, i.e., predict an individual’s
disease status based on the marker set. The algorithms have been shown to
outperform other machine learning methods on three small-scale data sets. Re-
cently, the above approach was further extended to searching for a k-SNP marker
set which has the best odds ratio, a criterion often used in disease association
studies [5].

In this paper, we propose a novel optimization-based approach to the k-SNP
marker selection problem for large-scale SNP data. The detection of k-SNP mark
set is formulated as 0/1 integer programming problems. Our formulation can si-
multaneously discover subgroups of cases and their corresponding best marker
sets. The core technique for fast near-optimal solutions of the 0/1 IP problem
is a recently developed new methodology called discretized network flow (DNF).
DNF is a general computing framework for obtaining high-quality discrete op-
timization problems (DOPs) solutions in tractable run-times. The efficacy of
DNF has been established in the realm of VLSI CAD for many hard DOPs
[7],[8],[16]. DNF combines the computational efficiency of continuous optimiza-
tion methods, in that it uses network flow, an optimal continuous optimization
technique, as its core algorithmic process, with novel discretization techniques
so that near-optimal legal discrete solutions are efficiently obtained.

The proposed approaches to epistasis analysis in GWAs SNP data sets are
based on novel 0/1 IP formulations of multi-locus marker detection and use DNF
to solve these formulations. The effectiveness of the approach are evaluated us-
ing 5 data sets in a previous study [5]. The new proposed method significantly
outperformed previous methods in most cases: sensitivity1 and specificity2 in a
5-fold cross-validation test increased by 81% and 38.8%, respectively, from the
results of MDR, and by 14% and -9.2% (the negative value indicates deteriora-
tion), respectively, from the results of the combinatorial method CPS [4], with
a runtime that is a fraction of the runtimes of these methods.

1 The percentage of cases correctly identified with the selected SNP marker set.
2 The percentage of controls correctly identified with the selected SNP marker set.
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2 Method

2.1 0/1 Integer Programming (IP) Formulations

We describe here our 0/1 IP models for optimizing the selection of a set of
SNPs and their associated allele so that the chosen SNP-allele pairs are strong
distinguishing markers between case and control. We consider un-phased geno-
type data of an experiment involving m1 and m2 individuals in case and control
groups respectively. For each SNP there are 3 allele types. Given a pair pi,j of
SNP i and allele j (henceforth we will use the terms “SNP-allele pair” or just
“allele” to refer to a pi,j), we define ci,j(x) = 1 if the x’th individual Px in the
case group has allele j at SNP i, and ci,j(x) = 0 otherwise. Similarly, we also
define hi,j(z) = 1 if the z’th individual NPz in the control group has allele j at
SNP i, and hi,j(z) = 0 otherwise. The presence of allele pi,j in an individual is
denoted by marker p1

i,j , while its absence is denoted by marker p0
i,j .

We define the per-case benefit bi,j(x) of a SNP-allele pair pi,j for an individual
x as:

bi,j(x) = |(ci,j(x) −
∑m2

z=1 hi,j(z)
m2

| (1)

bi,j(x) is a good indicator of discriminative ability between case individual x
and the control group for allele j at SNP i. Furthermore, bi,j(x) is also a correct
indicator of the specificity of allele pi,j as we show below.

Claim 1 The bi,j(x) definition is consistent with the specificity of allele pi,j.

Proof : There are two cases.
Case 1: ci,j(x) = 1, i.e., pi,j is present in Px. Then the second term in Eqn. 1
is the fraction of controls that also contain pi,j . Thus higher bi,j(x) is, lower is
this fraction, which means high specificity for pi,j .
Case 2: ci,j(x) = 0, i.e., pi,j is absent in Px. The second term in Eqn. 1 can
be re-stated as: [1 − fraction of controls in which pi,j is absent], which is also
the definition of bi,j(x), since ci,j(x) = 0. Thus higher bi,j(x) is, smaller is the
fraction of controls for the p0

i,j marker, and thus higher is the specificity for this
marker.

Note that in each case, bi,j(x) is, in fact, exactly the specificity of p
ci,j(x)
i,j . ♦

A good target set of SNP-allele combinations for the entire case group can be
one in which the selected SNP-allele pairs pi,js have the same value of ci,j() for all
case individuals and whose sum of benefits is the maximum (greatest distinction
from the controls). We thus formulate the following 0/1 integer programming
(IP) for the k-SNP selection problem.

We first define the benefit-based similarity metric s(x, y, i, j, val) between two
individuals in the case group Px and Py for a SNP-allele pair marker pval

i,j (val ∈
{0, 1}) as:

s(x, y, i, j, val) =
{

(bi,j(x))α + (bi,j(y))α if ci,j(x) = ci,j(y) = val
−∞ otherwise. (2)

The α parameter above magnifies (when α > 1) or shrinks (when α < 1) the
ratio of benefits of different alleles. This is useful when there are constraints on
the selection of alleles and α > 1 can be used to give a magnified priority to the
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selection of alleles with high benefit. Further, let di,j(val) be a 0/1 variable which
indicates if pval

i,j is selected as a marker in the SNP-allele set (di,j(val) = 1) or not
(di,j(val) = 0). The 0/1 IP formulation for the problem of the maximum-benefit
SNP/allele set election is:

Maximize :
∑

pval
i,j

∑
1≤x≤m1

∑
1≤y≤m1,y �=x s(x, y, i, j, val) · di,j(val)

Subject to : (i)
∑3

j=1 di,j(0) + di,j(1) ≤ 1, ∀ SNPs i.
(ii)

∑
pi,j

(di,j(0) + di,j(1)) ≤ k.

(3)

It is easy to see from the definition of s(x, y, i, j, val) (−∞ value for mis-
matched alleles between a pair of individuals in the case group), that in order
to maximize the objective function, no SNP-allele pairs pi,j will be selected that
differ in ci,j value among any pair of individuals in the case group. Thus only
common SNP-alleles across all individuals in the group will be selected.

Simultaneous Patient Clustering and k-SNP Marker Selection. One
issue that complicates the marker selection problem is that the genetic rea-
sons of a disease for patients with different ethnic backgrounds can be different,
and it can also be different within each ethnic group. Therefore, in order to
improve the accuracy of selected markers, it is desirable to incorporate a clus-
tering/classification step for individuals of the case group simultaneously with
the marker selection process so that clusters are automatically formed based on
similarities of genetic disease markers. Different markers can thus be selected
for different clusters to best match their genetic disease profile. The IP problem
given in Eqn. 3 put all individuals in the case group in one cluster and tries to
find the best marker for this cluster, which may not be very strong since we are
forcing marker selection into patients with potentially different genetic disease
profiles. The formulation below is for partitioning individuals in the case group
into up to G clusters, each with similar genetic disease profiles and simultane-
ously finding their best SNP-allele markers.

Maximize :
∑

1≤g≤G

∑
pval

i,j

∑
1≤x≤m1

∑
1≤y≤m1

s(x, y, i, j, val)· bg
x · bg

y · dg
i,j(val)

Subject to : (i)
∑3

j=1 dg
i,j(0) + dg

i,j(1) ≤ 1, ∀ SNPs i and ∀ clusters g.
(ii)

∑
1≤g≤G bg

x = 1, ∀x. (iii)
∑

pi,j
(dg

i,j(0) + dg
i,j(1)) ≤ k, ∀g.

(4)

where G is an upper bound on the number of patient groups/clusters, bg
x is a 0/1

variable that is 1 if Px is chosen to be in cluster g, and 0 otherwise, dg
i,j(val) is

a 0/1 variable that is 1 if pval
i,j is chosen as a SNP-allele marker for cluster g and

is 0 otherwise, and k is an upper bound on the number of pi,j ’s selected in the
marker set for each cluster. We note that an individual can belong to only one
cluster, while pval

i,j may be chosen to be in the SNP-allele marker set for multiple
clusters (both p0

i,j and p1
i,j of course cannot be in the same marker set).

The optimization problems formulated above involve large numbers of 0/1
integer variables that are indicative of problems which even state-of-the art MIP
solvers (e.g. CPLEX) could fail to solve within a reasonable time frame. We
propose network flow formulations of the problems, which can be solved approx-
imately and efficiently by using the discretized network flow method.
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2.2 The Discretized Network Flow Technique

The class of problems to which discretized

flow
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Fig. 1. A feasible flow for sending
10 units of flow from source (S) to
sink (T ) is shown by curved dark
lines. Arc labels are arranged as
(flow, capacity, cost).

network flow (DNF) can be applied are DOPs
that can be modeled as mixed integer pro-
gramming (MIP) problems with linear and
non-linear (polynomial, min and max) objec-
tive functions and constraints; these encom-
pass a very large class of DOPs. The basic
idea of this technique can be described as fol-
lows.

A network flow graph G is a directed graph
in which each arc e has a capacity cap(e) and a
cost cost(e); see Fig. 1. The capacity of an arc
indicates the maximum amount of flow that
can pass through the arc; the cost of an arc
is the cost incurred per unit flow through the
arc. The minimum cost flow problem in G is

to find a way to pass a certain amount of flow through G from a source node S
to a sink node T that has minimum cost. Network flow is an elegant continuous
optimization technique that has found applications in many domains [1].

In standard network flow [1], the flow through an arc can be any continuous
(i.e., real) value, and if there is incoming flow into a node u, there can be outgoing
flow into any subset of outgoing arcs from u. In order to solve DOPs using a
network flow approach (due to its time efficiency), we need flows in the graph G
to have certain discrete properties. Briefly, the two most important of these are:

(1) Discrete Arcs : Some arcs e will need to have have a “binary-valued”
discrete cost and flow amount structure, i.e., such a discrete arc can only have
two (flow amount, cost incurred) pairs: {(0, 0), (cap(e), cost(e))}. This means
that any initial flow amount f through e will incur a cost of cost(e) (irrespective
of f), and, if f < cap(e), then any subsequent flow through e will incur 0 cost.
Such arcs are called discrete arcs, and their cost structure makes the incurred
cost a concave function of the flow amount f . We thus use the near-optimal
concave min-cost flow algorithm of [10] in all our network flow computations.

(2) Mutual Exclusiveness : For some nodes u at most one of their output arcs
and/or one of their input arcs can have flow in them; see Fig. 2. We call this the
mutually exclusive output arcs (MEA) requirement.

Of these, the MEA requirement is central in the solution of the 0/1 IPs for
multiple allele selection discussed in Subsec. 2.1. Our DNF technique uses special
algorithms and arc cost formulations using non-objective-function based costs
(in addition to, of course, objective-function based costs) in order to achieve the
above types of discretizations without sacrificing much in optimality [7], [8], [16].
We briefly discuss below our MEA satisfaction technique.

Satisfying MEA Constraints in DNF. In general, the cost of arcs in a
n/w graph G is determined based on the objective function being minimized.
However, for the purpose of MEA satisfaction (and, in fact, for some other flow
constraints as well), for each arc e in an MEA set, we add to its function based
cost C(e), a discrete base cost C′(e), which is a constant for all edges e to which it
is applied; thus its total cost cost(e) = C′(e)+C(e). For various flow constraints,
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including MEA, that we considered, an invalid flow will always incur at least an
extra C′ cost. The C′(e) cost is thus kept large enough so that a min-cost invalid
flow always incurs more total cost than a valid min-cost flow (even though the
objective-function part of this cost, the C-cost, incurred by an invalid flow may
be less than that incurred by a valid flow) [16]. The correctness of this technique
for MEA satisfaction has been established in [16], and is re-stated below using
the terminology of this paper.
Theorem 1. [16] Any min-cost flow in G with added C′ costs on MEA arcs
will satisfy all MEA constraints.

2.3 Application of DNF to k-SNP Selection

In our DNF model, we approximate the 0/1 IP of Eqn. 4 by obtaining all clusters
via simultaneous recursive bi-partitioning and allele marker set selections. We
start with the set of all cases as the initial single cluster C1, and then recursively
bi-partition each cluster Ci at the current level of bi-partitioning into two clusters
Ci,1 and Ci,2, and simultaneously select their allele marker sets. The process
continues as long as the overall specificity, by so doing, increases, and the upper
bound of G clusters is not violated3.

The network flow model for the bi-partition

mutually−
exclusive
arc set
(MEA)

u

e1
cost=[C’]+{C1}

cost=[C’]+{C2}

cost=[C’]+{Ck}

e3

e2

Fig. 2. An MEA set and DNF
structure for satisfying MEA
requirements. The C′ costs
shown are discrete, indicated
by square brackets; the other
costs indicated by curly brack-
ets are continuous.

plus k-SNP selection problem is shown in Fig. 3.
For each cluster Ci, the network flow graph Gi

consists of two subgraphs Gi,1, Gi,2 correspond-
ing to the two clusters to be formed, as shown in
Fig. 3(a). In each subgraph, there are two levels of
duplicated case “meta nodes” for each case indi-
vidual. These two levels in each Gi,r (r = 1, 2) are
connected by a complete meta bipartite graph,
where a “meta edge” connects each pair of meta
nodes Px, Py. As shown in Fig. 3b, each meta
edge is a collection of allele-to-allele connections
between alleles of Px and Py with the same allele
values (0 or 1) that have costs −s(x, y, i, j, val).
A case Px is selected to be in Ci,r if there is flow
through its two meta nodes in the two levels of

Gi,r. An allele pi,j is selected as a marker in Ci,r if flow passes through the
pi,j nodes in Gi,r corresponding to each Px selected in Ci,r (we shortly show
that if a min-cost flow passes through any pi,j node of any selected Px, it will
pass through all pi,j nodes of all selected Px’s in a cluster; this implies that
a common set of (up to k) alleles will be selected for each selected Px in a
cluster, and hence a correct allele marker set is selected for each cluster). The
min-cost flow4 through subgraphs Gi,1 and Gi,2 will select those Px’s in each
3 In our DNF modeling, we have not explicitly set an upper bound on the number

of clusters; however, the number of clusters determined naturally turns out to be a
small constant in the range [6, 16].

4 We solve the maximization problem of Eqn. 4 by using min-cost network flow by
setting the cost of arcs for pi,j selection among node pairs Px, Py to be the negative
of s(x, y, i, j, val), which is the contribution of this selection to the maximization
objective of Eqn. 4.
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subgraph that minimizes the total cost of all selected allele-to-allele arcs among
all the selected Px’s (this corresponds to maximizing the objective function of
Eqn. 4).

In order for the flow to partition Ci into two valid clusters with valid allele
marker selections for them, two sets of constraints need to be satisfied: (1) each
Px is selected in only one of Ci1, and Ci,2. (2) In each Gi,r, the flow goes through
the same set of allele nodes in each Px meta node that the flow selects.

The first constraint is satisfied via MEA requirements on input arcs to case
meta nodes in the first level of each Gi,r, and on the outgoing arcs from case
meta nodes in the second level of each subgraph; see Fig. 3. This causes the flow
to pass through Px meta nodes in only one subgraph.

Fig. 3(b) shows the detailed structure of the meta-node of a case Px, as well
as the details of connection between the meta nodes of cases Px and Py in
the two levels. The structure in each individual meta-node is a tree with allele
nodes for each SNP at the leaf level. Let m be the number of cases in Ci to be
partitioned. An incoming flow of amount km to each meta-node in the 1st level
is distributed through the tree structure to k leaf allele nodes (this indicates
that the corresponding k SNP-allele pairs are selected as markers). Note that
the incoming arcs to leaf allele nodes are discrete arcs with capacity m and
objective function independent cost C′. Hence, to minimize total cost, flow is
only distributed on k such arcs with full flow of amount m on each arc, i.e., to
k leaf allele nodes.

The meta arcs between Px meta nodes are each a set of connections between
corresponding alleles, i.e., the SNP-allele pair pi,j present in the Px meta-node
is connected to that in the Py meta node if and only if ci,j(x) = ci,j(y); the
cost of this arc is −s(x, y, i, j, val). When both Px and Py are selected in one
cluster, the allele to allele connections make sure that the flow passes through
(i.e., select) the same k alleles as markers for the two cases. The cost of the arcs
between the two Px meta nodes in the two levels of a subgraph is −∞. Hence, if
a meta node Px has a flow through it in level 1 (meaning it is selected to be in
the corresponding cluster), then part of this flow will also go through the level-2
Px meta node in that subgraph; the allele markers selected by the flow are also
the same in both Px meta nodes in the two levels.

The second constraint mentioned above is satisfied as follows. Due to the
complete bipartite connection between case meta nodes at the two levels of each
subgraph, all cases selected in a cluster subgraph will also select the same k
alleles as markers. Let us assume that this is not the case, so that the sets of k
alleles selected for two meta nodes Px, Py that are selected in level 1 to be in
the same cluster are different. Consider the Py meta node in level 2. The flow
through the k alleles of Px will be forced into the same k alleles of the 2nd-level
Py via the allele-to-allele connections, and the flow through each allele incurs
a discrete C′ cost. The flow from the k alleles of the 1st-level Py will also be
forced through the corresponding alleles in the 2nd-level Py. Since the two sets
of k alleles are not the same, there will be flow through at least (k + 1) alleles
in the 2nd level Py. This thus incurs (k + 1) C′ costs, instead of only k C′ costs
for a valid flow—in which a consistent set of k alleles are selected for all meta-
nodes in the same cluster. Thus the invalid flow that goes though at least (k+1)
alleles in the 2nd-level Py meta-node cannot be a min-cost flow; in other words,



218 S. Dutt et al.

Cluster Ci,1

Cluster Ci,2

Complete
bipartite
subgraph

(1,−s(x,y,i,j,c (x)))
i,j

.....

...
...

...
...

...
...

...
...S

nodes
Choice

MEA
Meta node

MEA
level 1

...
...

P1

mP

...
...

1P’

P’m

Meta arc
level 2

...
...

P1

Pm

...
...

P’1

mP’ Complete
bipartite

subgraph

T

MEA

MEA

S To 1st level
P   in 2nd
subgraph

x

MEA
f=mk

(mk, 0)

(m,0)

(cap, cost)

(m,0)

Px Discrete arcs

MEA
(m,C’)

z1

MEA
z2

(m,0)

zN

Discrete arcs

(m,C’)

2,3

p2,1

p2,2

Discrete
arcs p

(m,C’)

MEA

sink if P  isy
selected in
the same cl−

x

To T

No connection

do not match
if allele values

if c  (x)=c  (y)i,j i,j

(m,C’) Discrete arcs
MEA

Py

p2,1

p2,2

p
2,3 MEA

(m,C’)

arcs
Discrete

(m,C’)

z1

z2

Nz

Discrete arcs

MEA T

From 2nd level
P   in 2ndx
subgraph

MEA

(shunted to

uster as P  )

(a)

(b)

Fig. 3. (a) High level network flow model for the bipartition problem. (b) Detailed
patient meta node structure, and connection between patient meta nodes.

a min-cost flow will always select a common set of k alleles across all selected
meta-nodes in each subgraph.

2.4 Improved 0/1 IP Formulation and DNF Model with Explicit
Specificity Consideration

As explained in Sec. 2.1, the formulation of Eqn. 4 is geared toward choosing a
common set of allele markers for each cluster, which implies a sensitivity of 1 for
its cluster. This in turn implies a high sensitivity for the entire set of allele marker
sets (one marker set per cluster)5. As established in Claim 1, the definition of
bi,j(x) is its specificity. Thus the selection of high-benefit markers (as per the
objective function of Eqn 4) is conducive to high specificity for each allele marker
set Mi, and thus also to high specificity for the set M = M1, . . . , MG of allele
marker sets, assuming a uniform distribution of mismatching controls across alle-
les. For example, consider a 2-element allele marker set Mi = (p0

i1,j1, p
1
i2,j2), and

let each allele marker have a specificity of 0.6, i.e., the probability of a control
mis-matching each allele marker is 0.6. Assuming an uniform distribution of con-
trols that mismatch each allele marker, the probability of a control mismatching
marker set Mi is the probability that it mismatches either allele marker = 1 -
(the probability that it matches both allele markers) = 1 − (1 − 0.6)2 = 0.84.
However, the mismatching controls may not be uniformly distributed, and if
there is some clustering of the controls that mismatch the alleles of Mi, then
the specificity of Mi could be much lower than 0.84. For example, if the set of
controls that mismatch both allele markers are the same, then the specificity
of Mi is only 0.6. Thus a more direct method is needed for identifying allele
markers so that the specificity of each Mi and that of M is high. Toward that
end, we formulate a modified 0/1 IP and then discuss its DNF model below.
5 For a case-clustered solution with multiple allele marker sets M = M1, . . . , MG, each

marker set Mi corresponding to cluster Ci, a case has a match with the set of marker
solutions M if it has a match with any allele marker set Mi; it then contributes to
the sensitivity of M (i.e., to the true positive [TP] number; see Eqn. 7). Conversely,
a control has a mismatch with M if the individual has a mismatch with all marker
sets in M, and only then does it contribute to the specificity of M (i.e., to the true
negative [TN] number; see Eqn. 7).
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We first define the function dis(z, i, j) between a control individual NPz and
all case individuals that mismatch the allele value of pi,j in NPz as:

dis(z, i, j) = k · m1

m2
· mavg · Avg{(Px|ci,j(x) �=ci,j(z)}2(bi,j(x))α (5)

where AvgS is the average function over the set S and mavg is the average
number of cases in a cluster. The above function is the benefit associated with
NPz mismatching the pi,j value present in a subset of cases, and is tuned so that
the total benefit associated with a unit percentage contribution to specificity (due
to controls mismatching alleles selected in marker sets) is approximately equal
to the total benefit (see objective functions of Eqns. 4 and 6) associated with a
unit percentage contribution to sensitivity.

Let {Cg} be the set of clusters, and dg
i,j(∗) be a 0/1 variable that is 1 if

and only if pi,j is not selected as an allele marker in cluster Cg. Then a control
NPz does not match any pi,j selection in any of the allele marker sets {Mg} if∏G

g=1[d
g
i,j(not((ci,j(z))) + dg

i,j(∗)] = 1. We thus include these terms for each pi,j

in the maximization objective function of the new 0/1 IP given below.

Maximize :
∑

1≤g≤G

∑
pval

i,j

∑
1≤x≤m1

∑
1≤y≤m1

s(x, y, i, j, val)· bg
x · bg

y · dg
i,j(val)

+
∑

pi,j

∑
1≤z≤m2

∏G
g=1[d

g
i,j(not((ci,j(z))) + dg

i,j(∗)] · dis(z, i, j)
Subject to : (i)

∑3
j=1 dg

i,j(0) + dg
i,j(1) + dg

i,j(∗) = 1, ∀ SNPs i and ∀ clusters g.
(ii)

∑
1≤g≤G bg

x = 1, ∀x. (iii)
∑

pi,j
(dg

i,j(0) + dg
i,j(1)) ≤ k, ∀g.

(6)
The term

∏G
g=1[d

g
i,j(not((ci,j(z)))+dg

i,j(∗)]·dis(z, i, j) in the objective function
forces a selection of alleles pi,j in marker sets of clusters that most controls
will mismatch in their values (recall that value=1 indicates presence of pi,j and
value=0 indicates absence). The corresponding DNF structure corresponding
to this term for each pi,j are two chain structures, one for marker p1

i,j called
the 1-chain and the other for marker p0

i,j called the 0-chain. Each chain has G
sequentially connected “gateway” subgraphs SGg’s through which a flow amount
of m2 coming from the source S can potentially pass; see Fig. 4. Each SGg is
controlled by a flow coming into it from the network subgraph in which cluster
Cg is being formed. Each SGg has a 0-node and a 1-node, and if the chain is a
1-chain, and either p1

i,j is selected as a marker for Cg or no pi,j (i.e., neither p1
i,j

nor p0
i,j) is selected as its marker, a unit control flow will come in from Cg into

the 1-node of SGg. There it incurs a C′ cost on the arc leading to SGt+1, which
means a min-cost flow will choose to push the flow from S along this arc and
into SGt+1. If, however, p0

i,j is selected as a marker for Cg, then the control flow
from Cg goes into the 0-node of SGg, which incurs a C′ cost in the shunting arc
of SGg that leads to the sink T . This means that a min-cost flow will choose to
divert the flow from S to this shunting arc and the flow thus does not go through
the 1-nodes of this 1-chain, and is finally shunted to the sink as shown in Fig. 4.
The structure for a 0-chain for pi,j is analogous. It is thus clear that the flow from
S will pass through this chain iff the term

∏G
g=1[d

g
i,j(not((ci,j(z)))+dg

i,j(∗)] = 1.
If flow reaches the end of, say, a 1-chain for pi,j , it is then diverted to a

structure for each NPz that has marker p0
i,j where it incurs a −dis(z, i, j) cost.

Thus a min-cost flow choosing such a path means that the corresponding NPz’s
through which the flow finally passes do not match the pi,j marker selection, if



220 S. Dutt et al.

SG1

Shunted
to sink

C1

Control
flows

mismatching chains
Flows from other

i,jval for p
NPs w/ 0

Flow shunted

this 1−chain

to T as p   valuei,j
3in C   is not 1 in

Shunting
arc

i,j
1p

p     not chosen
Arc for        or

i,j

(m +1,C’)

2(m +G,C’)

f=M2

C2 CGC3

......

......

...
...

......

NPy

1−node

Subgraphs with single cluster flows

0−node

...
...

S

NPz

To sink T

(3N, −dis(z,i,j))

(3N, −dis(y,i,j))

2

2 2(m +2,C’)

i,j
p    arc0

(m  ,0)
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any, in any of the clusters. This implies a contribution toward high specificity
of the set of marker sets {Mt}. 1- and 0-chains for each pi,j supplement the
structure of Fig. 3 to solve the 0/1 IP formulation of Eqn. 6. Compared to solving
the formulation of Eqn. 4, the solutions to the formulation of Eqn. 6 provided
an 11.5% average improvement in specificity with an 8.4% average deterioration
in sensitivity, for the data sets for the five diseases discussed in Sec. 3.

3 Computational Study

3.1 Data Sets

We consider 5 data sets which were used in [5] for the evaluation of our method:

1) Crohn’s disease: This data set consists of genotypes of 103 SNPs from 144
Crohn’s disease patients and 243 healthy controls. The 103 SNPs locate on
a 616 KB region of human Chromosome 5q31 that may contain a genetic
variant responsible for the disease. The cases and controls are individuals
from 129 trios [6].

2) Autoimmune disorder: This data set consists of genotypes of 108 SNPs from
384 cases of autoimmune disorder and 652 controls. The SNPs are selected
from a 330KB of human CAN containing gene CD28, CTLA4 and ICONS,
which are proved related to autoimmune disorder [19].

3) Tick-borne encephalitis: This data set consists of genotypes of 41 SNPs of 21
patients with tick-borne encephalitis virus and 54 patients with mild disease
[3].

4) Rheumatoid arthritis: This data set consists of genotypes of 2300 SNPs
from 460 patients with rheumatoid arthritis and 460 controls. The SNPs are
selected by Illumina for an approximately 10KB region of chromosome 18q
that showed evidence for linkage in the U.S. and French linkage scans [3].

5) Lung cancer: This data set consists of genotypes of 141 SNPs from 322
German male smokers with lung cancer and 273 age-matched healthy smok-
ers. The 141 SNPs are selected from a total of 83,715 SNPs that had been
screened using genome-wide DNA pooling strategy, because they showed
putative allelic imbalance between case and control DNA pools [18].
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3.2 Results

We use the 5-fold cross-validation procedure to evaluate our method. The criteria
for evaluation of the predictive ability of the algorithm are sensitivity (Sens) and
specificity (Spec). Sens and Spec are defined as follows.

Sens =
TP

TP + FN
and Spec =

TN
TN + FP

(7)

where TP, FP, TN and FN are the numbers of true positives, false positives,
true negatives and false negatives, respectively, from the 5-fold CV test (see
footnote 4, p. 7, for an explanation of how these numbers are determined for our
clustering-based multiple marker sets).

Table 1. Sensitivity, specificity and runtimes of the 5-fold CV procedure using the
DNF model to solve the 0/1 IP given in Eqn. 6

# of Sens Spec Runtime # of Sens Spec Runtime
Clusters (%) (%) (sec) Clusters (%) (%) (sec)

Data set k = 4, α = 1.5 k = 5, α = 1.5
Autoimmune disorder 11 71.1 57.1 2941 12 84.1 67.5 3458
Crohn’s disease 9 65.5 67.3 3204 12 84.7 71.2 3651
Tick-borne encephalitis 6 83.3 69.2 801 6 100.0 96.9 720
Lung cancer 8 72.3 69.1 3972 14 84.2 83.2 5240
Rheumatoid arthritis 13 75.0 63.4 19440 13 85.2 71.7 21240

k = 7, α = 1.5 k = 10, α = 1.5
Autoimmune disorder 16 86.5 72.4 3971 16 86.5 74.6 4025
Crohn’s disease 14 84.7 74.0 4044 16 86.1 75.3 4400
Tick-borne encephalitis 6 100.0 96.9 824 6 100.0 96.9 820
Lung cancer 16 85.1 83.9 5354 16 84.4 85.0 5517
Rheumatoid arthritis 13 83.4 75.0 22320 14 85.0 77.8 23060

The results of our model using the 5-fold CV procedure are shown in Table 1.
We also used the MDR method [17] with k = 4, 5 for comparison, since MDR
could not finish for larger k’s. For k = 5 a random search option was used for
the rheumatoid arthritis data set, due to the large number of SNPs in it.

Table 2. Sensitivity and specificity of the MDR method
[17] obtained from the 5-fold CV

k=4 k=5
Data set Sens(%) Spec(%) (Sens)(%) Spec(%)
Autoimmune 50.9 55.3 54.3 60.2
Crohn’s 48.6 50.0 49.6 42.5
Tick-borne 52.1 67.2 50.0 67.5
Lung cancer 50.0 57.8 48.8 58.9
Rheumatoid 49.7 54.9 41.1 54.6

Our model achieved
the best sensitivity and
specificity when using k
= 10. Even for k =
5, our proposed model
outperformed MDR sig-
nificantly. The percent-
ages of sensitivity (resp.
specificity) increase
reached 70.8 (67.1), 54.9
(12.1), 100.0 (42.5),
107.3 (31.3), and 72.5

(41.3) for Crohn’s disease, autoimmune disorder, tick-borne encephalitis virus,
rheumatoid arthritis, and lung cancer, respectively. Note also that except for tick-
borne encephalitis (which has very few cases), the numbers of clusters formed
for the other four diseases are very similar, even though the number of cases
across these disease data sets vary from 144 to 460. This seems to indicate that
natural clusters that are independent of the number of cases are being formed.
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Thus assuming that the cases in our data sets are representative of the general
case population, the number of clusters for any of these diseases would probably
remain unchanged even if the number of cases increases significantly.

Table 3. Sensitivity, specificity and runtimes obtained for
the DNF method and the CPS method [4] for different data
sets. The DNF results are from the 5-fold cross-validation
procedure, and the CPS results are reported from [4], which
were obtained from a leave-out cross-validation procedure.

DNF CPS
Data set Sens Spec runtime Sens Spec Runtime

(%) (%) (sec) (%) (%) (hour)
Crohn’s 86.1 75.3 4400 80.0 89.9 1189
Tick-borne 100.0 96.9 820 80.2 92.4 6.3
Autoimmune 86.5 74.6 4025 79.0 89.1 17400

We also compared
the results of our
method and with
those of the CPS
method. Our method
increased sensitivity
by 7.6%, 7.7%, 26.6%
for Crohn’s disease,
autoimmune disor-
der, and tick-borne
encephalitis virus,
respectively. However,
the specificity was
decrease by 16.3% and
16.3% for the first

two data sets, but increased by 4.9% for the last data set. Our methods are
significantly faster than the CPS. For example, it only took our method 820
seconds for tick-borne data, but it took the CPS method 6.3 hours, even though
we used a somewhat slower CPU than that used by CPS (a 1.8 GHz Pentium
M vs. a 3.2 Ghz Pentium 4).

4 Conclusion

We proposed 0/1 IP problems to identify k-SNP marker sets that predict an
individual’s disease status from their genotype data. Our method demonstrated
significant improvement in performance compared with several existing methods.
Using the novel DNF technique our model can simultaneously detect multiple
k-SNP marker sets which correspond to different genetic subgroups from data
of large scale case-control studies, and do so very time-efficiently. With further
refinement of the model, our method has promise for the analysis of genome-wide
association study data.
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Abstract. Biclustering gene expression data is the problem of extract-
ing submatrices of genes and conditions exhibiting significant correlation
across both the rows and the columns of a data matrix of expression val-
ues. We provide a method, LEB (Localize-and-Extract Biclusters) which
reduces the search space into local neighborhoods within the matrix by
first localizing correlated structures. The localization procedure takes its
roots from effective use of graph-theoretical methods applied to problems
exhibiting a similar structure to that of biclustering. Once interesting
structures are localized the search space reduces to small neighborhoods
and the biclusters are extracted from these localities. We evaluate the
effectiveness of our method with extensive experiments both using arti-
ficial and real datasets.

1 Introduction

Clustering refers to the process of organizing a set of input vectors into clusters
based on similarity specified according to some predefined distance measure.
In many cases it is more desirable to simultaneously cluster the dimensions as
well as the vectors themselves. This special instance of clustering, referred to as
biclustering, was introduced by Hartigan [14]. In addition to the areas such as
data mining and pattern recognition, biclustering has found many applications
in bioinformatics, specifically in microarray analysis, drug activity analysis, and
motif detection [5,23,19,16,7,2,4,21]. It is different from the existing traditional
clustering paradigm. Although traditional one-way clustering provides valuable
information with regards to a global perspective, extracting local substructures
via biclustering may help build intuition on both dimensions of the data.

In gene expression analysis, data is assumed to be arranged in a matrix, where
each gene corresponds to a row and each condition to a column. After regrouping
of rows and columns of the matrix, a bicluster can then be defined as a subma-
trix satisfying certain criteria. These criteria maybe used to categorize biclusters
into certain classes. In a constant-valued bicluster, values in the submatrix cor-
responding to the bicluster are all equal. A bicluster with constant-rows on the
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other hand is defined as a submatrix consisting of values obtained by δ  αi,
where δ is the typical value within the submatrix, αi is the adjustment for the
ith row of the submatrix. Depending on the choice of additive or multiplica-
tive adjustment model,  corresponds to addition or multiplication respectively.
Constant-column biclusters are defined symmetrically. Finally coherent-valued
biclusters are those submatrices with values defined as δ  αi  βj , where αi, βj

are the adjustments for the ith row and the jth column of the submatrix respec-
tively. Again additive or multiplicative adjustment maybe applied by choosing
the  operator appropriately. See the recent survey of Madeira et al. for further
details [17]. We note that the above definitions for biclusters apply to “ideal”
conditions where no noise is present in data. The variety of techniques applied to
handle noisy data creates the main distinction between the previous approaches.

2 Previous Work

One of the early approaches for biclustering expression data is that of Cheng
and Church [12]. They provide a greedy, iterative algorithm with running time
O(mn), where m and n are the dimensions of the data matrix. The mean squared
residue score is defined and the algorithm greedily inserts/removes rows and
columns to arrive at a certain number of biclusters achieving some predefined
score value. Order-Preserving Sub Matrix(OPSM) [5] is another greedy, itera-
tive algorithm, that finds a statistically significant bicluster at each iteration.
It greedily runs over the data matrix and enlarges the best bicluster and con-
tinues until there is no reported bicluster. The time complexity of OPSM is
O(nm3l) where n and m are dimensions of input matrix and l is the number of
output biclusters. The algorithm does not scale well for high dimensional data.
Conserved gene expression motifs or xMOTIFs [19] is another greedy algorithm
which finds all biclusters at a single run. ISA [7] introduces a statistical approach
to the biclustering problem. It requires normalized data with mean 0, variance
1 and assigns weights according to z-scores that represents significant behavior
with similar weights. It has been applied to determine cis-regulatory modules in
the yeast dataset. Coupled two way clustering is proposed by Getz et al. [13].
First stable forms on submatrices that are used to divide the original dataset
are found. Then one-way clustering is applied recursively on a single dimension
of the submatrices until there is no newly found stable submatrix. They guaran-
tee that each submatrix pair is not encountered more than once. Their success
depends on the performance of one dimensional clustering algorithms such as
K-means, Hierarchical, SOM.

Several graph-theoretical approaches have also been suggested. Prelic et al.
provided a divide-and-conquer algorithm, Bimax [21], that runs on discretized
binary data. Since they rely on a discretization strategy, the results of Bimax
may vary according to the employed strategy. Besides binary data makes it
harder to focus on coherent values and thus applies only to constant biclusters.
In SAMBA [23, 22] the data matrix is viewed as a bipartite graph where the
genes/conditions constitute the layers of the bipartite graph and edges in the
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graph correspond to the expression changes. The goal is to find out heavy bi-
cliques inside the graph. Running time of SAMBA is exponential on the size
of the conditions set in a maximum bounded biclique because of the employed
exhaustive bicluster enumeration. A similar model is constructed in [2] where
crossing minimization in unit-weight bipartite graphs is used as a means to ex-
tract bicliques corresponding to biclusters in the data matrix.

3 LEB- Localize and Extract Biclusters

Given an input data matrix M , the idea behind our algorithm is to first group
together rows and columns of M in such a way that correlated rows/columns
are “localized”, that is rows/columns exhibiting similar patterns are placed in
nearby locations within M . Once localization is complete our search space should
be limited to small neighborhoods within the matrix. Starting with small local
submatrices we evaluate the score of a submatrix corresponding to a possible
bicluster and grow it if necessary until we arrive at a bicluster with a fair score.

3.1 Graph-Theoretical Preliminaries

The vertex set in a bipartite graph is partitioned into two so that no edge exists
between a pair of vertices within the same partition. The data matrix M can
be turned into a weighted bipartite graph GM . The vertices in one partition of
GM correspond to the rows and the vertices in the other partition correspond to
the columns. Each entry ai,j ∈ M is assigned to the weight of the edge (i, j) in
GM . The maximum edge biclique problem in unweighted bipartite graphs is NP-
hard [20]. Given the above correspondence this implies finding the maximum size
constant-valued bicluster is also NP-hard since a special case of this can be used
to solve the biclique problem. If the data matrix consists only of 0, 1 values then
extracting all interesting constant-valued biclusters reduces to the problem of
maximal biclique generation problem. This problem is also NP-hard and various
versions of it have been studied previously in [3]. The Bimax algorithm makes
use of the introduced techniques [21].

A well-studied graph theoretical problem is that of crossing minimization in
bipartite graphs. Given a bipartite graph the goal is to arrange the vertices in
such an order that minimizes the total number of edge crossings, if the partitions
were to be on two parallel lines and each edge drawn using a straight-line seg-
ment. This problem is also NP-hard even when one of the partitions is fixed. The
connection between the biclique generation and the bicluster extraction prob-
lems, and the observation that minimizing crossings requires grouping heavy
bicliques “locally” together is the main motivation behind our method. We note
that similar approaches have been taken [2]. The first step in such approaches is
to discretize the data so as to achieve a unit-weight bipartite graph which may
then be rearranged to provide few edge crossings. However the discretization of
data may cause loss of valuable data. The problem could be remedied by consid-
ering the data matrix in its original form and applying a crossing minimization
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on a weighted bipartite graph. However choosing an appropriate crossing min-
imization heuristic and applying it in a manner suitable for the biclustering
problem is an important task. It has been shown recently in [10] that heuris-
tics that are simple generalizations of well-known heuristics and approximations
of the unweighted settings do not work well under the more general weighted
settings of the problem. In LEB we apply a similar idea of “localization” that
makes use of crossing minimization in bipartite graphs. However we do not have
a discretization/normalization step to convert the weighted bipartite graph into
an unweighted one as this might cause data loss and produce erroneous out-
put. Instead we apply crossing minimization directly on the original weighted
graph. An important property of our method is that we use a 3-approximation
algorithm which has been shown to work well in practice as well, for the gen-
eral weighted version of the crossing minimization problem. Additionally our
localization procedure incorporates this heuristic in a manner that successfully
handles the discrepancy caused by noise in the data.

3.2 Bicluster Localization

A pseudocode of this first phase is provided in Algorithm 1. The localization
proceeds in two steps. The first step is to provide a good initial localization.
This is achieved by reordering the rows and columns in a way that the resulting
bipartite graph corresponding to M contains few (weighted) crossings between
the edges. To this aim first the columns are fixed and the rows are reordered
using a 3-approximation algorithm for minimizing crossings in weighted bipartite
graphs. The result below follows:

Theorem 1 (Cakiroglu et al. [10]). Fixing the columns of M , Phase-1.1
orders the rows in such a way that the weighted crossings in the resulting bipartite
graph is at most three times the optimum.

Next the rows are fixed and the columns are reordered using the same method.
This procedure of fixing one dimension and reordering the other is continued until
it converges, that is no further improvement can be made or a certain iteration
count is reached. We have verified that if the input data is noise-free then this
initial localization step is usually enough to identify bicliques and extract the
biclusters. However with real data finding biclusters is not an easy task because of
large amounts of noise. In order to deal with noise, the next step in localization is
Adaptive Noise Hiding. The weighted edges in the graph that correspond to noise
in the original input data are removed in this step. Sliding a window around the
perimeter of each entry in the data matrix, where (r±1, c), (r, c±1), (r±1, c±1)
constitute the perimeter of the entry at (r, c), we check whether the window
satisfies a threshold density in terms of the number of nonzero weighted edges.
If it does not, the entries on the perimeter are considered suspicious. Once sliding
is finished we find the most suspicious weight and remove all suspicious entries
with the corresponding weight. We adaptively apply our crossing minimization
based Initial Localization step on the new matrix and continue noise hiding after
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Algorithm 1. Phase-1: Bicluster Localization
/* Phase-1.1: Initial Localization */
repeat

/* Fix columns, order rows to minimize crossings */
for all r ∈ R do

leftsum = 0; rightsum =
∑|C|

i=2 ar,i;
for all c ∈ C do

if leftsum ≥ rightsum then break;
leftsum+ = ar,c; rightsum− = ar,c+1;

end for
Pc = Pc ∪ {u};

end for
for all c ∈ C do∑c

i=1 av,i ×
∑|C|

i=c au,i ≤
∑c

i=1 au,i ×
∑|C|

i=c av,i

defines a total order u � v, Sort Pc using �
end for
/* Fix rows, order columns to minimize crossings */
Switch R and C, Repeat above procedure.

until no change in row/column ordering or enough iterations

/* Phase-1.2: Adaptive Noise Hiding */
repeat

for all pairs (r, c) where r ∈ R, c ∈ C do
Neighboring Pairs NP = {ar±1,c, ar,c±1, ar±1,c±1}
Let count be the number of elements in NP with nonzero weight
if count ≤ threshold then Store those entries as suspicious;

end for
Find the most suspicious weight, MS
Hide entries ar,c with weight equal to MS and Run Phase-1.1
if no suspicious entries then threshold + +

until threshold reaches max-threshold-density

Fig. 1. Assumed noise is 0.05. (a)Initial artificial design with 2 biclusters of K10,10;
(b)After Phase-1.1: Initial Localization; (c)After Phase-1.2: Adaptive Noise Hiding
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incrementing the threshold density. The removal of the suspicious edges and
the crossings in the corresponding weighted bipartite graph couple each other
in terms of noise removal. Each time the rows/columns are reordered to reduce
the number of crossings, new suspicious pairs are created to be removed in the
next iteration of the procedure. We note that our application of the crossing
minimization is two-folds. Besides providing a good initial localization, crossing
minimization is also used to handle noise removal. A simple run showcase is
provided in Figure 1.

3.3 Bicluster Extraction

The next step in LEB is to extract biclusters from the reorganized data matrix
by considering local neighborhoods. We introduce two parameters α, the size of
a neighborhood and γ, the required score of a bicluster.

We divide the data matrix into bags of size α × α. We do a traversal over the
bag set and try to enlarge the bags. All bags are unmarked initially. At each
iteration during the traversal we first mark a bag bi. We compute the evaluation
score of bi with the next unmarked bag bj in the x-direction and construct their
union if the score “satisfies” the γ constraint. We mark bj and continue with
the union as the current bag. Once we check over all bags in the x-direction,
we continue with the y-direction and follow the same procedure. Thus at the
end of one such iteration we have the boundaries of a bicluster determined.
We continue the traversal starting from an unmarked bag and follow the same
enlargement procedure. Once all bags are marked we are left with nonoverlap-
ping, different sized bags corresponding to biclusters all of which satisfy the γ
score.

For constant biclusters the evaluation score of bi, bj is the ratio of the number
of most frequent weight in the union to the size of the union. A score satisfies
the γ constraint if it is larger than γ. We note that we have an additional initial
traversal step for constant biclusters where we remove bag bi that scores lower
than γ when evaluated with the empty set.

On the other hand for coherent biclusters we first define the H-value of a
submatrix [12]. Assume the submatrix consists of I rows and J columns. The
residue R of an entry (i, j) is

RI,J(i, j) = ai,j − aIj − aiJ + aIJ (1)

where aiJ is the mean of row i, aIj is the mean of column j and aIJ is the mean
of the submatrix. H-value is defined as,

HI,J(i, j) =
1

|I||J |
∑

i=0,j=0

(RSI,J(i, j)2) (2)

The evaluation score of two bags is the difference between their H-values. A
score satisfies the γ constraint if it is less than γ in this case.
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Table 1. Experiments on Arabidopsis thaliana dataset

Algorithm Maximum
Bicluster

Minimum
Bicluster

Dimension1
Average

Dimension2
Average

Bicluster
Count

H-values

LEB 630x66 3x6 60,13043 6,945652 92 398,009
BIMAX 10x4 4x4 4.428301 4.065273 50189 254,3467
CC 690x69 242x69 531.4200 69.00000 100 1654,066
ISA 234x5 198x2 220.3250 2.537500 80 1374,401
OPSM 2x57 10x5 10.33333 15.41667 12 673,0505

3.4 Running Time of LEB

With a straighforward implementation the running time of the Initial Localiza-
tion step in the first phase of LEB is O(|R| × |C| + |R| log |R| + |C| log |C|),
where |R|, |C| denote the sizes of the rows, columns of the data matrix respec-
tively. The repeat loop of this step is iterated until the minimization of crossings
converges or a constant number of iterations is achieved. We note that in all
the experiments conducted, the method converges after a few iterations. Similar
reasoning applies to the Adaptive Noise Hiding step. The Bicluster Extraction
phase requires time O(|R| × |C|) as the size of a neighborhood (bag) is constant
and each bag is marked once throughout the extraction. Therefore the running
time of the first phase of LEB is almost linear in terms of the input size.

4 Experimental Results

We used the LEDA C++ Library [18] to implement our algorithm. The codes
for the implementation and the experimentation are freely accessible at [1]. In
order to test the rest of the algorithms, we used Biclustering Analysis Tool-
box(BicAT) [4] and Click and Expander [22]. We chose 5 different algorithms for
comparison with LEB. These are the BIMAX [21], CC [12], ISA [7], SAMBA [23,
22], and OPSM [5] algorithms. We experimented on two real datasets, Arabidop-
sis thaliana and the Yeast Cell Cycle (Saccharomyces cerevisiae). For the thaliana
dataset, we evaluate the bicluster sizes and the H-values. For the yeast dataset,
we evaluate the enrichment ratios achieved by each of the selected algorithms.
We also provide the evaluation results based on the Protein-Protein Interactions
similar to those of Prelic et al. [21].

4.1 Experiments on Arabidopsis Thaliana Dataset

This is a widely used plant for bioinformatics applications. It is the first plant
that is sequenced with its whole genome. The gene expression dataset used in the
context of this experiment is publicly available at http://arabidopsis.info/. The
maintained database consists of 734 genes and 69 conditions. We have conducted
several experiments on this database; see Table 1. All the algorithms have certain
execution parameters. For each algorithm under discussion we assign the param-
eters to the values set in the original descriptions of the mentioned algorithms.
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Table 2. Yeast dataset experiment

Warfield for OPSM, CC, LEB on Yeast 2884x17 dataset for each category
OPSM CC LEB

Functional Category ORF in
Biclus-
ter

Func.
Enrich.

ORF in
Bicluster

Func.
Enrich.

ORF in
Biclus-
ter

Func.
Enrich.

E - Energy Production 543 0,03 55 0,04 100 0,04
G - Amino Acid Metabolism 1282 0,03 51 0,04 186 0,05
M - Other Metabolism 62 0,11 59 0,14 79 0,22
P - Translation 2342 0,03 57 0,19 79 0,09
T - Transcription 1282 0,06 55 0,19 143 0,08
B - Transcriptional control 124 0,08 42 0,08 152 0,08
F - Protein Fate 2342 0,06 51 0,14 83 0,08
O - Cellular Org. 2342 0,04 51 0,10 46 0,11
A - Transport and Sensing 124 0,13 59 0,07 143 0,10
R - Stress and Defense 62 0,06 42 0,05 105 0,06
D - Genome Maintenance 62 0,11 51 0,10 293 0,14
C - Cellular Fate / Org. 196 0,47 51 0,47 111 0,48
U - Uncharacterized 124 0,06 51 0,08 79 0,13

The settings are as follows: For LEB (γ = 10, α = 2), for BIMAX (Dscrzt =
0.6, α = 4, β = 4), for CC (ρ = 13, δ = 100, α = 1.2, outputBiclusters = 100),
for ISA (ρ = 13, tg = 2.0, tc = 1.0, n = 500), and finally for OPSM (γ = 100).

In terms of the number of output biclusters CC and ISA perform well. How-
ever one problem with these algorithms is the size of biclusters. For instance CC
provides a bicluster that is almost the size of input data; the conditions set is
represented completely in all the resulting biclusters. ISA has a similar prob-
lem with the conditions set, since the biclusters underrepresent the conditions
providing little clue as to correlation among them. To further examine the BI-
MAX algorithm we experiment with various parameter values. We increase the
discretization value to 0.6 and we increase α, β values. In that setting BIMAX
finds many biclusters but there is no biclusters larger than 10x4. On the other
hand, LEB provides biclusters of reasonable sizes. The resulting H-values are
evaluated as a performance measure. LEB provides the second lowest H-value
scores; it is likely that highly correlated biclusters are extracted with LEB.

We note that BIMAX has a problem with low discretization parameter val-
ues. For instance, when the discretization value is set to 0.2, it extracts millions
of biclusters which creates a difficulty in analyzing such an output. Another se-
vere problem is that of execution time. For specific parameter values it takes
more than several days to execute. OPSM does not provide better results even
if we try several settings for the parameter values. It only extracts 12 biclusters
in Arabidopsis thaliana dataset, although the size of the dataset is consider-
ably large. We made observations regarding parameter values of LEB. Assigning
small values to α, such as 3, provides better results in extracting reasonable size
biclusters with low H-value scores.
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Table 3. Yeast dataset experiment with different parameter settings for LEB. The
abbreviations used for the categories are the same as in Table 2.

Yeast Results for OPSM, CC, LEB1, LEB2, LEB3
Alg. Name E M G P T B F O A R D C U

LEB1 0.04 0.05 0.19 0.09 0.09 0.08 0.08 0.11 0.10 0.05 0.14 0.48 0.13
LEB2 0.07 0.05 0.16 0.12 0.14 0.07 0.11 0.10 0.10 0.06 0.17 0.45 0.10
LEB3 0.11 0.05 0.16 0.16 0.11 0.08 0.13 0.10 0.10 0.07 0.19 0.51 0.10
CC 0.04 0.04 0.14 0.21 0.24 0.1 0.14 0.10 0.07 0.06 0.10 0.47 0.08

OPSM 0.03 0.03 0.11 0.03 0.06 0.08 0.06 0.04 0.13 0.06 0.11 0.47 0.06

4.2 Experiments on Yeast Dataset

Our second set of experiments are conducted on the Yeast Cell Cycle
(S.cerevisiae) dataset [12]. Most of the previously suggested biclustering meth-
ods have been tested for this dataset. It has 2884 genes and 17 conditions. Since
Yeast dataset was categorized in terms of the functionality of each of the genes
at MIPS [15], we are able to test the enrichment ratio of each bicluster. The
identification of the categories of genes is done similar to [9]. There are 13 pre-
identified categories. Given a bicluster the ratio of the number of genes specified
in a category to the number of genes in the bicluster provides a possible enrich-
ment. For a specific category we choose the highest enrichment value among all
biclusters as the enrichment ratio of the category. This is a ratio between 0 and
1, see Table 2. For this experiment we do not evaluate small biclusters that con-
tain less than 40 genes. OPSM in general fails to enrich biclusters. LEB performs
better in 7 categories, CC in 3, and OPSM in only 1. CC and LEB have a draw in
one category and all algorithms have a draw in another category. Settings of CC
and OPSM are the original default parameters provided in the papers describing
the methods [12,5]. For LEB, γ = 100, α = 4 are the parameter settings. Table 3
provides the statistics of enrichment values for each category where we append
three different runs of LEB (LEB1(γ = 100, α = 4), LEB2(γ = 50, α = 3),
LEB3(γ = 25, α = 3)) with different parameter settings. LEB performs better
than CC and OPSM for various different parameter settings as well.

Next we use the FuncAssociate tool [8] in order to evaluate the algorithms with
regards to GO accepted categories . FuncAssociate computes the hypergeometric
functional score by using Fisher’s Exact Test. For each significance level, we
provide the enrichment ratio of the biclusters; see Figure 2. We note that we do
not run BIMAX and ISA for this dataset. ISA does not provide any biclusters
although many parameter settings were tried. BIMAX has a problem with the
number of biclusters. There is a significant number of biclusters but many of
them are duplicates. Furthermore parameter selection is another problematic
issue. However to gain a better insight on a comparative evaluation, in the figure
we provide the results of these two algorithms using reported results from [9,
21, 11]. The values in consideration are the adjusted p-values gathered from
the FuncAssociate tool [8]. According to the adjusted p-values, LEB has an
increasing enrichment ratio when significance level increases as expected. It is
good at covering genes with large amounts with high hit ratio inside the bicluster.
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Fig. 2. Proportion of biclusters significantly enriched by any GO biological category
of Yeast(S.cerevisiae) for LEB (γ = 10, α = 2),BIMAX, ISA, SAMBA, OPSM, and
CC. Note that the results of BIMAX and ISA are those reported in [9,21,11].

Table 4. Yeast PPI experiment, Averages of all hit ratios of biclusters

PPI Experiment for LEB, OPSM, CC, BIMAX and ISA on Yeast 2884x17 dataset
Algorithm Name LEB OPSM CC BIMAX ISA
Hit Ratio 0,05783 0,03004 0,04968 0,04458 0

Among all tested results of LEB, CC, SAMBA and OPSM, LEB provides better
results than the other algorithms. Including the reported results [9, 21, 11] of
BIMAX and ISA, LEB still performs better in most of the categories.

Additionally, as a final experiment, we have done the Protein-Protein Interac-
tions (PPI) experiments where we use the data from [6]. According to this data,
there are relations which are categorized as physical or complex among each pair
of genes within the Yeast dataset. If there is no edge for a given gene pair in
the PPI graph, we say that there is neither a physical nor a complex relation.
In our experiment, for each bicluster of the Yeast Cycle dataset, we extract the
genes and among these genes we define artificial relations as edges. Each gene
is connected to all other genes. As the next step, for randomly selected artificial
relations, we check to see whether there are any real complex or physical rela-
tions between source gene and target gene pairs at the PPI Network. If there
is a relation, we increment the number of hits, h. We also store the number of
queries as n. As a result, for the bicluster under consideration, we compute a
hit ratio defined as h/n. High hit ratio means that genes in a bicluster are more
correlated in terms of protein-protein interactions. Table 4 provides the related
ratios as the averages of hit ratios among all generated biclusters. According to
these results, LEB has the best hit ratio among others. In this experiment, ISA
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has a hit ratio of 0 since no output biclusters are generated for the suggested
parameters of the algorithm.

5 Conclusion

We proposed an algorithm LEB (Localize and Extract Biclusters) for biclustering
gene expression data. The main idea behind the method is the observation that
minimizing crossings in weighted bipartite graphs provides a partitioning that
gathers probable biclusters within close neighborhoods. The algorithm is simple
to implement and adopt. The issue of suitable parameter setting is not a problem
as compared to most of the other alternative methods. Experiments on both real
data and artificially constructed data indicate that LEB performs fairly well in
general. One direction that still needs to be examined is to establish a formal
theoretical connection between the weighted biclique problem and various more
general definitions of biclustering. Embedding other weighted biclique heuristics
within the framework of LEB and testing them against the current LEB, with
the underlying crossing minimization operation would be a valuable comparison.
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Abstract. Protein-protein interaction plays critical roles in cellular
functions. In this paper, we propose a computational method to pre-
dict protein-protein interaction by using support vector machines and the
constrained Fisher scores derived from interaction profile hidden Markov
models (ipHMM) that characterize domains involved in the interaction.
The constrained Fisher scores are obtained as the gradient, with respect
to the model parameters, of the posterior probability for the protein to
be aligned with the ipHMM as conditioned on a specified path through
the model state space, in this case we used the most probable path –as
determined by the Viterbi algorithm. The method is tested by leave-one-
out cross validation experiments with a set of interacting protein pairs
adopted from the 3DID database. The prediction accuracy measured by
ROC score has shown significant improvement as compared to the pre-
vious methods.

Keywords: Protein-protein interaction, Hidden Markov models, Sup-
port vector machines, Domains, 3DID.

1 Introduction

Recently, prompted by high throughput technologies and the huge amount of
data wherein generated, systems biology has become a new powerful paradigm
in studying molecular biology and cellular processes. At the center of systems
biology is the reverse engineering problem for discovering the underlying biolog-
ical networks that are responsible for the various phenotypes manifested in cell
lines. Predicting protein-protein interaction (PPI) computationally is an impor-
tant step in that reverse engineering effort.

The computational methods so far developed for PPI prediction have utilized
information from various sources at different levels, from primary sequences, to
molecular structures, to evolutionary profiles, and with varied performance as re-
ported in the literature (see [5] and references therein). Typically, more sensitive
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prediction tends to require extensive information, e.g. phylogenetic information,
and more specific prediction tends to require more detailed information, e.g. the
structural information. How to integrate and incorporate various data sources
has been a central issue in systems biology, and as we show here it also plays an
important role in improving the PPI prediction accuracy.

It is known that protein’s 3D structure is essential to its function, for example,
the binding sites may require some particular shape to be thermodynamically
favorable for the binding. When proteins interact with one another, the inter-
faces, also called domains, where the interaction happens, also need to take up
an appropriate structure, which in turn may impose constraints on the amino
acid composition at the interfaces. It has become a common approach for pre-
dicting PPI to identify these domains. However, several factors can compromise
the efforts of using domain-domain interaction (DDI) to predict PPI.

First, although the domains responsible for binding two proteins together tend
to possess certain biochemical properties that dictate some specific composition
of amino acids, such compositions are typically not unique enough to be solely
relied upon for domain identification –variations are quite common in the multi-
ple sequence alignment of these proteins that contain the same domain. Hidden
Markov models are among the most successful efforts to capture the commonal-
ities of a given domain while allowing variations. A collection of hidden Markov
models covering many common protein domains and families is available in the
Pfam database [7].

More seriously, although corroborated by other evidences such as domain
modularity of proteins and shared DDI among PPIs, in most cases experimental
verification in support of the DDI-PPI correspondence is still missing [10]. Even
when such correspondence is certain, membership of domain families is estab-
lished at the best, as mentioned above, via probabilistic modeling, therefore false
positives are not uncommon. Furthermore, while the interaction sites within do-
mains, as recently demonstrated, play a key role in determining PPI [11], such
information is not readily available for many proteins –the dataset of PPIs that
have been resolved using crystallography remains relatively small.

It this work, we propose a new computational method to address these issues,
in particular by transferring knowledge across sources and at different levels.
The method is based on a framework first proposed by Jaakkola et.al. [2] [3],
which allows for combining generative models and discriminative classifiers. In
this case, the generative model is an interacting profile hidden Markov model
(ipHMM), recently developed by Fredrich et.al. [11], in which the interaction
sites within protein domains are taken into account by the model topology. The
structural information about the interaction domains is only needed for training
the model. Once a model is trained, it can be used to predict interaction sites
for proteins with only the sequential information as input. A posterior decoding
algorithm yields probabilities for interacting sequence positions and enhances
the quality of interaction site predictions.

The discriminative classifier used in this work is a support vector machine
(SVM). To leverage the domain information captured in the ipHMM, the SVM
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Fig. 1. Topology of the interaction profile hidden Markov model. The match states of
the classical pHMM are split into non-interacting (Mni) and interacting (Mi) match
states.

is trained on feature vectors that are composed of the constrained Fisher scores,
which are defined as the gradient, with respect to the model parameters, of the
posterior probability for the protein to be aligned with the ipHMM as condi-
tioned on a specified path through the model state space, in this case we used
the most probable path –as determined by the Viterbi algorithm. The method
is tested by leave-one-out cross validation experiments with a set of interacting
protein pairs adopted from the 3DID database. The prediction accuracy mea-
sured by ROC score has shown a significant improvement as compared to the
previous methods.

2 Method

2.1 Interaction Profile Hidden Markov Models

Friedrich et.al. [11] proposed a method for the prediction of interacting sites
within protein domains, based on a modified interaction profile hidden Markov
model (ipHMM) whose topology takes both structural information and sequence
data into account. Every ipHMM is, like profile hidden Markov models (pHMM),
a probabilistic representation of a protein domain family. Topology of the
ipHMM follows the same restrictions and connectivity of the HMMer architec-
ture, with one exception: that the match states of the classical pHMM are split
into a non-interacting (Mni) and an interacting match state (Mi), as shown in
Fig. 1. The new kind of states is provided with the same properties of the match
state in the classic pHMM architecture, e.g. these interacting match states are
able to emit all amino acid symbols with certain probabilities, which are the
parameters to be fixed according to the training examples.

The parameters of an ipHMM are estimated from a multiple sequence align-
ment of the member proteins in the domain family, incorporating the annota-
tion on their binding sites –all sequence positions have to be labeled with the
corresponding interaction status (0 for non-interacting and 1 for interacting).
The model estimation of the ipHMMs is achieved by maximum likelihood. Once
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characterized, these ipHMMs have shown to encode an enormous amount of sta-
tistical information pertaining to the interaction between the domain and other
domains. In this work we will show that this model, although originally created
for interacting site prediction, can be turned into a powerful tool for other type
of predictions, for instance protein-protein interaction prediction.

2.2 Fisher Scores

Hidden Markov Models (HMM), like the one described in Sect. 2.1, are prob-
ability models that can be used to calculate the likelihood of the unannotated
sequence being generated by the HMM. Given the structure of the HMM, the
model can be fully characterized by finding its emission and transition proba-
bilities following a maximum likelihood approach on the annotated sequences
[1]. Once trained, the model can be used to efficiently generate new sequences
with high probability of belonging to the model’s family, and also to measure
the likelihood of an observed sequence to have been generated by the model,
which is reason why HMMs are regarded as “generative models”. This measure
is known as the posterior probability P (x|θ), where x denotes the sequence, and
θ denotes the HMM (or the model’s parameters, to be more precise). If there
are two models, θ and θ′, and the goal is to rank the affinities of sequence x to
θ and to θ′, Bayes rule and the posterior probabilities can be used to calculate
P (θ|x) and P (θ′|x), and by comparing these two quantities the HMM can be
turned into a classifier.

However, when classification is in mind, “discriminative methods” [2], which
directly estimate a posterior probability for a class label (as in Gaussian process
classifiers) or a discriminant function for the class label (as in support vec-
tor machines), have been shown to outperform generative methods. But with
discriminative models it is hard to define a principled way to handle missing
information and variable length sequences (or vectors), two issues that are taken
care of by HMMs, as mentioned before. So clearly, a statistically sound method
for combining generative and discriminative models for the ultimate goal of clas-
sification is needed. More so for our particular application, in which we desire to
discriminate interacting protein pairs from non-interacting ones using support
vector machines, but the statistical information about the interactions is con-
tained in an ipHMM (Sect. 2.1). Jaakkola et.al. described a method to carry out
this combination [2] [3] based on the so called “Fisher score”.

The Fisher score is defined as the derivative of the log-likelihood score for the
query sequence x with respect to a particular parameter of the model. In this
work we will focus on the emission probabilities of the ipHMM, for reasons that
will become apparent hereinafter. If the probability of emitting amino acid x̃
from state s̃ is named θx̃,s̃, the Fisher score of the model with respect to θx̃,s̃ is
therefore defined as

∂

∂θx̃,s̃
log P (x|θ) =

ε (x̃, s̃)
θx̃,s̃

− ε (s̃) (1)
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where ε (s̃) =
∑

x′ ε (x′, s̃) and the summation runs over the 20 different amino
acids. The derivation of (1) is detailed in [3]. In this formula, ε (x̃, s̃) can be seen
as the expected posterior probability of visiting state s̃ and generating residue
x̃ from that state. This expected value can be calculated, for any state s̃ and
for any emitted amino acid x̃, from the posterior decoding matrix, which can be
found efficiently using the forward and backward algorithms [1] [4]. The literature
denotes ε (x̃, s̃) and ε (s̃) as the sufficient statistics for the parameter θx̃,s̃ in the
model. For this reason we say that the sufficient statistics of the entire model
are embedded in the Fisher scores.

Using the Fisher scores, any protein sequence can now be characterized in
the context of an ipHMM by the Fisher scores of the sequence’s posterior align-
ment to the model. And many sequences of different length will be mapped to
vectors with the same dimensionality in the Fisher vector space. Now it should
be clear why the Fisher score provides an elegant way to combine a generative
model with a discriminative technique, preserving the advantages of the two
approaches. Patel and Liao used this method [5] to successfully predict protein
to protein interactions. Their contribution consisted on constructing a dataset
from two groups of proteins (say group A and group B), where all the proteins
in a group share a common domain, and protein sequences from group A have
been observed to interact with protein sequences from group B. Furthermore,
the domain shared by the sequences in a group is characterized by an ipHMM.
Each protein sequence is aligned to its corresponding ipHMM, and a Fisher vec-
tor is calculated by finding the Fisher scores of the alignment with respect to
the emission probabilities of a) non-interacting match states and b) interacting
match states (these two cases are treated separately). Positive examples are built
by concatenating Fisher vectors of interacting sequence pairs, and negative ex-
amples are built from non-interacting pairs. Training and testing on this dataset
was carried out using support vector machines.

The Fisher scores are calculated with respect to the emission probabilities
of match states because it is expected that the statistics of the interaction are
implicitly contained in these states (since match states are differentiated accord-
ing to the interaction in the ipHMM); and remember, the ultimate goal of this
work is to predict interacting pairs. Patel and Liao showed this approach yields
better prediction results as compared to a baseline model where the positive and
negative examples are built using only the log-likelihood scores of the protein
alignments to their corresponding ipHMM.

2.3 Constrained Fisher Scores

Although the Fisher score of the log-likelihood score log P (x|θ) has been proved
to provide a powerful means for predicting interacting protein pairs, it can still be
taken one step further. Notice the log-likelihood score is commonly used for the
task of family membership prediction. For example, in the context of ipHMMs,
evaluation of log P (x0|θ) for a given sequence x0 gives you the likelihood of
protein x0 to contain the domain characterized by the model, but notice that, in
a sense, this measure overlooks the interaction information that is contained in
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the model. In Sect. 2.2 we described how this information can be injected into
the support vector machine by creating vectors using Fisher scores with respect
to emission probabilities of non-interacting/interacting match states.

However, we can prioritize the conservation of the interaction information in
the first place, when we define the derivatives that make up the Fisher score.
Our focus will now be on the most probable path of hidden states or label s for a
given sequence x. Obviously the label sequence s will explicitly differentiate non-
interacting from interacting match states. Thus, our quantity of interest is not
the likelihood the model assigns to sequences P (x|θ), but the conditional prob-
ability P (s|x, θ) of the label for a given observation sequence x [6]. Therefore,
our new Fisher scores, which we call “constrained” Fisher scores, are defined as:

∂

∂θx̃,s̃
log P (s|x, θ) =

∂

∂θx̃,s̃
(log P (s, x|θ) − log P (x|θ)) (2)

where the second part was already solved in (1), and the first part, after algebraic
manipulations, can be proved to be equal to:

∂

∂θx̃,s̃
log P (s, x|θ) =

ς (x̃, s̃)
θx̃,s̃

− ς (s̃) (3)

where ς (x̃, s̃) is the number of times state s̃ is visited and amino acid x̃ is
emitted from there in the most likely path, which can be found efficiently using
the Viterbi algorithm. Likewise, ς (s̃) is the number of times state s̃ is visited in
the optimal (or most likely) path. Plugging (1) and (3) into (2) we obtain the
complete definition of the constrained Fisher score:

∂

∂θx̃,s̃
log P (s|x, θ) =

(
ς (x̃, s̃)
θx̃,s̃

− ς (s̃)
)

−
(

ε (x̃, s̃)
θx̃,s̃

− ε (s̃)
)

. (4)

Inspection of (4) can provide a physical interpretation as to why the con-
strained Fisher score can potentially outperform the unconstrained score in PPI
prediction tasks. Notice the ε’s in (4), being expected values, are concerned
about the statistical behavior of the dependency of the model on parameter
θx̃,s̃, whereas the ς’s, which are actual counts, deal with the explicitly observed
data points (or sequences) and the relevance of θx̃,s̃ on their alignment to the
model, not caring about the probabilistic behavior. In this sense, the constrained
model reduces the biasing of the unconstrained model, and in consequence it di-
rectly enhances the information entropy. Improving the entropy of the model
means reducing the amount of prior information built into the distribution. The
final result is a better learning algorithm.

3 Data

3.1 The Database of 3D Interacting Domains (3DID)

It is known that existing information on the atomic structure of protein com-
plexes can shed light on molecular details necessary for understanding how inter-
actions occur. Since proteins are composed of modular elements (domains) that
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to a great extent determine their structure, function and interaction partners, it
is desirable that relevant information is organized around domains rather than
full-length proteins. To this end, a relational database of 3D Interacting Domains
(3DID) was created by Stein et.al [9] that contains a collection of domain-domain
interactions in proteins for which high-resolution three-dimensional structures
are known.

The version of 3DID downloaded for this study has 3, 034 pairs of domain-
domain interactions, where the 3D structure of every interaction pair is known
to decide if the pair physically interact. The 3DID criterion for physical inter-
actions requires that at least five contacts (hydrogen bonds, electrostatic or van
der Waals interactions) between the two domains have been detected. Knowing
the protein complexes at the atomic level, 3DID is able to provide information
on which amino acids actually take part on the interaction. This knowledge al-
lows us to construct an interaction profile hidden Markov domain (ipHMM) to
characterize each domain in 3DID by training the model on all sequences that
contain the domain using the procedure described in [7]. Consequently, each
domain-domain interaction is now characterized by the two respective profile
hidden Markov model for the two domains.

3.2 Preparation of Training and Testing Sets

In order to test our method, we wanted to use DDIs that could produce datasets
with a sufficient number of (positive and negative) examples for reliable train-
ing and testing. Speficically, we selected 94 domain-domain interactions (DDI)
with more than 5 positive and negative examples, and where the domain length
(number of match states) is smaller than 105. For each DDI, there are two do-
mains, Dom. A and Dom. B, and I pairs of proteins that have been found to
physically interact. Each protein in the pair contains either Dom. A or Dom.
B. For every protein sequence that is part of a single DDI, the 3DID database
provides a binary vector with the same length of the protein and where the 1’s
indicate interacting amino acids. These vectors and the profile hidden Markov
models of each domain, extracted from Pfam [7], are used to create interacting
profile hidden Markov (ipHMM) models for both domains.

To illustrate how we prepare the training and testing datasets, let us take
a single DDI as an example. First, all the protein sequences in the DDI are
aligned to their corresponding ipHMM. Two different types of alignments are
calculated for each sequence: one alignment is obtained by using the posterior
decoding (forward and backward algorithm) and the other alignment by using
the Viterbi algorithm. As explained in Sect. 2.2, only the former is needed to
calculate the unconstrained Fisher vectors, but for the constrained vectors the
two alignments are needed. Both alignments can be efficiently calculated through
dynamic programming. As a result, each protein sequence can be numerically
represented by two different vectors: the constrained Fisher score vector and the
unconstrained Fisher score vector. We will later show the constrained vector is
advantageous for predicting interacting pairs.
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Table 1. Characteristics of the tested dataset, averaged per domain-domain interaction

Avg. over 94 DDIs

Domain length: 71.9
# of protein pairs: 16.3

# of positive examples: 13.2
# of negative examples: 80.1

Positives examples are constructed by concatenating the Fisher vectors of
interacting protein pairs, whereas negative examples are pairs of proteins that
have not been observed to interact despite of containing the interacting domains.
We found that the 3DID dataset is highly redundant, in the sense that protein
sequences at each side of the DDI can be repeated. This redundancy occurs
because the sequences that we work with are not the complete protein chains,
but only the segments that include the domain. For this reason, every potential
positive is included in the dataset only if it is not an already constructed positive.
In a similar way, a negative is included only if it is not a positive and it has not
been already included in the negative set.

By applying this procedure, we are able to create a set of positive and neg-
ative examples for each of the 94 DDIs. Table 1 shows relevant characteristics
of the entire dataset, averaged over the 94 DDIs that were used in this study.
Ideally, with a non-redundant dataset, the number of positive examples per DDI
would be the number of protein pairs in the interaction (I), and the number of
negative examples would be I2 − I. But since we have to carry out the described
“cleaning”, the number of positives and negatives is reduced, as shown in the
table. A “leave one out” (LOO) strategy is followed for testing and training, to
guarantee that each positive gets to be predicted and evaluated. Specifically, a
test dataset is taken apart by including a single positive example and as many
negative examples as needed to guarantee that the relation of positives to nega-
tives in the original dataset is maintained. The remaining positive and negative
examples will form a training set that is fed into a support vector machine (SVM)
classifier.

4 Results

In this study, the support vector machine package SVMLight [8] is used to predict
interacting pairs on the test set. Gaussian kernel with default parameters are
used. The number of iterative training and testing stages that are run per DDI
is equal to the number of positive examples in the DDI. The prediction results
are averaged over all the iterations. Please note that each DDI is independently
trained and tested.

A protein’s Fisher vector has 20 (number of amino acids) times the domain’s
length (number of match states) positions. Given the numbers in Table 1, we
can estimate that a Fisher vector has around 1, 440 positions, and since posi-
tive and negative examples come from the concatenation of two Fisher vectors,
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the approximated average length of an example is 2, 870. Considering the LOO
strategy being followed for training and testing, this vector length can cause pro-
hibitive running times if the goal is to run a considerable number of DDIs. To
address this issue, we adopted dimensionality reduction by means of the singular
value decomposition (SVD).

Define the positive dataset as PO, a matrix of size p×l, where p is the number
of positive examples, and l is the length of each example vector. Likewise, NE, of
size n×l, defines the negative dataset. Let us focus on PO for the time being. The
SVD of PO attempts to find two sets of orthonormal vectors, {v̂1, v̂2, ..., v̂r} and
{û1, û2, ..., ûr}, where the former is a basis for the row space PO, and the later
is a basis for the column space of PO. Also, r is the rank of PO, v̂i is of length
p and ûi is of length l. If we define VPO = [v̂1v̂2...v̂r] and UPO = [û1û2...ûr],
it is possible to show that PO · VPO = UPO · S, where S is a diagonal matrix
that contains the so called “singular values” of the decomposition. Since VPO

is orthonormal, the positive dataset can be factorized as PO = UPO · S · V T
PO,

where UPO is of size p× r and VPO is of size l× r. The bases for the row space of
PO provide a means to reduce the dimensionality of the positive examples in the
following way: If we create a new matrix V RED

PO (RED stands for “reduced”) of
size l×k, where k < r (only the strongest k base vectors have been maintained),
we could project our positive dataset onto V RED

PO by simply doing PORED =
PO · V RED

PO . Clearly, PORED is of size p × k. In other words, PORED is a new
positive dataset that contains the same number of examples as PO, but where
the dimensionality of each example has been reduced to k. An identical procedure
is applied to the negative dataset as well.

In order to find a desirable value for k, we randomly chose a domain-domain
interaction from 3DID, and created the Fisher vectors for that DDI in all the
scenarios being considered in this study (non-interacting and interacting match
states, unconstrained and constrained vectors). We calculated the singular value
decomposition of the positive and the negative datasets in each case. The singular
values of the decomposition can be used to get an idea of the number of singular
vectors that concentrate the information contained in the dataset. The randomly
chosen DDI consists of a 71 amino acids long domain that binds to itself (Dom.
A = Dom. B). This is the b1 domain (Pfam PF02246) found in protein L, which
is a bacterial protein with immunoglobulin (Ig) light chain-binding properties.
Figures “Singular Values Non Int Match States.eps” and “Singular Values Int
Match States.eps”, available online at http://liao.cis.udel.edu/CFisher
for PPI prediction/, show that in the four scenarios, k = 10 suffices to catch
most of the energy in the datasets. In these figures, positive and negative singular
values have been averaged.

Having decided on k = 10, we tested all the DDIs in our dataset using after
applying dimensionality reduction. The averaged prediction results are summa-
rized in Table 2. The ROC curves corresponding to this table were plotted in Fig.
2, where we also show the performance of a baseline model, as reported in Patel
and Liao, in which the vectors are constructed using the log-likelihood score of
the alignment of each sequence to the two domains involved in the interaction.

http://liao.cis.udel.edu/CFisher_for_PPI_prediction/
http://liao.cis.udel.edu/CFisher_for_PPI_prediction/
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Fig. 2. ROC curves. Comparison between unconstrained and constrained Fisher vectors
on non-interacting (left) and interacting (right) match states.

The left side of Fig. 2 shows how the constrained Fisher vectors improve the
performance of the classifier over the unconstrained approach, when calculating
the Fisher scores against non-interacting match states. The first row of Table 2
reveals an improvement of 17%, from ROC = 0.7012 to ROC = 0.8206. On
the other hand, when the Fisher scores are calculated against interacting match
states, both the right side of Fig. 2 and the second row of Table 2 show the
performance is hardly affected when we switch from the unconstrained to the
constrained Fisher scores. Interestingly enough, these results agree with our rea-
soning at the end of Sect. 2.3, where we anticipated that the constrained Fisher
vector has potential to enhance the entropy of the model being learned by re-
ducing the information that is injected into the trained SVM by the observed
samples of the distribution. As compared to the interacting match states, the
non-interacting match states are more of a ”background”, and the constrained
Fisher vector would be more informative as it subtracts this background out.

Finally, we tested the influence that the dimensionality reduction of Fisher
vectors based on the singular value decomposition has on the performance of the
support vector machine predictor. We had shown that, for a randomly chosen
DDI, the first 10 components of the decomposition are able to pick up most
of the dataset’s information. Now, for the same DDI, we run protein-protein
interaction predictions following the LOO strategy described before. The results

Table 2. Comparison of ROC scores using unconstrained and constrained Fisher vec-
tors of length 10

unconstrained constrained

Non-interacting 0.701 0.821
Interacting 0.805 0.800
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Fig. 3. Fisher vectors were calculated with respect to non-interacting (left) and inter-
acting (right) match states. The curves show prediction results after varying k, the
length of the Fisher vectors.

are shown in Fig. 3. Although it would have been desirable to run this experiment
on all the DDIs in the dataset, this single interaction already reveals interesting
results. When using Fisher scores against non-interacting match states (left side
of Fig. 3), the constrained approach outperforms the unconstrained for almost all
values of k. Note in this figure how the predictor based on unconstrained Fisher
vectors loses its learning ability when k > 20. Besides, in all other scenarios,
the learning ability of the predictor is not improved by increasing k. As we had
anticipated, k = 10 is able to capture the most relevant information of the model.
Remarkably, a dimensionality reduction that was originally adopted to speed up
the model training ended up improving the prediction results as well.

Note that while the dimension reduction (or rather feature selection) from
SVD is proved to be very effective, it relies on using separate projection vectors
V ’s for the positive and negative examples. This limits its predictive utility when
an example is not known a priori as positive or negative, though the limitation
can be largely alleviated by using some standard feature selection techniques.

5 Conclusion

In this work, we developed a method based on a framework that is capable of
combining generative models and discriminative classifiers. By leveraging the in-
teraction profile hidden Markov models trained on interacting protein domains
whose structure is known, we are able to transfer the domain structural infor-
mation to proteins that lack such information. The constrained Fisher scores
can further extract more domain specific information by conditioning on the
most probable (Viterbi) path aligning protein sequences to the ipHMM, and
thus form into more informative feature vectors representing protein pairs that
can be more easily classified by the support vector machine. As demonstrated
in cross validation experiments, the prediction accuracy increases significantly.
As future work, we will focus on integrating feature selection mechanisms with
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the learning process within a semi-supervised learning framework so that the
method can be more efficiently applied to genome wide prediction even with
limited training data.
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Abstract. Computational prediction of protein localization is one common way 
to characterize the functions of newly sequenced proteins. Sequence features 
such as amino acid (AA) composition have been widely used for subcellular lo-
calization prediction due to their simplicity while suffering from low coverage 
and low prediction accuracy. We present a physichemical encoding method that 
maps protein sequences into feature vectors composed of the locations and 
lengths of amino acid groups (AAGs) with similar physichemical properties. 
This high-level modular representation of protein sequences overcomes the 
shortcoming of losing order information in the commonly used AA composition 
and AA pair composition encoding. When applied with SVM classifiers, we 
showed that AAG based features are able to achieve higher prediction accuracy 
(up to 20% improvement) than the widely used AA composition and AA pair 
composition to differentiate proteins of different localizations. When AAGs and 
AA composition encoding combined, the prediction accuracy can be further im-
proved thus achieving synergistic effect. 

Keywords: Physical encoding, protein subcellular location prediction, AA in-
dex, Support Vector Machines, amino acid groups. 

1   Introduction 

Determination of subcellular locations of a protein  experimentally [1;2] or computa-
tionally [3-6] can greatly help to infer its function. Due to its simplicity, automated 
prediction of subcellular localization has been routinely used to annotate protein se-
quences and  dozens of algorithms have been developed [3-6]. These algorithms em-
ploy a variety of supervised machine learning techniques including neural networks 
[7;8], nearest neighbor classifier, Markov models, Bayesian networks [9], expert 
rules, meta-classifiers [10], and the support vector machines [11-13]. While algorithm 
variation can tune up the prediction performance, a more critical factor for accurate 
prediction is to extract effective features for inferring the subcellular location of a 
protein. A variety of information has been used as features for subcellular prediction 
as discussed below. 
                                                           
∗ Correspondence Author. 
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1.1   Sequence Based Features for Protein Localization Prediction 

Predicting protein localization from sequences only is a holy grail of protein localiza-
tion annotation. This requires detailed understanding of how protein sorting signals 
are encoded and recognized. There have been many sequence based prediction algo-
rithms, which can be classified into the following categories.  

1) Signal motif based models such as those used in pSort [14] and TargetP [8]: 
these features are based on the signal hypothesis of protein sorting and use signal 
motifs in the N-terminal portion of a protein. Currently, only secretary signals are 
well characterized by signal motif models and can be predicted with high precision. 
These features are not as successful for other locations.   

2) Amino acid (AA) and amino acid pair (PairAA) composition [15-19]: These 
features are based on the bias of protein compositions for different locations and have 
been widely used in previous work due to its simplicity and high coverage. Usually, 
the whole sequence of a protein is used to define the AA or PairAA features. A limita-
tion of AA or PairAA features is that they do not consider order information within 
protein sequences and the prediction accuracy based on them is limited. 

3) Pseudo AA composition and gapped amino acid composition [15]: these fea-
tures try to capture the order information by considering the correlation relationships 
of neighbor amino acids with different gaps in terms of physichemical properties such 
as hydrophobicity, hydrophilicity, and mass.  

1.2   Functional Annotation Based Features for Localization Prediction 

Subcelluar location prediction algorithms have also been developed that take advan-
tage of localization information of annotated proteins with indirect relationships with 
the query protein. This includes functional annotation [20], phylogenetic profiling 
[21], homology [22], and protein-protein interaction [23] and etc. Algorithms that 
integrate multiple sources of information such as  Drawid et al’s naïve Bayesian  
predictor [24] uses signal motifs, gene expression patterns, and overall-sequence 
properties. Scott et. al.’s Bayesian network predictor [9] incorporates protein motifs, 
targeting signals, and protein-protein interaction data. While these methods can 
achieve better performances in terms of localization prediction, they contribute little 
to the understanding of the protein sorting mechanisms.  

In this paper, we propose a physichemical encoding method (AAG) that converts 
protein sequences into high-level feature vectors representing the modular amino acid 
group structures such as hydrophobicity or positive charge groups. Compared to 
amino acid composition, our encoding captures the order information of the amino 
acid groups and aligns well with sorting signals. Compared to the pseudo amino acid 
composition, the AAG encoding can capture the global orders of the amino acid 
groups within protein sequences.  

2   Materials and Methods 

We developed an amino acid index based physichemical encoding (AAG Coding) for 
proteins and applied it to protein localization prediction using a support vector machine 
classifier. We applied the algorithm to a reduced non-redundant protein sequence set 
used by Bacello algorithm for comparing protein localization predictors [3]. 
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Most protein sorting signals are encoded in the amino acid sequences of proteins 
and have block-like structures with different physichemical properties such as hydro-
phobicity, charge, and alpha structures. We developed a OneScan algorithm to detect 
these amino acid groups (AAGs), subsequences with homogeneous physichemical 
properties using their amino acid index [25] scores, from the whole sequences. Each 
sequence will be transformed into a 1088-dimension feature vector composed of the 
first positions of AAGs and their lengths. We then apply support vector machines 
(SVM) algorithm to differentiate protein sequences among pairs of locations. 

2.1   Modular Structure of Protein Sorting Signals  

Protein targeting signals are amino acid sequences responsible for directing proteins 
to their target locations. They are usually located at the N-terminal or C-terminal of a 
protein sequence [26]. Compared to DNA motifs which are conserved at the nucleo-
tide sequence level, protein targeting signals are much less conserved at the amino 
acid level [27]. They usually have high variation in length and type. Despite this high 
variation among signaling motifs targeting the same location, the cell can recognize 
all kinds of targeting signals with almost 100% selectivity and specificity [28]. This 
discrepancy implies that conserved patterns of targeting signals are not reflected at the 
amino acid level, but at the level of physichemical properties such as the hydrophobic 
regions, polar regions, alpha-helix regions, and hydroxylated regions [29]. The modu-
lar structure of sorting signals have been experimentally confirmed for signals of 
extracellular, mitochondrial, chloroplast, thylakoid lumen, peroxisome proteins and  
etc (Figure 1). For example, secretary targeting signals [8], usually contain a posi-
tively charged N-terminal domain, a hydrophobic h-region, and a cleavage site region 
with mostly small residues. Each region consists of a couple of consecutive amino 
acids sharing common properties. We denote these regions as amino acid groups 
(AAG), the building blocks of targeting signals. 

Given an amino acid sequence, we can define many high-level amino acid prop-
erties [30], some of which are involved in targeting signal recognition. Examples 
include bias of amino acids, hydrophobicity, polarity, and etc. These properties are 
summarized by the comprehensive amino acid index database (AAIndex) [25], 
which has already been employed for protein classification, protein localization 
prediction, and specific protein type recognition. We use 544 amino acid indexes of 
the AAindex [25] database to represent high-level physichemical and other high-
level properties. Each index is a set of 20 numerical values representing various 
physichemical and biochemical properties of the 20 amino acids. These properties 
can be roughly classified into four major clusters: 1) α-helix and turn propensities, 
2) β-strand propensity, 3) hydrophobicity, and 4) physicochemical properties such 
as charge, solvent accessibility, and polarity. Recognition of protein targeting mo-
tifs strongly depends on these properties of amino acid segments within targeting 
signal sequences. Actually, it is suggested that the size, charge, and hydrophobicity 
are the three fundamental biophysical properties of amino acids that determines 
their bioactivity [31;32].  
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Fig. 1. Modular structures of protein targeting signals. Patterns correspond to amino acid 
groups with similar physichemical properties. 

2.2   Physichemical Encoding Using Amino Acid Index Groups 

To represent modular protein targeting signals at the physichemical levels, we will 
design an encoding scheme to convert protein amino acid sequences into physical 
property vectors. Instead of calculating correlations of a few physical properties of 
all the possible pairwise amino acids with k gaps as the pseudo amino acid compo-
sition method does [15], AAG coding aims to capture modular structure of sorting 
signals and also the global order of the component amino acid groups such as hy-
drophobicity or positive charge AAGs. The encoding process is composed of the 
following steps: 

(1) For each AA index R , convert protein sequences into amino acid index vector 

In the AA index database, hydrophobicity index JOND750101 is defined by the 
following scores, each amino acid has a corresponding hydrophobicity value. 

A/L    R/K      N/M      D/F      C/P      Q/S      E/T      G/W      H/Y      I/V 
0.87   
2.17   

0.85   
1.64       

0.09  
1.67        

0.66   
2.87       

1.52 
2.77        

0.00     
0.07     

0.67  
0.07       

0.10    
3.77     

0.87    
2.67      

3.15 
1.87 

Given a protein sequence 1 2{ , ,... }np A A A= , we will replace the amino acids with 

its corresponding index values and generate the index score vector 1 2{ , ,... }ns s s s= . 

(2) Label amino acids with significant higher index score than average. 

To identify significant AAG groups w.r.t. AA index R, the average μ and stan-

dard deviation σ of the vector 1 2{ , ,... }ns s s s= is calculated. Then for a given 

amino acid iA with index score is , if is μ λσ≥ +  where λ is a parameter, we 

will label iA as a position with unusual physichemical property such as hydro-

phobicity, denoted as 1iL = . Similarly, if is μ λσ≤ − , then 1iL = − , other-

wise 0iL = . The reason to divide amino acid attribute values into three groups  
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for an AA index is that indexes such as charge and secondary structure can only 
have three categories and thus three groups is a good choice overall for all AA 
indexes. This method has been used by PROFEAT [30], a web server for com-
puting structural and physicochemical features of proteins from amino acid se-
quences. With this mapping, the protein sequence DCENQTYSHGKR will be 

mapped to an AA index sequence 1 0 1 0 0 0 0 0 1 0 1 1R R R R R R R R R R R R− − + + + , where 

0, ,R R R+ − corresponds to positive, neutral, and negative charges of correspond-

ing amino acids. 

(3) Merge neighboring amino acids of index sequences with positive or negative 
labels into AAG groups if they have the same label. So for previous sequence ex-

ample, we will have 1 0 1 0 0 0 0 0 1 0 1 1R R R R R R R R R R R R− − + + + . To give some toler-

ance to small gaps, we will keep merging two positive or negative AAGs if the 

gap between them is smaller than a given threshold value, e.g. 0 1G = . So we 

will have 1 0 1 0 0 0 0 0 1 0 1 1R R R R R R R R R R R R− − + + + . There are two R  index AAG 

groups. Considering that in protein sorting process, a minimum number of amino 
acids are needed to compose a meaningful physichemical AAG groups, we only 

keep AAGs that have the minimum length, e.g. min 4L = . In this case, we obtain 

one AAG for AA index R , denoted as { , } {8, 4}RAAG pos len= = , where 

pos is the starting position of the AAG and len is its length. 

(4) Assemble the AAG feature vector. For each AA index, we may find multiple 
positive or negative AAGs. In this paper, we only keep the first positive AAG 
groups for each AA index. Since we have 544 AA indexes, each with one positive 
AAG represented by two values, together we will have a 1088 component feature 
vector which is used to represent the physichemical properties of the proteins.  

2.3   Protein Localization Classification Using One-vs-One SVM with Feature 
Selection 

Both Loctree [33] and Bacello [34], two of the leading protein localization algorithms 
use a decision tree of binary SVM classifier to make prediction. In this paper, binary 
SVM classifiers with linear kernels are used to differentiate the following pairs of 
proteins: Secretary, Mitochondrial, Nucleic, and cytoplasmic. We use the libsvm 
SVM classifier wrapped in the Weka data mining system [35].  

Compared to the Loctree and Bacello where full raw features are used to train the 
SVM classifiers, we applied a feature selection preprocessing to remove redundant 
attributes calculated from AAG detection algorithms or AA composition counting. 
The idea is that the 544 AA indexes in the AA index database are redundant and fea-
ture selection can pick those relevant features that contribute to the classification of 
the proteins of two different locations. 



 Improving Protein Localization Prediction Using Amino Acid Group 253 

3   Results and Discussion 

We use two sets of datasets and a series of experiments to demonstrate the advantages 
of AAG encoding for differentiating proteins of different locations. The binary SVM 
classifier is used to ensure that the classification results are not complicated by the 
complex multi-class SVMs that are usually used for protein localization prediction. 

3.1   Data Preparation 

We used the following two eukaryotic benchmark datasets used in comparison study 
of protein localization algorithms [36;37]. The first dataset is the reduced dataset 
which is obtained by first collecting newly added eukaryotic proteins after the release 
48 of SwissProt database. Then a 30% homogeneity reduction is applied to ensure any 
pair of sequences has maximum identify of 30%. The second dataset is all sequences 
extracted from SwissProt up to version SwissProt 41, again with a maximum 30% 
homogeneity reduction. The numbers of sequences in each dataset are below: 
 

Seq. No. of Datasets Cytoplasm  Nucleic  Mitochondrial  Secretary 
Reduced set (DR) 104 273 60 139 
Train set       (DT) 302 803 153 632 

 
We also compared the performances on a Balanced DR dataset in which for each pair 
of locations, we use sub-sampling to reduce the number of sequences of the majority 
class to the number of sequences of the class with less sequences.  

We use a 10-fold cross validation to measure the performance of the training bi-
nary SVM classifiers with different features. This ensures that our results are not 
biased due to our selection of the training data.  

3.2   Comparing the Performance of AAG Physical Encoding with AA 
Composition 

We compared the SVM classification performance of AAG encoding with amino acid 
encoding with 20 amino acid components and 400 pair-AA components, totaling 420 
features created from the whole sequence. 10-fold cross-validation is used to obtain 
unbiased evaluation on the DT dataset. Similar results were achieved when 5-fold 
cross-validation is used.  

Table 1 shows that the prediction accuracy for separating proteins of two locations 
among nucleic, mitochondrial, cytoplasmic and secretary proteins. The AAG encod-
ing here is applied with minimum AAG width of 5. Out of the 6 pairwise classifica-
tions, the AAG encoding has significant improvement in terms of accuracy (from 8% 
to 20%) for separating secretary proteins from other proteins. It also has moderate 
improvement for separating mitochondrial proteins from cytoplasmic and nucleic 
proteins. The only performance decrease is for classifying Nucleic-Cytoplasic pro-
teins. The maximum improvement for separating secretary proteins from cytoplasmic 
proteins is not unexpected as most secretary proteins have the modular structures that 
motivate AAG encoding.  The worse performance for nucleic and cytoplasmic pro-
teins implies that nucleic protein sorting signals may be more intricate or does not  
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Table 1.  Comparison of classification accuracy of AA composition and AAG encoding applied 
to the DT dataset. 10-fold cross-validation is applied. M-Mitochondrial; C-Cytoplasmic; N-
Nucleic; S-Secretary. 

 M-C M-N N-C S-C S-M S-N 
AA420 75.28 86.34 70.28 70.96 80.34 79.14 
AAG 78.30 88.77 61.55 85.76 88.00 86.09 
AAG+AA420 83.09 92.1 68.66 88.17 92.14 87.67 

 
contain well-defined modular AAG groups. When AAG and AA composition encod-
ing are combined, we can achieve even larger performance gain for up to 23% for 
secretary-cytoplasmic protein classification. 

3.3   Effect of Balanced or Imbalanced Datasets on AA composition and Physical 
Encoding 

It was reported that imbalanced datasets may have big influence on SVM based clas-
sification performance. We applied the AA composition encoding with 420 features 
and AAG encoding with 1088 features to the balanced and imbalanced DR dataset. 
Table 2 shows that both encoding methods are affected by the testing datasets with 
lower performance for balanced dataset partially due to the fact that balanced datasets 
have much fewer sequences after sub-sampling. But in general, AA encoding has 
much smaller decrease of the prediction accuracy for distinguishing secretary proteins 
from other proteins. Again, it is shown that the combined AAG and AA420 encoding 
has the best prediction accuracy. 

Table 2.  Comparison of classification accuracy of AA composition and AAG encoding applied 
to the balanced and imbalanced DR datasets. 10-fold cross-validation is applied. M-
Mitochondrial; C-Cytoplasmic; N-Nucleic; S-Secretary.  

 M-C M-N N-C S-C S-M S-N 
AA420 87.20 91.29 65.52 82.30 85.43 89.32 
AA420(B) 79.66 83.05 61.17 80.58 80.51 85.14 
AAG 85.36  93.09 67.10 93.41 90.45 96.84 
AAG(B) 75.42 89.93 56.31 93.20 88.13 96.66 
AAG+AA420 89.02 93.39 72.41 94.23 91.95 97.08 
AAG+AA420(B) 82.2 94.92 61.65 95.63 88.98 96.01 

3.4   Effect of Feature Selection on Classification Performance 

With 420 and 1180 features for AA420 and AAG encodings respectively, it is inter-
esting to see whether feature selection can be used to achieve better performance. 
Here we applied a supervised feature selection with best-first search scheme in Weka 
system [35] to choose features. In this method, Subsets of features that are highly 
correlated with the class while having low intercorrelation are preferred [38]. In the 
cross-validation experiments below, for each training-testing dataset pair, we run the 
feature selection on the training datasets first to determine the feature subset and then 
use this feature subset for training and testing. 
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Table 3 compares the performances of the AA composition, AAG encoding, and 
AA+AAG with DT dataset with or without feature selection. It shows that for AA420 
encoding, feature selection can improve the performance a little bit up to 6% for 5 out 
of 6 binary classifications. Similarly, AAG can benefit from feature selection for 
some protein classifications with almost 19% improvement for distinguishing Nu-
cleic-Cytoplasmic. Using the combined AA composition and AAG encoding together 
with feature selection, we achieve only better prediction accuracy for separating the 
most difficulty types of proteins nucleic and cytoplasmic, improving from 68.66% to 
81.65%. On the other hand, for other location pairs, feature selection generates worse 
results. In summary, the improvement of feature selection on most binary SVM clas-
sifications here are limited or worse since SVM has inherent better feature selection 
capability than the standalone supervised feature selection.  

Table 3. Comparison of classification accuracy of AA composition and AAG encoding applied 
to dataset DT dataset with or without feature selection. 10-fold cross-validation is applied. M-
Mitochondrial; C-Cytoplasmic; N-Nucleic; S-Secretary. 

 M-C M-N N-C S-C S-M S-N 
AA420 75.28 86.34 70.28 70.96 80.34 79.14 
AA420(FS) 76.07 87.44 74.57 72.72 80.64 78.62 
AAG 78.30 88.77 61.55 85.76 88.00 86.09 
AAG(FS) 82.93 90.02 73.33 84.63 86.89 88.07 
AAG+AA420 83.09 92.1 68.66 88.17 92.14 87.67 
AAG+AA420(FS) 81.65 81.65 81.65 81.65 81.65 81.65 

4   Discussion and Conclusion 

We proposed a new protein sequence encoding method inspired by the modular struc-
tures of protein sorting signals. The amino acid index based AAGs feature allows us 
to capture the internal signals as well as the composition bias of proteins in different 
subcellular locations. It was shown that compared to the widely used amino acid 
composition AA and AAPair, AAG encoded features can achieve up to 20% im-
provement in terms of prediction accuracy for differentiating proteins of different 
subcellular locations and is especially effective for differentiating secretary proteins 
from other proteins.  

Our AAG encoding differs from the digital coding proposed [39] since we allow 
overlapped AAGs and our AAGs are composed of multiple amino acids. AAG encod-
ing is also different from the pseudo amino acid composition (PseAA) [15] which also 
aims to capture the order information of the amino acids and the physichemical corre-
lation of neighboring amino acids. However, the major difference is that PseAA does 
not capture the global order of different amino acid groups with different physichemi-
cal properties while AAG encodes this information.  

The success of AAGs implies that the AAGs extracted in our algorithm can be fur-
ther systematically mined using pattern mining algorithms so that novel signal models 
similar to canonical secretary signals can be discovered for many other subcellular 
locations or for different secretary pathways. This paper has only reported the  
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prediction results for binary classification. Extension of the binary SVM classifiers to 
multi-class SVM classifiers is underway and will be reported elsewhere in which 
performance comparison will be evaluated and compared with other algorithms. The 
encoding program of AAG can be freely downloaded from http://mleg.cse.sc.edu/aag 

Acknowledgments. This work is partially supported by the National Science Founda-
tion/EPSCoR under Grant No. EPS-0447660. 
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Abstract. Microarray experiments usually output small volumes but high di-
mensional data. Selecting a number of genes relevant to the tasks at hand is 
usually one of the most important steps for the expression data analysis. While 
numerous researches have demonstrated the effectiveness of gene selection 
from different perspectives, existing endeavors, unfortunately, ignore the data 
imbalance reality, where one type of samples (e.g., cancer tissues) may be sig-
nificantly fewer than the other (e.g., normal tissues). In this paper, we carry out 
a systematic study to investigate the impact of gene selection on imbalanced 
microarray data. Our objective is to understand that if gene selection is applied 
to imbalanced expression data, what kind of consequences it may bring to the 
final results? For this purpose, we apply five gene selection measures to eleven 
microarray datasets, and employ four learning methods to build classification 
models from the data containing selected genes only. Our study will bring im-
portant findings and draw numerous conclusions on (1) the impact of gene se-
lection on imbalanced data, and (2) behaviors of different learning methods on 
the selected data. 

1   Introduction 

Gene expression data are important sources for many biological tasks such as genetic 
disease profiling (Golub, et al., 1999), identifying potential biomarkers and signatures 
for cancers (Xiong et al. 2001), and gene regulatory network reconstruction (Segal et 
al. 2003). Due to the cost involved in microarray experiments and the availability of 
the samples, typical microarray experiments have a very small number of samples 
(e.g., less than 100) but output expression values for a large number of genes (e.g., 
more than 20,000). Such low volumes but high dimensional data impose significant 
changes to any data processing algorithms or tools which may possibly apply to the 
data. For example, the construction of the gene regulatory network relies on the 
searching of the causal relationships between genes. Such a search process is very 
time consuming for a large number of genes, and reducing the number of candidate 
genes is an effective way to improve the efficiency and the accuracy for regulatory 
network reconstruction. On the other hand, the goal of most microarray experiments 
is to identify important genes associated to specific diseases and predict the likelihood 
of a test tissue sample belonging to the disease (Golub, et al., 1999). Most machine 
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learning classifiers are known to be inaccurate or unstable on high dimensional data, 
especially when the number of training examples is small. Consequently, many com-
putational methods have been proposed to select genes by using Bayes errors (Zhan & 
Deng 2007), Random Forest (Diaz & Alvarez 2006), Receiver Operating Characteris-
tics (ROC) (Mamitsuka 2006) or other measures.  

In addition to the above gene selection methods, some research efforts (Li et al. 
2004; Statnikov et al. 2005) also empirically evaluated different gene selection meth-
ods for different types (binary or multi-category) of expression data.  In Li et al. 
(2004), their comparative study concluded that it is difficult to find one best gene 
selection measure good for all classifiers, and overall, Support Vector Machines 
(SVM) (Cristianini & Taylor 2000) performs the best. Similar observations were also 
made in Statnikov et al. (2005) with additional conclusion that ensemble classification 
does not further improve the best SVM models.  

Traditionally, the effectiveness of the gene selection is evaluated through the ac-
curacy of the classifiers built from the selected genes. Given two gene selection 
methods (A and B) and a user specified number of genes, if a classifier trained from 
the gene set selected from A is more accurate than the classifier from B, method A 
is regarded as a better gene selection module. Consequently, the impact of the gene 
selection with respect to different types of tissue samples is ignored. In practice, 
many microarray experiments involve imbalanced samples, where one type of ex-
amples, i.e., majority class (also called negative class) dominant the whole datasets, 
whereas other class of examples, i.e., minority class (also called positive class) are 
rare or extremely rare. For example, in Harvard lung cancer dataset (Kent Ridge), 
Small Cell Lung Cancer (SCLC) and Squamous cell cancer (SQUA) are only 2.96% 
and 9.85% of all 203 examples in the dataset. Such data imbalance raises numerous 
challenges for gene selection research. For example, a gene selection method can be 
biased and favor majority class examples. In other words, although gene selection 
may help build a better model in terms of its overall prediction accuracy, such an 
accuracy improvement may be subjected to a compromise (i.e., a decrease) of the 
accuracy on minority class examples. Considering that for most, if not all, biologi-
cal research, the meaning of a predication model is to correctly identify positive 
examples. A model’s prediction accuracy over all examples, without considering 
the class distribution, might be misleading or even meaningless. Unfortunately, 
although gene selection has received a lot of attention recently, the impact of gene 
selection with respect to imbalanced expression data is poorly understood and for 
which comprehensive empirical studies are lacking. 

In this paper, we report our recent study on the impact of gene selection on imbal-
anced microarray data. We carry out a set of experiments on eleven gene expression 
datasets by using five types of gene selection methods, and the final results are evalu-
ated based on four supervise learning methods and four empirical measures including 
overall prediction accuracy, false positive rate, false negative rate, and Kappa statis-
tics. The reminder of the paper is structured as follows. In Section 2, we briefly intro-
duce the experimental settings. Experimental results and analysis are discussed in 
Section 3. Concluding remarks are reported in Section 4. 
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2   Experimental Settings 

2.1   Benchmark Gene Expression Datasets 

Our benchmark dataset consists of 11 gene expression datasets collected from numer-
ous resources (Kent Ridge; Pablo de Olavide), with their data characteristics reported 
in Table 1. All datasets contain two types of examples, i.e., positive and negative 
examples (where positive class denotes the minority class). If an original dataset con-
tains multiple classes, we select one particular class (usually a specific cancer type) as 
the positive class, and treat all remaining classes as the negative class. For example, 
the Brain and Pancreas datasets are built from the ECML gene expression data (Pablo 
de Olavide) by selecting Brain tumor and Pancreas tumor as the positive class respec-
tively. By using the above process, we are able to build a set of benchmark datasets 
with a variety of class imbalance levels, from which we can study the relationship 
between different types of gene selection measures, learning methods, and different 
levels of class imbalance.  

Table 1. The data characteristics of the benchmark datasets 

Name # of Samples # of Genes Pos. vs. Neg. 

Brain Tumor 90 27,679 0.26:0.74 
Breast Cancer 97 24,481 0.47: 0.53 
CentralNerve 60 7,129 0.35:0.65 
Colon Cancer 62 2,000 0.35:0.65 
DBCL_NIH 240 7,399 0.43:0.57 

DBCL_Outcome 58 7,129 0.45:0.55 
DBCL_Tumor 77 7,129 0.25:0.75 

Pancreas Tumor 90 27,679 0.09:0.91 
Lung Cancer 203 12,601 0.32:0.68 
Lymphoma 96 4,026 0.24:0.76 

Prostate Tumor 136 12,600 0.43:0.57 

2.2   Gene Selection Methods 

Five commonly used feature selection methods are employed in our study, these in-
clude CFS subset (Hall 2000), Chi-Square (χ2) (Plackett 1983), Information Gain 
Ratio (IGR) (Quinlan 1993), ReliefF (Robnik & Kononenko 2003), and Symmetrical 
Uncertainty (SU) (Yu & Liu 2003). All methods are based on their implementation in 
WEKA data mining tool (Witten & Frank 1999). Among five measures, χ2 and IGR 
evaluate correlation between each single gene and the labels of the samples, followed 
by a ranking process to sort all genes based on their relevance to the learning task. 
Given gene Y and class label X of all samples, the χ2 in Eq.(1) is determined by find-
ing the difference between the observed frequency of samples labeled as class Xi, 

Y
X i

O , and the theoretical (expected) frequency 
iXE , assume  X and Y are 

independent. Similarly, IGR defined by Eq.s (2) and (3) assess the ratio between the 
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gain of the entropy of class X, H(X), given gene Y, H(X|Y), and the entropy of 
considering gene Y only, H(Y). ReliefF assesses the ability of each single gene in 
differentiating a sample’s neighbors from different classes. Given a sample x, ReliefF 
first finds two sets of neighbors where the first set contains nearest neighbors with the 
same labels as x, and the second set contains neighbors labeled differently from x. 
Each single gene is then evaluated based on their ability of differentiating these two 
sets of examples. For symmetrical uncertainty attribute measure (Yu & Liu 2003), 
each gene is assessed by the ratio between the information gain of the gene and the 
sum of the entropy of considering the genes and the sample labels independently, as 
defined by Eq. (4).  
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The above four measures (χ2, IGR, ReliefF, and SU) consider each single gene in-
dependently (we call them ranker measures in this paper). Such methods are known to 
violate the ground truth where a number of genes usually form a network to in-
hibit/upregulate the expression of other gene, and thus result in specific diseases. 
Despite of the above biological realties, it is often suggested that single best features 
does not necessarily form a best feature subset. Consequently, we employ a feature 
subset based measure, CFS (Hall 2000), which employs a filter approach (we use 
genetic search method) to continuously remove a number of genes, until a set of genes 
remain. In summary, among all five measures, χ2, IGR, ReliefF, and SU are single 
feature based whereas CFS is a subset based measure.  

2.3   Learning Methods and Measures 

Four learning methods used in our study include Support Vector Machines (SVM), k 
nearest neighbors (k-NN), Random Forest (RF), and PART which is a C4.5 (Quinlan 
1993) based decision rule method. We use default parameter setting in WEKA for all 
methods except k-NN and RF. For k-NN, we set maximum nearest neighbors to be 30, 
and use cross-validation approach to find the optimal k values (denoted by C30-NN in 
this paper). Research suggests that the error rate of a k-NN can approach to Bayes 
error, i.e., minimum error rate, if proper k value is specified. For Random Forest, we 
use 100 trees instead of the default setting (10 trees), and use RF-100 to denote RF in 
this paper. The above four methods represent a variety of learners which were re-
ported to have good performance on gene expression data. For example, SVM and k-
NN are two commonly suggested methods for gene expression data (Li et al. 2004; 
Statnikov et al. 2005). Random Forest is recently reported (Diaz & Alvarez 2006) to 
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have good performance for gene selection and classification. PART is a decision rule 
type of method with explicit rules for classification, this is very important for clinical 
practice which requires transparent decision logics. From this point of view, PART is 
more informative than SVM, k-NN and RF.   

In our study, we use different gene selection measure to select a number of genes 
(varying from 1, 3, 5, 10, 20, 30, 50, 80, 100, 130, to 150). Existing research sug-
gested (Li et al. 2004) that no further improvement can be observed if the number of 
selected genes is more than 150. After the selection of the genes, we use data contain-
ing the selected genes to build classifiers. All observations are made based on the 
average results over 10 times 10-fold cross validation, and the measures we employed 
include overall accuracy (AC), true positive rate (TP), true negative rate (TN), and 
Kappa statistics (KS). While prediction accuracy reveals the overall performance of 
different learning methods, TP, TN, and KS show how good the method performs on 
individual class? So we can conclude that when class distribution in the datasets is 
imbalanced (biased), how would different methods act on those learning sets? 

3   Experimental Results and Analysis 

3.1   Average Results over All Benchmark Datasets 

The purpose of our first set of experiments is to gain an overall understanding on the 
performance of different learning methods and different gene selection measures, 
under the circumstances of gene selection and biased class distribution. For this pur-
pose, we use one measure to select a number of genes (a total of 11 selections with 1, 
3, 5, 10, 20, 30, 50, 80, 100, 130, and 150 genes), so each measure generates 11 data-
sets. After that, we build four classifiers (one for each learning method) from each 
dataset. We calculate the average results of the classifiers over the 11 gene selections 
and 11 benchmark datasets, and report there results in Figure 1, where the x-axis de-
notes different gene selection measures, and the y-axis shows the performance of the 
classifiers with respect to the selected measure. For comparison purposes, the results 
from all benchmark datasets without any gene selection are also reported and are 
denoted by ALL. 

When looking at the average results reported in Figure 1, we can find that the per-
formance of all ranker gene selection measure is relatively close to each other, where 
the results of IGR and χ2 are almost identical. Indeed, although IGR and χ2 use  
different formulas to characterize each single gene, they both consider the correlation 
between each gene and the labels of the examples only, and therefore bring almost 
identical results. On the other hand, the gene subset selection based method (CFS) 
does not seem to be comparable to ranker measures. The classifiers built from genes 
selected by CFS are significantly inferior to those selected from ranker measures (this 
is observed from all four measures AC, TP, TN, and KS). One possible reason is that 
for CFS, we do not have control on the number of genes the algorithm may output, so 
we sequentially choose the genes listed on the top of the algorithm’s output (which 
produces around 400 genes). Consequently, this may not produce actual optimal sub-
set from CFS’s perspective. 
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(d) Kappa statistics (KS) 

Fig. 1. The average performance of the classifiers trained from a number of selected genes. In 
each figure, the bar indicates the performance of each type of classifier with respect to one gene 
selection measure, and the y-axis indicates the value with respect to the specific measure. Each 
value is calculated over the average on 11×11 datasets (for each gene expression dataset, we 
generate 11 datasets, each of which containing a number of selected genes (varying from 1 to 
150), and there are 11 benchmark datasets in total) 
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If we take a look at the results of the classifiers built from the whole dataset 
(ALL), we can clearly conclude a ranking order SVM, RF-100, C30-NN, and PART. 
This is consistent with existing study (Li et al. 2004; Statnikov et al. 2005) which 
concludes that SVM outperforms other learners on high dimensional gene expression 
data. On the other hand, as long as gene selection is involved, we found that the rank-
ing of the above four learning methods (from the overall accuracy perspective) fol-
lows a new order RF-100, C30-NN, SVM, and PART. If we take true positive rate 
(TP) in Figure 1(b) into consideration, we can find that SVM is actually worse than 
RF-100, C30-NN, and PART (for IGR, Chi-square, and SU measures). This asserts 
that SVM can generate accurate unbiased classifiers, if learning is applied to the com-
plete set of genes, however, if a number of genes are selected from the data, a SVM 
classifier’s prediction may be biased to favor majority class (this can be easily con-
firmed from the results reported in Figure 1(c)). In other words, gene selection has the 
largest impact on SVM from the positive class perspective.  

The Kappa statistic test defines that to which degree a classifier’s prediction might 
be expected by chance. The smaller the kappa value, the more likely a prediction is 
made by chance. The kappa test results in Figure 1(d) again assert that C30-NN and 
RF-100 are two methods outperform SVM and PART, if gene selection is applied to 
the data.  

In summary, our major finding in this subsection includes: 

• The results of the ranker gene selection measures are all comparable, and are 
significantly better than gene subset selection based measures. 

• Gene selection can be very beneficial for learners like k-NN, Random Forest, 
and PART, whereas for SVM, the improvement is not significant or bring 
negative impact.  

• SVM’s performance is sensitive to gene selection. A SVM classifier mostly 
outperforms rival methods if the learning is applied to the whole data without 
any gene selection, whereas a SVM classifier built from the expression data 
with reduced number of genes might be severely biased to favor negative 
class examples. 

3.2   Detailed Results on Selected Gene Expression Data 

In this subsection, we provide detailed results on imbalanced expression data, where 
our analysis will focus on individual datasets with a number of selected genes. Be-
cause ranker gene selection measures perform comparably, our analysis will focus on 
IGR and ReliefF (those are also two commonly used feature selection methods in 
practice). In addition, because our focus is on the impact of gene selection on the 
imbalanced datasets, we will use three datasets with different levels of imbalance, and 
report their results on two measures: AC and TP. 

Figures 2 and 3 report detailed results on three datasets with different levels of im-
balance: Breast (0.47:0.53), Central Nerve Systems (0.35:0.65), and Brain Tumor 
(0.26:0.74). Empirically, by selecting merely 5 genes, one can mostly build a model 
better than the one trained from all genes. This applies to all learning methods em-
ployed in our study. Meanwhile, Figure 2 also shows that the best models are usually 
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built on a selection of tens of genes only, where most of times, selecting 30 to 50 
genes is sufficient to build a good model. Biologically, genes barely function inde-
pendently but interact with each other as a network. This means that the expression of 
one gene may trigger other genes to express (or suppress) so cells can naturally adapt 
to their environments. In practice, the interaction of such a network is confined to a 
number of genes only (i.e., not all genes interact with each other). Presumably, our 
results suggest that 30-50 is a reasonable size for genes to form a network in order to 
fulfill a specific function.  
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     (c.1) Brain Turmor Dataset (ReliefF)       (c.2) Brain Turmor Dataset (IGR) 

Fig. 2. The overall prediction accuracies of the classifiers trained from different number of 
selected genes. The x-axis denotes the number of selected genes, and the y-axis indicates the 
prediction accuracies. The first column shows the results using ReliefF measure, and the second 
column show the results of the IGR measure. 
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Fig. 3. The true positive rates of the classifiers trained from different number of selected genes. 
The x-axis denotes the number of selected genes, and the y-axis indicates the true positive rates. 
The first column shows the results using ReliefF measure, and the second column show the 
results of the IGR measure. 

As shown in Figure 3, when selecting a very small number of genes, say less than 
10, SVM classifiers have very poor prediction accuracy on minority class examples. 
This explains why SVM’s TP values reported in Figure 1 are relatively lower than 
other methods. In addition, when considering the level of imbalance in each datasets, 
we found that SVM is very sensitive to the information gain measure, where a small 
number of selected genes almost always result in severely biased SVM classifiers 
with poor accuracy on the positive examples.  
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In summary, our major findings in this section include: 

• Selecting a very small number, as low as 5, of genes can help build classifi-
ers which outperforms the ones trained from all the genes. 

• The best classifiers for gene expression data are usually generated from a 
dataset with around 50 genes. Under such circumstances, random forest and 
k-NN are most likely two methods outperforming others, if the number of 
trees is large and the k value is determined by a cross-validation based ap-
proach.  

• When the number of selected genes is small, e.g., less than 10, SVM classifi-
ers are severely biased; whereas this bias will gradually disappear once the 
number of selected genes is reasonably large, say more than 100. 

4   Conclusions 

Due to the scarcity of tissue samples and many other realities, class imbalance com-
monly exists in many biological experiments, where the positive examples are signifi-
cantly fewer than other types of examples. Although numerous researches show that 
gene selection is beneficial for building accurate prediction models, such conclusions, 
however, were made without a thorough understanding of the impact of gene selec-
tion on imbalanced data. By using 11 benchmark datasets, 5 gene selection measures, 
4 learning methods, and 4 measures, the empirically study reported in this paper 
brought several major findings which have not been revealed in the existing literature: 
(1) selecting a small number (as less as 5) of genes can help build a model superior to 
the one from the whole genes; (2) the best classification model is usually built upon 
on tens of genes only, and adding more genes is likely not helpful to improve the 
model further; (3) gene selection is mostly beneficial for learners like k-NN, Random 
Forest, and PART; (4) SVM, a commonly suggested learning method for gene ex-
pression data, is extremely sensitive to the number of selected genes, and a small 
number of genes may result in severely biased SVM classifiers; (5) as long as gene 
selection is concerned, random forest with a large number of trees and k-NN with 
cross-validation based k value selection are two promising methods with high predic-
tion accuracy on positive examples, as well as the whole dataset. Based on the above 
conclusions, we suggest that more research efforts should focus on devising effective 
measures to select genes which are helpful for positive examples, but not to increase 
the overall prediction accuracy. 
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Abstract. Modelling frameworks for biological networks are used to
reason on the models and their properties. One of the main problems
with such modelling frameworks is to determine the dynamics of gene
regulatory networks (GRN). Recently, it has been observed in in vivo
experiments and in genomic and transcriptomic studies, that spatial in-
formation are useful to better understand both the mechanisms and the
dynamics of GRN. In this paper we propose to extend the modelling
framework of R. Thomas in order to introduce such spatial information
between genes, and we will show how these further informations allow
us to restrict the number of dynamics to consider.

Keywords: Genetic Regulatory Networks, Spatial Information, Boolean
Dynamics, Discrete Mathematical Modelling.

1 Introduction

To understand Genetic Regulatory Networks (GRN), modelling frameworks and
simulation techniques are often useful since the complexity of the interactions
between constituents of the network (mainly genes and proteins) makes intuitive
reasoning difficult. Most of the time, parameters of the model have to be inferred
from a set of biological experiments. Formal methods, such as model checking
or symbolic execution ([1,2]), have been proved useful to determine values of
parameters leading to valid dynamics of GRN, that is dynamics consistent with
biological properties expressed using temporal logic. Nevertheless, these tech-
niques are in practice difficult to manage because biological systems are either
large, complex or incompletely known, resulting in a huge number of parameters
to consider. Hence, in order to reduce this number, it seems relevant to embed
within the model some biological knowledge such as spatial relation between
genes.

Recent experiments have shown that both in eukaryotes [3] and in bacteria [4]
gene transcription occurs in discrete foci where several RNA polymerases (the
transcribing elements) are co-localized. This suggests that genes also tend to
co-localize in space in order to optimize transcription rates. Such a scenario is
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supported by genomic and transcriptomic analysis [5,6]. These have revealed that
the genes which are regulated by a given transcription factor and the gene which
codes for the transcription factor tend to be located periodically along the DNA
[5]. In this way, the genes can be easily co-localized in the three-dimensional
space according to a solenoidal structure of the DNA/chromatin, even in the
presence of several kinds of transcription factors [7]. As a result, the effect of
a transcription factor is enhanced due to the spatial proximity of the targets.
This phenomenon is reminiscent of the local concentration effect that has been
uncovered by Müller-Hill [8] a decade ago. Local concentration simply means that
the interaction between molecules that are able to interact with each other is all
the more efficient when molecules are close to each other. This straightforward
statement is crucial to understand genome organization because genomes seem
to have evolved in order to optimize the spatial proximity of reactive groups
[7,8,9].

In this article, we propose to include spatial information into GRN and to
study its effect upon the dynamics of the network. Our approach is based on
the discrete modelling of GRN that has been introduced by René Thomas [10].
The spatial information concerns the gene proximity that results from a specific
organization of DNA/chromatin. This proximity is modelled through the notion
of privileged interaction between genes which is an ubiquitous concept in biology.
For instance, specific interactions (e.g. between a transcription factor and DNA)
in contrast to non-specific interactions, or local concentration phenomena are
examples of privileged interactions. The use of privileged interaction is mainly
based on the idea that if two interactions lead to contradictory effects, then the
privileged interaction is preferred to the non privileged one.

The paper is structured as follows. Section 2 presents our model of GRN in-
cluding privileged interactions. In Section 3, we are interested in the Boolean
dynamics of such GRN. The dynamics is governed by a set of so called logical
parameters, and we present how the structure of the GRN determines the possi-
ble values of these parameters. Nevertheless, the possible dynamics still remain
too numerous, and so, Section 4 presents how to use privileged interactions to
reduce the number of dynamics to consider. Section 5 presents a illustrative ex-
ample, and some numerical simulations. Finally, Section 6 gives some concluding
remarks.

2 GRN with Privileged Interactions (PGRN)

Genetic Regulatory Networks are usually represented by an oriented graph,
called interaction graph, whose nodes abstract the proteins or genes which play
a role in the system and edges abstract the known interactions of the GRN. The
model of this article is based on Boolean GRN, that is GRN where gene can only
have two expression levels (see Section 3). An interaction (a → b) can be either
an activation or an inhibition: in an activation, the increase of the expression
level of a leads to an increase of the expression level of b, the edge is labelled
by the sign + and a is an activator of b; in an inhibition, the increase of a leads
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to a decrease of b, the edge is labelled by the sign − and a is an inhibitor of b.
To this classic representation, we add the notion of privileged interactions as a
subset of the interactions of the GRN.

Definition 1 (PGRN: GRN with privileged interactions). A GRN with
privileged interactions (PGRN) is a labelled directed graph G = (V, E, S, P )
where (V, E, S) is an interaction graph that is V is a finite set whose elements
are called variables, E ⊆ V ×V is the set of interactions, and S : E → {+, −} as-
sociates to each interaction its sign (”+” for activation and ”−” for inhibition);
and P ⊆ E is the set of privileged interactions.

For any i ∈ V , V −(i) (resp. V +(i)) denotes the set of predecessors (resp. suc-
cessors) of i, that is elements of V which have an action on i (resp. on which i
has an action): V −(i) = {j|j ∈ V, (j, i) ∈ E}, V +(i) = {j|j ∈ V, (i, j) ∈ E}; P (i)
denotes the set of privileged predecessors of i: P (i) = {j|j ∈ V −(i), (j, i) ∈ P}.

Definition 2 (Activators and inhibitors). Let (V, E, S, P ) be a PGRN, and
let i ∈ V be a gene. We denote by A(i) (resp. I(i)) the set of activators
(resp. inhibitors) of i: A(i) = {j|j ∈ V −(i), S(j, i) = +} and I(i) = {j|j ∈
V −(i), S(j, i) = −}.

In the following, a PGRN will be represented as a graph where nodes are vari-
ables, arrows are interactions (dashed arrows for the privileged ones) and signs
label arrows (see Fig. 3).

Example 1 (Example of interaction graph). Let us exemplify Definition 1 with
the toy interaction graph (that is without any information on privileged inter-
actions) from Fig. 1 where a gene i is inhibited by j1 and j2 and activated by k.
Section 3 will present the dynamics of such a graph; the influence of privileged
interactions among these three interactions is presented in Section 4.

j1

j2

i k

-

+
-

Fig. 1. Example of interaction graph

3 Boolean Dynamics of PGRN

3.1 Boolean Dynamics and Logical Parameters

In Boolean dynamics, genes can attain two levels, called expression levels : effec-
tive denoted by 1, or ineffective denoted by 0. The knowledge of the expression
levels of all the genes define a Boolean dynamic state.
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Definition 3 (Boolean dynamic states). Let G = (V, E, S, P ) be a PGRN,
and let i ∈ V be a gene. We denote1 by X(G) the set of Boolean dynamic states of
G: X(G) = {0, 1}|V |. For x = (x1, ..., x|V |) ∈ X(G), xi ∈ {0, 1} is the expression
level of gene i in x.

The dynamics of a PGRN consists in the evolution of each gene’s expression
level step by step. This evolution for a given gene does not depend on all the
genes of the PGRN, but only on the genes which have an action on the given
gene, that is its effective predecessors.

Definition 4 (Effective predecessors). Let G = (V, E, S, P ) be a PGRN,
and let i ∈ V be a gene. Let x ∈ X(G) be a dynamic state. We denote by A∗(i, x)
(resp. I∗(i, x), w∗(i, x)) the set of effective activators (resp. effective inhibitors,
effective predecessors) of i in the state x: A∗(i, x) = {j|j ∈ V −(i), S(j, i) =
+, xj = 1}, I∗(i, x) = {j|j ∈ V −(i), S(j, i) = −, xj = 1} and w∗(i, x) =
A∗(i, x) ∪ I∗(i, x).

Several dynamics can be associated to a given PGRN. These dynamics are de-
scribed by a set of logical parameters which associates the future expression level
of a given gene according to its effective predecessors.

Definition 5 (Logical parameters). Let (V, E, S, P ) be a PGRN. For i ∈ V ,
we denote by Ki : 2V −(i) → {0, 1} the set of logical parameters associated to i.

Example 2 (Logical parameters). In Fig. 1, gene i has three predecessors. Thus,
there is 8 logical parameters Ki to consider: Ki(∅), Ki({j1}), Ki({j2}), Ki({k}),
Ki({j1, j2}), Ki({j1, k}), Ki({j2, k}) and Ki({j1, j2, k}).

For example, the logical parameter Ki({j2, k}) represents i’s next expression
level when the dynamic state is such that xj1 = 0, xj2 = 1 and xk = 1.

Determining the dynamics of a PGRN consists in the attribution of values to
the different logical parameters. The number of the possible attributions is huge:
given a gene i, there are 2|V

−(i)| logical parameters Ki, and each parameter can
take two values. Thus, we have to consider

∏
i∈V 22|V −(i)|

possible attributions.
For example, just for the interaction graph from Fig. 1 we have to consider 223

=
256 possibilities. Nevertheless, the structure of the interaction graph restricts the
possible values of logical parameters.

3.2 Valid Logical Parameters

The values of logical parameters of an interaction graph must satisfy some con-
straints, linked to the graph structure and to the type of interaction. Logical
parameters respecting the following constraints are said to be valid.

The Definition constraint is based on the definition of activation and inhibi-
tion. If a gene j which activates a gene i becomes effective, then we cannot be
sure that i becomes itself effective (it may be inhibited by other genes), but the
expression level of i cannot decrease.
1 Let us recall that |V | denotes the number of elements in the set V .
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Constraint 1 (Definition). Let (V, E, S, P ) be a PGRN, and let i, j in V
be two genes such that j ∈ V −(i). If S(j, i) = + then ∀ω ⊆ V −(i), Ki(ω) ≤
Ki(ω ∪ {j}). If S(j, i) = − then ∀ω ⊆ V −(i), Ki(ω) ≥ Ki(ω ∪ {j}).

The Observation constraint expresses how we identify that a predecessor is an
activator or an inhibitor. If j is an activator of i, then it exists at least one
dynamic state where the effectiveness of j leads to an increase of the expression
level of i. In other word, at least one of the previous inequalities is strict.

Constraint 2 (Observation). Let (V, E, S, P ) be a PGRN, and let i, j in V
be two genes such that j ∈ V −(i). If S(j, i) = + then ∃ω ⊆ V −(i), Ki(ω) <
Ki(ω ∪ {j}). If S(j, i) = − then ∃ω ⊆ V −(i), Ki(ω) > Ki(ω ∪ {j}).

Finally, the Maximum constraint expresses that in a dynamic state where all
the activators of a gene are effective and simultaneously none of the inhibitors
is effective, then the gene is effective. Conversely, if none of the activators is
effective, and all inhibitors are, then the logical parameter is equal to 0.

Constraint 3 (Maximum). Let (V, E, S, P ) be a PGRN, and let i in V be a
gene. Then: Ki(A(i)) = 1, and Ki(I(i)) = 0.

Example 3 (Valid parameters). Let us consider the interaction graph from Fig. 1.
The Maximum constraint imposes that Ki({k}) = 1 and Ki({j1, j2}) = 0. Other
relations between parameters are resumed in Fig. 2, where an arrow from a node
K to a node K ′ means K ≥ K ′ (Definition constraint), and this inequality is
strict (Observation constraint) for at least one arrow of each type (plain, dashed
or doted arrows). All three constraints taking into account, there are only 9 valid
sets of parameters.

Ki({k}) = 1

Ki({j1, k}) Ki(∅) Ki({j2, k})

Ki({j1}) Ki({j1, j2, k}) Ki({j2})

Ki({j1, j2}) = 0

Fig. 2. Relation among logical parameters of the interaction graph from Fig. 1

4 Toward a Reduction of Valid Dynamics

4.1 Conflicts and Dilemma

Despite the above constraints, valid dynamics of PGRN still remain too numer-
ous. The different dynamics exist due to some dynamics states where the three
constraints do not allow us to determine unique values for logical parameters:
Conflicts occur when a gene is simultaneously activated and inhibited, Dilemma
occur when all the activators (resp. inhibitors) of a gene are not effective.
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Definition 6 (Conflicts and dilemma). Let G = (V, E, S, P ) be an interac-
tion graph, let i ∈ V be a gene and let x ∈ X(G) be a dynamic state. x is a
situation of conflict for gene i iff A∗(i, x) �= ∅ and I∗(i, x) �= ∅. x is a situation
of dilemma for gene i iff (A∗(i, x) �= ∅ and A∗(i, x) �= A(i)) or (I∗(i, x) �= ∅ and
I∗(i, x) �= I(i))

In the following, we will focus on the determination of logical parameters. Thus,
conflicts and dilemma will refer to parameters, that is Ki(w∗(i, x)) is a conflict
(resp. a dilemma) if and only if x is a situation of conflict (resp. dilemma) for
gene i. In other words, if w∗(i, x) = ω, then Ki(ω) is a conflict iff ω ∩ A(i) �= ∅
and ω ∩ I(i) �= ∅; Ki(ω) is a dilemma iff A(i) �⊆ ω �⊆ I(i) or I(i) �⊆ ω �⊆ A(i).

Note that, in this model, Ki(∅) is neither a conflict nor a dilemma, but cor-
responds to the basal situation, where a gene i is not activated or inhibited.

Example 4 (Conflicts and dilemma). Let us consider the 8 possible dynamic
states and the associated logical parameters for gene i for the interaction graph
from fig. 1: Ki({j1}) and Ki({j2}) are dilemma; Ki({j1, j2, k}) is a conflict;
Ki({j1, k}), Ki({j2, k}) are both conflicts and dilemma. Ki({k}) and Ki({j1, j2})
are neither conflict nor dilemma: the former correspond to a situation where
i is fully activated and is not inhibited, the latter corresponds to the reverse
situation.

4.2 Constraints Based on Privileged Interactions

By definition, privileged interactions are such that their force is higher than the
force of non privileged interactions. Figure 3 illustrates how to solve conflicts
and dilemma using the privileged interactions: for conflicts, if two interactions
occur simultaneously, then the privileged one is preferred; a dilemma is solved
if one of the present gene is a privileged one.

This idea is captured through two constraints on logical parameters. The first
constraint, called Direct influence indicates that if none of privileged activators
(resp. inhibitors) is effective, and some privileged inhibitors (resp. activators) of
the considered gene are effective, then the expression level is 0 (resp. 1).

Constraint 4 (Direct influence). Let G = (V, E, S, P ) be a PGRN. Let i ∈ V
be a gene and x ∈ X(G) be a Boolean dynamic state. If A∗(i, x) ∩ P (i) �= ∅ and
I∗(i, x) ∩ P (i) = ∅ then Ki(w∗(i, x)) = 1. If I∗(i, x) ∩ P (i) �= ∅ and A∗(i, x) ∩
P (i) = ∅ then Ki(w∗(i, x)) = 0.

The second constraint, called Relative influence, states that expression levels
of non privileged predecessors is not important compared to the presence or
absence of privileged ones. In other words, the value of a logical parameter for a
set of effective genes, whose at least one is a privileged predecessor, remains the
same whatever non privileged predecessors becoming effective.

Constraint 5 (Relative influence). Let (V, E, S, P ) be a PGRN. Let i ∈ V
be a gene and let ω ⊆ V −(i) be a set of predecessors of i such that ω ∩ P (i) �= ∅.
Let j ∈ V −(i) be a gene such that j �∈ P (i). Then: Ki(ω ∪ {j}) = Ki(ω).
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j i k
- +

Conflict for Ki({j, k})

j i k
- +

Inhibition is stronger than activation
Ki({j, k}) = 0

j i k
- +

Activation is stronger than inhibition
Ki({j, k}) = 1

j i k
- +

The conflict cannot be solved

k’ i k
+ +

Dilemma for Ki({k}) and Ki({k′})
k’ i k

+ +

Ki({k′}) = 1
Dilemma for Ki({k})

Fig. 3. Solving conflicts and dilemma with privileged interactions

Example 5 (Influence of privileged interactions). Let us suppose that j1 is the
only privileged predecessor in Fig. 1. Then, as soon as j1 is ineffective, conflict
and dilemma appears between other genes, but when j1 is effective, they are
solved. The 9 valid sets of parameters are reduced to 2. If we now suppose
that k is the only privileged predecessor, there is no conflict, but some dilemma
remains, which reduced the number of dynamics to consider to 2. If j1 and k are
privileged predecessors, there are still conflict and dilemma, but the number of
dynamics to consider is to reduced to 2. Finally, if we suppose that both j1 and
j2 are privileged predecessors, then there is neither conflict nor dilemma, and
the dynamics is unique.

4.3 Unique Dynamics

We present here conditions to obtain, given a PGRN, a unique set of parameters
leading to a unique dynamics. Obviously, if some genes have no predecessor, we
cannot determine their expression levels, which in fact do not evolve along the
time. A necessary and sufficient condition to have no conflict is that the set of
privileged predecessors is either equal to activators or inhibitors.

Theorem 1 (No conflict). The conflict situations of a PGRN (V, E, S, P ) can
be solved iff for all i ∈ V , P (i) = A(i) or P (i) = I(i)

Proof. Sufficient. Let x be a situation of conflict for gene i: A∗(i, x) �= ∅ and
I∗(i, x) �= ∅. Let us suppose that P (i) = A(i) (the proof is similar for P (i) =
I(i)). Then we have I∗(i, x)∩P (i) = ∅ and A∗(i, x)∩P (i) = A∗(i, x). Thus, due
to the constraint of direct influence, Ki(w∗(i, x)) = 1 and the conflict is solved.

Necessary. Let us suppose that the condition is not verified for a given gene i,
that is P (i) �= A(i) and P (i) �= I(i). P (i) �= A(i) iff either it exists k ∈ A(i)\P (i)
or it exists j ∈ I(i) ∩ P (i); P (i) �= I(i) iff either it exists j′ ∈ I(i) \ P (i) or it
exists k′ ∈ A(i) ∩ P (i). If it exists k ∈ A(i) \ P (i) and it exists j′ ∈ I(i) \ P (i),
then the situation x where the only effective genes are k and j′ is a situation of
conflict. If it exists k ∈ A(i) \ P (i) and it exists k′ ∈ A(i) ∩ P (i), then two cases
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must be considered: if I(i)∩P (i) = ∅ then, with j′′ ∈ I(i), the situation x where
the only effective genes are k and j′′ is a situation of conflict; if I(i) ∩ P (i) �= ∅
then, with j′′ ∈ I(i) ∩ P (i), the situation x where the only effective genes are k′

and j′′ is a situation of conflict.

Nevertheless, if all privileged predecessors are ineffective, then a situation of
dilemma may occur. Dilemmas occur when two genes having the same action
(either activation or inhibition) are not effective simultaneously. Thus, a nec-
essary and sufficient condition to have no dilemma is that either there is only
one gene for a given action, or each predecessor having this type of action is a
privileged predecessor of the target.

Theorem 2 (No dilemma). The dilemma situations of PGRN (V, E, S, P )
can be solved iff for all i ∈ V , (A(i) ⊆ P (i) or |A(i)| = 1) and (I(i) ⊆ P (i) or
|I(i)| = 1).

Proof. Sufficient. Let us consider the case of activation (the proof is similar for
inhibition). Obviously, if |A(i)| = 1, then there is no dilemma. If A(i) ⊆ P (i),
then: for all ω ⊆ A(i), if ω �= ∅ then Ki(w) = 1 due to the constraint of
direct influence; for all ωa ⊆ A(i), for all ωi ⊆ I(i) \ P (i), if ωa �= ∅ then
Ki(ωa ∪ ωi) = 1, due to the constraint of relative influence; the remaining cases
correspond to situations of conflict where both activators and predecessors are
privileged predecessors of i.

Necessary. Let us suppose that the condition is not verified. Let us suppose
we have |A(i)| > 1 and A(i) �⊆ P (i) (the proof is similar for the inhibition).
Then it exists a ∈ A(i) \ P (i), and the situation x where a is the only effective
predecessor of i is a situation of dilemma.

Theorem 3 (No conflict nor dilemma). Conflict and dilemma situations of
a PGRN (V, E, S, P ) can be solved iff for all i ∈ V , (A(i) = P (i) and |I(i)| = 1)
or (|A(i)| = 1 and I(i) = P (i))

Proof. The theorem is a direct consequence of theorems 1 and 2.

Under the conditions of this theorem, only one dynamics is consistent with all
constraints. Obviously, these conditions are difficult to state in practice. Section
5 will nevertheless illustrate that in any case, the consideration of privileged
interactions allows us to reduce the set of consistent dynamics.

5 Influence of Privileged Interactions on Dynamics

5.1 From a Biological Case Study

Pseudomonas aeruginosa are bacteria that secrete mucus (alginate) in lungs af-
fected by cystic fibrosis, but not in common environment. As this mucus increases
respiratory defficiency, this phenomenon is a major cause of mortality. Details
of the regulatory network associated with the mucus production by Pseudomas
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x y

+

+

-
Fig. 4. Interaction graph for the mucus production system in P. aeruginosa

aeruginosa are described by Govan and Deretic [11] but a simplified genetic
regulatory network has been proposed by Guespin and Kaufman [12], see Fig.4.

It has been observed that mucoid P. aeruginosa can continue to produce
mucus isolated from infected lungs. It is commonly thought that the mucoid
state of P. aeruginosa is due to a mutation which cancels the inhibition of gene
x. An alternative hypothesis has been made: this mucoid state can occur by
reason of an epigenetic modification, i.e. without mutation [12]. The models
compatible with this hypothesis are constructed in [1].

The logical parameters to consider are Ky(∅) and Ky({x}) for the gene y
and Kx(∅), Kx({x}), Kx({y}) and Kx({x, y}) for gene x, which leads without
further consideration, to 22 ×24 = 64 possible dynamics. Obviously, this number
is decreased considering the constraints previously presented. Ky(∅) = 0 and
Ky({x}) = 1 due to the observation rule. The maximum rule leads to Kx({x}) =
1 and Kx({y}) = 0, and then the observation rule leads to two possible dynamics:
either (Kx(∅) = 1 and Kx({x, y}) = 1) or (Kx(∅) = 0 and Kx({x, y}) = 0).

The two possible dynamics are due to the conflict between x and y, and then
the knowledge of privileged interactions among the activation of x by itself or
the inhibition of x by y would lead to the determination of a unique dynamics. If
both the interactions are privileged ones (or conversely are not privileged ones)
then the two dynamics remain valid. If the inhibition is privileged and not the
activation, then Kx(∅) = 0 and Kx({x, y}) = 0. If the activation is privileged
and not the inhibition, then Kx(∅) = 1 and Kx({x, y}) = 1.

5.2 From Artificial PGRN

In order to estimate the reduction in number of models induced by the in-
troduction of privileged interactions, we have randomly generated PGRN. The
generation is parameterized by three values: n the number of genes, p the num-
ber of predecessors of a gene and r a ratio to determine which interactions are
privileged. We first generate n genes; for each gene we then randomly select p
predecessors among the n genes, each one being a privileged predecessor with
a probability r. Fig. 5 presents some results on artificial PGRN composed of
n = 10, 25, 50 and 100 genes. We give one table by hypothesis on the considered
number of predecessors: the first three tables correspond to situations where
each gene has exactly p = 2, 3 or 4 predecessors, and the last table to a situation
where each gene has a random number of predecessors between 1 and 4. We
chose these rather small values for the number of predecessors per gene to fit a
realistic ratio between number of genes and number of interactions.

For each PGRN we evaluate the number of dynamics without any constraint
(row named ”Total” in each table). We then compute the number of dynamics
when all the constraints (definition, observation, maximum, direct and relative
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Privileged Number of genes n
ratio r 10 25 50 100

0 1024 3.107 1.1015 1.1030

1/10 408 2.107 7.1012 6.1025

1/5 174 2.105 5.1011 3.1021

1/2 22 1171 1.106 9.1011

1 17 1493 1.106 6.1012

Total 1012 1030 1060 2.10120

Each gene has p = 2 predecessors

Privileged Number of genes n
ratio r 10 25 50 100

0 3.109 7.1023 5.1047 2.1095

1/10 4.108 6.1020 1.1041 2.1083

1/5 2.107 2.1018 4.1035 6.1067

1/2 4.104 1.1011 2.1020 2.1038

1 3.105 1.1013 6.1026 6.1047

Total 1.1024 1.1060 2.10120 6.10240

Each gene has p = 3 predecessors

Privileged Number of genes n
ratio r 10 25 50 100

0 3.1020 2.1051 7.10102 −
1/10 6.1018 2.1046 7.1088 −
1/5 3.1016 9.1041 1.1075 −
1/2 2.109 2.1021 3.1038 −
1 1.1014 6.1033 4.1061 −

Total 1.1048 2.10120 6.10240 4.10481

Each gene has p = 4 predecessors

Privileged Number of genes n
ratio r 10 25 50 100

0 2.1012 2.1029 1.1054 2.10101

1/10 7.1011 5.1024 3.1041 6.1083

1/5 3.108 2.1021 1.1038 8.1063

1/2 2.104 1.1010 1.1018 7.1036

1 1.107 3.1013 1.1025 1.1048

Total 1.1033 1.1073 1.10140 1.10265

Each gene has between
1 and 4 predecessors

Fig. 5. Number of Dynamics for Artificial PGRN

influence) are applied, for several ratios of privileged interactions: when there is
no privileged interaction (row ”0”), when one interaction out of ten is privileged
(row ”1/10”), one out of five (row ”1/5”), one out of two (row ”1/2”) and when
all interactions are privileged ones (row ”1”). Let us note that results between
row ”1” and row ”0” may be largely different, since when all predecessors are
privileged (row ”1”), then the effectiveness of only one of them allows us to
solve dilemma unsolved in row ”0”. All the values in the different tables given
in Fig. 5 are the result of an arithmetic mean over 100 tests. The column ”100
genes” for the hypothesis ”4 predecessors per gene” is left empty, due to the
excessive required computation time.

Obviously, the number of dynamics we have to deal with is huge (at least 1012,
see row ”Total”), and this number is squared when the number of genes doubles,
or when the number of predecessors is increased by one. When considering the
constraints of definition, observation and maximum, the number of dynamics
is already significantly reduced (see row ”0” where none of the interactions is
privileged). With the constraints induced by the introduction of privileged in-
teractions (direct and relative influence), the number of dynamics still decreases
and the best results are obtained when half of interactions are privileged ones
(row ”1/2”). Nevertheless, let us point out that the improvement is clearly ob-
served even with small information. For example, when only one interaction out
of ten is privileged (row ”1/10”). we can observe that in the fourth table, the
number of dynamics is divided by 10 for a ten genes network, by 105 for 25
genes, and by 1018 for 100 genes.
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These few simulations illustrate that as soon as spatial information is known,
the set of all possible dynamics is really restricted. To go further in this re-
striction, one can express temporal properties to characterise some knowledge
about the behaviour of the GRN. Formal techniques, most of them based on
model checking [1], have been applied to select valid dynamics, that is dynamics
consistent with biological experiments expressed by temporal properties. The
problem is that these formal techniques rapidly become intractable because dy-
namics associated to the GRN are most of the time very numerous. Thus, from
a general point of view, the set of GRN dynamics is all the more reduced than
all biological knowledge, including spatial information, is taken into account.

6 Concluding Remarks

In this article we have presented a simple way to include spatial information
within the René Thomas’ framework of GRN. This supplementary information
is described as a property of interactions: an interaction is privileged when the
source and target genes are known to be spatially close. In the framework of
Boolean dynamics, values of logical parameters are weakly constrained, leading
to situations of conflicts or dilemmas where several dynamics are possible. With
the notion of privileged interactions, we have determined conditions to solve
some of these situations.

The spatial oriented framework we have defined is based on René Thomas’
Boolean dynamics and presents the two following advantages. Firstly, since the
dynamics for our spatial framework are chosen among classical René Thomas’
Boolean dynamics associated to the underlying GRN without privileged inter-
action, then our dynamics are clearly included in the usual dynamics of GRN.
Secondly, since spatial information allows us to solve some conflicts and dilem-
mas, and thus to determine some logical parameters, the number of dynamics is
in practice considerably reduced.

In the goal of validating our approach, we are facing to the fact that, although
spatial information seams to be central in order to apprehend the complexity of
biological networks, experimental data are rare. Indeed, available data mainly
concern large GRN, which are for the moment hardly attainable with our ap-
proach due to the high number of parameters to consider. Nevertheless our ap-
proach seems particularly adapted, since the first results appear even with few
information on spatial relation.

An extension of this work we are particularly interested in deals with multival-
ued dynamics. In such framework, expression levels of genes are not Boolean, but
can take a finite number of values. To each interaction is associated a thresh-
old which correspond to the expression level the source gene must exceed in
order to the interaction to become effective. Thus, given an interaction graph,
the number of dynamics to consider is even higher than in Boolean dynamics.
In such a context, the spatial information to be considered will be composed
of privileged interactions as in the Boolean case, but also of the notion of clus-
ter which expresses co-regulation. Co-regulated genes are spatially close genes
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expressed at the same time due to the expression of a single regulating gene.
Thus, interactions regulating a cluster are labelled by the same threshold value
and this represents a new factor of reduction of the set of multivalued dynamics.
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Abstract. In this paper, we address the problem of modeling biological
regulatory networks thanks to the stochastic π-calculus. We propose a
method which extends a logical method, that is the approach of René
Thomas. By introducing temporal and stochastic aspects there, we make
our formalism closer to biological reality. We then use the SPiM stochas-
tic simulator to illustrate the practical interests of this description. The
application example concerns the behaviors of four interacting genes in-
volved in the λ-phage. Interesting results are emerging from the sim-
ulations. First, it confirms knowledge of the regulation phenomena. In
addition, experiments with different values of the delay parameters give
some precious hints of a tendency either for the lytic phase or to the
lysogenic phase.

Keywords: Genetic regulatory network, Stochastic π-calculus, System
biology.

1 Introduction

1.1 Modeling Biological Systems

Interactions between genes and products of genes (i.e. proteins) are central to
many cellular processes (e.g. cell differentiation or temperature control) in eu-
karyotes and prokaryotes cells. These processes can be modeled thanks to genetic
regulatory networks, that represent a set of genes and proteins with their respec-
tive interactions. The correct modeling of biological networks is fundamental to
acquire a better understanding of the living: in silico experiments can help to
predict, achieve and understand in vitro and in vivo experiments.

System biology is a still recent research field. It focuses on the study of the inter-
actions between the components of biological systems and how these interactions
guide the behavior of the system. Due to their complexity, regulatory networks are
often difficult to understand intuitively. This why theoretical models and compu-
tational tools are required. Numerous formalisms were already defined. Hidde de
Jong proposed a comprehensive description of these formalisms in [1].

The regulation process generally involves many proteins that concurrently
control the evolution of the system (e.g. according to their concentration). Such
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a framework implies we take into account the two following key factors: stochas-
ticity and evolution rate of each actor.

First, the value of several parameters can widely vary from a cell to another
[2]. In addition, if an organism follows one specific development cycle, an other
organism with slightly different physiological values may follow an other cycle. It
is thus essential to have a snapshot of the global variety of interactions between
cells, proteins and genes in order to perform a correct analysis of a biological
system. Then a probabilistic approach is of much interest.

An other major topic is the integration of timing information in the models. The
theory of chemical kinetics defines that a protein involved in regulation phenom-
ena is active once it has reached a threshold. When many proteins are involved,
we want to take into account their respective evolution rate to determine which
one reaches its level first and then modifies all the behavior of the system.

1.2 Related Work

Several formalism have been proposed for the modeling of genetic regulatory
networks as boolean networks, Petri nets, hybrid automata, hcc or reaction rules.
We briefly describe now some of them.

Petri Nets and Hybrid Petri Nets. Biological systems are typical systems where
the notion of concurrency is central. When modeling a gene regulatory network,
one has to represent the respective evolution of the different actors of the sys-
tem. Petri nets are one of the efficient formalisms that allow to concisely model
concurrency [3]. Various extensions of Petri nets have been proposed to model
and verify hybrid or timed systems. In the field of systems biology, Petri nets
have been preferably used to simulate systems [4] compared to hybrid Petri
nets. Nevertheless, as this formalism offer extensions like stochastic Petri nets to
encompass stochastic behaviors, it appears very promising to lead more compre-
hensive studies on biological networks. Works have been recently published to
show how Petri nets may be used to integrate both qualitative and quantitative
analysis: in [5], the authors propose a Petri net based framework to draw a link
between qualitative, stochastic and continuous paradigms. They yet recognize
that further research is needed to precisely understand the relationships between
the respective properties of each description.

Timed and Hybrid Automata. Timed automata [6] and hybrid automata [7,8]
have been used in various approaches to refine pure boolean or discrete modeling
frameworks such as that of René Thomas. Mainly, the basic ideas of those timed
or hybrid modelings lie in the principle that the evolutions of genes expression
levels may no longer be considered as instantaneous. Since these changes take
some time, they have to be taken into account and it has some relevance. Timed
systems reveal to be well adapted to represent the dynamics in these phases. It
results in more accurate behavior predictions.

Pathway Logic. This is an approach based on rewriting logic [9,10]. In [9], the
authors develop qualitative models of metabolic and signaling processes. In this
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formalism, a metabolic network is transformed into a system of symbolic differ-
ential equations using variables with an a priori unknown rate. This approach
aims at studying how a system could evolve using techniques based on logical
inference.

Reaction Rules. With this formalism [11], a model is defined by a set of reaction
rules. Kinetic expressions, parameters values or initial conditions can be associ-
ated to the reactions. In order to model biochemical systems, a language based
on temporal logic for the biological properties, and on Systems Biology Markup
Language (SMBL) for modeling the elementary interactions between molecular
species, has been developed: BIOCHAM [12] .

BioAmbients. BioAmbients [13] has been developed to model biological com-
partments.This corresponds to an extension of the mathematical domain of the
stochastic π-calculus with additional entities. BioAmbients calculus is suitable
for modeling the movement of molecules, the dynamic rearrangement of cellular
compartments, and the interaction between molecule inside a compartment.

Our aim differs from this work as we are mostly involved in regulation mod-
eling rather than in molecules movements.

The Stochastic π-calculus. In this work, we propose to model genetic regulatory
network in the stochastic π-calculus. This is a process algebra which allows us
to assign rates to actions (communications or silent moves), and is effective to
model and simulate a wide range of biological systems. Although the π-calculus
was originally developed for specifying concurrent computational systems, Aviv
Regev and al. suggest to use it to model biological systems - and particularly
the RTK-MAP Kinases cycle [14]. Since these first uses in a biological context,
many regulatory networks have been modeled with the stochastic π-calculus, e.g.
gene regulation by positive feedback [15], cell cycle control in eukaryotes [16] or
λ-phage gene regulation with two genes [17].

1.3 Our Contribution

The aim of this paper is to present a formalism based on the stochastic π-calculus
that is both enough realistic to describe biological systems and enough simple
to be generalized to other regulatory networks.

In this paper, we focus on the λ-phage example [18,2,19,20,21] in its most
relevant model, that is with four genes. The formalism we introduce can be seen
as an extension of the qualitative approach of René Thomas. After having the-
oretically defined our model, we simulate practically it thanks to the Stochastic
Pi-Machine (SPiM) developed by Phillips and Cardelli [22]. As numerous quanti-
tative and qualitative data are available for the λ-phage, we are able to check and
discuss the correctness of our approach. We obtain very promising results that
not only confirm what we already knew about the regulation process but also
lead to knowledge about the tendency either for the lytic phase or the lysogenic
phase.
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The originality of our work lies in the introduction of temporal and stochastic
aspects to improve a purely discrete formalism and to be thus closer to biological
reality.

1.4 Outline of the Paper

The paper is organized as follows: section 2 gives an overview of the stochas-
tic π-calculus and the Stochastic Pi-Machine (SPiM). In section 3, we present
the extension of the qualitative approach of René Thomas which is based on
the stochastic π-calculus and finally, in section 4, we apply this method to the
biological system we study, the λ-phage gene regulation.

2 The Stochastic π-Calculus

In order to integrate both stochastic and temporal information in our models,
we use the stochastic π-calculus as a formal language. The stochastic π-calculus
is a process algebra created by Corrado Priami in 1995 [23]. It allows to describe
the temporal evolution of parallel systems (this means systems composed of
various autonomous components that are executed simultaneously and capable
of exchanging information via communication channels). It extends the asyn-
chronous π-calculus previously introduced by Milner, Parrow and Walker [24]
by adding a notion of reaction rate. These rates are directly correlated with the
probability of the occurrence of a reaction and the transitions have exponential
distribution. As a consequence, the transition system is mapped into continuous
time Markov chains.

The stochastic π-calculus allows one to formally model biological system. To
simulate them, some tools have been developed : BioSpi [14], the Stochastic PI-
Machine (SPIM) [25] and the Stochastic PI-Calculus with Concurrent Object
(SPICO) [17] are three of these tools. We choose to work with SPIM whose
performances seemed very promising.

2.1 The Stochastic PI-Machine: SPIM

To simulate our models, we use the Stochastic Pi-Machine (SPIM) developed by
Andrew Phillips and Luca Cardelli since 2004 [25]. The underlying algorithm is
based on the standard theory of chemical kinetics using an adaptation of the Gille-
spie algorithm [26]. At each step the algorithm chooses one of the possible reactions
where the probability of the reaction is proportional to its rate. The specification
of the machine has been proved correct with respect to the calculus [25].

SPIM Language
We now present the key elements of the SPIM language. Its syntax and its corre-
sponding graphical representation are summarized in Figure 1 and Figure 2.

The neutral element is the null process. It can also be denoted 0. An action
is either a stochastic delay or an emission or a reception of a message on a
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Fig. 1. Overview of the π-calculus syntax (1)

Fig. 2. Overview of the π-calculus syntax (2)

channel. Operators can be parallel composition, non-deterministic choices, repli-
cation of a process. By lack of space, we omit the exhaustive formal definition
of the stochastic π-calculus, but we give a summary of the calculus syntax. The
complete language is defined in [27].

The stochastic π-calculus thus allows to express the behaviors of a biological
system thanks to simple computational components. These ones are autonomous;
the only factors that influence their evolution are emission and reception via
communication channels.

3 Our Formalism: An Extension of the Model of René
Thomas

This modeling is based on the multi-valued approach of René Thomas extended
by Denis Thieffry [28] in which biological regulatory networks are represented
by a graph and a set of logical parameters.

1. A graph G is usually defined by two components:
– a set of vertices V representing the genes of the network.
– a set of oriented edges E representing the interactions where each edge is

labeled by a couple (s,α) where s is an integer, called qualitative threshold
and α ∈ {+, −} is the sign of the regulation.

We put an arc between a vertice v1 and a vertice v2 if the protein synthesized
from gene v1 exercises a control on the gene v2. We call v1 a resource of v2
if v1 induces an increase of v2, i.e if the regulation v1 → v2 is positive (resp.
negative), the regulation must be active (resp. inactive).
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Fig. 3. An example with two genes

We define a state q of the system as a vector constituted by the qualitative
levels of genes.

2. The logical parameter Kv({ωv(q)}) is defined by the threshold towards which
the gene v tends to evolve when its resources are ωv(q) and the system is in
the state q.

Example
Let us illustrate these notions with an example. The interaction graph and the
logical parameters are given in Figure 3.

In this section, we propose a model in the stochastic π-calculus which trans-
lates the informations of an interaction graph and a set of logical parameters by
adding an evolution rate to the initial model of René Thomas.

Given a genetic regulatory network with n genes modeled according to the
formalism of René Thomas, we build a model in the stochastic π-calculus which
encompasses 2n processes: n processes describe the temporal evolution of each
gene and the n others translate the logical parameters.

In the case of our example, we define four processes. Let us detail the stages
of the different processes.

The qualitative level of g1 belongs to the discrete interval {0,1,2}. The process
describing g1 will be composed of three stages: g1 level 0, g1 level 1 and g1 level 2.

The subset of logical parameters related to g1 is composed of four Kg1({ωg1(q)}).
Thus, the process describing this subset will be built with four stages.

Similarly, the process describing g2 will be composed of two stages and the
process describing its set of logical parameters by two stages according to the
table 3.

Let us now focus on the way they communicate. We define the following
channels:

– r1+
g1 , r2+

g1 ,r0−
g1 and r1−

g1 are channels used to move the level of g1. In other
words, r0−

g1 means ”the level of gene g1 decreases towards level 0”.

– r1+
g2 and r0−

g2 are channels used to move the level of g2.

– resg1
g1, resg2

g1, noresg1
g1 and noresg2

g1 are channels used to indicate to which
g1 is resource or not. In other words, resg2

g1 means ”g1 becomes (or stays)
resource to g2”.

– resg1
g2, resg2

g2, noresg1
g2 and noresg2

g2 are channels used to indicate to which g2
is resource or not.
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We construct our model according to the following steps:

1. Take into account the information of the logical parameters.
At each stage of the process describing the subset of logical parameters, a
message is sent on a channel rx

y .
Example: We have Kg2({ g1 })=0, thus at the stage Kg2({ g1 }) of the
process describing the subset Kg2({ωg2(q)}), a message on channel r0−

g2 will
be sent.

2. Gene evolution.
The gene g1 (resp. g2) will receive the message delivered on channel rx

g1

(resp. rx′
g2) and then will evolve towards level x (resp. x′). While evolving,

it sends messages on channels (no)resg1
g1 and (no)resg2

g1 (resp. (no)resg1
g2 and

(no)resg2
g2).

Example: When g1 increases from level 0 to level 1, the channel that are
used are noresg1

g1 and resg2
g1.

Fig. 4. The four processes that are necessary to model the example with two genes
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3. Logical parameters evolution.
The resources messages will be received by the logical parameters which will
evolve.
Example: If the process Kg2({ωg2(q)}) is in state Kg1({ g1 }) and a message
is sent on channel resg2

g1, the process will evolve towards Kg1({ g1, g2 }). Now,
we can return to the first step.

Figure 4 shows the four processes concerning the example with two genes.

Stochastic and Temporal Aspects in our Formalism
To simulate the models in stochastic π-calculus, the algorithm of Gillespie is
used. This one indicates that the probability that a reaction (i.e. the crossing of a
threshold) occurs is directly correlated, according to an exponential distribution,
with the time taken by this reaction to occur.

We introduce stochastic and temporal aspects in the formalism of René
Thomas by means of the rates of channels. Indeed, rates linked to channels rx

y

allows us to mime the fact that a gene does not reach a threshold instantaneously
but with a certain delay.

A contrario, we do not act on the rates of channels (no)resy′
y because when a

gene reaches a threshold, the state of the system changes and so the processes
describing the logical parameters must immediately change. We put an infinite
rate to these channels, this implies that the probability that a reaction occurs
(when a message is sent) is equal to 1.

4 Application to the λ-Phage

The λ-phage is a double-stranded DNA virus of the bacteria Escherichia Coli
which has two possible evolutions:

– Lysogenic cycle: viral DNA may integrate itself into the bacteria DNA.
– Lytic cycle: the virus multiplies itself and lyses the bacteria which dies. The

viruses are released and may infect others bacteria.

During the last decades, many works focused on the mechanisms of genetic
regulatory of the λ-phage [18,2,19,20,21]. Many quantitative and qualitative data
are available on the switch of the λ-phage. Since we intend to take time delays
into account, this regulation process appeared particularly interesting.

The model of René Thomas is available in [28]. Let us focus on the biological
regulatory graph (see Figure 5) and the set of logical parameters (see table 1)

Stochastic Parametrization
We introduce time and stochasticity as described above.

In order to evaluate the role of the rates on the final behavior, we consider
only two rates: the fisrt is linked to channels rx+

y while the second is linked to
channels rx−

y . We have tested different rates for these channels and lead multiple
simulations.
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Fig. 5. Biological regulatory graph

Table 1. Logical parameters

KcI(∅)=0 Kcro(∅)=0 KcII(∅)=0
KcI({cI})=0 Kcro({cI})=2 KcII({cI})=0
KcI({cro})=2 Kcro({cro})=0 KcII({cro})=0
KcI({cII})=2 Kcro({cI,cro})=3 KcII({N})=0
KcI({cI,cro})=2 KN (∅)=0 KcII({cI,cro})=0
KcI({cI,cII})=2 KN ({cI})=0 KcII({cI,N})=0
KcI({cro,cII})=2 KN ({cro})=0 KcII({cro,N})=0
KcI({cI,cro,cII})=2 KN ({cI,cro})=1 KcII({cI,cro,N})=1

The results presented in Figures 6 and 7 were obtained with rx+
y = 0.01s−1

and rx−
y = 0.1s−1. We start the simulation with all the genes at level 0 and we

follow the evolution of processes describing the genes.

4.1 Results

In Figure 6, we show a simulation leads to the stable state corresponding to
lysogenic pathway. In Figure 7, we show a simulation leading to the cycle corre-
sponding to lytic pathway. In these figures, study focus on the threshold reached
by the genes during the time of the simulation. When we simulate this model,
the system always goes in one of the two stable states described in [28] by René
Thomas and Denis Thieffry. By testing different values for the ratio between the
rate of rx+

y and the rate of rx−
y , we noticed that the system goes more often in

one pathway or in the other one according to the value of this ratio. The first
observation leads us to introduce the following property: when the ratio between
these rates is high (resp. low), the system tends to enter into the lysogenic state
(resp. lytic cycle).

4.2 Toward a Probabilistic Reasoning

We are currently processing a statistical analysis to determine the exact role
of this ratio for the choice between lytic cycle and lysogenic state. In Figure
8, we can see the proportion of simulations that leads to lysogenic stable state
according to the ratio of rates. Each point corresponds to 300 simulations reduced
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Fig. 6. Simulation results corresponding to lysogenic state

Fig. 7. Simulation results corresponding to lytic cycle
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Fig. 8. Proportion of simulations that leads to lysogenic stable state according to the
ratio of rates

to 100. This figure shows that the ratio of rates plays a real role in the probability
to reach a final stable state rather than the other. We also point out that it is
not necessary to increase the ratio above the value 30. Indeed, the proportion
of lysogenic state becomes stable for a ratio higher than 30. The capacity of
inferring properties on the system thanks to the model is a major advantage: it
reinforces the relevance of our choice to introduce the temporality into the René
Thomas modeling approach.

5 Conclusion

In this paper, we have considered the λ-phage gene regulation phenomena. We
proposed a model in stochastic π-calculus which extends the approach of René
Thomas by adding temporal and stochastic aspects.

We showed that our method leads to results that are consistent with the
expected behavior of the regulation system. Moreover, we put the light on the
fact that the time and the stochasticity give a major improvement to the discrete
approach. We are currently working on a refinement of the model in order to
determine precisely which rates of channels are significant in the choice of the
final state.

Further work consists in developing a powerful tool capable to automatically
model and simulate the behavior of biological regulatory networks with stochas-
tic π-calculus. Thanks to such a tool, we will be able to perform statistical and
probabilistic analyses. This will result in acquiring interesting hints for leading
biological experimentations.

Acknowledgments. We are indebted to Damien Eveillard with whom we had
enriching discussions.
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Abstract. This paper considers detection of functional magnetic reso-
nance images (fMRIs), that is, to decide active and nonactive regions of
human brain from fMRIs. A novel two-step approach is put forward that
incorporates spatial correlation information and is amenable to analysis
and optimization. First, a new multi-scale image segmentation algorithm
is proposed to decompose the correlation image into several different re-
gions, each of which is of homogeneous statistical behavior. Second, each
region will be classified independently as active or inactive using ex-
isting pixel-wise test methods. The image segmentation consists of two
procedures: edge detection followed by label estimation. To deduce the
presence or absence of an edge from continuous data, two fundamental
assumptions of our algorithm are 1) each wavelet coefficient is described
by a 2-state Gaussian Mixture Model (GMM); 2) across scales, each state
is caused by its parent state, hence the name of multiscale hidden Markov
model (MHMM). The states of Markov chain are unknown (”hidden”)
and represent the presence (state 1) or absence (state 0) of edges. Using
this interpretation, the edge detection problem boils down to the poste-
rior state estimation given obervation.

Keywords: functional magnetic resonance imaging (fMRI), wavelet
analysis, image segmentation, edge detection, hidden Markov model,
spatial-temporal modeling.

1 Introduction

1.1 Spatial Modeling of fMRI and Outline for the Method

Magnetic resonance imaging (MRI) is a powerful diagnostic imaging technique
based on the principle of nuclear magnetic resonance, describing the interaction
of nuclei and magnetic fields. While traditional MRI provides only static im-
ages to analyze anatomical structure, functional MRI (fMRI), a newer imaging
modality which is based on MRI and just came to the stage around two decades
ago, acquires a series of images to detect neural activity, to locate brain activa-
tion. In other words, the central task for fMRI is to obtain maps of active and
nonactive regions of the brain [ [1], [2], [3]].
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Closely related to this paper is [ [1]], which uses generalized likelihood ratio
test to get the activation map.

As in [ [1]], pixelwise detection for fMRI is most common in practice [ [3], [4]].
However, these techniques do not take advantage of mutual information between
neighboring pixels. Ignoring such spatial information can cause some problems.
For example, at first sight to a physician, the last figure in [ [1]] seems surprising
because there are activation areas outside brain! On the other hand, utilizing
spatial information may enhance our detection accuracy. For example, it may
be quite possible that an activated (contiguous) area is larger than individual
pixel dimensions. In other words, activated areas tend to occur in clusters of
neighboring pixels; or if we know, by some means, there is strong indication that
a large group of pixels, which may be thought of as one large pixel at very coarse
(spatial) scale, is active, then the individual pixels inside this group, which may
be regarded as pixels at a finer scale, are more likely to be active themselves.
Hence comes the idea of (spatial) scale and incorporating spatial correlation into
the fMRI detection process.

In light of the above simple idea, the kind of pixelwise detection is oversim-
plistic. Therefore it is necessary to develop detection methods taking advantage
of spatial correlation. There are many approaches to attack the problem, for ex-
ample, cluster analysis [ [6], [7], [5]] and independent component analysis (ICA)
algorithm [ [8]]. Detection methods using Bayesian strategies have been proposed
for fMRI [ [9], [10], [11]]. Just as in pixelwise detection, we need to model each
time series; when we turn attention to spatial correlation, we also need consider
spatial modeling for our problem. This is by no means an easy job. [ [10], [11]]
use a Markov Random Field (MRF) model to determine the activation map.

But, we note that those Bayesian methods mentioned above are all restricted
to modeling on the finest scale. Such methods tend to be very computationally
demanding, and are often difficult to analyze and interpret. Therefore, multi-
scale modeling (specifically, multiscale image segmentation) will be considered
that incorporates spatial correlation information and is much more amenable to
analysis and optimization.

Some work has already been done in this aspect [ [13], [14]]. This paper will
adopt a two-step approach for fMRI detection: multi-scale image segmentation
will be first used to break the correlation image into several different regions,
each of which is of homogeneous statistical behavior, then these regions will be
classified independently as active or inactive by single-pixel detection methods.
Since pixelwise detection has been elaborated in other literature, this paper will
concentrate on the first step of image segmentation.

2 Image Segmentation by Multi-scale Hidden Markov
Modeling of Wavelet Coefficients

The main ideas originate from [ [20]]. This method consists of two procedures: the
first one is edge detection and the other is label (state) estimation. The idea of
applying wavelet analysis to edge detection is quite simple. Roughly speaking,
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wavelet coefficients represent the differences between function approximations
at different scales (or resolutions), one kind of differentiation, intuitively, is well
suited for edge detection. In the following four subsections, I’ll address in detail
how to achieve the first step: edge-detection. Then I’ll explain briefly the second
step and how to apply our formulations in 1-D case to 2-D image.

2.1 Likelihood Function for the fMRI Data

Modelling the spatial correlation of the fMRI data in making statistical inference
is a challenging problem for which not many solutions have been proposed than
the solutions addressing the temporal dependencies. In this paper, we deal with
fMRI magnitude images. As noted in the begining, the fMRI correlation image
in this case may be modeled as a 2-d Gaussian process. The correltation be-
tween reference ,which is characteristic of the BOLD response [ [1]] and assumed
known in this paper, and the magnitude time series z: c = rT z =

∑N
j=1 rjzj is

Gaussian distributed (provided the signal noise ratio is not very small). But for
simplicity, let us first consider the one-dimensional analog. Yielding to conven-
tion, we assume that the length of the correlation sequence is a power of 2. The
observation model is:

cJ
k = ρJ

k + wJ
k , k = 0, . . . , 2J − 1, (1)

where cJ = {cJ
k} are the observations (spatial correlations), ρJ = {ρJ

k} are
“true” correlation values, and {wJ

k } are noise.
Now we are going to use a special (the simplest) multi-scale analysis, i.e.,

Haar wavelet transform on the data:

cj
k =

cj+1
2k + cj+1

2k+1√
2

, k = 0, . . . , 2j − 1, J0 ≤ j ≤ J − 1.

The multi-scale analysis of the data ρ and w is defined in an analogous way.
It’s then straightforward to see that

cj
k = ρj

k + wj
k.

The noise {wJ
k , k = 0, · · · , 2J − 1} are assumed to be (spatially) independent,

identically distributed zero-mean Gaussian random variables with variance σ2.
It then follows that the preceding sentence is also true for any j, resulting in the
likelihood function

p(cj | ρj) =
2j−1∏
k=0

N (cj
k | ρj

k, σ2), J0 ≤ j ≤ J (2)

where cj ≡ {cj
k}2j−1

k=0 and similarly for ρj, N (x | ρ, σ2) denotes a Gaussian density
with mean ρ and variance σ2 evaluated at the point x.
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The relationship between a “parent” (e.g., cj
k) and a “child” (e.g., cj+1

2k ) is very
important in multi-scale data analysis. The parent-child conditional likelihood
in our case turns out to be:

p(cj+1
2k | cj

k, ρ) = N
(

cj+1
2k | cj

k√
2

+
θj

k√
2
,
σ2

2

)
, (3)

where the canonical parameter

θj
k =

ρj+1
2k − ρj+1

2k+1√
2

, (4)

is simply the Haar wavelet coefficient of true correlation ρ at scale j and location
k. This nice form of the likelihood suggests the use of so called conjugate prior
for the wavelet coefficients in the following subsection, which complements the
observation model and leads to closed form for the posterior of the states.

Further, the likelihood function (2) with j = J can be factorized as follows
[ [2]]:

p(c | ρ) = p(cJ0 |ρJ0)
J−1∏
j=J0

2j−1∏
k=0

p(cj+1
2k | cj

k, θj
k), (5)

where J0 is the coarsest scale for the analysis (usually we use J0 = 0),
p(cj+1

2k | cj
k, θj

k) is given by (3) and p(cJ0 |ρJ0) is given by (2) with j = J0.

2.2 Multi-scale Hidden Markov Model (MHMM) for the Prior of
the Wavelet Coefficients

Now let’s consider prior (joint) probability for the (unknown) wavelet coefficients
θ. A simple approach is to model them as independent Gaussian mixture random
variables. We move beyond this simple prior, by specifying probabilistic depen-
dencies between the states underlying the mixtures of parent and child wavelet
coefficients. To deduce discrete state estimations from continuous data, the key
point for our algorithm is to associate the continuous wavelet coefficients with
a 2-state discrete Markov chain.

Specifically, for our real problem, the states (edge or smoothness) of the
Markov chain are unknown (“hidden”) and represent the presence or absence
of edges: state 0 indicates a homogeneous region, state 1 represents the exis-
tence of an edge. We perceive that the underlying signal is generally smooth
with a few large edges, then the following modeling is intuitively reasonable,
i.e., we consider two-state mixture model where state ‘0’ is a highly probable
low-variance Gaussian density, indicative of a homogeneous region, while state
’1’, corresponding to another less likely Gaussian density with a larger variance,
indicates the presence of an edge (non-smooth area). Using this interpretation,
we may test for the presence of an edge simply by checking whether the following
condition holds or not:

p(sj
k = 1|c) > p(sj

k = 0|c), (6)
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If it holds, we conclude there is an edge at scale j and location k. Otherwise,
there is not.

Mathematically, the MHMM is based on the assumption that the value of each
state sj

k is caused by the value of its parent state. This leads to the factorization
of the joint state probability function:

p(s) =
J−1∏
j=J0

2j−1∏
k=0

p(sj
k|sj−1

�k/2	), (7)

where p(s0
0|s−1

0 ) ≡ p(s0
0). At the coarsest scale j = 0, we have no parent wavelet

coefficient and so we introduce a prior for the state of the wavelet coefficient
p(s0

0). Note that ρ0
0 is the global average correlation data.

Another property of the HMM is that, given their respective state values, all
parameters θ are conditionally independent [ [25], [21]]. That is,

p(θ|s) =
J−1∏
j=J0

2j−1∏
k=0

p(θj
k|sj

k). (8)

where the prior probability p(θj
k|sj

k) is assumed to be Gaussian.

p(θj
k|sj

k = m) = N (θj
k|μj

m, τ j2
m ). (9)

We regard the signal and its wavelet coefficients as realizations from a large
family of random signal. Therefore, collectively, we assume μj

m = 0.

2.3 Solution for Joint a Posterior Sate Probability

Having set up the formulations for likelihood and a prior, we are now ready to
determine the a. posterior density of the joint states given observation. Note
that:

p(s|c) =
∫

p(s, θ|c)dθ

∝
∫

p(c|s, θ)p(θ|s)p(s)dθ

=
J−1∏
j=J0

2j−1∏
k=0

∫
p(cj+1

2k |cj
k, θj

k, sj
k)p(θj

k|sj
k)p(sj

k|sj−1
�k/2	)dθj

k

=
J−1∏
j=J0

2j−1∏
k=0

p(sj
k|sj−1

�k/2	)L
j
k(sj

k) (10)

where mj
k is one particular state value assumed by random variable sj

k and
Lj

k(sj
k = m) ∝ p(cj+1

2k |cj
k, sj

k = m), the essential ingredients for our estimation
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of the a posteriori states, are actually marginal likelihoods. From the likelihood
function in (3) and the prior in (9), we derive them to be:

Lj
k(m) =

∫
p(cj+1

2k |cj
k, θj

k)p(θj
k|sj

k = m)dθj
k (11)

= N
(

cj+1
2k |μ

j
m√
2

+
cj
k√
2
,
τ j2
m + σ2

2

)
,

J0 ≤ j ≤ J − 1, k = 0, 1, · · · , 2j − 1 , m = 0, 1. (12)

Proof, omitted. Refer to [ [2]].

2.4 Marginal a Posteriori State Probability Calculation

With these formulations ready, we can use the upward-downward algorithm [
[20]] to determine the most likely marginal a posteriori state for the wavelet
coefficients θj

k and then use equation (6) to test the presence of an edge.
In the upward-downward algorithm, the Up Step marginalizes the joint pos-

terior state probability recursively from the finest scale j = J −1 to the coarsest
scale j = 0. At the end the posterior state probabilities {p(s0

0 = m|c)}M−1
m=0 are

provided and partial marginalizations are also stored for use in the Down Step.
The Down Step computes the marginal posterior state probabilities for each
sj

k recursively. For the specific flow of the upward-downward algorithm, refer
to [ [20]].

2.5 Segmentation

After the edges are determined, it is straightforward to formulate likelihood ratio
test to estimate the label (state) of each homogeneous region.

Consider the following multi-hypothesis problem. The observation c =
[c1 c2 · · · cn]T within each homogeneous region is Gaussian random vector
of dimension n. The M hypotheses are

Hi : c ∼ N(mi, Ci), i = 1, 2, · · · , M, (13)

where mi and Ci is the mean vector and covariance matrix of the observation
under the ith i = 1, 2, · · · , M hypothesis, which are assumed to be known. Sup-
pose each hypothesis is equally likely and minimum error criterion is adopted
[ [28]], the decision rule then boils down to choosing Hj where

j = arg min
i

‖ c − mi ‖2 + ln|Ci| (14)

where ‖ c − mi ‖2 ≡ (c − mi)T C−1(c − mi) and |Ci| is the determinant of Ci.
In the following simulated processing, the observation within each homoge-

neous region is assumed to be independent and identically distributed (i. i. d.),
that is, I assume mi = mi1 and Ci = σ2

i .
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Some important practical problems are: how to assign the a prior probability
for s0

0, how to assign transition probabilities for the states:

p
(
sj

k = m | sj−1
�k/2	 = m′

)
. (15)

and how to determine the parameters for the Gaussian distribution characteriz-
ing each homogeneous region. Theoretically, these parameters are estimated by
a complicated E-M algorithm. For our initial investigation, we set them empir-
ically (by observation). It turns out that our experiment results are insensitive
to the a priori probability and transition probability. The robustness is a nice
feature.

2.6 Extension to 2 Dimensions

We can extend the multi-scale analysis and MHMMs easily from 1-D sequence
to 2-D images. Instead of taking the usual 2-D wavelet transform to the original
image; we use the following conversion method. First we convert the original 2-D
image into 1-D sequence, and then apply previous 1-D wavelet analysis to the
resulting sequence. The conversion details are: first split the image vertically into
two halves, then horizontally splitting each half into two quarters, and iterate
until each one is a 1 × 1 pixel. The merit of this conversion is that it retains the
original spatial configuration. Refer to figure (1) for details.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

1 5 2 6 9 13 10 14 3 7 4 8 11 15 12 16

Fig. 1. Conversion of a 2-D image to 1-D sequence

2.7 One Simulation Testifying Image Segmentation by Our
Algorithm

Figure (2) a)-b) shows a simulated noisy image, the grey level of the segmented
image respectively. A two-state MHMM was specified for this problem with the
following parameter settings:

τ0 = 1,

τ1 = 100,

�0
0(0) = .9,

�j
k(0|0) = .9, k = 0, · · · , 2j − 1, j = 1, · · · , J − 1,

�j
k(0|1) = .25, k = 0, · · · , 2j − 1, j = 1, · · · , J − 1.

Figure (b) demonstrates that the results are excellent.
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Fig. 2. a) Noisy image, b) Segmented Image

3 Processing Results for fMRI Simulated Data by
Two-Step Approach

As stated in the beginning, the method for fMRI detection in this paper involves
a two-step procedure: multiscale image segmentation will be first used to break
the correlation image into different regions of homogeneous statistical behavior,
each region will then be tested independently as active or inactive by single pixel
detection method.

In order to see the potential of this method for fMRI detection, the following
experiment is conducted to compare results from the combined effects of single
pixel detection and image segmentation with results obtained based solely on
pixel-wise detection.

Using the model in Equation (1) of [ [1]], a simulated fMRI complex time
series is generated at each pixel. In order to simulate the profile of the brain,
the magnitudes of the baseline signal (a’s in Equation (1) in [ [1]]) in the com-
plex time series roughly follow the magnitude data from a static brain image.
Actually the original complex data used in this example are exactly the same
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as Figure (3b) in [ [1]], which is reproduced here as Figure ((3a) for sake of
comparison, Next, the correlation value at each pixel is computed by correlating
the magnitude time series with the reference to produce Figure (3b).

Figure (3c) is the segmented result of the correlation image in Figure (3b)
based on our algorithm. There are M = 2 labels: each pixel is assigned to either
0 or 1 according to its label. The parameters in this example are set to be:

σ2 = 1;
τ2
0 = 1;

τ2
1 = 100;

�0
0(0) = .95;

�(0|0) = 0.95, k = 0, · · · , 2j − 1, j = 1, · · · , J − 1;
�(0|1) = 0.05, k = 0, · · · , 2j − 1, j = 1, · · · , J − 1;

m0 = 0;
m1 = 2.

In this example, I set σ1 and σ0 (variances for the Gaussian distributions char-
acterizing two homogeneous regions) to be equal. The test criterion in Equation
(14) reduces to simpler form in this case. The original simulated active region in
Figure (3a) is a 9*9 SQUARE; in Figure (3c) the white region is 10*8 RECT-
ANGLE. They are in good agreement but not in perfect match. This is not
surprising, since, in general, we cannot guarantee the segmentation step pro-
duces exactly the same GEOMETRY as the original simulated regions: what is
shown here is just one realization of many random simulations.

Next I consider applying single pixel detection technique in [ [1]] to each of
the above homogeneously (statistically) distributed region. The idea is to regard
each homegeneous region as one large, macro-pxiel: the average of all time series
inside each macro-pixel is taken to be the new time series characterizing this
macro-pixel, then apply single pixel detection method (MC method in [ [1]])
to the new time series individually to determine which of these macro-pixels is
active and which one is in active. By this approach, the micro-pixels (orignal
pixels in Figure (3b), in contrasst to macro-pixel) corresponding to the black
region in Figure (3c) are all inactive, which is expected since this region contains
a large area outside the brain. The micro-pixels in Figure (3b) corresponding to
the white region in Figure (3c)turns out to be all active. In other words, by this
approach, only 9 pixels inside the square are missed while the 8 pixels outside
the square are false-alarmed.

Now let us take a comparison between Figure (3a) and Figure (3c) in this
paper. For the former, we see spurious activation regions outside the brain.
However, the falsely alarmed regions disappear in Figure (3c) (except for 8 pix-
els outside the square) after combining image segmentation with single pixel
detection. Pure single pixel detection methods failed to detect some active pix-
els inside the small square in last figure of [ [1]]. However, these regions (except
for 9 pixels) are now correctly detected by combining image segmentation with
single pixel detection.



304 F. Nan, Y. Wang, and X. Ma

(a)

10 20 30 40 50 60

10

20

30

40

50

60

(b)

10 20 30 40 50 60

10

20

30

40

50

60

(c)

Fig. 3. Comparison of detection results from one step pixelwise method and from
two-step approach. (a) Detection Image from [ [1]] (b) fMRI correlation image, (c)
Segmented image of (b), also final detection results by combination use of image seg-
mentation and single pixel detection.
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The enhancement of detection efficiency is clearly visible and also easily under-
standable. actually we are given spatial-temporal series. However, the pixel-wise
detection method only takes temporal information into account: spatial infor-
mation is completely ignored. The image segmentation algorithm in this paper
exactly complements the pixel-wise detection and remedies its shortcoming: it
utilizes the spatial correlation information inherent in the data. So it is no won-
der that the detection performance improves after image segmentation.

One point to be noted is that in Figure (3c) the brain profiles are artificially
overlapped, as are the cases in the last Figure in [ [1]].

4 Conclusions and Discussions

fMRI signals are actually both temporally and spatially dependent. Pixel-wise
detection, however, considers only temporal correlation information and ignores
spatial correlation information. In order to remedy this deficiency, this paper uses
a multi-scale image segmentation algorithm to first segment an fMRI correlation
image into several regions, each with homogeneous statistical behavior. A single
pixel detection algorithm is then applied to each homogeneous region. Extensive
simulations demonstrate improved efficacy of our method.

Considering utilizing spatial correlation information, this paper uses Bayesian
image segmentation method. Other approaches involving spatial consideration
can be used as well. For example, clustering analysis are gaining more recogni-
tion in this field [ [5]]. Formulation as decentralized detection problem is also a
possible candidate [ [29]].
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Abstract. We have applied and implemented HMM (Hidden Markov
Model) algorithms to calculate QTL genotype probabilities from marker
and pedigree data in general population structures. These algorithms
have a linear complexity in memory. In nearly all experimental pedigrees
they result in more precise genotype estimates than the most commonly
used approaches for determining genotypes at non-marker positions in
QTL analysis in outbred F2 line intercrosses [1], which include an ex-
ponential complexity factor as well as a data-reducing sampling step
[2]. With a proper choice of parameters, the results from the existing
methods can also be reproduced exactly. We show how the relative run
times differ by a factor of 50 when 24 SNP markers are used, with our
run time practically independent of marker count. The new method can
also provide multi-generational probability estimates and perform haplo-
type inference from unphased data, which further improves accuracy and
flexibility. An important future application of this method is for compu-
tationally efficient QTL genotype estimation in maps based on data from
SNP chips containing 1000s of markers with mixed information content,
for which there are no other suitable methods available at present.

1 Introduction

The development of dense single-nucleotide polymorphism (SNP) marker maps
has resulted in a rapid increase in the number of genetic markers available for
QTL (quantitative trait locus) analysis [3] using interval mapping (IM, [4]) tech-
niques. IM schemes involve determining genotype probabilities at positions of
incomplete marker information. The properties of new dense genetic maps im-
ply that standard approaches for computing such probabilities, as e.g. described
in [1] can now be drastically insufficient. The main objective of this paper is to
present a class of algorithms that reduces the O(m3m) complexity for the estab-
lished methods to O(m log m), where m is the number of genetic markers. We
achieve this by realizing the underlying Hidden Markov Model (HMM) struc-
ture of the model used in the standard algorithm. In the software package R/qtl
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[5], this type of approach has been used for data from specific cases of inbred
populations, with similar computational complexity. We generalized upon this
to include outbred data, as well as different population structures. We also show
how the HMM approach can be further developed to enable haplotype inference.
Producing phased, or haplotype, data can improve the accuracy of the genotype
estimates and is also important for other forms of analysis. Furthermore, we also
describe how to increase the accuracy for the computed genotype probabilities of
multiple loci in the same linkage group by computing the specific joint probabil-
ity. An implementation of the new algorithms is presented as the tool cnF2freq
(same-Chromosome n-loci F2 FREQuencies), as C++ source, with work under-
going to implement an R interface for multidimensional QTL searches. In the
presentation below, we focus on data from F2 populations, but as has already
been remarked, our methods and implementations are designed to be applicable
to general population structures.

1.1 Properties of Modern Marker Maps

The exponential complexity component of the algorithm described in [1] limits
its practical use when there are many not fully informative markers (markers
where the grandparent each allele was inherited from cannot be determined).
Such is usual in analyses based on whole genome SNP (single-nucleotide poly-
morphism) chips. SNPs are attractive from a cost standpoint, and frequent in
most genomes, at a rate of about one polymorphism per 1000 base pairs [6]. One
drawback of SNPs is the limited variability in the individual markers. There
are at most 4 possible values, corresponding to the nucleotides of the genetic
code. However, most natural SNPs are biallelic, one wildtype allele and one mu-
tant. The molecular methods currently in common use also cannot determine
the parental origin of each allele. Note that there may still be genetic variability
present even if the detected SNPs in a region are identical in all founder individ-
uals. Therefore, it is of interest to identify the actual origin of a region properly,
even if the local marker values are of limited use for this discrimination.

1.2 Problem Description

F2 intercross populations from outbred lines are a common experimental design
[7][8] for detection of QTL. In such designs it is non-trivial to elucidate the line
of origin of QTL alleles from the genotype data. This is true even when complete
and perfect marker data is available in all individuals, as the same marker allele
might be present in grandparents from different lines. When the parental origin is
taken into account, separating heterozygotes, an F2 individual can have four possi-
ble genotypes at a single locus. The marker values and pedigree information can be
used to evaluate which of these combinations are actually possible or admissible.
E.g. if the lines are numbered 1, 2, the marker and pedigree data might show that
12, 21, 22 are possible in a specific locus in an individual, while 11 is impossible.

A multi-point algorithm for estimating QTL genotype probabilities at any
point along a chromosome has been proposed for this problem [1], based on



cnF2freq: Efficient Determination of Genotype and Haplotype Probabilities 309

looping over intervals of markers, each interval defined as a region between two
fully informative markers. In regions between such markers, the Haldane map-
ping function [9] is used together with information from the partially-informative
markers within the interval. Each combination of inheritance pathway realiza-
tions over all markers compatible with the data is stored, along with its proba-
biliy. The resulting genotype probabilities can then be retrieved and normalized
in any specific position within the interval. With some variations (e.g. in [2]),
this algorithm has become the standard approach for data of this sort. Exist-
ing modifications include a pre-processing step for inference of missing marker
data from other members of the pedigree, and a form of data and complexity
reduction through removal of markers in dense regions.

An upper bound for the complexity of the original algorithm is O(nk3m),
with n being the number of individuals, k being the total number of evaluated
positions (commonly every centimorgan, so k matches the chromosome length
in cM), and m the number of markers in the longest interval between fully infor-
mative markers. High m values are associated with situations where the founder
individuals do not demonstrate unique marker values. Each marker imposing
some constraint allows at most 3 possible inheritance pathways, hence the base
value in the exponentiation.

1.3 Hidden Markov Models

As our suggested algorithms and implementations all rely on HMMs, we give a
very quick review of the most critical concepts here. A general and well-written
review of the subject, that introduced it to a broader audience, can be found
in [10], although that article focused on language processing applications. One
of the first applications in biology was in the construction of linkage maps [11],
and their use has increased since.

All Markov models describe stochastic processes in some sense, and share the
common property that the future evolution of the process is solely determined
by the current state, hence frequently called “memory-less”. An HMM adds the
concept of two processes, the “actual” Markov process proceeding between dif-
ferent states, and the observable process (or sequence), also called the emission
process. The state in the Markov process induces a probability distribution for
what symbol to emit. There exist several algorithms for HMMs, including the
forward-backward algorithms for deducing state probabilities from emitted sym-
bols, and the Baum-Welch algorithm [12] for “training” parameters in a model
based on observed sequences.

2 Methods

2.1 HMMs for Genotype Probabilities

In this section, we describe the specific process of using an HMM-like approach
for determining genotype probabilities, which is shared between cnF2freq and
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R/qtl. In the original description of R/qtl [5], the benefits of using HMMs to
calculate genotype probabilities were stressed. The Markov property generally
holds for recombination (assuming the Haldane mapping function); the proba-
bility of a genotype switch between two positions is indepedent of the regions
upstream or downstream. Thus, there is no need to keep the complete series of
marker-value combinations per individual. The full model is then described by
the state space, identifying the full inheritance pathway for each of the two alleles
(4 states in the F2 case), the transition probabilities based on the mapping func-
tion used, and the emission symbols that correspond to the observed (unordered)
pairs of marker values. A detailed account of the approach for phase-known data
can be found in [13].

To derive the probability of a genotype i at location x in individual k, the
probability p(k) of the complete sequence (see below) based on marker data and
expected recombination probabilities, is first computed for a given individual.
This probability is the unconditional probability given by the Markov process,
i.e. the probability that the observation of some arbitrary individual would match
the actually observed data. Then, an additional simulated marker is added at
the probing position, with the genotype to be evaluated, and the correspond-
ing probability p

(k)
x,i for this genotype is computed. The normalized probabil-

ity for the genotype, given the observed sequence S, is then p
(k)
x,i|S = p

(k)
x,i/p(k)

(Bayes law).
To compute any of the p values described above, the full process over the

sequence has to be iterated. At each marker j all state probabilities s
(k)
j,l are

computed, where l represents the possible genotypes or inheritance pathways at
that position. If the markers are located at positions xj and the distance from
the previous marker is defined by Δxj , then the state probabilities (essentially
the HMM “forward algorithm”) for a simple two-genotype (backcross) case are
given by:

s
(k)
j,0 = P

(k)
j,0

(
s
(k)
(j−1)0(1 − M(Δxj)) + s

(k)
j−1,1M(Δxj)

)
(1)

sk
j1 = P

(k)
j,1

(
s
(k)
j−1,0M(Δxj) + s

(k)
j−1,0(1 − M(Δxj))

)
(2)

Here, M is the mapping function, translating genetic distances into recombi-
nation frequencies, while P is a binary indicator for whether the state is accept-
able according to the marker data. To account for the possibility of genotyping
errors, the low value of P (indicating an unsupported state), can be chosen to
be close to, rather than exactly 0, using a small ε. As a base case (for the first
marker), we assume s(k)0,0 = s(k)0,1 = 0.5. The extension to more than the 2
states presented here is trivial, by simply adding the corresponding transition
terms. The probability for a sequence is computed as the sum of all s values at
the final marker.

It should be noted that the number of states should be 4 for outbred data,
even for a F2 population and related effect models, where only 3 “states” are
present in the resulting linear regression (two homozygotes and one heterozy-
gote). While the two heterozygotes should give identical phenotypes (ignoring
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epigenetic effects), they are highly different from a recombination process stand-
point. The transition from one heterozygote to the other actually requires two
recombination events, but if those states were merged the transition would es-
sentially be “hidden” and thus considered very likely, if compatible with the
marker data. The full space of 4 states was presented in [1]. R/qtl [5] only uses
3 states when analyzing intercrosses, as heterozygote parental origin is never
detectable in that case. Even for such experimental designs, though, the 3-state
structure precludes the introduction of sex-specific mapping distances as the re-
combination probabilities relating the heterozygotes to the homozygotes become
dependent on the parental origin of the alleles. Sex-specific mapping distances
can easily be introduced in the 4-state model. Hence, our approach is concep-
tually similar to the one employed in R/qtl [5], but with applicability to the
model and state space used in [1], i.e. datasets for outbred data with ≥ 4 states.
With proper settings, the implemented code for our approach can give an exact
reproduction of results derived with this latter existing method.

2.2 Numerical Concerns

The probabilities computed as described in section 2.1 rapidly decline, which
is a general problem of HMMs [10]. The probability first computed reflects the
joint probability of a specific genotype at a specific position, and the observed
sequence, under the assumptions of the Markov process. This is then normalized
by the probability of the observed sequence alone, with no state constraint,
entailing the division of two numbers which both might be in the range of 10−100

or less.
In practice, we use logarithm normalization to maintain numerical accuracy,

a variation of the scaling factors suggested in [10]. All calculations are performed
with normal floating-point logic, but the total state vectors are at some points
renormalized to sum up to 1. A logarithmized product of all normalization fac-
tors used so far is stored separately. The full vector of state probabilities essen-
tially forms a floating-point number with a vector-valued mantissa, but a scalar
exponent. This approach is superior to performing operations in a logarithm
space, which is the method used in [5], since a slow approximation of addition
is eliminated in our approach.

2.3 Multiple Interval Mapping for Linked Loci

Interval mapping can be applied to multiple loci. In this case, the references
to a QTL “genotype” should be interpreted as the full configuration of alleles
in all loci included. A probability for a genotype is then the probability for
that full configuration. If loci are unlinked, genotypes are independent and the
probability is a simple product. The same is true for linked loci separated by a
fully informative marker. This can be understood by considering the probability
P (AB) = P (A) ∗ P (B|A), where A and B are states describing the genotypes
in two individual loci. If P (B|A) = P (B), the events are independent and the
product of single-locus probabilities can be used. When an informative marker
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in a state C is present between the loci, P (B|A) = P (B|C) ∗ P (C|A), according
to the Markov property. As C is the known state of the informative marker,
P (B|C) = P (B) ∗ 1.

The R/qtl package properly accounts for joint probabilities, but the imple-
mentation relies on a full sequential scan of all grid positions, resulting in O(kl)
complexity, where l is the number of dimensions and k the number of grid points
per dimension. Most QTL scans of high dimensionality will not consider all po-
sitions, though, but rather limit the sampling by using some optimization al-
gorithm, like genetic algorithms [14] or branch-and-bound approaches [15], or a
Markov Chain Monte Carlo approach [16]. In all these cases, many positions will
never be considered. Assuming the number of queries q being relatively small
compared to the total search space (q << kl), the cost of O(l log m) per query
that we present below is preferable over a full scan of O(kl).

The traditional forward-backward approach, as well as the modified multi-
point approach in R/qtl rely on a linear memory representation of the search
space, or a subset of it. The linearity of the space to scan does not translate to the
case of two or more positions with unpredictable query ordering. The solution
we propose is a hierarchical cache of “multistep transition probabilities” in a
structure similar to a binary tree. The transitions from marker 0−2, 2−4, 4−6...
are stored. So is 0 − 4, 4 − 8...; 0 − 8, 8 − 16..., and so on. The total memory use
is still O(nm) with this approach. To get the probability for specific states at
a specific set of positions, the algorithm walks along the tree, using “multistep
transitions” in all regions outside the markers of interest. This results in an
O(l log m) factor for analyzing a specific position in a single individual.

2.4 Extension for Multiple Generations

We now present an extension of the model in [1] to more than two mating gen-
erations. As the original algorithm was exponential in the number of states, the
complexity would rise from O(3m) to O(63m) by simply going from 2 to 3 genera-
tions, as we will show below. However, the complexity features of our algorithms
makes this previously prohibitive extension feasible. In addition to being useful
for QTL genotype estimation in multi-generational settings, the state structure
described here forms the basis for the haplotype inference described in section 2.5.

The structure with 4 states only tracks a single generation of recombination,
the one taking place in F1 individuals. The state is indicating which F0 parent
contributed the allele that was subsequently transmitted to the F2 individual.
For a state to be admissible, the same marker allele should be found in the F0, F1
and F2 individuals. For each F1 individual 2 possible alleles can be transmitted
and as 2 F1 individuals contribute to an F2 individual, there are 22 = 4 states in
total. Parental origin of the F0 alleles is unknown (“unphased data”) and thus
we have no explicit state describing the F0 individuals.

It is rather straightforward to consider an extension to 3 generations. We can
model the state transitions for each F2 individual by the 4-state space already
described. There are 2 F2 individuals contributing to an F3, hence 42 = 16 states.
Finally, 4 states are needed to describe the alleles contributed to the F3 from
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the F2s, or 43 = 64 states in total. Every ancestor with phase information (i.e.
non-founder) found in the pedigree of the individual being analyzed results in 2
additional separate states, or 1 more bit to represent the state space.

This drastic expansion from the original 4 states is caused in part by the need
to track the phase for all F1 individuals, even those that at the specific position
of the current state are not transmitting any allele to the F2. If this was not done,
the total number of expected recombinations would not match those observed in
the data, and as a result the probabilities would be skewed and some unrealistic
states could be reached.

Extension to additional generations is technically feasible, but some method
of pruning (possibly “search beams” or random sampling approaches) is needed
in practice, as the state space grows to

∑g
x=1 2x = 2g+1 − 2 bits, where g is the

number of state-carrying generations. An extension to F4 (3 generations with
phase) would require 16384 states.

2.5 Extension for Haplotype Inference

The marker values that are measured on individuals are unphased. As described
above, this limits the discriminatory power between alternative inheritance path-
ways in a pedigree. This problem is aggravated by the limited number of possible
marker genotypes for SNP markers. When phase is unknown, the number of re-
combination events required to satisfy the observed HMM sequence might be
reduced. This is illustrated in Figure 1, as one of the plausible interpretations
when phase is removed includes inheritance pathways that would be identical
in the loci shown. Here, we present an extension of the 64-state model in the
previous section to include an iterative inference process for phase data in all
generations, based on expectation-maximization of allele strand assignment for
all individuals.

In the HMM described so far, the emitted marker value in the process was
interpreted as a uniform process over all admissible symbols, i.e. marker val-
ues supported by the observed data (pedigree and marker values). Phasing can
be introduced by associating non-uniform emission probabilities to the mark-
ers. These are not present in the original data, but rather need to be “trained”
based on the data according to the established Baum-Welch algorithm [12]. More
specifically, the markers in each individual are assigned additional “haplotype
skewness” values. These values indicate the probability for the first marker value
to be on strand 1 for that individual. The absolute strand numbering is arbitrary,
the relevant aspect is that linked alleles should be assigned the same strand num-
ber. The assignment is initialized by fixing the first marker with non-identical
alleles within each linkage group (chromosome) in every individual. The HMM
probability evaluation is then repeated with shifting assumptions of whether
strand 1 is maternal or paternal for the individuals in the pedigree (as no par-
ents are available in the F0 generation, the F0 individuals can be excluded in
this step), to make the strand numbering independent of the pedigree structure.
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Fig. 1. The possible F2 inheritance pathways (lines between boxes) for two closely
linked loci (connected by arrows) with marker values, with (above) and without phasing
(below). The marker values (boxes) are phased. The inheritance pathways indicated in
the upper figure include a single recombination event, as shown by the change in the
solid lines (indicating a change from maternal to paternal allele contributed from the
F1 female to the F2 individual). In the lower figure, the alleles in the right-hand locus
no longer connect to unique founders. All allowed inheritance pathways are instead
indicated by dashed lines.

The need for parent-independence increases the complexity for a F2 popula-
tion by a factor of 23 (1 F2 individual, 2 F1, all combinations should be consid-
ered). The state space used matches the one described for F3 above, as we have 3
generations of phase information. During training, the time used for evaluation
in each position is also multiplied by a factor of 27, as both strands need to be
considered in each individual in an analogous manner to collect frequency data,
although the skewness variable will generally cause either interpretation to di-
minish. Already trained data (inherently one-dimensional) can then be applied
to multi-dimensional queries.

The algorithm starts out with 0.5 skewness for all markers, except the ones used
for defining the arbitrary strand assignment. In each iteration, the expectation for
the skewness value in every marker in each individual, based on the summed prob-
ability over the states matching either of the two cases, is used to determine a new
input value, to maximize the total probability. In this way, the haplotype informa-
tion is extracted from the population as a whole, while single probability evalua-
tions focusona single individual (and themembersof its pedigree).Onapopulation
level, the inherently stochastic concept of genetic linkage, expressed as the recom-
bination events in individuals, will result in alleles that reside on the same strand
cosegregating into offspring. This will favor skewness values that match the actual
strand distribution of alleles. Individuals also provide conclusive phase informa-
tion for different regions. As this information is included in the updated skewness
value, the probabilities in all individuals that have some pedigree member with up-
dated information become more accurate. Like most applications of expectation-
maximization, the haplotypes obtained may be suboptimal. This fact can be con-
trasted to the othermethodswe present, where optimal results are indeed achieved,
under the simpler models employed.
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3 Results

Results from our new HMM-based implementation and the existing Fortran im-
plementation (ccoeff) of the original algorithm [1] were compared for identical
data from the first chromosome in an F2 intercross bred from one Red Junglefowl
male and three White Leghorn hens [17]. The dataset contains 73 genetic mark-
ers genotyped in almost 800 individuals (L. Andersson, pers comm). The total
genetic map is approximately 500 cM. The marker map consists mainly of mi-
crosatellites with a high degree of variability, but also some SNPs. The presence
of a few long regions of missing data in some individuals is the primary reason
for the original algorithm being unable to estimate QTL genotype probabilities
in the full dataset, due to the exponentially increasing memory requirement as
m grows. In addition, a more typical SNP-based marker map was analyzed from
a cross between Red Junglefowl and a White Leghorn chicken line with autoim-
mune thyroiditis (“Obese strain”, OS), similar in many respects to the first one,
but with 74 markers on chromosome 1, only a handful of which are not bial-
lelic SNPs (L. Andersson, pers comm). All lines used in the crosses are outbred,
but expected to be genetically divergent. Methods for inbred lines are thus not
applicable.
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Fig. 2. Comparison of execution time obtained with cnF2freq (solid line) and an ex-
isting Fortran implementation (ccoeff; dashed) [1] for the first chromosome in two
chicken intercrosses. Left: 73 markers, mainly microsatellites. Right: 74 markers, all
but a handful being biallelic SNPs. Randomly sampled subsets of full marker set used
in each run, 100 runs per marker count. Thin dashed line indicates the proportion of
ccoeff terminating early due to running out of memory space, also explaining the time-
use plateau in the microsatellite case. The binary tree algorithm results in alternating
behavior for odd and even total marker counts.

The time used on a 4-core (2-socket) machine was tested with 100 random
subsets of the total marker map for different marker counts, from 3 to 40. Both
algorithms were exposed to identical random samples. As the HMM algorithms
are not limited by memory and shows significant locality, cnF2freq has been
parallelized by using OpenMP. Probabilities were evaluated every 1 cM. The
flanking markers on the chromosome were always included, to keep the total
length consistent over all runs. The wall-clock time use is presented in Figure 2.
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In the graphs there is also a secondary (right-hand) scale illustrating the pro-
portion of random samples that were terminated early in ccoeff, due to the
number of search paths exceeding 222, essentially filling a 32-bit address space.
In both datasets, the full results from cnF2freq are always determined in under
4 seconds, while the time and memory usage grow exponentially in ccoeff. The
higher number of SNPs in the second cross results in more drastic growth. In
all successfully completed runs, the results from the two methods were identical,
save some differences in rounding.

The haplotyping functionality was tested on the common simulated dataset
from the QTLMAS XII [18] conference. This is a multigenerational dataset with
a very high marker density. Thanks to its simulated origin, phased data is avail-
able. In total, about 6000 individuals were fitted against an unphased version
of the dataset, with 1000 markers over the first chromosome, 100 cM in length.
99.0% of heterozygous markers were correctly phased over all individuals where
genotypes were provided. Our results thus provide more accurate haplotype es-
timates than those presented at the conference, based on the Minimum Recom-
bination Haplotype Configuration (MRHC) [19] method. This method produced
a precision of 98.6% on a subset of 95.3% of heterozygous markers, with 4.7%
excluded as unassignable, resulting in a total precision of 94.0%.

4 Discussion

The most basic and immediate use for this tool is a drop-in replacement for
existing code used to estimate QTL genotype probabilities in F2 intercrosses
from outbred founders. Like the approach and related code described in [1], we
are able to handle missing marker data and marker ambiguity in outbred F2
populations. We have shown that we avoid the exponential increase in memory
use and run time that is a limitation for these methods when experimental
marker maps used in QTL mapping experiments are changing from 10s or 100s
of highly informative multi-allelic microsatellites to 1000s of less informative
bi-allelic SNPs.

The web-based QTL Express [2] tool (now replaced by GridQTL,
http://www.gridqtl.org) implemented the original exponential algorithm, but
with some improvements for inference of some missing marker values, and a
scheme to reduce the value of the m component in the complexity calculations.
This is done with a loss of precision, however. The markers in a not completely in-
formative region for an individual are iteratively reduced, removing at each step
the single marker that will leave the shortest gap, i.e. where the two surrounding
markers are closest together. With SNP maps, considerable information can be
inferred from preserved clusters of highly linked markers, where the combination
only leaves one possibility with non-minimal probability. When the marker set in
ambiguous regions is “thinned out” to about 15 markers in total (the maximum
number feasible with an exponential approach), such clusters are the first to be
eliminated, and informativeness eventually is lost everywhere.
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4.1 Haplotype Inference

Starting from the foundation of reimplementing existing models for genotype
inference from multipoint marker data, we have also shown how other established
aspects of Hidden Markov Model theory can be adapted to solve the haplotype
inference problem, either in its own right, or as a tool to improve the genotype
estimates. We have demonstrated the accuracy of this haplotyping algorithm
on a publicly available simulated dataset. It is worth noting that in the cases
where our algorithm failed on the simulated dataset, the sequences on both
sides were highly homologous, making a unique haplotype assignment almost
impossible.

There are several existing methods for determining haplotypes from unphased
data in different pedigrees and marker configurations. Most of the research in the
area, like application of EM [20], Clark’s algorithm [21] and Bayesian methods
[22] were designed for cases where no pedigrees are available, and in some cases
also with an assumption of Hardy-Weinberg equilibrium. Some approaches based
on MCMC (Markov Chain Monte Carlo) methods can integrate general pedi-
gree information, but do so by sampling specific realizations and then analyzing
them.

The MRHC approach, to which we have compared our results, does include
pedigrees. This approach is a rule-based application of the principle that a haplo-
type resolution over the pedigree should minimize the number of recombinations.
Our approach demonstrates a conceptual similarity as the presence of recombi-
nation events reduces the probability. Although only 3 generations can be feasi-
bly maintained in an individual analysis, pedigrees of more generations can be
treated by breaking them into smaller analyses of 3 generations at a time. If the
phase of some region is undetermined the skewness is simply neutral, allowing for
both interpretations. When the phase information for a locus is assigned, there
is no need for further ancestral information. Close to the point of convergence,
the haplotyping problem is inherently local. This is also demonstrated in our
experiments, as we could solve the haplotypes in up to 7 generations with great
success, despite each analysis being constrained to 3 generations.

5 Conclusion

We have demonstrated the ability of cnF2freq to be used both for providing
results identical to the ones obtained with established methods, and to improve
accuracy by a model reconstructing phased data. In both cases, we observe
significant time savings, allowing efficient use on current, dense marker maps for
outbred F2 data. It is clear that a more thorough use of HMM-based methods
will add considerable value to the analysis of current and future SNP-based
maps with 1000s of markers. The current code is implemented in C++ and is
simple to integrate into existing systems, as it is relatively platform-independent.
Work is underway to utilize this technology in an implementation of the multi-
dimensional search approach described in [15].
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Abstract. ChIP-sequencing is a new technique for generating short DNA  
sequences useful in analyzing DNA-protein interactions and carrying out ge-
nome-wide studies. Although there are some studies to process and analyze 
ChIP-sequencing data, a complete workflow has not been reported yet. The size 
of the data and broad range of biological questions are the main challenges to 
establish a data analysis workflow for ChIP-sequencing data. In this paper, we 
present the ChIP-sequencing data analysis workflow that we developed at the 
Ohio State University Comprehensive Cancer Center Bioinformatics Shared 
Resources. This pipeline utilizes 1) use of different mapping algorithms such as 
Eland, MapReads, SeqMap, RMAP to align short sequence reads to the refer-
ence genome 2) a novel normalization algorithm to detect significant binding 
densities and to compare binding densities of different experiments 3) gene da-
tabase mapping and 3D binding density visualization 4) distributed computing 
and high performance computing (HPC) support.  

Keywords: ChIP-seq, workflow, short sequence mapping, parallelization, nor-
malization, visualization. 

1   Introduction 

Massive parallel sequencing is a high-throughput technology which can sequence tens 
of millions of DNA segments in a single experiment. It has been widely used in many 
genome-wide studies such as microRNA screening, genome re-sequencing, and pro-
tein-DNA interaction (ChIP-seq). For the latter, it has demonstrated significant advan-
tage over the ChIP-chip approach with high resolution, comprehensive coverage, and 
low cost [1,2]. Despite the sharply increasing demand in using ChIP-seq technology 
and analyzing data from such experiments, currently there are very few pieces of 
work on data analysis methods and there is no complete workflow outlined for this 
type of  experiments. 
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Here, we present the ongoing work on developing a comprehensive data analysis 
workflow for ChIP-seq experiments at the Ohio State University Comprehensive 
Cancer Center Biomedical Informatics Shared Resources (OSUCCC BISR). The 
development of the workflow includes the following key steps: 

 

1. Integrating use of different mapping algorithms such as ELAND (from Illu-
mina) [3], MapReads (from Applied Biosystems) [4], SeqMap [5], RMAP 
[6] and xMAN [7] to align short sequence reads from ChIP-seq experiments.  

2. Developing new algorithms including detecting genome segment detection 
with significant high density of protein binding and a new global normaliza-
tion algorithm for comparing binding density between different experiments. 

3. Developing software infrastructure for binding segment visualization, gene 
database mapping, novel 3-D binding density landscape rendering, and 
pathway analysis. 

4. Integrating the workflow components into a distributed computing environ-
ment with high performance computing (HPC) support for key steps such as 
mapping the sequenced DNA segments to the genome [8]. 

5. Integrating the workflow into our data management system, QUEST (QUEry 
Support Tool for epigenetics). 

2   Methods: Chip-Seq Analysis Workflow 

Fig. 1 demonstrates our workflow for analyzing ChIP-seq data. It contains three major 
components: data preprocessing, analysis/visualization, and data management. 

 

 

Fig. 1. The workflow for ChIP-seq data processing and analysis 
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Data preprocessing component includes mapping sequences to reference genome 
using multiple software tools, parallel implementation of mapping algorithms, genera-
tion of standard output files that can be visualized in UCSC Genome Browser, and 
mapping of DNA fragments to RefSeq gene database. Analysis component consists of 
detection of high density binding regions, normalization of the samples for compara-
tive analysis, and 3D binding landscape visualization. Data management component 
utilizes data storage and access. 

2.1   Preprocessing 

2.1.1   Mapping Sequences to Reference Genome 
The ChIP-seq data generated from sequencing equipments such as the Solexa and 
SOLiD sequencers are in the form of short DNA segments of no more than 50 bases. 
These short DNA segments need to be aligned to the reference genome before further 
processing. While the commercial vendors usually provide sequence alignment soft-
ware such Eland provided by Illumina as part of the Solexa data analysis pipeline, 
they are usually not sufficient for all situations.  

For instance, Eland is hard coded to align sequences up to 32 nucleotides in length 
and allow at most 2 mismatches. In some cases it is necessary to use full length of the 
sequence segments and allow more than 2 mismatches, even gaps, for the alignment. 
To overcome limitation of Eland [5], we also integrate several other algorithms in-
cluding SeqMap, RMAP, MapReads, and xMAN into our workflow. The SeqMap 
algorithm allows up to 5 mismatches and gaps in combination and use full length of 
the sequence segments. In addition, at the end of Solexa pipeline, base-call quality 
scores for the sequence segments are reported. Eland uses these quality scores to filter 
out low quality sequence reads. These quality scores can be integrated into the align-
ment process by evaluating only the high quality bases in the sequence segments 
during the alignment. This approach is implemented in RMAP algorithm. Compared 
to Eland and SeqMAP, RMAP is much slower [5]. However, RMAP provides better 
mapping accuracy [6]. Therefore, in addition to Eland and SeqMap, we also integrate 
RMAP algorithm into our workflow. 

2.1.2   Parallel Implementation of the Sequence Mapping Algorithms 
The preprocessing step is the most computationally intensive part of the workflow. 
Current second generation sequencers generates up to billion bases per date, and a 
single run could generate more than hundred million reads. Mapping those millions of 
reads could take hours to days if the mapping is computed sequentially. Therefore we 
also integrate novel techniques that allow distributing the mapping computations to 
multiple compute nodes [8]. 

In our workflow we consider two parallelization approaches. In the first approach, 
we use DataCutter, a middleware we developed previously for staging large datasets 
to multiple nodes in a computer cluster [9], to wrap and parallelize a mapping algo-
rithm by distributing computation involving parts of the reference genome on multiple 
nodes of a cluster. In the second approach, we developed novel parallelization meth-
ods to distribute the work involving both the reference genome and the sequences to 
be mapped to the genome in an efficient way [8]. These methods are designed to 
optimize the distribution of data to enhance the parallel performance and can be used 
to parallelize most mapping algorithms. 
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2.1.3   Output Files and Initial Visualization 
The sequence mapping results are stored in files containing millions of chromosomal 
locations and strand orientation tags. Such files cannot be interpreted directly by 
biologists. In order to facilitate the interpretation, our workflow automatically splits 
the sequencing mapping results based on the chromosomes, i.e. the segments 
mapped to each chromosome stored in a separate file. In addition, for each chromo-
some, the file is converted to the BED and WIG formats. BED and WIG files are the 
common file formats used by the UCSC Genome Browser. The BED files allows 
user to visualize the binding locations of sequence tags and the WIG files allows user 
to visualize computed binding densities of the sequence tags over the genome.  

In addition, the workflow also contains a module to automatically generate the histo-
gram of the density of the sequence tags. Specifically, the workflow generates the histo-
gram for each chromosome using three different bin sizes: 200bp, 500bp, 1000bp. The 
choice of the bin sizes is based on the fact that most of the DNA segments generated in 
the ChIP experiments are between 200-500bp. The histogram files are essential for the 
next stage of data processing – the analysis and visualization stage. 

2.1.4   Gene Mapping  
DNA fragments (bins) can be mapped to a local copy of the UCSC Genome Browser 
with databases such as the RefSeq gene database using a Java script. In addition, by 
entering a gene name, the visualization tool can display the histogram of sequence tag 
density of the gene including both its upstream and downstream 2kb flanking regions. 

2.2    Analysis  

The mapped segments are then sorted based on their locations in the chromosomes 
and saved in files of BED and WIG formats, which can be visualized as custom tracks 
in the UCSC Genome Browser. Furthermore, the histograms with bin size of 1kb are 
generated for every chromosome. For each bin, we record the number of DNA seg-
ments it contains. 

2.2.1    A Poisson Model for Detecting High Density Regions 
We developed a Poisson model for detecting bins with significant high binding den-
sity. For each chromosome, we compute the parameter λ of the Poisson distribution 
using the total amount of aligned segments and total number of bins for this chromo-
some.  This λ is then used to compute the odds of binding density for each bin which 
is further converted into a p-value. The bins are then ranked by the significance p-
values for selection and peak detection. A train of consecutive bins with significantly 
high binding densities can be combined into a large fragment. 

2.2.2   A Global Normalization Method for Comparative Analysis 
In a comparative study, two sets of data needs to be compared in order to identify 
regions for which the protein interaction is differentially regulated. The key step for a 
comparative study is to normalize the two sets of data in order to obtain meaningful 
comparison results. We developed a global normalization method which is similar to 
the linear normalization algorithm as summarized below for two-color genechips [10].  
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Algorithm 1. Global normalization of ChIP-seq data between two samples. 
1. For the ith chromosome in the kth sample (k = 1, 2), generate the histogram 

Hk of binding density over the genomic locations with bin size h (here we set 
h = 1000 and 5000 depending on the application). We set sample 1 as the 
reference sample. 

2. Compute the total sequence tags Ti
k for the ith chromosome in the kth sample 

(k = 1, 2). 
3. Compute the ratio r =  Ti

2/ Ti
1. 

4. For each bin in the histogram of sample 2, multiply r. 
5. Visualization: Plotted histograms of sample 1 against sample 2 as scattering 

plot for each chromosome. Then, we used MA plots to visualize similarity of 
the two samples in binding densities. The X-axis represents the difference in 
average log intensities ( 2

2
1

2 loglog HHM −= ); whereas the Y-axis repre-

sents the log-ratio ( 2)log(log 2
2

1
2 HHA += ). The normalization process 

moved the median to zero in MA-plots to achieve global normalization. 

 

Fig. 2. Data normalization. The binding densities for corresponding regions of 20kb long with 
the OHT control sample being the x-axis and the OHT E2 treated sample being the y-axis, 
before (A) and after (B) normalization. The right plots are the MA plots with x-axis being the 
ratio between the two samples after logarithm transformation with base 2. The y-axis is the 
product between the two samples. 
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Fig. 2 shows the the MA-plot before and after the normalization in one of our stud-
ies for human chromosome 10. Given the cost of the ChIP-seq experiments, dupli-
cates in experiments are rare and therefore differential regulated regions are detected 
using threshold on the fold change.  

DNA fragments (bins) selected in the above steps are then mapped to the RefSeq 
gene database using the Java script described in Section 2.1.4. Fragments within 2kb 
from the transcription starting sites of genes or having overlaps with genes transcrip-
tion regions are reported for further analysis. The pathway and functional analysis of 
the genes are conducted using the Ingenuity Pathway Analysis (IPA) software 
(http://www.ingenuity.com) and other ontology enrichment analysis tools such as 
BiNGO (http://www.psb.ugent.be/cbd/papers/BiNGO/). 

2.3   Data Visualization 

We have developed a multi-resolution visualization tool name GenomeScape in Mat-
lab which allows us to visualize the ChIP-seq data at multiple scale of chromosomal 
resolution. The approach is analogous to that commonly used in Google maps 
(http://maps.google.com) which starts with a view of the mainland United States and 
can zoom in to view at the resolution for a single state, city, or neighborhood.  Simi-
larly, when viewing the ChIP-seq results, the whole genome view is informative for 
some experiments, whereas large chromosomal domains and gene clusters provide a 
useful view and single gene resolution is also valuable. For the full genome view, we 
array each chromosome in the X-Y plane, and the histogram for sequence tags is 
depicted in the Z-axis (see Fig. 7).   

2.4   Data and Workflow Management 

We developed a data management and workflow control system named QUEST. This 
system allows the user to store, share, query, and retrieve large bioinformatics data 
including genechip and ChIP-sequencing. In addition, it enables the user to carry out 
pre-defined data analysis workflow in many scripts including Matlab, R, Perl, Python 
and Java. Currently the preprocessing workflow, generating BED files, WIG files and 
histogram files, for the mapping results are integrated into the QUEST system. 

3   Results 

3.1   Parallelization of Sequence Mapping Algorithms 

Even though the implementation is not fully optimized, our first parallelization ap-
proach using DataCutter yielded fairly good performance for medium sized datasets. 
For a test with 13 million 36bp sequences, we were able to reduce the computing time 
by 7.5 fold using eight nodes. The matching time was reduced from 75 hours (4500 
minutes) to 10 hours (600 minutes).   

In a separate test, using a computer cluster with 32 nodes, we were able to map two 
datasets with 6.6 million 36bp sequence tags and 25 million sequence tags to the  
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Fig. 3. Comparison of three parallelization methods while mapping different numbers of 
sequences to a reference genome of 800bp length using parallellized MapReads algorithm on a 
16-node cluster. Efficient distribution of both sequence and genome data improves the  
performance compared to the cases where only either sequence or genome data is distributed. 

 

Fig. 4. Data normalization and comparison. A) The 3-D landscape of the binding density of 
OHT E2 treated sample before normalization. B) The 3-D landscape of the binding density of 
OHT control. C) The 3-D landscape of the binding density of OHT E2 treated sample after 
normalization. D) The 3-D difference map between OHT E2 treated sample and the OHT con-
trol sample. 
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entire human genome in 33 minutes and 89 minutes respectively. For this test we 
applied our parallelization methods [8] to the MapReads algorithm for distributing 
both sequences and the genome and allowed up to three mismatches. As demonstrated 
in Figure 3, efficient distribution of sequence and genome data helps improving the 
parallel runtime of an algorithm. 
 

 
 

Fig. 5. An example of a 60kb segment on chromosome 13 in which the responses to E2 are 
different between the two cell stains. The four lanes of histograms represent data from the 
MCF7 cell control, the MCF7 cells treated with E2, the OHT cell control, and the OHT cells 
treated with E2.  

 

Fig. 6. The binding density for more than 18,000 genes for the estrogen treated sample versus 
the control sample is plotted in the log-log plot 
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3.2   Application of the Workflow on Studying Drug Resistance in Breast Cancer 

The motivating biomedical application for us to develop this system is a study on the 
responses to estrogen (E2) for two different cell lines: MCF7 – a commonly used 
breast cancer cell line, and OHT – a breast cancer cell strain that is resistant to the 
anit-cancer drug tamoxifen. In this study we used ChIP-seq experiments to screen for 
regions with Polymerase II (Pol II) binding in order to characterize the effects of E2 
treatment on gene transcription to understand the difference between the tamoxifen-
resistant strain and regular cancer cell strain. 

We carried out the global normalization between E2 treated samples and the corre-
sponding controls. As shown in Fig. 4, the global normalization corrected the scale 
difference between corresponding samples. The difference map (Fig. 4D) shows that 
 

 

Fig. 7. A multi-resolution visualization over the genome. Top: the RNAPII binding landscape 
over the entire genome. Middle: the gene cluster (four genes with exons marked by black boxes 
and directions of the genes marked by the arrows) around the peak on chromosome 17. Bottom: 
the binding pattern over a gene (HEXIM1). 
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in the OHT cell strain, there are many regions with small responses but few regions 
with large responses to E2 treatment. We further detected 465 regions with significant 
difference in responses to E2 between the two cell lines with a total length of 39.8 
millions of bases. An example is shown Fig. 5. In this example, the binding density of 
Pol II was significantly reduced after the E2 treatment in MCF 7 cells while there was 
no response to E2 for the OHT cells.  

In addition to the chromosomal regions (individual bins in the histogram), we also 
applied the global normalization algorithm to the genes. As shown in Fig. 6, the scat-
ter plots for the more than 18,000 genes in the RefSeq databases are generated be-
tween the E2 treated samples and the control samples. The distribution is apparently 
biased before normalization (Fig. 6 left) but was corrected after normalization (Fig. 6 
right). This step allows us to identify 372 up-regulated genes and 611 down-regulated 
genes with at least 1.5 fold changes after E2 treatment in terms of Pol II binding  
densities. 

3.3   Multiscale Visualization of the ChIP-seq Data 

The software GenomeScape allows us to navigate through the genome to study 
the binding patterns of the proteins on the genome at different resolutions. As 
shown in Fig. 7, the landscape of the Pol II binding density histogram over the 
entire genome for the MCF7 cells treated with E2 is generated and when we zoom 
in onto one of the highest peaks we identified a gene named HEXIM1 which 
codes for protein that is a general Pol II inhibitor. This interesting observation 
raises further biological question on if this is there is a negative feedback mecha-
nism for Pol II activity. 

4   Conclusion and Discussion 

We presented a comprehensive data analysis workflow for ChIP-seq experiments. 
With all the key steps being worked out, we plan to integrate these steps so that the 
data can be analyzed in an automatic or semi-automatic fashion. While the system is 
developed for analyzing ChIP-seq data, it can be adapted to process other high 
throughput sequencing data such as microRNA screening data. 

Currently we are working on two fronts to improve this system: developing new 
algorithms and integrating the softwares. We are currently developing a more sophis-
ticated nonliear data normalization algorithm based on lowess fitting for comparative 
experiment data. In addition, we are developing new statistical models for more accu-
rate peak detection as well as a wavelet-based algorithm for multi-resolution enriched 
region discovery. In the software development front, currently our focus is to inte-
grate the individual pieces of the workflow including the mapping algorithms, data 
visualization and some routine analysis algorithms (e.g., peak identification) into the 
QUEST system . 

Workflow tools are available upon request. 
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Abstract. Phylogenetics is concerned with inferring the genealogical
relationships between a group of organisms (or taxa), and this relation-
ship is usually expressed as an evolutionary tree. However, inferring the
phylogenetic tree is not a trivial task since it is impossible to know the
true evolutionary history for a set of organisms. As a result, most phylo-
genetic analyses rely on effective heuristics for obtaining accurate trees.
These heuristics use tree score as a basis for establishing an accurate
depiction of evolutionary tree relationships. Relatively little work has
been done to analyze the relationship between improving tree scores (fit-
ness) and topological accuracy (distance). In this paper, we present a
new fitness-distance correlation coefficient called rF D to quantify the re-
lationship between evolutionary trees. By applying this measure to three
biological datasets consisting of 44, 60, and 174 taxa, our results show
that improvements in fitness are strongly correlated (rF D > 0.8) with
topological accuracy to the best-tree-overall. Moreover, we investigated
the use of the rF D coefficient if the best overall tree is not available
and found similar results. Thus, our results show that rF D is a robust
measure with several potential applications such as the development of
stopping criteria for phylogenetic search.

1 Introduction

Given a collection of n organisms (or taxa), the objective of phylogeny recon-
struction is to produce a phylogenetic tree describing the evolutionary rela-
tionships between the organisms. Evolutionary trees attempt to predict the
past with information (e.g., biomolecular sequences, morphological data) from
current-day organisms. From tracking the transmissions of diseases to improving
agricultural practices to meeting the needs of a growing population, the societal
impact of phylogeny reconstruction is tremendous. Maximum parsimony (MP)
and maximum likelihood (ML) are two of the major optimization problems used
to reconstruct phylogeny reconstruction, but both are quite difficult to solve
since they are NP-hard problems. Hence, heuristics are used to search for the
optimal-scoring tree in the exponentially-sized tree space. (For n taxa, there are
� Most of this work was done while at Texas A&M University.

S. Rajasekaran (Ed.): BICoB 2009, LNBI 5462, pp. 331–342, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



332 H.J. Park and T.L. Williams

(2n−5)!! possible evolutionary trees.) However, the actual objective of phylogeny
reconstruction is to obtain a reasonable estimate of the underlying evolutionary
history (as represented by the branching order, or “topology” of the phylogeny).
We investigate whether the goals of a phylogenetic heuristic (i.e., finding the
optimal-scoring tree) correspond to the actual goal of phylogenetics, which is
depicting accurate relationships between organisms (i.e., topological accuracy).

The optimization function value is the primary guidance mechanism that is
used by phylogenetic heuristics in their search for a (globally optimal) solution
to a given dataset. For this guidance to be effective, ideally, the better the trees
are rated, the closer they are to the true evolutionary history. In this paper, we
evaluate the nature of the relationship between the tree scores and the distance
between trees for a given search landscape. We develop a new measure, which
was motivated by the work of Jones and Forrest for genetic algorithms [10], to
summarize the relationship between tree fitness and tree distance. Our mea-
sure, called rFD, tests whether better-scoring trees correspond to more accurate
topologies. Hence, rFD measures the correlation between fitness (tree scores) and
distance (topological accuracy) to a target tree of interest. (The term fitness is
often used to refer to evaluation or objective function values.) Given that rFD

is a correlation coefficient, its value ranges from -1 to +1.

Our contributions. Our investigation of the correlation between fitness and dis-
tance addresses the following research questions.

1. What is the correlation between tree scores and their topological distance to
the best-tree-overall?

2. How sensitive is the rFD measure to having access to the best-tree-overall?
In other words, what is the robustness of the rFD measure if one uses the
best-tree-so-far?

Given that the true evolutionary history for a set of organisms is unknown, a
reasonable substitute is to use the best-scoring tree found by any phylogenetic
method as the best-tree-overall or “true” tree. The other target tree of interest
is the best-tree-so-far. A phylogenetic heuristic may not always have access to
the best overall tree tree—especially if the dataset of interest has been newly
created. However, every heuristic will have access to its best-tree-so-far, which
changes as the phylogenetic search makes improving moves based on fitness in
its attempt to find the optimally-scoring tree.

To address the above questions, we developed a heuristic called Simple Local
Search (SLS) that reconstructs trees based on the maximum parsimony criterion.
Our SLS heuristic is an implementation of the hill-climbing strategies employed
in popular phylogenetic software packages. Since we implemented SLS, we can
collect a variety of data regarding the choices that SLS makes during a search.
One of the advantages of using SLS is that we can collect trees of all different
fitness values on its search for the best-scoring tree. Commercial phylogenetic
software such as PAUP* [17] does not provide us with this type of control. Also,
we were unable to get TNT [9] to provide us with this type of functionality.
Although SLS performs comparably to PAUP* and outperforms Phylip [3], our



A Fitness Distance Correlation Measure for Evolutionary Trees 333

goal is not to recommend that SLS replace other established phylogenetic search
methods. We simply designed SLS to collect all the phylogenetic trees it visits
in tree space in order to explore the correlation between fitness and distance
between a collection of evolutionary trees.

With SLS, we study the fitness distance correlation coefficient, rFD on three
biological datasets consisting of 44, 60, and 174 taxa. Our results show that
improvements in fitness (MP scores) are strongly correlated (rFD > 0.8) with
topological distance to the best-overall-tree. For random trees, the rFD value
ranges from 0.2 to 0.4. The rFD correlation coefficient also shows high correlation
when the search only has access to the best-tree-so-far. One of the interesting
features of the rFD value in this context is that as the search progresses through
tree space the rFD values increase. Hence, the rFD values near the end of a search
are much higher than those during the early stages of the search. Hence, the rFD

value can be used as a mechanism for monitoring the amount of diversity found
in the trees found during the search. It can also be use as a way to monitor how
the search is converging toward the optimal-scoring tree.

2 Basics

2.1 Tree Fitness

We use the maximum parsimony (MP) criterion to compute the fitness of a
phylogenetic tree. MP is an optimization problem for inferring the evolutionary
history of different taxa, in which it is assumed that each of the taxa in the input
is represented by a string over some alphabet. The symbols in the alphabet can
represent nucleotides (in which case, the input are DNA or RNA sequences),
or amino-acids (in which case the input are protein sequences), or may even
include discrete characters for morphological properties. It is also assumed that
the strings are put into a multiple alignment, so that they all have the same
length. Maximum parsimony then seeks a tree, along with inferred ancestral
sequences, so as to minimize the total number of evolutionary events (counting
only point mutations).

Formally, given two sequences a and b of the same length, the Hamming
distance between them is defined as |{i : ai �= bi}| and denoted as H(a, b). Let
T be a tree whose nodes are labeled by sequences of length k, and let H(e)
denote the Hamming distance of the sequences at each endpoint of edge e. The
parsimony length of the tree T is

∑
e∈E(T ) H(e). The MP problem seeks the

tree T with the minimum length; this is the same as seeking the tree with the
smallest number of point mutations for the data. MP is an NP-hard problem [6],
but the problem of assigning sequences to internal nodes of a fixed leaf-labelled
tree is polynomial [5].

2.2 Robinson-Foulds Distance

In our experiments, we compare trees found by our Simple Local Search (SLS)
algorithm to target trees for the data under consideration. We use the Robinson-
Foulds (RF) distance to measure the topological distance between trees. The
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RF distance between two trees is the number of bipartitions that differ between
them. It is useful to represent evolutionary trees in terms of bipartitions. Remov-
ing an edge e from a tree separates the leaves on one side from the leaves on the
other. The division of the leaves into two subsets is the bipartition Bi associated
with edge ei. Let Σ(T ) be the set of bipartitions defined by all edges in tree T .
The RF distance between trees T1 and T2 is defined as

dRF (T1, T2) =
|Σ(T1) − Σ(T2)| + |Σ(T2) − Σ(T1)|

2
Our figures plot the RF rate, which is obtained by normalizing the RF distance
by the number of internal edges and multiplying by 100. (Assuming n is the
number of taxa, there are n − 3 internal edges in a binary tree). Hence, the RF
rate varies between 0% and 100%. Two trees with no bipartitions in common
will have an RF rate of 100%. Identical trees have an RF rate of 0%.

3 Fitness Distance Correlation

We compute the correlation between tree characteristics based on a measure pro-
posed by Jones and Forrest for genetic algorithms [10]. Their measure computed
the correlation between the fitness and Hamming distance between n individual
solutions in a population. We extend their measure for use in a phylogenetic
search. In particularly, consider a set F = {f1, f2, . . . , fn} of fitnesses (or MP
scores) and a corresponding set D = {d1, d2, . . . , dn} of n RF distances to a
target tree. In our study, the target tree will either be the best-tree-overall or
the best-tree-so-far.

We compute the correlation coefficient, rFD, between the two sets F and D
as

rFD =
cFD

σF σD
, where

cFD =
1
n

n∑
i=1

(fi − f̄)(di − d̄) (1)

is the covariance of F and D, and σF , σF , f̄ , and d̄ are the standard deviations
and means of F and D, respectively.

Consider a set T of phylogenetic trees. We would like to compute the rFD

correlation coefficient using the trees in T . Each tree in T will have a fitness value
(or MP score). Those MP scores compose the set F . Moreover, the topology of
each tree in T will be compared to a target tree t. The topology of a pair of trees
ti and tj is compared by computing their RF distance, dRF (ti, tj). Since we are
interested in computing the RF distance between all trees in T and a specific
tree t, we perform a one-to-all comparison between the trees in T and the target
tree, t.

A strongly positive (or negative) rFD coefficient, −1 ≤ rFD ≤ +1, indicates
that the solution quality gives good (bad) guidance searching for the target
tree. rFD values close to zero indicate no clear correlation between fitness and
distance. The search is essentially wondering aimlessly in tree space.
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4 Simple Local Search Heuristic

Our Simple Local Search (SLS) heuristic operates by successively exploring the
neighborhood of a current solution and moving to one of its neighbors. First,
SLS uses random sequence addition (RSA) to create the initial starting tree. To
construct a RSA tree, we randomize the ordering of the sequences in the dataset.
Afterwards, the first three taxa are used to create an unrooted binary tree, T .
The fourth taxon is added to the internal edge of T that results in the best MP
score. This process continues until all taxa have been added to the tree. Starting
trees can also be based on neighbor-joining (NJ) [14] or by generating a starting
tree randomly.

4.1 Tree Neighborhoods

Once we have a tree T , we improve it by rearranging its edges in a way that
improves its maximum parsimony score. There are three main types of rear-
rangement operations, which defines the neighborhood of T , used in phylogenetic
search heuristics [4].

– The nearest-neighbor interchange (NNI) operation swaps two adjacent bran-
ches on the tree. In other words, it erases an interior edge on the tree, and
the two branches connected to it at each end (so that a total of five branches
are erased). Afterwards, four subtrees are disconnected from each other. Four
subtrees can be hooked together into a tree in three possible ways, where one
of the trees is the original one. For a tree T with n taxa, 2(n−3) neighbors can
be examined for each tree. Local searches based strictly on NNI operations
perform poorly in comparison to their SPR and TBR counterparts.

– A subtree pruning and regrafting (SPR) move consists of removing an edge
from the tree with a subtree attached to it. The subtree is then reinserted
into the remaining tree in all possible places, each of which inserts a node
into a branch of the remaining tree. Since there are n exterior edges and n−3
interior edges on an unrooted binary tree, the total number of solutions in
the neighborhood is 4(n − 3)(n − 2).

– In a tree-bisection and reconnection (TBR) move, an interior branch is bro-
ken, and the two resulting fragments of the tree are considered as separate
trees. All possible connections are made between a branch of one and a
branch of the other. If there are n1 and n2 species in the subtrees, there will
be (2n1 − 3)(2n2 − 3) trees in a TBR neighborhood.

With a mechanism for generating a neighborhood, we must decide which neigh-
boring tree T ′ should be selected. SLS uses a first improvement algorithm to
select a neighbor. If score(T ′) < score(T ), then T ′ is accepted to replace the
current tree T . The search continues until there is no neighbor T ′ with a bet-
ter score than the current tree, T . If no better neighbor can be found, a local
optimum has been reached and SLS terminates.



336 H.J. Park and T.L. Williams

4.2 Search Path Trees

The search history of a phylogenetic heuristic is the set of neighbors selected
along the search path to the best tree. Let β represent the type of move used
in a neighborhood. Hence, β ∈ {NNI, SPR, TBR}. Pβ denotes the search path
trees consisting of selecting the first-improving neighbor from a β neighborhood.
The sequence of trees encountered along the search path using a β operation is
defined as

Pβ = (t1, . . . , tm).

For a path Pβ , the search examines tree ti before tree tj , where 0 ≤ i < j ≤ m.
There are m trees on the search path, Pβ , where t1 represents the initial (or
starting) tree, and tm is the final tree (e.g., local optimum). Thus, Pβ represents
the historical record of the phylogenetic search. All of the phylogenetic trees in
Pβ are binary trees.

5 Experimental Methodology

5.1 Molecular Sequences

We used the following biological datasets as input to study the behavior of our
SLS heuristic.

1. A 44 taxa dataset (17,028 sites) of placental mammals that includes 19
nuclear and 3 mitochondrial gene sequences for 42 placental and 2 marsupial
outgroups [11]. In our experiments, both SLS and PAUP* established a best
score of 43,085.

2. A 60 taxa dataset (2,000 sites) of ensign wasps composed of three genes (28S
ribosomal RNA (rRNA), 16S rRNA, and cytochrome oxidase I (COI)) [2].
Our SLS heuristic established a best score of 8,698 on this dataset.

3. A 174 taxa dataset (1,867 sites) of insects and their close relatives for the
nuclear small subunit ribosomal RNA (SSU rRNA) gene (18S). The se-
quences were manually aligned according to the secondary structure of the
molecule [7]. For this dataset, SLS established a best MP score of 7,440.

Since we do not know the true tree for these datasets, we use an approxima-
tion to the true tree. We run PAUP*, Phylip, and SLS on the above molecular
sequences. The best-scoring tree(s) found by these heuristics is considered to be
the “true tree”. Both SLS and PAUP found best-scoring trees with a maximum
parsimony score of 43,085 on Dataset #1. Hence, those trees make up the best-
tree-overall set for this dataset. For the remaining datasets, SLS found the best-
scoring trees and as result establishes the best-tree-overall set for Datasets #2
and #3. Accuracy, as measured by the Robinson-Foulds (RF) distance is be-
tween the trees of interest and the best-tree-overall (or “true tree”). We also
compute accuracy with the best-tree-so-far (described in more detail in 6.3) by
the SLS heuristic.
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Fig. 1. Performance of SLS, PAUP*, and Phylip. The same set of random addition
sequence starting trees was used by each heuristic. The best scores found for each
of the datasets (from smallest to largest) is 43085, 8698, and 7440. Each data point
represents the average of five runs.

5.2 Implementation and Platform

Our SLS algorithm is implemented in C++. Our implementation took advantage
of the libcov [1] phylogenetic software package to handle reading data matrices
plus we used their data structures to manipulate trees. However, we wrote our
own branch-swapping routines as well as developed an algorithm for calculating
the MP score more efficiently. We used the HashRF algorithm to compute the RF
distances between trees [16]. Random trees were also generated using PAUP*. All
algorithms were run five times on each of the biological datasets. All experiments
were run on an Intel Pentium D platform with 3.0GHz dual-core processors and
a total of 2GB of memory.

6 Experimental Results

6.1 SLS Performance

Figure 1 compares the performance of our SLS algorithm to local search heuris-
tics implemented in PAUP* [17] and Phylip [3] on three biological datasets,
which are described in detail in Section 5.1. The plots demonstrate that our
SLS implementation performs comparably to PAUP* in terms of finding sim-
ilar scoring MP trees. However, our algorithm does require more time to find
good-scoring trees. Given that our objective of understanding the relationship
between parsimony scores and topological distance, the actual runtime of a local
search heuristic is not of concern here. Our objective is to make sure that the
best-scoring trees found by SLS are comparable to those found by PAUP*. We
note that Phylip is not competitive in terms of MP scores found to either PAUP*
or SLS.

6.2 rF D and the Best-Tree-Overall

Before exploring the behavior of the rFD value, we take a look at the search path
lengths of all the datasets and neighborhoods used in this study. Table 1 shows
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Table 1. Total number of search path trees for the datasets under study

|PNNI | |PSPR| |PTBR|
Dataset #1 (44 taxa) 166 224 265
Dataset #2 (60 taxa) 276 778 792
Dataset #3 (174 taxa) 748 1,698 1,870

Table 2. The fitness distance correlation coefficients (rF D) for all three datasets

Fitness distance (rF D)

PNNI PSPR PTBR PRAND

Dataset #1 (44 taxa) 0.84 0.81 0.89 0.41
Dataset #2 (60 taxa) 0.82 0.92 0.95 0.28
Dataset #3 (174 taxa) 0.94 0.96 0.98 0.21

the result. As the number of taxa in a dataset increases, the number of trees in
the search path also increases. This corresponds to there being more trees in the
search space to consider for larger datasets. Furthermore, larger neighborhoods
(e.g., TBR) have more trees to consider than their smaller counterparts (e.g.,
NNI). The search path lengths are also important since they represent the num-
ber of values in the F and D sets used in Equation 1. For example, computing
the rFD value for the 265 search path trees based on an PTBR neighborhood
for Dataset #1, results in |F | = |D| = 265 values. F will contain the fitness
(parsimony scores) of the 265 search path trees. D will represent the RF rate
between each of the 265 search path trees to a target tree. In this subsection,
the target tree will be the best-tree-overall.

Table 2 shows the rFD correlation coefficient of the search path trees used
in this study. Based on the table, there is a strong positive correlation between
tree scores and their RF distance to the best-tree-overall. The same data that
are used for computing the rFD coefficient can be graphically displayed in the
form of a fitness-distance plot. Figure 2 shows the results for each of the datasets
using TBR-based search path trees (PTBR). The plots clearly show that fitness
and distance are linearly correlated. Hence, a phylogenetic search that only uses
fitness as a guide does result in trees that are topologically close to the best-tree-
overall.

On the other hand, trees randomly extracted from tree space have very low
correlation when compared to the best-tree-overall. Figure 3 shows the scatterplot
of the fitness-distance pairs based on 10,000 trees randomly selected from the
search landscape. Here, the rFD value decreases from 0.41 (44 taxa trees) to 0.21
(174 taxa trees). Based on this result, one would predict that the correlation
between fitness and distance for random trees will tend toward zero as the taxa
size increases. Hence, the rFD value says that the search is wondering aimlessly
in tree space, which matches exactly with the behavior of randomly selecting
trees.
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Fig. 2. Fitness distance correlation (rF D) for PTBR search path trees on each of the
biological datasets. The fitness (MP score) and the RF rate is relative to the best-
tree-overall tree of trees selected along the path to the local optimum under a TBR
neighborhood.
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Fig. 3. Fitness distance correlation for 10,000 random trees, where the size of the
trees is related to the number of taxa in the biological datasets. (a) rF D = 0.41. (b)
rF D = 0.28. (c) rF D = 0.21

6.3 rF D and the Best-Tree-So-Far

One of the limitations of how the fitness-distance coefficient is used in other
applications is that access to the best (or optimal) solution is required. In phy-
logenetics, for datasets that have been heavily studied such as the rbcL500 (or
Zilla data) [8], [12] this isn’t necessarily a problem. Moreover, on the datasets
used in this study, we have used numerous software packages (e.g., PAUP* and
Phylip) to establish the best-tree-overall. However, it is likely that better trees
do exist in tree space, which maybe be found as new phylogenetic heuristics
are developed, for these datasets. However, suppose we don’t have access to a
reliable best-tree-overall? How can the rFD correlation coefficient be of use in
this situation?

As a phylogenetic heuristic progresses through the search landscape, it will
always have access to the best-tree-so-far. In other words, if a search has been
running for time α, the search can return the fitness of the best-scoring tree
its seen for that particular time point. Our next experiment looks at the rFD

coefficient of the search at different time intervals (0%, 20%, . . . , 100%) of the
search. The 0% time interval (or search progress) represents the starting trees.
By Equation 4.2, this represents tree t0 in the search path. The 20% time interval
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Fig. 4. rF D are estimated with search path trees at each search progress on all dataset

0 10 20 30 40 50 60 70 80
7400

7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

P
ar

si
m

on
y 

S
co

re

RF rate (%)

r
FD

 = 0.82

(a) 60% search progress

0 10 20 30 40 50 60 70 80
7400

7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

P
ar

si
m

on
y 

S
co

re

RF rate (%)

r
FD

 = 0.91

(b) 80% search progress

0 10 20 30 40 50 60 70 80
7400

7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

P
ar

si
m

on
y 

S
co

re

RF rate (%)

r
FD

 = 0.96

(c) 100% search progress

Fig. 5. rF D at various points in the search

represents tree 0.20 ·m, where m is the length of the search path. The remaining
tree interval points are found similarly.

Figure 4 (a) shows the rFD values based on different search intervals based on
a TBR neighborhood. For example, to compute the rFD values at 20% search
progress, only trees labeled from t0 to t0.20·m are used in the calculation. Fur-
thermore, the RF distances between each of these trees is compared to the best-
tree-so-far, that is the best-tree found within the 0% to 20% time interval.

rFD values in Figure 4 (a) decrease in the beginning and increase again at
the 40 % search mark. The initial rFD values are high since there are not many
points involved in the calculation. However, after 40 % search progress, the rFD

value steadily increases showing a high positive correlation. Figure 5 shows the
scatter plots of the rFD values for Dataset #3 at 60%, 80%, and 100% search
progress. According to Figure 4(a), the rFD values are strongly correlated by
80% search completion. If the search were to stop early, what would be effect
on the topological accuracy of the search as it relates to the best-tree-overall.
Figure 4(b) shows the results. For each point, the RF distance between the best-
tree-so-far at p% search progress is compared with the best-tree-overall. Clearly,
at 80% search progress for the two smallest datasets, there is minimal (if any)
loss in topological accuracy when compared with completing the search (100%
search progress). Furthermore, there is a savings of 20% in overall computational
time.
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7 Conclusions and Future Work

It is impossible to know the true evolutionary history for a set of organisms. As
a result, phylogenetic heuristics attempt to find the optimal-scoring tree in the
exponentially-sized tree space. Such a strategy is based on the assumption that
better-scoring trees relates to depicting accurately the evolutionary relationships
between the set of organisms.

We develop a new correlation coefficient called rFD to quantify the relation-
ship between fitness (MP scores) and distance (topological accuracy) of the trees
found during a phylogenetic search. Based on a variety of different biological
datasets, our results show that improvements in fitness are strongly correlated
(rFD > 0.8) with topological distance to the best-tree-overall. However, we also
investigated the use of the rFD coefficient if the best overall tree is not available.
Every run of a phylogenetic search can produce a best-tree-so-far. By monitor-
ing the search at different time intervals, we also found that the rFD coefficient
shows strong positive correlation. Hence, the rFD value is robust in that it does
need access to the best-tree-overall. As the search gets closer to terminating at a
local optimum, the rFD value increases accordingly. Hence, rFD values could be
used as stopping criterion to determine when a search should stop. For Datasets
#1 and #2, it would safe to stop early (at the 80% search progress point)
without any penalties in topological accuracy. Furthermore, a savings of 20% in
computation is saved without any corresponding loss in accuracy.

Future work will investigate the value of rFD by examining additional datasets.
The use of rFD as a way to monitor convergence real-time during a search will also
be studied. We plan to improve the performance (in terms of running time) of our
SLS implementation and make it publicly available to the systematic community.
Furthermore, we plan to apply our approach to more powerful heuristics such as
parsimony ratchet [12], RAxML [15], and MrBayes [13] which will allow us to an-
alyze much larger datasets.
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Abstract. Complex strategies have been developed for whole genome
alignment of multiple species. In the case of population genomics studies,
the sequences being aligned are often very similar. We propose a reference
coordinate system that simplifies the task of comparing many closely
related genomes while taking into account structural rearrangements. We
implemented software to compare a group of three strains of the malaria
mosquito, Anopheles gambiae and a group of three strains of the malaria
parasite, Plasmodium falciparum. Our simplified representation enables
us to leverage existing work on the species while performing fine-grained
analysis on the new draft genomes. Further, this approach will easily
scale to hundreds of closely related genomes, enabling new analyses in
population genomics as additional genomic sequences become available.

1 Introduction

Now that genome sequencing has become less expensive, biologists are able to
ask even broader questions about genetic variation. Computational approaches
for studying variation between two genome sequences often utilize whole genome
alignment (WGA) [1]. Because of the historical diversity of completed genomes,
genome alignment methods have been designed to be sensitive enough to find
homologies between diverged genomes such as human and mouse [2]. Most run
on a typical workstation using an assortment of fast alignment approximation
techniques.

Given the extent of genomic rearrangement in diverged genomes, complex
strategies have been developed to extend whole genome alignment to multi-
ple genomes. Most WGA approaches overcome rearrangements by construct-
ing a “homology map”, which determines collinear blocks between two or more
genomes. Alignment is then restricted to these collinear blocks. In addition, re-
gions defined in a homology map can be processed using traditional multiple
alignment tools, which allows WGA methods to use previously developed pro-
grams to perform the comparison [3,4,5,6]. These methods have been useful in
gene finding and other applications [7,8,9,10].
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Here, we consider a special case of WGA in the context of population genomic
studies where draft quality sequencing is performed on related individuals, sub-
species, or clinical isolates. Specifically, this work is motivated by ongoing efforts
in malaria biology where tens of mosquito genomes and hundreds of malaria par-
asite genome projects are planned to help eradicate this deadly disease. Because
each draft genome may be segmented in hundreds or thousands of pieces, these
regions need to be consistently arranged prior to analysis. Further, in the case
of malaria-focused efforts, at least one closely related genome has been highly
finished and is available in chromosome form. In these cases it is desirable to
leverage existing structural and annotation knowledge about this genome that
will generally hold true in related genomes. Subsequent analysis is simplified
because the need to annotate each genome separately is eliminated. Annotated
gene structures can be easily correlated with rates of genetic variation to provide
important information about evolutionary processes.

In this work, we develop an alternative representation for WGA that takes ad-
vantage of the observation that closely related genomes contain only limited rear-
rangement. Rather than describing an alignment in terms of a dynamic homology
map, we choose a specific reference coordinate system based on a highly finished
genome. This simple approach allows one or more sets of scaffolds from closely
related genomes (perhaps hundreds!) to be compared in a straightforward man-
ner for population genomics studies. We develop a module for a popular WGA
tool that generates an estimated chromosome-anchored draft genome based on
the reference coordinate system. This facilitates comparing tens of genomes di-
rectly using the vertical multiple alignment (VMA) format [11]. We apply our
pipeline to two groups of organisms: a group of three strains of the malaria
mosquito (Anopheles gambiae) and a group of three strains of the malaria para-
site (Plasmodium falciparum). As additional genomes from these species become
available, our approach will scale to large-scale population genomics projects.

2 Related Work

Previously, genomes were compared using experimental techniques. For example,
fluorescent in situ hybridization (FISH) can be used to roughly anchor draft
scaffolds on a chromosome even if no prior information is available about the
genome being sequenced. Genetic maps are another form of experimental data
that can can be used to anchor scaffolds onto chromosomes in a specific order
and orientation. However, both of these techniques require expensive, manual
intervention. If a closely related genome is available, then computational WGA
is a more practical technique that requires no additional experimentation.

WGA is an extention of the classic bioinformatics problem of sequence align-
ment. In general, the goal of sequence alignment is to find similar regions between
sequences. Usually sequence alignment is classified as either global [12] or local
[13]. Finding an optimal alignment is infeasible for long sequences, so heuristic
algorithms have been developed [14,15,16,17,18,19,20]. The availability of whole
genome sequences introduces a number of new challenges. Not only do algorithms
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need to be efficient to align whole genome sequences, but they also must take
both nucleotide mutations and structural rearrangements into account. Some
methods assume that orthologous regions are known in advance, so these don’t
need to consider structural rearrangements [21]. Other whole genome aligners
have been designed that use aspects of both global and local alignment to better
represent the relationship between two whole genome sequences [2,22,23,24,25].
First, local alignments are used to find seeds. Next, seeds that are consistent
with each other are chained or clustered together to form the alignments. Whole
genome alignment has also been extended to align multiple genomes of various
degrees of divergence [3,4,5,6,8].

Most tools provide alignment summaries consisting of chromosome or scaf-
fold names, start and end positions, relative orientations of the sequences in the
alignment, and measures of similarity such as percent identity. This informa-
tion can be displayed in a browser [26,27] where one sequence is chosen as the
reference sequence and the alignment is shown relative to that reference coordi-
nate system. This can be a useful interface for scientists who want to visualize
a specific region of the genome, for example one containing a gene of interest.
However, if further computational processing is needed, for example an analysis
of variation across the chromosome, the alignment format can be quite complex
to deal with. When many closely related genomes are being compared, as in a
population genetics study, a simpler representation is needed.

The work here was in part inspired by the syntenic assembly used in a recent
population genomics study of Drosophila simulans [10]. In this case, the refer-
ence sequence chosen was the finished genome of D. melanogaster. Reads from
several strains of D. simulans were aligned to the reference genome, then the
alignment was iteratively refined. Additionally, draft scaffolds of the outgroup for
the study, D. yakuba, were aligned to the reference sequence using Mercator [6]
and MAVID [20]. The results of the alignment were represented in VMA format.
In the organisms of interest to our malaria efforts, draft scaffolds of the query
genomes had already been assembled. Therefore, we independently developed
a pipeline that uses genome alignment information to construct an estimated
chromosome-anchored draft genome for our target organisms. The estimated
genome uses the content from a query genome, but this content is translated
into the coordinate system of a reference genome. The estimated chromosomes
can be represented simply as a FASTA file, making it easy to manipulate for fur-
ther analysis. Alternatively, estimated chromosomes from many query genomes
can be represented in VMA format, which allows simultaneous comparisons be-
tween multiple closely related genomes.

3 Pipeline

Our pipeline consists of three main steps: alignment, filtering, and translation.
A schematic is presented in Fig. 1. First, each sample genome is aligned to the
reference genome using a whole genome alignment technique. There are several
existing software packages that can be used for whole genome alignment. Any
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Fig. 1. Pipeline to translate the content of query scaffolds into coordinates of a refer-
ence chromosome

whole genome alignment algorithm can be used in the first step of our pipeline.
The alignment software identifies homologous blocks between a pair of genomes.

Next, smaller scaffolds are optionally filtered out. Filtering may need to be
adjusted based on the quality of the scaffolds and the degree of relatedness be-
tween genomes. For example, an assembly may contain scaffolds that are simply
alternative haplotypes for a single portion of the genome. Ideally, each position
in a scaffold would have a one-to-one mapping to a position on the reference
chromosome. If alternative haplotypes have been assembled separately, then two
scaffolds would align to a single location on the the reference chromosome. The
filtering process can choose which of these scaffolds should be used for further
analysis. We should also keep track of the alternative haplotype if this informa-
tion is needed later.

Finally, using the filtered alignment, each position in the set of scaffolds is
translated into a corresponding position in reference coordinates. Reference co-
ordinates with no corresponding query content are filled with the placeholder
‘N’. Reference coordinates with two or more corresponding query sequences are
filled with the placeholder ‘X’. The result is a set of chromosomes for each sample
genome. The chromosomes can be compared to each other base by base.

4 Methods

We implemented the pipeline using the whole genome alignment tool nucmer
to provide the foundation for anchoring query genomes to a fixed reference. We
created a module to filter and format the output from nucmer into estimated
chromosomes so that the query genomes could easily be compared and analyzed.
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Fig. 2. Nucmer uses the delta file format to represent gapped alignments between
homologous regions. The alignment can be reconstructed based on the gap information
provided in the file.

Alignment. Nucmer is an alignment tool that was designed to be efficient
enough to align long genomic sequences such as whole genomes, and flexible
enough to detect homologous sequences at various degrees of divergence [25].
Nucmer performs a pairwise alignment between one or more query sequences
(i.e., scaffolds in a draft genome) and one or more reference sequences (i.e.,
chromosomes in a finished genome). First, it anchors the alignment by find-
ing maximal matches between the two genomes. Next, it clusters these matches
together. Finally, it extends the matches into alignments using dynamic pro-
gramming. Nucmer represents the alignments in a delta file, which encodes the
locations of gaps in the alignment relative to the previous gap [28]. The delta
file format is summarized in Fig. 2.

The nucmer delta file counts how many positions in the non-gapped sequence
there are between the previous gap and the current one. Gaps appearing in the
query sequence are labeled with a positive number, and gaps appearing in the
reference sequence are labeled with a negative number. For example, the optimal
alignment between the two sequences in the figure contains two gaps. The first
two lines are headers to identify the sequences, the start and end positions of
the alignments, and mismatch information. The following three lines contain gap
information. The first gap occurs 3 positions from the beginning of the alignment
in the query sequence, and the second gap occurs 5 positions later in the reference
sequence.

The nucmer pipeline has many options to tailor the alignment to specific
needs. For the A. gambiae analysis, we used the -mum option, which limits
alignment seeds to only those that are unique in both genome sequences, and we
set the minimum cluster size for an alignment to be 200 nucleotides. This cut
down on spurious alignments that otherwise occur due to the repetitive nature
of the genomes. For the P. falciparum analysis, we used the default nucmer
settings: anchors must be unique in the reference sequence but not necessarily
the query, and minimum cluster size was 65 nucleotides.



348 A. Regier, M. Olson, and S.J. Emrich

Filtering. We implemented an optional filtering step that discards scaffolds
less than 100,000 nucleotides long. We used this filtering to reduce the number
of reference positions that mapped to multiple query sequences, thus reducing
ambiguity in the mapping.

Alternative filtering methods are possible and may be superior. One possibility
is to translate all query scaffolds and, in case of ambiguity, to dynamically select
a single scaffold for any given reference position based on some criterion. For
example, if two scaffolds overlap on the same reference positions, it may be
desirable to use the longer scaffold in the estimated chromosome and classify the
shorter scaffold as a potential alternative haplotype.

Translation. We created a module that uses the delta file to translate query
coordinates into reference coordinates. First, each alignment is loaded from the
delta file. The alignments are sorted in two ways: by reference sequence and by
query sequence.

In order to map a single coordinate from the query to the reference, the set of
delta alignments for the given query sequence is retrieved, and a binary search
is performed to find the delta alignment that contains that coordinate. We step
through that alignment from the beginning, keeping track of the alignment gaps
as they occur. Once the desired query coordinate is reached, the corresponding
reference coordinate is output. If the coordinate is not found in any alignment,
-1 is returned.

To map a set of coordinates in the same query sequence, the search coordinates
are first sorted. Then, the above method is used to map the first coordinate in the
set. When a coordinate is found, its reference location is printed, and the search
coordinate is updated to be the next one in the set. We continue walking through
the alignment from the same place, looking for the new search coordinate. If not
all coordinates have been mapped when the end of a delta alignment is reached,
the next delta alignment for this sequence is retrieved and the search continues.

Once all of the coordinates in the query genome have been mapped to coor-
dinates in the reference genome, the translation module is used to create a new
chromosome representation for the query genome. First, an empty chromosome
is initialized with a position for each coordinate on the reference chromosome.
Initially, all positions contain the placeholder ‘N’. As each query scaffold posi-
tion is translated, any information associated with that position (e.g., base call,
quality information, SNP calls, etc.) are filled in to the reference coordinates. If
multiple query coordinates map onto a single reference coordinate, either one of
the coordinates is dynamically selected (see Sect. 4), or the ambiguity is indi-
cated by placing an ‘X’ in that position.

The results can be output in two ways. First, each query genome can be
printed as a multi-fasta file, with one sequence per reference chromosome. Each
estimated chromosome in the multi-fasta file contains exactly the same number
of nucleotides as its corresponding chromosome in the reference genome. Al-
ternatively, one or more query genomes can be printed in a VMA format (see
Table 1).
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Table 1. VMA excerpt from P. falciparum Chromosome 5 alignment

Position 3D7 hb3 dd2
37022 C T C
37034 T C C
37035 A T T
37045 A C C
37048 T G G
37062 T G G
37068 A G G
37070 C T T
37073 T A A
37099 T C C
37100 C T T
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Fig. 3. a) Results from A. gambiae estimated chromosomes. b) Results from P. falci-
parum estimated chromosomes. Proportion of bases mapped, unmapped, or mapped
ambiguously.

5 Results

We used this pipeline to construct alignments for two different groups of genomes.
The A. gambiae group consisted of a finished assembly of the PEST strain as
well as two draft genomes from strains called Mali-NIH and Pimperena. There
are 230,466,657 total bases in the 5 reliably assembled chromosome arms of
the PEST assembly. Over 70% of the PEST reference coordinates are cov-
ered by uniquely mapped query sequence from both strains. When scaffolds
shorter than 100,000 nucleotides are discarded, the number of reference positions
with ambiguously mapped content (represented by the placeholder X) decreased
slightly, but the number of reference positions with no content (represented by
the placeholder N) increased. The number of unambiguously mapped reference
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Fig. 4. Diversity across Chromosome 5 in P. falciparum based on VMA. Most nu-
cleotides were fixed, i.e., 3D7 = hb3 = dd2. For positions where there is a single
nucleotide polymorphism (SNP), these are broken down into shared differences where
either hb3 or dd2 are the same as 3D7 or private differences, where 3D7 is not equal
to either draft.

coordinates (A,C,T,G) is highest when no scaffold filtering is used. The coverage
results are summarized in Fig. 3(a).

The P. falciparum group contained a finished reference genome from a strain
of the malaria parasite known as 3D7 as well as draft genomes from two addi-
tional strains known as hb3 and dd2. There are 23,264,337 total bases in the
14 assembled chromosomes of the 3D7 strains. The filtering step was omitted,
as the assembly was not expected to contain alternative haplotypes. The hb3
strain uniquely covers 87% of the reference coordinates, while the dd2 strain
covers 68%. This difference in coverage levels could be explained by a number
of factors. The assembly quality of the hb3 scaffolds could be higher, or the hb3
and 3D7 strains could be more closely related, and thus easier to align, than
the dd2 and 3D7 strains. The coverage results are summarized in Fig. 3(b). A
sample analysis of sequence diversity across chromosome 5 is shown in Fig. 4,
which indicates most nucleotides are the same between all malaria isolates.

6 Conclusion

In this work, we propose and implement a simplified representation for WGA
when the genomes being aligned are closely related, as in a population ge-
nomics study. Rather than maintaining a dynamic homology map, we choose
a single reference coordinate system and translate all query sequences into that
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coordinate system. In this way, existing work on a finished genome can be lever-
aged, and comparative analysis of multiple genomes at a nucleotide level becomes
trivially scalable. Although the output will not show any structural variation,
this information can be noted during the process of creating estimated chromo-
somes.

If the genomes are very similar on a nucleotide level, as is found in malaria
isolates and mosquito subspecies, pairwise alignments with a single reference
genome as outlined in this work is sufficient for population genomic analysis.
If genomes are more diverged, we note that the estimated chromosome creation
step could be done using more sophisticated progressive multiple alignment, even
in the presence of limited genome rearrangements. This is a direction for future
work.

Software is available on request.
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Abstract. Cytoplasmic post-transcriptional modification of mRNA transcripts 
in the form of polyadenylated (poly(A)) tails plays a key role in their transla-
tional control. The timing and degree of polyadenylation has been shown to be 
due in part to a consensus nucleotide sequence -- cytoplasmic polyadenylation 
elements (CPEs) which can be detected by a polyadenylation element binding 
protein (CPEB). An individual mRNA transcript controlled by CPEB may con-
tain one or more CPE sites occurring upstream of a consensus hexamer poly-
(A) signal. A probabilistic model, CPEDetector, is presented for predicting 
whether or not a gene’s translation is mediated by CPEB. CPEDetector takes 
into account detected CPE sites, poly-A sites, and distance metrics between the 
detected locations. This approach is tested against the 3’ untranslated regions 
(UTRs) of known genes using the UTRdb database.  

Keywords: CPE, CPEB, bioinformatics, hidden Markov model, context free 
grammar, untranslated region. 

1   Introduction 

1.1  Central Dogma and Gene Regulation 

The Central Dogma of Molecular Biology in summary states that the process of creat-
ing a protein encoded by a gene first begins with the genomic DNA, which is tran-
scribed into an RNA intermediary template, known as messenger RNA (mRNA), 
which in turn is translated into a protein sequence using the genetic code. Regulation 
of genes can occur at either the transcriptional level, through complexes that form at 
transcription factor binding sites, or at the translational level. Transcription factor 
binding sites are typically found upstream (5’) of the transcription start site (TSS). In 
contrast, many translational control regulators bind to the 3’ untranslated region 
(UTR) downstream of the coding region. One such translational control mechanism is 
cytoplasmic polyadenylation. 
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1.2   Cytoplasmic Polyadenylation and Translational Control 

In a number of molecular processes such as oogenesis, embryogenesis, and synaptic 
plasticity of the central nervous system, it is important to have the mRNA available 
temporally and spatially for specific and efficient protein production. One important 
mechanism underlying such translational control is cytoplasmic polyadenylation.  

It has been long known that all eukaryotic pre-mRNAs undergo polyadenylation in 
the nucleus before they are exported to the cytoplasm. The newly synthesized pre-
mRNA is endonucleolytically cleaved at about 10 nucleotides upstream of the 
polyadenylation signal (PAS), a hexamer sequence found in the 3’ UTR. The poly(A) 
stretch (typically around 30nt in length) is then added to the newly formed 3’ end. 
The poly(A) tail and its bound proteins are important for termination of transcription, 
export of the mRNA from the nucleus, and protection of the mRNA from degradation 
by exonuclease. Multiple variants of the PAS sequence have been identified in nature 
with different occurrences and distinct efficiencies for polyadenylation (table 1) [1]. 

Table 1. Alternative hexamer polyadenylation site (PAS) patterns 

Hexamer Frequency  Hexamer Frequency
AAUAAA 0.6431  UUUAAA 0.0133 
AUUAAA 0.1645  AAGAAA 0.0122 
UAUAAA 0.0354  AAAAAG 0.0088 
AGUAAA 0.0298  AAUGAA 0.0088 
AAUAUA 0.0188  AAUAGA 0.0077 
GAUAAA 0.0144  ACUAAA 0.0066 
CAUAAA 0.0144  AAAACA 0.0055 
AAUACA 0.0133  GGGGCU 0.0033 

The short poly(A) tails added during nuclear polyadenylation helps to stabilize the 
mRNA and prevent it from degradation. However, the elongation of poly(A) tails in the 
cytoplasm (cytoplasmic polyadenylation) has a rather different role: to recruit the 
mRNA for translation. Cytoplasmic polyadenylation was first identified in eggs and 
single-cell embryos [2–5], where little RNA transcription activity was detected. 
Polyadenylation was immediately followed by translation. Timed expression of pre-
stored mRNA has also been observed during early embryonic development to initiate 
mitosis and in some circumstances, to dictate the polarity of the embryo. Such transla-
tional activation is accompanied by elongation of the poly(A) tails [6,7]. The  
 

Table 2. Alternative cytoplasmic polyadenylation element site (CPE) patterns 

CPE Pattern 
UUUUUAU 
UUUUUGU 
UUUUUACU
UUUUUGUU
UUUUAAU 
UUUUACU 
UUUUAUU 
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Fig. 1. Description of elements in 3’ UTRs involved in translational regulation. Rounded rec-
tangles, circles, along with the hexagon represent the various states. Each state is in turn a 
probabilistic model. Lines represent possible transitions from each probabilistic state. CPE: 
cytoplasmic polyadenylation element. Gap: nucleotide sequence gap. HEX: 6-base poly(A) 
signal.  

same mechanism was later discovered to be employed by the hippocampus and sev-
eral other parts of the central nervous system, for the acquisition and consolidation of 
memory, or for long-term synaptic plasticity.  

Both a PAS motif and a U-rich motif are required for cytoplasmic polyadenylation 
of local mRNAs [8,9]. This short U-rich sequence UUUUUAU is known as the “cy-
toplasmic polyadenylation element” (CPE) [8]. Several sequence variants of CPE 
have been identified [8,10] (Table 2). CPE is often located upstream of the PAS, al-
though the distance to PAS usually varies between ~10nt and 100nt, and in some 
instances CPE overlaps with the PAS. Many mRNAs have more than one CPE in 
their 3’ UTR. The sequence, the number of copies of CPE and the distance to the PAS 
are widely variable for different mRNAs. Such variables could indicate the presence 
of modulators of the process of translational control. Fig. 1 illustrates the different 
signals found in mRNAs regulated by cytoplasmic polyadenylation element binding 
proteins. 

1.3   Cytoplasmic Polyadenylation Element 

Cytoplasmic polyadenylation element binding protein (CPEB) was first identified in 
1990 in Xenopus oocytes [10,11]. The term CPEB became interchangeable with 
CPEB1 later as more paralogs were identified   [12–16]. Studies on the mechanisms 
of CPEB-regulated translational control have extensively focused on CPEB1. Al-
though evidence suggests that similar machineries are employed in oocytes, early 
embryos, and CNS, the major discoveries were derived from work in oocytes, since 
oocyte maturation is a more facile and efficient model for CPEB1-regulated transla-
tional control.  

CPEB1 has a dual role as a translational activator and a translational inhibitor. Un-
der quiescent conditions, unphosphorylated CPEB1 binds to the 3’ UTR of mRNA 
and represses translation. When cells respond to appropriate stimuli, the activation of 
CPEB1 via phosphorylation or the degradation of CPEB1 removes the repression and 
allows translation to initiate. The complete mechanism through which CPEB1 regu-
lates polyadenylation is yet to be completely elucidated, but current knowledge indi-
cates that it involves both the 3’ and 5’ end of the mRNAs. In the dormant state, an 
adaptor protein, maskin, interacts with both CPEB1 (which binds to CPE in the 3’ 
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UTR of the mRNA) and translation initiation factor eIF4E (which binds to 5’ cap of 
the mRNA) [17]. This binding bends the mRNA molecule to bring its 3’ and 5’ ends 
close together. The interaction of maskin to eIF4E excludes eIF4G from binding to 
eIF4E. This blocks the assembly of the complete translational machinery. Phosphory-
lated CPEB is transformed into an activator which gains enhanced affinity to Cleav-
age and Polyadenylation Specific Factor (CPSF), which in turn recruits Poly (A) 
Polymerase (PAP) and initiates polyadenylation. The newly synthesized poly (A) tail 
is quickly bound and protected by Poly (A) Binding Protein (PABP), which subse-
quently recruits translational initiation factor eIF4G to displace maskin from eIF4E. 
This stabilized eIF4E-4G interaction enrolls the ribosome for initiation of translation.  

CPEB regulated translation of CPE-containing mRNAs is a temporally and/or spa-
tially tightly controlled process. It is the common underlying foundation for oogene-
sis, embryogenesis and synaptic plasticity. Both CPEB protein and its target mRNAs 
need to be localized to the proper location for the local control of translation. The cis-
element CPE in the 3’ UTR of mRNA molecules and the RNA-binding protein CPEB 
have been demonstrated in the transport of such mRNAs. A review of the role of 
CPEB is given in [18–20]. 

2   Methods 

Probabilistic models have been applied to classify a number of potentially meaningful 
biological signals, particularly those involved in regulation. Examples include Gibbs 
sampling [21–23] and expectation-maximization approaches [24] for locating se-
quence motifs; hidden Markov models (HMMs) for detecting motifs and protein fam-
ily classifications [25,26] as well as gene prediction [27,28]; and stochastic context 
free grammars (SCFGs) for detecting RNA genes [29,30]. While much remains to be 
uncovered about genes translationally regulated by CPEB, patterns regarding the 
RNA-recognition motif are beginning to emerge [31]. Using this information as a first 
step, a stochastic context-free grammar is created to identifying potential targets of 
CPEB.  

Our model, CPEDetector, creates a finite state automata (FSA) based on the com-
ponents shown in Fig. 1, which includes cytoplasmic polyadenylation elements 
(CPE), a poly(A) signal (PAS), and nucleotide gaps (GAP) occurring between ele-
ments. Each of these components is an independent probabilistic model (described in 
detail in sections 2.1-2.3), resulting in a single emission probability for each compo-
nent in the FSA. Transition probabilities between states in this case are treated as one. 
Initially, each input sequence (a fasta sequence that is typically a 3’ UTR region of a 
gene of interest) is scanned and scored, nucleotide by nucleotide, for the presence of 
CPE and PAS. Once the independent components resulting in a probability score 
greater than zero are found, they are put together in a model. 

2.1   CPE Modeling  

Cytoplasmic polyadenylation elements are modeled according to the observed func-
tional CPE sites [8,10]. The consensus model sequence is UUUUUGU. However, 
alternative, functional CPE sites containing either seven or eight nucleotides have 
been found. Fig. 2 shows the FSA for modeling CPE sites.  
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Fig. 2. Description of FSA used for evaluating sequences for CPE sites. Emission probabilities 
of each of the four nucleotide bases are listed inside the boxes. Transition probabilities are 1, 
unless otherwise labeled. 

2.2   PAS Modeling 

For each input sequence, potential PAS regions are detected using an ungapped six-
state HMM. For each of the six match states, emission probabilities are constructed 
according to the weighted frequency of each of the four nucleotides A, C, G, and T/U 
found in functional poly (A) sites at the corresponding hexamer position, according to 
the observed frequencies reported in Table 1. Transitions between each of these are 
set to 1, allowing only for matches.  Fig. 3 shows an illustration of the poly(A) 
hexamer model. 

 

Fig. 3. Description of FSA used for evaluating sequences for PAS hexamer sequences. 
Emission probabilities of each of the four nucleotide bases are listed inside the boxes. All 
transition probabilities are set to one. 

2.3   GAP Modeling 

Mutagenesis studies of cyclin B1-B5 mRNAs indicate that the distance between mul-
tiple CPE sites and between the CPE and HEX site are critical in determining transla-
tional control by CPEB [31]. Based on these studies, the optimal length between CPE 
elements has been determined as 10-12 nts, while greater distances produce very 
weak translational associations. In addition, an optimal distance between the CPE and 
HEX site is 6-25 nts, while a distance greater than 120 nts is shown to be nonfunc-
tional. Using the information gained through these mutagenesis studies, two 
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Fig. 4. Probability distributions for CPE-HEX (Fig. A) and CPE-CPE (Fig. B) gaps. Longer 
and shorter gaps are given a probability value of zero. 

duration gap models are created using a binned approach whereby gaps of specified 
length ranges are assigned probabilities. One probabilistic model is used for CPE-
CPE distance, while the second model is used for CPE-HEX distance. Fig. 4 shows 
the probability distribution for both of these gap models.  

After the locations for positive scoring CPE and HEX elements are located for 
each input sequence, the sequence is scored according to three values: 1) the maxi-
mum score for a single occurrence of CPE; 2) the maximum score for two CPEs; and 
3) the maximum score for three CPEs. These values (and the corresponding CPE and 
HEX locations) are stored and reported to the user. This algorithm runs in O(l +mn3) 
time where l is the length of the input sequence; m is the number of HEX sites de-
tected and n is the number of CPE sites detected. 

3   Results 

In order to test the effectiveness of this approach, 3’ UTR sequences were 
downloaded from the UTRdb portion of UTRresource [32–34] dated 6/16/2006.  
UTRdb contains both 5’ and 3’ UTRs for a number of different organisms. For the 
purpose of our study, we downloaded the 3’UTRs for the mouse genome. After find-
ing the results for the mouse genome, we determined the GO enriched datasets using  
Ontologizer 2.0 [35,36].  

A total of 18,342 nonredundant 3’ UTRs were extracted from the mouse dataset. 
Of these, 10,150 show at least a subtle signal for a single CPE element while 4,127 of 
these show potential for two CPEs, and 1,514 show potential for three CPEs. Using as 
an input into Ontologizer 2.0 the Entrez gene identifiers for those with three CPEs, a 
total of 54 different gene ontology identifiers have significant enrichment in this data-
set, include 20 under “biological function” subgroup (Table 3).  Examination of these 
20 GO categories shows a large number involved in development, morphogenesis, 
and cell signaling, which is in line with the observed role of CPEB regulation. 

As an additional measure, 27 mouse UTRs shown to be functionally regulated by 
CPEB [31] were examined by CPEDetector. All 27 had at least one potential CPE 
site, with five showing three potential sites and an additional nine showing two  
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Table 3. Enriched Gene Ontology Biological Function Groups 

GO ID Name 
GO:0007154 Cell communication 
GO:0032501 Multicellular organismal process 
GO:0065007 Biological regulation 
GO:0032502 Developmental process 
GO:0016043 Cellular component organization 
GO:0007399 Nervous system development 
GO:0009653 Anatomical structure morphogenesis 
GO:0048856 Anatomical structure development 
GO:0048869 Cellular developmental process 
GO:0009987 Cellular process 
GO:0008150 Biological process 
GO:0007165 Signal transduction 
GO:0048731 System development 
GO:0030035 Microspike biogenesis 
GO:0030031 Cell projection biogenesis 
GO:0050789 Regulation of biological process 
GO:0050794 Regulation of cellular process 
GO:0007275 Multicellular organismal development
GO:0000902 Cell morphogenesis 
GO:0032989 Cellular structure morphogenesis 

potential sites. Piqué et al. describe a simplistic regular expression detection routine 
which detects potential motifs for CPE regulation in 31% of all mouse 3’ UTRs [31]. 
CPEDetector is able to detect a number of additional potential CPE sites (results not 
shown). CPEDetector has the additional feature of providing a score for each 3’ UTR 
sequence which can is useful in determining which genes should be further studied for 
CPEB regulation. 

4   Discussion 

Perhaps the biggest drawback to CPEDetector is the lack of available data regarding 
sequences known to be regulated by CPEB. This makes it extremely difficult to accu-
rately model CPE motif sites and gaps between CPE motifs and the HEX site. 
CPEDetector currently takes into account the best estimate of these parameters. It is 
hoped that by using CPEDetector as a first pass, additional genes may be confirmed to 
be regulated by CPEB. If this is achieved, then an appropriate training and testing set 
can be constructed. Due to the current lack of a training set, measures for sensitivity 
and specificity are unavailable. Therefore, CPEDetector should be used much in the 
lines of current homology detection algorithms such as BLAST [37] as an initial filter 
for further biological investigation. 
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Abstract. Pyrosequencing is among the emerging sequencing techniques, capa-
ble of generating upto 100,000 overlapping reads in a single run. This technique
is much faster and cheaper than the existing state of the art sequencing technique
such as Sanger. However, the reads generated by pyrosequencing are short in
size and contain numerous errors. In order to use these reads for any subsequent
analysis, the reads must be aligned . Existing multiple sequence alignment meth-
ods cannot be used as they do not take into account the specific positions of the
sequences with respect to the genome, and are highly inefficient for large num-
ber of sequences. Therefore, the common practice has been to use either simple
pairwise alignment despite its poor accuracy for error prone pyroreads, or use
computationally expensive techniques based on sequential gap propagation. In
this paper, we develop a computationally efficient method based on domain de-
composition, referred to as pyro-align, to align such large number of reads. The
proposed alignment algorithm accurately aligns the erroneous reads in a short pe-
riod of time, which is orders of magnitude faster than any existing method. The
accuracy of the alignment is confirmed from the consensus obtained from the
multiple alignments.

1 Introduction

Pyrosequencing is among the emerging sequencing techniques developed for deter-
mining the sequences of DNA bases from a genome. It is capable of generating up
to 100,000 overlapping reads in a single run. However, multitude of factors, such as
relatively short read lengths (i.e., as of 2008 an average of 100 − 250 nt compared to
800 − 1000 nt for Sanger sequencing), and limited accuracy of individual reads for
repetitive DNA, particularly in the case of monopolymer repeats, present many compu-
tational challenges [15] to make pyrosequencing useful for biology and bioinformatics
applications.

For over more than a decade, Sanger sequencing has been the cornerstone of genome
sequencing including that of microbial genomes. Improvements in DNA sequencing
techniques and the advances in data storage and analysis, as well as developments in
bioinformatics have reduced the cost to a mere 8000$ − 10000$ per megabase of high
quality genome draft sequence. However, the need of more efficient and cost effective
approaches has led to development of new sequencing technologies such as the 454
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GS20 sequencing platform. It is a non-cloning pyrosequencing based platform that is
several orders of magnitude faster than the Sanger machines. However, the new tech-
nology despite its enormous advantage in terms of time and money will not be able to
replace the current Sanger technology, unless the reads generated are properly aligned
with respect to the reference genome.

The key issues associated with the use of pyrosequencing technique are as under:
Read Length: The read length is expected to be of the order of 100 − 250bp on

average. This is much shorter than the other state of the art Sanger machines which give
out consistent read lengths of the order of > 800 − 900bp.

Orientation: This is generally the case for most of the sequencing technologies. Each
DNA helix will be broken into the original and its Watson-Crick complement. These
would be further broken up into pieces, and there is generally no way to reveal which
of the two is it. The problem is more severe and usually encountered for genome recon-
struction.

Errors: Each individual DNA sequence or read is likely to have errors in the form
of insertions and deletions. It may also have mutations and the pyrosequencer may
itself make errors. These errors correspond to homopolymer effects, including extension
(insertions), incomplete extensions (deletions), and carry forward errors (insertions and
substitutions). Insertions are considered the most common type of error (36% of errors)
followed by deletions (27%), ambiguous bases, Ns (21%), and substitutions (16%) [29].

For most practical purposes, pyroreads without any post processing are of limited
use. One of the most widely required tasks as a pre processing step for many applica-
tions, including haplotype reconstruction [12] [13], analysis of microbial community
analysis [3], analysis of genes for diseases [2], is the alignment of these reads with the
wild type. For important applications such as viral population estimation or haplotype
reconstruction of various viruses e.g., HIV in a population, scientists usually have the

Fig. 1. Pairwise alignment of the reads with the reference genome is shown
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information about the wild type genome of the virus. While for other sequencing tech-
nologies, such as Sanger, simple pair-wise alignment with the wild type may produce
reasonable multiple alignment, in the case of pyrosequencing, the variation in the hap-
lotype population compounded with the errors introduced in the reads does not allow
feasible multiple alignment by simple pair-wise alignment. Fig. 1 depicts simple pair-
wise alignment of pyrosequence reads with a reference genome. We assert that accurate
and workable multiple alignment is often necessary for a variety of applications and
statistical packages to work with these pyroreads, as demonstrated in [12] [13] [3] [2].

In theory, alignment of multiple sequences can be achieved using pair-wise align-
ment, each pair getting alignment score. But for optimal alignment the sum of all the
pair-wise alignment scores need to be maximized, which is an NP complete prob-
lem [16]. Towards this end, dynamic programming based solutions of O(LN ) com-
plexity have been pursued, where N is the number of sequences and L is the average
length of a sequence. Such accurate optimizations are not practical for large number of
sequences -as is the case in pyrosequencing- , thus making heuristic algorithms as the
only feasible option. The literature on these heuristics is vast and includes widely used
works, such as Notredame et. al. [17], Edgar [19], Thompson et. al. [18], Do et. al.
[23], and Morgenstern et.al. [21]. These heuristics are complex combination of ad-hoc
procedures with some flavor of dynamic programming. Despite the usefulness of these
widely used heuristics, they scale very poorly with increasing number of sequences.

For multiple alignment of pyroreads, ’out of the box’ use of these heuristics is not
feasible because of two main reasons: 1) the pyrosequencing reads can be very large
in number (up to 1 million of usable reads in a single run of Roche/454, and 2) the
heuristics do not take into account the positions of the reads with respect to the reference
genome. Additional factors such as short lengths and errors, and the fact that these
reads have preceding or trailing ’gaps’ pose further alignment challenges. In [14], an
alignment technique based on sequential gap propagation has been used. This technique
is computationally expensive and its alignment quality decreases with the increase in
the mutation value.

In this paper, we present a computationally efficient algorithm pyro-align, specif-
ically designed for multiple alignment of DNA reads obtained from pyrosequencing.
The proposed algorithm is based on a novel domain decomposition concept, therefore
it is capable of aligning very large number of pyrosequences. It takes into account the
position of the reads with respect to the reference genome, and assigns weight to the
leading and trailing gaps for the reads.

The objective of our work is to develop a multiple alignment system for small error
prone reads, such that the errors in the alignment are ’highlighted’ and the system is
able to handle large number of reads, as may be expected from pyrosequencing reads.

We assume that the reads may be generated from one or many genomes, with ’for-
ward’ orientation. We also assume that the reference genome (or its wild type) from
which the reads are generated is available, as is generally the case for haplotype re-
construction. In our experiments, we have used HIV-pol gene virus as the reference
genome (with length of 1970bp) and simulator Readsim [11] to generate these reads.
The algorithm uses concepts from domain decomposition and parallel multiple align-
ment techniques [1, 22].
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For the sake of completeness, let’s first formally define the Multiple Sequences
Alignment problem in its generic form, without indulging with the issues such as scor-
ing functions. Let N sequences be presented as a set S = {S1, S2, S3, · · · , SN} and
let S

′
= {S

′
1, S

′
2, S

′
3, · · · , S

′
N} be the aligned sequence set, such that all the sequences

in S
′

are of equal length, have maximum overlap, and the score of the global map is
maximum according to some scoring mechanism suitable for the application.

A perfect multiple alignment for pyroreads would be, that the reads are aligned with
each other such that the position of the reads with respect to the reference genome is
conserved; the reads have maximum overlap and are of equal lengths after the align-
ment, including leading and trailing gaps.

The intuitive idea behind the proposed pyro-align algorithm is to first place the reads
in correct orientation and position with respect to the reference genome and then use
progressive alignment to achieve the final alignment. For efficient progressive align-
ment, the correctly placed reads are reordered according to the starting position, and a
computationally low complexity similarity metric is extracted from this ordering posi-
tion. The similarity metric is then used to align pairs of aligned reads using a hierarchi-
cal decomposition strategy. The proposed multiple alignment algorithm takes advantage
of the pyroreads characteristics and brings in techniques from data structures and par-
allel computing to realize a low complexity solution in terms of time and memory.

The proposed alignment algorithm, pyro-align, consists of the following two main
components:

1. Semi-Global alignment
2. Hierarchical progressive alignment

(a) Reordering of reads to generate guidance tree
(b) Pairwise and profile-profile alignment

Each component is designed considering the characteristics of pyroreads and it is
described in the following sections along with its justification.

1.1 Semi-global Alignment

The first step is to determine the position of each read with respect to the reference
genome. If this step is omitted, there are number of alignments that would be correct,
but would be inaccurate if analyzed in the global context. A read that is not constricted
in terms of position, may give the same score (SP score) for the multiple alignment but
would be incorrect in context of the reference. To accomplish the task of ’placing’ the
reads in the correct context with respect to the reference genome we employ semi-global
alignment procedure.

The semi global alignment is also referred to as overlapping alignment because the
sequences are globally aligned ignoring the start and end gaps. For semi-global align-
ment we use a modified version of Needleman-Wunsch algorithm [5].

The modification in the basic version of Needleman-Wunsch is required to handle
the leading and trailing gaps of the reads when aligning to the reference genome. If
the leading and trailing gaps are not ignored, considering the short length of the reads,
the alignment scores would be dominated by these gaps, hence giving an inaccurate
alignment with respect to the genome.
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Let the two sequences to be aligned be s and t, and M(i, j) presents the score of
the optimal alignment. Since, we do not wish to penalize the starting gaps, we mod-
ify the dynamic programming matrix by initializing the first row and first column
to be zero. The gaps at the end are also not to be penalized. Let M(i, j) represent
the optimal score of s1, · · · , si and t1, · · · , tj . Then M(m, j) is the score that repre-
sents optimally aligning s with t1,···,j . The optimal alignment therefore, is now de-
tected as the maximum value on the last row or column. Therefore the best score is
M(i, j) = maxk,l(M(k, n), M(m, l)), and the alignment can be obtained by tracking
the path from M(i, j) to M(0, 0). For additional details on semi-global alignment we
refer the reader to [8].

Once each read has been semi-globally aligned with the reference genome, we obtain
reads with leading and trailing gaps, where the first character after the gaps is the start-
ing position of the read with respect to the reference genome. The information for these
alignments are stored in hashtables that are further used for processing in reordering the
reads for alignment.

2 Hierarchical Progressive Alignment

Generally multiple sequence alignment (MSA) procedures are either based on iterative
methods or employ progressive techniques. Although progressive techniques relative
to iterative techniques are more efficient, they are not suitable when the sequences are
relatively diverse or the number of sequences is very large. Considering the fact that the
pyroreads are highly similar, we develop a hierarchical progressive alignment procedure
that is also computationally efficient for large number of reads.

Progressive alignment techniques develop final MSA by combining pair-wise align-
ments beginning with the most similar pair and progressing to the most distantly related.
All progressive alignment methods require two stages: a first stage in which the rela-
tionships between the sequences are represented as a tree, called a guide tree, and a
second step in which MSA is built by adding the sequences sequentially to the grow-
ing MSA according to the guide tree. In the following, we describe the low complexity
components of pyro-align.

2.1 Reordering Reads

The method followed by most of the progressive multiple alignment algorithms is that a
quick similarity measure is computed that is based on k-mer counting [4] or some other
heuristic mechanism. These pair-wise similarity measures (distances) are tabulated in a
matrix form and a tree is constructed from this distance matrix using UPGMA or neigh-
boring joining. The progressive alignment is thus built, following the branching order
of the tree, giving a multiple alignment. These steps require O(N2) time each, where
N is the number of reads. To reduce this complexity, we exploit the fact that the reads
are coming from the same reference or nearly the same reference. This in turn implies
that the reads starting from the same or near same ’starting’ point with respect to the
reference genome are likely to be similar to each other. Therefore, we already have the
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ordering information or the ’guide tree’ from the first step of the algorithm. Our guide
tree, or the order in which sequences will be aligned in the progressive alignment is from
the starting position of the reads obtained in the first stage. Of course the decomposition
of the reads (the subtree of the profiles that we built) doesn’t render the reads in the same
order as in traditional progressive alignment, but nevertheless the order is more or less
the same when the profiles of these reads are aligned.

Let there be N number of reads R = R1, R2, · · · , RN generated from pyrosequenc-
ing technique, from the reference genome of length Lg . Also, let the length of each
read denoted by L(R)p. After executing semi-global alignment using the algorithm dis-
cussed in the previous section, let each read be presented by Rpq , where the pth read
has q leading gaps and and at most Lg − q − L(R)p trailing gaps. Then the reordering
algorithm would reorder the reads such that after the reads are reordered using the in-
formation from the leading gaps, the read Rpq comes in ordering ’before’ Rp(q+1), ∀
p, q ∈ Lg.

To execute the reordering in an efficient manner, we employ hashtables that speed
up the search process. We create two hashtables: hashtable1 uses fasta sequence tag
as the hash key and stores the corresponding starting position of the read; hashtable2
stores the read names (fasta sequence tag) and the dna sequence it is associated with.
Using these tables, the reads are reordered in the database in linear time.

2.2 Pair-Wise and Profile-Profile Alignments

The ordering of the reads determined in the preceding step is now used to conduct the
progressive alignment. Traditional progressive alignment requires that the sequences
most similar to each other are aligned first. Thereafter, sequences are added one by one
to the multiple alignments determined according to some similarity metric. This sequen-
tial addition of sequences for progressive alignment is not suitable for large number of
sequences. In order to devise a low complexity system, we design a hierarchical pro-
gressive alignment procedure that is based on domain decomposition [1], as described
below and depicted in Figure 2.

First of all, pair-wise local alignment using standard Needle-Wunsch is executed on
each overlapping pair of reads (the ordering is still the same as discussed in the previous
section). After this stage, the reads are aligned in pairs such that we have N/2 pairs of
aligned reads. These N/2 pairs of reads are then used for profile alignments as discussed
below.

Profile-profile alignments are used to re-align two or more existing alignments(in
our case the pairs of aligned reads). It is useful for two reasons; one being that the
user may want to add sequences gradually, and second being that the user may want to
keep one high quality profile fixed and keep on adding sequences aligned to that fixed
profile [18].

We take advantage of both of these properties in our domain decomposition.
In this stage of the algorithm, the N/2 pairs of aligned reads have to be combined to

get a multiple alignment. We have shown in [22] that the decomposition of the profiles
gives a fair amount of time advantages even on a single processor. Therefore a hierar-
chical model similar to [1] is implemented (see Fig. 2). The model requires that instead
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Fig. 2. Hierchical profile-profile alignments for pyro-align is shown

Fig. 3. Two profiles(X and Y) are aligned under the columns constrains, producing profile Z

of combining the profiles in a sequential manner (one by one), a binary tree is built such
that the profiles to be aligned are the leafs of the tree.

In order to apply pair-wise alignment functions to profiles, a scoring function must
be defined, similar to the substitution methods defined for pair-wise alignments. One of
the most commonly used profile functions is the sequence-weighted sum of substitution
matrix scores for each pair of amino acid letters. Let i and j be the amino acid, pi

the background probability of i, pij the joint probability of i and j aligned to each
other, Sij the substitution matrix being used, fx

i the observed frequency of i in column
x of the first profile, xG the observed frequency of gaps in that column. The same
attributes are assumed for the profile y. Profile sum of pairs (PSP) is the function used
in Clustalw [18], Mafft [24] and Muscle [20] to maximize Sum of Pairs(SP) score,
which in turn maximizes the alignment score such that the columns in the profiles are
preserved, as depicted in Fig. 3.The PSP score can be defined as in [25] and [20]:
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Fig. 4. The final Alignment of the reads

PSP xy =
∑

i

∑
j

fx
i fy

j log(pij/pipj) (1)

For our purposes, we will take advantage of PSP functions based on 200 PAM ma-
trix [26] and the 240 PAM VTML matrix [27]. Some multiple alignment methods im-
plement different scoring functions such as Log expectation (LE) functions, but for our
purposes PSP scoring suffices. Profile functions have evolved to be quite complex and
good discussion on these can be found at [20] and [28]. We use the profile functions
from the clustalw system. The final alignment from the pyro-align algorithm can be
seen in Fig. 4. Different steps of the proposed pyro-align Algorithm are outlined below.

Algorithm 1. Steps of the Proposed Multiple Sequence Alignment pyro-align Al-
gorithm

Input: Reads generated from pyrosequencing procedure and Reference Genome
Output: A Multiple Alignment of Reads is returned
//Calculate overlapping of each of the reads with respect to the reference Genome
for (i = 1;i ≤ N ;i + +) do

Overlapped-Reads ← Semi-Global-Alignment(Ri,Genome) ;
end
Reordered-Reads ← Reordering(Overlapped-Reads) ;
//Pairwise alignment using standard Needle-Wunsch is exectued, for pairs of
ordered reads ;
Pair-wise-aligned ← Needle-Wunsch(Reordered-Reads) ;
//Profile-profile alignment is obtained using Sample-align-D strategy
Final-Alignment ←Profile-Profile-alignment(Pair-wise-aligned) ;
return Final-Alignment ;
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3 Performance Analysis

As discussed earlier in the paper, the exact solution for multiple alignment is not feasi-
ble and heuristics are employed. Most of these heuristics perform well in practice but
there is generally no theoretical justification possible for them [9]. For pyro-align it can
be shown that the semi-global alignment of the reads with the reference genome is anal-
ogous to center star alignment. The center star alignment is shown to give results within
2-approx of the optimal alignment [9] in worst case and same can be expected from the
semi-global alignment of reads with reference genome. The accuracy of the later stages
is confirmed by rigorous quality assessment procedure described in the section below.

3.1 Experimental Setup and Quality Assessment

The performance evaluation of the algorithm has been carried on a single desktop sys-
tem 2x QuadCore Intel 5355 2.66 GHz, 2x4 MB Cache and 16GB of RAM. The oper-
ating system on the desktop is RedHat Linux with kernel 2.6.18-92.1.13.el5. The soft-
ware uses libraries from Biojava [7] and is built using java version ”1.6.0” Java(TM)
SE Runtime Environment,IBM J9 VM.

To investigate the quality of the alignment produced by the algorithm we used Read-
sim simulator [11] to generate the reads. The quality assessment of multiple alignment
is generally carried out using benchmarks such Prefab [19] or BaliBase [6]. However,
these benchmarks are not designed to access the quality of the aligned reads produced
from pyrosequencing, and there are no benchmarks available specifically for these
reads. Therefore, a system has to be developed to access the quality of the aligned
reads. The experimental setup for the quality assessment of the alignment procedure is
shown in the Fig. 5 and is explained below.

Our quality assessment has two objectives: (1)to assess the quality of the alignment
produced by pyro-align with respect to the original genome (2) ensure that the system
must be able to handle reads from multiple haplotype for alignment.

To achieve these objectives, we setup the quality assessment system as shown Fig. 5.
We used a HIV pol gene virus with length of 1970bp as the wildtype for the experi-
ments. The wildtype is then used to produce 4 genomes, randomly mutated at different
rate; The four sets of genomes are Dist-003, Dist-005, Dist-007 and Dist-010, with mu-
tations of 3%, 5%,7% and 10%, respectively. Now using the mutated genomes, 2000
and 5000 reads from the Readsim were generated using standard ReadSim parameters
with forward orientation.

The generated reads from these mutated genomes were then aligned with the wild-
type.This procedure is adopted because generally scientists only have a wildtype se-
quence of the microbial genomes available and therefore it depicts a more practical
scenario.

After the alignment, a majority consensus of the reads is obtained. A distance based
similarity is then calculated of the consensus obtained from the aligned reads with the
original genome from which the reads were generated.The results of the alignment ob-
tained and the accuracy of the consensus thus obtained are shown in Fig. 6 and Fig. 7
for 2000 and 5000 reads respectively.
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Fig. 5. The experimental setup for the quality assessment of the multiple alignment program

We compare the accuracy of the algorithm with two different methods. First being
the simple pair-wise alignment of the reads with the reference genome. Secondly, we
compare it with a sequential gap propagation method, used in recent pyrosequencing
systems [14]. Simply put, gap propagation method builds multiple alignment from pair-
wise alignments by sequentially ’propagating’ the gaps from each pairwise alignment
to all the reads in the system. Propagation of gaps is accomplished for every position
where at least one read has an inserted base. A gap is inserted in the reference genome
and, consequently, in all reads that overlap the genome at that position. The complexity
of the procedure is of the order of O(N2).

The accuracy of the consensus obtained using just the pairwise alignment is less
than 55% and that obtained from the pyro-align is always greater than 96%.An even
better alignment quality is achieved for greater number of reads, because more number
of reads provide a better coverage for a genome of given length. The accuracy of the
gap propagation procedure, is comparable to pyro-align for small mutations, but as the
mutations increase the accuracy of gap propagation based method decreases.

To illustrate that the alignment system also works with a ’mixture’ of reads from
different haplotype, we use the mutated reads from Dist-003, Dist-005 and Dist-007
to generate a new set of reads. The new set contains equal number of reads from the
mutated sets e.g. 2000 reads from each mutated genome for the results shown. The reads
are then aligned by the pyro-align algorithm using wildtype as the reference genome.
The results of alignment for this mixture set are shown in Fig. 8 for Dist-003/Dist-005
and Dist-005/Dist-007 mixtures. It must be noted here that we don’t have a ’ground
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Fig. 6. The quality of the alignment using pairwise, pyro-Align and ’propagation’ methods for
2000 reads

Fig. 7. The quality of the alignment using pairwise, pyro-Align and ’propagation’ methods for
5000 reads

truth’ genome in these cases and hence no genome is available to compare the consensus
obtained from the alignment.

However, we do know the mutation rates for the genomes from which the mix-
ture sets were generated. Therefore, if an optimal alignment of these reads is obtained,
the ’mutation’ in the consensus should not be greater than the combined mutations of
the genomes. For example consider the case of Dist-003/Dist-005 mixture. We know
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Fig. 8. The quality of the alignment using pairwise, pyro-Align and ’propagation’ methods for
mixed genome reads

the mutation rates for the genomes from which the reads generated were 3% and 5%
with respect to the wildtype. Therefore, for accurate alignment, the consensus of the
alignment should not vary more than 8%, in the worst case, when compared to the
wildtype. Same would be true for the other cases considered according to the mutation
rates of the genomes. As can be seen that the results of the alignment compared with the
wildtype are well within the expected limits. The accuracy of the pairwise alignment of
the reads with the reference genome(in this case the wildtype), and that obtained using
propagation method is also shown for comparison.

4 Complexity Analysis

In this section we briefly outline the complexity of the proposed pyro-align algorithm.
Recall the pyro-align algorithm consists of these major steps: semi-global alignment,
reordering, pair-wise alignment, and profile-profile alignment.

We assume that the number of reads is N with the average length of the read equal
to LR. Let’s further assume that the length of the reference genome is equal to Lg.
Then, the complexity of the semi-global alignment (overlapping alignment) is equal to
O(NLRLg). The clustering of the reads can be done in O(NLg) and the reordering
using hashtables can be achieved in O(N), making the total for this stage equal to
O(NLg +N). The pairwise alignment of the reads is shown to be achieved in O(NL2

R)
and the profile-profile alignment can be achieved in O(NlogN × L2

g). This makes the
total complexity equal to O(NLRLg + NLg + N + NL2

R + NlogN × L2
g). This is

asymptotically equal to O(NlogN × L2
g + NL2

R).The advantage of low complexity
of pyro-align was further evident by our experimentation. We were able to align 2000
reads of average length 250bp from a genome of length 1970bp in about 12 minutes
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compared to 6 hours of computation using more traditional multiple alignment systems
such as Clustalw.

5 Conclusion

The short reads from the pyrosequencing method are rendered useless if they are not
multiple aligned for magnitude of important applications, such as haplotype reconstruc-
tion and error elimination. We have presented an efficient hierarchical procedure to
multiple align large number of short reads from the pyrosequencing procedure.

We demonstrated that simple-pair-wise alignment is not feasible in the case of py-
roreads. We also showed that the proposed method is much faster than traditional time
consuming multiple alignment methods such as Clustalw or Tcoffee. We also presented
the quality assessment results and compared those with the results obtained by simple
pair-wise alignment procedure and ’propagation’ methods.
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Abstract. With the availability of hundreds and soon thousands of complete
genomes, the construction of genome-scale metabolic models for these organ-
isms has attracted much attention. Manual work still dominates the process of
model generation, however, and leads to the huge gap between the number of
complete genomes and genome-scale metabolic models. The challenge in con-
structing genome-scale models from existing databases is that usually such a di-
rectly extracted model is incomplete and contains network holes. Network holes
occur when a network is disconnected and certain metabolites cannot be produced
or consumed. In order to construct a valid metabolic model, network holes need
to be filled by introducing candidate reactions into the network. As a step toward
the high-throughput generation of biological models, we propose a Bayesian ap-
proach to improving draft genome-scale metabolic models. A collection of 23
types of biological and topological evidence is extracted from the SEED [1],
KEGG [2], and BiGG [3] databases. Based on this evidence, we create 23 individ-
ual predictors using Bayesian approaches. To combine these individual predictors
and unify their predictive results, we build an ensemble of individual predictors
on majority vote and four classifiers: naive Bayes classifier, Bayesian network,
multilayer perceptron network and AdaBoost. A set of experiments is performed
to train and test individual predictors and integrative mechanisms of single pre-
dictors and to evaluate the performance of our approach.

1 Introduction

The number of annotated genomes is approaching 1000, thanks to high-throughput
sequencing technology in biology and automated genome annotation tools in bioin-
formatics. The availability of these complete genomes enables analyzing genomes at
the system level. One such analysis has been carried out through the construction of a
genome-scale metabolic model for a microorganism from its genome sequence. Starting

� We acknowledge federal funds from the National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Department of Health and Human Services, under Contract No.
HHSN266200400042C. This work was supported in part by the U.S. Dept. of Energy under
Contract DE-AC02-06CH11357.

S. Rajasekaran (Ed.): BICoB 2009, LNBI 5462, pp. 376–387, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Bayesian Approach to High-Throughput Biological Model Generation 377

from the extraction of gene-protein-reaction (GPR) associations from genome and path-
way databases, one can build genome-scale metabolic models using constraint-based
approaches such as flux balance analysis [7, 8, 10].

However, a genome-scale metabolic model generated by directly extracting GPR as-
sociations from existing databases is usually incomplete and contains network holes.
Network holes are those places where certain metabolites cannot be produced or con-
sumed as there are no reactions to connect these metabolites. In order to construct
a valid model, every metabolite should have fluxes pass through it. Candidate reac-
tions must be introduced to fill network holes. A number of factors can lead to network
holes such as missing genes, wrong or missing annotations, and poor mappings from
functions to biochemical reactions. At present, manual search for hole-filling candi-
dates dominates the work of filling network holes in the construction of genome-scale
metabolic models. Beccause of the huge volume of data available to act as evidence
and the large scale of metabolic networks, manual work is time-consuming and labor-
intensive. Up to now, approximately 27 genome-scale metabolic models have been con-
structed [6]. In comparison, the number of complete genomes is approaching 1000.
With the exponential growth of the number of genomes, the gap between the number
of genomes and the number of genome-scale metabolic models is expanding. In order
to bridge this gap and generate 1000 genome-scale metabolic models in the near future,
it is desirable that computational approaches be applied to fill network holes and thus
accelerate the model-building process.

2 Related Work

Computational approaches have been proposed to improve metabolic networks or meta
bolic pathways. Green and Karp [14] showed a Bayesian approach to identify missing
enzymes for filling pathway holes in pathway/genome databases by integrating evi-
dence from homology, operon, and metabolic pathway relationships. However, the net-
works generated from their approach are incomplete at the network level, and network
holes remain in the networks.

Kharchenko et al. [15] developed a computational approach for selecting candidate
genes that can be assigned to missing metabolic enzymes, based on the gene expression
data and structure of partially reconstructed metabolic network. Chen and Vitkup [12]
presented a method that uses local structure of a metabolic network combining with
phylogenetic profiles to suggest candidate genes for enzymes without corresponding
genes. Kharchenko et al. [11] expanded their methods to include multiple types of func-
tional association evidence, including clustering of genes on the chromosome, similarity
of phylogenetic profiles, gene expression, protein fusion events, and a local structure of
metabolic network to infer genes encoding for a specific metabolic function. However,
the collection of algorithms presented in [11, 12, 15] focuses on filling network holes
where a single network hole is present in a neighborhood of metabolic networks. In
practice, patches of network or a collection of holes commonly occur in a metabolic
network, especially in organisms whose genomes are not well annotated. Therefore,
these approaches are not suitable for the massive production of genome-scale metabolic
models.
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In [13], DeJongh et al. presented tools for the generation of substantially complete
metabolic networks for over 400 complete genome sequences currently in the SEED.
Their tools are based on the notation of scenarios that represent segments of metabolic
pathways with connected reactions accompanied by input and output compound sets.
By assembling such scenarios, one can construct an organism-specific reconstruction
of the metabolic network. Arguably, the work in [13] enhances the curation of associa-
tions between functional roles and reactions and thus generates better GPR associations
for the reconstruction of genome-scale metabolic networks in the SEED. However, the
reconstructed networks produced by their tools are still partially complete and include
many network holes. Therefore, in order to obtain a complete metabolic network and
then build a valid model, further work is needed to fill network holes in these draft
metabolic networks.

3 Our Approach and Tools

The Rapid Annotation using Subsystem Technology (RAST) server [18] provides rapid
and fully automated annotations for bacterial genomes. Users can submit their new
genomes, and normally RAST will complete annotations and make the annotated genome
available within 12–24 hours. The SEED [1,17] provides an environment and tools that
curate function assignments based on subsystems. The work in [13] generates a more
accurate reaction set for an annotated genome using the technology of metabolic scenar-
ios tightly coupled with subsystems. The work in [13] also provides hundreds of draft
metabolic models that are can be further improved.

Following the efforts in [13], we design a set of computational tools that, with high-
throughput techniques, will generate complete genome-scale metabolic models. This
toolset comprises four main parts: parsers to integrate and reconcile data from different
databases, network hole detectors that analyze network connectivity and identify net-
work holes, evidence extractors that mine through integrated data and extracts pieces of
evidence out of the data, and a set of predictors that use evidence to suggest candidate
hole-filling reactions. In this paper, we focus on the latter two sets of tools for extracting
evidence and for constructing predictors. The hole-filling mechanism proposed in this
paper looks at the genome-scale metabolic model gained from an organism’s genome
annotations and from mining extensively through databases. By expanding a draft model
exhaustively in every direction, we seek to improve genome-scale metabolic models and
enable mass production of metabolic models.

Without prior knowledge, a biochemically possible reaction can be assumed to be
randomly distributed. In other words, the probability of including any reaction in a
model is treated as 1

|R| if all biochemically possible reaction in KEGG, R, is con-
sidered. We know, however, that the probability of each reaction is highly skewed in
different datasets: some reactions happen more often than others. Therefore, the proba-
bilities of reactions should be adjusted after seeing certain datasets. And these adjusted
probabilities can be viewed as “priors” to pump into the calculation of adjusted reaction
probabilities after seeing other datasets. In this paper, reaction probabilities are adjusted
by using Bayes’ rule.
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3.1 Evidence Extraction

In order to generate a candidate reaction list that can be incorporated to complete a
partial metabolic model, a set of evidence should be extracted from available data. As
shown in Table 1, 23 pieces of evidence of seven different types are extracted from dif-
ferent data sources. They are (a) reaction priors, (b) the co-occurrence of reaction pairs,
(c) segment priors, and (d) the co-occurrence of reaction segment pairs for datasets in
two reconstructed BiGG models, iJR904 and iSB619; KEGG reference pathway map;
KEGG modules; KEGG organism maps; and all draft models in the SEED; as well as
(e) the co-occurrence of gene pairs in all organisms in the SEED, (f) the co-occurrence
of gene pairs in the SEED, and (g) the co-occurrence of gene-gene pairs in the same
clusters on chromosomes in the SEED.

Table 1. Summary of Evidence

Type BiGG
Models

KEGG Ref Map KEGG
Modules

KEGG Org
Maps

SEED Orgs

(a) [1] 634 [2] 4,953 [3] 434 [4] 3,324 [5] 1,318
(b) [6] 893 [7] 5,358 [8] 1,765 [9] 10,178 [10] 3,036
(c) [11]5,175 [12]36,145 [13]11,607 [14] 237,903 [15] 70,326
(d) [16]16,421 [17]101,101 [18]36,831 [19]1,027,801 [20] 326,834
(e) / / / / [21] 376,880
(f) / / / / [22] 139,183
(g) / / / / [23] 302,664

Each row in the table is a type of evidence and each column is a dataset.The content
of each cell represents the index of an evidence, followed by the number of data points
in the dataset. For example, “[1]634” means that for the first ([1]) evidence, which is
reaction priors in BiGG models, there are 634 reactions in the dataset. The details of
each type of evidence are as follows.

(a) Reaction Priors: For any reaction r in the KEGG (all reactions in KEGG are
denoted as R), if it has been seen in existing pathway maps with some prior probability,
then these priors can be used to infer the probability of including r as a hypothetical
reaction in a model. Reaction prior Pr(r) for any reaction r in any dataset, is calculated
by using the ratio between the frequency of r and the dataset size.

(b) Co-Occurrence of Reaction Pairs: For any reaction r ∈ R, if it co-occurs with
another reaction in existing pathway maps, then the probabilities of their co-occurring
can be used to infer the probability of including r as a candidate reaction. A pair of
reactions, (r1, r), is said to co-occur if there is a set of one or multiple common com-
pounds, noted as compound set C, among primary products of reaction r1 and primary
substrates of reaction r. The conditional co-occurrence of a pair of reactions (r1, r),
Pr(r|r1), is defined as the frequency of reaction pair r1 − C − r, divided by the fre-
quency of reaction r1. This co-occurrence indicates the probability of inferring r after
seeing r1 in the dataset.
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(c) Segment Priors: A pathway segment is a linear sequence of reactions connected
by common compounds. Every pathway map is decomposed into a set of pathway seg-
ments including from two to six reactions. For any reaction r ∈ R, if it has been seen in
pathway segments of existing maps with some prior probability, then these priors can
be used to infer the probability of including r as a hypothetical reaction. Segment priors
are calculated by dividing the frequency of segments by the size of the dataset.

(d) Co-Occurrence of Reaction-Segment Pairs: For any reaction r ∈ R, if it co-
occurs with a pathway segment in existing maps, then the probabilities of their co-
occurring can be used to infer the probability of including r as a candidate reaction. A
reaction-segment pair (r, s) is said to co-occur if the products of reaction r have one or
multiple common compounds with the substrates of the first reaction in the segment s,
or the opposite, the substrates of reaction r have one or more common compounds with
the products of the last reaction in the segment s. The conditional co-occurrence of a
reaction-segment pair (r, s), Pr(r|r1), is defined as the frequency of segment r−C −s
or s − C − r, divided by the frequency of segment s. This co-occurrence indicates the
probability of inferring r after seeing s in the dataset.

(e) Gene Co-Occurrence in Complete SEED Organisms: For any gene g, if it co-
occurs with another gene g1 in known genomes, then the probabilities of their co-
occurrence can be used to infer the probability of including g as a candidate gene that
may encode for some reaction to fill a network hole. The co-occurrency of gene pairs
is calculated by dividing the number of organisms that a pair of genes occurs in by
the number of organisms that one gene occurs in. In a count of homology across many
organisms, protein families in the SEED—called FIGfams—are used to calculate gene
co-occurrence.

(f) The Co-Occurrence of Gene-Gene Pairs on Gene Clusters in SEED Organisms:
A gene cluster is a group of genes that sit close to each other on chromosomes of an
organism. Metabolic genes sitting on the same cluster tend to encode reactions that
also construct a pathway segment. The co-occurrence of gene-gene pairs in clusters is
calculated by the number of organisms that a gene-gene pair occurs in divided by the
number of organisms that the set of genes occurs in.

(g) Gene Co-Occurrence on Gene Clusters in SEED Organisms: The co-occurrency
of gene pairs in is calculated by the number of organisms that a pair of genes sitting on
the same cluster occurs in divided by the number of organisms that one gene occurs in.

3.2 Predictor Construction

Faced with the challenge of searching for hole fillers in a large volume of data, we wish
to build computational predictors that infer plausible candidate reactions to reconcile
network holes, based on prior knowledge. Specifically, the 23 pieces of evidence ex-
tracted above are used, and 23 individual predictors are built according to each piece
of evidence. These predictors are categorized according to the seven types of evidence
they use.

1. Predictors Using Reaction Priors: Five individual predictors, P1 – P5, are con-
structed to reflect reaction priors from five different datasets of BiGG models, KEGG
reference pathway map, KEGG network modules, KEGG organism pathway maps, and
SEED draft models. The underlying idea of these five predictors is that reactions with



A Bayesian Approach to High-Throughput Biological Model Generation 381

higher priors in known datasets are more likely to be selected as candidate reactions
than are those with lower priors. Each predictor based on priors from different datasets
generates a set of candidate reactions. A scoring function S(r) of a predictor in this
group, for any r in one dataset, is set to be Pr(r), which is the prior of reaction r.
With scores assigned to all reactions r in the dataset, these reactions are ranked by
their scores S(r), and only those reactions with high scores are selected as candidate
reactions, noted as Rc.

2. Predictors Using Co-Occurrence of Reaction Pairs: Five predictors, with index of
P6 to P10, are built to include the five pieces of evidence extracted from co-occurrence
of reaction pairs in the five datasets. A scoring function S(r) is defined in Equation 1
for each of these five predictors. Let us denote all reactions in one of the five datasets
as Rd and all reactions in the draft model as Rm. For each reaction pair (r, r1), where
r1 ∈ Rd, r1 /∈ Rm and r ∈ R, the co-occurrence of (r, r1), Pr(r|r1) is calculated.
In order to capture all the possible reactions co-occur with reaction r in a local neigh-
borhood of r, the process of calculating Pr(r|r1) proceeds in five runs. In each run,
we consider all reactions r that co-occur with any reaction r1 that is in the dataset but
not in the model. The reaction r with highest co-occurrency with r1 is inserted into the
reaction list Rm and removed from Rd. At the same time, this highest co-occurrency is
recorded. Then, with the updated Rm and Rd, the probability of Pr(r|r1) is recalcu-
lated. After five runs, the product of the five highest co-occurrency scores is obtained
for any reaction r. The greatest co-occurrency product that contains r is chosen as the
score of r, and the pathway of reactions corresponding to this score is considered as a
candidate hole filler. All reactions in such a pathway are considered as candidate reac-
tions if this pathway has a high score. This process ensures that reactions in five steps
away from r are considered. The number 5 is selected because a pathway segment with
at most 6 reactions is used in this work, which in turn is chosen as a tradeoff between
the computational cost and the predictive capability of neighbor steps away. After sort-
ing all reactions r ∈ R by their scores S(r), a list of candidate reactions Rc that have
high scores is selected.

S(r) = max
5∏

i=1

max
r1∈Rd,r1 /∈Rm

Pr(r|r1) (1)

3. Predictors Using Segment Priors: Five predictors based on segment priors in the
five datasets are constructed, called P11 to P15. For each reaction r ∈ R, we search for
all the segments s in the dataset that contain reaction r, sort these segments s by their
priors Pr(s), and assign the maximal probability of these segments to the score of r.

4. Predictors Using Co-Occurrence of Reaction-Segment Pairs: Five predictors, with
index from P16 to P20, are built according to reaction-segment co-occurrence in the five
datasets. Each predictor infers a set of candidate reactions that co-occur and connect,
via a common compound set, with some segments in the datasets.

5. Predictors Using Gene Co-Occurrence in Complete SEED Organisms: The gene
co-occurrence in all complete genomes of the SEED is applied by building a predic-
tor P21. A scoring function assigns a score S(r) to each reaction r ∈ R based on the
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corresponding gene’s co-occurrence with other genes in the model. Like the mechanism
of calculating scores for reaction co-occurrency, the genes within five steps from a given
gene are considered to cover the local neighborhood.

6. Predictors Using Co-Occurrence of Gene-Gene Pairs on Gene Clusters in SEED
Organisms: Predictor P22 is constructed by using the co-occurrency of gene-gene pairs
in the same gene clusters of all SEED organisms. The assumption here is that if one
gene g sits in the neighborhood of a collection of genes gs on the chromosomes in
many organisms, then if we see a set of neighbor genes gs in a new organism, we can
assume that g is also present in the new organism.

7. Predictors Using Gene Co-Occurrence on Gene Clusters in SEED Organisms:
Predictor P23 is built based on the gene co-occurrency on the same gene clusters in
SEED organisms. The score of r, S(r) can be calculated from the co-occurrence of any
gene associated with other genes in the same gene clusters.

3.3 Ensemble of Predictors

Individual predictors based on various evidence may produce inconsistent or incorrect
predictions. In order to improve the predictive accuracy and resolve inconsistence in
individual predictors, ensemble methods must be incorporated to integrate individual
predictors. One simple assembly of individual predictors is to retrieve the results of each
predictor and pick the reactions that are predicted by most predictors. This approach
assumes there are nonselfish and nonbiased behaviors among all individual predictors.

An alternative approach for integrating individual predictors is to treat the selection
of candidate hole-filling reactions as a classification problem. In this approach, two
classes, class 0 and class 1, are considered. Any reaction in KEGG (r ∈ R) is assigned
to class 1 if it is a hypothetical reaction that should be included in a network, and
dedicated to class 0 otherwise. Each predictor generates a score that represents a corre-
sponding attribute; hence 23 individual predictors produce 23 attributes. Every instance
is a reaction that includes all 23 attribute values and one extra flag that indicates the
class this reaction belongs to. After reducing the hole-filler problem to a classification
problem, many classifiers in machine learning can be applied. Four such classifiers—
naive Bayes classifier, Bayesian network, multilayer perceptron network, and boosting
mechanism—are used in this paper.

4 Experiments and Results

To evaluate the set of computational tools, we designed two groups of experiments. The
first group involves a self-consistency check on two reconstructed models of iJR904
[9] for Escherichia coli K-12 and iSB619 [19] for Staphylococcus aureus N315. A set
of core metabolic genes selected from [16] is removed from these two models and ex-
amined to see how well the predictors would fill network holes caused by the knockout
of these core genes. The second set of experiments starts by removing 10% of the reac-
tions in a model at a time, eventually removing 80% of the reactions in the model and
recording the change in recovery rate.
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4.1 Results of Core Knockouts

We discuss here the results of our experiments with individual predictors and the four
cited classifiers.

4.1.1 Results of Individual Predictors and Majority Vote Integrator
Figure 1 shows the true positive (TP) rate and false positive (FP) rate of each individual
predictor and the majority vote of individual predictors on the reconstructed iJR904
model (Figure 1(a)) and iSB619 model (Figure 1(b)). The x axis shows the predictor
indices, with 1 to 23 representing individual predictors and 24 representing the major-
ity vote integrator of all individual predictors. The details of all individual predictors
indexed from 1 to 23 are explained in Table 1. The y axis indicates the true positive
rate (shown as the first bar, in blue, in each group) or false positive rate (shown as the
second bar, in red, in each group) for each predictor or majority vote integrator.
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Fig. 1. TP and FP Rates of Individual Predictors and Majority Vote on Reconstructed iJR904 and
iSB619 Models

From the results of the reconstructed iJR904 model in Figure 1(a), 12 predictors
are considered good because their true positive rates are greater than 0.5 and the false
positive rates are smaller than 0.1. However, predictor P1, P6, P11, and P16 should
be excluded. The datasets these four predictors use are reaction priors, reaction co-
occurrency, segment prior, and reaction-segment co-occurrency in the two reconstructed
iJR904 and iSB619 models in the BiGG. Hence, these four predictors are largely
biased. The remaining eight predictors have good performance in this set of exper-
iments. They are P5, P9,P10, P15, P19, P20, P22, and P23. Another set of predic-
tors is considered to have fair performance because they have high true positive (with
TP rate ≥ 0.5) and relatively high false positive rates (with false positive rates be-
tween 0.1 and 0.4) at the same time. This set of predictors comprises P4 using reaction
priors in KEGG organism maps,P13 using segment priors in KEGG modules, and P14
using segment priors in KEGG organism maps. The majority vote integrator, P24, can
recover all knockout reactions if one reaction is said to be recovered by this integrator
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if it is recovered by any single predictor. When P24 is set to recover a knockout reaction
if more than half of individual predictors have voted for that reaction, then the true pos-
itive rate is reduced to 0.45, and the false positive rate decreases to a very small ratio of
0.008.

The results of the reconstructed iSB619 model in Figure 1(b) show a similar pat-
tern for the performance of all predictors. In particular, if the majority vote integrator
P24 is said to recover a knockout reaction when more than half of individual predictors
have voted for that reaction, then the true positive rate is 0.57, and the false positive
rate decreases to a very small ratio of 0.001. This results shows that majority vote is
good because it can detect approximately 57% of the knockout reactions while keep-
ing the false positive rate very low. We can also conclude that predictors using SEED
information, such as predictors P5, P10, P15, P20, P22, and P23, perform well. In addi-
tion, the evidence from gene clusters, used by P22 and P23, strongly suggests candidate
hole-fillers.

4.1.2 Classifier Results
The data-mining software Weka [5] is used to train and test four classifiers: naive
Bayes classifier, Bayes network, multilayer perceptron network, and AdaBoostM1. Ta-
ble 2 summarizes the performance of these four classifiers on class 1, which is a class of
candidate hole-filling reactions. The classifiers are abbreviated as “NB,” “BN,” “MLP,”
and “AB,” respectively. The first part is the training error, and the second part is the
performance on stratified cross-validation. In each part, three rows represent three dif-
ferent measurements of the performance of classifiers and their accuracy, which is the
ratio of correctly classified instances in the test dataset, the true positive rates and false
positive rates. The results in Table 2 show that all four classifiers have high accuracy in
both training and cross-validation test. Also note that for each of the four classifiers, the
cross-validated accuracy is close to that of the training set. We thus conjecture that the
classifiers do not overfit the training set [5].

Table 2. Performance of Different Classifiers on Core Knockout Results of iJR904 Model

NB BN MLP AB

Training
Accuracy(%) 99.1487 99.236 99.8254 99.9127

TP 0.863 0.605 0.816 0.921
FP 0.007 0.004 0 0

Cross Val.
Accuracy(%) 99.0177 99.0613 99.6726 99.8035

TP 0.816 0.632 0.684 0.868
FP 0.008 0.006 0.001 0.001

Table 3 shows that all four classifiers have good trainingg results. Each classifier has
accuracy greater than 98%, and the TP rate is relatively high and FP rate low. This ob-
servation demonstrates that classifiers trained on core knockouts of iJR904 are capable
of recovering core metabolic reactions in the iSB619 model.
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Table 3. Performance of iSB619 Model for Classifiers Trained on the iJR904 Model

NB BN MLP AB

Test
Accuracy(%) 98.7532 99.2261 99.1617 98.9467

TP 0.343 0.543 0.743 0.914
FP 0.008 0.004 0.006 0.01

4.2 Results of Random and Subgraph-Based Knockouts

Figure 2shows the recovery rate of random and subgraph-based knockouts for two predic-
tors on the reconstructed iJR904 and iSB619 models. The two predictors are P5, which
uses reaction priors, and P20, which uses reaction-segment co-occurrence in SEED draft
models. In each figure, the x axis is the knockout rate, which is the fraction of the number
of knockout reactions and the total number of reactions in the original model. The y axis
is the recovery rate of a predictor for corresponding knockout. The black line with circled
points represents the change of recovery rate over subgraph-based knockouts. The red
line with starred points denotes the change curve of recovery rate on random knockouts.
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Fig. 2. Recovery Rate of Random and Subgraph-Based Knockouts
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In all four subgraphs (a)–(d), we see an overall tendency of declining recovery rate
with increased knockout rate. This shows that usually the more reactions that are re-
moved from a model, the fewer of them that can be recovered given the information
of remaining reactions in the model. One exception is shown in Figure 2(a), where the
recovery rate of predictor P5 on iJR904 model stays rather steady as the knockout rate
goes from to 0.1 to 0.8. The reason is that P5 is based on the frequency of a reaction in
all draft models in SEED, while reactions in these draft models cover the majority of
reactions in the iJR904 model. Therefore, P5 can recover the majority of the network
even though a large proportion of the iJR904 model is removed. In the cases of iJR904
model in Figure 2(a) and Figure 2(b), the difference between two lines is trivial. This
observation shows that the predictors perform almost equally well for random knock-
outs and subgraph-based knockouts in the iJR904 model. In Figure 2(a) and Figure
2(b), however, both predictors recover many more reactions for random knockouts than
for subgraph-based knockouts in the iSB619 model. The reeason is that iSB619 model
is not only smaller but also sparser than the iJR904 model. There are 812 reactions in
the reconstructed iJR904 model, whereas there are 590 reactions in the reconstructed
iSB619 model. Moreover, there are 8, 826 pathway segments with length smaller than
or equal to 6 in the reconstructed iSB904 model, whereashile the number is 3, 054 for
the reconstructed iSB619 model. In summary, Figure 2 shows that the results from our
computational predictors agree with the evidence and models.

5 Conclusion

In this paper, we suggest a way to rapidly construct genome-scale models by using a set
of reactions to fill network holes. A Bayesian approach is proposed to take into account
information gained in databases and to mine through large volumes of data. We present
a set of computational tools to extract biological and topological evidence from existing
data, construct predictors using different pieces of evidence, and design an ensemble
of predictors to integrate and unify individual predictors. By suggesting a collection
of candidate hole-fillers computationally, we speed the process of finding hole-filling
reactions. We perform a series of experiments in order to evaluate the performance of
the approach and computational tools.

The experimental results show that our computational tools recover a large propor-
tion of removed reactions in the reconstructed iJR904 and iSB619 models. Moreover,
the experiments generate new results that shed light on the properties of metabolic net-
works and various data and evidence. For example, high true positive rates and low
false positive rates for the two predictors using evidence from gene clusters in SEED
organisms show that gene clusters are helpful in searching for candidate hole-fillers.

By providing computational tools that support the improvement of draft metabolic
models, we expect to generate thousands of genome-scale metabolic models. These tools
can be integrated into our efforts of developing a high-throughput scientific workflow
[20] to eventually automate the construction of genome-scale metabolic models. The
models can be analyzed as a system, and insights can be obtained about properties of
organisms, such as genotype-phenotyperelationships. With the availability of thousands
of biological models, scientists can perform comparative analysis of these models, and
a new generation of experimental hypotheses can be achieved.
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Abstract. In this paper, we argue that existing gene selection meth-
ods are not effective for selecting important genes when the number of
samples and the data dimensions grow sufficiently large. As a solution,
we propose two approaches for parallel gene selections, both are based
on the well known ReliefF feature selection method. In the first design,
denoted by PReliefFp, the input data are split into non-overlapping
subsets assigned to cluster nodes. Each node carries out gene selection
by using the ReliefF method on its own subset, without interaction
with other clusters. The final ranking of the genes is generated by gath-
ering the weight vectors from all nodes. In the second design, namely
PReliefFg, each node dynamically updates the global weight vectors so
the gene selection results in one node can be used to boost the selection
of the other nodes. Experimental results from real-world microarray ex-
pression data show that PReliefFp and PReliefFg achieve a speedup
factor nearly equal to the number of nodes. When combined with sev-
eral popular classification methods, the classifiers built from the genes
selected from both methods have the same or even better accuracy than
the genes selected from the original ReliefF method.

1 Introduction

Gene expression data are important sources of information for many molecu-
lar biology and clinical studies such as genetic diseases profiling [1], identifying
potential biomarker signatures for cancers [2], and gene regulatory network re-
construction [4]. Typical microarray experiments output the express values for
a large number of genes (e.g., more than 20,000) which impose significant chal-
lenges to any tools which intend to interpret the interactions between genes or
link the correlations between the genes and diseases. Indeed most machine learn-
ing methods are even known to be inaccurate or unstable for high dimensional
data, especially when the number of samples is relatively small. Consequently,
selecting a number of genes relevant to the tasks at hand has received a lot of
attention [3,7,8,9]. Numerous methods have been proposed using computational
methods such as Bayes errors [7], Random Forest [8], and Receiver Operating
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Characteristics (ROC) [9] for gene selection. Research also exists on how to
determine the optimal number of genes for a given microarray dataset [6], de-
termining proper sample size for microarray experiments [10], and theoretical
analysis of the gene selection from microarray expression data [11].

In order to select important genes, traditional approaches roughly fall into the
following two categories: filter and wrapper approaches. In the filter approach,
each gene is individually investigated based on its relevance to the targets (e.g.
diseased or normal tissues), and all genes are ranked based on their relevance
values. Typical filtering approaches include ReliefF [16], χ2 [15], Information
Gain [5], and many others. The genes selected from the filtering approach are
considered important regardless of any classification models. On the other hand,
the wrapper approach [18] employs a classification model into the selection pro-
cess, so that instead of producing a gene ranking list (like the filter approaches
do), it produces a gene subset it regards as the best gene set with respect to the
current classification model. Typical wrapper selection starts from a single gene
(or the whole set of genes), then continuously adds (or drops) genes and inves-
tigates the best set which can help build the most accurate models. Because a
wrapper approach faces a combinatorial search space, heuristics are usually em-
ployed to speed up the search process. Even so, wrapper methods are far more
expensive than the filtering methods, and gene subsets selected by them are only
relevant for the classifier used in the selection.

For either filter or wrapper gene selection approaches, the selection process
is usually time consuming, especially for high dimensional large size datasets.
From a high performance computing perspective, one of the cheapest ways to
speed up computationally expensive algorithms is parallelizing them to execute
on cluster-based supercomputers. Cluster computers are becoming the primary
means of supercomputing due to their great and improving cost effectiveness.
A cluster supercomputer consists of a number nodes, each of which is typically
a stand-alone computer with independent memory, hard disk, and operating
systems. The clusters are usually connected in a Local Area Network (LAN)
environment based on IP network technology, so all clusters can communicate
with each other through high speed switches with Gigabit speeds. Designing
algorithms to run in such a distributed fashion can be challenging, given that
the program instances are running independently and communicate infrequently
and at high cost. An application that can be perfectly distributed will execute
N times faster on an N node cluster than on a single machine and is thus said
to have linear speedup.

In this paper, we propose two methods, PReliefFg and PReliefFp, to carry
out parallel gene selection in an independent and a cooperative manner, re-
spectively. Our results indicate that both methods have close to linear speedup
compared to the single machine based PReliefF . The gene selection results from
our methods are as good as or even outperform the results of the PReliefF .

The remainder of the paper is structured as follows. Section 2 briefly intro-
duces the ReliefF algorithm and its time complexity. The parallel algorithms,
PReliefFp and PReliefFg, are introduced in Section 3. In Section 4, these two
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algorithms are compared against the single machine based ReliefF method in
terms of the runtime performance and the quality of the selected genes on a
cluster computer. The conclusions and remarks are given in Section 5.

2 Introduction to ReliefF

In Figure 1, we list the main procedure of the ReliefF algorithm [16]. Given
a dataset with m instances R[i], i = 1, · · · , m, each of which has a attributes
(genes) and a class label (the type of the sample e.g. diseased or normal tissue),
the output of the ReliefF is a ranking list of all genes with the most important
genes ranked on the top of the list. The main loop of the algorithm follows 3
steps for each instance R[i]

1. find the k nearest instances to R[i] in the same class as R[i]
2. find the k nearest instances to R[i] in each other class
3. for each attribute, subtract from the weight the distance (relative to the

attribute) between R[i] and its closest neighbors in the same class, and add
the distance between R[i] and its closest neighbors in different classes

In order to calculate the difference between two instances with respect to a
specific gene A, ReliefF defines diff as

diff(A, I1, I2) =

{
0 if value(A, I1) = value(A, I2)
1 if value(A, I1) �= value(A, I2)

(1)

for categorical attributes and

diff(A, I1, I2) =
|value(A, I1) − value(A, I2)|

max{A} − min{A} (2)

for numeric attributes. Here value(A, I) is the value of gene A in instance I.
R is the vector of instances, each having a class class(R[i]). P (C) is the prior
probability of class C occurring, and W is the output vector of attribute weights.

The time complexity of the ReliefF is O(m2a) which is quadratic in terms
of the number of instances. In this study, we consider gene expression data. A
typical example dataset in this class may have m = 500, c = 2, and a = 20, 000.
Such a dataset has time complexity on the order of 10,000 million, which is
computationally expensive for even powerful computers. When gene selection
must be performed repeatedly, this can lead to unacceptable delays in calculating
results. Thus a need to expedite the algorithm is motivated.

3 Parallel Gene Selection Algorithms

Here we introduce two distributed variants of the ReliefF , PReliefFp and
PReliefFg, where the theme of the algorithms is to divide the calculation of the
ReliefF on a cluster computer composed of n nodes.



Parallel Selection of Informative Genes for Classification 391

Algorithm 1: ReliefF

Input : for each training instance
Output: the vector W of estimations of the qualities of attributes
set all weights W [A] ← 01

for i ← 0 to m do2

select the instance R[i]3

find k nearest hits to R[i] ≡ H4

for each class C �= class(R[i]) do5

from class C find k nearest misses ≡ M(C)6

end7

for A ← 1 to a do8

W [A] ← W [A]−
k∑

j=1

diff(A, R[i], H [j])/(m · k) +
9 ∑

C �=class(R[i])

[
P (C)

1 − P (class(R[i]))

k∑
j=1

diff((A, R[i], M(C)[j])

]
/(m · k)

end10

end11

Fig. 1. ReliefF Algorithm

3.1 PReliefFp: Parallel ReliefF with Private Weighting

This first variant, PReliefFp (Figure 2), is the most direct subdivision of work
across the nodes in the cluster. The set of instances is split in to n subsets, each
of approximately equal size. Each node in the cluster processes the instances in
one subset, so each node maintains its local weight for all genes based on the
set of instances assigned to the current node. At the last stage, all the private
weight values are summed a a master node which gives the resulting weight
vectors for all genes. This algorithm is called the private weighting version (p) of
the algorithm because each node has only private weight values of the elements
in the weight vector during execution.

The time complexity analysis of PReliefFp is similar to ReliefF . In this
case, the main loop is executed m/n times on each node. Each node iterates the
main loop in parallel so the main loop requires O(a · c · m2/n) steps. The final
step, summing the partial weight vectors, is O(n ·a). Since in most cases n < m,
we say the time complexity of PReliefFp is

O

(
a · c · m2

n
+ n · a

)
= O

(
a · c · m2

n
+

n2 · a
n

)
= O

(
a · c · m2

n

)
(3)

3.2 PReliefFg: Parallel ReliefF with Global Weighting

PReliefFg (Figure 3) builds on PReliefFp by introducing a boosting process to
reduce the number of genes used to find the distance between two instances. In
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Algorithm 2: PReliefFp

Input : for each training instance
Output: the vector W of estimations of the qualities of attributes
set all weights W [A] ← 01

partition R into n non-overlapping subsets R1, R2, . . .2

set all partial weights Wc[A] ← 0 for c = 0, 1, . . . , n3

for each cluster node c do4

for i ← 0 to m do5

select the instance R[i]6

find k nearest hits to R[i] ≡ H7

for each class C �= class(R[i]) do8

from class C find k nearest misses ≡ M(C)9

end10

for A ← 1 to a do11

Wc[A] ← Wc[A] −
k∑

j=1

diff(A, R[i], H [j])/(m · k) +
12 ∑

C �=class(R[i])

[
P (C)

1 − P (class(R[i]))

k∑
j=1

diff((A, R[i], M(C)[j])

]
/(m · k)

end13

end14

end15

for c = 0 to n do16

W [A] ← W [A] + Wc[A]17

end18

Fig. 2. Parallel gene selection with private weighting

PReliefFg, the weight calculations for all genes are carried out in a cooperative
manner, where each node updates a global weight vector after processing each
instance, and further utilizes the global weight vector to fulfill the weight calcu-
lation in the next round. Where ReliefF and PReliefFp use all genes to find
nearest neighbors, PReliefFg progressively excludes the least important genes
in terms of weight when it calculates the distance between instances.

The time complexity analysis of PReliefFg differs from PReliefFp in two
places. First, the main loop of PReliefFg has an implicit fourth step: selecting
the l least important features for exclusion. This step has O(a·log(a)) complexity
and is executed once for each of the m/n iterations through the main loop.
Second, in PReliefFg, l (the number of attributes to exclude when computing a
distance) ranges from 0 to m during run time. Therefore the operations involved
in computing a distance between two instances is reduced on average from O(a)
in PReliefFp to O(a − m/2) in PReliefFg. Thus the overall time complexity
of PReliefFg is

O

(
m ·

((
a − m

2

)
· c · m + a · log(a)

)
n

)
(4)
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The effect this change has on the practical runtime will depend on the rela-
tionship between a and m. If m << a, the first term in the numerator reduces
((a−m/2)·c·m ≈ a·c·m) and the overall run time will be similar to PReliefFp as
long as log a is on the same order or smaller than c ·m. If m >> a, the first term
in the numerator reduces to 0 and the overall complexity will become O(m/n),
which is significantly faster than PReliefFp. When m = a, the time complexity
of PReliefFg is equivalent to PReliefFp, but in the limit it will run twice as
fast because the number of computations per distance calculations is cut in half.

The final point to consider is the communications overhead. In the case of
PReliefFp, the weight vector is gathered at the root node once, requiring O(n·a)
bytes to be transferred. In PReliefFg, the weight vector is sent and received
once per iteration of the main loop. The main loop is executed m times total
(considering all node), resulting in O(m ·a) bytes transferred. Since n is typically
small in comparison to m and a, this difference is significant, similar to the
difference between linear and quadratic algorithms.

4 Experimental Results

4.1 Data Sets

Our testbed consists of 3 gene expression datasets collected from different re-
sources, including the popular Kent Ridge Biomedical Data Set Repository [19].
The data characteristics of the benchmark datasets are reported in Table 1 (TIS
is a sequence dataset for translation initialization site prediction that included
mainly for the purposes of demonstrating the algorithm performances on large
size high dimensional data). All benchmark datasets contain two types of ex-
amples, i.e., positive and negative examples. Using these sets we evaluate the
accuracy and execution time performance of the new algorithms, in comparison
with the single machine based ReliefF method.

Table 1. Data characteristics of the benchmark datasets

Name # of Samples # of Genes

AML-ALL Leukemia 72 7,130
Lung Cancer 203 12,601

Translation Initialization Site (TIS) 13375 928

4.2 Cluster Computing

The algorithms are implemented in C on top of the MPICH2 MPI library [17].
This library provides a framework to easily build cluster-based applications.
Resulting programs are then executed on an IBM BladeCenter cluster computer
consisting of 8 HS20 blade servers, each with Intel Xeon EM64T CPUs operating
at 3.8 GHz and 2 GB of RAM. Servers are linked with two 1 Gigabit ethernet
controllers. Inter-node communication, handled in large part by the MPICH2
system, is built on an IP network backbone.



394 M. Slavik et al.

Algorithm 3: PReliefFg

Input : for each training instance
Output: the vector W of estimations of the qualities of attributes
set all weights W [A] ← 01

partition R into n non-overlapping subsets R1, R2, . . .2

set all partial weights Wc[A] ← 0 for c = 0, 1, . . . , n3

l ← 04

for each cluster node c do5

for i ← 0 to m do6

select the instance R[i]7

find k nearest hits to R[i], excluding the l lowest weight attributes ≡ H8

for each class C �= class(R[i]) do9

from class C find k nearest misses, excluding the l lowest weight10

attributes ≡ M(C)
end11

for A ← 1 to a do12

Wc[A] ← Wc[A] −
k∑

j=1

diff(A, R[i], H [j])/(m · k) +
13 ∑

C �=class(R[i])

[
P (C)

1 − P (class(R[i]))

k∑
j=1

diff((A, R[i], M(C)[j])

]
/(m · k)

end14

l = l + n15

if l > 0.9a, l = 0.9a16

end17

end18

for c = 0 to n do19

W [A] ← W [A] + Wc[A]20

end21

Fig. 3. Parallel gene selection with global weighting

4.3 Runtime Evaluation Results

The runtime performance of the new algorithms is evaluated on 1 to 8 node clus-
ters. Distributed programs are traditionally compared in terms of two metrics,
speedup and efficiency, defined below in terms of T (n), the running time on a
cluster of n nodes.

Speedup(n) =
T (1)
T (n)

(5)

Efficiency(n) =
Speedup(n)

n
=

T (1)
n · T (n)

(6)

Figures 4, 5, and 6 show the performance results. The left axis shows the
running time of the algorithm and the right axis shows the speedup, each plotted
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(a) PReliefFp (b) PReliefFg

Fig. 4. Run time performance results on the Leukemia Data Set

(a) PReliefFp (b) PReliefFg

Fig. 5. Run time performance results on the Lung Cancer Data Set

(a) PReliefFp (b) PReliefFg

Fig. 6. Run time performance results on the TIS Data Set

vs the number of nodes in the cluster. Perfect speedup is achieved when the
speedup equals the number of nodes.

Efficiency gives a measure of how close to perfect speedup an algorithm gets.
Under normal circumstances, the maximum efficiency is 100%. Table 2 summa-
rizes the efficiency of the different algorithms.
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Table 2. Efficiency of new algorithms

Number of Nodes
PReliefFp PReliefFp

Leukemia Lung Cancer TIS Lung Cancer TIS

2 87.5 96.2 99.9 87.3 97.3 51.9
3 79.8 94.1 99.9 75.5 93.7 35.0
4 73.4 91.4 99.8 74.4 92.1 26.5
5 66.2 88.6 99.7 67.0 88.3 21.2
6 63.2 86.5 99.7 64.4 87.8 17.8
7 56.7 85.3 99.6 58.1 87.1 15.3
8 55.2 81.6 99.5 57.2 83.6 13.4

Average 68.9 89.1 99.7 69.1 90.0 25.86

In short, the results reported in this section suggest the following.

– PReliefFp exhibits high efficiency across all data sets, with better efficiency
for higher data sets. This relationship is expected, since larger data sets
spend a larger proportion of their time in the main loop of the algorithm
where the gains from parallelization are made.

– When a >> m (Leukemia and Lung Cancer), PReliefFg exhibits high effi-
ciency, and PReliefFp is marginally faster than PReliefFg. This result is
predicted from the time complexity analysis.

– When m >> a (TIS), PReliefFg is much faster than PReliefFp. This is
also predicted by the complexity analysis.

– The efficiency of PReliefFg is very low on the TIS data set, implying non-
parallelized overhead occupies the majority of the processor time. Investiga-
tion shows importing data from disk uses about 6 seconds, and extrapolating
the curve in Figure 6(b) shows about 630 seconds of remaining time will re-
main no matter how many nodes are used. This 630 seconds represents the
overhead resulting from data transfer between nodes. The TIS data set has
m = 928 and a = 13375. A gene weight requires 8 bytes and each iteration
causes 2 transfers of the weight vector, so a total of about 190 MB is trans-
ferred during run time, resulting in an average data transfer rate of about
300 KB/s, which is reasonable given the protocol overhead.

4.4 Accuracy Evaluation Results

For any effort to speedup ReliefF to be useful, if must produce comparable
results in terms of accuracy. For this purpose, we measure the accuracies of the
classifiers built from the genes selected from proposed methods. More specif-
ically, we filter the data sets to varying numbers of genes using the selection
algorithms and build classification models with the resulting data subsets. Two
learning methods used in the study include Support Vector Machines (SVM)
and k nearest neighbors (k-NN). For all methods, the WEKA tool [14] is used
with default parameter settings.

In these experiments, the number of genes selected is varied from 10 to 240.
The data set containing the selected genes is used to build the different classifiers
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(a) SVM (b) k-NN

Fig. 7. Leukemia data set accuracy results

(a) SVM (b) k-NN

Fig. 8. Lung cancer data set accuracy results

(a) SVM (b) k-NN

Fig. 9. TIS data set accuracy results

using the above learning methods. Due to the small number of instances in most
data sets, 4-fold cross-validation is used to test the model accuracy. Here the
accuracy is the percentage of instances that are correctly classified; the true
positive rate plus the true negative rate. This metric gives a good indication of
the overall accuracy of the method.

Figures 7, 8, and 9 show the accuracy of the classifiers across a range of
quantities of genes selected. The results in the Figures 7, 8, and 9 assert that
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– PReliefFp is functionally equivalent to ReliefF . This is already known
from the algorithm analysis, but is verified here.

– PReliefFg gives essentially equal accuracy to ReliefF when a >> m (Leu-
kemia and Lung Cancer). This is predictable since the boosting process has
only minimal effect in this case.

– PReliefFg gives marginally better performance when m >> a (TIS). By
itself this result is not impressive, but recall that PReliefFg runs much faster
on these data sets. In fact, PReliefFg gives marginally better accuracy in
this case while requiring only 4% of the time required by ReleifF !

5 Conclusion

Genes expression data are now commonly used in the molecular biology and
clinical trial to link the correlations between the expression of certain types of
genes and diseases. While many tools exist in finding such correlations, they
are generally challenged by the large number of genes under their investigation,
espcially considering that many genes present themselves in a random manner
(or at least the reasons of triggering those genes are yet to be found) or express
in all types of tissues (i.e. housekeeping genes). Selecting informative genes can
eventually help find the genuine interactions between genes and further build en-
hanced prediction models. Numerous research has shown that selecting a number
of informative genes can indeed help build models with better prediction accu-
racies than the ones trained from the raw data. In this paper, we argued that
although many approaches exist for choosing informative genes, these methods,
unfortunately, are incapable of handling large datasets, where the algorithms
may easily take hours before the users can see the results. Consequently, we pro-
posed two parallel gene selection approaches based on the well known ReliefF
feature selection method. Our design employed the master and the worker archi-
tecture, and the master dispatches the data to the workers to further carry out
the selection process in an independent and a cooperative manner. Experimental
results from real-world microarray expression data and an 8 nodes cluster com-
puters show that both versions, PReliefFp and PReliefFg, linearly speedup
with respect to the number of clusters, and the runtime performance of our
methods can be as less as 4% of the single machine based method. By using
two typical classification methods as learners, we also confirmed that the models
trained from the genes selected from our method have the same or even better
accuracies than those selected from the original ReliefF method.
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Abstract. The paper deals with in silico investigation of possible regulatory 
mechanisms involved in control of signaling pathways. As an example, the In-
terferon-b activated pathway has been chosen. Though many processes in-
volved in this pathway are known, there are still some that evade explanation. 
One of them is the nuclear accumulation of the IRF1 protein. Here, three hy-
potheses are stated and tested numerically, showing that the most likely mecha-
nism involved in this process is an inhibition of IRF1 activation by an yet 
unrecognized factor. 

Keywords: Signaling pathways, Interferon-β, IRF1. 

1   Introduction 

The term signaling pathways (also called regulatory or transduction pathways) relates 
to the cascade of biochemical processes, initiated either by an external event (e.g., 
ligand binding to its specific receptor on a cell surface), or by an internal event (e.g., 
DNA damage). These processes involve creation or degradation of protein complexes, 
activation of enzymes and usually lead to activation or repression of transcription of 
genes specific for a given pathway. This results in production of new proteins (or their 
disappearance, if the genes are suppressed) which may affect earlier stages of the 
cascade, thus creating positive or negative feedback loops. 

Understanding dynamics of signaling pathways involved in immune system re-
sponses opens the way for new approaches in drugs development and therapeutics. 
Following rapid developments in new experimental techniques, mathematical model-
ing of regulatory pathways that control intracellular biological and chemical processes 
is gaining increasing interest in the biomedical research. However, our knowledge of 
the mechanisms regulating intracellular processes is still far from complete. Though 
mathematical modeling cannot substitute experimental research, through qualitative 
analysis of existing models it can suggest what regulatory structure is missing (if the 
model cannot reproduce experimental results) or what is the most promising hypothe-
sis to be tested experimentally. 

This paper deals with in silico analysis of an unknown mechanisms regulating one 
of the processes in the Interferon-β (IFN-β) activated signaling pathway. The mathe-
matical model in the form of ordinary differential equations is based on [11]. It  
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concentrates on one of the phenomena observed in experimental results, which has so 
far escaped explanation. After brief description of widely recognized structure of the 
analyzed pathway, three hypotheses are formed in the following sections and the 
models based on them are tested numerically, showing that only one is acceptable. 

2   Canonical form of the IFN-β Activated Pathway 

When IFN-β binds to its receptors (IFNAR1/2), the associated tyrosine kinases lead to 
phosphorylation of STAT1 and STAT2 proteins. Subsequently, phosphorylated 
STATs form hetero- and homodimers. In cytoplasm, STAT1|STAT2 heterodimers 
form a complex with an IRF9 protein, called ISGF3. Both STAT1 dimers and ISGF3 
complex are transported into the nucleus, where they serve as active transcription 
factors (TFs), inducing, among others, IRF1 gene transcription. STATs are dephos-
phorylated by phosphatases both in the nucleus and in cytoplasm. Dephosphorylation 
results in dissociation of complexes leading to nuclear export of STATs and making 
them available to subsequent phosphoryla-tion/dephosphorylation cycles. Newly 
synthesized IRF1 protein translocates to the nucleus, where it subsequently controls 
late gene expression, including STAT1 gene [2]-[7], [10], [13].  

 

Fig. 1. IRF1 cytoplasmic concentration – simulation for the original model (continuous line) vs. 
experimental data (cicles) 

There is a number of mechanisms negatively regulating cell response to IFN, in-
cluding phosphatases activities, SOCS-based inhibition of STAT phosphorylation, not 
fully investigated PIASes activities [1], [3], [8], [9], [15], [16 ].  

The original model of Interferon-β stimulated pathway, presented in [11] provided 
a good fit to experimental data. However, it failed to explain the source of cytoplas-
mic IRF1 accumulation, observed in the experiments (Fig. 1). According to the labo-
ratory measurements there is a cytoplasmic peak of IRF1 (at approximately, 4 hours 
of stimulation), reached later than the nuclear peak (after 2.5 hours of stimulation) 
[11]. These results suggest that there is an additional, unknown process of negative 
regulation in the pathway.  
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Fig. 2. The part of the original model illustrating processes involving the IRF1 protein. Bold 
lines indicate hypothesis stated in the original model. 

In the original model, the IRF1 protein was assumed to be instantly activated after 
its production and transported to the nucleus, where it served as an transcription factor 
In the nucleus it was assumed to undergo an irreversible inactivation, which resulted 
in its nuclear export (Fig. 2) 

In the following sections, three hypotheses about the regulatory mechanism in-
volved in IRF1 cytoplasmic accumulation will be discussed. All of them require in-
troducing changes to the ODEs describing system dynamics as well as new variables. 
In order to check how these changes affect simulation results, a whole series of nu-
merical experiments was conducted. In each case, parameters associated with hypo-
thetical processes were changed in a wide range and all possible permutations of 
parameters were checked. 

3   Hypothesis 1 – Creation of IRF1|STAT1 Complexes in the 
     Cytoplasm 

The original model took into account creation of STAT1|IRF1 complexes in the nu-
cleus only, assuming that similar process in cytoplasm either does not take place, or 
can be neglected. Therefore the first hypothesis to be tested assumes that IRF1 can 
form complexes with unphosphorylated STAT1 in cytoplasm as well (Fig. 3). 

Although effects of this process could be negligible initially, if IRF1 nuclear im-
port was very fast, after massive accumulation of STAT 1 in cytoplasm it could play 
an important role.  

Because of  STAT1 size the nuclear import of STAT1|IRF1 would have to be fa-
cilitated by an importin. Since in such complex the binding site of such importin 
would be blocked, it is assumed that the complex cannot be transported between the 
nucleus and cytoplasm. 

Similarly as in the original model, the dynamics of IRF1 activation in cytoplasm is 
neglected and assumed to be almost instant after translation. Therefore, only an active 
form of IRF1 is present.  

As simulation results show, including STAT1|IRF1 complexes in the model does 
not yield results that match experimental data (Fig.4). Either the peak is reached too 
fast, or, if initial dynamics is satisfactory, later IRF1 cytoplasmic concentration is  
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Fig. 3. Part of the original pathway modified as a result of hypothesis I. Bold lines indicate new 
molecules and processes introduced into the model.  

 

Fig. 4. Cytoplasmic IRF1 dynamics in the model modified by Hypothesis I. Black dashed line, 
circles and grey lines  represent results obtained for the original model, experimental data and 
simulation results (obtained for various parameters) for the new model.  

maintained on the level that is too high. Therefore, one should pursue another expla-
nation of the cytoplasmic IRF1 accumulation.  

4   Hypothesis II – Explicit Modeling of IRF1 Activation and 
     IRF1|STAT1 Complexes in the Cytoplasm 

Since both in the original model and its modification introduced in the preceding 
section IRF1 activation has not been explicitly modeled, it might be possible that it is 
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Fig. 5. Part of the original pathway modified as a result of hypothesis II. Bold lines indicate 
new molecules and processes introduced into the model. 

 

Fig. 6. Cytoplasmic IRF1 dynamics in the model modified by Hypothesis II. Black dashed line, 
circles and grey lines  represent results obtained for the original model, experimental data and 
simulation results (obtained for various parameters) for the new model. 

the dynamics of the activation process that is responsible for the observed phenome-
non. In order to check this, another model was tested, in which mRNA translation 
inactive proteins were produced. They subsequently were activated, following the law 
of mass action in a first-order process. Additionally, the model allowed for creation of 
IRF1|STAT1 complexes in the cytoplasm (Fig.5). 

An additional advantage of this model is that it allows for inactivation of IRF1 pro-
teins that can be reversible. However, as shown in Fig, 6, for a wide range of parame-
ters it was impossible to reproduce the experimental time profile of IRF1 level. 
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5   Hypothesis III – Inhibition  of IRF1 Activation via an Unknown 
     Repressor X 

It is known that IRF1 protein should be activated to act as a TF. This most likely 
involves phosphorylation by yet unidentified phosphatase [13]. In the previous mod-
els it was assumed that the dynamics of such process is very fast comparing to other 
processes involved in the pathway and therefore can be neglected. Since the changes 
introduced there have not yielded desired results, another hypothesis is introduced. It 
will be assumed that the activation of the process is mediated by a kinase that is con-
stitutively present in the cytoplasm. However, this activation can be blocked by an-
other protein that is produced in the pathway, either by binding the kinase or by 
promoting its degradation. Contrary to the previous models, the dynamics of IRF1 
activation is modeled explicitly. Therefore, it is assumed that the translation process 
yields inactive IRF1 protein (first term in the equation above). Activation of IRF1 
protein in cytoplasm is blocked by an unknown X protein and in its absence is a first 
order process (the last term in the equation). This protein would be coded by a gene 
whose transcription is induced in the IFN-b activated pathway (Fig. 7). It may be 
assumed that the TF for this gene should exhibit dynamics similar to other genes 
activated in this pathway, so it is not necessary to introduce the variable representing 
concentration of such TF to the model. However, production of the protein should be 
delayed with respect to IRF1 dynamics. Such delay might result from activation proc-
ess of X protein. In order to avoid introducing too many unknown molecules into the 
model it was assumed that the production of X protein is similar to IRF1 protein, and 
its activation is a second-order time-lag process.  

Introduction of an unknown molecule inhibiting IRF1 activation made it possible 
to obtain cytoplasmic IRF1 accumulation as in the experiments. Moreover, he model 
proved to be sufficiently robust with respect to parameter changes (Fig. 8). 

 

Fig. 7. Part of the original pathway modified as a result of hypothesis III. Bold lines indicate 
new molecules and processes introduced into the model. 
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Fig. 8. Cytoplasmic IRF1 dynamics in the model modified by Hypothesis II. Black dashed line, 
circles and grey lines  represent results obtained for the original model, experimental data and 
simulation results (obtained for various parameters) for the new model. 

 a) b) 

  
                               c)                                                                d) 

 

Fig. 9. Original model (black dashed line), experimental data (circles) and simulation results 
(obtained for various parameters) for the new model (grey lines): a) STAT1 homodimers (TF 
for IRF1 gene); b) IRF1 mRNA c) nuclear IRF1 protein (TF for STAT1) and d) STAT1 mRNA  
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Since the changes introduced into the model could influence dynamics of other 
molecules in the pathway similar plots were produced for them. As illustrated in the 
Fig. 9, modification introduced in this section has not changed the quality of the fit for 
them (only TFs and their respective genes are shown). It should be noted that the 
modifications have virtually no effect on the processes that are upstream of the IRF1 
protein production. 

6   Conclusions 

The paper shows how mathematical modeling can be used to test various hypotheses 
about structure of regulatory pathways.  

Usually the first step in such research is analysis of high-throughput DNA or pro-
tein matrices. They, however do not provide enough information to discern causes 
from effects. Therefore they are usually followed by more focused biochemical ex-
periments. These experiments are very time – and resource-consuming. It is then 
convenient to support investigation of signaling pathways with mathematical analysis.  

Three different models have been tested to find a possible explanation of the cyto-
plasmic accumulation of IRF1 in the analyzed pathway. Only one of them proved to 
be able to reproduce the experimental results. While it cannot be considered to be a 
proof of the hypothesis stated, it shows the direction of the experimental research that 
is the most promising. Mathematically based approach to analysis of signaling path-
ways is the most useful, when he hypotheses that are formed include unknown mole-
cules, since they cannot be tested experimentally.  
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Abstract. Process calculi hold great promise for modeling and analysis of cellu-
lar mechanics and behavior. While measured success has been achieved in their
simulation of specific biochemical pathways and molecular mechanisms within
the cell, several obstacles remain to their widespread adoption and use. Chiefly,
these have to with the difficulty of modeling cell membranes and localized behav-
ior, and limitations on the scalability of the execution model. This paper describes
a multi-layered formalism – GridSPiM – that engages notions of concurrency, lo-
cality and encapsulation to provide a framework suitable for capturing the key
aspects of cellular processes.

1 Introduction

Exploration of the cell has yielded a wealth of knowledge about the molecular mecha-
nisms of many biological interactions and pathways. With this information accumulat-
ing rapidly, and with most reactions and mechanisms still largely unexplored, specifi-
cation and simulation techniques are of great value.

Formal methods in computer science hold the promise of providing a solid theo-
retical foundation for such techniques. The π-calculus is one such method, capturing
concurrency, encapsulation, and structured interactions, each important to understand-
ing biological mechanisms.

Several attempts have been made over the last decade to adapt the π-calculus and
other process calculi to biological modeling. Perhaps the most successful of these ef-
forts has been the Stochastic Pi Machine (SPiM) [15]. SPiM’s formalism and imple-
mentation permit efficient and reasonably scalable stochastic evaluation of π-calculus
models.

However, SPiM lacks two capabilities – containment and locality – preventing it
from fully bridging the gap between biochemistry and cellular biology. Containment
is fundamental to cellular function. Membranes isolate and concentrate reaction ma-
chinery and substrates. Proteins embedded in membranes facilitate signaling and ac-
tively regulate molecular movement. Locality enforces similar considerations as vast
distances within and across cells promote regional concentrations and favor active trans-
port mechanisms over simple diffusion.

In GridSPiM, we place SPiM instances in a framework implementing locality and
regulated diffusion. In its simplest form, the framework operates on a hexagonal grid,
with each grid space running a SPiM simulation. At fixed intervals of simulation time,
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each simulation is stopped and its contents are diffused among its neighboring cells.
The user can specify pairwise diffusion rates to restrict movement in a biologically mo-
tivated fashion, permitting the modeling of primitive membrane and vesicle structures.

The remainder of this paper details this implementation. Section 2 provides
background on biological process calculi and simulation environments. Section 3 gives
further consideration to the biological issues motivating this work. Sections 4 and 5,
respectively, describe the GridSPiM framework and the results of several simulations.
Finally, Section 6 presents future work and concluding remarks.

2 Background

2.1 Process Calculi

Process calculi are a formal mathematical approach to modeling concurrent systems. A
process calculus aims to provide a robust syntax, semantics, and set of reductions for
the specification of systems in which processes execute and interact in parallel. They
have been used to model mobile and networked systems, e.g. simulating the interac-
tion of independent agents on a shared network, and the investigate and prove system
properties, e.g. considering cryptographic protocols [1].

Modeled systems in the π-calculus are composed of independent, concurrently-exe-
cuting processes which interact through named channels. Individual processes are se-
quential, performing only one operation at a time, but the composition of such processes
yields a concurrent system with potentially parallel execution. The process calculus sup-
plies reduction semantics which govern process interaction and system state transitions.
The syntax and reduction semantics allow a process calculus to specify a concurrent
system formally with well understood and provable properties.

Early examples of process calculi include Communicating Sequential Processes [9],
and the Calculus of Communicating Systems [10]. The π-calculus [11,12] was built
from the Calculus of Communicating Systems with dynamic systems in mind – col-
lections of processes capable of changing configuration during computation by passing
new channel names over existing channels. It has formed the foundation for many sub-
sequent process calculi.

The basic action primitives of the π-calculus include:

Concurrency: P |Q
Null Process: P |0 ≡ P
Replication: !P ≡ P |!P
Reduction: a.P |a.Q → P |Q

Communication is facilitated by matching named ports (‘a’ in the below example)
and substituting any communicated names (‘c’ is communicated in place of ‘b’).

Substitution: {c/b}b.d.P ≡ c.d.{c/b}P
Communication: a(b).P |a〈c〉.Q → {c/b}P |Q

Branching is achieved by the choice operator (+) whereby several names can be
exposed, each allowing different resulting executions.
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Branching: (a.P + b.Q + c.R)|b.S → Q|S

This concept of parallel, synchronized, name-passing state machines provides a pow-
erful framework in which to build and evaluate complex models.

2.2 Biological Process Calculi

Process calculi can be useful in formalizing biological problems due to the inherent
concurrency of protein and other cellular interactions. A straightforward biological ap-
plication of the π-calculus was undertaken by Regev [19] to model the RTK-MAPK
pathway, a well-studied signal transduction pathway. To accommodate quantitative
models, this group extended their work [17] to utilize the stochastic π-calculus [16],
a variation of the π-calculus with reaction rates affixed to named communication chan-
nels. Reaction rates allow process calculi to reproduce biological timing and quantities
more accurately in models.

The addition of primitives for representing and manipulating compartments has fur-
ther expanded the usefulness of process calculi within biological domains. The Mobile
Ambient calculus [5] and its biological derivative, the BioAmbient calculus [18], are
π-calculus extensions which provide primitive structures for modeling ambients – self-
contained, self-executing compartments which enclose both processes and other com-
partments. These compartments are useful for modeling cellular boundaries, such as
cell membranes. However, due to the approximate nature of ambient compartments, a
more biologically-inspired membrane calculus, the Brane calculus [4], was proposed.
This process calculus represents compartment boundaries as membranes and introduces
membrane operations that more closely simulate the properties of a cellular membrane.
The Brane calculus was further extended by the Projective Brane calculus [6], which
explicitly enforces the bitonal nature of membranes, therein distilling membrane inter-
actions into even simpler behavior.

2.3 Formal Simulation Environments

Biologically-inspired process calculi have met with measured success in modeling and
analysis in the cell biology domain. However, their application has been limited by the
sparsity of stochastic execution models suitable for simulation. BioSPi [19] represented
an early attempt toward implementing the stochastic π-calculus. BioSPi permitted the
exploration of many interesting examples, and, though it suffered from scalability is-
sues, it provided a foundation for further development.

SPiM [15], a descendant of BioSPi, has proven to be the most successful execution
model among stochastic process calculi. SPiM provides a well-specified simulation pro-
gramming language, both command line and graphical interfaces, and a well-developed
set of supported operations. SPiM is grounded by a formally defined machine [15]
which exploits common structural attributes within simulations to permit an often scal-
able and efficient execution model.

Some attempts have been made toward formal execution models for Bioambient
and Brane calculi [14]. However, lacking well-developed implementations, it is unclear
whether these will present the same scalable and intuitive interfaces for simulation as
demonstrated by SPiM.
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3 Biological Motivation

While process calculi provide a solid general framework for representing biological
systems, these systems present several domain-specific issues. We discuss three issues
of particular importance for cellular biology – containment, locality, and scalability.

3.1 Biochemical Processes

The seminal work in biological process calculi [19] focused on the cellular protein
networks that govern the internal workings of the cell. These systems process exter-
nal signals, bind and transport molecules, conduct internal reactions, and form cellular
structures. Many protein networks are well known, and new knowledge is being gained
rapidly. Yet few methods exist for formally specifying known interactions and perform-
ing automated analysis and simulation.

Languages and simulation environments derived from process calculi present a use-
ful framework for specifying and simulating these systems. Furthermore, these for-
malisms may support rigorous composition and analysis [3]. Fitting these lower-level
models into realistic cellular environments – with consideration given to locality and
membrane containment – can enhance our ability to explore their functions.

3.2 Containment

Membrane interactions are vital to understanding the overall cellular landscape.
Membrane boundaries establish the system’s hierarchical structure. Beyond merely em-
bodying passive inter-compartmental boundaries, they actively regulate cytoplasmic
conditions, transport and filter reaction components, and facilitate intercellular com-
munication and environmental inspection.

These structures must be capable of complexing with other structures and then ac-
curately decomposing into their constituent parts. Additionally, membrane structures
must have the ability to change dynamically in response to external and internal stim-
uli. Hormone interaction, altered metabolism rates, and exposure to varying hydrostatic
pressures may affect the composition, and consequently the functional rates of mem-
brane transport and membrane-membrane interaction. Insulin, for example, triggers the
activation of glucose transporters on a membrane. The level of activation on a mem-
brane is a function dependent on the concentration of insulin [21]. With complex sys-
tems engaging fine-tuned membrane behavior, a greater need for stochastic control of
membranes arises.

3.3 Locality

In many process calculi, all interactions occur within the same spatial bounds, so any
process can communicate with any other available process. In ambient calculi, mem-
brane boundaries are enforced, but existing within the same location in the ambient
hierarchy is sufficient for interaction. However, this unrestricted communication does
not accurately reflect the realities within a cell. Vast distances within a cell – at least on
the scale of cellular subsystems – limit reactions to components in close proximity to
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one another. Since active transport and cellular scaffolding act to close these distances,
their impact cannot be ignored [24].

Consider the growth of the Drosophila Melanogaster embryo. A gradient of SPZ
proteins forms along what eventually becomes the dorsal-ventral axis [22]. These pro-
teins bind with a toll receptor, initiating the endogenous release of a DL protein, which
diffuses into the nucleus. Once concentrated in the nucleus, the DL protein acts as a
gene repressor, directly determining the differentiation of each cell. The amount of gene
repression–based on the concentration of the DL protein–determines the specific fate of
a cell, e.g. only certain cells will meet a threshold and develop into the nerve cord. This
is largely influenced by the rate of SPZ to toll receptor binding, which in turn, is a func-
tion of the gradient of SPZ the cells are exposed to. Without the gradient, cells would
be exposed to an equivalent concentration of SPZ, leading to a uniform differentiation
of cells.

There are many possible approaches to incorporating notions of locality into a pro-
cess calculus. These include establishing processes within a coordinate system or a col-
lection of overlapping regions, or using locality ports to encode reaction restrictions. It
is unclear how much precision and specification is necessary to effect a realistic system.
A stochastic implementation may yield complex emergent behavior from a model far
simpler than expected. GridSPiM adopts a simple stochastic grid-based locality frame-
work. Ultimately, empirical feedback will be necessary to determine the sufficiency of
this or other approaches.

3.4 Large-Scale Systems

Large scale biological systems exist by the conjunction of reaction pathways organized
and regulated by membranes and other structures. A realistic formal model should be
able to handle both the lower level details of component interactions and the higher
level structures, localities of reaction, and variable environmental conditions present in
cellular systems.

Integral to the utility of any formal simulation environment is a scalable execution
model capable of evaluating the massive models required for biological exploration.
The nature of the modeled interactions suggests a stochastic framework, whereby reduc-
tions are selected probabilistically in accordance with model parameters. Parallelization
of simulation executions would assist scalability while introducing concerns regarding
the accuracy of stochastic aspects as numerous reductions would occur simultaneously
potentially skewing relative reaction rates.

4 The GridSPiM Framework

We believe that our framework, GridSPiM, is a viable next step toward achieving the
goals outlined in the previous section. This work is centered around the stochastic π-
calculus and SPiM, an associated execution model. In this section, we describe this
formalism and implementation and several aspects and features of GridSPiM.
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4.1 Stochastic π-Calculus

The stochastic π-calculus [16] is a derivative of the π-calculus with reaction rates af-
fixed to channel names. Execution models for the stochastic π-calculus select from
a list of available communications between processes based on those reaction rates.
Furthermore, delays may be introduced to inhibit reactions for a period of time. Imple-
mentations of the Gillespie algorithm [7] are a common method for selecting among
the available reductions and delays presented by a system in the stochastic π-calculus.
Based on theory of chemical kinetics, the algorithm factors the quantities of reactants
and relative reaction rates into the stochastic selection of the next reaction.

4.2 SPiM

SPiM provides a scalable stochastic simulator for reactions that take place in homo-
geneous solutions. The simulator permits reactions between any pair of processes for
which a valid reduction exists. However, this does not address two important problems
that should be resolved in a more accurate simulation. First, not all solutions are homo-
geneous. There may be varying concentrations of entities at different locations in the
solution. For example, if there is a reaction manufacturing some product, that product
will not instantly diffuse through the solution to make a homogeneous mixture. This
may affect reaction rates since a reaction that uses the product cannot take place until
that product has made its way to the reaction site. Moreover, SPiM does not address
the encapsulation of entities. For example, membranes form spatial boundaries that
completely stop many reactions from happening, while gathering and concentrating the
necessary components thereby facilitating other reactions.

4.3 Locality-Based Execution Model

Our solution is a simulation built around multiple SPiM instances. Space within the sim-
ulation is partitioned across a grid of SPiM simulations, each executing independently.
While the adjacency of SPiM instances may be defined within an arbitrary graph, for
simplicity we adopt a regular hexagonal grid in this work. Each grid space may have its
own process definitions and reaction rates, corresponding to the behavior of local bio-
logical processes, e.g. organelle-bound machinery or vesicle-specific conditions. Each
SPiM instance is run for a short period of time, after which a set of diffusion rules
is applied between runs to allow the diffusion of entities between adjacent spaces. By
varying the simulation as well as the diffusion rules across spaces, membranes and or-
ganelles can be simulated.

Within GridSPiM, entities correspond to global names for π-calculus processes. While
entity names are shared across all SPiM instances in the simulation, each grid space’s
SPiM instance may have its own process definitions to define the locally-specific behavior
of each entity. At the start of a simulation, grid spaces are initialized with a fixed number
of each entity. Between iterations, entities are enumerated and are capable of diffusion.

Each space is assigned a type, e.g. cytoplasm, vesicle, or membrane. The type is
used to determine what SPiM process definitions and reaction rates modify the entities
of that space. The type is also used to control diffusion rates between a space and its
neighbors.
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4.4 Diffusion

In our implementation, the SPiM instance for each type grid space is run for a fixed
amount of simulation time, e.g. 0.1 seconds. After each iteration, diffusion occurs be-
tween each adjacent grid space before the instances are run again. Each ordered pair
of space types is assigned a rate of diffusion between zero and 1/6 for each entity type.
These rates represent the probability that each entity of that type will move from a space
of the first type to an adjacent space of the second type. These rates are used to sample
a multinomial distribution, and the results of that distribution were used to determine
how that entity type from the current space moved. This process is repeated for each
entity type in each space and the cumulative results were used to update the grid.

4.5 Static Containment

The GridSPiM framework can support notions of static containment. For example, as-
sume we want to simulate a membrane that allows a protein to pass into the cell, but not
out of it. We will define three space types and one entity. The space types are cytoplasm,
membrane, and serum. Since this protein can move unhindered in either the cytoplasm
or the serum, the rates of diffusion from cytoplasm to cytoplasm and serum to serum
are assigned relatively high values. Membrane spaces represent the outside surface of
the membrane, so that the diffusion rates from serum to membrane are approximately
the same as from serum to serum. To allow for the protein to move into the cell, a non-
zero rate of diffusion from membrane to cytoplasm is used. To prohibit the protein from
leaving the cell, the rate of diffusion from cytoplasm to membrane is set to zero. This
scenario is depicted in Figure 1.

Fig. 1. Static membrane containment in GridSPiM

The static containment structure outlined above can be made more expressive by
adding receptors and other transport molecules. To permit only active transport out of
the cell, a diffusion scheme could be encoded to operate on the bound structure of a
molecule and a transport protein.

The main weakness of this type of containment system is that it does not allow for
any changes to the containment structure. The membrane structure can never break
open, merge with other membranes, expand or shrink. The rates themselves are also
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static, so the effective rate of uptake for an entity can only be modified by changing the
amount of that entity that exists. In the above example, the only way to get the protein
to enter the cell faster is to have more of the protein on the membrane spaces. We
demonstrate the utility of this limited system in Section 5, though we are undertaking
further development toward a dynamic containment system.

4.6 Distributed Execution

In GridSPiM, the independent execution of the spaces between diffusion steps naturally
lends itself to parallel distributed processing. We envision a master node that handles
the shuffling and record keeping with many worker nodes that run the lower level SPiM
simulations and pass their results back to the master node. Our partitioning of the sim-
ulation space into distinct localities permits such a simple division of the computation.

5 Examples

5.1 Modeling Iron Absorption

A GridSPiM model was built to simulate the uptake of iron into the cell through re-
ceptor-mediated endocytosis. In serum, there can be very little iron present because of
its highly reactive and potentially damaging properties. Instead, it is mostly bound either
to a carrier molecule, transferrin, or a storage molecule, ferritin [20]. Our simulation
focused on capturing the behavior of transferrin.

Transferrin acts both to inhibit iron’s reactivity and to slow its uptake into cells. Each
molecule of transferrin is able to bind with up to two iron molecules. This transferrin-
iron complex can bind to a receptor on the cell membrane and is then taken into the cell

Fig. 2. Reactions in the iron absorption model in graphical notation
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via endocytosis. Acid pumps change the acidity of the endocytotic vesicle so that the
iron is released from the transferrin.

This free iron is able to pass through the vesicle wall and into the cell. Note that the
inside of a vesicle is the same surface as the outside of a cell, so that if there were free
floating iron in serum, it would be able to pass directly into the cell. The transferrin
and receptor molecules can be recycled to the cell’s surface, where the transferrin then
separates from the receptor and is available for binding with more iron [2].

At any given time, approximately 1/3 of all sites available for binding with transferrin
are occupied [13]. Since iron binds tightly with transferrin, there is almost no free iron
in serum. Also, the number of receptors present on cells is relatively small, so that the
receptors are saturated by transferrin-iron complexes. This means that the uptake of
transferrin should depend only on the number of receptors on the cell’s surface, up until
the point where there is enough iron that all of the transferrin molecules are saturated
and free iron is present in serum.

The GridSPiM model for iron absorption defines six different entity types – iron,
receptor, transferrin, transferrin bound iron, transferrin bound receptor, and transfer-
rin bound both – and four space types – cytoplasm, vesicle, membrane, and serum. The
diffusion rates and initial simulation conditions were set so that only iron would ex-
ist in cytoplasm, and only iron, transferrin, and iron bound transferrin could exist in
serum. Every entity could exist on both the membrane and vesicle spaces. The SPiM
simulations modeled a reaction to allow iron to bind and unbind to transferrin in serum.
This reaction heavily favored binding. On the membrane, iron could bind and unbind
with transferrin, and transferrin bound iron could bind and unbind with receptors. In the
vesicle, iron could unbind from transferrin bound both complex leaving an empty trans-
ferrin bound receptor. Figure 2 uses a graphical notation for the stochastic π-calculus
to depict the reactions, and Figure 3 depicts the stochastically favored reactions in each
type of grid space.

The rates of the reactions were such that almost all of the receptors existed in the trans-
ferrin bound both state, which means they were almost always bound to a transferrin iron
complex. Only transferrin bound both was allowed to diffuse from the membrane to vesi-
cle spaces. In the vesicle, the same reactions were present as on the membrane, except

Fig. 3. Stochastically favored reactions by grid space type
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Fig. 4. Layout of grid space types

that the rates were set so that iron would tend to dissociate from transferrin but transferrin
and receptors would still exist in the transferrin bound receptor state. Iron was given the
same rate of diffusion from the vesicle into cytoplasm as it was from the membrane to
the cytoplasm, but since there was very little free iron in serum, the iron would tend to
enter the cell through a vesicle. The layout of grid space types in the simulation is shown
in Figure 4.

Using this experimental model, several different parameters were adjusted to test the
results of the simulation against expected values. In each case, the values of interest
were the amount of iron that passed into the cell through endocytosis and the amount of
iron that passed directly through the membrane. These values were obtained by setting
the iron diffusion rate between cytoplasm spaces to zero and monitoring the amount
of iron that existed on a space only bordering a vesicle and a space only bordering the
membrane.

Experiment 1: Inhibitory Effect of Transferrin. The first experiment was to test
transferrin’s ability to inhibit varying amounts of iron from entering the cell. For this
experiment, the initial amount of iron in serum was varied while keeping the amount
of transferrin constant. The amount of initial transferrin in serum was kept constant
at 145 molecules per grid space and the amount of iron was given values from 0 to
220. These values represent the relative concentrations of iron and transferrin. Under
normal conditions, approximately 1/3 of the binding sites in transferrin are saturated.
Each transferrin molecule was modeled with one binding site in our experiments so that
normal conditions in the body would be represented with 145 transferrin and 48 iron
entities initially in serum. Figures 5 and 6 summarize the results of this experiment.

The results of this experiment were consistent the expected system behavior.The
amount of iron that passed into the cell through endocytosis remained constant with
varying amounts of iron, as long as two conditions were met. There had to be enough
iron that the receptors would always be saturated, and there also had to be more trans-
ferrin than there was iron. Since there were relatively few receptors, the first condition
was almost always met. The amount of iron that passed into the cell directly through the
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Fig. 5. Iron passed through the membrane compared to initial iron in serum

Fig. 6. Iron taken through active transport compared to initial iron in serum

membrane remained effectively zero as long as there were enough transferrin molecules
to bind all of the iron. After the initial iron outnumbered the initial transferrin, there was
a linear increase in the amount of iron that passed directly through the membrane.

Experiment 2: Effect of Varying Temporal Granularity. The next set of experiments
was designed to test the effect that the granularity of the timestep would have on the
simulation. The preceding experiment was run for the same total simulation time, but
with varying lengths for each iteration and varying numbers of iterations. When the
length of the iterations was scaled down, the diffusion rates were scaled down by the
same factor. The results of this experiment are summarized in Figure 7.
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Fig. 7. Effect of timestep granularity

This experiment demonstrated that, in this case, scaling the iteration length and the
diffusion rates by the same factor did not significantly alter the results. This implies
that time steps may be scaled as needed with only minimal manipulation required to the
simulation parameters. Furthermore, it demonstrates that a very fine granularity is not
necessarily required to get reasonable results.

5.2 Modeling Fibroblast Growth Factor Pathways

Utilizing knowledge of the endocytic pathway in which Fibroblast growth factor (FGF1)
enters a cell, we were able to create a GridSPiM model emulating the behavior of mem-
brane receptors, endocytosis, and routing behaviors for various pathways. FGF has four
receptors, FGFR1-4, each with a unique sorting mechanism. Cells expressing FGFR1
have localized FGF in the lysosomes or late endosomes. Conversely, cells treated with
FGFR4 exhibit a pathway similar to that of transferrin; a significant portion of the re-
ceptors is recycled to the cell surface for reuse [8]. Since these two receptor types offer
the greatest contrast in behavior, we only modeled FGFR1 and FGFR4.

In our simulation, bound and unbound receptors were allowed to form vesicles that
could move freely about the cell. FGF was released based on stochastic probabilities,
and as expected, the released FGF1 formed a gradient when restricted from diffusing
– via a diffusion rate of zero specified for FGF1 in the cell. Higher concentrations
were found nearer to the membrane, while grid spaces three units in rarely contained
FGF1.
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Fig. 8. Transport of vesicles into the cell and release of FGF1 results in an FGF concentration
gradient

The differences in pathways, between degradation and recycling, have been attributed
to varied targeting of lysines in the receptors by lysosomes [8]. Similarly, our model can
reproduce comparable data by only modifying lysosome activity rates. By scaling down
the rate of lysis, FGF1 quantities found in the lysosome drops from 80% (0.794 +/- 0.038,
n=10) of the total FGF found in the cell to 40% (0.395 +/- 0.040, n=10). Experimental
data for FGFR1 and FGFR4 support these percentages. Cells expressing FGFR1 have
a 90% rate of collection for FGF1 in the lysosomes, while cells with FGFR4 have a
45% rate of aggregation in the lysosomes. It appears that a modified scaling mechanism
for lysosomal activity would increase the precision of results data; however, without the
proper experimental data on lysosomal activity in reference to endosomes containing
FGF receptors, scaling rates are derived from convenience. It is noteworthy that our
model generated results remarkably similar to a recently developed BioAmbient model
of the FGF receptor mechanism in [23].

6 Conclusions and Future Work

Process calculi present syntax and reduction semantics for modeling and analyzing con-
currency. Biological applications of the π-calculus and several of its derivatives have
yielded valuable tools for specifying and simulating cellular systems. Our work, Grid-
SPiM, has extended previous work with the stochastic π-calculus to provide a frame-
work for explicitly representing locality and containment, two factors critical to the
functionality of many biological systems. This yields more expressive models and an
execution model capable of simulating systems beyond the scope of previous imple-
mentations.

We are currently developing a more expressive formalism for representing and ma-
nipulating the containment and locality in our models. The static containment and
locality expressions in GridSPiM have proved to be sufficient for several interesting
examples, however dynamic membrane interactions and active transport are integral



422 S. Tyree et al.

to cellular function. We intend to maintain the simplicity and efficiency of SPiM at
the foundation of our system, with a higher level calculus to manipulate localities and
membranes.
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Abstract. Genes responding similarly to changing conditions are
believed to be functionally related. Identification of such functional re-
lations is crucial for annotation of unknown genes as well as the explo-
ration of the underlying regulatory program. Gene expression profiling
experiments provide noisy datasets about how cells respond to different
experimental conditions. One way of analyzing these datasets is the iden-
tification of gene groups with similar expression patterns. A prevailing
technique to find gene pairs with correlated expression profiles is to use
linear measures like Pearson’s correlation coefficient or Euclidean dis-
tance. Similar genes are later compiled into a co-expression network to
explore the system-level functionality of genes. However, the noise in-
herent in microarray datasets reduces the sensitivity of these measures
and produces many spurious pairs with no real biological relevance. In
this paper, we explore an extrinsic way of calculating similarity of two
genes based on their relations with other genes. We show that ‘similar’
pairs identified by extrinsic measures overlap better with known biolog-
ical annotations available in the Gene Ontology database. Our results
also indicate that extrinsic measures are useful in enhancing the quality
of co-expression networks and their functional subnetworks.

1 Introduction and Related Work

Microarray experiments are now being used to profile expression levels of genes
under changing experimental conditions. To analyze these profiles in an attempt
to answer diverse biological questions, various techniques and ideas have been
proposed. Of particular interest to many scientists is the identification of genes
whose expression profiles are similar, since genes with similar cellular functions
have been theorized to respond similarly to changing conditions [9]. As a re-
sult, an efficient similarity measure for microarray analysis is fundamental for
understanding the cellular processes [24] and annotating unknown genes.

There has been a growing interest in linking genes whose expression profiles
are similar to construct co-expression networks. These networks and their highly
modular subnetworks are invaluable sources of information for system-level gene
processes [29,4]. Similarity of two genes can be deduced from expression levels
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of these genes across all samples [12,29,7]. However, the noise inherent in mi-
croarray datasets limits the sensitivity of such analysis. Since any microarray
measurement is likely to fluctuate due to many possible sources of error, a simi-
larity based solely on expression measurements of two genes is more error-prone
than a similarity based on expression measurements of many genes. In addition,
inferring the similarity of two genes based on their relations with a set of other
genes will be in accordance with the biological hypothesis about gene prod-
ucts acting as complexes to accomplish certain cellular level tasks [23]. Thus,
here we investigate use of extrinsic similarity measures to analyze microarray
studies.

The use of extrinsic measures and their advantages have been previously stud-
ied for various data mining problems [5,6]. Das et al. [5] proposed using extrin-
sic measures on market basket data in order to derive similarity between two
products from the buying patterns of customers. Palmer et al. [19], defined an
extrinsic similarity measure (REP) with an analogy to electric circuits. Both
groups concluded that extrinsic measures can give additional insight into the
data. Recently, Ravasz et al. [20], took a step towards using extrinsic properties
along with the intrinsic similarity. Their measure, the Topological Overlap Mea-
sure (TOM), infers similarity of two nodes in a biochemical network in terms
of their pairwise similarity as well as the number of their common neighbors.
In a previous work we discussed using mutual independence notion to derive an
effective extrinsic dissimilarity measures [25].

We introduce application of extrinsic similarity measures for identification
of co-expressed genes. We propose extrinsic measures motivated by Mutual In-
formation notions from Information Theory. The proposed similarity measures
are evaluated on a well-studied cancer microarray dataset [1] obtained with
Affymetrix oligonucleotide arrays, as well as a yeast microarray data generated
with custom complementary DNA (cDNA) arrays [10]. For both datasets and
platforms, we showed that gene pairs obtained by extrinsic similarity measures
better overlap with known biological annotations from the Gene Ontology (GO)
database when compared to the Pearson’s correlation coefficient and the TOM.
To further analyze efficacy of extrinsic measures for gene function inference,
we constructed co-expression networks by using different measures. We observe
that co-expression networks constructed based on extrinsic measures contain less
spurious and more biologically verified edges compared to their counterparts gen-
erated with other measures. We also studied modular structure of these networks
by decomposing them into co-expressed modules. We found that gene modules
extracted from Extrinsic Gene Networks are also functionally more homogeneous
in comparison.

To summarize, our main contributions in this study are:

– The study of Information Theory concepts, Conditional Mutual Information
and Specific Mutual Information, for genes derived from their associations
with other genes

– The introduction of extrinsic measures for microarray datasets based on
Conditional Mutual Information and Specific Mutual Information



426 D. Ucar et al.

– The demonstration of the efficacy of using extrinsic measures in inferring
pairwise gene similarities, constructing co-expression networks, and identi-
fying co-expressed modules.

2 Similarity Measures

To quantify the resemblance of two points, one needs a measure of similarity.
Similarity measures can be categorized into two: extrinsic and intrinsic similar-
ity. An intrinsic similarity of two points i and j is purely defined in terms of
the values of i and j. On the other hand, an extrinsic similarity measure takes
into account other points to infer similarity of i and j. Previous studies have
shown the usability of extrinsic similarity measures in other domains [5,6]. The
standard method to infer similarity of two genes from their expression patterns
is to use a linear intrinsic similarity such as the Pearson’s correlation coefficient.
To our knowledge, we are the first to study extrinsic measures for microarray
datasets [25].

2.1 Intrinsic Similarity

Intrinsic similarity is purely defined on the points in question. In the context
of microarray analysis, the intrinsic similarity of two genes is defined on the
measured expression levels of these two genes over all samples. In a typical
microarray experiment, each gene is expressed at some certain level at each
condition which is defined as the expression profile of the gene. More formally, a
gene (say, x) is associated with a profile vector (Vx) composed of its expression
values over all samples, such that Vx = [x1, x2, ..., xn], where n denotes the
number of samples in the dataset. Thus, intrinsic similarity between genes x
and y, is a measure defined on their profile vectors, Vx and Vy . A prevailing
measure used for inferring similarity of two genes based on their gene profiles
is Pearson’s correlation coefficient [17]. Throughout our analysis, we employ
absolute value of Pearson’s correlation scores since both positive and negative
correlations can play an important role in gene association. Recently, Ravasz
et al [20], proposed the Topological Overlap Measure (TOM) which takes into
a step in incorporating external information to infer similarity of two nodes
in a biological network. This measure is considered as an improvement over the
intrinsic similarity which amalgamates an additional external knowledge derived
from the network topology (i.e., number of common neighbors).

2.2 Extrinsic Similarity

Extrinsic similarity of two attributes (i.e., genes) is defined over other attributes
in the dataset [5]. In general, an extrinsic similarity between two attributes, i
and j, can be defined as ESP (i, j) =

∑
k∈P f(i, j, k). Here, f(i, j, k) denotes a

function that signifies the association between attributes i and j, with respect
to a third attribute k. P refers to the set of attributes that will contribute to
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the extrinsic similarity of attributes i and j. As noted by Das et al [5], proper
choice of the attribute set P and function f is crucial for the usefulness of the
resulting extrinsic measure. Different choices of P and f will result in different
similarity notions. Das et. al. [5] preferred to define an extrinsic dissimilarity
measure based on the confidence of association rules.

In this work, we propose using Mutual Information of Information Theory to
derive efficient extrinsic gene similarity measures. Our final goal is to surmise the
similarity of two genes by the similarity of their relation with other genes. We
believe that an extrinsic measure for microarray analysis has a twofold advantage
over the use of intrinsic measures. First, it may reduce the impact of noise
inherent in the dataset on the similarity analysis. It is well known that expression
level of each gene is likely to fluctuate due to many sources of variability in a
typical microarray analysis. Thus, the similarity deduced from expression levels
of two genes is likely to be more error-prone than a similarity deduced from
relative positions of these two genes with respect to many other genes. Second,
it suits well with the biological hypothesis about genes and gene products acting
in the form of complexes (i.e., groups) to accomplish certain tasks in the cell.
As hypothesized, two gene products that belong to the same complex behave
similarly with the members of this complex. Thus a similarity notion that is
defined based on the relation of two genes with other genes can potentially
capture the modular structure of the genomic interactions. Moreover, known
modular structure of a biological system can be incorporated into the similarity
analysis, by defining the P set by using this known structure.

To define proper extrinsic measures, we first need to determine the gene set,
P , and the association function, f , that will constitute our measures. For the P
set, we make use of the close proximity of each gene determined by an intrin-
sic similarity notion. We propose to use Conditional Mutual Information and
Specific Mutual Information as the association functions.
Choice of Attribute Set (P ): To derive an efficient extrinsic measure, we
need an effective gene set that will be used to infer the extrinsic similarity of two
genes. To compile such a set, we initially identified for each gene a set of genes
that are intrinsically similar to that gene. We refer this as the neighborhood
list of gene i and define it as Ni = {j|j ∈ G, |rij | > κ}, where G denotes
the set of all genes in our dataset and |rij | refers to the absolute value of the
Pearson’s correlation coefficient between genes i and j. We investigated the effect
of the threshold parameter κ in our previous work and observed that size of the
neighborhood lists can help us set this parameter [25]. Next, the attribute set P
that will be used to infer similarity of two genes is designated as the intersection
of their neighborhood lists (i.e., P = Ni ∩ Nj ). Using the common elements
in two neighborhood lists, has two important implications. First, it significantly
reduces the required number of calculations. Hence, instead of using the whole
gene set (G), a smaller size set is taken into consideration for each similarity
calculation. Secondly, it filters out irrelevant information which enhances the
power of the extrinsic measure. Moreover, by using the intrinsic similarity to
determine elements in set P , we take advantage of both extrinsic and intrinsic
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properties. We believe this will be helpful in reducing the noisy inference that can
be introduced into the similarity inference by using each technique separately.
Choice of Association Function (f): Das et al [5], proposed using confidence
of association rules in an application on market basket dataset. We previously
discussed Das’s external dissimilarity measure and its applicability on gene ex-
pression datasets [25]. Our analysis showed that it is possible to improve their
measure for the task of similar gene identification by using Mutual Independence
of genes. We here propose using Conditional Mutual Information and Specific
Mutual Information to derive effective extrinsic microarray measures.

To leverage Mutual Information of genes we used probability of occurrence
and co-occurrence for genes in the neighborhood lists. Formally we define these
probabilities as follows:

Definition 1: Probability of occurrence for a gene i, P (i), is defined as the
frequency of encountering that gene in all neighborhood lists. Note that genes
with indistinct expression profiles will have higher frequency of occurrence values.

Definition 2: Probability of co-occurrence for two genes, i and j, P (i, j), is
defined as the frequency of encountering these two genes together in the neigh-
borhood lists.

Conditional Mutual Information based Gene Similarity: Conditional
Mutual Information between variables X and Y, I(X, Y |C), signifies the quantity
of information shared between X and Y when C is known. Formally, it is de-
fined as, I(X, Y |C) = H(X |C) − H(X |Y, C) where H(X) signifies the Shannon
entropy of the discrete random variable, X . For our calculations, H is defined
for the occurrence of a gene in the neighborhood lists. Mutual information cal-
culates the quantity of information shared between X and Y when C is given.
I(X, Y |C) is equal to zero iff X and Y are conditionally independent given C.
Probabilities of occurrence and co-occurrence are used to calculate Conditional
Mutual Information of two genes given neighborhood list of a third gene. A high
Conditional Mutual Information between two genes implies that these two genes
prefer to co-occur with the same set of genes when a third gene is known to be
occurring in the neighborhood lists. If they are not co-occurring with the same
set of genes, they will have a smaller Conditional Mutual Information. If two
genes bring the same information to the Neighborhood Lists of many third par-
ties, we expect these two genes to be regulated by the same mechanism. Based
on this heuristic we define Conditional Mutual Information based Extrinsic Gene
Similarity as follows:

CMIP (i, j) =
∑
k∈P

I(i, j|k = 1) (1)

This measure calculates the quantity of information shared by i and j, given that
a third gene k is occurring in the neighborhood lists. As can be seen above, the
final score is the sum of Conditional Mutual Information between i and j, with
respect to all elements in set P . If i and j tend to share the same information,
they will have a high CMI similarity value.
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Specific Mutual Information based Gene Dissimilarity: The Specific Mu-
tual Information is a measure of association commonly used in the Information
Theory to infer mutual dependency. Specific Mutual Information of two vari-
ables, X and Y , given their joint distribution, P (X, Y ), and individual distribu-
tions, P (X) and P (Y ), is defined as P (X,Y )

P (X)P (Y ) , where P (X, Y ) is the observed
value (O) for joint probability of events X and Y , whereas P (X)P (Y ) is its
expected value (E). This test can be used to deduce the co-occurrence rela-
tion between two genes when their neighbors are considered. If Specific Mutual
Information of two genes is 1, it can be concluded that these two genes are
independent. In this context, being independent means genes i and j are ran-
domly appearing together in the neighborhood lists. However, if two genes are
not independent, occurrence of a gene in a neighborhood list makes it either less
probable or more probable for the other gene to occur in that list. Based on this
analysis we propose the following extrinsic measure to quantify dissimilarity of
two genes (i and j).

SMIP (i, j) =
∑
k∈P

| P (i, k)
P (i)P (k)

− P (j, k)
P (j)P (k)

| (2)

This definition ensures that two genes having the same co-occurrence relations
with their common neighbors are closely related to each other (SMI value close
to 0). Whereas two genes that have different independency relations with their
common neighbors are dissimilar and associated with higher values of SMI.

We compare the proposed Mutual Information based extrinsic measures with
the existing measures in the literature.

3 Domain Based Evaluation

‘Similar’ pairs identified according to different similarity/dissimilarity measures
are evaluated based on Pairwise Semantic Similarity measure of Resnik [18]. This
measure makes use of known annotations in the Gene Ontology (GO) database.
GO is a controlled vocabulary designed to accumulate the result of all investi-
gations in the area of genomic and biomedicine by providing a large database
of known associations. Biological relevance of two genes can be quantified with
respect to the significance of their shared GO annotations using the Semantic
Similarity (SS) measure defined by Resnik [18]. Resnik’s measure is preferred
among other semantic similarity measures [11,13], since it has been shown to
outperform the others and suit better to be used for GO analysis [21]. We cal-
culated pairwise semantic similarity for the pairs labeled as similar according
to different similarity/dissimilarity measures. We did not take into considera-
tion relations among unannotated genes since there is not enough information
to speculate about the biological concordance of these genes.

We then constructed association gene networks by linking the most similar
gene pairs identified with respect to alternative similarity definitions. We ob-
tained clusters of densely linked genes from these networks to study their efficacy
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in understanding the molecular and biological processes. The obtained clusters
are evaluated with an enrichment score that shows the statistical significance of
the GO term homogeneity in a cluster. Details of this enrichment score can be
found elsewhere [26].

4 Datasets and Pre-processing

For this study, we employ a well-studied cancer dataset and the Rosetta com-
pendium yeast data (i.e., Saccharomyces cerevisiae) [10]. Our first dataset is com-
posed of gene expression values of 62 colon tissue samples where the Affymetrix
Hum6000 array with 6819 probes is used [1]. 42 of these are collected from colon
adenocarcinoma patients and 20 of them are collected from normal colon tissue
of the patients. Among all probes, 2000 were selected from 6817 by Alon et al ac-
cording to the highest minimum intensity [1]. Our second dataset, Rosetta yeast
data is obtained using a two-color cDNA microarray hybridization assay [10]. It
is composed of 300 compendium experiments on the Saccharomyces cerevisiae
organism. As suggested by the authors, we used the scale factor for our fur-
ther analysis, which is defined as the standard deviation of log10(ratio)/[error of
log10(ratio)] over all experiments. We perform thresholding, log transformation
and normalization (quantile normalization) on these two datasets as suggested
by our analysis. In addition to these, we further standardize datasets using a
robust standardization method, median absolute deviation (MAD). Genes with
zero MAD values implying that they are co-expressed at very similar levels across
all of the samples are excluded from further analysis.

5 Experiments

Throughout this section, we discuss usability of extrinsic measures for microar-
ray analysis. First, we present biological relevance of ‘similar’ gene pairs with
different measures. We then linked these ‘similar’ genes to construct gene co-
expression networks. Each of these networks are partitioned into its functional
modules to study the effect of extrinsic similarity on the quality of information
extracted from these networks.

5.1 Effect on Top ‘Similar’ Pairs

To choose a suitable κ threshold, there are two things that we should take into
consideration. First, we want the neighborhood list of a gene to be composed
only of genes that are within close proximity of that gene. Second, we do not
prefer a set composed of a few genes since this would limit the power of inference
based on common neighbors and increase the impact of noise on the final scores.
Our previous study showed that average size of the neighborhood lists can guide
us while setting the κ parameter [25]. Consequently, we set the κ threshold to
0.5 for the colon cancer dataset and 0.9 for the yeast data, which generates
neighborhood lists of size 40 in average.
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Fig. 1. Average semantic similarity (SS) is calculated for the top ‘similar’ pairs identi-
fied via alternativee measures from (a) Colon cancer and (b) Yeast microarray datasets.
1K represents the top 1000 pairs identified with each measure.

In our first experiment, we compare gene pairs that are labeled as ‘similar’
according to discussed measures. For each measure, gene pairs are sorted start-
ing from the most ‘similar’ (or least ‘dissimilar’) one. We calculated semantic
similarity of all annotated pairs and calculate the average semantic similarity for
the whole set of gene pairs. Different number of top scoring pairs (varying be-
tween 1000 and 20000) are compared based on their average semantic similarity
values. When we analyze the distribution of average semantic similarities, we ob-
serve that extrinsic measures outperform existing measures. For both datasets,
a significant improvement in semantic similarity is observed.

For the colon cancer dataset, we observe that extrinsic measures significantly
overlap with the biological relevance of genes. As can be seen in Figure 1a, the
pairs identified with the SMI measure show greater biological relevance when
compared to the pairs identified by other measures. For the top 1000 pairs, the
improvement in the average semantic similarity score is up to 15%, when an
extrinsic measure is used instead of an intrinsic one. Since semantic similarity
calculations are based on the information content of each GO term which is in
the logarithmic scale, this improvement is significant in real world, as our further
analysis indicate. Although TOM measure is also able to improve the Pearson’s
correlation, this improvement is not as significant as our Mutual Information
based extrinsic measures.

When we analyze the yeast dataset, we again observe that extrinsic measures
identify biologically more relevant gene pairs. As can be seen in Figure 1b, the
improvement is more significant (up to 22%) when top pairs obtained by CMI
measure are compared to top pairs identified by the standard measure. Note
that in contrast to colon cancer dataset, yeast data is obtained using cDNA
assays. Our analysis show that extrinsic measures are effective for analysis of
both cDNA and oligonucleotide arrays. As can be observed in this figure, TOM
contributes even less to standard measure in this case, since mean r values are
higher for this dataset.

Our analysis confirm that extrinsic measures better capture the biological
relevance of two genes when compared to the standard intrinsic measure. We
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believe their power can be attributed to two reasons: the noisy nature of mi-
croarray datasets and the functional modularity of genes. Intrinsic measures
directly possess and reflect the noise inherent in the data since they are purely
defined on the expression levels of genes under study. We also believe that since
TOM measure is also dependent on the intrinsic measure in its definition, it
would also be effected by the noise inherent in these datasets. The poor perfor-
mance of TOM measure with respect to our extrinsic measures can be attributed
to the fact that erroneous measurements will have a more drastic impact on any
intrinsic or intrinsic based measure. On the other hand, extrinsic measures are
dependent on more evidence since similarity of two genes are inferred from their
relative positions with respect to a set of other genes. Hence, we expect the
impact of erroneous measurements to be less severe on the extrinsic similarity
measures. Our experimental results are also in accordance with this expectation
where extrinsic measures produce biologically more relevant pairs. In addition,
inferring similarity of two genes from a set of other genes can benefit from the
group level interactions known to take place between genes and gene products
when accomplishing certain cellular tasks [23].

5.2 Effect on Gene Networks

In this experiment, we constructed gene association networks by linking top
similar pairs identified with each measure. Here, nodes represent genes, and two
nodes are linked if the corresponding genes are ‘similar’ to each other. To keep
the same size for all networks, we only used the top 0.01% of all gene pairs sorted
with respect to a similarity/dissimilarity measure. Accordingly, colon cancer
networks are composed of 12,438 edges and yeast networks are composed of
74,267 edges. Tightly connected subnetworks of a co-expression network can
provide insight into the vital molecular and biochemical processes. Moreover,
groups of genes that are densely linked in gene networks have been theorized to
have similar cellular functions with great implications for gene annotation at a
global scale [9,22,3]. Thus, we extracted and studied densely linked sub-networks
of these networks.

To identify densely interacting subnetworks of these networks, we employ a
graph partitioning algorithm, Graclus [8], that is shown to be effective in analyzing
gene association networks [27]. This algorithm is effective in obtaining balanced-
size clusters while minimizing the normalized cuts criterion. To our knowledge, no
entirely reliable method exists for identifying correct number of partitions (i.e.,
k) in a network. That is why, we partitioned colon cancer networks into 100 clus-
ters, and yeast networks into 200 clusters, to make sure reasonable size clusters will
be generated at the end. In average 20 genes are located into each partition. Each
partitioning is validated using the enrichment score p-value that signifies the ho-
mogeneity of each cluster in terms of its known GO annotations. Smaller p-values
imply that the grouping is not random and is functionally more homogeneous. A
cut-off parameter is used to differentiate significant groups from the insignificant
ones. If a cluster is associatedwith a p-value greater than the cut-off, it is considered
insignificant. We used the recommended cut-off of 0.05 for all our validations. The
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Fig. 2. P-value distribution of significant clusters extracted from (a)Colon Cancer and
(b)Yeast gene networks. The y axis represents the −log of the enrichment score of each
corresponding cluster.

p-value distributions for the significant clusters extracted from various gene associ-
ation networks are shown in Figure 21. As canbe observed fromthe figure, extrinsic
similaritymeasures producemorenumber of clusters that are significantly enriched
withBiologicalProcessGOtermannotations. For the colon cancerdata,we areable
to identify only 4 clusters that are functionally homogeneous when Pearson corre-
lation is used. However, with the use of extrinsic measures this number increases
to 10 for SMI and 9 for CMI. Similarly, for the yeast data, number of significant
clusters and their significance scores drastically improve when extrinsic measures
are used instead of the intrinsic measure. By using SMI measure instead of Pear-
son’s correlation, number of significant clusters that can be deduced from the same
data increasedmore than threefold. These results suggest that using extrinsic mea-
sure has a twofold enhancement for co-expression network analysis. First, these
measures enhance functional homogeneity of clusters that can be identified with
a standard measure as smaller p-values obtained for extrinsic based networks sug-
gest. Also it enables identification of clusters that cannot be detected by standard
measures, as evident from the increase in number of significant clusters.

6 Discussion

In this section, we investigate the usability of clusters extracted from different gene
similarity networks by running a dataset specific analysis. For this part of our anal-
ysis, we analyze the colon cancer dataset which is composed of tumorous and non-
tumorous tissues of the human colon and rectum. A more detailed analysis of the
significant clusters obtained from the colon cancer data revealed that they can be
very useful in understanding and treating the colorectal cancer. We discuss several
of these clusters and their relation with colon cancer in the rest of this section.

By using the CMI measure, we obtained a cluster that is annotated with ‘alde-
hydedehydrogenase (NAD)activity’.Previous studies showed thatactivityof alde-
hyde dehydrogenase was measured in primary and metastatic human colonic

1 Biological Process GO terms are used for this analysis.
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adenocarcinomas [14]. We also identified clusters annotated with ‘phospholipase
activity’ by employing the CMI measure. It has been shown that Phospholipase D
(PLD) has a possible impact on carcinogenesis and its progression [16]. Another
cluster obtained with CMI measure is annotated with ‘NF-kappaB binding’. NF-
kappaB pathway is shown to be taking part in the regulation of Inhibitors of apop-
tosis (IAP) family in human colon cancers [28]. Identification of clusters that are
known to be related to colon cancer is vital for developing new therapeutic targets
and identifying potential tumor markers for colorectal cancer. However, we cannot
identify such clusters via standard analysis of the same dataset.

From the SMI network, we extracted a cluster that is composed of genes asso-
ciated with the GO term ‘cytoskeleton-dependent intracellular transport’. Recent
evidence indicates that the interaction of a tumor suppressor gene (APC) with the
cytoskeleton might contribute to colorectal tumor initiation and progression [15].
That is why, we believe that locating these genes together in a cluster is triggered by
the role they play in colon cancer tumorigenesis. Unfortunately, it is still unknown
that howAPC interactswith the cytoskeleton andhow their interactionplays a role
in the formation of colorectal tumors [15]. We believe that once functionally coher-
ent clusters are identified, relations between these clusters can be used to reveal
function level interactions vital for understanding the cause of some diseases.

7 Conclusion

In this paper, we have introduced the notion of Mutual Information of genes based
on their relations with other genes. We have presented two extrinsic measures for
microarray analysis based on Conditional Mutual Information and Specific Mu-
tual Information. We also discussed a method to employ a previously suggested
extrinsic measure for market basket datasets in microarray analysis. We have in-
vestigated the efficacy of the proposed measures and run thorough analysis to com-
pare them with standard similarity measures. Our experimental results prove that
by using the extrinsic measures, it is possible to identify gene pairs that are bio-
logically more relevant. In addition, association networks generated based with
these measures are shown to be more informative and useful for further analysis.
These results suggest that different similarity notions can reveal different aspects
of the same dataset. Previously, we have studied different ensemble techniques to
improve clustering results on a scale-free protein interaction network [2]. In the fu-
ture, we plan to investigate an ensemble approach for integrating different aspects
of a dataset captured by different similarity measures.
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Abstract. Here we present a simple method based on graph spectral properties 
to automatically partition multi-domain proteins into individual domains. The 
identification of structural domains in proteins is based on the assumption that 
the interactions between the amino acids are higher within a domain than across 
the domains. These interactions and the topological details of protein structures 
can be effectively captured by the protein contact graph, constructed by consid-
ering each amino acid as a node with an edge drawn between two nodes if the 
Cα atoms of the amino acids are within 7Å. Here we show that Newman’s 
community detection approach in social networks can be used to identify do-
mains in protein structures. We have implemented this approach on protein con-
tact networks and analyze the eigenvectors of the largest eigenvalue of 
modularity matrix, which is a modified form of the Adjacency matrix, using a 
quality function called “modularity” to identify optimal divisions of the net-
work into domains. The proposed approach works even when the domains are 
formed with amino acids not occurring sequentially along the polypeptide chain 
and no a priori information regarding the number of nodes is required. 

Keywords: Domain prediction, Protein contact networks, Graph spectral  
analysis. 

1   Introduction 

Domains are generally considered as compact, semi-independent units, which form an 
independent stable folded structure. That is, a domain is able to exist in its 3-
dimensional form even when cleaved from the rest of the protein. As a result there are 
more interactions within a domain than with the rest of the protein [1] and this feature 
is exploited in most computational approaches. Domains being the basic units of pro-
tein folding, function and evolution, their identification and analysis form the first 
step in understanding the function of proteins. Because it forms a structurally ‘sepa-
rate’ region in a three-dimensional protein structure, a structural domain can be de-
termined by two visual characteristics; its compactness and its extent of isolation. 
Although the boundaries of a domain can be determined by visual inspection, prob-
lems occur with domains that are discontinuous or loosely associated. Thus construc-
tion of an automated method is not easy. 
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Decomposition of multi-domain protein structures into individual domains has 
been traditionally done manually. However, with increasing number of protein struc-
tures in the PDB databank [2], it is no more possible to keep the domain databases up 
to date. There is apparently a need for computationally efficient, reliable and fully 
automated methods for domain identification. Various approaches have been pro-
posed for domain identification, such as, by detection of hydrophobic core in a pro-
tein, e.g., DETECTIVE algorithm [3], exploiting the feature of more connections 
within a domain compared to those across domains, e.g., the FSSP database [4], 
DOMAK database [5], or graph theoretic approaches, e.g., Domain Parser [6], Sistla 
et al [7]. Many databases use more than one approach along with manual judgment, 
for domain identification, e.g., CATH [8], SCOP [9]. A good review of comparison of 
various algorithmic and expert methods of domain assignment has been recently pub-
lished by Veretnik et al [10].  

With large number of protein structures now available in Protein Data Bank (PDB) 
there exists a need for computationally efficient method for automatically identifying 
domains in proteins. In this paper, we have proposed a simple and elegant approach 
for domain identification based on graph theoretic technique, which considers the 
overall connectivity and topology of the protein structure. It exploits the feature that 
the interactions between the amino acid residues are higher within a structural domain 
than across domains. The proposed methodology takes the atomic coordinates of the 
protein as the input and uses the community detection approach by Newman to iden-
tify the most natural subdivisions of the network [11-12]. It requires no prior informa-
tion about the number of domains and also assesses the quality of the partitions.  

2   Materials and Methods 

A protein molecule is a chain of amino acids connected by peptide bond and gets 
folded into a 3D structure involving many interactions, viz., hydrogen bonding, ionic 
interactions, Van der Waals forces, hydrophobic forces, etc. The main problem for 
computationally processing such molecules is an efficient data structure which can 
efficiently capture the structural properties of the molecule, one such data structure is 
a graph. A graph is a collection of points, called nodes or vertices, with lines connect-
ing pairs of points, called edges. Nodes joined by an edge are called adjacent, and the 
degree of a node is defined as the number of its adjacent nodes. 

2.1   Constructing Protein Contact Graphs   

In this study the protein contact networks have been constructed by considering the 
backbone Cα atoms as nodes and the edges drawn between two Cα atoms if they are 
either connected by a peptide bond or are within a cut-off distance, Rc (~ 7Å). The 
value of Rc is chosen as an upper limit to the range of non-covalent interactions that 
are known to play a significant role in the three dimensional fold of the protein. The 
construction of the protein network is illustrated in Fig. 1 which shows possible con-
nections of a node i with its neighbors. The Euclidean distance is computed between 
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Fig. 1. An edge is drawn from the ith node to all other nodes lying within a circle of radius 7Å 
centered at the ith node, i.e., to the nodes i-1, i+1, i+2, A, B, C and D. Nodes A, B, C, D are 
called spatial neighbors of i (connected by dotted lines) while nodes i-1, i+1, i+2 are called the 
sequential neighbors of i (connected by continuous lines).  

every (i,j) pair, dij, and  an edge is drawn if dij < 7Å. The protein contact network can 
be represented by an N × N adjacency matrix whose ijth elements are defined as [7]:  

 

[A]ij = 1 if i ≠ j and i and j are adjacent vertices (i.e., connected) 
[A]ij = 0 if i = j or there is no edge between i and j. 

2.2   Identifying Domains from Protein Contact Graphs   

The community detection approach by Newman identifies the most natural subdivi-
sions of the network rather than partitioning a network into pre-defined groups. This 
is particularly suitable for domain identification problem as one may not have a priori 
knowledge of the number of structural domains in a protein. The basic principle of 
this approach is to look for divisions of the vertices into two groups so as to minimize 
the number of edges running between the groups. This is in agreement with the basic 
feature of domains having large inter-domain connections than between domains. 
However, a good division of a network into communities is not merely one in which 
there are few edges between communities but the one with fewer than expected edges 
between communities. Hence to assess the quality of the division, Newman has de-
fined a measure called modularity, which is defined as the difference in the number of 
edges falling within groups and the expected number in an equivalent network with 
edges placed at random. For successive decompositions of the protein contact net-
work we use this measure to stop further divisions. The subdivision with the largest 
value of modularity is considered as the best natural subdivision of the network and is 
used for further analysis. 

Suppose our network contains N vertices. Let the number of edges between vertices i 
and j be denoted by Aij, which will be either 1 or 0, depending on whether there exists an 
edge between i and j or not. The quantities Aij are the elements of the adjacency matrix. 
The expected number of edges between vertices i and j if edges are placed at random is 
kikj/2m, where ki and kj are the degrees of the vertices i and j respectively, and m = ½ 
Σkiki is the total number of edges in the network. Thus the modularity, Q, defined as the 
number of edges falling within groups minus the expected number in an equivalent 
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network with edges placed at random is given by the sum of Aij – kikj/2m over all pairs 
of vertices i, j that fall in the same group. The modularity can be either positive or nega-
tive, with positive values indicating the possible presence of community structure. The 
algorithm works by first constructing the modularity matrix for the network as [12] 

m

k
AB ij

ijij 2
−=  

and finding its leading (most positive) eigenvalue and the corresponding eigenvector. 
The network is divided into two parts according to the sign of the elements of this 
eigenvector. The process is then repeated for each of the parts, using the generalized 
modularity matrix,  
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where δij is the Kronecker δ-symbol, and B(g) is the ng × ng matrix with elements in-
dexed by the labels i, j of vertices within group g. If at any stage a proposed split 
makes a zero or negative contribution to the total modularity, the corresponding sub-
graph is left undivided. When the entire network has been decomposed into indivisi-
ble subgraphs in this way, i.e., all the elements in a subgraph have their respective 
principle eigenvector elements of the same sign, the algorithm ends. The split with the 
largest value of the quality measure, modularity, is considered for further analysis. 

When implemented on a multi-domain protein, the above procedure decomposes 
the protein contact network into a number of structural groups of varying sizes, some 
of them may even be smaller than a typical domain (< 30 residues). To identify com-
plete compact structural domains, we next implemented a hierarchical agglomerative 
algorithm by Clauset et al [13] on these structural subgroups and join them into a 
single unit based on the interactions between them. To implement this algorithm, a 
coarse network graph is constructed, with each structural subgroup as nodes and 
weighted edges drawn between them based on the number of interactions between the 
subgroups. That is, if any (xi,yj) pair of residues lie within 7Å distance, where xi is a 
node in cluster X and yj is a node in cluster Y, then the weight, eXY, assigned to the 
edge between clusters X and Y is given by 
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where WXY corresponds to the total number of interactions between the residues of 
clusters X and Y, normalized by the total size of the two clusters, NX and NY, and 1000 
is just a multiplicative constant. Then Avw, an element of the adjacency matrix of this 
network is defined as:  

Avw = 1, if vertices v and w are connected, 
                    0, otherwise. 

with the vertex v corresponding to cluster Cv. Then the fraction of edges that fall 
within clusters, i.e., that connect vertices that both lie in the same cluster, is  
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where the δ-function, δ(i,j) = 1, if i = j and 0 otherwise, and m = ½ ∑vwAvw is the 
number of edges in the graph. This quantity will be large for good divisions of the 
network, in the sense of having many within-community edges, but is not a good 
measure since it takes its largest value of 1 in the trivial case of all vertices belonging 
to a single community. However, as before, if we subtract from it the expected value 
of the same quantity in the case of a randomized network, i.e., kvkw/2m, and a useful 
measure, called modularity is again defined to assess the amalgamation at each step:  
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In the agglomerative approach, clusters are repeatedly joined together and the 

process continued till the amalgamation produces the largest increase in modularity 
Q. For a network of n vertices, after n − 1 such joins the algorithm stops with a single 
cluster left containing all the nodes [Fig. 2]. Here again, to assess the amalgamation at 
each step, the modularity measure is computed and amalgamation continued till the 
grouping with largest modularity Q is obtained. The resultant clusters with largest 
value Q are then reported as domains. This two-phase approach of domain identifica-
tion is particularly useful when a protein has domains formed by residues not con-
tinuous along the polypeptide chain. 

 
 

Fig. 2. The solid color filled circles are the initial nodes of the network which are clustered 
into 4 clusters in the initial phase, represented by dotted circles. Now each dotted circle is 
considered as a node for the construction of reduced graph and this graph of 4 nodes (clusters) 
undergoes the aggregation process. 

For testing the predictions of the approach discussed here we have compared our 
results with the annotation of domains provided in CATH database [8] and with the 
web-based tool DomainParser [6].  A brief description of the methodology used by 
CATH and DomainParser is given below. CATH uses both computer programs and 
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human annotations for its domain definition. For each protein, CATH runs three do-
main decomposition programs, DETECTIVE, PUU and DOMARK [2, 14, 5]. If a 
consensus is reached among the three programs, CATH adds the consensus result into 
its database; otherwise it relies on human assignments. DomainParser formulates the 
domain decomposition problem as a network flow problem and employs the Ford-
Fulkerson algorithm to solve it [15]. In this formulation, each residue is represented as 
a node of a connected network and each residue-residue contact is represented as an 
edge if the distance between the atoms is within a cut-off value of 4Å. Each interface 
between two domains is modeled as a minimum flow cut (or bottleneck) of the net-
work. For proteins with multiple domains, the program runs on each of the partitioned 
substructures recursively until the appropriate stopping criteria are met. The later 
version of the program combines the structural information of a protein structure 
including hydrophobic moment profile and neural networks for quality checking of 
the identified domains. 

2.3   Implementation 

A Perl script has been written for reading the coordinates of the protein structure from 
the PDB file to construct the protein contact network by computing the distance ma-
trix. Using this distance matrix, all Cα atoms within 7Å are connected by an edge and 
this information is stored into an edge list file format wherein each line has two node 
numbers between which an edge is to be drawn. This edge list file is passed as input 
to the initial partitioning phase. This edge list file is used to obtain the adjacency 
matrix and from it the modularity matrix, whose eigenvectors corresponding to the 
largest eigenvalue are analyzed for graph partitioning. Implementation of partitioning 
and amalgamation phases are done in C++ using the igraph library [16],  which is an 
open source and distributed under the terms of the GNU GPL for creating and ma-
nipulating graphs.  

3   Results and Discussion 

The analysis has been carried out on a number of multi-domain proteins belonging to 
different structural classes, viz., α, β, α/β, α+β, according to the SCOP classification 
and the results for a few representative proteins are summarized in Table - 7. We 
discuss in detail below the analysis on two multi-domain proteins 1HLE and 1CDG. 
In Fig. 3(a) is given the 3-dimensional structure of 1HLE (A), which belongs to the 
α/β class, and its protein contact network in Fig. 3(b) constructed by drawing an edge 
between two Cα atoms if they are within a distance 7 Å.  Table – 1 summarizes the 
various steps in the decomposition of the protein network graph at each step of parti-
tioning for the chain A of the protein 1HLE. At each subdivision of the graph, the 
modularity value is given along with the size and number of clusters formed at each 
split. The modularity value is seen to increase with every split and has a maximum 
value for the fourth split after which the modularity value starts falling again. Hence 
this subdivision is taken as input to the amalgamation phase of the algorithm. 

In the amalgamation phase, the clusters corresponding to highest modularity in  
Table-1 are considered as nodes, i.e., the five clusters, C1, C2, C3, C4 and C5  
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                                     (a)                                                                     (b) 

Fig. 3. (a) The 3-dimensional structure of 1HLE(A), and (b) its network graph. 

Table 1. Subdivision of protein contact network of 1HLE (A) 

Split 
No. 

Modularity 
No. of 

Clusters 
Sequence Positions 

1 0.412365 2 
C1:  1-26,42-76, 98-125, 171-275, 287-314 
C2:  27-41, 77-97, 125-170, 276-286, 315-341 

2 0.583516 3 
C1:  1-26, 171-275 
C2:  27-41, 77-97, 116-170, 276-286, 315-341 
C3:  42-76, 98-115, 287-314 

3 0.634473 4 

C1:  1-26, 243-260 
C2:  27-41, 77-97, 116-170, 276-286, 315-341 
C3:  42-76, 98-115, 287-314 
C4:  171-242, 261-275 

4 0.638779 5 

C1:  1-26 
C2:  27-41, 77-97, 116-170, 276-286, 315-341 
C3:  42-76, 98-115, 287-314 
C4:  171-242, 261-275 
C5:  243-260 

5 0.634579 6 

C1:  1-12 
C2:  27-41, 77-97, 116-170, 276-286, 315-341 
C3:  42-76, 98-115, 287-314 
C4:  171-242, 261-275 
C5:  243-260 
C6:  13-26 

obtained from the fourth split for 1HLE protein, and edges drawn between them based 
on the number of interactions between the residues in each pair of clusters to con-
struct protein graph. The greedy modularity optimization algorithm by Clauset et al is 
implemented on this protein graph to identify the true structural domains. The output 
of this amalgamation process is given in Table – 2. It is observed that the third merg-
ing step has the highest modularity value, and so the algorithm predicts the most 
modular decomposition of the structure as two domains, D1 {C1 (1–26), C4 (171-
242, 261-275), C5 (243-260) = 1–26 & 171–275} and D2 {C2(27-41, 77-97, 116-
170, 276-286, 315-341), C3 (42-76, 98-115, 287-314) = 27–170 & 276–341}.  



444 H.K. Yalamanchili and N. Parekh 

Table 2. Amalgamation of protein cluster graph of protein 1HLE (A) 

Merge 
No. 

Modularity 
No. of 

Clusters 
Agglomeration of 

Clusters 

1  - 0.227604 4 

D1: C2, C3 
D2:  C1 
D3:  C4 
D4:  C5 

2  - 0.0221965 3 
D1: C1, C5 
D2:  C2, C3 
D3:  C4 

3    0.0564953 2 D1: C1, C4, C5 
D2:  C2, C3 

 

The prediction of domains by modularity-based graph spectral approach is com-
pared with the annotation in CATH database and the output of DomainPaser in Table 
– 3 for 1HLE (A) and a good agreement is observed. It may be noted that domain I is 
made up of two noncontiguous groups of residues, 1-26 and 171-275 and similarly II, 
with noncontiguous groups 27-170 and 276-341. Most algorithmic approaches fail to 
identify such domains formed by groups of residue not contiguous along the polypep-
tide chain.  

 

Table 3. Comparison of our results with CATH annotation and DomainParser output. 

PDB 
ID 

Class CATH Results DomainParser Results 
Spectral Graph 

Method 

1HLE 
(A) 

α/β 
I:  23-193, 290-358 
II:  194-289 

I:  23-203, 290-358 
II:  204-289 

I: 27-170, 276-341 
II:  1-26, 171-275 

We now discuss our analysis of implementing the two-phase decomposition and 
amalgamation processes on chain A of protein 1CDG belonging to class β. Table – 4 
summarizes the modularity value for each successive subdivisions of the protein con-
tact network of 1CDG in the first phase of the approach. It may be noted that the 
fourth split with five clusters has the highest modularity value which then form input 
to the amalgamation phase. The result of aggregation is given in Table – 5. The first 
merging step with four domains has the highest modularity value and hence predicted 
as individual domains in protein 1CDG (A):  D1 { C1 (503-518, 539-560), C5 (519-
538, 561-584) = 503 – 584}, D2 {C2 (1-142, 155-165, 213-234, 250-395) }, D3 { C3 
( 396-502) }, D4 { C4 (143-154, 166-212, 235-249, 585-688) }. The groups D2 and 
D4 seem to be interlinked from 1-395 and may hence be merged into a single domain, 
say, D2 = 1-395, while the cluster of residues from 585-688 may form a domain, D4 = 
585-688, suggesting human judgment is necessary when clear boundaries are not 
obtained. The predicted result is now in good agreement with the CATH annotation 
(which is a manually curated database). No results were obtained from DomainParser 
for 1CDG (see Table – 6).  
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In Table – 7 predictions of domains using the modularity-based spectral graph ap-
proach discussed above for a representative set of proteins is compared with the do-
main annotation in the CATH database and the output of DomainParser. It may be 
noted that there is a reasonably good agreement not only in the number of domains 
predicted but also in the prediction of domain boundaries as compared to the annota-
tion in CATH database.  

Table 4. Subdivision of protein contact network of 1CDG (A) 

Split No. Modularity 
No. of 

Clusters 
Sequence Positions 

1 0.433549 2 
C: 143-154, 166-212, 235-249, 292-309, 396-688 
C2: 1-142, 155-165, 213-234, 250-291, 310-395 

2 0.575651 3 
C1: 143-154, 166-212, 235-249, 503-688 
C2: 1-142, 155-165, 213-234, 250-291, 310-395 
C3: 292-309, 396-502 

3 0.629698 4 

C1: 503-584 
C2: 1-142, 155-165, 213-234, 250-291, 310-395 
C3: 292-309, 396-502 
C4: 143-154, 166-212, 235-249, 585-688 

4 0.638351 5 

C1: 503-518, 539-560 
C2: 1-142, 155-165, 213-234, 250-395 
C3: 396-502 
C4: 143-154, 166-212, 235-249, 585-688 
C5: 519-538, 561-584 

5 0.625443 6 

C1: 503-505, 514-518, 539-551 
C2: 1-142, 155-165, 213-234, 250-395 
C3: 396-502 
C4: 143-154, 166-212, 235-249, 584-688 
C5: 519-538, 561-579 
C6: 506-513, 552-560, 580-583 

 

Table 5.  Amalgamation of protein cluster graph of protein1CDG (A) 

Merge 
No. 

Modularity 
No. of 

Clusters 
Agglomeration of Clus-

ters 

1 0.227604 4 

D1: C1, C5 
D2:  C2 
D3:  C3 
D4:  C4 

2 0.0221965 3 
D1: C1, C5 
D2:  C2, C3 
D3:  C4 

3 -0.131987 2 
D1: C1, C2, C3, C5 
D2:  C4 

     

In Table – 7 predictions of domains using the modularity-based spectral graph ap-
proach discussed above for a representative set of 11 more proteins is compared with 
the domain annotation in the CATH database and the output of DomainParser. It may 
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Table 6.  Comparison of CATH annotation, DomainParser results with our spectral method 
 

PDB ID Class CATH Results DomainParser Results 
Spectral Graph 

Method 

1CDG 
(A) 

Mainly  
β 

  I: 1-400 
  II: 401-495 
  III: 496-582 
  IV: 582-685 

Error Message:  
Cannot Parse 1cdg A 

  I: 1-395 
  II: 396-502 
  III: 503-584 
  IV: 585-688 

 
    Table 7. Domain prediction by spectral graph approach, CATH and DomainParser 

 

PDB ID Class CATH Results DomainParser Results 
Graph Spectral 

Method 

1PPR 
(M) 

α 
I: 1-155 
II: 156-312 

I: 1-156, 198- 216, 262-277 
II: 157-178, 217-261, 299-312

I:  1-25, 75 -155 
II: 26-74, 156-312 

1UGO 
(A) 

α I: 1-99 I: 13-99 
I:  20-99 
II: 1-19(<30, ig-
nore) 

1PGR 
(B) 

β 
I: 1-108 
II: 109-213 

I: 1-108 
II: 109-213 

I:  1-108 
II: 109-209 

1CDG 
(A) 

Mainly  
β 

I: 1-400 
II: 401-495 
III: 496-582 
III: 582-685 

Error Message: 
Cannot Parse 1cdg A 

I: 1-395 
II: 396-502 
III: 503-584 
III: 585-688 

2BW4 
(A) 

Β 
I: 7-158 
II: 159-328 

I: 2-310 
I:  47-166 
II: 167-375 

1KF6 
(B) 

α/β 
I:  2-105 
II: 106-243 

I: 1-107 
II: 108-243 

I:  1-89 
II: 90-243 

16PK 
(A) 

α/β 
I:  5-192 
II: 199-406 

Error Message: 
Cannot parse 16pk A 

I: 1-197 
II: 198-404 

1MSH 
(A) 

α+β I: 1-72 I: 1-72 I: 1-72 

1D5M 
(B) 

α+β 
I:  4-81 
II: 82-181 

I: 2-92 
II: 93-190 

I: 1-86 
II: 87- 181 

1HLE 
(A) 

α/β 
I:  23-193, 290-358 
II:  194-289 

I: 23-203, 290-358 
II: 204-289 

I: 26-170, 276-341 
II: 1-26, 171-275 

1LAM 
(A) 

α/β 
I:  1-161 
II: 162-484 

I: 1-162 
II:  163-484 

I: 1-161 
II: 162-484 

1SMP 
(A) 

β 
I:  1-17, 250-471 
II: 18-249 

I: 4-15, 250-374 
II: 16-56, 183-249 
III: 375-471 
III: 57-182 

I: 1-12, 250-468 
II: 13-249 

5PEP 
(A) 

β 
I:  1-170 
II: 171-327 

No. of Domains:  1 
Cannot Parse 5pep A 

I: 1-185 
II: 186-306 
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be noted that there is a very good agreement not only in the number of domains pre-
dicted but also in the prediction of domain boundaries as compared to the annotation 
in CATH database.  

4   Conclusion 

Here we proposed a simple and elegant graph-based approach for domain identifica-
tion which not only decomposes the protein into domains but also assesses the quality 
of the decomposition. The approach involves two steps. In the first step Newman’s 
modularity approach for partitioning a graph into clusters is implemented and the 
leading eigenvectors of the modularity matrix analyzed. The split with highest value 
of a quality function, called modularity, which is defined as the difference in the 
number of edges falling within groups and the expected number in an equivalent net-
work with edges placed at random, is used for terminating the division of the graph. 
These clusters are then used to construct a graph with each cluster as node and edges 
drawn between them based on the interactions between the elements of the cluster. 
The aggregation approach by Clauset et al implemented on this structure graph helps 
in identifying unique structural domains in proteins. The prediction is in good agree-
ment with the annotation in the manually curated CATH database for most examples 
shown here. However, we do observe that for some proteins clear boundaries are 
predicted by the approach discussed here, suggesting the need for human judgment. 
DomainParser is also based on constructing a network model with each atom defined 
as a node and edges drawn if two atoms are within 4 Å distance. Compared to Do-
mainParser, our protein network is constructed using each Cα atom as node thereby 
reducing the complexity of the network. Even with this simplification, the prediction 
by our approach is, in general, in better agreement with annotation in CATH com-
pared to that of DomainParser. The DomainParser algorithm partitions a protein struc-
ture into domains accurately when the number of domains to be partitioned is known. 
However the performance drops when this number is unclear. No such prior informa-
tion is required in this approach. The modularity based approach discussed here iden-
tifies not only two or more domains in a protein, but also identifies domains that are 
comprised of residues not contiguous along the polypeptide chain.  
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