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The Phenomenon: Occurrence
and Characteristics

1.1 Marching Towards Absolute Zero

The phenomenon of superconductivity has been observed only at low tempera-
tures. Therefore, we shall first consider the efforts made and the achievements
on the way to absolute zero temperature.

A very common way of liquefying gases is to compress them. This causes
the gas molecules to come closer, and the role of cohesive forces increases.
This makes gas–liquid transition to become possible: However, at tempera-
tures higher than the critical point, it is not possible to turn the gas into a
liquid, however, large the pressure applied. So, it is necessary to cool the gas
first before compressing it. In 1877, French scientist Caillettet succeeded in
liquefying oxygen at a temperature 90.2K. Six years later, N2 was liquefied
at 77.4K. The hydrogen was found to be liquefied at a temperature of 20.4K.
This was made possible by sir James Dewar in 1898, who invented a vacuum
vessel, which is used even nowadays to store liquid hydrogen. Helium was dis-
covered in 1869 in the spectrum of solar corona. For a long time, it could not
be detected on earth. It was only in 1895 that Sir William Ramsay found it
among gases released when certain minerals were heated. At the end of nine-
teenth century, it became known that the boiling point of helium was even
lower than that of hydrogen. In the late 1890s, Dutch scientist K. Onnes began
his experiments aimed at liquefying helium. It was ultimately found that the
transition temperature is 4.2K and liquefaction was achieved in 1908.

Liquid helium is often called a quantum fluid. It is a striking demonstration
of the fact that quantum behaviour may be manifested by macroscopic bodies
as well. Liquid He remains a liquid even at absolute zero (even though at 0◦K,
there would be no thermal motion at all). This is because of very low density
of liquid helium; it is eight times lighter than water. Therefore, light and inert
helium atoms are widely separated. Near absolute zero, the laws of quantum
physics prevent it from becoming a solid, that is, the usual classical concept
that: atoms are completely at rest at absolute zero is incorrect.
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Having attained recorded low temperatures and having obtained liquid
helium, K. Onnes turned to undertake a systematic study of the properties of
matter at low temperatures.

1.2 Discovery of Superconductivity

The attainment of liquid helium temperatures opened a new regime of low
temperatures and it was discovered by K. Onnes in 1911, while investi-
gating the electrical properties of frozen mercury when the electrical resis-
tance of mercury completely disappeared on approaching 4.2K. In his own
words,

The experiment left no doubt that as far as the accuracy of measure-
ment went, the resistance disappeared. At the same time, however,
some thing unexpected occurred. The disappearance did not take place
gradually, but abruptly. From 1/500, the resistance at 4.2K drops to
a millionth part. At the lowest temperature, 1.5K, it could be estab-
lished that the resistance had become less than a thousand–millionth
part of that at normal temperature. Thus, the mercury at 4.2K has
entered a new state, which, owing to its particular electrical properties,
can be called the state of superconductivity.

The phenomenon of superconductivity is manifested in the electrical resis-
tance vanishing at a finite temperature called the critical temperature and
denoted Tc (Fig. 1.1). The latest data show that the resistivity of a super-
conductor is below 10−27Ω-cm. This can be compared with the resistivity of
copper (an excellent conductor), which is 10−9Ω-cm. So, there is no doubt
that we are dealing with ideal conductivity (total vanishing of electrical
resistance).

R

T

Fig. 1.1. Temperature dependence of resistance of a normal metal and a
superconductor
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K. Onnes discovery was followed by a large number of experimental studies.
New superconducting materials were further discovered and their physical
properties were studied.

1.3 Occurrence of Superconductivity

Superconductivity has been found to be exhibited by many elements: alloys,
binary and ternary compounds, organic superconductors and lately discovered
(1986) high Tc superconductors.

1.3.1 Elemental Superconductivity

Superconductivity in elements is displayed by non-transition metals, e.g. Be
(Tc = 0.03 K), Al (1.19K), Pb (7.0K), Sn (3 K). Examples of superconducting
transition metals are Nb (9.2K), Mo (0.92K), Zn (0.9 K). Semiconductor ele-
ments, which display superconductivity are Si (8.3K at 165kbar pressure), Ge,
Se and Te. Semimetal Bismuth also shows superconductivity depending on its
crystal structure (Different modifications show different transition tempera-
tures and one modification does not show superconductivity down to 10−2K).
Ferromagnetic materials (Fe, Co, Ni) do not display superconductivity.

1.3.2 Alloys

A large number of alloys display superconductivity with a relatively high
transition temperature, e.g. Nb–Ti is important in cryogenic applications and
Nb3Al0.75Ge0.25 has a Tc of 20.7K.

1.3.3 Binary Compounds (A-15 Materials)

Some binary compounds also show superconductivity. These are the so called
A-15 compounds discovered by G.E. Hardy and J. Hulme in 1954.

Until the discovery of the high Tc superconductors (i.e. prior to 1986), most
of the highest Tc superconducting materials all had the crystal structure illus-
trated in Fig. 1.2. The stoichiometry (the relative composition of constituent
atoms mandated by the ideal crystal structure) of the material of this class is
A3B, where A is one of the transition metals (such as Nb, V, Ta or Zr) and
the B atom comes from the IIIA or IVA column of the periodic table and is
a metal or semiconductor, such as Sn, Al, Ga, Ge, In or Si.

The A elements are situated at the corners of a cube and the B elements
form three orthogonal chains the Tcs of a few A-15 compounds are

V3Ga (16.5K) , Nb3Ge (23.2 K) ,
V3Si (17 K) , Nb3Al (17.5 K) ,
Nb3Sn (18 K) .
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The niobium compounds have typically the highest transition temperature
with that of Nb3Ge (23.2K) being the highest one. The Tc is quite sensitive
to the stoichiometry and the maximum Tc corresponds to the ratio being just
3:1 of the ordered material.

1.3.4 Heavy Fermion Superconductors

These are contemporary of organic superconductors and were discovered in
1979 by Steglich et al. [1]. These are characterised by low value of Tc, for
example: CeCu2Si (0.5K), UBe13 (0.85K) and UPt3 (0.5K). Their names
reflect their important feature: the effective mass is several hundred times
greater than that of a free electron. The superconducting state displays some
anomalous properties. In conventional superconductors, the electronic heat
capacity decreases exponentially with temperature, whereas in heavy fermions
superconductors, a power law decrease is observed.

1.3.5 Organic Superconductors

These are an unusual class of superconductors, which are insulators in normal
state (with very low conductivity).

The first organic superconductor was discovered by Jerome et al. in 1980
[2] with Tc of only 1K. However, in 1990, an organic superconductor with
a Tc of 12K was synthesised. At present, there are two known classes of
organic superconductors. One of them is described by the chemical formula
(TMTSF)2X. The TMTSF (Tetra methyltetra selena ful valene) structure is
shown in Fig. 1.3a, where X is a monovalent inorganic anion. Typical anions
are PF−

6 , AsF−
6 and NbF−

6 .
The other class is formed by materials with the composition (BEDT-

TTF)2X. The bis-ethylene dithio tetra thia ful valene (BEDT-TTF) molecule
is shown is Fig. 1.3b, where X is again a monovalent anion.

Fig. 1.2. Structure of A 15 materials
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Fig. 1.3. (a) The TMTSF molecule (b) The BEDT-TTF molecule

The crystal (BEDT-TTF)2I3 has Tc = 8.1 K.

1.3.5.1 High Temperature Superconductors

These oxide superconductors are defect perovskite like cuprate materials,
which were discovered lately in 1986 by Bednorz and Müller (They were
awarded the Nobel prize for their remarkable discovery) [3]. This discov-
ery waited for nearly 70 years after the discovery of superconductivity. These
materials have Tcs as high as 90–125K (prior to this, Tc achieved was below
23.2K, corresponding to that of Nb3Ge). Bednorz and Muller discovered high
temperature superconductivity (Tc ∼ 35 K) in defect perovskite like oxide
material La2−xBaxCuO4. These materials are layered structures in which
sheets of copper and oxygen atoms alternate with sheets of rare-earth (and
oxygen) atoms. Soon after, Paul Chu and his coworkers [4] discovered the so
called 123 oxides of the general formula LnBa2Cu3O7−δ (Ln = Y, Nd, Sm,
Eu, Gd, Dy, Ho, Er, Tm or Yb) with Tc values in the 90K region. The dis-
covery of materials with superconductivity above the liquid-N2 temperature
raised much hope and prompted intensive search for new classes of oxides with
still higher Tcs. Two series of compounds belonging to the Bi–Sr–Ca–Cu–O
and Tl–Ba–Ca–Cu–O systems have been found to exhibit superconductivity
between 60 and 125K [5,6].

It is noteworthy that all the high Tc cuprates possess “defect perovskite
layers” and all except 123 compounds contain rock salt type oxide layers. The
crystal structure of perovskite and rock salt type layers are shown in Fig. 1.4.

The structure in bulk corresponds to K2NiF4 structure, depicted in Fig. 1.5
(La2CuO4). In this Ba/Sr is substituted on Lanthanum sites. The perovskite
layers consist of corner sharing CuO6 octahedra.

Some important superconductors, their Tcs and year of discovery are given
in Table 1.1.

In the La based, Y-based, Bi-based, Tl-based and Hg-based cuprate fam-
ilies, the carriers of superconducting current are electron-vacancies or holes
(pairs). By contrast, in the HTSC discovered by Tokura et al. (1989), the
carriers are electron-pairs as verified by Hall-coefficient measurement.
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Fig. 1.4. Crystal structure of (a) perovskite and (b) rock salt. The conventional
unit cell is face centered and is defined by axes a′, b′ and c′

1.3.6 C60-Based Superconductors

The C60 molecule (termed as Buckminster fullerene) consisting of a geodesic
sphere of 60 carbon atoms was discovered by Richard Smalley (USA) and
Harry Kroto (England) and their discovery appeared in “Nature” (14 Nov.
1985). By doping C60 with potassium atoms, Hebard et al. [7] obtained super-
conductivity at 18K in KxC60. Rb-doped C60 produced superconductor with
a Tc ∼ 28 K. In 1991, S.P. Kelty et al. reported superconductivity at ∼30 K
in Cs doped C60, however, the superconducting phase was less stable than
K- and Rb-doped superconductors.

Figure 1.6 shows various superconductors discovered, their Tcs versus year
of discovery. It is to be conjectured here that attainment of liquefaction of
gases like O2 (at 90.2 K), N2 (at 77.4K), H2 (at 20.4K) and then He (at 4.2K)
were important milestones in the area of cryogenics (low temperature physics).
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Fig. 1.5. K2NiF4 structure (La2CuO4)

The discovery of high Tc materials with superconductivity well above boiling
point of liquid nitrogen (LN2) was, therefore, a notable discovery from the
viewpoint of technological applications. Further, availability of these materials
raised the hopes for reducing the cost of cryogenics involved in operating
at LN2 temperatures compared to that operating at liquid-He temperatures.
(LN2 costs only 20 Rupees per litre, whereas liquid-He costs about 1,000 times
higher). As a consequence, thermal insulation required for cryostats was also
reduced.

1.4 The Superconducting State

The fact that apparently there is no scattering of electrons by the atoms of the
crystal lattice leads to the conclusion that the wave function describing the
electrons in the superconducting state must be different substantially from
those in the normal state. Since (in superconducting state) lattice period-
icity has no influence on the electrons, therefore, the wave function is not
localised but has infinite extent. In view of the uncertainty relation, this
implies a precisely definite momentum. Ground state (superconducting state)
is described by

ψG = ψ (r1, r2)ψ (r3, r4) . . . . . . ..ψ
(
rns−1 , rns

)

where ns = number of super electrons (there are ns/2 pairs), i.e. the wave
function is product of the pair wave functions. All the pairs have the same
wave function given by

ψ(r′, r′′) =
√
nseiS(

→
r ),
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Table 1.1. Some important Superconductors

Material Highest Tc(K) Year of discovery Discovered by

Hg 4.1 1911 K. Onnes
Pb 7.2 1913 −
Nb 9.2 1930 −
Nb3Sn 18.1 1954 −
NbTi 9.5 1961 −
TiO, NbO 1 1964 −
SrTiO3−x 0.7 1964 −
A3WO3 6 1965 −
A3MoO3 4 1969 −
A3ReO3 4 1969 −
V3Ga 14.5 1966 −
PbMo5S6 15.0 1972 −
Nb3Ge 23.3 1973 J.R. Gevaler
Ba(Pb, Bi)O3 13 1975 −
(La, Ba)2CuO4 35 1986 J.G. Bednorz and K.A. Muller
YBa2Cu3O7 90 1987 M.K. Wu and C.W. Chu
Bi–Sr–Cu–O 22 1987 Michel et al.
Bi–Sr–Ca–Cu–O 100 1987 Maeda and Tarascan
Tb–Ba–Ca–Cu–O 122 1988 Sheng and Hermann
Hg–Ba–Ca–Cu–O 130 1992 Putilin and A. Schilling
Ln2−xCexCuO4+y 25 1989 Tokura, Takagi and Uchida
(Lx= Pr, Nd, Sm)

where the phase function S(
→
r ) characterises the coherent state.

As the temperature is lowered, the electrons having energy close to Fermi
energy get a chance to interact with ion-lattice via phonons due to reduced
scattering at low temperatures. As a result, Cooper pairs get formed, the
length scales over which their motion is correlated is the coherence-length:

ξ(T ) =
0.74 ξ0√
(1 − T )

; ξ0 =
�υF

πΔ0
,

where, υF is the fermi velocity and Δ0 is the energy gap (at 0◦K), which is the
gap between superconducting pairs and normal electrons. The paired electrons
move without resistance, whereas single electrons do not :

Before pairing, electrons are separate entities (Fermions) having random
momenta (due to scattering). When pairs form, two electrons of a pair have
zero net momentum and opposite spins, so that in current carrying state they
do not under go incoherent scattering, i.e. a pair is like a singlet and all pairs
acquire same momentum in the same direction. Same momenta implies the
same value of phase gradient for all pairs (momentum

→
P = �∇S = 2meυ).

Therefore, there will be no change in current flow. Their motions are correlated
(Phase coherence). The only scattering event, which will reduce the current
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Fig. 1.6. Critical temperature versus year of discovery

will be when a pair is imparted with an energy greater than the binding energy
of the pair (i.e. ≥ Δ0).

For I < Ic, there is no way to impart this energy. The long range coulomb
repulsion between two electrons of a pair has been largely suppressed by
screening due to strong correlation effects of the other electrons.

1.5 Phase Coherence

The superconducting ground state is represented by many electron wave
function

ψG

(→
r1,

→
r2, ...

→
rns

)
= φ
(→
r1,

→
r2

)
φ
(→
r3,

→
r4

)
.....φ
(→
r

ns−1
,
→
rns

)
,
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where total number of pairs equals ns/2.
→
rn is the position coordinate of nth

electron and the φ’s are the same for all pairs. The local super fluid density
is given by

ns(
→
r ) =
∣
∣
∣ψG(

→
r )
∣
∣
∣
2

(1.1)

and the super-current density is expressed by

→
J (

→
r ) = −i

e�

2me

[
ψ∗

G∇ψG − ψG∇ψ∗
G

]− e2

me

→
A
(→
r
)
ψ∗

G∇ψG (1.2)

→
A
(→
r
)

is the vector potential
(→
B = ∇× →

A
)
.

For steady state conditions, ψG or ψ can be written

ψ
(→
r
)

= ψ0eiS(
→
r )

= (ns)1/ 2eiS(
→
r ) (1.3)

where the phase S(
→
r ) is a real function of position

→
r . Then, (1.2) becomes

→
J s =

ns

2
e

me
(�∇S − 2e

→
A) (1.4)

(∵ ψ∗ψ = 1)

(assuming that condensate in superconductor can be represented by a macro-
scopic wave function in the form of (1.3)).

We anticipate that the condensate is made up of pairs of electrons of
number density ns/2, mass 2 me (and charge 2e).

Equations (1.3) and (1.4) imply we cannot describe a super-current in
a homogeneous material, unless ψ(

→
r ) is complex. The physical situation

depends on the variation of the phase and not simply on the magnitude of ψ.
From (1.4),

m∗ →
v s(

→
r ) = �∇S(

→
r ) − e∗

→
A(

→
r ). (1.5)

In the absence of a magnetic field, the phase function S(�r) plays the part of a
velocity potential for the super fluid velocity �vs. Therefore, if S did not vary in
space, there would be no super-current. The phase function S(�r) characterises
the electron ordering, represents the same phase of all pairs (phase coherence).

In the absence of �A, the local value of S varies with position at a rate
proportional to vs, i.e. ∇S ∝ �vs along the direction of flow.

1.6 Coherence Length

The maximum distance between electrons of a cooper-pair in real space
upto which their motion is correlated (by taking advantage of the attractive
interaction) is known as the Coherence length (ξ0).
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(a) (b)

Fig. 1.7. (a) The pairs centre of mass phases are locked over a distance ξ
(b) establishment of long range phase order

The pairs control the local phase order within a superconductor. All pairs
lying in a sphere of diameter ξ0 have the same centre-of-mass-momentum and
the same centre-of-mass-phases.

In Fig. 1.7b, circles represent spheres of diameters ξ. Starting from sphere
1, we note that in the region of overlap with sphere 2, the phases must be same.
Thus, if sphere 2 locks phases within it, phase-locking is continued from the
basic length to the entire superconductor (by overlapping spheres of diameter
ξ0), establishing a long range phase order (Coherence).

The phase continuation (i.e. coherence) is forced by virtue of condensation
energy associated with the overlap regions between two spheres.

1.6.1 Pippard’s Equation and Coherence Length

If one looks at the expression of penetration depth as given by

λ =
√

m

μ0nse2
(see article 1.14)

then impurities in a material should not change appreciably the penetra-
tion depth. Pippard did an experiment by measuring the microwave surface
impedance of Sn diluted with small amounts of indium at about 3 cm wave-
length and estimated the penetration depths from the surface impedance
values. According to London’s theory, there should not be an appreciable
change in the penetration depth of Sn, but Pippard observed that penetra-
tion depth changes roughly by a factor of 2 at low temperatures, and this
led to the non-local modification of the London theory and the concept of
(electromagnetic) coherence length ξ, which depends on the mean free path.

We have,

→
H = − m

μ0nse2
curl

→
js . (1.6)

Therefore
→
A = − m

μ0nse2

→
js ( ∵

→
H = ∇× →

A ) (1.7)
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R = (r  –  r ′)

Fig. 1.8. Kernel function K(R) versus R (representation of Coherence length)

Pippard postulated that current density at any point in the superconductor
depends on the vector potential �A not at that point, but integrated over a
domain of radius ξ known as (Pippard’s) coherence length. ξ must depend on
the mean free path of the electrons to account for the variation of penetration
depth with impurity content. The current-density is given by the generalised
expression (Fig. 1.8)

→
js(

→
r ) =
∫
K(r, r′)

→
A(r′)dr′ (1.8)

The width of the Kernel function K(
→
r −

→
r′) defines the Pippard’s coher-

ence length (ξ). Pippard suggested the form of the kernel as

K(r, r′) = exp
[
− (r − r′)

ξ

]
(1.9)

with
1
ξ

=
1
ξ0

= +
1
α∧ . (1.10)

Here, ξ is electromagnetic coherence length, which is of the order of 10−4 cm,
α is an empirical constant (of the order of unity) and ∧ is mean free path (ξ0
is known as intrinsic coherence length).

The appearance of the electron mean free path shows that the coherence
length is reduced by the presence of impurities and the ratio

k =
λ

ξ
(where l is penetration depth)

is a number known as Ginzberg Landau parameter. It is controlled by alloying
or doping a superconductor.

1.6.2 The Size of an Electron Pair

The spatial spread of electrons in a Cooper pair is, (using uncertainty relation)

δr =
�vF

Δ
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where υF is Fermi velocity.
The coherence length (size of the Cooper pair) is described by

ξ0 =
δr

π
≡ �vF
πΔ

. (1.11)

It characterises the scale of spatial correlation in a superconductor. Substi-
tuting for vF and Δ, we find

ξ0 ∼= 10−4 cm.

Period of a crystal lattice is ∼10−8 cm. Thus, ξ0 ∼= 104× lattice spacing. This
indicates a long range correlation in a superconductor, which is unique in the
inorganic world.

1.6.3 Analogy Between Long Range Spatial Order in a Solid
and Phase-Order in a Superconductor

In a solid, the typical range of inter-atomic forces are ∼ inter-atomic spac-
ing. Once a part of the crystal forms the continued propagation, the order
is established in a step-wise manner with the arrangement of the occupied
sites legislating the arrangement of subsequent level through the short range
interactions (∼ inter-atomic spacing).

In case of a superconductor, we are dealing with an interaction whose
“range” is associated with the retarded nature of the phonon-exchange inter-
action.

Since the important lattice frequencies are of the order of the Debye fre-
quency (ωD), an electron with velocity (vF) can come from a distance (vF/ωD)
to feel the lattice disturbance produced by another electron. Thus, in a super-
conductor, the phonon exchange interaction may “extend” on the order of
vF
ωD

≈ 10−5 cm. The attractive nature of interaction leads to the formation of
pairs, which are spread out over a coherence length ξ (which is ∼10−4cm).
The center of mass coordinates of some 106 pairs lie in a sphere of diameter ξ.
For the attractive electron–phonon attraction to be taken advantage of, by
each of the pairs, the space–time correlation are to be such that all have the
same center-of-mass momentum. More generally, in presence of electromag-
netic fields, we may extend this to the statement that the pairs must have the
same center-of-mass phase. To the extent that they do not, the condensation
energy is lost (This is how a short range force produces a long range order).

Therefore, just as atoms of a solid control the local spatial order around
them, pairs (in a superconductor) control the local phase-order (within a
coherence length).

1.7 Critical Magnetic Field

It was discovered by K. Onnes that application of magnetic fields destroy
superconductivity. The minimum magnetic field necessary to vanish super-
conductivity is called the critical magnetic field. It is found to be dependent
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0

Fig. 1.9. Critical magnetic field as function of temperature

on temperature and is given by

Hc(T ) = Hc(0)

[

1 −
(
T

Tc

)2
]

. (1.12)

This is known as Tuyn’s law Hc(0) is the critical field at absolute zero. Hc(0)
and Tc are constants and characteristic of the material (Fig. 1.9).

1.8 Meissner Effect

In metals, other than ferromagnetic, the magnetic fields created by the ele-
mentary atomic currents are oriented chaotically in the metal and cancel out,
therefore, magnetic induction B = 0 in the absence of an external field. In
presence of an external field H , there appears a finite induction �B = μ �H ,
where μ is the permeability

μ > 1 (for paramagnetics),
μ < 1 (for diamagnetics),
μ = 0 (for superconductors),

i.e. in the superconducting state, a superconductor exhibits perfect diamag-
netism. Meissner effect is the phenomenon, which relates diamagnetism with
superconductors. This as follows:

Meissner and Ochsenfeld discovered in 1933 that below the critical temper-
ature (T < Tc), if a superconductor is placed in a magnetic field, the magnetic
field is expelled from the interior of a superconductor. This is known as Meiss-
ner effect (Fig. 1.10). Further, if H > Hc (or T > Tc), the flux penetrates
the superconductor, because then the material is non-superconducting and
behaves like a normal conductor.

The point noteworthy here is that not only a magnetic field is excluded (for
T < Tc) as the superconductor is placed in a magnetic field, but also a field
present in an originally normal sample is expelled. This reversible nature of
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(a) (b)

Fig. 1.10. The Meissner effect (a) For T > Tc or H > Hc, normal conductor
(b) T < Tc and H < Hc, material is superconductor

the Meissner effect is related thermodynamically to the free-energy difference
between the normal and superconducting states in zero field, the so called
condensation energy of the superconducting state, i.e.

fn(T ) − fs(T ) =
H2

c (T )
8π

(c.g.s.unit) , (1.13)

where fn and fs are the Helmholtz free energies/volume in the respective
phases in zero field.

1.9 Comparison Between a Superconductor and a Very
Good (or Ideal) Conductor

The electron–lattice interaction is the basic mechanism of electrical resis-
tance in an ordinary metal. Metals, such as Au, Ag and Cu are excellent
conductors but do not display superconductivity, because very good conduc-
tivity indicates that electrical resistance is very low. Therefore, the interaction
between electrons and lattice is very weak, which at low temperatures does not
create sufficient inter-electron attraction to overcome the coulomb repulsion.
Therefore, there is no transition to superconducting state.

A perfect conductor does not exhibit Meissner effect, i.e. no flux expulsion
on cooling:

In fact, the magnetic behaviour of an ideal conductor depends on whether
the sample is first cooled to below Tc before applying the field (1) or the field
is applied and then cooled (2).

For a superconductor, the final states are identical, regardless of whether
Bext is switched on before, or after cooling.

For any closed path enclosing an area “a” in a material, it must be true
that

IR = V =
∫∫

curl
→
E · d→

a = −∂
→
B

∂T
· →a (1.14)
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Fig. 1.11. Comparison of magnetic behaviours of an ideal conductor and a
superconductor. Both have R = 0 for T < Tc

(using Maxwell’s equation) vanishing resistance implies magnetic flux
→
B ·→a

through the loop may not alter, that is, magnetic field inside must be main-
tained (what was initially there) both after cooling and after switching off the
external field Bext.

On switching off Bext in the cooled state, this requirement is satisfied (in
both A and B, Fig. 1.11), because the process of switching off Bext induces
persistent currents inside the material surface, which maintain the value of
magnetic field in the interior. Now, in sense of (1.14), an ideal conductor (for
Bext = 0 and T < Tc) may adopt two different states ((c) or (f)) depending on
the order of events leading to this state. Thus, we have two different states (d)
and (g) for an ideal conductor. However, if a superconductor was merely such
an “ideal conductor”, the superconducting state would not be a state in the
thermodynamic sense. In fact, in the superconductor, not only ∂ �B

∂T = 0, but
also �B = 0 independent of the path by which the state (c) or (f) is reached.
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This Meissner effect, which represents the property of ideal diamagnetism
(for a superconductor) follows independent of vanishing of electrical resistance.
However, an ideal conductor does not show ideal diamagnetism (as evident
from state (g)), i.e. external field is not expelled, if cooling is done after the
application of external field.

1.10 Isotope Effect

Historically, the isotope effect has been instrumental in understanding the
mechanism responsible for Cooper-pair formation in conventional super-
conductors. It has been observed experimentally that the superconducting
transition temperature Tc varies with the isotopic mass M of the material as

Tc ∝M−β (1.15)

Or − d(�nTc)
d(�nM)

≡ β (1.16)

where β is called the isotope effect coefficient and is given by (BCS theory) as

β = 0.5[1 − 0.01{N(0)V }−2] (1.17)

where N(0) is the density of single particle states for one spin at the Fermi
level and V is the potential between the electrons. β has the value 0.4–0.5
for many superconductors, however, there are some notable exceptions (see
Table 1.2).

Isotope effect was first discovered in mercury. It has been found that
in mercury Tc varies from 4.185K to 4.146K, as isotopic mass varies from
1.995 amu to 203.4 amu. Since, Debye temperature θD is proportional to the
velocity of sound, which varies as M−1/2, therefore, Tc can be related to θD as

Tc ∝ θD or Tc/θD = a constant. (1.18)

Since Debye temperature depends on lattice vibrations, the above relation
implies that lattice vibrations play an important role in superconductivity, as
also suggested by Frohlich prior to the BCS theory.

Table 1.2. Values of isotope effect coefficient for some elements

Element β

Sn 0.46
Mg 0.5
Ru 0(±0.05)
Zr 0(±0.05)
Mo 0.33
Os 0.21
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The departure in values of β from 0.5 could be explained by Eliasberg
theory, taking into consideration the competition between (1) electron-phonon
interaction and (2) the Coulomb-repulsion.

1.11 Isotope Effect in HTSCs

Many experimental data indicate that the new high Tc oxides display many
features of the BCS theory, such as carrier pairing and the presence of an
energy gap. The pairing is caused by some intermediate field (may be other
excitations like plasmons, excitons or magnons).

It still remains to figure out, which of these excitations are responsible for
inter-electron attraction. Higher Tcs of cuprates does not imply presence of
non-phonon mechanisms. The interest in investigating pairing mechanism in
the cuprates has included much discussion on the relevance of the electron–
phonon coupling mechanism (which is responsible for superconductivity in
conventional superconductors). There have been several experimental indica-
tions of the isotope shift of Tc, due to presumably strong electron–phonon
interactions. The indications are in the vibrational behaviour: Experiments
performed on high Tc oxides with oxygen isotopic substitution yielded a
very small shift of Tc. Similar results were obtained by Cu and Ba isotopic
substitution.

1.11.1 Optical Behaviour Study

1. Herr et al. (1987) identified infra-red active modes in LSCO (i.e.
La–Sr–Cu–O) at 240 cm−1 and 495 cm−1. These arise from coupling of
optic phonons to the electronic system.

2. It has been inferred from a number of studies that observation of Raman
active and infra-red active modes with strong temperature dependent
frequencies and line widths are due to electron–phonon coupling (Anhar-
monicity may be another possibility).

3. Zeyner and Zwicknage (1988) have provided a theoretical analysis of the
temperature dependence of Raman- and infra-red active modes in YBCO
system, which indicates that this material is in the strong electron-phonon
coupling limit.

1.11.2 Elastic and Ultrasonic Studies

These show, however, anomalies in their temperature dependence often closely
correlated with Tc, which reflect strong electron–phonon coupling.

The character and strength of the electron–phonon interaction are of cen-
tral interest, both for understanding the unusual physical properties of the
cuprates as well as for describing the electronic system itself.
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The electron–phonon interaction has been discussed widely as a possible
pairing mechanism and, also as an impossible pairing mechanism for producing
Tc ∼ 100 K.

The isotope-shift of Tc initially expected to be the crucial experiment, has
not been as conclusive as was naively expected at first.

The smaller and negative values of the β could be explained with the help
of Eliasberg theory, only if Tc ∼ 1 K or less. In case of early results on cuprates,
the oxygen isotope effect (with Tc ∼ 100 K) showed βox ∼ 0 (implying a result
inconsistent with the electron phonon model), and therefore, the electron–
phonon model was abandoned, favouring an electronic model. Many electronic
models have been proposed but none yet completely expected. However, a
smaller value of βox can be accounted for by considering (at the cost of some
accuracy) a joint phonon, but largely electronic mechanism.

Recently “strange isotope-effect” has been observed, which has added
to the confusion, a rapid variation in the βox value is found (even >0.5)
with doping variation (so as to change Tc), e.g. rapid increase in β for
Y1−xPrxBa2Cu3O7.

1.12 The Energy Gap

The behaviour of the specific heat in the superconducting state is a strong
indication of the existence of an energy gap in the excitation spectrum of the
electrons in the conduction band. Figure 1.12 illustrates this by comparing
the difference between the occupancy of states in a normal metal (Fig. 1.12a)
and a superconductor. Figure 1.12b illustrates the superconducting ground
state for absolute zero temperature. This shows a zero density of states for
energy within ±Δ(0) or 2Δ0. At T = 0, no electrons are excited to higher
states. Figure 1.12c shows effect of a finite temperature T (<Tc).

The superconducting energy gap Δ(T ) is now smaller than Δ0. A fraction
of electron number is now in states above EF(0)+Δ(T ), leaving behind some

(a) (b) (c)

Fig. 1.12. Density and occupancy of states: (a) in absence of superconductivity,
(b) in superconducting ground state, (c) superconducting state at finite temperature
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Fig. 1.13. Energy gap versus temperature

Table 1.3. Energy gap (2Δ0) (at 0◦K) for some elements

Element 2Δ0(meV) Tc(K) (2Δ0)/(kBTc)

Nb 3.05 9.50 3.8
Ta 1.40 4.48 3.6
Al 0.34 1.20 3.3
Sn 1.15 3.72 3.5
Pb 2.90 7.19 4.3
Hg 1.65 4.15 4.6

Note: Once set in a drift motion, a Cooper pair may be scattered only if the collision
mechanism imparts an energy to the pair which is at least equal to 2Δ0. But at low
temperatures, this amount of energy cannot be supplied by the phonons because in
superconducting state (T < Tc) only very low energy phonons are excited. Thus, the
Cooper pair continues its drift motion indefinitely

unoccupied states below EF(0)−Δ(T ). The quantity 2Δ(0) is the pair binding
energy. It is to be noted here that the energy interval 2Δ (i.e. discreteness in
energy for a superconductor) is in macroscopic electron system, unlike energy
gap in a semiconductor or an insulator.

The energy gap is a function of temperature and the temperature depen-
dence is as shown in Fig. 1.13. With increasing temperature, the gap decreases
and finally vanishes at T = Tc. In the BCS theory, it is shown that
Δ(T )T→Tc = aTc(1 − (T/Tc))1/2 (1.19), where, in the weak coupling approx-
imation a = aBCS = 3.06. At temperatures below Tc, the presence of quasi-
particles (normal electrons) being less than the total number of electrons.

The value of the energy gap at 0◦K (i.e. 2Δ0) of some of the elements
is shown in Table 1.3. The ratio 2Δ0 to kBTc, according to BCS theory is
3.52, which is the same for all superconductors. The ratios given in the last
column of the table show good agreement with the theory. In high tempera-
ture superconductors (HTSCs), because of the layered structure, the carrier
motion is quasi-two-dimensional, which favours better pairing, therefore, even
carriers far from EF bind, leading to a large value of Δ. The ratio Δ(0)/EF

indicates the fraction of carriers paired and is much larger in HTSCs than in
conventional superconductors.
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1.13 Thermodynamics of Superconductors

The transition to the superconducting state is a function of temperature
and applied magnetic field. In pure samples, the transition is reversible and
can be described by equilibrium thermodynamics. The conditions for equilib-
rium are found by minimising the magnetic Gibbs free energy at constant T
and H .

The change from the normal to the superconducting state occurs since the
Gibbs free energy in the superconducting state (Gs) is lower than its value
GN in the normal state.

Now, G (T, H) = U − TS + UM, (1.20)

where U , T , S and UM are internal energy, temperature entropy and the
magnetic energy, respectively.

For a superconductor placed in a magnetic field Ha, the magnetic energy

UM =

Ha∫

0

μ0HdM =

Ha∫

0

μ0HχdM = −1
2
μ0χH

2
a (1.21)

(if susceptibility χ is independent of H).
Thus,

G(T,Ha) = U − TS − 1
2
μ0χH

2
a , (1.22)

dG = dU − d (TS) − μ0 d (HM) (∴ UM ≡ μ0HM) (1.23)

or dG = dU − TdS − SdT − μ0HdM − μ0MdH.

From second law of thermodynamics,

dU = TdS + μ0HdM
∴ dG = −SdT − μ0MdH. (1.24)

This equation can be integrated for an isothermal magnetisation

G (T, Ha) −G (T, 0) = − (1/2)μ0 χH
2
a

(for a metal in the superconducting rate, χ = −1)

∴ Gs (T, Ha) −Gs (T, 0) = (1/2)μ0H
2
a . (1.25)

In the normal state, χ = 10−6 (emu) (i.e. for T > Tc) magnetisation is taken
to be zero so,

GN (T, Ha) = GN (T, 0) .
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At Ha = Hc, the normal and superconducting phases are in equilibrium at
the same temperature and field

∴ Gs (T, Hc) = GN (T, Hc) = GN (T, 0)
= Gs (T, 0) + 1/2μ0H

2
c (T ) .

GN (T, 0) −Gs (T, 0) = 1/2μ0H
2
c (T ) . (1.26)

For Ha > Hc, we have Gs > GN, whereas for Ha < Hc, Gs < GN and
therefore, the superconducting state is stable.

The above equation provides a direct measure of the condensation energy
of the superconducting state, i.e. the reduction in the free energy in forming
the new phases is 1/2μ0H

2
c (T ) per unit volume.

The Gibbs free energies GS and GN from (1.25) and (1.26) are plotted in
Fig. 1.14.

Equation (1.24) can now be used to determine the entropy as

S = −
(
∂G

∂T

)

H

(1.27)

using (1.26) and (1.27), we have

SN = Ss − 1
2
μ0

d

dT
(H2

c
)

SN = Ss − μ0

(
Hc

dHc

dT

)
. (1.28)

Experimentally, it is observed that dHc/dT is always negative. Therefore,
entropy in the superconducting state is lower than that in the normal state,
i.e. the superconducting state is more ordered than the normal state.

Further, specific heat

Ce
v = T

(
∂S

∂T

)
Hc. (1.29)

Fig. 1.14. Free energies GS and GN versus applied magnetic field
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Using (1.28) and (1.29), we obtain

CN − Cs = −μ0T
d

dT

[
Hc

dHc

dT

]

or CeN − Ces = −μ0T

[(
dHc

dT

)2

+Hc
d2Hc

dT 2

]

or Ces − CeN = μ0T

[(
dHc

dT

)2

+Hc
d2Hc

dT 2

]

. (1.30)

Evaluated at Tc, this equation yields

ΔC
γTc

=
μ0

γ

(
dHc

dT

)2

T=Tc

. (1.31)

The electron contribution to specific heat shows two features related to open-
ing of energy gap, when the temperature is lowered through Tc. With respect
to the normal state specific heat

CeN = γT (1.32)
with γ = 2π2k2

BN(0)/3. (1.33)

Ces at Tc shows the jump given by

(Ces − CeN)/γTc = 1.43, (1.34)

followed by an exponential decrease roughly proportional to exp
[
− Δ0

kBT

]
. The

phonon specific heat does not change in the superconducting state (Fig. 1.15).
It is to be noted here that, although Hc vanishes at T = Tc, (dHc/dT )

does not, as a result the specific heat must exhibit a discontinuity at this
temperature.

Fig. 1.15. The temperature dependence of electronic specific heat of a conductor
in the normal and superconducting states
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1.13.1 Latent Heat of Superconducting Transitions

Since dQ = TdS for a reversible flow of heat, we find from (1.28) that the
latent heat of transition from the superconducting to the normal state is

L = −Tμ0Hc
dHc

dT
. (1.35)

This is analogous to the Clausius–Clapeyron relation (L = TΔV dP/dT ) that
describes the dependence of the latent heat of a first-order transition on change
of pressure with temperature and of change of volume with phase.

The latent heat of transition for a superconductor is plotted in Fig. 1.16.
It seems to vanish at T = 0, because of Nernst theorem, and also at Tc,

since Hc vanishes there.
The fact that L and SN − Ss is zero at Tc is typical of a phase transition

that involves a change of order rather than a change of state. Such transitions
are known as transitions of the second-order (it is to be noted that dHc/dT
is equal to zero only at T = 0 and T − Tc. Thus, although Ss < SN. There is
no discontinuity in S and hence, no latent heat for transition at T = Tc).

In contrast, for T <Tc, the transition to normal state induced by a field
involves a finite entropy change and correspondingly, a latent heat (i.e. a
change of state). This is consequently a first-order transition.

1.13.2 Heat Capacity of Superconductors

The specific heat, Cv in a normal conductor at low temperatures consists of
two contributions

Cv = γT + αT 3, (1.36)

where α and γ are constants.
For an insulator γ = 0, a pure T 3 behaviour. For metals, γ 
= 0; the linear

term is a contribution from conduction electrons. The T 3 term (in both the
cases) is due to lattice vibrations.

Fig. 1.16. Latent heat of a superconductor
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In usual superconductors, the transition has practically no effect on the
lattice. From the theory of normal metals, it is known that at low tempera-
tures Cn

l ∼T 3. The same dependence characterises Cs
l in the superconducting

state. Whereas, the electronic contribution changes drastically and is given
by an exponential decay (of Cs

el) as T → 0. This behaviour is explained as
follows:

Because of the energy gap, the number of quasi-particles (excited across
the gap) varies roughly by a Boltzmann factor exp (−Δ/kBT ).

At finite temperature, the quasi-particles behave just like ordinary elec-
trons and are given by

n =
[
exp
(∈
T

)
+ 1
]−1

, (1.37)

where ∈=
√

∈′2 + Δ2(T ) (1.38)

and Δ(T ) |T→Tc = a′Tc

(
1 − T

Tc

) 1
2

. (1.39)

∈′ is the normal metal electron energy given by

∈′ =
(
p2

2m∗ − EF

)
(1.40)

and in weak coupling approximation a′ = 3.06 (BCS limit).
Because of the appearance of Δ(T ) term in ∈, the number of excitations

n of a given energy is less than the corresponding number of electrons in a
normal metal (at T < Tc). (It is to be noted here that for T ≥ Tc, Δ = 0,
the excitations vanish and the function given by (1.37) becomes the usual
expression for electrons in a normal metal). Thus, superconductor is described
by a two fluid model, which has normal electrons and a “superconducting”
component.

For T << Tc, the heat capacity is given by

Cs
el(T )

Cn
el(Tc)

=

[
3
√

2

π
3/2

Δ(0)
Tc

](
Δ(0)
T

)3/2

e−
Δ(0)

T . (1.41)

Therefore, presence of energy gap leads to electronic heat capacity behaving
radically different from normal metal result (Cn

el ∼ T ).
In weak coupling (i.e. BCS) case

Δ(0)
Tc

= 1.76. (1.42)

At T = Tc, there is a jump in the heat capacity. When the temperature is
reduced, the specific heat jumps to a higher value at T = Tc and then falls
much more rapidly as e−Δ(0)/T for T < Tc.
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Cs
el

αTc
= a exp

(
−bTc

T

)
, (1.43)

where αTc is the “low temperature” electronic specific heat of normal state,
a and b are constants, independent of temperature (a ≈ 9, b ≈ 1.5). The size
of the discontinuity in specific heat at T = Tc is 2.5 in units of αTc.

1.13.3 Strong Coupling Case

In BCS theory

2Δ = 3.52Tc, (1.44)
Cs − Cn

Cn
= 1.43. (1.45)

These formulae are of a universal character.
The universality is due to the fact that the BCS theory was developed

in the weak coupling approximation, i.e. electron–phonon interaction was
assumed to be weak (and coupling constant λ < 1). However, there were some
pronounced deviations from this universality, e.g. for Pb–Bi alloy, 2Δ = 5Tc.
The experimentally observed deviations are caused by the fact that electron–
phonon coupling is not weak. Thus, the effect of strong coupling must be
taken into account. The foundation of the theory of strong coupling is formed
by an equation derived by Eliasberg (1960). This equation contains a very
important term

g(Ω) = α2(Ω) F (Ω),

where F (Ω) equals density of states of lattice vibrations and α2(Ω) describes
interaction between electrons and the lattice. Thus, it describes both the state
of the phonon system and the electron–phonon interaction.

Geilikman and Kresin (1966) obtained the following formula for the
energy gap

2Δ(0)
Tc

= 3.52

[

1 + α

(
Tc

Ω̄

)2

�n

(
Ω̄
Tc

)]

, (1.46)

where α = 5.3 and
−
Ω is the characteristic frequency of lattice vibrations.

The second term in brackets is the correction due to strong coupling. The
temperature dependence of energy gap changes from

Δ(T )
Tc

= a

[
1 −
(
T

Tc

)] 1
2

, (aBCS = 3.06),

Δ(T )
Tc

= 3.06
[
1 + 8.8

Tc

Ω̄2

2

�n

(
Ω̄
Tc

)]
. (1.47)

(Note: factor 2 is inclusive in Δ(T )).
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1.14 London Equations and Penetration Depth

The two basic electrodynamics properties, viz. perfect conductivity and per-
fect diamagnetism, were well described in 1935 by F. London and H. London,
who proposed two equations (known as London equations) to govern the
microscopic electric and magnetic fields.

It was shown by London brothers that the magnetic flux lines are not
completely expelled from a superconductor rather they remain confined in a
thin surface layer called the penetration depth. They postulated a two fluid
model for electrons with super-fluid and normal densities ns and nn (and
velocities vs and vn, respectively). If no denotes number of electrons per unit
volume, then

n0 = ns + ns. (1.48)

The equation of motion for super fluid electrons is

m
d
→
v s

dt
= −e→

E . (1.49)

The current density of the super fluid electrons is

→
Js = −ensvs. (1.50)

Equation (1.49) and (1.50) yield

d
→
j s

dt
=
nse

2

m

→
E . (1.51)

This is called the first London equation. Taking curl of this equation,

∇× d
→
js

dt
=
(
nse

2

m

)
curl

→
E

or ∇× d
→
js

dt
= −nse

2

m

(
∂B

∂t

)

using Maxwell’s equation.
Integrating the above expression with respect to time and choosing the con-

stant of integration to be zero (for consistency with Meissner effect), we have

∇×
→
j s = −

(
nse

2

m

)
→
B . (1.52)

This is called the second London equation. We may derive the Meissner effect
from the second London equation by using Maxwell’s equation

∇× →
B = μ0

→
j s. (1.53)
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Taking the curl of this equation

∇(∇ · →B) −∇2
→
B = μ0∇×

→
js. (1.54)

Since ∇ · →B = 0, therefore

∇2
→
B =

1
λ2

→
B (using(1.52)) , (1.55)

where λ =
(

m

μ0nse2

) 1
2

is called London penetration depth. (1.56)

The solution of the (1.55) for
→
B =

→
B(x) is of the form

→
B(x) = B0e−

x
λ (see Fig. 1.17) (1.57)

Thus,
→
B does not penetrate very deeply into a superconductor, rather

penetrates only a distance λ within the surface (it implies the Meissner effect)
From (1.51) and (1.52) we have two equations

→
E =

∂

∂t
(∧→
js) (1.58)

and
→
B = −curl (∧→

js), (1.59)

which govern the microscopic electric and magnetic fields, where

∧ ≡
(

m

nse2

)
(1.60)

is a phenomenological parameter. The number density of electrons depends
on temperature and varies from zero at Tc to a limiting value of the order n0,
the density of conduction electron at T → 0◦K (Fig. 1.18).

The penetration depth λ also depends on temperature as

λ(T ) = λ(0)

[

1 −
(
T

Tc

)4
]− 1

2

. (1.61)

The density of super electrons ns also varies with temperature as

ns = n0

[

1 −
(
T

Tc

)4
]

, (1.62)

where n0 = n(0)
(≡ n(T ) T=0K|).
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Fig. 1.17. Decay of the magnetic field penetrating in a superconducting half space
(existing for x ≥ 0)

0

0

Fig. 1.18. Variation of penetration depth and ns with temperature

1.15 Ginzberg–Landau Theory

There are basically two theoretical approaches to describe various super-
conducting phenomena (1) a phenomenological theory effective through the
London equations and (2) the microscopic (BCS) theory.

However, the comprehensive theoretical picture remain incomplete with-
out considering the impact and consequences of yet another theory known
as the Ginzberg–Landau (GL) theory proposed 7 years prior to the BCS
theory.

According to Landau, an ordered thermodynamic phase is characterised
by a non-zero order parameter, accordingly Ginzberg and Landau introduced
a complex pseudo-wave function ψ as an order parameter within Landau’s
general theory of second-order phase transitions. This ψ vanishes at T ≥ Tc.
The GL theory has accorded a semi-phenomenological status. Near the crit-
ical temperature |T − Tc| ≤ Tc, the theory is very much simplified and the
behaviour is described by GL equations.

According to London, the wave function of the superconducting electrons
is rigid, i.e. it does not change when a magnetic field is applied. In GL theory,
the absolute rigidity is modified and parameter ψ is defined, such that
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|ψ|2 = ns, (1.63)

the density of super-electrons.
More physically, ψ can be thought of as the wave function of the cen-

ter of mass motion of the Cooper pairs (In fact, it was shown by Gorkov
in 1959, that the GL theory was a limiting form of the microscopic the-
ory of BCS, valid near Tc in which ψ is directly proportional to the gap-
parameter Δ).

Since the phenomenon of superconductivity is a second-order phase tran-
sition, there is a critical temperature Tc and a positive parameter ns, which
is zero when T > Tc and is finite when T < Tc.

The Gibbs free energy F can be expanded as

F (T, V, ns) = F (T, V, 0) + αns + (1/2)βn2
s . (1.64)

The equilibrium condition ∂F/∂ns = 0 gives

α+ βns = 0 or ns = −α
β
, (1.65)

Since F is to be minimum, therefore

∂2F

∂n2
s

> 0.

So β is positive (from (1.64)) and α should be negative (from (1.65)). To obtain
a phase transition of second kind, we assume

α(Tc) = 0; β(Tc) > 0,

α(T ) = (T − Tc)
(
∂α

∂T

)

T=Tc

. (1.66)

(for T < Tc, α(T ) < 0 and β(T ) > 0).
Substituting for ns from (1.65) into (1.64), we have

Fs = Fn − α2

2β
. (1.67)

But (Fs − Fn) = −H
2
c

8π
.

so, we have

α2

2β
=
H2

c

8π
. (1.68)

Here, ns is always constant and the magnetic field enters as a term H2
c

8π in the
free energy of the superconducting phase.
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Since ψ is a kind of effective wave function, in presence of an external
magnetic field H , the free energy will not only increase by H2

8π per unit volume,
but also by an extra term connected by the gradient of ψ (because ψ is not
rigid in the presence of the magnetic field). To preserve the gauge invariance,
GL assumed the extra term to be

1
2m

∣
∣
∣∣−i�∇ψ +

e∗

c

→
A(

→
r )ψ
∣
∣
∣∣

2

,

where
→
A(

→
r ) is the vector potential of the applied field H , and e∗ the effective

charge. Thus,

Fs = Fn +
∫ {

α |ψ|2 +
1
2
β |ψ|4 +

H2
c

8π
+

1
2m

∣
∣∣i�∇ψ − e∗

c

→
A(

→
r )ψ
∣
∣∣
2
}

dv.

(1.69)
This expression is gauge-invariant under the simultaneous transformation

ψ′ = ψ exp
(

ie∗

�c

)
φ. (1.70)

→′
A =

→
A+∇φ,

[In fact e∗ = 2e] .

We now minimise the expression with respect to ψ∗ and
→
A. Variation with

respect to ψ∗ gives

δF =
∫ {

αψ + β |ψ|2 ψ +
1

2m

[(
−i�∇ψ − e∗ψ

c

)(
i�∇− e∗

c

→
A

)]}
δψ∗dv.

(1.71)
Integrating the last term by parts gives

1
2m

(∫
δψ∗(−i�∇− e∗

c

→
A)2ψdv +

∫∫
�
n · (−i�∇− e∗

c

→
A)ψδψ∗da

)
. (1.72)

The surface integral vanishes because δψ∗ is arbitrary and, therefore, the
boundary condition is

�
n ·
(
−i�∇− e∗

c

→
A

)
= 0. (1.73)

Hence, we get from (1.71)

1
2m

(−i�∇− e∗

C

→
A)2ψ + αψ + β |ψ|2 ψ = 0. (1.74)

Note that this is analogous to the Schrödinger equation for a free particle,
but with a nonlinear term. This equation describes the equilibrium spatial
variation of ψ. Variation with respect to �A yields,
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∇×∇× →
A = −∇2A =

4π
c

→
J (1.75)

(using the gauge ∇ · →A = 0), where

→
J = − ie∗�

2m
(ψ∗∇ψ − ψ∇ψ∗) − e∗2

mc
|ψ|2 →

A (1.76)

is the same as the usual quantum mechanical current expression for particles
of charge e∗ and mass m.

So the fundamental equations of the GL theory are

1
2m

[
−i�∇− e∗

c

→
A

]2
ψ + αψ + β |ψ|2 ψ = 0 (1.77)

and
→
J =

e∗�
2im

(ψ∗∇ψ − ψ∇ψ∗) − e∗2

mc
|ψ|2 →

A . (1.78)

With this formalism, Ginzberg and Landau were able to treat two features,
which were beyond the scope of the London theory, namely

(1) Nonlinear effects of fields strong enough to change ns (or |ψ|2) and
(2) The spatial variation of ns

This will be discussed in the subsequent section, while considering the varia-
tion of |ψ|2 in type-I and type-II superconductors. Thus, GL theory embod-
ies in a simple way the macroscopic quantum mechanical nature of the
superconducting state.

1.16 Type-I and Type-II Superconductors

Both coherence length and penetration depth diverge in the same way near
T = Tc. So, a constant k is defined

as k =
λ

ξ
, (1.79)

which will remain finite as T → Tc.
This is known as Ginzberg–Landau parameter and can be considered as a

characteristic of a material. The magnitude of k defines two kinds of super-
conductors. For k << 1 (i.e. λ << ξ), we have type-I superconductors and
superconductors having k >> 1 (i.e. λ >> ξ) are type II superconductors.
Figure 1.19a, b depicts spatial dependence of the order parameter ψ(x) and the
magnetic field H(x) at the superconductor-normal interface, for respectively
type-I and type-II superconductors.

Consider a plane boundary between the superconducting (S) and normal
(N) regions in the same material. At the boundary, the magnetic flux density
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(a)

(b)

Fig. 1.19. (a) type-I and (b) type-II superconductors

must rise from zero in the superconductor to Hc in the normal region, over
a distance ∼ penetration depth λ (as required by the condition for thermo-
dynamic equilibrium). Likewise, the superconducting wave function ψ, and
hence the density of paired electrons must fall to zero over a distance ∼ξ
(the coherence length). Thus, the formation of a S–N boundary involves an
increase in energy (or loss of condensation energy ≈ξ0

(
μ0H2

c
2

)
per unit area

and a reduction in the magnetic energy ≈λ0

(
μ0H2

c
2

)
per unit area).

The sign of the surface energy

σs = (ξ − λ)
μ0H

2
c

2
(1.80)

is then determined by the relative magnitudes of the coherence and perpetra-
tion lengths. Thus, a type-I superconductor has a positive surface energy and
type-II superconductor has a negative surface energy in an applied magnetic
field. Type-I superconductors show complete Meissner effect. The magnetisa-
tion versus applied magnetic field is shown in Fig. 1.20. The magnetisation
drops suddenly at the critical field H = Hc (Fig. 1.21).

In type-II superconductor, magnetisation drops earlier, before reaching
the critical field H = Hc. There starts penetration of flux in the specimen at
a field value Hc1 (which is lower than Hc). The electrical properties in the
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Type-I Type-II

Fig. 1.20. Magnetisation versus applied magnetic field for type-I and type-II
superconductors

(a) (b)

Fig. 1.21. Critical magnetic field as a function of temperature for (a) type-I and
(b) type-II superconductors

superconducting state are also seen upto a field Hc2 (which is greater than
Hc). Hc1 and Hc2 are known as the lower and upper critical fields respectively.

The state between Hc1 and Hc2 is known as the mixed state or vortex state
(because there is partial flux penetration and there are both superconducting
and normal regions in the form of vortices). At H ≥ Hc2, the superconductiv-
ity is destroyed. The phase change at Hc represents a first-order transition.
The transitions at Hc1 and Hc2 are of second-order.

The free energyFn > Fs. (1.81)

The free energy cost per unit surface area (Fn − Fs) results from sacrificing
the condensation energy in a layer of width ξ (the coherence length), i.e.

ΔFcost varies as
(
H2

c

2μ0

)
ξ, (1.82)

where Hc is known as the thermodynamic critical field. The free energy of
a superconductor increases in an applied field. The free energy-gain derives
from allowing the field to invade a distance equal to the penetration depth
λ, i.e.
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Fig. 1.22. The triangular lattice of vortices in the mixed state

ΔFgain ∼ −
(
H2

app

2μ0

)

λ. (1.83)

Clearly ΔFgain dominates for λ > ξ as in a type-II superconductor. When H
exceeds Hc1, the free energy is lowered by maximising the S/N interface area
(H > Hc1 ⇒ B 
= 0).

Flux enters at H > Hc1 and according to Abrikosov, it does so in the form
of flux vortices, which assume a triangular lattice structure to minimise their
interaction energy. For Hc1 < H < Hc2, we have this intermediate phase or
Shubnikov phase.

At Hc1, the first vortex is nucleated and with increasing field, their equi-
librium separation is reduced, such that at Hc2 the normal cores overlap and
then, bulk of the material turns normal (Fig. 1.22).

A vortex consists of a normal core (a cylinder of normal region parallel to
the applied magnetic field) carrying a flux quantum φ0 = 2.07×10−15 Webers
and diameter 2ξ. This microscopic normal region is surrounded by circulating
super-electrons. At the centre of the core, the field is maximum and it drops
to 1/e of its maximum value over a distance λ. A flux vortex is also known as
a fluxoid (Fig. 1.23).

In the space between the vortices, the material remains superconducting;
this is where the electric current flows, so the electrical resistance is still
absent.

1.16.1 How a Normal Core is Formed in Mixed State?

With the application of the field H > Hc1, normal cores are nucleated, each
carrying a quantum of flux φ0. A core is surrounded by a circulating current
(of super-electrons), whose super-fluid velocity is quantised to the value

υs0 =
�

2mξ
. (1.84)
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(a)

(b)

(c)

Fig. 1.23. Structure of a vortex line (a) order parameter (b) current density
(c) local field

The super-electrons revolve around the vortex-axis like current in a super-
conducting ring. The closer the superelectron to the vortex-axis, the faster it
circulates. At a shorter distance from the axis, the speed exceeds the critical
value υs0 and superconductivity is destroyed (inside normal core).

1.16.1.1 The Upper Critical Field

If the number density of vortex lines is n in a specimen, then spacing “a”
between the neighbouring lines is given by

a =
(n

3

) 1
4
(
φ0

B

)1
2

. (1.85)

With increasing field, the density of flux lines approaches the value such that
Ba2 ∼ φ0. Clearly, when “a” reaches the value ξ, the whole sample is com-
prised of touching normal cores, so that we may identify the upper critical
field Hc2 with this limit and

Hc2 =
φ0

2πξ2
. (1.86)
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It is to be mentioned here that around the surface of a normal core, there are
screening currents flowing in the surface in the opposite sense to the circulating
persistent currents, as a result, the diamagnetism of the bulk is maintained.

From Fig. 1.23, it is seen that |ψ|2 is reduced to a small value over a length
ξ and the magnetic field of a flux line is spread over a region of size λ. Thus,
there is a gain of energy by letting the magnetic field in over an area λ2

and a loss of energy, because it is not superconducting effectively over an
area ξ2. Therefore, flux penetration is energetically favoured, if λ > ξ (Type-
II superconductor). However, if λ < ξ, fluxoids are not energetically favoured
(for type-I superconductor). The lower critical field Hc1 is defined as the value
of the applied field at which it is energetically favourable to form an isolated
fluxoid.

Hc1 =
Hc

k
√

2
where k isGL parameter. (1.87)

For the formation of an isolated fluxoid, the necessary condition is λ > ξ.
A detailed treatment modifies this to

k >
1√
2
. (1.88)

The value of k increases with normal state resistence ρ and in the dirty-limit
(i.e. when � << ξ0 where � is mean free path)

k = k0 + 2.4 × 106ργ
1
2 , (1.89)

where k0 is the pure material value and γ is Sommerfeld constant. That is,
many alloys and compounds have λ > ξ and exhibit type-II superconductivity,
but since both λ and ξ are affected by the electron mean free path (�), type-I
material (elements) can be made type-II by appropriate alloying (to reduce �).

1.17 Why Materials with High Tc Tend to Fall
in Type-II Category?

The reason qualitatively is as follows. The coherence length represents exten-
sion of the order parameter (the wave function of the super electrons). Using
the position momentum uncertainty relation, we write

ξ =
�

Δp
, (1.90)

where Δp is the uncertainty in momentum. But a super-electron lies within
an energy interval kBTc from the Fermi surface and hence, the uncertainty of
its energy is

ΔE ∼= kBTc. (1.91)
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Since E = p2/(2m), it follows that

ΔE = p
Δp
m

(1.92)

or Δp ∼ ΔE = kBTc which, when substituted into (1.1) gives

ξ ∝ 1
Tc
. (1.93)

Therefore, the greater the Tc, the shorter the coherence length.
Transition metals and alloys usually fall in the type-II category. Their

coherence length is shortened by the relatively large amount of scattering
present.

Nearly 25 years ago, all known superconductors were having Tc < 20 K.

1.18 Why It is Extremely Difficult to Obtain Higher Tc?

From the microscopic (BCS) theory, the Tc is given by

kBTc = (�ω)e−1/λeff , (1.94)
or kBTc

∼= (kBθ)e−1/λeff , (1.95)

kBθ denotes the energy-range near the Fermi level, in which conduction
electrons attract to form Cooper pairs.

(1) If “attraction” is due to interaction with phonons, then θ = θD, the Debye
temperature of the material.

(2) kBθD is of the order of �ωD, i.e. energy of highest frequency of phonons
that can propagate in the substance.

(3) λeff characterises the attractive force within the framework of the BCS
theory (i.e. in the weak coupling limit).

λeff = N(0)V << 1, (1.96)

where N(0) is density of states in normal phase at the Fermi level, V is
average matrix element of the interaction energy U between the electrons.
λeff is a measure of the attractive force (Fig. 1.24).

The BCS model (the weak coupling case) gives

2Δ(0)
kBTc

= 3.53 (1.97)

and ΔC = 1.43 γTc, (1.98)

where ΔC is specific heat jump at Tc and γ is coefficient in the law

Cn = γT
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for electronic specific heat in normal state.
If the coupling is weak, then, within the phonon-mechanism

Tc << θD. (1.99)

Specifically for λeff = 1/2 and θ = θD, the Tc is 0.135 θD, i.e.

Tc < 40 K for θD < 300 K. (1.100a)

With an increase in λeff , phonon frequencies become lower, θD falls

∴ Tc ∼ 20 − 40 K. (1.100b)
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Fig. 1.24. Interaction energy between the electrons
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