
Towards a Scalable Query Rewriting Algorithm

in Presence of Value Constraints

H. Jaudoin1, F. Flouvat2, J.-M. Petit2, and F. Toumani3

1 University of Rennes, ENSSAT Lannion, IRISA, UMR6074 CNRS, France
2 University of Lyon, INSA-Lyon, LIRIS, UMR5203 CNRS, F-69621, France

3 University of Clermont-Ferrand, LIMOS, UMR6158 CNRS, France

Abstract. In this paper, we investigate the problem of query rewrit-
ing using views in a hybrid language allowing nominals (i.e., individual
names) to occur in intentional descriptions. Of particular interest, re-
stricted form of nominals where individual names refer to simple values
enable the specification of value constraints, i.e, sets of allowed values
for attributes. Such constraints are very useful in practice enabling, for
example, fine-grained description of queries and views in integration sys-
tems and thus can be exploited to reduce the query processing cost. We
use description logics to formalize the problem of query rewriting using
views in presence of value constraints and show that the technique of
query rewriting can be used to process queries under the certain answer
semantics. We propose a sound and complete query rewriting Bucket-like
algorithm. Data mining techniques have been used to favor scalability
w.r.t. the number of views. Experiments on synthetic datasets have been
conducted.

1 Introduction

This work is motivated by an application in the sustainable land and water man-
agement domain1. We aim at providing a scalable data integration infrastructure
for: (i) sharing and analyzing agricultural practices across heterogeneous agri-
cultural data sources, and (ii) verifying their compliance with respect to national
and European government regulations. We adopt a Local As View (LAV) ap-
proach [14,19] to build our data integration system and use query rewriting using
views as a technique for answering queries in such a system. The process of query
rewriting supplies set of query plans formed of views only that must be further
evaluated on data in order to produce correct answers.

In this context, value constraints over attributes, i.e., sets of allowed values
for those attributes, turn out to be a key feature and have a strong practical
interest. Indeed, values constraints enable fine-grained description of queries and
views in integration systems and can be exploited to reduce the query processing
cost. In our application context, various data sources provide views which have

1 This is a collaborative project with a French public research institute whose work
focuses on sustainable development in non-urban areas.

S. Spaccapietra (Ed.): Journal on Data Semantics XII, LNCS 5480, pp. 37–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 H. Jaudoin et al.

identical intentional descriptions (i.e., same structures) but the possible values
for certain attributes are different (i.e., different value constraints). For example,
two different data sources may store information about cultural parcels that have
received pesticide in different years and/or are located at different districts.
Views describing these data sources can be informally defined as follows:

S1.V1 : cultural parcels of district number 23 or 63 that have received pesticide
of category c1 or c18 or c24.
S2.V2 : cultural parcels of district number 03 or 26 or 43 that have received
pesticide of category c2 or c15 or c38.

Therefore view V1 of data source S1 supplies cultural parcels only located in
district 23 or 63 and that have received pesticide whose category is only c1 or c18

or c24. Consequently, V1 cannot return cultural parcels from district 69. In this
example, without value constraints over the attributes district number and year,
views S1.V1 and S2.V2 would be identical. Therefore, the use of value constraints
enables a more accurate description of the content of data sources. Moreover,
value constraints can also be very useful to express more precise queries. For
example, a typical query Q in our application can ask for cultural parcels of
only district number 23 or 63 that have received pesticide of category c20 or
c38 only. The user is then interested in a particular region, here the district 23
and 63 only and in a particular set of pesticide categories that are known to be
compatible with a culture activity. Turning our attention to query processing
techniques, the presence of such constraints provides valuable information to
identify when a view is not useful for answering a query. For example, here,
the view S2.V2 cannot supply correct answer to the query Q since S2.V2 gives
only cultural parcels in districts 03 or 26 or 43. Consequently, capturing and
exploiting value constraints may improve the query processing costs in two ways.
Firstly, it reduces the number of candidate views to be considered in the query
rewriting process. Secondly, it prunes the set of sources accessed to answer a
query, thereby reducing the network communication cost.

More generally, value constraints play an important role in various appli-
cation domains. For example, in Databases Management Systems, they allow
to represent enumerated data types -e.g., a marital status is either married,
single, divorced, or widowed - and then to specify the value integrity constraints
involved by the views. Moreover, such a kind of constraints allows for incomplete
information description [8], that can be very practical in open environments like
the web. Indeed sometimes users and administrators of data sources are only
able to enumerate possible values of attributes instead of giving its exact value.
For example, the user knows that the ages of individuals in his/her databases are
either 22 or 23 or 24, and cannot be another value. Therefore, it is impossible to
give the right age of individuals but it is possible to give a good idea about their
ages. Finally, as mentioned in our motivating example, value constraints are
very useful to specify queries of the form: ”I seek for individuals whose values on
a given attribute cannot be outside of the set of values {a1, ..., an}”. For example,

Towards a Scalable Query Rewriting Algorithm 39

with such a kind of constraints, it is possible to ask for documents dealing with
only a list of specific topics, or food prepared with only certain ingredients.

In this paper, we study the problem of rewriting queries using views in pres-
ence of value constraints both in the queries and in the views. The problem
of rewriting queries using views, intensively investigated during the last decade
[14,24], can be formally stated as follow: given a set of views V and a query Q,
both expressed over a global schema S, the purpose is to reformulate Q into
a query expression that uses only the views in V and is maximally contained
in Q. While much has been done on the development of query rewriting algo-
rithms for various classes of languages (conjunctive queries, recursive datalog,
description logics) [12,14,19,24], to our knowledge, none has dealt with value
constraints. First, it is not possible to reuse algorithms as those proposed in
the general framework of conjunctive queries in presence of constants [20] or
arithmetic comparisons [2] since conjunctive queries, even with disjunction, al-
low only for specifying the possible values of an attribute and not for restricting
the range of an attribute to a given set of values. Second, it is neither possible
to exploit existing query rewriting algorithms proposed in the description logics
setting (e.g., ALCNR [7]) since values constraints cannot be correctly simulated
in such languages. Indeed, the implicit information on number restrictions in-
trinsic to the value constraints 2 is likely to be lost and then existing algorithms
would lead to incomplete algorithms for the problem of answering queries using
views in presence of value constraints.

Hereafter, we investigate the query rewriting problem using a Description
Logic (DL) [4] based framework. DLs constitute nowadays one of the most im-
portant logic-based knowledge representation formalisms in which problems re-
lated to representing and reasoning with value constraints have been deeply
studied [15]. In particular, DLs provide two constructors respectively the OneOf
constructor, noted O, and the universal quantifier constructor ∀, that allow
for a correct representation of value constraints. The first one enables the enu-
meration of individuals and then representation of sets of values while the sec-
ond one restricts the range of a given attribute. For example, the description
∀departmentNumber.{23, 24, 63} denotes the individuals whose the department
number is necessarily restricted to 23 or 24 or 63.

Contributions. First, we consider the problem of answering queries in the for-
mal setting of the DLs ALN augmented with a restricted form of the OneOf
constructor, noted Ov. We show that query rewriting provides a sound and
complete technique to process queries under the certain answers semantics [1].
Then we propose a query rewriting Bucket-like algorithm based on data mining
techniques and hypergraph framework. To our knowledge, this query rewriting
algorithm is the first to use data mining implementations to favor scalability of
the implementation. Experiments on synthetic datasets have been conducted.
They show the feasibility of our proposition.

2 If an individual checks the constraint ∀departmentNumber.{03,63}, then this indi-
vidual has at most two possible values over the attribute departmentNumber.

40 H. Jaudoin et al.

The remainder of this paper is organized as follows: Section 2 presents the
ALN (Ov) logic and gives a characterization of subsumption for this logic that
is appropriate to deal with our query rewriting problem. Section 3 gives a de-
scription of a LAV-mediation system in the ALN (Ov) setting and focus on the
reduction of the problem of query answering using views to the problem of query
rewriting using views in ALN (Ov). Section 4 presents how the Bucket algorithm
has been adapted to get all certain answers to a given query. Section 5 shows
how the iZi platform [11], that supplies efficient and generic implementations
of data mining algorithms, can be used to implement the most costly steps of
our Bucket-like algorithm. Finally Section 6 is devoted to implementation and
experimentations while Section 7 concludes our paper. Proofs are given in Annex.

2 Preliminaries

Description Logics (DLs) [4] allow to represent domain of interest in terms of con-
cepts or descriptions (unary predicates) that characterize subsets of the objects
(individuals) in the domain, and roles (binary predicates) over such a domain.
Concepts are denoted by expressions formed by means of special constructors.
The various description logics differ from one to another based on the set of
constructors they allow. For example, the constructors of the so-called ALN de-
scription logic are: the symbol � is a concept description which denotes the top
concept while the symbol ⊥ stands for the bottom concept; concept conjunction
(�), e.g., the concept description Parent�Male denotes the set of fathers (i.e.,
male parents); the value restriction (∀R.C), e.g., the description ∀child.Male
denotes the set of individuals whose children are all male; the number restric-
tion constructors (≥ n R) and (≤ n R), e.g., the description (≥ 1 child) denotes
the set of parents (i.e., individuals having at least one child), while the descrip-
tion (≤ 1 leader) denotes the set of individuals that cannot have more than
one leader; the negation restricted to atomic concepts (¬A), e.g., the description
¬Male denotes the class of individuals which are not males.

In this paper, we use the DL ALN extended with the O constructor that
enables building concepts from a set of enumerated nominals [8,23]. More pre-
cisely, we consider a restricted form of the O constructor, called Ov and writ-
ten {o1, . . . , on}, where the oi’s refer to simple values. The obtained language,
called ALN (Ov) 3, allows descriptions of the form ∀R.{o1, . . . , on}, called value
constraints, where {o1, . . . , on} denotes a set of values. For example, the con-
cept ∀maritalStatus.{MARRIED, SINGLE, DIV ORCED, WIDOWED}
denotes the set of individuals whose marital status is necessarily married or
single or divorced or widowed.

ALN (Ov) Syntax and Semantics. Let C be a set of concept names, N be
a set of value names and let R be a set of role names. In the spirit of [15], we
assume R divided in two disjointed sets: Rc, which denotes roles whose range is
the set of usual individuals, and Rv, which denotes roles whose range is a set of
3 In this paper, we do not consider other constructors on concrete-valued roles as the

fills constructor.

Towards a Scalable Query Rewriting Algorithm 41

values of N . We also consider that �C is the top classical concept while �V is
the top values concept. Let A ∈ C, R ∈ R, RC ∈ RC , RV ∈ RV , n a positive
integer and oi ∈ N with i ∈ [1, n]. ALN (Ov) concept descriptions are built up
by means of the following syntaxic rules:

C, D → A | ¬A | �C | ⊥ |
C � D |
∀RC .C | ∀RV .{o1, . . . , on} | ∀RV .�V |
(≤ n R) | (≥ n R)

Semantics of concepts is defined by an interpretation I = (∆I , .I) where ∆I is
a non-empty set, called interpretation domain and .I is a interpretation function.
We assume that ∆I is divided into two disjointed sets: δC the set of individuals
in the domain and δV , the set of values. Hence we have �I

C = δC and �I
V = δV .

A concept is interpreted as a subset of ∆I . A role is interpreted as a subset of
δC ×∆I . In other words, values of δV cannot have any successor by roles. Values
are only authorized in range of RV roles. The interpretation I associates each
value oi ∈ N with an element oIi ∈ δV such that oi 	= oj implies that oi

I 	= oj
I

that is, the mapping respects the Unique Name Assumption (UNA). Furthermore
the semantic of an arbitrary concept must verify the following equations:

(C � D)I = CI ∩ DI , (¬A)I = ∆I\AI

(∀RC .C)I = {x ∈ δC | ∀y : (x, y) ∈ Rc
I → y ∈ CI}

(∀RV .{o1, . . . , on})I = {x ∈ δC | ∀y : (x, y) ∈ Rv
I → y ∈ {oI1 , . . . , oIn} ⊆ δV }

(≤ nR)I = {x ∈ δC |
∣
∣{y | (x, y) ∈ RI}

∣
∣ ≤ n}

(≥ nR)I = {x ∈ δC |
∣
∣{y | (x, y) ∈ RI}

∣
∣ ≥ n}

An interpretation is a model for a concept C iff CI 	= ∅. A concept is incon-
sistent, i.e., C ≡ ⊥ iff CI = ∅ for all interpretation I.

With respect to this semantics, the notions of subsumption and equivalence
are defined as follows. A concept C is subsumed by a concept D, noted C � D,
iff CI ⊆ DI ∀I. A concept C is equivalent to a concept D, noted C ≡ D, iff
CI = DI ∀I.
Characterizing Subsumption in ALN (Ov). We present now a normal form de-
scription for ALN (Ov) concepts and a characterization of subsumption w.r.t.
this normal form that are appropriate to deal with the problem of rewriting query
using views in presence of value constraints. More precisely, we use a structural
approach of subsumption in order to further reduce the research space of query
rewriting.

In the sequel, we use the letter P to specify either an atomic concept (A)
or its negation (¬A) or a set of values (E) or a number restriction ((≤ nR) or
(≥ nR)), or ⊥ concept. The normal form Ĉ of a concept C is either the � concept,
or a conjunction (nonempty) of descriptions of the form ∀R1.(. . . ∀Rm.P) with
m ≥ 0, where R1, . . . , Rm are (not necessarily distinct) roles. The description
∀R1. . . . ∀Rm.P is abbreviated by ∀R1 . . . Rm.P . R1 . . . Rm is considered as a
word, noted w, over the alphabet RC ∪RV of roles. More precisely, R1 . . . Rm−1

is a word over R∗
C and Rm belongs to RC ∪ RV . If m = 0, then we have an

42 H. Jaudoin et al.

empty word ε, i.e., ∀ε.P is an equivalent notation of P . If w and u are two words
of R∗, wu denotes the word obtained by the concatenation of w and u, w being
a prefix of wu. Consequently, every concept in ALN (Ov) can be expressed in its
normal form as a conjunction of concepts of the form ∀w.P , called conjuncts. In
the sequel we use the expression ∀w.P ∈ C to denote that the normal form of a
concept C contains a conjunct of the form ∀w.P in its description.

For the sake of brevity, normalization rules that allow to transform ALN (Ov)
concepts into their normal forms are omitted. They are described in appendix A
page 59.

From the normal form introduced previously, Theorem 1 gives a characteri-
zation of subsumption between two concepts in ALN (Ov).

Theorem 1 (Subsumption). Let C, D two concepts, expressed in their normal
form. C � D iff one of the following conditions is verified:

(1) C ≡ ⊥ or D ≡ �C , or
(2) for every ∀w.P ∈ D, we have

(2.a) ∀w.P ∈ C or,
(2.b) ∀w.E′ ∈ C with E′ ⊆ E if P = E or,
(2.c) ∀w.(≤ kR) ∈ C with k ≤ n if P =≤ nR or,
(2.d) ∀w.R.E ∈ C with |E| ≤ n if P =≤ nR and R ∈ Rv or,
(2.e) ∀w.(≥ kR) ∈ C with k ≥ n if P =≥ nR or,
(2.f) ∀v.(≤ 0R) ∈ C with vR prefix of w.

Informally, a concept C is subsumed by a concept D if and only if all constraints
over D appears in the description of C 4. Note that we abbreviate the concepts
∀R.⊥ and ∀R.∅ by ≤ 0R. The proof of this theorem which is given in annex A,
page 59, is derived from characterization of structural subsumption of Classic
[8]. Indeed, logic ALN (Ov) can be seen as a sub-language of Classic [8] where
constructor Ov can be considered as a particular case of Host Individuals.

Example 1. Let C ≡ ∀received.Pesticide � CulturalParcel, C′ ≡
∀received.category.{C2, C3}�∀received. ≤ 2category, D ≡ ∀received.Pesticide
and D′ ≡ ∀received.category.{C1, C2, C3} � ∀received. ≤ 3 category.

We have C � D since ∀received.Pesticide ∈ C. We have C′ � D′ be-
cause ∀received.category.{C2, C3} ∈ C′ with {C2, C3} ⊆ {C1, C2, C3}, and
∀received.(≤ 2 category) ∈ C′.

3 Query Rewriting Using Views in the ALN (Ov) Setting

In this section, we briefly introduce the ALN (Ov)-based framework used in
our work. Then we focus on the problem of query answering using views, i.e.,
computing the answers of a query in presence of value constraints. In this setting,
we show that the problem of query answering in the ALN (Ov) setting can be
reduced to the problem of query rewriting using views.
4 Following the object-oriented paradigm, C must override the concept D.

Towards a Scalable Query Rewriting Algorithm 43

3.1 A Formal Framework

A LAV-based mediation system is defined by a pair (S,V), where S is a global
schema and V , a set of views, i.e., named queries, expressed in terms of S
[14]. Hereafter, we consider a mediation system (S,V) in the ALN (Ov) set-
ting. Therefore, the schema S is specified as an ALN (Ov)-terminology, i.e., a
set of axioms of the forms: (i) A ≡ D (concept definitions), or (ii) A � D (prim-
itive specifications), where A is a concept name and D is a concept description
in ALN (Ov). Moreover, the set of views V is specified as a set of primitive
specifications in ALN (Ov).

The semantic of a mediation system (S,V) is derived from the notion of
interpretation of a terminology in DL [4]. We say that an interpretation I is a
model for (S,V) iff I is a model for every axiom in S and V (i.e., A � D iff
AI ⊆ DI and A ≡ D iff AI = DI). Note that, describing views as primitive
specifications enables to capture Open World Assumption (OWA) in building
our mediation system [1] (i.e., assuming that the data sources are incomplete).
Indeed, primitive specifications are incomplete specifications in the sense that
they provide only necessary, but not sufficient, conditions that must be satisfied
by their instances.

The Table 1 gives an example of ALN (Ov) mediation system (S,V). The
global schema is made of two concepts: CulturalParcel, which denotes parcels
that have at least one kind of culture and TreatedObject which denotes the
class of individuals that have received at least one treatment which has at least
one category and whose categories take their values necessarily from the set
{C1, . . . , C18}. The terminology V is made of nine views (V1, V2, ..., V9). The
extension of the view V1 is a subset of cultural parcels while extension of view V2

is a subset of individuals that have received at least one category of treatment.
Queries are defined as ALN (Ov) concepts expressed in terms of the elements

(i.e., roles and concepts) of S. For example, a query Q that asks for cultural
parcels that have received at least one treatment and whose treatment cate-
gory is either C8 or C9, may be expressed as follows: Q ≡ CulturaParcel� ≥
1treatment � ∀treatment.category.{C8, C9}.

Let (S,V) be a ALN (Ov) mediation system. In the sequel, we assume that
the terminologies S and V are acyclic (i.e., they do not contain a concept that

Table 1. Example of mediation system

Global schema S
CulturalParcel ≡ Parcel� ≥ 1 cultureType

TreatedObject ≡≥ 1treatment�∀treatment. ≥ 1category�∀treatment.category.{C1, C2, . . . , C18}
OrganicallyT reatedObject ≡ ∀treatment.OrganicProduct

Set of views V
V1 � CulturalParcel V4 � ∀treatment.category.{C9, C10}
V2 � ∀treatment. ≥ 1category V5 � ∀treatment.category.{C8}
V3 �≥ 1treatment V6 � ∀treatment.category.{C8, C11}
V7 � ∀treatment.category.{C7, C8, C9, C10} � ∀treatment.OrganicProduct

V8 � ∀treatment.category.{C7, C8, C9} � ∀treatment.¬OrganicProduct

V9 � ∀treatment.category.{C8, C9, C10} � ∀treatment.¬OrganicProduct

bl l f d

44 H. Jaudoin et al.

refers to itself in its specification or definition). We also assume that V is: (i)
normalized, i.e., every primitive specification A � D in V is replaced by a
definition A ≡ A�D, where A is a new atomic concept [4], and (ii) expanded, i.e.,
defined concepts occurring in right-hand side of axioms are recursively replaced
by their definitions. Finally, queries on (S,V) and views in V are assumed to be
provided in their normal forms.

3.2 From Query Answering to Query Rewriting

This section focuses on the query answering problem in the ALN (Ov) setting.
Let Q be a query over a ALN (Ov) mediation system (S,V). We consider the
problem of computing the answers of Q under certain answer semantics [1].
Informally, an answer t is a certain answer of Q if t is an answer to Q for any
database consistent with the extensions of the views in V , i.e., the set of tuples
associated with the views. We use the following notations to define the notion of
certain answers under OWA in the DL setting. For a view V ∈ V , we denote by
V ext its extension and by Vext the union of all the extensions of the views in V .

Definition 1 (Certain answers under OWA). Let (S,V) be a ALN (Ov)
mediation system and Q be a query. t is a certain answer of Q iff: (i) t ∈ Vext

and (ii) t ∈ QI , for all model I of (S,V) s.t. ∀ V ∈ V , V ext ⊆ V I.
The set of all the certain answers of Q is denoted by Ans(Q,Vext).

Let Q be a query over a mediation system (S,V). The problem of computing
Ans(Q,Vext) can be reduced to a problem of query rewriting using views [14,12].
In the latter case, the goal is to reformulate Q into an expression Q′ in some
language, denoted LR, such that Q′ refers only to the views of V and Q′ � Q.
Q′, the rewriting of Q, can be viewed as a query plan in the sense that it can
be evaluated over the view extensions in order to compute the certain answers
of Q. A crucial point to guarantee that a rewriting Q′ provides all the certain
answers of Q lies in the definition of the rewriting language LR. Below, we show
that in the setting of our ALN (Ov) mediation system it is sufficient to consider
rewritings that consist in union of view conjunctions (i.e., LR = {�,�}).

Lemma 1. Let (S,V) be a ALN (Ov) mediation system and Q be a query. If t
is a certain answer of Q, then there exists a subset {V1, . . . , Vn} of V s.t.: (i)
V1 � . . . � Vn � Q, and (ii) t ∈ V ext

1 ∩ . . . ∩ V ext
n .

This lemma states that a certain answer of a query Q in a ALN (Ov) mediation
system is provided by a conjunction of views which is subsumed by Q. Its proof is
given in annex B, page 60. Note that the rewriting language obtained in our con-
text is the same than those usually obtained in other modeling languages as for
example ALCNR and CARIN-ALN [7] or conjunctive queries [20]. Hereafter,
we use the notion of conjunctive rewriting of a query Q to refer a conjunction
of views subsumed by Q. As a consequence of lemma 1, all the certain answers
of a query Q can be obtained from the union of all the conjunctive rewritings
of Q. We define below the notion of maximally-contained rewriting, i.e., those
conjunctive rewritings that return maximal sets of certain answers.

Towards a Scalable Query Rewriting Algorithm 45

Definition 2 (Max-contained rewriting). Let (S,V) be a mediation system
and Q be a query. Q′ is a maximally-contained rewriting of Q using V if and
only if: (i) Q′ is a conjunctive rewriting of Q, and (ii) there is no conjunctive
rewriting Q1 of Q s.t. Q′ � Q1 � Q and Q′ 	≡ Q1.

The following theorem shows that the set of all certain answers of a query Q can
be computed exclusively from the union of the maximally-contained rewritings
of Q.

Theorem 2. Let (S,V) be a mediation system and Q be a query. Let
{Q1, . . . , Qn} be the set of all maximally-contained rewritings of Q using V and
Qi(Vext) the result of evaluating Qi over Vext.

Ans(Q,Vext) = ∪n
i=1Qi(Vext).

Therefore, to compute Ans(Q,Vext), one can restrict our attention to the prob-
lem of computing all the maximally-contained rewritings of Q using V . Proof of
this theorem is given in annex B, page 60.

To characterize the maximally-contained rewritings of Q and then compute
them, we use the interesting following property that is a direct consequence of
the open word assumption.

Lemma 2. Let {V1, . . . , Vn} be a subset of V and Q′ ≡ �n
i=1Vi s.t. Q′ � Q. Q′

is a maximally-contained rewriting of Q using views V iff for any concept Q′′

obtained by removing from Q′ one of its conjuncts Vi, we have Q′′ 	� Q.

It turns out that any maximally-contained rewritings of Q is necessarily made
of a minimal subset of V such that the conjunction of its elements is subsumed
by Q. Proof of the lemma is given in annex B, page 60. Hereafter, the prob-
lem of computing Ans(Q,Vext) is then equivalent to the problem, denoted by
conj rewrite(Q,V,ALN (Ov)), of enumerating all the minimal subsets of V s.t.
the conjunction of their elements is subsumed by Q. Next section gives an al-
gorithm to solve conj rewrite(Q,V,ALN (Ov)), thereby providing a sound and
complete procedure for our query answering using views problem.

4 A Bucket-Based Algorithm for ALN (Ov) Mediation
System

In the setting of ALN (Ov), the optimizations of the Minicon algorithm [22] can’t
be used to compute maximally-contained rewritings, since views and queries are
specified as conjunction of unary concepts. A possible solution is to follow a
”bucket-like approach” [14]. The interest of this approach is to break down the
problem of rewriting maximally a query into rewriting maximally each of its
subgoals, here the query conjuncts. The algorithm 1, called ComputeRew, is a
slight adaptation of the Bucket algorithm [14].

Given a rewriting problem conj rewrite(Q,V,ALN (Ov)) with Q ≡ ∀w1.P1 �
. . .�∀wn.Pn, the algorithm ComputeRew, as the well-known Bucket algorithm is
made up of two main steps:

46 H. Jaudoin et al.

Algorithm 1. ComputeRew
Require: V = {V1, ..., Vm} a set of views and Q a query
Ensure: MCR the set of maximally-contained rewriting of Q using V
1: Let Q ≡ �n

i=1∀wi.Pi

2: /* Step 1: Buckets computation */
3: for all conjunct ∀wi.Pi do
4: B(wi, Pi) = BucketBuilding(V,∀wi.Pi)
5: /* Pruning of inconsistent and non maximal rewritings */
6: B(wi, Pi):=BucketPruning(B(wi, Pi))
7: end for
8: /* Step 2: Rewritings generation */
9: MCR:=Cart Prod(B(wi, Pi), i ∈ {1, ..., n})

10: /* Pruning of inconsistent and non maximal rewritings */
11: MCR:=Pruning(MCR)
12: RETURN MCR

– Buckets Computation. For each conjunct ∀wi.Pi of Q, a bucket, noted
B(wi, Pi), containing all the maximally-contained rewritings of this conjunct
is created.

– Rewritings Generation. This step computes maximally-contained rewritings
of Q, denoted by MCR, by combining elements from the previously identified
buckets. MCR is the solution to the problem conj rewrite(Q,V,ALN (Ov)).

In the ALN (Ov) setting, the step of Buckets computation, i.e., the step 1, must
be redefined as detailed in subsection 4.1.

4.1 Bucket Algorithm for ALN (Ov)

Using a case based analysis for the language ALN (Ov), the next lemma gives
necessary conditions that should be verified by a bucket element (i.e., a rewriting
of a conjunct).

Lemma 3. For conj rewrite(Q,V,ALN (Ov)), let Q ≡ ∀w.P , l be the cardinality
of the largest set of values that appears in V or Q, and p be the maximal depth5 of
the conjuncts in V or Q. Q′ ≡ Vi1 � . . .� Vik

is a maximally-contained rewriting
of Q if Q′ is made of a minimal subset of V verifying one of the following
conditions:

a) P ∈ {A,¬A} then ∀w.P ∈ Q′ and k = 1 or,
b) P = (≥ nR) then ∀w.(≥ pR) ∈ Q′ with p ≥ n and k = 1 or,
c) P = (≤ nR) then ∀w.(≤ pR) ∈ Q′ with p ≤ n and k = 1 or,
d) P = E then {Vi1 , ..., Vik

} is s.t. (i) for each j ∈ [1, k], ∀w.Eij ∈ Vij , and
∩ik

j=i1
Ej ⊆ E and (ii) 1 ≤ k ≤ l + 1 or,

e) P = (≤ n Rv), with Rv ∈ Rv then {Vi1 , ..., Vik
} is s.t. (i) for j ∈ [1, k],

∀w.Eij ∈ Vij and | ∩ik

j=i1
Ej | ≤ n (ii) 1 ≤ k ≤ l + 1 or,

f) ∀w′.(≤ 0v) ∈ Q′ with w′v a prefix of w s.t. and 1 ≤ k ≤ l + p.

Proof of this lemma is given in annex C.1, page 63.
5 The depth of a conjunct ∀w.P is equal to the length of the word w.

Towards a Scalable Query Rewriting Algorithm 47

The algorithm 2 computes the bucket elements based on this lemma. To the
best of our knowledge, algorithm 2 is the first adaptation of the bucket algorithm
in the setting of ALN (Ov). In this algorithm, we denote by 2V the powerset of
V and by min⊆(S) s.t. S ⊆ 2V , the subsets of S that are minimal w.r.t. the set
inclusion.

In this context, we can distinguish two types of rewritings: classical ALN
rewritings [12], lines 2-14 of algorithm 2, and specific rewritings due to the
presence of value constraints, lines 15-29 of algorithm 2. Note that classical
ALN rewritings are made of only one view and correpond to cases a, b, c of
Lemma 3. Rewritings RewS1(E, w) are due to value constraints while rewritings

Algorithm 2. Bucket building
Require: V = {V1, ..., Vm} a set of views and ∀w.P a conjunct of Q
Ensure: B(w, P)
1: B(w, P) := ∅
2: /* Computation of classical ALN rewritings */
3: /* Condition a) of lemma 3 */
4: if P = A or P = ¬A then
5: B(w, P) := B(w,P) ∪ {Vi ∈ V | ∀w.P ∈ Vi}
6: end if
7: /* Condition b) of lemma 3 */
8: if P = (≥ nR) then
9: B(w, P) := B(w,P) ∪ {Vi ∈ V | ∀w.(≥ pR) ∈ Vi, p ≥ n}

10: end if
11: /* Condition c) of lemma 3 */
12: if P = (≤ nR) then
13: B(w, P) := B(w,P) ∪ {Vi ∈ V | ∀w.(≤ pR) ∈ Vi, p ≤ n}
14: end if
15: /* Computation of specific ALN (Ov) rewritings */
16: /* Condition d) of lemma 3 */
17: if P = E then
18: /* Computation of the rewritings RewS1(E, w) */
19: S1(E, w) = min⊆(U ∈ 2V | ∀Vi ∈ U,∀w.Ei ∈ Vi and

⋂

Vi∈U Ei ⊆ E)
20: RewS1(E, w) = {�Vi∈UVi | U ∈ S1(E, w)}
21: B(w, P) := B(w,P) ∪ RewS1(E, w)
22: end if
23: /* Condition e) of lemma 3 */
24: if P = (≤ n Rv), Rv ∈ Rv then
25: /* Computation of the rewritings RewS2(n, w.Rv)*/
26: S2(n, w.Rv) = min⊆(U ∈ 2V | ∀Vi ∈ U,∀w.Rv .Ei ∈ Vi and |⋂Vi∈U Ei| ≤ n)
27: RewS2(n, w.Rv) = {�Vi∈UVi | U ∈ S2(n, w.Rv)}
28: B(w, P) := B(w,P) ∪ RewS2(n, w.Rv)
29: end if
30: /* Computation of both classical ALN and specific ALN (Ov) implicit

inconsistencies*/
31: /* Condition f) of lemma 3 */
32: II = min⊆(U ∈ 2V | ∀w′.(≤ 0v) ∈ Q′ ≡ � (Vi ∈ U) and w’v is a prefix of w)
33: B(w, P) := B(w,P) ∪ {�Vi∈UVi | U ∈ II}

48 H. Jaudoin et al.

RewS2(n, w.Rv) are due to the interaction between the value constraints and
number restrictions constructors. Indeed a number restriction can subsume a
value constraint as built up by the case (2.d) of Theorem 1. Note that each rewrit-
ing in RewS1(E, w) and in RewS2(n, w.Rv) consists of conjunction of views such
that each view has a value constraint over the word w and respectively over w.Rv .
Moreover, consequently to lemma 2, such rewritings are made of minimal subsets
of views w.r.t. set inclusion, s.t. their conjunction is subsumed by ∀w.E, respec-
tively by ∀w. ≤ nRv. Therefore to compute RewS1(E, w) and RewS2(n, w.Rv),
first we must find views having value constraints over w, respectively w.Rv. Sec-
ond, from this set of views, we have to compute the minimal subsets of views
S1(E, w) and S2(n, w.Rv). A set of views is in S1(E, w) if the intersection of
their value constraints is a subset of E. A set of views is in S2(n, w.Rv) if the
cardinality of the intersection of their value constraints is less than n. At last,
the rewritings RewS1(E, w) and RewS2(n, w.Rv) are inferred by conjunction of
the views belonging to each element of S1(E, w) and S2(n, w.Rv). The maxi-
mal number of views occurring in such rewritings is l + 1, the cardinality of the
largest set of values occurring in the views V . Finally, the algorithm (computa-
tion of II, lines 25-27) processes ALN (Ov) implicit inconsistencies [18] as built
up by the case f of Lemma 3. These implicit inconsistencies are computed from
RewS2(n, w.Rv) and classical implicit inconsistencies. More precisely, for each
view Vi ∈ V such that ∀w. ≥ mRv ∈ Vi, we must compute RewS2(n, w.Rv)
with n < m.

The following example illustrates the bucket building algorithm in our setting.

Example 2. Continuing the example given in Table 1, let us considering the
following query made up of three conjuncts:

Q ≡ CulturalParcel � ∀treatment.category.{C8, C9}� ≥ 1treatment.
By applying the previous algorithm on the 9 views of the mediator given in

Table 1, we get:

– B(ε, CulturalParcel)={V1} (case (a))
– B(ε,≥ 1 treatment) = {V3} (case (b))
– B(treatment.category, {C8, C9}) = {V5 , V4 �V6 , V7 �V8 �V9 , V7 �V8}. The

three first rewritings are due to the case (d) while the last one is due to
case (f).

To end up, note that the obtained buckets need to be pruned in order to remove
inconsistent or not maximal rewritings (see line 6 of algorithm 1), which is not
the case of the classical Bucket algorithm. Indeed implicit inconsistencies may
appear in the rewritings, as shown in the following example.

Example 3. Continuing the example 2, the rewriting V7 � V8 � V9 of the bucket
B(treatment.category, {C8, C9}) is not maximal because V7 � V8, that in-
fers an implicit inconsitency over ”treatment” role , belongs to the same
bucket. Therefore the rewriting V7 � V8 � V9 must be deleted from the bucket
B(treatment.category, {C8, C9}).

Towards a Scalable Query Rewriting Algorithm 49

4.2 Max-Rewritings Generation

The second step of the algorithm 1 constructs the global rewritings of a query
(i.e., the set MCR) using the buckets generated previously. In the classical
approach, it begins by generating candidate rewritings from the cartesian product
of the buckets. However, the cost of the cartesian product is prohibitive even
on medium size configuration. To cope with this limitation, we propose a new
hypergraph-based characterization to avoid the use of costly cartesian product.
Indeed, computation of the rewritings can be reduced to a well known problem
in combinatorics, the computation of minimal transversals of a hypergraph [10].

Definition 3 (Hypergraph). Let V be a set of vertices and E an element of
the powerset 2|V | of V .

A hypergraph H = (V, E) consists of a finite collection E of sets over a finite
set V . The elements of V are called the vertices of H while the elements of E
are called the edges of H.

Definition 4 (Transversal and minimal transversal). Let V be a set of
vertices and E an element of the powerset 2|V | of V .

T ⊆ V is a transversal of H if ∀X ∈ H, T ∩ X 	= ∅.
T is minimal if ∀Y ⊂ T, Y is not a transversal.

Even if the best complexity of the problem of computing minimal transversal
of a hypergraph is known to be in almost-polynomial time [17], efficient and
scalable implementations exist since this problem is at the heart of many data
mining problems [21,13].

The rewritings computation in the hypergraph framework can be formulated
as follows: Let HB = (VB , EB) be a hypergraph. Let Q be a query such that
Q ≡ �n

i=1∀wi.Pi. Each view or conjunction of views occurring in the buckets
B(wi, Pi) is associated to a vertex in VB . The set EB consists of the set of the
buckets B(wi, Pi) themselves.

Example 4. Let Q ≡ ∀w1.A1 � ∀w2.A2 � ∀w3.A3 � ∀w4.A4 and the associated
buckets:

B(w1, A1) B(w2, A2) B(w3, A3) B(w4, A4)
V1 V1 V3 V3 � V4

V2 V4 V4 V1 � V2 � V3

V3 � V4

Let V34 be a representation of V3 � V4 and V123 of V1 � V2 � V3. A hy-
pergraph HB can be built over VB = {V1, V2, V3, V4, V34, V123} as follows:
EB = {{V1, V2}, {V1, V4, V34}, {V3, V4}, {V34, V123}}.

The following theorem shows that the minimal transversals of this hypergraph
are a superset of the maximally-contained rewritings of the query Q.

Theorem 3. Let Q be a query and its buckets B(wi, Pi), with i ∈ [1, n]. Let
HB = (VB , EB) be a hypergraph defined in terms of the B(wi, Pi). Let THB be
the set of minimal transversals of HB.

50 H. Jaudoin et al.

Then MCR ⊆ THB .

Proof of this theorem is given in annex C.2, page 64.
Then, as in conventional bucket-like approaches, the generation of the query

rewritings, here the minimal transversals computation of HB , requires the dele-
tion of inconsistent and non maximal rewritings. The following example illus-
trates the maximally-contained rewritings computation of a given query Q from
the hypergraph HB obtained in example 4.

Example 5. The minimal transversals of HB given in example 4 are:
{V1, V3, V34}, {V1, V3, V123}, {V1, V4, V34}, {V1, V4, V123}, {V2, V4, V34}, {V2, V4,
V123}, {V2, V3, V34}, {V2, V3, V123}.

After expansion of the minimal transversals, we obtain the following set of
candidate maximally-contained rewritings: {V1 � V3 � V4, V1 � V2 � V3, V1 � V2 �
V3 � V4, V2 � V3 � V4}.

Some of them are not minimal. The final set of maximally-contained rewritings
is then: {V1 � V3 � V4, V1 � V2 � V3, V2 � V3 � V4}.
This approach reduces significantly the number of candidate rewritings in com-
parison with the cartesian product. In example 4, 8 candidates are generated
instead of 24 using the cartesian product.

The efficiency and scalability of our query rewriting algorithm ComputeRew
depends on the computation of RewS1(E, w) and RewS2(n, w.Rv) since their
number of candidates is exponential in the number of views. All other cases
involve only one view and therefore are not concerned by scalability. The max-
rewritings generation can also be costly even with the hypergraph-based charac-
terization, due to the potentially large number of elements to generate. To cope
with these difficulties, our work features the use of data mining techniques to
devise an efficient algorithm that favor scalability w.r.t. the number of views in
both steps. To do that, we use a data mining library called iZi.

5 Query Rewriting Algorithm in ALN (Ov)Using iZi

iZi [11] is a generic C++ library for pattern mining problems known to be “rep-
resentable as sets”, i.e., those problems whose solution space is isomorphic to a
boolean lattice. The basic idea of iZi is to offer a toolbox for a rapid and easy
development of efficient and robust data mining programs. This library takes
advantage of a well established theoretical framework from an implementation
point of view by providing efficient data structures for boolean lattice represen-
tation and several implementations of well known algorithms. By the way, these
problems can be implemented with only minimal effort, i.e., programmers do not
have to be aware of low-level code, customized data structures and algorithms
being available for free. This library has been devised and applied to several
problems such as itemset mining and constraint mining in relational databases.

Following the guidelines given with iZi, the rest of this section shows how
three subparts of the query rewriting algorithm can take advantage of iZi. First

Towards a Scalable Query Rewriting Algorithm 51

we recall the underlying theoretical framework and then we point out in details
how iZi can be used in this context.

5.1 A Theoretical Framework for Knowledge Discovery

We recall in this section the theoretical KDD framework defined in [21] for inter-
esting pattern discovery problems, and used in iZi. Such a framework has been
successfully applied in different contexts such as association rules [3], functional
dependencies [16] and inclusion dependencies [9] to mention a few.

Given a database r, a finite language L for expressing patterns or defining
subgroups of the data, and a predicate P for evaluating whether a pattern ϕ ∈ L
is true or “interesting” in r, the discovery task is to find the theory of r with
respect to L and P, i.e., the set Th(r,L,P) = {ϕ ∈ L | P(r, ϕ) is true}.

Let us suppose a specialization/generalization relation between patterns of L.
Such a relation is a partial order � on the patterns of L. We say that ϕ is more
general (resp. more specific) than θ, if ϕ � θ (resp. θ � ϕ).

Let (I,�) be a partially ordered set of elements. A set S ⊆ I is closed down-
wards (resp. closed upwards) if, for all X ∈ S, all subsets (resp. supersets) of X
are also in S.

The predicate P is said to be monotone (resp. anti-monotone) with respect
to � if for all θ, ϕ ∈ L such that ϕ � θ, if P(r, ϕ) is true (resp. false) then
P(r, θ) is true (resp. false). As a consequence, if the predicate is monotone (resp.
anti-monotone), the set Th(r,L,P) is upward (resp. downward) closed, and can
be represented by either of the following sets:

– its positive border, denoted by Bd+(Th(r,L,P)), made up of the MOST
SPECIALIZED true patterns when Th(r,L,P) is downward closed, and the
MOST SPECIALIZED false patterns when Th(r,L,P) is upward closed;

– its negative border, denoted by Bd−(Th(r,L,P)), made up of the MOST
GENERALIZED false patterns when Th(r,L,P) is downward closed, and the
MOST GENERALIZED true patterns when Th(r,L,P) is upward closed.

The union of these two borders is called the border of Th(r,L,P), and is
denoted by Bd(Th(r,L,P)).

The last hypothesis of this framework is that the problem must be repre-
sentable as sets via an isomorphism, i.e., the search space can be represented by
a boolean lattice (or subset lattice). Let (L,�) be the ordered set of all the pat-
terns defined by the language L. Let C be a finite set of elements. The problem
is said to be representable as sets if a bijective function f : (L,�) → (2C ,⊆)
exists and its inverse function f−1 is computable, such that:

X � Y ⇐⇒ f(X) ⊆ f(Y)

In the sequel, a problem representable as sets will be referred to as “isomorphic
to a boolean lattice”.

A salient feature of this latter restriction relies on the notion of dualization
[13,21], well known in combinatorics as minimal transversals of a hypergraph.

52 H. Jaudoin et al.

5.2 Three Scalable Components of the Query Rewriting Algorithm

In our query rewriting algorithm, three enumeration problems have been iden-
tified as possible bottleneck: S1(E, w) computation, S2(n, w.Rv) computation
and minimal transversal of a hypergraph. This section shows how these three
problems can be reformulated in this framework.

Reformulating the Problems As Pattern Mining Problems. Problems
of the framework have to be enumeration problems under constraints, i.e., of the
form “enumerate all the patterns that satisfy a condition”. Consequently, the
first step is to reformulate our problems in such pattern mining problems.

S1(E, w) subproblem: S1(E, w) consists in extracting the maximally-
contained rewritings of the conjunct ∀w.E of Q. In other words, the problem
is to enumerate all minimal subsets of V whose intersection of their restricted
set of values for the word w is included in E.
S1(E, w) = min⊆(U ∈ 2V |∀Vi ∈ U, ∀w.Ei ∈ Vi and

⋂

Vi∈U Ei ⊆ E)

S2(n, w.Rv) subproblem: S2(n, w.Rv) consists in extracting the
maximally-contained rewritings of the conjunct ∀w. ≤ n Rv of Q. In other
words, the problem is to enumerate all minimal subsets of V whose cardi-
nality of the intersection of their restricted set of values for the word w.Rv

is smaller or equal to n.
S2(n, w.Rv) = min⊆(U ∈ 2V |∀Vi ∈ U, ∀w.Rv.Ei ∈ Vi and |

⋂

Vi∈U Ei| ≤ n)

Max-rewritings generation (from Section 4.2) : Let Q ≡ �n
i=1∀wi.Pi be a

query and B its buckets, i.e., B =
⋃n

i=1 B(wi, Pi). Thanks to the hypergraph-
based characterization, the maximal-contained rewritings, or MCR, gener-
ation problem can be reformulated as enumerating all minimal transversals
of the hypergraph HB = (VB , EB), where VB is composed of all the views
or conjunction of views of the buckets (VB = {v | v ∈ B(wi, Pi), ∀i ∈ [1, n]})
and EB consists of the set associated with each bucket (EB = {e | e ∈ B}) .
THB = {X ⊆ VB | X minimal traversal of HB}

Defining the Language, the Predicate and Proving Monotonicity. Once
a problem is suspected to fit into the framework, the pattern language, the predi-
cate and the partial order among patterns must be properly defined to go further.
Moreover, predicate monotonicity has to be proven. In this subsection, we check
all these aspects to fit our three subproblems in the theoretical framework. Proofs
of properties and theorems of this subsection are given in annex D, page 65.

Towards a Scalable Query Rewriting Algorithm 53

S1(E, w) subproblem:

1. The pattern language is LS1(E,w) = {X | X ⊆ V}
2. The predicate PS1(E,w)(E, X) is true iff for all Vi ∈ X and w.Ei ∈ Vi,

⋂

Vi∈X Ei �⊆ E.
3. The partial order over LS1(E,w) is the set inclusion ⊆.

Let X be a set of views satisfying PS1(E,w), i.e., PS1(E,w)(E, X) = true. It is clear that any
subset Y of X also satisfies PS1(E,w), since

⋂

Vi∈X Ei ⊆
⋂

Vj∈Y Ej .

Property 1. The predicate PS1(E,w)(E, X) is anti-monotone w.r.t. set inclusion.

The S1(E, w) problem can be reformulated as follows:

Theorem 4. S1(E, w) = Bd−(Th(E,LS1(E,w),PS1(E,w)))

S2(n, w.Rv) subproblem:

1. The pattern language is LS2(n,w.Rv) = {X | X ⊆ V}
2. The predicate PS2(n,w.Rv)(n, X) is true iff for all Vi ∈ X and w.Rv.Ei ∈ Vi, |

⋂

Vi∈X Ei| >

n.
3. The partial order is ⊆.

Let X be a set of views satisfying PS2(n,w.Rv), i.e., PS2(n,w.Rv)(n, X) = true. It is clear that
any subset Y of X also satisfies PS2(n,w.Rv), since |

⋂

Vi∈X Ei| ≤ |
⋂

Vj∈Y Ej |.

Property 2. The predicate PS2(n,w.Rv)(n, X) is anti-monotone w.r.t. set inclusion.

The S2(n, w.Rv) problem can be reformulated as follows:

Theorem 5. S2(n, w.Rv) = Bd−(Th(n,LS2(n,w.Rv),PS2(n,w.Rv)))

THB subproblem:

1. The pattern language is LTHB
= {X | X ⊆ VB}

2. The predicate PTHB
(HB, X) is true iff X is not a transversal of HB , i.e.,

if ∃H ∈ EB such as X ∩ H = ∅.
3. The partial order is ⊆.

It is also clear that any subset of non-transversal element is also non-
transversal.

Property 1. The predicate PTHB
(HB , X) is anti-monotone w.r.t. set inclu-

sion.

The minimal transversals generation problem can be reformulated as follows:

Theorem 6. THB = Bd−(Th(HB,LMaxRew(B),PMaxRew(B)))

Clearly, our problems are representable as sets, i.e., isomorphic to a boolean
lattice. The function f given in Section 5.1 is the identity function. Consequently,
the iZi library can be directly used to solve these three subproblems.

54 H. Jaudoin et al.

6 Experimental Evaluation

A query rewriting prototype (figure 1) has been implemented based on the theo-
retical investigations introduced so far. It takes as input a query Q expressed in
terms of schema S and returns the set of all the maximally-contained rewritings
of Q. The prototype is composed of two parts. The first one parses and normal-
izes the query Q from the schema S stored in a database. The second one, i.e.,
ComputeRew, is devoted to the computation of the query rewritings. This part
consists of two components: BucketsComputing and RewritingGeneration. As
shown by the algorithm 2, the BucketsComputing component requires as input
the views V stored in a database. Moreover, as seen in Section 5, both compo-
nents use the iZi library.

Fig. 1. Prototype description

BucketsComputing and RewritingGeneration (the most costly operations of
our prototype) have been implemented using the generic APriori-like implemen-
tation provided in iZi [11]. The use of the APriori-like algorithm is motivated
by two main reasons. First, it gives without any overhead the negative bor-
der, i.e., the solution of our subproblems. Second, several benchmarks [6,5] have
shown that this algorithm is particularly efficient for discovering ”not too large”
solutions, which turns out to be the case in our experiments (see below).

Our implementation has been evaluated on synthetic dataset. Our objective
has been to show the scalability of our proposition with respect to the num-
ber of views. More particularly, we focus on the three most costly steps of our
implementation. Our first experiments focus on the computation of the sets S1

and S2, i.e., the computation of the rewritings due to value constraints. Second,
we experiment the minimal traversals computation. The experimentations were
performed on a PC with 2.6GHz P4 pro CPU and 3Go RAM.

S1 and S2 Computation. In this first part of the experimentations, synthetic
datasets have the following characteristics. The values of constraints are chosen

Towards a Scalable Query Rewriting Algorithm 55

Fig. 2. Performances of S1 and S2 computation

among 33000. In figure 2, cardinality of the constraints is less than 10 while the
number of views takes its values in the set {3000, 5000, 10000, 15000}.

In figure 3, the number of views is fixed to 5000 while the maximal cardinality
of the constraints is either 10 or 20 or 30 or 40.

Fig. 3. Effect of value constraints cardinalities on performance

Figure 2 shows that our implementation handles up to 15000 views in an ac-
ceptable time, less than 60 seconds. Until about 10000 views, implementation
remains efficient. In figure 3, we fix the number of views to 5000 and concentrate
on the impact of constraints cardinality on the execution time. The implemen-
tation is very efficient for value constraints having a cardinality less than 30.

Minimal Transversal Computation. In our context, one of the problem for the
minimal transversal computation is the huge number of vertices (i.e., views) that
may occur in the same edge (i.e., bucket). To reduce this number, an optimization

56 H. Jaudoin et al.

has been brought to the minimal transversal computation. Actually, the idea
is to drastically reduce the number of vertices by regrouping together vertices
which belong to the same edges. For example, if vertices a and b belong to the
same edges, these two vertices can be replaced by a unique vertice a′. Then,
the minimal transversal computation is applied on this ”reduced” hypergraph.
At the end, to have the solutions of the initial hypergraph, each transversal
containing a′ is replaced by two transversals: one with a instead of a′ and one
with b instead of a′. Thanks to the characteristics of our hypergraphs, i.e., a
very small number of edges and huge number of vertices, this optimization is
very effective in practice.

 0
 20
 40
 60
 80

 100
 120

 0 2000 4000 6000 8000 10000Ex
cu

tio
n

tim
e

in
 s

ec
on

d

Maximal number of views in each bucket

5 buckets
10 buckets

Fig. 4. Performance of the minimal transversal computation

The datasets used in the experiments are characterized by their number of
buckets (i.e., number of edges of the hypergraph), their maximal number of
views or conjunction of views in the buckets (i.e., the maximal size of the edges)
and their total number of views or conjunction of views (i.e., the total number
of vertices). The figure 4 presents the execution time for datasets with 5 and
10 buckets. The maximal number of views (or conjunction of views), in x-axis,
is equal to the total number of views. As shown by this figure, our implemen-
tation can handle 10000 views instantaneously when processing 5 buckets. For
the dataset with 10 buckets, it can process until 10000 views in an acceptable
time. Even if this number of buckets seems small, recall that each bucket corre-
sponds to a condition in the initial query, and consequently having more than
10 conditions for a single query stills rare.

For more buckets, despite the use of scalable data structures in the implemen-
tation, the cost of rewriting generation remains high. However, such implementa-
tion improves significantly an approach that would compute a cartesian product.
In particular, our optimization for the minimal transversal computation reduced
the number of vertices by a factor of 1.5 to 20 according to the datasets being
studied. Moreover, even if the worst case (i.e., the cartesian product) can hardly
be optimized, this case remains rare in our application since we have lot of views
and a small number of buckets. On the other hand, our application supports the
creation of neighborhood vertices. Consequently, our query rewriting prototype

Towards a Scalable Query Rewriting Algorithm 57

can take advantage of the two optimizations: transversal minimal computation
and neighborhood vertices aggregation.

Experimental results show clearly the feasibility and scalability of our
approach.

7 Conclusion

Our work supplies innovative and complementary contribution to existing works
on answering queries using views by considering a new kind of constraints that
can be very useful in practical situations. More precisely, we investigated this
problem in the setting of the logic ALN (Ov) that allows the expression of value
constraints. We show that it is possible to compute all the certain answers of a
given query Q by computing its maximally-contained rewritings. Furthermore,
our work is the first to use efficient data mining techniques [11] to improve the
scalability of a query rewriting Bucket-like algorithm. A query rewriting proto-
type has been implemented. This prototype is based on an existing data mining
tool [11] for the bucket construction and for the global rewritings computation.
Experimental results confirm the interest of our approach.

References

1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized
views. In: PODS 1998, Proceedings of the ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, pp. 254–263. ACM Press, New York
(1998)

2. Afrati, F.N., Li, C., Mitra, P.: Answering queries using views with arithmetic
comparisons. In: Popa, L. (ed.) PODS 2002, Proceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 209–220.
ACM, New York (2002)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB 1994, Proceedings
of the International Conference on Very Large Data Bases, pp. 487–499. Morgan
Kaufmann, San Francisco (1994)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, Cambridge (2003)

5. Bayardo Jr., R.J., Goethals, B., Zaki, M.J. (eds.): FIMI 2004, Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining Implementations, UK, Novem-
ber 2004. CEUR Workshop Proceedings, vol. 126 (2004) CEUR-WS.org

6. Bayardo Jr., R.J., Zaki, M.J. (eds.): FIMI 2003, Proceedings of the IEEE ICDM
Workshop on Frequent Itemset Mining Implementations, USA, November. CEUR
Workshop Proceedings, vol. 90 (2003) CEUR-WS.org

7. Beeri, C., Halevy, A., Rousset, M.C.: Rewriting Queries Using Views in Description
Logics. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) PODS 1997, Proceedings
of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Tucson, Arizona, May 12–14, pp. 99–108. ACM Press, New York (1997)

58 H. Jaudoin et al.

8. Borgida, A., Patel-Schneider, P.F.: A semantics and complete algorithm for sub-
sumption in the classic description logic. Journal of Artificial Intelligence Research
(JAIR) 1, 277–308 (1994)

9. De Marchi, F., Petit, J.-M.: Zigzag: a new algorithm for mining large inclusion
dependencies in database. In: ICDM 2003, Proceedings of the IEEE International
Conference on Data Mining, pp. 27–34. IEEE Computer Society, Los Alamitos
(2003)

10. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)

11. Flouvat, F., De Marchi, F., Petit, J.-M.: iZi: A new toolkit for pattern mining
problems. In: An, A., Matwin, S., Raś, Z.W., Ślȩzak, D. (eds.) ISMIS 2008. LNCS,
vol. 4994, pp. 131–136. Springer, Heidelberg (2008)

12. Goasdoué, F., Rousset, M.-C.: Answering queries using views: A krdb perspective
for the semantic web. ACM Transactions on Internet Technology 4(3), 255–288
(2004)

13. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharm,
R.S.: Discovering all most specific sentences. ACM transactions on database sys-
tems 28(2), 140–174 (2003)

14. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10(4), 270–
294 (2001)

15. Horrocks, I., Sattler, U.: Ontology reasoning in the shoq(d) description logic. In:
Nebel, B. (ed.) IJCAI 2001, International Joint Conferences on Artificial Intelli-
gence, pp. 199–204. Morgan Kaufmann, San Francisco (2001)

16. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm
for discovering functional and approximate dependencies. Computer Journal 42(2),
100–111 (1999)

17. Khachiyan, L., Boros, E., Elbassioni, K.M., Gurvich, V.: An efficient implementa-
tion of a quasi-polynomial algorithm for generating hypergraph transversals and its
application in joint generation. Discrete Applied Mathematics 154(16), 2350–2372
(2006)

18. Küsters, R.: Non-Standard Inferences in Description Logics. LNCS, vol. 2100.
Springer, Heidelberg (2001)

19. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS 2002, Pro-
ceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Madison, Wisconsin (2002)

20. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information
sources using source descriptions. In: Vijayaraman, T.M., Buchmann, A.P., Mohan,
C., Sarda, N.L. (eds.) VLDB 1996, Proceedings of the International Conference on
Very Large Data Bases, pp. 251–262. Morgan Kaufmann, San Francisco (1996)

21. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data mining and knowledge discovery 1(3), 241–258 (1997)

22. Pottinger, R., Halevy, A.Y.: Minicon: A scalable algorithm for answering queries
using views. VLDB Journal 10(2-3), 182–198 (2001)

23. Schaerf, A.: Reasoning with individuals in concept languages. Data & Knowledge
Engineering 13(2), 141–176 (1994)

24. Ullman, J.D.: Information integration using logical views. Theoretical Computer
Science 239(2), 189–210 (2000)

Towards a Scalable Query Rewriting Algorithm 59

A Subsumption Characterization

Normalization rules that allow to transform ALN (Ov) concepts into their nor-
mal forms are described in the table 2. Letter A denotes an atomic concept.
Letters E, E1 and E2 denote set of values while D and D′ specify any kind of
concept. To simplify the set of normalization rules, we assume that any descrip-
tion like (≥ 0R) or (∀RC .�C) or (∀RV .�V) is transformed into �C while D��C

(if D is not a set of values otherwise D��C is inconsistent) and E��V become
respectively D and E.

First rules (1) and (2) are recursively applied until a saturation point. Next the
rule (3) is applied only once. Rules (4) to (10) are then applied recursively until
a saturation point. Finally, the rule (11) is applied recursively until a saturation
point.

Table 2. Normalization rules

(1) ∀w.D � ∀w.D′ → ∀w.(D � D′)
(2) E1 � E2 → E such that E = E1 ∩ E2

(3) ∀Rv.E → ∀Rv.E � (≤ kRv), where |E| = k
(4) ≤ 0R � ∀R.D →≤ 0R
(5) A � ¬A → ⊥
(6) (≥ nR) � (≤ mR) → ⊥ if n > m
(7) (≥ nR) � (≥ mR) → (≥ max(n,m)R)
(8) (≤ nR) � (≤ mR) → (≤ min(n, m)R)
(9) D � ⊥ → ⊥
(10) ∀R.⊥ →≤ 0R

(11) ∀w.(D � D′) → ∀w.D � ∀w.D′

We present now the proof of the theorem 1.

Proof (Proof of theorem 1)

– completeness (⇒) The proof of the completeness of this theorem is derived
from the structural characterization of subsumption in Classic logics [8].
Let C and D be two concept descriptions. Assume that D is in its normal
form, i.e., D ≡ ∀w1.P1 � ... � ∀wn.Pn. Let GC be the canonical description
graph associated with C and assume that the subsumption algorithm given
in [8] returns true with the input D and GC , thas is, C � D. Therefore, GC

verifies the conditions stated in [8].
We can construct a concept from the graph GC , and then apply rule 11

of table 2 to expand it so there are no nested conjunctions. We get then
a description of C in our expected normal form that verifies the following
conditions:
either C ≡ ⊥ or D ≡ �C , or
for every ∀w.P ∈ D, we have
(a) ∀w.P ∈ C or,
(b) ∀w.E′ ∈ C with E′ ⊆ E if P = E or,

60 H. Jaudoin et al.

(c) ∀w.(≤ kR) ∈ C with k ≤ n if P =≤ nR or,
(d) ∀w.R.E ∈ C with |E| ≤ n if P =≤ nR and R ∈ Rv or,
(e) ∀w.(≥ kR) ∈ C with k ≥ n if P =≥ nR or,
(f) ∀v.(≤ 0R) ∈ C with vR prefix of w.
These conditions are those stated by theorem 1.

– soundness (⇐) Let C and D be two concept descriptions in their normal form
such that D ≡ �n

i=1∀wi.Pi. We have that either condition 1) or conditions 2)
of theorem 1 are verified for each ∀wi.Pi in D. We want to show that implies
C � D.
1) if C ≡ ⊥ then the interpretation of C is empty and any description D

subsumes it. if D ≡ �C then its interpretation is the set of all classic
individuals, i.e. δC . Since any concept in ALN (Ov) is a subset of δC any
concept C is subsumed by �C .

2) otherwise one of the following condition occurs
∗ if ∀vi.⊥ where wi = viu belongs to C. Hence C � ∀vi.⊥ � ∀vi.u.Pi

and C � ∀wi.Pi.
∗ if Pi = A or Pi = ¬A then ∀wi.Pi is in the description of C and

C � ∀wi.Pi.
∗ if Pi = (≤ nR) then ∀wi.(≤ kR) where k ≤ n is in the description of

C and C � ∀wi.(≤ kR) � ∀wi.Pi, because k ≤ n.
∗ if Pi = (≥ nR) then ∀wi.(≥ kR) where k ≥ n is in the description of

C and C � ∀wi.(≥ kR) � ∀wi.Pi, because k ≥ n.
∗ if Pi = E then ∀wi.E

′ where E′ ⊆ E is in the description of C and
C � ∀wi.E

′ � ∀wi.Pi, because E′ ⊆ E.
Hence for all ∀wi.Pi in D we have C � ∀wi.Pi and C � �n

i=1∀wi.Pi and
C � D

B From Query Answering Using Views to Query
Rewriting Using Views

Let us given the proof of lemma 1

Proof (Proof of lemma 1)
Let t be a certain answer.
Let Q ≡ ∀w1.P1 � . . . � ∀wn.Pn a query.
Let I be a model of S, s.t. V ext ⊆ V I , ∀ V ∈ V .
We want to show that if t is a certain answer of Q, i.e., t ∈ QI , then there

exists a conjunction C of views from V s.t. C � Q and t ∈ Cext.
According to the definition 1 on certain answers, if t is a certain answer of

Q, then t ∈ Vext. There exists then a subset of V whose the views contains t in
their extension.

Let M be the set of all the views that contains t in their extension. Let CM ,
the conjunction of views in M . Therefore t ∈ Cext

M .
It remains to show that CM is necessarily subsumed by the query Q. To

achieve that, we assume that CM is not subsumed by Q and we show that it is

Towards a Scalable Query Rewriting Algorithm 61

possible to find an interpretation J , model of (S,V) in which t does not belong
to QJ . Therefore t is not a certain answer.

We want to show that CM � Q, i.e., that ∀I, model of (S,V) s.t. V ext ⊆ V I

for each view V ∈ V , we have CI
M ⊆ QI .

Assume that CM 	� Q, then according to theorem 1, there exists ∀wk.Pk ∈ Q
s.t. CM 	� ∀wk.Pk. Consequently, there exists an interpretation K, model of
(S,V) with V ext ⊆ V K for each view V ∈ V , s.t. CK

M 	⊆ ∀wk.PK
k . Therefore there

exists x in δKC s.t. x ∈ CK
M but s.t. x 	∈ (∀wk.Pk)K.

If x was t, then t could not be a certain answer. We are then going to define
an interpretation J , model of (S,V) with V ext ⊆ V J for each view V ∈ V , s.t.
there exists x = t in δJC with t ∈ CJ

M but s.t. t 	∈ ∀wk.PJ
k .

Let J an interpretation defined as follow: (i) ∀i ∈ [1, n], we have (∀wi.Pi)J =
(∀wi.Pi)K, (ii) (∀wk.Pk)J = (∀wi.Pi)K − {t} ∪ {t′} with t′ a new individual
(∆J = ∆K ∪ {t′}) and (iii) every (x, t) ∈ RK is replaced by (x, t′) ∈ RJ and
respectively, every (t, y) ∈ RK is replaced by (t′, y) ∈ RJ .

Show now that J remains consistent with the view extensions, i.e., V ext ⊆ V J

for each view V ∈ V .
For the views in M :
The views V in M are not subsumed by ∀wk.Pk and are s.t. t ∈ V K. There-

fore, replacing t by t′ in ∀wk.PJ
k has no impact over the interpretation of V J

Moreover, the transformation of K in J preserves the semantics of every axioms
in V thanks to the property (iii) that defines J .

Therefore, for each view V in M , we have V J = V K and the relationship
V ext ⊆ V J is verified.

For the views in V\M :
The views V in V\M are s.t. t 	∈ V K. Consequently, the deletion of t in

∀wk.PJ
k does not modify the interpretation V J . Moreover, according to the

property (iii) that defines J , for each view V in V\M , we have V J = V K and
the relationship V ext ⊆ V J is verified.

Then there exists an interpretation J of (S,V), s.t. V ext ⊆ V J , ∀V ∈ V , in
which t does not belong to QJ . Consequently, t is not a certain answer of Q
which contradicts the initial assumption. Therefore we have CM � Q.

Now follows proof of theorem 2.

Proof (Proof of theorem 2). The proof of this theorem lies on the following
principle. Each Qi is a maximally-contained rewriting of Q. Thus by definition,
Qi is subsumed by Q. Consequently, we have Qi(Vext) ⊆ Ans(Q,Vext) for every
i ∈ {1, . . . , n} and ∪n

i=1Qi(Vext) ⊆ Ans(Q,Vext). It remains to show that the set
of certain answers is contained in ∪n

i=1Q
ext
i . Let t be a certain answer, then there

exists a conjunction Q′ of views s.t. t ∈ Q′(Vext) and Q′ � Q. Therefore either
Q′ is maximally-contained in Q and there exists i ∈ {1, . . . , n} s.t. Q′ ≡ Qi, or
there exists Qi ∈ {Q1, . . . , Qn} s.t. Q′ � Qi. Consequently, we have t ∈ Qi(Vext).

The proof of lemma 2 lies on lemma 4 below that characterizes the subsumption
between two consistent conjunctions of views.

62 H. Jaudoin et al.

Lemma 4. Let V be a terminology in ALN (Ov). Let Q1 and Q2 two consistent
conjunctions of views in V.

Q1 � Q2 iff Q2 is made of a subset of views occurring in Q1.

Proof (Proof of lemma 4)

(⇐) Let Qi1 and Qi2 be two conjunctions of views in V . We are going to show
that if Qi2 refers a subset of views in Qi1 then Qi1 � Qi2 .
Assume that Qi1 ≡ V1 � . . . � Vn.
Qi2 refers only a subset of {V1, . . . , Vn}.
Assume that Qi2 is equivalent to the following expression: Qi2 ≡ V1 � . . .�
Vj−1 � Vj+1 � . . . � Vn.
Therefore, since the used formal framework is ALN (Ov), for all interpre-
tation I, we have QI

i1 ⊆ QI
i2 .

(⇒) Let Qi1 and Qi2 be two consistent conjunctions of views from V . We are
going to show that if Qi1 � Qi2 then Qi2 refers a subset of views occurring
in Qi1 .
Since V is a primitive terminology that is normalized and expanded, each
view Vij is a conjunction between a concept description Dij and a unique
atomic concept Vij .
Assume that Qi1 ≡ V1 � . . . � Vn, where Vi ∈ V for all i ∈ {1, ..., n}
then Qi1 ≡ (D1 � . . . � Dn) � (V1 � . . . � Vn).
Every concept that subsumes Qi1 must contain in its description a con-
junction of views from the set {V1, . . . , Vn}.
In other words, every concept that subsumes Qi1 refers a subset of
{V1, . . . , Vn}.
Since every concept Vi with i ∈ {1, ..., n}, is an unique atomic concept
associated with a single view Vi, every concept that subsumes Qi1 refers a
subset of {V1, . . . , Vn}.

Proof of lemma 2 is given below.

Proof (Proof of lemma 2)

(⇒) Assume that Q′ ≡ V1 � . . . � Vn is a maximally-contained and conjunctive
rewriting Q in terms of V .

We want to show that for every concept Q′′ obtained by removing from
Q′ one of its conjuncts Vi, we have Q′′ 	� Q.

Assume that Q′′ ≡ V1 � ...�Vj−1 �Vj+1 � ...�Vn, obtained by removing
from Q′ one view Vj , with j ∈ {1, ..., n}, is subsumed by Q (i.e. Q′′ � Q).
We have also Q′ � Q′′. We are going to show that in this case, Q′ is not
maximally contained in Q.

To achieve that, we show that Q′′ is not equivalent to Q′.
Let Q′ ≡ V1� ...�Vn and Q′′ ≡ V1� ...�Vj−1 �Vj+1� ...�Vn. According

to the open word assumption,
Q′′ ≡ (D1 � . . .�D(j−1) �D(j+1) � . . .�Dn)� (A1 � . . .�A(j−1) �A(j+1) �
. . . � An)

Towards a Scalable Query Rewriting Algorithm 63

Q′ ≡ (D1 � . . .�D(j−1) �D(j+1) � . . .�Dn)� (A1 � . . .�A(j−1) �A(j+1) �
. . . � An) � Di � Ai.
Q′ and Q′′ are not equivalent because Ai does not subsume A1 � . . . �
A(j−1) �A(j+1) � . . .�An. Indeed Ai is an atomic concept associated with
a single view Vi that occurs only once in Q′.

Then there exists Q′′ s.t. Q′′ 	≡ Q′ and Q′ � Q′′ � Q. Therefore Q′

cannot be maximally-contained in Q.
(⇐) We have to show that

if for all Q′′ ≡ Vi1 � . . . � Vin−1 , s.t. {Vi1 , ..., Vin−1} ⊆ {V1, ..., Vn}, we have
Q′′ 	� Q,
then Q′ ≡ V1 � . . . Vn is a maximally-contained rewriting of Q.
In other words, we have to show that there is no Q′′ s.t. Q′ � Q′′ and
Q′′ � Q with Q′ 	≡ Q′′.

We refer by (*) the following assumption: for all Q′′ ≡ Vi1 � . . .� Vin−1 ,
s.t. {Vi1 , ..., Vin−1} ⊆ {V1, ..., Vn}, we have Q′′ 	� Q.

According to hypothesis of lemma 2 Q′ ≡ V1 � . . . Vn is subsumed by Q.
Assume that Q′ is not a maximally-contained rewriting of Q. Then there

exists a conjunction of views Q1 s.t. Q′ � Q1 � Q et Q′ 	≡ Q1.
According to lemma 4, Q1 subsumes strictly Q′ if Q1 refers only a strict
subset of views occurring in Q′ and in this case, Q1 	≡ Q′.
Let Q′ ≡ V1 � ... � Vn et Q1 ≡ V1 � ... � Vj−1 � Vj+1 � ... � Vn.
Q1 ≡ (D1 � . . .�D(j−1) �D(j+1) � . . .�Dn)� (A1 � . . .�A(j−1) �A(j+1) �
. . . � An)
and Q′ ≡ (D1 � . . . � D(j−1) � D(j+1) � . . . � Dn) � (A1 � . . . � A(j−1) �
A(j+1) � . . . � An) � Di � Ai.
and Ai is an atomic concept.

Therefore there exists Q1 formed with a subset of {V1, ..., Vn} and that
is subsumed by Q. Then each conjunction of views that uses supersets of
views from Q1 is subsumed by Q. That contradicts the assumption (*).

Therefore Q′ is a maximally-contained rewriting of Q.

C A Bucket-Based Algorithm for ALN (Ov) Mediation
System

C.1 Bucket Algorithm for ALN (Ov)

Now we give proof of lemma 3:

Proof (proof of lemma 3)
We have Q′ ≡ Vi1 � . . . � Vik

s.t. Q′ is maximally-contained in Q.
Therefore, according to lemma 2, Q′ is formed of a minimal subset of views

s.t. Q′ � Q.

– If P ∈ {A,¬A} then according to theorem 1, one of the views contains
∀w.P . Since the set {Vi1 , . . . Vik

} is minimal, one view is sufficient to rewrite
Q ≡ ∀w.P and k = 1.

64 H. Jaudoin et al.

– If P = (≥ nr) then according to theorem 1, one of the views contains
∀w.(≥ mr), with m ≥ n. Since the set {Vi1 , . . . Vik

} is minimal, one view is
sufficient to rewrite Q ≡ ∀w.P and k = 1.

– If P = (≤ n r), then according to theorem 1, one of the views contains
∀w.(≤ mr) with m ≤ n. As above, one view is sufficient to rewrite Q ≡ ∀w.P
and k = 1.

– If P = (≤ n r) and r ∈ Rv (*), according to normalization rules 8) and
9) and theorem 1, we can find (k ≥ 1) views that contain respectively a
conjunct ∀w.r.Eij s.t. ∩k

j=1Eij ⊆ E′ and card(E′) ≤ n.
The worst case occurs when the Eij ’s have in pairs a single distinct value

and, we have to infer ∀w.(≤ n r), with n = 0. If the maximal number of
values in the Eij ’s is l then in worst case, (l + 1) sets of values are necessary
to obtain the empty set. Therefore if r ∈ Rv and P = (≤ n r), in the worst
case (l+1) views are necessary to rewrite Q ≡ ∀w.(≤ nr) and 1 ≤ k ≤ (l+1).

– If P = E, according to normalization rule 8 and theorem 1, k ≥ 1 views
contain respectively a conjunct ∀w.Eij such that ∩k

j=1Eij ⊆ E′ and E′ ⊆ E.
The worst case occurs when Eij have in pairs a single distinct value, and
we have to infer ∀w.E, with E = ∅. If the maximal number of values in the
Eij ’s is l then (l + 1) sets of values are necessary to obtain the empty set.
Therefore if P = E, in the worst case (l + 1) views are necessary to rewrite
Q ≡ ∀w.E and 1 ≤ k ≤ (l + 1).

– otherwise, according to theorem 1, Q′ �≤ 0 r1 with r1 a prefix of w. In the
worst case, the concept ≤ 0 r1 can be derived by a conjunction of (p + 1)
views:
Vi1 � ∀r1.r2. . . . rp.(≤ qr)
Vi2 � ∀r1.r2. . . . rp.(≥ mr), with q < m
Vi3 � ∀r1.r2. . . . rp−1.(≥ 1rk),
...
Vi(p+1) � ∀r1.(≥ 1r2).
This sequence of concepts has been pointed out in [18]. However we can also
obtain a conjunction of views that as Vi1 , is subsumed by ∀w′.r1.r2. . . . rp.(≤
q r), if r ∈ Rv, as seen in (*). Such conjunction of views can take the place
of view Vi1 if such view Vi1 does not exist. Therefore, at most l + 1 + p + 1
views are necessary to obtain a rewriting Q′ �≤ 0 r1. Hence if w ∈ E(Q′), in
the worst case, (1 ≤ k ≤ l + p + 2) views are necessary to obtain a rewriting
Q′ � ∀w′.(≤ 0 v)

C.2 Max-Rewritings Generation

Proof (Proof of theorem 3)
Let Q′ be a maximally-contained rewriting of Q built with the elements of the
Q’s buckets and TQ′ the set of views forming Q′. Assume that T ′

Q is not a
minimal transversal of HB. Therefore there exists a minimal transversal TQ′′ in
HB such that TQ′′ ⊂ TQ′ . As TQ′′ meets every edge in EB and thus every bucket
of Q, the conjunction Q′′ of views from TQ′′ is a rewriting of Q and Q′ cannot
be a maximally-contained rewriting of Q.

Towards a Scalable Query Rewriting Algorithm 65

D Query Rewriting Algorithm in ALN (Ov) Using iZi

We give now the proof of property 1

Proof. Let X ∈ LS1(E,w) s.t. PS1(E,w)(E, X) is true.

We have to prove that for all Y ∈ LS1(E,w) s.t. Y ⊆ X , PS1(E,w)(E, Y) is true.
Let X = {Ei1 , ..., Ein}, Y = {Ej1 , ..., Ejk

}, with Y ⊆ X
As PS1(E,w)(E, X) is true, ∩n

j=1Eij 	⊆ E.
As Y ⊆ X then ∩n

j=1Eij ⊆ ∩k
q=1Ejq ,

and thus ∩n
j=1Eij 	⊆ E or equivalently, PS1(E,w)(E, Y) is true.

We give now the proof of Theorem 4

Proof. Let IEE = {X ∈ LS1(E,w) s.t. PS1(E,w)(E, X) is true }. Bd+(IEE) gath-
ers the most specialized true patterns. The negative border Bd−(IEE) gathers
the most generalized false patterns, i.e., the minimal subsets of views whose in-
tersection of their restricted set of values for the word w is included in E, that
is equivalent to S1(E, w).

Let us given the proof of property 2

Proof. Let X ∈ LS2(n,w.Rv) s.t. PS2(n,w.Rv)(E, X) is true.

We have to prove that for all Y ∈ LS2(n,w.Rv) s.t. Y ⊆ X , PS2(n,w.Rv)(E, Y)
is true.
Let X = {Ei1 , ..., Ein}, Y = {Ej1 , ..., Ejk

}, with Y ⊆ X .
As PS2(n,w.Rv)(E, X) is true, | ∩n

j=1 Eij | > n.
As Y ⊆ X then ∩n

j=1Eij ⊆ ∩k
q=1Ejq ,

and | ∩k
q=1 Eij | > n and thus PS2(n,w.Rv)(E, Y) is true.

Now follows the proof of theorem 5

Proof. Let IEN = {X ∈ LS2(n,w.Rv) s.t. PS2(n,w.Rv)(E, X) is true }. Bd+(IEN)
gathers the most specialized true patterns. The negative border Bd−(IEN) gath-
ers the most generalized false patterns, i.e., the minimal subsets of views whose
cardinality of the intersection of their restricted set of values for the word w.Rv

is smaller or equal to n, that is equivalent to SE(n, w.Rv).

Let us given the proof of property 3

Proof. Let X ∈ LTHB
s.t. PTHB

(HB , X) is true.
We have to prove that for all Y ∈ LTHB

s.t. Y ⊆ X , PTHB
(HB , Y) is true.

Let Y ∈ LTHB
, with Y ⊆ X .

As PTHB
(HB , X) is true, ∃Bi ∈ EB s.t. X ∩ Bi = ∅.

As Y ⊆ X then Bi ∩ Y = ∅,
and thus PTHB

(HB , Y) is true.

Now follows the proof of theorem 6

Proof. Let NT = {X ∈ LTHB
s.t.PTHB

(HB, X) is true }. By definition, the
negative border Bd−(NT) gathers the most generalized false patterns w.r.t. set
inclusion, i.e., the minimal subsets of views which are transversal in HB, that is
equivalent to THB .

	Towards a Scalable Query Rewriting Algorithm in Presence of Value Constraints
	Introduction
	Preliminaries
	Query Rewriting Using Views in the ALN(Ov) Setting
	A Formal Framework
	From Query Answering to Query Rewriting

	A {\tt Bucket}-Based Algorithm for {\mathcal ALN(O}$_{v}$) Mediation System
	Bucket Algorithm for {\mathcal ALN(O}$_{v})$
	Max-Rewritings Generation

	Query Rewriting Algorithm in {\mathcal ALN(O}$_{v}$)Using iZi
	A Theoretical Framework for Knowledge Discovery
	Three Scalable Components of the Query Rewriting Algorithm

	Experimental Evaluation
	Conclusion
	References
	A Subsumption Characterization
	B From Query Answering Using Views to Query Rewriting Using Views
	C A {\tt Bucket}-Based Algorithm for {\mathcal ALN(O}$_{v}$) Mediation System
	D Query Rewriting Algorithm in {\mathcal ALN(O}$_{v}$) Using iZi

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

