

Lecture Notes in Computer Science 5501
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Oege de Moor Michael I. Schwartzbach (Eds.)

Compiler
Construction

18th International Conference, CC 2009
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009
York, UK, March 22-29, 2009
Proceedings

13

Volume Editors

Oege de Moor
Oxford University Computing Laboratory, Wolfson Building
Parks Road, Oxford OX1 3QD, UK
E-mail: oege@comlab.ox.ac.uk

Michael I. Schwartzbach
Aarhus University, Department of Computer Science
Aabogade 34, 8200 Aarhus N., Denmark
E-mail: mis@cs.au.dk

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.3.4, D.2.2, D.2.4, D.2.5, D.3.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-00721-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00721-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12630653 06/3180 5 4 3 2 1 0

Foreword

ETAPS 2009 was the 12th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 22 satellite workshops (ACCAT, ARSPA-WITS, Bytecode, COCV,
COMPASS, FESCA, FInCo, FORMED, GaLoP, GT-VMT, HFL, LDTA, MBT,
MLQA, OpenCert, PLACES, QAPL, RC, SafeCert, TAASN, TERMGRAPH,
and WING), four tutorials, and seven invited lectures (excluding those that were
specific to the satellite events). The five main conferences received 532 submis-
sions (including 30 tool demonstration papers), 141 of which were accepted (10
tool demos), giving an overall acceptance rate of about 26%, with most of the
conferences at around 25%. Congratulations therefore to all the authors who
made it to the final programme! I hope that most of the other authors will still
have found a way of participating in this exciting event, and that you will all
continue submitting to ETAPS and contributing towards making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2009 was organised by the University of York in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

VI Foreword

and with support from ERCIM, Microsoft Research, Rolls-Royce, Transitive,
and Yorkshire Forward.

The organising team comprised:

Chair Gerald Luettgen
Secretariat Ginny Wilson and Bob French
Finances Alan Wood
Satellite Events Jeremy Jacob and Simon O’Keefe
Publicity Colin Runciman and Richard Paige
Website Fiona Polack and Malihe Tabatabaie.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Luca de Alfaro (Santa Cruz), Roberto
Amadio (Paris), Giuseppe Castagna (Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (London), Hartmut Ehrig (Berlin), Javier Esparza (Munich), Jose
Fiadeiro (Leicester), Andrew Gordon (MSR Cambridge), Rajiv Gupta (Arizona),
Chris Hankin (London), Laurie Hendren (McGill), Mike Hinchey (NASA God-
dard), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen), Paul Klint
(Amsterdam), Stefan Kowalewski (Aachen), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Gerald Luettgen (York), Rupak Majumdar (Los Ange-
les), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa), Oege de Moor (Ox-
ford), Luke Ong (Oxford), Catuscia Palamidessi (Paris), George Papadopoulos
(Cyprus), Anna Philippou (Cyprus), David Rosenblum (London), Don Sannella
(Edinburgh), João Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita
Stevens (Edinburgh), Gabriel Taentzer (Marburg), Dániel Varró (Budapest),
and Martin Wirsing (Munich).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the Organising Chair of ETAPS 2009, Gerald
Luettgen, for arranging for us to hold ETAPS in the most beautiful city of York.

January 2009 Vladimiro Sassone, Chair
ETAPS Steering Committee

Preface

This volume contains the papers presented at CC 2009, the 18th International
Conference on Compiler Construction held on March 23-24 in York, UK as part
of the Joint European Conference on Theory and Practice of Software (ETAPS
2009). Papers were solicited from a wide range of areas including traditional
compiler construction, compiler analyses, runtime systems and tools, program-
ming tools, techniques for specific domains, and the design and implementation
of novel language constructs. The submissions and the papers in this volume
reflect this variety.

There were 72 submissions. Each submission was reviewed by at least three
Programme Committee members and was subjected to several rounds of thor-
ough discussions, and in some cases additional expert reviews were obtained.
The PC finally decided to accept 18 research papers.

Many people contributed to the success of this conference. First of all, we
would like to thank the authors for submitting papers of high quality. We are
also grateful to the members of the Programme Committee and to the external
reviewers for their substantive and insightful reviews. Also, thanks go to the
developers and supporters of the EasyChair conference management systems for
making life so much easier for the authors and the Programme Committee.

CC 2009 was made possible by the ETAPS Steering Committee and the
Local Organizing Committee. Finally, we are grateful to Vivek Sarkar for giving
the CC 2009 invited talk entitled Challenges in Code Optimization of Parallel
Programs.

January 2009 Michael Schwartzbach
Oege de Moor

Conference Organization

Programme Chairs

Oege de Moor
Michael I. Schwartzbach

Programme Committee

Silvia Breu University of Cambridge, UK
Manuel Chakravarty University of New South Wales, Australia
Satish Chandra IBM Research, New York
Michael Franz UC Irvine, USA
Jan Heering CWI, The Netherlands
Paul Kelly Imperial College, UK
Viktor Kuncak EPFL, Switzerland
Sorin Lerner University of California at San Diego, USA
Yanhong Annie Liu SUNY at Stony Brook, USA
Ondrej Lhotak University of Waterloo, Canada
Oege de Moor Oxford University, UK
Pierre-Etienne Moreau INRIA Nancy, France
Lori Pollock University of Delaware, USA
Markus Pueschel Carnegie Mellon University, USA
Mooly Sagiv Tel-Aviv University, Israel
Wolfram Schulte Microsoft Research Redmond, USA
Michael I. Schwartzbach University of Aarhus, Denmark
Yannis Smaragdakis University of Oregon, USA
Zhendong Su UC Davis, USA
Don Syme Microsoft Research Cambridge, UK

Reviewers

Amaral, J. Nelson
Arnold, Mat
Balland, Emilie
Bird, Christian
Bouchez, Florent
Brauner, Paul
Bravenboer, Martin
Burckel, Serge
Chang, Mason
Chugh, Ravi

Cintra, Marcelo
Cunei, Antonio
Danvy, Olivier
Ditu, Gabriel
Dor, Nurit
Edwards, Stephen A.
Ernst, Erik
Field, John
Fink, Stephen
Franchetti, Franz

X Organization

Gabel, Mark
Gal, Andreas
Gfeller, Sebastian
Gorbovitski, Michael
Hu, Zhenjiang
Huang, Shan Shan
Jackson, Todd
Jiang, Lingxiao
Keller, Gabriele
Klint, Paul
Kopetz, Radu
Lashari, Ghulam
Lee, Sean
Leshchinskiy, Roman
Lev-Ami, Tal
Lindig, Christian
Liu, Xuezheng
Lokhmotov, Anton
Manevich, Roman
de Mesmay, Frederic
Message, Robin
Mullins, Robert
Naeem, Nomair
Parkinson, Matthew
Pearce, David
Piskac, Ruzica
Rabbah, Rodric

Reilles, Antoine
Rinetzky, Noan
Rothamel, Tom
Russell, Francis
Salamat, Babak
Seyster, Justin
Sittampalam, Ganesh
Sridharan, Manu
Suter, Philippe
Swierstra, Doaitse
Tatlock, Zachary
Tekle, Tuncay
Theoduloz, Gregory
Van Wyk, Eric
Vechev, Martin
Vinju, Jurgen
Voronenko, Yevgen
Wagner, Gregor
Wang, Liqiang
Wies, Thomas
Wilhelm, Reinhard
Wimmer, Christian
Winwood, Simon
Yahav, Eran
Yermolovich, Alexander
Yohan, Boichut

Table of Contents

Challenges in Code Optimization of Parallel Programs
(Invited Talk) . 1

Vivek Sarkar

Extensible Proof-Producing Compilation . 2
Magnus O. Myreen, Konrad Slind, and Michael J.C. Gordon

From Specification to Optimisation: An Architecture for Optimisation
of Java Bytecode . 17

Richard Warburton and Sara Kalvala

A Framework for Exploring Optimization Properties 32
Min Zhao, Bruce R. Childers, and Mary Lou Soffa

Compile-Time Analysis and Specialization of Clocks in Concurrent
Programs . 48

Nalini Vasudevan, Olivier Tardieu, Julian Dolby, and
Stephen A. Edwards

Implementation and Use of Transactional Memory with Dynamic
Separation . 63

Mart́ın Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and
Michael Isard

Exploiting Speculative TLP in Recursive Programs by Dynamic Thread
Prediction . 78

Lin Gao, Lian Li, Jingling Xue, and Tin-Fook Ngai

Live Debugging of Distributed Systems . 94
Darren Dao, Jeannie Albrecht, Charles Killian, and Amin Vahdat

Parsing C/C++ Code without Pre-processing . 109
Yoann Padioleau

Faster Scannerless GLR Parsing . 126
Giorgios Economopoulos, Paul Klint, and Jurgen Vinju

Decorated Attribute Grammars: Attribute Evaluation Meets Strategic
Programming . 142

Lennart C.L. Kats, Anthony M. Sloane, and Eelco Visser

SSA Elimination after Register Allocation . 158
Fernando Magno Quintão Pereira and Jens Palsberg

XII Table of Contents

Register Spilling and Live-Range Splitting for SSA-Form Programs 174
Matthias Braun and Sebastian Hack

Loop-Aware Instruction Scheduling with Dynamic Contention Tracking
for Tiled Dataflow Architectures . 190

Muhammad Umar Farooq and Lizy K. John

Scheduling Tasks to Maximize Usage of Aggregate Variables in Place . . . 204
Samah Abu-Mahmeed, Cheryl McCosh, Zoran Budimlić,
Ken Kennedy, Kaushik Ravindran, Kevin Hogan, Paul Austin,
Steve Rogers, and Jacob Kornerup

Dynamic Look Ahead Compilation: A Technique to Hide JIT
Compilation Latencies in Multicore Environment . 220

Simone Campanoni, Martino Sykora, Giovanni Agosta, and
Stefano Crespi Reghizzi

Precise Management of Scratchpad Memories for Localising Array
Accesses in Scientific Codes . 236

Armin Größlinger

Blind Optimization for Exploiting Hardware Features 251
Dan Knights, Todd Mytkowicz, Peter F. Sweeney,
Michael C. Mozer, and Amer Diwan

How to CPS Transform a Monad . 266
Annette Bieniusa and Peter Thiemann

Author Index . 281

Challenges in Code Optimization
of Parallel Programs

Vivek Sarkar

Rice University

Abstract. Code optimization has a rich history that dates back over
half a century, and includes deep innovations that arose in response to
changing trends in hardware and programming languages. These inno-
vations have contributed significantly to programmer productivity by
reducing the effort that programmers spend on hand-implementing code
optimizations and by enabling code to be more portable. Often these
innovations were accompanied by paradigm shifts in the foundations of
compilers led by the introduction of new ideas such as interprocedural
whole program analysis, coloring-based register allocation, static single
assignment form, array dependence analysis, pointer alias analysis, loop
transformations, adaptive profile-directed optimizations, and dynamic
compilation.

In this talk, we claim that the current multicore trend in the computer
industry is forcing a new paradigm shift in compilers to address the
challenge of code optimization of parallel programs, regardless of whether
the parallelism is implicit or explicit in the programming model. All
computers — embedded, mainstream, and high-end — are now being
built from multicore processors with little or no increase in clock speed
per core. This trend poses multiple challenges for compilers for future
systems as the number of cores per socket continues to grow, and the
cores become more heterogeneous. In addition, compilers have to keep
pace with a proliferation of new parallel languages and libraries.

To substantiate our claim, we first highlight some of the anomalies
that arise when classical techniques from sequential code optimization
are applied to parallel code. We then examine the historical foundations
of code optimization including intermediate representations (IR’s), ab-
stract execution models, legality and cost analyses of IR transformations
and identify paradigm shifts that will be necessary to support optimiza-
tion of parallel code. We pay special attention to memory consistency
models and their impact on code optimization. Finally, we summarize
the approach to code optimization of parallel programs being taken in
the Habanero Multicore Software Research project at Rice University.

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Extensible Proof-Producing Compilation

Magnus O. Myreen1, Konrad Slind2, and Michael J.C. Gordon1

1 Computer Laboratory, University of Cambridge, Cambridge, UK
2 School of Computing, University of Utah, Salt Lake City, USA

Abstract. This paper presents a compiler which produces machine code
from functions defined in the logic of a theorem prover, and at the same
time proves that the generated code executes the source functions. Un-
like previously published work on proof-producing compilation from a
theorem prover, our compiler provides broad support for user-defined
extensions, targets multiple carefully modelled commercial machine lan-
guages, and does not require termination proofs for input functions. As
a case study, the compiler is used to construct verified interpreters for
a small LISP-like language. The compiler has been implemented in the
HOL4 theorem prover.

1 Introduction

Compilers pose a problem for program verification: if a high-level program is
proved correct, then the compiler’s transformation must be trusted in order for
the proof to carry over to a guarantee about the generated executable code. In
practice there is also another problem: most source languages (C, Java, Haskell
etc.) do not have a formal semantics, and it is therefore hard to formally state
and verify properties of programs written in these languages.

This paper explores an approach to compilation aimed at supporting program
verification. We describe a compiler which takes as input functions expressed in
the logic of a theorem prover, compiles the functions to machine code (ARM,
x86 or PowerPC) and also proves that the generated code executes the supplied
functions. For example, given function f as input

f(r1) = if r1 < 10 then r1 else let r1 = r1 − 10 in f(r1)

the compiler can generate ARM machine code

E351000A L: cmp r1,#10

2241100A subcs r1,r1,#10

2AFFFFFC bcs L

and automatically prove a theorem which certifies that the generated code ex-
ecutes f . The following theorem states, if register one (r1) initially holds value
r1, then the code will leave register one holding value f(r1). The theorem is ex-
pressed as a machine-code Hoare triple [17] where the separating conjunction ‘∗’
can informally be read as ‘and’.

{r1 r1 ∗ pc p ∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 f(r1) ∗ pc (p+12) ∗ s}

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 2–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Extensible Proof-Producing Compilation 3

The fact that f is expressed as a function in the native language of a theorem
prover means that it has a precise semantics and that one can prove proper-
ties about f , e.g. one can prove that f(x) = x mod 10 (here mod is modulus
over unsigned machine words). Properties proved for f carry over to guarantees
about the generated machine code via the certificate proved by the compiler.
For example, one can rewrite the theorem from above to state that the ARM
code calculates r1 mod 10:

{r1 r1 ∗pc p∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 (r1 mod 10)∗pc (p+12)∗ s}
Proof-producing compilation from a theorem prover has been explored before

by many, as will be discussed in Section 6. The contributions that distinguish
the work presented here are that the compiler:

1. targets multiple, carefully modelled, commercial machine languages (namely
ARM, PowerPC and x86, as modelled by Fox [7], Leroy [11] and Sarkar [6]);

2. does not require the user to prove termination of the input functions (a re-
striction posed by the theorem prover in similar work by Li et al. [12,13,14]);

3. can, without any added complexity to the certification proof, handle a range
of optimising transformations (Section 4); and

4. supports significant user-defined extensions to its input language (Section
3.1); extensions which made it possible to compile interpreters for a small
LISP-like language as a case study (Section 5).

The compiler1 uses a functional input, which is meant to either be extended
directly by the user, as discussed in Section 3.1, or used as a back-end in compilers
with more general input languages, e.g. [8,13,14].

This paper builds on the authors’ work on post hoc verification of realistically
modelled machine code [16,17,18], and certifying compilation [8,12,13,14].

2 Core Functionality

The compiler presented in this paper accepts tail-recursive functions as input,
functions defined as recursive equations ‘f(. . .) = . . .’ in a format described
in Section 2.1. As output the compiler produces machine code together with a
correctness certificate, a theorem which states that the generated machine code
executes the function given as input.

The overall compilation algorithm can be broken down into three stages:

1. code generation: generates, without proof, machine code from input f ;
2. decompilation: derives, via proof, a function f ′ describing themachine code;
3. certification: proves f = f ′.

The remaining subsections describe the input language and code generation
that make proving f = f ′ feasible, as well as the mechanism by which f ′ is
derived. Section 3 describes extensions to the core algorithm.
1 The HOL4 source is at http://hol.sf.net/ under HOL/examples/machine-code.

4 M.O. Myreen, K. Slind, and M.J.C. Gordon

2.1 Input Language

The compiler’s input language consists of let-expressions, if-statements and tail-
recursion. The language restricts variable names to correspond to names of reg-
isters or stack locations.

The following grammar describes the input language. Let r range over reg-
ister names, r0, r1, r2, etc., and s over stack locations, s1, s2, s3 etc., m over
memory modelling functions (mappings from aligned 32-bit machine words to
32-bit machine words), f over function names, g over names of already compiled
functions, and i5, i7, i8 and i32 over unsigned words of size 5-, 7-, 8- and 32-bits,
respectively. Bit-operators &, ??, !!, �, � are and, xor, or, left-shift, right-shift.
Operators suffixed with ‘.’ are signed-versions of those without the suffix.

input ::= f(v, v, ..., v) = rhs

rhs ::= let r = exp in rhs

| let s = r in rhs

| let m = m[address �→ r] in rhs

| let (v, v, ..., v) = g(v, v, ..., v) in rhs

| if guard then rhs else rhs

| f(v, v, ..., v)
| (v, v, ..., v)

exp ::= x | ¬ x | s | i32 | x binop x | m address | x � i5 | x � i5 | x�. i5

binop ::= + | − | × | div | & | ?? | !!
cmp ::= < | ≤ | > | ≥ | <. | ≤. | >. | ≥. | =

guard ::= ¬ guard | guard ∧ guard | guard ∨ guard | x cmp x | x & x = 0
address ::= r | r + i7 | r − i7

x ::= r | i8

v ::= r | s | m

This input language was designed to be machine independent; programs con-
structed from this grammar can be compiled to any of the target languages:
ARM, x86 and PowerPC. However the input language differs for each target in
the number of registers available (r0...r12 for ARM, r0...r6 for x86 and r0...r31
for PowerPC) and some detailed restrictions on the use of × and div.

2.2 Code Generation

The input language was designed to mimic the operations of machine instructions
in order to ease code generation. Each let-expression usually produces a single
instruction, e.g.

let r3 = r3 + r2 in generates ARM code add r3,r3,r2
let r3 = r3 + r2 in generates x86 code add ebx,edx
let r3 = r3 + r2 in generates PowerPC code add 3,3,2

Extensible Proof-Producing Compilation 5

In some cases one let-expression is split into a few instructions, e.g.

let r3 = r0 − r2 in generates x86 code mov ebx,eax
sub ebx,edx

let r3 = 5000 in generates ARM code mov r3,#19
mov r3,r3,lsl 8
add r3,r3,#136

The code generator was programmed to use a few assembly tricks, e.g. on x86
certain instances of addition, which would normally require two instructions (mov
followed by add), can be implemented as a single load-effective-address lea:

let r3 = r0 + r2 in generates x86 code lea ebx,[eax+edx]

A combination of compare and branch are used to implement if-statements, e.g.

if r3 = 45 then ... else ... generates ARM code cmp r3,#45
bne L1

Function returns and function calls generate branch instructions.
The compiler generates a list of assembly instructions, which is translated into

machine code using off-the-shelf assemblers: Netwide Assembler nasm [1] for x86
and the GNU Assembler gas [2] for ARM and PowerPC. Note that these tools
do not need to be trusted. If incorrect code is generated then the certification
phase, which is to prove the correctness certificate, will fail.

2.3 Proving Correctness Theorem

The theorem certifying the correctness of the generated machine code is proved
by first deriving a function f ′ describing the effect of the generated code, and
then proving that f ′ is equal to the original function to be compiled. Function f ′

is derived using proof-producing decompilation [18]. This section will illustrate
how decompilation is used for compilation and then explain decompilation.

Example. Given function f , which traverses r0 steps down a linked-list in m,

f(r0, r1, m) =
if r0 = 0 then (r0, r1, m) else
let r1 = m(r1) in
let r0 = r0 − 1 in
f(r0, r1, m)

Code generation produces the following x86 code.

0: 85C0 L1: test eax, eax

2: 7405 jz L2

4: 8B09 mov ecx,[ecx]

6: 48 dec eax

7: EBF7 jmp L1

L2:

6 M.O. Myreen, K. Slind, and M.J.C. Gordon

Proof-producing decompilation is applied to the generated machine code. The
decompiler takes machine code as input and produces a function f ′ as output,

f ′(eax, ecx, m) =
if eax & eax = 0 then (eax, ecx, m) else

let ecx = m(ecx) in
let eax = eax − 1 in
f ′(eax, ecx, m)

together with a theorem (expressed as a machine-code Hoare triple [17,18]) which
states that f ′ accurately records the update executed by the machine code. The
decompiler derives f ′ via proof with respect to a detailed processor model written
by Sarkar [6]. Here eip asserts the value of the program counter.

f ′
pre(eax, ecx, m) ⇒
{ (eax, ecx, m) is (eax, ecx, m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx, m) is f ′(eax, ecx, m) ∗ eip (p+9) ∗ s }

The decompiler also automatically defines f ′
pre, which is a boolean-valued

function that keeps track of necessary conditions for the Hoare triple to be valid
as well as side-conditions that are needed to avoid raising hardware exceptions. In
this case, ecx is required to be part of the memory segment modelled by function
m and the underlying model requires ecx to be word-aligned (ecx& 3 = 0),
whenever eax& eax �= 0.

f ′
pre(eax, ecx, m) =
if eax & eax = 0 then true else

f ′
pre(eax−1, m(ecx), m) ∧ ecx ∈ domain m ∧ (ecx& 3 = 0)

Next the compiler proves f = f ′. Both f and f ′ are recursive functions; thus
proving f = f ′ would normally require an induction. The compiler can avoid an
induction since both f and f ′ are defined as instances of tailrec:

tailrec x = if (G x) then tailrec (F x) else (D x)

The compiler proves f = f ′ by showing that the components of the tailrec
instantiation are equal, i.e. for f and f ′, as given above, the compiler only needs
to prove the following. (f ′

pre is not needed for these proofs.)

G : (λ(r0, r1, m). r0 �= 0) = (λ(eax, ecx, m). eax & eax �= 0)
D : (λ(r0, r1, m). (r0, r1, m)) = (λ(eax, ecx, m). (eax, ecx, m))
F : (λ(r0, r1, m). (r0−1, m(r1), m)) = (λ(eax, ecx, m). (eax−1, m(ecx), m))

The code generation phase is programmed in such a way that the above compo-
nent proofs will always be proved by an expansion of let-expressions followed by
rewriting with a handful of verified rewrite rules that undo assembly tricks, e.g.
∀w. w & w = w.

Extensible Proof-Producing Compilation 7

The precondition f ′
pre is not translated, instead fpre is defined to be f ′

pre. The
compiler proves the certificate of correctness by rewriting the output from the
decompiler using theorems f ′ = f and f ′

pre = fpre. The example results in:

fpre(eax, ecx, m) ⇒
{ (eax, ecx, m) is (eax, ecx, m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx, m) is f(eax, ecx, m) ∗ eip (p+9) ∗ s }

Decompilation. The proof-producing decompilation, which was used above, is
explained in detail in [18]. However, a brief outline will be given here.

Decompilation starts by composing together Hoare triples for machine in-
structions to produce Hoare triples describing one pass through the code. For
the above x86 code, successive compositions collapse Hoare triples of the indi-
vidual instructions into two triples, one for the case when the conditional branch
is taken and one for the case when it is not.

eax& eax = 0 ⇒
{ (eax, ecx, m) is (eax, ecx, m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx, m) is (eax, ecx, m) ∗ eip (p+9) ∗ s }

eax& eax �= 0 ∧ ecx ∈ domain m ∧ (ecx& 3 = 0) ⇒
{ (eax, ecx, m) is (eax, ecx, m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx, m) is (eax−1, m(ecx), m) ∗ eip p ∗ s }

Using these one-pass theorems, the decompiler instantiates the following loop
rule to produce function f ′ and the certificate theorem. If F describes a looping
pass, and D is a pass that exits the loop, then tailrec x is the result of the loop:

∀res res’ c. (∀x. P x ∧ G x ⇒ {res x} c {res (F x)}) ∧
(∀x. P x ∧ ¬(G x) ⇒ {res x} c {res’ (D x)}) ⇒
(∀x. pre x ⇒ {res x} c {res’ (tailrec x)})

Here pre is the recursive function which records the side-conditions that need to
be met (e.g. in this case P is used to record that ecx needs to be aligned).

pre x = P x ∧ (G x ⇒ pre (F x))

For the above one-pass Hoare triples to fit the loop rule, the decompiler instan-
tiates G, F , D, P , res and res′ as follows:

G = λ(eax, ecx, m). (eax & eax �= 0)
F = λ(eax, ecx, m). (eax−1, m(ecx), m)
D = λ(eax, ecx, m). (eax, ecx, m)
P = λ(eax, ecx, m). (eax & eax �= 0) ⇒ ecx ∈ domain m ∧ (ecx& 3 = 0)

res = λ(eax, ecx, m). (eax, ecx, m) is (eax, ecx, m) ∗ eip p ∗ s

res′ = λ(eax, ecx, m). (eax, ecx, m) is (eax, ecx, m) ∗ eip (p+9) ∗ s

8 M.O. Myreen, K. Slind, and M.J.C. Gordon

3 Extensions, Stacks and Subroutines

The examples above illustrated the algorithm of the compiler based on simple
examples involving only registers and direct memory accesses. This section de-
scribes how the compiler supports user-defined extensions, stack operations and
subroutine calls.

3.1 User-Defined Extensions

The compiler has a restrictive input language. User-defined extensions to this
input language are thus vital in order to be able to make use of the features
specific to each target language.

User-defined extensions to the input language are made possible by the proof
method which derives a function f ′ describing the effect of the generated code:
function f ′ is constructed by composing together Hoare triples describing parts
of the generated code. By default, automatically derived Hoare triples for each
individual machine instruction are used. However, the user can instead supply
the proof method with alternative Hoare triples in order to build on previously
proved theorems.

An example will illustrate how this observation works in practice. Given the
following Hoare triple (proved in Section 1) which shows that ARM code has
been shown to implement “r1 is assigned r1 mod 10”,

{r1 r1 ∗pc p∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 (r1 mod 10)∗pc (p+12)∗ s}
the code generator expands its input language for ARM with the following line:

rhs ::= let r1 = r1 mod 10 in rhs

Now when a function f is to be compiled which uses this feature,

f(r1, r2, r3) = let r1 = r1 + r2 in
let r1 = r1 + r3 in
let r1 = r1 mod 10 in

r1

the code generator implements “let r1 = r1 mod 10 in” using the machine code
(underlined below) found inside the Hoare triple. The other instructions are
E0811002 for add r1,r1,r2 and E0811003 for add r1,r1,r3.

E0811002 E0811003 E351000A 2241100A 2AFFFFFC

The compiler would now normally derive f ′ by composing Hoare triples for
the individual machine instructions, but in this case the compiler considers the
underlined code as a ‘single instruction’ whose effect is described by the supplied
Hoare triple. It composes the following Hoare triples, in order to derive a Hoare
triple for the entire code.

{r1 r1 ∗ r2 r2 ∗ pc p} p : E0811002 {r1 (r1+r2) ∗ r2 r2 ∗ pc (p+4)}

Extensible Proof-Producing Compilation 9

{r1 r1 ∗ r3 r3 ∗ pc p} p : E0811003 {r1 (r1+r3) ∗ r3 r3 ∗ pc (p+4)}
{r1 r1 ∗pc p∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 (r1 mod 10)∗pc (p+12)∗ s}
The resulting f ′ is trivially equal to f and thus the resulting Hoare triple states
that the generated code actually executes f .

{r1 r1 ∗ r2 r2 ∗ r3 r3 ∗ pc p ∗ s}
p : E0811002, E0811003, E351000A, 2241100A, 2AFFFFFC
{r1 f(r1, r2, r3) ∗ r2 r2 ∗ r3 r3 ∗ pc (p+20) ∗ s}

It is important to note that the Hoare triples supplied to the compiler need not
concern registers or memory locations, instead more abstract Hoare triples can
be supplied. For example, in Section 5, the compiler is given Hoare triples that
show how basic operations over LISP s-expressions can be performed. The LISP
operation car is implemented by ARM instruction E5933000. Here s-expressions
are defined as a data-type with type-constructors Dot (pairs), Num (numbers)
and Sym (symbols). Details are given in Section 5.

(∃x y. v1 = Dot x y) ⇒
{ lisp (a, l) (v1, v2, v3, v4, v5, v6) ∗ pc p }
p : E5933000
{ lisp (a, l) (car v1, v2, v3, v4, v5, v6) ∗ pc (p + 4) }

The above specification extends the ARM code generator to handle assignments
of car v1 to s-expression variable v1.

rhs ::= let v1 = car v1 in rhs

3.2 Stack Usage

The stack can be used by assignments to and from variables s0, s1, s2 etc., e.g.
the following let-expressions correspond to machine code which loads register 1
from stack location 3 (three down from top of stack), adds 78 to register 1 and
then stores the result in stack location 2.

f(r1, s2, s3) = let r1 = s3 in
let r1 = r1 + 78 in
let s2 = r1 in

(r1, s2, s3)

Internally stack accesses are implemented by supplying the decompiler with
specifications which specify stack locations using M-assertions (defined formally
in [17], informally M x y asserts that memory location x holds value y), e.g. the
following is the specification used for reading the value of stack location 3 into
register 1. Register 13 is the stack pointer.

{r1 r1 ∗ r13 sp ∗ M(sp+12) s3 ∗ pc p}
p : E59D100C
{r1 s3 ∗ r13 sp ∗ M(sp+12) s3 ∗ pc (p+4)}

The postcondition for the certification theorem proved for the above function f :

{ (r1, M(sp+8), M(sp+12)) is f(r1, s2, s3) ∗ r13 sp ∗ pc (p+12) }

10 M.O. Myreen, K. Slind, and M.J.C. Gordon

3.3 Subroutines and Procedures

Subroutines can be in-lined or called as procedures. Each compilation adds a new
let-expression into the input languages of the compiler. The added let-expressions
describe the compiled code, i.e. they allow subsequent compilations to use the
previously compiled code. For example, when the following function (which uses
f from above) is compiled, the code for f will be in-lined as in Section 3.1.

g(r1, r2, s2, s3) = let (r1, s2, s3) = f(r1, s2, s3) in
let s2 = r1 in

(r1, r2, s2, s3)

Note that for simplicity, function calls must match the variable names used
when compiling the called function was compiled, e.g. a function compiled as
‘k(r1) = ...’ cannot be called as ‘let r2 = k(r2) in’ since the input is passed to
code implementing k in register 1 not in register 2.

If the compiler had been asked to compile f as a procedure, then the num-
bering of stack variables needs to be shifted for calls to f . Compiling f as a
procedure sandwiches the code for f between a push and pop instruction that
keep track of the procedure’s return address. When f accesses stack locations 2
and 3 (counting in pop-order), these are for caller g locations 1 and 2.

g(r1, r2, s1, s2) = let (r1, s1, s2) = f(r1, s1, s2) in
let s2 = r1 in

(r1, r2, s1, s2)

4 Optimising Transformations

Given a function f , the compiler generates code, which it decompiles to produce
function f ′ describing the behaviour of the generated code. The code genera-
tion phase can perform any optimisations as long as the certification phase can
eventually prove f = f ′. In particular, certain instructions can be reordered
or removed, and the code’s control flow can use special features of the target
language.

4.1 Instruction Reordering

Instruction reordering is a standard optimisation applied in order to avoid un-
necessary pipeline stalls. The compiler presented here supports instruction re-
ordering as is illustrated by the following example. Given a function f which
stores r1 into stack location s5, then loads r2 from stack location s6, and finally
adds r1 and r2.

f(r1, r2, s5, s6) = let s5 = r1 in
let r2 = s6 in
let r1 = r1 + r2 in

(r1, r2, s5, s6)

Extensible Proof-Producing Compilation 11

The code corresponding directly to f might cause a pipeline stall as the result
of the load instruction (let r2 = s6 in) may not be available on time for the add
instruction (let r1 = r1 + r2 in). It is therefore beneficial to schedule the load
instructions as early as possible; the generated code reduces the risk of a pipeline
stall by placing the load instruction before the store instruction:

f ′(r1, r2, s5, s6) = let r2 = s6 in
let s5 = r1 in
let r1 = r1 + r2 in

(r1, r2, s5, s6)

Valid reorderings of instructions are unnoticeable after expansion of let-
expressions, thus the proof of f = f ′ does not need to be smarter to handle
this optimisation.

4.2 Removal of Dead Code

Live-variable analysis can be applied to the code in order to remove unused or
dead code. In the following definition of f , the first let-expression is unnecessary.

f(r1, r2, s5, s6) = let r1 = s5 in
let r2 = s6 in
let r1 = r2 + 8 in

(r1, r2, s5, s6)

The generated code ignores the first let-expression and produces a function f ′

which is, after expansion of let-expressions, identical to f .

4.3 Conditional Execution

ARM machine code allows conditional execution of nearly all instructions in
order to allow short forward jumps to be replaced by conditionally executed in-
structions (this reduces branch overhead). The compiler produces conditionally-
executed instruction blocks where short forward jumps would otherwise have
been generated. The functions decompiled from conditionally executed instruc-
tions are indistinguishable from those decompiled from code with normal jumps
(as can be seen in the examples of Section 1 and 4.4).

x86 supports conditional assignment using the conditional-move instruction
cmov. For x86, the compiler replaces jumps across register-register moves by
conditional-move instructions.

4.4 Shared Tails

The compiler’s input language supports if-statements that split control, but does
not provide direct means for joining control-flow. For example, consider

(if r1 = 0 then r2 := 23 else r2 := 56); r1 := 4

12 M.O. Myreen, K. Slind, and M.J.C. Gordon

which can be defined either directly as function f with ‘shared tails’

f(r1, r2) = if r1 = 0 then let r2 = 23 in let r1 = 4 in (r1, r2)
else let r2 = 56 in let r1 = 4 in (r1, r2)

or as function g with auxiliary function g2 compiled to be in-lined:

g(r1, r2) = let (r1, r2) = g2(r1, r2) in let r1 = 4 in (r1, r2)

g2(r1, r2) = if r1 = 0 then let r2 = 23 in (r1, r2)
else let r2 = 56 in (r1, r2)

Generating code naively for f would result in two instructions for let r1 = 4 in,
one for each branch. The compiler implements an optimisation which detects
‘shared tails’ so that the code for f will be identical to that produced for g. The
compiler generates the following ARM code for function g (using conditional
execution to avoid inserting short jumps).

0: E3510000 cmp r1,#0

4: 03A02017 moveq r2,#23

8: 13A02038 movne r2,#56

12: E3A01004 mov r1,#4

5 Compilation Example: Verified LISP Interpreter

The following example shows how one can utilise extensions to the input lan-
guage. A verified interpreter for a LISP-like language is constructed using com-
pilation. Details of the following section will be published as a separate paper.

The LISP interpreter constructed here operates over a simple date-type of
s-expressions: Dot x y is a pair, Num n is a number n, and Sym s is a symbol s,
in HOL4, s has type string. Basic operations are defined as follows:

car (Dot x y) = x

cdr (Dot x y) = y

cons x y = Dot x y

plus (Num m) (Num n) = Num (m + n)
minus (Num m) (Num n) = Num (m − n)

size (Num w) = 0
size (Sym s) = 0

size (Dot x y) = 1 + size x + size y

. . .

A new resource assertion lisp is defined which relates LISP objects to concrete
memory representations: lisp (a, l) (v1, v2, v3, v4, v5, v6) states that a heap is lo-
cated at address a, has capacity l, and that s-expressions v1, v2, v3, v4, v5, v6
are stored in this heap. The definition of lisp is omitted in this presentation.

Extensible Proof-Producing Compilation 13

Machine code for basic operations has been proved (in various ways using
decompilation and compilation) to implement basic assertions, e.g. ARM code
for storing car v1 into v1:

(∃x y. v1 = Dot x y) ⇒
{ lisp (a, l) (v1, v2, v3, v4, v5, v6) ∗ pc p }
p : E5933000
{ lisp (a, l) ((car v1), v2, v3, v4, v5, v6) ∗ pc (p + 4) }

A memory allocator with a built-in copying garbage collector (a Cheney garbage
collector [4]) is used to implement creation of a new pair Dot v1 v2. The precon-
dition of this operation requires the heap to have enough space to accommodate
a new cons-cell.

(size v1 + size v2 + size v3 + size v4 + size v5 + size v6) < l ⇒
{ lisp (a, l) (v1, v2, v3, v4, v5, v6) ∗ s ∗ pc p }
p : ... the allocator code ...
{ lisp (a, l) ((cons v1 v2), v2, v3, v4, v5, v6) ∗ s ∗ pc (p + 328) }

When the above specifications are supplied to the compiler it knows what ma-
chine code to generate for two new commands: one for calculating car of v1 and
one for storing cons v1 v2 into v1:

let v1 = car v1 in let v1 = cons v1 v2 in

Once the compilers language had been extended with sufficiently many such
primitive operations, a LISP interpreter was compiled using our proof-producing
compiler. The top-level specification function defining a simple LISP interpreter
lisp eval is listed in Figure 1. When lisp eval is compiled, code is generated and
a theorem is proved which state that this LISP interpreter is implemented by
the generated machine code, in this case ARM code.

lisp eval pre(v1, v2, v3, v4, v5, v6, l) ⇒
{ lisp (a, l) (v1, v2, v3, v4, v5, v6) ∗ s ∗ pc p }
p : ... the generated code ...
{ lisp (a, l) (lisp eval(v1, v2, v3, v4, v5, v6, l)) ∗ s ∗ pc (p + 3012) }

Here lisp eval pre has collected the various side-conditions that need to be true
for proper execution of the code.

6 Summary and Discussion of Related Work

This paper has described how an extensible proof-producing compiler can be
implemented using decompilation into logic [18]. The implementation required
only a light-weight certification phase (approximately 100 lines of ML code) to
be programmed, but still proves functional equivalence between the source and
target programs. In contrast to previous work [8,12,13,14], correctness proofs are
here separated from code generation.

14 M.O. Myreen, K. Slind, and M.J.C. Gordon

TASK_EVAL = Sym "nil"

TASK_CONT = Sym "t"

lisp_lookup (v1,v2,v3,v4,v5,v6) = ...

lisp_eval0 (v1,v2,v3,v4,v5,v6,l) = ...

lisp_eval1 (v1,v2,v3,v4,v5,v6,l) = ...

lisp_eval (v1,v2,v3,v4,v5,v6,l) =

if v2 = TASK_EVAL then

let v2 = TASK_CONT in

if isSym v1 then (* exp is Sym *)

let (v1,v2,v3,v4,v5,v6) = lisp_lookup (v1,v2,v3,v4,v5,v6) in

lisp_eval (v1,v2,v3,v4,v5,v6,l)

else if isDot v1 then (* exp is Dot *)

let v2 = CAR v1 in

let v1 = CDR v1 in

let (v1,v2,v3,v4,v5,v6,l) = lisp_eval0 (v1,v2,v3,v4,v5,v6,l) in

lisp_eval (v1,v2,v3,v4,v5,v6,l)

else (* exp is Num *)

lisp_eval (v1,v2,v3,v4,v5,v6,l)

else (* if v2 = TASK_CONT then *)

if v6 = Sym "nil" then (* evaluation complete *)

(v1,v2,v3,v4,v5,v6)

else (* something is still on the to-do list v6 *)

let (v1,v2,v3,v4,v5,v6,l) = lisp_eval1 (v1,v2,v3,v4,v5,v6,l) in

lisp_eval (v1,v2,v3,v4,v5,v6,l)

Fig. 1. The top-level definition of lisp eval in HOL4

For each run, the compiler generates code and then proves that the code is cor-
rect. This is an idea for which Pnueli et al. [20] coined the term translation valida-
tion. There are two basic approaches to translation validation: (1) code generation
is instrumented to generate proofs, and (2) code generation proceeds as usual then
the certification phase attempts to guess the proofs. Approach 1 is generally con-
sidered more feasible [21]. However, Necula [19] showed that approach 2 is feasible
even for aggressively optimising compilers such as GNU gcc [2]. Necula built into
his certification phase heuristics that attempt to guess which optimisations were
performed. The compiler presented here also implements approach 2, but restricts
the (initial) input language and the optimisations to such an extent that the cer-
tification phase does not need any guesswork.

An alternative to producing a proof for each run is to prove the compiler
correct. A recent, particularly impressive, milestone in compiler verification was
achieved by Leroy [11], who proved the correctness of an optimising compiler
which takes a significant subset of C as input and produces PowerPC assembly
code2 as output. As part of this project Tristan and Leroy [22] verified multiple

2 The work presented here builds on Leroy’s specification of PowerPC assembly code.

Extensible Proof-Producing Compilation 15

translation validators. Other recent work is [10,15,11,3,5]. We chose not to verify
our compiler/translation validator, since our compiler constructs all of its proofs
in the HOL4 theorem prover. The trusted computing base (TCB) of our compiler
is HOL4 and the specifications of the target machine languages. It seems that the
user-defined extensions such as those in the LISP example would have been much
harder to implement in a verified compiler, since verifying a compiler involves
defining a deep embedding of the input language.

The VLISP project [9], which produced verified on-paper proofs for an im-
plementation of a larger subset of LISP, is related to the example above of con-
structing a verified LISP interpreter. The fact that the proof presented here is
mechanised and goes down to detailed models of commercial machine languages
distinguishes this work from the VLISP project which stopped at the level of
verified algorithms.

Acknowledgements. We thank Anthony Fox, Xavier Leroy and Susmit Sarkar
for allowing us to use their processor models for this work. We also thank Thomas
Tuerk, Aaron Coble and the anonymous reviewers for comments on earlier drafts.
The first author is grateful for funding from EPSRC, UK.

References

1. The Netwide Assembler, http://www.nasm.us/
2. The GNU Project. GCC, the GNU Compiler Collection, http://gcc.gnu.org/
3. Benton, N., Zarfaty, U.: Formalizing and verifying semantic type soundness of a

simple compiler. In: Leuschel, M., Podelski, A. (eds.) Principles and Practice of
Declarative Programming (PPDP), pp. 1–12. ACM, New York (2007)

4. Cheney, C.J.: A non-recursive list compacting algorithm. Commun. ACM 13(11),
677–678 (1970)

5. Chlipala, A.J.: A certified type-preserving compiler from lambda calculus to as-
sembly language. In: Programming Language Design and Implementation (PLDI),
pp. 54–65. ACM, New York (2007)

6. Crary, K., Sarkar, S.: Foundational certified code in a metalogical framework. Tech-
nical Report CMU-CS-03-108, Carnegie Mellon University (2003)

7. Fox, A.: Formal specification and verification of ARM6. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 25–40. Springer, Heidelberg (2003)

8. Gordon, M., Iyoda, J., Owens, S., Slind, K.: Automatic formal synthesis of hard-
ware from higher order logic. Electr. Notes Theor. Comput. Sci. 145, 27–43 (2006)

9. Guttman, J., Ramsdell, J., Wand, M.: VLISP: A verified implementation of scheme.
Lisp and Symbolic Computation 8(1/2), 5–32 (1995)

10. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine, and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006)

11. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: Principles of Programming Languages (POPL), pp. 42–
54. ACM Press, New York (2006)

12. Li, G.-D., Owens, S., Slind, K.: Structure of a proof-producing compiler for a
subset of higher order logic. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 205–219. Springer, Heidelberg (2007)

http://www.nasm.us/
http://gcc.gnu.org/

16 M.O. Myreen, K. Slind, and M.J.C. Gordon

13. Li, G.-D., Slind, K.: Compilation as rewriting in higher order logic. In: Pfenning,
F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 19–34. Springer, Heidelberg (2007)

14. Li, G., Slind, K.: Trusted source translation of a total function language. In: Ra-
makrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 471–485.
Springer, Heidelberg (2008)

15. Meyer, T., Wolff, B.: Tactic-based optimized compilation of functional programs.
In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS,
vol. 3839, pp. 201–214. Springer, Heidelberg (2006)

16. Myreen, M.O., Fox, A.C.J., Gordon, M.J.C.: A Hoare logic for ARM machine
code. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 272–286.
Springer, Heidelberg (2007)

17. Myreen, M.O., Gordon, M.J.C.: A Hoare logic for realistically modelled machine
code. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–
582. Springer, Heidelberg (2007)

18. Myreen, M.O., Slind, K., Gordon, M.J.C.: Machine-code verification for multiple
architectures – An application of decompilation into logic. In: Formal Methods in
Computer Aided Design (FMCAD). IEEE, Los Alamitos (2008)

19. Necula, G.C.: Translation validation for an optimizing compiler. In: Programming
Language Design and Implementation (PLDI), pp. 83–94. ACM, New York (2000)

20. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

21. Rinard, M.C.: Credible compilation. In: Jähnichen, S. (ed.) CC 1999. LNCS,
vol. 1575. Springer, Heidelberg (1999)

22. Tristan, J.-B., Leroy, X.: Formal verification of translation validators: a case study
on instruction scheduling optimizations. In: Principles of Programming Languages
(POPL), pp. 17–27. ACM, New York (2008)

From Specification to Optimisation:
An Architecture for Optimisation of

Java Bytecode

Richard Warburton1 and Sara Kalvala2

1 University of Warwick, Coventry, UK
R.L.M.Warburton@warwick.ac.uk

2 University of Warwick, Coventry, UK
Sara.Kalvala@warwick.ac.uk

Abstract. We present the architecture of the Rosser toolkit that allows
optimisations to be specified in a domain specific language, then com-
piled and deployed towards optimising object programs. The optimisers
generated by Rosser exploit model checking to apply dataflow analysis
to programs to find optimising opportunities. The transformational lan-
guage is derived from a formal basis and consequently can be proved
sound. We validate the technique by comparing the application of opti-
misers generated by our system against hand-written optimisations using
the Java based Scimark 2.0 benchmark.

1 Introduction

An optimisation phase is an integral part of most real-world compilers, and
significant effort in compiler development is spent in obtaining fast-running code.
This effort must be balanced with the need to ensure that optimisations do not
introduce errors into programs, and the desire to not worsen compilation time
significantly. Several publications, such as [8] have described the use of domain
specific languages, based on temporal logic, in order to describe optimisations.
Rosser allows the application of specifications of compiler optimisations to Java
Bytecode. Optimisations are matched against programs using model-checking,
and graph rewriting is used to actually modify the programs.

The contributions from the design of Rosser to the design of compilers include:

– An implementation that automatically generates optimisations from spec-
ifications and can be practically used against a real world programming
language.

– A novel intermediate representation of Java programs, that uses BDDs to
aid in symbolic model checking.

– A method of interactively and visually rewriting the control flow graph
(CFG) of Java programs using the Rosser system.

– A case-study backed analysis of the performance ramifications of using model
checking for dataflow analysis compared with hand-written analysers.

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 17–31, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 R. Warburton and S. Kalvala

The remainder of this paper is structured as follows: we summarize the TRANS
language, discuss the design of Rosser, provide a brief explanation of the veri-
fication of soundness, discuss some experimental results, compare with related
work, and discuss ongoing work.

2 Background and Specification Language

2.1 Specification Language Overview

The design of a specification language for optimisations needs to satisfy many
constraints: the optimisations should be expressed in such a way that they are
easy to understand and their correctness verified, and it should be possible to
clearly express the conditions in which the optimisations apply.

In the TRANS language [7], the optimisations are represented through two
components: a rewrite rule and a side condition which indicates the situations
in which the rewrite can be applied safely. The specification of dead code elimi-
nation is shown in Fig. 1. Other optimisations specified in TRANS include lazy
code motion, constant propagation, strength reduction, branch elimination, skip
elimination, loop fusion, and lazy strength reduction; further details of these can
be found in [4].

n : x := e ⇒ skip
if ¬ EX (E (¬ def(x) U use(x) ∧ ¬ node(n))) @ n

Fig. 1. Dead Code Elimination in TRANS

In order to use this language towards optimisation of Java programs, we re-
placed the original syntax for program fragments with code in Jimple, one of the
intermediate representations used in Soot [18]. As such, the core of the rewrite
rules is based on standard programming syntax (assignment statements, go-to
and if statements, etc) and will therefore not be explained here. The syntax is
expanded with a few constructs to support meta-variables, representing either
syntactic fragments of the program or nodes of the CFG.

The side condition language is an extension of first order CTL, where formulae
are built up from basic predicates that describe properties of states. There are
two types of these basic predicates used to obtain information about a node
in the control flow graph; these are the node and stmt predicates. The formula
node(x) will hold at a node n in a valuation that maps n to x. The formula
stmt(s) will hold at a node n where the valuation makes the pattern s match
the statement at node n. As well as judgements about states the language can
make “global” judgements. For example, the formula φ @ n ∧ conlit(c) states
that φ holds at n and c is a constant literal, throughout the program.

A logical judgement of the form: φ @ n states that the formula φ is satisfied at
node n of the control flow graph. We base our language for expressing conditions
on CTL [3], a path-based logic which can express many optimisations while still
being efficient to model-check. However, we modify the logic slightly to make

From Specification to Optimisation 19

it easier to express properties of programs: we include past temporal operators
(
←−
E and

←−
A) and extend the next state operators (EX and AX) so that one can

specify what kind of edge they operate over. For example, the operators EXseq

and AXbranch stand for “there exists a next state via a seq edge” and “for all
next states reached via a branch edge” respectively.

It is also possible to make use of user defined predicates via a simple macro
system. These can be used in the same way as core language predicates such as
use. They are defined by an equality between a named binding and the temporal
logic condition that the predicate should be ’expanded’ into.

Actions. A simple rewrite merely replaces the code at one node with new
code; however, most optimisations must actually change the structure of CFGs.
These structural changes are supported by four types of action: the replace
action which replaces a node with some sequence of nodes, the remove edge and
add edge actions which add and remove edges respectively and the split edge
action which inserts a node between two other nodes joined by an edge. All the
actions maintain the invariant that if the Dimple representation can generate
Jimple before the action has been performed, then it must do afterwards. This
motivates the choice of several specific actions, rather than unrestricted graph
rewriting.

Strategies. The TRANS language contains three strategies, that offer operators
for combining different transformation. The MATCH φ IN T strategy restricts
the domain of information in the transformation T by the condition φ. The
T1 THEN T2 strategy applies the sequential composition of T1 and T2. When
actions are applied normally, ambiguity with respect to what node actions and
rewrites are applied to are automatically resolved. In other words, if there are
several bindings that have the same value for a Node attribute that is being
used in a rewrite rule then only one of them is non-deterministically selected.
The APPLY ALL T strategy uses all of the valuations within transformation T ,
without this restriction.

2.2 Implementation Background

Since side conditions in TRANS specifications use temporal logic, a model check-
ing based approach is used to obtain the results of the analyses. The use of Binary
Decision Diagrams (BDDs), in both model-checking and data-flow analysis ap-
plications, has significantly reduced memory consumption [12], and improved
runtime performance.

To facilitate the use of a BDD representation of object programs, Rosser gen-
erates code in Jedd, an extension to Java that allows a high level representation
of BDDs [11]. Relations are introduced as a primitive type within Jedd, and
several operations, such as union, intersection, difference and comparison are
defined over them. BDDs can be directly coded as relations. Jedd has been
used as the basis for implementing inter-procedural data flow analysis [2]. The
operators of Jedd are summarised in Table 1.

20 R. Warburton and S. Kalvala

Table 1. Jedd operations

Operation Comment
x = 0B Assigns the empty set to relation x
x = 1B Assigns the set of all possible elements to relation x

(x =>) r projects attribute x away from relation r
(x => y) r renames attribute x, from relation r to y
(x => x y) r copies attribute x, from relation r to y

r1 & r2 Intersection of relations r1 and r2
r1 | r2 Union of relations r1 and r2
r1 − r2 Set Difference of relations r1 and r2
r1{x} >< r2{y} Joins relations r1 and r2 where x equals y, projecting y
r1{x} <> r2{y} Joins relations r1 and r2 where x equals y, projecting x and y

3 Architecture of Rosser

3.1 Architectural Overview

The Rosser compiler framework comprises three components. A meta-compiler,
RosserC, translates TRANS specifications to produce the code for the optimis-
ing phase. Every optimisation specification is compiled into the general form
of finding satisfying valuations for its side condition, by application of its side
condition to the intermediate representation. The program generated (referred
to as RosserS) is loaded into the runtime framework and applied to a program
via the Soot framework.

Soot provides the program already translated into Jimple, where expressions
are represented as trees, at a Java-like level, and control flow at a lower level
utilising basic conditionals and goto statements [17]. We introduce Dimple—a
representation equivalent to Jimple in overall structure, but using BDDs instead
of Plain Old Java Objects (POJOs) in order to implement the optimisations.
Dimple represents the relations between parents and children as Jimple expres-
sion trees. The translation between Jimple and Dimple is done through the
RosserF framework. Only parts of the program that are relevant to the optimi-
sations are translated, since only some components of the program need to be
pattern-matched. For example since we specify no inter-procedural optimisations
there is no representation of the class hierachy in our implementation.

These interactions are illustrated in Fig. 2.

3.2 Representation of Programs in Dimple

The Dimple representation introduced in this paper offers a novel approach to
the intermediate representation of programs. Whilst BDDs have been used as
the basis of representing sets of data during dataflow analysis [2], they haven’t
been used to represent entire programs before.

The type system of Dimple is described through several domains:

OP consists of all operators represented in Jimple, for example addition, and
negation.

From Specification to Optimisation 21

�
�

�
�transformations

[Trans]

RosserC:

Trans → Jedd

[Bytecode]

�
�

�
�transformations

[Jedd] Jedd→ Bytecode

[Bytecode]

RosserS:�
�

�
�transformations

[Bytecode]

�

Java
��

Bytecode

SootFront-End

�

Jimple

SootBack-End

�
optimised Bytecode

�
RosserF:

Jimple → Dimple �Dimple

RosserS:�
�

�
�Optimiser

� DimpleRosserF:

Jimple ← Dimple
� Jimple

Fig. 2. Architecture of the Rosser framework

ET is the edge type domain and contains three possible values: sequential,
branch and exception, and is used in pattern matching different edge.

Node lists every node in the control flow graph.
Call references every method invocation.
Value contains an entry for every possible value in the program, for example

the expression x + 1, contains and entry for x, 1 and x + 1.

Table 2 summarises the translation of the syntactic components of programs
in Jimple. Recall that use and def are predicates that hold true if their argument
(a variable) is read from or written into at a given node. This fragment of
the translation presents the MustDef relation, while similar treatment applies
to MayDef, MayUse and MustUse relations, which all store information about
different use/def chains in the same format. The next section describes these
relations in more detail.

3.3 Use/def Analysis

The first phase in translation is the refinement of use and def predicates. These
predicates hold true at statements where the variable that they refer to is either
read or written to. In Java, as with other programming language, it is possible
for several variables to alias the same heap object. This affects use and def
predicates because it requires a refinement of the semantics to variables that
alias heap objects that are either read or written to. Since assignment may differ

22 R. Warburton and S. Kalvala

Table 2. Representing programs in Dimple

Name Type Comment/Example
Nodes 〈Node〉 All nodes in CFG
Skips 〈Node〉 All Noop instructions
Edges 〈Node,Node,ET〉 x = 1; y = x →〈x = 1, y = x, SEQ〉
ReturnValues 〈Node,Value〉 return x; →〈return x, x〉
Assign 〈Node,Value,Value〉 y = z + 1 →〈y = z + 1,y,z + 1〉
IfStmt 〈Node,Value〉 if (x==3) →〈if (x==3), x==3〉
Expr 〈Value,Value,Value,OP〉 x + y →〈x + y, x, y, +〉
UExpr 〈Value,Value,OP〉 !x →〈!x, x, !〉
Conlit 〈Value〉 All Constants, eg 〈1〉
Varlit 〈Value〉 All Variable literals, eg 〈x〉
CallSites 〈Value,Call〉 Relation between call sites and values
MustDef 〈Node,Value〉 At x = 3; 〈x = 3,x〉

depending on what path through the program’s control flow graph was taken,
the aliasing relationship depends on this path.

As with traditional dataflow analyses [1], the approach taken in Rosser is to
divide relationships into ’must’ and ’may’ forms. For example, MustUse(x) @ n,
indicates that for all execution paths at node n, x is used in the computation that
occurs at node n. If MayUse(x) @ n, then there exists an execution path such that,
at node n, x is used in a computation. The situation is symmetric for MayDef and
MustDef. TRANS specifications, however, do not use these conditional variants
of the predicates and must be refined accordingly by RosserC.

In order to be a sound refinement of the predicates in TRANS it is neces-
sary for the may/must variants to conservatively approximate their behaviour.
That is to say, they must never enable an optimisation that would otherwise be
disabled. In order to determine whether the predicate would enable incorrect op-
timisation we use the concept of polarity. The polarity of a predicate is positive if
there is an even number of negations preceeding the predicate, and negative oth-
erwise. If a predicate has a positive polarity then nodes where it holds true are
being added to the possible points of optimisation. The converse also holds true.
Since the must variant of a predicate holds true at a subset of nodes where the
predicate holds true we refine predicates with a positive polarity to their must
variants. The may variant of a predicate holds true at a superset of nodes where
its predicate holds true, so we refine predicates with a negative polarity to the may
variant.

This approach to refining use/def predicates means that specifications writ-
ten in the TRANS language are portable over both languages that allow and
disallow aliasing. This has the added advantage of facilitating prototyping of
optimisations in simple contexts (for example against Local primitives, which
are pass by value) and then be able to apply them in more complicated situa-
tions. This underlies one of the design principles of Rosser: to move the burden
of compiler development away from the optimisation specification and into the
framework.

From Specification to Optimisation 23

Table 3. Temporal Logic refinements

Before After
AG p ¬ E (true U ¬ p)
A (p U q) ¬ (E (¬ q U (¬ p ∧ ¬ q)] ∨ EG ¬ q))
AX p ¬ EX ¬ p

3.4 Refinement and Type-Checking

The CTL formulae of a specification are initially refined to a smaller set of
connectives in order to simplify the output phases.

Rewrite rules are refined to a pattern matching component, which becomes
part of the side condition, and a TRANS action. In the case of dead code
elimination, this is the replace action, which swaps an existing node bound to
a meta-variable, inserting an IR element generated from variable bindings in
its place.

RosserC also performs type checking. The goal is to statically identify the types
of all the meta variables within the TRANS specification. This is beneficial for
two reasons. Firstly the output code is statically typed, and so type checking
TRANS formulae helps generate object code. Secondly it is helpful in order to
reduce the number of accidental or transcription errors within TRANS formulae.
If a meta-variable has to bind to a structure of one type in a certain place within
the specification and a different type in another part, then it is clearly not a well-
formed TRANS specification. Consider the hypothetical specification:

n : x := e ⇒ skip if conlit(n)

This specification fails type checking because the metavariable n has to be a
node in its use on the left hand side, and a constant literal if it is an argument
to conlit.

Fig. 3 shows the effect of refinement on the specification of dead code elimi-
nation shown in Fig. 1. Here the pattern matching has become part of the side
condition and the use/def predicates have been refined.

replace n with skip

if

stmt(x := e) @ n ∧ ¬ EX (E (¬ maydef (x) U mustuse (x) ∧ ¬ node(n))) @ n

Fig. 3. Refined specification of dead code elimination

3.5 Code Generation

The RosserC compiler outputs Jedd code, where for each optimisation a corre-
sponding class is generated. The side condition is compiled into a method called
condition, whose return type is a relation, with an attribute for each metavari-
able within the specification, its only parameter being the method to be opti-
mised. A transformation is applied through method transformation, which in

24 R. Warburton and S. Kalvala

1 <e , n , x , x1 :N6> x2 = 1B;
2 x2 = x2{x1} >< meth . Nodes{n } ;
3 <e , n , x> x3 = meth . Assign ;
4 x2 = x2{e , n , x} >< x3{e , n , x } ;
5 x2 &= (x1 => x1 , x1 => n) ((n =>) (x2)) ;
6 <e , n , x> x4 = (x1 =>) (x2) ;

Fig. 4. Compilation of stmt(x := e) @ n

1 <e , n , x , x6 :N7> x7 = 1B;
2 x7 = x7{x6 , x} >< meth . MustUse{n , x } ;
3 <e , n , x , x6 :N8> x8 = 1B;
4 x8 &= (x6 => x6 , x6 => n) ((n =>) (x8)) ;
5 x8 = 1B − x8 ;
6 x8 = x7 & x8 ;

Fig. 5. Compilation of mustuse(x) ∧ ¬ node(n)

turn calls the condition method and then iterates over all the values within
the resulting valuation set. Generating the condition method body proceeds
by recursion of the structure of the now refined TRANS side conditions.

Fig. 4 shows the compiled pattern matching for stmt(x := e) @ n from the
specification of dead code elimination. First, a temporary attribute x1 is intro-
duced into the valuation to designate the current node. This can be seen in the
type of the variable x2 on line 1. Line 2 restricts this attribute to nodes. In lines
3 and 4 the variables e, n and x are restricted to the right hand side, result vari-
able and node of assignments, respectively. Lines 5 and 6 show the temporary
node being equated to n and then projected away.

The Jedd code shown in Fig. 5 illustrates predicates being compiled. Line 2
shows the restriction of mustuse to a local finite domain. In line 4 the temporary
attribute x6, that fulfils the same purpose as x1 in the previous example is unified
with the attribute n. Lines 3 and 4 calculate the set of valuations where the
current node is n. Line 5 implements the ¬ operator, calculating valuations where
the current node isn’t n. Finally we take the intersection of the subcomponents, in
order to satisfy the ∧ in the example. Note that literals after colons, for example
N6, refer to physical domains that are used by the BDD implementation. The
first letter is the same as the corresponding logical domain, for example N refers
to Node. Since there may be multiple physical domains for each logical domain
they are numbered.

The code generation algorithm used in Rosser generates standard impera-
tive code, using Jedd as its object language. The return type of the condition
method is a relation, containing one attribute that corresponds to a TRANS
metavariable in the original specification. At every stage, intermediate variables
that are generated are typed as the same type as the return type. When gener-
ating conditions for node conditions, a temporal part of the condition, there is
additionally an attribute that represents the current node of the specification.

From Specification to Optimisation 25

cs true = [res = 1B]

cs False = [res = 0B]

cs conlit(v) = [t1 = 1B, res = t1{v} >< Conlit{c}]
cs varlit(v) = [t1 = 1B, res = t1{v} >< Varlit{v}]
cs ¬ φ = cs φ @ [res = 1B - pred]

cs φ @ n = cs φ @ [res = (at =>) pred{n,at}
<> pred{at,n}]

cs φ ∧ ψ = cs φ @ cs ψ @ [res = pred1 & pred2]

cs φ ∨ ψ = cs φ @ cs ψ @ [res = pred1 | pred2]

ct true = [res = 1B]

ct False = [res = 0B]

ct node(n) = [t1=1B, res=t1{n,at} >< t1{at,n}]
ct stmt(p) = cp p at

ct ¬ φ = ct φ @ [res = 1B - pred]

ct EX[e] φ = ct φ @ [t1 = Edges{et}
>< new{et => e}{et}, res =

(to=>at) pred{at} <> t1{from}]

ct EX φ = ct φ @ [t1 = (et=>)Edges,

res = (to=>at) pred{at} <> t1{from}]

ct E[φ U ψ] = ct φ @ ct ψ @ until pred1 pred2

ct φ ∧ ψ = ct φ @ ct ψ @ [res = pred1 & pred2]

ct φ ∨ ψ = ct φ @ ct ψ @ [res = pred1 | pred2]

where the until function is defined as:

until pred1 pred2 = [t1 = (et=>) Edges,

acc = pred2,

do { prev = acc;

t2 = (from=>) pred1{at} <> t1{to};

acc |= pred2 & t2

} while(prev != acc),

res = acc]

Fig. 6. Side Condition compilation

Fig. 6 describes how side conditions are compiled. The function cs compiles
side conditions, whilst ct compiles the sub-expressions within side conditions that
have some temporal aspect. There are a few common attributes about the way
different components within the side condition introduce new temporary vari-
ables. Basic predicates, such as node(n), create new temporaries. TRANS unary
operators, such as ¬, depend on the result of their inner expression, stored in a
single temporary, referred to in the definition as pred, while binary operators,
such as ∧ depend on two temporaries, pred1 and pred2. All expressions store
the result of their component of the model checking in a variable, referred to as
res in the definition. Variables called t1, t2 etc. refer to temporary variables
within the object code of inner components. In the generated code, all these
variables have disjoint names to each other, however, this is abstracted from the
following section for reasons of readability. The function cp emits code to pattern
match an expression with a sequence of nodes. Its first parameter is the pattern

26 R. Warburton and S. Kalvala

1 while (i t . hasNext ()) {
2 Object [] v a l = (Object []) i t . next () ;
3 try {
4 Unit x = f . Sk ipPattern () ;
5 un i t s . swapWith (((Unit) v a l [1]) , x) ;
6 ObjNumberer . patch (((Unit) v a l [1]) , x) ;
7 } catch (Throwable t) {
8 System . e r r . p r i n t l n (t) ;
9 }

10 }
Fig. 7. Jedd code for the replace action

to match, and the second is the node to match it at. This is also ommitted from
the presentation for reasons of brevity. The definition provides a mapping from
TRANS IR to a list of Jedd instructions.

3.6 Action Code Generation

Fig. 7 gives the example action for code elimination, x := e => skip. In the
code it is the name of the iterator for the results set of the analysis. Line 1
shows the loop condition over this set. Line 2 shows that each element of this set
is represented by an array of elements. Line 4 constructs the replacement skip
instruction. Line 5 replaces the old instruction with the skip inside of Jimple.
Line 6 replaces it within Dimple by renumbering the elements. Note that f is
a factory class for new Pattern instances.

The replacement becomes inherently simple due to the way pattern match-
ing is refined into the side condition. Additionally to rewriting, Rosser supports
the insertion and deletion of new nodes and edges. These are all implemented
similarly, iterating over the elements of the finite set of valuations and replacing
each element. By renumbering elements of the underlying domain that are be-
ing rewritten in simple cases such as this, rewrite rules don’t need to alter the
structure of the CFG at all, and thus the CFG doesn’t need to be recalculated.

3.7 Interactive and Batch Mode

The RosserF runtime framework can be operated in one of two main modes: in-
teractive or batch. The interactive mode is designed to allow the user to develop
new optimisation specifications, while batch mode is a traditional compiler pro-
cess that applies a list of optimisations sequentially. The interactive mode has
been developed on the principle that the development of new ideas is informed
by experiment. Building on this principle, interactive mode allows one to develop
a specific method to apply to the program being optimised.

The interactive mode provides a conditional sub-view and a transformational
sub-view. The conditional view provides the user with a view of the control
flow graph of the selected method. The user can then enter a side condition,
with which to model check the program. This then generates a set of valuations

From Specification to Optimisation 27

for the given program, and a visual representation of the valuations on the
control flow graph. The transformational view allows the user to apply complete
TRANS transformations to the selected method and visually see the results, in
the form of before and after control flow graphs.

The ability to allow the user to test out the effectiveness of different compiler
optimisations improves the productivity of developing an effective optimisation
strategy. The approach of specifying optimisations by way of a domain specific
language enables the user of the system to more easily apply an optimisation,
than one could with a hand-written optimisation.

4 Performance Analysis

Since this approach to generating compiler optimisations involves generating
compiler code indirectly from a specification, it raises questions about its prac-
tical applicability. We compare Rosser with hand-written optimisations in the
mature Soot framework [17], which is arguably a very high standard against
which the performance of generated optimisations can be measured.

We use the Scimark scientific computing benchmark [14] to compare the per-
formance of optimisation phases. The performances are compared in terms of
effectiveness (the extent to which the performance of the program being opti-
mised is improved) and efficiency (how long it takes to apply a transformation
to a program). The benchmarking was all performed on a 2Ghz Core 2 Duo with
2GB of RAM.

The performance of three optimisations is compared: lazy code motion, com-
mon subexpression elimination and dead code elimination. In both frameworks
these optimisations are applied in this order. We chose only to compare these
three optimisations since they are all commonly known compiler optimisations,
and are used extensively in most compilers and therefore have a large effect on
performance of compilers. We have experimented with more complex optimisa-
tions as well.

4.1 Effectiveness

The two sides of Fig. 8 show the running times of the Scimark 2.0 benchmark
on two different virtual machines. The three columns for each program show
runtimes without any static optimisation, optimised by Soot, and optimised by
Rosser, respectively. Since the SUN JVM already incorporates many of the op-
timisations that are being applied, the speedup generated by Rosser is 13.5%,
comparable to Soot which improves performance by 14.5%. Since the imple-
mentation demonstrates that this approach to optimisation works, rather than
comparing the relative merits of ahead of time and runtime optimisation, this
isn’t a convincing argument against our approach to optimiser generation, as the
performance of Rosser is comparable to the hand-written Soot optimisations for
this benchmark. In both cases the program with best improvement is the SOR
benchmark, and in both cases it is the lazy code motion optimisation that makes
the impact, since the other two optimisations are performed by the SUN JVM

28 R. Warburton and S. Kalvala

Fig. 8. Scimark 2.0 on SUN “Hotspot” JVM 1.6 and SableVM 1.13

anyway. The numbers on SableVM are more flattering to both Soot and Rosser,
due to the more simplistic optimisations performed by the SableVM. Here Rosser
improves performance by an average of 25%, while Soot achieves 42%. Again our
generated optimisations perform slightly worse than hand-written optimisations,
but offer a similar overall level of effectiveness. The Soot implementation of lazy
code motion performs critical edge splitting before applying its optimisation,
while Rosser doesn’t. This might explain the difference in effectiveness.

4.2 Efficiency

The Soot system applied its optimisations to Scimark in 15 seconds, while
Rosser took approximately 270 seconds. This does not seem very encouraging,
but more detailed analysis revealed that two methods in Scimark were respon-
sible for large amount of time used by Rosser. For the other 131 methods, the
Rosser system only took 30 seconds, and the corresponding Soot time was 14
seconds. The two problematic methods weren’t the largest within Scimark, and
the nature of their pathology is currently unknown, and is being investigated.
In most experiments the Rosser optimiser was about 2× slower than the hand-
written Soot optimiser. Overall, a slowdown of a factor of two seems a reasonable
price to pay considering the other benefits of the approach.

5 Related Work

Dataflow analysis has long been employed within the compiler optimisation com-
munity to iteratively compute the nodes within a program at which optimisa-
tions can be soundly applied [1,13]. Model checking is a technique in which
a decision is made as to whether a given model satisfies some specification.
David Schmidt and Bernhard Steffen recognised that there is a strong link be-
tween these two research areas. Equations for dataflow analyses have been shown
to be expressible in Modal-Mu Calculus [15], and dataflow analysis algorithms
have been generated from modal logics [16]. This approach is implemented in
DFA & OPT-Metaframe [6], a toolkit designed to aid compiler construction by

From Specification to Optimisation 29

generating analyses and transformations from specifications. Transformations
within this system are implemented imperatively, rather than using declarative
style rewrite rules, however, the temporal logic specification is converted into a
model checker and then optimised. In our case, we found CTL to be sufficient
to model the side conditions of transformations.

Rewrite rules with temporal conditions have also been used in the Cobalt
system [9] which focuses on automated provability and also provides executable
specifications, achieved through temporal conditions common to many dataflow
analysis approaches. This allows the basic inductive form of the correctness theo-
rem to be proved once and for all, given sufficient optimisation specific conditions
are met. The optimisation specific proof obligations can be discharged automat-
ically, using an automatic theorem prover. The specific nature of Cobalt’s tem-
poral conditions, while facilitating automatic discharging of proof obligations, is
limited compared to the flexibility provided in TRANS from supporting CTL
side conditions, even if this may require more expensive model checking.

This is the main motivation for developing Rhodium [10], another domain
specific language for developing compiler optimisations. Rhodium consists of
local rules that manipulate dataflow facts. This is a significant departure in
approach from TRANS , since it uses more traditional, data flow analysis based
specifications rather than temporal side conditions.

The Temporal Transformation Logic (TTL) [5] also uses CTL, but emphasizes
verification of the soundness of the transformations themselves. Accordingly, in-
stead of approaching optimisation as rewriting, TTL has a set of transformational
primitives, each representing a common element used within compiler optimisa-
tions, for example replacing an expression with a variable. Each of the transforma-
tional primitives has an associated soundness condition that, if satisfied, implies
the soundness of the transformation. TTL is presented as a specification language
for other compiler implementations; on the other hand, TRANS can be refined
and executed as the optimisation stage of a compiler.

6 Conclusions

While programming language theorists and compiler design scholars have often
proposed methods for improving trust in the optimisations applied during com-
pilation, there is typically a gap in putting such methodologies in practice: the
practitioner may devise more adventurous optimisations, which rely on a more
subtle understanding of control flow for the justification of its correctness. The
semantics of TRANS have been formalized within the Isabelle/HOL theorem
prover, and a proof system is currently being developed to allow most of the
proof obligations of verifying the soundness of new TRANS specifications to be
discharged automatically.

The Rosser system described in this paper applies compiler optimisations spec-
ified formally to Java programs within standard program development environ-
ments: the optimisations are mechanically translated into running code, and
applied to given object programs within the Soot environment using a simple
model checker for matching side conditions of optimisations to object code.

30 R. Warburton and S. Kalvala

There is of course a performance price to be paid by not programing the
optimiser directly. We believe this cost is minimised by actually compiling the
optimisations into Jedd rather than interpreting them, and the benefits of a
declarative approach outweigh the performance cost, as sophisticated optimisa-
tions are often applied only when the code is ready for release—which is usually
not a good time to find that the optimiser has introduced new bugs. The use of
a formal notation has other benefits: it aids the interactive development of new
optimisations and the explanation of the optimisations to third parties.

TRANS as described doesn’t allow one to specify inter-procedural optimisa-
tions. Currently we are experimenting with using the inter-procedural control
flow graph, with a slightly modified TRANS that matches against blocks in ad-
dition to nodes. We are also expanding the repertoire of intra-procedural opti-
misations, and also deal with the vexing issue of exception handling. The formal
treatment of Java exceptions is an ongoing research exercise.

We have extended the work of David Lacey in several ways:

– an implementation that uses a widely used, real world, programming lan-
guage by way of Java, rather than a small research prototype language.

– an algorithm that compiles, rather than interprets, TRANS specifications.
– a novel intermediate representation for programs, using BDDs.
– use of a domain specific language for output, showing how to minimise im-

plementation effort.

A criticism that can be made to our approach is that it relies on the correctness
of the translators for the domain specific languages. For example if either of
the translations from Jedd to Java source or Java source to Java bytecode are
incorrect, then the entire program translation/optimisation may introduce bugs,
even if our specific tool doesn’t introduce bugs.

Progress made by the language semantics community must be used in solving
a very practical issue, namely the development of optimisation tools which do
not introduce new errors into object code. The methodology presented here
makes use of model-checking to enable the deployment of complex but potentially
effective optimisations in a safe manner.

Acknowledgements

Richard Warburton is funded by the EPSRC under grant EP/DO32466/1 “Veri-
fication of the optimising phase of a compiler”. We are grateful to the anonymous
reviewers for their detailed and helpful suggestions.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Pearson Education, London (2007)

2. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis using
BDDs. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pp. 103–114. ACM Press, New York (2003)

From Specification to Optimisation 31

3. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

4. Kalvala, S., Warburton, R., Lacey, D.: Program transformations using temporal
logic side conditions. Technical Report 439, Department of Computer Science, Uni-
versity of Warwick (2008)

5. Kanade, A., Sanyal, A., Khedker, U.: A PVS based framework for validating com-
piler optimizations. In: SEFM 2006: Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods, Washington, DC, USA,
pp. 108–117. IEEE Computer Society Press, Los Alamitos (2006)

6. Klein, M., Knoop, D., Koschutzki, D., Steffen, B.: DFA & OPT-METAFrame: A
toolkit for program analysis and optimization. In: Margaria, T., Steffen, B. (eds.)
TACAS 1996. LNCS, vol. 1055, pp. 422–426. Springer, Heidelberg (1996)

7. Lacey, D.: Program Transformation using Temporal Logic Specifications. PhD the-
sis, Oxford University Computing Laboratory (2003)

8. Lacey, D., Jones, N.D., Wyk, E.V., Frederiksen, C.C.: Proving correctness of com-
piler optimizations by temporal logic. ACM SIGPLAN Notices 37(1), 283–294
(2002)

9. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of
compiler optimizations. In: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation. ACM Press, New York (2003)

10. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for
dataflow analyses and transformations via local rules. In: POPL 2005: Proceedings
of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 364–377. ACM Press, New York (2005)

11. Lhoták, O., Hendren, L.: Jedd: A BDD-based relational extension of Java. In:
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation. ACM Press, New York (2004)

12. Lhoták, O., Hendren, L.: Context-sensitive points-to analysis: is it worth it? In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47–64. Springer,
Heidelberg (2006)

13. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Francisco (1997)

14. Pozo, R., Miller, B.: Java Scimark 2.0. National Institute of Standard and Tech-
nology, http://math.nist.gov/scimark2/

15. Schmidt, D.A., Steffen, B.: Data-flow analysis as model checking of abstract in-
terpretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503. Springer, Heidelberg
(1998)

16. Steffen, B.: Generating data flow analysis algorithms from modal specifications.
Science of Computer Programming 21, 115–139 (1993)

17. Vallée-Rai, R., Gagnon, E., Hendren, L.J., Lam, P., Pominville, P., Sundaresan,
V.: Optimizing Java bytecode using the Soot framework: Is it feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)

18. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot
- a Java optimization framework. In: Proceedings of CASCON 1999, pp. 125–135
(1999)

http://math.nist.gov/scimark2/

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 32–47, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Framework for Exploring Optimization Properties

Min Zhao1, Bruce R. Childers2, and Mary Lou Soffa3

1 Hewlett Packard
min.zhao@hp.com

2 University of Pittsburgh
childers@cs.pitt.edu

3 University of Virginia
soffa@cs.virginia.edu

Abstract. Important challenges for compiler optimization include determining
what optimizations to apply, where to apply them and what is a good sequence
in which to apply them. To address these challenges, an understanding of opti-
mization properties is needed. We present a model-based framework, FOP, to
determine how optimizations enable and disable one another. We combine the
interaction and profitability properties to determine a "best" sequence for apply-
ing optimizations. FOP has three components: (1) a code model for the pro-
gram, (2) optimization models that capture when optimizations are applicable
and their actions, and (3) a resource model that expresses the hardware re-
sources affected by optimizations. FOP determines interactions by comparing
the create- and destroy-conditions of each optimization with the post conditions
of other optimizations. We develop a technique with FOP to construct code-
specific optimization sequences. Experimentally, we demonstrate that our ap-
proach achieves similarly good code quality as empirical techniques with less
compile-time.

1 Introduction

The field of code optimization has been extremely successful over the past 40 years.
Various reports from research and commercial projects indicate that the performance
of software can be improved by 20% to 40% with aggressive optimization [1][2].
However, it has long been known that there are issues with the application of optimi-
zations. First, optimizations may degrade performance in certain circumstances. For
example, Briggs and Cooper reported improvements ranging from +49% to –12% for
their algebraic re-association optimization [3]. Second, optimizations enable and dis-
able other optimizations so the order of applying optimizations can have an impact on
performance [1][18][21][10], which is known as the phase ordering problem. Finally,
optimization configurations can impact the effectiveness of optimizations (e.g., how
many times to unroll a loop or the tile size) [15][4][8]. These problems are com-
pounded when different hardware platforms are considered. Due to these problems,
optimizing compilers are not achieving their full potential. To systematically tackle
these problems, we need to identify and study the properties of optimizations, espe-
cially those that target the application of optimizations. For example, to selectively

 A Framework for Exploring Optimization Properties 33

apply only beneficial optimizations, we need to determine the impact of applying an
optimization at a particular code point given the resources of the targeted platform
(i.e., the profitability property). To efficiently determine a code-specific optimization
sequence, we also need to detect the disabling and enabling interferences among op-
timizations (i.e., the interaction property) at code points.

There are two general approaches to exploring optimization properties. The first
one uses formal techniques. The formal approach has been used to prove the sound-
ness and correctness of optimizations [14][13][16]. Work also has been done to auto-
matically generate the implementation of optimizations [20][21][9][12] from a formal
specification. Another approach uses experimental techniques. That is, after perform-
ing optimizations, the properties are experimentally determined (e.g., the code is exe-
cuted to evaluate performance for determining profitability). The empirical approach
has been used to determine the correctness of an optimizer [6]. It has also been used
to determine profitability and interactions for finding good optimization sequences
and configurations [1][8][18][11]. A disadvantage of the experimental approach is its
cost and scalability, as the execution of the program is required. It may take hours, or
even days, to find a good optimization sequence for a complex program [10]. Ideally,
we need a systematic way to address the application of optimizations, which is practi-
cal, effective and scalable [22].

Our approach is to develop a model-based framework that applies optimizations
based on their properties which are automatically derived from models of the code, the
optimizations themselves, and machine resources. These properties guide the compiler
in the application of the optimizations. In prior work, we showed how to determine the
profitability property from analytic models for code, optimizations and machine re-
sources [23]. Using the models, the profitability of an optimization was determined to
avoid the circumstances where an optimization can degrade performance.

This paper presents a Framework for determining Optimization Properties, FOP
and shows it can be used to determine the interaction property, caused by optimiza-
tions enabling and disabling other optimizations. We combine the interaction property
with the previously studied profitability property to efficiently find a good code-
specific optimization sequence. FOP includes code and optimization models. The
code model, automatically constructed from the source, captures characteristics about
the code related to the pre-conditions of an optimization. The optimization model,
constructed by the optimizer engineer, captures the pre-conditions and actions (i.e.,
code changes) of optimizations. FOP also has a resource model but it is not needed to
determine the interaction property.

We present an algorithm that derives the enabling and disabling interaction prop-
erty for a set of optimizations. The key idea is to determine the code changes needed
to meet the pre-conditions of an optimization, using the post-conditions of other
optimizations. We also give a novel technique that automatically constructs code-
specific optimization sequences using knowledge about the interaction and profitabil-
ity properties at each code point. The sequences are used to guide the compiler in the
actual application of optimizations.

We implemented FOP and used it to find code-specific sequences for a set of op-
timizations, including copy propagation(CPP), constant folding(CTF), dead code
elimination(DCE), partial redundancy elimination(PRE), loop invariant code
motion(LICM), global value numbering(GVN), branch elimination(BRE), branch

34 M. Zhao, B.R. Childers, and M.L. Soffa

chaining(BRC), and register allocation(RA). We compared our technique with a
fixed-order approach and an empirical approach. The results show that our approach
achieves better program performance than the fixed-order technique and determines
similarly good sequences as the empirical approach with up to a 43 times reduction in
compile-time. Our technique scales to large programs because it does not need to exe-
cute the program.

The contributions of this paper include: a formalization of optimization applica-
tion and the interaction property; a framework to determine enabling and disabling
interactions among optimizations; a technique to determine optimization order from
the interaction and profitability properties; and, a study that demonstrates the useful-
ness of FOP in addressing the phase ordering problem.

2 Model-Driven Optimization

In this section, we formally define the interaction property. We start with basic defini-
tions needed to express disabling and enabling conditions for an optimization. To apply
an optimization, we must ensure that the semantics of a program are not changed by
the optimization. Thus, a set of pre-conditions (both text and dependencies) is needed
for an optimization to be applicable. When an optimization is applicable in some con-
text, it can cause code conditions to change so that another optimization is enabled or
disabled. We define how optimizations enable and disable one another. We begin with
the definition of a Boolean operator ~ that returns true when the conditions D are met
in a code segment C.

Def. 1: D ~ C if the code conditions D are true in code C; /~ is the negation of ~.
We express an optimization O as [OPre, OAct], where OPre represents the pre-conditions
needed before the actions (i.e., code changes) OAct are applied for semantic correct-
ness. We express the application of an optimization as:

(C) [OPre, OAct]s <R> ⇒ (C´) [Oproperties]s

where C is a code segment with a statement point, S, at which the optimization is
applied. If OPre ~ C, the optimization is applicable. OAct is applied in this case to C
and C’ is produced (⇒). R is the machine resources upon which the code segment is
executed. Oproperties represents the different optimization properties that can be derived,
such as interaction and profitability.

As can be seen, optimization properties depend on code context C, the optimiza-
tion O and the machine resources R. We model each one of these components and use
these models to analyze optimization properties; that is, CM OM RM ⇒ Oproperties
where CM is the code model, OM is an optimization model and RM is the resource
model (the subscript “M” refers to a model, rather than a specific optimization, code
sequence or resource).

Instead of applying the optimizations, we use models to express the results of the
optimizations and analyze the results to determine the properties. In addition, unlike
actually applying optimizations, we do not apply a data flow algorithm after each op-
timization to detect data flow changes. We do this by analyzing the code model.

An example of our technique is shown in Figures 1 and 2. We give a brief discus-
sion to motivate the definition of the interaction property. The example describes the

 A Framework for Exploring Optimization Properties 35

determination of enabling interactions for copy propagation (CPP) and dead code
elimination (DCE). A small source program is provided in Figure 1(a). From the
source, FOP automatically generates the dependences needed for the code model as
shown in Figure 1(b). A dependence is expressed as <Si, Sj, type, dir, pos>. For
example, there is a flow dependence between S1 and S2 which has equal direction for
the first operand. Thus, the dependence is <S1, S2, flow, =, 1>. Figure 1 shows the
optimization specification for DCE and CPP in (c) and (d).

We next define the enabling and disabling conditions for optimizations. Then, we
present an efficient technique to compute the interaction property.

(a) Code

(b) Code model

PRECONDITION
 Code_Pattern

 Depend

ACTION

(c) DCE Optimization model

(e) Possibleo ptimizations

PRECONDITION
 Code_Pattern

 Depend

ACTION

(d) CPP Optimization model

Fig. 1. An Example of Determining Interaction

Def. 2: Given a code segment, C, an optimization Oi enables an optimization Ok if the
application of Oi creates the pre-conditions of Ok, expressed as:

Oi enables Ok if (C) [O Pre
i , O Act

i]S⇒ (C’) ∧][O Pre
k

/~ C ∧]O[Pre
k ~ C’

Def. 3: An optimization Oi disables Ok if the application of Oi destroys the pre-
conditions of Ok:

Oi disables Ok if (C) [O Pre
i , O Act

i]S ⇒ (C’) ∧][O Pre
k

~ C ∧]O[Pre
k /~ C’

Intuitively, to determine the enabling and disabling interaction property between
Oi and Ok, we need to analyze the code changes caused by applying Oi and the code
changes that can create or destroy the pre-condition of Ok.

36 M. Zhao, B.R. Childers, and M.L. Soffa

Def. 4: The post-condition of O, [OPost-C]S, is the set of the code changes, ∆C , after
applying O at statement S in code segment C. We use ● to indicate the inclusion of
the changes that are made to C by the optimization; that is, C' = C ● ∆C .

[OPost-C]S = { ∆C | (C)[OAct]S ⇒ C ● ∆C }
We also define a set of code changes that are needed to create or destroy an oppor-

tunity for an optimization, O.

Def. 5: The create-condition of O, {[OCreate-C] S}, is the set of code changes, i
C∆ that

make O applicable at statement S in code segment C.

{[OCreate-C]S} = {{ i
C∆ } | [OPre]S /~ C ∧ [OPre]S ~ C ● iC∆ }

Def. 6: The destroy-condition of O, {[ODestroy-C] S}, is the set of code

changes, i
C∆ that make O not applicable at statement S in code segment C.

{[ODestory-C]S} = {{ i
C∆ } | [OPre]S ~ C ∧ [OPre]S /~ C ● i

C∆ }

To detect enabling and disabling interactions, we compute the code changes that
enable an optimization Ok by comparing the post-conditions of other optimizations,
say Oi, against the create and destroy-conditions for Ok.

Theorem 1: An optimization Oi enables Ok if there exists a i
C∆ in

}]{[S
CCreate

kO
− such that i

C∆ ⊆ [O
C-Post

i]S.

Proof: Straightforward, based on the Definitions 2 and 5.

Theorem 2: An optimization Oi disables Ok if exists a i
C∆ in }]{[S

CDestroy

kO
− such

that i
C∆ ⊆ [O

C-Post
i]s.

Proof: Based on Definitions 3 and 6.

We develop a new algorithm to determine the enabling and disabling interactions of
optimizations at the per-statement level. For a statement in the program, the interac-
tion algorithm determines how a set of optimizations interacts with one another. We
now give a high-level overview of the interaction algorithm, which is discussed in
detail in Section 3.3. The algorithm has three steps.

Step 1: For each O ∈ O and each S∈C, compute the code changes needed to cre-
ate or destroy an optimization opportunity.

Step 2: For each O ∈ O and each S∈C, compute the post conditions after apply-
ing O at point S in C.

Step 3: For each O ∈ O and each S∈C, compare create- and destroy- con-
ditions with post conditions of all optimizations to determine enabling and disabling
properties.

Returning to Figures 1 and 2, when the interaction algorithm starts, it generates
the specific post-, create-, and destroy- conditions for every possible optimization

 A Framework for Exploring Optimization Properties 37

opportunity in the code. Figure 1e shows the possible optimizations. We show the
details for two optimizations, {DCE}S3 and {CPP}S2, in Figures 2(a) and (b).

{DCE}S3 is a dead code elimination that operates on S3 and is applicable. Thus,
there is only one create- condition for {DCE}S3 which is simply “true”. There are
three destroy-conditions for {DCE}S3. The first one is deleting S3. The second one is
modifying S3’s operation. The third one is inserting a flow dependence that has S3 as
the source. The post-conditions for {DCE}S3 show how it changes the code model,
which includes deleting S3, deleting the anti-dependence between S2 and S3 and delet-
ing the output dependence between S1 and S3. Similarly, the create-, destroy- and post-
conditions are generated for {CPP}S2 from the CPP optimization model.

In the last step, the interaction algorithm compares the create- and destroy-
conditions with the post-condition of other optimizations and determines the interac-
tions. For example, there is only one condition needed for {CPP}S2 to be applicable;
i.e., <delete_dep, anti,S2,S3,=>. When the interaction algorithm checks {DCE}S3’s
post-conditions, it finds that {DCE}S3 changes the dependency by deleting the anti-
dependence between S2 and S3. This condition matches with the enabling expression
of {CPP}S2. Thus, {DCE}S3

 enables {CPP}S2.

<{DCE}S3, DCE, applicable>
<Create-conditions,
<Destroy-conditions, ∨

∨
<Postcondition, ∧
∧

(a) Detailed conditions for {DCE}s3

<{CPP}S2, CPP, not applicable>
<Create-conditions,
<Destroy-conditions, ∨
∨ ∨
∨ ∨
∨
∨

<Postcondition, ∧
∧ ∧
∧

(b) Detailed conditions for {CPP}S2

Fig. 2. Determining Interaction

3 FOP Components

To determine the enabling and disabling interactions, FOP uses models for both code
and optimizations. The code model expresses the code context that is needed in
determining the create-conditions, destroy-conditions and post-condition of an opti-
mization. We use the control flow graph (CFG) as the basic code model and identify a

38 M. Zhao, B.R. Childers, and M.L. Soffa

distinguished code point, S, (i.e., statement) where an optimization may be applied.
The general form of the statement is three-address code. We use dependencies to rep-
resent data flow information. A dependence is represented with the tuple

>< posdirtypeSS ds ,,,, . There are four types of dependencies: flow, anti-, output, and
control dependencies [5]. The dir element records the direction of the dependence,
which can be forward, backward or equivalent, represented by <, >, or =, respectively.
The direction is needed in loop optimizations. The pos element records the position of
the operand dependence between Ss and Sd. An optimization model expresses the pre-
conditions OPre and the actions OAct of an optimization. We developed an optimization
specification language, SpeLO, based on Gospel that specifies a class of scalar and
loop optimizations [21]. SpeLO extends Gospel to a larger class of optimizations,
including path-based ones (e.g., PRE). A compiler engineer uses SpeLO to describe
the optimization model for FOP.

3.1 Optimization Models

3.1.1 SpeLO
The structure of a SpeLO specification is shown in Fig. 3. The PRECONDITION
section specifies the conditions, OPre, under which the optimization is safe to apply.
There are two parts in the pre-condition section: code patterns, OPattern and dependen-
cies, ODepend.

OptName
PRECONDITION

Code_Pattern

Depend

ACTION

Fig. 3. The Format of a SpeLO Specification

Code Pattern. The code pattern gives the generic code structure that must be satisfied
for the optimization to be applicable. The code pattern identifies program elements
such as a statement or loop, which represent the distinguished code point where the
optimization can be applied. If an element is a statement, then the code pattern ex-
presses what statement operator and operands are needed for the optimization to be
applicable. A quantifier includes ANY referring to any matching element, ALL refer-
ring to all matching elements, and NO indicating that there are no matching elements.
mem_list specifies a set to which an element belongs, such as a path or a loop. Format
expressions are used to give the specific format of the code element, ele-
ment_format_list. Multiple expressions can be combined with “AND” and “OR”. To
standardize the format (without losing generality), SpeLO uses disjunctive normal
form (DNF) to express the combination of multiple expressions.

Depend. The second part of the PRECONDITION section gives the generic control
and data dependence relationships that must be satisfied for the optimization to be
applicable. The condition_list consists of the relations combined by AND and OR

 A Framework for Exploring Optimization Properties 39

operators in DNF. A relation can be a dependence relation in the form of
type_of_dependence (Ss, Sd, dir). The dependence’s type and direction are the same
as in the code model. A position tag, pos, can also be given in a dependence relation
to indicate the position of the dependence should be checked.

The ACTION section describes the modifications to the code or code properties
(e.g., value number of a statement) that would result from applying the optimization.
We decompose these effects into four primitive operations on the code: move, add,
delete and modify. The semantics of the primitive operations are typical edit opera-
tions; they can be used to express the actions of optimizations [21].

3.1.2 Partial Redundancy Elimination (PRE) Optimization Model
Figure 4 gives the optimization model for PRE, a path-specific optimization. Line 1
shows that when a statement Si is a binary expression, there is a possible PRE oppor-
tunity. All the same expressions Sj, executed on a path to Si without a redefinition
between them are found (lines 2-3). The definitions Sp of this statement are selected,
where there is a path that does not include the collected same expressions (line 4).
The immediate predecessors of the statement on the path that does not include the
same expression are saved. These are insertion points where the computation should
be added. At the same time, it is required that at these insertion points, the expression
is anticipated, as shown on line 5. When applying PRE, the computation is added at
the insertion points and before the same expressions Sj. The same expressions Sj and
statement Si are replaced with the assignment on lines 6-9.

PRECONDITION
 Code_Pattern

 Depend

¬
¬

¬
ACTION

Fig. 4. PRE Optimization Model

3.2 Interaction Algorithm

Given an optimization and a program point, the interaction algorithm determines the
enabling and disabling interactions by comparing its post-condition with create- and
destroy-conditions of other optimizations. The algorithm first considers every state-
ment in the code segment and every optimization in a set of optimizations to deter-
mine the create-conditions and destroy-conditions for each optimization opportunity.
In the second step, the algorithm generates the post-conditions for each optimization

40 M. Zhao, B.R. Childers, and M.L. Soffa

opportunity. In the last step, each optimization’s create and destroy-conditions are
compared with post-conditions of other optimizations to compute the enabling and
disabling interaction.

3.2.1 Step 1: Generating Create- and Destroy-Conditions
For each optimization, O, and a code point, S, the interaction algorithm compares OPre
with the create- and destroy-conditions for other optimizations. That is, for each O ∈
O and each S∈ C, we compute the create- and destroy-conditions using the pre-
conditions and C: (C)[OPre]S ⇒ {[OCreate-C]S} and (C)[OPre]S ⇒ {[ODestroy-C]S}.

To find these code changes, the PRECONDITION of each optimization model is
compared with the code model. The Code Pattern and Depend parts of the
PRECONDITION section are consider separately; that is [OPre] = [OPattern ∧ ODepend].
For example, consider the form, A AND B OR D, where A, B and D are basic ex-
pressions. The code pattern expression for CPP is

Si.opcode = copy AND type (Si.opnd1) = var

Thus, A is “Si.opcode = copy” and B is “type(Si.opnd1)=var”. D is not given. For
Depend, the second dependence expression of CPP is “flow(Sk, Sj, =) AND (Sk !=
Si)”. In this case, A is “flow(Sk, Sj, =)” and B is “Sk != Si”.

Code Pattern. When the code model (i.e., the state at code point S) is compared to
the code pattern, two cases are possible. When the code matches Code Pattern, the
create-conditions are true. Thus, step 1 of the interaction algorithm needs only to
determine the destroy-conditions, {[ODestroy-C]S}. When the code does not match the
pre-conditions, the destroy-conditions are true and the algorithm determines only cre-
ate-conditions, {[OCreate-C]S}.

Case 1: [OPattern] ~ C: The first case happens when the current statement S in C
matches the code pattern. The destroy-conditions are generated. Suppose, the code
pattern expression is A AND B OR D, the destroy-conditions are created as:

[ODestroy-Pattern-C]S = (delete S) ∨ (¬A ∧¬D)∨ (¬B ∧ ¬ D)

For example, the destroy-conditions for CPPi are:

(delete SStmtid) ∨ (modify_opnd, SStmtid.opcode ≠ copy) ∨
(modify_opcode, type(SStmtid.opnd1)≠ var)

Case 2: [OPattern]S /~ C: Another case occurs when the current statement S does
not match the code pattern. The interaction algorithm generates the create-conditions,
considering only the legal code changes that can be made by other optimizations. For
example, constant folding requires that both operands are constant. Even if a state-
ment has a variable operand, it is possible to perform constant folding when the
statement’s variable operand can be changed to a constant by other optimizations
(e.g., constant propagation).

[OCreate-Pattern-C]S = (if (A∧¬B) insert B) ∨ if (¬A∧B) insert A) ∨ (if (¬D) insert
D)

When it is impossible for any code change made by another optimization to match
Code Pattern, an optimization opportunity is not created.

 A Framework for Exploring Optimization Properties 41

Depend. After determining create- and destroy-conditions for the code pattern, the
create- and destroy-conditions are generated for the Depend specification. For each
quantifier ANY, ALL and NO, there are two cases, corresponding to a match and no
match between ODepend and C. Again, assume the dependence rules are in the form of
A AND B OR D.

Case 1: For the ALL quantifier, if there is a match [ODepend]S ~ C, then the create-
condition is true and the destroy-conditions are generated as below. “Alldep” repre-
sents the All quantifier.

{[ODestroy-alldep-C]S } = (delete S1) ∧...∧ (delete Sn)∨(insert A^B)* ∨ (insert D)*

{[ODestroy-alldep-C]S} shows that if all of the matching statements are deleted, then the
optimization opportunity is destroyed. It also includes insertion of a dependence that
matches the dependence rule, (insert A ∧ B)* or (insert D).

Case 2: For the ALL quantifier, when the code model does not match the depend-
ence rule [ODepend]S /~ C, the create-conditions are generated as:

{[OCreate-alldep-C]S } = (insert A^B)* ∨ (insert D)*

Similarly, the interaction algorithm generates create and destroy-conditions for the
ANY and NO quantifiers.

3.2.2 Step 2: Generating Post-conditions
The post-conditions of O are the code changes after applying the actions of O. In its
second step, the interaction algorithm generates the post-conditions for each optimiza-
tion opportunity according to the actions of the optimization.

Step 2: For each O in O and S, (C)[OAct]S ⇒ (C) ● [OPost]S
The primitive operations in the ACTION section specify the code modifications

made by the optimization. The actions are decomposed into individual modifications
during generation of the specific post-conditions.

Table 1. Generating Post-Conditions

Action (Pattern) Code Modifications (Depend) Dependence Modifications

Move delete (S)
insert (NewS, AfterS)

delete_dep (type, stat, S, dir)
insert_dep (type, stat, NewS, dir)
insert_dep (type, NewS, stat, dir)

Add insert(S, AfterS)
insert_dep (type, S, stat, dir)
insert_dep (type, stat, S, dir)

Delete delete (S) delete_dep (type, stat, S, dir)

modify_opnd(S, opnd, new_opnd)

delete_dep (type, stat, S, dir)
where dep_position = opnd
insert_dep (type, stat, S, dir)

where dep_position= new_opnd
insert_dep (type, S, stat, dir)

where dep_position= new_opnd

Modify

modify_opcode(S, new_opcode) --

42 M. Zhao, B.R. Childers, and M.L. Soffa

Table 1 shows how to generate post-conditions for each primitive action in the
ACTION section. A row corresponds to an action, given in the first table column. The
second and third columns give the changes to the code model. For example, the move
operation deletes a statement from its original location and inserts a new one at a new
location. When a statement is deleted, its dependences must also be deleted. When a
new statement is inserted, dependences are inserted at the new location.

3.2.3 Step 3: Computing the Interactions
In this final step, the algorithm determines the interactions among optimizations by
matching the create- and destroy-conditions of each optimization with the post-
conditions of other optimizations.

Step 3: Compare conditions in }]{[S
CDestroy

kO − and }]{[S
CCreate

kO − with [O C-Post
i] S:

If there exists a i
C∆ in }]{[S

CDestroy
kO − such that i

C∆ ⊆ [O
C-Post

i]S then Oi disables Ok

and if there exists a i
C∆ in }]{[S

CCreate
kO − such that i

C∆ ⊆ [O C-Post
i]S then Oi enables Ok

The process for matching Oi’s create- and destroy-conditions with the post-
conditions is as follows. For each optimization opportunity, the algorithm tries to
match the post-conditions of other optimizations. It finds the optimizations whose
post-condition matches the condition. Next, it tries to match the set of optimizations
whose post-conditions match conditions to enable/disable Oi together. The optimiza-
tion whose post-conditions match condition C enables/disables Oi. The condition ac-
tion (i.e., delete, insert, delete_dep, insert_dep, modify_opnd, or modify_opcode) and
the object (e.g., statement or dependence) are compared. For example, if A is <delete
S3>, an optimization whose post-condition deletes S3 matches A. If A is <delete_dep,
type, Si, Sj, dir, other_condition>, the post-condition has to match all parts of condi-
tion A. The post-condition has the same type of dependence between Si and Sj, direc-
tion, and the other conditions are satisfied.

4 Optimization Ordering Using Properties

Typically, compilers apply optimizations in a predetermined order, perhaps guided by
a compiler writer’s expertise. In our approach, we use the profitability and interaction
properties to determine the optimization order at the statement level.

Def. 7: The Profit of an optimization O, Oprofit, is the performance difference after
applying O. Performance can be defined as execution time, dynamic instruction count
or other metrics. Suppose (C) [OPre, OAct]S <R> (C’)[Oprofit], then

Oprofit = Performance (C’, R) – Performance(C, R)

We determine optimization ordering based on properties, expressed as: Oi before Oj

If (Oi enables Oj) OR (Oj disables Oi)

OR (Oi, no interaction Oj AND Profit(Oi)) > Profit(Oj))

Fig. 5 shows our algorithm to determine phase ordering. A working set, app,
tracks which optimizations to consider. A list, seq, holds the optimization sequence
determined by the algorithm. app is initialized to all applicable optimizations and seq

 A Framework for Exploring Optimization Properties 43

is initialized to the empty sequence. The algorithm iterates until the working set is
empty (line 3). The algorithm evaluates the profit of optimizations in list, Profit(O),
on line 4. The profitability of an optimization is computed analytically [23]. The algo-
rithm selects the optimization Ok with the largest Profit as the next optimization in the
sequence. Ok is added to seq on line 6. On line 7, the algorithm updates app accord-
ing to what optimizations are disabled and enabled by Ok. We require that when Ok
along with other optimizations disables Om and all the other optimizations are already
in the sequence, then we remove Om from app. For the enabling interaction, we also
require that optimizations already in seq do not disable Om, and then we can add Om
to app. We evaluate app until it is empty to achieve the sequence that maximizes the
evaluation function.

Although we use a single optimization in the discussion, FOP can determine the
properties for a series of optimizations, i.e., the combination of optimizations. In this

case, (C)[Pre
...kiO , Act

...kiO] <R> ⇒ (C´) [Properties
...kiO]. The phase ordering among combi-

nations of optimizations can also be determined using optimization properties.

∧ ⊆
∧ ⊆

∧ ¬∃ ∈ ∧
∧ ⊆

Fig. 5. Algorithm to determine a Good Optimization Sequence

5 Experiments

To evaluate FOP, we compared three approaches to applying optimizations: a fixed-
order approach, an empirical approach that uses a genetic algorithm (GA) to search
for effective optimization sequences [1] and our approach. We run experiments on an
Intel Pentium IV 2.4GHz machine, with 512MB of memory and RedHat Linux.

We consider nine optimizations: CPP, CTF, DCE, PRE, LICM, GVN, BRC, BRE,
and RA. The optimizations are incorporated into the MachSUIF optimizer [17] for the
Intel IA-32 instruction set. The fixed-order sequence is “GVN, BRC, BRE, CPP,
CTF, DCE, PRE, LICM, GVN, BRC, BRE, CPP, CTF, DCE, PRE, LICM, RA”. The
selection of the fixed order was based on a past study of interactions among these
optimizations [21]. In all cases, register allocation is done as the last optimization.

The empirical approach (GA) has the same configuration as in [1]. We performed a
search for each function in a program with 10 generations. Each generation had a popu-
lation of 20 sequences. Every sequence had 16 optimization passes, picked from the
possible optimizations. At each generation, the best 10% of the sequences survive
without any change. The remaining part of the new generation is created with a

44 M. Zhao, B.R. Childers, and M.L. Soffa

crossover operation, which is followed by character-by-character mutation (5% muta-
tion rate). We tried more generations but there was no further improvement.

5.1 Compile-Time Comparison

The empirical approach both applies optimizations and executes the code to evaluate
profitability. For the SPEC benchmarks, the test inputs were used to execute the code.
FOP uses the interaction and the profitability properties to determine optimization
order. Table 2 shows the compile-time overhead of the approaches.

From the table, the compile-time for the fixed-order is small. It varies from 0.05 to
6.11 minutes. Because the empirical approach (GA) executes the application to de-
termine profitability and to apply optimizations, and it recomputes the data flow to
detect interactions, its compile-time is large, varying from 5 minutes to 43.6 hours.
Each function is compiled for 200 sequences and evaluated by executing the code. Its
total compile-time is related to the compile-time and execution time for each function.
For example, there are 106 functions in gzip. The average compile-time for a function
is 0.8 seconds. The execution time for the test input is 2.4 seconds. Considering the
GA search time, it took 1181 minutes to find code-specific sequences for gzip.

With our approach, the compile-time is reduced: It varies from 0.7 to 82 minutes.
Our approach needs to determine the interaction property among optimizations and to
predict the profitability property. Its compile-time depends on the time to determine
the interaction property and the time to predict profitability. For example, in mpeg the
average compile-time to determine the interaction property is about 20 seconds and
the compile-time to determine profitability is about 6 seconds. Thus, it took 82.24
minutes for our approach to determine good optimization sequences for mpeg.

Table 2. Compile-time of Three Approaches (minutes)

Benchmarks Fixed-order Empirical FOP
adpcm.rawcaudio 0.05 5.41 1.14

mpeg2.enc 1.92 726.67 82.24
bitcount 0.15 18.97 1.66

dijkstra.large 0.05 11.63 0.68
FFT 0.11 13.20 1.81

164.gzip 1.52 1180.67 53.82
175.vpr 6.11 1469.23 61.23
181.mcf 0.53 74.64 19.54

197.parser 5.4 976.34 49.23
256.bzip2 2.34 2618.79 58.68

5.2 Performance Comparison

We compared the performance of the three approaches, as shown in Fig. 6. The figure
shows the improvement of the empirical and the model-driven approaches over the
fixed-order approach. Performance is measured with dynamic instruction count.

 A Framework for Exploring Optimization Properties 45

0.6

0.8

1

1.2

1.4

adpcm

m
peg2

bitc
oun t

dijk
str

a
FFT

164 .gzip

175 .vp
r

181 .m
cf

197.parse
r

256 .bzip
2

Im
pr

ov
em

en
t

F ix ed-order E m pirical FOP

Fig. 6. Performance Comparison of Three Approaches

As the figure shows, the empirical and model-driven approaches improve per-
formance more than the fixed-order approach. In 256.bzip2, the improvement with the
empirical and model-driven approaches over the fixed-order sequence is 32% and
28% respectively. In most cases, the model-driven approach has similar performance
improvement as the empirical approach. However, the performance of the model-
driven approach is better in a few cases. For example, in adpcm, the improvement is
19% with the empirical technique and 23% with our model-driven approach. This
higher improvement happens because an optimization instance is not applied if it is
predicted to be unprofitable.

In terms of memory, FOP uses 51KB to 723KB (average) to store data and control
dependence information. The maximum memory requirements ranged from 106KB to
9815KB. On today’s machines, this amount of memory is reasonable.

Our experiments show that optimization properties are useful in finding code-
specific optimization sequences. Our techniques show it is practical to analytically
model optimizations and compute interactions to find a good code-specific order in
which to apply optimizations.

6 Related Work

Formal and empirical approaches have been used to determine the order to apply op-
timizations. Knuth and Bendix proposed a solution to express optimizations as a set of
rewriting rules [9]. Their algorithm detects potential conflicts and resolves them by
introducing new rewriting rules, derived from the existing set. However, the proce-
dure is difficult to generalize. Whitfield and Soffa described a framework that enables
the exploration, both analytically and experimentally, of properties of optimizations,
including the interaction property [20], [21]. They proposed Gospel to express the
pre-condition and post-conditions of optimizations. They studied the optimization
interactions with proofs or examples. However, their approach can not automatically
detect the interactions among optimizations based on code context.

Another approach uses heuristic-driven search algorithms to find a good optimiza-
tion sequence. Almagor et al. performed a large experimental study on the space of
optimization sequences [1]. Although their approach can produce efficient code, it can

46 M. Zhao, B.R. Childers, and M.L. Soffa

be slow. Kulkarni et al. proposed an interactive compilation system, VISTA, which
used a genetic algorithm, performance information and user input to select an effec-
tive optimization sequence. They further proposed two approaches to improve search
performance [7], [10], [11]. Triantifyllis et al. recognized the benefit of finding good
optimization sequences [18], [19]. To limit compile-time, their system used a fixed set
of optimization sequences and obtained the best result with the set. However, the se-
lection of the sequences should be considered.

7 Conclusion

This paper presented a framework (FOP) which can automatically determine optimi-
zation properties. We use FOP to determine enabling and disabling interactions
among optimizations without actually applying the optimizations. An application of
FOP is to find a good code-specific order in which to apply optimizations. This paper
presented an algorithm that constructs an effective optimization sequence using the
interaction and profitability properties. We implemented FOP and experimentally
found good code-specific orders. The results showed that we obtain sequences that
have similar performance as an empirical approach with less compile-time. Our work
demonstrates that an analytic approach can be used for optimization properties, which
are useful in addressing phase ordering.

References

1. Almagor, L., Cooper, K., Grosul, A., Harvey, T., Reeves, S., Subramanian, D., Torczon,
L., Waterman, T.: Finding Effective Compilation Sequences. In: Conf. On Languages,
Compilers, and Tools for Embedded Systems (2004)

2. Bodík, R., Gupta, R., Soffa, M.L.: Complete removal of redundant expressions. SIGPLAN
Not. 39(4) (April 2004)

3. Briggs, P., Cooper, K.D.: Effective Partial Redundancy Elimination. In: Conf. on Pro-
gramming Language Design and Implementation (1994)

4. Coleman, S., McKinley, K.S.: Tile Size Selection Using Cache Organization and Data
Layout. In: Conf. on Programming Language Design and Implementation (1995)

5. Ferrante, J., Ottenstein, K., Warren, J.: The program Dependence Graph and Its Use in Op-
timization. ACM Trans. on Programming Languages 9(3) (1987)

6. Jaramillo, C., Gupta, R., Soffa, M.L.: Comparison checking: An approach to avoid debug-
ging of optimized code. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE
1999. LNCS, vol. 1687, p. 268. Springer, Heidelberg (1999)

7. Kulkarni, P., Hines, S., Hiser, J., Whalley, D., Davidson, J., Jones, D.: Fast Searches for
Effective Optimization Phase Sequences. In: Conf. on Programming Language Design and
Implementation (2004)

8. Kisuki, T., Knijnenburg, P.M.W., O’Boyle, M.F.P.: Combined Selection of Tile Size and
Unroll Factors Using Iterative Compilation. In: Int’l. Conf. on Parallel Architectures and
Compilation Techniques (2000)

9. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.)
Computational problems in abstract algebra. Pergamon Press, Oxford (1970)

10. Kulkarni, P., Whalley, D.B., Tyson, G.S., Davidson, J.W.: Exhaustive Optimization Phase
Order Space Exploration. In: Int’l. Symp. on Code Generation and Optimization (2006)

 A Framework for Exploring Optimization Properties 47

11. Kulkarni, P., Whalley, D.B., Tyson, G.S., Davidson, J.W.: Evaluating Heuristic Optimiza-
tion Phase Order Search Algorithms. In: Int’l. Symp. on Code Generation and Optimiza-
tion (2007)

12. Lacey, D.: Program Transformation using Temporal Logic Specifications. PhD disserta-
tion, Univ. of Oxford (August 2003)

13. Lerner, S., Millstein, T., Chambers, C.: Automatically Proving the Correctness of compiler
optimizations. In: Conf. on Programming Language Design and Implementation (2003)

14. Lacey, D., Jones, N., Wyk, E., Frederiksen, C.: Proving correctness of compiler optimiza-
tions by temporal logic. In: Symp. on Principles of Programming Languages (2002)

15. McKinley, K., Carr, S., Tseng, C.: Improving Data Locality with Loop Transformations.
ACM Trans. on Programming Languages and Systems 18(4), 424–453 (1996)

16. Necula, G.C.: Translation validation for an optimizing compiler. In: Conf. on Program-
ming Language Design and Implementation (2000)

17. Smith, M.D., Holloway, G.: An Introduction to Machine SUIF and Its Portable Libraries
for Analysis and Optimization

18. Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.I.: Compiler Optimiza-
tion-space Exploration. In: Int’l. Symp. on Code Generation and Optimization (2003)

19. Triantafyllis, S., Vachharajani, M., August, D.I.: Compiler Optimization-space Explora-
tion. Journal of Instruction-Level Parallelism (2005)

20. Whitfield, D., Soffa, M.L.: An Approach to Ordering optimizing transformations. In:
Symp. on Principles and Practice of Parallel Programming (1990)

21. Whitfield, D., Soffa, M.L.: An Approach for Exploring Code Improving Transformations.
ACM Trans. on Programming Languages and Systems 19(6), 1053–1084 (1997)

22. Yotov, K., Li, X., Ren, G., Cibulskis, M.: A Comparison of Empirical and Model-driven
optimization. In: Conf. on Programming Language Design and Implementation (2003)

23. Zhao, M., Childers, B.R., Soffa, M.L.: A Model-based Framework: an Approach for
Profit-driven Optimization. In: Int’l. Symp. on Code Generation and Optimization (2005)

Compile-Time Analysis and Specialization of
Clocks in Concurrent Programs

Nalini Vasudevan1, Olivier Tardieu2, Julian Dolby2, and Stephen A. Edwards1

1 Department of Computer Science, Columbia University, New York, USA
{naliniv,sedwards}@cs.columbia.edu

2 IBM T.J. Watson Research Center, New York, USA
{tardieu,dolby}@us.ibm.com

Abstract. Clocks are a mechanism for providing synchronization barri-
ers in concurrent programming languages. They are usually implemented
using primitive communication mechanisms and thus spare the program-
mer from reasoning about low-level implementation details such as re-
mote procedure calls and error conditions.

Clocks provide flexibility, but programs often use them in specific
ways that do not require their full implementation. In this paper, we
describe a tool that mitigates the overhead of general-purpose clocks
by statically analyzing how programs use them and choosing optimized
implementations when available.

We tackle the clock implementation in the standard library of the X10
programming language—a parallel, distributed object-oriented language.
We report our findings for a small set of analyses and benchmarks. Our
tool only adds a few seconds to analysis time, making it practical to use
as part of a compilation chain.

Keywords: Concurrency, Static Analysis, Synchronization, Clocks, X10,
NuSMV.

1 Introduction

The correct coordination and synchronization of concurrent tasks is one of the
major challenges of concurrent programming. Low-level primitives, such as locks
or compare-and-swap, can lead to optimum performance but they are hard to use
and error-prone. In this paper, we consider higher-level concurrency constructs
that are supplied in libraries and provide the user a richer, less error-prone ab-
straction. The usual disadvantage of general-purpose libraries is their generality:
their implementation includes code to handle all possible cases, which slows down
the relatively few cases each program uses.

We present an optimization technique that greatly reduces the performance
penalty of a general-purpose concurrency library. We statically analyze the use
of clocks—a form of synchronization barriers—in the Java-derived X10 concur-
rent programming language [1,2] and use the results to safely substitute more
specialized implementations of these standard library elements.

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 48–62, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Compile-Time Analysis and Specialization of Clocks in Concurrent Programs 49

A clock in X10 is a structured form of synchronization barrier useful for ex-
pressing patterns such as wavefront computations and software pipelines. Con-
current tasks registered on the same clock advance in lockstep.

Our static analysis technique models an X10 program as a finite automaton;
we ignore data but consider the possibility of clocks being aliased. We pass this
automaton to the NuSMV model checker [3], which reports erroneous usage of
a clock and whether a particular clock follows certain idioms. If the clocks are
used properly, we use the idiom information to restructure the program to use a
more efficient implementation of each clock. The result is a faster program that
behaves like one that uses the general-purpose library.

Our analysis flow has been designed to be flexible and amenable to supporting
a growing variety of patterns. In the sequel, we focus on inexpensive queries
that can be answered by treating programs as sequential. While analysis time
is negligible, speedup is considerable and varies across benchmarks from a few
percent to a 3× improvement in total execution time.

In summary, our contributions are

– a methodology for the analysis and specialization of clocked programs;
– a set of cost-effective clock transformations;
– a prototype implementation: a plug-in for the X10 v1.5 tool chain; and
– experimental results on some modest-size benchmarks.

After a brief overview of the X10 language in Section 2 and the clock library in
Section 3, we describe our static analysis technique in Section 4 and how we use
its results to optimize programs in Section 5. We present experimental evidence
that our technique can improve the performance of X10 programs in Section 6.
We discuss related work in Section 7 and conclude in Section 8.

2 The X10 Programming Language

X10 [1,2] is a parallel, distributed object-oriented language. To a Java-like se-
quential core it adds constructs for concurrency and distribution through the
concepts of activities and places. An activity is a unit of work, like a thread in
Java; a place is a logical entity that contains both activities and data objects.

The async construct creates activities; parent and child execute concurrently.
The X10 program in Figure 1 uses clocks to recursively compute the first ten rows
of Pascal’s Triangle. The call of the method row on line 40 creates a new stream
object, spawns an activity to produce the stream values, and finally returns the
stream object to main. The rest of main executes in parallel with the spawned
activity, printing the stream values as they are produced.

Spawned activities may only access final variables of enclosing activities, e.g.,
final int a = 3; int b = 4;
async { int x = a; // OK: a is a final

int y = b; } // ERROR: b is not final

An X10 program runs in a fixed, platform-dependent set of places. The main
method always runs in place.FIRST PLACE ; the programmer may specify where
other activities run. Activities cannot migrate between places.

50 N. Vasudevan et al.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 120 120 45 10 1

1 public class IntStream {
2 public final clock clk = clock.factory.clock(); // stream clock
3 private final int[] buf = new int[2]; // current and next stream values
4
5 public IntStream(final int v) {
6 buf[0] = v; // set initial stream value
7 }
8
9 public void put(final int v) {

10 clk.next(); // enter new clock phase
11 buf[(clk.phase()+1)%2] = v; // set next stream value
12 clk.resume(); // complete clock phase
13 }
14
15 public int get() {
16 clk.next(); // enter new clock phase
17 final int v = buf[clk.phase()%2]; // get current stream value
18 clk.resume(); // complete clock phase
19 return v;
20 } }
21
22 public class PascalsTriangle {
23 static IntStream row(final int n) {
24 final IntStream r = new IntStream(1); // start row with 1
25 async clocked(r.clk) { // spawn clocked task to compute row’s values
26 if (n > 0) { // recursively compute previous row
27 final IntStream previous = row(n−1);
28 int v; int w = previous.get();
29 while (w != 0) {
30 v = w; w = previous.get();
31 r.put(v+w); // emit row’s values
32 }
33 }
34 r.put(0); // end row with 0
35 }
36 return r;
37 }
38
39 public static void main(String[] args){
40 final IntStream r = row(10);
41 int w = r.get(); // print row excluding final 0
42 while (w != 0) { System.out.println(w); w = r.get(); }
43 } }

Fig. 1. A program to compute Pascal’s Triangle in X10 using clocks

final IntStream s = new IntStream(4);
async (place.LAST PLACE) { // spawn activity at place.LAST PLACE

// cannot call methods of s if LAST PLACE != FIRST PLACE
final int i = 3;
async (s) s.put(i); // spawn activity at the place of s; s is local => ok to deref

}

Activities that share a place share a common heap. While activities may hold
references to remote objects, they can only access the fields and methods of a
remote object by spawning an activity at the object’s place.

Compile-Time Analysis and Specialization of Clocks in Concurrent Programs 51

start 2: clock.factory.clock

25: async clocked

16: next

17: phase

18: resume

10: next

11: phase

12: resumeend

IntStream constructor IntStream get

IntStream put

Fig. 2. The automaton model for the clock in the Pascal’s Triangle example

X10 also introduces value classes, whose fields are all final. The fields and
methods of an instance of a value class may be accessed remotely, unlike normal
classes. Clocks are implemented as value classes.

X10 provides two primitive constructs for synchronization: finish and when.
finish p q delays the execution of statement q until after statement p and all
activities recursively spawned by p have completed. For example,
finish { async { async { System.out.print(‘‘Hello’’); } } } System.out.println(‘‘ world’’);

prints “Hello world.” The statement when(e) p suspends until the Boolean con-
dition e becomes true, then executes p atomically, i.e., as if in one step during
which all other activities in the same place are suspended.1

X10 also permits unconditional atomic blocks and methods, which are speci-
fied with the atomic keyword. For example,
atomic { int tmp = x; x = y; y = tmp; }

3 Clocks in X10

Clocks in X10 are a generalization of barriers. Unlike X10’s finish construct,
clocks permit activities to synchronize repeatedly. In contrast to when constructs,
they provide a structured, distributed, and determinate form of coordination.
While a complete discussion of X10’s clocks is beyond the scope of this paper,
the following sections will demonstrate that clocks are amenable to efficient and
effective static analysis.

Figure 3 lists the main elements of the clock API. An activity must be reg-
istered with a clock to interact with it. Activities are registered in one of two
ways: creating a clock with the clock.factory.clock() static method automatically
registers the calling activity with the new clock. Also, an activity can register
activities it spawns with the async clocked construct.
final clock clk = clock.factory.clock();
async clocked(clk) { A1; clk.next(); A2; clk.next(); A3 }
async clocked(clk) { B1; clk.next(); B2; }
async { C; }
M1; clk.resume(); M1 2; clk.next(); M2;

1 X10 does not guarantee that p will execute if e holds only intermittently.

52 N. Vasudevan et al.

/∗ Create a new clock. Register the calling activity with this clock. ∗/
final clock clk = clock.factory.clock();

/∗ Spawn an activity registered with clocks clk 1, ..., clk n with body p. ∗/
async clocked(clk 1, ..., clk n) p

public interface clock {
/∗ Notify this clock that the calling activity is done with whatever it intended
∗ to do during this phase of the clock. Does not block. ∗/

void resume();

/∗ Block until all activities registered with this clock are ready to enter the next
∗ clock phase. Imply that calling activity is done with this phase of the clock. ∗/

void next();

/∗ Return the phase index. Calling activity cannot be resumed on the clock. ∗/
int phase();

/∗ Unregister the caller from this clock; release it from having to participate ∗/
void drop();

}

Fig. 3. The clock API

A clock synchronizes the execution of activities through phases. A registered
activity can request the clock to enter a new phase with a call to next, which
blocks the activity until all other registered activities are done with the current
phase, i.e., have called next or resume. For instance, in the program above, action
A1 must complete before action B2 can start. In other words, A1 and B1 belong
to phase 1 of clock clk ; A2 and B2 belong to phase 2. C, however, does not
belong to an activity registered with clk ; it may execute at any time.

The resume method provides slack to the scheduler.2 An activity calls resume
when it is done with the current clock phase but does not yet need to enter the
next. Unlike next, resume does not block the activity, and the activity must still
call next to enter the next phase. In the example above, while M1 must terminate
before A2 can start and A1 must terminate before M2 can start, M1 2 may start
before A1 completes and continue after A2 starts because of resume.

In Figure 1, the value at the pth column and nth row of this triangle (0 ≤
p ≤ n) is the number of possible unordered choices of p items among n. One
task per row produces the stream of values for the row by summing the two
entries from the row immediately above. Each stream uses a clock to enforce
single-write-single-read interleaving, so each task registers with two clocks: its
own and the clock for the row immediately above. The clocks ensure proper
inter-row coordination.

The phase method returns the current phase index (counting from 1). Figure 1
demonstrates this and also how activities can register with multiple clocks (using
recursion in this example).

Finally, activities can explicitly unregister from a clock by calling drop. Ac-
tivities are implicitly unregistered from their clocks when they terminate.

2 The resume method is typically used in activities registered with multiple clocks.

Compile-Time Analysis and Specialization of Clocks in Concurrent Programs 53

Active Resumed

Inactive Exception

register with c
c.resume
c.next

c.next, c.phase, or
async clocked(c)

async clocked(c)

any

c.drop c.resume or c.phase
c.drop
any

Fig. 4. The state of one activity with respect to clock c

The operations of an activity on a clock modify the state of this activity
w.r.t. that clock. Figure 4 shows the behavior. The activity may be in one of
four states: Active, Resumed, Inactive, or Exception. Transitions are labeled with
clock-related operations: async clocked, resume, next, phase, and drop. For ex-
ample, an activity moves from the Active state to Resumed if it calls resume on
the clock. If it calls resume again, it moves to the Exception state. Any operation
that leads to the Exception state throws the ClockUseException exception.

3.1 Clock Patterns

We now describe the four clock patterns we currently identify. We believe that
our techniques can also be applied to find other patterns.

Our first pattern is concerned with exceptions: can an activity reach the ex-
ception state for a particular clock? The default clock implementation looks for
transitions to this state and throws ClockUseException if they occur. Aside from
the annoyance of runtime errors, runtime checks slow down the implementation.
We want to avoid them if possible.

Our algorithm finds that the clocks are used properly in the program of Fig-
ure 1, e.g., no task erroneously attempts to use a clock it is not registered with.
Therefore, it substitutes the default implementation with one that avoids the
overhead of runtime checks for these error conditions.

We also want to know whether resume is ever called on a clock. This feature’s
implementation requires additional data structures and slows down all clock
operations. We discuss this and other optimizations in Section 5.

Activities often use clocks to wait for sub-activities to terminate. Consider
final clock clk = clock.factory.clock();
async clocked (clk) A1;
async A2;
async clocked (clk) A3;
clk.next();
A4;

Here, if A1 and A2 do not interact with clock clk, clk.next() requires activities A1
and A3 to terminate before A4 starts executing and nothing else. In particular,
A2 and A4 may execute in parallel. We want to detect sub-activities that are
registered with the clock yet never request to enter a new clock phase.

Finally, the default clock implementation enables distributed activities to syn-
chronize. If it turn out that all registered activities belong to the same place, a
much faster clock implementation is possible. Our Pascal’s Triangle program is
a trivial example of this since all activities are spawned in the default place.

54 N. Vasudevan et al.

4 The Static Analyzer

In this section, we describe how we detect clock idioms. We start from the
program’s abstract syntax tree, compute its call graph, and run aliasing analysis
on clocks. We then abstract data by replacing conditional statements with non-
deterministic choice. From the control-flow graph of this abstract program, we
extract one automaton per clock. This gives a conservative approximation of the
sequences of operations that the program may apply to the clock.

To a model checker, we feed the automaton for the control-flow of the program
along with an automaton model of the clock API and a series of temporal logic
properties, one for each idiom of interest. For each property and each clock, the
model checker either proves the property or returns a counterexample in the
form of a path in the automaton that violates the property.

We use the T.J. Watson Libraries for Analysis (wala) [4] for parsing, call-
and control-flow-graph construction, and aliasing analysis. We have extended
the Java frontend of wala to accommodate X10 and extract from the AST the
required automata in the form of input files for the NuSMV model checker [3].

We now describe the key technical steps in detail. We start with the construc-
tion of the automaton, then discuss the encoding of the clock API, the temporal
properties, and finally aliasing.

4.1 Constructing the Automaton

Figure 2 shows the automaton we build for the clock clk in Figure 1. Each oper-
ation on clk in the text of the program becomes one state, which we label with
the type of operation and its line number. Transitions arise from our abstraction
of the program’s control flow. We highlighted the fragments corresponding to
the constructor and methods of the IntStream class.

methods. Each method body becomes a fragment of the automaton. Each call
of a method adds a transition to and from its entry and exit nodes. For
example, since get may be called twice in a row (lines 28 and 30), we added
the edge from its exit node “18: resume” to its entry node “16: next.” It may
also be called after put, looping from line 31 back to line 30, so we added an
edge from node “12: resume” to node “16: next.”

conditionals. We ignore guards on conditionals and add arcs for both branches.
For example, the if on line 26 runs immediately after the async clocked on
line 25. The “then” branch of this if runs line 27, which starts with a call
to row that starts by constructing an IntStream (line 24) whose constructor
calls clock.factory.clock() (line 2). This gives the arc from node “25: async
clocked” to “2: clock.factory.clock.” The “else” branch is line 34, which calls
put, which starts with a call to next (line 10). This gives the arc to “10: next.”

async. Because we are not checking properties that depend on interactions
among tasks, we can treat a spawned activity as just another path in the
program. When execution reaches an async construct, we model it as ei-
ther jumping directly to the task being spawned or skipping the child and
continuing to execute the parent. This is illustrated in Figure 5.

Compile-Time Analysis and Specialization of Clocks in Concurrent Programs 55

stmt1;
async clocked(c) {

stmt3;
}
stmt2;

stmt1

async clocked(c)

stmt3

stmt2

Fig. 5. Modeling async calls

In our Pascal’s Triangle example, this means control may flow from the
IntStream constructor exit point “2: clock.factory.clock” to the async con-
struct “25: async clocked” or ignore the async and flow back via the return
statement to the subsequent get method call in either main or row, i.e., node
“16: next.”

We give the NuSMV code for the automaton in an extended version of this
paper [5].

We build one automaton for each call of clock.factory.clock in the source code,
meaning our algorithm does not distinguish clocks instantiated from the same
allocation site. So we construct only one automaton for our example, even though
the program uses ten (very similar) clocks when it executes.

We have taken a concurrent program and transformed it into a sequential
program with multiple paths. Thanks to this abstraction, we avoid state space
explosion both in the automaton construction and in the model checker.

4.2 Handling Async Constructs with the Clock Model

Our model of clock state transitions—Figure 4—only considers a single activity,
but X10 programs may have many. As explained in Section 4.1, we model async
constructs with nondeterministic branches, so we have to extend the typestate
automaton for the clock to do the same.

Figure 6 shows the additional transitions necessary for handling async ac-
tions. We consider two cases: when analyzing clock c and we encounter async
clocked(c), the new activity stays either Active or Resumed. By contrast, if we
encounter an async not clocked on c, the new activity starts in the Inactive state
(arcs labeled just async).

We give the NuSMV code for the complete automaton in the extended version
of this paper [5].

Active Resumed

Inactive Exception

async clocked(c)

async

async clocked(c)

any async

async async

async clocked(c)

Fig. 6. Additional transitions in the clock state for modeling async operations

56 N. Vasudevan et al.

4.3 Specifying Clock Idioms

Once we have the automata modeling the program and clock state, it becomes
easy to specify patterns for NuSMV as temporal logic formulas.

Three patterns are CTL reachability properties of the form
SPEC AG(!(target))

where target is either the Exception state, a resume operation, or an async
clocked(c) node annotated with a place expression, that is, a remote activity
creation. See the extended version of this paper [5] for details.

We check for the fourth pattern—whether spawned activities ever call next
on the clock—by looking for control-flow paths that contain an async clocked(c)
operation followed by a c.next operation. The LTL specification is
LTLSPEC G(c next −> H(!async clocked c))

The extended version of this paper [5] gives the complete NuSMV input file
for the Pascal’s Triangle example.

4.4 Combining Clock Analysis with Aliasing Analysis

Clocks can be aliased just like any objects. Figure 7 shows an example of aliasing
of clocks in X10. We create two clocks c1 and c2. x can take the value of either
c1 or c2 depending on the value of n.

We could abstract the program into two control paths, one that assumes x =
c1 and one that assumes x = c2. However, this would produce a number of paths
exponential in the number of aliases that have to be considered simultaneously.

Instead, we chose to bound the size of our program abstraction (at the expense
of precision) as shown in the bottom three diagrams of Figure 7. We consider
each clock operation on x in isolation and apply it non-deterministically to any
of the possible targets of x as returned by wala’s aliasing engine.

final clock c1 = clock.factory.clock();
final clock c2 = clock.factory.clock();
..
final clock x = (n > 1)? c1: c2;
x.resume();
x.next();
c1.next();

create c1

create c2

resume x

next x

next c1

create c1

create c2

resume c1

next c1

resume c2

next c2

next c1

create c1

resume c1

next c1

next c1

create c2

resume c2

next c2

next c1

Fig. 7. Top Left : Aliasing clocks in X10, Top Right : the corresponding control flow
graph, Bottom Left: our abstraction, Bottom Center : automaton for c1, Bottom Right:
automaton for c2

Compile-Time Analysis and Specialization of Clocks in Concurrent Programs 57

final clock c1 =
clock.factory.clock();

final clock c2 =
clock.factory.clock();

..
final clock x = (n > 1)? c1: c2;
async clocked(x, c1) {

x.next();
c1.next();

}
c1.next();

create c1

create c2

async clocked(x, c1)

next x

next c1

next c1

create c1

create c2

next c1 async clocked(c1, c1) async clocked(c2, c1)

next c2 next c1

next c1

Fig. 8. Asyncs and Aliases

Figure 8 shows how we extend this idea to async constructs. Our tool reports
that operations on clock c1 cannot throw ClockUseException. However, it fails
to establish the same for c2 because our abstraction creates a false path—next
c2 following async clocked(c1,c1).

5 The Code Optimizer

Results from our static analyzer drive a code optimizer that substitutes each
instance of the clock class for a specialized version. We manually wrote an op-
timized version of the clock class for each clock pattern we encountered in our
test cases; a complete tool would include more. Our specialized versions include
a clock class that does not check for protocol violations (transitions to the ex-
ception state) and one that does not support resume.

There is one abstract clock base class that contains empty methods for all
clock functions; each specialized implementation has different versions of these
methods that uses X10 primitives to perform the actual synchronization. Our op-
timizer changes the code (actually the ast) to use the appropriate derived class
for each clock, e.g., c = clock.factory.clock() would be replaced with
c = clock.factory.clockef() if clock c is known to be exception-free.

The top of Figure 9 shows the general-purpose implementation of next. The
clock value class contains the public clock methods; the internal ClockState main-
tains the state and synchronization variables of the clock. The next method first
verifies that the activity is registered with the clock (and throws an exception
otherwise), then calls the select function to wait on a latch: a data structure
that indicates the phase. The latch is either null if next() was called from an
active() state or holds a value if next() was called from a resumed() state. The
wait function blocks and actually waits for the clock to change phase. The check
method decrements the number of activities not yet resumed on the clock and
advances the clock phase when all activities registered on the clock are resumed.

58 N. Vasudevan et al.

// The default implementation

class ClockState {
..

atomic int check() {
int resumedPhase = currentPhase;
if (remainingActivities−− == 0) {

// set the number of activities
// expected to resume
remainingActivities =

registeredActivities;
// advance to the next phase
currentPhase++;

}
return resumedPhase;

}

void wait(final int resumedPhase) {
when(resumedPhase != currentPhase);

} }

value class clock {
..

final ClockState state = new ClockState();
..

void select(nullable<future<int>> latch) {
if (latch == null) {

async (state) state.wait(state.check());
} else {

final int phase = latch.force();
async (state) state.wait(phase);

}
}

public void next() {
if (!registered())

throw new ClockUseException();
finish select(ClockPhases.put(this, null));

} }

// An exception−free implementation

public void next() {
finish

select(ClockPhases.put(this, null));
}

// For when resume() is never used

void select() {
async (state) state.wait(state.check());

}

public void next() {
if (!registered())

throw new ClockUseException();
finish select();

}

// For when a clock is only in a single place

void select(nullable<future<int>> latch) {
if (latch == null)

state.wait(state.check());
else

state.wait(latch.force());
}

public void next() {
if (!registered())

throw new ClockUseException();
select(ClockPhases.put(this, null));

}

Fig. 9. Various implementations of next and related methods

A basic optimization: when we know the clock is used properly, we can elim-
inate the registration check in next and elsewhere. Figure 9 shows such an
exception-free implementation.

Accommodating resume carries significant overhead, but if we know the re-
sume functionality is never used, we can simplify the body of select as shown
in Figure 9. We removed the now-unneeded latch object and can do something
similar in other methods (not shown).

Figure 9 also shows a third optimization. Because clocked activities may be
distributed among places, synchronization variables have to be updated by re-
mote activities. When we know a clock is only used in a single place, we dispense
with the async and finish constructs.

Compile-Time Analysis and Specialization of Clocks in Concurrent Programs 59

Table 1. Experimental Results

Example Clocks Lines Result Speed Analysis Time

Up Base NuSMV

Linear Search 1 35 EF, NR, L 35.2% 33.5s 0.4s
Relaxation 1 55 EF, NR, L 87.6 6.7 0.3
All Reduction Barrier 1 65 EF, NR 1.5 27.2 0.1
Pascal’s Triangle 1 60 EF, L 20.5 25.8 0.4
Prime Number Sieve 1 95 NR, L 213.9 34.7 0.4
N-Queens 1 155 EF, NR, ON, L 1.3 24.3 0.5
LU Factorization 1 210 EF, NR 5.7 20.6 0.9
MolDyn JGF Bench. 1 930 NR 2.3 35.1 0.5
Pipeline 2 55 Clock 1: EF, NR, L

Clock 2: EF, NR, L
31.4 7.5 0.5

Edmiston 2 205 Clock 1: NR, L
Clock 2: NR, L

14.2 29.9 0.5

EF: No ClockUseException, NR: No Resume, ON: Only the activity that created the
clock calls next on it, L: Clocked used locally (in a single place)

6 Results

We applied our static analyzer to various programs, running it on a 3 GHz
Pentium 4 machine with 1 GB RAM. Since we want to measure the overhead of
the clock library, we purposely run our benchmarks on a single-core processor.
Table 1 shows the results. For each example, we list its name, the number of
clock definitions in the source code, its size (number of lines of code, including
comments), what our analysis discovered about the clock(s), how much faster the
executable for each example ran after we applied our optimizations, and finally
the time required to analyze the example. (The Base column includes the time
to read the source, build the IR, perform pointer analysis, build the automata,
etc.; NuSMV indicates the time spent running the NuSMV model checker. Total
time is their sum.)

The first example is a paced linear search algorithm. It consists of two tasks
that search an array in parallel and use a clock to synchronize after every com-
parison. The Relaxation example, for each cell in an array, spawns one activity
that repeatedly updates the cell value using the neighboring values. It uses a
clock to force these activities to advance in lockstep. The All Reduction Barrier
example is a variant on Relaxation that distributes the array across multiple
places. Pascal’s Triangle is the example of Figure 1. Our prime number sieve
uses the Sieve of Eratosthenes. N-Queens is a brute-force tree search algorithm
that uses a clock to mimic a join operation. LU Factorization decomposes a ma-
trix in parallel using clocks. We also ported the MolDyn Java Grande Forum
Benchmark [6] in X10 with clocks, the largest application on which we ran our
tool. Pipeline has three stages; its buffers use two clocks for synchronization.
Edmiston aligns substrings in parallel and uses two clocks for synchronization.

60 N. Vasudevan et al.

The Result column lists the properties satisfied by each example’s clocks.
For example, the N-Queens example cannot throw ClockUseException, does not
call resume, and uses only locally created clocks. Our tool reports the JGF
benchmark may throw exceptions and pass clocks around, although it also does
not call resume. In truth, it does not throw exceptions, but our tool failed to
establish this because of the approximations it uses. This reduced the speedup
we could achieve, but does not affect correctness.

The Linear Search, Relaxation, Prime Number Sieve, and Pipeline examples
use clocks frequently and locally, providing a substantial speedup opportunity.
Although our analysis found N-Queens satisfies the same properties as these, we
could improve it up only slightly because its clock is used rarely and only in one
part of the computation. Switching to the local clock implementation provided
the majority of the speedup we observed, but our 5% improvement on the already
heavily optimized distributed LU Factorization example is significant.

Our tool analyzed each example in under a minute and the model checker took
less than a second in each case. Most of the construction time is spent in call-
and control-flow graph constructions and aliasing analysis, which are already
done for other reasons, so the added cost of our tool is on the order of seconds,
making it reasonable to include as part of normal compilation.

7 Related Work

Typestate analysis [7] tracks the states that an object goes through during
the execution. Standard typestate analysis and concurrency analysis are disjoint.
Our analysis can be viewed as a typestate analysis for concurrent programs.
Clocks are shared, stateful objects. We therefore have to track the state of each
clock from the point of view of each activity.

Model checking concurrent programs [8,3] is usually demanding because of
the potential for exponentially large state spaces often due to having to con-
sider different interleavings of concurrent operations. In contrast, our technique
analyzes concurrent programs as if they were sequential—we consider spawned
tasks to be additional execution paths in a sequential program—hence avoiding
the explosion.

Concurrency models come in many varieties. Vasudevan et al. [9] showed
that the state space explosion can also be avoided by carefully choosing the prim-
itives of the concurrent programming language. Unfortunately, this restricts the
flexibility of the language. Our work focuses on concurrency constructs similar
to those advocated by Vasudevan et al., but features like resume and aliased
clocks are absent from their proposal. We trade a more flexible concurrency
model against the need for further approximation in modeling the programs.

Static analysis of concurrency depends greatly on the underlying model.
Although X10 supports both message-passing-style and shared-memory-style
concurrency (in the case of co-located activities), we focus exclusively on its
message-passing aspects, as have others. Mercouroff [10] approximates the num-
ber of messages between tasks in CSP [11] programs. Reppy and Xiao [12] analyze

Compile-Time Analysis and Specialization of Clocks in Concurrent Programs 61

communication patterns in CML. Like ours, their work aims at identifying pat-
terns amenable to more efficient implementations. They attempt to approximate
the number of pending send and receive operations on a channel. Our work is
both more specific—it focuses on clocks—and more general: our tool can cope
with any CTL or LTL formula about clock operations.

Reppy and Xiao use modular techniques; we consider an X10 program as a
whole. A modular approach may improve out tool’s scaling, but we have not
explored this yet.

Analysis of X10 programs has also been considered. Agarwal et al. [13]
describe a novel algorithm for may-happen-in-parallel analysis in X10 that fo-
cuses on atomic sections. Chandra et al. [14] introduce a dependent type system
for the specification and inference of object locations. We could use the latter to
decide whether activities and clocks belong to the same place.

8 Conclusions and Future Work

We presented a static analysis technique for clocks in the X10 programming lan-
guage. The result allows us to specialize the implementation of each clock, which
we found resulted in substantial speed improvements on certain benchmark pro-
grams. Our technique has the advantage of being able to analyze a concurrent
language using techniques for sequential code.

We treat each clock separately and model subtasks as extra paths in the pro-
gram, much like conditionals. We abstract away conditional predicates, which
simplifies the structure at the cost of introducing false positives. However, our
technique is safe: we revert to the unoptimized, general purpose clock implemen-
tation when we are unsure a particular property is satisfied. Adding counter-
example guided abstraction refinement [15] could help.

We produce two automata for each clock: one models the X10 program;
the other encodes the protocol (typestate) for the clock. We express the au-
tomata in a form suitable for the NuSMV model checker. Experimentally, we
find NuSMV is able to check properties for modestly sized examples in sec-
onds, which we believe makes it fast enough to be part of the usual compilation
process.

In the future, we plan to check for properties such as deadlock, which would
involve considering interleavings rather than just the sequential analysis we cur-
rently use. For this reason we started with a powerful model checker like NuSMV.
We also want to investigate other applications, such as using clock information
from our static analyzer to refine pointer analysis of X10 programs.

Our current approach analyzes each clock as a whole. We may be able to
improve the granularity by analyzing the program on a statement-by-statement
basis. This would enable optimizing a clock operation at a particular line number
differently from the same operation at another line number if we know more
about the context of one operation compared to the other.

62 N. Vasudevan et al.

References

1. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. SIGPLAN Not. 40(10), 519–538 (2005)

2. Saraswat, V.A., Sarkar, V., von Praun, C.: X10: concurrent programming for mod-
ern architectures. In: PPoPP 2007: Proceedings of the 12th ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, p. 271. ACM, New
York (2007)

3. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV version 2: An OpenSource tool for symbolic
model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
pp. 359–364. Springer, Heidelberg (2002)

4. IBM, et al.: T. j. watson libraries for analysis (2006),
http://wala.sourceforge.net

5. Vasudevan, N., Tardieu, O., Dolby, J., Edwards, S.A.: Analysis of clocks in x10
programs (extended). Technical Report CUCS–052–08, Columbia University, De-
partment of Computer Science, New York, USA (December 2008)

6. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel java grande benchmark suite. In:
Supercomputing 2001: Proceedings of the 2001 ACM/IEEE conference on Super-
computing (CDROM), p. 8. ACM, New York (2001)

7. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Transactions on Software Engineering 12(1), 157–171
(1986)

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2), 244–263 (1986)

9. Vasudevan, N., Edwards, S.A.: Static deadlock detection for the SHIM concurrent
language. In: Proceedings of the International Conference on Formal Methods and
Models for Codesign (MEMOCODE), Anaheim, California (June 2008)

10. Mercouroff, N.: An algorithm for analyzing communicating processes. In: Schmidt,
D., Main, M.G., Melton, A.C., Mislove, M.W., Brookes, S.D. (eds.) MFPS 1991.
LNCS, vol. 598, pp. 312–325. Springer, Heidelberg (1992)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

12. Reppy, J., Xiao, Y.: Specialization of CML message-passing primitives. SIGPLAN
Notices 42(1), 315–326 (2007)

13. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of x10 programs. In: Proceedings of Principles and Practice of Parallel
Programming (PPoPP), pp. 183–193. ACM, New York (2007)

14. Chandra, S., Saraswat, V., Sarkar, V., Bodik, R.: Type inference for locality anal-
ysis of distributed data structures. In: Proceedings of Principles and Practice of
Parallel Programming (PPoPP), pp. 11–22. ACM, New York (2008)

15. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

http://wala.sourceforge.net

Implementation and Use of Transactional
Memory with Dynamic Separation

Mart́ın Abadi1,2, Andrew Birrell1, Tim Harris3,
Johnson Hsieh1, and Michael Isard1

1 Microsoft Research, Silicon Valley
2 University of California, Santa Cruz

3 Microsoft Research, Cambridge

Abstract. We introduce the design and implementation of dynamic sep-
aration (DS) as a programming discipline for using transactional memory.
Our approach is based on the programmer indicating which objects can be
updated in transactions, which can be updated outside transactions, and
which are read-only. We introduce explicit operations that identify tran-
sitions between these modes of access. We show how to guarantee strong
semantics for programs that use these DS operations correctly, even over
an STM implementation that provides only weak atomicity. We describe
a run-time checking tool (analogous to a data-race detector) that can test
whether or not a program is using DS operations correctly. We also exam-
ine the use of DS in an asynchronous IO library.

1 Introduction

Recently there has been much work on implementing atomic blocks over trans-
actional memory (TM [1]). This approach provides an alternative to using locks
and condition variables for shared-memory concurrency. Much effort has focused
on the language constructs that are exposed to the programmer [2,3,4,5] and the
semantics that an implementation of these constructs must obey [6,7,8]. The in-
teraction between program fragments running transactionally and those running
concurrently in normal code has been found to be particularly subtle [6,9,7,5].
A problematic example is the “privatization” idiom [10,11,12,6,5]:

// Initially x==0, x_shared=true

// Thread 1 // Thread 2
T1.1: atomic { T2.1: atomic {
T1.2: x_shared = false; T2.2: if (x_shared) {
T1.3: } T2.3: x ++;
T1.4: // Access x non-transactionally: T2.4: }
T1.5: x = 100; T2.5: }

A programmer might reason that Thread 1’s update to x shared at line T1.2 al-
lows its subsequent update to x at T1.5 to be made as a normal non-transactional
store. After these fragments have run, a programmer might expect that x==100
whichever order the atomic blocks ran in. However, implementations over soft-
ware transactional memory (STM [13]) lead to other results, e.g., x==1 if the

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 63–77, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

64 M. Abadi et al.

implementation of Thread 2’s atomic block was still writing back a buffered
update to x concurrently with Thread 1’s non-transactional store at T1.5.

In this paper we describe the design and implementation of a technique called
dynamic separation (DS) for controlling such interactions. With DS each object
has a “protection mode” that says whether or not the object can be accessed
transactionally, and the programmer explicitly indicates when this mode should
be changed. In our privatization example, the programmer would add a state-
ment at line T1.4 to change the protection mode of x.

DS provides more flexibility to the programmer than existing notions of static
separation that require each piece of data to be accessed either only transaction-
ally or only non-transactionally [6,2,7]. With static separation we could not have
objects like x which change protection modes. At the same time, DS provides
less flexibility to the programmer than violation-freedom [6], which allows ob-
jects like x to change protection modes implicitly. DS also provides less flexibility
to the programmer than disciplines that offer strong atomicity [14,15,16].

In a companion paper we study DS and its relationship to other programming
disciplines from a formal point of view [17]. In this paper we focus on the design
and practical implementation of DS. Our technical report [18] provides further
details.

We introduce DS in detail in Section 2. We define criteria for a program
using DS to be “correctly synchronized”. Informally, these criteria mean that
the program never tries to access transactional data from outside a transaction,
nor to access non-transactional data from inside a transaction. These criteria
provide a contract between the programmer and the language implementor: if
a program is correctly synchronized then the implementation of DS must run
the program consistently with a simple interleaved model of execution in which
complete transactions run as single atomic steps and the effects of program
transformations or relaxed processor memory models are not visible. We call
this the “strong semantics” [6].

Such a contract benefits programmers by insulating them from TM imple-
mentation details: correct programs run with strong semantics on all correct
implementations. This guarantee is convenient in the short term, since it sim-
plifies the task of learning to use transactional constructs. In the longer term
it is important that programs be portable: that they run efficiently, with iden-
tical semantics, over a range of STM implementations, and that they continue
to run with the same semantics, and without unnecessary overheads, once hard-
ware transactional memory (HTM) becomes widely available. In addition, such
a contract benefits the language implementor by providing a clear definition of
which program transformations and implementation techniques are correct.

We discuss the application of DS to C# in Section 3, along with its imple-
mentation over an STM with in-place updates and optimistic concurrency con-
trol [19]. We sketch a correctness argument—in our companion paper we prove
the correctness of a model based on our implementation [17].

In Section 4 we describe how we compile programs using DS in a debugging
mode that dynamically checks whether or not a program is correctly synchronized

Implementation and Use of Transactional Memory with Dynamic Separation 65

from the point of view of a particular program run. The checking method gives
no false alarms (i.e., no errors are reported for programs that are correctly syn-
chronized), and no missing error reports (i.e., if there is no error report then the
program executed with strong semantics in that run).

We evaluate the use of DS in a set of applications built over a concur-
rent IO library (Section 5). We wrote these applications in the AME program-
ming model [3] where—in contrast with typical approaches that employ atomic
blocks—the transactions are not block-structured, and the majority of execution
occurs within transactions rather than outside them. We examine the extent to
which DS may work in a “traditional” use of atomic blocks in Section 6.

We discuss related work in Section 7 and conclusions in Section 8.

2 Dynamic Separation

DS can be summarized as follows:

– We distinguish dynamically between transactional (“protected”) data, non-
transactional (“unprotected”) data, and read-only data. By default, data
allocated inside a transaction is created in “protected” mode and data allo-
cated outside a transaction is created in “unprotected” mode.

– We provide explicit operations (protect/unprotect/share) to move data
between these modes.

– For a program to be “correctly synchronized” it must use these operations
so that it obeys two rules when run under strong semantics:
Rule-1: The program accesses data only in the correct mode: read-only data

may be read anywhere but not updated, protected data may be accessed
freely inside transactions, and unprotected data may be accessed freely
outside transactions.

Rule-2: The DS operations to move data between these modes occur only
outside transactions.

If a program obeys these rules then the language implementation is required
to run it with strong semantics even if the underlying STM provides weaker
guarantees. As an illustration, we return to the privatization example from the
Introduction with an explicit unprotect operation added at line T1.4:

// Initially x==0, x_shared=true.
// Both variables are initially protected.

T1.1: atomic { // A1 T2.1: atomic { // A2
T1.2: x_shared = false; T2.2: if (x_shared) {
T1.3: } T2.3: x ++;
T1.4: unprotect(x); T2.4: }
T1.5: x = 100; T2.5: }

To show that the example is correctly synchronized we need to consider the
different possible executions under strong semantics, and show that none of the
conditions in Rule-1 and Rule-2 is violated.

Rule-2 is satisfied because the only DS operation, T1.4, occurs outside the
atomic blocks. Rule-1 is satisfied with respect to the accesses to x shared because

66 M. Abadi et al.

that variable is initially protected, and is accessed only inside the atomic blocks.
We must consider two cases to show that Rule-1 is also satisfied with respect to
the accesses to x: (i) if A1 executes before A2 then A2 will see x shared==false,
so A2 will not attempt to access x; (ii) if A1 executes after A2 then A2 will access
x when x is still protected. In either case, the accesses to x satisfy Rule-1.

Since the example is correctly synchronized, an implementation that supports
DS must run it with strong semantics. To illustrate why this requirement may
pose a problem, consider the execution of this example using an STM, such as
Bartok-STM [19], that employs a combination of commit-time conflict detection
and in-place updates. Suppose that A2 executes up to line T2.3, and A1 then
executes in its entirety. The implementation will allow A1 to commit successfully,
and will force A2 to roll back only at the point when it tries to commit. However,
before A2 reaches that point, A2 will execute line T2.3 and will increment the
value of x. The implementation of unprotect must ensure that T2.3 does not
race with T1.5. Our implementation does this by causing an unprotect opera-
tion to block until conflicting transactions have finished rolling back. We present
our implementation based on Bartok-STM in detail in Section 3.

Next, we resolve some subtleties in the details of DS, and discuss the rationale
for the design (in particular the reasons for Rule-1 and Rule-2). Three principles
motivate many of our design decisions:

1. The “fundamental property” [20]: The criteria for using DS correctly should
be defined in terms of a program’s execution under strong semantics. This
makes programs portable across TM implementations.

2. Compatibility with normal memory accesses: We want to avoid needing to
modify non-transactional memory accesses; we do not want to modify ac-
cesses from within the kernel, and we cannot add barriers to reads and writes
performed by direct-memory-access (DMA) from devices.

3. Implementation flexibility and parallelism: We want to support a wide range
of implementations—for example STMs which make in-place updates (e.g.,
[19,21]), STMs which defer updates until transactions commit (e.g., [11])
as well as HTMs and implementations based on lock inference. We want
to avoid introducing contention between non-conflicting operations and to
avoid adding costs to implementations with strong native guarantees (e.g.,
implementations based on lock inference should not have to dynamically
track which objects are protected).

The semantics of DS requires several delicate design choices. For example, what
if protect is called on a location that is already protected? Could DS operations
be called anywhere (that is, could Rule-2 be eliminated)? What happens if data
is accessed in the wrong way: should the access fail with an exception, or continue
regardless? If such an access is implemented by a transaction, then should the
transaction block, or be rolled-back and re-executed? What if code tries to write
to read-only data?

Our goal of supporting DS over many different implementations provides a
way of selecting between different options. Conversely, other decisions would be

Implementation and Use of Transactional Memory with Dynamic Separation 67

possible if we restricted attention to particular implementation techniques. Many
design choices follow from considering two extreme kinds of TM:

– HTM with strong atomicity: We do not want to impose the overhead of track-
ing per-object protection states when the underlying TM provides strong
atomicity. Hence we avoid design choices that require this information to
be available at run-time: we cannot require DS operations to block or fail if
called on the wrong kind of data. Similarly, we cannot require data accesses
to block or fail if made on the wrong kind of data.

– STM implemented with in-place updates and optimistic concurrency con-
trol: Considering this particular kind of STM motivates the rule that DS
operations cannot occur inside transactions. The following example, which
does not obey Rule-2, illustrates this point:

// Initially b_shared=true, b_shared protected, b unprotected

atomic { atomic {
// Atomic block A1 // Atomic block A2
b_shared = false; // 3 if (!b_shared) { // 1

} protect(b); // 2
<update b>; // 5 <update b>; // 4

unprotect(b);
} }

If we were to allow DS operations within atomic blocks then this example
would be correctly synchronized (either A1 runs first, in which case A2 does
not access b, or A2 runs first and A1 sees A2’s updates). However, with
optimistic concurrency control, the steps could execute in the order shown:
A2 is doomed to roll back but, with lazy detection, the conflict has not yet
been identified and the memory updates at 4 and 5 will race. It is insufficient
to validate A2 as part of step 2 because the conflict does not occur until step 3.
We therefore decide that DS operations cannot be invoked inside atomic
blocks. Again, one could make other decisions if interest were restricted to
particular implementation techniques. We return to this point in Section 6.

3 Implementing Dynamic Separation in C#

In this section, we discuss implementations of DS. First, we describe how we
apply the idea of DS to the C# language (Section 3.1). Second, we describe how
we extend the Bartok-STM implementation to support correctly synchronized
programs with strong atomicity (Section 3.2).

3.1 Dynamic Separation in C#

Three general questions arise in applying dynamic separation to C#:
First, at what granularity do we associate protection status with data? We

chose to dynamically associate a protection mode with each C# object. We
considered alternatives: per-class settings would hinder code re-use (e.g., all
Hashtable objects would have to be protected or all unprotected), and per-
field settings would require repeated DS operations (e.g., on each element of

68 M. Abadi et al.

an array, introducing similar asymptotic costs to marshaling the data by copy-
ing). We do not associate a protection mode with variables because they remain
thread-local. We chose to statically declare the protection mode of static fields
rather than letting them change mode dynamically. Our reasoning is that static
fields often represent read-only state that is accessed by many threads in differ-
ent protection modes: the field and the data reachable from it remain read-only.
This engineering choice could readily be revisited.

The second design question is how to represent the DS operations. Rather
than adding keywords we make the operations virtual methods on the Object
superclass. By default these methods change the protection mode of the object
itself. This lets the programmer override the methods to provide class-specific
functionality (e.g., to change the protection mode of a whole object graph).

The final question is exactly which operations constitute “accesses” to data
for the purpose of defining correct synchronization. Following our approach in
Section 2 our design is motivated by considering a range of implementation
techniques, and where problems or overheads would be incurred. This led us to
the general principle that we police only accesses to the normal fields of objects
(or, in the case of arrays, their elements); accesses to read-only information such
as virtual method tables are permitted anywhere. Our technical report considers
a number of language features in detail [18].

3.2 Implementation in Bartok-STM

Bartok-STM [19] uses weak atomicity with in-place updates and optimistic
concurrency control. This combination of features has been found to perform
well [21] and also to be particularly troublesome in terms of problems like pri-
vatization [6,5]. Therefore we focus in detail on it because we believe that this
is the most challenging setting in which to implement DS correctly.

Background, Bartok-STM design. The STM associates meta-data with each heap
object and, within transactions, adds operations to open each object before it
is accessed—OpenForRead on objects about to be read and OpenForUpdate on
objects about to be updated. The meta-data, called an object’s “STM word”,
records a version number indicating how many times the object has been opened
for update. This number is logged in OpenForRead and re-checked during trans-
action validation: a concurrent change indicates a conflict. The STM word also
contains a flag indicating whether the object is currently “owned” by a transac-
tion, i.e., open for update. This flag is used to enforce mutual exclusion between
writers. An invalid transaction may continue to execute as a “zombie” before a
conflict is detected [11]. The runtime system sandboxes failures such as null ref-
erence exceptions if they occur in this state. The runtime system also guarantees
that zombie transactions will be detected and rolled back.

Representing protected objects dynamically. We modify the STM word to include
a flag in place of one bit of the version number. If the flag is set then the object
is protected. If the flag is clear then the object is either unprotected or read-
only. (As we show, this implementation need not distinguish between these cases,

Implementation and Use of Transactional Memory with Dynamic Separation 69

void DSOpenForUpdate(tm_mgr tx, object obj) {
STMOpenForUpdate(tx, obj);
if (!IsProtected(GetSTMWord(obj))) {
if (STMIsValid(tx)) {

// Valid and choosing to access an unprotected object
throw new DynamicProtectionError(); // Fail (uncatchable)

} else {
// Choice to access object may be based on invalid state
STMAbort(tx); // Roll back and re-execute

} } }

Fig. 1. Production implementation of open-for-update supporting DS

although our checking tool in Section 4 must.) The flag is initialized along with
the rest of the object’s header when an object is allocated and then modified
only by the implementations of protect/unprotect/share.

Correctness argument. Our companion paper [17] contains a correctness theorem
in the context of the AME calculus. Here we include a brief informal sketch of
the main points. The modified STM implementation maintains an invariant that
transactions update only objects whose protection flags are set. This means that
zombie transactions will not trample on read-only or unprotected objects. So,
if the program is correctly synchronized, such transactions’ updates will not be
seen by non-transactional code.

We maintain this invariant by (i) modifying the function OpenForUpdate so
that it provides access only to protected objects, (ii) ensuring that unprotect
and share (which revoke write access from protected code) block until there
is no concurrent transaction with the object open for update (note that since
DS operations can be used only outside transactions, this does not provide a
way to create deadlock between transactions), and (iii) our restriction that DS
operations occur only in unprotected code rather than during the execution of
a (possibly invalid) transaction.

Our treatment of objects that are read (but not updated) is more subtle: we
do not need to check whether or not they are protected. The reason is that we
aim to guarantee strong semantics only for correctly synchronized programs: if a
program is correctly synchronized, and a transaction running in it is still valid,
then it will read only from protected and read-only objects. Conversely, if the
transaction is not valid, then the invalidity will be detected in the normal way.
In either case, we meet the requirement to run correctly synchronized programs
with strong semantics.

Pseudo-code. Figure 1 shows DSOpenForUpdate in pseudo-code. (We use a DS
prefix on functions provided by the new run-time with DS, and an STM prefix on
the underlying functions provided by the existing STM.) The implementation
starts by opening the object for update, leaving the protection bit unchanged.
Then, before the transaction can update the object, it examines the protection
bit. If the object is protected then the transaction proceeds as usual. Otherwise,
if the object is not protected, then the transaction is validated. If it is valid then
the program is not correctly synchronized: it is about to access an unprotected

70 M. Abadi et al.

void DSUnprotect(tm_mgr tx, object obj) {
while (true) {
w = GetSTMWord(obj);
if (!IsProtected(w) {

break; // Already unprotected/readonly: done
} else if (IsOwned(w)) {

continue; // Wait until object not open for update
} else {

new_w = CreateSTMWord(w.GetVersion(),
NOT_PROTECTED, NOT_OWNED);

if (CASSTMWord(obj, w, new_w)) {
break; // Installed new STM word; done

} } } }

Fig. 2. Production implementation of DSUnprotect

object transactionally so the program fails with an error. If the transaction is
invalid then the transaction is aborted and re-executed.

We extend the STM interface with operations that correspond to protect,
unprotect, and share. We show unprotect in pseudo-code in Figure 2. This
implementation is a loop which repeats until either (i) it observes that the object
is already unprotected (either before the call, or by a concurrent unprotect), or
(ii) it succeeds in making the object unprotected. In the second case, execution
cannot proceed until the object is not owned by any transaction (IsOwned re-
turns false) to preserve the invariant that protected code updates only protected
objects. (Even in a correctly synchronized program, a zombie transaction may
still have a previously protected object open for update: we must wait for such
transactions to drain from the system.)

The implementation of share is identical to that of unprotect because the
STM does not need to distinguish read-only objects from unprotected ones. The
implementation of protect is symmetric to that of unprotect with the negation
removed on !IsProtected, the STM word being created with a PROTECTED flag
rather than NOT PROTECTED, and the test of IsOwned being redundant.

4 Dynamically Checking Correct Usage

We extended the Bartok compiler with a debug mode that provides dynamic
checks of whether or not a program run is correctly synchronized. This mode
works much like dynamic race detectors. Our goal is to report errors without
any false alarms, without missing error reports, and with all execution before
the error being correct under strong semantics.

We do not place any dynamic checks on accesses to local variables since stacks
are thread-local in C#. We handle accesses to static fields during compilation:
the compiler generates two versions of each method, one for use inside transac-
tions, and another for use outside. We compile correct-mode accesses as usual
and incorrect-mode accesses to code that will report an error if it is executed.

Object accesses are handled by checking protection information in the ob-
ject’s STM word. Unlike in the production implementation we must distinguish
between unprotected data and read-only data, in order to report errors where
unprotected code attempts to update putatively read-only data. We make this

Implementation and Use of Transactional Memory with Dynamic Separation 71

distinction by reserving a further bit from the STM word. (We still have 27 bits
of version number space and mechanisms to recover from overflow [19].)

We must distinguish four sources of memory accesses:

1. Transactional code: At runtime we must report an error if either (i) a valid
transaction opens an unprotected or read-only object for writing, or (ii) a
valid transaction sees an unprotected object in its read set.

2. Non-transactional code: We must check the object’s protection mode atomi-
cally with the data access: otherwise, in an incorrectly synchronized program,
a concurrent thread may protect the data and access it transactionally, let-
ting us see a non-committed transaction’s write without reporting an error.
We deal with this difficulty in a similar way to Shpeisman et al. [14]: we
expand each non-transactional access into a series of steps that accesses the
STM word along with the data location. In effect we treat the access as a
small transaction.

3. Runtime system (RTS) code: The GC and other pieces of the RTS are im-
plemented in C# and compiled along with the application. The RTS per-
forms its own concurrency control—e.g., using locks to protect free-lists in
the memory allocator, or ensuring that all application threads are stopped
before the GC traverses the heap. We must not report errors from such
accesses made by RTS code. We therefore introduce a new source-code at-
tribute RTSRoot to identify entry points to the RTS. Such methods are com-
piled without access-mode checks along, recursively, with any code they call.
The RTS does not call into application code, so the resulting duplication is
limited to a small number of system classes (e.g., System.UIntPtr whose
instances represent pointer-sized integers).

4. Native code: In correctly synchronized programs an object passed to native
code must have been pinned in unprotected code. We test that (i) an object
is unprotected when it is pinned, and (ii) an object being protected is not
pinned.

5 Evaluation

We have used the implementation described in Section 3 to study the effective-
ness of DS. We evaluate DS within the AME programming model [3]. In this
setting, all code runs inside a transaction by default and non-transactional code
is explicitly delimited by the programmer. In Section 6 we briefly discuss how
DS might be used in a traditional TM programming model with atomic blocks.

The performance of a program with DS depends on several factors: the im-
mediate cost of the DS operations, the overhead that supporting them adds to
the TM, and any costs incurred in structuring the program to use DS.

Using Bartok-STM, the fast-path of the DS operations is a single read then
compare-and-swap (CAS) on the object’s STM word. If the CAS fails then the
slow path distinguishes the different cases as in the pseudo-code of Figure 2. DS
operations block only if the object is open-for-update by a transaction (which, in

72 M. Abadi et al.

a correctly synchronized program, must be a zombie transaction). This delay is
the same as for a non-transactional access in typical software implementations of
strong atomicity [14,15,16]. Supporting DS adds no overhead to the fast-path of
the existing STM operations: the check of whether or not an object is protected
is combined with an existing test of whether or not it is open for update.

These performance characteristics would change slightly for an STM with
deferred updates: the DS operations would never need to wait for transactions to
roll back, though they might still block while a transaction is committing. Again,
these costs resemble those of a non-transactional access in Shpeisman et al.’s
design. With hardware support for strong atomicity the DS operations would be
no-ops and, of course, no changes would be needed to the TM implementation.

A more subtle question is how performance is affected by structuring a pro-
gram to be correctly synchronized under DS. There are both positive and neg-
ative effects. In comparison with static separation, DS may allow marshaling
code to be removed. In comparison with violation-freedom or a single-global-lock
discipline, DS requires the DS operations themselves, of course, and also that
the program be structured so that the DS operations are called appropriately.
Moreover, while the DS operations add a cost, the underlying implementations of
more permissive models limit scalability by introducing synchronization between
non-conflicting transactions [8] and preclude the use of in-place updates [6].

We examined the performance of two applications built over an IO library
used with the AME programming model [3]. Most of the code in these applica-
tions executes transactionally, with brief calls out into normal code to perform
IO requests that have been enqueued by a transaction. Buffers are transferred
between these modes by using DS operations. We describe the design and im-
plementation of the IO library more thoroughly in our technical report [18].

The first application, FileTest, is a micro-benchmark which copies a file on
disk using asynchronous IO requests. We build two versions: “dummy” in which
the underlying IOs are not sent to the kernel, and “real” in which they are. The
dummy version makes this loop CPU-bound, highlighting the overhead added
by the DS operations. The second application, WebProxy, is a caching web proxy
which interacts with multiple concurrent clients and web servers, maintaining an
on-disk page cache. We load the web proxy with 1..4 concurrent client requests.
In each case we use sufficiently large files that the execution time is readily
measurable. We use an otherwise-unloaded machine with dual 4-core processors
and plentiful memory. Both applications are quite simple, and our experiments
can be interpreted mostly as a sanity check that our implementation does not
introduce any unexpected overhead.

Figure 3 shows the results. We compare five different implementations. “Base-
line” uses the underlying STM with DS disabled. We normalise against its per-
formance. “Baseline + DS” is our implementation of DS. “Run-time checking” is
the implementation described in Section 4. WebProxy performs and scales identi-
cally to a (more complicated) alternative built using traditional synchronization.

As expected, the overhead of “Baseline + DS” over “Baseline” is less than
1%, even in the CPU-bound program. However, the “Baseline” is not a correct

Implementation and Use of Transactional Memory with Dynamic Separation 73

FileTest FileTest WebProxy WebProxy WebProxy WebProxy

(dummy) (real) (1) (2) (3) (4)

Baseline 1.00 1.00 1.00 1.11 1.27 1.49
Baseline + DS 1.00 1.00 1.00 1.11 1.27 1.49

Serialized 1.41 1.27 1.00 1.11 1.27 1.49
Serialized + DS 1.42 1.27 1.00 1.11 1.27 1.49

Run-time checking 1.01 1.02 1.00 1.11 1.27 1.49

Fig. 3. Performance of test applications—execution time, normalised against “base-
line” and, for WebProxy, a 1-client workload

implementation because it may allow undetected conflicts between transactional
and non-transactional accesses in correctly synchronized programs. To confirm
that this did not distort results (for example, if such race conditions delayed the
baseline execution), we built an alternative “Serialized” implementation that
serializes transactions with a global lock wrapped around the baseline STM
implementation. This implementation correctly supports DS with the operations
compiled as no-ops. In “Serialized + DS”, we add the normal DS implementation.

Finally, we studied an alternative implementation of the IO library built to
maintain static separation between transactional and non-transactional data.
Prior to developing DS this was the only correct programmer-centric program-
ming model we had identified for writing programs with Bartok-STM. Static
separation requires data to be marshaled between access modes. Even with the
IO-intensive AME applications we are using, this made the total execution time
over 10 times longer than “Baseline + DS”.

6 Using Dynamic Separation with Atomic Blocks

We designed the DS operations alongside the AME programming model [3].
There are several differences between AME and typical proposals to extend main-
stream languages with atomic blocks. First, in the AME model, a program con-
sists almost entirely of atomic sections. These are punctuated by “unprotected”
code blocks which finish the ongoing atomic section, execute non-transactionally,
and then start a new atomic section. Consequently the atomic sections are not
necessarily block-structured. The second difference is that unprotected blocks
are primarily intended for use in low-level libraries (such as the IO library of the
examples in Section 5). They typically occur at the interface between code writ-
ten in C# and native code, and include low-level operations like pinning objects
in memory so that the GC does not move or reclaim them. In this context it
seems reasonable to add other explicit operations, like those for DS.

To what extent is DS an appropriate discipline for programming with block-
structured transactions in a mainstream language? We previously showed that
such a language can be encoded in AME [6], so the theory carries over. The
question is whether DS forms a palatable programming model.

74 M. Abadi et al.

One seemingly attractive feature of programming with atomic blocks is the
notion that arbitrary sections of code may be placed in atomic blocks, so long as
the program is correctly synchronized. This feature would not hold under our DS
design, since changes in an object’s protection mode may not occur inside atomic
blocks (Rule-2 of Section 2). Consequently, any code that uses DS operations
may be executed only non-transactionally, and programmers must be aware of
whether or not functions that they call might use DS operations internally.

However, we speculate that programs in which data changes between transac-
tional and non-transactional accesses will need to be carefully written anyway,
in order to avoid race conditions. It may not be unreasonable, therefore, to imag-
ine that programmers will already need to be aware of whether or not a given
function call will attempt to change the access mode of a given piece of data.

If Rule-2 were to prove problematic, we believe it would be possible to permit
DS operations to occur anywhere in a program, at the loss of some implementa-
tion flexibility. In particular, given the last example from Section 2, we believe
that this change would restrict DS to STMs that make deferred updates or that
detect conflicts eagerly.

7 Related Work

Adve and Hill pioneered the approach of requiring correctly synchronized pro-
grams to run with sequential consistency, and the use of a programmer-centric
definition of which programs are correctly synchronized [22]. Hill subsequently
argued that hardware should provide sequential consistency [23]. However, the
design of a language’s memory model must consider not only the properties of
hardware but also program transformations made by compilers. Spear et al. [5]
and Abadi et al. [6] concurrently identified the link between Adve and Hill’s
work and languages implemented over TM with weak atomicity.

Many papers have examined semantics and corresponding programming dis-
ciplines for the use of TM:

Strong programming disciplines. Shpeisman et al. showed how to guarantee
strong atomicity over an STM that natively provides weak atomicity [14]. Sub-
sequent work has improved on the performance of such implementations [15,16].
Lev and Maessen introduced the idea of compiling non-transactional memory ac-
cesses to include a run-time check of whether the data being accessed is visible
to transactions [24]. If so, the data is accessed using the TM. Their design tracks
data’s visibility at run-time, marking objects as transactional when they are
made reachable via an existing transactional object. None of these approaches
meets our goal of allowing implementations with weak atomicity in which the
kernel or DMA transfers can access program data directly.

Violation-freedom. Violation-freedom [6] formalizes the notion that the same
data should not be accessed transactionally and non-transactionally at the same
time. Running violation-free programs with strong semantics seems to conflict
with our goal of implementation flexibility: it can preclude STM implementations
with optimistic concurrency control and in-place updates [6].

Implementation and Use of Transactional Memory with Dynamic Separation 75

Single-Global-Lock Atomicity (SGLA). Menon et al. [8] defined a “single-global-
lock atomicity” semantics for transactions in Java. SGLA relates the behavior
of a program with atomic blocks to one where those blocks are replaced by syn-
chronized regions on a process-wide lock. The transactional program is correctly
synchronized if the resulting lock-based program is correctly synchronized under
the Java memory model. Supporting SGLA (like assuming violation-freedom)
does not meet our goal of implementation flexibility. Known implementations
of SGLA involve either pessimistic read locks or synchronization between non-
conflicting transactions.

Transactional fences. Dice and Shavit identified the need for an operation to
“quiesce” a transactionally accessed object before it is deallocated after a trans-
action [10]. This operation ensures that the STM implementation has finished
all accesses to the object before, for example, the page holding it might be re-
turned to the operating system. Wang et al.’s implementation of atomic blocks
for C [12] uses a similar form of quiescence to ensure that code running af-
ter a transaction sees updates made by preceding transactions. Wang et al.’s
implementation maintains a shared list of active transactions that is updated
when transactions start or commit. These updates require synchronization with
all concurrent transactions, rather than just those accessing a specific object.
Spear et al. designed several techniques to implement privatization idioms cor-
rectly, including explicit “transactional fences” and “validation fences” [5]. A
thread calling a transactional fence is blocked until any concurrent transactions
have committed. A validation fence is similar, except that a thread may proceed
once concurrent transactions have been validated. Unlike SGLA and violation-
freedom, supporting these fences seems compatible with a wide range of TM
implementations that allow non-conflicting transactions to run without synchro-
nization between their implementations.

Static separation. Under static separation disciplines, each piece of data is ac-
cessed either only transactionally or only non-transactionally. Several definitions
of static separation have been considered, typically implemented via type sys-
tems ([6,2,7]). While static separation is appealing in functional languages like
Haskell [2], it is less palatable in imperative languages where most data com-
prises mutable shared objects. Data has to be marshaled between different access
modes by copying. Moreover, if static separation is expressed through a type sys-
tem, then simple versions of static separation can impede code re-use (much like
all simple type systems). DS allows data to change access modes without being
copied. Our implementation of DS aids code re-use by checking dynamically that
data is accessed in the correct mode, rather than using a simple type system.

8 Conclusion

We believe that DS has several appealing properties. It can be used over a wide
range of TM implementations. It does not introduce synchronization between
non-conflicting transactions, and it allows unprotected data to be accessed freely

76 M. Abadi et al.

by system calls and DMA transfers. When used with HTMs or with lock infer-
ence, it avoids imposing a runtime overhead for protection flags. Finally, DS is
based on a simple, precise definition for correct synchronization which may serve
as the foundation for further formal reasoning and for static checking.

Acknowledgements. We are grateful to the anonymous reviewers, and to Katie
Coons, Rebecca Isaacs, Yossi Levanoni, Jean-Philippe Martin, Mark Moir, and
Katherine Moore for helpful discussions and comments.

References

1. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: ISCA 1993, 20th International Symposium on Computer
Architecture, pp. 289–301 (May 1993)

2. Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable memory trans-
actions. In: PPoPP 2005, 10th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 48–60 (June 2005)

3. Isard, M., Birrell, A.: Automatic mutual exclusion. In: HotOS 2007, 11th Workshop
on Hot Topics in Operating Systems (May 2007)

4. Smaragdakis, Y., Kay, A., Behrends, R., Young, M.: Transactions with isolation
and cooperation. In: OOPSLA 2007, 22nd ACM SIGPLAN Conference on Object
Oriented Programming Systems and Applications (October 2007)

5. Spear, M.F., Marathe, V.J., Dalessandro, L., Scott, M.L.: Privatization techniques
for software transactional memory. Technical Report 915, CS Dept, U. Rochester
(February 2007)

6. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory
and automatic mutual exclusion. In: POPL 2008, 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 63–74 (2008)

7. Moore, K.F., Grossman, D.: High-level small-step operational semantics for trans-
actions. In: POPL 2008, 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 51–62 (January 2008)

8. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R.L.,
Saha, B., Welc, A.: Practical weak-atomicity semantics for Java STM. In: SPAA
2008, 20th Symposium on Parallelism in Algorithms and Architectures, pp. 314–
325 (June 2008)

9. Blundell, C., Lewis, E.C., Martin, M.M.K.: Deconstructing transactional seman-
tics: The subtleties of atomicity. In: WDDD 2005, 4th Workshop on Duplicating,
Deconstructing and Debunking, pp. 48–55 (June 2005)

10. Dice, D., Shavit, N.: What really makes transactions faster? In: TRANSACT 2006,
1st ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing (June 2006)

11. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: DISC 2006, 20th In-
ternational Symposium on Distributed Computing, pp. 194–208 (September 2006)

12. Wang, C., Chen, W.Y., Wu, Y., Saha, B., Adl-Tabatabai, A.R.: Code generation
and optimization for transactional memory constructs in an unmanaged language.
In: CGO 2007, International Symposium on Code Generation and Optimization,
pp. 34–48 (March 2007)

Implementation and Use of Transactional Memory with Dynamic Separation 77

13. Shavit, N., Touitou, D.: Software transactional memory. In: Proc. 14th Annual
ACM Symposium on Principles of Distributed Computing, pp. 204–213 (August
1995)

14. Shpeisman, T., Menon, V., Adl-Tabatabai, A.R., Balensiefer, S., Grossman, D.,
Hudson, R.L., Moore, K.F., Saha, B.: Enforcing isolation and ordering in STM. In:
PLDI 2007, ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 78–88 (June 2007)

15. Schneider, F.T., Menon, V., Shpeisman, T., Adl-Tabatabai, A.R.: Dynamic opti-
mization for efficient strong atomicity. In: OOPSLA 2008, 23rd ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applica-
tions, pp. 181–194 (October 2008)

16. Abadi, M., Harris, T., Mehrara, M.: Transactional memory with strong atomicity
using off-the-shelf memory protection hardware. In: PPoPP 2009, 14th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (February
2009)

17. Abadi, M., Harris, T., Moore, K.F.: A model of dynamic separation for transac-
tional memory. In: CONCUR 2008, 19th International Conference on Concurrency
Theory, pp. 6–20 (August 2008)

18. Abadi, M., Birrell, A., Harris, T., Hsieh, J., Isard, M.: Dynamic separation for
transactional memory. Technical Report MSR-TR-2008-43 (March 2008)

19. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing memory transactions.
In: PLDI 2006, ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 14–25 (June 2006)

20. Saraswat, V.A., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: PPoPP 2007, 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 161–172 (March 2007)

21. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-
STM: a high performance software transactional memory system for a multi-core
runtime. In: PPoPP 2006, 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 187–197 (March 2006)

22. Adve, S.V., Hill, M.D.: Weak ordering – a new definition. ACM SIGARCH Comput.
Archit. News 18(3a), 2–14 (1990)

23. Hill, M.D.: Multiprocessors should support simple memory-consistency models.
Computer 31(8), 28–34 (1998)

24. Lev, Y., Maessen, J.W.: Towards a safer interaction with transactional memory
by tracking object visibility. In: SCOOL 2005, Workshop on Synchronization and
Concurrency in Object-Oriented Languages (October 2005)

Exploiting Speculative TLP in Recursive Programs by
Dynamic Thread Prediction

Lin Gao1, Lian Li1, Jingling Xue1, and Tin-Fook Ngai2

1 University of New South Wales, Sydney, Australia
2 Microprocessor Technology Lab, Intel

Abstract. Speculative parallelisation represents a promising solution to speed
up sequential programs that are hard to parallelise otherwise. Prior research has
focused mainly on parallelising loops. Recursive procedures, which are also fre-
quently used in real-world applications, have attracted much less attention. More-
over, the parallel threads in prior work are statically predicted and spawned. In
this paper, we introduce a new compiler technique, called Speculative Paralleli-
sation of Recursive Procedures (SPRP), to exploit speculative TLP (thread-level
parallelism) in recursive procedures. SPRP combines a dynamic thread-spawning
policy and a live-in prediction mechanism in a single helper thread that executes
a distilled version of a procedure on a dedicated core. It serves to predict both
the invocation order of recursive calls and their live-ins in concert and dispatches
these calls to the other cores in a multicore system for parallel execution. To
our knowledge, SPRP is the first compiler technique to speculatively parallelise
recursive procedures this way. Compared with existing static thread prediction
techniques, dynamic thread prediction reduces the number of useless threads
spawned, and consequently, misspeculation overhead incurred. Our preliminary
results demonstrate that this technique can speedup certain recursive benchmarks
that are difficult to parallelise otherwise.

1 Introduction

Parallelisation of sequential programs has been an on-going research area. Prior work
has focused mainly on loops. Recursive procedures, which are also frequently used in
real-world applications, have attracted much less attention.

When call sites in a recursive procedure are data-independent (as in many divide-
and-conquer algorithms), techniques for their automatic parallelisation exist [20, 22,
10, 24, 21]. Such techniques have demonstrated performance advantages in achieving
task-level parallelism among independent calls in regular programs and even irregular
programs when they are either augmented with dependence-related programmer anno-
tations or written in a certain programming style, e.g., component-based programming.
Also, parallel programming languages such as those discussed in [5, 4] allow a con-
cise specification of parallel algorithms on irregular data; but they rely entirely on the
domain-expert programmer to expose the parallelism by identifying the tasks that can
safely be executed in parallel. However, when dependence analysis is inconclusive and
user/programmer involvements are unavailable, the potential presence of dependences
will limit parallelism to be exploited.

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 78–93, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Exploiting Speculative TLP in Recursive Programs 79

Speculative multithreading (SpMT) processors [15, 18, 19, 1, 13, 9] enable the com-
piler to apply speculative parallelisation to optimistically create parallel threads for
a sequential program without having to prove they are independent. The basic idea
is to speculate on the absence of certain data/control dependences to expose more
speculative TLP (thread-level parallelism) at the cost of small misspeculation penal-
ties [30, 23, 3, 17, 27, 11, 18, 1, 26, 8, 25, 29]. So far research efforts have been largely
devoted to extracting speculative TLP from loops. A few attempts have been made to
speculatively parallelise whole programs [12, 15, 23, 3, 11, 6, 1]; but they are not de-
signed to maximally exploit speculative TLP in recursive procedures. Moreover, paral-
lel threads in all these existing approaches are either statically predicted and spawned
or automatically extracted by hardware at procedures, loops or cache line boundaries.

Static (thread) prediction can be quite effective in parallelising loops because the ex-
ecution order of loop iterations is statically predictable (except the last one, which needs
to be control-speculated). However, this compile-time decision becomes less effective
when applied to recursive procedures. The data structure operated on by a recursive pro-
cedure can vary from input to input and can also change dynamically during program
execution. Therefore, when the dynamic call graph of a recursive procedure is specu-
lated, the invocation order of recursive call instances becomes nondeterministic and the
potential presence of speculation failures can severely limit parallelism to be exploited.

In this paper, we present a new compiler technique, called Speculative Parallelisa-
tion of Recursive Procedures (SPRP), to speculatively parallelise recursive procedures
for SpMT architectures. We restrict ourselves to those irregular programs that cannot
be parallelised effectively by existing techniques. Furthermore, we are particularly in-
terested in those where recursive calls are control-dependent on some runtime values
so that only a portion of their underlying data structures, which may also change at run
time, may be traversed. As a result, the invocation order of recursive calls is non-trivial
to predict accurately, even at run time.

For a given recursive procedure, SPRP will transform it into a helper thread running
on a dedicated core and a group of worker threads running on the other cores in a
SpMT multicore system. The helper thread, which is a smaller, faster version distilled
from the original procedure, serves to predict both the invocation order of recursive
calls made and their live-in values as well as to dynamically schedule these calls to run
as parallel worker threads. The helper thread is not constrained by correctness. Thus,
its predictions are validated whenever a worker thread has run to completion. When a
prediction goes wrong, a recovery mechanism introduced in this paper will bring the
helper thread back to the point where new predictions (for the future recursive calls)
will be made. Due to dynamic thread prediction and thread spawning, SPRP is capable
of exploiting more TLP in recursive procedures that is otherwise difficult to exploit in
other ways as validated in our experiments.

We have evaluated SPRP using four representative irregular recursive procedures
using a cycle-accurate simulator. Our preliminary results are encouraging. An average
region speedup of 1.29 for recursive procedures and an average program speedup of
1.21 have been achieved by our technique on four cores. It is important to emphasise
that such programs may have to be left to run sequentially on one single core otherwise
(unless they are manually parallelised by domain experts). So this work demonstrates

80 L. Gao et al.

the significant performance potential achievable by automatic parallelisation of hard-
to-parallelise recursive procedures, providing insights on further research in this area.

The rest of this paper is organised as follows. Section 2 reviews the related work.
Section 3 introduces the basic idea behind SPRP by a motivating example. Section 4
discusses how to construct the helper thread for a recursive procedure. Section 5 de-
scribes our recovery mechanism. Section 6 presents and analyses our experimental re-
sults. Section 7 concludes the paper with some future work.

2 Related Work

Helper threads [28, 14, 7, 31, 16] have been used to speculatively execute a code region
to reduce the latency of its expensive instructions. In these research efforts, a helper
thread typically serves the purposes of data prefetching or branch predictions or both.
In this work, the helper threads used in SPRP are required to predict quite accurately
both the order of recursive calls and their live-ins in order to reduce the misspeculation
overhead incurred and thus improve the overall parallelism achieved.

MSSP [32] runs a distilled version of a given program on a master processor to
predict the live-ins for tasks running on slave processors. Our helper threads and worker
threads used in SPRP are conceptually similar to the master and slave threads in MSSP
but are specifically developed to parallelise recursive procedures. MSSP skips recursive
procedures when constructing distilled programs. In contrast, a helper thread used in
SPRP works not only as a producer for spawning worker threads to execute recursive
calls but also as a predictor for pre-computing the live-ins for worker threads.

Some compilation techniques for SpMT architectures [12, 2, 23, 3, 27, 11, 18, 15] al-
low threads to be formed at arbitrary control flow edges. In [12], threads are formed
at loop or procedure boundaries using actual profile-run execution times. PD (Program
Demultiplexing) [2] attempts to execute different procedures in a program in parallel
as long as their inputs are speculatively available. The Mitosis compiler [23] encodes
a P-slice – a piece of code to predict thread live-in values (similar to a distilled pro-
gram in MSSP and a helper thread in SPRP) – into a speculative thread. Unlike [12,2],
thread partitioning in Mitosis is not restricted to loop or procedure boundaries. How-
ever, what differs SPRP from all these previous techniques is that SPRP embraces
dynamic thread prediction while all these earlier techniques resort to static thread pre-
diction. Furthermore, if these earlier techniques are applied to parallelise a recursive
procedure, the invocation order of recursive calls and their required live-in values have
to be predicted separately. Therefore, speculative TLP attainable by these techniques
seems to be limited for procedures with multiple recursive call sites.

Some researchers have also proposed microarchitecture enhancements to automati-
cally extract threads from sequential programs at run time. Capsule [20] automatically
parallelises component-based programs through frequent hardware resource probing.
Thread creation is by means of self-replication, and in addition, threads are allowed
to commit in any order. Hence, Capsule is applicable only to certain applications that
can be componentised. Instead of program structures, Atlas [6] only considers memory
access instructions when partitioning threads. DMT [1] creates threads at procedure
and loop boundaries. A speculative thread is always spawned at the return address of a

Exploiting Speculative TLP in Recursive Programs 81

1 main() {
2 f(p, d)
3 }

4 f(Node p, Data &d) {

5 doit (p, d);

6 if (p->c1)
7 f(p->left, d);
8 if (p->c2)
9 f(p->right, d);
10 }

1

2 3

4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19

20 21 22

23 24

1f1

2f2 3f7

4f3 5f6 6f8 7f11

8f4 9f5 11f9 12f10

(a) A recursive procedure (b) Initial tree data structure (c) Actual recursion tree

Fig. 1. A recursive procedure illustrated for some particular input

main() {
spawn f help (f work SP-W FS, p,d);
f work (p, d, f work SP, L1);

L1:
kill

}
(a) main

f help (W SP, p, d) {
if (p->c1)

spawn f work(p->left, d, W SP, L2);
f help(W SP-W FS, p->left, d);

if (p->c2)
spawn f work(p->right, d, W SP, L3);
f help(W SP-W FS, p->right, d);

}
(b) Helper thread code

f work (p, d, W SP, RA) {
doit (p, d);
if (p->c1)

check (p->left, d);
L2:

if (p->c2)
check (p->right, d);

L3:
return RA;

}

W SP: frame pointer of its
activation record

W FS: frame size
RA: return address

(c) Worker thread code

1f1

2f2 3f10

4f3 5f7 6f11

8f4 9f6 11f12 12f13

14f5

10f8

21f9

(d) Predicted recursion tree

Fig. 2. Speculative parallelisation of the example in Figure 1 by the SPRP approach

call site. When DMT is applied to a recursive procedure, a speculative thread may be
spawned to execute a recursive call too early to have its live-ins predicted accurately
and its relevant dependences speculated successfully. This is because the spawner may
later create many less speculated threads to execute some recursive calls that would
have been executed earlier when the procedure were executed sequentially.

Techniques on automatic parallelisation of recursive procedures [22, 10, 24, 21] ex-
ploit task-level parallelism (i.e., coarse-grain parallelism) in embarrassingly parallel
recursive calls. In [10], data speculation is said to be supported but for all benchmark
applications used in their experiments, recursive calls are always independent. Irregular
recursive procedures are allowed in [22] provided that all multiple recursive calls are
independent and marked as such by (dependence-related) programmer annotations.

3 The SPRP Approach

Consider an irregular procedure given in Figure 1(a) with two recursive call sites. To
make this example concrete, let us assume that the data structure operated on is a tree.
The tree initially looks like what is shown in Figure 1(b) but may grow and shrink at run

82 L. Gao et al.

time. Whenever a tree node is visited, the core computations abstracted by doit(p, d) in
line 5 are performed. This statement accesses two live-ins p, a pointer to a tree node, and
d, some global data. Inside doit(p, d), all objects pointed to by p directly or indirectly
and d may be modified. Therefore, in any recursive call, d in lines 7 and 9 may have
different values since it may be modified in the first call made in line 7. The two call
sites in lines 7 and 9 are control-dependent on p. Hence, two successive call invocations
may be control-dependent or data-dependent. Figure 1(c) gives the dynamic call graph,
known as the recursion tree, for some input. Note that not all tree nodes in Figure 1(b)
may be visited. Each node in the recursion tree represents a recursive call invocation.
The two children of a parent node are the two calls invoked directly inside the parent.
The notation xfi shown inside a call node indicates that xfi is the i-th recursive call
applied to the tree node x in the data structure. (This tree node may be one created at run
time!) Sequential execution imposes a total ordering of all dynamic call invocations.

Figure 2 shows the parallelised code for the example. The helper thread running on
a dedicated core, say, core 0, serves to predict the recursion tree and the live-ins for
each recursive call and to dispatch these calls to run as worker threads on the remaining
cores (numbered from 1) in parallel. The helper thread is a sequential program running
in its own address space with its own runtime stack. All parallel worker threads run in
a shared address space by sharing a common runtime stack (starting from f work SP).
The meanings for W SP, W FS and RA are defined in Figure 2(c) and referred to later.

The execution starts from main (Figure 2(a)), which is spawned as the first worker
thread to execute on a core. First, the spawn instruction is executed so that the helper
thread (Figure 2(b)) is spawned to execute on its dedicated core. Second, the call
f work(p, d, f work SP, L1) (Figure 2(c)) is made to start the recursion. This first
worker thread is the head thread. In speculative execution, the head thread is the only
non-speculative worker thread that is allowed to commit. All other currently active
worker threads are speculative. Each active worker thread represents the execution of a
recursive call and thus runs in an activation record described in Section 5. Figure 2(d)
depicts the recursion tree predicted by the helper thread (if being allowed to run alone
to completion). However, the predicted recursion tree at run time may not be like this
since it will adapt itself according to the validation outcomes from worker threads.

Figure 3 illustrates our approach by giving a snapshot of all key activities involved
during program execution. In Figures 3(a) and (b), the head thread 1f1 has commit-
ted and validated that the next call 2f2 predicted by the helper thread is correct. So
2f2 becomes the new head thread. Let us look at how roll-back is performed when
a misspeculated call is detected as illustrated in Figures 3(c) – (e). In Figure 3(c), the
speculative worker thread 8f4 is validating if the execution of the next call predicted for
8f4 is correct or not. The answer is negative since the next node to be visited should be
node 9 rather than 14 as shown in Figure 1(c). So 14f5 is squashed and the helper thread
is instructed to roll back its state to spawn the next recursive call, 9f6 (Figure 2(d)).

3.1 Helper Thread

In the helper thread given in Figure 2(b), the instructions abstracted by doit(p, d) hap-
pen to be all pruned according to our construction algorithm described in Section 4.
The helper thread dynamically schedules worker threads by simulating the execution

Exploiting Speculative TLP in Recursive Programs 83

1f1

2f2

4f3

1f1

2f2

4f3

2f2

4f3

8f4

1f1

4f3

8f4

1f1

2f2

4f3

8f4

1f1

2f2

8f4

14f5

14f5

1f1

2f2

4f3

8f4

1f1

2f2

8f4

14f5

1f1

2f2

4f3

8f4

1f1

2f2

8f4

9f6

9f6

spawn roll-back re-start

check

check

squash

committed

head

Time

(a) (b) (c) (d) (e)

P
re
d
ic
te
d
 R
ec
u
rs
io
n
 T
re
e

B
u
il
t
b
y
 H
el
p
er
 T
h
re
ad

A
ct
u
al
 R
ec
u
rs
io
n
 T
re
e

B
u
il
t
b
y
 W

o
rk
er
 T
h
re
ad
s

1f1

2f2

4f3 4f3 4f3

Fig. 3. An illustration of SPRP. An arrow linking two calls represents their caller-callee relation.
For the helper thread, all calls are part of its predicted recursion tree. For worker threads, the
recursion tree is dynamically constructed consisting of committed threads and the head thread.

of the given recursive procedure: it spawns a new worker thread by executing a spawn
instruction whenever it reaches a call site. The helper thread is stalled if there is no free
core for a new worker thread and resumed when a free core becomes available. For each
predicted call, the predicted live-ins, the corresponding stack pointer and the return ad-
dress for the call must be communicated to its executing worker thread. These data are
passed as the arguments to f work.

3.2 Boundaries or Lifetimes of Worker Threads

The actual execution of a procedure is done by worker threads. Every call invocation has
a unique activation record. A worker thread T is executed in its own activation record
if it represents a non-leaf call. For a leaf call, T initially executes in its own activation
record and later in some of its callers. Let T.SP be the stack pointer associated with
the (current) activation record of T . Let Thread List be the list of all committed and
currently active worker threads in increasing order of their spawn times. Thread List
is the preorder traversal of the currently predicted recursion tree. All currently active
worker threads are ordered from least to most speculative in Thread List. The caller
of an active worker thread T , denoted Caller(T), is the last thread T ′ preceding T in
Thread List such that T.SP = T ′.SP − W FS. This means that the call executed by
T would be made directly in the call executed by T ′ (during sequential execution).

The boundary or lifetime of a worker thread T is defined as follows. When executing
f work, T starts at its first instruction and terminates at either the first check that it
dynamically executes or the kill instruction in main. There are three cases:

1. If p->c1 evaluates to true, T terminates at the first check.
2. If p->c1 evaluates to false and p->c2 to true, T terminates at the second check.

84 L. Gao et al.

3. When both guards are false, T represents a leaf call. By executing the “return RA”
instruction in f work, T will continue to execute at the return address RA with
the activation record of Caller(T) being set as its current activation record. The
execution of the code of Caller(T) may cause T to reach the second check (where
we are back to the second case) or the return RA instruction in Caller(T) (where
we are back to the third case again) in f work. As a result, a sequence of return
instructions executed by T will take it to either a check or a kill instruction.

To understand conceptually where a leaf call terminates, let RA(Callerm(T))
be the return address RA in the activation record of Callerm(T) at which T will
continue its execution, where Callerm(T) stands for m applications of the func-
tion Caller to T . Let Caller∗(T) be Callern(T) for some unique n � 1 such
that RA(Callern(T)) is either L1 (Figure 2(a)) or L2 (Figure 2(c)), and p->c2
evaluates to true when RA(Callern(T)) = L2. If RA(Caller∗(T)) = L1, the
dynamic last instruction of T is kill. If RA(Caller∗(T)) = L2, the dynamic last
instruction of T is the second check to be executed in the activation record of
Caller∗(T). Consider Figures 3(c) – (e), where 8f4 is assumed to be a leaf call.
Then Caller∗(8f4) = Caller(8f4) = 4f3 and RA(4f3) = L2. So 8f4 will termi-
nate after it has executed the second check in the activation record
of 4f3.

3.3 Validations of Predicted Calls

Consider when a worker thread T has reached its dynamically last instruction. There
are two cases. In one case, the last instruction is the kill instruction. If T is speculative,
then T is stalled. If T is the head thread, then the execution of the recursive procedure
has completed successfully. So the helper thread is killed. In the other case, the last
instruction of T is a check instruction. T will search for the successor worker thread
of T , denoted Succ Call(T), that is responsible for executing the next call to be made
after T at the check call site in T during sequential execution. Succ Call(T) is the
first thread T ′ following T in Thread List such that T.SP = T ′.SP + W FS and the
live-outs of T are identical to the predicted live-ins used by T ′.

If Succ Call(T) is found, all threads between T and Succ Call(T) in
Thread List are squashed. If T is speculative, T is stalled. Otherwise, T is the head
thread. Thus, the results of the validated T ′ are committed and T ′ becomes the new
head thread. If Succ Call(T) is not found, all more speculative threads than T in
Thread List are squashed. A recovery mechanism introduced in Section 5 is used to
steer the helper thread back to the right track so that the successor call can be spawned
at the check call site. If T is the last thread in Thread List, T is stalled until either
T is squashed or a more speculative thread T ′ than T is spawned (so that the valida-
tion at T can be performed). Let us consider Figures 3(c) – (e) again under the as-
sumption that T = 8f4 as shown in Figure 3(c) is a leaf call. Thus, Caller∗(8f4) =
Caller(8f4) = 4f3. By the time when 8f4 reaches the second check instruction
in the activation record of 4f3, we have 8f4.SP = 4f3.SP and Thread List =
{1f1, 2f2, 4f3, 8f4, 14f5}. Since 14f5 is the only worker thread following 8f4 and
8f4.SP = 4f3.SP = (w − 160) �= 14f5.SP + W FS = (w − 320) + 80 as shown
in Figure 5(a), the validation performed will fail. In fact, the next node to be visited

Exploiting Speculative TLP in Recursive Programs 85

6 8

7 9

0.45 0.39

5

entry

1

1

1

6 8

7 9

0.01

5

entry

0.01

0.03

0

0.01

0.02

(a) Control dependence subgraph (b) Data dependence subgraph

Fig. 4. Program dependence graph (PDG) of the procedure in Figure 1

should be node 9 rather than 14 as is clear in Figure 1(c). Thus, 14f5 is squashed and
the helper thread is re-directed to spawn 9f6 (Figure 2(d)).

3.4 Memory Dependence Speculations

Misspeculated memory dependences are handled in the normal manner [23,27]. A mis-
speculation is raised if a worker thread writes into a memory location where a more
speculative worker thread has already read from the same location. The misspeculated
worker thread is squashed and re-started. All worker threads that depend on the mis-
speculated worker thread are also re-started.

4 Construction of Helper Threads

The accuracy and the size of the helper thread affect the amount of speculative paral-
lelism SPRP can achieve but not the correctness of the SPRP execution.

The Program Dependence Graph (PDG) of a recursive procedure is used to con-
struct its helper thread. In the data dependence subgraph of PDG, only true or flow data
dependences are included. Each edge x → y in PDG is labelled with a probability value
px→y in [0, 1]. If x → y, is a data dependence, then px→y means that for every N writes
at x, only pN reads will access the same memory/register location at y during program
execution. If x → y is a control dependence, then px→y means that for every N execu-
tion of x, only pN will reach y. Figure 4 gives the PDG of the recursive procedure in
Figure 1. A node is numbered using the line number of its corresponding statement.

Let H be the set of instructions forming the helper thread. H is initialised with the
set of nodes in PDG that correspond to all the recursive call instructions. Next, for every
node u in PDG, we add u to H if ∃ v ∈ H such that (1) edge u → v is in PDG, and (2)
pu→v � D, where D is relatively large, if u → v is in the data dependence subgraph
and pu→v � C, where C is relatively small, if u → v is in the control dependence
subgraph. Here, D and C are some tunable parameters. The intention is to ignore in-
frequently occurring data dependences and frequently occurring control dependences.
The instructions in PDG are included in H iteratively until a pre-defined size limit has
been reached or no more nodes can be added.

The values of D, C and the helper thread size are likely to be application-dependent.
Our experience gained in this work is that data dependences tend to be bi-modal while

86 L. Gao et al.

Core 1 Core 3Core 2

14f5
w-240

w-320

w-320

w-400

w-320$spw-160$spw-160$sp

Shared Worker Thread

Stack

Private Buffer Private Buffer Private Buffer

8f4

1f1

2f2

4f3

w

w-80

w-160

w-240

(a) State of worker threads
Core 0

8f4 14f5
H-120

H-160

H-160

H-200

H-160$sp

Helper Thread

Stack
Mirrored Private

buffer of Core 3

Mirrored Private

buffer of Core 2

Mirrored Private

buffer of Core 1

H-80

H-120

1f1

2f2

4f3

H

H-40

H-80

H-120

(b) State of helper thread

Fig. 5. Machine state when a misspeculation is detected as illustrated in Figure 3(c)

control dependences tend to be tri-modal. These parameters can be tuned by profiling
and program analysis. In our experiments, D � 0.8 and C � 0.6 are reasonable.

In our example, let us assume D = 0.8 and C = 0.6. There are two call sites. So H =
{7, 9} initially. Note that 6 → 7 is a control dependence. So node 6 is added to H since
p6→7 < 0.6. Node 8 is included in H for the same reason. The probabilities of of all
data dependences are small. Finally, H = {6, 7, 8, 9}. This leads to the corresponding
helper thread as depicted in Figure 2(b).

5 Misprediction Recovery

This section describes our recovery mechanism developed to support the SPRP scheme
using the motivating example with respect to Figure 3. As explained in Section 3.3,
a misprediction is raised in Figure 3(c). SPRP will then roll back the states for the
execution of both the helper thread and worker threads. Suppose that 4f3, 8f4 and
14f5 run on cores 1, 2 and 3, respectively. (The helper thread runs on core 0.)

5.1 Recovering the State of Worker Threads

Figure 5(a) depicts the state of the worker threads at the time when a misprediction is
detected. The activation records of all past and current head threads have already been
committed to the shared runtime stack. The activation records of all speculative ones are
buffered in on-chip memory. Let us assume that the frame size of an activation record is
W FS = 80. In the example, the activation records of 1f1 and 2f2 have been commit-
ted to the shared stack. The activation records of 8f4 and 14f5 are buffered since both
are speculative. The activation record of the head thread 4f3 is on the shared stack. As a
leaf call, 8f4 branches to L2 to execute in the activation record of Caller∗(8f4) = 4f3

Exploiting Speculative TLP in Recursive Programs 87

Table 1. SpMT multicore system simulated

Parameter Value
Fetch, Issue, Commit bandwidth 4, out-of-order issue

L1 I-Cache 16KB, 4-way, 1 cycle (hit)
L1 D-Cache 16KB, 4-way, 3 cycles (hit)

L2 Cache (Unified) 1MB, 4-way, 12 cycles (hit), 80 cycles (miss)
Local Register File 1 cycle

Spawn Overhead 5 cycles
Commit Overhead 5 cycles

Validation Overhead 15 cycles

where a misprediction is detected. Hence, $SP on core 2 is pointing to the activation
record of 4f3. The mispredicted thread 14f5 is squashed (Figure 3(d)) and its buffered
data discarded. The helper thread is then informed to spawn 9f6 according to the cur-
rent state of 8f4 (Figure 3(e)), as described below.

5.2 Recovering the State of Helper Thread

As shown in Figure 5(b), the sequential execution of the helper thread is made to mirror
the parallel execution of worker threads. For every worker thread running on a core, the
execution results for the corresponding call invocation (including its activation record)
made in the helper thread are buffered in the mirrored private buffer for the core on core
0. Whenever a private buffer on a core is committed, discarded or released, the mirrored
private buffer is also committed, discarded or released in sync. Hence, the roll-back
activities performed by both the helper thread and worker threads are synchronised. In
general, the helper thread is smaller than a worker thread. For illustration purposes, we
assume the frame size of an activation record for each recursive call to f help made
in the helper thread (Figure 2(b)) is 40 (bytes). Recall that when a misprediction is
detected by the worker thread 8f4 running on core 2, 8f4 is pointing to the second
check of f work, causing 14f5 running on core 3 to be squashed. Correspondingly, (1)
the mirrored private buffer of core 3 is discarded, (2) the most up-to-date live-ins for
the successor call after 8f4, which is 9f6, are passed to the mirrored private buffer of
core 2, (3) $SP on core 0 is rolled back to the activation record corresponding to that of
4f3 that $SP on core 2 is pointing to, and finally, (4) the execution of the helper thread
is rolled back to point to the second spawn instruction in f help. Therefore, the helper
thread will be restarted to spawn a worker thread 9f6 with the most up-to-date live-ins.

6 Experimental Results

To evaluate SPRP, a preliminary implementation of SPRP is built on top of GCC
4.1.1 with programmer annotations indicating which recursive procedures are to be
parallelised. All benchmarks are compiled under the optimisation level “-O2”. The gen-
erated code is simulated using a detailed execution-driven microarchitectural simulator
built on top of SimpleScalar. The simulator models an SpMT quad-core system. Table 1
provides the main architectural parameters, which are similar to those used in the recent
work [23,8]. Each core is capable of executing the Alpha ISA. One core is dedicated to
the helper thread while the other three cores are used to execute worker threads.

88 L. Gao et al.

Table 2. Benchmarks

Benchmark I-size Fan-out W-size H-size H-size/W-size #Live-ins

Bh 256 1...8 131 29 0.22 7
Bisort 8192 2 57 27 0.47 5

Knapsack 15 2 447 24 0.05 6
Queens 9 1..9 2887 68 0.02 8

In Section 6.1, we describe the benchmarks used. In Section 6.2, we present and
discuss the performance speedups achieved by SPRP. The speedups on a quad-core
system may not be huge but they are close to the ideal ones attainable. Otherwise, these
hard-to-parallelise may have to be either run sequentially on one single core or manually
parallelised by domain experts in a case-by-case basis. In Section 6.3, we compare
SPRP with two existing compiler techniques to demonstrate further the performance
stability and scalability of SPRP when dealing with the same program with varying
inputs and dynamically changing runtime data structures.

6.1 Benchmarks

Four benchmarks are used in our experiments: Bh (Barnes-Hut) and Bisort are taken
from the Olden benchmark suite and Knapsack and Queens are from the Cilk benchmark
suite. These benchmarks represent a wide spectrum of application domains. Bh solves
the N-body problem using hierarchical methods on a tree. Bisort implements a recursive
bitonic sorting algorithm on a tree. Knapsack is a combinatorial optimisation algorithm
that solves a one-dimensional backpack problem using branch-and-bound on an array.
Queens is modified from Cilk to find all solutions to the N-queens problem on an array.

To evaluate the performance of SPRP, we parallelise only recursive procedures,
although selected benchmarks may have more parallelism if other program structures
such as loops are also used to form threads. Table 2 provides some statistics about the
four benchmarks. The input size (I-size) for each benchmark is listed in Column 2.
The fan-out in Column 3 represents the range for the number of child calls invoked
directly in each parent call in the recursion tree of a recursive procedure. The fan-outs
of all four benchmarks are larger than 1. Therefore, these four benchmarks allow us
to evaluate the accuracy of our helper threads in predicting the invocation order of
recursive calls made in these benchmarks. In Column 4, W-size represents the average
number of instructions executed for all committed worker threads in a benchmark (i.e.,
all recursive calls made in the sequential execution of the benchmark). In Column 5,
H-size is the average number of instructions executed by the helper thread between two
successive spawn instructions for a benchmark. Thus, the ratio H-size/W-size listed in
Column 6 indicates how much faster the helper thread spawns recursive calls than if a
direct execution of the original procedure would do. The lower the ratio, the faster. The
ratios are very low for Knapsack and Queens. As for Bh and Bisort, the sizes of their
worker threads are small. It seems to be difficult to reduce the ratios any further.

In the last column, the number of live-ins for a procedure is given. This is the size
of data to be passed to a spawned thread. A maximum of 8 live-ins has been observed
in the four benchmarks, indicating that a latency of 5 cycles for spawn overhead is
adequate in our experiments, as previously demonstrated in [23, 8].

Exploiting Speculative TLP in Recursive Programs 89

1

1.1

1.2

1.3

1.4

1.5

Bh Bisort Knapsack Queens GeoMean

S
p

ee
d

u
p

Region Benchmark

Fig. 6. Speedups of SPRP over sequential execution

0%

100%

200%

300%

Bh Bisort Knapsack Queens GeoMean

R
es

ta
rt

 R
at

io

Fig. 7. Restart ratios of SPRP

6.2 Performance and Analysis

It is important to understand the performance improvements achieved by SPRP in the
context that the recursive procedures selected and used in our experiments are very
difficult to parallelise by existing methods. The parallelisation-inhibiting factors are
that (1) there is more than one dynamic call site (as in all four benchmarks), (2) call
sites are guarded by non-trivial expressions (as in Bh, Knapsack and Queens), (3) there
are memory dependences among recursive calls (as in all four benchmarks), (4) the
underlying data structure may dynamically change at run time (as in Bisort) and (5)
only part of the underlying data structure is traversed (as in Bh, Knapsack and Queens).

Figure 6 gives the speedups of SPRP over sequential execution. The region speedups
(for recursive procedures only) range from 1.16 to 1.45 with an average of 1.29. The
program speedups are close to the region speedups for Knapsack and Queens. But this
is not true Bh and Bisortsince the recursive procedures parallelised represent only 55%
and 46% of their total execution times, respectively.

Let us now analyse the performance results achieved by SPRP. First of all, SPRP
can achieve a good degree of speculative TLP in our benchmarks. The average num-
ber of active worker threads per cycle for Bh, Bisort, Knapsack and Queens are 2.51,
2.14, 1.79 and 2.19, respectively. Whether this amount of speculative thread-level par-
allelism can translate into performance gains or not depends on how often speculated
work threads succeed and how precise the predictions made by helper threads are.

Figure 7 shows the restart ratios for all four benchmarks. The restart ratio for a
benchmark represents the number of restarted threads over the number of committed
threads. A call that is restarted n times will be counted to have been restarted n times.
The restart ratio of a benchmark is a rough approximation of the impact of misspecula-
tions on performance. For example, Queens has the highest restart ratio, which is caused

90 L. Gao et al.

0%

20%

40%

60%

80%

100%

Bh Bisort Knapsack Queens GeoMean

P
re

d
ic

ti
o

n
 R

at
e

Fig. 8. Prediction rates of SPRP for correctly executed recursive calls

1.0

1.1

1.2

1.3

Bh Bisort Knapsack Queens GeoMean

N
or

m
al

is
ed

 E
xe

cu
tio

n
Ti

m
e

Fig. 9. Normalised execution times of SPRP with respect to ideal execution

by excessive misspeculations of memory dependences as discussed in Section 3.4. In
the parallelised recursive procedure of Queens, every call invocation may depend on the
earlier calls made – they may not be the immediate predecessors, since every call uses
the passed-in array a and may also update one element of a as well as pass a to the
ensuing call invocation. Hence, the performance improvement for Queens is limited.

Figure 8 gives the prediction rate, i.e., success rate at which the recursive calls have
been correctly predicted by the helper thread for each benchmark. When constructing
the helper thread for a recursive procedure, a trade-off between the prediction rate and
the exposed speculative TLP has to be made. For example, Knapsack has the smallest
prediction rate since most branches used to prune the searching space are not included
in the helper thread. Hence, Knapsack has a very small H-size/W-size ratio as shown in
Table 2 indicating a large portion of speculative TLP has been exposed by SPRP. Any
further improvement on its prediction rate requires extra time-consuming computations
to be included in the helper thread, resulting in a significant decrease of the exposed
speculative TLP. Similarly, any further improvement on the prediction rate for Bh re-
quires the entire subroutine subdivp to be included in the helper thread. As a result,
very little speculative TLP could be exposed. On the other hand, as shown in Table 2,
the H-size/W-size ratio of Bisort is the largest due to the strong memory dependences
among the recursive calls since the underlying tree structure used by Bisort may be
modified at run time. Any further reduction of its H-size/W-size ratio leads to a signifi-
cant drop of its prediction rate, resulting in a performance slowdown. If we increase its
H-size/W-size ratio to obtain a better prediction rate, the helper thread will be too large
to expose any speculative TLP in the benchmark.

Figure 9 shows the performance gap between SPRP and what can be achieved dur-
ing an ideal program execution (the H-size/W-size ratio during the ideal execution is

Exploiting Speculative TLP in Recursive Programs 91

0.8

1

1.2

1.4

1.6

1.8

Input1 Input2 Input3 Input4 Input5N
or

m
al

is
ed

 E
xe

cu
tio

n
Ti

m
e FC SC SRPP

Fig. 10. Normalised execution times of FC, SC and SPRP with respect to SPRP

negligible and the helper thread always makes precise prediction). On average, the ex-
ecution time of SPRP is only 14% longer than the ideal execution. Hence, SPRP is
potentially effective in parallelising these irregular recursive procedures.

6.3 Dynamic Prediction and Static Prediction

Due to space limit, we use Knapsack to demonstrate the performance advantages of
SPRP over two static thread prediction and spawning schemes used for parallelising
recursive procedures, SC and FC. In subroutine-continuation (SC) spawning scheme
[12,15,27,1], a speculative thread is always spawned at the return address of a recursive
call site. In another scheme referred to as First Call (FC) in this paper, only the calls
made at the first call site are control-speculated to be always invoked. Note that unlike
SPRP, both FC and SC predict live-ins separately. By using a helper thread to predict
both the recursion tree and live-ins required by each predicted recursive call, SPRP
outperforms SC and FC almost always when different input data are used.

Figure 10 compares SPRP with SC and FC in terms of five different inputs. The
search space of Knapsack is a binary tree. We have carefully selected these inputs so
that five representative recursion trees are used at run time. The recursion trees exercised
by Input1, Input2, Input3, Input4 and Input5 are a complete binary tree, a right-biased
tree (the left child of every tree node is a leaf), a left-biased tree (the right child of every
tree node is a leaf), a random tree (with its nodes randomly distributed) and a left-and-
right-biased tree (a combination of a left-biased subtree and a right-biased subtree),
respectively. FC is the worst performer in all cases, because it always sequentialises
all leaf nodes that contain some computations. SC performs only slightly better than
SPRP for Input2 (i.e., the right-biased tree) and similarly as SPRP for Input 1 (i.e., a
complete binary tree). In the other three cases, SPRP significantly outperforms SC. SC
is very sensitive to the shapes of recursion trees. When the underlying recursion trees
are left-biased, a large number of threads created in SC are later squashed to release
cores for less speculative threads.

By comparing with static thread prediction, SPRP can more precisely predict the
order in which recursive calls are made and thus expose more parallelism.

7 Conclusion

We have presented a new compiler technique for speculatively parallelising irregu-
lar recursive procedures that are difficult to parallelise traditionally. These recursive

92 L. Gao et al.

procedures may sometimes be parallelised manually by domain experts in a case-by-
case basis. However, the potential presence of some dependences in a program will
cause even the expert programmers to be conservative, limiting the parallelism to be
exploited. This works aims to make a case that these hard-to-parallelise recursive pro-
cedures can be potentially parallelised automatically. Our preliminary results using four
representative benchmarks are very encouraging. Our approach is general since it can
handle recursive procedures with code blocks appearing both before and after a call site
by spawning threads using a combination of preorder, inorder and postorder traversals.

There are a number of interesting research issues we will pursue in the future. One
is to develop good heuristics to construct faster helper threads with good prediction
accuracies. Another way to improve the prediction accuracies of helper threads is to
allow the helper thread to access more up to date memory variables. This means that
some tradeoffs must be made between the efficiency and accuracy of a helper thread.

Acknowledgement

This work is supported the Australian Research Council Grant (DP0881330) and the
UNSW Engineering-International Research Collaboration Grant (PS16380).

References

1. Akkary, H., Driscoll, M.A.: A dynamic multithreading processor. In: MICRO-31, pp. 226–
236 (1998)

2. Balakrishnan, S., Sohi, G.S.: Program demultiplexing: Data-flow based speculative paral-
lelization of methods in sequential programs. In: ISCA 2006 (2006)

3. Bhowmik, A., Franklin, M.: A general compiler framework for speculative multithreaded
processors. IEEE Trans. Parallel Distrib. Syst. 15(8), 713–724 (2004)

4. Blelloch, G.E., Hardwick, J.C., Sipelstein, J., Zagha, M., Chatterjee, S.: Implementation of a
portable nested data-parallel language. In: J. Parallel Distrib. Comput., pp. 4–14 (1994)

5. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.L.:
Cilk: an efficient multithreaded runtime system. In: PPoPP 1995 (1995)

6. Codrescu, L., Wills, D.S.: On dynamic speculative thread partitioning and the mem-slicing
algorithm. In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS, vol. 1662. Springer, Heidelberg
(1999)

7. Collins, J.D., Wang, H., Tullsen, D.M., Hughes, C., Lee, Y.F., Lavery, D., Shen, J.P.: Specu-
lative precomputation: long-range prefetching of delinquent loads. In: ISCA 2001, pp. 14–25
(2001)

8. Du, Z.H., Lim, C.C., Li, X.F., Yang, C., Zhao, Q., Ngai, T.F.: A cost-driven compilation
framework for speculative parallelization of sequential programs. In: PLDI 2004 (2004)

9. Franklin, M.: The Multiscalar Architecture. PhD thesis, The University of Wisconsin at
Madison (1993)

10. Gupta, M., Mukhopadhyay, S., Sinha, N.: Automatic parallelization of recursive procedures.
International Journal of Parallel Programming 28(6), 537–562 (2000)

11. Johnson, T.A., Eigenmann, R., Vijaykumar, T.N.: Min-cut program decomposition for
thread-level speculation. In: PLDI 2004 (2004)

12. Johnson, T.A., Eigenmann, R., Vijaykumar, T.N.: Speculative thread decomposition through
empirical optimization. In: PPoPP 2007, pp. 205–214 (2007)

Exploiting Speculative TLP in Recursive Programs 93

13. Krishnan, V., Torrellas, J.: Hardware and software support for speculative execution of se-
quential binaries on a chip-multiprocessor. In: ICS 1998, pp. 85–92. ACM Press, New York
(1998)

14. Liao, S.W., Wang, P.H., Wang, H., Hoflehner, G., Lavery, D., Shen, J.P.: Post-pass binary
adaptation for software-based speculative precomputation. In: PLDI 2002, pp. 117–128
(2002)

15. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., Torrellas, J.: Posh: a tls compiler
that exploits program structure. In: PPoPP 2006, pp. 158–167 (2006)

16. Luk, C.K.: Tolerating memory latency through software-controlled pre-execution in simulta-
neous multithreading processors. In: ISCA 2001, pp. 40–51 (2001)

17. Marcuello, P., Gonzalez, A.: A quantitative assessment of thread-level speculation tech-
niques. In: IPPS 2000 (2000)

18. Ohsawa, T., Takagi, M., Kawahara, S., Matsushita, S.: Pinot: Speculative multi-threading
processor architecture exploiting parallelism over a wide range of granularities. In: MICRO-
38 (2005)

19. Oplinger, J., Heine, D., Lam, M.: In search of speculative thread-level parallelism. In:
Malyshkin, V.E. (ed.) PaCT 1999. LNCS, vol. 1662. Springer, Heidelberg (1999)

20. Palatin, P., Lhuillier, Y., Temam, O.: Capsule: Hardware-assisted parallel execution of
component-based programs. In: MICRO-39, pp. 247–258 (2006)

21. Piper, A.J.: Object-oriented Divide-and-conquer for Parallel Processing. PhD thesis, Univer-
sity of Cambridge (July 1994)

22. Prechelt, L., Hänßgen, S.U.: Efficient parallel execution of irregular recursive programs.
IEEE Transactions on Parallel and Distributed Systems (2002)

23. Quinones, C.G., Madrile, C., Sanchez, J., Marcuello, P., Gonzalez, A., Tullsen, D.M.: Mitosis
compiler: An infrastructure for speculative threading based on pre-computation slices. In:
PLDI 2005 (2005)

24. Rugina, R., Rinard, M.C.: Automatic parallelization of divide and conquer algorithms. In:
PPoPP 1999, pp. 72–83 (1999)

25. Tsai, J.Y., Yew, P.C.: The superthreaded architecture: Thread pipelining with run-time data
dependence checking and control speculation. In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS,
vol. 1662, pp. 35–46. Springer, Heidelberg (1999)

26. Vachharajani, N., Rangan, R., Raman, E., Bridges, M.J., Ottoni, G., August, D.I.: Speculative
decoupled software pipelining. In: PaCT 2007, pp. 49–59 (2007)

27. Vijaykumar, T.N.: Compiling for the Multiscalar Architecture. PhD thesis, The University of
Wisconsin at Madison (1998)

28. Wang, P.H., Collins, J.D., Wang, H., Kim, D., Greene, B., Chan, K.M., Yunus, A.B., Sych, T.,
Moore, S.F., Shen, J.P.: Helper threads via virtual multithreading on an experimental Itanium
2 processor-based platform. In: ASPLOS-XI 2004 (2004)

29. Wang, S., Dai, X., Yellajyosula, K.S., Zhai, A., Yew, P.-C.: Loop selection for thread-level
speculation. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan, P. (eds.) LCPC
2005. LNCS, vol. 4339, pp. 289–303. Springer, Heidelberg (2006)

30. Zhong, H.T., Mehrara, M., Lieberman, S., Mahlke, S.: Uncovering hidden loop level paral-
lelism in sequential applications. In: HPCA 2008 (2008)

31. Zilles, C., Sohi, G.: Execution-based prediction using speculative slices. In: ISCA 2001, pp.
2–13 (2001)

32. Zilles, C., Sohi, G.: Master/slave speculative parallelization. In: MICRO-35 (2002)

Live Debugging of Distributed Systems

Darren Dao1, Jeannie Albrecht2, Charles Killian3, and Amin Vahdat1

1 University of California, San Diego, La Jolla, CA
2 Williams College, Williamstown, MA
3 Purdue University, West Lafayette, IN

Abstract. Debugging distributed systems is challenging. Although incremental
debugging during development finds some bugs, developers are rarely able to
fully test their systems under realistic operating conditions prior to deployment.
While deploying a system exposes it to realistic conditions, debugging requires
the developer to: (i) detect a bug, (ii) gather the system state necessary for diag-
nosis, and (iii) sift through the gathered state to determine a root cause. In this pa-
per, we present MaceODB, a tool to assist programmers with debugging deployed
distributed systems. Programmers define a set of runtime properties for their sys-
tem, which MaceODB checks for violations during execution. Once MaceODB
detects a violation, it provides the programmer with the information to determine
its root cause. We have been able to diagnose several non-trivial bugs in existing
mature distributed systems using MaceODB; we discuss two of these bugs in this
paper. Benchmarks indicate that the approach has low overhead and is suitable
for in situ debugging of deployed systems.

1 Introduction

Debugging a distributed system is challenging because its operation depends not only
on its internal functions and state, but also on the functions and state of the set of nodes
it runs on and the network linking them. At any point in time, correctness depends on a
combination of past and present system, node, and network states. Replicating the vast
array of possible states and exposing a distributed system to them prior to deployment is
not feasible. As a result, many bugs only manifest during deployment, when the “perfect
storm” of state transitions trigger them.

Despite recent advancements, most developers still debug distributed systems in an
ad hoc fashion by inserting custom print statements to generate output logs, which they
parse for errors after an execution ends. Ad hoc approaches require developers to know
what to print and what to expect a priori, which limits their usefulness for finding un-
expected bugs. Existing advanced debugging techniques, while useful, have drawbacks
when used for debugging deployed systems. Model checkers force the programmer to
define a specification of the system, and then systematically explore a system’s state
space for violations of the specification. However, the exploration does not capture
the vast and complex set of node and network states that impact a deployed system.
Replay-based tools, which enable offline analysis of systems, do not detect bugs at
runtime, while log-based analysis tools, which systematically process output logs for
errors, impose the high overhead of generating and storing log data.

An ideal tool for debugging deployed distributed systems has the following charac-
teristics.

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 94–108, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Live Debugging of Distributed Systems 95

• Easy to Use. The tool should hide low-level implementation details from the devel-
oper so it is easy to understand, as well as automate common tasks to minimize its
impact on the standard development process.

• Powerful. The tool should be powerful and flexible enough to assist programmers
in finding a wide variety of bugs in different distributed systems.

• Low Overhead. Since many bugs do not manifest until deployment, the tool must
operate on deployed systems. Low overhead is essential for using on a deployed
system without degrading its performance.

We designed and built MaceODB, an online debugging tool for the Mace [1]
language, to satisfy these characteristics. Using MaceODB, we were able to find non-
trivial bugs in existing mature distributed systems using only a small amount of addi-
tional information provided by the developer. Our performance evaluation shows that
MaceODB has little impact on the performance of the systems under test.

The rest of this paper is organized as follows. Sections 2 and 3 detail the design and
implementation of MaceODB. Section 4 reports on our experiences using MaceODB
and Section 5 reports on its performance. Finally, we review related work in Section 6
and conclude in Section 7.

2 Design of MaceODB

Mace [1] is a C++ language extension and source-to-source compiler that translates
a concise, but expressive, distributed system specification into a C++ implementation.
Mace overcomes the limitations of low-level languages by providing a unified frame-
work for networking and event handling, and the limitations of high-level languages
by allowing programmers to write program components in a controlled and structured
manner. Imposing structure and restrictions on application development allows Mace
to support high-level debugging techniques, including efficient model checking and
causal-path analysis [2]. The limitation of the Mace model checker is its inability to
debug live systems: MaceODB addresses this limitation.

MaceODB is an extension to the Mace compiler that adds new instructions for
translating developer-defined system properties into code that checks for property vio-
lations at runtime. To use MaceODB, the programmer adds liveness and safety prop-
erties to their Mace application (see Figure 1). After specifying a set of properties, the
Mace compiler generates the application’s C++ implementation from its specification.
The compiler invokes MaceODB to parse the developer-defined properties and adds
additional code that checks for property violations at runtime. During execution, the
property-checking logic automatically reports violations back to the programmer.

2.1 Properties

MaceODB extends Mace by allowing programmers to define properties for their dis-
tributed systems. These properties are predicates that must hold true for some subset
of the participating nodes in the system. (Note that predicates are always “const” func-
tions, and thus cannot have side-effects on the state of the nodes.) MaceODB currently
supports two types of properties: safety properties and liveness properties.

96 D. Dao et al.

Fig. 1. Overview of MaceODB

Safety properties. Safety properties are predicates that should always be true. These
properties assert that the program will never enter an unacceptable state [3]. Formally,
they can be expressed as statements of the form always p, where p is predicate that
must be evaluated to true at all times. For example, suppose we build a peer-to-peer
file transfer system that constructs an overlay tree. An important safety property of
this system is that there should never be any loops in the underlying topology. When
defining safety properties, programmers must know exactly what violations to look for
and define unacceptable states in advance.

Liveness properties. Liveness properties are predicates that should eventually be
true [3]. For example, in a peer-to-peer file transfer system, all participants should even-
tually enter the joined state to be part of the overlay tree. Note that liveness properties,
unlike safety properties, apply to an entire program’s execution rather than individual
states. As a result, liveness properties are more difficult than safety properties to eval-
uate for violations. The benefit of using liveness properties is that they more naturally
align with the way developers reason about the state of a system. Defining high-level
liveness properties is easier for a developer since they correspond more directly to de-
sign specifications defined by the developer.

2.2 Specifying Properties

The most effective way to specify safety and liveness properties is to analyze the correct
system behavior under steady-state operation. After identifying the desirable behavior,
the programmer writes liveness properties to verify that the desired behavior is upheld
throughout an execution. If any liveness violations occur, the programmer can lever-
age insight from the violations to specify additional safety properties. Although safety
properties are more difficult to define a priori, these properties contain more specific
checks to help narrow down the bugs causing liveness violations. For example, consider
a bug in which a certain timer becomes unscheduled and causes a liveness property to
fail. After detecting this liveness violation, the programmer adds an additional safety
property to ensure that the timer is always scheduled.

To write the safety and liveness properties, programmers use the Mace compiler’s
grammar. A simplified version of the grammar is in Figure 2. We have used this gram-
mar to write safety and liveness properties for several existing Mace applications and
services (see Table 1). We found that most properties permit concise specifications con-
sisting of a few lines of code. For example, consider the property “AllJoined” in Table 1.
“AllJoined” is an example of a liveness property of the Mace RandTree service, which
is a simple distributed application that constructs a random overlay tree. The purpose of

Live Debugging of Distributed Systems 97

Property −> GrandBExpression
GrandBExpression −> (BExpression Join) BExpression
JoinExpression −> or | and | xor | implies | iff
BExpression −> Equation | BinaryBExpression | Quantification
Equation −> NonBExpression Equality NonBExpression
BinaryBExpression −> ElementSetExpression | SetSetExpression
Equality −> == | != | >= | <= | > | <
NonBExpression −> Variable NonBExpressionOp Variable
NonBExpressionOp −> + | −
ElementSetExpression −> Variable SetOp Variable
SetOp −> in | not in
SetSetExpression −> Variable SetComparisons Variable
SetComparisons −> subset | propertysubset | eq
Quantification −> Quantifier Id Variable : GrandBExpression
Quantifier −> forall | exists | for{Number}

Fig. 2. Simplified grammar for writing MaceODB safety and liveness properties

“AllJoined” is to check that all participating nodes eventually enter the joined state
that signals a valid connection to the overlay. In this case, we express the property in a
single line of code.

Now consider the “Timer” property in Table 1. In “Timer,” recovery is a timer
object defined by the RandTree developer (see Section 4.1). The timer object has a
nextScheduled() method that returns the next time the recovery process will ex-
ecute; the purpose of the property is to verify that once each system participant com-
pletes the init state it executes the recovery timer. The recovery timer ensures
that subsequent failures trigger the recovery process.

2.3 Centralized Property Evaluation in MaceODB

Our initial design of MaceODB uses a centralized approach for evaluating the prop-
erties at runtime. The design uses a central server that is responsible for evaluating
all the properties across the entire system (see Figure 3). The design consists of two
components: the Data Exporter module and the Property Checking module. The Data
Exporter module operates on each node in the system, extracts data that describes the
execution’s current state, and forwards the timestamped data to the central server. The
central server then uses the Property Checking module to evaluate the data’s liveness
and safety properties. Upon receiving data from each Data Exporter module, the central
server invokes the Property Checking module to perform the property evaluation, and
generates a report of property violations.

To understand the Data Exporter and Property Checking modules, consider the
Pastry [4] (a typical Distributed Hash Table) property “LeftRight” in Table 1. This
property compares the size of myleafset to the size of myleft plus the size of
myright. The data of interest is myleafset.size(), myleft.size(), and

98 D. Dao et al.

Table 1. Examples of properties that are used in Mace applications (Pastry, Chord, RandTree)

Name Property

LeftRight Test that size of leafset = sum of left and right set size.
(Pastry) \forall n \in \nodes : {

n.myright.size() + n.myleft.size() =
n.myleafset.size()

};

KeyMatch Test the consistency of the key of the node to the right.
(Pastry) \forall n \in \nodes : {

n.getNextHop(n.range.second, −1).range.first =
n.range.second

};

PredNotNull Test that predecessor pointer is eventually not null.
(Chord) \forall n \in \nodes :

\not n.predecessor.getId().isNullAddress();

Timer Test that either the node state is init or recovery timer is scheduled.
(RandTree) \forall n \in \nodes : {

(n.state = init) \or
(n.recovery.nextScheduled() != 0)

};

AllJoined Test that eventually all the nodes will join the system.
(RandTree) \forall n \in \nodes : n.state = joined;

myright.size(); the Data Exporter module extracts these attributes from each par-
ticipating node and sends them to the central server. The Property Checking process
consists of iterating through the data and evaluating whether myleafset.size() is
equal to myleft.size() + myright.size(); if they are not equal, the evaluation
process returns false, indicating a property violation.

Our performance evaluation shows that the centralized approach is sufficient for
most properties. However, some properties require each participating node to send large
amounts of data to the central server, creating a bottleneck that slows down the property
evaluation process and reduces overall system performance. We include optimizations
to reduce the data sent using a binary diff tool [5] to compare the differences between
snapshots of forwarded data. The optimization significantly reduces the bandwidth, al-
though the central server remains a bottleneck for sufficiently large systems (i.e., more
than 100 nodes) due to the memory and processor time required to process diffs.

2.4 Decentralized Property Evaluation in MaceODB

In this section we describe a decentralized design for MaceODB to address problems
with the centralized design. The decentralized design also uses the Data Exporter and

Live Debugging of Distributed Systems 99

Fig. 3. MaceODB centralized design Fig. 4. MaceODB decentralized design

Property Checking modules. However, unlike the centralized approach, the Property
Checking module is now present in all system nodes (see Figure 4), requiring each
node to be responsible for evaluating their individual properties. The design eliminates
the central server bottleneck, and eliminates the single point of failure. Additionally, we
use a membership service to address network and node failures.

In decentralized MaceODB, we represent properties as dataflow graphs. Figure 5
shows an example of this representation for the “LeftRight” property described in Ta-
ble 1. Dataflow graphs consist of three main components: the leaves, the vertices, and
the arcs. The leaves correspond to the data used to evaluate properties, which come
from the local node performing the evaluation or from the Data Exporter modules on
other nodes. The vertices represent the operations that evaluate the properties. Together,
these operations form the basis for the Property Checking module. The arcs represent
the input/output flows, and describe the dependencies between the operations.

At runtime, each node generates instances of these graphs for each timestamp, and
evaluates vertices of the graphs as soon as upstream inputs are available. The Property
Checking module processes each vertex and evaluates vertices that are ready, and eval-
uates vertices of different timestamps simultaneously in a pipelined fashion. Exploiting
the property-level parallelism demonstrates a key benefit of representing properties as
dataflow graphs. The representation separates the data, operations, and input/output de-
pendencies into independent blocks that are evaluated simultaneously in parallel.

Note that, in both the centralized and decentralized approach, the Data Exporter and
the Property Checking modules are automatically generated by MaceODB. Developers
do not write any additional code—only properties—and MaceODB generates all the
low-level code for exporting state data and evaluating properties.

2.5 Globally Consistent Snapshots

For both centralized and decentralized designs, many MaceODB properties must be
evaluated across all participating nodes. In order to evaluate these properties, we need a
consistent snapshot of the state of the entire system. To support this, we added a logical
clock [6] to the Mace language. Each node in the system maintains its own logical
clock that starts at 0, and increases every time there is an event transition. Each time
a node sends a message, it attaches its logical clock to the message. Upon receiving

100 D. Dao et al.

Fig. 5. Example of using a dataflow graph to represent the Pastry LeftRight property

the message, the receiving node updates its logical clock to be the maximum of its
local logical clock and the clock attached in the message, establishing the happens-
before relationship. Using this mechanism, MaceODB associates each node’s data with
a global timestamp, thus providing a globally consistent snapshot.

3 Implementation of MaceODB

This section discusses the centralized and decentralized implementations of MaceODB.

3.1 Centralized Implementation

The two key components of the centralized approach are the central Property Checking
module and the distributed Data Exporter module. We now describe how MaceODB
constructs these modules in detail.

Data Exporter Module. As described in Section 2.3, the Data Exporter module is
responsible for sending data from participating nodes back to the central server for
property evaluation. Thus, an important task in building the Data Exporter module is
determining what data to send. In the simplest implementation, MaceODB uses the
grammar specification in Figure 2 to parse through each property, and identify all the
variables associated with that property. Each variable’s value corresponds to the data
sent to the central server. While this works well for most properties, there are edge
cases that are inefficient or that the approach fails to cover.

First, consider how the simple implementation is inefficient. For the “Timer”
property in Table 1, MaceODB identifies the following variables as exported data:
n.state, init, n.recovery.nextSchedule(), and 0. Exporting this set of
variables is inefficient since they are either constants or variables that come from the
same node. As a result, it is possible to evaluate “Timer” without exporting any data.
Therefore, instead of sending data to the central server, each node evaluates the prop-
erty locally, and forwards only the result. The optimization reduces the data transmitted
to the server. “LeftRight,” “Timer,” “PredNotNull,” and “AllJoined” are all examples of
local properties.

The simple implementation fails to work for properties that include methods with
parameters that require data from other nodes. In this case, MaceODB requires each
node to export the results from executing the method calls to the central server. Unfor-
tunately, the nodes are not capable of completing the method calls independently, since

Live Debugging of Distributed Systems 101

they require data from peers. To solve this problem, each node sends its local state to
the central server. The server then deserializes the state and constructs dummy objects
for each node. Using these dummy objects, the server simulates method calls using the
appropriate parameter inputs.

After determining the data to send, the next phase in building the Data Exporter
module is to generate the actual code for sending the data. We leverage functionality
provided directly by Mace’s Message class, which allows programmers to write code
for sending messages between peers.

Property Checking Module. The central server uses the Property Checking module
to evaluate properties and alert the programmer of property violations. The module’s
primary task is to evaluate each property by parsing and breaking them into smaller
expressions as specified by the grammar in Figure 2. These expressions correspond
directly to the operations required in order to evaluate the properties. For example,
consider again the “Timer” property in Table 1. When MaceODB parses that property,
it identifies the following expressions/operations:

• Equation Expression #1 - Compares n.state and init.
• Equation Expression #2 - Compares n.recovery.nextScheduled() and 0.
• Join Expression - Performs a logical OR operation on the results of #1 and #2.
• Quantification Expression - Performs a forall loop operation.

After identifying the above expressions, MaceODB generates a C++ method for each
expression. Together, these methods form the complete Property Checking and Data
Exporter modules that run on the central server.

3.2 Decentralized Implementation

The decentralized implementation also includes Property Checking and Data Exporter
modules, but the implementations are different due to the distributed design. This sec-
tion discusses the key differences in the construction of these modules.

Data Exporter Module. In the decentralized implementation, each node uses its
own Data Exporter module to exchange data with other nodes. MaceODB generates
two classes to accomplish this in the decentralized approach: RequestMessage
and ReplyMessage. These classes extend the Mace Message class. As their
names imply, the RequestMessage class is used for requesting data, and the
ReplyMessage class is used for returning the result.

To understand the approach, consider the “KeyMatch” property in Table 1.
The property has an equality operation that compares range.first and
range.second. The range.second input comes from the node executing the
operation. The range.first input comes from the node specified by the result of
n.getNextHop(n.range.second, -1). Until that input is available, it is im-
possible to execute the equality operation. As a result, the executing node uses the Data
Exporter module to request the needed input. It sends a RequestMessage to node
X , where X is the return value from calling getNextHop(n.range.second,
-1). When node X receives the request message, it replies with a ReplyMessage,
which contains the requested data range.first. Upon receiving ReplyMessage,
the original node extracts the returned data, and uses it as input in the equality operation.

102 D. Dao et al.

Property Checking Module. The Property Checking module in decentralized
MaceODB consists of operations that provide instructions for evaluating properties.
In terms of the dataflow graph representation, these operations correspond to the ver-
tices of the graphs. To generate code for the vertices, MaceODB parses the properties
and identifies all operations required to check the properties. For each operation found,
MaceODB then generates a C++ class to represent it. Note the difference from the
centralized approach, where we generate methods instead of classes. Using classes is
a more flexible and object-oriented technique for constructing dataflow graphs. With
classes, we can set up the vertices as objects whose member variables contain data
inputs for the operations, and whose methods are the operations themselves.

At runtime, instances of these classes are created and stored in a queue. In a separate
method, we iterate through the queue, and evaluate any operations that are ready for
execution. In terms of the dataflow graph, this corresponds to the process of traversing
the graph and evaluating any vertices that are ready. This process is done on a per-node
basis, thus allowing the properties to be evaluated in a distributed and parallel manner.

4 Experiences Using MaceODB

We have used MaceODB to test a variety of systems implemented in Mace, including
RandTree, Pastry [4], Chord [7], Scribe [8], SplitStream [9] and Paxos [10]. Most of
these systems are mature, stable, and have been tested extensively in the past. However,
using MaceODB we were still able to find non-trivial bugs in RandTree and Chord.

4.1 RandTree

RandTree implements a random overlay tree that is resilient to node failures and net-
work partitions. It serves as a backbone for a number of high level applications such as
Bullet [11] and RanSub [12]. An important liveness property that RandTree must hold
is that there should be only one overlay tree that includes all participating nodes. In
case of network and node failures, this property does not always hold. To address this
issue, a recovery timer was added that periodically checks to see if there was a network
partition, and invokes the recovery process as needed. Using “Timer” in Table 1, we
were able to find a bug where the recovery timer was not scheduled correctly. When
running RandTree with MaceODB enabled, the property “Timer” evaluated to false,
which indicated that for some nodes, the state was not init and the recovery timer
was not set. Using that knowledge, we went back to the source code for RandTree and
checked where the recovery timer was scheduled. Figure 6 shows an excerpt of the code
that contains the bug.

The most obvious problem with the code shown in Figure 6 is that
recovery.reschedule(TIMEOUT) never gets called if peers is empty. To fix
the bug, we moved that statement out of the else block. Thus the recovery timer is al-
ways scheduled whenever a node joins the overlay network. An interesting note is that
this same property was used previously in the Mace model checker, and yet, the model
checker failed to catch the bug. This failure is caused by the way the system was set
up for the model checking. The programmers set it up in such a way that whenever a

Live Debugging of Distributed Systems 103

joinOverlay(const NodeSet& peerSet, registration uid t rid) {
if (peers.empty()) {

state = joined;
. . .

}
else {

state = joining;
. . .
recovery.reschedule(TIMEOUT);

}
}

Fig. 6. RandTree bug found using MaceODB

node joins the system, it always joins together with another peer. Hence, when the code
above is executed, peers.empty() will always return false, causing the execution
flow to go directly to the else block and the recovery timer to be scheduled. This is an
example of the limitations of using model checking: the checking is done in a special-
ized environment, which can be quite different from the environment in which the real
system is deployed. This demonstrates the value of having a tool such as MaceODB
that allows the checks to be done in real time and on real, live systems.

4.2 Chord

Chord is a P2P distributed lookup protocol that supports a single operation of mapping
keys to nodes [7]. Using Chord, the participating nodes create a ring topology. Each
node in this ring has pointers to its successor and predecessor nodes in the ring. To
join the ring, a new node obtains its predecessor and successor from another node.
Then, to insert itself into the ring, it tells the successor node to update its predecessor
pointers. Finally, there is a stabilize process that runs to ensure that global successor
and predecessor pointers are consistent and correct.

The predecessor pointers are used in the lookup and stabilize process in Chord, and
it is important that they are updated correctly even in the presence of node churn and
failures. To test our implementation of Chord, we use the “PredNotNull” liveness prop-
erty (see Table 1) to check that eventually, all the predecessor pointers are not null. This
minimal check ensures that in case of node failures, the predecessor pointers will even-
tually point to other valid nodes. Using this property, we set up an experiment where
we simulate node failures. We observed that in a system of n nodes, if n − 1 nodes go
down, the predecessor pointer of the one remaining node will become null. It will even-
tually fix itself if the failed nodes recover. However, if they remain down indefinitely,
the predecessor pointer will remain null for the rest of the program execution. The cor-
rect behavior is that the remaining node should have updated its predecessor pointer to
be itself. Fortunately, this bug is quite trivial due to the rarity under which there is a
failure of n − 1 nodes. Nevertheless, this is a good demonstration of the effectiveness
of MaceODB in finding rare bugs.

104 D. Dao et al.

Table 2. Impact on goodput when using MaceODB

Impact on Goodput
Services Number of Nodes Centralized Approach Decentralized Approach

RandTree

25 nodes 0.01% 0.05%
50 nodes 1.68% 2.53%
75 nodes 1.40% 2.29%

100 nodes 1.58% 3.53%

ScribeMS

25 nodes 0.07% 0.33%
50 nodes 8.35% 6.77%
75 nodes 13.83% 7.16%

100 nodes 20.17% 7.01%

SplitStream

25 nodes 0.93% 0.84%
50 nodes 1.01% 1.07%
75 nodes 2.19% 1.57%

100 nodes 6.78% 2.55%

5 Performance Evaluation

To evaluate MaceODB’s performance, we performed a macro-benchmark that measures
its overhead. Our results show that MaceODB is lightweight, and incurs minimal over-
head on systems. Additionally, we performed a micro-benchmark to quantify the time
to evaluate different types of properties.

5.1 MaceODB Overhead

In this section we analyze the impact that MaceODB incurs on Macedon, a data stream-
ing application that can be run on top of any multicast or unicast service. For our exper-
iments, we run Macedon on top of RandTree, Scribe, and SplitStream. For each of these
services, we run Macedon with and without MaceODB, and compare the differences in
goodput, memory usage, and CPU usage.

We ran our experiments on several different network topologies that range from small
systems of 25 clients to larger systems of 100 clients. These clients are emulated on 17
physical machines with the ModelNet network emulator [13]. Each physical machine
has a dual-core Xeon 2.8 MHz processor with 2GB of RAM. The emulated topologies
consist of an INET network with 5000 total nodes. The emulated clients have band-
widths ranging from 6,000–10,000 Kbps, and latencies ranging from 2–40 ms.

Goodput and Scalability. To evaluate goodput, we measured the number of packets
Macedon sent and received for a specific timeframe (5 minutes). We then calculated the
impact that MaceODB incurs on the system’s goodput (useful throughput) by plotting
the ratio of the loss in goodput when using MaceODB to the goodput of the system when
run without MaceODB. We present the results in Table 2. Based on these results, we see
that MaceODB performs well for systems with 50 nodes or less. For these systems, the
impact in most cases is less than 7%. The results are quite different in larger systems.
Using the centralized design, the performance is poor when running on Scribe and
SplitStream. The impact on the goodput is as high as 13.8% for systems of 75 nodes

Live Debugging of Distributed Systems 105

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 50 100 150 200 250 300

M
em

 U
sa

ge
 (

M
B

)

Elapsed time (sec)

No property checking
Centralized

Decentralized

(a) Memory usage of Macedon.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

C
PU

 U
sa

ge
 (

%
)

Elapsed time (sec)

No property checking
Centralized

Decentralized

(b) CPU usage of Macedon.

Fig. 7. Memory and CPU usage of Macedon with and without MaceODB

and up to 20.17% for systems of 100 nodes. This poor performance is not a surprise
for us, since we know the centralized approach is not scalable. The performance of
the decentralized design is much better. Its impact on the goodput is approximately
7% or less. More importantly, the results also indicate that as we increase the size of
the system, the impact on performance increases very slowly. This trend allows us to
believe that the decentralized approach of MaceODB is scalable for large systems.

Memory Usage. Besides measuring the goodput, we also measured memory and CPU
usage. Figure 7(a) shows the results of memory usage during the 5 minute Macedon
experiments. Without MaceODB, Macedon used approximately 18 MB of RAM. Using
this as the base value, we compared it against the memory usage of Macedon when it
was run with MaceODB enabled. Our results show that depending on how we evaluated
the properties, the impact on memory usage was quite different. With the decentralized
design, the memory usage was around 20 MB, which is slightly higher than the base
value, but still acceptable. In the centralized design, the memory usage on the central
server is significantly higher. Even with a special memory cleanup mechanism enabled,
the central server still used as much as 200 MB of memory. The reason for such high
memory usage is because the central server is responsible for storing all the data that is
forwarded from the other nodes. This data is stored in memory and cannot be deleted
until it forms a complete snapshot of the whole system. At that point, the central server
evaluates the properties using the newly created snapshot and removes the old data.

CPU Usage. Figure 7(b) shows the CPU usage during the 5 minute Macedon experi-
ments. Without MaceODB, the CPU usage fluctuates around 2–3%. With decentralized
MaceODB, the CPU usage is only slightly higher. On the other hand, with the cen-
tralized approach, the property evaluation process is quite CPU-intensive. During the 5
minute run, there were spikes in the CPU usage that were as high as 28%. This further
confirms the fact that the centralized approach is not scalable.

Summary. Overall, the macro-benchmark provides us with two important implica-
tions. First, the centralized approach is not scalable. When running on large systems,
this approach causes a noticeable drop in goodput, and significant overhead in memory

106 D. Dao et al.

and CPU usage. Second, the decentralized approach is scalable and efficient for systems
of at least 100 nodes. The impact on goodput is only 7% or less, and the memory/CPU
overhead is quite low. We expect similar performance for larger systems. In conclusion,
the decentralized approach allows us to satisfy our requirement of making MaceODB
lightweight, thus allowing it to be left running on deployed systems without having a
significant impact on the system’s performance.

5.2 Evaluating Different Types of Properties

Next we measured the time required to evaluate different types of properties in decen-
tralized MaceODB. The goal was to identify properties that are expensive to evaluate.
Similar to the macro-benchmark, we ran our experiments on ModelNet, and this time
we ran 100 instances of Macedon on top of RandTree and Pastry. We modified Macedon
to log the time before and after each property evaluation. The experiments were then run
for 5 minutes. At the end of each run, we processed the logs, and calculated the average
time for each property evaluation. The average times were as follows: LeftRight/Pastry
79 µs, KeyMatch/Pastry 210 ms, Timer/RandTree 60 µs.

These results show that the cost of evaluation varies greatly among the properties. To
understand the reason behind this variance, consider how the properties are evaluated.
The properties with the shortest times are the ones that can be evaluated locally. These
properties contain operations that do not require any data inputs from other nodes. Ex-
amples of such properties are “LeftRight” and “Timer.” With this type of property, the
cost of evaluation is a function of how fast the CPU can process each operation. For our
particular setup, this value is approximately 70 microseconds on average.

Now consider properties that are more expensive to evaluate, such as “KeyMatch.”
Expensive properties contain operations that require data from other nodes. For these
properties, the cost of evaluation is a function of how fast the operations can be ex-
ecuted and how fast the data can be transferred. Typically, the latter is the dominant
factor, so that the speed of evaluating the properties depends directly on the bandwidth
and latency of the network on which the system is deployed. For our particular network
topology, the time it takes to send a ping message from one node to another is approx-
imately 80–100 ms. The round trip time for sending and receiving a message is then
160–200 ms. This value aligns with our results since the cost of evaluating “KeyMatch”
is slightly more than 200 ms.

6 Related Work

There are several related techniques for debugging distributed systems. We group these
techniques into four categories: model checking, replay-based checking, log analysis,
and on-line debuggers.

Model Checking. Prior work has proposed model checking as a mechanism for de-
bugging distributed systems [2]. With model checking, the programmer defines system
specifications, and uses the model checker to systematically explore the state-space
of the system while checking for specification violations. The approach is a powerful
debugging tool since it is possible to traverse large state-spaces in small timeframes,

Live Debugging of Distributed Systems 107

allowing the programmer to discover difficult-to-find bugs. However, the checking pro-
cess is typically done in a controlled and virtualized environment that does not accu-
rately reflect the deployment environment. MaceODB addresses the limitation and is
able to detect bugs that appear during deployment.

Replay-based Checking. Much research has gone into replay-based checking where
the programmer has the ability to replay a program while replicating its order and en-
vironment. A notable example of replay-based checking is liblog [14], which addresses
large distributed systems. Liblog logs the execution of deployed application processes,
and allows programmers to replay them deterministically. The benefit of using liblog
or any replay tool is the ability to consistently reproduce bugs from previous execu-
tions. While the capability enables offline analysis, its weakness lies in the high cost
of logging and replaying an entire execution, especially for large systems. However,
MaceODB and replay tools are complementary. A programmer may use MaceODB to
detect runtime bugs, and then use replay-based checking for offline analysis.

Log Analysis. Many systems focus on parsing through logs to perform postmortem
analysis. A notable example of this methodology is Pip [15]. With Pip, programmers
specify expectations about a system’s structure, timing, and other properties. At run-
time, Pip logs the actual behavior. Pip then provides the programmer with the capabil-
ity to query the logs and a visual interface for exploring the expected and unexpected
behavior. The main problem with Pip, and many other log-based analysis tools, is the
high overhead incurred by logging the data.

Other On-line Debuggers. MaceODB is similar in spirit to D3S [16]. Both share the
ideas of using predicates and representing predicates using dataflow graphs. MaceODB
differs from D3S in the way predicates are written. D3S predicates are written in a
mixture of C++ and a scripting language, requiring programmers to specify the stages
and the input/output dependencies. MaceODB predicates are written in the Mace lan-
guage, and the compiler generates the C++ code to represent the stages and dependen-
cies. As a result, MaceODB is easier to use. However, in some cases MaceODB is less
efficient than D3S since MaceODB has the potential to send more data than what is
necessary. CrystalBall [17] is a concurrently developed extension of MaceMC [2] with
similar goals as MaceODB. Both perform property checking of live running distributed
systems. CrystalBall focuses on looking forward during execution, where MaceODB
focuses on minimizing overhead and the distribution of property checking.

7 Conclusions

Debugging distributed systems is a challenging task. In this paper we present
MaceODB, a tool that makes the task easier by providing programmers with the ability
to perform online property checking for services written in Mace. MaceODB is easy to
use, yet flexible and powerful enough to catch several non-trivial bugs in the existing
Mace services. Our results show that MaceODB tolerates node and network failures
inherent to distributed systems, and has low overhead, which makes it possible to use
on live systems without significant performance degradation.

108 D. Dao et al.

References

1. Killian, C.E., Anderson, J.W., Braud, R., Jhala, R., Vahdat, A.M.: Mace: Language Support
for Building Distributed Systems. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (2007)

2. Killian, C.E., Anderson, J.W., Jhala, R., Vahdat, A.: Life, Death, and the Critical Transition:
Finding Liveness Bugs in Systems Code. In: Proceedings of the ACM/USENIX Symposium
on Networked Systems Design and Implementation (NSDI) (2007)

3. Kindler, E.: Safety and Liveness Properties: A Survey. Bulletin of the European Association
for Theoretical Computer Science 53 (1994)

4. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218,
p. 329. Springer, Heidelberg (2001)

5. Percival, C.: Naive Differences of Executable Code (2003)
6. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Communi-

cations of the ACM 21(7) (1978)
7. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Bal-

akrishnan, H.: Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications.
IEEE/ACM Transactions on Networking 11(1) (2003)

8. Rowstron, A.I.T., Kermarrec, A.-M., Castro, M., Druschel, P.: SCRIBE: The Design of a
Large-Scale Event Notification Infrastructure. In: Networked Group Communication (2001)

9. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.: SplitStream:
High-Bandwidth Multicast in Cooperative Environments. In: Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP) (2003)

10. Lamport: The Part-Time Parliament. ACM Transactions on Computer Systems 16 (1998)
11. Kostić, D., Rodriguez, A., Albrecht, J., Vahdat, A.: Bullet: High Bandwidth Data Dissemina-

tion Using an Overlay Mesh. In: Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP) (2003)

12. Kostić, D., Rodriguez, A., Albrecht, J., Bhirud, A., Vahdat, A.: Using Random Subsets to
Build Scalable Network Services. In: Proceedings of the USENIX Symposium on Internet
Technologies and Systems (USITS) (2003)

13. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostić, D., Chase, J., Becker, D.: Scalabil-
ity and Accuracy in a Large-scale Network Emulator. In: Proceedings of the ACM/USENIX
Symposium on Operating System Design and Implementation (OSDI) (2002)

14. Geels, D., Altekar, G., Maniatis, P., Roscoe, T., Stoica, I.: Friday: Global Comprehension
for Distributed Replay. In: Proceedings of the ACM/USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (2007)

15. Reynolds, P., Killian, C.E., Wiener, J.L., Mogul, J.C., Shah, M.A., Vahdat, A.: Pip: Detecting
the Unexpected in Distributed Systems. In: Proceedings of the ACM/USENIX Symposium
on Networked Systems Design and Implementation (NSDI) (2006)

16. Liu, X., Guo, Z., Wang, X., Chen, F., Lian, X., Tang, J., Wu, M., Kaashoek, M.F., Zhang,
Z.: D3S: Debugging Deployed Distributed Systems. In: Proceedings of the ACM/USENIX
Symposium on Networked Systems Design and Implementation (NSDI) (2008)

17. Yabandeh, M., Knežević, N., Kostić, D., Kuncak, V.: CrystalBall: Predicting and Preventing
Inconsistencies in Deployed Distributed Systems. Technical report, School of Computer and
Communication Sciences, EPFL, Switzerland (2008)

Parsing C/C++ Code without Pre-processing

Yoann Padioleau

University of Illinois, Urbana Champaign

Abstract. It is difficult to develop style-preserving source-to-source
transformation engines for C and C++. The main reason is not the
complexity of those languages, but the use of the C pre-processor (cpp),
especially ifdefs and macros. This has for example hindered the develop-
ment of refactoring tools for C and C++.

In this paper we propose to combine multiple techniques and heuristics
to parse C/C++ source files as-is, while still having only a few modifica-
tions to the original grammars of C and C++. We rely on the fact that
in most C and C++ software, programmers follow a limited number of
conventions on the use of cpp which makes it possible to disambiguate
different situations by just looking at the context, names, or indentation
of cpp constructs.

We have implemented a parser, Yacfe, based on these techniques and
evaluated it on 16 large open source projects. Yacfe can on average parse
96% of those projects correctly. As a side effect, we also found mistakes
in code that was not compiled because it was protected by particular
ifdefs, but that was still analyzed by Yacfe. Using Yacfe on new projects
may require adapting some of our techniques. We found that as conven-
tions and idioms are shared by many projects, the adaptation time is on
average less than 2 hours for a new project.

1 Introduction

The C pre-processor [19], cpp, is heavily used by C programmers. Using clever
macros, programmers can overcome some of the limitations of C by introducing
new features such as iterators, or can perform some metaprogramming, or can
factorize any kind of source code text. This possibility to easily extend C is
one of the reasons C is still a popular language even 35 years after its creation.
As Stroustrup said “without the C preprocessor, C itself ... would have been
stillborn” [23]. In fact, cpp is even used in programs written in modern languages
such as Haskell [28] or λProlog. This freedom has nevertheless its price: it makes
it hard to parse C source code as-is, which in turn makes it hard to perform
style-preserving source-to-source transformations such as refactorings [9] on C
source code.

The combination of C and cpp leads to the union of two languages that are
easy to parse separately but very hard to parse together as the grammar of such
union could be very large, contain many ambiguities, and be very different from
the original C grammar. For instance, the sequence X (Y); could represent a

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 109–125, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

110 Y. Padioleau

simple function call or a macro X corresponding to a declaration which happens
to be followed by a variable Y surrounded by extra parenthesis.

Static analysis tools and compilers avoid those problems by simply first calling
cpp on the source file and then analyze the pre-processed file that now contains
only C constructs. Tools such as CIL [16] (C Intermediate Language) also work
on a representation of the code that does not directly match the C language but
makes the analysis simpler. This is appropriate when the goal is to find bugs
or to generate code that no programmer will have to read or modify. However,
for style-preserving source-to-source transformations, using this approach would
mean working on a version of the file that is very different from its original
form, which would make it very hard among other things to back-propagate the
transformation to the original file.

Fortunately, what would be hard to parse and disambiguate for a tool would
also be hard to parse and disambiguate for a human. Thus, many programmers
follow conventions on the use of cpp such as the case sensitivity of macros,
their indentation, or the context in which macros can be used (Section 2.3).
Programmers can then visually rely on these conventions to easily recognize cpp
usages. We thus propose to leverage such implicit information to parse C/C++
code, like humans do.

The challenges for this work are:

– Grammar engineering. The ANSI C and C++ grammars are already com-
plex and large. Adding new constructions may lead to numerous conflicts.
Resolving these conflicts may require significant changes in the grammar.

– The variety of cpp idioms. As macros can be used for many different pur-
poses, we need general techniques to recognize those different usages, as well
as extensible techniques that can be easily adapted to new software.

In this paper we make the following contributions:

– We have designed general techniques to recognize cpp idioms without adding
any ambiguity in the ANSI C and C++ grammars. The main ideas are the
notion of fresh tokens (transforming Yacc in some sense into a LALR(k) tool),
the use of generic views to easily specify complex code pattern heuristics, and
the use of a configuration file containing macro definitions and heuristic hints
that can be used as a last resort.

– We have implemented a parser, Yacfe, that can parse most C/C++ code as
is, by extending the C/C++ grammars and by writing heuristics that make
use of contextual information, names, and indentation.

– We have evaluated Yacfe on large open source projects and shown that our
heuristic-based approach is effective for most C/C++ projects and covers
most uses of cpp.

The rest of the paper is organized as follows. Section 2 describes background
on the parsing problems engendered by cpp. Section 3 then presents our ex-
tensions to the C/C++ grammars to handle cpp constructs and our heuristics
that makes it possible to add the previous grammar rules without introducing
any shift/reduce or reduce/reduce conflict. Section 4 describes briefly how to

Parsing C/C++ Code without Pre-processing 111

use our framework to perform a basic style-preserving program transformation.
Section 5 describes the evaluation of Yacfe on large open source software. We
finally discuss related work in Section 6 and conclude in Section 7.

2 Background

In the following, we use the term ambiguity when grammar rules authorize the
same sequence of tokens to be parsed in more than one way. We use the term
conflict when the ambiguity is only caused by the limitations of the LALR(1)
parsing, as implemented by parser generators such as Yacc [11].

The main constructs and usages of cpp are:

– #include, mostly for header file inclusion.
– #ifdef, for conditional compilation and header file inclusion guards.
– #define, to define macros, with or without parameters; in the latter case

the macros are often used to describe symbolic constants.

cpp directives can be used anywhere in a C file. Extending the C grammar
to handle all possible usages of cpp directives would require extending rules to
handle each possibility. The standard solution is instead to expand cpp directives
before parsing.

2.1 #include

In practice, #include directives are mostly used at the start of a file, at the
toplevel, and on very few occasions inside structure definitions. It is thus easy to
extend the C grammar and the abstract syntax tree (AST) to handle just those
cases. Moreover, as the #include token is different from any other C tokens,
such extension does not introduce any parsing conflict.

2.2 #ifdef

In practice, ifdefs are mostly used either as inclusion guards at the very be-
ginning and end of a file, or to support conditional compilation of sequence of
statements, or to support function signature alternatives. It is also possible by
extending the C grammar to handle this limited set of idioms. The following
excerpts show one of these idioms and the grammar extension that supports it:

#ifde f MODULE
int init_module (int x)
#else
int init_foo (int x)
#endif
{
function def ::= dspec declarator { compound }

| #ifdef dspec declarator #else dspec declarator #endif { compound }
The problematic ifdefs are those that are used to support certain kinds of

alternatives for expression or statement code as in the following:

112 Y. Padioleau

x = (1 +
#ifde f FOO

2)
#else

3)
#endif

;
#ifndef WIN32

i f (is_unix)
fd = socket (PF_UNIX , SOCK_STREAM , 0) ;

else
#endif

fd = socket (PF_INET , SOCK_STREAM , 0) ;

In the first case, the #else can break the structure of the expression at any place,
leading to two branches with only partial expressions. It is thus not sufficient as
in the previous extension to add a rule such as:

expr ::= . . .
| #ifdef expr #else expr #endif

Fortunately, these situations are rare as such code would also be difficult
for the programmer to understand. One of our heuristics detects some of those
situations by checking if the parenthesis or braces are closed in both branches;
if not we currently treat as a comment the else branch and suggest to the user
that he should perhaps rewrite the code. We found only 116 code sites in the 16
software we analyzed that trigger this heuristic.

In the second case, the #endif breaks the condition statement; the first branch
is a partial statement with a trailing else. In such situations one of our heuris-
tic treats instead the cpp directive itself as a comment, which allows to parse
correctly the full statement. We currently treat 7.5% of the ifdef directives as
comments and are working to lower this number by handling more ifdef idioms.

2.3 #define and Macro Uses

Dealing with the definition of macros and their uses is more complex. Figure 1
presents various uses of macros representing common idioms used by program-
mers. Even if most macro uses look like function calls or variable accesses as in
(a), in which case they can be parsed by the original C grammar, this is still not
the case for many of them. For (b) only switch/for/while/if can have a brace or
statement after their closing parenthesis, for (c) and (d) it would require at least
a trailing ‘;’ to make the construction look like a regular statement or declara-
tion, for (d) what looks like a function call in fact mixes types and expressions
as arguments and is, when expanded, a declaration, for (e) what starts as a
function declaration has a multiplication as an argument if we do not have more
contextual information about ‘UINT’, for (f) there are too many identifiers in
the prototype, for (g) it would require first to extend the grammar to recognize
macro definitions, and to deal with the \ escape, but the body of this macro is
only a partial statement as it lacks a trailing ‘;’, and finally for (h), < is a binary

Parsing C/C++ Code without Pre-processing 113

#define MAX(a , b) \
((a)<(b) ? (b) : (a))

#define LIMIT 3

int x = MAX (foo (1) , 1 0) ;
int y = LIMIT ;

list_for_each (l , e) {
printf (”%s ” , e−>name) ;

}

(a) mimicking functions or constants (b) iterator

BEGIN_LOCK
i f (x != NULL)

printf (”%s ” , x−>name) ;
END_LOCK

DECL_LIST (x , int , 0) ;
struct x {
ACPI_COMMON_FIELDS
int x ;

}
(c) statement macro (d) toplevel and structure macros

#include <foo . h>
int f (UINT ∗ y) ;
int foo () {
return z ∗ y ;

}

BZ_EXTERN
void __init foo (int x) ;

(e) #include hiding typedefs (f) attributes and qualifiers
#define DEBUG(A) do \

{ printf (”ERROR: ” , A) ; } \
while (0)

DEBUG (1) ;

__P (int , foo , (int x , int y))
{ . . . }
ASSERTCMP (x , <, b) ;

(g) #define partial statement (h) miscellaneous macros

Fig. 1. A few cpp idioms

operator that requires two operands and cannot be passed as an argument, and
the __P macro does not really look like anything close to a C construction.

Extending the C grammar to handle most of those previous examples would
lead to parsing conflicts and ambiguities. For instance, we could try to extend
the grammar to deal with the iterator (Figure 1(b)) by adding the grammar rule
on line 3:
1 statement ::= expr ;

2 | for ([expr] ; [expr] ; [expr]) statement
3 | id (expr (, expr)∗) statement
4 | . . .
5 expr ::= . . .
6 arith expr ::= . . .
7 logical expr ::= . . .
8 primary expr ::= id
9 | int
10 | string
11 | . . .

Unfortunately this will generate a LALR(1) shift/reduce conflict. Indeed,
having analyzed the identifier, seeing an open parenthesis the algorithm can
not determine if it is the start of a function call (which requires to reduce to

114 Y. Padioleau

primary expr), or the beginning of a foreach statement (which requires a shift
in the statement rule). To be able to decide requires looking ahead at more to-
kens; in the previous case to know what token is after the closing parenthesis.
One could avoid this conflict by reorganizing the grammar so that the reduce
action can be delayed, but as the identifier corresponding to the function call
in primary expr (line 8) is deeply nested in the grammar, this would involve a
substantial change to the original grammar. Another solution would be to have
a more tolerant grammar where invalid constructions would be filtered out in a
post-parsing phase. One could then add the rule at line 3 and later check that
the leading expr can only have the form of a function call:
1 statement ::= expr ;

2 | for ([expr] ; [expr] ; [expr]) statement
3 | expr statement
4 | . . .
Unfortunately this will generate ambiguities, as the simple 1+1; statement could
be parsed either as a single statement or as the expression 1 followed by the +1;
statement, as + can be used both as an unary and binary operator.

Similar things happen for the other idioms. For instance, adding a rule to al-
low single identifiers to be used as statements or declarations leads to numerous
ambiguities as the sequence X (1); could be either a function call or a macro
statement X followed later by an expression surrounded by extra parenthesis.
Moreover, one grammar extension can also make it harder to add further ex-
tensions. For instance, the naive iterator and macro statement extensions each
generate numerous conflicts; when combined together they generate a number
of conflicts that is superior to the sum of the previous conflicts. There is no
guarantee that even if one refactors the grammar to avoid one conflict, this
refactoring could be kept as one may have to undo or completely change it to
make it possible to support another extension.

Note that for most of the idioms in Figure 1, even if one is not familiar with
those idioms, it is quite easy for a human to disambiguate them. Indeed, the
name, the presence of visual hints such as newlines or the lack of white-space
between tokens, and the context surrounding the construct all contribute to
make the meaning clear.

3 The Yacfe Engine

In this section we explain our different techniques to handle cpp, which are (1)
our way to extend the C/C++ grammars, (2) a heuristic pre-parsing phase that
makes the previous grammar extensions possible without introducing parsing
conflicts, and (3) a configuration file that allows users to give additional hints
to our heuristics.

3.1 Grammar Extensions and Ambiguities

Tokens such as identifiers can play many different roles. Our solution to this
problem is mainly to avoid it by replacing widely used tokens such as identifiers

Parsing C/C++ Code without Pre-processing 115

with fresh tokens that can not generate any conflict with the existing rules. We
re-classify tokens in a phase run between lexing and parsing. For instance, for
the iterator extension we re-classify some identifier tokens as “iterator” tokens.
Then, we can write grammar rules mentioning iterator tokens instead of identifier
tokens. A LALR parser can then even with a look-ahead of 1, seeing an identifier
decides which rule to use by inspecting the class of the token: a normal identifier,
an iterator identifier, a macro statement identifier, etc. What we essentially do is
to mimic what programming language designers do when they extend a language:
adding new keywords to avoid ambiguities with previous constructions. Here are
examples of some of our extensions to the C and C++ grammars that rely on
these fresh tokens:
1 statement ::= . . .
2 | for ([expr] ; [expr] ; [expr]) statement

3 | idMacroIterator(expr (, expr)∗) statement

4 | idMacroStatement

5 primary expr ::= id
6 | int
7 | string

8 | idMacroString string∗

9 | . . .
10 declaration ::= dspec ;

11 | idMacroDecl (expr or type (, expr or type)∗) ;

12 define body ::= statement
13 | expr

14 | {BraceInit initializer (, initializer)∗ }
15 | . . .
16 init decl ::= declarator
17 | declarator = initializer

18 | declarator (ParenConstructorC++ expr (, expr)∗)

19 template id ::= idTemplate <InfTplt type or expr (, type or expr)∗ >SupTplt

Re-classifying some tokens requires recognizing some code patterns, which
in turn requires a form of parsing. As we will explain in the next section, our
heuristics need only simple forms of parsing. We thus use two layers of parsing
where the final sophisticated parser relies on the job done using the simpler
parser of the previous layer.

We also had to extend the C grammar to deal with C extensions that are often
used by open source software such as the extensions implemented by gcc [22]
(embedded assembly, case range, attributes, etc). We currently have added 65
new grammar rules on top of the original 195 C rules, to handle the cpp directives
and common macro idioms, as well as 59 rules to handle gcc extensions. Note
that we almost didn’t modify the rules from the original grammar; we didn’t
have to reorganize the existing rules while adding the new rules because each
extension was local, thanks to the fresh tokens. We only had to slightly refactor
the original compound rule because of interactions with ifdefs constructs.

116 Y. Padioleau

3.2 Heuristics and Views

Some heuristics are needed to detect specific tokens that must be re-classified.
These interesting tokens are often identifiers, corresponding to different cpp
macro idioms, but they can also be specific ifdef tokens or even some open
parenthesis tokens. Our heuristics look at the context of those tokens, the struc-
ture of their names, or their indentation. Some of these heuristics may need to
access to a large context of the token such as a large sequence of tokens af-
ter (look-ahead) or even before the specific token. Even if some programming
languages such as ML provide powerful pattern-matching capabilities over lists
and algebraic data-types (ADTs), it is not easy to write some of our heuristics
working on such token lists. For instance, for the foreach heuristic, we may want
informally to look at code patterns like .*each.* (...) {, but this can only
be incompletely translated in ML (in the OCaml [12] syntax) as:

match token_list with
| Id (s) : : TSym (” (”) : : TSym (”) ”) : : TSym (”{”) : : _
| Id (s) : : TSym (” (”) : : _ : : TSym (”) ”) : : TSym (”{”) : : _
| Id (s) : : TSym (” (” : : _ : : _ : : TSym (”) ” : : TSym (”{”) : : _
| . . .

when s =˜ ” .∗ each .∗ ” −>

Moreover, even if we could use a form of generalized regular expression over
ADTs (as in XDuce or Prolog-III), such regular expressions would not cope with
the problem of possible nesting of parenthesized expressions.

To solve this problem we propose the notion of view over these tokens that
offers an additional layer on top of the list of tokens, to group them into different
classes. Views make it possible to use the traditional pattern-matching features
of languages such as ML to easily express complex code patterns. This idea was
proposed by Wadler in [27] but required originally to extend the programming
language. In our case, we do not need to extend ML; we have implemented views
using ordinary functions and references (to make it possible to modify elements
in the views), looking at views as an idiom instead of a programming language
feature. For the iterator example, a parenthesized view adds a tree layer over
the list of tokens allowing the previous heuristic to be expressed as:

match paren_view token_list with
| Leaf (Id (s) as t1) : : ParenNode (_) : : Leaf (TSym (”{”)) : : _

when s =˜ ” .∗ each .∗ ” −>
reclassify t1 TMacroIterator

This heuristic looks for a token identifier, followed by a parenthesized term (con-
taining possibly some nested parenthesized terms), followed by an open brace,
and re-classify the leading identifier as an iterator identifier if it contains the
word “each”. This heuristic will thus reclassify the list_for_each identifier in
Figure 1(b) but not the MAX identifier in Figure 1(a) as the closing parenthesis
of the MAX parameters is not followed by an open brace.

We have currently implemented 5 views: the parenthesized view, braceized
view, ifdef view, line view, and combined line and parenthesized view. These

Parsing C/C++ Code without Pre-processing 117

views group tokens in different manners and cover most of our needs. The preced-
ing heuristic is in fact incomplete as it could incorrectly reclassify function names
in function definitions such as int each(int i) { The current heuristic
thus for instance also checks that the identifier is indented, is not at the toplevel,
and is not preceded by any other token on its line, using the line view and con-
textual information from the braceized view. The heuristic also allows for more
words than “each” to be part of the identifier (e.g. “loop”).

Here is another heuristic using the combined line and parenthesized view.

(∗ ex : BEGIN LOCK(X,Y) wi thou t t r a i l i n g ’ ; ’ ∗)
match lineparen_view token_list with
| Line ([NoL (Id (s) as tok1) ; ParenthisedL (_)])

: : Line (tok2 : : _)
: : _
when indent_of tok1 <= indent_of tok2 &&

is_upper_case s −>
reclassify tok1 TMacroStatementParams

The code for our heuristics and view constructions currently consists of 2300
lines of OCaml code. An important part of this code is dedicated to the detection
of typedefs or type-macro identifiers as in Figure 1(e). An alternative would be
to write a dedicated analysis to gather all the typedef declarations from header
files in order to build a symbol table for typedef identifiers. Nevertheless, it
would require to know where are located those header files (usually specified in
makefiles with the -I cpp flag) and to have access to those files. For the code
of multi-platform applications, this is not always convenient or possible. For
instance, one may not have access to the Windows system header files on a Unix
machine. We thus opted to try to infer typedefs using heuristics and parse code
even with partial information on types.

3.3 Configuration File and Extensibility

Even if the heuristics we have written using the previous views capture many
conventions, there are still software or specific programmers using slightly differ-
ent conventions. For these cases, it would be too demanding to ask to the users
of Yacfe to modify the code of Yacfe to add new heuristics. Moreover, those
heuristics might be valid only for a set of macros and generate false positives
when applied globally. Therefore, to offer an easy way to partially extend Yacfe,
we propose to use an external configuration file where the user can manually
specify the class of specific but recurring macros that cause the above heuristics
to originally fail. We have reused the syntax of cpp for the format of this file but
Yacfe recognizes special keywords used in the body of macros as hints. Here is
an excerpt of the configuration file for the Linux kernel:

#define change hops YACFE MACRO ITERATOR
#define DBG YACFE MACRO STATEMENT
#define KERNEMERG YACFE MACRO STRING
#define DESC ALIGN YACFE MACRO DECL

118 Y. Padioleau

This file can also be used as a last resort as a way to partially call cpp for
difficult macros, such as the one in Figure 1(h), by adding for instance this
definition:

#define P (returnt , name , params) re tu rn t name params

In this last case, the resulting expansion is marked specially in the AST so
that even if a tool using Yacfe can match over such expansion, such tool will be
warned if it wants to transform those expansions.

To assist the user in creating those configuration files, Yacfe remembers, while
attempting to parse for the first time the different files of a software, the iden-
tifiers in the line before and on the same line than a parsing error. Yacfe then
returns to the user the 10 most recurring identifiers and displays each time one
example of a parsing error containing the identifier. This helps to quickly find
and define the recurring difficult macros.

3.4 Other Techniques

To faithfully represent the original program, we also had to keep extra tokens
in the AST which are normally abstracted away, such as extra parenthesis as in
(1+((2)). We thus have more a concrete syntax tree (CST) than an AST.

We have also implemented an error recovery scheme so that a parsing error in
one function does not hinder the parsing of the rest of the file. In case of a parsing
error, Yacfe first displays the line where the error occured and the content of the
file around that line. Yacfe then skips the set of tokens before the next function
(using heuristics to detect the start of the next function), and returns a special
AST error element, indicating the parsing error, containing all the tokens that
were skipped (this is useful to compute the statistics of Section 5). Finally, Yacfe
re-run the parser for the remaining tokens, for the next function.

Surprisingly, extending Yacfe to handle C++ was not as hard as we imagined.
It took us about 2 weeks to parse more than 90% of the source code of Mozilla
and MySQL. Parsing C++ is known to be difficult due to the complexity of
the language and the numerous ambiguities and LALR(1) conflicts in its official
grammar. These ambiguities require contextual information or post-processing
semantic analysis to be resolved, as described in the annotated C++ reference
manual [5]. Nevertheless, by applying the same techniques we used to disam-
biguate cpp idioms, we were able by introducing new fresh tokens and their
associated heuristics to parse most C++ code, while using the original C++
grammar almost as-is.

4 Using Yacfe

Parsing is only one component of a program transformation system, but a crucial
one. Yacfe offers other services such as type-checking, visitors, AST manipula-
tions, and style-preserving unparsing. This last functionality was relatively easy
to implement because of the way we originally parse the source code. The descrip-
tion of those features is outside the scope of this paper and Figure 2 illustrates

Parsing C/C++ Code without Pre-processing 119

(* X == 0 –> X == NULL when X is a pointer *)
open Ast c
let main =

let ast = Parse c.parse c and cpp Sys.argv.(1) in
Type annoter c.annotate program ast;
Visitor c.visit program {

Visitor c.kexpression = (fun k exp −>
(match Ast c.unwrap exp with
| Binary(e1, Logical (Eq), Constant(Int("0")) as e2) −>

(match Type c.type of expr e1 with
| Pointer −>

let idzero = Ast c.get tokens ref1 e2 in
Ast c.modify token (fun s −> "NULL") idzero;

| −> ()
)

| −> k exp
);

);
} ast;
let tmpfile = "/tmp/modified.c" in
Unparse c.unparse ast tmpfile

Fig. 2. A simple style-preserving program transformation using Yacfe API in OCaml

just a simple example of program transformation using the Yacfe framework (in
the OCaml [12] syntax). The transformation consists in replacing every occur-
rences of ‘0’ by the NULL macro in expressions involving relational comparisons
on pointers.

Note that as the pointer expression can be an arbitrary expression, including
complex computations inside parenthesis, and as the transformation also requires
semantic (type) information, it would be hard with lexical tools such as sed to
correctly perform even this simple transformation. Moreover, as many macros
expand to ‘0’, working on the pre-processed code, like most tools do, could lead
to many false positives.

C frontends such as CIL [16] also offer visitor services and program trans-
formation abilities, but they output source code that is very different from the
original code as they operate after preprocessing. C refactoring tools such as
Xref [25] can not perform the transformation shown in Figure 2 as it is not part
of their limited set of supported refactorings. Xref supports the renaming of
simple macros but performs incorrectly for instance the renaming of an iterator
macro.

5 Evaluation

In this section we evaluate the applicability of our techniques by testing if Yacfe
can parse the code of popular software. All experiments were made on an Intel

120 Y. Padioleau

Table 1. Yacfe parsing results and statistics on 16 large open source projects

Software Languages Age Type LOC skipped correct
(Years) (kilo) (%) (%)

Linux C 17 Kernel 8050k 1.33 98.96
Mozilla C/C++ 14 Browser 5073k 3.05 95.58
Mysql C/C++ 13 Database 1306k 1.82 93.23
Qemu C 5 Emulator 434k 3.30 97.00
emacs C/Lisp 31 Editor/OS 395k 4.30 96.14

git C 3 VCS 94k 0.03 99.91
sparse C 5 C frontend 26k 0.69 99.41
gcc C 31 Compiler 1421k 1.45 97.39

Quake III C 9 Game 311k 2.15 96.09
openssh C 9 Network 82k 0.69 99.16
pidgin C 9 Communication 426k 1.48 99.35
kdeedu C++ 7 Education 315k 1.19 95.22
glibc C 30 Base Library 773k 3.95 92.37

libstdc++ C++ 10 Base Library 438k 3.43 55.22
sdl C 10 Game Library 201k 3.05 95.83
gtk C 10 GUI Library 737k 0.75 98.20

Core 2 at 1.86GHz with 2Go of RAM and a 160Go SATA disk. Table 1 presents
the parsing results of Yacfe on different types of software (kernel, browser, com-
piler, game, etc).

Yacfe can parse on average correctly 96% of the code. The percentage is
in number of lines. By parsing correctly we mean returning successfully AST
elements that are not the AST error element mentionned in Section 3.4. The AST
elements may still contain mistakes as we may have bugs in our parser. In fact,
we had such bugs in the past and for instance, because of a typo, we generated
in the AST the same tree for expressions involving the < and > operators. But,
as we have now used extensively the Yacfe framework for more than a year, to
perform program transformations on Linux drivers [17], we found such typos and
are now confident that the returned ASTs actually match the source correctly,
at least for the C parser (we have not yet tested extensively our C++ parser).

The skipped column represents the percentage of lines that are either (1)
completely skipped by Yacfe, for instance for code in branches containing partial
statements as explained in Section 2.2 or in #if 0 branches, or (2) partially
skipped, for instance when a line contains a problematic macro mentioned in
the configuration file which must be expanded.

For each piece of software, it took us on average less than 2 hours to write
the configuration file containing on average 56 hints or definitions of recurring
problematic macros. The average time to parse a file is about 0.03s. Analyzing
the whole Linux kernel with Yacfe takes 12 minutes, whereas compiling it with
gcc (with the maximal number of features and drivers) takes 56 minutes.

Note that even if Yacfe does not parse correctly 100% of the code, it still
analyzes in general more code than gcc which processes only certain ifdefs. On

Parsing C/C++ Code without Pre-processing 121

an Intel machine with all the features ‘on’, gcc compiles only 54% of the Linux
kernel C files, as the code of other architectures is not considered. Moreover, using
static analysis tools such as Splint [7] requires also a setup time. For instance,
configuring Splint to analyze one Linux kernel driver took us more than 2 hours
as Splint can work only after preprocessing which requires among other things
to find the appropriate cpp options (more than 40 -D and -I flags), spread in
Makefiles or specific to gcc, to also pass to Splint. This is not needed with Yacfe.
Bug detection tools can thus have false positives, for code inside certain ifdefs,
as they don’t analyze the whole original source code.

The remaining errors are due to features not yet handled by our parser such
as embedded assembly for Windows, Objective C code specific to MacOS, the
gcc vector extension, or cpp idioms and macro body definitions not yet handled
by our heuristics or grammar or configuration files. Among those errors, we
also found true errors in certain ifdef branches which had probably not been
compiled for a long time. Some Yacfe parsing errors were also raised because
the indentation of macros was not correct, which prevents our heuristics to work
(often because tools like indent are not aware of cpp constructs and wrongly
indented the code). We found 31 such mistakes in the Linux kernel, and have
submitted patches that have now been accepted and are part of the latest kernel.
We also found 1 or 2 mistakes in Qemu, Openssh, Pidgin, and Mozilla.

Table 1 also shows that the younger the software, the easier it is for Yacfe to
parse it. This is probably because the pitfalls of cpp are now widely known and
thus programmers are more conservative in their use of cpp.

Yacfe can still not parse most of the C++ code in the C++ standard GNU
library as this code use advanced C++ features and macros not yet handled
by our heuristics and grammar. In fact the code is also arguably very hard to
disambiguate for a human.

6 Related Work

Ernst et al. [6] presented an extensive study on the usage of cpp in 26 open
source software, representing a total of 1.4 millions lines of code. They relied on
the PcP3 [3] tool to compute various statistics. PcP3 is a framework for pre-
processor aware code analysis where the code is still pre-processed but by an
embedded cpp in which the user can write Perl functions invoked when certain
cpp constructs are recognized. While this approach using hooks might be enough
to statically analyze code, for instance to find cpp-related bugs, PcP3 offers no
support for program transformation as the code is still in the end preprocessed.

Based on the above study, Brewer et al. [14] proposed a new pre-processor
language for C, Astec, which can express many cpp idioms while being more
amenable to program analysis. They also presented a tool to assist users in
migrating code from cpp to Astec. They tested their approach on 3 small software
and a small subset of Linux.

Past works to parse C code as-is have focused mainly on ifdefs [2,10]. Baxter
et al. [2] proposed an extended C grammar, AST, and symbol table dealing with

122 Y. Padioleau

ifdef directives, similar to what we presented briefly in Section 2.2. They also
impose constraints on where such directives can be placed, mainly at boundaries
between statements or declarations. Garrido et al. [10] extended this approach
to deal with directives not placed on clean boundaries, for instance between par-
tial expressions as in the example in Section 2.2. They proposed the notion of
pseudo-pre-processing where some code preceding ifdefs of partial statements or
expressions are internally distributed in both branches, to complete them, but
marked specially in the AST to make it still possible to back propagate modifi-
cations on the original code. They tested their approach on 2 small software. We
found, on the code we analyzed, that more than 90% of the ifdefs are placed at
clean boundaries as it makes the code more readable. Some programmers have
also argued that some use of ifdefs are considered harmful [20].

Few works have focused on macros, which we found in practice more prob-
lematic than ifdefs regarding parsing. Livadas et al. [13] proposed another pre-
processor, Ghinzu, allowing to track and map code location in the expanded code
to the original code. Baxter et al. [4] briefly described the handling of cpp in
their commercial program transformation system framework DMS. As in PcP3
they implemented their own pre-processor called between the lexing and parsing,
but use it only when necessary. They retain some cpp macros uses in the AST
when possible and fall-down to their embedded pre-processor by expanding some
macros in case of parsing errors.

Baxter et al. [4] as well as McPeak et al. [15] have argued for the use of Gen-
eralized LR[24] parsing (GLR, or parallel LR) instead of LALR(1) as in Yacc,
especially to deal with the C++ language, independently of the pre-processing
problem. Using a GLR tool does not reduce the number of conflicts in a grammar,
as GLR is still a LR-based technique. But, instead of favoring one choice, for in-
stance shift over reduce, as in Yacc, GLR tries both possibilities and returns a set
of parse trees. In some cases many parsing branches eventually reach a dead-end
and only one parse tree is returned. The shift/reduce conflict introduced when
adding the iterator construct in the grammar in Section 2.3 is thus irrelevant
when using a GLR parser. In other cases, many parsing branches could succeed
and GLR thus postpones the disambiguation problem to a post-parsing phase.
Using more semantic information the programmer must then decide which of
those parse trees are invalid. In this paper we opted instead to disambiguate a
priori using views and heuristics, as lexical information such as name or inden-
tation are more relevant than semantic information to disambiguate cpp idioms.
Moreover, by using fresh tokens we can have a grammar without almost any
LR conflicts whereas using GLR without our fresh tokens would lead for our
C grammar to many conflicts and no static guarantees that all ambiguities are
resolved by the post-parsing phase. The C++ grammar written by McPeak
thus contains 138 conflicts, and does not handle any cpp constructs. Our C and
C++ grammars, which also handle cpp constructs, contain respectively 1 and
6 shift/reduce conflicts, including the classic dangling else conflict, and were all
resolved by adding precedence directives in the grammar.

Parsing C/C++ Code without Pre-processing 123

To solve some of the C++ conflicts, Willink [29] has heavily rewritten the
original C++ grammar, for instance to better deal with templates, which use
the < and > symbols already used for relation comparisons in expressions. Nev-
ertheless, as opposed to the original grammar which provides a useful readable
specification of the language, the modified grammar of Willink is hard to read
and breaks the conceptual structure of the original grammar. It is also a superset
of the language and requires a post-processing analysis to generate the final AST
and solve ambiguities.

There are two dedicated refactoring tools for C/C++ listed on the refactoring
website [8], including Xref [26], and some IDEs such as Eclipse have some support
for C/C++. Nevertheless, they support only a limited set of refactorings, which in
turn represent only a small part of the program-transformation spectrum. They
do not offer any general mechanism to deal with cpp. Instead, Xref uses a classical
C front-end, EDG [1], which like PCP3 implements its own cpp preprocessor. It
provides opportunities to track cpp uses, but not to transform them.

Spinnelis [21] focused on the rename-entity refactoring that existing refactor-
ing tools may implement only partially as they can miss some code sites (false
negatives). This is because cpp macros can concatenate identifiers with the #
cpp operator, generating identifiers that may not be visible directly in the orig-
inal source code. Spinnelis thus proposed techniques to statically track those
concatenations. We instead extended the AST and the grammar to accept such
concatenation constructs and postpone those analysis to transformation engines
working on our extended AST.

No previous work tried to leverage the implicit information programmers use
to disambiguate cpp usages, or to represent cpp idioms directly in the AST.
They thus all work on program representations that do not directly reflect the
original code. Most of the previous work have also been applied only to small
software.

7 Conclusion

In this paper we have presented Yacfe, a parser for C/C++ that can represent
most cpp constructs directly in the AST. This is made possible by adding new
grammar rules, recognizing cpp idioms, without introducing any conflict and
ambiguity in the original C and C++ grammars by using fresh tokens. Those
fresh tokens are generated by heuristics that leverage the name, context, and
indentation of cpp constructs.

We have used Yacfe in the past as part of a project to evolve Linux device
drivers [17] in which the correct parsing of most code helped automate most of
the work. We have also used it as part of a source code comment study [18]
where the maintenance of cpp constructs in the AST was necessary. We hope
Yacfe can be useful to other researchers in situations that require manipulating
source code as-is, such as for refactoring, when evolving APIs, when offering a
migration path from legacy code to modern languages, or to find bugs at the
cpp-level for instance on the incorrect use of macros.

124 Y. Padioleau

Availability

The source code of Yacfe as well as the data used for this paper are available on
our web page: http://opera.cs.uiuc.edu/∼pad/yacfe/.

Acknowledgments

Thanks are due to Julia Lawall and Lin Tan for comments on earlier drafts of
this paper, to the anonymous reviewers for suggesting the idea to assist the user
in creating the configuration file, and to YuanYuan Zhou to let me spend time
on this paper. This work was carried out in part at the EMN. This work was
supported in part by the Agence Nationale de la Recherche (France) and by the
NSF under grant CNS 06 15372.

References

1. EDG C++ frontend. Edison Design Group, www.edg.com
2. Aversano, L., Penta, M.D., Baxter, I.D.: Handling preprocessor-conditioned dec-

larations. In: International Workshop on Source Code Analysis and Manipulation
(2002)

3. Badros, G.J., Notkin, D.: A framework for preprocessor-aware C source code anal-
yses. Software, Practice and Experience (2000)

4. Baxter, I.D., Pidgeon, C., Mehlich, M.: DMS: Program transformations for prac-
tical scalable software evolution. In: ICSE (2004)

5. Ellis, M.A., Stroustrup, B.: The Annotated C++ Reference Manual. Addison-
Wesley, Reading (1990)

6. Ernst, M.D., Badros, G.J., Notkin, D., Member, S.: An empirical analysis of C
preprocessor use. IEEE Transactions on Software Engineering (2002)

7. Evans, D.: Splint (2007), http://www.splint.org/
8. Fowler, M.: Refactoring tools, http://www.refactoring.com/tools.html
9. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,

Reading (1999)
10. Garrido, A., Johnson, R.: Analyzing multiple configurations of a C program. In:

ICSM (2005)
11. Johnson, S.C.: Yacc: Yet another compiler-compiler. Tech. rep, Unix Programmer’s

Manual Vol 2b (1979)
12. Leroy, X.: Ocaml, http://caml.inria.fr/ocaml/
13. Livadas, P.E., Small, D.T.: Understanding code containing preprocessor constructs.

In: IEEE Workshop on Program Comprehension (1994)
14. McCloskey, B., Brewer, E.: ASTEC: a new approach to refactoring C. In: FSE

(2005)
15. McPeak, S., Necula, G.C.: Elkhound: A fast, practical GLR parser generator. In:

Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 73–88. Springer, Heidelberg
(2004)

16. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, p. 213. Springer, Heidelberg (2002)

www.edg.com
http://www.splint.org/
http://www.refactoring.com/tools.html
http://caml.inria.fr/ocaml/

Parsing C/C++ Code without Pre-processing 125

17. Padioleau, Y., Lawall, J.L., Hansen, R.R., Muller, G.: Documenting and automat-
ing collateral evolutions in Linux device drivers. In: EuroSys (2008)

18. Padioleau, Y., Tan, L., Zhou, Y.: Listening to programmers: Taxonomies and char-
acteristics of comments in operating system code. In: ICSE (2009)

19. Ritchie, D.M., Kernighan, B.: The C Programming Language. Prentice-Hall, En-
glewood Cliffs (1988)

20. Spencer, H.: #ifdef considered harmful, or portability experience with C News. In:
USENIX Summer (1992)

21. Spinellis, D.: Global analysis and transformations in preprocessed languages. IEEE
Transactions on Software Engineering (2003)

22. Stallman, R. M. Using GCC. GNU Press, GNU C extensions (2003),
http://gcc.gnu.org/onlinedocs/gcc/index.html#toc_C-Extensions

23. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley, Reading
(1994)

24. Tomita, M.: An efficient context-free parsing algorithm for natural languages. In:
IJCAI (1985)

25. Vittek, M.: Xrefactory for C/C++, http://xref-tech.com/xrefactory/main.html
26. Vittek, M.: Refactoring browser with preprocessor. In: Conference on Software

Maintenance And Reengineering (2003)
27. Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction.

In: POPL (1987)
28. Wansbrough, K.: Macros and preprocessing in Haskell (1999),

http://www.cl.cam.ac.uk/~kw217/research/misc/hspp-hw99.ps.gz

29. Willink, E.D., Vyacheslav, Muchnick, B.: Fog: A meta-compiler for C++ patterns.
Tech. rep. (1998)

http://gcc.gnu.org/onlinedocs/gcc/index.html#toc_C-Extensions
http://xref-tech.com/xrefactory/main.html
http://www.cl.cam.ac.uk/~kw217/research/misc/hspp-hw99.ps.gz

Faster Scannerless GLR Parsing

Giorgios Economopoulos, Paul Klint, and Jurgen Vinju

Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands

Abstract. Analysis and renovation of large software portfolios requires
syntax analysis of multiple, usually embedded, languages and this is
beyond the capabilities of many standard parsing techniques. The
traditional separation between lexer and parser falls short due to the lim-
itations of tokenization based on regular expressions when handling mul-
tiple lexical grammars. In such cases scannerless parsing provides a viable
solution. It uses the power of context-free grammars to be able to deal
with a wide variety of issues in parsing lexical syntax. However, it comes
at the price of less efficiency. The structure of tokens is obtained using a
more powerful but more time and memory intensive parsing algorithm.
Scannerless grammars are also more non-deterministic than their tok-
enized counterparts, increasing the burden on the parsing algorithm even
further.

In this paper we investigate the application of the Right-Nulled Gener-
alized LR parsing algorithm (RNGLR) to scannerless parsing. We adapt
the Scannerless Generalized LR parsing and filtering algorithm (SGLR)
to implement the optimizations of RNGLR. We present an updated pars-
ing and filtering algorithm, called SRNGLR, and analyze its performance
in comparison to SGLR on ambiguous grammars for the programming
languages C, Java, Python, SASL, and C++. Measurements show that
SRNGLR is on average 33% faster than SGLR, but is 95% faster on
the highly ambiguous SASL grammar. For the mainstream languages C,
C++, Java and Python the average speedup is 16%.

1 Introduction

For the precise analysis and transformation of source code we first need to parse
the source code and construct a syntax tree. Application areas like reverse en-
gineering, web engineering and model driven engineering specifically deal with
many different languages, dialects and embeddings of languages into other lan-
guages. We are interested in the construction of parsing technology that can
service such diversity; to allow a language engineer to experiment with and effi-
ciently implement parsers for real and complex language constellations.

A parser is a tool, defined for a specific grammar, that constructs a syntac-
tic representation (usually in the form of a parse tree) of an input string and
determines if the string is syntactically correct or not. Parsing often includes a
scanning phase which first splits the input string into a list of words or tokens.
This list is then further analyzed using a more powerful parsing algorithm. This

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 126–141, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Faster Scannerless GLR Parsing 127

scanning/parsing dichotomy is not always appropriate, especially when parsing
legacy languages or embedded languages. Scanners are often too simplistic to
be able to deal with the actual syntax of a language and they prohibit modu-
lar implementation of parsers. Scannerless parsing [16,17,25] is a technique that
avoids such issues that would be introduced by having a separate scanner [5].
Intuitively, a scannerless parser uses the power of context-free grammars instead
of regular expressions to tokenize an input string.

The following Fortran statement is a notorious example of scanning issues [1]:
DO 5 I = 1.25 . It is not until the decimal point that it becomes clear that

we are dealing here with an assignment to the variable DO5I.1 However, in the
slightly different statement: DO 5 I = 1,25 , DO is a keyword and the statement
as a whole is a loop construct. This example highlights that tokenization using
regular expressions, without a parsing context, can easily be non-deterministic
and even ambiguous. In order to restrict the number of possibilities, scanners
usually apply several implicit rules like, e.g., Prefer Longest Match, Prefer Key-
words, Prefer First Applicable Rule. The downside of such disambiguation is that
the scanner commits itself to one choice of tokens and blocks other interpreta-
tions of the input by the parser. A scannerless parser with enough lookahead
does not have this problem.

Another example is the embedding of Java code in AspectJ definitions and vice
versa. If a scanner is needed for the combination of the two languages, you may
end up with reserving the new AspectJ keywords from the Java code. However,
existing Java code may easily contain such identifiers, resulting in parsing errors
for code that was initially parsed correctly. One approach that could avoid this
problem would be to use two separate scanners: one that is active while parsing
pure AspectJ code and another that is active while parsing pure Java code. Once
again, the parsing context would be used to decide which scanner is used in the
tokenization. This problem does not exist when using a scannerless parser [6].

In a classical scanner/parser approach the scanner makes many decisions re-
garding tokenization. In a scannerless parser these decisions are postponed and
have to be made by the parser. Consequently, scannerless parsers generally have
to deal with more non-determinism than before, so the deterministic LR parsing
algorithms can no longer be used. However, it turns out that the non-determinism
introduced by the removal of the scanner can be gracefully handled by General-
ized LR (GLR) parsing algorithms [20,14,15].

The advantages of a one phase scannerless parser over a traditional two phase
scanner and parser may not be immediately obvious. The following list highlights
the main benefits of scannerless parsing:

– Computational power: lexical ambiguity is a non-issue and full definition of
lexical syntax for real languages is possible.

– Modularity: languages with incompatible lexical syntaxes can be combined
seemlessly.

– Scope: to generate parsers for more languages, including ambiguous, embed-
ded and legacy languages.

1 Recall that Fortran treats spaces as insignificant, also inside identifiers.

128 G. Economopoulos, P. Klint, and J. Vinju

– Simplicity: no hard-wired communication between scanning and parsing.
– Declarativeness: no side-effects and no implicit lexical disambiguation rules

necessary.

So, on the one hand a language engineer can more easily experiment with
and implement more complex and more diverse languages using a parser gen-
erator that is based on Scannerless GLR parsing. On the other hand there is a
cost. Although it does not have a scanning phase, scannerless parsing is a lot
more expensive than its two-staged counterpart. The structure of tokens is now
retrieved with a more time and memory intensive parsing algorithm. A collec-
tion of grammar rules that recognizes one token type, like an identifier could
easily have 6 rules, including recursive ones. Parsing one character could there-
fore involve several GLR stack operations, searching for applicable reductions
and executing reductions. Consider an average token length of 8 characters and
an average number of stack operations of 4 per character, a scannerless parser
would do 4 ∗ 8 = 32 times more work per token than a parser that reads a pre-
tokenized string. Furthermore, a scannerless parser has to consider all whitespace
and comment tokens. An average program consists of more than 50% whites-
pace which again multiplies the work by two, raising the difference between the
two methods to a factor of 64. Moreover, scannerless grammars are more non-
deterministic than their tokenized counterparts, increasing the burden on the
parsing algorithm even more.

Fortunately, it has been shown [5] that scannerless parsers are fast enough to
be applied to real programming languages. In this paper we investigate the im-
plementation of the Scannerless GLR (SGLR) parser provided with SDF [25,5].
It makes scannerless parsing feasible by rigorously limiting the non-determinism
that is introduced by scannerless parsing using disambiguation filters. It is and
has been used to parse many different kinds of legacy programming languages
and their dialects, experimental domain specific languages and all kinds of em-
beddings of languages into other languages. The parse trees that SGLR pro-
duces are used by a variety of tools including compilers, static checkers, architec-
ture reconstruction tools, source-to-source transformers, refactoring, and editors
in IDEs.

As SDF is applied to more and more diverse languages, such as scripting and
embedded web scripting languages, and in an increasing number of contexts such
as in plugins for the Eclipse IDE, the cost of scannerless parsing has become more
of a burden. That is our motivation to investigate algorithmic changes to SGLR
that would improve its efficiency. Note that the efficiency of SGLR is defined by
the efficiency of the intertwined parsing and filtering algorithms.

We have succeeded in replacing the embedded parsing algorithm in SGLR—
based on Farshi’s version of GLR [14]—with the faster Right-Nulled GLR al-
gorithm [18,9]. RNGLR is a recent derivative of Tomita’s GLR algorithm that,
intuitively, limits the cost of non-determinism in GLR parsers. We therefore in-
vestigated how much the RNGLR algorithm would mitigate the cost of scanner-
less parsing, which introduces more non-determinism. The previously published
results on RNGLR can not be extrapolated directly to SGLR because of (A) the

Faster Scannerless GLR Parsing 129

missing scanner, which may change trade-offs between stack traversal and stack
construction and (B) the fact that SGLR is not a parsing algorithm per se, but
rather a parsing and filtering algorithm.The benefit of RNGLR may easily be
insignificant compared to the overhead of scannerless parsing and the additional
costs of filtering.

In this paper we show that a Scannerless Right-Nulled GLR parser and filter
is actually significantly faster on real applications than traditional SGLR. The
amalgamated algorithm, called SRNGLR, requires adaptations in parse table
generation, parsing and filtering, and post-parse filtering stages of SGLR. In
Section 2 we analyze and compare the run-time efficiency of SGLR and the new
SRNGLR algorithm. In Sections 3 and 4 we explain what the differences between
SGLR and SRNGLR are. We conclude the paper with a discussion in Section 6.

2 Benchmarking SRNGLR

In Sections 3 and 4 we will delve into the technical details of our parsing al-
gorithms. Before doing so, we first present our experimental results. We have
compared the SGLR and SRNGLR algorithms using grammars for an extended
version of ANSI-C—dubbed C’—, C++, Java, Python, SASL and Γ1—a small
grammar that triggers interesting behaviour in both algorithms. Table 1 de-
scribes the grammars and input strings used. Table 2 provides statistics on the
sizes of the grammars. We conducted the experiments on a 2.13GHz Intel Dual
Core with 2GB of memory, running Linux 2.6.20.

SGLR and SRNGLR are comprised of three different stages: parse table gen-
eration, parsing and post-parse filtering. We focus on the efficiency of the latter
two, since parse table generation is a one-time cost. We are not interested in
the runtime of recognition without tree construction. Note that between the
two algorithms the parsing as well as the filtering changes and that these influ-
ence each other. Filters may prevent the need to parse more and changes in the
parsing algorithm may change the order and shape of the (intermediate) parse
forests that are filtered. Efficiency measurements are also heavily influenced by
the shapes of the grammars used as we will see later on.

The SRNGLR version of the parser was tested first to output the same parse
forests that SGLR does, modulo order of trees in ambiguity clusters.

Table 3 and Figure 1 show the arithmetic mean time of five runs and Table 4
provides statistics on the amount of work that is done. GLR parsers use a Graph
Structured Stack (GSS). The edges of this graph are visited to find reductions
and new nodes and edges are created when parts of the graph can be reduced
or the next input character can be shifted. Each reduction also leads to the
construction of a new parse tree node and sometimes a new ambiguity cluster. An
ambiguity cluster encapsulates different ambiguous trees for the same substring.
For both algorithms we count the number of GSS edge visits, GSS node creations,
edge and node visits for garbage collection, and parse tree node and ambiguity
cluster visits for post-parse filtering. Note that garbage collection of the GSS is
an important factor in the memory and run-time efficiency of GLR.

130 G. Economopoulos, P. Klint, and J. Vinju

Table 1. Grammars and input strings used

Name Grammar description Input size
(chars/lines)

Input description

C’ ANSI-C plus ambiguous excep-
tion handling extension

32M/1M Code for an embedded sys-
tem

C++ Approaches ISO standard, with
GNU extensions

2.6M/111K Small class that includes
much of the STL

Java Grammar from [6] that imple-
ments Java 5.0

0.5M/18k Implementation of The
Meta-Environment [3]

Python Derived from the reference man-
ual [24], ambiguous due to miss-
ing off-side rule2implementation

7k/201 spawn.py from Python dis-
tribution

SASL Taken from [22], ambiguous due
to missing off-side rule implemen-
tation

2.5k+/114+ Standard prelude, concate-
nated to increasing sizes

Γ1 S ::= SSS | SS | a; triggers
worst-case behaviour [9]

1–50/1 Strings of a’s of increasing
length

Table 2. Grammar statistics showing nullable non-terminals (NNT), nullable produc-
tions (NP), right-nullable productions (RNP), SLR(1) states, shifts and gotos, reduc-
tions and reductions with dynamic lookahead restriction (LA Reductions)

NNT NP RNP States Shifts+Gotos Reductions LA Reductions
SGLR SRNGLR SGLR SRNGLR

C’ 71 93 94 182k 37k 18k 23k 5.9k 6.3k
C++ 90 112 102 112k 18k 19k 19k 1.5k 1.5k
Java 81 112 116 67k 9.7k 5.9k 6.0k 1.0k 1.1k
Python 56 74 85 22k 3.4k 1.7k 1.9k 0 0
SASL 16 21 22 4.5k 0.9k 0.5k 0.6k 0 0
Γ1 0 0 0 13 30 13 15 0 0

For this benchmark, SRNGLR is on average 33% faster than SGLR with a
smallest speedup of 9.8% for C and a largest speedup of 95% for SASL. Appar-
ently the speedup is highly dependent on the specific grammar. If we disregard
SASL the improvement is still 20% on average and if we also disregard Γ 50

1
the average drops to a still respectable 16% improvement for the mainstream
languages C, C++, Java and Python. The results show that SRNGLR parsing
speed is higher (up to 95%) for grammars that are highly ambiguous such as
SASL. SRNGLR also performs better on less ambiguous grammars such as Java
(14% faster). The parsing time is always faster, and in most cases the filtering
time is also slightly faster for SRNGLR but not significantly so.

The edge visit statistics (Table 4 and Figure 3) explain the cause of the
improved parsing time. Especially for ambiguous grammars the SGLR algorithm

2 The off-side rule was not implemented because SDF does not have a declarative
disambiguation construct that can expresses its semantics. It can be implemented
in ASF as a post-parse traversal, but has no effect on the timings described here.

Faster Scannerless GLR Parsing 131

Table 3. Speed (characters/second), Parse time (seconds) , Filter time (seconds), Total
time (seconds) and Speedup (%) of SGLR (S) and SRNGLR (SRN). k = 103.

C’ C++ Java Python SASL80 Γ1
50

S SRN S SRN S SRN S SRN S SRN S SRN
Speed (chars/sec.) 385k 443k 121k 175k 404k 467k 178 904 78 1k 4.7 24
Parse time (sec.) 84.2 73.2 21.5 14.9 2.1 1.8 39.2 7.7 4.8k 202.2 10.8 2.1
Filter time (sec.) 102.9 95.5 5.7 5.6 0.8 0.7 327.3 298.8 1.6 1.6 7.7 9.5
Total time (sec.) 187.2 168.8 27.3 20.6 2.9 2.5 366.5 306.5 4.8k 203.9 18.5 11.6
Speedup (%) 9.8 24.5 13.8 16.4 95 37.6

Table 4. Workload data. Edges traversed searching reductions (ET), edges traversed
searching existing edge (ES), GSS nodes created (NC), GSS edges created (EC), edges
traversed for garbage collection (GC), ambiguity nodes created while filtering (FAC),
and parse tree nodes created while filtering (FNC). k = 103, M = 106, B = 109.

C’ C++ Java Python SASL80 Γ 50
1

S SRN S SRN S SRN S SRN S SRN S SRN
ET 149M 44M 26M 6.6M 3.2M 0.9M 90M 3.4M 71B 165M 48M 0.7M
ES 81M 18M 145M 27M 5.0M 0.9M 1.8B 234M 16B 14B 28M 14M
NC 141M 143M 19M 20M 3.0M 3.0M 157k 157k 2.4M 2.4M 252 252
EC 154M 157M 30M 31M 3.5M 3.4M 962k 962k 44M 44M 3.9k 3.9k
GC 13M 13M 6.2M 6.8M 0.7M 0.6M 2.0M 2.0M 88M 88B 14k 14k
FAC 30k 30k 5.6k 5.6k 0 0 83k 83k 48k 48k 1.2k 2.1k
FNC 241M 241M 13M 13M 1.6M 1.6M 707M 707M 3.1M 3.1M 1.1M 1.3M

traverses many more GSS edges. According to the time measurements this is
significant for real world applications of scannerless parsing.

Filtering time is improved in all but the Γ1 case, although the improvement
is not greater than 10%. The workload statistics show that about the same
number of nodes are created during filtering. The differences are lost in the
rounding of the numbers, except for the Γ1 case which shows significantly more
node creation at filtering time. This difference is caused by different amounts of
sharing of ambiguity clusters between the two versions. The amount of sharing
in ambiguity clusters during parsing, for both versions, depends on the arbitrary
ordering of reduction steps. I.e. it is not relevant for our analysis.

Notice that the parse time versus filtering time ratio can be quite different
between languages. This highly depends on the shape of the grammar. LR fac-
tored grammars have higher filtering times due to the many additional parse
tree nodes for chain rules. The Python grammar is an example of such a gram-
mar, while SASL was not factored and has a minimum number of non-terminals
for its expression sub-language. Shorter grammars with less non-terminals have
better filtering speed. We expect that by “unfactoring” the Python grammar a
lot of speed may be gained.

Figure 2 depicts how SRNGLR improves parsing speed as the input length
grows. For Γ1 it is obvious that the gain is higher when the input gets larger.

132 G. Economopoulos, P. Klint, and J. Vinju

parsing

R
un

ti
m

e
(s

ec
s)

Γ1

25
20
15
10
5
0R

un
ti
m

e
(s

ec
s)

Γ1

25
20
15
10
5
0R

un
ti
m

e
(s

ec
s)

Γ1

25
20
15
10
5
0R

un
ti
m

e
(s

ec
s)

SASL

5200
4160
3120
2080
1040

0

filtering

R
un

ti
m

e
(s

ec
s)

SASL

5200
4160
3120
2080
1040

0R
un

ti
m

e
(s

ec
s)

SASL

5200
4160
3120
2080
1040

0R
un

ti
m

e
(s

ec
s)

Python

400
320
240
160
80
0R

un
ti
m

e
(s

ec
s)

Python

400
320
240
160
80
0

other

R
un

ti
m

e
(s

ec
s)

Python

400
320
240
160
80
0

R
un

ti
m

e
(s

ec
s)

Java

3

2

1

0R
un

ti
m

e
(s

ec
s)

Java

3

2

1

0R
un

ti
m

e
(s

ec
s)

Java

3

2

1

0R
un

ti
m

e
(s

ec
s)

C++

30
24
18
12
6
0R

un
ti
m

e
(s

ec
s)

C++

30
24
18
12
6
0R

un
ti
m

e
(s

ec
s)

C++

30
24
18
12
6
0R

un
ti
m

e
(s

ec
s)

C

190
152
114
76
38
0R

un
ti
m

e
(s

ec
s)

C

190
152
114
76
38
0R

un
ti
m

e
(s

ec
s)

C

190
152
114
76
38
0

Fig. 1. Runtime comparison between SGLR (first col.) and SRNGLR (second col.).
The other bar accounts for the time taken to read and process the input string and
parse table.

srnglr
sglr

Input string length (number of characters)

P
ar

si
ng

ti
m

e
(s

ec
on

ds
)

5045403530252015

12

10

8

6

4

2

0

Fig. 2. Comparison of SGLR and
SRNGLR parsing time for Γ1

SASL

Python Γ1

Java

C++

C

Reduction of edge traversals by RNGLR

P
ar

se
ti
m

e
im

pr
ov

em
en

t

100%95%90%85%80%75%70%

100%

80%

60%

40%

20%

0%

Fig. 3. Correlation between saving of
edge traversals and parsing speedup

Note that although Γ1 does not have any right-nullable productions (see Table
2) there is still a significant gain. The reason for this is that SRNGLR prevents
work from being done for all grammars (see Section 3).

From these results we may conclude that SRNGLR clearly introduces a struc-
tural improvement that increases the applicability of scannerless GLR parsing to
large programs written in highly ambiguous scripting languages such as Python
and SASL. Also, we may conclude that it introduces a significant improvement
for less ambiguous or non-ambiguous languages and that the shape of a grammar
highly influences the filtering speed.

Faster Scannerless GLR Parsing 133

3 SGLR and RNGLR

In this section we outline the RNGLR and SGLR algorithms and highlight the
main differences between them. There are four main differences between the
SGLR and RNGLR algorithms:

– Different parse tables formats are used; SLR(1) [25] versus RN [9].
– SGLR does more traversals of the GSS during parsing than RNGLR.
– Different parse forest representations are used; maximally shared trees [23]

versus SPPF’s [15].
– SGLR implements disambiguation filters [5] whereas RNGLR does not.

The RNGLR algorithm combines adaptations in the parse table generation al-
gorithm with simplifications in the parser run-time algorithm. It is based on
Tomita’s algorithm, called Generalized LR (GLR) [20]. GLR extends the LR
parsing algorithm to work on all context-free grammars by replacing the stack of
the LR parsing algorithm with a Graph Structured Stack (GSS). Using the GSS
to explore different derivations in parallel, GLR can parse sentences for gram-
mars with parse tables that contain LR conflicts rather efficiently. However, the
GLR algorithm fails to terminate on certain grammars. Farshi’s algorithm fixes
the issue in a non-efficient manner, by introducing extra searching of the GSS
[14]. This algorithm is the basis for SGLR. The RNGLR algorithm fixes the same
issue in a more efficient manner.

RNGLR introduces a modified LR parse table: an RN table. RN tables are
constructed in a similar way to canonical LR tables, but in addition to the
standard reductions, reductions on right nullable rules are also included. A right
nullable rule is a production rule of the form A ::= αβ where β

∗⇒ ε3. By
reducing the left part of the right nullable rule (α) early, the RNGLR algorithm
avoids the problem that Tomita’s algorithms suffered from and hence does not
require Farshi’s expensive correction. However, since the right nullable symbols
of the rule (β) have not been reduced yet it is necessary to pre-construct the
parse trees of those symbols. These nullable trees are called ε-trees and since
they are constant for a given grammar, they can be constructed at parse table
generation time and included in the RN parse table. The early RN reduction
will construct a full derivation simply by including the pre-constructed trees.

It is well known that the number of parses of a sentence with an ambiguous
grammar may grow exponentially with the size of the sentence [7]. To avoid
exponential complexity, GLR-style algorithms build an efficient representation
of all possible parse trees, using subtree sharing and local ambiguity packing.
However, the SGLR and RNGLR algorithms construct parse trees in different
ways and use slightly different representations. RNGLR essentially follows the
approach described by Rekers – the creation and sharing of trees is handled
directly by the parsing algorithm – but does not construct the most compact
representation possible. The SGLR algorithm uses the ATerm library [23] to
3 α, β are possibly empty lists of terminals and non-terminals, ε is the empty string

and ∗⇒ represents a derivation in zero or more steps

134 G. Economopoulos, P. Klint, and J. Vinju

construct parse trees thereby taking advantage of the maximal sharing it imple-
ments. This approach has several consequences. The parsing algorithm can be
simplified significantly by replacing all parse tree creation and manipulation code
with calls to the ATerm library. Although the library takes care of all sharing,
the creation of ambiguities and cycles requires extra work (see Section 4.1).

As previously mentioned, in addition to the different construction approaches,
a slightly different representation of parse forests is used. RNGLR labels interior
nodes using non-terminal symbols and uses packing nodes to represent ambigui-
ties [18]. SGLR labels interior nodes with productions and represents ambiguous
trees using ambiguity clusters labeled by non-terminal symbols. The reason that
production rules are used to label the interior nodes of the forest is to implement
some of the disambiguation filters that are discussed later in this section.

The SGLR algorithm. Is different from RNGLR mainly due to the filters that
are targeted at solving lexical ambiguity. Its filters for priority and preference
will be discussed as well. SGLR introduces the following four types of filters:
follow restrictions, rejects, preferences and priorities. Each filter type targets a
particular kind of ambiguity. Each filter is derived from a corresponding declar-
ative disambiguation construct in the SDF grammar formalism [5]. Formally,
each filter is a function that removes certain derivations from parse forests (sets
of derivations). Practically, filters are implemented as early in the parsing ar-
chitecture as possible, i.e. removing reductions from parse tables or terminating
parallel stacks in the GSS.

Four filter types. We now briefly define the semantics of the four filter types
for later reference. A follow restriction is intended to implement longest match
and first match behaviour of lexical syntax. In the following example, the -/-
operator defines a restriction on the non-terminal I. Its parse trees may not be
followed immediately by any character in the class [A-Za-z0-9], which effectively
results in longest match behaviour for I:

I ::= [A-Za-z][A-Za-z0-9] ∗ I -/- [A-Za-z0-9] (3.1)

In general, given a follow restriction A -/- α where A is a non-terminal and α
is a character class, any parse tree whose root is A ::= γ will be filtered if its
yield in the input string is immediately followed by any character in α. Multiple
character follow restrictions, as in A -/- α1.α2 . . . αn, generalize the concept. If
each of the n characters beyond the yield of A, fit in their corresponding class
αi the tree with root A is filtered. Note that the follow restriction incorporates
information from beyond the hierarchical context of the derivation for A, i.e. it
is not context-free.

The reject filter is intended to implement reservation, i.e. keyword reservation.
In the following example, the {reject} attribute defines that the keyword public
is to be reserved from I:

I ::= [A-Za-z][A-Za-z0-9] ∗ I ::= “public”{reject} (3.2)

Faster Scannerless GLR Parsing 135

In general, given a production A ::= γ and a reject production A ::= δ{reject},
all trees whose roots are labeled A ::= δ{reject} are filtered and any tree whose
root is labeled A ::= γ is filtered if its yield is in the language generated by δ.
Reject filters give SGLR the ability to parse non-context-free languages such as
anbncn [25].

The preference filter is intended to select one derivation from several al-
ternative overlapping (ambiguous) derivations. The following example uses the
{prefer} attribute to define that in case of ambiguity the preferred tree should
be the only one that is not filtered. The dual of {prefer} is {avoid}.

I ::= [A-Za-z][A-Za-z0-9] ∗ I ::= “public” {prefer} (3.3)

In general, given n productions A ::= γ1 to A ::= γn and a preferred production
A ::= δ{prefer}, any tree whose root is labeled by any of A ::= γ1 to A ::= γn

will be filtered if its yield is in the language generated by δ. All trees whose roots
are A ::= δ{prefer} remain. Dually, given an avoided production A ::= κ{avoid}
any tree whose root is A ::= κ{avoid} is filtered when its yield is in one of the
languages generated by γ1 to γn. In this case, all trees with roots A ::= γ1 to
A ::= γn remain. Consequently, the preference filter can not be used to recognize
non-context-free languages.

The priority filter solves operator precedence and associativity. The following
example uses priority and associativity:

E ::= E “→” E{right} > E ::= E “or” E{left} (3.4)

The > defines that no tree with the “→” production at its root will have a child
tree with the “or” at its root. This effectively gives the “→” production higher
precedence. The {right} attribute defines that no tree with the “→” production
at its root may have a first child with the same production at its root. In general,
we index the > operator to identify for which argument a priority holds and map
all priority and associativity declarations to sets of indexed priorities. Given an
indexed priority declaration A ::= αBiβ >i Bi ::= δ, where Bi is the ith symbol
in αBiβ, then any tree whose root is A ::= αBiβ with a subtree that has Bi ::= δ
as its root at index i, is filtered. The priority filter is not known to extend the
power of SGLR beyond recognizing context-free languages.

4 SRNGLR

We now discuss the amalgamated SRNGLR algorithm that combines the scan-
nerless behaviour of SGLR with the faster parsing behaviour of RNGLR.
Although the main difference between SRNGLR and SGLR is in the imple-
mentation of the filters at parse table generation time — all of SGLR’s filters
need to be applied to the static construction of SRNGLR’s ε-trees — there are
also some small changes in the parser run-time and post-parse filtering.

136 G. Economopoulos, P. Klint, and J. Vinju

4.1 Construction of ε-Trees

The basic strategy is to first construct the complete ε-trees for each RN reduction
in a straightforward way, and then apply filters to them. We collect all the
productions for nullable non-terminals from the input grammar, and then for
each non-terminal we produce all of its derivations, for the empty string, in a
top-down recursive fashion. If there are alternative derivations, they are collected
under an ambiguity node.

We use maximally shared ATerms [4] to represent parse trees. ATerms are
directed acyclic graphs, which prohibits by definition the construction of cycles.
However, since parse trees are not general graphs we may use the following trick.
The second time a production is used while generating a nullable tree, a cycle
is detected and, instead of looping, we create a cycle node. This special node
stores the length of the cycle. From this representation a (visual) graph can be
trivially reconstructed.

Note that this representation of cycles need not be minimal, since a part of the
actual cycle may be unrolled and we detect cycles on twice visited productions,
not non-terminals. The reason for checking on productions is that the priority
filter is specific for productions, such that after filtering, cycles may still exist,
but only through the use of specific productions.

4.2 Restrictions

We distinguish single character follow restrictions from multiple lookahead re-
strictions. The first are implemented completely statically, while the latter have
a partial implementation at parse table generation time and a partial implemen-
tation during parsing.

Parse table generation. An RN reduction A ::= α ·β with nullable tree Tβ in
the parse table can be removed or limited to certain characters on the lookahead.
When one of the non-terminals B in Tβ has a follow restriction B -/- γ, Tβ may
have less ambiguity or be filtered completely when a character from γ is on the
lookahead for reducing A ::= α · β. Since there may be multiple non-terminals
in Tβ, there may be multiple follow restrictions to be considered.

The implementation of follow restrictions starts when adding the RN reduc-
tion to the SLR(1) table. For each different kind of lookahead character (token),
the nullable tree for Tβ is filtered, yielding different instances of Tβ for different
lookaheads. While filtering we visit the nodes of Tβ in a bottom-up fashion. At
each node in the tree the given lookahead character is compared to the applicable
follow restrictions. These are computed by aggregation. When visiting a node la-
belled C ::= DE, the restriction class for C is the union of the restriction classes
of D and E. This means that C is only acceptable when both follow restrictions
are satisfied. When visiting an ambiguity node with two children labeled F and
G, the follow restrictions for this node are the intersections of the restrictions of
F and G. This means that the ambiguity node is acceptable when either one of
the follow restrictions is satisfied.

Faster Scannerless GLR Parsing 137

If the lookahead character is in the restricted set, the current node is filtered,
if not the current node remains. The computed follow restrictions for the current
node are then propagated up the tree. Note that this algorithm may lead to the
complete removal of Tβ, and the RN reduction for this lookahead will not be
added. If Tβ is only partially filtered, and no follow restriction applies for the
non-terminal A of the RN reduction, the RN reduction is added to the table,
including the filtered ε-tree.

Parser run-time. Multiple character follow restrictions cannot be filtered stat-
ically. They are collected and the RN-reductions are added and marked to be
conditional as lookahead reductions in the parsetable. Both the testing of the
follow restriction as well as the filtering of the ε-tree must be done at parse-time.

Before any lookahead RN-reduction is applied by the parsing algorithm, the
ε-tree is filtered using the follow restrictions and the lookahead information from
the input string. If the filtering removes the tree completely, the reduction is not
performed. If it is not removed completely, the RN reduction is applied and a
tree node is constructed with a partially filtered ε-tree.

4.3 Priorities

Parse table generation. The priority filters only require changes to be made
to the parse table generation phase; the parser runtime and post parse filtering
phases remain the same as SGLR. The priority filtering depends on the chosen
representation of the ε-trees (see also Section 3); each node holds a production
rule and cycles are unfolded once. Take for example S ::= SS{left}|ε. The filtered
ε-tree for this grammar should represent derivations where S ::= SS can be
nested on the left, but not on the right. The cyclic tree for S must be unfolded
once to make one level of nesting explicit. Then the right-most derivations can
be filtered. Such representation allows a straightforward filtering of all trees
that violate priority constraints. Note that priorities may filter all of the ε-tree,
resulting in the removal of the corresponding RN reduction.

4.4 Preferences

Parse table generation. The preference filter strongly resembles the priority
filter. Preferences are simply applied to the ε-trees, resulting in smaller ε-trees.
However, preferences can never lead to the complete removal of an ε-tree.

Post-parse filter. RN reductions labeled with {prefer} or {avoid} are processed
in a post-parse filter in the same way as normal reductions were processed in
SGLR.

4.5 Rejects

The implementation of the reject filter was changed in both SGLR and SRNGLR
to improve the predictability and of its behaviour.

138 G. Economopoulos, P. Klint, and J. Vinju

Parse table generation. If any nullable production is labeled with {reject},
then the empty language is not acceptable by that production’s non-terminal.
If such a production occurs in an ε-tree, we can statically filter according to the
definition of rejects in Section 3. If no nullable derivation is left after filtering,
we can also remove the entire RN reduction.

Parser run-time. Note that we have changed the original algorithm [25] for re-
ject filtering at parser run-time for both SGLR and SRNGLR. The completeness
and predictability of the filter have been improved. The simplest implementation
of reject is to filter redundant trees in a post-parse filter, directly following the
definition of its semantics given in Section 3. However, the goal of the imple-
mentation is to prohibit further processing on GSS stacks that can be rejected
as early as possible. This can result in a large gain in efficiency, since it makes
the parsing process more deterministic, i.e. there exist on average less parallel
branches of the GSS during parsing.

The semantics of the reject filter is based on syntactic overlap, i.e. ambiguity
(Section 3). So, the filter needs to detect ambiguity between a rejected production
A ::= γ{reject} and a normal production for A ::= δ. The goal is to stop further
processing reductions of A. For this to work, the ambiguity must be detected
before further reductions on A are done. Such ordering of the scheduling of
reductions was proposed by Visser [25]. However, there are certain grammars
(especially those with nested, or nullable rejects) for which the ordering does not
work and rejected trees do not get filtered correctly. Alternative implementations
of Visser’s algorithm have worked around these issues at the cost of filtering too
many derivations.

We have implemented an efficient method that does not rely on the order that
reductions get performed. The details of this reject implementation are:

– Edges created by a reduction of a rejected production are stored separately
in GSS nodes. We prevent other reductions traversing the rejected edges,
thereby preventing possible further reductions on many stacks.

– In GLR, edges collect ambiguous derivations, and if an edge becomes rejected
because one of the alternatives is rejected, it stays rejected.

– Rejected derivations that escape are filtered in a post-parse tree walker. They
may escape when an alternative, non-rejected, reduction creates an edge and
this edge is traversed by a third reduction before the original edge becomes
rejected by a production marked with {reject}.

Like the original, this algorithm filters many parallel stacks at run-time with
the added benefit that it is more clearly correct. We argue that: (A) we do not
filter trees that should not be filtered, (B) we do not depend on the completeness
of the filtering during parse time, and (C) we do not try to order scheduling of
reduce actions, which simplifies the implementation of SRNGLR significantly.

The Post-parse filter. This follows the definition of the semantics described
in Section 3. To handle nested rejects correctly, the filter must be applied in a
bottom-up fashion.

Faster Scannerless GLR Parsing 139

5 Related Work

The cost of general parsing as opposed to deterministic parsing or parsing with
extended lookahead has been studied in many different ways. Our contribution
is a continuation of the RNGLR algorithm applied in a different context.

Despite the fact that general context-free parsing is a mature field in Com-
puter Science, its worst case complexity is still unknown. The algorithm with
the best asymptotic time complexity to date is presented by Valiant [21]. How-
ever, because of the high constant overheads this approach is unlikely to be used
in practice. There have been several attempts at speeding the run time of LR
parsers that have focused on achieving speed ups by implementing the handle
finding automaton (DFA) in low-level code (see [12]). A different approach to
improving efficiency is presented in [2], the basic ethos of which is to reduce the
reliance on the stack. Although this algorithm fails to terminate in certain cases,
the RIGLR algorithm presented in [13] has been proven correct for all CFGs.

Two other general parsing algorithms that have been used in practice are the
CYK [27] and Earley [8] algorithms. Both display cubic worst case complexity,
although the CYK algorithm requires grammars to be transformed to Chomsky
Normal Form before parsing. The BRNGLR [19] algorithm achieves cubic worst
case complexity without needing to transform the grammar.

Saloman and Cormack [16] first used scannerless parsing to describe deter-
minstic parsers of complete character level grammars. Another deterministic
scannerless parsing technique that uses Parsing Expression Grammars instead
of CFGs, is the Packrat [10] algorithm and its implementations [11]. It has been
shown to be useful in parsing extensible languages. Another tool that has been
used to generate scanners and parsers for extensible languages with embedded
DSLs is Copper [26]. It uses an approach called context-aware scanning where
the scanner uses contextual information from the parser to be more discriminat-
ing with the tokens it returns. This allows the parser to parse a larger class of
languages than traditional LR parsers that use separate scanners.

6 Conclusions

We improved the speed of parsing and filtering for scannerless grammars signif-
icantly by applying the ideas of RNGLR to SGLR. The disambiguation filters
that complement the parsing algorithm at all levels needed to be adapted and
extended. Together the implementation of the filters and the RN tables make
scannerless GLR parsing quite a bit faster. The application areas in software
renovation and embedded language design are directly serviced by this. It allows
experimentation with more ambiguous grammars, e.g. interesting embeddings of
scripting languages, domain specific languages and legacy languages.

Acknowledgements. We are grateful to Arnold Lankamp for helping to im-
plement the GSS garbage collection scheme for SRNGLR. The first author was
partially supported by EPSRC grant EP/F052669/1.

140 G. Economopoulos, P. Klint, and J. Vinju

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading (1986)

2. Aycock, J., Horspool, R.N., Janousek, J., Melichar, B.: Even faster generalised LR
parsing. Acta Inform. 37(9), 633–651 (2001)

3. van den Brand, M.G.J., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser,
E., Visser, J.: The ASF+SDF meta-environment: A component-based language
development environment. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp.
365–370. Springer, Heidelberg (2001)

4. van den Brand, M.G.J., de Jong, H.A., Klint, P., Olivier, P.A.: Efficient Annotated
Terms. Softw., Pract. Exper. 30(3), 259–291 (2000)

5. van den Brand, M.G.J., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation Fil-
ters for Scannerless Generalized LR Parsers. In: Horspool, R.N. (ed.) CC 2002.
LNCS, vol. 2304, pp. 143–158. Springer, Heidelberg (2002)

6. Bravenboer, M., Tanter, É., Visser, E.: Declarative, formal, and extensible syntax
definition for AspectJ. SIGPLAN Not. 41(10), 209–228 (2006)

7. Church, K., Patil, R.: Coping with syntactic ambiguity or how to put the block
in the box on the table. American Journal of Computational Linguistics 8(3–4),
139–149 (1982)

8. Earley, J.: An efficient context-free algorithm. Comm. ACM 13(2), 94–102 (1970)
9. Economopoulos, G.R.: Generalised LR parsing algorithms. PhD thesis, Royal Hol-

loway, University of London (August 2006)
10. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.

In: POPL 2004, pp. 111–122. ACM, New York (2004)
11. Grimm, R.: Better extensibility through modular syntax. In: PLDI 2006, pp. 38–51.

ACM, New York (2006)
12. Horspool, R.N., Whitney, M.: Even faster LR parsing. Softw., Pract. Exper. 20(6),

515–535 (1990)
13. Johnstone, A., Scott, E.: Automatic recursion engineering of reduction incorpo-

rated parsers. Sci. Comp. Programming 68(2), 95–110 (2007)
14. Nozohoor-Farshi, R.: GLR parsing for ε-grammars. In: Tomita, M. (ed.) Gener-

alized LR Parsing, ch. 5, pp. 61–75. Kluwer Academic Publishers, Netherlands
(1991)

15. Rekers, J.: Parser Generation for Interactive Environments. PhD thesis, University
of Amsterdam (1992)

16. Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) parsing of programming lan-
guages. SIGPLAN Not. 24(7), 170–178 (1989)

17. Salomon, D.J., Cormack, G.V.: The disambiguation and scannerless parsing of
complete character-level grammars for programming languages. Technical Report
95/06, Dept. of Computer Science, University of Manitoba (1995)

18. Scott, E., Johnstone, A.: Right nulled GLR parsers. ACM Trans. Program. Lang.
Syst. 28(4), 577–618 (2006)

19. Scott, E., Johnstone, A., Economopoulos, R.: BRNGLR: a cubic Tomita-style GLR
parsing algorithm. Acta Inform. 44(6), 427–461 (2007)

20. Tomita, M.: Efficient Parsing for Natural Languages. A Fast Algorithm for Prac-
tical Systems. Kluwer Academic Publishers, Dordrecht (1985)

21. Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput.
System Sci. 10, 308–315 (1975)

Faster Scannerless GLR Parsing 141

22. van den Brand, M.G.J.: Pregmatic, a generator for incremental programming en-
vironments. PhD thesis, Katholieke Universiteit Nijmegen (1992)

23. van den Brand, M.G.J., de Jong, H.A., Klint, P., Olivier, P.A.: Efficient annotated
terms. Softw., Pract. Exper. 30(3), 259–291 (2000)

24. van Rossum, G.: Python reference manual, http://docs.python.org/ref/
25. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University of

Amsterdam (1997)
26. Eric, R., Van Wyk, E.R., Schwerdfeger, A.C.: Context-aware scanning for parsing

extensible languages. In: GPCE 2007, pp. 63–72. ACM Press, New York (2007)
27. Younger, D.H.: Recognition and parsing of context-free languages in time n3. In-

form. and control 10(2), 189–208 (1967)

http://docs.python.org/ref/

Decorated Attribute Grammars:
Attribute Evaluation Meets Strategic Programming

Lennart C.L. Kats1, Anthony M. Sloane1,2, and Eelco Visser1

1 Software Engineering Research Group, Delft University of Technology,
The Netherlands

L.C.L.Kats@tudelft.nl,visser@acm.org
2 Department of Computing, Macquarie University,

Sydney, Australia
Anthony.Sloane@mq.edu.au

Abstract. Attribute grammars are a powerful specification formalism for tree-
based computation, particularly for software language processing. Various exten-
sions have been proposed to abstract over common patterns in attribute grammar
specifications. These include various forms of copy rules to support non-local de-
pendencies, collection attributes, and expressing dependencies that are evaluated
to a fixed point. Rather than implementing extensions natively in an attribute eval-
uator, we propose attribute decorators that describe an abstract evaluation mech-
anism for attributes, making it possible to provide such extensions as part of a
library of decorators. Inspired by strategic programming, decorators are specified
using generic traversal operators. To demonstrate their effectiveness, we describe
how to employ decorators in name, type, and flow analysis.

1 Introduction

Attribute grammars are a powerful formal specification notation for tree-based compu-
tation, particularly for software language processing [26], allowing for modular specifi-
cations of language extensions and analyses. At their most basic, they specify declara-
tive equations indicating the functional relationships between attributes (or properties)
of a tree node and other attributes of that node or adjacent parent and child nodes [19].
An attribute evaluator is responsible for scheduling a tree traversal to determine the
values of attributes in a particular tree.

Attribute grammars are nowadays employed in a wide range of application domains
and contexts. To extend their expressiveness for use in particular domains, and to ab-
stract over commonly occurring patterns, basic attribute grammars have been extended
in many ways, in particular supporting attribution patterns with non-local dependencies.
For example, remote attribution constructs allow equations that refer to attributes of
nodes arbitrarily far above or below the node for which they are defined [5,15]. Chain
attributes express a dependence that is threaded in a left-to-right, depth-first fashion
through a sub-tree that contains definitions of the chain value [15]. Self rules provide a
local copy of subtrees, which may be adapted for tree transformations [2]. More gener-
ally, collection attributes enable the value of an attribute of one node to be determined

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 142–157, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Decorated Attribute Grammars 143

at arbitrary other nodes [5,22]. A different kind of remote attribute is provided by ref-
erence attribute grammars that allow references directly to arbitrary non-local nodes
and their attributes [12], allowing for attributes that look up a particular node or collec-
tion of nodes. Finally, some attribute grammar systems support equations with circular
dependencies that are evaluated to a fixed point [4,23].

All of these extensions aim to raise the level of abstraction in specifications, by trans-
lation into basic attribute grammars or by using an extended evaluator. Unfortunately,
each of these extensions has been designed and implemented separately and is hard-
wired into a particular attribute grammar system.Potential users may find that a partic-
ular system does not provide the set of demanded extensions. Adding new abstractions
is non-trivial, since it requires modification of the attribute evaluation system itself.For
example, it can sometimes be useful to thread attribute values from right-to-left (e.g.,
when computing backward slices or use-def relations between variables). In a system
with only left-to-right chained attributes, this dependence must be encoded using basic
attribute equations, despite the similarity of the abstractions.

In his OOPSLA’98 invited talk, “Growing a Language” [28], Guy Steele argued that
“languages need to put the tools for language growth in the hands of the users,” pro-
viding high-level language features that abstract over various extensions, rather than
directly providing language features to solve specific problems. To this effect, we pro-
pose attribute decorators as a solution for the extensibility problem of attribute gram-
mar specification languages. A decorator is a generic declarative description of the tree
traversal or evaluation mechanism used to determine the value of an attribute. Decora-
tors augment basic attribute equations with additional behavior, and can provide non-
local dependencies or a form of search as required. For instance, a decorator can specify
that the value of an attribute is to be sought at the parent node (and recursively higher
in the tree) if it is not defined at the current node. Decorators can also enhance the us-
ability of attribute equations for specific domains, separating the generic behavior from
specific equations such as type checker constraints or data-flow equations, supported in
other systems through specialized extensions.

In this paper, we present ASTER, a system for decorated attribute grammars (avail-
able from [1]). Decorators are powerful enough to specify all of the attribute grammar
extensions listed above, avoiding the need to hardwire these into the system. A library
of decorators suffices to cover common cases, while user-defined, domain-specific dec-
orators can be used for specific applications and domains.

Decorators are inspired by strategic programming, where generic traversal strategies
enable a separation between basic rewrite rules defining a tree transformation and the
way in which they are applied to a tree [33,20,21]. In our case, local attribute equations
define the core values of a tree computation, while decorators describe how those val-
ues are combined across the tree structure. The ASTER specification language is built as
an extension of the Stratego strategic programming language [8]. We reuse the generic
traversal operators of Stratego for the specification of decorators, and its pattern match-
ing and building operations as the basis for attribute equations.

We begin this paper with background on attribute grammars and introducing our ba-
sic notations. Section 3 defines decorators, showing how they augment basic equations
and capture common patterns. In Section 4 we present typical language engineering

144 L.C.L. Kats, A.M. Sloane, and E. Visser

applications, demonstrating how decorators can be effectively applied in this area. We
briefly outline our implementation in Section 5. Finally, we conclude with a comparison
to related work and some pointers to future directions.

2 Attribute Grammars

As they were originally conceived, attribute grammars (AGs) specify dependencies be-
tween attributes of adjacent tree nodes [19]. Attributes are generally associated with
context-free grammar productions. For example, consider a production X ::= Y Z.
Attribute equations for this production can define attributes for symbols X, Y and Z. At-
tributes of X defined at this production are called synthesized, as they are defined in the
context of X. They can be used to pass information upwards. Conversely, attributes of Y
and Z defined in this context can be used to pass information downwards, and are called
inherited attributes.

2.1 Pattern-Based Attribute Grammars

In this paper we adopt a notational variation on traditional AGs in which attribute equa-
tions are associated with tree or term patterns instead of grammar productions [10,6].
Trees can be denoted with prefix constructor terms such as Root(Fork(Leaf(1),
Leaf(2))). Tree patterns for matching and construction are terms with variables (in-
dicated in italics throughout this paper), e.g. Fork(t1,t2).

Basic attribute equations have the form

eq p: r.a := v

and define equations for a term that matches pattern p, where attribute a with a relation
r to the pattern has value v. The relation r can be a subterm of p indicated by a variable
or the term matched by the pattern itself, indicated by the keyword id.

As an example, consider the transformation known as Bird’s repmin problem [3],
which can be well expressed as an AG, as illustrated in Figure 1. In this transformation,
a binary tree with integer values in its leaves is taken as the input, and a new tree with
the same structure and its leaves replaced with the minimum leaf value is produced as
the output. For example, the tree Root(Fork(Leaf(1),Leaf(2))) is transformed to
Root(Fork(Leaf(1),Leaf(1))).

In the specification of Figure 1, the local minimum leaf value in a subtree is computed
in the synthesized attribute min (lines 3, 8 and 12). At the top of the tree, the minimum
for the whole tree is copied to the inherited global-min attribute (line 2), which is then
copied down the tree to the leaves (lines 6 and 7). Finally, the replace attribute con-
structs a tree where each leaf value is replaced by the global minimum (lines 4, 9, 13).

Attribute equations are often defined in sets that share a common pattern, but may
also be grouped to define a common attribute, which can make it easier to show the flow
of information at a glance. Consider Figure 2, which is equivalent to the specification
in Figure 1, but organizes the equations per attribute instead. Equations can be defined
in separate modules, across different files, and are automatically assembled into a com-
plete specification. Thus, language definitions can be factored per language construct
and/or per attribute to support modular, extensible language definitions [13,31].

Decorated Attribute Grammars 145

1 eq Root(t):

2 t.global-min := t.min

3 id.min := t.min

4 id.replace := Root(t.replace)

5 eq Fork(t1,t2):

6 t1.global-min := id.global-min

7 t2.global-min := id.global-min

8 id.min := <min > (t1.min, t2.min)

9 id.replace := Fork(t1.replace ,

10 t2.replace)

11 eq Leaf(v):

12 id.min := v

13 id.replace := Leaf(id.global-min)

Fig. 1. An attribute grammar specification for
repmin in pattern major form

eq min:
Root(t) → t.min
Fork(t1,t2) → <min > (t1.min, t2.min)
Leaf(v) → v

eq global-min:
Root(t). t → id.min
Fork(t1,t2). t1 → id.global-min
Fork(t1,t2). t2 → id.global-min

eq replace :
Root(t) → Root(t.replace)
Fork(t1,t2) → Fork(t1.replace ,

t2.replace)
Leaf(v) → Leaf(id.global-min)

Fig. 2. An attribute grammar specification
for repmin in attribute major form

Using patterns helps separation of concerns when specifying a syntax and AG anal-
yses. However, it can still be useful to use the concrete syntax of a language. ASTER

supports this using the generic approach of concrete object syntax embedding as de-
scribed in [32]. For example, instead of a pattern While(e,s), we can use a concrete
syntax pattern, which is typically enclosed in “semantic braces”:

eq |[while (e) s]|:
id.condition = e

Concrete syntax patterns are parsed at compile-time, and converted to their abstract
syntax equivalents. Section 4 includes further examples of this technique.

2.2 Copy Rules

In theory, basic attribute equations with local dependencies are sufficient to specify all
non-local dependencies. Non-local dependencies can be encoded by passing context
information around using local inherited and synthesized attributes. In the repmin ex-
ample, this pattern can be seen in the definition of the global minimum value, which is
defined in the root of the tree. This information is passed down by means of so-called
copy rules, equations whose only purpose is to copy a value from one node to another.

To accommodate for the oft-occurring pattern of copying values through the tree,
many AG systems provide a way to broadcast values, eliminating the need for tedious
and potentially error-prone specification of copy rules by hand. For example, the repmin
example can be simplified using the including construct of the GAG and LIGA sys-
tems [15], which provide a shorthand for specifying copy rules. Using this construct,
the copy rules in Figure 1, lines 6 and 7 could be removed and line 13 replaced by
id.replace := Leaf(including Root.global-min), specifying that the value is
to be copied downward from the Root node.

3 Decorators

While constructs such as including provide notational advantages for some specifica-
tions, they cannot be used if the desired pattern of attribution does not precisely fit their

146 L.C.L. Kats, A.M. Sloane, and E. Visser

definition. These notations are built into AG systems, and as such a developer is faced
with an all-or-nothing situation: use a nice abstract notation if it fits exactly or fall back
to writing verbose copy rules if there is no suitable shorthand. This section proposes at-
tribute decorators as a more flexible alternative to building these shorthand abstractions
into the AG system. Decorators can be defined to specify how attribute values are to be
propagated through the tree. Common patterns such as including can be provided in
a decorator library, while user-defined decorators can be written for other cases.

To define high-level attribute propagation patterns, we draw inspiration from strate-
gic programming [33,20,21]. This technique allows the specification of traversal pat-
terns in a generic fashion, independent of the structure of a particular tree, using a
number of basic, generic traversal operations.

3.1 Basic Attribute Propagation Operations

Consider the specification of Figure 3. It specifies only the principal repmin equations,
avoiding the copy rules. The flow of information is instead specified using decorators (at
the top of the specification). For instance, global-min uses the down decorator, which
specifies that values should be copied downwards. Before we elaborate on the decora-
tors used in this example, let us first examine the unabbreviated set of equations and
reduce them to a more generic form that uses elementary propagation operations. After
this, we will show how these operations can be used in the specification of decorators.

def down global-min
def up min
def rewrite-bu replace

eq Root(t):
t.global-min := id.min

eq Fork(t1,t2):
id.min := <min> (t1.min,

t2.min)
eq Leaf(v):

id.min := v
id.replace :=

Leaf(id.global-min)

Fig. 3. Repmin using decorators

Downward propagation of the global-min at-
tribute, first defined at the root of the tree (as seen in
Figure 3), was originally achieved by

eq Fork(t1,t2):
t1.global-min := id.global-min
t2.global-min := id.global-min

Another reading of this specification says that
‘the global-min of any non-root term is the
global-min of its parent.’ Thus, if we can reflect
over the tree structure to obtain the parent of a node,
we can express this propagation as

eq Fork(t1,t2):
id.global-min := id.parent .global-min

eq Leaf(v):
id.global-min := id.parent .global-min

This notation makes the relation to the parent node’s attribute value explicit, rather
than being than implied by the context. It forms the basis of specifying the downward
propagation in a more generic way: id.parent.global-min could be used as the
default definition of global-min, used for nodes where no other definition is given
(here, all non-root nodes). This is essentially what the down decorator in Figure 3 does.

A different form of propagation of values was used in the replace attribute:

eq replace :
Root(t) → Root(t.replace)
Fork(t1,t2) → Fork(t1.replace , t2.replace)

Here we can recognize a (common) rewriting pattern where the node names remain
unchanged and all children are replaced. We abstract over this using the all operator:

Decorated Attribute Grammars 147

eq replace :
Root(t) → all (id.replace)
Fork(t1,t2) → all (id.replace)

all is one of the canonical generic traversal operators of strategic program-
ming [33,20]. It applies a function to all children of a term. Other generic traver-
sal operators include one, which applies a function to exactly one child, and some,
which applies it to one or more children. In this case, we pass all a reference to the
replace attribute. This reveals an essential property of attribute references in ASTER:
they are first-class citizens that can be passed as the argument of a function in the
form of a closure. The expression id.replace is a shorthand for a closure of the form
λt → (t.replace). It can be applied to the current term in the context of an attribute
equation or in a sequence of operations, or to a term t using the notation <f> t.

3.2 Attribute Propagation Using Decorators

We implement attribute definitions using functions that map terms to values. Parts of
such a function are defined by attribute equations. Some attribute definitions form only
a partial function, such as those in Figure 3. In that figure, copy rules are implicitly
provided using decorators. Decorators are essentially higher-order functions: they are
a special class of attributes that take another attribute definition (i.e., function) as their
argument, forming a new definition with added functionality. This means that the dec-
laration def down global-min and the accompanying equations for the global-min
attribute effectively correspond to a direct (function) call to decorator down:

eq Root(t):
t.global-min := id.down(the original global-min equations, here t.min)

A basic decorator d decorating an attribute a is specified as follows:

decorator d(a) = s

The body s of a decorator is its evaluation strategy, based on the Stratego language [8].
It provides standard conditional and sequencing operations. Using generic traversal op-
erators, the evaluation strategy can inspect the current subtree. These operators are ag-
nostic of the particular syntax used, making decorator definitions reusable for different
languages. In this paper, we introduce the notion of parent references as an additional
generic traversal operator, in the form of the parent attribute. Furthermore, we pro-
vide a number of generic tree access attributes that are defined using these primitives,
such as the prev-sibling and next-sibling attributes to get a node’s siblings, and
child(c) that gets the first child where a condition c applies. Finally, we introduce
reflective attributes that provide information about the attribute being decorated. These
include the defined attribute, to test if an attribute equation is defined for a given term,
and the name and signature attributes to retrieve the attribute’s name and signature.

To illustrate these operations, consider the definition of the down decorator, which
defines downward propagation of values in the tree (see Figure 4). This decorator auto-
matically copies values downwards if there is no attribute equation defined for a given
node. It checks for this condition by means of the defined reflective attribute (1). In
case there is a matching equation, it is simply evaluated (2). Otherwise, the decorator
acts as a copy rule: it “copies” the value of the parent. For this it recursively continues

148 L.C.L. Kats, A.M. Sloane, and E. Visser

decorator down(a) =
(1) if a.defined then
(2) a

else
(3) id.parent.down(a)

end

decorator up(a) =
if a.defined then

a
else

id.child(id.up(a))
end

decorator rewrite-bu(a) =
all(id.rewrite-bu(a))

; if a.defined then
a

end

decorator down at-root (a) =
if not(id.parent) then

a
else

fail
end

Fig. 4. Basic decorator definitions

evaluation at the parent node (3). Conversely, the up decorator provides upward prop-
agation of values. If there is no definition for a particular node, it inspects the child
nodes, eventually returning the first successful value of a descendant node’s attribute
equation.

The rewrite-bu decorator provides bottom-up rewriting of trees, as we did with the
replace attribute. Using the all operator, it recursively applies all defined equations
for an attribute, starting at the bottom of the tree. Rewrites of this type produce a new
tree from an attribute, which in turn has attributes of its own, potentially allowing for
staged or repeated rewrites.

In the next section we provide some examples of more advanced decorators. At their
most elaborate, these may specify a pattern p, can be parameterized with functions a∗
and values v∗, and may themselves be decorated (d∗):

decorator d∗ [p .] name (d [, a∗] [| v∗]) = s

Note in particular the vertical bar ‘|’, used to distinguish function and value argu-
ments; in a call f(|x), x is a value argument, in a call f(x) it is a function. The
same convention, based on the Stratego notation, is supported for attributes. Further-
more, note that decorators can import other decorators d∗. Such decorators are said to
be stacked, and provide opportunity for reuse. To illustrate this, consider the at-root
decorator of Figure 4. It evaluates attribute equations at the root of a tree, where the
current node has no parent. Using the down decorator, the result is propagated down-
wards. Effectively, applying this stacked decorator results in a function application of
the form id.down(id.at-root(a)). Stacking can also be achieved by declaring mul-
tiple decorators for an attribute. For example, we can add a “tracing” decorator to the
global-min attribute, logging all nodes traversed by the down decorator:

def down trace global-min

4 Applications

In this section we discuss a number of common idioms in AG specifications, and show
how attribute decorators can be used to encapsulate them. We focus on language pro-
cessing, a common application area of AG systems. As a running example we use a
simple “while” language (see Figure 5). We demonstrate different language analysis
problems and how they can be dealt with using high-level decorators that are agnostic

Decorated Attribute Grammars 149

Program ::= Function*
Function ::= function ID(Arg*) { Stm* }
Stm ::= { Stm* }

| if (Expr) Stm else Stm
| while (Expr) Stm
| var ID : Type | ID := Expr
| return Expr

Type ::= IntType | . . .
IntType ::= int
Arg ::= ID : Type
Expr ::= Int | Var | ID(Expr*)

| Expr + Expr | Expr * Expr
Int ::= INT
Var ::= ID

Fig. 5. The “while” language used in our examples

of the object language. As such, they are reusable for more sophisticated languages and
other applications.

4.1 Constraints and Error Reporting

A fundamental aspect of any language processing system is reporting errors and warn-
ings. We define these as declarative constraints using conditional attribute equations.
These equations specify a pattern and a conditional where clause that further restricts
the condition under which they successfully apply:

eq error :
|[while (e) s]| → "Condition must be of type Boolean "
where not (e.type ⇒ BoolType)

|[e1 + e2]| → "Operands be of type Int "
where not (e1.type ⇒ IntType ; e2.type ⇒ IntType)

Each equation produces a single error message string if the subexpression types do not
match IntType or BoolType. Rather than having them directly construct a list, we can
collect all messages using the collect-all decorator (see Figure 6). It traverses the
tree through recursion, producing a list of all nodes where the attribute succeeds. Note
that this decorator does not test for definedness of the equations (using a.defined), but
rather whether they can be successfully applied. Using collect-all with the error

decorator node.collect-all(a) =
let results =

node.children .map(id.collect-all(a))
; concat
in if <a> node then // add to results

![<a> node | <results>]
else

results
end

end

Fig. 6. The collect-all decorator

attribute, we can define a new errors
attribute:
def collect-all errors :=

id.error

This notation both declares the decora-
tors and a default equation body, which
refers to error.

To provide usable error messages,
however, the error strings need further
context information. We can define a
new, application-specific decorator to add this information before they are collected,
and use it to augment the error attribute:

decorator add-error-context(a) =
<conc-strings > (a," at ",id.pp ," in ",id.file ,":",id.linenumber)

def add-error-context error

150 L.C.L. Kats, A.M. Sloane, and E. Visser

With this addition, the errors attribute now lists all errors, including a pretty-printed
version of the offending construct (provided a pp attribute is defined), and its location
in the source code (given a file and linenumber attribute).

4.2 Name and Type Analysis

Type analysis forms the basis of static error checking, and often also plays a role in
code generation, e.g. for overloading resolution. Types of expressions typically depend
on local operands, or are constant, making them well-suited for attribute equations.
Moreover, an AG specification of a type analysis is highly modular, and may be defined
across multiple files. Thus, let us proceed by defining a type attribute for all expressions
in our language to perform this analysis:

eq type:
Int(i) → IntType
|[e1 + e2]| → IntType where e1.type⇒ IntType ; e2.type⇒ IntType
Var(v) → id.lookup-local(|v). type
|[f (args)]| → id.lookup-function(|f , args).type

Variable references and function calls require non-local name analysis to be typed. This
can be done using parameterized lookup attributes that given a name (and any argu-
ments), look up a declaration in the current scope [12]. In the example we reference the
local type attribute of the retrieved node, but lookup attributes can be used to access
arbitrary non-local attributes for use in various aspects of the system. The actual lookup
mechanism is provided by means of reusable decorators: to do this for a particular lan-
guage, it suffices to select an appropriate decorator and define the declaration sites and
scoping constructs of the language. Our lookup attributes are defined as follows:

def lookup-ordered(id.is-scope) lookup-local(x) :=
id.decl(|x)

def lookup-unordered(id.is-scope) lookup-function(|x, args) :=
id.decl(|x, args)

Figure 7 shows the prerequisite decl and is-scope attribute definitions for the name
analysis, specified as arguments of the above attributes. Again, these are highly declar-
ative and each address a single aspect. Declaration sites are identified by the decl
attribute, which is parameterized with an identifier name x and optionally a list of argu-
ments. It only succeeds for matching declarations. All declarations also define a type
attribute. Similarly, the is-scope attribute is used to identify scoping structures. Note
in particular the equations of the “if” construct, which, for the purpose of this example,
defines scopes for both arms, similar to try/catch in other languages.

Languages employ varying styles of scoping rules. In our language we have two
kinds of scoping rules: C-like, ordered scoping rules, and Algol-like, unordered scop-
ing rules. In many languages, local variables typically use the former, while functions
typically use the latter. We define the lookup-ordered and lookup-unordered dec-
orators to accommodate for these styles (see Figure 8). They traverse up the tree,
inheriting the behavior of the down decorator, thus giving precedence to innermost
scopes. Along this path, the lookup-ordered decorator visits the current node (1).
If no declaration is found there (i.e., fetch-decl fails), the <+ combinator specifies
that it should proceed at (2), visiting any preceding siblings using the helper function
lookup-outside-scopes. This function performs a local lookup for declarations in

Decorated Attribute Grammars 151

eq |[var x : t]|:
id.type := t
id.decl(|x) := id

eq |[x : t]|: // function parameters
id.type := t
id.decl(|x) := id

eq |[function f (params) : t stm]|:
id.type := t
id.decl(|f , args) := id where params.map(id.type).eq(|args.map(id.type))

eq is-scope :
|[function f(params) : t { stm∗ }]| → id
|[if (e) s1 else s2]|.s1 → s1
|[if (e) s1 else s2]|.s2 → s2
|[while (e) s]| → id
|[{ s∗ }]| → id

Fig. 7. Attributes for name analysis and types of declarations

these nodes, respecting the scoping rules by avoiding traversal of scoping constructs (3).
In contrast, lookup- unordered follows a straight path to the root of the tree, doing a
search in encountered scopes (4).

4.3 Flow Analysis

Control-flow analysis forms the foundation of data-flow analysis, which is prerequisite
to various compiler optimizations, refactorings, and static checks for bug patterns or
security violations. A recent paper by Nilsson-Nyman et al. [25] demonstrated how
AGs can be employed for modularly specifying such analyses, ensuring separation of
concerns and reusability with different data-flow analyses.

We take an approach similar to that of the JastAdd project, using reference at-
tributes [12] to declaratively define the control flow graph. Consider Figure 9, which
defines a succ attribute, providing a reference to all successors of a statement. For
instance, for the “if” statement, the successors are the “then” and “else” branches (1).

A helper attribute, succ-enclosing, determines the default successors based on the
enclosing block. For sequences of statements, the successor is the next statement in the

decorator down lookup-ordered(fetch-decl, is-scope) =
(1) fetch-decl
(2) <+ id.prev-sibling(lookup-outside-scopes(fetch-decl, is-scope))

decorator down lookup-unordered(fetch-decl, is-scope) =
(id.is-root <+ is-scope) // only look in scoping structures

(4) ; lookup-in-scope(fetch-decl, is-scope)

lookup-in-scope(fetch-decl, is-scope) =
fetch-decl
<+ id.child(lookup-outside-scopes(fetch-decl, is-scope)) // enter scope

lookup-outside-scopes(fetch-decl, is-scope) =
fetch-decl

(3) <+ not(is-scope) // do not enter scope subtrees
; id.child(lookup-outside-scopes(fetch-decl, is-scope))

Fig. 8. Lookup attributes and decorators

152 L.C.L. Kats, A.M. Sloane, and E. Visser

def down succ-enclosing:
Program (_) → []

(2) [s1 , s2 | _].s1 → [s2]
(3) |[while (e) s]|.s → [id]

(4)def default (id.succ-enclosing) succ:
|[{ s; s∗ }]| → [s]

(1) |[if (e) s1 else s2]| → [s1 , s2]
|[return e]| → []
|[while (e) s]|

→ [s|s.succ-enclosing]

(5)decorator default (a, default) =
if a then

a
else

default
end

Fig. 9. Specification of the control flow

sequence (2). The “while” statement
overrides this behavior, by setting the
successor of the enclosed block to it-
self (3). For any non-control flow state-
ments, we specify succ-enclosing as
the default successor succ (4), using
the default decorator (5).

The specification of the succ at-
tribute allows for a natural, declarative
way of specifying the forward control
flow of a language. However, a num-
ber of data-flow analyses depend on the
predecessors of a statement. To avoid
specifying these by hand, it is possible
to use collection attributes [5,22,4] to
derive the reverse flow graph. Collection attributes introduce a “contributes to” clause,
allowing nodes to contribute values to collections in other nodes. Using this technique,
we can define the predecessor graph in a single equation, by contributing each statement
to its successors:

def contributes-to(id.succ) stm:
id.pred := stm

Figure 10 defines the contributes-to decorator. Note that for clarity, we use frag-
ments of pseudocode in lieu of more advanced Stratego constructs. The complete, 20-
line source is available from [1]. This decorator operates in two phases: the first time any
collection attribute is evaluated, it enters the survey phase (1), where the complete tree
is traversed, adding all contributing nodes to a list maintained for each node contributed
to. This is done only once, rather than for every collection attribute retrieved. After this
phase completes (2), referenced collections only require the application of any attribute
equations associated with it (for pred, stm is returned). Note that all required book-
keeping operations (i.e., storing contributions and whether the survey phase completed)
are performed in the context of the current attribute: they are stored in tables associated
with the attribute’s unique signature and its argument values (i.e., id.signature).

The control flow graph, specified by the succ and pred attributes, forms the foun-
dation of any data-flow analysis. As such a graph may have cycles in it, these analyses
have the peculiar property that their equations may involve circular dependencies. This
makes them unsuitable for traditional AGs. However, by extending the formalism with

decorator contributes-to(a, targets) =
if not(completed survey phase) then

(1) mark survey phase complete
; id.root
; in a topdown fashion:

for a node x, apply targets and add them to the list of contributions for x
; end

(2); apply a to the list of contributions for the current node

Fig. 10. The contributes-to decorator, contributing values to a list of nodes

Decorated Attribute Grammars 153

circular attributes [23,4], it becomes possible to use declarative AG equations to specify
such analyses [25]. Circular attribute equations can be solved by fixed point iteration,
as long as their underlying data forms a lattice. We implemented this in a decorator that
evaluates circular attributes. However, due to a lack of space to fully explain the rather
intricate algorithm that underlies it (see [23,4]), we do not include it here, and refer the
interested reader to the technical report that accompanies this paper [17].

5 Implementation

The ASTER language is built as an extension of the Stratego strategic programming
language [8], which natively supports the canonical generic traversal operators. The
ASTER compiler is implemented in standard Stratego, using only a (bootstrapped) AG
specification for error reporting (using constraint rules similar to those in Section 4.1).
It compiles AG specifications to regular Stratego programs through a series of normal-
ization steps. The normalization process starts by grouping attribute equations together,
forming separate strategies for each attribute and decorator. As illustrated in Section 3.2,
attribute equations and decorators are implemented as functions with generic traversal
operations (called strategies in strategic programming). Inherited attributes are defined
at the parent of a node; therefore, their implementation uses the parent primitive. At-
tribute references and imported decorators are converted to strategy calls. For decorator
calls, static reflective data is added for reflective attributes such as signature. Finally,
a memoization mechanism is added to cache all attribute and decorator calls. In the
technical report that accompanies this paper, we elaborate on these normalization steps,
using the repmin specification as an example [17].

Using memoization, attributes are evaluated at most once, thus achieving optimal
evaluation. Similar memoization-based dynamic evaluation has been used before in
many other systems, e.g. by Jalili [14] and recently in JastAdd [13]. In ASTER, memo-
ization can be selectively disabled and overridden with custom behavior using decora-
tors. For example, we disable it for fixpoint evaluation of data-flow equations.

Our current, experimental implementation has not been tuned for performance. One
constraining factor is currently the ATerm library used to represent trees, which forms
an integral part of Stratego. It is optimized for a maximally shared representation of
terms, where identical subtrees occupy the same space in memory [7]. This makes it
less suitable for storing additional, dynamic information in tree nodes, in our case par-
ent references (for id.parent) and memoized attribute values. We worked around this
by annotating tree nodes with unique keys, and use these to store the added information
in separate tables. In the future, we would like to adapt or replace the underlying imple-
mentation to better accommodate for this. Regardless, preliminary performance mea-
surements indicate promising results. We compared our compiler against JastAdd [13],
a mature AG system that uses an evaluation mechanism conceptually very similar to our
own. We used the repmin program of Figure 1 as a test case. Over an average of fifty
runs, JastAdd took 51 ms to replace all leaves in a large tree with 216 leaves. Our system
took 150 ms, or 180 ms for the version of Figure 3 where decorators are used in place
of manual copy rules. Further testing confirms an unfortunate, but constant overhead
of about a factor three in the base performance level, due to the expensive memoiza-
tion and term initialization operations. Still, the results indicate a low overhead of the

154 L.C.L. Kats, A.M. Sloane, and E. Visser

decorator mechanism. Furthermore, both our specifications, especially when using dec-
orators, are more concise than the version implemented in JastAdd.

6 Related Work

The general principle behind attribute decorators shares similarities with the Decorator
design pattern, which describes how to add functionality to objects at run-time [11].
Variations of this idea exist in languages such as Python, which features decorators for
functions [27]. In our case, we augment basic attribute definitions with either prop-
agation of values from other nodes or with higher-level behavior such as a circular
evaluation scheme. This kind of augmentation is similar to code weaving used in many
forms of aspect-oriented programming [18].

Although considerable research has been devoted to various special-purpose exten-
sions of AGs (as illustrated in the preceding sections), rather less attention has been
paid to extensibility of AG systems. Two systems that do aim at different degrees of
extensibility are Silver [29] and first-class attribute grammars [24].

In first-class AGs, attribute equations are first-class citizens, allowing them to be
combined and manipulated using the language itself. Using function combinators, basic
basic up, down, and chain copy rules can be defined [24]. These combinators show
similarities with decorators, although they are purely defined in terms of functional
dependencies, and lack the reflective and traversal primitives that form the building
blocks of decorators. The paper does not indicate that they could be used to implement
more sophisticated forms of propagation and manipulation of equations, such as the
collection and circularity decorators. Based on the Haskell type checker, first-class AGs
prevent errors where the use of an attribute does not match its type. Errors due to cyclic
dependencies or a mismatch between attribute equations and grammar productions are
not reported. Our system is based on Stratego, which is largely untyped (but could be
typed [21]). Further complicated by the use of parent node references, it currently does
not provide a fully typed system, other than basic static pattern coverage checking.

Silver supports extension with automatic copy rules as well as more advanced fea-
tures such as collection attributes in a relatively accessible manner [29]. Implemented in
itself, the Silver language can be used to modularly implement such extensions. While
adding extensions of this kind is made easier through facilities such as forwarding for
local transformations [30] and higher-order attributes, it is hard to imagine a regular
Silver user building such an extension. Moreover, it is difficult to encapsulate these ex-
tensions in a single application or library, as they must be integrated in the base AG
system. In contrast, many decorators are light-weight so they can be developed quickly
and easily as needed.

A system that particularly inspired our design has been JastAdd [13], which extends
traditional AGs in a number of interesting ways.1 JastAdd uses reference attributes [12],
which we also use in a number of decorators. Its extensions include collection at-
tributes [22] and circular computations [23]. These are built into the JastAdd imple-
mentation; there is no user-level mechanism to define similar extensions. As described

1 For the purposes of this paper, we focus on the attribute grammar features of JastAdd, ignoring
its support for rewriting trees during evaluation [9].

Decorated Attribute Grammars 155

in Section 4, decorators can be used to define these same features at a higher level.
Admittedly, we would not expect users to define relatively complex features like this
very often, but building on the high-level framework provided by decorators is likely
to be much easier than modifying the underlying implementation of an AG evaluation
system. JastAdd is designed to be used in conjunction with hand-written code, particu-
larly using visitors. As such, it provides a way to write traversals that interoperate with
declarative attribution. In theory, this facility could be used to implement something
similar to decorators, but this would require the addition of generic traversal on top of
the Java implementation of trees, essentially duplicating the Stratego platform we use.

7 Conclusions and Future Work

We propose decorated attribute grammars as a formalism for application-level exten-
sibility of AG systems. To this end, we have identified primitives for the specification
of decorators to define abstract evaluation strategies for attributes. By means of a pro-
totype implementation and by employing decorators in different language engineering
applications, we demonstrated the feasibility of using decorators to implement common
abstractions over basic attribute grammars. These can be provided in the form of a li-
brary, and may be extended with user-defined decorators, where decorator stacking can
be applied to reuse existing definitions.

In the future, we would like to explore further applications of decorated attribute
grammars, in particular in the domain of implementing domain-specific languages and
modular language extensions. For this we want to build upon the rewriting capabilities
of the Stratego transformation language, the foundation of ASTER. As such, we aim
to take the best of both worlds; rewriting with Stratego and declarative analysis with
attribute grammars.

Building on our past experience [16], another application area to which we want to
apply ASTER is that of integrated development environments (IDEs). ASTER’s perfor-
mance is already sufficient to be usable, and its demand-driven evaluation further helps
interactive application. As such, we would like to employ it as part of an IDE in the
future, encapsulating logic for typical editor service components, incremental compila-
tion concerns, and related patterns in decorators.

Acknowledgments. We would like to thank Nicolas Pierron for the discussions on at-
tribute grammar systems and their implementation. This research was supported by
NWO projects 638.001.610, MoDSE: Model-Driven Software Evolution, 612.063.512,
TFA: Transformations for Abstractions, and 040.11.001, Combining Attribute Gram-
mars and Term Rewriting for Programming Abstractions.

References

1. Aster project home page, http://strategoxt.org/Stratego/Aster
2. Baars, A., Swierstra, D., Löh, A.: UU AG System User Manual. Department of Computer

Science, Utrecht University (September 2003)
3. Bird, R.: Using circular programs to eliminate multiple traversals of data. Acta Informat-

ica 21(3), 239–250 (1984)

http://strategoxt.org/Stratego/Aster

156 L.C.L. Kats, A.M. Sloane, and E. Visser

4. Boyland, J.: Descriptional Composition of Compiler Components. PhD thesis (1996)
5. Boyland, J.: Remote attribute grammars. Journal of the ACM (JACM) 52(4), 627–687 (2005)
6. Boyland, J., Graham, S.L.: Composing tree attributions. In: POPL 1994, pp. 375–388. ACM,

New York (1994)
7. van den Brand, M.G.J., de Jong, H., Klint, P., Olivier, P.: Efficient annotated terms. Software,

Practice & Experience 30(3), 259–291 (2000)
8. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language

and toolset for program transformation. Science of Computer Programming 72(1-2), 52–70
(2008)

9. Ekman, T., Hedin, G.: Rewritable reference attributed grammars. In: Odersky, M. (ed.)
ECOOP 2004. LNCS, vol. 3086, pp. 144–169. Springer, Heidelberg (2004)

10. Farnum, C.: Pattern-based tree attribution. In: POPL 1992, pp. 211–222 (1992)
11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable

object-oriented software. Addison-Wesley Professional, Reading (1995)
12. Hedin, G.: Reference attributed grammars. Informatica (Slovenia) 24(3), 301–317 (2000)
13. Hedin, G., Magnusson, E.: JastAdd – an aspect-oriented compiler construction system. Sci-

ence of Computer Programming 47(1), 37–58 (2003)
14. Jalili, F.: A general linear time evaluator for attribute grammars. ACM SIGPLAN No-

tices 18(9), 35–44 (1983)
15. Kastens, U., Waite, W.M.: Modularity and reusability in attribute grammars. Acta Informat-

ica 31(7), 601–627 (1994)
16. Kats, L.C.L., Kalleberg, K.T., Visser, E.: Generating editors for embedded languages. Inte-

grating SGLR into IMP. In: LDTA 2008 (April 2008)
17. Kats, L.C.L., Sloane, A.M., Visser, E.: Decorated attribute grammars – Attribute evaluation

meets strategic programming. Extended technical report TUD-SERG-2008-038a. Software
Engineering Research Group, Delft University of Technology (2008),
http://swerl.tudelft.nl/bin/view/Main/TechnicalReports#2008-038

18. Kiczales, G., et al.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

19. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–145 (1968)
20. Laemmel, R., Visser, E., Visser, J.: Strategic programming meets adaptive programming. In:

Proceedings of Aspect-Oriented Software Development (AOSD 2003), Boston, USA, pp.
168–177. ACM Press, New York (2003)

21. Lämmel, R.: Typed generic traversal with term rewriting strategies. Journal of Logic and
Algebraic Programming 54(1), 1–64 (2003)

22. Magnusson, E., Ekman, T., Hedin, G.: Extending attribute grammars with collection at-
tributes – evaluation and applications. In: Proc. of the Int. Working Conference on Source
Code Analysis and Manipulation, pp. 69–80 (2007)

23. Magnusson, E., Hedin, G.: Circular reference attributed grammars - their evaluation and
applications. Science of Computer Programming 68(1), 21–37 (2007)

24. de Moor, O., Backhouse, K., Swierstra, S.: First-class attribute grammars. Informatica 24(3),
329–341 (2000)

25. Nilsson-Nyman, E., Ekman, T., Hedin, G., Magnusson, E.: Declarative intraprocedural flow
analysis of Java source code. In: LDTA 2008 (2008)

26. Paakki, J.: Attribute grammar paradigms - a high-level methodology in language implemen-
tation. ACM Computing Surveys (CSUR) 27(2), 196–255 (1995)

27. van Rossum, G.: Python Reference Manual. iUniverse (2000)
28. Steele, G.: Growing a language. Higher Order Symb. Comp. 12(3), 221–236 (1999)
29. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute grammar system.

In: LDTA 2007. ENTCS, vol. 203, pp. 103–116. Elsevier Science, Amsterdam (2008)

http://swerl.tudelft.nl/bin/view/Main/TechnicalReports#2008-038

Decorated Attribute Grammars 157

30. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in attribute gram-
mars for modular language design. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp.
128–142. Springer, Heidelberg (2002)

31. Van Wyk, E., Krishnan, L., Bodin, D., Johnson, E.: Adding domain-specific and general pur-
pose language features to Java with the Java language extender. In: Companion to OOPSLA
2006, pp. 728–729. ACM, New York (2006)

32. Visser, E.: Meta-programming with concrete object syntax. In: Batory, D., Consel, C., Taha,
W. (eds.) GPCE 2002. LNCS, vol. 2487, pp. 299–315. Springer, Heidelberg (2002)

33. Visser, E., Benaissa, Z.-e.-A., Tolmach, A.: Building program optimizers with rewriting
strategies. In: International Conference on Functional Programming (ICFP 1998), pp. 13–
26. ACM, New York (1998)

SSA Elimination after Register Allocation

Fernando Magno Quintão Pereira and Jens Palsberg

UCLA
University of California, Los Angeles

Abstract. Compilers such as gcc use static-single-assignment (SSA)
form as an intermediate representation and usually perform SSA elim-
ination before register allocation. But the order could as well be the
opposite: the recent approach of SSA-based register allocation performs
SSA elimination after register allocation. SSA elimination before regis-
ter allocation is straightforward and standard, while previously described
approaches to SSA elimination after register allocation have shortcom-
ings; in particular, they have problems with implementing copies be-
tween memory locations. We present spill-free SSA elimination, a simple
and efficient algorithm for SSA elimination after register allocation that
avoids increasing the number of spilled variables. We also present three
optimizations of the core algorithm. Our experiments show that spill-
free SSA elimination takes less than five percent of the total compilation
time of a JIT compiler. Our optimizations reduce the number of memory
accesses by more than 9% and improve the program execution time by
more than 1.8%.

1 Introduction

Register allocation is the process of mapping a program that uses an unbounded
number of variables to a program that uses a fixed number of registers, such
that variables with overlapping live ranges are assigned different registers. If
registers cannot accommodate all the variables that are live at some point in
the program, some of these variables must be spilled, that is, stored in memory.
Register allocation is one of the most important compiler optimizations and can
improve the speed of compiled code by more than 250% [17].

Static Single Assignment (SSA) form is an intermediate representation that
defines each variable at most once [9,24] and in which ϕ-functions express re-
naming of variables. ϕ-functions are normally not present in the instruction
sets of actual computer architectures. Thus, compilers that use SSA form must
eventually do SSA elimination, replacing each ϕ-function with copy and swap
instructions [2,5,8,10,19]. Many industrial compilers use the SSA form as an
intermediate representation, including gcc 4.0 [11], Sun’s HotSpot JVM [29],
IBM’s Java Jikes RVM [30], and LLVM [15], and they all perform SSA elimi-
nation before register allocation. But the order could as well be the opposite:
the recent approach of SSA-based register allocation [3,7,12,13,21] performs SSA
elimination after register allocation. SSA-based register allocation has three main

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 158–173, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

SSA Elimination after Register Allocation 159

advantages: (1) the problem of finding the minimum number of registers that are
needed for a program in SSA form has a polynomial-time solution, (2) a program
in SSA form requires at most as many registers as the source program, and (3)
register allocation can proceed in two separate phases, namely first spilling and
then register assignment. The two-phase approach works because the number
of registers needed for a program in SSA-form is equal to the maximum of the
number of registers needed at any given program point. Thus, spilling reduces
to the problem of ensuring that for each program point, the needed number of
registers is no more than the total number of registers. The register assignment
phase can then proceed without additional spills. The next figure illustrates the
phases of SSA-based register allocation:

SSA-form
program

K-colorable
SSA-form
program

Colored
SSA-form
program

Executable
program

Spilling
Register
Assignment

SSA
Elimination

SSA elimination before register allocation is easier than after register alloca-
tion. The reason is that after register allocation, when some variables have been
spilled to memory, SSA elimination may need to copy data from one memory
location to another. The need for such copies is a problem for many computer
architectures, including x86, that do not provide memory-to-memory copy or
swap instructions. The problem is that at the point where it is necessary to
transfer data from one memory location to another, all the registers may be in
use! In this case, no register is available as a temporary location for performing
a two-instruction sequence of a load followed by a store.

One solution to the memory-transfer problem would be to permanently re-
serve a register to implement memory-to-memory copies. We have evaluated that
solution by reducing the number of available x86 integer registers from seven to
six, and we observed an increase of 5.2% in the lines of spill code (load and store
instructions) that LLVM [15] inserts in SPEC CPU 2000. Another solution would
be to force the register allocator to assign the same register to all the variables
that are part of a ϕ-function. In this case, each ϕ-function would be trivially im-
plemented as a no-op; however, this form of aggressive coalescing might lead to
sub-optimal registers assignments. For instance, Pereira and Palsberg [19, Fig.3]
showed an example program where aggressive coalescing produces a minimal
allocation with three registers, whereas the variables of the same program in
SSA-form can be allocated in two registers.

Brisk [6, Ch.13] has presented a flexible solution that spills a variable on de-
mand during SSA elimination, uses the newly vacant register to implement mem-
ory transfers, and later reloads the spilled variable when a register is available.
We are unaware of any implementation of Brisk’s approach, but have gauged its
potential quality by counting the minimal number of basic blocks where spilling
would have to happen during SSA elimination in LLVM, independent on the as-
signment of physical locations to variables. We found that for SPEC CPU 2000,
memory-to-memory transfers are required for all benchmarks except 181.mcf -
the smallest program in the set. We also found that the lines of spill code must

160 F.M.Q. Pereira and J. Palsberg

increase by at least 0.2% for SPEC CPU 2000, and we speculate that an im-
plementation of Brisk’s algorithm would reveal a substantially higher number.
However, in our view, the main problem with Brisk’s approach is that its second
spilling phase - during SSA-elimination - substantially complicates the design of
a register allocator.

Our goal is to do better. We will present spill-free SSA elimination, a simple
and efficient algorithm for SSA elimination after register allocation. Spill-free
SSA elimination never needs an extra register, entirely eliminates the need for
memory-to-memory transfers, and avoids increasing the number of spilled vari-
ables. The next figure summarizes the three approaches to SSA elimination.

Accommodates optimal Avoids spilling
register assignment during SSA elimination

Spare register No Yes
On-demand spilling [6] Yes No

Spill-free SSA elimination Yes Yes

The starting point for our approach to SSA-based register allocation is Con-
ventional SSA (CSSA)-form [28] rather than the SSA form from the original
paper [9] (and text books [2]). CSSA form ensures that variables in the same
ϕ-function do not interfere. We show how CSSA-form simplifies the task of re-
placing ϕ-functions with copy or swap instructions. As explained by Sreedhar et
al. [28, p.196], and Briggs et al. [5, p.873], the original algorithm that converts
a program into SSA form [9] already guarantees the CSSA property; however,
compiler optimizations such as copy folding might produce interferences between
variables related by ϕ-functions and thereby lose the CSSA property. Thus, our
approach to SSA elimination requires us to convert the source program back into
CSSA form before register allocation starts.

In this paper we make two assumptions. First, we assume that the CSSA-form
program contains no critical edges. A critical edge is a control-flow edge from
a basic block with multiple successors to a basic block with multiple predeces-
sors. Algorithms for removing critical edges are standard [2]. Second, we assume
that the target architecture provides us with a way to swap the contents of two
registers. If swaps are not provided, then the problem of finding the minimal
number of registers required by a program is NP-complete [4,20]. For integer
registers, architectures such as x86 provide a swap instruction, while on other
architectures one can implement a swap with a sequence of three xor instruc-
tions. In contrast, for floating point registers, most architectures provide neither
direct swap instructions nor xor instructions, so instead compiler writers have
to use one of the other approaches to SSA-elimination, e.g: separate a temporary
register or perform spilling on demand.

We will present both a core algorithm for spill-free SSA elimination as well as
three optimizations. We have implemented our SSA elimination framework in a
puzzle-based register allocator [21]. Our experiments show that our approach to
SSA elimination, including the conversion of source program into CSSA-form,
takes less than five percent of the total compilation time of a JIT compiler.

SSA Elimination after Register Allocation 161

Our optimizations reduce the number of memory accesses by more than 9% and
improve the program execution time by more than 1.8%. Our SSA elimination
framework works for any SSA-based register allocator such as [13], and it can
also be used to insert the fixing code required by register allocators that follow
the bin-packing model [14,21,26,31].

We will state three theorems with either just a proof sketch or no proof at all;
the proofs can be found in Pereira’s Ph.D. dissertation [18, Ch.5].

2 Example

We now present an example that assumes a target architecture with a single
register r. Figure 1(a) shows a program in SSA form that contains six variables:
a, a1, a2, b, b1 and b2. We use an abstract notation to represent instructions. For
instance, the assignment a2 = b does not represent a move instruction, but just
an instruction that defines variable a2 and uses variable b. In the same way,
b2 = • is an instruction that defines b2, and • = a is an instruction that uses a.
Figure 1(b) shows the program after spilling and register assignment. A pair such
as (b, r) indicates that variable b has been allocated to register r. Our example
uses the disjoint memory addresses m, m2 and mb as locations for the spilled
variables. Figure 1(c) shows the program after SSA elimination with on-demand
spilling. Notice that in Figure 1(c), a ϕ-function has been replaced with four
instructions that implement a copy from m2 to m. The address mb is used to
temporarily hold the contents of r, while this register is used in the memory-
to-memory transfer. The need for that copy happens at a program point where
the only register r is occupied by b2. So we must first spill r to mb, then we can
copy from m2 to m via the register r, and finally we can load mb back into r.

Now we go on to illustrate that spill-free SSA elimination can do better.
Figure 1(d) shows the same program as in Figure 1(a), but this time in CSSA
form, Figure 1(e) shows the program after spilling and register assignment, and
Figure 1(f) shows the program after spill-free SSA elimination. Notice that in
Figure 1(d), top right corner, CSSA makes a difference by requiring the extra
instruction that copies from a2 to a3. This instruction splits the live range of
a2, what is necessary because variables a and a2 interfere. We now do register
allocation and assign each of a, a1, and a3 to the same memory location m
because those variables do not interfere. In Figure 1(e), top right corner, the
value of a2 arrives in memory location m2, and is then copied to memory location
m via the register r. The point of the copy is to let both elements of the first row
of the ϕ-matrix be represented in m, just like both elements of the second row
of the ϕ-matrix are represented in r. We finally arrive at Figure 1(f) without
any further spills.

3 CSSA Form and Spartan Parallel Copies

We now show that for programs in CSSA-form, the problem of replacing each
ϕ-function with copy and swap instructions is significantly simpler than for

162 F.M.Q. Pereira and J. Palsberg

a
b

a1 a2

b1 b2

=

a1 = •

b1 = •

a2 = b

•= a

b2 = •

(a,m)
(b,r)

(a1,m) (a2,m2)

(b1,r) (b2,r)
=

(a1,r) = •

m = r
(b1,r) = •

(a2,r) = (b,r)

m2 = r

r = m
•= (a,r)

(b2,r) = •

a
b

a1 a3

b1 b2

=

a1 = •

b1 = •

a2 = b

•= a

a3 = a2

b2 = •

(a,m)
(b,r)

(a1,m) (a2,m)

(b1,r) (b2,r)
=

(a1,r) = •

m = r
(b1,r) = •

(a2,r) = (b,r)

m2 = r

r = m
•= (a,r)

r = m2

m = r
(b2,r) = •

(a)
(b)

(d)

(e)

(a1,r) = •

m = r
(b1,r) = •

(a2,r) = (b,r)

m2 = r

r = m
•= (a,r)

r = m2

m = r
(b2,r) = •

(a1,r) = •

m = r
(b1,r) = •

(a2,r) = (b,r)

m2 = r

r = m
•= (a,r)

(b2,r) = •

mb = r

r = m2

m = r
r = mb

(c)

(f)

L1

L2

L3

Fig. 1. Top: SSA-based register allocation and SSA elimination with on-demand
spilling. Bottom: SSA-based register allocation and spill-free SSA elimination.

programs in SSA-form (Theorem 1). Along the way, we will define all the con-
cepts and notations that we use.

SSA form uses ϕ-functions to express renaming of variables. We will describe
the syntax and semantics of ϕ-functions using the matrix notation introduced
by Hack et al. [13]. Figure 1 contains examples of ϕ-matrices. An assignment
such as V = ϕM , where V is a vector of length n, and M is an n × m matrix,
represents n ϕ-functions and m parallel copies [16,27,32]. Each column in the
ϕ-matrix corresponds to an incoming control-flow edge. A ϕ-function works as
a multiplexer: it assigns to each element vi of V an element vij of M , where j is
determined by the actual control-flow edge taken during the program’s execution.
The parameters of a ϕ-function are evaluated simultaneously at the beginning of
the basic block where the ϕ-function is defined [1]. For instance, the ϕ-matrix in

SSA Elimination after Register Allocation 163

Figure 1 (a) represents the parallel copies (a, b) := (a1, b1) and (a, b) := (a2, b2).
The first parallel copy is executed if control reaches L3 from L1, while the second
is executed if control reaches L3 from L2.

Conventional Static Single Assignment (CSSA) form was first described by
Sreedhar et al. [28] who used CSSA form to facilitate register coalescing. In order
to define CSSA form, we first define an equivalence relation ≡ over the set of
variables used in a program. We define ≡ to be the smallest equivalence relation
such that for every set of ϕ-functions V = ϕM , where V is a vector of length n
with entries vi, and M is an n × m matrix with entries vij , we have

for each i ∈ 1..n : vi ≡ vi1 ≡ vi2 ≡ . . . ≡ vim.

Sreedhar et al. use ϕ-congruence classes to denote the equivalence classes of ≡.

Definition 1. A program is in CSSA form if and only if for every pair of vari-
ables v1, v2, we have that if v1 ≡ v2, then v1 and v2 do not interfere.

Budimlic et al. [8] presented a fast algorithm for converting an SSA-form program
to CSSA-form. A register allocator for a CSSA-form program can assign the same
location to all the variables vi, vi1, . . . , vim, for each i ∈ 1..n, because none of
those variables interfere. We say that register allocation is frugal if it uses at
most one memory location together with any number of registers as locations
for vi, vi1, . . . , vim, for each i ∈ 1..n.

The problem of doing SSA-elimination consists of implementing one parallel
copy for each column in each ϕ-matrix. We can implement each parallel copy
independently of the others. We will use the notation

(l1, . . . , ln) := (l′1, . . . , l
′
n)

for a single parallel copy, in which li, l
′
i, i ∈ 1..n, range over R ∪ M , where R =

{r1, r2, . . . , rk} is a set of registers, and M = {m1, m2, . . .} is a set of memory
locations. We say that a parallel copy is well defined if all the locations on its left
side are pairwise distinct. We will use ρ to denote a store that maps elements of
R∪M to values. If ρ is a store in which l′1, . . . , l

′
n are defined, then the meaning

of a parallel copy (l1, . . . , ln) = (l′1, . . . , l
′
n) is ρ[l1 ← ρ(l′1), . . . ln ← ρ(l′n)].

We say that a well-defined parallel copy (l1, . . . , ln) = (l′1, . . . , l′n) is spartan if

1. for all l′a, l′b, if l′a = l′b, then a = b; and,
2. for all la, l′b such that la and l′b are memory locations, we have la = l′b if and

only if a = b.

Informally, condition (1) says that the locations on the right-hand side are pair-
wise distinct, and condition (2) says that a memory location appears on both
sides of a parallel copy if and only if it appears at the same index.

Theorem 1. After frugal register allocation, the ϕ-functions used in a program
in CSSA-form can be implemented using spartan parallel copies.

164 F.M.Q. Pereira and J. Palsberg

l1
l2
l3
l4

l2 l3 l4
l3 l3 l1
l2 l4 l2
l3 l5 l3

=Φ
l2 l3

l4l1
l1l2

l3
l4 l5 l2 l3

l4l1

First

Column

Second

Column

Third

Column
Φ-matrix

Fig. 2. A ϕ-matrix and its representation as three location transfer graphs

4 From Windmills to Cycles and Paths

We now show that a spartan parallel copy can be represented using a particularly
simple form of graph that we call a spartan graph (Theorem 2).

We will represent each parallel copy by a location transfer graph.

Definition 2. Location Transfer Graph. Given a well-defined parallel copy
(l1, . . . , ln) := (l′1, . . . , l

′
n), the corresponding location transfer graph G = (V, E)

is a directed graph where V = {l1, . . . , ln, l′1, . . . , l′n}, and E = {(l′a, la) | a ∈ 1..n}.
Figure 2 contains a ϕ-matrix and its representation as three location transfer
graphs. The location transfer graphs that represent well-defined parallel copies
form a family of graphs known as windmills [23]. This name is due to the shape
of the graphs: each connected component has a central cycle from which sprout
trees, like the blades of a windmill.

The location transfer graphs that represent spartan parallel copies form a
family of graphs that is significantly smaller than windmills. We say that a
location transfer graph G is spartan if

– the connected components of G are cycles and paths;
– if a connected component of G is a cycle, then either all its nodes are in R,

or it is a self loop (m, m);
– if a connected component of G is a path, then only its first and/or last nodes

can be in M ; and
– if (m1, m2) is an edge in G, then m1 = m2.

Notice that the first and second graphs in Figure 2 are not spartan because
they contain nodes with out-degree 2. In contrast, the third graph in Figure 2 is
spartan as long as l1, l2, l3, l4 are registers because the graph is a cycle.

Theorem 2. A spartan parallel copy has a spartan location transfer graph.

Proof. It is straightforward to prove the following properties:

1. the in-degree of any node is at most 1;
2. the out-degree of any node is at most 1; and
3. if a node is a memory location m then:

SSA Elimination after Register Allocation 165

(a) the sum of its out-degree and in-degree is at most 1, or
(b) G contains an edge (m, m).

The result is immediate from (1)–(3). �	

5 SSA Elimination

Our goal is to implement spartan parallel copies in the language Seq that con-
tains just four types of instructions: register-to-register moves r1 := r2, loads
r := m, stores m := r, and register swaps r1 ⊕ r2. Notice that Seq does not
contain instructions to swap or copy the contents of memory locations in one
step. We use ι to range over instructions. A Seq program is a sequence I of
instructions that modify a store ρ according to the following rules:

〈ι, ρ〉 → ρ′

〈ι; I, ρ〉 → 〈I, ρ′〉
〈l1 := l2, ρ〉 → ρ[l1 ← ρ(l2)]

〈r1 ⊕ r2, ρ〉 → ρ[r1 ← ρ(r2), r2 ← ρ(r1)]

The problem of implementing a parallel copy can now be stated as follows.

Implementation of a Spartan Parallel Copy
Instance: a spartan parallel copy (l1, . . . , ln) = (l′1, . . . , l

′
n).

Problem: find a Seq program I such that for all stores ρ,

〈I, ρ〉 →∗ ρ[l1 ← ρ(l′1), . . . ln ← ρ(l′n)].

Our algorithm ImplementSpartan uses a subroutine ImplementCompo-
nent that works on each connected component of a spartan location transfer
graph and is entirely standard.

Algorithm 1. ImplementComponent: Input: G, Output: program I

Require: G is a cycle or a path
Ensure: I is a Seq program.
1: if G is a path (l1, r2), . . . , (rn−2, rn−1), (rn−1, ln) then
2: I = (ln := rn−1; rn−1 := rn−2; . . . ; r2 := l1)
3: else if G is a cycle (r1, r2), . . . , (rn−1, rn), (rn, r1) then
4: I = (rn ⊕ rn−1; rn−1 ⊕ rn−2; . . . ; r2 ⊕ r1)
5: end if

Theorem 3. For a spartan location transfer graph G, ImplementSpartan(G)
is a correct implementation of G.

Once we have implemented each spartan parallel copy, all that remains to com-
plete spill-free SSA elimination is to replace the ϕ-functions with the generated
code. As illustrated in Figure 1, the generated code for a parallel copy must be
inserted at the end of the basic block that leads to the parallel copy.

166 F.M.Q. Pereira and J. Palsberg

Algorithm 2. ImplementSpartan: Input: G, Output: program I

Require: G is a spartan location transfer graph.
Require: G has connected components C1, . . . , Cm.
Ensure: I is a Seq program.
1: I = ImplementComponent(C1); . . . ; ImplementComponent(Cm);

6 Optimizations

We will present three optimizations of the ImplementSpartan algorithm. Each
optimization (1) has little impact on compilation time, (2) has a significant
positive impact on the quality of the generated code, (3) can be implemented
as constant-time checks, and (4) must be accompanied by a small change to the
register allocator.

6.1 Store Hoisting

Each variable name is defined only once in an SSA-form program; therefore, the
register allocator needs to insert only one store instruction per spilled variable.
However, algorithm ImplementSpartan inserts a store instruction for each
edge (r, m) in the location transfer graph. We can change ImplementCompo-
nent to avoid inserting store instructions:
1: if G is a path (l1, r2), . . . , (rn−2, rn−1), (rn−1, m) then
2: I = (rn−1 := rn−2; . . . ; r2 := l1)
3: . . .
4: end if
For this to work, we must change the register allocator to insert a store in-

struction after the definition point of each spilled variable. On the average, store
hoisting removes 12% of the store instructions in SPEC CPU 2000.

6.2 Load Lowering

Load lowering is the dual of store hoisting: it reduces the number of load and copy
instructions inserted by the ImplementSpartan Algorithm. There are situa-
tions when it is advantageous to reload a variable right before it is used, instead
of during the elimination of ϕ-functions. Load lowering is particularly useful in
algorithms that follow the bin-packing model [14,21,26,31]. These allocators al-
low variables to reside in different registers at different program points, but they
require some fixing code at the basic block boundaries. The insertion of fixing
code obeys the same principles that rule the implementation of ϕ-functions in
SSA-based register allocators. In Figure 3 we simulate the different locations of
variable v by inserting mock ϕ-functions at the beginning of basic blocks L2 and
L7, as pointed in Figure 3 (b). The fixing code will be naturally inserted when
these ϕ-functions are eliminated. The load lowering optimization would replace
the instructions used to implement the ϕ-functions, shown in Figure 3 (c), with
a single load before the use of v at basic block L7, as outlined in Figure 3 (d).

SSA Elimination after Register Allocation 167

v = •

• = v

Allocate v
into r1

Move v into
r2 to avoid

spilling

v is in
mem. along
dashed path

(a) (b) (c)

L1

L4

L5

L2

Spill v due to high
register pressure

(v, r1) = •
(v,m) = (v, r1)

[r1] = Φ [r1 m]

[r2] = Φ [r1 m]
• = (v, r2)

L7

L3

L6

(v, r1) = •
(v,m) = (v, r1)

(v,r1)=(v,m)

•=(v, r2)

(v,r2)=(v,r1)

(v,r1)=(v,m)

(v,r2)=(v,m)
• = (v, r2)

(d)

(v, r1) = •
(v,m) = (v, r1)

Fig. 3. (a) Example program (b) Program augmented with mock ϕ-functions. (c) SSA
elimination without load-lowering. (d) Load-lowering in action.

Variables can be lowered according to the nesting depth of basic blocks in
loops, or the static number of instructions that could be saved. The SSA elimi-
nation algorithm must remember, for each node l in the location transfer graph,
which variable is allocated into l. During register allocation we mark all the
variables v that would benefit from lowering, and we avoid inserting loads for
locations that have been allocated to v. Instead, the register allocator must in-
sert reloads before each use of v. These reloads may produce redundant memory
transfers, which are eliminated by the memory coalescing pass described in Sec-
tion 6.3. The updated elimination algorithm is outlined below:
1: if G is a path (m, r2), . . . , (rn−2, rn−1), (rn−1, ln) then
2: if m is holding a variable marked to be lowered then
3: I = (ln := rn−1; rn−1 := rn−2; . . . ; r3 := r2)
4: else
5: I = (ln := rn−1; rn−1 := rn−2; . . . ; r3 := r2; r2 := m)
6: end if
7: . . .
8: end if

6.3 Memory Coalescing

A memory transfer is a sequence of instructions that copies a value from a
memory location m1 to another memory location m2. The transfer is redundant
if these locations are the same. The CSSA-form allows us to coalesce a common
occurrence of redundant memory transfers. Consider, for instance, the code that
the compiler would have to produce in case variables v2 and v, in the figure
below, are spilled. In order to send the value of v2 to memory, the value of v
would have to be loaded into a spare register r, and then the contents of r would
have to be stored, as illustrated in figure (b). However, v and v2 are mapped to

168 F.M.Q. Pereira and J. Palsberg

the same memory location because they are ϕ-related. The store instruction can
always be eliminated, as in figure (c). Furthermore, if the variable that is the
target of the copy - v2 in our example - is dead past the store instruction, then
the whole memory transfer can be completely eliminated, as we show in figure
(d) below. Notice that (d) is not a simple case of dead-code elimination, as the
pair (v2, m) might not be dead, e.g, variable v2 might be reloaded from m at
some future program point. However, the compiler can safely eliminate this store
because the value of v, which equals the value of v2, has already been stored in
m by a frugal register allocator.

…

v2 = v

…

v … v2= (v,m) … (v2,m)=

1: (v,r) = (v,m)
2: (v2,r) = (v,r)

3: (v2,m) = (v2,r)

(v,m) … (v2,m)=

1: (v2,r) = (v,m)

(v,m) … (v2,m)=

…
• = (v2,r)

If v2 is dead after

store, the memory
transfer can be
safely removed

(a) (b) (c) (d)

7 Experimental Results

The data presented in this section uses the SSA-based register allocator described
by Pereira and Palsberg [21], which has the following characteristics:

– the register assignment phase occurs before the SSA-elimination phase;
– registers are assigned to variables in the order in which they are defined,

as determined by a pre-order traversal of the dominator tree of the source
program;

– variables related by move instructions are assigned the same register if they
belong into the same ϕ-equivalence class whenever possible;

– two spilled variables are assigned the same memory address whenever they
belong into the same ϕ-equivalence class;

– the allocator follows the bin-packing model, so it can change the register
assigned to a variable to avoid spilling. Thus, the same variable may reach a
join point in different locations. This situation is implemented via the mock
ϕ-functions discussed in Section 6.2.

– SSA-elimination is performed by the Algorithm ImplementSpartan aug-
mented with code to handle register aliasing, plus load-lowering, store hoist-
ing, and elimination of redundant memory transfers.

Our register allocator is implemented in the LLVM compiler framework [15],
version 1.9. LLVM is the JIT compiler used in the openGL stack of Mac OS 10.5.
Our tests are executed on a 32-bit x86 Intel(R) Xeon(TM), with a 3.06GHz cpu
clock, 4GB of memory and 512KB L1 cache running Red Hat Linux 3.3.3-7. Our
benchmarks are the C programs from SPEC CPU 2000.

Impact of our SSA Elimination Method Figure 4 summarizes static data
obtained from the compilation of SPEC CPU 2000; we have ordered the bench-
marks by size. Our SSA Elimination algorithm had to implement 197,568 loca-
tion transfer graphs when compiling this benchmark suite. These LTGs contain

SSA Elimination after Register Allocation 169

gcc pbk gap msa vtx twf cfg vpr amp prs gzp bz2 art eqk mcf
#ltg 72.6 40.3 22.1 15.6 15.8 6.8 7.7 4.5 4.0 5.2 .9 .73 .36 .27 .44
%sp 3.3 5.0 9.8 2.3 9.3 6.5 14.9 13.5 7.9 6.5 10.9 22.7 9.2 20.8 25.6
#edg 586.2 256.3 150.8 96.9 121.5 58.0 124.2 101.7 29.6 35.5 11.1 14.3 2.7 5.8 6.1
%mt 56.4 41.7 43.5 50.6 47.1 57.3 66.8 75.4 37.4 42.8 63.6 71.8 46.0 72.0 57.7

Fig. 4. #ltg: number of location transfer graphs (in thousands), %sp: percentage of
LTG’s that are potential spills, #edg: number of edges in all the LTG’s (in thousands),
%mt: percentage of the edges that are memory transfers

1,601,110 edges, out of which 855,414, or 53% are memory transfers. Due to the
properties of spartan location transfer graphs, edges representing memory trans-
fers are always loops, that is, an edge from a node m pointing to itself. Because
our memory transfer edges have source and target pointing to the same address,
the SSA Elimination algorithm does not have to insert any instruction to im-
plement them. Potential spills could have happened in 11,802 location transfer
graphs, or 6% of the total number of graphs, implying that, if we had used a
spilling on demand approach instead of our SSA elimination framework, a second
spilling phase would be necessary in all the benchmark programs. We mark as
potential spills the location transfer graphs that contain memory transfers, and
in which the register pressure is maximum, that is, all the physical registers are
used in the right side of the parallel copy.

20%

40%

60%

80%

Phi-lifting + Phi-coalescing + SSA-elimination + Remove crit. edges
Other compilation passesRegister allocation pass

Phi-lifting Remove crit. edges Phi-coalescing SSA-Elimination

20%

40%

60%

80%

gcc pbk gap msa vtx twf crf vpr amp prs gzp bz2 art eqk mcf Avg

gcc pbk gap msa vtx twf crf vpr amp prs gzp bz2 art eqk mcf Avg

Fig. 5. Execution time of different compilation passes

170 F.M.Q. Pereira and J. Palsberg

0.6

0.7

0.8

0.9

1

SH SH+RMTE SH+RMTE+LL LL
Memory access instructions eliminated Move instructions eliminated

gcc pbk gap msa vtx twf crf vpr amp prs gzp bz2 art eqk mcf Avg

pbk gap msa vtx twf crf vpr amp prs gzp bz2 art eqk mcf Avggcc
0.94

1

1.03

0.95

0.97

0.99

LL+RMTE LL RMTE

Fig. 6. Impact of Load Lowering (LL) and Redundant Memory Transfer Elimination
(RMTE) on the code produced after SSA-elimination. (Up) Code size. (Down) Run-
time.

Time Overhead of SSA-Elimination. The charts in Figure 5 show the time re-
quired by our compilation passes. Register allocation accounts for 28% of the
total compilation time. This time is similar to the time required by the standard
linear scan register allocator, as reported in previous work [22,25]. The passes
related to SSA elimination account for about 4.8% of the total compilation time.
These passes are: (i) phi-lifting, which splits the live ranges of all the variables
that are part of ϕ-functions using “method I” due to Sreedhar et al. [28, pg.199];
(ii) a pass to remove critical edges; (iii) phi-coalescing, which reduces the number
of copies inserted by phi-lifting using a variation of the algorithm proposed by
Budimlic et al [8]; (iv) our spill-free SSA elimination pass. The amount of time
taken by each of these passes is distributed as follows: (i) 0.2%, (ii) 0.5%, (iii)
1.6% and (iv) 2.5%. Our experiments show that converting a program from SSA
to CSSA-form is a fast process. Passes (i) and (iii) take less than 2% of the total
compilation time. The conversion algorithm described by Budimlic et al [8] is
linear space and almost linear time in the number of variables in ϕ-functions.

Impact of the Optimizations. Figure 6 shows the static reduction of load, store
and copy instructions due to the optimizations described in Section 6. The
criterion used to determine if a variable should be lowered or not is the number
of reloads that would be inserted for that variable versus the number of uses of
the variable. Before running the SSA-elimination algorithm we count the number

SSA Elimination after Register Allocation 171

of reloads that would be inserted for each variable. The time taken to get this
measure is negligible compared to the time to perform SSA-elimination: loads
can only be the last edge of a spartan location transfer graph (Theorem 2). A
variable is lowered if its spilling causes the allocator to insert more reloads than
the number of uses of that variable in the source program. Store hoisting (SH)
alone eliminates on average about 12% of the total number of stores in the target
program, which represents slightly less than 5% of the lines of spill code inserted.
By plugging in the elimination of redundant memory transfers (RMTE) we re-
move other 2.6% lines of spill code. Finally, load lowering (LL), on top of these
other two optimizations, eliminates 7.8% more lines of spill code. Load lowering
also removes 5% of the copy instructions from the target programs.

The chart in the bottom part of Figure 6 shows how the optimizations influ-
ence the run time of the benchmarks. On the average, they produce a speed up of
1.9%. Not all the programs benefit from load lowering. For instance, load lowering
increases the run time of 186.crafty in almost 2.5%. This happens because, for
the sake of simplicity, we do not take into consideration the loop nesting depth of
basic blocks when lowering loads. We speculate that more sophisticated criteria
would produce more substantial performance gains. Yet, these optimizations are
being applied on top of a very efficient register allocator, and they do not incur
in any measurable penalty in terms of compilation time.

8 Conclusion

We have presented spill-free SSA elimination, a simple and efficient algorithm
for SSA elimination after register allocation that avoids increasing the number
of spilled variables. Our algorithm runs in polynomial time and accounts for a
small portion of the total compilation time. Our approach to SSA elimination
works for any SSA-based register allocator.

Acknowledgments. Fernando Pereira was sponsored by the Brazilian Ministry of
Education under grant number 218603-9.

References

1. Appel, A.W.: SSA is functional programming. SIGPLAN Notices 33(4), 17–20
(1998)

2. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java, 2nd edn.
Cambridge University Press, Cambridge (2002)

3. Bouchez, F.: Allocation de registres et vidage en mémoire. Master’s thesis, ENS
Lyon (October 2005)

4. Bouchez, F., Darte, A., Guillon, C., Rastello, F.: Register allocation: What does the
NP-completeness proof of chaitin et al. really prove? or revisiting register alloca-
tion: Why and how. In: 19th International Workshop on Languages and Compilers
for Parallel Computing, pp. 283–298 (2006)

5. Briggs, P., Cooper, K.D., Harvey, T.J., Simpson, L.T.: Practical improvements to
the construction and destruction of static single assignment form. Software Practice
and Experience 28(8), 859–881 (1998)

172 F.M.Q. Pereira and J. Palsberg

6. Brisk, P.: Advances in Static Single Assignment Form and Register Allocation.
PhD thesis, UCLA, University of California, Los Angeles (2006)

7. Brisk, P., Dabiri, F., Jafari, R., Sarrafzadeh, M.: Optimal register sharing for high-
level synthesis of SSA form programs. IEEE Trans. on CAD of Integrated Circuits
and Systems 25(5), 772–779 (2006)

8. Budimlic, Z., Cooper, K.D., Harvey, T.J., Kennedy, K., Oberg, T.S., Reeves, S.W.:
Fast copy coalescing and live-range identification. In: PLDI, ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pp. 25–32. ACM
Press, New York (2002)

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

10. de Ferriére, F., Guillon, C., Rastello, F.: Optimizing the translation out-of-SSA
with renaming constraints. ST Journal of Research Processor Architecture and
Compilation for Embedded Systems 1(2), 81–96 (2004)

11. Gough, B.J.: An Introduction to GCC, 1st edn. Network Theory Ltd. (2005)
12. Hack, S., Goos, G.: Copy coalescing by graph recoloring. In: PLDI, ACM SIGPLAN

Conference on Programming Language Design and Implementation, pp. 227–237
(2008)

13. Hack, S., Grund, D., Goos, G.: Register allocation for programs in SSA-form. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247–262. Springer,
Heidelberg (2006)

14. Koes, D.R., Goldstein, S.C.: A global progressive register allocator. In: PLDI, ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
204–215 (2006)

15. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO, International Symposium on Code Generation
and Optimization, pp. 75–88 (2004)

16. May, C.: The parallel assignment problem redefined. IEEE Trans. Software
Eng. 15(6), 821–824 (1989)

17. Nandivada, V.K., Pereira, F., Palsberg, J.: A framework for end-to-end verification
and evaluation of register allocators. In: Proceedings of SAS, International Static
Analysis Symposium, Kongens Lyngby, Denmark, August 2007, pp. 153–169 (2007)

18. Pereira, F.M.Q.: Register Allocation by Puzzle Solving. PhD thesis, UCLA, Uni-
versity of California, Los Angeles (2008)

19. Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 315–329. Springer, Heidelberg
(2005)

20. Pereira, F.M.Q., Palsberg, J.: Register allocation after classical SSA elimination
is NP-complete. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS,
vol. 3921, pp. 79–93. Springer, Heidelberg (2006)

21. Pereira, F.M.Q., Palsberg, J.: Register allocation by puzzle solving. In: PLDI, ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
216–226 (2008)

22. Poletto, M., Sarkar, V.: Linear scan register allocation. Transactions on Program-
ming Languages and Systems (TOPLAS) 21(5), 895–913 (1999)

23. Rideau, L., Serpette, B.P., Leroy, X.: Tilting at windmills with Coq: formal verifi-
cation of a compilation algorithm for parallel moves (2008)

24. Rosen, B.K., Zadeck, F.K., Wegman, M.N.: Global value numbers and redundant
computations. In: POPL, ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 12–27. ACM Press, New York (1988)

SSA Elimination after Register Allocation 173

25. Sagonas, K., Stenman, E.: Experimental evaluation and improvements to linear
scan register allocation. Software, Practice and Experience 33, 1003–1034 (2003)

26. Sarkar, V., Barik, R.: Extended linear scan: An alternate foundation for global
register allocation. In: Krishnamurthi, S., Odersky, M. (eds.) CC 2007. LNCS,
vol. 4420, pp. 141–155. Springer, Heidelberg (2007)

27. Sethi, R.: Complete register allocation problems. In: STOC, 5th Annual ACM
Symposium on Theory of Computing, pp. 182–195. ACM Press, New York (1973)

28. Sreedhar, V.C., Ju, R.D.-C., Gillies, D.M., Santhanam, V.: Translating out of static
single assignment form. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694,
pp. 194–210. Springer, Heidelberg (1999)

29. JVM Team. The java HotSpot virtual machine. Technical Report Technical White
Paper, Sun Microsystems (2006)

30. The Jikes Team. Jikes RVM home page (2007),
http://jikesrvm.sourceforge.net/

31. Traub, O., Holloway, G.H., Smith, M.D.: Quality and speed in linear-scan regis-
ter allocation. In: PLDI, ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 142–151 (1998)

32. Welch, P.H.: Parallel assignment revisited. Software Practice and Experi-
ence 13(12), 1175–1180 (1983)

http://jikesrvm.sourceforge.net/

Register Spilling and Live-Range Splitting for
SSA-Form Programs

Matthias Braun1 and Sebastian Hack2

1 Institut für Programmstrukturen und Datenorganisation
Universität Karlsruhe (TH)

braun@ipd.info.uni-karlsruhe.de
2 Computer Science Department

Saarland University
hack@cs.uni-sb.de

Abstract. Register allocation decides which parts of a variable’s live
range are held in registers and which in memory. The compiler inserts
spill code to move the values of variables between registers and memory.
Since fetching data from memory is much slower than reading directly
from a register, careful spill code insertion is critical for the performance
of the compiled program.

In this paper, we present a spilling algorithm for programs in SSA
form. Our algorithm generalizes the well-known furthest-first algorithm,
which is known to work well on straight-line code, to control-flow graphs.

We evaluate our technique by counting the executed spilling instruc-
tions in the CINT2000 benchmark on an x86 machine. The number of ex-
ecuted load (store) instructions was reduced by 54.5% (61.5%) compared
to a state-of-the-art linear scan allocator and reduced by 58.2% (41.9%)
compared to a standard graph-coloring allocator. The runtime of our
algorithm is competitive with standard linear-scan allocators.

1 Introduction

The register allocation phase of a compiler maps the variables of a program to
the registers of the processor. Usually, the register pressure (i.e. the number of
simultaneously live variables at an instruction) in a program is much higher than
the number of available registers. Thus, the compiler has to generate so-called
spill code that moves the contents of the variables between memory and registers.
Since accessing memory is much slower than accessing a register, the amount of
executed spill code has to be minimized.

The key to good spill-code generation lies in splitting the live-range of a
variable at the right places: Consider a loop with excessive register pressure and
a variable that is defined before the loop and used afterwards. Ideally, a compiler
would store (spill) the variable in front of the loop and load (reload) the variable
after the loop. If the variable was reloaded inside the loop, the reload would be
executed in each loop iteration. Another example is a variable that is used in a
loop but has already been spilled before the loop. Reloading this variable directly

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 174–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Register Spilling and Live-Range Splitting for SSA-Form Programs 175

before its use in the loop will cause memory traffic in each loop iteration. Thus,
it is preferable to put the reload in front of the loop.

Register allocation is often formulated as a NP-hard problem. In such a set-
ting, the actual register demand can exceed the maximum register of a program
and become NP-hard to determine. Therefore, compilers allocate registers heuris-
tically (e.g. using graph coloring [1,2] or linear scan [3,4,5]). If this heuristic runs
out of registers, variables are spilled until enough registers have been freed and
the heuristic can resume its work. In such a situation, the generation of spill
code is driven by the failure of the allocation heuristic instead of the program’s
structure. In extreme cases [1,4], such a failure results in spilling the whole live
range of a variable: Stores will be put after each definition and loads in front of
each use, regardless of their location in the program.

Recent results show that if the program is in SSA form, its register demand
equals its maximum register pressure (see [6,7,8]). This allows for decoupling spill
code generation and register assignment: Once the maximum register pressure
in the program is lowered to the number of available registers, registers can be
assigned optimally using a linear-time algorithm that provably does not cause
further spill code.

In this paper, we propose a program transformation that limits the maximum
register pressure of an SSA-form program by inserting efficient spill code. Its
main features are:

– It extends the well-known Min algorithm [9], which has proven to be very
successful [10] in straight-line code register allocation, to control-flow graphs.

– Our algorithm retains the SSA form. Hence, it is ideal for the use in SSA-
based register allocation.

– It is effective. Our algorithm meets the requirements described above. It
is sensitive to the structure of the program by splitting live-ranges around
loops. Our experiments show a reduction of executed reload instructions by
54.5% (executed spills by 61.5%) compared to one of the most sophisticated
live-range splitting algorithms available [5].

– It is efficient. Our algorithm consists of two passes: An enhanced liveness
analysis and a single sweep over the program. Required analysis informa-
tion is a loop tree and def-use chains; both are usually available during the
backend phase of a modern compiler. Furthermore, we do not build large or
complex data structures (such as an interference graph).

Structure of this paper. The next section recaps the Min algorithm and its use in
register allocation of straight-line code. In Section 3 we discuss, by way of exam-
ples, how the Min algorithm can be generalized to code with branches. Section 4
presents our algorithm in detail. We evaluate our algorithm experimentally in
Section 5. The last two sections discuss related work and conclude.

2 The Min Algorithm and Local Register Allocation

The original Min algorithm was developed as a page replacement strategy in
operating systems. Its basic idea is: If a memory page has to be removed to

176 M. Braun and S. Hack

Algorithm 1. The Min algorithm

def limit(W, S, insn, m):
sort(W, insn)
for v ∈ W[m:−1]:

if v /∈ S ∧ nextUse(insn,v) �= ∞:
add a spill for v before insn

S ← S \ {v}
W ← W[0:m]

def minAlgorithm(block, W, S):
for insn ∈ block.insnuctions:

R ← insn.uses \ W
for use ∈ R:

W ← W ∪ {use}
S ← S ∪ {use}

limit(W, S, insn, k)
limit(W, S, insn.next,k−|insn.defs|)
W ← W ∪ {insn.defs}
add reloads for vars in R
in front of insn

swap in a new one, remove the page whose next use is farthest in the future. If
the Min algorithm knew the future and thus always knew whose page’s use is
farthest away, it would perform the minimum number of replacements (see van
Roy [11] for a proof). The Min algorithm has often been applied to straight-line
register allocation and has shown to be very effective [10] in this setting.

Let us now review the Min algorithm in the setting of register allocation for
a single basic block. For the rest of this paper, we assume that the program
is in SSA form. The next-use distance of a variable v at an instruction I is the
number of instructions between I and the next use of v in the block. Especially I
itself can be the next user, leading to distance 0. If there is no further use in the
block, the distance is ∞.

The content of the register file is reflected in a set W containing the variables
currently available in a register. Initially W is empty. We traverse the basic
block from entry to exit, updating W according to the effects of each instruction.
Assuming a conventional load/store architecture, each instruction

I : (y1, . . . , ym︸ ︷︷ ︸
defsI

) ← τ(x1, . . . , xn︸ ︷︷ ︸
usesI

)

requires that its operands xi are available in registers and writes its results yi to
registers. At each program point, W must not contain more than k (the number
of available registers) variables. Hence, the effects of an instruction I on W are
as follows:

1. All variables in usesI \W have to be reloaded in front of I. Thus, they have
to be added to W . If W has not enough room, |W |+ |usesI \W |−k variables
in W have to be spilled.

2. None of the variables in defsI can be in W directly in front of I since all of
these variables are dead there. Hence, we need |defsI | free registers. If there
is not enough room in W to hold |defsI | variables, |W |+ |defsI |−k variables
have to evicted from W .

Algorithm 1 shows the Min algorithm for straight-line code. minAlgorithm per-
forms the steps 1 and 2 on each instruction of the block. limit takes the set W,

Register Spilling and Live-Range Splitting for SSA-Form Programs 177

sorts it according to the next-use distance from instr, and evicts all variables but
the first m. Note carefully that for an instruction I we call limit twice. The first
time, to make room for the operands and the second time to provide registers
for the result variables of I. In the latter case, the next-use distance is measured
from the instruction behind I because the uses of I do no longer matter when I
writes its results.

Furthermore, minAlgorithm takes a subset S of W. Because the program is in
SSA form, each variable has only one definition and thus needs to be spilled at
most once. If a variable is evicted multiple times, a spill has to be placed only
at the place of the first eviction. The set S records all variables in W for which
a spill has already been inserted. Updating S is easy: Whenever a variable is
reloaded, it must have been spilled before. Hence, we add it to S. When evicting
variables from W, we only create spills for variables not in S whose next use is
not ∞.

3 Overview

Guo et al. [10] empirically showed that the Min algorithm gives very good re-
sults on straight-line code. The intuitive explanation for this is that evicting the
variable with the furthest next use frees a register for the longest possible time.
In this paper however, we are not only interested in spill-code generation for
single basic blocks but for a whole control-flow graph (CFG).

y ← · · ·
x ← · · ·
�1

...
S

�0
...

B

← x

�1
...
← x

L

← x
...

H

← y
← x E

Fig. 1. Example CFG

To this end, let us first investigate how the
straight-line version would perform on single execu-
tion traces of a CFG. Consider the CFG in Figure 3.
The �n sign denotes regions with high register pres-
sure where at most n variables can live through in
registers. Consider the following the execution traces
of the CFG:

1. S, L, E: The register pressure is critical at the end
of S and either x or y have to be evicted from W .
The farthest next use is the one of y in block E.
Thus, y is evicted.

2. S, B, H, H, H, E: As in the previous example, y
is evicted in S. The register pressure in B is so
high that x has to be evicted from W . Thus, x is
reloaded upon its first use in the first execution
of H . The register pressure in H is uncritical.
Hence, x can remain in a register for the second
and third execution of the loop body H .

Let us go back to the static setting where we consider a CFG, not single traces.
To develop an effective spilling algorithm, we have to place the spill and reload
instructions in the CFG such that the straight-line Min algorithm is emulated
as good as possible for every possible trace. In principle, this can be achieved

178 M. Braun and S. Hack

by applying the Min algorithm to each block separately. However, reviewing the
trace examples above, we have to consider each block in its context:

– When reaching the end of S, we have to decide whether x or y is evicted. In
a naive per-block application of Algorithm 1 both, x and y have a next-use
distance ∞ at the end of S because they have no further use in S. However,
to choose y, as in example 1 above, we need a CFG-global next-use view:
The earliest possible next use of x is closer than the one of y (blocks L and B
in contrast to E).

– Algorithm 1 assumes that the register set W is empty at the entry of the
block. This implies that every live-in variable is reloaded on its first use in
the block.

Considering both trace examples above, we observe that x is in registers
at the end of L and H . Thus, it is also in registers at the entry of E.
Consequently, applying the Min algorithm to all predecessors of a block
before applying it to the block itself, makes the state of the register set at
their exits available. The initialization of W can then be chosen accordingly.

– Consider the second trace above: x was spilled in B. In the first execution
of H it was reloaded and used from a register in the following two executions.
However, we cannot have one version of H with the reload and one without!
Placing a reload in H is not a good solution since this reload would be
executed needlessly in every iteration except for the first. It is much better
to place the reload in front of the loop at the exit of B. Therefore, we need
to know that H is a loop head and initialize W with the variables used next
in the loop. This has the effect of hoisting the reloads out of the loop.

4 A Min Algorithm for CFGs

The following outline summarizes the presented algorithm:

1. Compute liveness and global next uses (Section 4.1):
We present a modification to the standard data-flow formulation of liveness analysis
to compute CFG-global next-use values for each variable.

2. For each block B in reverse post order of the CFG:
(a) Determine initialization W entry

B of register set (Section 4.2):
We compute a set of variables, which we assume to be in registers at the entry
of the block.

(b) Insert coupling code at the block entry (Section 4.3):
Depending on the state of the register file at the exit of the predecessor of B,
we add spill and/or reload code on B’s incoming control-flow edges to ensure
that all variables in W entry

B are indeed in registers at the entry of B.

(c) Perform Min algorithm on B (Section 2)
3. Reconstruct SSA (Section 4.4):

Inserting reloads for a variable creates multiple definitions for this variable. This
clearly violates the static single assignment property. We describe, how SSA is
reconstructed after spill/reload code insertion.

Register Spilling and Live-Range Splitting for SSA-Form Programs 179

4.1 Global Next-Use Distances

The next-use distances beyond a single block are computed by augmenting a
standard liveness analysis. Instead of computing live-in and live-out sets, we
compute maps that associate variables with next-use distance; instead of unifying
live sets at control-flow splits, we merge the maps by taking the minimum next-
use distance per variable. This modelling actually entails liveness information:
If the next-use distance of a variable is smaller than ∞, the variable is live,
otherwise it is dead.

To reflect the dynamic behavior of the program, each control-flow edge (P, Q)
is assigned a length �P,Q. Edges leading out of loops are assigned a very high
length M1; all other edges have length 0. When computing the next-use dis-
tances, the length of the edges are added to the next-use distances of the vari-
ables that live over the edge. The effect is that the distances of uses behind loops
are larger than the distances of all uses inside the loop.

Formalism. Let us now briefly discuss the next-use analysis formally. For an
introduction to data-flow analysis, we refer to Nielson et al. [12]. Our domain is
the set

D = Var → N ∪ {∞}
of maps from variables to natural numbers (augmented by a value ∞). The join
of two maps a, b ∈ D is defined by taking the minimum of the variables’ next-use
distances:

a 	 b := λv. min{a(v), b(v)}
〈D,	〉 is a join semi-lattice that satisfies the ascending chain condition2.

The transfer function fB for a block B takes the next-use distances at the exit
of the block and computes the next-use distance at the entry of the block. (Just
like liveness analysis takes the set of live variables at the exit and computes the
set of live variables at the entry.) There are two cases:

1. If a variable v has at least one use in B that is not preceded by the definition
of v, the distance to v’s next use is the length of the block �B

3 plus the
distance νB(v) from the entry of the block to the first use of v in B that is
not preceded by the definition of v.

2. If v has no such use in B, the distance from B’s entry to v’s next use is the
sum of �B, the length |B| of B, and the distance from B’s exit to the next
use of v.

1 M has to be larger than the number of instructions on the longest path through the
loop. Hence, in practice, a value like 100000 works nicely.

2 The proof is straightforward and is omitted here for the sake of brevity.
3 Using the standard formalization of data-flow analyses (see also [12]), we cannot

incorporate information on control-flow edges in the transfer function. As we assume
critical edges to be split, the length of an edge can be uniquely attributed to some
block.

180 M. Braun and S. Hack

This yields

fB(a) = λv. �B +

{
νB(v) if νB(v) �= ∞
|B| + a(v) otherwise

Finally, the initial value ı of each block maps each variable to the distance of its
first local use:

ıB := λv.∞
We chose 	 as the minimum in order to ensure the convergence of the data-

flow analysis. A more appropriate choice for the spilling problem would be to
compute the next-use distance as a weighted sum of the successor’s distances,
using execution frequencies as weights. However this would violate the laws for a
proper lattice join operation and the theoretical framework of data-flow analysis
could no longer be used soundly. The practitioner however may just iterate the
analysis long enough to obtain sufficiently precise information.

4.2 Initialization of the Register Set

For each block B we compute the set W entry
B of variables, which we require to

be in registers at the entry of B. As discussed in Section 3, the choice of W entry
B

is essential for the effectiveness of the algorithm. According to the examples of
Section 3, W entry is computed differently for loop headers and normal blocks.

Normal blocks. Let B be a non-loop-header block. As we process the nodes in
reverse postorder, every predecessor of B has already been processed. Let W exit

P

denote the set W after the Min algorithm has been applied to block P . Further-
more, let

allB =
⋂

P∈pred(B)

W exit
P someB =

⋃
P∈pred(B)

W exit
P

The variables in allB are in registers on every incoming edge at B. Thus, we can
assume them to be in registers at the entry of B. The variables in someB \ allB
are available in registers at some of the predecessors. They are sorted according
to their next-use distance and put into the remaining slots of W entry

B . initUsual
in Algorithm 2 shows the pseudocode for computing W entry of normal blocks.

Loop headers. Now, let B be a loop header. Consider some variable v that is
live-in at and used in B. Furthermore, assume that v has been spilled in some
block P outside B’s loop, like variable x in Figure 2a. In this example, x �∈ W exit

P .
If we determined W entry

B by looking at the contents of W exit
P (as we would do

for normal blocks), x would not be contained in W entry
B . This would cause the

insertion of a reload of x inside the loop; something that has to be avoided at
all costs. It is much better, to allocate x to W entry

B so that the reload is put on
the edge from P to B, as shown in Figure 2b.

But there are also variables that should not be put in W entry
B : Consider Fig-

ure 2c. Variable x lives throughout the loop but is not used inside. Inside the loop,
the register pressure is critical such that x cannot “survive” the loop in a register.

Register Spilling and Live-Range Splitting for SSA-Form Programs 181

x ←
�0

...

P

...
x ← reload

← x
...

B

(a) Reload in the
loop: bad

x ←
�0

...

P

...

← x
...

B
x ← reload

(b) Load before
the loop: good

x ←P

...

B

�0
...

L

← x

E

(c) Variable liv-
ing throughout the
loop

x ←P

...

B

�0
...

L

← x

E

x
←

r
e
l
o
a
d

(d) Needless
reloads for live-
through variable

Fig. 2. Reloads in loops

By allocating x to W entry
B we definitely require x to be in a register at the entry

of B. Hence, a reload has to be put on the loop backedge (see Figure 2d). When
determining W entry

S , we already processed H . As the register pressure in H is un-
critical, x is in W exit

S . Thus, x is also included in W entry
S and x can be used from a

register. This reload is executed in every loop iteration. However, only in the last
iteration that exits the loop, the reloaded value will be actually used (in block E).
In this case, the reload should clearly be put at the entry of E.

So which variables should be put into W entry
B ? Following the discussion above

and in Section 3, we ignore the predecessors of B. Let IB be the set of variables
that are live-in at B as well as defined by φ-functions in B. The candidates
for W entry

B are all variables in IB used within B’s loop L. The variables are sorted
according to their next-use distance and the first k are allocated to W entry

B .
If there is room left in W entry

B , we consider the set TB ⊆ IB of variables that
are not used in L. The example Figure 2c shows that such a variable should
only be assigned to W entry

B if we are sure that the variable will survive the loop
without being evicted. We determine how many variables of TB can be kept
in registers throughout L heuristically: Consider the maximum register pressure
pL of the loop. The difference pL − |TB| =: t gives an estimate on the register
pressure caused by variables used inside the loop4. If t is smaller than k, we
conclude that k − t variables can survive the loop in registers. In this case, the
remaining slots in W entry

B are filled with at most k − t variables from TB.
The maximum loop register pressure pL can easily be computed during the

liveness analysis presented in the last subsection. As we have to traverse the

4 If L is a single-exit loop or TB only consists of variables defined outside L this
estimation is exact, else it might be an under-approximation.

182 M. Braun and S. Hack

Algorithm 2. Initialization of W

def initLoopHeader(block):
entry ← block.firstInstruction
loop ← loopOf(block)
alive ← block.phis ∪ block.liveIn
cand ← usedInLoop(loop, alive)
liveThrough ← alive \ cand
if |cand| < k:

freeLoop ← k − loop.maxPressure
+ |liveThrough|

sort(liveThrough, entry)
add ← liveThrough[0:freeLoop]

else:
sort(cand, entry)
cand ← cand[0:k]
add ← ∅

return cand ∪ add

def initUsual(block):
freq ← map()
take ← ∅
cand ← ∅
for pred in block.preds:

for var in pred.Wend:
freq[var] ← freq[var] + 1
cand ← cand ∪ {var}

if freq[var] = |block.preds|:
cand ← cand \ {var}
take ← take ∪ {var}

entry ← block.firstInstruction
sort(cand, entry)
return take ∪ cand[0:k−|take|]

instructions of each block anyways, we can also keep track of the maximal register
pressure inside each block. pL is then simply computed by taking the maximum
over the maximum register pressures of the blocks of L.

4.3 Connecting a Block to Its Predecessors

W exit
P = {w, x, y}

Sexit
P = {x, y}

P

W exit
Q = {w, x, z}

Sexit
Q = {z}

Q

W entry
B = {w, x, z}

Sentry
B = {x, z}B

reload z spill x

Fig. 3. Coupling code at block borders

When applying the Min algorithm to
a block B, we need to insert cou-
pling code at B’s borders. For ex-
ample, a variable that we require to
be in W entry

B might not be in W exit
P

of some predecessor P . For this vari-
able, a reload on the way from P to B
has to be inserted.

Additionally, we have to provide a
sensible initialization Sentry

B for the
set S that records which variables
in W have already been spilled. The
invariant for S is: v is in S at instruc-
tion I iff v was spilled on all paths
from the CFG root to I. To avoid
redundant spills, Sentry

B is set to all
variables in W entry

B that are spilled on some path to B:

Sentry
B :=

⎡
⎣ ⋃

P∈pred(B)

Sexit
P

⎤
⎦ ∩ W entry

B

Register Spilling and Live-Range Splitting for SSA-Form Programs 183

The coupling code for a predecessor P of B has to be inserted as follows:

– All variables in W entry
B \W exit

P need to be reloaded on the edge from P to B.
– All variables in (Sentry

B \ Sexit
P) ∩ W exit

P need to be spilled from P to B.

The example in Figure 4.3 shows a block B, its predecessors P and Q which
have already been processed, and the inserted code for W entry

B = {w, x, z}.
In the preceding paragraphs of this subsection, we assumed that all predeces-

sors have already been processed. Let us now consider a loop header B and a
predecessor P of B that has not yet been processed. Thus, Sexit

P and W exit
P are

not available. When processing B, we simply ignore P and add the corresponding
spills and reloads as soon as P has been processed.

4.4 Retaining the SSA Form

In this section, we briefly discuss the interdependency of spill-code generation
and the SSA form. Due to space limitations, we only give a brief overview; a more
in-depth discussion can be found in [13]. Let us first consider the requirements
on the input program and then sketch how SSA is retained during the algorithm.

Requirements on the input program. In a non-SSA-form program, each variable
is assigned one spill slot (i.e. the memory location where the spilled values of
that variables are written to and read from). In SSA form, we need to assign
all variables of a φ-congruence class (cf. Sreedhar et al. [14]) the same spill slot.
Else, spilled φ-functions result in memory copy instructions. To this end, we
demand that each φ-congruence class is free of interference, i.e. the CFG is in
conventional SSA form [14].

Producing SSA output. Inserting a reload for an SSA variable creates a second
definition of that variable. Consider the example in Figure 4a. There are two
definitions for x0; the original one and the reload. Creating a new variable x1 for
the reload and renaming the following use, re-establishes the single assignment
property. However, the use of x0 at the lower block is then no longer correct:
Coming from the left block, x0 holds the right value, while coming from the
right, the variable to use is x1. Hence, we have to place a φ-function in the lower
block that selects over x0 and x1 and defines a new variable x2. Thus, spilling a
variable can cause new φ-functions to be inserted.

All in all, we need to record all inserted reload operations per variable and
reconstruct SSA for those variables. This can be achieved with an efficient algo-
rithm by Sastry and Ju [15].

In short, the algorithm takes the original definition of a variable v, a set
of new definitions of v (in our case the inserted reloads) and the list of uses
of v. Then, for each use, the dominance tree is walked upwards. The first found
definition is responsible for that use. When passing an iterated dominance fron-
tier (see Cytron et al. [16]), the algorithm lazily inserts φ-functions and wires
their operands to suitable definitions. As a side effect, dead definitions are never
reached by this search process and can thus be eliminated.

184 M. Braun and S. Hack

x0 ←

← spill x0

...
x0 ← reload

← x0

← x0

(a) Original program

x0 ←

← spill x0

...
x1 ← reload

← x1

← x0

(b) SSA reconstructed

x0 ←

← spill x0

...
x1 ← reload

← x1

x2 ← φ(x0, x1)
· · · ← x2

(c) Second definition of x0, φ-
function inserted

Fig. 4. Adding a reload causes a φ-function to be created

5 Evaluation

Our experimental evaluation consists of two parts: First, we briefly discuss the
compile-time behavior of our algorithm. Second, we assess the quality of the
produced code.

Setup. We implemented the presented spilling algorithm in the libFirm [17]
compiler. This compiler produces code for the x86 architecture and features a
completely SSA-based register allocator as presented in [13]. All measurements
were conducted on the integer part CINT2000 of the CPU2000 benchmark [18].
The program 252.eon was not compiled because the used compiler is not able
to process C++. The compile-time measurements were taken on a Core 2 Duo
2GHz PC with 2GB RAM running Linux with kernel version 2.6.22. All presented
data only considers the 7 general-purpose registers of the x86. The low number
of available registers emphasizes the importance of spill-code generation.

5.1 Runtime of the Algorithm

Figure 5 shows the time spent in the spilling phase in relation to the size of the
compiled function. The granularity limit of the time values is 1ms resulting in
discrete looking values. The linear regression is also drawn in the diagram to
indicate that the time spent on spilling scales roughly linear with the number of
instructions. The average throughput is 430 instructions per millisecond.

5.2 Code Quality

We compare our algorithm to the spill code generated by a standard Chait-
in/Briggs [1,2] allocator (IFG) and the Wimmer & Mössenböck [5] variant of
linear-scan implemented in LLVM version 2.3 [19]. Instead of re-implementing

Register Spilling and Live-Range Splitting for SSA-Form Programs 185

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

Number of Instructions

Sp
ill

T
im

e
[m

se
c.

]

Fig. 5. Time spent on spilling

Table 6. Ratio of spill and reload in-
structions compared to SSA spilling

Bench. IFG Spilling Linear Scan
Spills Rel. Spills Rel.

gzip 2.39 3.39 1.63 2.91
vpr 1.78 2.83 0.79 1.34
gcc 2.06 2.54 1.69 2.86
mcf 2.01 3.29 15.62 5.87
crafty 1.43 2.04 1.23 1.61
parser 1.54 1.92 1.17 1.38
perlbmk 0.93 1.28 0.77 1.22
gap 1.71 2.78 1.04 1.79
vortex 1.58 2.15 1.62 1.93
bzip2 2.01 2.21 1.83 2.05
twolf 1.53 1.85 1.21 1.25
Average 1.72 2.39 2.60 2.20

the linear-scan allocator in our framework, we decided to directly compare to
the fine-tuned implementation within LLVM. Of course, comparing two differ-
ent compilers is always problematic. However, the backend passes in LLVM and
libFirm are quite similar and LLVM’s middle-end is usually more powerful than
libFirm’s. We verified this by manual inspection of the code generated for some
important inner loops.

To assess the quality of the produced code as general as possible, we count
the executed spill and reload instructions of the benchmark programs. We de-
liberately do not compare runtimes of the produced code as they are biased by
all sorts of microarchitectural effects like caching, out-of-order execution and the
like. Those influences can greatly vary among different processor architectures
and even different implementations of the same architecture. To count the reload
and spill instructions, we modified the code generators of libFirm and LLVM to

Table 7. Executed instructions (billions), percentage of spills and reloads

Benchmark SSA Spilling IFG Spilling Linear Scan
Insns. Spills Reloads Insns. Spills Reloads Insns. Spills Reloads

164.gzip 329 4.2% 5.9% 374 9.0% 17.5% 347 6.6% 16.2%
175.vpr 196 5.2% 9.4% 223 8.2% 23.5% 176 4.6% 14.1%
176.gcc 158 3.9% 5.5% 171 7.4% 12.9% 172 6.1% 14.5%
181.mcf 51 0.5% 3.1% 53 1.0% 9.7% 60 7.0% 15.3%
186.crafty 208 6.7% 7.4% 219 9.1% 14.2% 198 8.7% 12.5%
197.parser 322 4.6% 7.6% 339 6.8% 13.9% 304 5.7% 11.1%
253.perlbmk 397 11.1% 9.8% 392 10.5% 12.7% 357 9.6% 13.3%
254.gap 252 3.7% 4.2% 263 6.1% 11.1% 215 4.5% 8.7%
255.vortex 321 5.0% 5.3% 341 7.4% 10.6% 340 7.6% 9.6%
256.bzip2 287 4.2% 6.8% 313 7.7% 13.8% 320 6.9% 12.5%
300.twolf 297 3.8% 5.7% 306 5.7% 10.2% 293 4.7% 7.2%
Average 256 4.82% 6.41% 272 7.16% 13.65% 253 6.53% 12.27%

186 M. Braun and S. Hack

add a special NOP instructions in front of each spill and reload. We then exe-
cuted all benchmarks with the Valgrind [20] machine-code instrumentation tool
and used a home-made plugin to count the marked spill and reload instructions.

The dynamic instruction counts (in billions) are shown in Table 7 along with
the percentage of executed spill and reload instructions. Our algorithm is labeled
“SSA Spilling”. “IFG Spilling” is the graph-coloring spilling and “Linear Scan”
shows the results of the code generated by LLVM. Table 7 shows that 3.5% to
20% of the executed instructions are spill and reload instructions. Hence, the
spilling heuristic has a significant impact on code quality.

Table 6 shows the ratio of executed spill instructions compared to the results
of our algorithm. Our algorithm produces better code than the IFG and the
linear-scan algorithm in almost all of the cases. We constantly produce less
executed reloads, sometimes even less than the half. On average, the linear-scan
(IFG) approach performs 2.60 (1.72) times as many spills and 2.20 (2.39) times
as many reloads.

6 Related Work

This paper’s approach of separating register allocation from register assignment
is in line with Proebsting and Fischer [21]. Their algorithm also globally allocates
on top of local information. However, Proebsting and Fischer calculate for each
use a probability that this use can be made from a register. This probability needs
to be propagated through all possible paths to that use. Finally, whenever their
algorithm decides to allocate a global variable to a register, the probabilities of all
remaining variables need to be updated, which renders the algorithm quadratic
in the number of (global) variables where we visit each variable only once.

Morgan [22] proposes to handle some of the spilling before main register allo-
cation in order to improve spill code placement. He describes an algorithm that
identifies variables that live throughout a loop but are not used inside it. These
variables are spilled in front of and reloaded behind the loop. This improves the
situation for a common class of variables but still leaves most spilling decisions
to the register allocator. Our algorithm yields a program for which an SSA-based
register allocator does not need to insert additional spill code. In our technique
the complex analysis of Morgan is replaced by the CFG-global modelling of
next-use distances, especially the length assignment loop-exiting edges.

Guo et. al. [10] apply the Min algorithm as described in Section 2 to long basic
blocks. They are able to considerably improve the runtime of their benchmarks
compared to a standard MIPSPro or GCC compiler. However, their improve-
ments are mostly visible in basic blocks with long live ranges resulting from
extensive loop unrolling. Their good results lead us to investigate the applica-
bility of the Min algorithm in global register allocation.

Farach and Liberatore [23] prove that the spill-problem is NP-hard for ba-
sic blocks. They also prove that the Min algorithm algorithm gives a 2C-
approximation to the local spilling problem. This supports the good experimental
results by Guo et al.

Register Spilling and Live-Range Splitting for SSA-Form Programs 187

The main motivation for this work were recent results in SSA-based register
allocation (see [6,7,8]). If the maximum register pressure in the program is low-
ered to the number of available registers, a linear-time algorithm can assign the
registers optimally without adding further spill code. Up to now, a good and fast
heuristic to lower the register pressure was missing in this context.

Wimmer and Mössenböck [5] perform live-range splitting while allocating reg-
isters in a linear-scan allocator. In the tradition of linear-scan allocators, the CFG
is flattend to linear code. In this setting, a list of use-points is constructed per
variable. For points with high register pressure the variables with the furthest
next-use (in the flattened code!) are spilled first. They present a technique for
moving the split positions for spills and reloads to earlier points to move spills
and reloads in front of loops. The linear order of the basic blocks however is
too restrictive: At control-flow splits, blocks are forced into an arbitrary order
which often unnecessarily prohibits hoisting spills or reloads. The original linear-
scan allocator (Poletto & Sarkar [4]) introduced CFG flattening to deliver the
best possible compile-time performance by avoiding any expensive analysis and
additional passes.

To improve code quality, several extensions like Wimmer and Mössenböck [5],
Traub et al.[3], and Sarkar & Barik [24] were developed over the years. They suc-
cessively left the rapid linear-scan paradigm by adding liveness analysis, various
other analyses, and fix-up passes. Many of these extensions implicitly rely on
the CFG although all algorithms still use the flattened view. We demonstrated
that flattening the CFG is not necessary for efficient high-quality spill-code
generation.

7 Conclusions

We presented an efficient and effective approach to spill-code generation and
live-range splitting. Unlike most existing techniques, our approach is not entan-
gled with a register allocator: It is a program transformation that limits the
register pressure of an arbitrary SSA-form program to a given number. While
this is useful as a pre-spill phase in any compiler, our technique is predestined
for the use in SSA-form register allocation: If a SSA-form program has a maxi-
mum register pressure of k, a SSA-based allocator can find an optimal register
allocation without introducing further spills in linear time.

Our algorithm is most sensitive to the structure of the program: It care-
fully splits live ranges around loops to avoid reload instructions in loops where
possible. Our evaluation on the CINT2000 benchmark suite shows that our ap-
proach reduced the number of executed reload instructions by 54.5% compared
to the state-of-the-art linear-scan allocator and by 58.2% compared to a stan-
dard graph-coloring allocator. At the same time, the compile-time overhead is
competitive with popular linear-scan allocators: We perform liveness analysis
and one sweep over the program’s CFG.

188 M. Braun and S. Hack

Acknowledgements

We thank Michael Beck, Alain Darte, Gerhard Goos, Daniel Grund, Christoph
Mallon, Fabrice Rastello, Jan Reineke, and Christian Würdig for several in-
sightful discussions. Furthermore, we thank the anonymous reviewers for their
valuable comments.

References

1. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via graph coloring. Journal of Computer Lan-
guages 6, 45–57 (1981)

2. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register
allocation. ACM Trans. Program. Lang. Syst. 16(3), 428–455 (1994)

3. Traub, O., Holloway, G., Smith, M.D.: Quality and speed in linear-scan register al-
location. In: PLDI 1998: Proceedings of the Conference on Programming Language
Design and Implementation, pp. 142–151. ACM Press, New York (1998)

4. Poletto, M., Sarkar, V.: Linear scan register allocation. ACM Trans. Program.
Lang. Syst. 21(5), 895–913 (1999)

5. Wimmer, C., Mössenböck, H.: Optimized interval splitting in a linear scan register
allocator. In: VEE 2005: Proceedings of the 1st international conference on Virtual
execution environments, pp. 132–141. ACM, New York (2005)

6. Bouchez, F., Darte, A., Guillon, C., Rastello, F.: Register allocation: What does
the NP-completeness proof of chaitin et al. Really prove? Or revisiting register
allocation: Why and how. In: Almási, G.S., Caşcaval, C., Wu, P. (eds.) KSEM
2006. LNCS, vol. 4382, pp. 283–298. Springer, Heidelberg (2007)

7. Brisk, P., Dabiri, F., Jafari, R., Sarrafzadeh, M.: Optimal Register Sharing for
High-Level Synthesis of SSA Form Programs. IEEE Trans. on CAD of Integrated
Circuits and Systems 25(5), 772–779 (2006)

8. Hack, S., Grund, D., Goos, G.: Register allocation for programs in SSA-form. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247–262. Springer,
Heidelberg (2006)

9. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer.
IBM Systems Journal 5(2), 78–101 (1966)

10. Guo, J., Garzarn, M.J., Padua, D.: The power of beladys algorithm in register
allocation for long basic blocks. In: The 16th International Workshop on Languages
and Compilers for Parallel Computing (2003)

11. Roy, B.V.: A short proof of optimality for the min cache replacement algorithm.
Inf. Process. Lett. 102(2-3), 72–73 (2007)

12. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

13. Hack, S.: Register Allocation for Programs in SSA Form. PhD thesis, Universität
Karlsruhe (TH) (October 2007)

14. Sreedhar, V.C., Ju, R.D.C., Gillies, D.M., Santhanam, V.: Translating out of static
single assignment form. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694,
pp. 194–210. Springer, Heidelberg (1999)

15. Sastry, A.V.S., Ju, R.D.C.: A new algorithm for scalar register promotion based on
SSA form. In: PLDI 1998: Proceedings of the conference on Programming language
design and implementation, pp. 15–25. ACM, New York (1998)

Register Spilling and Live-Range Splitting for SSA-Form Programs 189

16. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadek, F.K.: Efficiently
computing static single assignment form and the control dependence graph. Trans-
actions on Programming Languages and Systems 13(4), 451–490 (1991)

17. Firm: The libFirm Compiler, http://www.libfirm.org
18. Standard Performance Evaluation Corporation: SPEC CPU2000 V1.3,

http://www.spec.org/cpu2000/

19. LLVM: The LLVM Compiler Infrastructure, http://www.llvm.org
20. Valgrind: Valgrind Instrumentation Framework for Building Dynamic Analysis

Tools, http://www.valgrind.org
21. Proebsting, T.A., Fischer, C.N.: Probabilistic register allocation. SIGPLAN

Not. 27(7), 300–310 (1992)
22. Morgan, R.: Building an Optimizing Compiler. Digital Press (1998)
23. Farach, M., Liberatore, V.: On local register allocation. In: SODA 1998: Proceed-

ings of the ninth annual symposium on Discrete algorithms, Philadelphia, PA,
USA, Society for Industrial and Applied Mathematics, pp. 564–573 (1998)

24. Sarkar, V., Barik, R.: Extended linear scan: An alternate foundation for global
register allocation. In: Krishnamurthi, S., Odersky, M. (eds.) CC 2007. LNCS,
vol. 4420, pp. 141–155. Springer, Heidelberg (2007)

http://www.libfirm.org
http://www.spec.org/cpu2000/
http://www.llvm.org
http://www.valgrind.org

Loop-Aware Instruction Scheduling with
Dynamic Contention Tracking for Tiled

Dataflow Architectures

Muhammad Umar Farooq and Lizy K. John

Department of ECE,
The University of Texas at Austin

ufarooq@mail.utexas.edu, ljohn@ece.utexas.edu

http://www.ece.utexas.edu

Abstract. Increasing on-chip wire delay along with the distributed
nature of processing elements, makes instruction scheduling for tiled
dataflow architectures very crucial. Our analysis reveals that careful
placement of frequently executed sections of applications, and dynamic
resource contention tracking can significantly improve the performance
of the application. The former reduces the operand network latency,
while the latter reduces stalls due to contention for processing elements.
We augment one of the most recent instruction scheduling algorithms
—hierarchical instruction scheduling —to better exploit spatial locality
between instructions within a loop, thereby reducing expensive com-
munication overhead by 6.5% and increasing average IPC by 5.13%.
Secondly, in the presence of conditional branches and variable latency
memory instructions, estimating resource contention, at compile time,
is not only complex but also imperfect. We suggest dynamic tracking
of contending instructions, and their re-location, once a contention
threshold is exceeded. Results showed that dynamic contention tracking
reduced the average ALU conflicts by 23%, thereby improving the
average IPC by 14.22%. Combined together, these augmentations
improve the average IPC by 19.39% and over 30% for some benchmarks.

Keywords: tiled dataflow architectures, instruction scheduling, resource
contention, operand network latency.

1 Introduction

Tiled architectures are gaining popularity as an alternative to monolithic proces-
sors, because of their simpler designs, and scalability. TRIPS [1], WaveScalar [13],
RAW [14], and Smart-Memories [5] are examples of such architectures. Some ex-
amples of these architectures consist of processing elements (PEs), distributed
across a grid, and connected through an on-chip network [1][13]. Their perfor-
mance largely depends on the instruction scheduling. As opposed to monolithic
processors, instruction scheduling for tiled architectures has two aspects: (1)
temporal —decides when to fetch an instruction (2) spatial —decides where

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 190–203, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.ece.utexas.edu

Loop-Aware Instruction Scheduling with Dynamic Contention Tracking 191

D$

SB

Net
work

PE

D$

DR

DR D$

DR

D$

DR

Dynamic Relocator

DomainPod

Cluster

network
To opearand

Input
Routing

FU

Input Queues

PE Control and
Scheduling

Output Queues

Output
Routing

From
operand
network

a) b)

Fig. 1. a) Processing Element (PE) b)WaveScalar Cluster

to execute an instruction. Scheduling for monolithic processors focuses on the
temporal aspect of scheduling. However, for tiled architectures, scheduling also
decides where an instruction should be executed in the grid. A good instruc-
tion scheduling can reduce operand network latency by placing dependent in-
structions on the same or adjacent tiles, while minimizing the contention for
tile resources and maintaining high ILP. Previous attempts at solving resource
contention problem for tiled architectures relied on profiling[4] or compile time
heuristics[2]. In the presence of variable latency memory instructions, estimating
at compile time, whether an instruction will contend with another instruction
is impossible. For example, in case a load instruction misses in L1 cache, all its
consumers will execute at a time that is different from their estimated firing
time. The focus of this work is:

– to reduce operand network latency by careful placement of instructions
within the loop.

– to minimize resource contention by dynamically tracking and re-locating
contending instructions.

Our target architecture is WaveScalar [13]. In this architecture, the basic pro-
cessing element (PE) is a 5-stage in-order pipeline. Two adjacent PEs form a
pod, and communicate through a low-latency bypass network. Four pods make
a domain, communicating over a fixed latency pipelined network. Four domains
constitute a cluster, and communicate through a fixed-route network switch. Sev-
eral clusters combine to form a grid. Inter-cluster communication is through a
dynamically-routed packet network. Recently, a hierarchical instruction schedul-
ing algorithm [6] has been proposed for the WaveScalar architecture, which par-
titions the application’s dataflow graph into smaller groups, and assign these
groups to PEs. We augmented hierarchical instruction scheduling algorithm to
take into consideration the control flow information (i.e. loops) while partition-
ing the dataflow graph. We also explored addressing contention for execution
resources dynamically by re-locating instructions that contend with other in-
structions within their PE past some pre-defined threshold.

192 M.U. Farooq and L.K. John

We compared the performance of the augmented algorithm with the original
algorithm on WaveScalar [13] simulator using benchmarks from EEMBC [11]
benchmark suites.

In the next section, we will discuss the background, and the original hierarchi-
cal scheduling algorithm. Section 3 describes our augmentations to the original
algorithm. Our evaluation methodology, and results are shown in section 4. Sec-
tion 5 discusses related work. Section 6 concludes the paper.

2 Background

We begin this section by giving an overview of the target architecture for the
scheduling techniques presented here. We will then explain the state of the art
in instruction scheduling for this architecture which is the baseline for our com-
parisons.

2.1 WaveScalar Architecture

WaveScalar is a dataflow architecture. As in other dataflow architectures, a pro-
gram is represented as a dataflow graph, and instruction dependencies are ex-
plicit [3][10][8][13]. There is no program counter, instructions are fetched and
placed on the grid as they are required. There is no register file, the result pro-
duced by an instruction is directly communicated to all the consumers. In this
architecture, instructions are grouped in blocks called Waves. Waves can be de-
fined as acyclic dataflow graphs, for which each instruction executes at most
once every time the wave is executed, and to which control can enter at a single
point. On exit and re-entry to this acyclic dataflow graph, the wave number is in-
creased. Waves are used to support memory models of imperative programming
languages such as C. Each dynamic instruction is identified by a tag, which is
the aggregate of its wave number and location on the grid. When an instruction
has received all its input operands for a particular matching wave number, it
fires, provided an ALU is available, and there is room to store the result in the
output queue. The output is temporary stored in the output queue before it is
communicated to the consumers.

Figure 1(b) shows the basic WaveScalar Microarchitecture. The substrate
consists of replicated clusters connected through a dynamically routed packet
network. Each cluster consists of four domains, communicating through a fixed-
route network switch, which has a 4 cycle latency. Additionally, each cluster has
a 32KB 4-way set associative L1 data cache, and a store buffer. Each domain is
composed of eight PEs, grouped into pairs of two. Each pair is called a pod. Pods
communicate through a fixed 1 cycle latency pipeline network. Adjacent pods
form a half-domain, with 2 cycle communication latency. Within PE, instruc-
tions communicate through a bypass network. Each PE, shown in Figure 1(a), is
a 5-stage in-order pipeline with a small instruction cache capable of holding 64
static instructions. Each PE has a 16 entry input queue, and an 8 entry output
queue.

Loop-Aware Instruction Scheduling with Dynamic Contention Tracking 193

Domain 1 Domain 2

a) b)

Fig. 2. a) Application Dataflow Graph b)Coarse Grain Scheduling

Loading instructions onto the grid is done through co-operation of the mi-
croarchitecture and the runtime system. When an instruction produces a result
for a consumer instruction not already on the grid, the runtime system is sig-
nalled [6]. The placement of the incoming instruction is decided using either a
statically constructed table, or an online algorithm which creates a new mapping.

2.2 Hierarchical Instruction Scheduling Algorithm

Recently, a hierarchical instruction scheduling algorithm [6] has been proposed.
It breaks the instruction scheduling problem into two phases – Coarse grain
and Fine grain. Coarse grain phase assigns instructions to domains according to
their execution order, while fine grain phase refines initial placement, and assigns
instructions to the PEs. Coarse grain scheduling uses instruction execution order,
obtained through profiling, to assign instructions to a domain, and when the
domain is full, it moves to the next domain, thereby assigning all the instructions
to some domain. Figure 2 shows an example of how an application dataflow graph
shown in 2(a) is assigned to domains during coarse grain scheduling 2(b).

Once all the instructions are assigned to some domain, fine grain scheduling
refines the assignments, and generates the final placement of instructions to the
PEs. Fine grain scheduling has two passes. First pass forms groups of instructions
within each domain according to the topology of the dataflow graph. It uses two
parameters (a)MaxDepth - which controls how many dependent instructions are
assigned to the same PE, (b) MaxWidth - which limits the amount of parallelism
within each PE. A higher value of MaxDepth will reduce operand network latency
since more dependent instruction will be assigned to the same PE. A higher value
MaxWidth will increase the ALU contention as more parallel instructions will
share the PE resources. In the second pass, fine grain scheduling assigns the
groups formed in first pass to the processing elements. In doing so, this phase
uses the parameter DepDegree. This parameter has a value between zero and

194 M.U. Farooq and L.K. John

Domain 1 Domain 2

Fig. 3. Fine Grain Scheduling

one, and is used to control how much emphasis there is on inter-group operand
dependencies in the choice of PE for a group. A value close to zero will assign
dependent groups to the same PE. A value close to one will separate dependent
groups by assigning them to different PEs. Figure 3 shows the final instruction
placement after fine grain scheduling.

3 Enhanced Hierarchical Instruction Scheduling

This section will explain our augmentations to the baseline hierarchical instruc-
tion scheduling algorithm, namely loop-aware instruction scheduling, and dy-
namic tracking and re-location of contending instructions.

3.1 Loop Awareness

Loops are structures where a program spends most of its time. Careful placement
of instructions within a loop can significantly improve the performance of the
program by reducing long operand latencies. The baseline algorithm does not
differentiate between sequential code within and outside loop constructs, when
assigning instructions to domains. During the coarse grain scheduling, the base-
line algorithm uses profiled execution order to assign instructions to domains.
Once a domain is completely full (512 instructions for the current implemen-
tation), the algorithm moves to the next domain until all the instructions in
the program are assigned to some domain in the grid. However, this sequen-
tial assignment of instructions to domain could result in a loop being split into
two different domains (see Figure 2) thereby increasing the inter-domain traffic
proportional to the execution frequency of the loop.

In our algorithm, a counter, Scurr, is maintained during the coarse grain place-
ment phase. Every time an instruction is assigned to a domain, this counter is
incremented. When the coarse grain placement algorithm encounters an instruc-
tion that is in a loop it checks the static size of the loop, Sloop. If Sloop is <
Smax - Scurr, where Smax is the maximum instructions that can fit in a domain,
it continues the assignment to the current domain since the loop can completely
fit in the current domain. If Sloop is > Smax, implying that the loop can not com-
pletely fit in any domain it continues with the assignment to the current domain.

Loop-Aware Instruction Scheduling with Dynamic Contention Tracking 195

Domain 1 Domain 2 Domain 1 Domain 2 Domain 3

a) b)

Fig. 4. a) Instruction placement using baseline algorithm. Note that, loop is split be-
tween domains. b)Loop-aware instruction placement. Avoids loop splitting by placing
all loop instructions in a new domain.

However, if Smax - Scurr < Sloop < Smax, i.e. loop can not fit in current domain
but can completely fit in a new domain, then the assignment to the current do-
main is stopped, and entire loop is assigned to a new domain. Doing so decreases
the amount of inter-domain communication that would have taken place if the
loop was divided between domains. Figure 4 shows a sample placement of a loop
with the baseline instruction placement 4(a), and with loop-aware instruction
placement 4(b).

3.2 Dynamic Contention Tracking

When more instructions become ready to execute in the same cycle than there
are execution slots in the PE, we have resource contention problem. Reducing
resource contention requires estimating the execution cycle of every instruction,
and placing those instructions with same execution cycle into different PEs. One
of the shortcomings of static instruction scheduling is its imperfect estimation of
resource contention. For example, variable latency memory instructions make it
impossible to statically identify firing time of instructions and their dependants.
One can only estimate the firing time, but in case an estimation goes wrong (e.g.
because of cache miss), firing time of dependent instructions will be different from
their estimated time, and can cause contention with other instructions. Extensive
research has been done to compute optimal schedule. Profiling is used in [4] to
assign cache hit or miss latency to memory instructions. Load balancing heuristic
is used in [2] to penalize instructions that can cause resource contention. To
account for imperfect estimates, the algorithm leaves single cycle slack in either
direction for the firing time. These attempts can, at best, produce an imperfect
local (intra-block) contention estimate. When attempting to find a placement
for the dataflow graph corresponding to an application on a grid, such estimates
cannot be useful.

We propose a dynamic contention tracking algorithm. Instructions are as-
signed to the processing element according to the static scheduling algorithm.
A contention counter is associated with each instruction i, which is incremented

196 M.U. Farooq and L.K. John

whenever instruction i contends with other instructions in the processing el-
ement. When the contention counter for instruction i reaches the contention
threshold, a re-location request for instruction i is generated. Implementation
details of dynamic contention tracking algorithm are further explained in the
next section.

To allow re-location within the same domain, processing elements are not
filled to completion during initial instruction assignment. Re-location outside
the initial domain is not considered, as it would increase the communication
cost of the instruction with its producers and consumers, and could also result
in a loop being split into different domains. For re-locating instruction i, the cost
of placing instruction i is computed for all the PEs in that domain, including
the original PE, using the algorithm shown in Figure 5. Instruction i is then
assigned to the PE with the minimum cost. If no PE within the domain has cost
less than the original PE, then instruction i is not re-located. After re-location,
the contention counter for that instruction is reset. The cost consists of three
components:

a) communication cost between producer of instruction i to instruction i.
b) contention cost of instruction i in PE.
c) communication cost between instruction i to its consumers.

Computing the (a) and (c) portions of the cost is straight forward as each
instruction knows the locations of its producers and consumers. Computing con-
tention cost involves finding whether an instruction i, if placed in PE p, will
contend with the instructions already present in PE p. One simple approach
for finding if two instructions will contend with each other is to check if they
have the same producer. There are two problems with this approach. First, an
instruction can have multiple producers for the same data, e.g. instructions in
the merge block following a conditional branch. Second, instructions that do
not have a common producer but can possibly fire at the same time are not
considered. A second approach is to maintain a history of the last ’k’ cycles in
which each instruction became ready. If two instructions have high correlation
in their ready times, they are likely to contend with each other, if they are in the
same PE. For our experiments we use k=1. The instruction re-locator keeps a
count of how many instructions from each PE became ready every cycle. When
a re-location request is issued, this information is used to calculate contention
cost of each PE being considered. Results showed that even with k=1, ALU con-
tention is reduced significantly. We have assumed a 20 cycle penalty for finding
the best PE for the contending instruction, and announcing its new location to
its producers and consumers. This penalty is the same as the penalty of bringing
an instruction on demand from L2. When an instruction, not already present on
the grid, is brought from L2, all its producers and consumers are updated with
the instruction’s location on the grid. Some or all of the 20 cycle penalty can
be hidden since instruction re-location process starts as soon as the instruction
reaches its contention threshold. If the next message to this re-located instruction
arrives after x cycles, then the actual penalty is (20 - x) cycles, (zero if x > 20).

Loop-Aware Instruction Scheduling with Dynamic Contention Tracking 197

Input: Contending Instruction i
Output: PEnew —new location of instruction i
1: runningCost = infinity
2: for all PEs p in Domain do
3: Cost(i, p) = inputLatency(Producer(i), i) +

contentionCost(i, p) + outputLatency(i, Consumers(i))
4: if Cost(i, p) < runningCost then
5: runningCost = Cost(i, p)
6: PEnew = p
7: end if
8: end for

Fig. 5. Dynamic Contention Tracking Algorithm

3.3 Implementation of Dynamic Contention Tracking Algorithm

The dynamic contention tracking algorithm is implemented using a hardware
structure called the dynamic re-locator, see Fig 1(b). This is a distributed struc-
ture with one re-locator per domain. The purpose of this re-locator is to calculate
the best PE location for an instruction, whose contention counter exceeds the
threshold. This new PE location should have the least value of cost function
among the 8 PEs in that domain.

When an instruction surpasses the threshold, it sends a re-location request
along with the PE location of its sources and sinks to the dynamic re-locator in
its domain. Once the re-locator receives this information, computing the com-
munication cost between a candidate PE and PEs containing the sources/sinks
is not costly. This is just a matter of adding numbers based on the distance
of the source and sink PEs. For computing the contention cost, the re-locator
requires information regarding how many instructions became ready in each PE
in the previous cycle. Every cycle, each PE (8 of them) sends this information to
the local re-locator in their domain. Upon receiving a re-location request, these
8 stored values are observed by the re-locator to calculate the contention cost of
each PE, which is incorporated into the overall cost function of each PE.

Another job of re-locator is to update the source and sink instructions with
the new location of the re-located instruction. This will only be done when
an instruction is re-located, and not every cycle. All the sources and sinks are
informed in the same way they would know the place of an instruction being
initially brought in from L2 [12]. Due to these similarities to an L1 miss, we
have considered a 20 cycle penalty for the re-location, same as the penalty of
accessing L2 cache.

4 Experimental Evaluation and Results

The hierarchical placement explained in section 2 is the baseline for our eval-
uation. We carefully implemented the recent hierarchical instruction placement

198 M.U. Farooq and L.K. John

Table 1. Parameter settings for experimental evaluation

PEs per Domain 8(4 pods)
PE Input Queue 16 entries
PE Output Queue 8 entries
Instructions per PE 64
ALUs per PE 2
L1 Cache 32KB, 4-way set associative,

128B line, 4 accesses per cycle
L2 Cache 16MB, 4-way set associative,

1024B line, 20 cycle access
Network Latencies

Within Pod 1 Cycle
Within Half Domain 2 Cycles
Within Domain 4 Cycles
Within Cluster 7 Cycles
Inter Cluster 7 + hop count

presented in [6] within the publicly available WaveScalar toolchain. Then follow-
ing changes were made to help evaluate our enhancements to the hierarchical
instruction scheduling.

a) We augmented the binary translator of WaveScalar, which is used to translate
binaries from an Alpha compiler to WaveScalar binaries, to consider control flow
information about the loops during the coarse grain scheduling phase.

b) We added to the simulator the dynamic contention tracking algorithm ex-
plained in Figure 5.

In order to show the effects of loop-awareness and dynamic contention track-
ing, we ran benchmarks from the EEMBC benchmark suite. Each benchmark
ran for all the combinations of the parameters of the hierarchical instruction
placement algorithm (MaxDepth ∈ {2, 4, 8, 12, 16, 32, 50, 64, 128}, MaxWidth
∈ {1, 2, 3, 4, 6, 10}, and DepDegree ∈ {.1, .5, .9}). For each of the aforementioned
combinations each benchmark ran four times: 1) without loop optimization with-
out contention tracking, 2) with loop optimization without contention tracking,
3) without loop optimization with contention tracking, 4) with loop optimization
with contention tracking. For each benchmark we averaged the results for all the
combinations of MaxDepth, MaxWidth and DepDegree.

We setup three different experiments to see the effect of our approach on (a)
intra-domain traffic (b) ALU contention and (c) IPC. Table 1 shows microarchi-
tectural parameter settings used for the evaluation. Following subsections will
discuss these experiments and their results.

4.1 Intra-domain Communication

Inter-domain communication latency is 7 cycles, compared to maximum 4 cycles
within the domain. Reducing the inter-domain traffic can significantly improve

Loop-Aware Instruction Scheduling with Dynamic Contention Tracking 199

fft00 tblook01 fbital00 autcor00 aifftr01 idctrn01 conven00 viterb00 bitmnp01 AVG
0.5

0.6

0.7

0.8

0.9

1

1.1
%

 a
ge

 o
f t

ot
al

 c
om

m
un

ic
at

io
n

Intra Domain Communication

baseline placement loop aware placement

Fig. 6. Intra-domain communications: For each benchmark communication values
shown are averaged for all 162 combinations of depth, width and depdegree

the performance. One way of reducing the inter-domain communication is to
avoid splitting the loops of a program across multiple domains during instruc-
tion placement. This was the focus of our loop-awareness optimization. In order
to evaluate the affect of this optimization on intra-domain and inter-domain
communication, we measured these values with and without our loop aware-
ness optimization. Experiments showed that by confining the loops to a domain,
average intra-domain traffic increased by 6.5% and as high as 25.64% for some
benchmarks (see Figure 6). 4 out of 10 benchmarks achieve 99.9+% intra-domain
communication. Some of the benchmarks (e.g. idctrn01) however showed a de-
crease in the intra-domain traffic. This situation arises when a big loop with small
iteration count is assigned a new domain by our algorithm, thereby separating
the loop instructions from their parent instructions. Since the iteration count is
small, assigning a new domain will not increase the intra-domain traffic, however
it increases the inter-domain communication between the parent instructions in
one domain and loop instructions in another. This situation can be avoided by
profiling the loop and starting new domains for only those loops that execute
enough times to justify paying the cost of separating the loop’s instructions from
its producer instructions and is the subject of future work.

4.2 ALU Contention

This experiment shows that dynamic re-location of contending instructions helps
reduce ALU contention. Our experiment shows that dynamic contention track-
ing algorithm reduces average ALU contention by 23%(see Table 2). Total ALU
contention with and without dynamic contention tracking algorithm, and the av-
erage number of instructions selected for re-location along with their re-location
frequencies are shown in Table 2. We would also like to evaluate how accurate
our heuristics for re-location of instructions are. Table 2 shows that 46.1% of

200 M.U. Farooq and L.K. John

Table 2. ALU contention and frequency of instruction re-location during dynamic
contention tracking

Static Instr. ALU conflicts % of instructions that are moved
Total Moved before after 1-5 6-10 11-20 above 21

optimization optimization times times times times
fft00 15903 602 622365 549867 47.1 3.4 5.7 43.8
tblook01 15498 1198 791137 679818 49 22.7 6.9 20.9
fbital00 14774 383 1263916 883164 47.2 4.6 4.6 43.2
autcor00 14194 77 2823384 2179031 38.8 9 9 42.6
aifftr01 11856 1970 1698660 1286201 39.4 12.8 10.8 36.1
pntr01 16208 501 667252 580794 27.2 3.1 1.7 67
idctrn01 21412 3832 2054979 1618157 68.8 7.7 5.7 17
conven00 14677 363 2510123 1864493 40.4 2.4 4.9 51.4
viterb00 15278 627 938309 620596 58.8 12.3 5.1 22.4
bitmnp01 17437 1349 446836 303761 45.9 23.2 22 8
Average 1381696 1056588 46.1 10.1 7.6 36.2

instructions were moved less than 6 times during the execution of the program.
An interesting observation from Table 2 is that most of the instructions are ei-
ther moved less than 6 times or they are moved for more than 20. This is because
during re-location an instruction either finds a PE in which it rarely contends
with other instructions early, and stays there for a long period of time or it keeps
bouncing back and forth between two PEs. The back and forth movement of in-
structions between two PEs can be related to the following scenario. A number
of instructions start contending within a PE for execution resources. A subset of
these instructions reaches the re-location threshold and is moved. The remainder
of the contending instructions will also soon reach the threshold and will then
look for a place to be re-located. During the re-location process, this second sub-
set of instructions find the same PE that the first set had found due to the fact
that the producer and consumer communication benefits of that PE outweigh its
contention cost. This movement of instructions back and forth between two PEs
is clearly not desirable. The trade off that exists here is between the threshold
at which the re-location is initiated and the number of times we pay the price
of re-location in order to separate contending groups. A small threshold has the
advantage of separating contending groups quickly in order to acheive more par-
allelism while having to pay the price of re-location more often, whereas a large
threshold pays the re-location price less but pays more in terms of contention
while we wait for the threshold to be met. An appropriate threshold value can
be decided upon with help from profiling and using a metric such as the number
of iterations of loops in the program to guide the choice. This will set some sort
of upper bound on the value of the threshold in order for there to be any use in
re-locating instructions and benefiting from less contention in future iterations
of the loop. A lower bound for the threshold value will involve the re-location
cost. We experimentally found the threshold of 20 used in these experiments to
be a sweet spot for the threshold.

Loop-Aware Instruction Scheduling with Dynamic Contention Tracking 201

fft00 tblook01 fbital00 autcor00 aifftr01 idctrn01 conven00 viterb00 bitmnp01 AVG
0.9

1

1.1

1.2

1.3

1.4

1.5
Normalized IPC

N
or

m
al

iz
ed

 to
 b

as
el

in
e

sc
he

du
lin

g
with only loop opt
with only contention opt
with loop + contention opt

Fig. 7. IPC: For each benchmark IPC values shown are averaged for all 162 combina-
tions of depth, width and depdegree

4.3 IPC

Increased intra-domain traffic as well as reduced ALU contention have signif-
icant positive impact on the IPC. Reducing the inter-domain communication
through loop-awareness and ALU contention by dynamic contention tracking
algorithm improves average IPC by 19.39% and over 30% for some benchmarks
e.g., conven00 and autcor00. Figure 7 shows the individual and combined effect
of our enhancements on IPC. Note that for benchmarks idctrn01, combined IPC
decreases because of decrease in the intra-domain communication explained in
Section 4.1. However for this benchmark increase in IPC due to reduction in
ALU contention is still achieved although outweighed by the decrease in IPC
due to decreased intra-domain communication.

5 Related Work

In this section we dicuss the most relevant work on algorithms designed for
instruction scheduling which have a spatial component.

5.1 Spatial Path Scheduling Algorithm

One of the most recent instruction schedulers proposed for tiled dataflow archi-
tectures is the SPS algorithm presented for the EDGE architecture in [2]. The
spatial path scheduling algorithm factors in previously fixed locations which it
calls anchor points for each placement. An anchor point is an instruction whose
placement is known because it accesses a known location such as the register

202 M.U. Farooq and L.K. John

file (if the architecture has one), a cache bank or other resources. As the place-
ment for instructions is decided upon, the instructions that have been placed
become new anchor points for the remainder of the instructions to be placed.
The proposed approach uses simulated annealing to estimate the best results
that are possible and uses heuristics to close the gap between the basic algo-
rithm explained above and the results obtained via simulated annealing. To do
so the basic algorithm is augmented with three heuristics: (1) local and global
ALU and network link contention modeling, (2) global critical path estimates
and (3) dependence chain path reservation. Using these heuristics the placement
cost function is modified to account for the mentioned criteria. In [2] it is shown
that with all the heuristics in place, the final scheduler improves over the basic
SPS algorithm by 7%, and is within 5% of the annealed results. This method is
not very suitable for a dataflow architecture such as WaveScalar because such an
architecture does not have register files to use as anchor points at the beginning
of the algorithm.

5.2 Instruction Scheduling for Clustered VLIW

A number of instruction scheduling algorithms have been proposed for clustered
VLIW architectures [4][7][9]. Unified assign and schedule [7] is a general schedul-
ing framework which is augmented with heuristics for the target architecture by
the compiler writer. This work was compared to the baseline hierarchical fine
grain algorithm in [1]. [9] predicts the inter-cluster communication cost of a loop,
and uses an integer-optimization method to control loop unrolling and unroll-
and-jam to limit the effects of inter-cluster data transfers. This method differs
from our algorithm in the way information from loops is used since it does not
address inter-cluster communication by taking loops into account in instruction
scheduling. By addressing minimization of inter-domain communication through
placement our algorithm does not need to restrict unrolling to limit this com-
munication if a loop structure can fit in a domain of its own.

6 Conclusion

Loop-Awareness and dynamic contention tracking techniques were added to
the hierarchical placement algorithm [6]. Loop-aware hierarchical instruction
scheduling improves the performance of tiled architectures by considering control
flow information, specifically loop information, when doing coarse grain instruc-
tion placement. This avoids splitting of loops into multiple domains thereby
increasing average intra-domain communication by 6.5% and average IPC by
5.13% and as high as 15% for some benchmarks. Dynamic tracking and re-
location of contending instructions resulted in an average 23% reduction in ALU
conflicts thereby increasing average IPC by 14.22%. These two enhancements
put together achieved an average IPC improvement of 19.39% and over 30% for
some presented benchmarks.

Loop-Aware Instruction Scheduling with Dynamic Contention Tracking 203

References

1. Burger, D., Keckler, S.W., McKinley, K.S., Dahlin, M., John, L.K., Lin, C., Moore,
C.R., Burrill, J., McDonald, R.G., Yoder, W., The TRIPS Team: Scaling to the
End of Silicon with EDGE Architectures. Computer 37(7), 44–55 (2004)

2. Coons, K.E., Chen, X., Burger, D., McKinley, K.S., Kushwaha, S.K.: A Spatial
Path Scheduling Algorithm For EDGE Architectures. In: ASPLOS-XII: Proceed-
ings of the 12th international conference on Architectural support for programming
languages and operating systems, pp. 129–140. ACM Press, New York (2006)

3. Dennis, J.B., Misunas, D.P.: A preliminary architecture for a basic data-flow pro-
cessor. SIGARCH Comput. Archit. News 3(4), 126–132 (1974)

4. Gibert, E., Sanchez, J., Gonzalez, A.: Effective instruction scheduling techniques
for an interleaved cache clustered VLIW processor. In: MICRO 35: Proceedings of
the 35th annual ACM/IEEE international symposium on Microarchitecture, pp.
123–133. IEEE Computer Society Press, Los Alamitos (2002)

5. Mai, K., Paaske, T., Jayasena, N., Ho, R., Dally, W.J., Horowitz, M.: Smart
Memories: A Modular Reconfigurable Architecture. In: ISCA 2000: Proceedings
of the 27th annual international symposium on Computer architecture, pp. 161–
171. ACM Press, New York (2000)

6. Mercaldi, M., Swanson, S., Petersen, A., Putnam, A., Schwerin, A., Oskin, M.,
Eggers, S.J.: Instruction scheduling for a tiled dataflow architecture. In: ASPLOS-
XII: Proceedings of the 12th international conference on Architectural support for
programming languages and operating systems, pp. 141–150. ACM Press, New
York (2006)

7. Ozer, E., Banerjia, S., Conte, T.M.: Unified assign and schedule: A new approach to
scheduling for clustered register file microarchitectures. In: MICRO 31: Proceedings
of the 31st annual ACM/IEEE international symposium on Microarchitecture, pp.
308–315. IEEE Computer Society Press, Los Alamitos (1998)

8. Papadopoulos, G.M., Culler, D.E.: Monsoon: An explicit token-store architecture.
In: ISCA 1998: 25 years of the international symposia on Computer architecture
(selected papers), pp. 398–407. ACM Press, New York (1998)

9. Qian, Y., Carr, S., Sweany, P.H.: Optimizing Loop Performance For Clustered
VLIW Architectures. In: PACT 2002: Proceedings of the 2002 International Con-
ference on Parallel Architectures and Compilation Techniques, Washington, DC,
USA, pp. 271–280. IEEE Computer Society Press, Los Alamitos (2002)

10. Sakai, S., Yamaguchi, y., Hiraki, K., Kodama, Y., Yuba, T.: An architecture of
a dataflow single chip processor. In: ISCA 1989: Proceedings of the 16th annual
international symposium on Computer architecture, pp. 46–53. ACM Press, New
York (1989)

11. EEMBC Benchmark Scores, http://www.eembc.org
12. Swanson, S., Michelson, K., Schwerin, A., Oskin, M.: Dataflow: The Road Less

Complex. In: WCED 2003: Proceedings of the 3rd Workship on Complexity-
Effective Design (2003)

13. Swanson, S., Michelson, K., Schwerin, A., Oskin, M.: WaveScalar. In: MICRO
36: Proceedings of the 36th annual IEEE/ACM International Symposium on Mi-
croarchitecture, Washington, DC, USA, p. 291. IEEE Computer Society Press, Los
Alamitos (2003)

14. Waingold, E., Taylor, M., Sarkar, V., Lee, V., Lee, W., Kim, J., Frank, M., Finch,
P., Devabhaktumi, S., Barua, R., Babb, J., Amarsinghe, S., Agarwal, A.: Baring it
all to Software: The Raw Machine. Technical report, Cambridge, MA, USA (1997)

http://www.eembc.org

Scheduling Tasks to Maximize Usage of
Aggregate Variables in Place

Samah Abu-Mahmeed1, Cheryl McCosh1, Zoran Budimlić1, Ken Kennedy1,
Kaushik Ravindran2, Kevin Hogan2, Paul Austin2,

Steve Rogers2, and Jacob Kornerup2

1 Computer Science Department, Rice University, Houston, TX 77005
{samah,chom,zoran}@cs.rice.edu

2 National Instruments, 11500 North MoPac Expressway, Austin, TX 78759
{kaushik.ravindran,kevin.hogan,paul.austin,steve.rogers,

jacob.kornerup}@ni.com

Abstract. Single-assignment languages with copy semantics have a very
simple and approachable programming model. A näıve implementation of
the copy semantics that copies the result of every computation to a new
location, can result in poor performance. Whereas, an implementation
that keeps the results in the same location, when possible, can achieve
much higher performance.

In this paper, we present a greedy algorithm for in-place computa-
tion of aggregate (array and structure) variables. Our algorithm greedily
picks the most profitable opportunities for in-place computation, then
updates the scheduling and in-place constraints in the program graph.
The algorithm runs in O(T logT +EW V +V 2) time, where T is the num-
ber of in-placeness opportunities, EW is the number of edges and V the
number of computational nodes in a program graph.

We evaluate the performance of the code generated by the LabVIEWTM

compiler using our algorithm against the code that performs no in-place
computation at all, resulting in significant application performance im-
provements. We also compare the performance of the code generated by
our algorithm against the commercial LabVIEW compiler that uses an ad-
hoc in-placeness strategy. The results show that our algorithm matches the
performance of the current LabVIEW strategy in most cases, while in some
cases outperforming it significantly.

1 Introduction

At their core, functional, data-flow programming and other single-assignment
languages are free from side-effects, making it easier to write, parallelize, ver-
ify and optimize programs written in such languages. At the conceptual level,
the side-effect free behavior implies that the involved variables are copied at
each stage. Translated directly into an implementation this can result in pro-
grams that consume large amounts of time and space. Compiler transformations
that recognize unnecessary copies and avoid them can significantly improve the

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 204–219, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Scheduling Tasks to Maximize Usage of Aggregate Variables in Place 205

performance of programs in such languages. We call such copy avoidance trans-
formations an in-placeness strategy, since data that is not copied is kept in-place.
Unfortunately, the general problem of finding the minimum number of copies in
a program involving aggregate data structures is NP-Complete [1].

In this paper (an extended version is given in [2]), we present an O(T logT +
EW V +V 2) greedy in-placeness algorithm that significantly reduces the amount
of copying of aggregate data structures for single assignment languages. Here,
T is the number of in-placeness opportunities, EW is the aggregate number of
edges and V is the number of computational nodes in a program graph. This al-
gorithm is general and can be applied to wide range of functional, data-flow and
other single assignment languages. We have chosen to implement a prototype of
the algorithm as an optimization phase in a compiler for LabVIEWTM, a graph-
ical data flow programming language from National Instruments Corporation
(NI) [3], but it can be just as easily implemented in any other modern compiler
infrastructure for other single assignment and functional languages. LabVIEW
is a compiled, statically typed programming language widely used by scientists
and engineers around the world. An integral part of its compilation process is its
in-placeness strategy. Our experiments show that using the in-placeness strategy
currently shipping with the LabVIEW compiler results in much faster and less
memory intensive programs when compared to performing no computations in-
place. The in-placeness algorithm presented in this paper results in a more robust
performance, on par with the current LabVIEW strategy in most cases, while in
some cases showing significant (orders of magnitude) performance improvement
compared to the shipping LabVIEW compiler.

Our in-placeness algorithm saves both space and time in an executing pro-
gram. It saves space by performing computations in-place. By performing in-
place operations on aggregate data structures that only change a (small) part of
the data structure, it saves the time needed for copying unchanged data.

The rest of the paper is organized as follows. Section 2 presents the Lab-
VIEW data flow language and the in-placeness strategy used in its compiler.
Section 3 states the in-placeness problem as a constrained optimization problem
on a program graph. Section 4 describes our algorithm and analyzes its complex-
ity. Section 5 presents the experimental results comparing our algorithm to the
current LabVIEW strategy and program execution without any in-placeness op-
timizations. Section 6 describes the related work in register allocation and copy
elimination in functional languages. Section 7 concludes the paper and suggests
directions for future work.

2 The LabVIEW Language

LabVIEW is a graphical data flow programming language from National Instru-
ments Corporation (NI), widely used in industry for implementation of control
and measurement systems and embedded applications [3]. In this section we will
briefly describe the semantics of LabVIEW, give an example of an in-placeness
optimization, and the NI heuristic for determining in-placeness.

206 S. Abu-Mahmeed et al.

Fig. 1. A LabVIEW program for computing the greatest common divisor

2.1 Overview

A source program written in LabVIEW is referred to as a virtual instrument
(VI). A VI consists of a front panel (graphical user interface) and a block diagram
(a graphical data flow diagram) where icons and structures are used instead of
textual instructions and wires are used instead of variables. Figure 1 shows a
simple VI that computes the greatest common divisor (GCD) of the integer
values provided to the controls (X and Y) on the front panel (on the right) or
from a call to this VI from another VI, as part of a call chain.

When the VI is executed it copies the values into the two shift registers (la-
beled SRx-begin and SRy-begin) on the while loop (the box structure). On each
iteration of the while loop the value of SRx-begin and SRy-begin are copied
into the Min/Max node. It returns the maximum (minimum) value on the top
(bottom) wire. The minimum value is copied back into shift register SRy-end,
on the right hand side of the loop, and the difference between the minimum and
maximum value is copied into shift register SRx-end. If the minimum and maxi-
mum values are different then the loop will execute another iteration; otherwise
the value of SRy-end is copied to the front panel (or to the calling environment,
if used as sub-VI) as the GCD of the provided values. Note that the program
itself does not specify the order of the subtraction and the comparison nodes; in
principle they can be executed in any order, including simultaneously.

The LabVIEW compiler uses a technique called ”clumping”, where a selected
set of data-flow dependent nodes are combined into a single schedulable unit
(a clump). This allows the run-time system to schedule VIs at the clump level,
instead of at the individual node level. The nodes inside a clump are sorted
topologically according to their data flow dependencies, resulting in a total (se-
quential) execution order within a clump. When defining the topological sort of
a clump, the compiler applies a weight to each node that is proportional to the
amount of data that the node may copy, so that non-copying nodes get scheduled
ahead of copying nodes when they have no data flow dependency.

While the example VI above was explained in terms of copying values, it
turns out that this VI can reuse the memory locations reserved for SRx-begin

Scheduling Tasks to Maximize Usage of Aggregate Variables in Place 207

and SRy-begin for all intermediate integer results on the wires inside the while
loop. This is achieved by statically scheduling the comparison node before the
subtraction node, since the comparison node cannot make its outputs in-place
to its inputs due to a type (size) mismatch. By reusing the memory locations
reserved for SRx-begin and SRy-begin the VI will use less memory and also
execute faster since it executes fewer copy instructions. These savings are more
dramatic when dealing with complex data structures such as arrays, where the
computational node may only change the values of a subset of the array.

2.2 The NI In-Placeness Heuristic

The in-place strategy currently used by LabVIEW is based on local and static
decisions; binary operators, like the subtraction node in the GCD example, will
make its output in-place to its top input if their types match. In the GCD
example, this happened to be the best choice, but in general this approach is not
optimal. The LabVIEW compiler is also hand-tuned for cases where this heuristic
does not perform well. This ad-hoc implementation is difficult to maintain and
requires expert knowledge to program applications and take full advantage of in-
placeness opportunities available from the compiler. A more systematic approach
to in-place computation is the main contribution of this paper.

3 Problem Description

First, we will formally encode in-placeness selection in LabVIEW as a con-
strained optimization problem on a program graph. We begin with a repre-
sentation of the program as a directed acyclic graph (DAG). The input graph
represents a set of data-flow dependent nodes that are part of a single schedu-
lable unit (clump). The objective is to compute a schedule of the nodes of the
clump in a single thread that maximizes the benefit from in-place computation.

3.1 Program Graph

We represent a LabVIEW program as a collection of two kinds of vertices. Let
V be the set of computational nodes in the program and W be the collection
of wires or memory locations. Each wire is the output of a single computational
node but may be an input to an unbounded number of computational nodes.
Thus we will assume that there are two sets of edges: EV and EW . EV ⊆ V ×W
is the set of edges that connect a computational node to the wires that are
produced as outputs from it. EW ⊆ W × V is the set of edges that connect a
wire to the computational nodes that use it as input. Note that the number of
edges out of computational nodes is the same as the number of wires in total,
since each wire is the output of a single computational node (i.e. ||W || = ||EV ||).
As a notational convention, we will use the set names of the vertices and edges
to represent both the set itself and the number of elements in the set, whenever
the context is clear. Thus O(EW V) means the same as O(||EW || ||V ||).

208 S. Abu-Mahmeed et al.

Fig. 2. Program graph for the LabVIEW program from Figure 1

Figure 2 shows the program graph for the LabVIEW program from Figure 1
for computing the GCD of two integers. The set V of computational nodes
consists of the MAX/MIN , SUB, and EQ vertices (denoted by square vertices
in Figure 2). The remaining vertices (denoted by circles) comprise the set W of
wires or memory locations. Note that the wires MIN(SRx, SRy) and SRy−end
correspond to the same memory location in the LabVIEW program in Figure 1,
hence they are aggregated into one vertex in Figure 2. The edges preserve the
data dependencies between the computational nodes in the LabVIEW program.

3.2 In-Placeness Opportunities

The algorithm begins by constructing a set of in-placeness opportunities T , where

T ⊆ {(w1, v, w2) ∈ W × V × W | (w1, v) ∈ EW , (v, w2) ∈ EV }.

In other words, each in-placeness opportunity is a triple t = (w1, v, w2) where
wire w1 is the input to computational node v that could be overwritten in place
by the contents of output wire w2.

Since this overwriting is by definition destructive, choosing this triple for in-
placing requires that all other consumers of w1 be scheduled before it. Thus if
there is a path in the original graph from v to another computational node v′

that also consumes wire w1, the triple t cannot be in-placed.
For each triple t ∈ T that represents an in-placeness opportunity, there will

be a benefit representing the value of in-placing t. The benefit measures the
advantage gained by avoiding a memory copy and performing the computation
in-place. We denote this as B(t). For example, if a computational node v updates
one element of an input array A1 to produce the array A2 then the benefit B(t)
of in-placing the triple t = (A1, v, A2) is size(A1)− 1.

3.3 Optimization Objective and Constraints

The objective is to select in-placeness opportunities from the set T to maximize
the total benefit, while adhering to the following constraints: (a) any wire w ∈ W

Scheduling Tasks to Maximize Usage of Aggregate Variables in Place 209

is an input to (similarly, output of) at most one selected in-placeness opportunity,
and (b) if (w1, v, w2) ∈ T is selected for in-placeness, then all other consumers
of w1 must be scheduled before v.

The inputs to the optimization problem are a LabVIEW program G =
(V, W, EV , EW), a set of in-placeness opportunities T , and a benefit function
B. Let function x : T → {0, 1} denote whether t ∈ T is selected for in-placeness.
Also, let function S : V → Z denote the position of v ∈ V in a schedule of the
program graph G. A valid solution to the optimization problem is characterized
by functions x and S that satisfy the following four constraints:

(a) ∀t = (w1, v, w2), t′ = (w′
1, v

′, w′
2) ∈ T, t �= t′, w1 = w′

1,

x(t) = 1 ⇒ x(t′) = 0 (unique input in-placeness)
(b) ∀t = (w1, v, w2), t′ = (w′

1, v
′, w′

2) ∈ T, t �= t′, w2 = w′
2,

x(t) = 1 ⇒ x(t′) = 0 (unique output in-placeness)
(c) ∀(v1, w1) ∈ EV , ∀(w2, v2) ∈ EW ,

w1 = w2 ⇒ S(v2) > S(v1) (program dependencies)
(d) ∀t = (w1, v, w2) ∈ T, ∀(w1, v

′) ∈ EW , v′ �= v,

x(t) = 1 ⇒ S(v) > S(v′) (ordering due to in-placeness) .

Constraint (a) specifies that if t = (w1, v, w2) ∈ T is selected for in-placeness,
then the opportunities t′ ∈ T which have w1 as input are not selected. Constraint
(b) imposes a similar condition on the output wire of an in-placeness opportunity.
Constraint (c) enforces the dependencies between computational nodes from the
program graph in the resulting schedule. Finally, constraint (d) connects in-
placeness selections to new scheduling constraints, which are not implied by the
dependencies in the original program graph. In particular, if t = (w1, v, w2) ∈ T
is selected for in-placeness, the constraint ensures that the computational node
v is scheduled only after all other computational nodes v′ �= v which consume w1
have been scheduled. The optimization objective is to compute valid solutions
to x and S, such that the total benefit Σt∈T B(t)x(t) is maximized.

4 Greedy In-Place Algorithm

The main contribution of this paper is an efficient heuristic algorithm for choos-
ing pairs of inputs and outputs to compute in-place. The greedy algorithm selects
the triple with maximum benefit for in-placing, tests whether the in-placing is
legal, and marks it as in-placed. When a particular triple is in-placed, it creates
new scheduling constraints that can make other in-place choices illegal.

We model these effects by creating a scheduling graph GS = (V, E) in which
the vertex set V is the set of computational nodes as before and each (x, y) ∈ E
indicates that computational node x must be scheduled before computational
node y. The initial version of the scheduling graph is a straightforward transla-
tion of the computed program graph. The scheduling graph is a Direct Acyclic
Graph (DAG), since legal LabVIEW program cannot have cycles, and every step
of our algorithm ensures that there are no cycles introduced in it.

210 S. Abu-Mahmeed et al.

In addition, to make the legality testing fast, we will compute a side data
structure Aft, which represents the transitive closure of the scheduling graph at
any point in the program. That is, y ∈ Aft(x) if and only if y must be scheduled
after x in the current scheduling graph.

The steps of the greedy in-placeness algorithm are:

– Compute a priority queue T of in-place opportunities.
– Compute the initial scheduling graph GS and the initial Aft relationship

from the program graph (V, W, EV , EW).
– While T is non-empty, iteratively remove the highest benefit triple t. If it

is legal to in-place, mark the triple as in-placed and update both GS and
Aft to reflect the new scheduling constraints introduced by in-placing the
triple.

4.1 Constructing the Opportunities Heap

While the number of in-placeness opportunities may be large (a loose upper
bound is EV EW = WEW), some pruning will reduce it. For example, it is not
likely that computing an array in place with a much smaller array or a scalar
will be useful. We can reorganize a pruned set of opportunities T into a heap in
O(T logT) time. Since the total number of triples that are chosen for in-placing
will be far smaller than the number that are considered, it is very important
that we be able to rapidly test for legality of in-placing a particular triple, and
much of the machinery in this algorithm is designed to facilitate such a fast test.

4.2 Constructing the Initial Graph

The algorithm InitGraph in Figure 3 constructs the initial scheduling graph GS

along with the side data structure Aft, which is a transitive closure of the initial
scheduling graph. The upper bound on the time spent in this initialization is
fairly straightforward: L1 is entered O(V) times and the body of L2 is executed
O(EW) times (the header of L2 and the enclosing loop count as a single loop.) So
the entire time spent in loop L1 is O(EW +V). The loop at L3, which implements
a transitive closure, is entered V times, while the loop at L4 is executed once
for each edge in E. Since the loop body contains a set operation taking at most
O(V) time, the time taken by the entire loop is O(EV).

4.3 Selecting In-Placeness Opportunities

Once we have the priority queue T of triplets, organized by benefit B, we can
iteratively select an in-placeness opportunity and test it for legality. A triple
t = (w1, v, w2) is legal to in-place if neither of the following conditions hold:

– There exists some x ∈ suc[w1]−{v} such that x ∈ Aft[v]. This would violate
the requirement that v be scheduled after all other sinks of w1.

– w1 ∈ I[v] or w2 ∈ I[v], where a wire is in I[v] if it is either the input or
output of a triple that has already been in-placed.

Scheduling Tasks to Maximize Usage of Aggregate Variables in Place 211

procedure InitGraph(V, EV , EW . E,
suc, pred, Aft);

for each v ∈ V do begin
Aft[v] := �;
count[v] := 0; pred[y] := suc[x] := �;

end
for each wire w ∈ W do
for each v ∈ suc[w] do count[v]++;

worklist := �; E := �;
for each v ∈ V do
if count[v] = 0 then worklist ∪ ={v};

L1: while worklist �= � do begin
remove element x from front of worklist;
for each output wire w from x do begin

L2: for each y ∈ suc[w] do begin
if (x, y) �∈ E then begin
E := E ∪ {(x, y)};
pred[y] ∪ ={x}; suc[x] ∪ = {y};

end
count[y] − −;
if count[y] = 0 then worklist ∪ = {y};

end
end

end
// Next compute the initial Aft
// relationship, backing up through GS

for each v ∈ V do s c[v] := 0;
for each (x, y) ∈ E do s c[x]++;
for each v ∈ V do
if s c [v] = 0 then worklist ∪ = {v};

L3: while worklist �= � do begin
remove element y from front of worklist;

L4: for each x ∈ pred[y] do begin
Aft[x] ∪ =Aft[y];s c[x] := s c[y] − 1;
if s c[x] = 0 then worklist ∪ ={x};

end
end

end InitGraph

procedure GreedyInplace(V, EV , EW . E,

suc, pred, Aft);
for each v ∈ V do I(v) := �;
wire used := �;
while T �= � do begin
remove highest-benefit element t = (w1, v, w2)

from the top of the heap, and reheap
// Test for legality
legal := true;
if w1 ∈ I[v] or w2 ∈ I[v] then legal := false;
if w1 ∈ wire used then legal := false;
if legal then begin
other inputs := suc[w1] − {v};
while legal and other inputs �= � do begin
remove an element x from other inputs;
if x ∈ Aft[v] then legal := false;

end
end
if legal then begin
mark t = (w1, v, w2) as in-placed;
I[v] := I[v] ∪ {w1} ∪ {w2};
wire used = wire used ∪{w1};
UpdateGraph(v, w1, V, E, suc, pred, Aft);

end
end

procedure UpdateGraph(v, w1, V, E, suc, pred, Aft);
// v: vertex where in-placing happens, w1: input, GS = (V, E): graph being updated
// Actual updates occur to E, suc, pred, The side data structure Aft is also updated,
// newAft[x] = the set of vertices added to the Aft set of x by this in-placing
// The set processed is used to ensure that a vertex goes on worklist at most once

worklist := �; processed := �
L1: for each y ∈ suc[w1] − {v} do begin
S1: if (y, v) �∈ E then begin

E ∪ = (y, v); suc[y] ∪ = {v}; pred[v] ∪ = {x}; newAft[y] := Aft[v] − Aft[y]; Aft[y] ∪ = Aft[v];
S2: if newAft[y] �= � then {worklist ∪ = {y}; processed ∪ = {y}; }

end
end
// Update the Aft sets by backing up through the graph

L2: while worklist �= � do begin
remove an element y from the front of worklist;

L3: for each x ∈ pred[y] − processed do begin
L4: for each z ∈ newAft[y] do begin
S3: if z �∈ Aft[x] then {Aft[x] ∪ = {z}; newAft[x] ∪ = {z}; }
S4: if newAft[x] �= � then {worklist ∪ = {x}; processed ∪ = {x}; }

end
end

end
end UpdateGraph;

Fig. 3. Algorithms

If in-placing the triple is legal, we introduce new scheduling constraints and
update the side data structures. The pseuco code for this part is given in proce-
dure GreedyInplace in Figure 3.

212 S. Abu-Mahmeed et al.

The execution time of this procedure, not counting the time spent in InitGraph
and UpdateGraph, is O(T logT +EW V). The heap operations take O(T logT). To
avoid traversing the successors of an input wire w1 every time a triple with that
wire as an input is processed, we use the side data structure wire used, containing
all input wires that have already been in-placed (once a wire has been in-placed
at some vertex, it cannot be in-placed at any other vertex, since that would
create a scheduling cycle). Since we interrogate wire used first, we traverse the
successors of a wire at most once for every vertex to which it is an input that
might be in-placed. Overall the total time spent traversing the successors of an
input wire is O(EW V). Observe that if there is no pruning of the set of triples T ,
then T = O(EW V) so the entire process, aside from the graph updating, takes
O(T logT) time. However, assuming that significant pruning is done, it is useful
to separate the two terms to yield O(T logT + EW V).

4.4 Updating the Scheduling Graph

We now turn to the process for updating the scheduling graph after in-placing
t = (w1, v, w2), perhaps the most complex part of the algorithm. The goal is to
produce a time bound of O(EV + V 2) time, where E is the number of edges in
the scheduling graph GS . Since E ≤ EW , this will give us the desired bound for
the running time of the algorithm.

The procedure begins by inserting new edges between all the other compu-
tational nodes to which the input wire w1 is also an input and updating the
predecessor and successor lists. Then, the algorithm must update the Aft data
structure. We add a new vertex to Aft[v] only once for each v. This requires back-
ing up through the predecessors pred of all the vertices with new edges (other
inputs of w1) while maintaining a new data structure called newAft, which gets
reduced whenever there already exists a path to some element in Aft for the
predecessor. The algorithm UpdateGraph in Figure 3 describes this process.

Since each wire w1 is input to an in-placed triple only once, the body of
loop L1 is executed only EW times. Furthermore, since the conditional at S1
eliminates duplicate edges, the body of the conditional is executed at most E
times over the entire program.

Even though E is smaller than EW initially, it grows during the execution.
However, we can still establish a bound on the size of E in terms of EW after
the algorithm is done, since at each in-placing step, the input wire w1 can no
longer be in-placed at any of its other inputs. So the total number of in-placings
is bounded by the number of wires W . At each such in-placing we put edges
into E for each vertex to which the wire w1 is an input except the in-placed
vertex, which is at most EW − W edges. The total number of edges in E after
all in-placing steps is no more than 2EW − W = O(EW).

In loop L1, the most expensive operations are the set unions and differences,
each taking O(V) time, so the entire cost of loop L1 is O(EW +EV) = O(EW V).
Note that we limit, in statements S2 and S4, the number of times a vertex goes
on the worklist to those times when it will actually add a vertex to its Aft set,
which is not more than V times.

Scheduling Tasks to Maximize Usage of Aggregate Variables in Place 213

Now consider loop L2. Since a vertex y can only be added to the worklist at
most V times, the body of L2 is executed an aggregate of V 2 times. However, if
we count the number of times the body of loop L3 is executed, we want to charge
the cost, including the cost of the loop iterator, to the edge (x, y). Given that
each y can be on the worklist only V times, this means that the total number
of times that we can process each edge is V , so the total number of executions
of the body of L3 is EV . Even though the header of loop L4 is executed EV
times, we can charge each execution of the body to a new element of the Aft set
for y, which is only once per vertex. The total number of executions of the body
of L4 is O(V 2). Since the body of the if statement S3 takes constant time, the
aggregate time over the entire algorithm for L4 is O(V 2). The aggregate time for
loop L2 is therefore O(EV + V 2). Since E = O(EW), we have established that
the running time for the entire algorithm is bounded by O(T logT +EW V +V 2).

Note that the algorithm can be safely stopped at any time, since no node is
ever unmarked for in-place computation. Running the algorithm to completion
only affects the quality of the result, not the correctness.

4.5 Loops and Shift Registers

In LabVIEW, shift registers are used to represent the loop-carried dependences;
they are equivalent to induction variables in an imperative language. Each shift
register has a source and a sink and at the end of each iteration of a loop the value
of the sink of the shift register is copied into the source of the same shift register.
In the LabVIEW example in figure 1 there are two shift registers, labelled SRx
and SRy. They are used to carry the state of the GCD computation from one
iteration of the while loop to the next iteration.

The in-placeness algorithm as we have described it in this section so far only
works on straight-line code. Since loops and shift registers (especially shift reg-
isters that transfer aggregate data structures) can have an enormous impact on
performance, we treat loops and shift registers separately.

Our strategy is to make the in-placeness decisions for loops in three steps;
First, all copies on the back edges of a loop are eliminated by in-placing the
source of the shift register with its sink. Second, we apply the greedy in-placeness
algorithm presented earlier in this section to the body of the loop. Finally, we
replace the loop by dummy operations that model the input and output tun-
nels connecting the loop to the enclosing VI. Then we run our algorithm on
the enclosing VI, using the dummy operations to decide on the in-placeness of
the inputs and outputs of a loop. For the GCD example in figure 1 the input
pairs is Y and SRy-begin and the output pair is SRy-end and GCD(X,Y). The
input/output pairs of the dummy are added to the opportunities heap of the
enclosing VI as in-placeness opportunities.

In-placing all the shift registers on the back edges of the loop may force some
explicit copies to be inserted inside of the body of the loop. If there is a direct link
from one shift register’s source to a different shift register’s sink, for example,
then an explicit copy will have to be inserted along that edge. This does not
affect the overall goal of the algorithm, as a copy involving that data structure

214 S. Abu-Mahmeed et al.

would have to be performed anyway, either on the back edge or on some forward
edge throughout the body of the loop.

5 Experimental Results

In our experimental study, we evaluated our heuristic for in-placeness optimiza-
tion on two sets of benchmarks. The first set of benchmarks consisted on random
program graphs in the form presented in Section 3. The second set of benchmarks
consisted of 7 real-world LabVIEW applications. The platform we used for run-
ning these experiments was Intel (R), Pentium (R) 4 CPU 2.80 GHz. 2.79 GHz,
504 MB of RAM, running Microsoft window XP.

5.1 Random Graph Benchmarks

Our first set of benchmarks were random program graphs with a varying number
of computational nodes. The largest instance in this set contained 75 computa-
tional nodes (which corresponds to the set V in the program graph from Sec-
tion 3). This is a practical limit for what the optimal constraint-based solvers
can handle in a reasonable amount of time. Figure 4 compares the percent-
age difference from the optimal in-placeness result of our heuristic and the NI
LabVIEW heuristic on the random graph instances. The optimum results were
computed using the Spear constraint solver that internally employs an exact
branch-and-bound method to test satisfiability of problem constraints [4].

Figure 4 indicates that our greedy heuristic is consistently close to the optimal
result across a varying number of vertices in the program graph. On average, our

Fig. 4. Graph comparing the optimality gap of the LabVIEW heuristic and our heuris-
tic for in-placeness on random program graphs. Lower is better.

Scheduling Tasks to Maximize Usage of Aggregate Variables in Place 215

heuristic is within 2% of the optimum for these instances, while the LabVIEW
heuristic is over 25% below the optimum. The times taken to complete execution
of the current LabVIEW heuristics and our algorithm are both on the order of
milliseconds. In contrast, the exact solver method takes up to 3 minutes on some
problem instances. Thus, our heuristic achieves a much higher quality of results
while matching the efficiency of the NI LabVIEW heuristic for in-placeness.

5.2 LabVIEW Application Benchmarks

Tables 1 and 2 summarize the performance of programs compiled using our
heuristic and the NI LabVIEW heuristic on several benchmarks. In four of the
benchmarks our algorithm made the same in-placeness decisions as the Lab-
VIEW compiler. The slight differences in the running times are due to different
default schedules produced by the two algorithms. In the other programs, the
code generated by our algorithm significantly outperforms the code generated
by the current LabVIEW compiler.

The results presented in Tables 1 and 2 illustrate the importance of having
a systematic in-place computation strategy in a LabVIEW implementation. For
all the above programs, the difference in running times between no in-place

Table 1. Running times for a set of LabVIEW benchmarks

Sample VI No In-placeness NI In-placeness Greedy In-placeness
1 Standard Div 110 ms 32 ms 32 ms

2 Original Unpack > 8 hours 745 ms 733 ms

3 Simple Unpack > 8 hours 695 ms 605 ms

4 Split Unpack > 8 hours 353 ms 358 ms

5 Sine Generator 2, 064, 041 ms 94 ms 62 ms

6.a Updating Cluster > 8 hours 132, 796 ms 10 ms
6.b Tuned Updating Cluster > 8 hours 10 ms 10 ms

7.a Mandelbrot 10, 478, 956 ms 44, 425 ms 6, 888 ms
7.b Rewired Mandelbrot 11, 937, 131 ms 42, 958 ms 6, 970 ms

Table 2. Speedup factors for the set of LabVIEW benchmarks from Table 1

Sample VI NI In-placeness Greedy In-placeness Greedy In-placeness
Vs. Vs. Vs.

No In-placeness No In-placeness NI In-placeness
1 Standard Div 3 3 1.0
2 Original Unpack > 40, 000 > 40, 000 1.016
3 Simple Unpack > 40, 000 > 50, 000 1.149
4 Split Unpack > 80, 000 > 80, 000 0.99
5 Sine Generator 21, 958 33, 291 1.516
6.a Updating Cluster > 200 > 300, 000 13, 280
6.b Tuned Updating Cluster > 300, 000 > 300, 000 1.0
7.a Mandelbrot 236 1, 521 6.45
7.b Rewired Mandelbrot 278 1, 713 6.16

216 S. Abu-Mahmeed et al.

computation and some in-place computation is enormous. Updating Cluster, for
example, takes 10 milliseconds to compute using our in-place algorithm but it
takes more than 8 hours (we terminate our experiments after 8 hours for practical
reasons) with no in-place computation.

In summary, we have shown on a large collection of random graphs that
our algorithm consistently finds a better solution, and on a collection of real-
world LabVIEW programs it at least matches, and in several cases significantly
outperforms the current LabVIEW compiler.

6 Related Work

Hudak and Bloss address the problem of updating aggregates in-place to avoid
unnecessary copies in functional languages [5]. If the last use of an aggregate is
a write, they perform the write in place. Our algorithm checks the legality of
allowing a use to be done in-place before adding constraints, and uses a cost
model to to in-place the uses that will be most beneficial to performance. Their
algorithm relies on run-time reference counting to find the inplaceness opportu-
nities, while we make all the decisions statically. In [6], Goyal and Paige gave a
solution that combines dynamic reference counting and lazy copying. Their algo-
rithm uses static analysis to enhance and improve the use of reference counting.
They implement the optimization for the programming language SETL.

For fixed evaluation order, Bloss developed an algorithm that statically com-
putes evaluation paths in non-strict functional programs [7], while Kirkham and
Li developed a copy avoidance algorithm to improve the performance of the pro-
gramming language UFO [8] and Gudjónsson and Winsborough developed an
algorithm that introduces update-in-place operations to the logic programming
language Prolog to allow it to update recursive data structures as in an imper-
ative programming language [9]. These heuristics, as in the first step of Hudak
and Bloss [5], update an aggregate in place if the last use is a write operation.

Sarkar and Cann built an optimized SISAL compiler that includes an update-
in-place analysis phase that tackles the aggregate incremental update problem
by extending the approach by Hudak and Bloss to additionally consider general
iteration, function call boundaries, and nested aggregates [10]. However, as with
Hudak and Bloss, they do not evaluate the benefits in choosing which nodes to
modify in-place, and cannot make all the decisions during compilation.

Gopinath and Hennessy proposed “Targeting”, an algorithm to reduce in-
termediate copies in divide and conquer problems [11] by properly selecting a
storage area for expression evaluatiion. They eliminate copies in a given and
fixed computing evaluation sequence. We allow changes to the evaluation se-
quence in order to find more opportunities for in-place updating. Unlike our
heuristic, their algorithm constrains the arrays to have restricted bounds, and is
unable to detect values whose lifetime cannot be computed at compile time.

Debray focuses on reusing dead data structures [1]. As in our algorithm, his
heuristic chooses between interfering data structures based on a cost model, but
does not describe how to derive these costs.

Scheduling Tasks to Maximize Usage of Aggregate Variables in Place 217

The problem of excessive copying appears in register allocation. The second
stage of the Chaitin’s [12] algorithm consists of coalescing nodes in the graph to
use the same storage (machine register). If there is a copy from Ri to Rj , and Ri

and Rj do not otherwise interfere, then Ri and Rj can share storage. Briggs et al.
add a tradeoff between coalescing and spilling register values to memory [13]. In
another related algorithm, Briggs et al. present an algorithm for inserting copies
to replace φ-functions when translating SSA form to sequential code [14], which
involves a similar problem with cycles of copies. lić et al. present an algorithm
that performs coalescing without building an interference graph, but by using
liveness and dominance information to model interference [15].

While copy avoidance problems are closely related to the one we are addressing
in this paper, none of the results described above focus on a unique characteristic
of the programs with aggregate data structures: it is much more profitable to
perform an in-place computation on a data structure when such a computation
only changes a small part of the data.

7 Conclusions and Future Work

Copy avoidance through in-place computation is extremely important for lan-
guages with copy semantics such as LabVIEW. The performance of LabVIEW
programs with a methodical in-place computation strategy can improve by sev-
eral orders of magnitude over programs with näıve implementations that allocate
a new memory location for the result of every computation. This is especially
true for programs with loops and aggregate (array and structure) data.

In this paper, we present a systematic greedy algorithm for deciding which
computations should be performed in-place for LabVIEW programs. We show
that our algorithm runs in O(T logT + EW V + V 2) time, where T is the number
of in-placeness opportunities, EW is the aggregate number of edges and V is the
number of computational nodes in a program graph.

Our heuristic computes near-optimum (within 2% on average) solutions for
a large collection of randomly generated graphs, compared to the current Lab-
VIEW compiler heuristic which is more than 25% below the optimum. Our
algorithm achieves this while still running in time competitive to the current
LabVIEW compiler (order of milliseconds for random graphs of up to 75 nodes).
It is much faster than optimal constraint-based solver strategies, which are im-
practical even for modestly large programs.

On a collection of LabVIEW programs, our algorithm produces in-placeness
decisions that generate code that is at least competitive, and in several cases
much faster than the code generated by the current LabVIEW compiler. This
efficient and effective in-place computation strategy should prove itself a valuable
addition to any implementation of languages with copy semantics.

In the future, we will investigate an adaptation of our algorithm to an inter-
procedural, modular compiler using the Telescoping Languages approach [16],
which includes a size-inference algorithm that infers sizes of procedure variables
in terms of the sizes of input arguments. This information will be important for

218 S. Abu-Mahmeed et al.

determining benefits for in-placeness when the whole program is not available.
This approach will summarize the in-placeness analysis results for each program
and create different versions of programs based on different in-placeness contexts.
Second, we will experiment with algorithms for splitting of aggregate data struc-
tures and in-place computation for parts of an aggregate data structure. Finally,
we will explore heuristics for estimating the trade-off between more in-place com-
putation and more parallelism available (especially for multicore platforms) that
will attempt to balance the in-place computation, parallelism and scheduling to
achieve faster running times.

Acknowledgments

This work was supported in part by National Instruments and by NSF grant
CCF-0444465. We would like to thank Jeff Kodosky, Brent Schwan and Duncan
Hudson for their comments and support during this project. We would also
like to thank Keith Cooper and Tim Harvey for their insights and discussions
concerning relevant register allocation topics, and Vivek Sarkar for his assistance
in understanding copy elimination in SISAL and other data-flow languages.

References

1. Debray, S.K.: On copy avoidance in single assignment languages. In: International
Conference on Logic Programming, pp. 393–407 (1993)

2. Abu-Mahmeed, S., McCosh, C., Budimlić, Z., Kennedy, K., Ravindran, K., Hogan,
K., Austin, P., Rogers, S., Kornerup, J.: Scheduling tasks to maximize usage of
aggregate variables in place. Technical report, Rice University, TR09-01 (2009)

3. National Instruments Corporation: LabVIEWTMUser Manual (August 2007)
4. Babic, D., Hutter, F.: Spear theorem prover. In: Marques-Silva, J., Sakallah, K.A.

(eds.) SAT 2007. LNCS, vol. 4501. Springer, Heidelberg (2007)
5. Hudak, P., Bloss, A.: The aggregate update problem in functional programming

systems. In: POPL 1985: Proceedings of the 12th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages (1984)

6. Goyal, D., Paige, R.: A new solution to the hidden copy problem. In: Levi, G. (ed.)
SAS 1998. LNCS, vol. 1503, pp. 327–348. Springer, Heidelberg (1998)

7. Bloss, A.: Update analysis and the efficient implementation of functional aggre-
gates. In: FPCA 1989: Proceedings of the Fourth International Conference on
Functional Programming Languages and Computer Architecture (1989)

8. Li, Z., Kirkham, C.: Efficient implementation of aggregates in united functions
and objects. In: ACM-SE 33: Proceedings of the 33rd Annual Southeast Regional
Conference (1995)

9. Gudjónsson, G., Winsborough, W.H.: Compile-time memory reuse in logic pro-
gramming languages through update in place. ACM Trans. Program. Lang. Syst.
(1999)

10. Sarkar, V., Cann, D.: Posc–a partitioning and optimizing sisal compiler. In: ICS
1990: Proceedings of the 4th international conference on Supercomputing, pp. 148–
164. ACM Press, New York (1990)

Scheduling Tasks to Maximize Usage of Aggregate Variables in Place 219

11. Gopinath, K., Hennessy, J.L.: Copy elimination in functional languages. Techni-
cal report, Computer Systems Laboratory, CSL-TR-88-370. Stanford University,
Stanford (1989)

12. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Computer Languages 6, 47–57 (1981)

13. Briggs, P., Cooper, K.D., Torczon, L.: Rematerialization. ACM SIGPLAN 1992
Conference on Programming Language Design and Implementation, 311–321, June
17-19 (1992)

14. Briggs, P., Cooper, K.D., Harvey, T.J., Taylor Simpson, L.: Practical improvements
to the construction and destruction of static single assignment form. Software Prac-
tice and Experience (July 1998)

15. Budimlic, Z., Cooper, K.D., Harvey, T.J., Kennedy, K., Oberg, T.S., Reeves, S.W.:
Fast copy coalescing and live-range identification. In: PLDI 2002: Proceedings of
the ACM SIGPLAN 2002 Conference on Programming language design and im-
plementation (2002)

16. Kennedy, K., Broom, B., Chauhan, A., Fowler, R., Garvin, J., Koelbel, C., McCosh,
C., Mellor-Crummey, J.: Telescoping languages: a system for automatic generation
of domain languages. Proceedings of the IEEE 93(2), 387–408 (2005)

Dynamic Look Ahead Compilation: A Technique to
Hide JIT Compilation Latencies in Multicore

Environment�

Simone Campanoni��, Martino Sykora, Giovanni Agosta, and Stefano Crespi Reghizzi

Politecnico di Milano, Milano 20133, Italy
{campanoni,sykora,agosta,crespi}@elet.polimi.it

http://compilergroup.elet.polimi.it

Abstract. Object-code virtualization, commonly used to achieve software
portability, relies on a virtual execution environment, typically comprising an
interpreter used for initial execution of methods, and a JIT for native code gen-
eration. The availability of multiple processors on current architectures makes
it attractive to perform dynamic compilation in parallel with application execu-
tion. The major issue is to decide at runtime which methods to compile ahead
of execution, and how much time to invest in their optimization. This research
introduces an abstract model, termed Dynamic Look Ahead (DLA) compilation,
which represents the available information on method calls and computational
weight as a weighted graph. The graph dynamically evolves as computation pro-
ceeds. The model is then instantiated by specifying criteria for adaptively choos-
ing the method compilation order. The DLA approach has been applied within
our dynamic compiler for .NET. Experimental results are reported and analyzed,
for both synthetic programs and benchmarks. The main finding is that a careful
choice of method-selection criteria, based on light-weight program analysis and
execution tracing, is essential to mask compilation times and to achieve higher
overall performances. On multi-processors, the DLA approach is expected to
challenge the traditional virtualization environments based on bytecode interpre-
tation and JITing, thus bridging the gap between ahead-of-time and just-in-time
translation.

1 Introduction

Portable, byte-code based, Object Oriented languages such as Java, Python and C# have
achieved widespread adoption in both industry and academia. Modern Virtual Machines
(VM) frequently include a dynamic translation system, the Just In Time (JIT) compiler.
A JIT compiler translates a byte-code portion (typically a method) to native binary code,
when needed. The generated binary code is then executed every time it is required. Dy-
namically compiled code can achieve large speedups, especially in the long run, since
the execution time of a native method is dramatically lower than that of an interpreted
one. However, the performance of a JIT-based VM is still lower than that of native code

� This work is supported in part by the European Commission under Framework Programme 7,
OpenMedia Platform project.

�� This author is supported in part by the ST Microelectronics.

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 220–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dynamic Look Ahead Compilation: A Technique to Hide JIT Compilation Latencies 221

...
...

...
...

...
...

...
...

...
...

...
...

Compile (TH2)

Compile (TH1)

Execution

 m
1

 m
1

 m
2

 m
2

 m
3

 m
5

 m
3

 m
2

 m
4

 m
4

 m
6

 m
5

 m
6

 time

P3

P2

P1

Fig. 1. An ideal case. Each invoked method has already been compiled and optimized.

produced by static byte-code compilation [23], or Ahead Of Time (AOT) compilation.
The loss of performance is due to compilation overhead – often called startup time – and
to the poor quality of the generated code, since the startup time minimization prevents
the aggressive and costly optimizations usually performed by static compilers.

At the same time, multi-core technology is being employed in most recent high-
performance architectures as a way to provide more computational power without rely-
ing on the reduction of the clock cycle, which is becoming increasingly difficult due to
technology limitations.

Thus, we consider a multiprocessor environment and study how specialized threads
of a dynamic compiler can compile bytecode portions in advance, in parallel with the
application execution. In a best case scenario, there is no compilation overhead, because
compilation fully overlaps with execution and methods are already compiled when they
are invoked. Moreover, optimizations are applied to provide high quality code. Our goal
is to prove that, given enough hardware resources, it is possible to effectively mask the
compilation delays, approximating the ideal case shown in Figure 1, where compilation
threads Th1 and Th2 – running on processors P1 and P2 – supply the requested native
methods to the execution thread in advance. Compilation times depend both on method
size and on the optimizations applied. To reach this ideal case, the dynamic compiler
should predict the execution trace, and be able to recognize hot-spots. We call such a
compiler a Dynamic Look Ahead Compiler.

While a processor is executing a method, compilation threads (running on different
processors) look ahead into the call graph, detecting methods that have good chances
to be executed in the next future. Moreover, they guess whether a method is an hot
spot or not, and apply aggressive optimizations accordingly. Hence, DLA compilation
dynamically exploits static code properties (call graph, structure of the method) for
execution trace prediction and hot-spot optimization.

The DLA compilation paradigm, conceived for multiprocessor architectures and
object-oriented languages, is the main contribution of this paper. In the rest of the paper,
we outline the theoretical model in Section 2 and describe DLA compilation in Section
3. Section 4 reports the experimental results. Section 5 provides a survey of prior works,
highlighting the distinctive aspects of the DLA compilation. Conclusions are discussed
in the last Section.

2 Model

A DLA compiler examines the methods to be compiled with the aim of deciding:

222 S. Campanoni et al.

Compilation order. In which order methods should be compiled. The compilation or-
der quality is measured by its similarity to the actual execution order of the methods
– considering only the first call of each method, since no compilation is required
for further invocations.

Optimization level. Which optimizations should be applied in compiling. To this end,
a level of optimization is assigned to each method.

Different platforms may use different criteria for dispatching and fine-tuning meth-
ods compilation. For a program, the basic concept is the Static Call Graph SCG =
(M, I), where M is the set of methods and I is the set of possible invocations. A direct
arc a = (mi, mj) ∈ I connects method mi to mj if the former may call the latter at
run-time. The main method belongs to M and is named the root. The set of immediate
successors of a method m ∈ M is S(m).

Initially, the SCG is not known to the DLA compiler, which progressively discovers
it. We call this graph the Dynamically Known Static Call Graph (DKSCG). Thus, the
DKSCG is the portion of the SCG that is dynamically known: each time a method m is
compiled, the DKSCG is updated with the subset of S(m) not yet compiled.

Next we enrich the DKSCG with arcs and node weights, summarizing the relevant
properties for deciding compilation order and optimization level. Figure 2 shows a por-
tion of a generic DKSCG, where w and w′ are the weights assigned to the arcs and
nodes, respectively.

M 0

M 1 M 2

M 3 M 4

WM2,M4WM2,M3

WM0,M2

WM1,M2

W’M0

W’M2

W’M3 W’M4

W’M1

WM0,M1

WM3,M1

Fig. 2. Dynamically Known Static Call Graph

First consider the weight-less graph. Knowledge of the set of successors of a method
gives some hints on the compilation order. It is obvious that, when a method is running,
its immediate successors are likely to be executed soon. Following this assumption, the
methods can be ordered according to their distance from the root. Let m be a method in-
volved in the compilation process and n be the methods ordered so far; not yet compiled
methods in S(m) will be ordered starting from n + 1, as their appear in m body.

However such an ordering is rather unsatisfactory, as it neglects the effect of con-
ditional branches – the execution order of the successors of a method depends on the
control flow and input data. Adding information on the likelihood of the execution of
each method, can improve the ordering quality. To this end, the model is enriched with
weights. An arc a = (mi, mj) of the DKSCG is characterized by two attributes: the
likelihood of invocation λ, i.e. the likelihood that a is taken after execution reaches node

Dynamic Look Ahead Compilation: A Technique to Hide JIT Compilation Latencies 223

mi; and the estimated time distance δ between the execution of the first instructions of
mi and of mj , if that arc is taken.

The weight of an arc a = (mi, mj) is defined as wa = f(1
λ , δ) where f is a mono-

tonic function of its parameters. Hence, given a method m, the not yet compiled meth-
ods in S(m) can be ordered by increasing arc weights.

For a node mi, let γ(m, mi) be the weighted distance from the executing method m.
We here define the so called Look Ahead Region (LAR) as LAR = {mi|γ(m, mi) ≤
Thr}, where Thr is an implementation dependent threshold. LAR should contain those
methods having good chance to be executed in the next future. A method is a candidate
for compilation if it belongs to the LAR. In this case it is enqueued for compilation,
with an order depending on f . The weights on arcs dynamically change their values, as
well as LAR. Details about LAR updating are provided in Section 3.

The weights on arcs must be combined with the information on the computational
load of methods, providing hints on the most appropriate level of optimization. To
achieve this, to each method m is given attribute indicating the computational load,
texc. The weight of the node is a monotonic function of the attributes: w′

m = f ′(texc)
By convention, the higher w′

m, the higher is the benefit due to an aggressive optimiza-
tion of m.

Note that the proposed general model may have different implementations, depend-
ing on: the definition of functions f and f ′; the way the function arguments are com-
puted. In the sequel, we present two model implementations, integrated in our DLA
compilation framework [7]. A naive one, where λ, the likelihood of invocation, is
dropped; δ is the order of appearance of a method into the bytecode and f(1

λ , δ) = δ. A
more refined implementation, where static branch prediction techniques [5] are used to
estimate the parameters λ, δ and the function f . For both models f ′ depends on hot-spot
detection and is defined as f ′(texc) = texc. Our implementation closely follows [5]. On
the set of benchmarks used in Section 4 the branch predictor achieves a missrate of 18%
comparable to the 20% declared in [5].

3 Dynamic Look Ahead Compilation

In this section, we focus on the DLA principle, presenting the application scenario and
analyzing the main problems: execution trace prediction and hot spot detection. Specific
choices concerning the definition of the main components of the model – functions and
parameters – are also discussed.

Figure 3 shows the control flow of a DLA system, composed of several threads
(shown as ovals) connected by queues and composing a compilation pipeline. First the
methods are pushed into a compilation queue and translated from bytecode (BC) to an
intermediate representation (IR). Then multiple threads, running onto multiple proces-
sors, optimize the IR methods and provide them for a final step of translation toward
native code. Native methods, when ready, are installed in memory and invoked when
needed. A method can be pushed for compilation in two cases: it is required for the
execution but it has never been compiled (dashed arc in figure); it is detected by the
DLA system as a method with high chances to be executed soon (bold arcs). The DLA
decision is taken in the first stage, where the DKSCG is updated with new weighted
nodes and the pipeline is supplied with new methods.

224 S. Campanoni et al.

IR−>IR

IR−>IR

IR−>IR

IR−>IR

BC−>IR

BC−>IR

DLA

DLA

IR−>Bin EX

Ram

invoke

Fig. 3. DLA in a Pipelined Compilation Framework: the framework shown takes as input byte-
code (BC) produced from source files, and uses an intermediate representation (IR) to per-
form machine independent optimization. The pipeline is based on a priority queue implemented
by pairs of FIFO queues. Priorities of individual methods can change on information discov-
ered at runtime. The execution goes through the trampoline if the called method has not been
compiled yet.

Two queues with different priority are shown in Figure 3. The low priority queue
contains those methods detected by the DLA engine as the most likely candidates for
execution in the near future. The high priority one contains the method that is presently
required for execution and the methods potentially invoked by it. Ideally, the high prior-
ity queue should always be empty, since all the invoked methods should be provided as
native code in advance. However, the prioritization mechanism is useful when – due to
wrong prediction or compilation delay – an invoked method has not yet been compiled
(thus it has to be enqueued with high priority or moved from low to the high priority
queue – method prioritization).

3.1 Applicative Scenario and Technique

DLA compilation is effective when the number of available processors is at least equal
to the number of threads dedicated to execution, compilation and optimization, to avoid
threads switching overhead. In this paper, for the sake of clarity, we focus on single
thread applications. Thus, only one processor is dedicated to the execution and the
remaining ones are exploited for compilation and optimization.

Let us consider the first invocation of a method in a typical JIT execution. The con-
trol flow jumps to a code fragment known as trampoline, which yields control to the
dynamic compiler. The dynamic compiler, in turn, generates (and possibly optimizes)
the native binary code, then replaces the trampoline with the address of the generated
binary. In the DLA compilation the dynamic compiler also prepares other methods for
parallel compilation. To this end, the compilation routine looks ahead into the portion
of the SCG seen by the method it is currently processing, i.e. composed of its children
methods. They are added to the DKSCG and, if they belong to the LAR, they are pushed
into the compilation queue, in an order depending on the underlying model. Concep-
tually, it is equivalent to an assignment of weights to the DKSCG arcs, in accordance
with the function presented in Section 2. The queue elements are consumed by one or
more compilation and optimization threads, running in parallel with the execution flow
and distributed over multiple processors. Each dequeued method is compiled and opti-
mized, making it ready for the execution as soon as possible. During its compilation,
the above process is iterated.

Dynamic Look Ahead Compilation: A Technique to Hide JIT Compilation Latencies 225

dequeue a method m

i = 0

 wait for methods

METHOD READy

i++

YES

NO

DLA COMPILATION
THREAD

YES

NO

i >= |C|

C[i] inpush C[i]

C = children(m)

LAR

Fig. 4. DLA compilation thread(s), shown as multiple boxes. Each of them wait for methods
in the compilation queue. When a method m is ready, it is dequeued and compiled. The set C
of its children is then computed, as shown by the third stage (shaded in light grey), where the
look ahead process is effectively performed. Elements of C belonging to the LAR and not yet
compiled are pushed into the compilation queue. The update of the DKSCG is not explicitly
shown in figure, as well as the pushing order is not highlighted.

If the DLA compilation is well tuned, the LAR is constantly updated, with the aim
of (i) compiling methods in advance; (ii) controlling the pressure on the compilation
queue. Figure 4 shows a DLA compilation thread in the large.

Summarizing, the DLA compilation tries to compile in advance (exploiting hardware
parallelism) those methods that will be useful in the near future. To make predictions
on the execution flow, compilation threads: (i) build and update the DKSCG; (ii) keep
information about the Dynamic Call Graph (DCG), the SCG subgraph of the methods
effectively executed; (iii) keep information about the execution trace, which is a lin-
earization of the DCG. Both the execution trace and the DCG need a tracing mechanism
(e.g. trampolines). In absence of this mechanism we observe a loss of information. (iv)
update the LAR, which both limits the pressure on the compilation queue and drives the
prediction. Figure 5 shows the relations between these concepts. Since a correct predic-
tion of the methods to compile in advance depends on the ability to trace the execution
flow, we devote the remaining part of this Section to it.

3.2 Execution Trace Prediction

The correct prediction of the execution flow is required to keep the Look Ahead Re-
gion (LAR) correctly updated. It needs two kinds of information: the DKSCG, built at
compile time, and the past execution trace, monitored at runtime.

The execution can be traced via code instrumentation, asynchronous call stack sam-
pling [10] or trampoline instrumentation. Code instrumentation – e.g. at each method
call – introduces an overhead, while asynchronous access to the call stack is required to
be thread-safe, and must thus stall the execution.

On the other hand, trampoline instrumentation reduces the cost of tracing, but can
lead to a loss of trace information since once a method is translated, its native address
replaces the trampoline. In DLA compilation, this effect is amplified by the early com-
pilation, which potentially replaces a large number of trampolines before their execu-
tion. This loss of information can be observed in Figure 5, which is highlighted by a

226 S. Campanoni et al.

SCG

known
 DCG

DKSCG

LAR

Fig. 5. Information exploited in DLA com-
pilation. The SCG, unknown at run time, is
the region bounded by dotted lines, while
bold lines mark the DKSCG. This graph
contains the DCG which is disconnected
since, in the absence of a full execution trac-
ing, this information is partial. The LAR is
shaded in light grey.

DLA
EXECUTION
REGIME

JIT
EXECUTION
REGIME

tr
am

p
o

lin
e

tr
am

p
o

lin
e

time

compilation delay

Fig. 6. DLA compilation falls into the worst ap-
plication scenario (JIT) each time a trampoline is
called

disconnected known-DCG. Figure 6 shows the working of the trampolines. The execu-
tion of trampoline code means that the system is invoking a method not yet compiled,
hence it is not working in an optimum DLA compilation regime due to bad execution
trace prediction. Figure 7 shows this case, where bold lines represent methods invoca-
tions, and dotted lines represent the DKSCG.

In Figure 8, a good prediction leads to the compilation of several methods, but also to
the loss of tracing information, as the removed trampolines cannot be exploited for ex-
ecution tracing. The bold line encloses the compiled methods, while the LAR is shown
in grey. The execution trace is represented by an arrowed line. This execution trace is
unknown, as it always passes through native methods, without invoking trampolines.
Moreover, since it enters into the LAR boundary, it is correctly predicted. But, due to

(a) (b) (c)
LAR LAR LAR

Fig. 7. Incorrect Execution Trace Prediction. (a) A method outside LAR is called through a tram-
poline. (b) LAR is updated, erroneously discarding two of the four children of the current method.
(c) A method outside LAR – thus surely not yet compiled when invoked – is called through a
trampoline.

Dynamic Look Ahead Compilation: A Technique to Hide JIT Compilation Latencies 227

(a) (b) (c)

LAR LAR LAR

Fig. 8. Correct prediction with loss of tracing information. (a) (Unknown) execution trace stays
inside the native methods region. (b) It enters into LAR, but the latter is not updated. (c) Tram-
poline call.

the loss of information, LAR is not updated (Figure 8.b) and the execution exits the
boundary (Figure 8.c), thus a trampoline is invoked.

When a trampoline is taken, the compilation overhead can be very large, since the
just invoked method must wait for the compilation of all methods in the compilation
queue. A two-queues prioritization mechanism can be used to reduce this delay, as
shown in the compilation framework of Figure 3. The invoked method is pushed into
the high priority queue. The LAR is updated, and methods in the low priority queue,
but not belonging to the new LAR, are dequeued.

Method Enqueueing Order. Each time the LAR is updated, all new methods belong-
ing to the compilation boundary are moved into the compilation queue. The enqueueing
order is driven by the prediction model, which takes into account the likelihood of ex-
ecution of each method in the next future. Static branch prediction techniques can help
in building an accurate model [19,9,5].

If enqueueing order differs from the invocation order, the compilation overhead can
be dramatic. If the executor invokes a method that is still into the compilation queue,
the execution stalls until the method is dequeued and compiled.

In our DLA implementation, we consider two kinds of methods enqueueing order.
The first is a simple FIFO ordering. The second exploits static branch prediction tech-
niques [5] to compute the likelihood of each invocation (by setting parameters λ and
δ of the model in Section 2). The LAR is updated on using a rough DKSCG distance
based criterion in the first case, while in the latter this criterion is coupled with the
likelihood of invocation. Section 4 provides an experimental evaluation, showing how
a fine tuned model can lead to a better prediction.

3.3 Hot-Spots Detection

The effectiveness of DLA compilation in the long run depends on the ability to generate
high quality native code for the application hot spots. The DLA compiler estimates
whether a method could be a hot spot before compiling it. It computes the node weight
w′ described by the model of Section 2. Specifically, the hot spot detection affects the
parameter texc, which measures the time complexity of a method. For this purpose, the
DLA compiler analyzes the method structure and the DKSCG.

The former provides clues on its run-time behavior, e.g indicators are number of
instructions, presence of computationally intensive loops. This information is partial,

228 S. Campanoni et al.

(b) COMPILING m1

m0

m1

public void m0(){

 for(....){

 m1()
 }

}

(a) COMPILING m0

m0

m1

m2 m3 m4 m5

120
89 3

15

Fig. 9. Static hot spot detection based both on
DKSCG and method structure. (a) While com-
piling m0, the DLA compiler discovers that it
calls m1 into a loop. m1 is added to the DKSCG
and marked as hot-spot. (b) While compiling
m1, the DLA compiler marks as hot spots also
its children that can be invoked through low
weighted arcs.

m0

m1

public void m0(){

 for(....){

 m1()
 }

}

COMPILATION ORDER: mz, m0, m1

mz

public void mz(){

 m1()

}

Fig. 10. Example of hot spot detection
failure

but can be enough for hot-spot detection. More detailed overviews of static method
time complexity evaluation can be found in [1,17]. For DKSCG contribution, consider
the scenario shown in Figure 9, where the hot-spot marking is propagated through the
DKSCG.

This approach, however, is not universally effective. Consider the example in Fig-
ure 10, where m1 can be called both by m0 and mz. In the latter case, the call is not
within a loop. If mz is compiled before m0, then m1 will not be marked as hot spot.
When hot spot detection fails, a recompilation mechanism can be exploited. When a
method is recognized as hot-spot it is pushed again into the compilation queue, even
though previously compiled. This approach is similar to what described in [14].

4 Experimental Results

To give a first evaluation of typical performance improvements achieved by the DLA
compilation we have considered two well known scientific benchsuite (JavaGrande
[16] and Scimark [20]) as target. The DLA technique has been implemented into our
dynamic compiler, called Intermediate Language Distributed Just In Time (ILDJIT) [7],
briefly described by Figure 3. It has three different working modes: AOT, JIT and DLA.
The target platform is an 8 processor Xeon at 2G-Hz, with 16GB of RAM and a 4MB
cache for each pair of processors.

To show the benefits due to DLA compilation w.r.t. the standard JIT compilation, we
have considered the ILDJIT JIT working mode as the baseline. We do not compare with
other JIT compilers such as Mono or the Microsoft .NET Framework, since the goal of
the experimental study is to evaluate the DLA technique rather than comparing different
JIT compilers. The results of an experiment using different JIT compilers would be
affected primarily by the differences in the quality of the generated code, thus making
it more difficult to understand the impact of the DLA technique. However the ILDJIT
compiler currently outperforms Mono with full optimization enabled by 3% on the set
of benchmarks considered in this work.

Dynamic Look Ahead Compilation: A Technique to Hide JIT Compilation Latencies 229

Table 1. DLA implementations

Name Model Priority queue Execution tracing
DLA1 M1 Yes Trampolines
DLA2 M2 Yes Trampolines
DLA3 M1 Yes Execution Stack Sampling
DLA4 M2 Yes Execution Stack Sampling

Table 2. Characterization of the full benchmarks in terms of methods defined, static call points
and number of method invocations performed at runtime

Benchmark Methods Call Method Benchmark Methods Call Method
defined Points invocations defined Points invocations

JGFArith 34 46 58 JGFFFT 58 1191 4191
JGFLoop 35 46 59 JGFSparseMatmult 54 1102 25094
JGFCast 34 46 58 JGFRayTracer 67 691 1678
JGFAssign 39 60 79 SciMarkSOR 47 2891 70267
JGFheapsort 54 67 35079 SciMarkMonteCarlo 45 4017 5600071

SciMarkLU 55 10849 71367

To show the impact of the different choices in the abstract model parametrization,
execution tracing technique, and prioritization of the compilation queues, we compare
four versions of the DLA technique, shown in Table 1. In all versions, aggressive opti-
mizations and hot-spot detection are used.

The two abstract models adopted use different definitions of the function f , which
controls the enqueueing order (see Section 2):

M1. A naive implementation, where λ is dropped, δ is the order of appearance of a
method in the parent body and f(1

λ , δ) = δ.
M2. A refined one, where λ and δ are estimated on the base of branch prediction anal-

ysis, as described in [5].

For both the models, a hot spot detector estimates the time complexity of the methods,
texc, and the DKSCG node is weighted as f ′(texc) = texc. Moreover, the LAR is
updated following a fixed distance criterion over the DKSCG. We call this distance,
the boundary. In model M2, this criterion is coupled with the information provided by
the branch prediction technique; in this case, a method belongs to the LAR only if its
distance is within the boundary and the branch prediction detects it as highly likely to
be invoked.

Table 2 reports a characterization of the Java Grande and SciMark benchmarks in
terms of methods defined and executed as well as of static call points. Since the DLA
technique tries to compile methods before their invocation, the effectiveness of the pre-
diction becomes more important when the number of invoked methods grows.

Table 3 reports the dynamic behavior of the different DLA approaches. The greater
effectiveness of a well tuned prediction model can be explained in terms of the num-
ber of prioritized methods and taken trampolines. The lower these measures, the more
precise the prediction of the execution flow. It means that the compilation threads are
effectively able to provide in advance many native methods effectively executed in the
near future.

230 S. Campanoni et al.

Table 3. Dynamic execution characterization of JIT and DLA techniques. JIT1 and JIT2 (both
reported as JIT) have the same behavior. AOT1 and AOT2 are neglected, since they have zeros
for each column.

Benchmark Compiler Methods Trampolines Methods Classes Benchmark Compiler Methods Trampolines Methods Classes
Technique translated taken prioritized analyzed Technique translated taken prioritized analyzed

JGFArith JIT 34 34 0 7 JGFSparseMatmult JIT 54 54 0 16
DLA1 48 43 14 15 DLA1 138 83 24 25
DLA2 45 6 1 7 DLA2 108 4 4 18
DLA3 47 43 31 14 DLA3 128 80 61 23
DLA4 45 5 0 7 DLA4 108 3 3 18

JGFLoop JIT 35 35 0 7 JGFRayTracer JIT 67 67 0 52
DLA1 55 37 13 13 DLA1 141 101 41 62
DLA2 45 3 1 7 DLA2 121 11 7 54
DLA3 49 37 29 12 DLA3 133 101 72 60
DLA4 45 2 0 7 DLA4 119 9 5 54

JGFCast JIT 34 34 0 7 SciMarkSOR JIT 47 47 0 13
DLA1 48 38 4 9 DLA1 69 51 13 17
DLA2 45 4 1 7 DLA2 56 3 1 14
DLA3 47 38 31 9 DLA3 66 51 42 16
DLA4 45 4 1 7 DLA4 55 2 0 14

JGFAssign JIT 39 39 0 13 SciMarkMonteCarlo JIT 45 45 0 12
DLA1 61 45 15 15 DLA1 69 46 10 18
DLA2 52 3 1 13 DLA2 53 3 1 13
DLA3 58 45 39 15 DLA3 66 46 37 17
DLA4 52 2 0 13 DLA4 53 2 0 13

JGFheapsort JIT 54 54 0 14 SciMarkLU JIT 55 55 0 12
DLA1 81 42 10 17 DLA1 81 51 25 16
DLA2 64 8 3 14 DLA2 62 4 1 13
DLA3 80 41 34 17 DLA3 78 51 43 16
DLA4 64 6 1 14 DLA4 62 3 0 13

JGFFFT JIT 58 58 0 18
DLA1 91 61 13 23
DLA2 74 9 4 20
DLA3 91 61 42 21
DLA4 72 7 2 20

Table 4 shows the execution time for several settings of the system. JIT and AOT
compilers are provided with and without optimizations, JIT1 and JIT2 (AOT, respec-
tively). Their performance are compared to DLA1, DLA2, DLA3 and DLA4. Three
main considerations arise. First, DLA2 is always faster than DLA1, as well as DLA4 is
faster than DLA3; this proves that a fine-tuning of the prediction model is significant for
making the DLA compilation effective. Second, the higher the number of different in-
vocable methods that make up the benchmark, the more important the execution tracing
becomes. For these benchmarks, execution tracing efficiently drives DLA compilation.
Hence, DLA3 and DLA4 translate fewer methods than DLA1 and DLA2. Finally, these
results show how DLA compilation is a successful technique, which effectively bridges
the gap between JIT and AOT compilation – often reaching an execution time close to
that obtained executing a statically compiled code.

The following experimental results describes the LAR boundary impact on the DLA
compilation, as well as the scaling of this technique w.r.t. the number of available CPUs.

Table 5 shows how more methods will be promoted for compilation in advance, when
the boundary increases. Increasing the boundary, DLA1 scales worse than DLA2. The
latter is able to determine – thanks to branch prediction – which methods are effectively
to be pushed for compilation, choosing them from the large number of methods within
the boundary. Moreover, execution tracing leads to a speedup when the benchmark has
a sufficient number of methods, introducing overheads otherwise. In fact DLA3 and
DLA4 outperform DLA1 and DLA2 only for JGFheapsort, JGFFFT, JGFSparseMat-
mult and JGFRayTracer.

Dynamic Look Ahead Compilation: A Technique to Hide JIT Compilation Latencies 231

Table 4. Java Grande and SciMark benchmarks: Execution time

Benchmark Metric JIT1 JIT2 AOT1 AOT2 DLA1 DLA2 DLA3 DLA4
JGFArith Total time 171.96 145.72 171.5 127.05 141.15 129.15 141.291 129.171

Machine code execution time 171.5 127.05 171.05 127.05 127.05 127.05 127.05 127.05
Compilation delay 0.46 18.67 0 0 14.1 2.1 14.241 2.121

JGFLoop Total time 6.774 5.211 6.136 3.644 4.454 4 4.462 4.003
Machine code execution time 6.136 3.644 6.136 3.644 3.644 3.644 3.644 3.644
Compilation delay 0.638 1.567 0 0 0.81 0.356 0.818 0.36

JGFCast Total time 21.302 17.159 21.256 14.62 15.938 15.53 15.952 15.539
Machine code execution time 21.256 14.62 21.256 14.62 14.62 14.62 14.62 14.62
Compilation delay 0.046 2.539 0 0 1.318 0.91 1.331 0.919

JGFAssign Total time 167.655 146.059 167.551 131.476 143.98 136.08 144.105 136.126
Machine code execution time 167.551 131.47 167.551 131.476 131.47 131.47 131.47 131.47
Compilation delay 0.104 14.589 0 0 12.51 4.61 12.635 4.656

JGFheapsort Total time 58.022 56.696 57.943 53.303 55.922 54.213 55.896 54.204
Machine code execution time 57.943 53.303 57.943 53.303 53.303 53.303 53.303 53.303
Compilation delay 0.079 3.393 0 0 2.619 0.91 2.593 0.901

JGFFFT Total time 66.561 61.671 65.294 54.983 59.032 56.943 58.951 56.904
Machine code execution time 65.294 54.983 65.294 54.983 54.983 54.983 54.983 54.983
Compilation delay 1.267 6.688 0 0 4.048 1.96 3.967 1.921

JGFSparseMatmult Total time 17.439 13.374 16.714 8.487 12.397 9.617 12.319 9.594
Machine code execution time 16.714 8.487 16.714 8.487 8.487 8.487 8.487 8.487
Compilation delay 0.725 4.887 0 0 3.91 1.13 3.832 1.107

JGFRayTracer Total time 51.91 45.535 50.981 28.62 37.53 31.23 37.263 31.152
Machine code execution time 50.981 28.62 50.981 28.62 28.62 28.62 28.62 28.62
Compilation delay 0.929 16.915 0 0 8.91 2.61 8.643 2.532

SciMarkSOR Total time 61.342 58.24 61.25 49.12 55.27 51.93 55.332 51.958
Machine code execution time 61.25 49.12 61.25 49.12 49.12 49.12 49.12 49.12
Compilation delay 0.092 9.12 0 0 6.15 2.81 6.212 2.838

SciMarkMonteCarlo Total time 39.3 23.303 39.25 16.222 20.601 18.322 20.645 18.343
Machine code execution time 39.25 16.222 39.25 16.222 16.222 16.222 16.222 16.222
Compilation delay 0.05 7.081 0 0 4.379 2.1 4.423 2.121

SciMarkLU Total time 31.131 23.13 31.1 18.92 22.73 20.04 23.061 20.051
Machine code execution time 31.1 18.92 31.1 18.92 18.92 18.92 18.92 18.92
Compilation delay 0.031 4.21 0 0 3.81 1.12 4.141 1.131

Finally, Table 6 provides a characterization of DLA approaches as a function of the
number of CPUs, taking into account DLA2 and DLA4 only. As expected, we can
see that the DLA technique is only effective when multiple CPUs are available, and
then only for benchmarks with a high number of methods. The performance scaling
is not linear, and the performance quickly converges to an asymptote, as the number
of CPUs needed to perform the compilation steps is limited by the number of meth-
ods to compile. Thus, the scaling is expected to become more pronounced for large
benchmarks, with many more methods. By the same token, we expected the difference

Table 5. DLA total execution time (in seconds) as a function of the maximum look-ahead distance
from the executing method (Boundary)

DLA1 Boundary DLA2 Boundary DLA3 Boundary DLA4 Boundary
Benchmark 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
JGFArith 141.15 144.15 143.966 143.941 143.941 140.56 137.15 135.46 129.15 129.15 141.291 144.321 144.135 144.11 144.11 140.695 137.251 135.544 129.171 129.171
JGFLoop 5 4.624 4.454 4.454 4.454 4.8 4.284 4 4 4 5.013 4.633 4.462 4.462 4.462 4.811 4.29 4.003 4.003 4.003
JGFCast 15.938 15.955 15.941 15.942 15.942 15.921 15.932 15.53 15.53 15.53 15.952 15.968 15.954 15.955 15.955 15.934 15.945 15.539 15.539 15.539
JGFAssign 145.59 145.28 143.98 145.62 145.62 141.78 138.62 136.08 136.08 136.08 145.731 145.418 144.105 145.762 145.762 141.883 138.692 136.126 136.126 136.126
JGFheapsort 55.922 56.696 56.684 56.513 56.543 55.922 55.915 55.821 54.613 54.213 55.896 56.662 56.65 56.481 56.511 55.896 55.889 55.796 54.6 54.204
JGFFFT 59.032 61.008 59.745 59.727 59.727 58.989 58.926 58.188 56.943 56.943 58.951 60.887 59.65 59.632 59.632 58.909 58.847 58.124 56.904 56.904
JGFSparseMatmult 13.197 12.637 12.497 12.397 12.397 13.167 12.497 11.697 9.637 9.617 13.103 12.554 12.417 12.319 12.319 13.073 12.417 11.633 9.614 9.594
JGFRayTracer 37.797 38.87 37.645 37.53 37.53 37.796 37.686 37.537 31.56 31.23 37.522 38.563 37.374 37.263 37.263 37.521 37.414 37.269 31.472 31.152
SciMarkSOR 58.13 55.27 57.22 56.94 56.94 57.24 52.24 51.93 51.93 51.93 58.22 55.332 57.301 57.018 57.018 57.321 52.271 51.958 51.958 51.958
SciMarkMonteCarlo 20.601 21.132 21.372 21.472 21.472 20.232 19.626 18.322 18.322 18.322 20.645 21.181 21.423 21.524 21.524 20.272 19.66 18.343 18.343 18.343
SciMarkLU 23.02 22.73 23.02 23.02 23.02 22.04 21.16 20.04 20.04 20.04 23.061 22.768 23.061 23.061 23.061 22.071 21.182 20.051 20.051 20.051

232 S. Campanoni et al.

Table 6. DLA characterization over the number of CPUs; results are in seconds and they are the
total execution time of the compiler

JIT CPUs DLA2 CPUs DLA4 CPUs
Benchmark 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
JGFArith 171.96 182.684 137.147 129.214 129.15 129.15 129.15 129.15 129.15 191.604 138.745 130.8 129.171 129.171 129.171 129.171 129.171
JGFLoop 6.774 7.257 4.247 4.002 4 4 4 4 4 9.817 4.503 4.317 4.003 4.003 4.003 4.003 4.003
JGFCast 21.302 22.744 16.492 15.538 15.53 15.53 15.53 15.53 15.53 28.254 17.744 16.55 15.539 15.539 15.539 15.539 15.539
JGFAssign 167.655 183.761 150.826 136.197 136.08 136.08 136.08 136.08 136.08 200.291 152.082 137.396 136.126 136.126 136.126 136.126 136.126
JGFheapsort 58.022 134.438 57.497 54.902 54.268 54.213 54.213 54.213 54.213 146.998 57.372 54.79 54.266 54.204 54.204 54.204 54.204
JGFFFT 66.561 171.745 62.374 57.168 56.944 56.943 56.943 56.943 56.943 190.275 62.123 57.047 56.904 56.904 56.904 56.904 56.904
JGFSparseMatmult 17.439 28.521 13.339 9.647 9.617 9.617 9.617 9.617 9.617 37.721 13.214 9.635 9.594 9.594 9.594 9.594 9.594
JGFRayTracer 51.91 161.373 50.607 40.803 37.476 36.851 35.915 34.353 31.23 174.688 49.351 39.878 37.376 36.839 35.894 33.432 31.152
SciMarkSOR 61.342 89.431 57.188 52.013 51.93 51.93 51.93 51.93 51.93 96.851 57.176 52.013 51.958 51.958 51.958 51.958 51.958
SciMarkMonteCarlo 39.3 42.28 20.875 18.342 18.322 18.322 18.322 18.322 18.322 45.53 20.851 18.343 18.343 18.343 18.343 18.343 18.343
SciMarkLU 31.131 35.797 23.142 20.065 20.04 20.04 20.04 20.04 20.04 37.953 23.127 20.065 20.051 20.051 20.051 20.051 20.051

between DLA2 and DLA4 to increase for larger benchmarks, as precision loss due to
execution stack tracing would have a greater impact on the DLA performance.

Due to space constraints, we omit discussion about the negligible memory overhead
due to DKSCG storage needed by the DLA compiler. We note, however, that the compu-
tation of DKSCG is performed using information that is required for the usual operation
of the dynamic compiler, thus not resulting in significant performance overhead.

5 Related Works

A wide survey of Just in Time (JIT) and Ahead of Time (AOT) compilation can be found
in [3] and [21].

Continuous Program Optimization [13] allows periodic code recompilation for
adapting it to different workloads. In BEA’s JRockit [6], methods are first compiled
without optimizations. A single thread is used both for compilation and execution,
while a parallel one samples the execution and triggers aggressive recompilation of
“hot” methods. While this paper focuses on the DLA technique itself, continuous op-
timization is just as easily implemented in a DLA compiler as in a traditional JIT. A
method that needs recompilation is treated as a new method by the DLA compiler.

Selective Compilation is used to minimize compilation overheads while still achiev-
ing the largest part of the beneficial effects of JIT compilation. The Sun Microsystems
Java HotSpot Virtual Machine [24] runs both an interpreter and a compiler, the latter
invoked on hot-spots [18]. In [1], an evaluation of several techniques for hot spot de-
tection is presented. The main difference between DLA and Selective Compilation is
that the former aims at predicting in advance which methods are hot spot and which
not, both hiding the compilation time and ensuring good quality binary code. More-
over, DLA compilation is based on prediction techniques that analyzes the static code
properties, even though they are applied dynamically; conversely, selective compilation
is mainly based on dynamic profiling, which requires code instrumentation. However,
the two techniques could be adapted to work together.

Adaptive Optimization merges Continuous Program Optimization and Selective
Compilation. A complete survey can be found in [2], while further considerations are
presented by Kulkarny et al. [15]. This approach exploits a dedicated thread to detect
hot spots and optimize them. The optimizer thread is run asynchronously w.r.t. the exe-
cution flow. In a multiprocessor environment, the optimization time can be masked.

Dynamic Look Ahead Compilation: A Technique to Hide JIT Compilation Latencies 233

Background Compilation [14] is directly related to DLA compilation. Optimization
is performed on dedicated hardware, on the base of an off-line profiling phase. If a
method still lies into the optimization queue at its invocation, lazy compilation is em-
ployed. This is the main difference w.r.t. DLA compilation. However, these techniques
could be coupled since DLA compilation is orthogonal w.r.t dynamic code profiling.
A more distantly related approach has been proposed in [12], involving the use of a
compilation thread to guarantee an upper bound to the occupation of processor by the
compiler by means of earliest deadline first scheduling.

Another work partially matching the DLA compilation is presented by Unnikrish-
nan et al. in [25]. Multiple threads on multiple processors re-compile and optimize in
advance those code portions with high chances to be executed soon or requiring further
improvements. The main difference w.r.t DLA compilation is that two kinds of run-time
information are required in this case: the sampling of the execution trace and the profil-
ing of properties such as time or energy consumption. Code instrumentation is needed
to collect this information, which would impact the performance. Moreover, a method
is only optimized after it has been invoked several times.

To be really effective, the DLA compilation has to follow a precise prediction model,
described in Section 2 and based on the assignment of merit factors to the vertices and
the arcs of a call-graph portion. These are computed in the Look Ahead phase on the
base of structural parameters. State of the art branch prediction techniques are described
in [19,9,5]. An approach for fast hot spot estimation/detection is reported in [1]; another
method-time-complexity evaluation can be found in [17]. Sophisticated techniques for
optimization profit estimation are described in [26] and [4].

Last but not least, some considerations on polymorphism in OO languages are
needed, since we claim that DLA compilation is most effective for those applications
characterized by large static and dynamic call graphs, in terms of number of methods.
These call graphs are typical of OO application, as also underlined in the DaCapo1

benchmark suite [11]. Polymorphism introduces an uncertainty in method naming,
thus making the run-time alias analysis a costly but effective optimization, as pointed
in [22,8]. On-line method versioning explicit the uncertain on the method to invoke
producing several versions of the same method.

6 Conclusions

We have introduced the DLA compilation technique, covering theoretical and practical
problems related to it and showing how DLA compilation can be a powerful technique
to reduce the impact of dynamic compilation time and to generate high quality native
code. Its effectiveness proves to be strictly related to the ability both to correctly predict
the execution flow and to apply the right set of optimizations to each code region. A
more precise matching of the DLA compiled methods set to the execution trace directly
results into a reduction of the compilation delay, while the optimization of the hot spots
should guarantee the execution of good quality code. On the Java Grande and SciMark
benchmark set (not a favourable one, since it has a reduced use of polymorphism) we
obtain an average speedup of 15%, and an average reduction of the overhead to less than

1 We do not take DaCapo benchmarks into consideration in the experimental evaluation because
ILDJIT does not support generics at this time.

234 S. Campanoni et al.

1% of the JIT compilation time. It is to be expected that the benefits of DLA compilation
will be higher for applications characterized by large call graphs, which are typical of
Object Oriented highly polymorphic applications. This will be investigated in the future.

References

1. Agosta, G., Crespi Reghizzi, S., Palumbo, P., Sykora, M.: Selective compilation via fast code
analysis and bytecode tracing. In: SAC 2006, pp. 906–911. ACM, New York (2006)

2. Arnold, M., Fink, S.J., Grove, D., Hind, M., Sweeney, P.F.: A Survey of Adaptive Optimiza-
tion in Virtual Machines. Proceedings of the IEEE 93(2), 449–466 (2005)

3. Aycock, J.: A Brief History of Just-In-Time. ACM Comp. Surveys 35(2), 97–113 (2003)
4. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler Transformations for High-Performance

Computing. ACM Computing Surveys 26(4), 345–420 (1994)
5. Ball, T., Larus, J.R.: Branch Prediction For Free. In: SIGPLAN Conference on Programming

Language Design and Implementation, pp. 300–313 (1993)
6. BEA JRockit: Java for the enterprise technical white paper (2006)
7. Campanoni, S., Agosta, G., Crespi Reghizzi, S.: A parallel dynamic compiler for CIL byte-

code. SIGPLAN Not. 43(4), 11–20 (2008)
8. Dean, J., Grove, D., Chambers, C.: Optimization of Object-Oriented Programs Using Static

Class Hierarchy Analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp. 77–101.
Springer, Heidelberg (1995)

9. Deitrich, B.L., Cheng, B.-C., Hwu, W.-M.W.: Improving Static Branch Prediction in a Com-
piler. In: IEEE PACT, pp. 214–221 (1998)

10. Dunlavey, M.: Performance tuning with instruction-level cost derived from call-stack sam-
pling. SIGPLAN Not. 42(8), 4–8 (2007)

11. Blackburn, S.M., et al.: The DaCapo benchmarks: java benchmarking development and anal-
ysis. In: OOPSLA, pp. 169–190 (2006)

12. Harris, T.: Controlling run-time compilation. In: Procedings of the IEEE Workshop on Pro-
gramming Languages for Real-Time Industrial Applications, pp. 75–84 (1998)

13. Kistler, T., Franz, M.: Continuous program optimization: A case study. ACM Trans. Program.
Lang. Syst. 25(4), 500–548 (2003)

14. Krintz, C.J., Grove, D., Sarkar, V., Calder, B.: Reducing the overhead of dynamic compila-
tion. Software Practice and Experience 31(8), 717–738 (2001)

15. Kulkarni, P., Arnold, M., Hind, M.: Dynamic compilation: the benefits of early investing. In:
VEE, pp. 94–104 (2007)

16. Mathew, J.A., Coddington, P.D., Hawick, K.A.: Analysis and development of Java Grande
benchmarks. In: JAVA 1999: Proceedings of the ACM 1999 conference on Java Grande, pp.
72–80. ACM Press, New York (1999)

17. Le Métayer, D.: ACE: an automatic complexity evaluator. ACM Trans. Program. Lang.
Syst. 10(2), 248–266 (1988)

18. Paleczny, M., Vick, C.A., Click, C.: The Java HotSpot Server Compiler. In: Java Virtual
Machine Research and Technology Symposium (2001)

19. Patterson, J.R.C.: Accurate Static Branch Prediction by Value Range Propagation. In: SIG-
PLAN Conf. on Programming Language Design and Implementation, pp. 67–78 (1995)

20. Pozo, R., Miller, B.: SciMark benchmark, http://math.nist.gov/scimark2
21. Proebsting, T.A., Townsend, G., Bridges, P., Hartman, J.H., Newsham, T., Watterson, S.A.:

Toba: Java For Applications, A Way Ahead of Time (WAT) Compiler. In: Proc. of the Third
Conference on Object-Oriented Technologies and Systems (June 1997)

22. Rayside, D.: Polymorphism is a Problem. In: Panel on Reverse Engineering and Architecture
(CSMR 2002) (March 2002)

http://math.nist.gov/scimark2

Dynamic Look Ahead Compilation: A Technique to Hide JIT Compilation Latencies 235

23. Shudo, K.: Performance comparison of java/.net runtimes (2005),
http://www.shudo.net/jit/perf

24. Sun Microsystems Java team. The Java HotSpot Virtual Machine, v1.4.1
25. Unnikrishnan, P., Kandemir, M., Li, F.: Reducing dynamic compilation overhead by over-

lapping compilation and execution. In: ASP-DAC 2006: Proceedings of the 2006 conference
on Asia South Pacific design automation, Piscataway, NJ, USA, pp. 929–934. IEEE, Los
Alamitos (2006)

26. Zhao, M., Childers, B.R., Soffa, M.L.: An approach toward profit-driven optimization. ACM
Trans. Archit. Code Optim. 3(3), 231–262 (2006)

http://www.shudo.net/jit/perf

Precise Management of Scratchpad Memories
for Localising Array Accesses in Scientific Codes

Armin Größlinger

University of Passau
Department of Informatics and Mathematics

Innstraße 33, 94032 Passau, Germany
armin.groesslinger@uni-passau.de

Abstract. Unlike desktop and server CPUs, special-purpose processors
found in embedded systems and on graphics cards often do not have a
cache memory which is managed automatically by hardware logic. In-
stead, they offer a so-called scratchpad memory which is fast like a cache
but, unlike a cache, has to be managed explicitly, i.e., the burden of its
efficient use is imposed on the software. We present a method for com-
puting precisely which memory cells are reused due to temporal locality
of a certain class of codes, namely codes which can be modelled in the
well-known polyhedron model. We present some examples demonstrat-
ing the effectiveness of our method for scientific codes.

Keywords: scratchpad memory, software-managed data cache, array lo-
calisation, polyhedron model, embedded systems.

1 Introduction

The success of parallelising an algorithm depends on two factors. First, the
computations must be arranged suitably to exploit the available computational
power efficiently. Second, data transport between the computing entities must
not spoil the efficiency of the execution by consuming a considerable amount
of the total execution time. With current architectures, several levels of data
storage are available: registers, caches, CPU-local main memory, main mem-
ory of remote CPUs, remote network storage. Due to the dramatic difference
in their performance, which is, for technical and economic reasons, reflected in
the smaller sizes of faster storages, the data accessed often must be kept in
the fastest memory. Program transformations which increase locality have been
widely studied (cf. Section 2). On special-purpose architectures like embedded
systems and graphics processors, fast cache memory is not managed automati-
cally by hardware but has to be managed explicitly by software. We aim at an
automatic explicit management of so-called scratchpad memories present in such
architectures.

Since we aim at full automation, the techniques are not applicable to arbitrary
programs. They must be loop nests with bounds linear in the surrounding loops

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 236–250, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Precise Management of Scratchpad Memories 237

for (t=0; t<=n; t++)

parfor (p=0; p<=n; p++)

A[t+p+1] = f(A[t+p+1]);

(a) original program

for (x=0; x<=n-1; x++)

L[x] = A[x+1];

for (t=0; t<=n; t++) {
L[n] = A[t+n+1];

parfor (p=0; p<=n; p++)

L[p] = f(L[p]);

A[t+1] = L[0];

syncparfor (x=1; x<=n; x++)

L[x-1] = L[x];

}
parfor (x=0; x<=n-1; x++)

A[n+x+2] = L[x];

(b) localised version

Fig. 1. Locality-improving transformation on a simple parallel program

and structure parameters containing bodies with array accesses with affine sub-
scripts, i.e., we are working with programs that are being studied in the context
of the polytope/polyhedron model [12,13,14].

As an example of the desired transformation, let us look at the example pro-
gram in Figure 1(a). It consists of an outer sequential time loop and an inner
parallel loop. Each iteration (t, p) updates an array element A[t+p+1]. Since ev-
ery time step t accesses array elements A[t+1], . . . , A[t+n+1], there is considerable
overlap in the array elements used in successive time steps, namely n elements.
For example, the first time step t = 0 accesses the elements A[1], . . . , A[n+1],
the second time step t = 1 accesses A[2], . . . , A[n+2] and uses A[2], . . . , A[n+1]
again. If the access of array A has high latency, i.e., it is not stored in the fastest
available memory, the execution of the program can be accelerated by keeping
the relevant parts of A in a faster memory. One possible way to achieve this
localisation is shown in Figure 1(b). The array L is assumed to be stored in fast
memory. In every iteration of the loop on t, the element A[t+n+1] of A, which
has not been accessed in the previous iteration, is brought into L at L[n]. After
the computation, L[0] is exported to A[t+1], because it is not needed in the
next iteration, and the elements of L are shifted inside L to bring them into the
right position for the next iteration. In addition, elements are moved to/from L
before and after the loop on t, respectively. Having to move all (but one) ele-
ments of L can be costly depending on the architecture. With memory local to
the computing cores (which may require only one cycle per memory access) the
overall positive effect of the transformation outweighs this additional cost. As
the syncparfor statement in the code shown suggests, this reorganisation can
be executed synchronously in parallel.

We propose a way of computing the array elements which have to be moved
into L before each time step, exported from L and reorganised in L after each
time step. The reorganisation step requires particular attention because, as can
be seen in the above example, it overwrites elements of L. Therefore, an in-situ
reuse of the same L requires an ordering of the overwriting operations that does
not destroy data elements before they have been copied.

238 A. Größlinger

This paper is organised as follows. After discussing related work in Section 2,
we sketch a few concepts of the polyhedron model in Section 3. We present our
technique of computing the desired information about the memory accesses in
Section 4. We show some examples in Section 5 before Section 6 concludes.

2 Related Work

Improving data locality by transforming a loop nest to obtain temporal or spa-
tial locality by reordering the loop iterations and/or changing the data layout
has long been a subject of study [19,10,5]. Earlier work relies on partitioning
program data [16]. Loop transformations have been used to partition the pro-
gram operations such that each partition’s accessed data fits into cache memory
[4] or to simplify the reuse pattern in order to store the reused data compactly
in scratchpad memory [11,9] if such a transformation is permitted by the depen-
dences. Later work [8] improves the situation by partitioning according to the
coefficients of the array index expressions, thus reducing the size of the blocks
stored in scratchpad memory considerably. Chen et. al [6] present a method to
minimise off-chip memory accesses by restructuring parallel code according to
data tiles to create temporal locality across processors.

Ehrhart polynomials have been used to compactly store only the elements of
an array used by the code after applying a transformation [7,15] or to compute
the number of accessed memory elements, cache misses, etc. [17].

For our technique to be effective, locality improving transformations described
in the previous work cited are desirable. Baskaran et al. [2] execute tiled loop
code on a graphics card with scratchpad memory. They approximate the local
data of a tile by a rectangular superset, load the respective data into scratchpad
memory before executing a tile and store it to global memory afterwards, but
they do not compute the used data set precisely nor do they try to retain reused
data in the scratchpad between tiles.

3 Prerequisites

3.1 The Polyhedron Model

Definition 1. An access is an array reference A[x] in a loop body. An instance
of an access is its execution for particular values of the variables of the surround-
ing loops.

Definition 2. A dependence is a relation between access instances which refer
to the same memory cell. An access instance a2 is said to depend directly on an
access instance a1, written a1 → a2, if both a1 and a2 access the same memory
cell, a2 is executed after a1 and there is no access a3 referring to the same mem-
ory cell executed between a1 and a2. A dependence is called an input dependence
if both access are reads, an output dependence if both accesses are writes, a flow
dependence if a1 writes and a2 reads, and an anti dependence if a1 reads and a2
writes. The array index referred to by an access a is denoted by accelem(a).

Precise Management of Scratchpad Memories 239

We require precise dependence information, i.e., there must not be dependences
which follow from other dependences by transitivity. Note that our definition of
dependences is a bit different from the usual, statement-based definition. With
our definition, there are two dependences in the statement

A[i] = A[i] + A[i] ,

namely an input dependence from one of the read accesses to the other (the
choice of the direction is arbitrary) and an anti dependence from the later read
access to the write access. With the usual definition, there are no dependences
inside one statement instance. We require this finer granularity of dependences
to capture that, in this example, all three accesses in the above statement refer
to the same memory cell and, hence, it is sufficient to fetch A[i] once from global
memory for both read accesses and that A[i] is immediately overwritten again,
so the fetched value must not be cached for following statements.

3.2 Z-Polyhedra

Definition 3. A Z-polyhedron Z ⊆ Z
m is the image of the integral points of

a polyhedron P ⊆ R
n under an integral affine mapping f : Z

n → Z
m, i.e.,

Z = {f(x) |x ∈ P ∩ Z
n}.

For example, the Z-polyhedron containing the even numbers can be defined by
P = R and f(x) = 2x.

Our main operation on Z-polyhedra is the counting of the integral points in a
(parametric) Z-polyhedron. There are algorithms [18] which compute, from the
description of a Z-polyhedron Z(p), a set of condition/quasi-polynomial pairs
(ci, ρi) such that the value ρi(p) of the quasi-polynomial ρi gives the number of
integral points in Z(p) if ci(p) holds. For example, the number of integral points
in the parametric Z-polyhedron Z(p, q) = {2 · i | 0 ≤ i ≤ min(p

2 , q) ∧ i ∈ Z} is
given by:

|Z(p, q)| =

⎧⎪⎨
⎪⎩

p
2 + [1, 1

2]p if 0 ≤ p ≤ 2q

q + 1 if p ≥ 2q ≥ 0
0 otherwise

Counting the integral points in a union of Z-polyhedra is possible, too, by com-
puting a disjoint union of the Z-polyhedra first.

4 Locality Transformation

We consider codes of the form shown in Figure 2, i.e., there is one outer sequential
loop on t enumerating the time steps of the program and there are zero, one, or
several sequential and/or parallel loops on i inside (which need not be perfectly
nested, even though the code fragment shown in the figure is). The computation
statements inside the loops on i contain accesses A[fj(i)] (1 ≤ j ≤ n) to an

240 A. Größlinger

for (t ∈ T) {
(par)for (i ∈ D(t)) { body with A[f1(i, t)], . . . , A[fn(i, t)] }

}

Fig. 2. Program to be transformed with one outer sequential time loop

array A. The transformation can be applied successively for several different
arrays, but we restrict our presentation to the case of a single array.

Each array access A[fj(i, t)] is part of a statement with an iteration domain
Dj(t), which depends on the point in time t, i.e., the access is executed for
every i ∈ Dj(t) for given t. To make our technique applicable, Dj(t) must
be a (parametric) Z-polyhedron. The aim of the proposed transformation is to
achieve that some or all array elements accessed at time t are loaded into the
local memory L of the compute node before the execution of the operations at
time t. This requires three questions to be answered:

1. Where (at which index) do we place elements to be stored in L?
2. Which elements are present at time t and which elements are loaded into

and which are removed from L before/during/after time t?
3. What happens to the elements in L between time t and time t+1?

Answers to these questions are given in the following sections. In Section 4.1,
we present how we map elements from A to L, assuming that we known already
which elements from A are to be mapped to L. Sections 4.2 and 4.3 present two
answers to the second question. Finally, we discuss answers to the third question
(applicable to both previous answers to Question 2) in Section 4.4.

4.1 The New Location of Array Elements

The local storage caches some elements of A at a given time to accelerate their
access. Let C(t) be the indices of the elements of A to be cached in L at time
t, i.e., x ∈ C(t) means that A[x] is available in L. We require C(t) to be a
Z-polyhedron.

We map the elements of A, which are present in L at a given time to L
such that L[0], L[1], . . . contain the cached elements of A in ascending order, i.e.,
if A[x1] and A[x2] are mapped to L[y1] and L[y2], respectively, then x1 < x2
implies y1 < y2. This way, we can determine the index of an element A[x] in L
by the number of elements y ∈ C(t) which precede x in lexicographic order. To
this end, we consider the union of parametric Z-polyhedra defined by

A≺(x, t) := {y |y ∈ C(t) ∧ y ≺ x} .

The number of integral points in A≺(x, t) is the number of array indices in C(t)
up to, but not including, x (at time t). Computing the number of integral points
in A≺(x, t) (cf. Section 3.2) yields a set {(c1, ρ1), . . . , (cq, ρq)} of conditions cj

on the parameters (including x and t) and quasi-polynomials ρj, where ρj(x, t)
evaluates to the number of integral points in A≺(x, t) if cj(x, t) holds. If we

Precise Management of Scratchpad Memories 241

combine the cj and ρj to a conditional expression ρ, which evaluates to ρj if cj

holds, then the location of an element A[x] in the local storage at time t is given
by L[ρ(x, t)] (provided that x ∈ C(t)).

By construction, we have the ordering property stated in the following lemma.

Lemma 1. Let t ∈ Z and x1, x2 ∈ C(t). Then x1 ≺ x2 ⇔ ρ(x1, t) < ρ(x2, t).

The total amount of local storage needed can be computed by counting C(t) and
maximising w.r.t to t.

4.2 Localisation Based on Access Instances

Localisation can be achieved without dependence information if we perform it
based on access instances only. The set of array elements accessed by an access
A[fj(i, t)], with iteration domain Dj(t) at time t, is given by the parametric Z-
polyhedron Cj(t) = {fj(i, t) | i ∈ Dj(t)}. The set of all array elements accessed
at time t is given by the union of the Cj(t). The most obvious choice of C(t) to
be stored in L is the set of exactly the elements accessed at a given time step,
but, since any superset represents a correct transformation, it is worthwhile
to add another degree of freedom. Often, we encounter algorithms which have
an alternating access pattern, for example, at even time steps one part of the
data is accessed and at odd time steps a different part of the data. With the
obvious choice of C(t), we would transform the program such that the contents
of L is replaced completely at every time step. Such situations are remedied by
introducing a localisation window, i.e., permitting the scope of elements kept in
L to be larger than the current time point. We describe the localisation window
by its width w (w ≥ 1) which denotes the number of successive time steps
considered part of the window. We now define C(t) by

C(t) :=
n⋃

j=1

w−1⋃
τ=0

Cj(t + τ) .

Note that w = 1 is the case in which C(t) contains only the elements accessed
at the current time t. From C(t), one can compute ρ(x, t) as described in Sec-
tion 4.1. Let us now address the question of data movement, i.e., which elements
to move in/out and around (within L) at a given time step. There are three
parts involved:

1. a “move in” phase which loads data not present in local storage before the
computation of the current time step,

2. a “move out” phase which removes data not need at the next time step from
local storage and saves it to the global memory,

3. a “reorganisation” phase between two successive time steps, in which the
data in local storage is reorganised such that the data retained in local
storage is in the correct location for the next computation.

242 A. Größlinger

The array elements relevant for each of these three phases are given by the
following sets:

I(t) := C(t) − C(t − 1), O(t) := C(t) − C(t + 1), G(t) := C(t) ∩ C(t + 1) .

I(t) contains the indices of elements used at t but not at t−1, i.e., the elements
to be moved to local storage for step t; O(t) contains the indices of elements
used only at t but not at t+1, i.e., the elements to be moved out after step t; and
G(t) contains the elements used at both t and t+1, i.e., the elements which must
remain in local storage and have to be reorganised between t and t+1. Each of
these three sets is a union of Z-polyhedra.

It is tempting to try to optimise the move-in and move-out sets by, for ex-
ample, moving out only the elements in O(t) that have actually been written to
at time t. But this “optimisation” is incorrect, since an element may have been
written several time steps before it is moved out (and may only have been read
in between). A correct and exact optimisation of data move in and out requires
dependence analysis techniques and is presented in Section 4.3.

During the reorganisation phase, care has to be taken not to overwrite data
which must still be moved before the next time step begins. A simple way to
avoid this problem is to use a second local storage to which the reorganised data
is written and swap the two storage areas after reorganisation. Using pointer
exchange for efficiency, this approach has little run-time overhead, but uses twice
as much local storage. This may be sufficient, but the amount of local storage
is often limited, e.g., in embedded devices. We present techniques for remedying
this drawback in Section 4.4.

for (t ∈ T) {
for (x ∈ I(t)) L1[ρ(x, t)] = A[x]; // move in

(par)for (i ∈ D(t)) { body with L1[ρ(fj(i, t))] instead of A[fj(i, t)] }
for (x ∈ O(t)) A[x] = L1[ρ(x, t)]; // move out

for (x ∈ G(t)) L2[ρ(x, t+1)] = L1[ρ(x, t)]; // reorg

swap(L1, L2);

}

Fig. 3. Preliminary localised code based on access instances with two local storages

A sketch of the code after the localising transformation is shown in Figure 3.
The array accesses A[fj(i, t)] in the body (cf. Figure 2) have been replaced
by L1[ρ(f(i, t))]. In Section 4.4, we show why a single area of local storage is
sufficient.

4.3 Localisation Based on Dependences

The access-based localisation of memory accesses presented in Section 4.2 is
simple in the sense that no dependence information is required by the localis-
ing transformation. On the other hand, this simplicity leads to overhead in the

Precise Management of Scratchpad Memories 243

data movement, for example by loading elements into local storage which are
never read but only written to. A dependence-based approach can remedy this
situation. Provided that an exact dependence analysis of the loop nest is avail-
able, we can mark each access as global or local. Whether to access global or
local memory depends on whether the desired value is present in local storage
or not. This way, there are no separate move-in and move-out statements which
precede and succeed the computation statements, respectively. Instead, they are
integrated into (or placed next to) the computations themselves.

Let R be the set of read access instances and W the set of write access
instances of the program. We write win(a1, a2) to denote that an access instance
a2 is inside the localisation window starting at a1, i.e., a2 is at most w time steps
after a1. We define global writes Wg and local writes Wl as follows:

Wg = {w ∈ W | ¬(∃w′ : w′∈W : w
out−−→ w′ ∧ win(w, w′)

)}
Wl = {w ∈ W | (∃r : r∈R : w

flow−−→ r ∧ win(w, r)
)}

A write is global if the value is not overwritten inside the localisation window. A
write is local if the value is read later inside the localisation window. Note that, by
this definition, there can be a write that is global and local. This happens when
the value is not overwritten in the localisation window and, therefore, has to be
written to global memory at some point (and we choose to do it immediately),
but it is read again later, so we also keep the value in local memory. It is also
possible for a write to be neither global nor local; this means that the value
will be overwritten and not read in between and, hence, we can drop the write
entirely.

Reads have to be partitioned into three groups. A read is local (Rl) if the
value accessed is present in local storage because it has been read or written to
earlier in the localisation window. A read is global (Rg) if no prior access in the
localisation window has been made and no later access will be made. A read is
from global memory with a successive store to local memory (Rgl) if no prior
access has been made but, later in the localisation window, the value will be
read again.

Rl = {r ∈ R | (∃w : w∈W : w
flow−−→ r ∧ win(w, r)

) ∨(∃r′ : r′∈R : r′ in−→ r ∧ win(r′, r)
)}

Rg = {r ∈ R | ¬(∃r′ : r′∈R : r
in−→ r′ ∧ win(r, r′)

)} −Rl

Rgl = {r ∈ R | (∃r′ : r′∈R : r
in−→ r′ ∧ win(r, r′)

)} −Rl

The elements that are present in local storage are given by

C(t) = {accelem(a) | a ∈ Rl ∪Rgl ∪Wl, t ≤ time(a) ≤ t + w} .

From C(t) we can again compute ρ(x, t) (cf. Section 4.1), which gives the location
of an element A[x] in L at a given time t. The reorganisation of L between time
steps is described by the set G(t) = C(t) ∩ C(t + 1) as in Section 4.2.

244 A. Größlinger

There is one detail we have to consider with this approach. Scheduling a
parallel program usually does not impose restrictions on input dependences.
This allows the case that an input dependence r1

in−→ r2 with r1 ∈ Rgl is not
carried by a sequential loop and r1 and r2 reside on different processors. In
this case, it is possible that the read from global memory and the following
write to the local memory cell for r1 are, in fact, executed after r2, which is
supposed to read the same value as r1 from local memory, because the ordering of
operations between the two involved processors in not determined. To guarantee
correct execution of transformed programs we have either to require that input
dependences respect the same restrictions as the other dependence types or we
have to emit a barrier synchronisation statement which makes sure the write to
local memory at r1 is executed before the read from local memory at r2. In the
examples we present in Section 5, we choose to introduce synchronisations when
needed as synchronisation is rather cheap on the platform we use.

4.4 Ordering the Reorganisation

As has been outlined in Section 4.2, a straight-forward implementation of the
reorganisation phase requires two areas of local storage to avoid overwriting
elements which have not been moved, yet. We will now prove that a single
storage area is sufficient, i.e., the reorganisation can always be performed in-
situ by adhering to a certain order in the intra-storage element moves. The key
observation is that, if an element L[y1] has to be moved to L[y2] (y1 �= y2) and
L[y2] has in turn to be moved to L[y3], then y2 �= y3 and L[y1] and L[y2] move
in the same direction, i.e., y1 < y2 ⇔ y2 < y3.

Definition 4. Let t ∈ Z and x ∈ G(t). The drift δ(x, t) of the element L[ρ(x, t)]
is defined as δ(x, t) := ρ(x, t+1)−ρ(x, t). We say that L[ρ(x, t)] moves forward,
if δ(x, t) > 0, and backward if δ(x, t) < 0.

We now present the key idea introduced above formally and prove that, if an
element moves from L[y1] to L[y2], the contents of L[y2] moves in the same
direction as the contents of L[y1] (provided that L[y2] moves at all).

Proposition 1. Let t ∈ Z and x1, x2 ∈ G(t) such that ρ(x1, t + 1) = ρ(x2, t).
This validates the following two implications:

δ(x1, t) > 0 ⇒ δ(x2, t) > 0
δ(x1, t) < 0 ⇒ δ(x2, t) < 0

Proof. Let t, x1, x2 be as stated and δ(x1, t) > 0, i.e., ρ(x1, t + 1) > ρ(x1, t).
Since ρ(x1, t + 1) = ρ(x2, t) and x1, x2 ∈ C(t), this implies (by Lemma 1)
that x1 ≺ x2. Again by Lemma 1 and since x1, x2 ∈ C(t + 1), this implies
ρ(x1, t+1) < ρ(x2, t+1) and, because of ρ(x1, t+1) = ρ(x2, t), we get δ(x2, t) >
0. Analogous reasoning applies to the second case with < 0 instead of > 0.

From this proposition, a way to reorganise local storage in-situ is quite obvious.

Precise Management of Scratchpad Memories 245

Corollary 1. The reordering of elements in local storage L at the end of time
step t can be achieved in-situ by a two-pass sweep over L.

The in-situ reorganisation works by scanning G(t) once in ascending lexico-
graphic order and once in descending lexicographic order. In the ascending pass,
it is guaranteed that, if δ(x, t) < 0 holds for an x ∈ G(t) scanned, then its value
(which corresponds to A[x]) can safely be moved from L[ρ(x, t)] to L[ρ(x, t+1)],
since the target entry in L is either empty (because it contained an element from
A which is not used at time step t) or it has been moved already, because its drift
is negative, too. The descending scan, in turn, can safely move all the elements
with a positive drift.

Modulo Addressing. In the very regular cases that the drift is identical for all
elements of local storage, there exists an alternative to moving the data around.
We can change the addressing of the local storage to accomplish the same effect.
Accesses L[ρ(x, t)] are replaced by L[(ρ(x, t) + o) mod s], where s is the size of
the local storage and o is an offset which is initialised to 0 and incremented by
−δ(t) at the end of every time step.

This round-robin addressing achieves the same effect as continuous movement
by δ(t). It is, of course, costly. It depends on the architecture whether moving the
data or paying additional addressing costs is more efficient. If δ(t) is constant,
i.e., independent of t, the increment to o is the same in each iteration of the loop
on t and the costly modulo operation may be replaced by less costly constructs
like a conditional increment-or-zero.

4.5 Code Generation Considerations

Since the iteration domains of the computation statements and the move in,
move out, and reorganisation statements are Z-polyhedra, we can use a polyhe-
dral code generator like CLooG [3] to generate the transformed code. To obtain
efficient code, we have to take care of the conditionals contained in the new
access functions L[ρ(. . .)]. In general, ρ is a case distinction on several condi-
tions c1, . . . , cq. To avoid evaluating the conditions at every access, we split the
iteration domain D of the statement by the conditions, i.e., we replace D by
Di := {x |x ∈ D, ci(x)}. This increases the number of iteration domains, but in
each Di no conditional has to evaluated in the access function.

At present, we have an implemented prototype of the localisation based on
access instances. We have used this prototype to compute the examples presented
in Section 5; the examples for the localisation based on dependences have been
derived by hand from the localisation based on access instances.

5 Examples

Let us now present some examples demonstrating the effectiveness of our trans-
formation. In order not to bother the reader with long, complicated code re-
sulting from the transformation, we show shortened versions of the code which

246 A. Größlinger

illustrate the transformation but may be less efficient w.r.t. control flow than
the codes used in the benchmarks.

The parallel benchmarks have been performed on an NVIDIA graphics card
with a GTX9800 GPU, a 1944 MHz shader clock and a 1150 MHz memory clock.
The programming environment is NVIDIA’s CUDA technology [1]. The graph-
ics card consists of 16 streaming multi-processors. Each multi-processor executes
one instruction of 32 threads in 4 clock cycles provided that all 32 threads (called
a warp) take the same execution path. When the threads of a warp diverge, i.e.,
take different execution paths, their execution is sequential. A multiprocessor
has 16 KB of local memory which can be accessed within one clock cycle simul-
taneously by the threads of a warp provided that some alignment restrictions
are obeyed. Access to main memory is much slower, but the thread scheduler
in a multiprocessor tries to hide memory latency by overlapping computation
and memory access. Therefore, the higher latency of the main memory can be
hidden partly if enough threads are available. Our experiments use only one mul-
tiprocessor at a time since there is no way to share scratchpad memory between
multiprocessors.

Example 1 (1d-SOR). As an example of a scientific code, let us look at one-
dimensional successive over-relaxation (1d-SOR). The code of a sequential im-
plementation is given in Figure 4(a). 1d-SOR scans the elements of an array A
repeatedly and replaces every element A[i] by the average of its two neighbours.
A parallel version of the code is shown in Figure 5(a). Notice the synchronous
parallelism expressed by the parallel loop on p inside the sequential loop on t.
Before we apply our techniques to the parallel code, we briefly note that the
sequential code can be improved slightly using the localisation transformation.
We also use this example to compare the localisation based on access instances
and on dependences.

Localisation based on access instances. Considering the loop on i in the
sequential code as the time loop, we obtain C(i) = {i− 1, i, i+ 1}, i.e., at time i
the accessed elements are A[i−1], A[i], and A[i+1]. This yields ρ(x, i) = x−i+1,
i.e., A[i− 1] is mapped to L[0], A[i] to L[1], and A[i + 1] to L[2]. Since the drift
δ(x, i) = ρ(x, i + 1)− ρ(x, i) is constantly −1, we obtain the simple transformed
code shown in Figure 4(b). Since the indices into L are fixed at 0, 1, 2, the array
L can be replaced by three local variables for the array elements.

Localisation based on dependences. Localisation based on dependences
takes into account which elements are reused, i.e., which are read again after

Table 1. 1d-SOR: benchmark for sequential codes for n = 106 on AMD Opteron
2.2 GHz with GCC 4.2, runtimes in milliseconds

m = 128 256 384 512
original 1095 2168 3111 4139
localised 723 1595 2150 2865
speed-up 1.52 1.36 1.45 1.44

Precise Management of Scratchpad Memories 247

Table 2. 1d-SOR: benchmark for parallel codes, n = 106 on GPU, number of threads
equal to m, runtimes in milliseconds. “X” means code could not be executed due to
too many divergent threads.

m = 1 32 64 128 192 256 320 384 448 512
parallel code 381 511 709 1089 1456 1759 2135 2416 2807 3082
intra-thread localised – 433 545 758 964 1125 1322 1515 1766 2019
inter-thread localised – 529 525 539 587 652 684 784 856 1002
fully localised with moves – 509 504 518 559 611 647 735 800 X

fully localised with modulo addr. – 577 498 534 621 710 789 905 X X

having been read or written. In this example, this reveals that the write to A[i] is
local, since it is reused at the next time step, and global, since it is not overwritten
later. A[i−1] is in the local read set for i ≥ 2. It is in the global read set for i = 1
since no input dependence to A[i − 1] for i = 1 exists. Since there is no relevant
input dependence, the global-local read set Rgl is empty. The code obtained (we
again exploit the fact that the indices into L turn out to be constants) is shown
in Figure 4(c). A polyhedral code generator can unroll the first iteration of the
loop on i to avoid the conditionals i = 1 and i ≥ 2; additionally, traditional
compiler data flow analysis reveals that l0 and l1 can be stored in the same
memory cell l (likely a register), thereby saving the reorganisation. The resulting
code is shown in Figure 4(d). Running the sequential code and the transformed
code on an AMD Opteron machine yields the runtimes shown in Table 1. The

for (k=1; k<=m; k++)

for (i=1; i<=n-1; i++)

A[i] = (A[i-1]+A[i+1])*0.5;

(a) original code

for (k=1; k<=m; k++) {
l0 = A[0]; // move in

for (i=1; i<=n-1; i++) {
l2 = A[i+1]; // move in

l1 = (l0 + l2) * 0.5;

A[i-1] = l0; // move out

l0 = l1; // reorganise

}
A[n-1]=l0; A[n]=l1; // move out

}
(b) access-based localisation

for (k=1; k<=m; k++) {
for (i=1; i<=n-1; i++) {
(i==1 ? l0:l1) = A[i] =

((i==1 ? A[i-1] : l0)

+ A[i+1]) * 0.5;

if (i >= 2) l0 = l1;

}
}
(c) dependence-based localisation

for (k=1; k<=m; k++) {
l = (A[0]+A[2])*0.5;

for (i=2; i<=n-1; i++)

l = A[i] = (l+A[i+1])*0.5;

}
(d) dependence-based localisation with
loop optimisations

Fig. 4. One-dimensional successive over-relaxation: sequential codes

248 A. Größlinger

for (t=0; t<=n+2*m-4; t++) {
parfor (p=max(0,(t-n+3)/2); p<=min(m-1,t/2); p++) {
int i = t+1-2*p;

A[i] = (A[i-1] + A[i+1]) * 0.5;

}
}

(a) parallel code

(b) iteration domain for m = 4, n = 16

Fig. 5. One-dimensional successive over-relaxation: parallel version

transformed code runs faster because localisation and traditional optimisation
techniques together save one of the three accesses to array A.

The parallel code is shown in Figure 5(a) and depicted in Figure 5(b). Note
that the number of parallel threads that can be used equals the parameter m.
We can localise twice. First, we can do localisation for each thread of the inner
parallel loop w.r.t. the loop on t, i.e., exploit the intra-thread reuse of data
(similar to the localisation of the sequential code). We find by the dependence-
based localisation that the value written by A[i] in iteration t is read again by
A[i − 1] in the iteration t + 1 in the same thread.

The second localisation is again w.r.t the loop on t for all threads, i.e., to
exploit inter-thread data reuse, too. With all m threads active, 2m+1 array
elements are accessed in one iteration of the t loop and there is an overlap of
2m−1 elements to the next iteration. The code resulting from this transformation
with about 60 lines of code is not shown for lack of space. Table 2 shows the
runtimes of the unlocalised and the localised codes. As can be seen, the fully
localised code (both localisations applied) performs best with speedups up to 3.5;
explicit data moves in the reorganisation phase outperform modulo addressing.
On a GPU with slower main memory (NVIDIA Quadro NVS 135m, 800 MHz
shader clock, 600 MHz memory clock), we observed speedups up to 4.7.

Example 2 (2d-Gauss-Seidel). Let us now consider a two-dimensional Gauss-
Seidel algorithm with row-wise alternating even-odd updates on an (n+1)2 matrix

Table 3. 2d-Gauss-Seidel: runtimes in seconds for m = 1000, n = 2p + 1 on GPU

p = 64 128 192 256 320 384
parallel code 0.29 0.99 2.10 3.54 5.42 8.03
fully localised parallel code with moves 0.30 0.74 1.42 2.18 3.10 4.21
speedup 0.99 1.35 1.48 1.62 1.75 1.91

Precise Management of Scratchpad Memories 249

with m iterations and p parallel threads. The localisation based on dependences
is performed with a localisation window encompassing both the updates to even
and odd elements of a row. The localised part of the matrix consists of two
successive rows progressing row by row with the computation. The comparison
of the runtimes of the original and localised codes is shown in Table 3.

6 Conclusions

By way of precise data dependence information we are able to compute pre-
cisely which data items to copy to fast memory (e.g., scratchpad memory) to
exploit temporal locality. We determine exactly when to copy a value to fast
memory, when to copy an updated value back to main memory and when to
relocate a value in fast memory. Our technique is applicable to all codes which
can be modelled in the polyhedron model, i.e., loop programs with bounds and
array index expressions linear in the variables and structure parameters. Since
the data held in fast storage is stored in a compact fashion without holes, the
access functions can be complex (piecewise conditional quasi-polynomials), but
our experiments suggest that, by using advanced code generation techniques,
the overhead can be eliminated by partitioning the iteration domains according
to the conditions in the new access functions. In our experiments on a GPU,
we observed accelerations of factors up to 3.5 compared to parallel code which
uses main memory only. If no dependence information is available, a simpler
transformation based on access instances which may move more elements to fast
storage than necessary can be applied.

References

1. NVIDIA CUDA. http://www.nvidia.com/cuda
2. Baskaran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev,

A., Sadayappan, P.: Automatic data movement and computation mapping for
multi-level parallel architectures with explicitly managed memories. In: PPoPP
2008: Proc. of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 1–10. ACM Press, New York (2008)

3. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 2004: Proc. of the 13th Int. Conf. on Parallel Architectures and Compilation
Techniques, Washington, DC, USA, pp. 7–16. IEEE Computer Society Press, Los
Alamitos (2004)

4. Bastoul, C., Feautrier, P.: Improving data locality by chunking. In: Hedin, G. (ed.)
CC 2003. LNCS, vol. 2622, pp. 320–335. Springer, Heidelberg (2003)

5. Bondhugula, U., Baskaran, M.M., Krishnamoorthy, S., Ramanujam, J., Rountev,
A., Sadayappan, P.: Automatic transformations for communication-minimized par-
allelization and locality optimization in the polyhedral model. In: Hendren, L. (ed.)
CC 2008. LNCS, vol. 4959, pp. 132–146. Springer, Heidelberg (2008)

6. Chen, G., Kandemir, M.: Compiler-directed code restructuring for improving
performance of MPSoCs. IEEE Transactions on Parallel and Distributed Sys-
tems 19(9), 1201–1214 (2008)

http://www.nvidia.com/cuda

250 A. Größlinger

7. Clauss, P., Meister, B.: Automatic memory layout transformations to optimize spa-
tial locality in parameterized loop nests. In: 4th Annual Workshop on Interaction
between Compilers and Computer Architectures, INTERACT-4, Toulouse, France
(January 2000)

8. Issenin, I., Brockmeyer, E., Miranda, M., Dutt, N.: Data reuse analysis technique
for software-controlled memory hierarchies. In: DATE 2004: Proc. of the Conf.
on Design, Automation and Test in Europe, Washington, DC, USA, pp. 202–207.
IEEE Computer Society Press, Los Alamitos (2004)

9. Kandemir, M., Choudhary, A.: Compiler-directed scratch pad memory hierarchy
design and management. In: DAC 2002: Proc. of the 39th Conf. on Design Au-
tomation, pp. 628–633. ACM Press, New York (2002)

10. Kandemir, M., Ramanujam, J., Choudhary, A.: A compiler algorithm for optimiz-
ing locality in loop nests. In: Proc. of the 11th Int. Conf. on Supercomputing (ICS),
July 1997, pp. 269–276 (1997)

11. Kandemir, M., Ramanujam, J., Irwin, J., Vijaykrishnan, N., Kadayif, I., Parikh,
A.: Dynamic management of scratch-pad memory space. In: DAC 2001: Proc. of
the 38th Conf. on Design Automation, pp. 690–695. ACM, New York (2001)

12. Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for
uniform recurrence equations. Journal of the ACM 14(3), 563–590 (1967)

13. Lamport, L.: The parallel execution of DO loops. Communications of the
ACM 17(2), 83–93 (1974)

14. Lengauer, C.: Loop parallelization in the polytope model. In: Best, E. (ed.) CON-
CUR 1993. LNCS, vol. 715, pp. 398–416. Springer, Heidelberg (1993)

15. Loechner, V., Meister, B., Clauss, P.: Precise data locality optimization of nested
loops. J. Supercomput. 21(1), 37–76 (2002)

16. Panda, P.R., Dutt, N.D., Nicolau, A.: Efficient utilization of scratch-pad memory
in embedded processor applications. In: EDTC 1997: Proc. of the 1997 European
Conf. on Design and Test, Washington, DC, USA, p. 7. IEEE Computer Society
Press, Los Alamitos (1997)

17. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Analytical
computation of ehrhart polynomials: Enabling more compiler analyses and opti-
mizations. In: Irwin, M.J., Zhao, W., Lavagno, L., Mahlke, S. (eds.) Proc. of the
2004 Int. Conf. on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES), Washington DC, USA, pp. 248–258. ACM Press, New York (2004)

18. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting
integer points in parametric polytopes using Barvinok’s rational functions. Algo-
rithmica 48(1), 37–66 (2007)

19. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: PLDI 1991: Proc.
of the ACM SIGPLAN 1991 Conf. on Programming Language Design and Imple-
mentation, pp. 30–44. ACM Press, New York (1991)

Blind Optimization for Exploiting Hardware
Features

Dan Knights, Todd Mytkowicz, Peter F. Sweeney,
Michael C. Mozer, and Amer Diwan�

Department of Computer Science
University of Colorado, Boulder

Abstract. Software systems typically exploit only a small fraction of the
realizable performance from the underlying microprocessors. While there
has been much work on hardware-aware optimizations, two factors limit
their benefit. First, microprocessors are so complex that it is unlikely
that even an aggressively optimizing compiler will be able to satisfy all
the constraints necessary to obtain the best performance. Thus, most
optimizations use a simplified model of the hardware (e.g., they may
be cache-aware but they may ignore other hardware structures, such as
TLBs, etc.). Second, hardware manufacturers do not reveal all details of
their microprocessors so even if the authors of optimizations wanted to
simultaneously optimize for all components of the hardware, they may
be unable to do so because they are working with limited knowledge.
This paper presents and evaluates our blind optimization approach which
provides a way to get around these issues.

Blind optimization uses the insight that we can generate many vari-
ants of an application by altering semantic preserving parameters of an
application; for example our variants can cover the space of code and
data layout by shifting the positions of code and data in memory. Our
optimization strategy attempts to find a variant that performs well with
respect to an optimization objective. We show that even our first imple-
mentation of blind optimization speeds up a number of programs from
the SPECint 2006 benchmark suite.

1 Introduction

Computer systems rarely exploit the underlying hardware to its fullest poten-
tial. For example, even though many microprocessors can execute 4 or more
instructions per cycle per core, it is rare for applications to execute more than 1
instruction per cycle even for brief periods [10] of time. Thus, there is an enor-
mous potential for improving performance: in theory, at least, we should be able
� This work is supported by NSF CSE-0509521, NSF ITR grant CCR-0085792, NSF

grant ST-CRTS 0540997, and the Defense Advanced Research Projects Agency under
its Agreement No. HR0011-07-9-0002. Any opinions, findings and conclusions or
recommendations expressed in this material are the authors’ and do not necessarily
reflect those of the sponsors.

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 251–265, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

252 D. Knights et al.

to obtain multi-fold speedup for many applications without counting on any ad-
vances from hardware. Unfortunately, this potential is not easy to realize: modern
microprocessors are incredibly complex and worse, hardware manufacturers do
not reveal full details of their hardware. As a consequence even if compiler writ-
ers were extremely knowledgeable about microprocessors in general, they would
not be able to fully exploit any particular microprocessor because they do not
know all the details of that microprocessor.

For example, code layout affects how the code ends up in the many different
hardware structures inside a microprocessor. These hardware structures include
instruction queues, L1 instruction cache, L2 cache, instruction TLB, buffers for
issuing prefetches, buffers for predicting branches, etc. Given this plethora of
hardware structures, even if we knew exactly how they all worked (which we
usually do not), it would require tremendous effort to implement an optimization
that lays out the program code so that it interacts well with all of them. To
address such situations, this paper proposes and evaluates blind optimization, a
new model for compiler optimizations.

The key insight behind blind optimization is that an optimization can be
ignorant of—or “blind” to—the details of the hardware architecture and yet still
offer significant performance improvements. Understanding why the performance
has improved is not essential, as long as the improvement is significant and
reproducible. In contrast, existing compiler optimizations are “knowledge-based”
because they exploit domain knowledge of the underlying machine.

To specify an instance of blind optimization, we specify three elements: an
optimization objective, the space of program variants, and an optimization strat-
egy. The optimization objective is the metric that we wish to optimize (e.g., run
time of the program). The space of program variants is an n-dimensional space in
which each point is a variant of the program being optimized. We pick the dimen-
sions so that they only affect the optimization objective and not the program’s
correctness. The optimization strategy explores the variant space in an attempt
to identify a variant that has the best optimization objective. Thus, with blind
optimization we can find a variant that performs well without knowing why it
performs well. This is why these optimizations are “blind”.

This paper makes two main contributions. First, this paper introduces the con-
cept of blind optimization and discusses how one can implement them. Second,
this paper demonstrates that one blind optimization, improving code and global
data layout, improves the performance of several programs from the SPECint
2006 suite with a maximum speedup of over 12% and an average speedup of
1.58%.

2 Motivation

Predicting the performance of a program run is nearly hopeless because it re-
quires us to correctly answer numerous questions. Should we assume that a load
will hit in the L1 cache, L2 cache, or L3 cache? Should we assume that an in-
struction reference will hit in the L1 cache, L2 cache, or L3 cache? Should we

Blind Optimization for Exploiting Hardware Features 253

assume that the load or next instruction’s address is going to hit in the TLB and
if not which level of the hierarchical page table will it hit on? Will the branch
predictor correctly predict a particular branch? Will we even need to access the
branch predictor for a particular branch or will the loop-stream detector avoid
that access? These and many other factors determine the overall performance
of a program. Given that hardware manufacturers do not reveal all information
about their microprocessors some of these questions may be unanswerable.

The difficulty of accurately predicting performance does not bode well for
compiler optimizations. To effectively optimize a program, an optimization must
predict, using predictive heuristics, how code will interact with hardware struc-
tures. Because predicting performance is so hard, most predictive heuristics are
simple (e.g., they consider the L1 caches but ignore other aspects of the memory
hierarchy) and attempt to be a best-guess; others, e.g., Triantafyllis et al. [24],
have written about the difficulty of coming up with reasonable heuristics. Per-
haps, for this reason, it is not surprising that most compiler optimizations offer
only modest benefit [13].

For the above reasons, this paper proposes and evaluates blind optimizations,
a new technique that does not rely on predictive heuristics.

3 Approach

To specify an instance of blind optimization, we need to specify three elements:
the space of program variants, an optimization objective, and an optimization
strategy (Figure 1). Intuitively, our approach uses the insight that a program
has variants that are behaviorally equivalent but differ in their performance with
respect to the optimization objective, e.g., execution time. The optimization
strategy navigates this space in an attempt to identify the best variant. This
section describes our approach abstractly and Section 4 gives a concrete example
of our approach.

Variant SpaceVariant Space

Program

Inputs

Optimization
Objective

Optimization
Strategy

Optimized
Program

Fig. 1. The blind optimization approach

3.1 Space of Program Variants

A program variant, P ′, is a variant of the program being optimized, P , such that
P and P ′ differ only in performance (if at all). Specifically, P and P ′ always
produce the same answer. By specifying a set of dimensions along which the

254 D. Knights et al.

program can vary, we can define a multidimensional space of program variants—
hereafter, variant space. Each variant corresponds to a point in this space and
thus we can represent it by a discrete-valued vector. Figure 2A shows a two-
dimensional variant space. Each point in the grid represents a variant.

The nature of the optimization that we wish to perform determines the dimen-
sions for the variant space. Specifically, we want the dimensions that are actually
relevant to our optimization. For example, if we wish to optimize code layout
then there may be one dimension for the address (absolute or relative) of each
function, loop, or basic block. The dimensions are obviously relevant: changing
the address of code blocks clearly affects code layout. To generate a variant (and
thus a point in the variant space) we transform the original program.

(A)

dimension 1
dimension 2

dimension 1

(B)

dimension 2

ob
je

ct
iv

e

dimension 1

(D)

dimension 2

ob
je

ct
iv

e

dimension 1

(C)

dimension 2

ob
je

ct
iv

e

Fig. 2. (A) optimization search space. (B)-(D) potential optimization objective func-
tions.

3.2 Optimization Objective

The optimization objective is the metric that we wish to optimize. The obvious
objective is to optimize program run time, but one could use other objectives
such as program size, number of cache misses or branch prediction accuracy. If
we expect that a program’s performance will vary significantly with program
input, rather than using data from a single execution for each variant, we should
use a mean execution time from many different inputs.

Figure 2B adds a third dimension, the optimization objective, to the plot in
Figure 2A. Specifically, the objective value for a point (d1, d2) gives the value of
the optimization objective when dimension 1 is d1 and dimension 2 is d2.

3.3 Optimization Strategy

The optimization strategy navigates the variant space in an attempt to iden-
tify the most efficient variant. We can exploit techniques from the numerical
optimization, machine learning, and operations research literatures to identify
possible optimization strategies. However, unlike many optimization problems
in those domains, the space we are optimizing over is intrinsically discrete, and
therefore we cannot use continuous optimization techniques.

If the variant space is small then we can use exhaustive variant generation: i.e.,
try all the variants and pick the best one. However, variant spaces in our domain
are rarely small enough to allow an exhaustive approach. If the optimization

Blind Optimization for Exploiting Hardware Features 255

objective has structure then we can use smarter approaches (described below).
If it has no structure (e.g., Figure 2C) then the best we can do is to use random
search; i.e., pick variants at random and use the best one. On the other hand, if
the optimization surface is relatively smooth (e.g., Figure 2B), we can use hill
climbing approaches such as genetic algorithms. Unfortunately, our prior work
has shown that the optimization surface is rarely smooth: a small change in one
dimension can significantly change the optimization objective [18].

From the techniques described above, only the random approach seems fea-
sible. Fortunately, in some cases we can actually do better. For example, if we
have reason to believe that the dimensions contribute independently to the opti-
mization objective (e.g., Figure 2D) we can explore one dimension at a time and
then combine the results to obtain a variant that performs well. Specifically, this
situation corresponds to the case where the optimization objective is a linear
combination of functions of the individual dimensions, i.e., o(x) =

∑
i fi(xi),

where o(.) is the objective function, x is the vector corresponding to a variant,
and the fi are a set of functions specifying the relationship between the variant’s
value on dimension i and the optimization objective. Exploiting this relation-
ship turns a O(DV) search into an O(DV) search, where D is the number of
dimensions and V is the number of distinct points along each dimension.

As discussed later (Section 4), the assumption behind the above approach hold
for at least some blind optimization scenarios. However, even if the assumption
behind the above approach does not hold (we show that sometimes it does not),
we may have sufficient domain knowledge to express o(x) as a function of lower
order terms, e.g., involving pairs of dimensions. In this paper, we explore blind
optimization and thus we do not inject any domain knowledge into our approach.
It may eventually turn out that some domain knowledge is beneficial.

4 Implementation

Memory system performance is well known to be one of the main bottlenecks
for program performance. Thus, our first use of blind optimization is to improve
the memory behavior of programs. Specifically, our optimization aligns code
and global data to improve program performance. Such alignment can affect
how the code and data interact with many different hardware structures. For
example, if a cache block is 64 bytes and a hot loop is less than 64 bytes,
then the loop fits in a cache block if it is aligned correctly; however, if the
loop starts in the middle of the cache block then it may spill over to the next
cache block which may be detrimental to performance. Because there are many
different hardware structures that may be affected by this alignment, it will be
difficult to analytically determine the ideal alignment for code and data. Thus,
this optimization is a perfect candidate for the blind approach.

As described in Section 3, blind optimization requires us to specify the follow-
ing components: a variant space, an optimization objective, and an optimization
strategy. We now describe these components in detail.

256 D. Knights et al.

4.1 Variant Space

Our variants differ in the alignment of code and global data to a 64-byte bound-
ary. Our implementation generates variants by shifting functions and global vari-
ables. To keep the variant space manageable, we changed the alignment of only
hot functions (functions that account for 95% of the total execution time in our
training run) and up to 10 randomly picked global variables.

Even within the limited scope of code and global variable alignment, there
are many alternatives that we could have pursued. For example, we could have
aligned to a 4K boundary instead of a 64 byte boundary to get better alignment
to page-level structures. Also, we could have moved code at different granularities
(e.g., basic blocks or loops). We will explore these variants in future work.

The variant space has one dimension for each function and global variable,
and the values along that dimension are the integers between 0 and 63 (i.e., we
use the address of the function or variable modulo 64). We represent a particular
variant in this space using a D-dimensional integer vector, where D is the number
of functions and global variables that we used.

To generate a particular variant, we first compile the program using gcc (with
optimization level -O3) to generate a single assembly file for the entire program
(using -combine -S)1. Then, we insert .p2align and .byte directives in the
assembly file to affect an alignment. For example, if we want the alignment of
function G to be 1 byte off from a 64 byte boundary, we insert .p2align 8 and
.byte 1 before the start of the function. The .p2align forces alignment to a
64 byte boundary and the .byte directive shifts the following code by 1 byte;
thus, G’s address modulo 64 will be 1. Finally, use gcc to generate the executable
from the instrumented assembly file. We use a similar technique to adjust the
alignment of global variables. Using this technique, we can independently control
the alignment of each function and global variable.

4.2 Optimization Objective

We used the program runtime as the optimization objective. We measured the
runtime using hardware-performance monitors and used multiple runs to obtain
statistically significant results (Section 5).

4.3 Optimization Strategy

As we discussed in Section 3 we can either use an exhaustive approach or an
approach that relies on some structure in the variant space (e.g., linearity). We
first show that at least some programs exhibit structure that we can exploit and
then describe the two approaches.

1 In order to get the entire suite of SPEC C INT 2006 programs to compile with the
-combine gcc mode we had to alter a few function headers for most of the programs.
We did not change any logic of the code.

Blind Optimization for Exploiting Hardware Features 257

Do dimensions independently affect run time? To see if the variant space
has structure that we can exploit, we tested if the assumption in Section 3.3
holds: i.e., do the dimensions contribute independently to the runtime (e.g.,
Figure 2D) or do they interact with one another and their interactions affect
the runtime (e.g., Figure 2B,C). Independence allows for efficient optimization
strategies (linear in the number of dimensions) whereas interactions may require
exponential search. We show that we can assume independence at least for some
of our benchmark programs.

To test for independence, we produced and evaluated a large number, R, of
random points in the variant space. For each run, r, we obtained a runtime,
tr and a vector vr = {vr,1, vr,2, ..., vr,D} where vr,i gives the value of the ith

dimension in run r.
Next, we classified variant runtimes. Specifically, as we change the alignment

of a function or global variable we do not see a smooth change in the runtime;
instead, we may see only a few different runtimes (usually 2 to 5) and many
different alignments can produce the same runtime. For example, the odd align-
ments of a function may all yield a “fast” run and the “even” alignments all yield
a “slow” run, with nothing in between. This classification induces a clustering
on the alignment of each function or global variable; in the above example, the
odd alignments will be in one cluster and even alignments in another cluster.
Our clusters were often surprising: for example some clusters included a mixture
of odd and even alignments (e.g. function foo aligned to a 13 byte boundary);
we would probably not have guessed these clusters using a knowledge-based
approach.

We then used the clustering to convert the variant vectors into vectors of
indicator variables, qr = {qr,1, qr,2, ..., qr,D}, where qr,i is 1 if vr,i was in cluster
1 and 0 otherwise. The linear model we wish to produce is now:

t̂r =
∑

d

wd qr,d

where w is a vector of weights (coefficients) and d spans D, the number of
dimensions in the vector space. If t̂r predicts the actual tr accurately for a
large number of runs R >> D, it implies that function and global variable
alignments contribute independently to the total runtime. The constraint R >>
D is necessary to ensure that the model, which has D free parameters, is simple
relative to the number of data points, R, that it explains.

We develop the simplest linear model via a greedy add-one-in regression. In
other words, at each step, we add the dimension that yields the best improvement
in the squared error between t̂r and tr. We stop when adding another dimension
does not yield a significant improvement in squared error.

Figure 3 compares actual runtime, tr, to the model’s prediction, t̂r. Each point
on the scatter-plot corresponds to a single run, r. We see that we get a good
linear fit for libquantum while the fit is much worse for bzip2. Thus, while some
of our programs are amenable to a linear model, others are not. For this reason,
we explore two approaches in our experiments: (i) random search assumes that
the optimization objective does not exhibit a structure that we can exploit; and

258 D. Knights et al.

6.4e+9 6.6e+9 6.8e+9 7.0e+9 7.2e+9 7.4e+9
6.4e+9

6.6e+9

6.8e+9

7.0e+9

7.2e+9

7.4e+9

Actual Total Cycles, R2 = 0.99968

P
re

di
ct

ed
 T

ot
al

 C
yc

le
s

Benchmark 462.libquantum

1.30e+10 1.31e+10 1.32e+10 1.33e+10
1.30e+10

1.31e+10

1.32e+10

1.33e+10

Actual Total Cycles, R2 = 0.80007

P
re

di
ct

ed
 T

ot
al

 C
yc

le
s

Benchmark 401.bzip2

Fig. 3. Predicted versus actual runtimes

(ii) independent dimension search assumes that the dimensions independently
contribute to the optimization objective.

Approach for random search. Random search simply tries many variants
and chooses fastest variant as the optimized program. Random search is not as
naive as it might sound. Ordinarily, one would not expect a random search in a
space of 64D variants to turn up anything close to the optimal variant. However,
our earlier clustering results suggest that the real space is actually much smaller
than 64D and thus random search with even a modest number of variants may
actually produce good results.

Approach for independent dimension search. Unlike random search, in-
dependent dimension search does not simply pick the best variant out of the
ones that it has tried; instead it synthesizes a (possibly as yet untried) variant
by analyzing the variants it has seen. It works as follows:

1. For a program whose variant space has D dimensions, and each dimension
has 64 possible alignments, randomly select a set of 64D variants in the
variant space subject to the constraint that over the set, all 64 alignments
for each dimension occur with equal frequency.

2. Measure the runtime of each variant.
3. For each dimension, d, compute the mean runtime for each possible align-

ment. This involves computing the average runtime over all random variants
whose value for dimension d is a, for d = 1, ...D and a = 0, 1, 2, ..., 63. Let
t̄d,a denote the mean runtime for dimension d aligned to byte a.

4. For each dimension d, choose the best alignment a∗
d = arg mina t̄d,a.

5. Form a new variant in which each dimension’s value is a∗
d. This variant will

be the optimized program under the assumption of independence.

In future work, we will likely opt for hill climbing search which is based on a
small number of equivalence classes instead of 64 possible alignments.

5 Methodology

With all aspects of our measurements, we followed best practices so as to
avoid perturbing our data. Specifically, we conducted all our experiments on

Blind Optimization for Exploiting Hardware Features 259

Table 1. Benchmark programs

Benchmark Description # Inputs # Variants
bzip2 Compression algorithm 10 100
gcc C Compiler 10 100
gobmk Go game 7 100
hmmer Computational biology DNA search 4 100
h264ref Video encoding 10 100
lbm 3D Fluid dynamics 3 100
libquantum Quantum computer simulator 10 100
mcf Single-depot vehicle scheduler 3 100
milc 4D Lattice simulations 3 100
perlbench Scripting language interpreter 5 100
sjeng Chess program 3 100

minimally-loaded machines and used only local disks. We ran each benchmark
N times—where N is such that the 95% confidence interval of the mean is 0.5%
of the mean itself. N was 3 for most of our benchmarks. We used PAPI [3] (ver-
sion 3.5.0) to capture the cycle counter before and after a benchmark runs. We
used the default (as per SPEC) linking order for all benchmarks. We used gcc
version 4.2.1 and optimization level O3 to compile our benchmarks. Finally, we
ran our programs in an empty environment (env -i) and turned off the kernel’s
address randomization.

Table 1 presents SPECint 2006 [22] benchmarks that we use (we omitted
benchmarks not written in C). For each benchmark, Table 1 gives the number
of variants that we generated and the number of inputs that we used. We used
the ref and train inputs provided by SPEC.

Because of the large running times of the SPEC programs (total machine time
was over 525 hours) and the large number of program variants required by blind
optimization we used three similar Intel Core 2 workstations. Each workstation
runs the Linux operating system on a Core 2 processor. We ran all experiments
for a particular benchmark on the same machine to remove the possibility of
introducing a confounding variable into our analysis.

6 Results

In this section, we evaluate our first instantiation of blind optimization.

6.1 Are Programs Amenable to Code- and Global Data-Layout
Optimization?

Figure 4 shows that improving code- and global data-layout can significantly
affect program performance. The height of a bar gives the number of variants that
have a particular execution time (indicated by the x-axis label). We normalize
all execution times to the execution time of the default variant. We present the
histograms only for three benchmarks due to space limitations: libquantum and
perlbench with a wide range of 17.4% and 9.5% respectively, and mcf with its
narrow range of 0.3%. From these histograms we conclude that depending on

260 D. Knights et al.

0.85 0.9 0.95 1 1.05
0

5

10

15

20

25

30

35
462.libquantum

(Variant runtime) / (default runtime)
Range = 17.4%

F
re

qu
en

cy

0.96 0.98 1 1.02 1.04 1.06 1.08
0

5

10

15

20

25

30
400.perlbench

(Variant runtime) / (default runtime)
Range = 9.5%

F
re

qu
en

cy
0.999 1 1.001 1.002 1.003
0

5

10

15

20

25
429.mcf

(Variant runtime) / (default runtime)
Range = 0.3%

F
re

qu
en

cy

Fig. 4. Distribution of run-times

which variant gcc -O3 actually generates, our approach may be able to speed up
these programs by up to 17.4%. On the other hand, our optimization will not
help some benchmarks, such as mcf.

In general, we have found that gcc -O3 does only slightly better than a ran-
domly chosen program variant. When averaged across all inputs for all bench-
marks, we found that gcc -O3 was slower than the average variant for five out of
the eleven benchmarks. This is remarkable, since it suggests that gcc’s domain
knowledge is not helpful; thus blind optimization is a promising alternative.

Table 2 presents the benefit due to blind optimization of code- and global
data-layout for each benchmark. The “random: % observed improvement” and
“indep: % observed improvement” give percentage speedups (over the default
variant) using random search and independent dimensions search respectively.
We obtained these speedups using n-fold cross-validation. For each of the n in-
puts of a given benchmark (shown in the “# inputs” column in Table 1), we used
the remaining n − 1 inputs to choose (random search) or produce (independent
dimensions search) the best program variant, and then measured the speedup
obtained on the nth hold-out input. We present the average speedup over all n

Table 2. Cross-validation results for random and independent models on all bench-
marks

Benchmark random: potential random: observed indep.: observed
% speedup % speedup % speedup

bzip2 1.04 0.93 0.81
gcc 0.23 0.20 -2.19
gobmk 0.49 0.47 -0.48
hmmer 2.72 0.32 0.76
h264ref 0.12 0.05 0.04
lbm 0.70 -0.14 0.17
libquantum 12.61 12.61 12.46
mcf 0.51 -0.26 0.02
milc 2.24 1.93 1.43
perlbench 1.17 0.24 -0.29
sjeng 1.10 1.10 0.53

Blind Optimization for Exploiting Hardware Features 261

folds. This methodology, commonly used in the statistics literature, ensures that
we do not use the same inputs for training as for evaluation.

From Table 2 we see that random search speeds up 9 of the 11 benchmarks and
slightly slows down two benchmarks (lbm and mcf). Moreover, three programs
show significant (more than 1%) speedups: libquantum, milc, and sjeng. These
speedups are significant because they come on top of code that gcc has already
optimized.

From the data for independent dimensions search (Column “indep: observed %
speedup”) we see that it outperforms random search for only three benchmarks
(hmmer, lbm, and mcf). This is not surprising; as Figure 3 shows the independent
dimensions assumption does not always hold.

6.2 Is the Fastest Variant on One Input the Fastest Variant on
Another?

So far, all our results use cross-validation; i.e., we evaluate and train on different
inputs. The “random: % potential improvement” column shows the speedup we
would get if we trained and evaluated on the same input. In other words, it gives
the upper-bound for how well random search can do. Comparing the “random: %
potential improvement” and “random: % observed improvement” columns tells
us the extent to which the optimization generalizes across inputs. We see that for
many benchmarks it does but for some benchmarks (particularly hmmer, lbm,
mcf, and perlbench) it does not. In other words, the inputs for these benchmarks
behave differently enough from each other that we cannot fully translate results
from one input to another input. This underlies the need to have a good set of
training inputs for blind (or any profile-guided) optimization.

6.3 Do Our Results Generalize across Machines?

To answer this question, we used random search to find the best variant on
one (training) machine and then compared that variant to the default variant
on another (test) machine. Both machines use the Core2 chip, but with differ-
ent amounts of memory and different clock speeds. The random model for the
libquantum, for example, achieved a 12.61% improvement over gcc on the train-
ing machine and a 12.51% improvement on the test machine. Thus, at least in
some cases, our results generalize across machines.

6.4 Do Our Results Generalize across Compilers?

To see if the benefit due to blind optimization was an artifact of something in gcc,
we repeated the experiments for libquantum (the benchmark with the greatest
speedup) using Intel’s icc compiler. Blind optimization was able to speed up
libquantum by 4.63%; while this speedup is smaller than what we observed with
gcc it is still significant. Thus, blind optimization is useful even for code compiled
using icc.

262 D. Knights et al.

7 Discussion

The performance of a program depends not just on characteristics of the program
but also on characteristics of the underlying system. Thus, we do not view blind
optimizations as something that software manufacturers do just before they ship
out their code; instead it is something that occurs at installation time. Indeed, it
may be worthwhile to treat blind optimizations analogously to “disk defragmen-
tation”: periodically, when the machine is idle, we can rerun blind optimizations
on the most performance critical applications. Because blind optimizations do
not need the source code, this approach is feasible; moreover, as clients of the
software use the system, we can record client inputs and use those inputs to
explore the variant space. In this way, the re-optimization will be customized to
how clients actually use the software.

8 Related Work

Compiler optimizations have obviously been an active area of research for several
decades. Broadly speaking, prior work falls in four categories: optimization-space
exploration, machine learning to derive predictive heuristics, search-based opti-
mizations, and knowledge-based optimizations.

8.1 Optimization Space Exploration

This area solves the following problem: given the following set of optimizations,
which ones should we use and in what order should we apply them? For the
most part, once they have picked the set and order of optimizations, that order
is used unchanged for all programs.

Pan et al. [19] use an offline search to find an optimization combination that
works well for a training set; this combination is used to optimize subsequent
programs. Triantafyllis et al. [24] uses trials at compiler-construction time that
produces a hopefully small set of configurations that perform well for a set of
training benchmarks. When compiling a new program, they pick one of the
configurations from this set; this set is organized hierarchically which helps to
quickly identify the best one for the current program.

Given a set of optimizations and underlying system (microprocessor, OS, etc.),
work in this area is invaluable for picking combinations that work well together
on that system. Blind optimization compliments this area by refining the opti-
mized binaries at a fine-grained level (i.e., applications of individual transforma-
tions).

8.2 Machine Learning to Derive Predictive Heuristics

This area uses machine learning to learn predictive heuristics which the compiler
uses when optimizing programs.

Blind Optimization for Exploiting Hardware Features 263

Cavazos and Moss [5] use supervised learning to learn heuristics for whether
or not a basic block is worth scheduling. This heuristic helps focus scheduling
effort on blocks that may actually benefit from it. This approach depends on a
simulator that can evaluate different schedules; thus the simulator is the “su-
pervisor”. Cavazos and O’Boyle [6] use genetic algorithms to find the setting of
inlining parameters; they use these settings for subsequent compilations. Singer
et al. [21] build decision trees to decide which garbage collection to use for an
as-yet unseen application. To pick the garbage collector for an unseen applica-
tion, they identify training applications that were similar to this application and
use the garbage collector that performed best for the training application.

These techniques free the compiler writer from having to come up with heuris-
tics. However, they assume that program-independent features are enough to
base predictive heuristics on. In contrast, blind optimization does not depend
on predictive heuristics.

8.3 Search-Based Optimizations

Search-based optimizations attempt to obtain good performance by exploring a
space of optimizations and picking the best point in the space for a given piece
of code. Blind-optimization is a search-based optimization technique.

Massalin’s superoptimizer [14], for example, exhaustively explores instruction
combinations to find the shortest sequence that behaves the same as the se-
quence being optimized. McGovern et al. [17] try many different schedules of
one basic block at a time and pick the one that gives the best performance.
Because McGovern et al.’s technique works on one basic block at a time, it re-
quires a simulator to estimate the performance of the basic block. Cooper et
al. [7] use biased random sampling to try many different compilation sequences
(i.e., different orders for optimizations) to identify an order that gives the best
performance for the program being compiled. Lau et al. [12] effectively imple-
ment Cooper et al.’s approach in an online setting. Given multiple versions of a
method (variants), each optimized differently, Lau’s approach uses sampling to
pick the best variant. It uses exhaustive search since it collects data on all the
variants.

All of the above work can be thought of as examples of the blind optimization
approach. For example, the Massalin’s superoptimizer uses program size as the
optimization objective and the machine’s instruction set as the variant space. In
contrast, our instantiation of the blind optimization approach either (i) uses a
much larger variant space where exhaustive search is simply not possible; or (ii)
attempts to identify structure in the variant space which enables us to efficiently
search the space.

8.4 Knowledge-Based Optimizations

Knowledge-based optimizations attempt to improve performance by incorporat-
ing significant domain knowledge about what makes code efficient or inefficient
on the underlying system. This work falls in two categories: dynamic and static.

264 D. Knights et al.

Dynamic knowledge-based optimizations improve the performance of code
while it is running. Adaptive optimizations [1] track which code is hot and opti-
mize only that code. Feedback-directed optimizations [2] continually reevaluate
optimization decisions while the optimized program is running. Both adaptive
and feedback-directed optimizations avoid having to predict which code is slow:
they know which code is slow since they have measured it recently. However, un-
like blind optimization, they still need to predict the benefit of an optimization
on the subsequent performance of the code.

Static knowledge-based optimizations requires deep knowledge of the under-
lying system to optimize code using profiling data. Required knowledge of the
underlying system for these approaches to work include: knowledge that the in-
struction cache is direct-mapped [15,8], knowledge of the size of the instruction
cache [9,16] knowledge of the branch predictor [11,20,23,4]. In contrast, blind
optimization requires no knowledge of the underlying hardware.

9 Conclusions

We have introduced blind optimization, a useful new approach for optimizing
programs to better utilize the underlying hardware. We have demonstrated this
approach with a single example: improving code and global-data layout. We
have shown that even this single example yields statistically significant speedups
(average 1.58%) and in one benchmark, large (12%) speedup. These results are
exciting since we are improving code that gcc has already optimized (even with
respect to its alignment) to the best of its ability.

References

1. Arnold, M., Fink, S., Grove, D., Hind, M., Sweeney, P.F.: Adaptive optimization
in the Jalapeño JVM. ACM SIGPLAN Notices 35(10), 47–65 (2000)

2. Arnold, M., Hind, M., Ryder, B.G.: Online feedback-directed optimization of java.
SIGPLAN Not. 37(11), 111–129 (2002)

3. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In: SC, Dallas, Texas (November 2000)

4. Calder, B., Grunwald, D.: Reducing branch costs via branch alignment. In: ASP-
LOS (October 1994)

5. Cavazos, J., Moss, J.E.B.: Inducing heuristics to decide whether to schedule. In:
PLDI, pp. 183–194. ACM Press, New York (2004)

6. Cavazos, J., O’Boyle, M.F.P.: Automatic tuning of inlining heuristics. In: SC,
Washington, DC, USA, p. 14. IEEE Computer Society, Los Alamitos (2005)

7. Cooper, K.D., Subramanian, D., Torczon, L.: Adaptive optimizing compilers for
the 21st century. J. Supercomput. 23(1), 7–22 (2002)

8. Gloy, N., Blackwell, T., Smith, M.D., Calder, B.: Procedure placement using tem-
poral ordering information. In: MICRO, pp. 303–313 (1997)

9. Hashemi, A.H., Kaeli, D.R., Calder, B.: Efficient procedure mapping using cache
line coloring. In: PLDI, pp. 171–182 (1997)

Blind Optimization for Exploiting Hardware Features 265

10. Hauswirth, M., Sweeney, P.F., Diwan, A., Hind, M.: Vertical profiling: Understand-
ing the behavior of object-oriented applications. In: OOPSLA (2004)

11. Jiménez, D.A.: Code placement for improving dynamic branch prediction accuracy.
In: PLDI, pp. 107–116. ACM Press, New York (2005)

12. Lau, J., Arnold, M., Hind, M., Calder, B.: Online performance auditing: using hot
optimizations without getting burned. SIGPLAN Not. 41(6), 239–251 (2006)

13. Lee, H., von Dincklage, D., Diwan, A., Eliot, J., Moss, B.: Understanding the
behavior of compiler optimizations. Softw. Pract. Exper. 36(8), 835–844 (2006)

14. Massalin, H.: Superoptimizer: a look at the smallest program. SIGPLAN
Not. 22(10), 122–126 (1987)

15. Mcfarling, S.: Program optimization for instruction caches. In: ASPLOS, pp. 183–
191. ACM, New York (1989)

16. Mcfarling, S.: Procedure merging with instruction caches. In: PLDI, pp. 71–79
(1991)

17. McGovern, A., Moss, E., Barto, A.G.: Building a basic block instruction scheduler
with reinforcement learning and rollouts. Mach. Learn. 49(2-3), 141–160 (2002)

18. Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing wrong data
without doing anything obviously wrong? In: ASPLOS (2009)

19. Pan, Z., Eigenmann, R.: Fast and effective orchestration of compiler optimizations
for automatic performance tuning. In: CGO, Washington, DC, USA, pp. 319–332.
IEEE Computer Society, Los Alamitos (2006)

20. Pettis, K., Hansen, R.C.: Profile guided code positioning. In: PLDI, pp. 16–27
(June 1990)

21. Singer, J., Brown, G., Watson, I., Cavazos, J.: Intelligent selection of application-
specific garbage collectors. In: ISMM, pp. 91–102. ACM Press, New York (2007)

22. Standard Performance Evaluation Corporation. SPEC CPU2006 Benchmarks,
http://www.spec.org/cpu2006/

23. Tomiyama, H., Yasuura, H.: Code placement techniques for cache miss rate reduc-
tion. ACM Trans. Des. Autom. Electron. Syst. 2(4), 410–429 (1997)

24. Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.I.: Compiler
optimization-space exploration. In: CGO, Washington, DC, USA, pp. 204–215.
IEEE Computer Society Press, Los Alamitos (2003)

http://www.spec.org/cpu2006/

How to CPS Transform a Monad

Annette Bieniusa and Peter Thiemann

Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee 079
79110 Freiburg, Germany

{bieniusa,thiemann}@informatik.uni-freiburg.de

Abstract. CPS transformation is an important tool in the compilation
of functional programming languages. For strict languages, such as our
web programming language “Rinso” or Microsoft’s F#, monadic expres-
sions can help with structuring and composing computations.

To apply a CPS transformation in the compilation process of such
a language, we integrate explicit monadic abstraction in a call-by-value
source language, present a Danvy-Filinski-style CPS transformation for
this extension, and verify that the translation preserves simple typing.
We establish the simulation properties of this transformation in an un-
typed setting and relate it to a two stage transformation that implements
the monadic abstraction with thunks and introduces continuations in a
second step. Furthermore, we give a direct style translation which corre-
sponds to the monadic translation.

1 Introduction

A monad [21] is a powerful abstraction for a computation that may involve
side effects. Programming languages that support monads are often of the lazy
functional kind. For example, in Haskell [25] monads serve to integrate side-
effecting computations like I/O operations, exceptions, operations on references
and mutable arrays, and concurrency primitives [26,27,28,29].

However, monads do not only serve to encapsulate computation but also to
structure it. The basic operations of a monad are the creation of a trivial compu-
tation (the “return” operator, which just returns a value) and the composition
of computations (the “bind” operator). Thus, a computation expressed using a
monad can be assembled declaratively (and compositionally) from some prim-
itive computations. This compositionality aspect has proven its relevance, for
example, in the Kleisli database query system where a monad abstracts over dif-
ferent collection types and its laws serve as simplification rules for queries [41].

Monadic structure also plays a role in strict languages (see Danvy and Hat-
cliff’s factorization of CPS translations [14], Wadler’s marriage of monads and
effects [39], or the work on monadic regions [12]) and there are less obvious ap-
plications like the monads representing probability distributions in the work of
Ramsey and Pfeffer [31] or Park and others [24].

We are currently running two projects in the context of call-by-value func-
tional programming languages that both benefit from the structuring aspect of

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 266–280, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

How to CPS Transform a Monad 267

a monad and the compositionality of monadic computations. The first project
concerns the implementation of a web programming language inspired by the
second author’s work on the WASH system [38], the Links project [6], Hop [35],
and generally the idea of tierless web programming [22]. The second project deals
with the efficient implementation of Park’s work [24] on representing probability
distributions by sampling functions (of monadic type).

Another indication for the importance of monads in strict languages is the
recent addition of workflow expressions to the F# language[37]. These workflow
expressions (or computation expressions) are nothing but monad comprehen-
sions [40] which admit some additional operators for monads that support them.
F# supports list and sequence operations, database operations, asynchronous
operations, manipulation of probability distributions as in Ramsey and Pfeffer’s
work [31], and a few more monadic computations through workflow expressions.
Interestingly, the concrete syntax chosen in F# closely matches our calculus in
Sec.3.1. Thus, our results are applicable to compiling F#.

The suitability of the CPS transformation for compilation has been disputed
[11,5] but is now receiving renewed attention and is successfully competing with
other approaches like ANF or monadic languages [17]. Our projects and in par-
ticular the work reported here may yield additional evidence in favor of CPS.

The projects have two commonalities. First, both source languages are strict
functional languages with linguistic support for monads (see Sec. 2). Both lan-
guages restrict side effects to monadic computations, so we are after encapsula-
tion of both, effects and compositionality.1 Second, both implementations involve
a CPS translation, a well-established implementation path for such languages.
These two requirements lead directly to the present work.

The main contributions of this work are as follows. We define ΛM , a call-by-
value lambda calculus with explicit monadic constructs (a strict variant of the
monadic metalanguage). We specify an optimizing CPS translation from ΛM

to the lambda calculus and prove its simulation and translation properties. We
define the corresponding direct-style translation and prove simulation for it. We
briefly investigate an alternative transformation that first performs thunkifica-
tion and then runs a standard CPS transformation. We state a type system based
on simple types for ΛM and prove that the transformation preserves typing.

2 Two Strict Languages with Monads

In two seemingly unrelated projects, we have arrived at using a strict language
with a monadic sublanguage as a good match for the problem domain. In both
projects there is also the need of applying the CPS transformation to programs.
This section briefly introduces the projects and explains the role of the CPS
transformation in their implementation.

Rinso. Rinso is an experimental programming language for writing client-side
web applications. Rinso compiles to JavaScript and provides convenient monadic
1 Another option would be to structure side effects using a hierarchy of effect-indexed

monads [10], but we stick with the simpler scenario for this paper.

268 A. Bieniusa and P. Thiemann

// producer : MVar Int * Int * Int -> IO ()

producer (mvar, a, b)

if (a <= b) {

exec (putMVar (mvar, a));

exec (producer (mvar, a+1, b))

} else {

return ()

}

// consumer : MVar Int -> IO ()

consumer (mvar) {

x = exec (readMVar (mvar));

exec (print (x));

consumer (mvar)

}

// main : Unit -> IO ()

main () {

mvar = exec newEmptyMVar;

exec (fork (producer (mvar, 1, 100)));

exec (consumer (mvar))

}

Fig. 1. Producer and consumer in Rinso

abstractions to protect programmers from the idiosyncrasies of the target lan-
guage as much as possible. The current prototype implementation supports a
monadic interface to I/O, references, and concurrency via thread creation. Be-
fore getting to an actual example program, we take a short digression and explain
the underlying concurrency primitives.

Rinso’s concurrency library is based on Concurrent Haskell’s MVar abstrac-
tion [26]. An MVar is a mutable variable with two distinct states. It is either
empty or it is full and holds a value of a fixed type. An MVar supports the
following operations in the IO monad:

newEmptyMVar : IO (MVar a)
putMVar : MVar a * a -> IO ()
readMVar : MVar a -> IO a

An MVar starts its life cycle with an invocation of newEmptyMVar, which creates
a fresh, empty MVar. The execution of readMVar (mv) blocks while mv is empty.
If mv is full, then readMVar mv empties mv and returns its value. The execution
of putMVar (mv, v) blocks while mv is full. If mv is empty, then putMVar (mv,
v) fills mv with v and returns the unit value. Multiple readMVar (putMVar) may
block on the same empty (full) MVar, only one will be chosen by the run-time
system to proceed. The operations putMVar and readMVar are atomic.

Figure 1 shows an excerpt of Rinso code implementing a producer/consumer
abstraction. Rinso marks monadic computations by curly braces, that is, {m}
is a computation defined by the statement sequence m (which is quite similar
to Haskell’s do-notation [25]). A statement can be a binding x = e; (where the

How to CPS Transform a Monad 269

// bernoulli : double -> P bool

bernoulli (p) {

x = exec sample;

return (x <= p)

}

// uniform : double * double -> P double

uniform (a, b) {

x = exec sample;

return (a + x * (b-a))

}

// gaussian : double * double -> P double

gaussian (m, sigma) {

x1 = exec sample;

x2 = exec sample;

...

x12 = exec sample;

return (m + sigma * (x1 + x2 + ... + x12 - 6.0))

}

Fig. 2. Encodings of distributions

x = part may be omitted) or a return statement return e. In both cases, e is
evaluated. Ordinary binding is free of side effects, whereas a binding x = exec e ;
expects e to evaluate to a monadic value which is then executed immediately.

The prototype implementation of Rinso performs lambda lifting, CPS trans-
formation, and closure conversion. The resulting first-order program is translated
to JavaScript. The CPS transformation must be involved for two reasons. First,
the target technology (your friendly web browser) stops programs that run “too
long”. Hence, the program has to be chopped in pieces that invoke each others
indirectly. Cooper et al. report a similar approach [6].

Second, as Rinso is supposed to be used on the client side of a web applica-
tion, it needs facilities for implementing user interfaces. One important ingredient
here is concurrency where Rinso supports a thread model similar to concurrent
Haskell. The implementation of such a thread model is much facilitated if pro-
grams are translated to CPS.

A planned extension of Rinso to also include server-side computation would
add yet another reason for using the CPS transformation. As Graunke et al.
[19] point out, compiling interactive programs for server-side execution requires
a CPS transformation.

Stochastic Computation. Our second project concerns sensor-based technical
devices. These devices perform stochastic processing of their sensor data close to
the sensors themselves to avoid network congestion with bulk data and also to
save power by keeping network transmitters powered down as long as possible.

To cut down on power and cost, as well as to lower the likelihood of errors, part
of this processing is implemented in hardware. Thus, this hardware implements
computation-intensive tasks which remain fixed over the lifetime of the system.

270 A. Bieniusa and P. Thiemann

It is often co-designed with the software that performs higher level processing
tasks which are more likely to change over time.

Our project investigates an approach to specifying such systems in a single
linguistic framework. One core aspect is the modeling of probability distributions
using a sampling monad as inspired by Park et al.’s work [24]. One obstacle in
putting this work into practice is its limited performance if implemented purely in
software. Thus, we aim at implementing the stochastic processing in hardware.
The implementation follows one of the standard paths in functional language
compilation, CPS transformation and closure conversion, before mapping the
program to hardware via VHDL [34].

Figure 2 contains some distributions which are encoded using a Rinso-like syn-
tax. They are transcribed from Park et al. [24]. The basic computation is sample
of type P double (where P is the probability monad), which models a 0-1 uni-
formly distributed random variable. bernoulli(p) implements a Bernoulli dis-
tribution with probability p, uniform(a,b) implements a uniform distribution
over the interval (a,b), and gaussian(m,sigma) implements an (approximation
of a) Gaussian distribution using the 12-rule.

3 CPS Transformation

3.1 The Source Language

Figure 3 shows the syntax of ΛM , a call-by-value lambda calculus extended with
monadic expressions. In addition to constants, variables, lambda abstractions,
and function applications (marked with infix @) there are also monadic compu-
tations {m}, which open a new binding scope with the x = . . . statements as
binding operations. Side effects can only occur in computations. Computations
can be bound to variables as in x = {m} because they are values. Their evalua-
tion must be triggered via the keyword exec. The monadic statement x = e ; m
behaves like x = exec {return e} ; m. We use fv to denote the set of free vari-
ables in an expression or computation, and bv for variable bound by a binding
operation mi. The print operation which displays integers serves as an example
for a side effecting operation.

The figure further defines the semantics of ΛM . Monadic reduction �→m is
the top-level notion of reduction. M denotes the evaluation context for monadic
statements, E the corresponding one for expressions. The superscript on the
reduction can be i representing the printed value or ε if no output happens.
The annotation A on the transitive closure of reduction stands for a (potentially
empty) sequence of integers. Computation stops with return v at the top level.

Figure 4 presents a simple type system for ΛM inspired by Moggi’s meta-
language [21]. The unary type constructor T represents the monad. Hence, a
computation returning a value of type τ has type T τ .

Theorem 1. The type system in Fig. 4 is sound with respect to the semantics
of ΛM in Fig. 3.

How to CPS Transform a Monad 271

Syntax: expressions e ::= c | x | λx .e | e@e | {m}
statements m ::= return e | x = exec e ; m | x = e ; m
constants c ::= �i� | print
values v ::= �i� | λx .e | {m} | print
output a ::= ε | i i ∈ Z

variables x ∈ Var

Evaluation contexts:
M ::= x = exec E ; m | x = E ; m | return E
E ::= [] | E@e | v@E

Evaluation:
(λx .e)@v �→e e[x �→ v]

x = v ; m ε�→m m[x �→ v]

x = exec (print@�i�) ; m i�→m m[x �→ �i�]
x = exec {m1; . . . ; mn; return e} ; m ε�→m m1; . . . ; mn; x = e ; m

if fv(m) ∩ bv(m1, . . . , mn) = ∅
e �→e e′

E [e] �→e E [e′]
e �→∗

e e
e �→∗

e e′ e′ �→e e′′

e �→∗
e e′′

e �→e e′

M[e] ε�→m M[e′]

m
a�→m m′

M[m] a�→m M[m′]
m

ε�→∗
m m

m
A,∗�−→m m′ m′ a�→m m′′

m
Aa,∗�−→m m′′

Fig. 3. Syntax and semantics of the source language ΛM

types τ, σ ::= int | τ → τ | T τ
contexts Γ ::= · | Γ, x : τ

Typing rules:

Γ �e print : int → T int Γ �e �i� : int

Γ (x) = τ

Γ �e x : τ

Γ, x : τ1 �e e : τ2

Γ �e λx.e : τ1 → τ2

Γ �e e1 : τ1 → τ2 Γ �e e2 : τ1

Γ �e e1@e2 : τ2

Γ �m m : T τ

Γ �e {m} : T τ

Γ �e e : τ

Γ �m return e : T τ

Γ �e e : τ Γ, x : τ �m m : T τ ′

Γ �m x = e; m : T τ ′

Γ �e e : T τ Γ, x : τ �m m : T τ ′

Γ �m x = exec e;m : T τ ′

Fig. 4. Simple type system for ΛM

3.2 CPS Transformation of Monadic Expressions

Our CPS transformation on ΛM terms extends Danvy and Filinski’s one-pass
optimizing call-by-value CPS transformation [8] with transformation rules for

272 A. Bieniusa and P. Thiemann

Syntax:
expressions E, F ::= C | x | λx .E | F@E
constants C ::= printc | �i�
values V ::= C | λx .E

where i ∈ Z and x ∈ Var , an infinite set of variables
Reduction contexts for call-by-value (Ev) and call-by-name (En):

Ev ::= [] | Ev@E | V @Ev En ::= [] | En@E

Reduction (for j ∈ {v, n}):
(λx .E)@F

ε�→β E[F/x] (λx .E)@V
ε�→βV E[V/x] (printc@�i�)@F

i�→γ F@�i�

E
a�→βV,γ E′

Ev[E] a�→v Ev[E′]

E
a�→β,γ E′

En[E] a�→n En[E′]
E

ε,∗�−→j E
E

A,∗�−→j E′ E′ a�−→j E′′

E
Aa,∗�−→j E′′

Fig. 5. The target language Λ

monadic expressions and statements. The result is a one-pass CPS transforma-
tion which does not introduce any administrative β-redexes. In addition, poten-
tial η-redexes around tail calls are avoided by using auxiliary transformations C′

e

and C′
m.

The transformation is defined in a two-level lambda calculus [23] which distin-
guishes between abstractions and applications at transformation time (λx.e and
f@e) and at run time (λx.e and f@e). The former reduce during transformation
whereas the latter generate target code.

Figure 5 defines syntax and semantics of the target language of the trans-
formation. There are two semantics, call-by-value given by the relation �→v and
call-by-name given by �→n. The print operation is provided in terms of a CPS
primitive printc.

Figure 6 defines the CPS transformation for ΛM . The result of transforming
an expression e to CPS in an empty context is given by Ce�e�@(λz.z), and in a
dynamic context by λk.Ce�e�@(λz.k@z). The same holds for the transformation
of monadic expressions m. The latter are only transformed in a dynamic context,
so the corresponding transformation Cm� � for static contexts has been elided.

The type transformation corresponding to our call-by-value CPS transforma-
tion is defined in two steps with a value type transformation ∗ and a computation
type transformation �. The type X is the answer type of all continuations.

int∗ = int
(τ → σ)∗ = τ∗ → σ�

(T τ)∗ = τ �

τ � = (τ∗ → X) → X

Theorem 2. If Γ �e e : τ , then Γ ∗, k : τ∗ → X �e (C′
e�e�)@k : τ �.

If Γ �m m : τ , then Γ ∗, k : τ∗ → X �e (C′
m�m�)@k : τ �.

How to CPS Transform a Monad 273

Danvy and Filinski’s optimizing call-by-value CPS transformation [8]

Ce��i�� = λκ.κ@�i�
Ce�x� = λκ.κ@x

Ce�λx.e� = λκ.κ@(λx .λk.C′
e�e�@k)

Ce�e0@e1� = λκ.Ce�e0�@(λv0.Ce�e1�@(λv1.(v0@v1)@(λa.κ@a)))

C′
e��i�� = λk.k@�i�
C′

e�x� = λk.k@x

C′
e�λx.e� = λk.k@(λx .λk.C′

e�e�@k)

C′
e�e0@e1� = λk.Ce�e0�@(λv0.Ce�e1�@(λv1.(v0@v1)@k))

Extension to monadic expressions and statements

Ce�print� = λκ.κ@(λx .λk.k@(printc@x))

Ce�{m}� = λκ.κ@(λk.C′
m�m�@k)

C′
e�print� = λk.k@(λx .λk.k@(printc@x))

C′
e�{m}� = λk.k@(λn.C′

m�m�@n)

C′
m�return e� = C′

e�e�

C′
m�x = e ; m� = λk.C′

e�e�@(λx.C′
m�m�@k)

C′
m�x = exec e ; m� = λk.Ce�e�@(λv.v@(λx.C′

m�m�@k))

Fig. 6. CPS transformation

Proof. The proof works by ignoring the annotations, performing induction on
the translated terms, and then invoking subject reduction for the simply typed
lambda calculus to see that the overlined reductions do not change the type.

3.3 Simulation and Indifference

Danvy and Filinski [8] have shown that the upper half of the rules in Fig. 6 trans-
forms a source term to a result which is βη-equivalent to applying Plotkin’s call-
by-value CPS transformation to the same source term. Like Plotkin, they prove
simulation and indifference results and we follow their lead closely in extending
the simulation and indifference results to our setting.

For values v let Ψ(v) = Ce�v�@(λx.x). It is straightforward to show that Ψ(v)
is a value and that the following equations hold:

Ce�v�@κ = κ@(Ψ(v))
C′

e�v�@k = k@(Ψ(v))
Ce�w�@κ = C′

e�w�@(λn.κ@n)

where v denotes a value and w a term that is not a value.

274 A. Bieniusa and P. Thiemann

A variable x occurs free in a static continuation κ if for some term p it occurs
free in κ@p but not in p. An expression κ is schematic if for any terms p and q
and any variable x not occurring free in κ,

(κ@p)[x �→ q] = κ@(p[x �→ q]).

Lemma 1. Let p be a term, v a value, x a variable, x ′ a fresh variable, and let
κ be a schematic continuation and k any term. Then

Ce�p[x �→ v]�@κ = (Ce�p[x �→ x ′]�@κ)[x ′ �→ Ψ(v)]
C′

e/m�p[x �→ v]�@k = (C′
e/m�p[x �→ x ′]�@k)[x ′ �→ Ψ(v)]

Proof. By induction on p.

The next lemma extends the indifference theorem to ΛM . All reductions are
independent of the choice of the reduction strategy j for the target language:
Each argument of an application is a value from the beginning, hence the V @Ev

evaluation context is never needed and the rule βV is sufficient for all reductions.
The relation

a,+�→ j denotes the transitive closure of the respective relation a�→j .

Lemma 2. Let κ be a schematic continuation and j ∈ {v, n}.
If p �→e q, then Ce�p�@κ

ε,+�→ j Ce�q�@κ and C′
e�p�@k

ε,+�→ j C′
e�q�@k.

If p
a�→m q, then C′

m�p�@k
a,+�→ j C′

m�q�@k.
Each source reduction gives rise to at most five target reduction steps.

Proof. Induction on the derivation of �→e and i�→m. The case for reducing x =
exec (print@�i�) ; takes five steps in the target language. All other cases take
fewer steps.

Inductive application of Lemma 2 to a multi-step reduction yields the indifference
and simulation theorem.

Theorem 3. Let m be a well-typed term and v be a value such that m
A�→m

return v. Then
C′

m�m�@(λx.x)
A,∗�→ j Ψ(v)

in at most five times as many reduction steps for j ∈ {v, n}.

4 Alternative CPS Transformation

An obvious alternative to the discussed CPS transformation works in two stages,
thunkification followed by CPS transformation. Thunkification defers the evalu-
ation of a monadic expression by wrapping its body into a thunk. The transfor-
mation of exec forces the thunk’s evaluation by providing a dummy argument.

We extend ΛM (and its CPS transformation) with a new direct-style print
operator printd as indicated in Fig. 7. Figure 8 gives the thunkification as a
transformation on ΛM . It maps print to a function that accepts an output

How to CPS Transform a Monad 275

c ::= · · · | printd

v ::= · · · | printd

printd@�i� i�→e �i�
Ce�printd� = λκ.κ@printc

Fig. 7. Extension of the source language

Te��i�� = �i�
Te�print� = λx.λz.printd@x z �= x
Te�x� = x
Te�λx .e� = λx .Te�e�
Te�e1@e2� = (Te�e1�)@(Te�e2�)
Te�{m}� = λz.Tm�m� z /∈ fv(m)
Tm�return e� = Te�e�
Tm�x = e ; m� = (λx.Tm�m�)@(Te�e�)
Tm�x = exec e ; m� = (λx.Tm�m�)@((Te�e�)@�0�)

Fig. 8. Thunkification

value and a dummy argument and calls printd if the dummy argument is pro-
vided. The value �0� serves as a dummy argument to force the evaluation of
the expression following an exec. The transformed program does not use the
monadic constructs anymore.2

We now get a one-pass CPS transformation as the combination of two trans-
formations:

C̃e�p� = Ce�Te�p�� and C̃′
e/m�p� = C′

e�Te/m�p��

The result is a set of somewhat more complicated transformation rules for the
monadic expressions (all other transformation rules remain unchanged as they
are not affected by thunkification).

C̃e�print� = λκ.κ@λx.λk.k@(λz.λk.(printc@x)@k)
C̃e�{m}� = λκ.κ@λz.(λk.C̃′

m�m�@k)
C̃′

m�return e� = C′
e�e� = C′

m�return e�

C̃′
m�x = e ; m� = λk.C̃e�e�@(λv1.((λx.λk.C̃′

m�m�@k)@v1)@k)
C̃′

m�x = exec e ; m� =
λk.C̃e�e�@(λw0.(w0@�0�)@(λa.((λx.λk.C̃′

m�m�@k)@a)@k))

As one can easily show, this more intuitive ansatz is βη equivalent, but less
efficient for the monadic constructs as the one in Fig. 6. Indeed, of the most
frequently used monadic operations the x = v binding requires one additional
reduction step and the x = exec{m} binding requires three additional reduction
steps.

2 Park’s implementation of the probability monad [24] works in a similar way.

276 A. Bieniusa and P. Thiemann

5 Direct-Style Translation

To obtain the direct-style translation in Fig.9 corresponding to the monadic
translation in Fig.6, we first have to find a suitable grammar for the resulting
CPS terms. The nonterminals cv, cc, and ck stand for CPS values, computations,
and continuations. Their definitions are familiar from direct-style translations for
the lambda calculus [7]. The last two cases for cv are specific to the monadic
case. They involve mc (monadic computations), which in turn involve monadic
continuations mk. The translation inserts letx = e in f expressions which are
interpreted as (λx.f)@e.

The special cases are as follows. The new value λk.mc corresponds to a
monadic computation. The computation cv@mk stands for the activation of a
delayed computation and is hence mapped to an exec statement in the monad.

The direct style transformation is given for each CPS term. To obtain better
readability, De

mk� � denotes the translation that results in a monadic binding
with exec. The expected simulation result holds:

Lemma 3. Suppose that mc
A,∗�−→j k@cv. Then Dmc�mc�

A,∗�−→m Dmc�k@cv�.

However, the pair of transformations C′
m and Dmc does not form an equational

correspondence (let alone a reduction correspondence or a reflection) because
the source language ΛM lacks reductions that perform let insertion and let
normalization. Such reductions are added in the work of Sabry, Wadler, and
Felleisen [33,32] and lead directly to the existence of such correspondences. The
same reductions could be added to ΛM with the same effect, but we refrained
from doing so because it yields no new insights.

6 Related Work

Since Plotkin’s seminal paper [30] CPS transformations have been described
and characterized in many different flavors. Danvy and Filinski [8] describe an
optimizing one-pass transformation for an applied call-by-value lambda calculus
that elides administrative reductions by making them static reductions which
are performed at transformation time. Our transformation extends their results
for a source language with an explicit monad.

Danvy and Hatcliff [9] present a CPS transformation that exploits the results
of strictness analysis. Our transformation of the explicit monad is inspired by
their treatment of force and delay, but adds the one-pass machinery.

Hatcliff and Danvy’s generic account of continuation-passing styles [14] fac-
torizes CPS transformations in two strata. The first stratum transforms the
source language into Moggi’s computational meta-language [21] encoding dif-
ferent evaluation strategies. The second stratum “continuation introduction” is
independent from the source language and maps the meta-language into the
CPS sublanguage of lambda calculus. Our transformation is reminiscent of the
second stratum, but our source language is call-by-value lambda calculus with
an explicit monad and our transformation optimizes administrative reductions.

How to CPS Transform a Monad 277

Grammar of CPS terms

cv ::= �i� | x | λx.λk.cc | λk.mc | printc@x
cc ::= cv@cv@ck | ck@cv
ck ::= λa.cc | k
mc ::= cv@cv@mk | mk@cv | cv@mk
mk ::= λx.mc | k

Lambda calculus cases
Dcv��i�� = �i� Dcc�ck@cv� = Dck�ck�[Dcv�cv�]
Dcv�x� = x Dck�k� = []
Dcv�λx.λk.cc� = λx.Dcc�cc� Dck�λa.cc� = let a = [] inDcc�cc�
Dcc�cv1@cv2@ck� = Dck�ck�[Dcv�cv1�@Dcv�cv2�]

Monadic cases
Dcv�λk.mc� = {Dmc�mc�} De

mk�λx.mc� = x = exec [] ;Dmc�mc�
Dcv�printc@x� = print@x De

mk�k� = x = exec [] ; return x
Dmc�mk@cv� = Dmk�mk�[Dcv�cv�] Dmk�λx.mc� = x = [] ;Dmc�mc�
Dmc�cv@mk� = De

mk�mk�[Dcv�cv�] Dmk�k� = return []
Dmc�cv1@cv2@mk� = Dmk�mk�[Dcv�cv1�@Dcv� cv2�]

Fig. 9. Direct style translation

An unoptimized version of our transformation could likely be factored through
the computational meta-language, but we have not investigated this issue, yet.

Danvy and Hatcliff [15] study an alternative presentation of the call-by-name
CPS transformation by factoring it into a thunkification transformation that
inserts delays around all function arguments and forces all variables and a
call-by-value CPS transformation extended to deal with delay and force. In
addition, the paper also investigates an optimizing one-pass transformation but
the details are different because our monadic brackets do not contain expressions
but monadic statements.

Ager et al. [2] employ another path for transforming monadic code to CPS,
which is a key step in their work to derive an abstract machine from a monadic
evaluator. The authors first replace the monadic operations in the interpreter
with their functional definitions. Then they transform the resulting monad-free
evaluator to CPS using a standard call-by-value CPS transformation. It turns out
that our thunkification transformation can be seen as expansion of the monadic
operations. In fact, the transformation maps the monad type (T τ)� to () → τ �

with the obvious return and bind operations. However, as we have demonstrated
in Section 4, the combined transformation misses opportunities for optimization
that our one-pass transformation exploits. One way to obtain a better trans-
formation via thunkification might be to apply Millikin’s idea of using shortcut
deforestation with a normalization pass to create a one-pass transformation [20],
but we have not yet explored this idea further.

Sabry and Felleisen [32] describe their source calculus via an axiom set which
extends the call-by-value lambda calculus. Using an compactifying CPS transfor-
mation they present an inverse mapping which yields equational correspondence

278 A. Bieniusa and P. Thiemann

of terms in source and target calculi of Fischer-style call-by-value CPS trans-
formations. Sabry and Wadler [33] show that Plotkin’s CPS transformation is a
reflection on Moggi’s computational lambda calculus. Barthe et al. [4] propose
the weaker notion of reduction correspondence for reasoning about translations.
An initial investigation shows some promise for embedding our CPS transfor-
mation into this framework.

On the practical side, Appel’s book [3] presents all the machinery necessary for
compiling with continuations and applies it to the full ML language. The main
impact for compilation is that CPS names each intermediate value, sequential-
izes all computations, and yields an evaluation-order independent intermediate
representation that is closed under β reduction. The latter is important as it
simplifies the optimization phase of the compiler: It can perform unrestricted
β reduction wherever that is desirable. Steele [36] was the first to exploit this
insight in his Rabbit compiler for Scheme, Kelsey and others [18,16] later ex-
tended the techniques to work with procedural languages in general. Unlike some
of his precursors, Appel uses a one-pass CPS transformation which reduces some
administrative reductions. He relies on another optimizing pass for eliminating
η reductions. An optimizing transformation, like ours, avoids this burden and
leads to more efficient compilation.

Another point in favor of CPS-based compilation is the ease with which con-
trol operators can be supported in the source language. Friedman et al. [13] make
a compelling point of this fact. This may be important in the further develop-
ment of our Rinso language as control operators are well suited to implement
cooperative concurrency.

7 Conclusion

There is evidence that a call-by-value language with an explicit monad is a
design option for certain applications. Working towards compilation of such a
language, we have developed an optimizing one-pass CPS transformation for
this language and proven simulation and indifference for it. We present a direct
style transformation for the CPS terms. We have demonstrated that our CPS
transformation is preferable to an indirect one via thunkification. Finally, the
transformation is compatible with simple typing.

References

1. Abadi, M. (ed.): Proc. 32nd ACM Symp. POPL, Long Beach, CA, USA, January
2005. ACM Press, New York (2005)

2. Ager, M.S., Danvy, O., Midtgaard, J.: A functional correspondence between
monadic evaluators and abstract machines for languages with computational ef-
fects. Theoretical Computer Science 342(1), 149–172 (2005)

3. Appel, A.W.: Compiling with Continuations. Cambridge University Press, Cam-
bridge (1992)

How to CPS Transform a Monad 279

4. Barthe, G., Hatcliff, J., Sørensen, M.H.: Reflections on reflections. In: Hartel, P.H.,
Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 241–258. Springer, Heidelberg
(1997)

5. Benton, N., Kennedy, A., Russell, G.: Compiling Standard ML to Java bytecodes.
In: Hudak, P. (ed.) Proc. ICFP 1998, Baltimore, MD, USA. ACM Press, New York
(1998)

6. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without
tiers. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2006. LNCS, vol. 4709, pp. 266–296. Springer, Heidelberg (2007)

7. Danvy, O.: Back to direct style. Science of Computer Programming 22, 183–195
(1994)

8. Danvy, O., Filinski, A.: Representing control: A study of the CPS transformation.
Mathematical Structures in Computer Science 2, 361–391 (1992)

9. Danvy, O., Hatcliff, J.: CPS transformation after strictness analysis. Letters on
Programming Languages and Systems 1(3), 195–212 (1993)

10. Filinski, A.: Representing layered monads. In: Aiken, A. (ed.) Proc. 26th ACM
Symp. POPL, San Antonio, Texas, USA, pp. 175–188. ACM Press, New York
(1999)

11. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Proc. 1993 PLDI, Albuquerque, NM, USA, pp. 237–247 (June
1993)

12. Fluet, M., Morrisett, G.: Monadic regions. J. Funct. Program. 16(4-5), 485–545
(2006)

13. Friedman, D.P., Wand, M.: Essentials of Programming Languages, 3rd edn. MIT
Press and McGraw-Hill (2008)

14. Hatcliff, J., Danvy, O.: A generic account of continuation-passing styles. In: Proc.
1994 ACM Symp. POPL, Portland, OR, USA, pp. 458–471. ACM Press, New York
(1994)

15. Hatcliff, J., Danvy, O.: Thunks and the λ-calculus. J. Funct. Program. 7(3), 303–
319 (1997)

16. Kelsey, R., Hudak, P.: Realistic compilation by program transformation. In: Proc.
16th ACM Symp. POPL, Austin, Texas, pp. 281–292. ACM Press, New York (1989)

17. Kennedy, A.: Compiling with continuations, continued. In: Ramsey, N. (ed.)
Proc. ICFP 2007, Freiburg, Germany, pp. 177–190. ACM Press, New York (2007)

18. Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., Adams, N.: ORBIT: An
optimizing compiler for Scheme. SIGPLAN Notices 21(7), 219–233 (1986); Proc.
Sigplan 1986 Symp. on Compiler Construction

19. Matthews, J., Findler, R.B., Graunke, P., Krishnamurthi, S., Felleisen, M.: Au-
tomatically restructuring programs for the web. Automated Software Engineer-
ing 11(4), 337–364 (2004)

20. Millikin, K.: A new approach to one-pass transformations. In: van Eekelen,
M. (ed.) Trends in Functional Programming, September 2007, vol. 6 (2007),
intellectbooks.co.uk

21. Moggi, E.: Notions of computations and monads. Information and Computation 93,
55–92 (1991)

22. Neubauer, M., Thiemann, P.: From sequential programs to multi-tier applications
by program transformation. In: Abadi [1], pp. 221–232

23. Nielson, F., Nielson, H.R.: Two-Level Functional Languages. Cambridge Tracts in
Theoretical Computer Science, vol. 34. Cambridge University Press, Cambridge
(1992)

intellectbooks.co.uk

280 A. Bieniusa and P. Thiemann

24. Park, S., Pfenning, F., Thrun, S.: A probabilistic language based upon sampling
functions. In Abadi [1], pp. 171–182

25. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press, Cambridge (2003)

26. Peyton Jones, S., Gordon, A., Finne, S.: Concurrent Haskell. In: Proc. 1996 ACM
Symp. POPL, St. Petersburg, FL, USA, pp. 295–308. ACM Press, New York (1996)

27. Peyton Jones, S., Reid, A., Hoare, T., Marlow, S., Henderson, F.: A semantics for
imprecise exceptions. In: Proc. 1999 PLDI, Atlanta, Georgia, USA (May 1999);
volume 34(5) of SIGPLAN Notices

28. Peyton Jones, S.L.: Tackling the awkward squad: Monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell. In: Hoare, T., Broy, M.,
Steinbruggen, R. (eds.) Engineering Theories of Software Construction, pp. 47–96.
IOS Press, Amsterdam (2001)

29. Peyton Jones, S.L., Wadler, P.L.: Imperative functional programming. In: Proc.
1993 ACM Symp. POPL, Charleston, South Carolina, pp. 71–84. ACM Press,
New York (1993)

30. Plotkin, G.: Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science 1, 125–159 (1975)

31. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Mitchell, J. (ed.) Proc. 29th ACM Symp. POPL, Portland, OR,
USA. ACM Press, New York (2002)

32. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
Lisp and Symbolic Computation 6(3/4), 289–360 (1993)

33. Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Prog. Lang. and
Systems 19(6), 916–941 (1997)

34. Saint-Mleux, X., Feeley, M., David, J.-P.: SHard: A Scheme to hardware compiler.
In: Proc. 2006 Scheme and Functional Programming Workshop, pp. 39–49. Univ.
of Chicago Press (2006)

35. Serrano, M., Gallesio, E., Loitsch, F.: HOP, a language for programming the Web
2.0. In: Proceedings of the First Dynamic Languages Symposium, Portland, OR,
USA (October 2006)

36. Steele, G.L.: Rabbit: a compiler for Scheme. Technical Report AI-TR-474, MIT,
Cambridge, MA (1978)

37. Syme, D., Granicz, A., Cisternino, A.: Expert F#. Apress (2007)
38. Thiemann, P.: An embedded domain-specific language for type-safe server-side

Web-scripting. ACM Trans. Internet Technology 5(1), 1–46 (2005)
39. Wadler, P., Thiemann, P.: The marriage of monads and effects. ACM Trans. Com-

putational Logic 4(1), 1–32 (2003)
40. Wadler, P.L.: Comprehending monads. In: Proc. ACM Conference on Lisp and

Functional Programming, Nice, France, pp. 61–78. ACM Press, New York (1990)
41. Wong, L.: Kleisli, a functional query system. J. Funct. Program. 10(1), 19–56 (2000)

Author Index

Abadi, Mart́ın 63
Abu-Mahmeed, Samah 204
Agosta, Giovanni 220
Albrecht, Jeannie 94
Austin, Paul 204

Bieniusa, Annette 266
Birrell, Andrew 63
Braun, Matthias 174
Budimlić, Zoran 204

Campanoni, Simone 220
Childers, Bruce R. 32
Crespi Reghizzi, Stefano 220

Dao, Darren 94
Diwan, Amer 251
Dolby, Julian 48

Economopoulos, Giorgios 126
Edwards, Stephen A. 48

Farooq, Muhammad Umar 190

Gao, Lin 78
Gordon, Michael J.C. 2
Größlinger, Armin 236

Hack, Sebastian 174
Harris, Tim 63
Hogan, Kevin 204
Hsieh, Johnson 63

Isard, Michael 63

John, Lizy K. 190

Kalvala, Sara 17
Kats, Lennart C.L. 142
Kennedy, Ken 204
Killian, Charles 94

Klint, Paul 126
Knights, Dan 251
Kornerup, Jacob 204

Li, Lian 78

McCosh, Cheryl 204
Mozer, Michael C. 251
Myreen, Magnus O. 2
Mytkowicz, Todd 251

Ngai, Tin-Fook 78

Padioleau, Yoann 109
Palsberg, Jens 158
Pereira, Fernando Magno Quintão 158

Ravindran, Kaushik 204
Rogers, Steve 204

Sarkar, Vivek 1
Slind, Konrad 2
Sloane, Anthony M. 142
Soffa, Mary Lou 32
Sweeney, Peter F. 251
Sykora, Martino 220

Tardieu, Olivier 48
Thiemann, Peter 266

Vahdat, Amin 94
Vasudevan, Nalini 48
Vinju, Jurgen 126
Visser, Eelco 142

Warburton, Richard 17

Xue, Jingling 78

Zhao, Min 32

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Challenges in Code Optimization of Parallel Programs
	Extensible Proof-Producing Compilation
	Introduction
	Core Functionality
	Input Language
	Code Generation
	Proving Correctness Theorem

	Extensions, Stacks and Subroutines
	User-Defined Extensions
	Stack Usage
	Subroutines and Procedures

	Optimising Transformations
	Instruction Reordering
	Removal of Dead Code
	Conditional Execution
	Shared Tails

	Compilation Example: Verified LISP Interpreter
	Summary and Discussion of Related Work
	References

	From Specification to Optimisation: An Architecture for Optimisation of Java Bytecode
	Introduction
	Background and Specification Language
	Specification Language Overview
	Implementation Background

	Architecture of {\tt Rosser}
	Architectural Overview
	Representation of Programs in {\it Dimple}
	Use/def Analysis
	Refinement and Type-Checking
	Code Generation
	Action Code Generation
	Interactive and Batch Mode

	Performance Analysis
	Effectiveness
	Efficiency

	Related Work
	Conclusions
	References

	A Framework for Exploring Optimization Properties
	Introduction
	Model-Driven Optimization
	FOP Components
	Optimization Models
	Interaction Algorithm

	Optimization Ordering Using Properties
	Experiments
	Compile-Time Comparison
	Performance Comparison

	Related Work
	Conclusion
	References

	Compile-Time Analysis and Specialization of Clocks in Concurrent Programs
	Introduction
	The X10 Programming Language
	ClocksinX10
	Clock Patterns

	The Static Analyzer
	Constructing the Automaton
	Handling Async Constructs with the Clock Model
	Specifying Clock Idioms
	Combining Clock Analysis with Aliasing Analysis

	The Code Optimizer
	Results
	Related Work
	Conclusions and Future Work
	References

	Implementation and Use of Transactional Memory with Dynamic Separation
	Introduction
	Dynamic Separation
	Implementing Dynamic Separation in C#
	Dynamic Separation in C#
	Implementation in Bartok-STM

	Dynamically Checking Correct Usage
	Evaluation
	Using Dynamic Separation with Atomic Blocks
	Related Work
	Conclusion
	References

	Exploiting Speculative TLP in Recursive Programs by Dynamic Thread Prediction
	Introduction
	Related Work
	The {\sf SPRP} Approach
	Helper Thread
	Boundaries or Lifetimes ofWorker Threads
	Validations of Predicted Calls
	Memory Dependence Speculations

	Construction of Helper Threads
	Misprediction Recovery
	Recovering the State ofWorker Threads
	Recovering the State of Helper Thread

	Experimental Results
	Benchmarks
	Performance and Analysis
	Dynamic Prediction and Static Prediction

	Conclusion
	References

	Live Debugging of Distributed Systems
	Introduction
	Design of MaceODB
	Properties
	Specifying Properties
	Centralized Property Evaluation in MaceODB
	Decentralized Property Evaluation in MaceODB
	Globally Consistent Snapshots

	Implementation of MaceODB
	Centralized Implementation
	Decentralized Implementation

	Experiences Using MaceODB
	RandTree
	Chord

	Performance Evaluation
	MaceODB Overhead
	Evaluating Different Types of Properties

	Related Work
	Conclusions
	References

	Parsing C/C++ Code without Pre-processing
	Introduction
	Background
	{\tt #include}
	{\tt #ifdef}
	{\tt #define} and Macro Uses

	The Yacfe Engine
	Grammar Extensions and Ambiguities
	Heuristics and Views
	Configuration File and Extensibility
	Other Techniques

	UsingYacfe
	Evaluation
	Related Work
	Conclusion
	References

	Faster Scannerless GLR Parsing
	Introduction
	BenchmarkingSRNGLR
	SGLR and RNGLR
	SRNGLR
	Construction of ϵ-Trees
	Restrictions
	Priorities
	Preferences
	Rejects

	Related Work
	Conclusions
	References

	Decorated Attribute Grammars: Attribute Evaluation Meets Strategic Programming
	Introduction
	Attribute Grammars
	Pattern-Based Attribute Grammars
	Copy Rules

	Decorators
	Basic Attribute Propagation Operations
	Attribute Propagation Using Decorators

	Applications
	Constraints and Error Reporting
	Name and Type Analysis
	Flow Analysis

	Implementation
	Related Work
	Conclusions and Future Work
	References

	SSA Elimination after Register Allocation
	Introduction
	Example
	CSSA Form and Spartan Parallel Copies
	From Windmills to Cycles and Paths
	SSA Elimination
	Optimizations
	Store Hoisting
	Load Lowering
	Memory Coalescing

	Experimental Results
	Conclusion
	References

	Register Spilling and Live-Range Splitting for SSA-Form Programs
	Introduction
	The Min Algorithm and Local Register Allocation
	Overview
	A Min Algorithm for CFGs
	Global Next-Use Distances
	Initialization of the Register Set
	Connecting a Block to Its Predecessors
	Retaining the SSA Form

	Evaluation
	Runtime of the Algorithm
	Code Quality

	Related Work
	Conclusions
	References

	Loop-Aware Instruction Scheduling with Dynamic Contention Tracking for Tiled Dataflow Architectures
	Introduction
	Background
	WaveScalar Architecture
	Hierarchical Instruction Scheduling Algorithm

	Enhanced Hierarchical Instruction Scheduling
	Loop Awareness
	Dynamic Contention Tracking
	Implementation of Dynamic Contention Tracking Algorithm

	Experimental Evaluation and Results
	Intra-domain Communication
	ALU Contention
	IPC

	Related Work
	Spatial Path Scheduling Algorithm
	Instruction Scheduling for Clustered VLIW

	Conclusion
	References

	Scheduling Tasks to Maximize Usage of Aggregate Variables in Place
	Introduction
	The LabVIEW Language
	Overview
	The NI In-Placeness Heuristic

	Problem Description
	Program Graph
	In-Placeness Opportunities
	Optimization Objective and Constraints

	Greedy In-Place Algorithm
	Constructing the Opportunities Heap
	Constructing the Initial Graph
	Selecting In-Placeness Opportunities
	Updating the Scheduling Graph
	Loops and Shift Registers

	Experimental Results
	Random Graph Benchmarks
	LabVIEW Application Benchmarks

	Related Work
	Conclusions and Future Work
	References

	Dynamic Look Ahead Compilation: A Technique to Hide JIT Compilation Latencies in Multicore Environment
	Introduction
	Model
	Dynamic Look Ahead Compilation
	Applicative Scenario and Technique
	Execution Trace Prediction
	Hot-Spots Detection

	Experimental Results
	Related Works
	Conclusions
	References

	Precise Management of Scratchpad Memories for Localising Array Accesses in Scientific Codes
	Introduction
	Related Work
	Prerequisites
	The Polyhedron Model
	Z-Polyhedra

	Locality Transformation
	The New Location of Array Elements
	Localisation Based on Access Instances
	Localisation Based on Dependences
	Ordering the Reorganisation
	Code Generation Considerations

	Examples
	Conclusions
	References

	Blind Optimization for Exploiting Hardware Features
	Introduction
	Motivation
	Approach
	Space of Program Variants
	Optimization Objective
	Optimization Strategy

	Implementation
	Variant Space
	Optimization Objective
	Optimization Strategy

	Methodology
	Results
	Are Programs Amenable to Code- and Global Data-Layout Optimization?
	Is the Fastest Variant on One Input the Fastest Variant on Another?
	Do Our Results Generalize across Machines?
	Do Our Results Generalize across Compilers?

	Discussion
	Related Work
	Optimization Space Exploration
	Machine Learning to Derive Predictive Heuristics
	Search-Based Optimizations
	Knowledge-Based Optimizations

	Conclusions
	References

	How to CPS Transform a Monad
	Introduction
	Two Strict Languages with Monads
	CPS Transformation
	The Source Language
	CPS Transformation of Monadic Expressions
	Simulation and Indifference

	Alternative CPS Transformation
	Direct-Style Translation
	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

