Oege de Moor
Michael I. Schwartzbach (Eds.)

Compiler
Construction

18th International Conference, CC 2009

Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009
York, UK, March 2009, Proceedings

LNCS 5501

Practice of
Softwa re

2009

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5501

Oege de Moor Michael I. Schwartzbach (Eds.)

Compiler
Construction

18th International Conference, CC 2009
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009

York, UK, March 22-29, 2009
Proceedings

@ Springer

Volume Editors

Oege de Moor

Oxford University Computing Laboratory, Wolfson Building
Parks Road, Oxford OX1 3QD, UK

E-mail: oege @comlab.ox.ac.uk

Michael I. Schwartzbach

Aarhus University, Department of Computer Science
Aabogade 34, 8200 Aarhus N., Denmark

E-mail: mis@cs.au.dk

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.3.4,D.2.2,D.2.4,D.2.5,D.3.3
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-00721-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00721-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12630653 06/3180 543210

Foreword

ETAPS 2009 was the 12th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 22 satellite workshops (ACCAT, ARSPA-WITS, Bytecode, COCV,
COMPASS, FESCA, FInCo, FORMED, GaLoP, GT-VMT, HFL, LDTA, MBT,
MLQA, OpenCert, PLACES, QAPL, RC, SafeCert, TAASN, TERMGRAPH,
and WING), four tutorials, and seven invited lectures (excluding those that were
specific to the satellite events). The five main conferences received 532 submis-
sions (including 30 tool demonstration papers), 141 of which were accepted (10
tool demos), giving an overall acceptance rate of about 26%, with most of the
conferences at around 25%. Congratulations therefore to all the authors who
made it to the final programme! I hope that most of the other authors will still
have found a way of participating in this exciting event, and that you will all
continue submitting to ETAPS and contributing towards making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2009 was organised by the University of York in cooperation with
> European Association for Theoretical Computer Science (EATCS)

> European Association for Programming Languages and Systems (EAPLS)
> European Association of Software Science and Technology (EASST)

VI Foreword

and with support from ERCIM, Microsoft Research, Rolls-Royce, Transitive,
and Yorkshire Forward.
The organising team comprised:

Chair Gerald Luettgen

Secretariat Ginny Wilson and Bob French
Finances Alan Wood

Satellite Events Jeremy Jacob and Simon O’Keefe
Publicity Colin Runciman and Richard Paige
Website Fiona Polack and Malihe Tabatabaie.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Luca de Alfaro (Santa Cruz), Roberto
Amadio (Paris), Giuseppe Castagna (Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (London), Hartmut Ehrig (Berlin), Javier Esparza (Munich), Jose
Fiadeiro (Leicester), Andrew Gordon (MSR Cambridge), Rajiv Gupta (Arizona),
Chris Hankin (London), Laurie Hendren (McGill), Mike Hinchey (NASA God-
dard), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen), Paul Klint
(Amsterdam), Stefan Kowalewski (Aachen), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Gerald Luettgen (York), Rupak Majumdar (Los Ange-
les), Tiziana Margaria (Gottingen), Ugo Montanari (Pisa), Oege de Moor (Ox-
ford), Luke Ong (Oxford), Catuscia Palamidessi (Paris), George Papadopoulos
(Cyprus), Anna Philippou (Cyprus), David Rosenblum (London), Don Sannella
(Edinburgh), Joao Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita
Stevens (Edinburgh), Gabriel Taentzer (Marburg), Déniel Varré (Budapest),
and Martin Wirsing (Munich).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the Organising Chair of ETAPS 2009, Gerald
Luettgen, for arranging for us to hold ETAPS in the most beautiful city of York.

January 2009 Vladimiro Sassone, Chair
ETAPS Steering Committee

Preface

This volume contains the papers presented at CC 2009, the 18th International
Conference on Compiler Construction held on March 23-24 in York, UK as part
of the Joint European Conference on Theory and Practice of Software (ETAPS
2009). Papers were solicited from a wide range of areas including traditional
compiler construction, compiler analyses, runtime systems and tools, program-
ming tools, techniques for specific domains, and the design and implementation
of novel language constructs. The submissions and the papers in this volume
reflect this variety.

There were 72 submissions. Each submission was reviewed by at least three
Programme Committee members and was subjected to several rounds of thor-
ough discussions, and in some cases additional expert reviews were obtained.
The PC finally decided to accept 18 research papers.

Many people contributed to the success of this conference. First of all, we
would like to thank the authors for submitting papers of high quality. We are
also grateful to the members of the Programme Committee and to the external
reviewers for their substantive and insightful reviews. Also, thanks go to the
developers and supporters of the EasyChair conference management systems for
making life so much easier for the authors and the Programme Committee.

CC 2009 was made possible by the ETAPS Steering Committee and the
Local Organizing Committee. Finally, we are grateful to Vivek Sarkar for giving
the CC 2009 invited talk entitled Challenges in Code Optimization of Parallel
Programs.

January 2009 Michael Schwartzbach
Oege de Moor

Conference Organization

Programme Chairs

Oege de Moor

Michael I. Schwartzbach

Programme Committee

Silvia Breu

Manuel Chakravarty
Satish Chandra
Michael Franz

Jan Heering

Paul Kelly

Viktor Kuncak
Sorin Lerner
Yanhong Annie Liu
Ondrej Lhotak
Oege de Moor

Pierre-Etienne Moreau

Lori Pollock
Markus Pueschel
Mooly Sagiv
Wolfram Schulte

Michael I. Schwartzbach

Yannis Smaragdakis
Zhendong Su
Don Syme

Reviewers

Amaral, J. Nelson
Arnold, Mat
Balland, Emilie
Bird, Christian
Bouchez, Florent
Brauner, Paul
Bravenboer, Martin
Burckel, Serge
Chang, Mason
Chugh, Ravi

University of Cambridge, UK

University of New South Wales, Australia

IBM Research, New York
UC Irvine, USA

CWI, The Netherlands
Imperial College, UK
EPFL, Switzerland

University of California at San Diego, USA

SUNY at Stony Brook, USA
University of Waterloo, Canada
Oxford University, UK

INRIA Nancy, France

University of Delaware, USA
Carnegie Mellon University, USA
Tel-Aviv University, Israel
Microsoft Research Redmond, USA
University of Aarhus, Denmark
University of Oregon, USA

UC Davis, USA

Microsoft Research Cambridge, UK

Cintra, Marcelo
Cunei, Antonio
Danvy, Olivier

Ditu, Gabriel

Dor, Nurit

Edwards, Stephen A.
Ernst, Erik

Field, John

Fink, Stephen
Franchetti, Franz

X Organization

Gabel, Mark

Gal, Andreas
Gfeller, Sebastian
Gorbovitski, Michael
Hu, Zhenjiang
Huang, Shan Shan
Jackson, Todd
Jiang, Lingxiao
Keller, Gabriele
Klint, Paul

Kopetz, Radu
Lashari, Ghulam
Lee, Sean
Leshchinskiy, Roman
Lev-Ami, Tal
Lindig, Christian
Liu, Xuezheng
Lokhmotov, Anton
Manevich, Roman
de Mesmay, Frederic
Message, Robin
Mullins, Robert
Naeem, Nomair
Parkinson, Matthew
Pearce, David
Piskac, Ruzica
Rabbah, Rodric

Reilles, Antoine
Rinetzky, Noan
Rothamel, Tom
Russell, Francis
Salamat, Babak
Seyster, Justin
Sittampalam, Ganesh
Sridharan, Manu
Suter, Philippe
Swierstra, Doaitse
Tatlock, Zachary
Tekle, Tuncay
Theoduloz, Gregory
Van Wyk, Eric
Vechev, Martin
Vinju, Jurgen
Voronenko, Yevgen
Wagner, Gregor
Wang, Liqgiang
Wies, Thomas
Wilhelm, Reinhard
Wimmer, Christian
Winwood, Simon
Yahav, Eran

Yermolovich, Alexander

Yohan, Boichut

Table of Contents

Challenges in Code Optimization of Parallel Programs
(Tnvited Talk)o
Vivek Sarkar

Extensible Proof-Producing Compilation
Magnus O. Myreen, Konrad Slind, and Michael J.C. Gordon

From Specification to Optimisation: An Architecture for Optimisation
of Java Bytecode. i
Richard Warburton and Sara Kalvala

A Framework for Exploring Optimization Properties
Min Zhao, Bruce R. Childers, and Mary Lou Soffa

Compile-Time Analysis and Specialization of Clocks in Concurrent
Programs
Nalini Vasudevan, Olivier Tardieu, Julian Dolby, and
Stephen A. Edwards

Implementation and Use of Transactional Memory with Dynamic
SEPATALION . ottt
Martin Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and

Michael Isard

Exploiting Speculative TLP in Recursive Programs by Dynamic Thread
Prediction
Lin Gao, Lian Li, Jingling Xue, and Tin-Fook Ngai

Live Debugging of Distributed Systems
Darren Dao, Jeannie Albrecht, Charles Killian, and Amin Vahdat

Parsing C/C++ Code without Pre-processing
Yoann Padioleau

Faster Scannerless GLR Parsing
Giorgios Economopoulos, Paul Klint, and Jurgen Vinju

Decorated Attribute Grammars: Attribute Evaluation Meets Strategic
Programming.
Lennart C.L. Kats, Anthony M. Sloane, and Eelco Visser

SSA Elimination after Register Allocation.............
Fernando Magno Quintdo Pereira and Jens Palsberg

17

32

48

63

78

94

XII Table of Contents

Register Spilling and Live-Range Splitting for SSA-Form Programs. 174
Matthias Braun and Sebastian Hack

Loop-Aware Instruction Scheduling with Dynamic Contention Tracking
for Tiled Dataflow Architectures 190
Muhammad Umar Farooq and Lizy K. John

Scheduling Tasks to Maximize Usage of Aggregate Variables in Place ... 204
Samah Abu-Mahmeed, Cheryl McCosh, Zoran Budimlic,
Ken Kennedy, Kaushik Ravindran, Kevin Hogan, Paul Austin,
Steve Rogers, and Jacob Kornerup

Dynamic Look Ahead Compilation: A Technique to Hide JIT

Compilation Latencies in Multicore Environment 220
Simone Campanoni, Martino Sykora, Giovanni Agosta, and
Stefano Crespi Reghizzi

Precise Management of Scratchpad Memories for Localising Array
Accesses in Scientific Codes 236
Armin Groflinger

Blind Optimization for Exploiting Hardware Features................. 251
Dan Knights, Todd Mytkowicz, Peter F. Sweeney,
Michael C. Mozer, and Amer Diwan

How to CPS Transforma Monad. 266
Annette Bienitusa and Peter Thiemann

Author Index 281

Challenges in Code Optimization
of Parallel Programs

Vivek Sarkar

Rice University

Abstract. Code optimization has a rich history that dates back over
half a century, and includes deep innovations that arose in response to
changing trends in hardware and programming languages. These inno-
vations have contributed significantly to programmer productivity by
reducing the effort that programmers spend on hand-implementing code
optimizations and by enabling code to be more portable. Often these
innovations were accompanied by paradigm shifts in the foundations of
compilers led by the introduction of new ideas such as interprocedural
whole program analysis, coloring-based register allocation, static single
assignment form, array dependence analysis, pointer alias analysis, loop
transformations, adaptive profile-directed optimizations, and dynamic
compilation.

In this talk, we claim that the current multicore trend in the computer
industry is forcing a new paradigm shift in compilers to address the
challenge of code optimization of parallel programs, regardless of whether
the parallelism is implicit or explicit in the programming model. All
computers — embedded, mainstream, and high-end — are now being
built from multicore processors with little or no increase in clock speed
per core. This trend poses multiple challenges for compilers for future
systems as the number of cores per socket continues to grow, and the
cores become more heterogeneous. In addition, compilers have to keep
pace with a proliferation of new parallel languages and libraries.

To substantiate our claim, we first highlight some of the anomalies
that arise when classical techniques from sequential code optimization
are applied to parallel code. We then examine the historical foundations
of code optimization including intermediate representations (IR’s), ab-
stract execution models, legality and cost analyses of IR transformations
and identify paradigm shifts that will be necessary to support optimiza-
tion of parallel code. We pay special attention to memory consistency
models and their impact on code optimization. Finally, we summarize
the approach to code optimization of parallel programs being taken in
the Habanero Multicore Software Research project at Rice University.

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, p. 1, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Extensible Proof-Producing Compilation

Magnus O. Myreen!, Konrad Slind?, and Michael J.C. Gordon'

! Computer Laboratory, University of Cambridge, Cambridge, UK
2 School of Computing, University of Utah, Salt Lake City, USA

Abstract. This paper presents a compiler which produces machine code
from functions defined in the logic of a theorem prover, and at the same
time proves that the generated code executes the source functions. Un-
like previously published work on proof-producing compilation from a
theorem prover, our compiler provides broad support for user-defined
extensions, targets multiple carefully modelled commercial machine lan-
guages, and does not require termination proofs for input functions. As
a case study, the compiler is used to construct verified interpreters for
a small LISP-like language. The compiler has been implemented in the
HOL4 theorem prover.

1 Introduction

Compilers pose a problem for program verification: if a high-level program is
proved correct, then the compiler’s transformation must be trusted in order for
the proof to carry over to a guarantee about the generated executable code. In
practice there is also another problem: most source languages (C, Java, Haskell
etc.) do not have a formal semantics, and it is therefore hard to formally state
and verify properties of programs written in these languages.

This paper explores an approach to compilation aimed at supporting program
verification. We describe a compiler which takes as input functions expressed in
the logic of a theorem prover, compiles the functions to machine code (ARM,
x86 or PowerPC) and also proves that the generated code executes the supplied
functions. For example, given function f as input

flr1) =if r1 <10 then ry else letry =71 — 10 in f(r1)

the compiler can generate ARM machine code

E351000A L: cmp ri1,#10
2241100A subcs rl,rl,#10
2AFFFFFC bcs L

and automatically prove a theorem which certifies that the generated code ex-
ecutes f. The following theorem states, if register one (rl) initially holds value
r1, then the code will leave register one holding value f(r1). The theorem is ex-
pressed as a machine-code Hoare triple [I7] where the separating conjunction ‘x’
can informally be read as ‘and’.

{rl vy x pc pxs} p:E3510004,22411004, 2AFFFFFC {rl f(r1) * pc (p+12) *xs}

0. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 2{16] 2009.
© Springer-Verlag Berlin Heidelberg 2009

Extensible Proof-Producing Compilation 3

The fact that f is expressed as a function in the native language of a theorem
prover means that it has a precise semantics and that one can prove proper-
ties about f, e.g. one can prove that f(z) = x mod 10 (here mod is modulus
over unsigned machine words). Properties proved for f carry over to guarantees
about the generated machine code via the certificate proved by the compiler.
For example, one can rewrite the theorem from above to state that the ARM
code calculates 1 mod 10:

{rl ry*pcp*s} p:E351000A,2241100A, 2AFFFFFC {rl (r; mod 10) * pc (p+12) s}

Proof-producing compilation from a theorem prover has been explored before
by many, as will be discussed in Section [fl The contributions that distinguish
the work presented here are that the compiler:

1. targets multiple, carefully modelled, commercial machine languages (namely
ARM, PowerPC and x86, as modelled by Fox [7], Leroy [11] and Sarkar [6]);

2. does not require the user to prove termination of the input functions (a re-
striction posed by the theorem prover in similar work by Li et al. [T2/T3/T4]);

3. can, without any added complexity to the certification proof, handle a range
of optimising transformations (Section [E); and

4. supports significant user-defined extensions to its input language (Section
BI); extensions which made it possible to compile interpreters for a small
LISP-like language as a case study (Section [H).

The compile uses a functional input, which is meant to either be extended
directly by the user, as discussed in Section[3.1] or used as a back-end in compilers
with more general input languages, e.g. [SIT3IT4].

This paper builds on the authors’ work on post hoc verification of realistically
modelled machine code [IOJITIE], and certifying compilation [SIT2T3I14].

2 Core Functionality

The compiler presented in this paper accepts tail-recursive functions as input,
functions defined as recursive equations ‘f(...) = ...” in a format described
in Section 2Il As output the compiler produces machine code together with a
correctness certificate, a theorem which states that the generated machine code
executes the function given as input.

The overall compilation algorithm can be broken down into three stages:

1. code generation: generates, without proof, machine code from input f;
. decompilation: derives, via proof, a function f’ describing themachine code;
3. certification: proves f = f'.

N

The remaining subsections describe the input language and code generation
that make proving f = f’ feasible, as well as the mechanism by which f’ is
derived. Section [3] describes extensions to the core algorithm.

! The HOL4 source is at http://hol.sf.net/ under HOL /examples/machine-code.

4 M.O. Myreen, K. Slind, and M.J.C. Gordon

2.1 Input Language

The compiler’s input language consists of let-expressions, if-statements and tail-
recursion. The language restricts variable names to correspond to names of reg-
isters or stack locations.

The following grammar describes the input language. Let r range over reg-
ister names, rq, 71, T2, etc., and s over stack locations, s1, S2, S3 etc., m over
memory modelling functions (mappings from aligned 32-bit machine words to
32-bit machine words), f over function names, g over names of already compiled
functions, and 45, i7, ig and i3 over unsigned words of size 5-, 7-, 8- and 32-bits,
respectively. Bit-operators &, 77, !l <, > are and, xor, or, left-shift, right-shift.
Operators suffixed with .” are signed-versions of those without the suffix.

input ::= f(v,v,...,v) = rhs

rhs ::=let r = exp in rhs

let s =17 inrhs

let m = m[address — r] in rhs

let (v,v,...,v) = g(v,v,...,v) in rhs

if guard then rhs else rhs

f(v,v,...,v)
(v,v,...,0)
expi=a | x| 8| iz |z binop x| maddress | © K is | x> i5 | 2> 15
binop :=+ | — | x | div| & | 77| !l

empr=<|<|>|>|< |< > |> =
guard == - guard | guard A guard | guard V guard | x emp x| x & =0

address =1 | r+i7 | r—iy
x =71
va=r|s|m

This input language was designed to be machine independent; programs con-
structed from this grammar can be compiled to any of the target languages:
ARM, x86 and PowerPC. However the input language differs for each target in
the number of registers available (rg...r12 for ARM, rg...r¢ for x86 and rg...rs;
for PowerPC) and some detailed restrictions on the use of x and div.

2.2 Code Generation

The input language was designed to mimic the operations of machine instructions
in order to ease code generation. Each let-expression usually produces a single
instruction, e.g.

let 3 = r3 + 1o in generates ARM code add r3,r3,r2
let r3 = r3 + 1o in generates x86 code add ebx,edx
let 13 = r3 + 7o in generates PowerPC code add 3,3,2

Extensible Proof-Producing Compilation 5

In some cases one let-expression is split into a few instructions, e.g.

let r3 =19 —ro in generates x86 code mov ebx,eax
sub ebx,edx

let 73 = 5000 in generates ARM code mov r3,#19
mov r3,r3,1sl 8
add r3,r3,#136

The code generator was programmed to use a few assembly tricks, e.g. on x86
certain instances of addition, which would normally require two instructions (mov
followed by add), can be implemented as a single load-effective-address lea:

let 13 = 1o + 72 in generates x86 code lea ebx, [eax+edx]
A combination of compare and branch are used to implement if-statements, e.g.

if r3 =45 then ... else ... generates ARM code cmp r3,#45
bne L1

Function returns and function calls generate branch instructions.

The compiler generates a list of assembly instructions, which is translated into
machine code using off-the-shelf assemblers: Netwide Assembler nasm [I] for x86
and the GNU Assembler gas [2] for ARM and PowerPC. Note that these tools
do not need to be trusted. If incorrect code is generated then the certification
phase, which is to prove the correctness certificate, will fail.

2.3 Proving Correctness Theorem

The theorem certifying the correctness of the generated machine code is proved
by first deriving a function f’ describing the effect of the generated code, and
then proving that f’ is equal to the original function to be compiled. Function f’
is derived using proof-producing decompilation [18]. This section will illustrate
how decompilation is used for compilation and then explain decompilation.

Example. Given function f, which traverses rg steps down a linked-list in m,

f(ro,mi,m) =
if ro = 0 then (rg,r1,m) else
let r1 = m(ry) in
let rg =79 —1in
f(r()urlvm)

Code generation produces the following x86 code.

0: 85C0 Ll: test eax, eax
2: 7405 jz L2

4: 8B09 mov ecx, [ecx]
6: 48 dec eax

7: EBF7 jmp L1

L2:

6 M.O. Myreen, K. Slind, and M.J.C. Gordon

Proof-producing decompilation is applied to the generated machine code. The
decompiler takes machine code as input and produces a function f’ as output,

f'(eax, ecx,m) =
if eax & eax = 0 then (eax, ecx,m) else
let ecx = m(ecx) in
let eax = eax — 1 in
f'(eaz, ecz, m)

together with a theorem (expressed as a machine-code Hoare triple [I7U18]) which
states that f/ accurately records the update executed by the machine code. The
decompiler derives f’ via proof with respect to a detailed processor model written
by Sarkar [6]. Here eip asserts the value of the program counter.

fpre(eaz, ecx,m) =

{ (eax, ecx, m) is (eax, ecx,m) * eip px s }

p : 85C074058B0948EBF7

{ (eax,ecx,m) is f'(eazx, ecx,m) * eip (p+9) * s }

The decompiler also automatically defines f,,., which is a boolean-valued
function that keeps track of necessary conditions for the Hoare triple to be valid
as well as side-conditions that are needed to avoid raising hardware exceptions. In
this case, ecx is required to be part of the memory segment modelled by function
m and the underlying model requires ecx to be word-aligned (ecx &3 = 0),
whenever eazx & eax # 0.

foreleaz, ecx,m) =
if eax & eax = 0 then true else

ore(eaz—1,m(ecx),m) A ecx € domainm A (ecx & 3 =0)

Next the compiler proves f = f’. Both f and f’ are recursive functions; thus
proving f = f’ would normally require an induction. The compiler can avoid an
induction since both f and f’ are defined as instances of tailrec:

tailrec © = if (G x) then tailrec (F' z) else (D x)

The compiler proves f = f’ by showing that the components of the tailrec
instantiation are equal, i.e. for f and f’, as given above, the compiler only needs
to prove the following. (f},. is not needed for these proofs.)

G: (A(ro,r1,m). ro # 0) = (Aeazx, ecx,m). eax & eax # 0)
D: (A(ro,r1,m). (ro,m1,m))

(Meaz, ecx,m). (eax,ecx,m))

F: (Aro,ri,m). (ro—1,m(r1),m)) = (Aeax,ecx,m). (eax—1, m(ecx),m))

The code generation phase is programmed in such a way that the above compo-
nent proofs will always be proved by an expansion of let-expressions followed by
rewriting with a handful of verified rewrite rules that undo assembly tricks, e.g.
Vw. w & w = w.

Extensible Proof-Producing Compilation 7

The precondition f,,, is not translated, instead f. is defined to be f,,.. The
compiler proves the certificate of correctness by rewriting the output from the
decompiler using theorems f’ = f and f,.. = fpre. The example results in:

fpre(eax, ecx,m) =

{ (eax, ecx,m) is (eax, ecx, m) * eip px s }

p: 86C074058B0948EBF7

{ (eax, ecx,m) is f(eax, ecx, m) * eip (p+9) xs }

Decompilation. The proof-producing decompilation, which was used above, is
explained in detail in [I8]. However, a brief outline will be given here.
Decompilation starts by composing together Hoare triples for machine in-

structions to produce Hoare triples describing one pass through the code. For
the above x86 code, successive compositions collapse Hoare triples of the indi-
vidual instructions into two triples, one for the case when the conditional branch
is taken and one for the case when it is not.

eaxr & eaxr =0 =

{ (eax,ecx, m) is (eax, ecx, m) * eip px s }

p : 856C074058B0948EBF7

{ (eax, ecx, m) is (eax, ecx, m) * eip (p+9) xs }

eax & eax # 0 A ecx € domainm A (ecx &3 =0) =
{ (eax, ecx, m) is (eax, ecx, m) * eip px s }

p : 856C074058B0948EBF7

{ (eax,ecx, m) is (eax—1,m(ecx), m) x eip p*xs}

Using these one-pass theorems, the decompiler instantiates the following loop
rule to produce function f’ and the certificate theorem. If F' describes a looping
pass, and D is a pass that exits the loop, then tailrec x is the result of the loop:

Vresres' c. (Vx. Px AGx = {resz}c{res (F x)}) A
(Vz. Pz A—(G z) = {res x} c{res’ (D z)}) =
(Vz. pre x = {res x} c{res’ (tailrec z)})

Here pre is the recursive function which records the side-conditions that need to
be met (e.g. in this case P is used to record that ecz needs to be aligned).

prex =P x A (G x = pre (F z))

For the above one-pass Hoare triples to fit the loop rule, the decompiler instan-
tiates G, I, D, P, res and res’ as follows:

G = Meax,ecx,m). (eax & eax # 0)

F = Xeax,ecx,m). (eax—1, m(ecx), m)

D = M\ eax,ecx,m). (eax,ecx,m)

P = Meax,ecx,m). (eax & eax # 0) = ecx € domain m A (ecx & 3 = 0)
res = A eax,ecx,m). (eax,ecx, m) is (eax,ecx,m) x eip p*s
res’ = A(eax,ecx,m). (eax,ecx,m) is (eax, ecx, m) * eip (p+9) x s

8 M.O. Myreen, K. Slind, and M.J.C. Gordon

3 Extensions, Stacks and Subroutines

The examples above illustrated the algorithm of the compiler based on simple
examples involving only registers and direct memory accesses. This section de-
scribes how the compiler supports user-defined extensions, stack operations and
subroutine calls.

3.1 User-Defined Extensions

The compiler has a restrictive input language. User-defined extensions to this
input language are thus vital in order to be able to make use of the features
specific to each target language.

User-defined extensions to the input language are made possible by the proof
method which derives a function f’ describing the effect of the generated code:
function f’ is constructed by composing together Hoare triples describing parts
of the generated code. By default, automatically derived Hoare triples for each
individual machine instruction are used. However, the user can instead supply
the proof method with alternative Hoare triples in order to build on previously
proved theorems.

An example will illustrate how this observation works in practice. Given the
following Hoare triple (proved in Section [Il) which shows that ARM code has
been shown to implement “r; is assigned r; mod 107,

{rl ry *xpc pxs} p:E351000A,22411004, 2AFFFFFC {rl (r1 mod 10) % pc (p+12) xs}
the code generator expands its input language for ARM with the following line:
rhs ::= let 11 =ry mod 10 in rhs

Now when a function f is to be compiled which uses this feature,

flri,ra,rs) =letry =71 +ro in
let ry =71 + 73 in
let 1 =r1 mod 10 in
1

the code generator implements “let 1 = r; mod 10 in” using the machine code
(underlined below) found inside the Hoare triple. The other instructions are
E0811002 for add r1,r1,r2 and E0811003 for add rl,r1,r3.

E0811002 E0811003 E351000A 2241100A 2AFFFFFC

The compiler would now normally derive f' by composing Hoare triples for
the individual machine instructions, but in this case the compiler considers the
underlined code as a ‘single instruction’ whose effect is described by the supplied
Hoare triple. It composes the following Hoare triples, in order to derive a Hoare
triple for the entire code.

{rlry*r2ro*pcp} p:E0811002 {rl (r1+re) *r2 ry x pc (p+4)}

Extensible Proof-Producing Compilation 9

{rlry xr3r3*xpcp} p:E0811003 {rl (ri+rs) *r3 rs*pc (p+4)}
{rl ry *xpc pxs} p:E351000A,22411004, 2AFFFFFC {rl (r4 mod 10) % pc (p+12) xs}

The resulting f’ is trivially equal to f and thus the resulting Hoare triple states
that the generated code actually executes f.

{rlry «r2rogxr3rg*xpcp*s}
p : E0811002,E0811003, E351000A, 22411004, 2AFFFFFC
{rl f(r1,r2,73) *r2 72 x r3 r3 x pc (p+20) * s}

It is important to note that the Hoare triples supplied to the compiler need not
concern registers or memory locations, instead more abstract Hoare triples can
be supplied. For example, in Section [l the compiler is given Hoare triples that
show how basic operations over LISP s-expressions can be performed. The LISP
operation car is implemented by ARM instruction E5933000. Here s-expressions
are defined as a data-type with type-constructors Dot (pairs), Num (numbers)
and Sym (symbols). Details are given in Section Bl

(3x y. v1 = Dot x y) =

{ lisp (a,1) (v1,v2,v3,v4,05,06) * pCp }

p : E5933000

{ lisp (a,1) (car vi,vs,v3,vq,v5,06) * pc (p +4) }
The above specification extends the ARM code generator to handle assignments
of car v to s-expression variable vy .

rhs ::= let vy = carwvy in rhs

3.2 Stack Usage

The stack can be used by assignments to and from variables sg, s1, s2 etc., e.g.
the following let-expressions correspond to machine code which loads register 1
from stack location 3 (three down from top of stack), adds 78 to register 1 and
then stores the result in stack location 2.
flri,s2,83) =let ry = s3 in
let 7y =71 + 78 in
let so =71 in
(71, 52, 83)
Internally stack accesses are implemented by supplying the decompiler with
specifications which specify stack locations using M-assertions (defined formally
in [I7], informally M x y asserts that memory location x holds value y), e.g. the
following is the specification used for reading the value of stack location 3 into
register 1. Register 13 is the stack pointer.

{rl r1 % r13 sp * M(sp+12) s3 * pc p}
p - E59D100C
{rl s3 % r13 sp* M(sp+12) s3 * pc (p+4)}

The postcondition for the certification theorem proved for the above function f:

{(r1,M(sp+8),M(sp+12)) is f(r1, s2,83) * r13 sp * pc (p+12) }

10 M.O. Myreen, K. Slind, and M.J.C. Gordon

3.3 Subroutines and Procedures

Subroutines can be in-lined or called as procedures. Each compilation adds a new
let-expression into the input languages of the compiler. The added let-expressions
describe the compiled code, i.e. they allow subsequent compilations to use the
previously compiled code. For example, when the following function (which uses
f from above) is compiled, the code for f will be in-lined as in Section B}

g(ri,r2, s2,83) = let (r1, s2, s3) = f(r1, 2, $3) in
let s =171 in
(T17T2782383)

Note that for simplicity, function calls must match the variable names used
when compiling the called function was compiled, e.g. a function compiled as
‘k(r1) = ...> cannot be called as ‘let ro = k(r3) in’ since the input is passed to
code implementing k in register 1 not in register 2.

If the compiler had been asked to compile f as a procedure, then the num-
bering of stack variables needs to be shifted for calls to f. Compiling f as a
procedure sandwiches the code for f between a push and pop instruction that
keep track of the procedure’s return address. When f accesses stack locations 2
and 3 (counting in pop-order), these are for caller g locations 1 and 2.

g(r1,72,81,52) = let (11, 51,52) = f(r1,s1,52) in
let s =171 in
(T17T2781382)

4 Optimising Transformations

Given a function f, the compiler generates code, which it decompiles to produce
function f’ describing the behaviour of the generated code. The code genera-
tion phase can perform any optimisations as long as the certification phase can
eventually prove f = f’. In particular, certain instructions can be reordered
or removed, and the code’s control flow can use special features of the target
language.

4.1 Instruction Reordering

Instruction reordering is a standard optimisation applied in order to avoid un-
necessary pipeline stalls. The compiler presented here supports instruction re-
ordering as is illustrated by the following example. Given a function f which
stores 11 into stack location ss, then loads 72 from stack location sg, and finally
adds r1 and rs.

flri,72,85,86) = let s5 =71 in
let 7o = sg in
let 1y =71+ 72 in
(TlaT2585786)

Extensible Proof-Producing Compilation 11

The code corresponding directly to f might cause a pipeline stall as the result
of the load instruction (let o = sg in) may not be available on time for the add
instruction (let 7y = 71 + ro in). It is therefore beneficial to schedule the load
instructions as early as possible; the generated code reduces the risk of a pipeline
stall by placing the load instruction before the store instruction:

f'(r1,re, 85,86) = let r9 = sg in
let s5 =71 in
let r1 =71 + 79 in
(r1,72, 85, S6)

Valid reorderings of instructions are unnoticeable after expansion of let-
expressions, thus the proof of f = f’ does not need to be smarter to handle
this optimisation.

4.2 Removal of Dead Code

Live-variable analysis can be applied to the code in order to remove unused or
dead code. In the following definition of f, the first let-expression is unnecessary.

f(ri,ma,85,86) =let r1 = s5 in
let 7o = sg in
let ry =ro +8in
(T17T2385786)

The generated code ignores the first let-expression and produces a function f’
which is, after expansion of let-expressions, identical to f.

4.3 Conditional Execution

ARM machine code allows conditional execution of nearly all instructions in
order to allow short forward jumps to be replaced by conditionally executed in-
structions (this reduces branch overhead). The compiler produces conditionally-
executed instruction blocks where short forward jumps would otherwise have
been generated. The functions decompiled from conditionally executed instruc-
tions are indistinguishable from those decompiled from code with normal jumps
(as can be seen in the examples of Section [1l and [F4)).

x86 supports conditional assignment using the conditional-move instruction
cmov. For x86, the compiler replaces jumps across register-register moves by
conditional-move instructions.

4.4 Shared Tails

The compiler’s input language supports if-statements that split control, but does
not provide direct means for joining control-flow. For example, consider

(if r1 = 0 then r2 := 23 else r2 := 56); rl := 4

12 M.O. Myreen, K. Slind, and M.J.C. Gordon

which can be defined either directly as function f with ‘shared tails’
f(ri,re) =if 71 =0 then let 7o =23 in let 11 =4 in (r1,72)
else let 7o = 56 in let r1 =4 in (r1,72)

or as function g with auxiliary function go compiled to be in-lined:

g(r1,r2) =let (r1,7m2) = ga(r1,72) inlet 1 =4 in (r1,72)

ga2(r1,72) =if 71 =0 then let 7o = 23 in (r1,72)
else let 7o = 56 in (r1,72)

Generating code naively for f would result in two instructions for let 7 = 4 in,
one for each branch. The compiler implements an optimisation which detects
‘shared tails’ so that the code for f will be identical to that produced for g. The
compiler generates the following ARM code for function ¢ (using conditional
execution to avoid inserting short jumps).

0: E3510000 cmp ri1,#0
4: 03A02017 moveq r2,#23
8: 13A02038 movne r2,#56
12: E3A01004 mov ril,#4

5 Compilation Example: Verified LISP Interpreter

The following example shows how one can utilise extensions to the input lan-
guage. A verified interpreter for a LISP-like language is constructed using com-
pilation. Details of the following section will be published as a separate paper.
The LISP interpreter constructed here operates over a simple date-type of

s-expressions: Dot x y is a pair, Num n is a number n, and Sym s is a symbol s,
in HOL4, s has type string. Basic operations are defined as follows:

car (Dotzy) = =z

cdr (Dot x y) = gy

conszy = Dotxy

plus (Num m) (Numn) = Num (m + n)

minus (Num m)

size (Num w

= o O

)

)
size (Sym s) =

)

size (Dot x y) = 1+ sizex +sizey

A new resource assertion lisp is defined which relates LISP objects to concrete
memory representations: lisp (a,l) (v1,ve, vs, v4, Vs, v6) states that a heap is lo-
cated at address a, has capacity I, and that s-expressions v1, vs, v3, V4, Vs, Ug
are stored in this heap. The definition of lisp is omitted in this presentation.

Extensible Proof-Producing Compilation 13

Machine code for basic operations has been proved (in various ways using
decompilation and compilation) to implement basic assertions, e.g. ARM code
for storing car v; into vy:

(3 y. v1 = Dotz y) =

{ lisp (a,) (v1,v2,v3,v4,05,06) * pCp }

p : E6933000

{ lisp (a,1) ((car v1), va, v3,v4,v5,06) *x pc (p+4) }

A memory allocator with a built-in copying garbage collector (a Cheney garbage
collector [4]) is used to implement creation of a new pair Dot vy va. The precon-
dition of this operation requires the heap to have enough space to accommodate
a new cons-cell.

(size v1 + size v + size v + size vy + size vs + size vg) < | =
{ ||Sp (a7 l) (vlu U2, U3, U4, U5, UG) *S*kpCcp }

P : ... the allocator code ...

{lisp (a,1) ((cons vy v2),va,v3,v4, V5, v6) * s * pc (p+ 328) }

When the above specifications are supplied to the compiler it knows what ma-
chine code to generate for two new commands: one for calculating car of v; and
one for storing cons vy vy into vy:

let v1 = car vy in let v1 = cons vy vy in

Once the compilers language had been extended with sufficiently many such
primitive operations, a LISP interpreter was compiled using our proof-producing
compiler. The top-level specification function defining a simple LISP interpreter
lisp eval is listed in Figure[ll When lisp eval is compiled, code is generated and
a theorem is proved which state that this LISP interpreter is implemented by
the generated machine code, in this case ARM code.

lisp eval pre(vy,va,vs, vq, U5, V6,1) =

{ lisp (a,1) (v1,v2,v3,v4,v5,06) * s pcp }

P : ... the generated code ...

{lisp (a,1) (lisp eval(vy,va,v3,v4,v5,V6,1)) *s* pc (p+ 3012) }

Here lisp eval pre has collected the various side-conditions that need to be true
for proper execution of the code.

6 Summary and Discussion of Related Work

This paper has described how an extensible proof-producing compiler can be
implemented using decompilation into logic [18]. The implementation required
only a light-weight certification phase (approximately 100 lines of ML code) to
be programmed, but still proves functional equivalence between the source and
target programs. In contrast to previous work [SIT2IT3T4], correctness proofs are
here separated from code generation.

14 M.O. Myreen, K. Slind, and M.J.C. Gordon

TASK_EVAL
TASK_CONT

Sym "nil"
sym n t n

lisp_lookup (v1,v2,v3,v4,v5,v6) = ...
lisp_evalO (v1,v2,v3,v4,v5,v6,1) =
lisp_evall (v1,v2,v3,v4,v5,v6,1)

lisp_eval (v1,v2,v3,v4,v5,v6,1) =
if v2 = TASK_EVAL then
let v2 = TASK_CONT in
if isSym vl then (* exp is Sym *)
let (v1,v2,v3,v4,v5,v6) = lisp_lookup (vi,v2,v3,v4,v5,v6) in
lisp_eval (vi,v2,v3,v4,v5,v6,1)
else if isDot vl then (* exp is Dot *)
let v2 = CAR v1 in
let vl = CDR v1 in
let (v1,v2,v3,v4,v5,v6,1) = lisp_evalO (v1,v2,v3,v4,v5,v6,1) in
lisp_eval (v1,v2,v3,v4,v5,v6,1)
else (x exp is Num *)
lisp_eval (vi1,v2,v3,v4,v5,v6,1)
else (x if v2 = TASK_CONT then *)
if v6 = Sym "nil" then (* evaluation complete *)
(v1,v2,v3,v4,v5,v6)
else (* something is still on the to-do list v6 *)
let (v1,v2,v3,v4,v5,v6,1) = lisp_evall (v1,v2,v3,v4,v5,v6,1) in
lisp_eval (v1,v2,v3,v4,v5,v6,1)

Fig. 1. The top-level definition of lisp eval in HOL4

For each run, the compiler generates code and then proves that the code is cor-
rect. This is an idea for which Pnueli et al. [20] coined the term translation valida-
tion. There are two basic approaches to translation validation: (1) code generation
is instrumented to generate proofs, and (2) code generation proceeds as usual then
the certification phase attempts to guess the proofs. Approach 1 is generally con-
sidered more feasible [21]. However, Necula [I9] showed that approach 2 is feasible
even for aggressively optimising compilers such as GNU gce [2]. Necula built into
his certification phase heuristics that attempt to guess which optimisations were
performed. The compiler presented here also implements approach 2, but restricts
the (initial) input language and the optimisations to such an extent that the cer-
tification phase does not need any guesswork.

An alternative to producing a proof for each run is to prove the compiler
correct. A recent, particularly impressive, milestone in compiler verification was
achieved by Leroy [I1], who proved the correctness of an optimising compiler
which takes a significant subset of C as input and produces PowerPC assembly
codd? as output. As part of this project Tristan and Leroy [22] verified multiple

2 The work presented here builds on Leroy’s specification of PowerPC assembly code.

Extensible Proof-Producing Compilation 15

translation validators. Other recent work is [TOTSITII3I5]. We chose not to verify
our compiler /translation validator, since our compiler constructs all of its proofs
in the HOL4 theorem prover. The trusted computing base (TCB) of our compiler
is HOL4 and the specifications of the target machine languages. It seems that the
user-defined extensions such as those in the LISP example would have been much
harder to implement in a verified compiler, since verifying a compiler involves
defining a deep embedding of the input language.

The VLISP project [9], which produced verified on-paper proofs for an im-
plementation of a larger subset of LISP, is related to the example above of con-
structing a verified LISP interpreter. The fact that the proof presented here is
mechanised and goes down to detailed models of commercial machine languages
distinguishes this work from the VLISP project which stopped at the level of
verified algorithms.

Acknowledgements. We thank Anthony Fox, Xavier Leroy and Susmit Sarkar
for allowing us to use their processor models for this work. We also thank Thomas

Tuerk, Aaron Coble and the anonymous reviewers for comments on earlier drafts.
The first author is grateful for funding from EPSRC, UK.

References

1. The Netwide Assembler, http://www.nasm.us/

2. The GNU Project. GCC, the GNU Compiler Collection, http://gcc.gnu.org/

3. Benton, N., Zarfaty, U.: Formalizing and verifying semantic type soundness of a
simple compiler. In: Leuschel, M., Podelski, A. (eds.) Principles and Practice of
Declarative Programming (PPDP), pp. 1-12. ACM, New York (2007)

4. Cheney, C.J.: A non-recursive list compacting algorithm. Commun. ACM 13(11),
677-678 (1970)

5. Chlipala, A.J.: A certified type-preserving compiler from lambda calculus to as-
sembly language. In: Programming Language Design and Implementation (PLDI),
pp. 54-65. ACM, New York (2007)

6. Crary, K., Sarkar, S.: Foundational certified code in a metalogical framework. Tech-
nical Report CMU-CS-03-108, Carnegie Mellon University (2003)

7. Fox, A.: Formal specification and verification of ARM6. In: Basin, D., Wolff, B.
(eds.) TPHOLSs 2003. LNCS, vol. 2758, pp. 25-40. Springer, Heidelberg (2003)

8. Gordon, M., Iyoda, J., Owens, S., Slind, K.: Automatic formal synthesis of hard-
ware from higher order logic. Electr. Notes Theor. Comput. Sci. 145, 27-43 (2006)

9. Guttman, J., Ramsdell, J., Wand, M.: VLISP: A verified implementation of scheme.
Lisp and Symbolic Computation 8(1/2), 5-32 (1995)

10. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine, and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619-695 (2006)

11. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: Principles of Programming Languages (POPL), pp. 42—
54. ACM Press, New York (2006)

12. Li, G.-D., Owens, S., Slind, K.: Structure of a proof-producing compiler for a
subset of higher order logic. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 205-219. Springer, Heidelberg (2007)

http://www.nasm.us/
http://gcc.gnu.org/

16

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M.O. Myreen, K. Slind, and M.J.C. Gordon

Li, G.-D., Slind, K.: Compilation as rewriting in higher order logic. In: Pfenning,
F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 19-34. Springer, Heidelberg (2007)

Li, G., Slind, K.: Trusted source translation of a total function language. In: Ra-
makrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 471-485.
Springer, Heidelberg (2008)

Meyer, T., Wolff, B.: Tactic-based optimized compilation of functional programs.
In: Fillidtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS,
vol. 3839, pp. 201-214. Springer, Heidelberg (2006)

Myreen, M.O., Fox, A.C.J., Gordon, M.J.C.: A Hoare logic for ARM machine
code. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 272-286.
Springer, Heidelberg (2007)

Myreen, M.O., Gordon, M.J.C.: A Hoare logic for realistically modelled machine
code. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568
582. Springer, Heidelberg (2007)

Myreen, M.O., Slind, K., Gordon, M.J.C.: Machine-code verification for multiple
architectures — An application of decompilation into logic. In: Formal Methods in
Computer Aided Design (FMCAD). IEEE, Los Alamitos (2008)

Necula, G.C.: Translation validation for an optimizing compiler. In: Programming
Language Design and Implementation (PLDI), pp. 83-94. ACM, New York (2000)
Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151-166. Springer, Heidelberg (1998)

Rinard, M.C.: Credible compilation. In: Jahnichen, S. (ed.) CC 1999. LNCS,
vol. 1575. Springer, Heidelberg (1999)

Tristan, J.-B., Leroy, X.: Formal verification of translation validators: a case study
on instruction scheduling optimizations. In: Principles of Programming Languages
(POPL), pp. 17-27. ACM, New York (2008)

From Specification to Optimisation:
An Architecture for Optimisation of
Java Bytecode

Richard Warburton! and Sara Kalvala?

! University of Warwick, Coventry, UK
R.L.M.Warburton@warwick.ac.uk
2 University of Warwick, Coventry, UK
Sara.Kalvala@warwick.ac.uk

Abstract. We present the architecture of the Rosser toolkit that allows
optimisations to be specified in a domain specific language, then com-
piled and deployed towards optimising object programs. The optimisers
generated by Rosser exploit model checking to apply dataflow analysis
to programs to find optimising opportunities. The transformational lan-
guage is derived from a formal basis and consequently can be proved
sound. We validate the technique by comparing the application of opti-
misers generated by our system against hand-written optimisations using
the Java based Scimark 2.0 benchmark.

1 Introduction

An optimisation phase is an integral part of most real-world compilers, and
significant effort in compiler development is spent in obtaining fast-running code.
This effort must be balanced with the need to ensure that optimisations do not
introduce errors into programs, and the desire to not worsen compilation time
significantly. Several publications, such as [8] have described the use of domain
specific languages, based on temporal logic, in order to describe optimisations.
Rosser allows the application of specifications of compiler optimisations to Java
Bytecode. Optimisations are matched against programs using model-checking,
and graph rewriting is used to actually modify the programs.

The contributions from the design of Rosser to the design of compilers include:

— An implementation that automatically generates optimisations from spec-
ifications and can be practically used against a real world programming
language.

— A novel intermediate representation of Java programs, that uses BDDs to
aid in symbolic model checking.

— A method of interactively and visually rewriting the control flow graph
(CFQG) of Java programs using the Rosser system.

— A case-study backed analysis of the performance ramifications of using model
checking for dataflow analysis compared with hand-written analysers.

0. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 17[31} 2009.
© Springer-Verlag Berlin Heidelberg 2009

18 R. Warburton and S. Kalvala

The remainder of this paper is structured as follows: we summarize the TRANS
language, discuss the design of Rosser, provide a brief explanation of the veri-
fication of soundness, discuss some experimental results, compare with related
work, and discuss ongoing work.

2 Background and Specification Language

2.1 Specification Language Overview

The design of a specification language for optimisations needs to satisfy many
constraints: the optimisations should be expressed in such a way that they are
easy to understand and their correctness verified, and it should be possible to
clearly express the conditions in which the optimisations apply.

In the TRANS language [7], the optimisations are represented through two
components: a rewrite rule and a side condition which indicates the situations
in which the rewrite can be applied safely. The specification of dead code elimi-
nation is shown in Other optimisations specified in TRANS include lazy
code motion, constant propagation, strength reduction, branch elimination, skip
elimination, loop fusion, and lazy strength reduction; further details of these can
be found in [4].

n:x:=e = skip
if - EX (E (- def(x) U use(x) A wnode(n))) @n

Fig. 1. Dead Code Elimination in TRANS

In order to use this language towards optimisation of Java programs, we re-
placed the original syntax for program fragments with code in Jimple, one of the
intermediate representations used in Soot [I8]. As such, the core of the rewrite
rules is based on standard programming syntax (assignment statements, go-to
and if statements, etc) and will therefore not be explained here. The syntax is
expanded with a few constructs to support meta-variables, representing either
syntactic fragments of the program or nodes of the CFG.

The side condition language is an extension of first order CTL, where formulae
are built up from basic predicates that describe properties of states. There are
two types of these basic predicates used to obtain information about a node
in the control flow graph; these are the node and stmt predicates. The formula
node(x) will hold at a node n in a valuation that maps n to z. The formula
stmt(s) will hold at a node n where the valuation makes the pattern s match
the statement at node n. As well as judgements about states the language can
make “global” judgements. For example, the formula ¢ @ n A conlit(c) states
that ¢ holds at n and c is a constant literal, throughout the program.

A logical judgement of the form: ¢ @ n states that the formula ¢ is satisfied at
node n of the control flow graph. We base our language for expressing conditions
on CTL [3], a path-based logic which can express many optimisations while still
being efficient to model-check. However, we modify the logic slightly to make

From Specification to Optimisation 19

it easier to express properties of programs: we include past temporal operators
(E and Z) and extend the next state operators (EX and AX) so that one can
specify what kind of edge they operate over. For example, the operators £.X .,
and AXprancn stand for “there exists a next state via a seq edge” and “for all
next states reached via a branch edge” respectively.

It is also possible to make use of user defined predicates via a simple macro
system. These can be used in the same way as core language predicates such as
use. They are defined by an equality between a named binding and the temporal
logic condition that the predicate should be ’expanded’ into.

Actions. A simple rewrite merely replaces the code at one node with new
code; however, most optimisations must actually change the structure of CFGs.
These structural changes are supported by four types of action: the replace
action which replaces a node with some sequence of nodes, the remove edge and
add edge actions which add and remove edges respectively and the split edge
action which inserts a node between two other nodes joined by an edge. All the
actions maintain the invariant that if the Dimple representation can generate
Jimple before the action has been performed, then it must do afterwards. This
motivates the choice of several specific actions, rather than unrestricted graph
rewriting.

Strategies. The TRANS language contains three strategies, that offer operators
for combining different transformation. The MATCH ¢ IN T strategy restricts
the domain of information in the transformation 7' by the condition ¢. The
Ty THEN T, strategy applies the sequential composition of 73 and 75. When
actions are applied normally, ambiguity with respect to what node actions and
rewrites are applied to are automatically resolved. In other words, if there are
several bindings that have the same value for a Node attribute that is being
used in a rewrite rule then only one of them is non-deterministically selected.
The APPLY ALL T strategy uses all of the valuations within transformation 7',
without this restriction.

2.2 Implementation Background

Since side conditions in TRANS specifications use temporal logic, a model check-
ing based approach is used to obtain the results of the analyses. The use of Binary
Decision Diagrams (BDDs), in both model-checking and data-flow analysis ap-
plications, has significantly reduced memory consumption [12], and improved
runtime performance.

To facilitate the use of a BDD representation of object programs, Rosser gen-
erates code in Jedd, an extension to Java that allows a high level representation
of BDDs [11]. Relations are introduced as a primitive type within Jedd, and
several operations, such as union, intersection, difference and comparison are
defined over them. BDDs can be directly coded as relations. Jedd has been
used as the basis for implementing inter-procedural data flow analysis [2]. The
operators of Jedd are summarised in [Table 1l

20 R. Warburton and S. Kalvala

Table 1. Jedd operations

Operation Comment

rz=0B Assigns the empty set to relation x

r=1B Assigns the set of all possible elements to relation x
(x=>)r projects attribute z away from relation r
(x=>y)r renames attribute z, from relation r to y
(x=>zy)r copies attribute x, from relation r to y

rl & r2 Intersection of relations r1 and r2

rl|r2 Union of relations r1 and 72

rl —r2 Set Difference of relations r1 and r2

ri{z} >< r2{y} Joins relations r1 and r2 where x equals y, projecting y
ri{z} <> r2{y} Joins relations r1 and 72 where x equals y, projecting z and y

3 Architecture of Rosser

3.1 Architectural Overview

The Rosser compiler framework comprises three components. A meta-compiler,
RosserC, translates TRANS specifications to produce the code for the optimis-
ing phase. Every optimisation specification is compiled into the general form
of finding satisfying valuations for its side condition, by application of its side
condition to the intermediate representation. The program generated (referred
to as RosserS) is loaded into the runtime framework and applied to a program
via the Soot framework.

Soot provides the program already translated into Jimple, where expressions
are represented as trees, at a Java-like level, and control flow at a lower level
utilising basic conditionals and goto statements [I7]. We introduce Dimple—a
representation equivalent to Jimple in overall structure, but using BDDs instead
of Plain Old Java Objects (POJOs) in order to implement the optimisations.
Dimple represents the relations between parents and children as Jimple expres-
sion trees. The translation between Jimple and Dimple is done through the
RosserF framework. Only parts of the program that are relevant to the optimi-
sations are translated, since only some components of the program need to be
pattern-matched. For example since we specify no inter-procedural optimisations
there is no representation of the class hierachy in our implementation.

These interactions are illustrated in

3.2 Representation of Programs in Dimple

The Dimple representation introduced in this paper offers a novel approach to
the intermediate representation of programs. Whilst BDDs have been used as
the basis of representing sets of data during dataflow analysis [2], they haven’t
been used to represent entire programs before.

The type system of Dimple is described through several domains:

OP consists of all operators represented in Jimple, for example addition, and
negation.

From Specification to Optimisation 21

RosserS:

(transformations) RosserC: Ctransformations) Gransformations)

[Trans] Trans — Jedd [Jedd] Jedd— Bytecode [Bytecode]

[Bytecode] [Bytecode]

Java Bytecode
Yy

SootFront-End \

RosserS:

RosserF:
Di 1 L
» Jimple — Dimple rmpie »C Optimiser)

Jimple

Jimple RosserF: Dimple

Jimple «+ Dimple

\
SootBack-End

> optimised Bytecode

Fig. 2. Architecture of the Rosser framework

ET is the edge type domain and contains three possible values: sequential,
branch and exception, and is used in pattern matching different edge.

Node lists every node in the control flow graph.

Call references every method invocation.

Value contains an entry for every possible value in the program, for example
the expression x + 1, contains and entry for x, 1 and x + 1.

summarises the translation of the syntactic components of programs
in Jimple. Recall that use and def are predicates that hold true if their argument
(a variable) is read from or written into at a given node. This fragment of
the translation presents the MustDef relation, while similar treatment applies
to MayDef, MayUse and MustUse relations, which all store information about
different use/def chains in the same format. The next section describes these
relations in more detail.

3.3 Use/def Analysis

The first phase in translation is the refinement of use and def predicates. These
predicates hold true at statements where the variable that they refer to is either
read or written to. In Java, as with other programming language, it is possible
for several variables to alias the same heap object. This affects use and def
predicates because it requires a refinement of the semantics to wvariables that
alias heap objects that are either read or written to. Since assignment may differ

22 R. Warburton and S. Kalvala

Table 2. Representing programs in Dimple

Name Type Comment/Example

Nodes (Node) All nodes in CFG

Skips (Node) All Noop instructions

Edges (Node,Node,ET) x=1;y=x—(x =1, y = x, SEQ)
ReturnValues (Node,Value) return x; —(return x, x)

Assign (Node,Value,Value) y=z+1—=(y=z+1,y,z + 1)
IfStmt (Node,Value) if (x==3) —(if (x==3), x==3)
Expr (Value,Value,Value,0P) x + y —(x +y, X, y, +)

UExpr (Value,Value,OP) Ix —(!x, x, 1)

Conlit (Value) All Constants, eg (1)

Varlit (Value) All Variable literals, eg (x)
CallSites (Value,Call) Relation between call sites and values
MustDef (Node,Value) At x = 3; (x = 3,%)

depending on what path through the program’s control flow graph was taken,
the aliasing relationship depends on this path.

As with traditional dataflow analyses [I], the approach taken in Rosser is to
divide relationships into 'must’ and 'may’ forms. For example, MustUse(x) @ n,
indicates that for all execution paths at node n, x is used in the computation that
occurs at node n. If MayUse(x) @ n, then there exists an execution path such that,
at node n, x is used in a computation. The situation is symmetric for MayDef and
MustDef. TRANS specifications, however, do not use these conditional variants
of the predicates and must be refined accordingly by RosserC.

In order to be a sound refinement of the predicates in TRANS it is neces-
sary for the may/must variants to conservatively approximate their behaviour.
That is to say, they must never enable an optimisation that would otherwise be
disabled. In order to determine whether the predicate would enable incorrect op-
timisation we use the concept of polarity. The polarity of a predicate is positive if
there is an even number of negations preceeding the predicate, and negative oth-
erwise. If a predicate has a positive polarity then nodes where it holds true are
being added to the possible points of optimisation. The converse also holds true.
Since the must variant of a predicate holds true at a subset of nodes where the
predicate holds true we refine predicates with a positive polarity to their must
variants. The may variant of a predicate holds true at a superset of nodes where
its predicate holds true, so we refine predicates with a negative polarity to the may
variant.

This approach to refining use/def predicates means that specifications writ-
ten in the TRANS language are portable over both languages that allow and
disallow aliasing. This has the added advantage of facilitating prototyping of
optimisations in simple contexts (for example against Local primitives, which
are pass by value) and then be able to apply them in more complicated situa-
tions. This underlies one of the design principles of Rosser: to move the burden
of compiler development away from the optimisation specification and into the
framework.

From Specification to Optimisation 23

Table 3. Temporal Logic refinements

Before After

AG p —E (trueU = p)

A(pUq) “(E(-qU (=pA-q]VEG~q))
AX p - EX —-p

3.4 Refinement and Type-Checking

The CTL formulae of a specification are initially refined to a smaller set of
connectives in order to simplify the output phases.

Rewrite rules are refined to a pattern matching component, which becomes
part of the side condition, and a TRANS action. In the case of dead code
elimination, this is the replace action, which swaps an existing node bound to
a meta-variable, inserting an IR element generated from variable bindings in
its place.

RosserC also performs type checking. The goal is to statically identify the types
of all the meta variables within the TRANS specification. This is beneficial for
two reasons. Firstly the output code is statically typed, and so type checking
TRANS formulae helps generate object code. Secondly it is helpful in order to
reduce the number of accidental or transcription errors within TRANS formulae.
If a meta-variable has to bind to a structure of one type in a certain place within
the specification and a different type in another part, then it is clearly not a well-
formed TRANS specification. Consider the hypothetical specification:

n:x:= e = skip if conlit(n)

This specification fails type checking because the metavariable n has to be a
node in its use on the left hand side, and a constant literal if it is an argument
to conlit.

shows the effect of refinement on the specification of dead code elimi-
nation shown in Here the pattern matching has become part of the side
condition and the use/def predicates have been refined.

replace n with skip
if
stmt(x := e) @ n A = EX (E (— maydef (x) U mustuse (x) A 7 node(n))) @n

Fig. 3. Refined specification of dead code elimination

3.5 Code Generation

The RosserC compiler outputs Jedd code, where for each optimisation a corre-
sponding class is generated. The side condition is compiled into a method called
condition, whose return type is a relation, with an attribute for each metavari-
able within the specification, its only parameter being the method to be opti-
mised. A transformation is applied through method transformation, which in

24 R. Warburton and S. Kalvala

<e,n,x,x1:N6> x2 = 1B;

x2 = x2{x1} >< meth.Nodes{n};

<e,n,x> x3 = meth. Assign;

x2 = x2{e,n,x} >< x3{e,n,x};

x2 &= (x1 = x1,x1 = n)((n =)(x2));
<e,n,x> x4 = (x1 =)(x2);

S T W N~

Fig. 4. Compilation of stmt(x := e) @ n

<e,n,x,x6:N7> x7 = 1B;

x7 = x7{x6,x} >< meth. MustUse{n,x};
<e,n,x,x6:N8& x8 = 1B;

x8 &= (x6 => x6,x6 => n)((n =)(x8));
x8 = 1B — x8;

x8 = x7 & x8;

ST W N

Fig. 5. Compilation of mustuse(x) A — node(n)

turn calls the condition method and then iterates over all the values within
the resulting valuation set. Generating the condition method body proceeds
by recursion of the structure of the now refined TRANS side conditions.

shows the compiled pattern matching for stmt(x := e) @ n from the
specification of dead code elimination. First, a temporary attribute x1 is intro-
duced into the valuation to designate the current node. This can be seen in the
type of the variable x2 on line 1. Line 2 restricts this attribute to nodes. In lines
3 and 4 the variables e, n and x are restricted to the right hand side, result vari-
able and node of assignments, respectively. Lines 5 and 6 show the temporary
node being equated to n and then projected away.

The Jedd code shown in illustrates predicates being compiled. Line 2
shows the restriction of mustuse to a local finite domain. In line 4 the temporary
attribute x6, that fulfils the same purpose as x1 in the previous example is unified
with the attribute n. Lines 3 and 4 calculate the set of valuations where the
current node is n. Line 5 implements the — operator, calculating valuations where
the current node isn’t n. Finally we take the intersection of the subcomponents, in
order to satisfy the A in the example. Note that literals after colons, for example
N6, refer to physical domains that are used by the BDD implementation. The
first letter is the same as the corresponding logical domain, for example N refers
to Node. Since there may be multiple physical domains for each logical domain
they are numbered.

The code generation algorithm used in Rosser generates standard impera-
tive code, using Jedd as its object language. The return type of the condition
method is a relation, containing one attribute that corresponds to a TRANS
metavariable in the original specification. At every stage, intermediate variables
that are generated are typed as the same type as the return type. When gener-
ating conditions for node conditions, a temporal part of the condition, there is
additionally an attribute that represents the current node of the specification.

From Specification to Optimisation 25

cs true = [res = 1B]
cs False = [res = OB]
cs conlit(v) = [t1l = 1B, res = ti{v} >< Conlit{c}]
cs varlit(v) [t1 = 1B, res = t1{v} >< Varlit{v}]
cs 0 ¢ =cs ¢ @ [res = 1B - pred]
cs ¢ @n cs ¢ @ [res = (at =>) pred{n,at}
<> pred{at,n}]
cs ¢ A Y =cs ¢ @ cs Y @ [res = predl & pred2]

cs ¢ V P =cs ¢ @ cs Y @ [res = predl | pred2]
ct true = [res = 1B]

ct False = [res = OB]

ct node(n) = [t1=1B, res=tl{n,at} >< ti{at,n}]
ct stmt(p) =cp p at

ct - ¢ =ct ¢ @ [res = 1B - pred]

ct EX[g ¢ =ct ¢ @ [tl = Edges{et}

>< new{et => e}{et}, res =

(to=>at) pred{at} <> ti{from}]
ct EX ¢ =ct ¢ @ [t1 = (et=>)Edges,

res = (to=>at) pred{at} <> ti{from}]
ct El Uy 1=ct ¢ @ ct ¢ @ until predl pred2
ct ¢ N W =ct ¢ @ ct 1 @ [res = predl & pred2]
ct ¢ V Y =ct ¢ @ ct Y @ [res = predl | pred2]
where the until function is defined as:

until predl pred2 = [t1 = (et=>) Edges,
acc = pred2,
do { prev = acc;
t2 = (from=>) predi{at} <> ti{to};
acc |= pred2 & t2
} while(prev != acc),
res = acc]

Fig. 6. Side Condition compilation

describes how side conditions are compiled. The function c¢s compiles
side conditions, whilst ¢t compiles the sub-expressions within side conditions that
have some temporal aspect. There are a few common attributes about the way
different components within the side condition introduce new temporary vari-
ables. Basic predicates, such as node (n), create new temporaries. TRANS unary
operators, such as -, depend on the result of their inner expression, stored in a
single temporary, referred to in the definition as pred, while binary operators,
such as A depend on two temporaries, predl and pred2. All expressions store
the result of their component of the model checking in a variable, referred to as
res in the definition. Variables called t1, t2 etc. refer to temporary variables
within the object code of inner components. In the generated code, all these
variables have disjoint names to each other, however, this is abstracted from the
following section for reasons of readability. The function cp emits code to pattern
match an expression with a sequence of nodes. Its first parameter is the pattern

26 R. Warburton and S. Kalvala

1while (it.hasNext()) {

2 Object [] val = (Object[]) it.next();

3 try {

4 Unit x = f.SkipPattern();

5 units.swapWith (((Unit) val[l]), x);

6 ObjNumberer. patch (((Unit) wval[l]), x);
7 } catch(Throwable t) {

8 System.err.println (t);

9}

10 }

Fig. 7. Jedd code for the replace action

to match, and the second is the node to match it at. This is also ommitted from
the presentation for reasons of brevity. The definition provides a mapping from
TRANS IR to a list of Jedd instructions.

3.6 Action Code Generation

gives the example action for code elimination, x := e => skip. In the
code it is the name of the iterator for the results set of the analysis. Line 1
shows the loop condition over this set. Line 2 shows that each element of this set
is represented by an array of elements. Line 4 constructs the replacement skip
instruction. Line 5 replaces the old instruction with the skip inside of Jimple.
Line 6 replaces it within Dimple by renumbering the elements. Note that £ is
a factory class for new Pattern instances.

The replacement becomes inherently simple due to the way pattern match-
ing is refined into the side condition. Additionally to rewriting, Rosser supports
the insertion and deletion of new nodes and edges. These are all implemented
similarly, iterating over the elements of the finite set of valuations and replacing
each element. By renumbering elements of the underlying domain that are be-
ing rewritten in simple cases such as this, rewrite rules don’t need to alter the
structure of the CFG at all, and thus the CFG doesn’t need to be recalculated.

3.7 Interactive and Batch Mode

The RosserF runtime framework can be operated in one of two main modes: in-
teractive or batch. The interactive mode is designed to allow the user to develop
new optimisation specifications, while batch mode is a traditional compiler pro-
cess that applies a list of optimisations sequentially. The interactive mode has
been developed on the principle that the development of new ideas is informed
by experiment. Building on this principle, interactive mode allows one to develop
a specific method to apply to the program being optimised.

The interactive mode provides a conditional sub-view and a transformational
sub-view. The conditional view provides the user with a view of the control
flow graph of the selected method. The user can then enter a side condition,
with which to model check the program. This then generates a set of valuations

From Specification to Optimisation 27

for the given program, and a visual representation of the valuations on the
control flow graph. The transformational view allows the user to apply complete
TRANS transformations to the selected method and visually see the results, in
the form of before and after control flow graphs.

The ability to allow the user to test out the effectiveness of different compiler
optimisations improves the productivity of developing an effective optimisation
strategy. The approach of specifying optimisations by way of a domain specific
language enables the user of the system to more easily apply an optimisation,
than one could with a hand-written optimisation.

4 Performance Analysis

Since this approach to generating compiler optimisations involves generating
compiler code indirectly from a specification, it raises questions about its prac-
tical applicability. We compare Rosser with hand-written optimisations in the
mature Soot framework [I7], which is arguably a very high standard against
which the performance of generated optimisations can be measured.

We use the Scimark scientific computing benchmark [14] to compare the per-
formance of optimisation phases. The performances are compared in terms of
effectiveness (the extent to which the performance of the program being opti-
mised is improved) and efficiency (how long it takes to apply a transformation
to a program). The benchmarking was all performed on a 2Ghz Core 2 Duo with
2GB of RAM.

The performance of three optimisations is compared: lazy code motion, com-
mon subexpression elimination and dead code elimination. In both frameworks
these optimisations are applied in this order. We chose only to compare these
three optimisations since they are all commonly known compiler optimisations,
and are used extensively in most compilers and therefore have a large effect on
performance of compilers. We have experimented with more complex optimisa-
tions as well.

4.1 Effectiveness

The two sides of show the running times of the Scimark 2.0 benchmark
on two different virtual machines. The three columns for each program show
runtimes without any static optimisation, optimised by Soot, and optimised by
Rosser, respectively. Since the SUN JVM already incorporates many of the op-
timisations that are being applied, the speedup generated by Rosser is 13.5%,
comparable to Soot which improves performance by 14.5%. Since the imple-
mentation demonstrates that this approach to optimisation works, rather than
comparing the relative merits of ahead of time and runtime optimisation, this
isn’t a convincing argument against our approach to optimiser generation, as the
performance of Rosser is comparable to the hand-written Soot optimisations for
this benchmark. In both cases the program with best improvement is the SOR
benchmark, and in both cases it is the lazy code motion optimisation that makes
the impact, since the other two optimisations are performed by the SUN JVM

28 R. Warburton and S. Kalvala

500.0

400.04

3000

Mflops
Mflops
8

2000

100.0

0.0+ m I 0.0

FFT SOR Monte Carlo Sparse MatrixMult w FFT SOR Monte Carlo Sparse MatrixMult w

Benchmark Benchmark

Fig. 8. Scimark 2.0 on SUN “Hotspot” JVM 1.6 and SableVM 1.13

anyway. The numbers on SableVM are more flattering to both Soot and Rosser,
due to the more simplistic optimisations performed by the SableVM. Here Rosser
improves performance by an average of 25%, while Soot achieves 42%. Again our
generated optimisations perform slightly worse than hand-written optimisations,
but offer a similar overall level of effectiveness. The Soot implementation of lazy
code motion performs critical edge splitting before applying its optimisation,
while Rosser doesn’t. This might explain the difference in effectiveness.

4.2 Efficiency

The Soot system applied its optimisations to Scimark in 15 seconds, while
Rosser took approximately 270 seconds. This does not seem very encouraging,
but more detailed analysis revealed that two methods in Scimark were respon-
sible for large amount of time used by Rosser. For the other 131 methods, the
Rosser system only took 30 seconds, and the corresponding Soot time was 14
seconds. The two problematic methods weren’t the largest within Scimark, and
the nature of their pathology is currently unknown, and is being investigated.
In most experiments the Rosser optimiser was about 2x slower than the hand-
written Soot optimiser. Overall, a slowdown of a factor of two seems a reasonable
price to pay considering the other benefits of the approach.

5 Related Work

Dataflow analysis has long been employed within the compiler optimisation com-
munity to iteratively compute the nodes within a program at which optimisa-
tions can be soundly applied [IJ13]. Model checking is a technique in which
a decision is made as to whether a given model satisfies some specification.
David Schmidt and Bernhard Steffen recognised that there is a strong link be-
tween these two research areas. Equations for dataflow analyses have been shown
to be expressible in Modal-Mu Calculus [I5], and dataflow analysis algorithms
have been generated from modal logics [I6]. This approach is implemented in
DFA & OPT-Metaframe [6], a toolkit designed to aid compiler construction by

From Specification to Optimisation 29

generating analyses and transformations from specifications. Transformations
within this system are implemented imperatively, rather than using declarative
style rewrite rules, however, the temporal logic specification is converted into a
model checker and then optimised. In our case, we found CTL to be sufficient
to model the side conditions of transformations.

Rewrite rules with temporal conditions have also been used in the Cobalt
system [9] which focuses on automated provability and also provides executable
specifications, achieved through temporal conditions common to many dataflow
analysis approaches. This allows the basic inductive form of the correctness theo-
rem to be proved once and for all, given sufficient optimisation specific conditions
are met. The optimisation specific proof obligations can be discharged automat-
ically, using an automatic theorem prover. The specific nature of Cobalt’s tem-
poral conditions, while facilitating automatic discharging of proof obligations, is
limited compared to the flexibility provided in TRANS from supporting CTL
side conditions, even if this may require more expensive model checking.

This is the main motivation for developing Rhodium [10], another domain
specific language for developing compiler optimisations. Rhodium consists of
local rules that manipulate dataflow facts. This is a significant departure in
approach from TRANS | since it uses more traditional, data flow analysis based
specifications rather than temporal side conditions.

The Temporal Transformation Logic (TTL) [5] also uses CTL, but emphasizes
verification of the soundness of the transformations themselves. Accordingly, in-
stead of approaching optimisation as rewriting, TTL has a set of transformational
primitives, each representing a common element used within compiler optimisa-
tions, for example replacing an expression with a variable. Each of the transforma-
tional primitives has an associated soundness condition that, if satisfied, implies
the soundness of the transformation. TTL is presented as a specification language
for other compiler implementations; on the other hand, TRANS can be refined
and executed as the optimisation stage of a compiler.

6 Conclusions

While programming language theorists and compiler design scholars have often
proposed methods for improving trust in the optimisations applied during com-
pilation, there is typically a gap in putting such methodologies in practice: the
practitioner may devise more adventurous optimisations, which rely on a more
subtle understanding of control flow for the justification of its correctness. The
semantics of TRANS have been formalized within the Isabelle/HOL theorem
prover, and a proof system is currently being developed to allow most of the
proof obligations of verifying the soundness of new TRANS specifications to be
discharged automatically.

The Rosser system described in this paper applies compiler optimisations spec-
ified formally to Java programs within standard program development environ-
ments: the optimisations are mechanically translated into running code, and
applied to given object programs within the Soot environment using a simple
model checker for matching side conditions of optimisations to object code.

30 R. Warburton and S. Kalvala

There is of course a performance price to be paid by not programing the
optimiser directly. We believe this cost is minimised by actually compiling the
optimisations into Jedd rather than interpreting them, and the benefits of a
declarative approach outweigh the performance cost, as sophisticated optimisa-
tions are often applied only when the code is ready for release—which is usually
not a good time to find that the optimiser has introduced new bugs. The use of
a formal notation has other benefits: it aids the interactive development of new
optimisations and the explanation of the optimisations to third parties.

TRANS as described doesn’t allow one to specify inter-procedural optimisa-
tions. Currently we are experimenting with using the inter-procedural control
flow graph, with a slightly modified TRANS that matches against blocks in ad-
dition to nodes. We are also expanding the repertoire of intra-procedural opti-
misations, and also deal with the vexing issue of exception handling. The formal
treatment of Java exceptions is an ongoing research exercise.

We have extended the work of David Lacey in several ways:

— an implementation that uses a widely used, real world, programming lan-
guage by way of Java, rather than a small research prototype language.

— an algorithm that compiles, rather than interprets, TRANS specifications.

— a novel intermediate representation for programs, using BDDs.

— use of a domain specific language for output, showing how to minimise im-
plementation effort.

A criticism that can be made to our approach is that it relies on the correctness
of the translators for the domain specific languages. For example if either of
the translations from Jedd to Java source or Java source to Java bytecode are
incorrect, then the entire program translation/optimisation may introduce bugs,
even if our specific tool doesn’t introduce bugs.

Progress made by the language semantics community must be used in solving
a very practical issue, namely the development of optimisation tools which do
not introduce new errors into object code. The methodology presented here
makes use of model-checking to enable the deployment of complex but potentially
effective optimisations in a safe manner.

Acknowledgements

Richard Warburton is funded by the EPSRC under grant EP/D032466/1 “Veri-
fication of the optimising phase of a compiler”. We are grateful to the anonymous
reviewers for their detailed and helpful suggestions.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Pearson Education, London (2007)

2. Berndl, M., Lhotdk, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis using
BDDs. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pp. 103-114. ACM Press, New York (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

From Specification to Optimisation 31

Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52-71. Springer, Heidelberg (1982)

Kalvala, S., Warburton, R., Lacey, D.: Program transformations using temporal
logic side conditions. Technical Report 439, Department of Computer Science, Uni-
versity of Warwick (2008)

Kanade, A., Sanyal, A., Khedker, U.: A PVS based framework for validating com-
piler optimizations. In: SEFM 2006: Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods, Washington, DC, USA,
pp. 108-117. IEEE Computer Society Press, Los Alamitos (2006)

Klein, M., Knoop, D., Koschutzki, D., Steffen, B.: DFA & OPT-METAFrame: A
toolkit for program analysis and optimization. In: Margaria, T., Steffen, B. (eds.)
TACAS 1996. LNCS, vol. 1055, pp. 422-426. Springer, Heidelberg (1996)

Lacey, D.: Program Transformation using Temporal Logic Specifications. PhD the-
sis, Oxford University Computing Laboratory (2003)

Lacey, D., Jones, N.D., Wyk, E.V., Frederiksen, C.C.: Proving correctness of com-
piler optimizations by temporal logic. ACM SIGPLAN Notices 37(1), 283-294
(2002)

Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of
compiler optimizations. In: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation. ACM Press, New York (2003)
Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for
dataflow analyses and transformations via local rules. In: POPL 2005: Proceedings
of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 364-377. ACM Press, New York (2005)

Lhoték, O., Hendren, L.: Jedd: A BDD-based relational extension of Java. In:
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation. ACM Press, New York (2004)

Lhoték, O., Hendren, L.: Context-sensitive points-to analysis: is it worth it? In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47-64. Springer,
Heidelberg (2006)

Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Francisco (1997)

Pozo, R., Miller, B.: Java Scimark 2.0. National Institute of Standard and Tech-
nology, http://math.nist.gov/scimark2/

Schmidt, D.A., Steffen, B.: Data-flow analysis as model checking of abstract in-
terpretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503. Springer, Heidelberg
(1998)

Steffen, B.: Generating data flow analysis algorithms from modal specifications.
Science of Computer Programming 21, 115-139 (1993)

Vallée-Rai, R., Gagnon, E., Hendren, L.J., Lam, P., Pominville, P., Sundaresan,
V.: Optimizing Java bytecode using the Soot framework: Is it feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, pp