

Lecture Notes in Computer Science 5480
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefano Spaccapietra (Ed.)

Journal on
Data
Semantics XII

13

Volume Editor

Stefano Spaccapietra
École Polytechnique Fédérale de Lausanne
EPFL-IC, Database Laboratory
1015 Lausanne, Switzerland
E-mail: stefano.spaccapietra@epfl.ch

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.2, H.4, C.2, H.3, I.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743 (Lecture Notes in Computer Science)
ISSN 1861-2032 (Journal on Data Semantics)
ISBN-10 3-642-00684-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00684-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12641147 06/3180 5 4 3 2 1 0

The LNCS Journal on Data Semantics

Computerized information handling has changed its focus from centralized data
management systems to decentralized data-exchange facilities. Modern distribution
channels, such as high-speed Internet networks and wireless communication
infrastructure, provide reliable technical support for data distribution and data access,
materializing the new, popular idea that data may be available to anybody, anywhere,
anytime. However, providing huge amounts of data on request often turns into a
counterproductive service, making the data useless because of poor relevance or
inappropriate level of detail. Semantic knowledge is the essential missing piece that
allows the delivery of information that matches user requirements. Semantic
agreement, in particular, is essential to meaningful data exchange.

Semantic issues have long been open issues in data and knowledge management.
However, the boom in semantically poor technologies, such as the Web and XML,
has boosted renewed interest in semantics. Conferences on the Semantic Web, for
instance, attract big crowds of participants, while ontologies on their own have
become a hot and popular topic in the database and artificial intelligence
communities.

Springer's LNCS Journal on Data Semantics aims at providing a highly visible
dissemination channel for remarkable work that in one way or another addresses
research and development related to the semantics of data. The target domain ranges
from theories supporting the formal definition of semantic content to innovative
domain-specific application of semantic knowledge. This publication channel should
be of the highest interest to researchers and advanced practitioners working on the
Semantic Web, interoperability, mobile information services, data warehousing,
knowledge representation and reasoning, conceptual database modeling, ontologies,
and artificial intelligence.

Topics of relevance to this journal include:

• Semantic interoperability, semantic mediators
• Ontologies
• Ontology, schema and data integration, reconciliation and alignment
• Multiple representations, alternative representations
• Knowledge representation and reasoning
• Conceptualization and representation
• Multimodel and multiparadigm approaches
• Mappings, transformations, reverse engineering
• Metadata
• Conceptual data modeling
• Integrity description and handling
• Evolution and change
• Web semantics and semi-structured data

VI Preface

• Semantic caching
• Data warehousing and semantic data mining
• Spatial, temporal, multimedia and multimodal semantics
• Semantics in data visualization
• Semantic services for mobile users
• Supporting tools
• Applications of semantic-driven approaches

These topics are to be understood as specifically related to semantic issues.

Contributions submitted to the journal and dealing with semantics of data will be
considered even if they are not from the topics in the list.

While the physical appearance of the journal issues is like the books from the
well-known Springer LNCS series, the mode of operation is that of a journal.
Contributions can be freely submitted by authors and are reviewed by the Editorial
Board. Contributions may also be invited, and nevertheless carefully reviewed, as in the
case for issues that contain extended versions of the best papers from major conferences
addressing data semantics issues. Special issues, focusing on a specific topic, are
coordinated by guest editors once the proposal for a special issue is accepted by the
Editorial Board. Finally, it is also possible that a journal issue be devoted to a single text.

The Editorial Board comprises an Editor-in-Chief (with overall responsibility), a
Coeditor-in-Chief, and several members. The Editor-in-Chief has a four-year
mandate. Members of the board have a three-year mandate. Mandates are renewable
and new members may be elected at any time.

We are happy to welcome you to our readership and authorship, and hope we will
share this privileged contact for a long time.

 Stefano Spaccapietra
 Editor-in-Chief
 http://lbd.epfl.ch/e/Springer/

Previous Issues

• JoDS I: Special Issue on Extended Papers from 2002 Conferences, LNCS
2800, December 2003

Coeditors: Sal March and Karl Aberer

• JoDS II: Special Issue on Extended Papers from 2003 Conferences, LNCS
3360, December 2004

Coeditors: Roger (Buzz) King, Maria Orlowska, Elisa Bertino,
Dennis McLeod, Sushil Jajodia, and Leon Strous

• JoDS III: Special Issue on Semantic-Based Geographical Information
Systems, LNCS 3534, August 2005

Guest Editor: Esteban Zimányi

• JoDS IV: Normal Issue, LNCS 3730, December 2005

• JoDS V: Special Issue on Extended Papers from 2004 Conferences, LNCS
3870, February 2006

Coeditors: Paolo Atzeni, Wesley W. Chu, Tiziana Catarci, and
Katia P. Sycara

• JoDS VI: Special Issue on Emergent Semantics, LNCS 4090, September
2006

Guest Editors: Karl Aberer and Philippe Cudre-Mauroux

• JoDS VII: Normal Issue, LNCS 4244, November 2006

• JoDS VIII: Special Issue on Extended Papers from 2005 Conferences, LNCS
4830, February 2007

Coeditors: Pavel Shvaiko, Mohand-Saïd Hacid, John Mylopoulos,
Barbara Pernici, Juan Trujillo, Paolo Atzeni, Michael Kifer,
François Fages, and Ilya Zaihrayeu

• JoDS IX: Special Issue on Extended Papers from 2005 Conferences
(continued), LNCS 4601, September 2007

Coeditors: Pavel Shvaiko, Mohand-Saïd Hacid, John Mylopoulos,
Barbara Pernici, Juan Trujillo, Paolo Atzeni, Michael Kifer,
François Fages, and Ilya Zaihrayeu

• JoDS X: Normal Issue, LNCS 4900, February 2008

• JoDS XI: Special Issue on Extended Papers from 2006 Conferences, LNCS
5383, December 2008

Coeditors: Jeff Z. Pan, Philippe Thiran, Terry Halpin, Steffen
Staab, Vojtech Svatek, Pavel Shvaiko, and John Roddick

JoDS Volume XII

This volume of JoDS results from a rigorous selection among 20 full papers
submissions received in response to a call for contributions issued in July 2007.

Reviews of submitted papers resulted in requests for major revisions to authors of
nine papers. Reviews of revised versions eventually led to the acceptance of five
papers for publication. They are listed in the table of contents hereinafter.

This volume also hosts an extended version of a paper originally published in the
COOPIS 2005 Conference. This paper had been selected for an extended version
proposal, but a misunderstanding between the authors and conference chairs caused a
halt in the preparation and review process. Once the misunderstanding cleared, the
submission was updated and positively reviewed and accepted according to normal
selection rules.

We would like to thank authors of all submitted papers as well as all the reviewers
who contributed to improving the papers through their detailed comments.

The forthcoming volume XIII is a JoDS special issue on semantic data warehousing.
We hope you'll enjoy reading this volume.

 Stefano Spaccapietra
 Editor-in-Chief
 http://lbd.epfl.ch/e/Springer/

Reviewers

We are very grateful to the external reviewers listed below who helped the editorial
board in the reviewing task:

Yuan An Drexel University, USA

Daniele Barone University of Milano-Bicocca, Italy

Jesús Bermúdez Basque Country University, Spain

Silvana Castano University of Milan, Italy

Jos de Bruijn Free University of Bozen-Bolzano, Italy

Ying Ding University of Innsbruck, Austria

Gillian Dobbie University of Auckland, New Zealand

Federico Michele Facca STI Innsbruck, Austria

Alfio Ferrara Università degli Studi di Milano, Italy

Marc-Philippe Huget University of Savoie, France

Hanjo Jeong George Mason University, USA

X JoDS Volume XII

Stephen W. Liddle Brigham Young University, USA

Andrea Maurino University of Milano–Bicocca, Italy

Saravanan Muthaiyah George Mason University, USA

Barry Norton Open University, UK

Giorgio Orsi Politecnico di Milano, Italy

Matteo Palmonari University of Milano-Bicocca, Italy

Héctor Pérez-Urbina University of Oxford, UK

Axel Polleres National University of Ireland Galway, Ireland

Kleber Xavier Sampaio de Souza Embrapa Agricultural Informatics, Brazil

Marco Schorlemmer IIIA-CSIC, Spain

Rob Shearer Oxford University Computing Laboratory, UK

Yannis Velegrakis University of Trento, Italy

JoDS Editorial Board

Editor-in-Chief Stefano Spaccapietra, EPFL, Switzerland
Coeditor-in-Chief Lois Delcambre, Portland State University, USA

Members

Carlo Batini Università di Milano-Bicocca, Italy
Alex Borgida Rutgers University, USA
Shawn Bowers University of California Davis, USA
Tiziana Catarci Università di Roma La Sapienza, Italy
David W. Embley Brigham Young University, USA
Jerome Euzenat INRIA Alpes, France
Dieter Fensel University of Innsbruck, Austria
Fausto Giunchglia University of Trento, Italy
Nicola Guarino National Research Council, Italy
Jean-Luc Hainaut FUNDP Namur, Belgium
Ian Horrocks University of Manchester, UK
Arantza Illarramendi Universidad del País Vasco, Spain
Larry Kerschberg George Mason University, USA
Michael Kifer State University of New York at Stony Brook,

USA
Tok Wang Ling National University of Singapore, Singapore
Shamkant B. Navathe Georgia Institute of Technology, USA
Antoni Olivé Universitat Politècnica de Catalunya, Spain
José Palazzo M. de Oliveira Universidade Federal do Rio Grande do Sul, Brazil
Christine Parent Université de Lausanne, Switzerland
Klaus-Dieter Schewe Massey University, New Zealand
Heiner Stuckenschmidt University of Mannheim, Germany
Pavel Shvaiko TasLab, Trento, Italy
Katsumi Tanaka University of Kyoto, Japan
Yair Wand University of British Columbia, Canada
Eric Yu University of Toronto, Canada
Esteban Zimányi Université Libre de Bruxelles (ULB), Belgium

Table of Contents

SECCO: On Building Semantic Links in Peer-to-Peer Networks 1
Giuseppe Pirrò, Massimo Ruffolo, and Domenico Talia

Towards a Scalable Query Rewriting Algorithm in Presence of Value
Constraints . 37

H. Jaudoin, F. Flouvat, J.-M. Petit, and F. Toumani

Combining a Logical and a Numerical Method for Data
Reconciliation . 66

Fatiha Säıs, Nathalie Pernelle, and Marie-Christine Rousset

Tightly Coupled Probabilistic Description Logic Programs for the
Semantic Web . 95

Andrea Cal̀ı, Thomas Lukasiewicz, Livia Predoiu, and
Heiner Stuckenschmidt

Intensional First-Order Logic for P2P Database Systems 131
Zoran Majkić

Multi-faceted Visualisation of Worklists . 153
Ross Brown and Hye-young Paik

Author Index . 179

S. Spaccapietra (Ed.): Journal on Data Semantics XII, LNCS 5480, pp. 1–36, 2009.
© Springer-Verlag Berlin Heidelberg 2009

SECCO: On Building Semantic Links in Peer-to-Peer
Networks

Giuseppe Pirrò1, Massimo Ruffolo2, and Domenico Talia1

1 D.E.I.S, University of Calabria
87036 Rende, Italy

{gpirro,talia}@deis.unical.it
2 Exeura

87036 Rende, Italy
ruffolo@exeura.it

Abstract. Ontology Mapping is a mandatory requirement for enabling semantic
interoperability among different agents and services relying on different ontolo-
gies. This aspect becomes more critical in Peer-to-Peer (P2P) networks for sev-
eral reasons: (i) the number of different ontologies can dramatically increase;
(ii) mappings among peer ontologies have to be discovered on the fly and only
on the parts of ontologies “contextual” to a specific interaction in which peers
are involved; (iii) complex mapping strategies (e.g., structural mapping based
on graph matching) cannot be exploited since peers are not aware of one an-
other’s ontologies. In order to address these issues, we developed a new ontol-
ogy mapping algorithm called Semantic Coordinator (SECCO). SECCO is
composed by three individual matchers: syntactic, lexical and contextual. The
syntactic matcher, in order to discover mappings, exploits different kinds of
linguistic information (e.g., comments, labels) encoded in ontology entities. The
lexical matcher enables discovering mappings in a semantic way since it “inter-
prets” the semantic meaning of concepts to be compared. The contextual
matcher relies on a “how it fits” strategy, inspired by the contextual theory of
meaning, and by taking into account the contexts in which the concepts to be
compared are used refines similarity values. We show through experimental re-
sults that SECCO fulfills two important requirements: fastness and accuracy
(i.e., quality of mappings). SECCO, differently from other semantic P2P appli-
cations (e.g., Piazza, GridVine) that assume the preexistence of mappings for
achieving semantic interoperability, focuses on the problem of finding map-
pings. Therefore, if coupled with a P2P platform, it paves the way towards a
comprehensive semantic P2P solution for content sharing and retrieval, seman-
tic query answering and query routing. We report on the advantages of integrat-
ing SECCO in the K-link+ system.

Keywords: Ontology mapping in Peer-to-Peer networks, semantic mapping,
semantic P2P applications, semantic web.

1 Introduction

Most of the information available today is in an unstructured and non-standardized
form, therefore processing and exchanging it with people via computers is actually

2 G. Pirrò, M. Ruffolo, and D. Talia

very difficult. This is because “machines” are not able to recognize the meaning of
information they deal with. Solving this challenge is one of the main goals of Seman-
tic Web technologies. The Semantic Web vision [3] aims at providing Web resources
(e.g., web pages, documents) with supplementary meaningful information (i.e., meta-
data) in order to improve and facilitate their retrieval, enable their automatic process-
ing by machines and make it possible the interoperability among different systems.
Ontologies are key enablers towards this “new” Web of semantically rich resources.
Ontologies can be exploited to give shared conceptualizations of knowledge domains
and make explicit and machine understandable the meaning of the terminology
adopted [24]. They aim at capturing knowledge typically shared by a group. The ref-
erence to a domain of interest indicates their usage not for modeling the whole world
but rather those parts relevant to a particular task. Many ontology languages used to-
day are based on XML (e.g., RDF(S) [28], OWL [39]) which make ontologies ex-
ploitable as semantic support in different classes of distributed applications such as
Semantic Peer-to-Peer [48] and Semantic Grid [22].

In a recent interview [4], Tim Berners-Lee stated that: “The Semantic Web is de-
signed to smoothly interconnect personal information management, enterprise appli-
cation integration, and the global sharing of commercial, scientific and cultural
data...”. From this interview emerges that semantic-based data sharing is expected to
begin in controlled environments smaller than the World Wide Web as for instance:
enterprise networks and small-medium Peer-to-Peer (P2P) networks. Moreover, the
Semantic Web is expected to follow the same path of the Internet, which started in
bounded environments.

In distributed environments, it is not feasible to have a single (and universally ac-
cepted) ontology describing a knowledge domain, but there will be several (possibly
overlapping) ontologies created w.r.t “the point of view” of their designers. In fact, as
people see the world differently these viewpoints inevitably will be encoded in on-
tologies. For instance, for a computer company a computer is a product, for an
economist, it is a household appliance, while for a student it is just a computer. In
order to promote interoperability among these different perspectives about the world,
it is necessary to ensure “reciprocal understanding”. This problem has been a core
issue of recent ontology research activities and in the literature is referred to as the
Ontology Mapping (or Matching) Problem (OMP) [21].

OMP concerns discovering correspondences (aka mappings) among entities be-
longing to different ontologies (i.e., a source and a target ontology). The problem
becomes more challenging in P2P networks for several reasons: (i) the number of
overlapping ontologies can dramatically increases, in theory each peer will have its
own ontology that reflects peer’s needs and interests; (ii) mappings among peer on-
tologies must be quickly discovered and only on the parts of ontologies “contextual”
to a specific interaction in which peers are involved; (iii) complex mapping strategies
(e.g., structural mapping based on graph matching) cannot be exploited since peers
are not aware of one another’s ontologies. Thus, ontology mapping algorithms for
P2P networks should ensure a trade-off between fastness (not achievable by adopting
complex mapping strategies) and accuracy (i.e., quality of results).

To date, several approaches to solve the OMP have been proposed [11]. These are
based on techniques borrowed from various research areas such as Bayesian Decision

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 3

theory (see OMEN [36] and [38]) Graph Similarity (see GMO [51]) Information Re-
trieval (see LOM [41] and V-doc [42]) just to name a few of them. However, these
approaches underestimate the following aspects:

• They do not adequately consider the OMP in open environments such as
P2P networks. A recent survey on ontology mapping [11] contains only a
bibliographic reference to mapping systems designed for P2P networks.

• They do not take into account the need for “on the fly” mappings crucial
in P2P networks. In such networks, a complete mapping between peer on-
tologies is not a requirement for interactions among peers; they only need
to quickly map the parts of their ontologies related to the specific interac-
tion in which they are involved. Moreover, since peers are often unaware
of one another’s ontologies the amount of ontological information ex-
ploitable to discover mappings is quite limited.

• They do not adequately interpret the semantic meaning of ontology con-
cepts to be compared. In addition, the context in which concepts appear is
not carefully scrutinized from a semantic point of view. Even if there are
some approaches addressing these issues, they often are not designed on
the basis of well-founded experimental results.

In this paper, we address the OMP in P2P networks by defining a new ontology map-
ping algorithm called SEmantiC COordinator (SECCO). We especially focused on the
OMP in P2P environments since P2P applications seem to be a class of applications
that will take advantage of Semantic Web technologies in a near future. SECCO is
composed by three individual matchers: syntactic, lexical and contextual, each of
which tackles the OMP from a different perspective. In particular, the syntactic
matcher aims at discovering mappings by an Information Retrieval approach called
LOM [41] that exploits linguistic information (e.g., comments, labels) encoded in
ontology entities. The lexical matcher assesses semantic relatedness, even among
syntactically unrelated concepts (e.g., car and automobile), by combining two ap-
proaches exploiting WordNet [35] as background knowledge. The contextual matcher
implements a new similarity strategy called “how it fits”. This strategy complies with
the contextual theory of meaning [34] and is founded on the idea that two concepts
are related if they fit well in each other’s context. This approach allows comparing the
structures of two concepts both in terms of their position in the ontological taxonomy
and constituent properties. This is achieved at an affordable computational cost since
it is not required to take into account the whole structure of ontologies.

Specifically, the main contributions of the paper are:

• We exploit the idea of concept mapping with the aim to gather similarity
information among concepts belonging to different peer ontologies. Con-
cept mappings allow building semantic links among peers that can be ex-
ploited in several classes of semantic P2P applications (e.g., semantic
search, semantic query routing, and community formation).

• We designed and extensively evaluated SECCO, which is endowed with
three new mapping strategies facing the OMP from a different perspective
but that share accuracy and fastness. In particular, concept mappings are
derived by combining the results of these three mapping strategies.

4 G. Pirrò, M. Ruffolo, and D. Talia

• Differently from other semantic P2P applications (e.g., Piazza, GridVine)
that assume the preexistence of mappings for achieving semantic interop-
erability, we focus on the problem of finding mappings.

Extensive experimental results, aimed at comparing SECCO w.r.t the state of the art,
show that the combination of the proposed mapping strategies provides an adequate
trade-off between accuracy (in terms of quality of mappings) and fastness (in terms of
elapsed time for discovering mappings).

Moreover, we want to emphasize that SECCO, if coupled with a P2P platform,
paves the way towards a comprehensive semantic P2P solution for content sharing
and retrieval, semantic query answering and semantic routing. We report on the ad-
vantages of integrating SECCO within the K-link+ system [31].

The remainder of this paper is organized as follows. Section 2, after introducing
the terminology adopted in the rest of the paper, presents the SECCO ontology map-
ping algorithm. Section 3 describes and evaluates the individual matchers of SECCO.
In Section 3.4 we motivate the design of SECCO. Section 4 presents a detailed
evaluation of the system in two different settings. In particular, Section 4.1 compares
SECCO with H-Match [8, 9] and performs a sensitivity analysis of the different pa-
rameters of the algorithm (Section 4.1.1). Then, Section 4.2 evaluates the algorithm
on four real-life ontologies of the OAEI 2006 benchmark test suite. Here SECCO is
also compared with other mapping algorithms not explicitly designed for facing the
OMP in P2P networks. Section 5 reviews related work. Section 6 draws some conclu-
sions. Finally, Section 7 sketches future work.

2 The SECCO Ontology Mapping Algorithm

We designed the SECCO ontology mapping algorithm for addressing the OMP in P2P
networks, since semantic P2P applications, built by interconnecting knowledge man-
aged at personal level, seem to be the applications taking advantage of Semantic Web
technologies in a near future [4]. We argue that most of the existing mapping algo-
rithms are not suitable for P2P networks since they, to work properly, need to deal
with the whole two ontologies to be mapped. For instance, top ontology mapping al-
gorithms, i.e., Falcon [25], and RiMOM [54] have structural mapping strategies built
upon graph matching techniques. These techniques are well suited to work “offline”
while they are not applicable in P2P environments where the OMP has to be faced
“online” and peers are not aware of one another’s ontologies.

In this section, after introducing the terminology adopted in the rest of the paper
(Section 2.1) we describe the ontology model exploited by SECCO to discover map-
pings (Section 2.2). Section 2.3 presents a scenario of usage of SECCO and provides
the pseudo-code of the algorithm.

2.1 Preliminary Definitions

We consider a P2P network in which each peer owns an ontology (i.e., peer ontology)
that represents the point of view of the peer on a particular knowledge domain. Each
(seeker) peer can request to other (providers) peers a concept mapping whose aim is
to provide information of similarity among a concept belonging to the seeker peer

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 5

ontology and concepts belonging to ontologies of provider peers. The aim of the re-
quest depends on the application class, as will be discussed in Section 3.4. In this sce-
nario, we define both seeker and provider peers as semantic peers since they manage,
share and exchange knowledge by exploiting ontologies.

An ontology is basically composed of two parts: (i) the intensional model, repre-
sented by means of an ontology schema and (ii) the extensional part, implemented by
a knowledge base. In this paper, we adopt the following simplified ontology model
that is inspired by the formal ontology definition proposed in [12].

Definition 1 (SECCO Ontology model). The SECCO ontology model is a six-tuple
of the form:

O=〈C,R,L,≤,ϕR,ϕL〉

consisting of a set of concepts names C, a set of relation names R and a set of strings
L that contains ontology metadata like comment(s) and label(s). Concepts names are
arranged in a hierarchy by means of the partial order ≤ (which intrinsically defines the
ISA relation). The signature ϕR: R → C×C associates each relation name r∈R with a
couple of concepts. Given a relation name r∈R, the first attribute of the tuple defines
the relation domain dom(r)=π1(ϕR(r)) and the second attribute the range range(r)=
π2(ϕR(r)). The signature ϕR: C∪R → 2L associates each concept and relation with a
subset of strings representing its metadata.

This simplified ontology model is built up starting from OWL ontologies as described
in Section 2.2.

Definition 2 (Seeker peer). A seeker peer is a semantic peer that sends a semantic
request over the P2P network to provider peers and receives a set of concept mappings.

Definition 3 (Provider peer). A provider peer is a semantic peer that receives a re-
quest from a seeker peer and returns a concept mapping obtained by exploiting
SECCO.

Definition 4 (Request). Let O be an ontology, a request is a two-tuple of the form
RQ=〈c,ctx(c)〉 where c∈C is a concept belonging to the seeker peer ontology and
ctx(c) is the context of c.

Definition 5 (Concept Context). Let O be an ontology, the set of strings ctx(c) is the
context of the concept c∈C. This set contains names of concepts related to c by rela-
tions in R that correspond to OWL objectype properties [39] and the names of rela-
tions in R that correspond to OWL datatype properties [39]. More formally,
ctx(c)=Crange∪Cdom∪Rdt where: (i) Crange and Cdom are the sets of concepts names for
which respectively hold the following conditions: c∈dom(r)∧crange∈range(r) and
cdom∈dom(r)∧c∈range(r) with r∈R and range(r) and dom(r) both corresponding to
user defined classes; (ii) Rdt is the set of relation names for which either range(r) or
dom(r) is defined on a data type [39].

Datatype property names, present in the original OWL ontology, are included in
ctx(c) as described in Section 2.2.

6 G. Pirrò, M. Ruffolo, and D. Talia

The concept mapping between a seeker peer concept and the set of concepts belong-
ing to a provider peer ontology is defined as follows:

Definition 6 (Concept Mapping). Given the seeker peer request RQ=〈s,ctx(s)〉 and the
ontology O belonging to a provider peer, a concept mapping M between each provider
concept p∈C and the seeker peer concept s is a set of 3-tuples of the form M=〈s,p,σ〉
where σ∈[0,1] is the similarity value between the couple of concepts s and p∈Cp.

Similarity values between couples of concepts are obtained by adopting the similarity
measure defined as follows:

Definition 7 (Similarity Measure). Given two ontologies Os and Op belonging to a
seeker and a provider peer respectively, a request RQs=〈cs,ctx(cs)〉 and the set CTXp
composed by two-tuples of the form 〈cj,ctx(cj)〉 where ∀cj∈Cp ctx(cj) is the context of
cj; the similarity between the couples of concepts cs∈Cs and cp∈Cp is computed by the
following function:

]1.0[)}c,(csim),c,(csim),c,(c{sim :)c,sim(c psconpslexpssynps →

where simsyn(cs,cp): Cs×Cp → [0,1] is the syntactic similarity, simlex(cs,cp): Cs×Cp →
[0,1] is the lexical similarity, simcon(cs,cp): RQs× CTXp → [0,1] is the contextual simi-
larity. These three similarity measures are symmetric and reflexive i.e., ∀cs∈ Cs and
∀cp∈Cp,

sim(cs,cs)=1 (reflexivity)
sim(cs,cp)=sim(cp,cs) (symmetry)

How to represent mappings in SECCO

Even if the OMP has received a lot of attention from the scientific community, a stan-
dardized format for storing ontology mappings does not exist. In order to overcome
this problem, there are two possible ways:

1. Exploiting features of ontology languages. For instance, OWL provides
built-in constructs for representing equivalence between concepts (i.e.,
owl:equivalentClass), relations (i.e., owl:equivalentProperty) and instances
(i.e., owl:sameAs). This approach allows OWL inference engines to auto-
matically interpret the semantics of mappings and perform reasoning across
different ontologies. However, by adopting this approach, a confidence
value cannot be interpreted.

2. Adopting the approach described in [20]. This mapping representation ex-
ploits RDF/XML to formalize ontology mappings. Each individual mapping
is represented in cells and each cell has the following attributes: entity 1
(i.e., the concept in the source ontology), entity 2 (i.e., the concept in the
target ontology), measure (i.e., the confidence value), type of mapping
(usually equivalence). Due to its different parameters, this representation
can easily be exploited by several kinds of applications.

In SECCO, we adapt the second type of representation to the context of a P2P ontol-
ogy mapping system. The adopted mapping representation is depicted in Fig.1. This
representation allows a seeker peer (i.e., the seeker_peer tag), for a given seeker con-
cept (i.e., the seeker_concept tag), to maintain both the URIs of provider concepts

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 7

 <mapping>
 <seeker_peer name= ID>
 <seeker_concept=URI>
 <provider_peer name = ID>
 <provider_concept ID=URI>
 <similarity>σ</similarity>
 </provider_concept>
 <provider_concept ID=URI>
 <similarity> σ</similarity>
 </provider_concept>
 …
 </provider_peer name>
 ...
 </mapping>

Fig. 1. Representation of mappings in SECCO

(i.e., provider_concept tag) and values of similarity (i.e., the similarity tag) grouped
on the basis of provider peers (i.e., the provider_peer tag) that answered to the seeker
request.

2.2 The SECCO Ontology Model Construction

The SECCO ontology model (see Definition 1) is built by exploring ontology class
definitions contained in peer ontologies. To explain how the SECCO ontology model
is constructed, let us consider the fragment of the Ka ontology (available at http://
www.cs.man.ac.uk/~horrocks/OWL/Ontologies/ka.owl) depicted in Fig. 2.

<owl:Class rdf:about="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#Publication">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#title"/>
<owl:allValuesFrom rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#describesProject"/>

<owl:allValuesFrom>
<owl:Class rdf:about="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#Project"/>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#abstract"/>
<owl:allValuesFrom rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#year"/>
<owl:allValuesFrom rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#keyword"/>
<owl:allValuesFrom rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:about="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#Book">

<rdfs:subClassOf>
<owl:Class rdf:about="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#Publication"/>

</rdfs:subClassOf> OMISSIS
</owl:Class>

Fig. 2. A fragment of the Ka ontology

8 G. Pirrò, M. Ruffolo, and D. Talia

Given an input ontology SECCO executes the following four main steps to construct
its ontology model:

1. Class name extraction: for each class a concept name is created in the
SECCO ontology model.

2. Subclass properties (i.e., ISA) analysis: for each class definition, SECCO
scrutinizes its sub classes defined by the construct rdfs:subClassOf and
generates the taxonomic structure.

3. Datatype properties analysis: values of these properties are data literals. For
each datatype property SECCO considers the linguistic information en-
coded in the property name (e.g., year in Ka) and includes in its ontology
model, a new concept name representing the property (i.e., year) and a rela-
tion (i.e., has_year as shown in Fig. 3) to relate this new concept with the
original class.

4. Object properties analysis: these are properties for which the value is an in-
dividual. In this case, for each property, SECCO exploits the original OWL
encoding and generates a relation, in its ontology model, that has the same
name, domain and range of the original one.

The ontology fragment depicted in Fig. 2, contains the definition of a class Publi-
cation along with some object and datatype properties, and related classes. By run-
ning SECCO, we obtain the ontology model representation depicted in Fig. 3. Notice
that the construction of this representation also exploits the definitions of classes (e.g.,
Project, Event) that are not represented in the excerpt shown in Fig.2.

ARTICLE

KEYWORD

PROCEEDINGS_TITLE

PROJECT
PUBLICATION DESCRIBES_PROJECT

YEAR

ABSTRACT

PUBLICATION

EVENT

TITLE

CONFERENCE

ISA

ISA

CONFERENCE
PAPER

CONFERENCE

JOURNAL
BOOK

ISA ISA

EDITOR

EDITOR
VOLUME

NUMBER

HAS_KEYWORDHAS_ABSTRACT

HAS_YEAR

HAS_TITLE

CONTEXT OF PUBLICATION

Fig. 3. The SECCO representation of the Ka ontology related to the concept Publication

In Fig. 3 filled oval represent ontology concepts (i.e., classes) as defined in the
original OWL ontology whereas empty ovals are the concepts introduced in the
SECCO ontology model to exploit information encoded in Datatype properties.

The context of the Publication concept, as defined in Definition 5, is the dashed
area in Fig. 3. In more detail, ctx(Publication)={title, year, abstract, keyword, Pro-
ject, Event, Book, Journal, Article}.

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 9

2.3 The SECCO Ontology Mapping Algorithm

SECCO aims at discovering a concept mapping between a seeker peer concept and
ontology concepts belonging to ontologies of provider peers. Each peer in the net-
work plays a twofold role: (i) seeker peer, when it sends a request to the network; (ii)
provider peer, when it executes locally the SECCO algorithm. Whenever a provider
peer receives a request, it runs SECCO with an input of the following form:

I=<cs, ctx(cs), Op, Th, ws, wL, wc>

where: cs is a concept belonging to a seeker peer ontology; ctx(cs)is the context of cs;
Op is the provider ontology, Th ∈ [0,1] is a threshold value that can be used for filter-
ing results. Moreover, ws, wL, and wc are the weights assigned to the values of syntac-
tic, lexical and contextual similarity respectively. The overall similarity value is com-
puted by the Combiner module that weights the similarity values provided by the
individual matchers (see Fig. 4) and discards values that do not exceed a given thresh-
old (i.e., the Th parameter in Fig.4). Once SECCO has terminated, it returns a concept
mapping as defined in Definition 6.

The overall approach is described in Fig. 4. A seeker peer issues an information re-
quest by picking a concept along with the related context from its ontology. This re-
quest reaches provider peers that run the SECCO algorithm on their ontologies and
return to the seeker peer concept mappings that will be stored in the mapping store for
future reuse. Fig. 5 describes the SECCO algorithm in a pseudo-code.

(Ws, Wl, Wc, Th)

ONTOLOGY CONCEPT
+ CONTEXT

SEMANTIC COORDINATOR (SECCO)

LEXICAL
MATCHER

CONTEXTUAL
MATCHER

SYNCTACTIC
MATCHER

COMBINER

WORDNET LUCENE

MAPPING

STORE

PROVIDER PEER
ONTOLOGY

SEEKER PEER
ONTOLOGY WEIGHTS AND THRESHOLD

Seeker peer Provider peer

REQUEST (CONCEPT+CONTEXT)
MAPPING

STORE

ANSWER (MAPPING)

Fig. 4. The SECCO architecture and usage scenario

The function evaluate_syntactic_similarity is implemented by the syntactic matcher
(see Section 3.1) while the function evaluate_lexical_similarity, is implemented by the
lexical matcher (see Section 3.2). The function evaluate_contextual_similarity (see
Fig. 7), implemented by the contextual matcher (see Section 3.3), relies on the function
evaluate_how_it_fits (see Fig. 8) that adopts a “see how it fits” strategy that is founded
on the idea that two concepts are related if they fit well in each other’s context (see
Section 3.3). The contextual matcher takes as input the context obtained by the func-
tion extract_context (see Fig. 6).

10 G. Pirrò, M. Ruffolo, and D. Talia

Fig. 5. The SECCO algorithm in pseudo-code

Fig. 6. The extract_context function

Fig. 7. The evaluate_contextual_similarity function

The SECCO algorithm
Input: An input I=<cs, ctx(cs), O, Th, ws, wL, wc> where O=〈C,R〉 is the
SECCO ontology model
Output: The concept mapping M
Method:
 1. M=∅;
 2. for each c∈C do
 3. simsyn=evaluate_syntactic_similarity(cs,c);
 4. simlex=evaluate_lexical_similarity(cs,c);
 5. ctx(c)=extract_context(c,O); /*Fig.6*/
 6. simcon=evaluate_contextual_similarity(cs,Ctx(cs),c,Ctx(c));
 7. sim=(ws*simsyn+wL*simlex+wc*simcon); /* overall similarity value
*/
 8. if sim>Th then
 9. m.s=cs
 10. m.p=c;
 11. m.σ=sim
 12. M=M∪m;
 13. end-if
 14. end-for
 15. return M;

Function extract_context
Input: An ontology O=〈C,R〉 and a concept c∈C
Output: The context ctx(c)
Method:

1. ctxc=∅; ctxr=∅;
2. for each cc∈C do
3. for each rc∈R do
4. if ∃rc(c,cc)|∃rc(cc,c) then
5. ctxc=ctxc∪{cc}
6. ctxr=ctxr∪{rc}
7. end-if
8. end-for
9. end-for

return ctx(c)=〈ctxc,ctxr〉;

Function evaluate_contextual_similarity
Input: Two concepts c1 and c2 and their contexts ctx(c1) and ctx(c2)
Output: A numerical value simcon∈[0,1] representing the contextual
similarity between the concepts c1 and c2
Method:

1. s2s=evaluate_how_it_fits(c1, ctx(c1)); /* see Figure 8 */
2. s2t=evaluate_how_it_fits(c1, ctx(c2));
3. t2s=evaluate_how_it_fits(c2, ctx(c1));
4. t2t=evaluate_how_it_fits(c2, ctx(c2));
5. simcon=((1-||s2s-t2t|-|s2t+t2s||));
6. return simcon

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 11

Fig. 8. The evaluate_how_it_fits function

In the next section, the individual matchers of SECCO are described and evaluated.

3 Individual Matchers: The Building Blocks of SECCO

The idea of combining different heuristics, each of which implemented by an individ-
ual matcher, for the assessment of an overall similarity value between two ontology
entities is not new (see [16,17]). The main motivation of adopting such a strategy is
that from some ontology mapping initiatives (e.g., [19]) emerged that a combination
of mapping strategies, in general, allows to obtain better results. Moreover, it is not
arguable that a single heuristic is able to exploit all the types of information (e.g.,
lexical, structural) encoded in ontology entities.

With these motivations in mind, we decided to endow SECCO with three different
matchers. Each matcher respectively exploits syntactic/linguistic (syntactic matcher),
lexical (lexical matcher) and contextual (contextual matcher) information contained
in ontology entities. We adopt the syntactic matcher, since in our previous work on
ontology mapping [41] we noticed that a merely syntactic approach can be effective
and fast in discovering mappings. The lexical matcher is successful in discovering
mappings in a semantic way, that is, by considering the semantic meaning of the
compared terms and not treating them just as strings. Through this approach, it is pos-
sible, for instance, to discover that the automobile concept used in a seeker peer on-
tology is similar to the concept of car used in a provider peer ontology. Finally, the
contextual matcher that relies on the lexical matcher allows refining similarity be-
tween concepts by considering the contexts in which they appear. The contextual
matcher rationale complies with the contextual theory of meaning [34] according to
which the relatedness between concepts can be defined in terms of their interchange-
ability within the contexts in which they appear. The contextual matcher allows the
assessment of similarity between two concepts in terms of their structure/properties,
but on a local basis, that is, by only considering the properties and neighbors of the
two concepts and not the whole ontology structures in which they appear. Notice that
for the scenario in which SECCO has to work (i.e., a P2P network) a structural match-
ing strategy could affect the requirement of time accuracy given that it requires to
compare entire ontologies (e.g., [51]). Indeed, in SECCO, a provider peer only re-
ceives a request (i.e., a concept along with its context) from a seeker peer and not its

Function evaluate_how_it_fits
Input: A concept c and a context ctx(x)= 〈Cx,Rx〉
Output: A numerical value m∈[0,1] representing the fitness between the
concept c and the context ctx(x)
Method:

1. T=0;
2. for each ce∈Cx do
3. T+=evaluate_lexical_similarity(c,ce);
4. end-for
5. return m=T/|ctx(x)|;

12 G. Pirrò, M. Ruffolo, and D. Talia

entire ontology. Through experimental evaluations (see Section 4), we prove that the
lack of a structural matcher will not significantly affect mapping results. Furthermore,
it is worthwhile noting that the modular architecture of SECCO allows easily design-
ing and adding new matchers to be included into the algorithm. In the Sections 3.1-
3.3, we provide both a description and an evaluation of the three individual matchers.
Section 3.4 motivates the designing of SECCO by reporting on the advantages of in-
tegrating it in K-link+ [31], a P2P system for collaborative work and content sharing
and retrieval.

3.1 The Syntactic Matcher

This matcher that implements the function evaluate_syntactic_similarity (see Fig. 5,
line 3), mainly relies on the Lucene Ontology Matcher (LOM) described in our previ-
ous work on ontology mapping [41]. Here we provide an overall description of LOM,
further details along with complete experimental results can be found in [41].

Given a source ontology O, in order to discover mappings, LOM aims at exploiting
metadata of ontology entities (e.g., comments, and labels) contained in L (i.e., linguis-
tic information). In particular, for each entity e in C∪R a virtual document that con-
tains its metadata in L is encoded by exploiting the concept of Lucene Document [33].
Virtual documents are stored into an index maintained in main memory. Ontology
mappings are derived by using values of entities of a target ontology as search argu-
ments against the index created from the source ontology. Similarity values are com-
puted by exploiting the scoring schema implemented in Lucene, which relies on Vector
Space techniques [45].

In order to show the suitability of LOM in terms of both speed and accuracy, here
we report on its evaluation on the OAEI 2006 benchmark test suite [37] as compared to
three string matching techniques (i.e., I-Sub [49], Jaro Winkler [52] and Edit Distance
[32]) that are typically exploited to perform syntactic matching of ontology entities.
Ontologies in the OAEI benchmark test suite are based on one particular ontology de-
fined in the bibliography domain and a number of variations of such ontology for
which alignments are provided. There are different categories of alteration related to
both linguistic aspects (variation in names and comments of entities) and structural
aspects (variation in relations among entities). The benchmark is composed of five
groups of tests that are constructed on the basis of the above mentioned types of altera-
tions. Fig. 9 shows the average results obtained by LOM in terms of Precision (i.e., the
number of correct mapping among all the mapping found), Recall (i.e., the number of
correct mapping among all the existing mapping) and F-measure (i.e., the harmonic
mean of Precision and Recall) [15].

As can be noticed, LOM outperforms the competitors. This is because it can prof-
itably exploit all the linguistic information included in ontologies. In fact, even in test
cases where entity names are altered (e.g., randomized, expressed in another lan-
guage) LOM, by exploiting other linguistic information (e.g., labels, comments), can
correctly assess similarity values. Moreover as discussed in [41] the average time for
computing a mapping between two ontologies of the OAEI tests is 1.47s.

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 13

Fig. 9. Evaluation of LOM on the OEAI 2006 benchmark test suite

In the light of these considerations, LOM can be exploited as an individual matcher
of SECCO, instead of a classical string-based approach, since it is more effective in
terms of accuracy and is adequately fast.

In particular, in order to adopt LOM in SECCO we made the following adaptations:

• Ontologies of both seeker and provider peers are indexed. Therefore, each
peer exploits its index to search for similar entities for requests coming from
seeker peers (i.e., acts as a provider).

• Since in SECCO we do not want to compare whole ontologies, but a seeker
concept along with its context with provider ontology concepts, we construct
a new type of virtual document that contains linguistic information of the
concept along with linguistic information of its context. This way, the lin-
guistic information of a concept is augmented with linguistic information of
entities in its context. Therefore, also the syntactic matcher takes into ac-
count a certain degree of structural information.

3.2 The Lexical Matcher

The lexical matcher, that implements the function evaluate_lexical_similarity (see
Fig. 5, line 4), is the central component of the whole system. It allows implementing
the semantic mapping by “interpreting” the semantic meaning of concepts to be com-
pared. The lexical matcher exploits WordNet [35] as a source of knowledge about the
world. WordNet is a lexical ontology organized in synsets (or senses) that encompass
terms with synonymous meaning. Each synset has a gloss, which is a description in
natural language of the concepts it represents. Synsets are connected to one another
by a predefined set of semantic relations, some of which are reported in Table 1.

14 G. Pirrò, M. Ruffolo, and D. Talia

Table 1. Semantic relations between synsets in the WordNet 3.0 noun taxonomy

Relation Description Example

Hypernymy is a generalization of Plant is an hypernym of Flower
Hyponymy is a kind of Tulip is hyponym to Flower
Meronymy is a part of Finger is a meronym of Hand
Holonymy contains part Tree is a holonym of Bark
Antonymy opposite of Man is an antonym of Woman
Instance of is an instance of California is an instance of American state

Has instance has instance American state has instance California

Some of these relations define inheritance relations (Hypernymy and Hyponymy),
other part-of relations (Holonymy and Meronymy). The Antonymy relation is used to
state that a noun is the opposite of another. The relations instance of and has instance
have been introduced in WordNet 3.0 and represent instantiation relations. Fig.10
shows an excerpt of the WordNet noun taxonomy.

v Entity

Physical Entity

Object

Whole Living thing

Artifact

Creation

Product

Book

album folio notebook ………….

Organism

Plant PersonAnimal

Work

Abstraction

Group

Social Group

Organization

Unit

Isa Relations

Other Semantic
Relations

LEGENDA

…….

Fig. 10. An excerpt of the WordNet 3.0 noun taxonomy

Through the lexical matcher we aim at assessing the relatedness between ontology
entities by exploiting their definitions within the WordNet database and position in
the taxonomy. Semantic relatedness is the question of how related two concepts are
by considering different kinds of relations connecting them. On the other hand, se-
mantic similarity only considers the hypernymy/hyponymy relations among concepts.
For instance, Car and Gasoline may be closely related to each other, e.g. because
gasoline is the fuel most often used by cars. Car and Bicycle are semantically similar,
not because they both have wheels and means of steering and propulsion, but because
they are both instances of Vehicle. The relation between semantically similar and se-
mantically related is asymmetric: if two concepts are similar, they are also related, but
they are not necessarily similar just because they are related.

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 15

In literature (see [54]), there are several metrics for assessing similarity and relat-
edness among concepts in WordNet. In the context of ontology mapping, several
approaches (e.g., [29]) compute semantic similarity between concepts by exploiting
semantic similarity metrics. However, these approaches only consider the hypernymy
/ hyponymy relations linking synsets.

In order to take into account a wide range of semantic relations connecting synsets
we included two components in the lexical matcher. A similarity assessor aimed at
assessing semantic similarity and a relatedness assessor aimed at assessing semantic
relatedness. The final lexical similarity value is obtained by combining the contribu-
tion of the two assessors.

3.2.1 The Semantic Similarity Assessor
The semantic similarity assessor aims at exploiting the structure of WordNet, which
contains per se a certain degree of semantic information encoded in synsets. In the
literature several approaches to compute semantic similarity are presented. In order to
choose the most appropriate one, we evaluated results of several approaches and cor-
related them w.r.t human judgments of similarity. A detailed description of the dataset
and evaluation methodology along with complete experimental results can be found at
http://grid.deis.unical.it/similarity.

Among the evaluated metrics, the most performant are these based on the notion of
Information Content (IC). IC can be considered a measure that quantifies the amount
of information a concept expresses and is computed as log the negative likelihood of
the occurrences of a concept in a large corpus. Resnik in [43] exploited the notion of
IC for assessing semantic similarity between terms in a taxonomy. The basic intuition
behind the use of the negative likelihood is that the more probable a concept is of ap-
pearing then the less information it conveys, in other words, infrequent words are
more informative than frequent ones. Knowing the IC values for each concept, we
may then calculate the similarity between two given concepts.

In the lexical matcher we adapt the Jiang and Conrath distance metric (J&C) [27].
This metric computes the semantic similarity between two concepts cs and cp as
follows:

2

)),((*2)()(
1),(psps

ps

ccsubICcICcIC
ccsim

−+
−= . (1)

We consider the opposite of the semantic distance metric defined by J&C, as a simi-
larity measure. Moreover, in order to quantify IC of concepts we exploit the function
IC defined as follows [46]:

)log(max

)1)(log(
1)(

wn

chypo
cIC

+−= .
(2)

where the function hypo returns the number of hyponyms of a given concept c. Notice
that concepts that represent leaves in the taxonomy will have an IC equals to one.
Moreover, maxwn is a constant that indicates the total number of concepts in the
WordNet noun taxonomy (i.e., 82115 in WordNet 3.0).

The function sub(cs,cp) in equation 1 returns the concept (the lowest in the taxon-
omy) that subsumes both cs and cp.

16 G. Pirrò, M. Ruffolo, and D. Talia

3.2.2 The Semantic Relatedness Assessor
In order to select the most appropriate relatedness assessor we evaluated several ap-
proaches. A complete description of the dataset and evaluation methodology along
with complete experimental results is available at the similarity experiment website:
http://grid.deis.unical.it/similarity.

In our evaluation, we found that the gloss vector relatedness metric described in
[40] is the most correlated w.r.t human judgment. This metric is based on the follow-
ing intuition: the relatedness between two concepts can be assessed by comparing
their glosses. In particular, this approach exploits “second order” vectors for glosses,
that is, rather than just matching words that occur in glosses, the words in the gloss
are replaced with co-occurrence (extracted from a corpus) vectors. Therefore, each
gloss is represented by the average of its word vectors. Hence, pairwise comparisons
can be made between vectors to measure relatedness between the concepts they repre-
sent. In the following, we summarize the step followed to compute the relatedness
between two concepts cs and cp:

1. Get the gloss of cs from WordNet. Create a gloss vector by adding the word
vectors of all the words in the gloss.

2. Get the gloss of cp from WordNet. Create a gloss vector by adding the word
vectors of all the words in this gloss.

3. Compute the cosine of the gloss-vectors. In addition, this metric use the rela-
tions represented in Table 1 to augment the glosses of cs and cp, with gloss
information of concepts that are directly linked to cs and cp. This makes the
augmented glosses of cs and cp much bigger than the just the glossed of cs
and cp.

If vs and vp are the gloss vectors for cs and cp, their relatedness in computed as
follows:

ps

ps
ps

vv

vv
ccrelat

*

*
),(=

.
(3)

Computing the overall lexical similarity score

Overall, the lexical similarity is computed as a weighted sum of the scores provided
by the two assessors:

),(*),(*),(simlex psrpssps ccrelatwccsimwcc += . (4)

From experimental evaluation, we found that equally weighting the two contributions
(i.e., assigning 0.5 to both ws and wr) gives the best accuracy in terms of correlation
w.r.t human judgment.

Reducing the elapsed time

Since WordNet is a huge lexical database, some performance issues related to its ac-
cess can arise. In order to provide a fast access to the database and implement our
similarity and relatedness measures we built an ad-hoc Lucene index that maintains
the information about synsets. In particular, both values of IC and gloss vectors are
stored in the index. The index is built by parsing the Prolog release of WordNet [53].

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 17

A running example

In order to see how the lexical matcher works, let us compute the lexical similarity
between the concepts Animal and Person. According to eq. (4) we have to compute
the semantic similarity and relatedness between the two concepts.

Computing semantic similarity

For the semantic similarity, we have to calculate the following coefficients:

• IC(Animal): Animal in the WordNet taxonomy has 3998 hyponyms, there-
fore according to equation (2) we have that IC(Animal)=0.2670.

• IC(Person): Person has 6978 hyponyms, in this case we have: IC (Per-
son)=0.2178.

• IC(Organism): Organism, which subsumes both concepts (see Figure 10) has
16110 hyponyms. Therefore we have IC(Organism)=0.1439.

The semantic similarity value according to equation (1) is
sim(Animal, Person)= 0.9014

Computing semantic relatedness

In order to compute semantic relatedness between Animal and Person we have to
compare their glosses augmented with glosses of neighbors concepts. The neighbors
concepts of a given concept are concepts related to it by any of the relations reported
in Table 1. In our example, the gloss of the concept Person is” a human being…”. The
gloss of the concept Animal is “a living organism characterized by voluntary move-
ment ... ”. Each of these concepts has a representative vector which contains for each
dimension a number indicating the frequency of the word encoded in that dimension.
Here we do not report the vectors of the two concepts since they have a very large
dimension (about 12000). The semantic relatedness between Animal and Person is:

relat (Animal, Person)= 0.4667

Overall, the lexical similarity between Animal and Person is:
simlex (Animal, Person)= 0.5*0.9014+0.5*0.4667=0.6840

Compound terms

The lexical matcher treats compound terms by following the heuristic that in English
the last token appearing on the right side of a compound term denotes the central con-
cept, while other concepts encountered from the left side to the right side of denote a
qualification of its meaning [30].

Remark

To summarize, our lexical matcher is a good candidate for being included in SECCO
since it respects the requirements of fastness (by exploiting the Lucene index) and
accuracy (proven by several experimental evaluations whose results are available at
http://grid.deis.unical.it/similarity). The lexical matcher is included in the Java
WordNet Similarity Library (JWSL) [26], which is a Java-based library that provides
access to information about WordNet Synsets and implements a variety of similarity
and relatedness metrics.

18 G. Pirrò, M. Ruffolo, and D. Talia

3.3 The Contextual Matcher

The aim of the contextual matcher is to implement the evaluate_contextual_similarity
function (see Fig. 5, line 6) exploited to refine similarity values assessed by the syntac-
tic and/or lexical matcher. It advances a contextual approach to semantic relatedness
that builds upon Miller et al. definition in terms of the interchangeability of words in
contexts [34]. Contexts help to refine the search of correct mappings since they intrin-
sically contain both information about the domains in which concepts to be compared
are used and their structure in terms of properties and neighbors concepts. Contexts
represent possible patterns of usage of concepts and the contextual matcher is founded
on the idea that similar concepts have similar patterns of usage. If two concepts can be
used in a similar context then they are related. A concept Cs (i.e., seeker concept) in a
context ctx(cs) (i.e., seeker context) not similar to a concept Cp (i.e., provider concept)
in a context ctx(cp) (i.e., provider context) will likely fit bad into ctx(cp) as well as cp
will do in ctx(cs). Conversely, if the two concepts can be interchangeably used, that is
fit well in each other’s contexts, then they can be considered related. We call this strat-
egy how it fits and, in order to quantify how well a concept fits in a context, we calcu-
late the lexical similarity between the concept and all the concepts in the considered
context and take the average value (see Fig. 8). The overall contextual similarity is
computed by exploiting the following similarity indicators:

1. s2s: indicates how the seeker concept fits in the seeker context
2. s2t: indicated how the seeker concept context fits in the provider context
3. t2t: indicated how the provider concept fits in the provider context
4. t2s: indicates how the provider concept fits in the seeker context

The overall contextual similarity is calculated according to the following equation.

)2222(1),(sttsttssccsim pscon −+−−= . (5)

It is worthwhile noting that this strategy aims at taking into account structural in-
formation about concepts on a local basis, that is, by only considering properties and
nearest neighbor concepts in the taxonomy. This is justified by the fact that a com-
plete mapping among peer ontologies is not required; they only need to map their part
of ontologies contextual to the interaction in which they are involved. Moreover, in
computing a concept mapping by SECCO, a provider peer is not aware of the whole
ontology of the seeker peer.

Here we provide a detailed evaluation of the contextual matcher on the two ex-
cerpts of ontologies depicted in Fig.11.

We consider Book in the ontology of the seeker peer, as seeker concept, and Vol-
ume in the ontology of the provider peer, as provider concept.

In order to assess the contextual similarity between Book and Volume we start with
calculating the coefficients defined in equation (5). In particular, Table 2 and 3 show
how the s2t and t2s coefficients are calculated.

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 19

VOLUME

PROCEEDINGS

JOURNAL

LIBRARY
associates

associates

containsauthor

title

publisher

address

title topic year

CONTEXT OF VOLUME

Provider peer Ontology Seeker peer Ontology

number

place

MAGAZINE

BOOK associates

CHAPTER

BOOKSHOPpart-of

contains

heading

author

pages

CONTEXT OF BOOK

Fig. 11. Excerpts of a seeker and provider peer ontologies

 Table 2. Calculation of the s2t coefficient Table 3. Calculation of the t2s coefficient

Seeker
concept
(Book)

Context of
Volume

Lexical
Similarity

value

Provider
concept

(Volume)

Context of
Book

Lexical
Similarity

value
Journal 0.8554 Magazine 0.7088
Library 0.5102 Bookshop 0.2574

Proceedings 0.3961 Chapter 0.3179
Title 0.5553 Heading 0.3279

Author 0.4735 Author 0.3944

Book

Publisher 0.3105

Volume

Pages 0.3967
s2t value 0.5168 t2s value 0.40

Elapsed time 0.21 s

Elapsed time 0.20 s

In a similar way, SECCO computes values for s2s and t2t. In the considered exam-
ple such values are: s2s=0.6578 and t2t=0.5467. The final contextual similarity be-
tween Book and Volume is 0.7057. Contextual similarity values for other couples of
concepts are shown in Table 4.

Discussion of results

Similarity values obtained by the contextual matcher underline the fact that the con-
textual similarity between two concepts is affected by concepts and properties in-
cluded in their contexts. For instance, even if Book and Volume can be linguistically
considered very similar (their lexical similarity is 1), the contextual matcher correctly
decreases their similarity value to 0.7057 (see equation 5) since they respectively ap-
pear in a Bookshop and Library context. Moreover, properties included in the defini-
tion of Book and Volume only share the concept of author. The highest contextual
similarity value is obtained by the couple Bookshop and Library. Even being the two
concepts linguistically not so much similar, their lexical similarity is 0.3467, if we
only consider the contexts to which they belong, we can observe that the seeker con-
text defines a Bookshop with Place as a property while the provider context defines a
Library with Address as property. Both contexts refer to places containing books (one
in which they are sold and another in which they are stored) that are characterized by

20 G. Pirrò, M. Ruffolo, and D. Talia

Table 4. Results obtained by the contextual matcher for some couples of concepts in Fig. 11

Seeker
concept

Provider
concept

Contextual
Similarity

Elapsed
time (s)*

Book Journal 0.60567 0.26
Book Library 0.3278 0.25
Book Proceedings 0.1789 0.28

Bookshop Journal 0.3878 0.24
Bookshop Library 0.8067 0.25

Chapter Proceedings 0.60879 0.16
Chapter Volume 0.22345 0.28

 * Times elapsed are computed on a P4 running at 3 GHz with 1Gb of memory

an attribute indicating their location. In this case, the high similarity value obtained by
the contextual matcher will be refined by the lexical similarity value (which is lower)
when weighing their individual contributions.

By continuing to evaluate further results, the couple Book and Proceedings re-
ceives a low contextual similarity value. They are not lexically very similar (their
lexical similarity is 0.3987) and their respective contexts represent different things.
The seeker context defines a set of properties of a Book (e.g., author, pages) and pro-
vides relations with its constituent parts (i.e., chapter), with the place where it can be
sold (i.e., Bookshop) and so forth. Conversely, the provider context just provides in-
formation about the fact that a Proceedings is related to a Volume. Similar considera-
tion can be done for the other couples of concepts.

In the light of these considerations, we can conclude that the contextual matcher is
a suitable approach to interpret the use of concepts in different contexts. In fact, it can
correctly interpret similarity between contexts, as in Library and Bookshop, while it is
also able to interpret their dissimilarity, as in the case of the couple Book and Pro-
ceedings. However, it is worthwhile noting that it becomes more effective when com-
bined with the lexical matcher, as in the case of the couple Book and Volume.

Finally, a consideration about elapsed time (see the last column of Table 4). We
can see, as one can expect, that the elapsed time depends on the number of con-
cepts/properties contained in the seeker and provider contexts. However, the elapsed
time values, even in the case in which the dimension of the contexts in terms of num-
ber of concepts/properties is quite high (both the couples Book and Volume have 6
entities in total), never reach 0.3 s.

Since the contextual matcher fulfills the requirement of speed and seems to be a
reasonable approach for exploiting contextual information of ontology concepts, it
can also be included in SECCO.

3.4 Why Do We Need SECCO?

This section explains why SECCO has been designed and how it can be practically
exploited. The main motivation for designing SECCO is to provide an ontology map-
ping algorithm in open environments (e.g., P2P, Grid). As pointed out in Section 1,
there are several mapping algorithms, but there is a lack of algorithms especially

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 21

designed for open environments. In such scenario, time accuracy is a mandatory re-
quirement to perform “online” mapping and the amount of ontological information
exploitable to discover mappings is quite limited. SECCO has been designed to pro-
vide the semantic foundation for the K-link+ system [31]. K-link+ is a P2P system for
collaborative work based on the concept of workspace. The system allows workers to
work concurrently in the same and shared environment (i.e., workspace) by a set of
tools for sharing and exchanging knowledge in a semantic way. In such an open archi-
tecture, it would be very useful to discover and interact with semantically neighbor
peers. The concept of semantic proximity can be represented by exploiting SECCO.
In fact, mappings discovered by SECCO, establish semantic links among peers of a K-
link+ network. These links can be exploited in the following ways:

• Semantic based search: contents (e.g., web pages, documents) can be anno-
tated to ontology concepts in order to provide them with an explicit and ma-
chine understandable semantic meaning. Therefore, content search can be
performed by specifying ontology concepts instead of keywords. Retrieving
similar concepts by SECCO will result in discovering contents annotated to
such concepts.

• Semantic building of workspaces: semantic links between peers are supposed
to reflect common interests shared by the peers involved in these links.
Therefore, by following these links peers with common interests can be dis-
covered and grouped together.

• Semantic query routing: semantic links can be exploited to forward queries.
When a query reaches a peer, it can forward this query to other peers with
which it has semantic links. This way a new semantic path between “un-
known” peers can be constructed. Moreover, the amount of network traffic
generated by queries (as compared with flooding techniques) can be signifi-
cantly reduced by adopting a semantic-aware routing strategy.

We want to point out how, in designing a comprehensive semantic P2P solution, the
central problem is to find out semantic links among peers. Once found, these can be
exploited for several purposes. Therefore, differently from other approaches (e.g.,
[1, 24]) where the preexistence of mapping ensures semantic interoperability among
peers, we provide a comprehensive solution that tackles the problem of designing
semantic P2P systems from all the perspectives, that is, construction of the semantic
overlay (provided by SECCO) and underling physical P2P architecture (provided by
K-link+).

4 SECCO: A Double Evaluation

In this section, we show how the requirements that driven the design of SECCO are
fulfilled in real case scenarios. In Sections 3.1-3.3 the matchers of SECCO have been
individually described and how they cope with the requirements of fastness and accu-
racy has been shown. The syntactic matcher has been evaluated on the OAEI2006 real
life ontologies (see Fig. 9). The lexical matcher has been extensively evaluated through
the similarity experiment whose results are available at http:// grid. deis. unical.it/ simi-
larity. The rationale of the contextual matcher has been described through the example
depicted in Fig. 11.

22 G. Pirrò, M. Ruffolo, and D. Talia

In this section, we want to evaluate SECCO as a whole. The evaluation has been
split in two parts (referred to as Experiment 1 and Experiment 2 in the following). In
Experiment 1 (see Section 4.1), we evaluated SECCO by comparing it with H-Match
[8,9] that actually is the only system designed for mapping ontologies in open envi-
ronments offering very similar features. In Section 4.1.1 we perform a sensitivity
analysis of the assignment of weights to the individual matchers and observe how
results provided by SECCO in Experiment 1 and the correlation w.r.t those produced
by H-Match vary. In Experiment 2 (see Section 4.2), we evaluate how SECCO per-
forms as a general mapping algorithm. In this experiment, we evaluate it on four real-
life ontologies included in the OAEI 2006 benchmark test suite [37], and compare its
results with those of other algorithms not explicitly designed for ontology mapping in
P2P networks. We evaluate SECCO only on ontologies 301-304 of the OAEI 2006 in
order to have an indicator of how it performs in real case scenarios.

4.1 Experiment 1: Comparing SECCO with H-Match

This section presents the comparison of SECCO w.r.t H-Match on two excerpts of
(online available) ontologies. The first ontology (Ka) describes research projects
while the second one (Portal) describes content of a Web portal. We suppose that Ka
belongs to a seeker peer while Portal to a provider peer. These ontologies have also
been adopted to evaluate the H-Match system as described in [8]. We have chosen to
adopt the same two ontologies in order to have an objective comparison between the
two approaches. Fig. 12 shows two excerpts of Ka and Portal describing the concept
of Publication are shown.

In this evaluation, we aim at constructing, by exploiting SECCO, a mapping (see
Definition 6) between the concept Publication in Ka and some concepts belonging to
Portal. In particular, we want to emphasize how SECCO can profitably discover simi-
larities even among terms apparently not related and how it behaves w.r.t H-Match.

ARTICLE

Ka ontology
http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/ka.owl

KEYWORD

PROCEEDINGS_TITLE

PROJECT

PUBLICATION
DESCRCIBES_PROJECT

YEAR

ABSTRACT

PUBLICATION

EVENT

TITLE

CONFERENCE

ISA

ISA

CONFERENCE
PAPER

CONFERENCE

JOURNAL BOOK

ISA
ISA

EDITOR

EDITOR

VOLUME

NUMBER

GENERIC
AGENT

PUBLICATION

HAS OWNER

MAGAZINE

HAS

PUBLICATION

REFRENCE

PUBLICATION
REFERENCE

JOURNAL

BOOK

ISA

BOOK REFERENCE

HAS

PUBLICATION

REFERENCE

Portal ontology
http://www.aktors.org/ontology/portal

HAS AUTHOR

LEGAL
AGENT

ISA

ISA

SERIAL
PUBLICATION

CONTAINS

ARTICLE

ISA

CONTAINS

ARTICLE

EDITED
BOOK

EDITED BOOK
REFRENCE

ISA

HAS

PUBLICATION

REFRENCE

CONTEXT OF PUBLICATION

Fig. 12. Excerpts of the Portal and Ka ontologies defining the concept Publication. The context
of Publication (dashed area) is also shown.

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 23

Configuration of SECCO for Experiment 1

In this experiment, the input I of SECCO (see Section 2.3) takes the values shown in
Table 5. We do not set a threshold value (the Th parameter) since we want to create
one-to-many mappings.

Table 5. The input I of SECCO for Experiment 1

Parameter Value

Cs Seeker Concept Publication

ctx(Cs) Seeker Context ctx(Publication)

O Provider Ontology Portal (the excerpt shown in Fig.12)

Th Threshold 0

ws Syntactic similarity weight 0.1

wL Lexical similarity weight 0.6

wc Contextual similarity weight 0.3

Since we want to give more emphasis to the semantic component of the algorithm,
we consider lexical similarity more reliable than syntactic similarity or contextual
similarity (i.e., we assign a higher value to wL). A detailed analysis on how the as-
signment of weights can affect results will be provided in Section 4.1.1.

Results obtained by SECCO for Experiment 1

Table 6 shows the results obtained by SECCO with the input I (see Table 5) along
with overall elapsed times.

Table 6. Results obtained by SECCO by considering Publication as seeker concept

 Similarity Values
Ka

concept
Portal
concept

Syntactic Lexical Contextual Overall Elapsed
time (s)†

Publication Publication 1 1 0.697 0.909 0.49

Publication Book 0 0.823 0.199 0.553 0.29

Publication Journal 0 0.767 0.221 0.526 0.31

Publication Magazine 0 0.737 0.088 0.468 0.29

Publication Edited Book 0 0.823 0.674 0.696 0.29

Publication Publication
Reference

0.3 0.549 0.118 0.395 0.27

Publication Book
Reference

0 0.549 0.118 0.365 0.28

Publication Edited Book
Reference

0 0.549 0.118 0.365 0.31

† Elapsed times are computed on a P4 running at 3 GHz with 1Gb of memory

These examples show the suitability of the lexical matcher which allows to dis-
cover mappings in a semantic way. In fact, by considering the analyzed couples of
concepts only from a syntactic point of view we would obtain similarity values equal

24 G. Pirrò, M. Ruffolo, and D. Talia

to 0 apart from the couples Publication (Ka) and Publication (Portal) and Publication
(Ka) and Publication Reference (Portal). In the following, we compare these results
with those obtained by H-Match.

Discussion of results and comparison with H-Match

Comparing ontology mapping algorithms is a hard task, especially when an objective
and reliable reference alignment is not provided. Moreover in a P2P scenario, since a
mapping algorithm usually aims at finding one-to-many mappings (it provides a simi-
larity ranking between concepts) it is very difficult to interpret ranking values. In lit-
erature, there exist very few algorithms that address the ontology mapping problem in
P2P environments. The approach closer to SECCO is H-Match. In order to make an
objective comparison between them, we considered the results obtained by H-Match
for the same couples of concepts on which SECCO has been evaluated.

In the example depicted in Fig. 11 authors in [9] provide only a similarity value
(related to the couple Book and Volume). For this couple, H-Match obtained the re-
sults shown in Table 7.

Table 7. Comparison between SECCO and H-Match on the example of Fig. 11

H-Match
Couple

SECCO Shallow Intermediate Deep Average

Book-Volume 0.8117 1 0.78 0.70 0.8266

The overall similarity value between the couple Book and Volume obtained by
SECCO is computed as follows:

sim(Book, Volume)=ws*simsyn+ wL* simlex + wC* simcon

Therefore, we obtain:

sim(Book, Volume)=0.1*0+0.6*1+0.3*0.7057=0.8117

The lexical matcher correctly interprets the linguistic similarity between the Book
and Volume concepts; in fact, it gives 1 as output. The high value of lexical similarity
is because the Book and Volume concepts belong to the same WordNet synset and
therefore are synonyms. Same things are valid for H-Match, whose shallow matching
model has similar features to the lexical matcher of SECCO. The contextual matcher
of SECCO, since Book and Volume respectively appear in a Bookstore context and a
Library context, correctly decreases the overall similarity value (this aspect has been
discussed is Section 3.3).

H-Match obtains a similarity score of 0.78 with the intermediate matching model,
which takes into account concept names and properties. Through the deep matching
model, which considers the whole context of concepts (i.e., all the properties) H-
match obtains 0.70. This matching model is the most similar to that implemented by
SECCO. The average value given by H-Match, obtained by averaging results of the
three matching models, is 0.8266, which is very close to the result obtained by
SECCO. Therefore, in this case, we can conclude that the similarity value between
Book and Volume obtained by SECCO is comparable with that obtained by H-Match.

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 25

A more detailed comparison between the two approaches can be done by consider-
ing the two excerpts of the Ka and Portal ontologies depicted in Fig. 12. Similarity
values obtained by both SECCO and H-Match [8] are shown in Table 8. For the sake
of comparing only semantic features of the two approaches we do not considered the
contribution of the syntactic similarity of SECCO for the couples Publication (Ka)
and Publication (Portal) and Publication (Ka) Publication Reference (Portal).

Table 8. Comparison between SECCO and H-Match on the example of Fig. 12

H-Match Ka
concept

Portal concept SECCO
Surface Shallow Deep Intensive Average

Publication Publication 0.909 1 0.7384 0.8047 0.7814 0.8318

Publication Book 0.553 0.8 0.6184 0.66 0.6394 0.6795

Publication Journal 0.526 0.64 0.5224 0.5538 0.5381 0.5636

Publication Magazine 0.468 0.8 0.6184 0.6498 0.6341 0.6756

Publication Edited Book 0.696 0.64 0.5224 0.5641 0.5434 0.5675

Publication Publication
Reference

0.395 0.64 0.5531 0.5741 0.5503 0.5794

Publication Book Reference 0.365 0.64 0.5531 0.5733 0.5497 0.5790

Publication Edited Book
Reference

0.365 0.64 0.5531 0.5637 0.5420 0.5747

In this experiment, it is interesting noting that the higher similarity values obtained
by SECCO and H-Match are related to the couple Publication (Ka) and Publication
(Portal). These two values are very close. Same considerations are valid for the cou-
ple Publication (Ka) and Book (Portal). An interesting consideration can be done for
the last three rows of Table 8. While SECCO obtains low similarity values, H-Match
obtains values that always exceed 0.5. For instance, for the couple Publication and
Publication Reference, SECCO obtains 0.395 while H-Match obtains 0.5794 as aver-
age result. However, by objectively analyzing the concepts, one can assess that these
concepts are not much similar. In fact, the first describes the concept of Publication
while the second defines a reference to a Publication.

It is very difficult to comparing results between the two strategies with very few
matching of couples, as in the case of Book and Volume (see Table 7). Moreover,
comparing mapping results, without a reference alignment, implicitly includes a cer-
tain degree of subjective interpretation.

In order to obtain an overall indicator of how the two approaches are (un)related,
we computed the Pearson correlation coefficient [13] between their results. This coef-
ficient represents an agreement between the values of two data sets (in our case be-
tween similarity results) by expressing the degree of association between them (see
Table 9).

Table 9. Correlation between results of SECCO and H-Match shown in Table 8

H-Match
Surface Shallow Deep Intensive Average

SECCO 0.898 0.8559 0.9051 0.908

0.8919

26 G. Pirrò, M. Ruffolo, and D. Talia

As can be noticed the higher value of correlation is 0.908 meaning that results ob-
tained by SECCO are closer to these obtained by H-Match through the intensive
matching model. Through this model of matching, H-Match considers both linguistic
feature of ontology concepts and whole context of concepts (in terms of properties
and semantic relations) in which they appear. In addition, also the correlation w.r.t the
deep model is high. The average correlation value is 0.8919, which underlines how he
two approaches are very close. In fact, a value of correlation higher that 0.7 can be
interpreted as an indicator of high similarity [44]. It is very important notice that
SECCO performs very close to those of H-Match even if SECCO does not adopt
complex matching strategies.

Since both approaches heavily rely on linguistic features of ontologies, we also
computed the correlation (see Table 10) between results of our lexical matcher that
relies on WordNet and the surface matching model of H-Match that relies on an ad-
hoc thesaurus built by exploiting WordNet.

Table 10. Correlation between the lexical matcher of SECCO and the surface matching model
of H-Match

H-Match
Surface

SECCO
Lexical matcher

0.7123

As can be noticed, the value of correlation is high even if it is very difficult to es-
timate which approach is more accurate. However, the lexical matcher of SECCO is
not an ad-hoc thesaurus but it is able to exploit the whole structure of WordNet by
including in the similarity computation a wide set of semantic relations between con-
cepts. Moreover, the metrics included in the lexical matcher have been extensively
evaluated by the similarity experiment [26].

4.1.1 Discussion on Similarity Aggregation and Assignment of Weights
SECCO, in order to perform similarity aggregation, adopts a weighted sum of similar-
ity values given by the individual matchers. Do and Rahm [14] address some aspects
of weights assignment and similarity aggregation for database structures. A similarity
aggregation function is a function that takes results from several matchers, weights
these results, and gives as output an overall similarity indicator. The weights are as-
signed manually or learned, e.g., using machine learning on a training set. Berkovsky
et al. [5] have thoroughly investigated the effects of different weights on the align-
ment results.

We chose to adopt a strategy based on multiple matchers since experimental results
have shown that a combination of similarity measures (provided by different matchers)
leads to better alignment results than using only one matcher at a time. We realize that
this technique needs a certain degree of expertise from the SECCO user. In facts, if the
different weights are not correctly assigned, mapping results can be affected. However,
notice that in a P2P scenario it is not possible to a priori analyze the structure of

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 27

ontologies to be compared, in order to find the best mapping strategy (as done in [25]),
since peers are not aware of the ontologies of other peers.

In the experiments, we manually settled values of the different weights (i.e., the ws,
wL, wc parameters). However, it would be interesting to see how the correlation coef-
ficient w.r.t H-Match (Experiment 1) changes when assigning different weights. Table
11 shows correlation values between the two approaches by assigning different values
of ws, wL and wc. For sake of space, we do not report, for each variation of the
weights, the similarity values obtained by SECCO.

Table 11. Correlation between results of SECCO and H-Match by varying the weights of the
individual matchers on the couples of concepts listed in Table 8

SECCO H-Match
Correlation w.r.t the different matching

models
Syntactic
similarity

ws

Lexical
similarity

wL

Contextual
similarity

wc surface shallow deep intensive

Average
correlation

0.1 0.6 0.3 0.898 0.8559 0.9051 0.908 0.8917

0.3333 0.3333 0.3333 0.9023 0.8657 0.9102 0.9117 0.8974

0.3 0.4 0.3 0.8415 0.8367 0.8567 0.8645 0.8498

0.3 0.3 0.4 0.8218 0.8123 0.8657 0.8756 0.8438

0.1 0.3 0.6 0.7656 0.7567 0.8123 0.8198 0.7886

0.1 0.1 0.8 0.4978 0.4478 0.5218 0.5123

0.4949

An interesting consideration arises from results shown in Table 11. As it can be no-
ticed, if we assign equal weights to the matchers (row 2) the correlation raise up to
0.9117 with the intensive model of H-Match and to 0.8974 in the average. Moreover,
it is interesting to point out that if we assign a little higher value to the contextual
matcher (row 4), the correlation remains high (0.8756 for the intensive model and
0.8438 in the average). Even in the case in which contextual similarity has a higher
value (row 5), the average correlation value remains quite high. Conversely, if we
give much more emphasis to the contextual matcher (row 6), the average correlation
drastically decrease to 0.4949 in the average. As final remark, we can conclude that
assigning equal weight to the matchers can increase the correlation value w.r.t
H-Match, that does not necessarily mean better results since in the considered exam-
ple alignments are not provided. However, in the light of these considerations in Ex-
periment 2 we assign equal weights to the different matchers.

4.2 Experiment 2: Comparing SECCO with Other Ontology Mapping
Algorithms Not Designed for Ontology Mapping in P2P Networks

This section provides an extensive evaluation of SECCO on four real-life ontologies
contained in the OAEI 2006 [37] test suite. We compared SECCO with other mapping
algorithms not explicitly designed to tackle the OMP in P2P networks. This way we
want to show how much the designing strategy of SECCO, which has to ensure fast-
ness and cannot exploit the whole structures of ontologies to be mapped, affects accu-
racy (i.e., quality of results).

28 G. Pirrò, M. Ruffolo, and D. Talia

In particular, we focused on the group of tests that contain four real-life ontologies
(i.e. tests from 301 to 304) in order to investigate how SECCO performs in mapping
real ontologies. For each of these ontologies the OAEI organizers provided a reference
alignment. We computed measures of Precision (i.e., the number of correct mapping
among all the mapping found), Recall (i.e., the number of correct mapping among all
the existing mapping) and F-measure [15] (i.e., the harmonic mean of Precision and
Recall). In particular, we compared results obtained by SECCO with those provided by
the OAEI organizers.

Notice that SECCO, even being designed for P2P networks and therefore to work
“online”, can be exploited to compare entire ontologies by reiterating the process de-
scribed in Section 2 for each concept in the source ontology (i.e., the reference ontol-
ogy 101 contained in the OAEI tests).

Configuration of SECCO for Experiment 2

Table 12 shows the values of the input of SECCO for this experiment. Here we are
interested in obtaining one-to-one mappings.

Table 12. SECCO configuration for Experiment 2

Parameter Value

Cs Seeker Concept Each concept Ci contained in the reference ontology (i.e.,
101)

ctx(Cs) Seeker Context ctx(Ci)

O Provider Ontologies 301-302-303-304

Th Threshold 0.51

ws Syntactic similarity weight 0.333

wL Lexical similarity weight 0.333

wc Contextual similarity weight 0.333

Results obtained by SECCO for Experiment 2

Fig. 13 shows values of Precision, Recall and F-Measure obtained by SECCO. As
can be noticed, SECCO performs well. It always obtains a Precision around 0.9. The
Recall, reaches the highest value (i.e., 0.9387) for ontology 304 while the lowest
value (i.e., 0.6211) for ontology 302. However, it always remains higher than 0.5.
The F-Measure values are 0.8269 for ontology 301, 0.7375 for ontology 302, 0.8012
for ontology 303 and 0.949 for ontology 304. Values of F-Measure that represent an
overall indicator of the performance of a mapping algorithm are in all the cases high.

Discussion of results and comparison with other ontology mapping algorithms

In order to have an objective evaluation of SECCO, we decided to compare its aver-
age results with those of other ontology mapping approaches. The results are shown
in Table 13. SECCO obtained an average Precision of 0.81, an average Recall of 0.81
and an average F-measure of 0.81. As can be noticed, SECCO is one of the most pre-
cise algorithms. It is only slightly outmatched by Automs and Falcon.

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 29

Fig. 13. Results of SECCO on the OAEI 2006 real life ontologies

In terms of Recall SECCO is outperformed only by RiMOM. In terms of F-Measure,
SECCO is only dominated by Falcon and RiMOM.

An important consideration emerges from these results. SECCO is an ontology
mapping algorithm that in its current implementation cannot exploit the whole struc-
tural information encoded in ontologies. Conversely, most of the presented ap-
proaches have a solid structural matching strategy. For instance, Falcon relies on the
GMO approach [51] that exploits a graph-matching algorithm for discovering map-
pings while RiMOM exploits an adaptation of the Similarity Flooding algorithm.
Such strategies require a complex analysis of the ontologies that is not conceivable in
a P2P environment for two reasons: (i) peers are not aware of the whole ontologies of
other peers; (ii) the fundamental requirement of fastness in P2P networks can be af-
fected. It is worthwhile noting that SECCO obtains very good results without using
that strategy.

Table 13. Average results obtained by some ontology mapping algorithms on the OAEI 2006
real-life ontologies, as reported in [19]

 SECCO‡ Jhu/apl
[6]

Automs
[29]

Falcon
[25]

RiMOM
[55]

H-Match
[10]

Precision 0.81 0.18 0.91 0.89 0.83 0.78

Recall 0.81 0.50 0.70 0.78 0.82 0.57

F-Measure 0.81 0.26 0.79 0.83 0.82 0.65

Average
Elapsed
Time (s)

3.05 s Na 70.25 s 7.22 s 3.14 s Na

‡ Elapsed times are computed on a P4 running at 3 GHz with 1Gb of memory.

30 G. Pirrò, M. Ruffolo, and D. Talia

Notice that the elapsed time by SECCO is the lowest. In particular, it is 25 times
lower that that obtained by Automs that also exploits WordNet and about 3 times
lower than that of Falcon, which adopts a structural matching strategy. Moreover, the
comparison with H-Match, the system actually very similar to SECCO, shows how
SECCO is better in terms of Precision, Recall and F-Measure. It would be also inter-
esting to compare the approaches in terms of elapsed time but unfortunately, authors
in [10] do not provide information about execution times.

On the one side, these results show how a structural mapping strategy can improve
mapping results as in the case of Falcon. On the other side, they show that SECCO
obtains results comparable with those of the most performant ontology mapping algo-
rithms without adopting complex structural analysis of ontologies. Finally, we can
conclude SECCO is faster than other mapping algorithms and the cost paid, in terms
of accuracy, is not so high.

5 Related Work

Recently several ontology mapping algorithms have been proposed. A detailed survey
is given in [11]. In that survey, only a bibliographic reference to ontology mapping in
P2P systems is listed. This underlines the fact that the OMP has not adequately been
tackled in open environments. In literature, there are few approaches similar to
SECCO explicitly designed for mapping ontologies in open environments.

The CtxMatch algorithm [7] aims at discovering mappings between Hierarchical
Categories (HCs). It relies on WordNet for interpreting the correct sense of concepts
in the context in which they appear. Therefore, it performs a transformation of the
concepts to be compared in Description Logics axioms that are exploited to reduce the
problem of discovery mappings to a SAT problem. CtxMatch similarly to SECCO
implements a semantic based approach since it relies on WordNet. However, the main
difference between these systems is that CtxMatch focuses on matching HCs and pro-
vides as output a semantic relation between terms while SECCO can also deal with
ontologies and provides a confidence value.

H-Match [8, 9] is an algorithm for dynamically matching concepts in distributed
ontologies. H-Match allows for different kinds of matching depending on the level of
accuracy needed. The system aims at supporting knowledge sharing and ontology-
addressable content retrieval in peer-based systems. It is actually the system closer to
SECCO. Indeed, there are at least two main differences between these approaches:

• The lexical matcher of H-Match is based on a ad-hoc thesaurus, while that of
SECCO is based on WordNet. H-Match defines an ad hoc similarity metric
between concepts in the thesaurus. Conversely, SECCO can benefit from a
similarity metric evaluated by the similarity experiment [26]. The metric
adopted in SECCO is highly correlated w.r.t similarity judgments given by
human1.

• H-Match in performing contextual affinity exploits predefined weights assigned
to the different types of relations among concepts. It introduces five types of re-
lations (i.e., same-as, part-of, kind-of, contains, associates) among terms of a

1 For preliminary experimental results refer to: http://grid.deis.unical.it/similarity

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 31

peer ontology. These relations are assessed by exploiting relations that concepts
have in WordNet. Conversely, SECCO adopts the “how it fits” strategy from
which the contextual similarity indicator can emerge by combining measures of
semantic similarity, to take into account hypernymy/hyponymy relations among
synsets, and relatedness to take into account a broader range of semantic rela-
tions (e.g., part of).

We deeply compared SECCO with H-Match concluding that results obtained by
the two approaches are, for several aspects, comparable. However, SECCO performs
a little better on real-life ontologies included in the OAEI 2006 tests. Since the two
approaches are both designed to work in open environments, it would be interesting
also to compare them in terms of performance (i.e., execution time for computing
mappings).

Falcon-AO [25] is an automatic tool for aligning ontologies based on three align-
ment strategies: the I-Sub [48] metric is exploited to compare strings, the V-Doc [42]
is a linguistic matcher based on Information Retrieval, while the GMO [51] is a
matcher based on graph matching.

The RiMOM system [55] combines different strategies to assess ontology map-
pings. In particular, it includes an edit distance metric and an adaption of the similar-
ity flooding algorithm to the context of ontology mapping.

iMapper [50] is an ontology mapping tool based on the idea of semantic enrichment.
It makes use of ontology instances to calculate the similarity between concepts. The
mapping process is split in two phases. In the first one (i.e., enrichment phase) docu-
ments (i.e., instances) associated to ontology concepts are analyzed thus building the
enriched ontology. The association of documents to concepts can be done automati-
cally, but user refinement it is also allowed. The output of this phase are representative
vectors (one for each concept) built from the textual content of their associated docu-
ments. In the second phase (i.e., mapping phase) similarities between ontology
elements are computed as the cosine between their representative vectors. Further re-
finements are employed to re-rank the results via the use of WordNet.

The abovementioned systems discover ontology mappings by exploiting both
structural and linguistic information encoded in ontology entities. However, in order
to work properly they need to scrutinize the two ontologies to be mapped. For
instance, the structural matcher of Falcon is based on a graph matching algorithm
(i.e., the GMO matcher) which requires to construct the adjacency matrix of the two
ontologies. In addition, the lexical matcher of Falcon (i.e., the V-Doc matcher [42])
requires analyzing both the ontologies to be mapped. Similar things hold for RiMOM,
which adopts as a structural matcher a variant of the Similarity Flooding algorithm.
iMapper needs to access the whole two ontologies and requires ontology concepts to
be associated with instances. As can be notice, a common denominator among these
approaches is that they “need to know” the whole two ontologies. Conversely,
SECCO does not impose this requirement since as usually happens in P2P networks
peers are not aware of one another’s ontologies. Therefore, it would be interesting to
see how the abovementioned approaches perform without completely knowing the
two ontologies to be mapped.

In the literature, there are some semantic P2P applications sharing common charac-
teristics with SECCO.

32 G. Pirrò, M. Ruffolo, and D. Talia

SWAP (Semantic Web and Peer to Peer) [18] aims at combining ontologies and
P2P for knowledge management purposes. SWAP allows local knowledge manage-
ment through a component called LR (Local node repository), which gathers knowl-
edge from several sources and represents it in RDF-Schema. In SWAP, each node is
responsible for a single ontology: ontologies might represent different views of a
same domain, multiple domains with overlapping concepts, or might be obtained by
partitioning an upper level ontology. Knowledge sharing is obtained through ontology
mapping and alignment.�

GridVine [1] is a semantic P2P system whose aim is to build a semantic overlay
network based on two layers: logical layer and physical layer. The logical layer pro-
vides a set of functionalities such as: attribute-based search, schema management and
schema mapping. The physical layer is used as support to the logical layer in con-
structing the overlay and forwarding queries. In GridVine, semantic interoperability is
achieved by semantic gossiping [2]. Semantic gossiping assumes the preexistence of
local agreements provided as mappings between different schemas. Peers introduce
their own schemas and exchanging translations between them can incrementally come
up with an implicit “consensus schema”.

Piazza [24] is a P2P Data Management system whose main aim is to enable effi-
cient query processing. Piazza takes into account the structure of the knowledge
domain and documents in order to achieve interoperability between different informa-
tion sources. Similarly, to GridVine it assumes the preexistence of mappings between
data sources. Therefore, these mappings are chained together and exploited for query
rewriting/answering.

In the SWAP system, mappings between peer ontologies are dynamically obtained
by exploiting techniques based on lexical features, structure and instances of ontolo-
gies. Conversely, neither the GridVine nor the Piazza approach tackle the problem of
discovering mappings among the different representations (i.e., schema, ontologies)
belonging to different peers since they assume the preexistence of mappings.

6 Concluding Remarks

This paper described SECCO, an ontology mapping algorithm aimed at discovering
concept mappings in P2P networks. A concept mapping has been defined as a similar-
ity ranking between a request (composed by a concept along with its context) per-
formed by a seeker peer and concepts belonging to provider peer ontologies. Since we
assume that peers are not aware of one another’s ontologies, in order to discover
mappings, we designed an ad-hoc mapping strategy. This strategy aims at fulfilling
two important requirements (i.e., fastness and accuracy) through three individual
matchers. The main problem we faced is related to the fact that we cannot adopt so-
phisticated and time-consuming structural matching strategies that require to know
the whole two (peer) ontologies to be compared. Hence, we adopted the notion of
context, defined as a concept along with its properties (obtained as described in Sec-
tion 2.2) and nearest neighbor concepts. Through contexts, we aim at encoding the
amount of structural information needed in a particular request. We compare the con-
textual information of different concepts by the “how it fits” strategy that is founded
on the idea that two concepts are related if they fit well in each other’s context. This

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 33

strategy is supported by the lexical matcher whose aim is to exploit an accurate
(proven by the similarity experiment [26]) similarity metric in WordNet. This metric
allows assessing similarity even among syntactically unrelated concepts. Moreover, in
order to exploit all the linguistic information of ontology entities (i.e. ontology meta-
data) we adopt the syntactic matcher. This matcher encodes linguistic information in
virtual documents that are created and compared by an information retrieval ap-
proach. All these matching strategies have been extensively evaluated.

Along the paper, we discussed the exploiting of SECCO in the context of P2P net-
works and proven through experimental evaluation the suitability of the algorithm. In
particular, SECCO has been compared (Experiment 1) with the H-Match algorithm,
designed for ontology mapping in open environments, with very promising results.
Furthermore, SECCO has been compared (Experiment 2) with other mapping algo-
rithms not explicitly designed for mapping in P2P networks and even in this case re-
sults are satisfactory. We also performed a sensitivity analysis from which emerged
an interesting aspect related to weight assignments to the different matchers.

7 Future Work

Here we briefly describe possible improvements of the algorithm. First in a future
version of SECCO we aim at distinguishing relations between concepts from relations
that describe properties of concepts. This way, the definition of context exploited by
SECCO will give much emphasis to the relations that have per se a semantic meaning
as for instance the ISA relations. We are also performing further improvements of
SECCO along two directions.

On the one side, we are investigating a strategy for automatically tuning the
weights of the different matchers and aggregating results. In particular, we are evalu-
ating the following possibilities:

• The use of sophisticated techniques such as the Dempster Shafer theory for
combining results of the different matchers. The Dempster-Shafer theory
[47] is a mathematical based on belief functions and plausible reasoning,
which is used to combine separate pieces of information (evidence) to calcu-
late the probability of an event. In our case, we aim at exploiting this strategy
for combining uncertain results given by the different matchers for obtaining
a more reliable overall similarity value.

• The use of a linear aggregation formula. According to this strategy, a weight
of 1 is given to results provided by each matcher. The overall similarity is
obtained as the average similarity value given by the different matchers.

On the other side, we aim at exploiting the World Wide Web for refining similarity
values among concepts. In fact, we argue that the Web could be a valuable source of
knowledge. Our aim is to design a similar strategy based on the analysis of relations
between terms extracted from the snippets (related to concepts to be compared) given
by a search engine.

Finally, since we included SECCO as semantic support in our K-link+ [31] system,
we also would like to evaluate its performance within K-link+. In this case, we are
interested in evaluating SECCO in a complete semantic P2P solution for cooperation
and contents sharing and retrieval.

34 G. Pirrò, M. Ruffolo, and D. Talia

References

1. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Van Pelt, T.: GridVine: Building internet-
scale semantic overlay networks. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F.
(eds.) ISWC 2004. LNCS, vol. 3298, pp. 107–121. Springer, Heidelberg (2004)

2. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: The Chatty Web: Emergent Semantics
Through Gossiping. In: Proc. of WWW 2003, Budapest, Hungary, pp. 197–206 (2003)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
4. Berners-Lee, T.: The Semantic Web: An interview with Tim Berners-Lee. Consortium

Standards Bulletin 4(6) (June 2005)
5. Berkovsky, S., Eytani, Y., Gal, A.: Measuring the relative performance of schema match-

ers. In: Proc. of WI 2005, Compeigne, France, pp. 366–371 (2005)
6. Bethea, W.L., Fink, C.R., Beecher-Deighan, J.S.: JHU/APL Onto-Mapology Results for

OM 2006. In: Proc. of OAEI 2006, Athens, Georgia, USA (2006)
7. Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: a new approach and an ap-

plication. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 130–145. Springer, Heidelberg (2003)

8. Castano, S., Ferrara, A., Montanelli, S., Racca, G.: From Surface to Intensive Matching of
Semantic web Ontologies. In: Proc. of WEBS 2004, Zaragoza, Spain, pp. 140–144 (2004)

9. Castano, S., Ferrara, A., Montanelli, S.: H-MATCH: an Algorithm for Dynamically
Matching Ontologies in Peer-based Systems. In: Proc. of SWDB, Berlin, Germany, pp.
231–250 (2003)

10. Castano, S., Ferrara, A., Messa, G.: Results of the HMatch Ontology Matchmaker in
OAEI. In: Proc. of OM 2006, Athens, Georgia, USA, pp. 134–143 (2006)

11. Choi, N., Song, I., Han, H.: A survey on Ontology Mapping. SIGMOD Record 35(3), 34–
41 (2006)

12. Davies, J., Studer, R., Warren, P. (eds.): Semantic Web Technologies - trends and research
in ontology-based systems. Wiley, Chichester (2006)

13. Devore, J.L.: Probability and Statistics for Engineering and the Sciences. International
Thomson Publishing Company

14. Do, H., Rahm, E.: COMA – a system for flexible combination of schema matching ap-
proaches. In: Proc. of VLDB 2002, Hong Kong, China, pp. 610–621 (2002)

15. Do, H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Proc. GI-
Workshop Web and Databases, Erfurt, Germany, pp. 221–237 (2002)

16. Ehrig, M., Staab, S.: Qom - fast ontology mapping. In: McIlraith, S.A., Plexousakis, D.,
van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 289–303. Springer, Heidelberg
(2004)

17. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In: Bussler, C.J., Davies,
J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 76–91. Springer, Hei-
delberg (2004)

18. Ehrig, M., Tempich, C., Broekstra, J., Van Harmelen, F., Sabou, M., Siebes, R., Staab, S.,
Stuckenschmidt, H.: SWAP: Ontology-based Knowledge Management with Peer-to-Peer
Technology. In: Proc. of WOW, Luzerne, Switzerland (2003)

19. Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Šváb, O., Svátek, V., van Hage,
W.R., Yatskevich, M.: Results of the Ontology Alignment Evaluation Initiative 2006. In:
Proc. of OM 2006, Athens, Georgia, USA (2006)

20. Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van
Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg
(2004)

 SECCO: On Building Semantic Links in Peer-to-Peer Networks 35

21. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
22. Goble, C.A., De Roure, D.: The Semantic Grid: Myth busting and bridge building. In:

Proc. of ECAI 2004, Valencia, Spain, pp. 1129–1135 (2004)
23. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition 5(2), 199–220 (1993)
24. Halevy, A.Y., Ives, Z.G., Jayant Madhavan Mork, P., Suciu, D., Tatarinov, I.: Piazza: Data

Management Infrastructure for Semantic Web Applications. In: Proc. of WWW 2003, Bu-
dapest, Hungary, pp. 556–567 (2003)

25. Hu, W., Cheng, G., Zheng, D., Zhong, X., Qu, Y.: T Results of Falcon- OM in the OAEI,
Campaign. In: Proc. of.OM 2006, Athens, Georgia, USA, pp. 124–133 (2006)

26. Java WordNet Similarity Library (JWSL) and the Similarity Experiment,
 http://grid.deis.unical.it/similarity

27. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy.
In: Proc. of ROCLING X, Taiwan (1997)

28. Klyne, G., Caroll, J.J.: Resource Description Framework (RDF): Concepts and abstract
Syntax. W3C Recommendation (February 10, 2004) (October 2007),

 http://www.w3.org/TR/rdf-concepts/
29. Kotis, K., Valarakos, A., Vouros, G.: AUTOMS: Automated Ontology Mapping through

Synthesis of methods. In: Proc. of OM 2006, Athens, Georgia, USA (2006)
30. Lauer, M.: Designing Statistical Language Learners: Experiments on Noun Compounds.

In: Proc. of the 33rd Annual Meeting of the Association for Computational Linguistics
(ACL 1995), Cambridge, Massachusetts, USA, pp. 47–54 (1995)

31. Le Coche, E., Mastroianni, C., Pirrò, G., Ruffolo, M., Talia, D.: A peer-to-peer virtual of-
fice for organizational knowledge management. In: Reimer, U., Karagiannis, D. (eds.)
PAKM 2006. LNCS, vol. 4333, pp. 166–177. Springer, Heidelberg (2006)

32. Levenshtein, I.V.: Binary Codes Capable of Correcting Deletions, Insertion and Reversals.
Soviet Physics-Doklady 10(8), 707–710 (1966)

33. Lucene- The Apache Lucene project (October 2007), http://lucene.apache.org
34. Miller, G.A., Charles, W.G.: Contextual Correlates of Semantic Similarity. Language and

Cognitive Processes 6(1), 1–28 (1991)
35. Miller, G.: WordNet An On-line Lexical Database. International Journal of Lexicogra-

phy 3(4), 235–312 (1990)
36. Mitra, P., Noy, N.F., Jaiswal, A.R.: OMEN: A Probabilistic Ontology Mapping Tool. In:

Proc. of MCN 2004, Hiroshima, Japan, pp. 71–83 (2004)
37. Ontology Alignment Evaluation Initiative (October 2007),

 http://oaei.ontologymatching.org
38. Pan, R., Ding, Z., Yu, Y., Peng., Y.: A Bayesian Network Approach to Ontology Mapping.

In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 563–577. Springer, Heidelberg (2005)

39. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantic
and Abstract Syntax. W3C Recommendation (February 10, 2004) (October 2007),

 http://www.w3.org/TR/owl-semantics/
40. Patwardhan, S., Pedersen, T.: Using WordNet-based context vectors to estimate the seman-

tic relatedness of concepts. In: Proc. of EACL 2006, workshop, pp. 1–8 (2006)
41. Pirrò, G., Talia, D.: An approach to Ontology Mapping based on the Lucene search engine

library. In: Proc. of SWAE 2007, Regensburg, Germany, pp. 407–412 (2007)
42. Qu, Y., Hu, W., Cheng, G.: Constructing Virtual Documents for Ontology Matching. In:

Proc. of WWW 2006, Edinburgh, Scotland, pp. 23–31 (2006)

36 G. Pirrò, M. Ruffolo, and D. Talia

43. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In:
Proc. of IJCAI 1995, Montréal, Québec, Canada, pp. 448–453 (1995)

44. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. The
Amer. Statistician 42, 59–65 (1988)

45. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Com-
munications of the ACM 18(1), 613–620 (1975)

46. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic simi-
larity in WordNet. In: Proc. of ECAI, Valencia, Spain, pp. 1089–1090 (2004)

47. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton
(1976)

48. Staab, S., Stuckenschmidt, H.: Semantic Web and Peer-to-Peer. In: Decentralized Man-
agement and Exchange of Knowledge and Information. Springer, Heidelberg (2006)

49. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–
637. Springer, Heidelberg (2005)

50. Su, X., Gulla, J.A.: An information retrieval approach to ontology mapping. Data &
Knowledge Engineering 1(58), 47–69 (2006)

51. Wei, H., Ningsheng, J., Yuzhong, Q., Yanbing, W.: GMO: A Graph Matching for Ontolo-
gies. In: Proc. of K-Cap 2005, Banff, Canada, pp. 43–50 (2005)

52. Winkler, W.E.: The state of record linkage and current research problems. In: Statistics of
Income Division, vol. (4). Internal Revenue Service Publication (1999)

53. WordNet: a lexical database for the English language (October 2007),
 http://wordnet.princeton.edu/obtain

54. WordNet-Similarity bibliography (October 2007),
 http://www.d.umn.edu/~tpederse/wnsim-bib/

55. Yi, L., Juanzi, L., Duo, Z., Jie, T.: Result of Ontology Alignment with RiMOM at OAEI
2006. In: Proc. of OM 2006, Athens, Georgia, USA, pp. 181–191 (2006)

Towards a Scalable Query Rewriting Algorithm
in Presence of Value Constraints

H. Jaudoin1, F. Flouvat2, J.-M. Petit2, and F. Toumani3

1 University of Rennes, ENSSAT Lannion, IRISA, UMR6074 CNRS, France
2 University of Lyon, INSA-Lyon, LIRIS, UMR5203 CNRS, F-69621, France

3 University of Clermont-Ferrand, LIMOS, UMR6158 CNRS, France

Abstract. In this paper, we investigate the problem of query rewrit-
ing using views in a hybrid language allowing nominals (i.e., individual
names) to occur in intentional descriptions. Of particular interest, re-
stricted form of nominals where individual names refer to simple values
enable the specification of value constraints, i.e, sets of allowed values
for attributes. Such constraints are very useful in practice enabling, for
example, fine-grained description of queries and views in integration sys-
tems and thus can be exploited to reduce the query processing cost. We
use description logics to formalize the problem of query rewriting using
views in presence of value constraints and show that the technique of
query rewriting can be used to process queries under the certain answer
semantics. We propose a sound and complete query rewriting Bucket-like
algorithm. Data mining techniques have been used to favor scalability
w.r.t. the number of views. Experiments on synthetic datasets have been
conducted.

1 Introduction

This work is motivated by an application in the sustainable land and water man-
agement domain1. We aim at providing a scalable data integration infrastructure
for: (i) sharing and analyzing agricultural practices across heterogeneous agri-
cultural data sources, and (ii) verifying their compliance with respect to national
and European government regulations. We adopt a Local As View (LAV) ap-
proach [14,19] to build our data integration system and use query rewriting using
views as a technique for answering queries in such a system. The process of query
rewriting supplies set of query plans formed of views only that must be further
evaluated on data in order to produce correct answers.

In this context, value constraints over attributes, i.e., sets of allowed values
for those attributes, turn out to be a key feature and have a strong practical
interest. Indeed, values constraints enable fine-grained description of queries and
views in integration systems and can be exploited to reduce the query processing
cost. In our application context, various data sources provide views which have

1 This is a collaborative project with a French public research institute whose work
focuses on sustainable development in non-urban areas.

S. Spaccapietra (Ed.): Journal on Data Semantics XII, LNCS 5480, pp. 37–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 H. Jaudoin et al.

identical intentional descriptions (i.e., same structures) but the possible values
for certain attributes are different (i.e., different value constraints). For example,
two different data sources may store information about cultural parcels that have
received pesticide in different years and/or are located at different districts.
Views describing these data sources can be informally defined as follows:

S1.V1 : cultural parcels of district number 23 or 63 that have received pesticide
of category c1 or c18 or c24.
S2.V2 : cultural parcels of district number 03 or 26 or 43 that have received
pesticide of category c2 or c15 or c38.

Therefore view V1 of data source S1 supplies cultural parcels only located in
district 23 or 63 and that have received pesticide whose category is only c1 or c18
or c24. Consequently, V1 cannot return cultural parcels from district 69. In this
example, without value constraints over the attributes district number and year,
views S1.V1 and S2.V2 would be identical. Therefore, the use of value constraints
enables a more accurate description of the content of data sources. Moreover,
value constraints can also be very useful to express more precise queries. For
example, a typical query Q in our application can ask for cultural parcels of
only district number 23 or 63 that have received pesticide of category c20 or
c38 only. The user is then interested in a particular region, here the district 23
and 63 only and in a particular set of pesticide categories that are known to be
compatible with a culture activity. Turning our attention to query processing
techniques, the presence of such constraints provides valuable information to
identify when a view is not useful for answering a query. For example, here,
the view S2.V2 cannot supply correct answer to the query Q since S2.V2 gives
only cultural parcels in districts 03 or 26 or 43. Consequently, capturing and
exploiting value constraints may improve the query processing costs in two ways.
Firstly, it reduces the number of candidate views to be considered in the query
rewriting process. Secondly, it prunes the set of sources accessed to answer a
query, thereby reducing the network communication cost.

More generally, value constraints play an important role in various appli-
cation domains. For example, in Databases Management Systems, they allow
to represent enumerated data types -e.g., a marital status is either married,
single, divorced, or widowed - and then to specify the value integrity constraints
involved by the views. Moreover, such a kind of constraints allows for incomplete
information description [8], that can be very practical in open environments like
the web. Indeed sometimes users and administrators of data sources are only
able to enumerate possible values of attributes instead of giving its exact value.
For example, the user knows that the ages of individuals in his/her databases are
either 22 or 23 or 24, and cannot be another value. Therefore, it is impossible to
give the right age of individuals but it is possible to give a good idea about their
ages. Finally, as mentioned in our motivating example, value constraints are
very useful to specify queries of the form: ”I seek for individuals whose values on
a given attribute cannot be outside of the set of values {a1, ..., an}”. For example,

Towards a Scalable Query Rewriting Algorithm 39

with such a kind of constraints, it is possible to ask for documents dealing with
only a list of specific topics, or food prepared with only certain ingredients.

In this paper, we study the problem of rewriting queries using views in pres-
ence of value constraints both in the queries and in the views. The problem
of rewriting queries using views, intensively investigated during the last decade
[14,24], can be formally stated as follow: given a set of views V and a query Q,
both expressed over a global schema S, the purpose is to reformulate Q into
a query expression that uses only the views in V and is maximally contained
in Q. While much has been done on the development of query rewriting algo-
rithms for various classes of languages (conjunctive queries, recursive datalog,
description logics) [12,14,19,24], to our knowledge, none has dealt with value
constraints. First, it is not possible to reuse algorithms as those proposed in
the general framework of conjunctive queries in presence of constants [20] or
arithmetic comparisons [2] since conjunctive queries, even with disjunction, al-
low only for specifying the possible values of an attribute and not for restricting
the range of an attribute to a given set of values. Second, it is neither possible
to exploit existing query rewriting algorithms proposed in the description logics
setting (e.g., ALCNR [7]) since values constraints cannot be correctly simulated
in such languages. Indeed, the implicit information on number restrictions in-
trinsic to the value constraints 2 is likely to be lost and then existing algorithms
would lead to incomplete algorithms for the problem of answering queries using
views in presence of value constraints.

Hereafter, we investigate the query rewriting problem using a Description
Logic (DL) [4] based framework. DLs constitute nowadays one of the most im-
portant logic-based knowledge representation formalisms in which problems re-
lated to representing and reasoning with value constraints have been deeply
studied [15]. In particular, DLs provide two constructors respectively the OneOf
constructor, noted O, and the universal quantifier constructor ∀, that allow
for a correct representation of value constraints. The first one enables the enu-
meration of individuals and then representation of sets of values while the sec-
ond one restricts the range of a given attribute. For example, the description
∀departmentNumber.{23, 24, 63} denotes the individuals whose the department
number is necessarily restricted to 23 or 24 or 63.

Contributions. First, we consider the problem of answering queries in the for-
mal setting of the DLs ALN augmented with a restricted form of the OneOf
constructor, noted Ov. We show that query rewriting provides a sound and
complete technique to process queries under the certain answers semantics [1].
Then we propose a query rewriting Bucket-like algorithm based on data mining
techniques and hypergraph framework. To our knowledge, this query rewriting
algorithm is the first to use data mining implementations to favor scalability of
the implementation. Experiments on synthetic datasets have been conducted.
They show the feasibility of our proposition.

2 If an individual checks the constraint ∀departmentNumber.{03,63}, then this indi-
vidual has at most two possible values over the attribute departmentNumber.

40 H. Jaudoin et al.

The remainder of this paper is organized as follows: Section 2 presents the
ALN (Ov) logic and gives a characterization of subsumption for this logic that
is appropriate to deal with our query rewriting problem. Section 3 gives a de-
scription of a LAV-mediation system in the ALN (Ov) setting and focus on the
reduction of the problem of query answering using views to the problem of query
rewriting using views in ALN (Ov). Section 4 presents how the Bucket algorithm
has been adapted to get all certain answers to a given query. Section 5 shows
how the iZi platform [11], that supplies efficient and generic implementations
of data mining algorithms, can be used to implement the most costly steps of
our Bucket-like algorithm. Finally Section 6 is devoted to implementation and
experimentations while Section 7 concludes our paper. Proofs are given in Annex.

2 Preliminaries

Description Logics (DLs) [4] allow to represent domain of interest in terms of con-
cepts or descriptions (unary predicates) that characterize subsets of the objects
(individuals) in the domain, and roles (binary predicates) over such a domain.
Concepts are denoted by expressions formed by means of special constructors.
The various description logics differ from one to another based on the set of
constructors they allow. For example, the constructors of the so-called ALN de-
scription logic are: the symbol � is a concept description which denotes the top
concept while the symbol ⊥ stands for the bottom concept; concept conjunction
(�), e.g., the concept description Parent�Male denotes the set of fathers (i.e.,
male parents); the value restriction (∀R.C), e.g., the description ∀child.Male
denotes the set of individuals whose children are all male; the number restric-
tion constructors (≥ n R) and (≤ n R), e.g., the description (≥ 1 child) denotes
the set of parents (i.e., individuals having at least one child), while the descrip-
tion (≤ 1 leader) denotes the set of individuals that cannot have more than
one leader; the negation restricted to atomic concepts (¬A), e.g., the description
¬Male denotes the class of individuals which are not males.

In this paper, we use the DL ALN extended with the O constructor that
enables building concepts from a set of enumerated nominals [8,23]. More pre-
cisely, we consider a restricted form of the O constructor, called Ov and writ-
ten {o1, . . . , on}, where the oi’s refer to simple values. The obtained language,
called ALN (Ov) 3, allows descriptions of the form ∀R.{o1, . . . , on}, called value
constraints, where {o1, . . . , on} denotes a set of values. For example, the con-
cept ∀maritalStatus.{MARRIED, SINGLE, DIV ORCED, WIDOWED}
denotes the set of individuals whose marital status is necessarily married or
single or divorced or widowed.
ALN (Ov) Syntax and Semantics. Let C be a set of concept names, N be

a set of value names and let R be a set of role names. In the spirit of [15], we
assume R divided in two disjointed sets: Rc, which denotes roles whose range is
the set of usual individuals, and Rv, which denotes roles whose range is a set of
3 In this paper, we do not consider other constructors on concrete-valued roles as the

fills constructor.

Towards a Scalable Query Rewriting Algorithm 41

values of N . We also consider that �C is the top classical concept while �V is
the top values concept. Let A ∈ C, R ∈ R, RC ∈ RC , RV ∈ RV , n a positive
integer and oi ∈ N with i ∈ [1, n]. ALN (Ov) concept descriptions are built up
by means of the following syntaxic rules:

C,D → A | ¬A | �C | ⊥ |
C �D |
∀RC .C | ∀RV .{o1, . . . , on} | ∀RV .�V |
(≤ n R) | (≥ n R)

Semantics of concepts is defined by an interpretation I = (ΔI , .I) whereΔI is
a non-empty set, called interpretation domain and .I is a interpretation function.
We assume that ΔI is divided into two disjointed sets: δC the set of individuals
in the domain and δV , the set of values. Hence we have �I

C = δC and �I
V = δV .

A concept is interpreted as a subset of ΔI . A role is interpreted as a subset of
δC×ΔI . In other words, values of δV cannot have any successor by roles. Values
are only authorized in range of RV roles. The interpretation I associates each
value oi ∈ N with an element oIi ∈ δV such that oi
= oj implies that oi

I
= oj
I

that is, the mapping respects the Unique Name Assumption (UNA). Furthermore
the semantic of an arbitrary concept must verify the following equations:

(C �D)I = CI ∩DI , (¬A)I = ΔI\AI

(∀RC .C)I = {x ∈ δC | ∀y : (x, y) ∈ Rc
I → y ∈ CI}

(∀RV .{o1, . . . , on})I = {x ∈ δC | ∀y : (x, y) ∈ Rv
I → y ∈ {oI1 , . . . , oIn} ⊆ δV }

(≤ nR)I = {x ∈ δC |
∣∣{y | (x, y) ∈ RI}

∣∣ ≤ n}
(≥ nR)I = {x ∈ δC |

∣∣{y | (x, y) ∈ RI}
∣∣ ≥ n}

An interpretation is a model for a concept C iff CI
= ∅. A concept is incon-
sistent, i.e., C ≡ ⊥ iff CI = ∅ for all interpretation I.

With respect to this semantics, the notions of subsumption and equivalence
are defined as follows. A concept C is subsumed by a concept D, noted C � D,
iff CI ⊆ DI ∀I. A concept C is equivalent to a concept D, noted C ≡ D, iff
CI = DI ∀I.
Characterizing Subsumption in ALN (Ov). We present now a normal form de-
scription for ALN (Ov) concepts and a characterization of subsumption w.r.t.
this normal form that are appropriate to deal with the problem of rewriting query
using views in presence of value constraints. More precisely, we use a structural
approach of subsumption in order to further reduce the research space of query
rewriting.

In the sequel, we use the letter P to specify either an atomic concept (A)
or its negation (¬A) or a set of values (E) or a number restriction ((≤ nR) or
(≥ nR)), or⊥ concept. The normal form Ĉ of a conceptC is either the� concept,
or a conjunction (nonempty) of descriptions of the form ∀R1.(. . . ∀Rm.P) with
m ≥ 0, where R1, . . . , Rm are (not necessarily distinct) roles. The description
∀R1. . . . ∀Rm.P is abbreviated by ∀R1 . . . Rm.P . R1 . . .Rm is considered as a
word, noted w, over the alphabet RC ∪RV of roles. More precisely, R1 . . . Rm−1
is a word over R∗

C and Rm belongs to RC ∪ RV . If m = 0, then we have an

42 H. Jaudoin et al.

empty word ε, i.e., ∀ε.P is an equivalent notation of P . If w and u are two words
of R∗, wu denotes the word obtained by the concatenation of w and u, w being
a prefix of wu. Consequently, every concept in ALN (Ov) can be expressed in its
normal form as a conjunction of concepts of the form ∀w.P , called conjuncts. In
the sequel we use the expression ∀w.P ∈ C to denote that the normal form of a
concept C contains a conjunct of the form ∀w.P in its description.

For the sake of brevity, normalization rules that allow to transform ALN (Ov)
concepts into their normal forms are omitted. They are described in appendix A
page 59.

From the normal form introduced previously, Theorem 1 gives a characteri-
zation of subsumption between two concepts in ALN (Ov).

Theorem 1 (Subsumption). Let C,D two concepts, expressed in their normal
form. C � D iff one of the following conditions is verified:

(1) C ≡ ⊥ or D ≡ �C , or
(2) for every ∀w.P ∈ D, we have

(2.a) ∀w.P ∈ C or,
(2.b) ∀w.E′ ∈ C with E′ ⊆ E if P = E or,
(2.c) ∀w.(≤ kR) ∈ C with k ≤ n if P =≤ nR or,
(2.d) ∀w.R.E ∈ C with |E| ≤ n if P =≤ nR and R ∈ Rv or,
(2.e) ∀w.(≥ kR) ∈ C with k ≥ n if P =≥ nR or,
(2.f) ∀v.(≤ 0R) ∈ C with vR prefix of w.

Informally, a concept C is subsumed by a concept D if and only if all constraints
over D appears in the description of C 4. Note that we abbreviate the concepts
∀R.⊥ and ∀R.∅ by ≤ 0R. The proof of this theorem which is given in annex A,
page 59, is derived from characterization of structural subsumption of Classic
[8]. Indeed, logic ALN (Ov) can be seen as a sub-language of Classic [8] where
constructor Ov can be considered as a particular case of Host Individuals.

Example 1. Let C ≡ ∀received.Pesticide � CulturalParcel, C′ ≡
∀received.category.{C2, C3}�∀received. ≤ 2category,D ≡ ∀received.Pesticide
and D′ ≡ ∀received.category.{C1, C2, C3} � ∀received. ≤ 3 category.

We have C � D since ∀received.Pesticide ∈ C. We have C′ � D′ be-
cause ∀received.category.{C2, C3} ∈ C′ with {C2, C3} ⊆ {C1, C2, C3}, and
∀received.(≤ 2 category) ∈ C′.

3 Query Rewriting Using Views in the ALN (Ov) Setting

In this section, we briefly introduce the ALN (Ov)-based framework used in
our work. Then we focus on the problem of query answering using views, i.e.,
computing the answers of a query in presence of value constraints. In this setting,
we show that the problem of query answering in the ALN (Ov) setting can be
reduced to the problem of query rewriting using views.
4 Following the object-oriented paradigm, C must override the concept D.

Towards a Scalable Query Rewriting Algorithm 43

3.1 A Formal Framework

A LAV-based mediation system is defined by a pair (S,V), where S is a global
schema and V , a set of views, i.e., named queries, expressed in terms of S
[14]. Hereafter, we consider a mediation system (S,V) in the ALN (Ov) set-
ting. Therefore, the schema S is specified as an ALN (Ov)-terminology, i.e., a
set of axioms of the forms: (i) A ≡ D (concept definitions), or (ii) A � D (prim-
itive specifications), where A is a concept name and D is a concept description
in ALN (Ov). Moreover, the set of views V is specified as a set of primitive
specifications in ALN (Ov).

The semantic of a mediation system (S,V) is derived from the notion of
interpretation of a terminology in DL [4]. We say that an interpretation I is a
model for (S,V) iff I is a model for every axiom in S and V (i.e., A � D iff
AI ⊆ DI and A ≡ D iff AI = DI). Note that, describing views as primitive
specifications enables to capture Open World Assumption (OWA) in building
our mediation system [1] (i.e., assuming that the data sources are incomplete).
Indeed, primitive specifications are incomplete specifications in the sense that
they provide only necessary, but not sufficient, conditions that must be satisfied
by their instances.

The Table 1 gives an example of ALN (Ov) mediation system (S,V). The
global schema is made of two concepts: CulturalParcel, which denotes parcels
that have at least one kind of culture and TreatedObject which denotes the
class of individuals that have received at least one treatment which has at least
one category and whose categories take their values necessarily from the set
{C1, . . . , C18}. The terminology V is made of nine views (V1, V2, ..., V9). The
extension of the view V1 is a subset of cultural parcels while extension of view V2
is a subset of individuals that have received at least one category of treatment.

Queries are defined as ALN (Ov) concepts expressed in terms of the elements
(i.e., roles and concepts) of S. For example, a query Q that asks for cultural
parcels that have received at least one treatment and whose treatment cate-
gory is either C8 or C9, may be expressed as follows: Q ≡ CulturaParcel� ≥
1treatment � ∀treatment.category.{C8, C9}.

Let (S,V) be a ALN (Ov) mediation system. In the sequel, we assume that
the terminologies S and V are acyclic (i.e., they do not contain a concept that

Table 1. Example of mediation system

Global schema S
CulturalParcel ≡ Parcel� ≥ 1 cultureType

TreatedObject ≡≥ 1treatment�∀treatment. ≥ 1category�∀treatment.category.{C1, C2, . . . , C18}
OrganicallyT reatedObject ≡ ∀treatment.OrganicProduct

Set of views V
V1 � CulturalParcel V4 � ∀treatment.category.{C9, C10}
V2 � ∀treatment. ≥ 1category V5 � ∀treatment.category.{C8}
V3 �≥ 1treatment V6 � ∀treatment.category.{C8, C11}
V7 � ∀treatment.category.{C7, C8, C9, C10} � ∀treatment.OrganicProduct

V8 � ∀treatment.category.{C7, C8, C9} � ∀treatment.¬OrganicProduct

V9 � ∀treatment.category.{C8, C9, C10} � ∀treatment.¬OrganicProduct

bl l f d

44 H. Jaudoin et al.

refers to itself in its specification or definition). We also assume that V is: (i)
normalized, i.e., every primitive specification A � D in V is replaced by a
definition A ≡ A�D, where A is a new atomic concept [4], and (ii) expanded, i.e.,
defined concepts occurring in right-hand side of axioms are recursively replaced
by their definitions. Finally, queries on (S,V) and views in V are assumed to be
provided in their normal forms.

3.2 From Query Answering to Query Rewriting

This section focuses on the query answering problem in the ALN (Ov) setting.
Let Q be a query over a ALN (Ov) mediation system (S,V). We consider the
problem of computing the answers of Q under certain answer semantics [1].
Informally, an answer t is a certain answer of Q if t is an answer to Q for any
database consistent with the extensions of the views in V , i.e., the set of tuples
associated with the views. We use the following notations to define the notion of
certain answers under OWA in the DL setting. For a view V ∈ V , we denote by
V ext its extension and by Vext the union of all the extensions of the views in V .

Definition 1 (Certain answers under OWA). Let (S,V) be a ALN (Ov)
mediation system and Q be a query. t is a certain answer of Q iff: (i) t ∈ Vext

and (ii) t ∈ QI , for all model I of (S,V) s.t. ∀ V ∈ V , V ext ⊆ V I.
The set of all the certain answers of Q is denoted by Ans(Q,Vext).

Let Q be a query over a mediation system (S,V). The problem of computing
Ans(Q,Vext) can be reduced to a problem of query rewriting using views [14,12].
In the latter case, the goal is to reformulate Q into an expression Q′ in some
language, denoted LR, such that Q′ refers only to the views of V and Q′ � Q.
Q′, the rewriting of Q, can be viewed as a query plan in the sense that it can
be evaluated over the view extensions in order to compute the certain answers
of Q. A crucial point to guarantee that a rewriting Q′ provides all the certain
answers of Q lies in the definition of the rewriting language LR. Below, we show
that in the setting of our ALN (Ov) mediation system it is sufficient to consider
rewritings that consist in union of view conjunctions (i.e., LR = {�,�}).

Lemma 1. Let (S,V) be a ALN (Ov) mediation system and Q be a query. If t
is a certain answer of Q, then there exists a subset {V1, . . . , Vn} of V s.t.: (i)
V1 � . . . � Vn � Q, and (ii) t ∈ V ext

1 ∩ . . . ∩ V ext
n .

This lemma states that a certain answer of a query Q in a ALN (Ov) mediation
system is provided by a conjunction of views which is subsumed by Q. Its proof is
given in annex B, page 60. Note that the rewriting language obtained in our con-
text is the same than those usually obtained in other modeling languages as for
example ALCNR and CARIN-ALN [7] or conjunctive queries [20]. Hereafter,
we use the notion of conjunctive rewriting of a query Q to refer a conjunction
of views subsumed by Q. As a consequence of lemma 1, all the certain answers
of a query Q can be obtained from the union of all the conjunctive rewritings
of Q. We define below the notion of maximally-contained rewriting, i.e., those
conjunctive rewritings that return maximal sets of certain answers.

Towards a Scalable Query Rewriting Algorithm 45

Definition 2 (Max-contained rewriting). Let (S,V) be a mediation system
and Q be a query. Q′ is a maximally-contained rewriting of Q using V if and
only if: (i) Q′ is a conjunctive rewriting of Q, and (ii) there is no conjunctive
rewriting Q1 of Q s.t. Q′ � Q1 � Q and Q′
≡ Q1.

The following theorem shows that the set of all certain answers of a query Q can
be computed exclusively from the union of the maximally-contained rewritings
of Q.

Theorem 2. Let (S,V) be a mediation system and Q be a query. Let
{Q1, . . . , Qn} be the set of all maximally-contained rewritings of Q using V and
Qi(Vext) the result of evaluating Qi over Vext.

Ans(Q,Vext) = ∪n
i=1Qi(Vext).

Therefore, to compute Ans(Q,Vext), one can restrict our attention to the prob-
lem of computing all the maximally-contained rewritings of Q using V . Proof of
this theorem is given in annex B, page 60.

To characterize the maximally-contained rewritings of Q and then compute
them, we use the interesting following property that is a direct consequence of
the open word assumption.

Lemma 2. Let {V1, . . . , Vn} be a subset of V and Q′ ≡ �n
i=1Vi s.t. Q′ � Q. Q′

is a maximally-contained rewriting of Q using views V iff for any concept Q′′

obtained by removing from Q′ one of its conjuncts Vi, we have Q′′
� Q.

It turns out that any maximally-contained rewritings of Q is necessarily made
of a minimal subset of V such that the conjunction of its elements is subsumed
by Q. Proof of the lemma is given in annex B, page 60. Hereafter, the prob-
lem of computing Ans(Q,Vext) is then equivalent to the problem, denoted by
conj rewrite(Q,V,ALN (Ov)), of enumerating all the minimal subsets of V s.t.
the conjunction of their elements is subsumed by Q. Next section gives an al-
gorithm to solve conj rewrite(Q,V,ALN (Ov)), thereby providing a sound and
complete procedure for our query answering using views problem.

4 A Bucket-Based Algorithm for ALN (Ov) Mediation
System

In the setting ofALN (Ov), the optimizations of the Minicon algorithm [22] can’t
be used to compute maximally-contained rewritings, since views and queries are
specified as conjunction of unary concepts. A possible solution is to follow a
”bucket-like approach” [14]. The interest of this approach is to break down the
problem of rewriting maximally a query into rewriting maximally each of its
subgoals, here the query conjuncts. The algorithm 1, called ComputeRew, is a
slight adaptation of the Bucket algorithm [14].

Given a rewriting problem conj rewrite(Q,V,ALN (Ov)) with Q ≡ ∀w1.P1 �
. . .�∀wn.Pn, the algorithm ComputeRew, as the well-known Bucket algorithm is
made up of two main steps:

46 H. Jaudoin et al.

Algorithm 1. ComputeRew
Require: V = {V1, ..., Vm} a set of views and Q a query
Ensure: MCR the set of maximally-contained rewriting of Q using V
1: Let Q ≡ �n

i=1∀wi.Pi

2: /* Step 1: Buckets computation */
3: for all conjunct ∀wi.Pi do
4: B(wi, Pi) = BucketBuilding(V,∀wi.Pi)
5: /* Pruning of inconsistent and non maximal rewritings */
6: B(wi, Pi):=BucketPruning(B(wi, Pi))
7: end for
8: /* Step 2: Rewritings generation */
9: MCR:=Cart Prod(B(wi, Pi), i ∈ {1, ..., n})

10: /* Pruning of inconsistent and non maximal rewritings */
11: MCR:=Pruning(MCR)
12: RETURNMCR

– Buckets Computation. For each conjunct ∀wi.Pi of Q, a bucket, noted
B(wi, Pi), containing all the maximally-contained rewritings of this conjunct
is created.

– Rewritings Generation. This step computes maximally-contained rewritings
ofQ, denoted byMCR, by combining elements from the previously identified
buckets.MCR is the solution to the problem conj rewrite(Q,V,ALN (Ov)).

In the ALN (Ov) setting, the step of Buckets computation, i.e., the step 1, must
be redefined as detailed in subsection 4.1.

4.1 Bucket Algorithm for ALN (Ov)

Using a case based analysis for the language ALN (Ov), the next lemma gives
necessary conditions that should be verified by a bucket element (i.e., a rewriting
of a conjunct).

Lemma 3. For conj rewrite(Q,V,ALN (Ov)), let Q ≡ ∀w.P , l be the cardinality
of the largest set of values that appears in V or Q, and p be the maximal depth5 of
the conjuncts in V or Q. Q′ ≡ Vi1 � . . .� Vik

is a maximally-contained rewriting
of Q if Q′ is made of a minimal subset of V verifying one of the following
conditions:

a) P ∈ {A,¬A} then ∀w.P ∈ Q′ and k = 1 or,
b) P = (≥ nR) then ∀w.(≥ pR) ∈ Q′ with p ≥ n and k = 1 or,
c) P = (≤ nR) then ∀w.(≤ pR) ∈ Q′ with p ≤ n and k = 1 or,
d) P = E then {Vi1 , ..., Vik

} is s.t. (i) for each j ∈ [1, k], ∀w.Eij ∈ Vij , and
∩ik

j=i1
Ej ⊆ E and (ii) 1 ≤ k ≤ l + 1 or,

e) P = (≤ n Rv), with Rv ∈ Rv then {Vi1 , ..., Vik
} is s.t. (i) for j ∈ [1, k],

∀w.Eij ∈ Vij and | ∩ik

j=i1
Ej | ≤ n (ii) 1 ≤ k ≤ l + 1 or,

f) ∀w′.(≤ 0v) ∈ Q′ with w′v a prefix of w s.t. and 1 ≤ k ≤ l + p.

Proof of this lemma is given in annex C.1, page 63.
5 The depth of a conjunct ∀w.P is equal to the length of the word w.

Towards a Scalable Query Rewriting Algorithm 47

The algorithm 2 computes the bucket elements based on this lemma. To the
best of our knowledge, algorithm 2 is the first adaptation of the bucket algorithm
in the setting of ALN (Ov). In this algorithm, we denote by 2V the powerset of
V and by min⊆(S) s.t. S ⊆ 2V , the subsets of S that are minimal w.r.t. the set
inclusion.

In this context, we can distinguish two types of rewritings: classical ALN
rewritings [12], lines 2-14 of algorithm 2, and specific rewritings due to the
presence of value constraints, lines 15-29 of algorithm 2. Note that classical
ALN rewritings are made of only one view and correpond to cases a, b, c of
Lemma 3. Rewritings RewS1(E,w) are due to value constraints while rewritings

Algorithm 2. Bucket building
Require: V = {V1, ..., Vm} a set of views and ∀w.P a conjunct of Q
Ensure: B(w, P)
1: B(w, P) := ∅
2: /* Computation of classical ALN rewritings */
3: /* Condition a) of lemma 3 */
4: if P = A or P = ¬A then
5: B(w, P) := B(w,P) ∪ {Vi ∈ V | ∀w.P ∈ Vi}
6: end if
7: /* Condition b) of lemma 3 */
8: if P = (≥ nR) then
9: B(w, P) := B(w,P) ∪ {Vi ∈ V | ∀w.(≥ pR) ∈ Vi, p ≥ n}

10: end if
11: /* Condition c) of lemma 3 */
12: if P = (≤ nR) then
13: B(w, P) := B(w,P) ∪ {Vi ∈ V | ∀w.(≤ pR) ∈ Vi, p ≤ n}
14: end if
15: /* Computation of specific ALN (Ov) rewritings */
16: /* Condition d) of lemma 3 */
17: if P = E then
18: /* Computation of the rewritings RewS1(E, w) */
19: S1(E, w) = min⊆(U ∈ 2V | ∀Vi ∈ U,∀w.Ei ∈ Vi and

⋂
Vi∈U Ei ⊆ E)

20: RewS1(E, w) = {�Vi∈UVi | U ∈ S1(E, w)}
21: B(w, P) := B(w,P) ∪ RewS1(E, w)
22: end if
23: /* Condition e) of lemma 3 */
24: if P = (≤ n Rv), Rv ∈ Rv then
25: /* Computation of the rewritings RewS2(n, w.Rv)*/
26: S2(n, w.Rv) = min⊆(U ∈ 2V | ∀Vi ∈ U,∀w.Rv .Ei ∈ Vi and |⋂Vi∈U Ei| ≤ n)
27: RewS2(n, w.Rv) = {�Vi∈UVi | U ∈ S2(n, w.Rv)}
28: B(w, P) := B(w,P) ∪RewS2(n, w.Rv)
29: end if
30: /* Computation of both classical ALN and specific ALN (Ov) implicit

inconsistencies*/
31: /* Condition f) of lemma 3 */
32: II = min⊆(U ∈ 2V | ∀w′.(≤ 0v) ∈ Q′ ≡ � (Vi ∈ U) and w’v is a prefix of w)
33: B(w, P) := B(w,P) ∪ {�Vi∈UVi | U ∈ II}

48 H. Jaudoin et al.

RewS2(n,w.Rv) are due to the interaction between the value constraints and
number restrictions constructors. Indeed a number restriction can subsume a
value constraint as built up by the case (2.d) of Theorem 1. Note that each rewrit-
ing in RewS1(E,w) and in RewS2(n,w.Rv) consists of conjunction of views such
that each view has a value constraint over the wordw and respectively overw.Rv .
Moreover, consequently to lemma 2, such rewritings are made of minimal subsets
of views w.r.t. set inclusion, s.t. their conjunction is subsumed by ∀w.E, respec-
tively by ∀w. ≤ nRv. Therefore to compute RewS1(E,w) and RewS2(n,w.Rv),
first we must find views having value constraints over w, respectively w.Rv. Sec-
ond, from this set of views, we have to compute the minimal subsets of views
S1(E,w) and S2(n,w.Rv). A set of views is in S1(E,w) if the intersection of
their value constraints is a subset of E. A set of views is in S2(n,w.Rv) if the
cardinality of the intersection of their value constraints is less than n. At last,
the rewritings RewS1(E,w) and RewS2(n,w.Rv) are inferred by conjunction of
the views belonging to each element of S1(E,w) and S2(n,w.Rv). The maxi-
mal number of views occurring in such rewritings is l+ 1, the cardinality of the
largest set of values occurring in the views V . Finally, the algorithm (computa-
tion of II, lines 25-27) processes ALN (Ov) implicit inconsistencies [18] as built
up by the case f of Lemma 3. These implicit inconsistencies are computed from
RewS2(n,w.Rv) and classical implicit inconsistencies. More precisely, for each
view Vi ∈ V such that ∀w. ≥ mRv ∈ Vi, we must compute RewS2(n,w.Rv)
with n < m.

The following example illustrates the bucket building algorithm in our setting.

Example 2. Continuing the example given in Table 1, let us considering the
following query made up of three conjuncts:
Q ≡ CulturalParcel � ∀treatment.category.{C8, C9}� ≥ 1treatment.
By applying the previous algorithm on the 9 views of the mediator given in

Table 1, we get:

– B(ε, CulturalParcel)={V1} (case (a))
– B(ε,≥ 1 treatment) = {V3} (case (b))
– B(treatment.category, {C8, C9}) = {V5 , V4 �V6 , V7 �V8 �V9 , V7 �V8}. The

three first rewritings are due to the case (d) while the last one is due to
case (f).

To end up, note that the obtained buckets need to be pruned in order to remove
inconsistent or not maximal rewritings (see line 6 of algorithm 1), which is not
the case of the classical Bucket algorithm. Indeed implicit inconsistencies may
appear in the rewritings, as shown in the following example.

Example 3. Continuing the example 2, the rewriting V7 � V8 � V9 of the bucket
B(treatment.category, {C8, C9}) is not maximal because V7 � V8, that in-
fers an implicit inconsitency over ”treatment” role , belongs to the same
bucket. Therefore the rewriting V7 � V8 � V9 must be deleted from the bucket
B(treatment.category, {C8, C9}).

Towards a Scalable Query Rewriting Algorithm 49

4.2 Max-Rewritings Generation

The second step of the algorithm 1 constructs the global rewritings of a query
(i.e., the set MCR) using the buckets generated previously. In the classical
approach, it begins by generating candidate rewritings from the cartesian product
of the buckets. However, the cost of the cartesian product is prohibitive even
on medium size configuration. To cope with this limitation, we propose a new
hypergraph-based characterization to avoid the use of costly cartesian product.
Indeed, computation of the rewritings can be reduced to a well known problem
in combinatorics, the computation of minimal transversals of a hypergraph [10].

Definition 3 (Hypergraph). Let V be a set of vertices and E an element of
the powerset 2|V | of V .

A hypergraph H = (V,E) consists of a finite collection E of sets over a finite
set V . The elements of V are called the vertices of H while the elements of E
are called the edges of H.

Definition 4 (Transversal and minimal transversal). Let V be a set of
vertices and E an element of the powerset 2|V | of V .
T ⊆ V is a transversal of H if ∀X ∈ H,T ∩X
= ∅.
T is minimal if ∀Y ⊂ T, Y is not a transversal.

Even if the best complexity of the problem of computing minimal transversal
of a hypergraph is known to be in almost-polynomial time [17], efficient and
scalable implementations exist since this problem is at the heart of many data
mining problems [21,13].

The rewritings computation in the hypergraph framework can be formulated
as follows: Let HB = (VB , EB) be a hypergraph. Let Q be a query such that
Q ≡ �n

i=1∀wi.Pi. Each view or conjunction of views occurring in the buckets
B(wi, Pi) is associated to a vertex in VB . The set EB consists of the set of the
buckets B(wi, Pi) themselves.

Example 4. Let Q ≡ ∀w1.A1 � ∀w2.A2 � ∀w3.A3 � ∀w4.A4 and the associated
buckets:

B(w1, A1) B(w2, A2) B(w3, A3) B(w4, A4)
V1 V1 V3 V3 � V4
V2 V4 V4 V1 � V2 � V3

V3 � V4

Let V34 be a representation of V3 � V4 and V123 of V1 � V2 � V3. A hy-
pergraph HB can be built over VB = {V1, V2, V3, V4, V34, V123} as follows:
EB = {{V1, V2}, {V1, V4, V34}, {V3, V4}, {V34, V123}}.

The following theorem shows that the minimal transversals of this hypergraph
are a superset of the maximally-contained rewritings of the query Q.

Theorem 3. Let Q be a query and its buckets B(wi, Pi), with i ∈ [1, n]. Let
HB = (VB , EB) be a hypergraph defined in terms of the B(wi, Pi). Let THB be
the set of minimal transversals of HB.

50 H. Jaudoin et al.

Then MCR ⊆ THB .

Proof of this theorem is given in annex C.2, page 64.
Then, as in conventional bucket-like approaches, the generation of the query

rewritings, here the minimal transversals computation of HB , requires the dele-
tion of inconsistent and non maximal rewritings. The following example illus-
trates the maximally-contained rewritings computation of a given query Q from
the hypergraph HB obtained in example 4.

Example 5. The minimal transversals of HB given in example 4 are:
{V1, V3, V34}, {V1, V3, V123}, {V1, V4, V34}, {V1, V4, V123}, {V2, V4, V34}, {V2, V4,
V123}, {V2, V3, V34}, {V2, V3, V123}.

After expansion of the minimal transversals, we obtain the following set of
candidate maximally-contained rewritings: {V1 � V3 � V4, V1 � V2 � V3, V1 � V2 �
V3 � V4, V2 � V3 � V4}.

Some of them are not minimal. The final set of maximally-contained rewritings
is then: {V1 � V3 � V4, V1 � V2 � V3, V2 � V3 � V4}.
This approach reduces significantly the number of candidate rewritings in com-
parison with the cartesian product. In example 4, 8 candidates are generated
instead of 24 using the cartesian product.

The efficiency and scalability of our query rewriting algorithm ComputeRew
depends on the computation of RewS1(E,w) and RewS2(n,w.Rv) since their
number of candidates is exponential in the number of views. All other cases
involve only one view and therefore are not concerned by scalability. The max-
rewritings generation can also be costly even with the hypergraph-based charac-
terization, due to the potentially large number of elements to generate. To cope
with these difficulties, our work features the use of data mining techniques to
devise an efficient algorithm that favor scalability w.r.t. the number of views in
both steps. To do that, we use a data mining library called iZi.

5 Query Rewriting Algorithm in ALN (Ov)Using iZi

iZi [11] is a generic C++ library for pattern mining problems known to be “rep-
resentable as sets”, i.e., those problems whose solution space is isomorphic to a
boolean lattice. The basic idea of iZi is to offer a toolbox for a rapid and easy
development of efficient and robust data mining programs. This library takes
advantage of a well established theoretical framework from an implementation
point of view by providing efficient data structures for boolean lattice represen-
tation and several implementations of well known algorithms. By the way, these
problems can be implemented with only minimal effort, i.e., programmers do not
have to be aware of low-level code, customized data structures and algorithms
being available for free. This library has been devised and applied to several
problems such as itemset mining and constraint mining in relational databases.

Following the guidelines given with iZi, the rest of this section shows how
three subparts of the query rewriting algorithm can take advantage of iZi. First

Towards a Scalable Query Rewriting Algorithm 51

we recall the underlying theoretical framework and then we point out in details
how iZi can be used in this context.

5.1 A Theoretical Framework for Knowledge Discovery

We recall in this section the theoretical KDD framework defined in [21] for inter-
esting pattern discovery problems, and used in iZi. Such a framework has been
successfully applied in different contexts such as association rules [3], functional
dependencies [16] and inclusion dependencies [9] to mention a few.

Given a database r, a finite language L for expressing patterns or defining
subgroups of the data, and a predicate P for evaluating whether a pattern ϕ ∈ L
is true or “interesting” in r, the discovery task is to find the theory of r with
respect to L and P, i.e., the set Th(r,L,P) = {ϕ ∈ L | P(r, ϕ) is true}.

Let us suppose a specialization/generalization relation between patterns of L.
Such a relation is a partial order � on the patterns of L. We say that ϕ is more
general (resp. more specific) than θ, if ϕ � θ (resp. θ � ϕ).

Let (I,�) be a partially ordered set of elements. A set S ⊆ I is closed down-
wards (resp. closed upwards) if, for all X ∈ S, all subsets (resp. supersets) of X
are also in S.

The predicate P is said to be monotone (resp. anti-monotone) with respect
to � if for all θ, ϕ ∈ L such that ϕ � θ, if P(r, ϕ) is true (resp. false) then
P(r, θ) is true (resp. false). As a consequence, if the predicate is monotone (resp.
anti-monotone), the set Th(r,L,P) is upward (resp. downward) closed, and can
be represented by either of the following sets:

– its positive border, denoted by Bd+(Th(r,L,P)), made up of the MOST
SPECIALIZED true patterns when Th(r,L,P) is downward closed, and the
MOST SPECIALIZED false patterns when Th(r,L,P) is upward closed;

– its negative border, denoted by Bd−(Th(r,L,P)), made up of the MOST
GENERALIZED false patterns when Th(r,L,P) is downward closed, and the
MOST GENERALIZED true patterns when Th(r,L,P) is upward closed.

The union of these two borders is called the border of Th(r,L,P), and is
denoted by Bd(Th(r,L,P)).

The last hypothesis of this framework is that the problem must be repre-
sentable as sets via an isomorphism, i.e., the search space can be represented by
a boolean lattice (or subset lattice). Let (L,�) be the ordered set of all the pat-
terns defined by the language L. Let C be a finite set of elements. The problem
is said to be representable as sets if a bijective function f : (L,�) → (2C ,⊆)
exists and its inverse function f−1 is computable, such that:

X � Y ⇐⇒ f(X) ⊆ f(Y)

In the sequel, a problem representable as sets will be referred to as “isomorphic
to a boolean lattice”.

A salient feature of this latter restriction relies on the notion of dualization
[13,21], well known in combinatorics as minimal transversals of a hypergraph.

52 H. Jaudoin et al.

5.2 Three Scalable Components of the Query Rewriting Algorithm

In our query rewriting algorithm, three enumeration problems have been iden-
tified as possible bottleneck: S1(E,w) computation, S2(n,w.Rv) computation
and minimal transversal of a hypergraph. This section shows how these three
problems can be reformulated in this framework.

Reformulating the Problems As Pattern Mining Problems. Problems
of the framework have to be enumeration problems under constraints, i.e., of the
form “enumerate all the patterns that satisfy a condition”. Consequently, the
first step is to reformulate our problems in such pattern mining problems.

S1(E,w) subproblem: S1(E,w) consists in extracting the maximally-
contained rewritings of the conjunct ∀w.E of Q. In other words, the problem
is to enumerate all minimal subsets of V whose intersection of their restricted
set of values for the word w is included in E.
S1(E,w) = min⊆(U ∈ 2V |∀Vi ∈ U, ∀w.Ei ∈ Vi and

⋂
Vi∈U Ei ⊆ E)

S2(n,w.Rv) subproblem: S2(n,w.Rv) consists in extracting the
maximally-contained rewritings of the conjunct ∀w. ≤ n Rv of Q. In other
words, the problem is to enumerate all minimal subsets of V whose cardi-
nality of the intersection of their restricted set of values for the word w.Rv

is smaller or equal to n.
S2(n,w.Rv) = min⊆(U ∈ 2V |∀Vi ∈ U, ∀w.Rv.Ei ∈ Vi and |

⋂
Vi∈U Ei| ≤ n)

Max-rewritings generation (from Section 4.2) : Let Q ≡ �n
i=1∀wi.Pi be a

query andB its buckets, i.e.,B =
⋃n

i=1B(wi, Pi). Thanks to the hypergraph-
based characterization, the maximal-contained rewritings, or MCR, gener-
ation problem can be reformulated as enumerating all minimal transversals
of the hypergraph HB = (VB , EB), where VB is composed of all the views
or conjunction of views of the buckets (VB = {v | v ∈ B(wi, Pi), ∀i ∈ [1, n]})
and EB consists of the set associated with each bucket (EB = {e | e ∈ B}) .
THB = {X ⊆ VB | X minimal traversal of HB}

Defining the Language, the Predicate and Proving Monotonicity. Once
a problem is suspected to fit into the framework, the pattern language, the predi-
cate and the partial order among patterns must be properly defined to go further.
Moreover, predicate monotonicity has to be proven. In this subsection, we check
all these aspects to fit our three subproblems in the theoretical framework. Proofs
of properties and theorems of this subsection are given in annex D, page 65.

Towards a Scalable Query Rewriting Algorithm 53

S1(E,w) subproblem:

1. The pattern language is LS1(E,w) = {X | X ⊆ V}
2. The predicate PS1(E,w)(E,X) is true iff for all Vi ∈ X and w.Ei ∈ Vi,

⋂
Vi∈X

Ei �⊆ E.
3. The partial order over LS1(E,w) is the set inclusion ⊆.

Let X be a set of views satisfying PS1(E,w), i.e., PS1(E,w)(E,X) = true. It is clear that any
subset Y of X also satisfies PS1(E,w), since

⋂
Vi∈X

Ei ⊆
⋂
Vj∈Y

Ej .

Property 1. The predicate PS1(E,w)(E,X) is anti-monotone w.r.t. set inclusion.

The S1(E,w) problem can be reformulated as follows:

Theorem 4. S1(E,w) = Bd−(Th(E,LS1(E,w),PS1(E,w)))

S2(n,w.Rv) subproblem:

1. The pattern language is LS2(n,w.Rv) = {X | X ⊆ V}
2. The predicate PS2(n,w.Rv)(n,X) is true iff for all Vi ∈ X and w.Rv.Ei ∈ Vi, |

⋂
Vi∈X

Ei| >
n.

3. The partial order is ⊆.

Let X be a set of views satisfying PS2(n,w.Rv), i.e., PS2(n,w.Rv)(n,X) = true. It is clear that
any subset Y of X also satisfies PS2(n,w.Rv), since |

⋂
Vi∈X

Ei| ≤ |
⋂
Vj∈Y

Ej |.

Property 2. The predicate PS2(n,w.Rv)(n,X) is anti-monotone w.r.t. set inclusion.

The S2(n,w.Rv) problem can be reformulated as follows:

Theorem 5. S2(n,w.Rv) = Bd−(Th(n,LS2(n,w.Rv),PS2(n,w.Rv)))

THB subproblem:

1. The pattern language is LTHB
= {X | X ⊆ VB}

2. The predicate PTHB
(HB, X) is true iff X is not a transversal of HB , i.e.,

if ∃H ∈ EB such as X ∩H = ∅.
3. The partial order is ⊆.

It is also clear that any subset of non-transversal element is also non-
transversal.

Property 1. The predicate PTHB
(HB , X) is anti-monotone w.r.t. set inclu-

sion.

The minimal transversals generation problem can be reformulated as follows:

Theorem 6. THB = Bd−(Th(HB,LMaxRew(B),PMaxRew(B)))

Clearly, our problems are representable as sets, i.e., isomorphic to a boolean
lattice. The function f given in Section 5.1 is the identity function. Consequently,
the iZi library can be directly used to solve these three subproblems.

54 H. Jaudoin et al.

6 Experimental Evaluation

A query rewriting prototype (figure 1) has been implemented based on the theo-
retical investigations introduced so far. It takes as input a query Q expressed in
terms of schema S and returns the set of all the maximally-contained rewritings
of Q. The prototype is composed of two parts. The first one parses and normal-
izes the query Q from the schema S stored in a database. The second one, i.e.,
ComputeRew, is devoted to the computation of the query rewritings. This part
consists of two components: BucketsComputing and RewritingGeneration. As
shown by the algorithm 2, the BucketsComputing component requires as input
the views V stored in a database. Moreover, as seen in Section 5, both compo-
nents use the iZi library.

Fig. 1. Prototype description

BucketsComputing and RewritingGeneration (the most costly operations of
our prototype) have been implemented using the generic APriori-like implemen-
tation provided in iZi [11]. The use of the APriori-like algorithm is motivated
by two main reasons. First, it gives without any overhead the negative bor-
der, i.e., the solution of our subproblems. Second, several benchmarks [6,5] have
shown that this algorithm is particularly efficient for discovering ”not too large”
solutions, which turns out to be the case in our experiments (see below).

Our implementation has been evaluated on synthetic dataset. Our objective
has been to show the scalability of our proposition with respect to the num-
ber of views. More particularly, we focus on the three most costly steps of our
implementation. Our first experiments focus on the computation of the sets S1
and S2, i.e., the computation of the rewritings due to value constraints. Second,
we experiment the minimal traversals computation. The experimentations were
performed on a PC with 2.6GHz P4 pro CPU and 3Go RAM.

S1 and S2 Computation. In this first part of the experimentations, synthetic
datasets have the following characteristics. The values of constraints are chosen

Towards a Scalable Query Rewriting Algorithm 55

Fig. 2. Performances of S1 and S2 computation

among 33000. In figure 2, cardinality of the constraints is less than 10 while the
number of views takes its values in the set {3000, 5000, 10000, 15000}.

In figure 3, the number of views is fixed to 5000 while the maximal cardinality
of the constraints is either 10 or 20 or 30 or 40.

Fig. 3. Effect of value constraints cardinalities on performance

Figure 2 shows that our implementation handles up to 15000 views in an ac-
ceptable time, less than 60 seconds. Until about 10000 views, implementation
remains efficient. In figure 3, we fix the number of views to 5000 and concentrate
on the impact of constraints cardinality on the execution time. The implemen-
tation is very efficient for value constraints having a cardinality less than 30.

Minimal Transversal Computation. In our context, one of the problem for the
minimal transversal computation is the huge number of vertices (i.e., views) that
may occur in the same edge (i.e., bucket). To reduce this number, an optimization

56 H. Jaudoin et al.

has been brought to the minimal transversal computation. Actually, the idea
is to drastically reduce the number of vertices by regrouping together vertices
which belong to the same edges. For example, if vertices a and b belong to the
same edges, these two vertices can be replaced by a unique vertice a′. Then,
the minimal transversal computation is applied on this ”reduced” hypergraph.
At the end, to have the solutions of the initial hypergraph, each transversal
containing a′ is replaced by two transversals: one with a instead of a′ and one
with b instead of a′. Thanks to the characteristics of our hypergraphs, i.e., a
very small number of edges and huge number of vertices, this optimization is
very effective in practice.

 0
 20
 40
 60
 80

 100
 120

 0 2000 4000 6000 8000 10000Ex
cu

tio
n

tim
e

in
 s

ec
on

d

Maximal number of views in each bucket

5 buckets
10 buckets

Fig. 4. Performance of the minimal transversal computation

The datasets used in the experiments are characterized by their number of
buckets (i.e., number of edges of the hypergraph), their maximal number of
views or conjunction of views in the buckets (i.e., the maximal size of the edges)
and their total number of views or conjunction of views (i.e., the total number
of vertices). The figure 4 presents the execution time for datasets with 5 and
10 buckets. The maximal number of views (or conjunction of views), in x-axis,
is equal to the total number of views. As shown by this figure, our implemen-
tation can handle 10000 views instantaneously when processing 5 buckets. For
the dataset with 10 buckets, it can process until 10000 views in an acceptable
time. Even if this number of buckets seems small, recall that each bucket corre-
sponds to a condition in the initial query, and consequently having more than
10 conditions for a single query stills rare.

For more buckets, despite the use of scalable data structures in the implemen-
tation, the cost of rewriting generation remains high. However, such implementa-
tion improves significantly an approach that would compute a cartesian product.
In particular, our optimization for the minimal transversal computation reduced
the number of vertices by a factor of 1.5 to 20 according to the datasets being
studied. Moreover, even if the worst case (i.e., the cartesian product) can hardly
be optimized, this case remains rare in our application since we have lot of views
and a small number of buckets. On the other hand, our application supports the
creation of neighborhood vertices. Consequently, our query rewriting prototype

Towards a Scalable Query Rewriting Algorithm 57

can take advantage of the two optimizations: transversal minimal computation
and neighborhood vertices aggregation.

Experimental results show clearly the feasibility and scalability of our
approach.

7 Conclusion

Our work supplies innovative and complementary contribution to existing works
on answering queries using views by considering a new kind of constraints that
can be very useful in practical situations. More precisely, we investigated this
problem in the setting of the logic ALN (Ov) that allows the expression of value
constraints. We show that it is possible to compute all the certain answers of a
given query Q by computing its maximally-contained rewritings. Furthermore,
our work is the first to use efficient data mining techniques [11] to improve the
scalability of a query rewriting Bucket-like algorithm. A query rewriting proto-
type has been implemented. This prototype is based on an existing data mining
tool [11] for the bucket construction and for the global rewritings computation.
Experimental results confirm the interest of our approach.

References

1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized
views. In: PODS 1998, Proceedings of the ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, pp. 254–263. ACM Press, New York
(1998)

2. Afrati, F.N., Li, C., Mitra, P.: Answering queries using views with arithmetic
comparisons. In: Popa, L. (ed.) PODS 2002, Proceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 209–220.
ACM, New York (2002)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB 1994, Proceedings
of the International Conference on Very Large Data Bases, pp. 487–499. Morgan
Kaufmann, San Francisco (1994)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, Cambridge (2003)

5. Bayardo Jr., R.J., Goethals, B., Zaki, M.J. (eds.): FIMI 2004, Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining Implementations, UK, Novem-
ber 2004. CEUR Workshop Proceedings, vol. 126 (2004) CEUR-WS.org

6. Bayardo Jr., R.J., Zaki, M.J. (eds.): FIMI 2003, Proceedings of the IEEE ICDM
Workshop on Frequent Itemset Mining Implementations, USA, November. CEUR
Workshop Proceedings, vol. 90 (2003) CEUR-WS.org

7. Beeri, C., Halevy, A., Rousset, M.C.: Rewriting Queries Using Views in Description
Logics. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) PODS 1997, Proceedings
of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Tucson, Arizona, May 12–14, pp. 99–108. ACM Press, New York (1997)

58 H. Jaudoin et al.

8. Borgida, A., Patel-Schneider, P.F.: A semantics and complete algorithm for sub-
sumption in the classic description logic. Journal of Artificial Intelligence Research
(JAIR) 1, 277–308 (1994)

9. De Marchi, F., Petit, J.-M.: Zigzag: a new algorithm for mining large inclusion
dependencies in database. In: ICDM 2003, Proceedings of the IEEE International
Conference on Data Mining, pp. 27–34. IEEE Computer Society, Los Alamitos
(2003)

10. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)

11. Flouvat, F., De Marchi, F., Petit, J.-M.: iZi: A new toolkit for pattern mining
problems. In: An, A., Matwin, S., Raś, Z.W., Ślȩzak, D. (eds.) ISMIS 2008. LNCS,
vol. 4994, pp. 131–136. Springer, Heidelberg (2008)

12. Goasdoué, F., Rousset, M.-C.: Answering queries using views: A krdb perspective
for the semantic web. ACM Transactions on Internet Technology 4(3), 255–288
(2004)

13. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharm,
R.S.: Discovering all most specific sentences. ACM transactions on database sys-
tems 28(2), 140–174 (2003)

14. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10(4), 270–
294 (2001)

15. Horrocks, I., Sattler, U.: Ontology reasoning in the shoq(d) description logic. In:
Nebel, B. (ed.) IJCAI 2001, International Joint Conferences on Artificial Intelli-
gence, pp. 199–204. Morgan Kaufmann, San Francisco (2001)

16. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm
for discovering functional and approximate dependencies. Computer Journal 42(2),
100–111 (1999)

17. Khachiyan, L., Boros, E., Elbassioni, K.M., Gurvich, V.: An efficient implementa-
tion of a quasi-polynomial algorithm for generating hypergraph transversals and its
application in joint generation. Discrete Applied Mathematics 154(16), 2350–2372
(2006)

18. Küsters, R.: Non-Standard Inferences in Description Logics. LNCS, vol. 2100.
Springer, Heidelberg (2001)

19. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS 2002, Pro-
ceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Madison, Wisconsin (2002)

20. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information
sources using source descriptions. In: Vijayaraman, T.M., Buchmann, A.P., Mohan,
C., Sarda, N.L. (eds.) VLDB 1996, Proceedings of the International Conference on
Very Large Data Bases, pp. 251–262. Morgan Kaufmann, San Francisco (1996)

21. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data mining and knowledge discovery 1(3), 241–258 (1997)

22. Pottinger, R., Halevy, A.Y.: Minicon: A scalable algorithm for answering queries
using views. VLDB Journal 10(2-3), 182–198 (2001)

23. Schaerf, A.: Reasoning with individuals in concept languages. Data & Knowledge
Engineering 13(2), 141–176 (1994)

24. Ullman, J.D.: Information integration using logical views. Theoretical Computer
Science 239(2), 189–210 (2000)

Towards a Scalable Query Rewriting Algorithm 59

A Subsumption Characterization

Normalization rules that allow to transform ALN (Ov) concepts into their nor-
mal forms are described in the table 2. Letter A denotes an atomic concept.
Letters E, E1 and E2 denote set of values while D and D′ specify any kind of
concept. To simplify the set of normalization rules, we assume that any descrip-
tion like (≥ 0R) or (∀RC .�C) or (∀RV .�V) is transformed into �C while D��C

(if D is not a set of values otherwise D��C is inconsistent) and E��V become
respectively D and E.

First rules (1) and (2) are recursively applied until a saturation point. Next the
rule (3) is applied only once. Rules (4) to (10) are then applied recursively until
a saturation point. Finally, the rule (11) is applied recursively until a saturation
point.

Table 2. Normalization rules

(1) ∀w.D � ∀w.D′ → ∀w.(D �D′)
(2) E1 �E2 → E such that E = E1 ∩ E2

(3) ∀Rv.E → ∀Rv.E � (≤ kRv), where |E| = k
(4) ≤ 0R � ∀R.D →≤ 0R
(5) A � ¬A → ⊥
(6) (≥ nR) � (≤ mR) → ⊥ if n > m
(7) (≥ nR) � (≥ mR) → (≥ max(n,m)R)
(8) (≤ nR) � (≤ mR) → (≤ min(n, m)R)
(9) D � ⊥ → ⊥
(10) ∀R.⊥ →≤ 0R

(11) ∀w.(D �D′) → ∀w.D � ∀w.D′

We present now the proof of the theorem 1.

Proof (Proof of theorem 1)

– completeness (⇒) The proof of the completeness of this theorem is derived
from the structural characterization of subsumption in Classic logics [8].
Let C and D be two concept descriptions. Assume that D is in its normal
form, i.e., D ≡ ∀w1.P1 � ... � ∀wn.Pn. Let GC be the canonical description
graph associated with C and assume that the subsumption algorithm given
in [8] returns true with the input D and GC , thas is, C � D. Therefore, GC

verifies the conditions stated in [8].
We can construct a concept from the graph GC , and then apply rule 11

of table 2 to expand it so there are no nested conjunctions. We get then
a description of C in our expected normal form that verifies the following
conditions:
either C ≡ ⊥ or D ≡ �C , or
for every ∀w.P ∈ D, we have
(a) ∀w.P ∈ C or,
(b) ∀w.E′ ∈ C with E′ ⊆ E if P = E or,

60 H. Jaudoin et al.

(c) ∀w.(≤ kR) ∈ C with k ≤ n if P =≤ nR or,
(d) ∀w.R.E ∈ C with |E| ≤ n if P =≤ nR and R ∈ Rv or,
(e) ∀w.(≥ kR) ∈ C with k ≥ n if P =≥ nR or,
(f) ∀v.(≤ 0R) ∈ C with vR prefix of w.
These conditions are those stated by theorem 1.

– soundness (⇐) Let C andD be two concept descriptions in their normal form
such that D ≡ �n

i=1∀wi.Pi. We have that either condition 1) or conditions 2)
of theorem 1 are verified for each ∀wi.Pi in D. We want to show that implies
C � D.
1) if C ≡ ⊥ then the interpretation of C is empty and any description D

subsumes it. if D ≡ �C then its interpretation is the set of all classic
individuals, i.e. δC . Since any concept in ALN (Ov) is a subset of δC any
concept C is subsumed by �C .

2) otherwise one of the following condition occurs
∗ if ∀vi.⊥ where wi = viu belongs to C. Hence C � ∀vi.⊥ � ∀vi.u.Pi

and C � ∀wi.Pi.
∗ if Pi = A or Pi = ¬A then ∀wi.Pi is in the description of C and
C � ∀wi.Pi.
∗ if Pi = (≤ nR) then ∀wi.(≤ kR) where k ≤ n is in the description of
C and C � ∀wi.(≤ kR) � ∀wi.Pi, because k ≤ n.
∗ if Pi = (≥ nR) then ∀wi.(≥ kR) where k ≥ n is in the description of
C and C � ∀wi.(≥ kR) � ∀wi.Pi, because k ≥ n.
∗ if Pi = E then ∀wi.E

′ where E′ ⊆ E is in the description of C and
C � ∀wi.E

′ � ∀wi.Pi, because E′ ⊆ E.
Hence for all ∀wi.Pi in D we have C � ∀wi.Pi and C � �n

i=1∀wi.Pi and
C � D

B From Query Answering Using Views to Query
Rewriting Using Views

Let us given the proof of lemma 1

Proof (Proof of lemma 1)
Let t be a certain answer.
Let Q ≡ ∀w1.P1 � . . . � ∀wn.Pn a query.
Let I be a model of S, s.t. V ext ⊆ V I , ∀ V ∈ V .
We want to show that if t is a certain answer of Q, i.e., t ∈ QI , then there

exists a conjunction C of views from V s.t. C � Q and t ∈ Cext.
According to the definition 1 on certain answers, if t is a certain answer of

Q, then t ∈ Vext. There exists then a subset of V whose the views contains t in
their extension.

Let M be the set of all the views that contains t in their extension. Let CM ,
the conjunction of views in M . Therefore t ∈ Cext

M .
It remains to show that CM is necessarily subsumed by the query Q. To

achieve that, we assume that CM is not subsumed by Q and we show that it is

Towards a Scalable Query Rewriting Algorithm 61

possible to find an interpretation J , model of (S,V) in which t does not belong
to QJ . Therefore t is not a certain answer.

We want to show that CM � Q, i.e., that ∀I, model of (S,V) s.t. V ext ⊆ V I

for each view V ∈ V , we have CI
M ⊆ QI .

Assume that CM
� Q, then according to theorem 1, there exists ∀wk.Pk ∈ Q
s.t. CM
� ∀wk.Pk. Consequently, there exists an interpretation K, model of
(S,V) with V ext ⊆ V K for each view V ∈ V , s.t. CK

M
⊆ ∀wk.PK
k . Therefore there

exists x in δKC s.t. x ∈ CK
M but s.t. x
∈ (∀wk.Pk)K.

If x was t, then t could not be a certain answer. We are then going to define
an interpretation J , model of (S,V) with V ext ⊆ V J for each view V ∈ V , s.t.
there exists x = t in δJC with t ∈ CJ

M but s.t. t
∈ ∀wk.PJ
k .

Let J an interpretation defined as follow: (i) ∀i ∈ [1, n], we have (∀wi.Pi)J =
(∀wi.Pi)K, (ii) (∀wk.Pk)J = (∀wi.Pi)K − {t} ∪ {t′} with t′ a new individual
(ΔJ = ΔK ∪ {t′}) and (iii) every (x, t) ∈ RK is replaced by (x, t′) ∈ RJ and
respectively, every (t, y) ∈ RK is replaced by (t′, y) ∈ RJ .

Show now that J remains consistent with the view extensions, i.e., V ext ⊆ V J

for each view V ∈ V .
For the views in M :
The views V in M are not subsumed by ∀wk.Pk and are s.t. t ∈ V K. There-

fore, replacing t by t′ in ∀wk.PJ
k has no impact over the interpretation of V J

Moreover, the transformation of K in J preserves the semantics of every axioms
in V thanks to the property (iii) that defines J .

Therefore, for each view V in M , we have V J = V K and the relationship
V ext ⊆ V J is verified.

For the views in V\M :
The views V in V\M are s.t. t
∈ V K. Consequently, the deletion of t in

∀wk.PJ
k does not modify the interpretation V J . Moreover, according to the

property (iii) that defines J , for each view V in V\M , we have V J = V K and
the relationship V ext ⊆ V J is verified.

Then there exists an interpretation J of (S,V), s.t. V ext ⊆ V J , ∀V ∈ V , in
which t does not belong to QJ . Consequently, t is not a certain answer of Q
which contradicts the initial assumption. Therefore we have CM � Q.

Now follows proof of theorem 2.

Proof (Proof of theorem 2). The proof of this theorem lies on the following
principle. Each Qi is a maximally-contained rewriting of Q. Thus by definition,
Qi is subsumed by Q. Consequently, we have Qi(Vext) ⊆ Ans(Q,Vext) for every
i ∈ {1, . . . , n} and ∪n

i=1Qi(Vext) ⊆ Ans(Q,Vext). It remains to show that the set
of certain answers is contained in ∪n

i=1Q
ext
i . Let t be a certain answer, then there

exists a conjunction Q′ of views s.t. t ∈ Q′(Vext) and Q′ � Q. Therefore either
Q′ is maximally-contained in Q and there exists i ∈ {1, . . . , n} s.t. Q′ ≡ Qi, or
there exists Qi ∈ {Q1, . . . , Qn} s.t. Q′ � Qi. Consequently, we have t ∈ Qi(Vext).

The proof of lemma 2 lies on lemma 4 below that characterizes the subsumption
between two consistent conjunctions of views.

62 H. Jaudoin et al.

Lemma 4. Let V be a terminology in ALN (Ov). Let Q1 and Q2 two consistent
conjunctions of views in V.
Q1 � Q2 iff Q2 is made of a subset of views occurring in Q1.

Proof (Proof of lemma 4)

(⇐) Let Qi1 and Qi2 be two conjunctions of views in V . We are going to show
that if Qi2 refers a subset of views in Qi1 then Qi1 � Qi2 .
Assume that Qi1 ≡ V1 � . . . � Vn.
Qi2 refers only a subset of {V1, . . . , Vn}.
Assume that Qi2 is equivalent to the following expression: Qi2 ≡ V1 � . . .�
Vj−1 � Vj+1 � . . . � Vn.
Therefore, since the used formal framework is ALN (Ov), for all interpre-
tation I, we have QI

i1 ⊆ QI
i2 .

(⇒) Let Qi1 and Qi2 be two consistent conjunctions of views from V . We are
going to show that if Qi1 � Qi2 then Qi2 refers a subset of views occurring
in Qi1 .
Since V is a primitive terminology that is normalized and expanded, each
view Vij is a conjunction between a concept description Dij and a unique
atomic concept Vij .
Assume that Qi1 ≡ V1 � . . . � Vn, where Vi ∈ V for all i ∈ {1, ..., n}
then Qi1 ≡ (D1 � . . . �Dn) � (V1 � . . . � Vn).
Every concept that subsumes Qi1 must contain in its description a con-
junction of views from the set {V1, . . . , Vn}.
In other words, every concept that subsumes Qi1 refers a subset of
{V1, . . . , Vn}.
Since every concept Vi with i ∈ {1, ..., n}, is an unique atomic concept
associated with a single view Vi, every concept that subsumes Qi1 refers a
subset of {V1, . . . , Vn}.

Proof of lemma 2 is given below.

Proof (Proof of lemma 2)

(⇒) Assume that Q′ ≡ V1 � . . . � Vn is a maximally-contained and conjunctive
rewriting Q in terms of V .

We want to show that for every concept Q′′ obtained by removing from
Q′ one of its conjuncts Vi, we have Q′′
� Q.

Assume that Q′′ ≡ V1 � ...�Vj−1 �Vj+1 � ...�Vn, obtained by removing
from Q′ one view Vj , with j ∈ {1, ..., n}, is subsumed by Q (i.e. Q′′ � Q).
We have also Q′ � Q′′. We are going to show that in this case, Q′ is not
maximally contained in Q.

To achieve that, we show that Q′′ is not equivalent to Q′.
Let Q′ ≡ V1� ...�Vn and Q′′ ≡ V1� ...�Vj−1 �Vj+1� ...�Vn. According

to the open word assumption,
Q′′ ≡ (D1 � . . .�D(j−1) �D(j+1) � . . .�Dn)� (A1 � . . .�A(j−1) �A(j+1) �
. . . �An)

Towards a Scalable Query Rewriting Algorithm 63

Q′ ≡ (D1 � . . .�D(j−1) �D(j+1) � . . .�Dn)� (A1 � . . .�A(j−1) �A(j+1) �
. . . �An) �Di �Ai.
Q′ and Q′′ are not equivalent because Ai does not subsume A1 � . . . �
A(j−1) �A(j+1) � . . .�An. Indeed Ai is an atomic concept associated with
a single view Vi that occurs only once in Q′.

Then there exists Q′′ s.t. Q′′
≡ Q′ and Q′ � Q′′ � Q. Therefore Q′

cannot be maximally-contained in Q.
(⇐) We have to show that

if for all Q′′ ≡ Vi1 � . . . � Vin−1 , s.t. {Vi1 , ..., Vin−1} ⊆ {V1, ..., Vn}, we have
Q′′
� Q,
then Q′ ≡ V1 � . . . Vn is a maximally-contained rewriting of Q.
In other words, we have to show that there is no Q′′ s.t. Q′ � Q′′ and
Q′′ � Q with Q′
≡ Q′′.

We refer by (*) the following assumption: for all Q′′ ≡ Vi1 � . . .� Vin−1 ,
s.t. {Vi1 , ..., Vin−1} ⊆ {V1, ..., Vn}, we have Q′′
� Q.

According to hypothesis of lemma 2 Q′ ≡ V1 � . . . Vn is subsumed by Q.
Assume that Q′ is not a maximally-contained rewriting of Q. Then there

exists a conjunction of views Q1 s.t. Q′ � Q1 � Q et Q′
≡ Q1.
According to lemma 4, Q1 subsumes strictly Q′ if Q1 refers only a strict
subset of views occurring in Q′ and in this case, Q1
≡ Q′.
Let Q′ ≡ V1 � ... � Vn et Q1 ≡ V1 � ... � Vj−1 � Vj+1 � ... � Vn.
Q1 ≡ (D1 � . . .�D(j−1) �D(j+1) � . . .�Dn)� (A1 � . . .�A(j−1) �A(j+1) �
. . . �An)
and Q′ ≡ (D1 � . . . � D(j−1) � D(j+1) � . . . � Dn) � (A1 � . . . � A(j−1) �
A(j+1) � . . . �An) �Di �Ai.
and Ai is an atomic concept.

Therefore there exists Q1 formed with a subset of {V1, ..., Vn} and that
is subsumed by Q. Then each conjunction of views that uses supersets of
views from Q1 is subsumed by Q. That contradicts the assumption (*).

Therefore Q′ is a maximally-contained rewriting of Q.

C A Bucket-Based Algorithm for ALN (Ov) Mediation
System

C.1 Bucket Algorithm for ALN (Ov)

Now we give proof of lemma 3:

Proof (proof of lemma 3)
We have Q′ ≡ Vi1 � . . . � Vik

s.t. Q′ is maximally-contained in Q.
Therefore, according to lemma 2, Q′ is formed of a minimal subset of views

s.t. Q′ � Q.

– If P ∈ {A,¬A} then according to theorem 1, one of the views contains
∀w.P . Since the set {Vi1 , . . . Vik

} is minimal, one view is sufficient to rewrite
Q ≡ ∀w.P and k = 1.

64 H. Jaudoin et al.

– If P = (≥ nr) then according to theorem 1, one of the views contains
∀w.(≥ mr), with m ≥ n. Since the set {Vi1 , . . . Vik

} is minimal, one view is
sufficient to rewrite Q ≡ ∀w.P and k = 1.

– If P = (≤ n r), then according to theorem 1, one of the views contains
∀w.(≤ mr) with m ≤ n. As above, one view is sufficient to rewrite Q ≡ ∀w.P
and k = 1.

– If P = (≤ n r) and r ∈ Rv (*), according to normalization rules 8) and
9) and theorem 1, we can find (k ≥ 1) views that contain respectively a
conjunct ∀w.r.Eij s.t. ∩k

j=1Eij ⊆ E′ and card(E′) ≤ n.
The worst case occurs when the Eij ’s have in pairs a single distinct value

and, we have to infer ∀w.(≤ n r), with n = 0. If the maximal number of
values in the Eij ’s is l then in worst case, (l+ 1) sets of values are necessary
to obtain the empty set. Therefore if r ∈ Rv and P = (≤ n r), in the worst
case (l+1) views are necessary to rewrite Q ≡ ∀w.(≤ nr) and 1 ≤ k ≤ (l+1).

– If P = E, according to normalization rule 8 and theorem 1, k ≥ 1 views
contain respectively a conjunct ∀w.Eij such that ∩k

j=1Eij ⊆ E′ and E′ ⊆ E.
The worst case occurs when Eij have in pairs a single distinct value, and
we have to infer ∀w.E, with E = ∅. If the maximal number of values in the
Eij ’s is l then (l + 1) sets of values are necessary to obtain the empty set.
Therefore if P = E, in the worst case (l + 1) views are necessary to rewrite
Q ≡ ∀w.E and 1 ≤ k ≤ (l + 1).

– otherwise, according to theorem 1, Q′ �≤ 0 r1 with r1 a prefix of w. In the
worst case, the concept ≤ 0 r1 can be derived by a conjunction of (p + 1)
views:
Vi1 � ∀r1.r2. . . . rp.(≤ qr)
Vi2 � ∀r1.r2. . . . rp.(≥ mr), with q < m
Vi3 � ∀r1.r2. . . . rp−1.(≥ 1rk),
...
Vi(p+1) � ∀r1.(≥ 1r2).
This sequence of concepts has been pointed out in [18]. However we can also
obtain a conjunction of views that as Vi1 , is subsumed by ∀w′.r1.r2. . . . rp.(≤
q r), if r ∈ Rv, as seen in (*). Such conjunction of views can take the place
of view Vi1 if such view Vi1 does not exist. Therefore, at most l + 1 + p+ 1
views are necessary to obtain a rewriting Q′ �≤ 0 r1. Hence if w ∈ E(Q′), in
the worst case, (1 ≤ k ≤ l+ p+ 2) views are necessary to obtain a rewriting
Q′ � ∀w′.(≤ 0 v)

C.2 Max-Rewritings Generation

Proof (Proof of theorem 3)
Let Q′ be a maximally-contained rewriting of Q built with the elements of the
Q’s buckets and TQ′ the set of views forming Q′. Assume that T ′

Q is not a
minimal transversal of HB. Therefore there exists a minimal transversal TQ′′ in
HB such that TQ′′ ⊂ TQ′ . As TQ′′ meets every edge in EB and thus every bucket
of Q, the conjunction Q′′ of views from TQ′′ is a rewriting of Q and Q′ cannot
be a maximally-contained rewriting of Q.

Towards a Scalable Query Rewriting Algorithm 65

D Query Rewriting Algorithm in ALN (Ov) Using iZi

We give now the proof of property 1

Proof. Let X ∈ LS1(E,w) s.t. PS1(E,w)(E,X) is true.

We have to prove that for all Y ∈ LS1(E,w) s.t. Y ⊆ X , PS1(E,w)(E, Y) is true.
Let X = {Ei1 , ..., Ein}, Y = {Ej1 , ..., Ejk

}, with Y ⊆ X
As PS1(E,w)(E,X) is true, ∩n

j=1Eij
⊆ E.
As Y ⊆ X then ∩n

j=1Eij ⊆ ∩k
q=1Ejq ,

and thus ∩n
j=1Eij
⊆ E or equivalently, PS1(E,w)(E, Y) is true.

We give now the proof of Theorem 4

Proof. Let IEE = {X ∈ LS1(E,w) s.t. PS1(E,w)(E,X) is true }. Bd+(IEE) gath-
ers the most specialized true patterns. The negative border Bd−(IEE) gathers
the most generalized false patterns, i.e., the minimal subsets of views whose in-
tersection of their restricted set of values for the word w is included in E, that
is equivalent to S1(E,w).

Let us given the proof of property 2

Proof. Let X ∈ LS2(n,w.Rv) s.t. PS2(n,w.Rv)(E,X) is true.

We have to prove that for all Y ∈ LS2(n,w.Rv) s.t. Y ⊆ X , PS2(n,w.Rv)(E, Y)
is true.
Let X = {Ei1 , ..., Ein}, Y = {Ej1 , ..., Ejk

}, with Y ⊆ X .
As PS2(n,w.Rv)(E,X) is true, | ∩n

j=1 Eij | > n.
As Y ⊆ X then ∩n

j=1Eij ⊆ ∩k
q=1Ejq ,

and | ∩k
q=1 Eij | > n and thus PS2(n,w.Rv)(E, Y) is true.

Now follows the proof of theorem 5

Proof. Let IEN = {X ∈ LS2(n,w.Rv) s.t. PS2(n,w.Rv)(E,X) is true }. Bd+(IEN)
gathers the most specialized true patterns. The negative border Bd−(IEN) gath-
ers the most generalized false patterns, i.e., the minimal subsets of views whose
cardinality of the intersection of their restricted set of values for the word w.Rv

is smaller or equal to n, that is equivalent to SE(n,w.Rv).

Let us given the proof of property 3

Proof. Let X ∈ LTHB
s.t. PTHB

(HB , X) is true.
We have to prove that for all Y ∈ LTHB

s.t. Y ⊆ X , PTHB
(HB , Y) is true.

Let Y ∈ LTHB
, with Y ⊆ X .

As PTHB
(HB , X) is true, ∃Bi ∈ EB s.t. X ∩Bi = ∅.

As Y ⊆ X then Bi ∩ Y = ∅,
and thus PTHB

(HB , Y) is true.

Now follows the proof of theorem 6

Proof. Let NT = {X ∈ LTHB
s.t.PTHB

(HB, X) is true }. By definition, the
negative border Bd−(NT) gathers the most generalized false patterns w.r.t. set
inclusion, i.e., the minimal subsets of views which are transversal in HB, that is
equivalent to THB .

Combining a Logical and a Numerical Method
for Data Reconciliation

Fatiha Säıs1, Nathalie Pernelle1, and Marie-Christine Rousset2

1 LRI, Paris-Sud 11 University, and INRIA Futurs,
2-4 rue J. Monod, F-91893 ORSAY, France
{Fatiha.Sais, Nathalie.Pernelle}@lri.fr

2 LIG - Laboratoire d’Informatique de Grenoble
BP 72, 38402 St MARTIN D’HERES, France

Marie-Christine.Rousset@imag.fr

Abstract. The reference reconciliation problem consists in deciding
whether different identifiers refer to the same data, i.e. correspond to
the same real world entity. In this article we present a reference recon-
ciliation approach which combines a logical method for reference rec-
onciliation called L2R and a numerical one called N2R. This approach
exploits the schema and data semantics, which is translated into a set of
Horn FOL rules of reconciliation. These rules are used in L2R to infer ex-
act decisions both of reconciliation and non-reconciliation. In the second
method N2R, the semantics of the schema is translated in an informed
similarity measure which is used by a numerical computation of the sim-
ilarity of reference pairs. This similarity measure is expressed in a non
linear equation system, which is solved by using an iterative method. The
experiments of the methods made on two different domains, show good
results for both recall and precision. They can be used separately or in
combination. We have shown that their combination allows to improve
runtime performance.

Keywords: Semantic Data Integration, Ontologies, Automatic reason-
ing, Reference reconciliation, Equation system, Iterative resolution.

1 Introduction

The data reconciliation problem is one of the main problems encountered when
different sources have to be integrated. It consists in deciding whether different
data descriptions refer to the same real world entity (e.g. the same person or
the same publication). For example, in a standard relational database a data
description is a set of tuples referring to a given identifier. In the context of data
integration, data descriptions are coming from different sources. These sources
are heterogeneous, built in an autonomous way and for different business require-
ments. In such a context, the assumption of unique identifier does not hold: two
different identifiers can refer to the same real world entity. We therefore prefer to
use the term of reference instead of identifier. In the following like [1] we will use

S. Spaccapietra (Ed.): Journal on Data Semantics XII, LNCS 5480, pp. 66–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Combining a Logical and a Numerical Method for Data Reconciliation 67

“the reference reconciliation problem” to refer to the data reconciliation prob-
lem. This problem is also known as the record linkage or the record matching
problem [2,3,4], the entity resolution problem [5,6] or the object identification
problem [7].

Schema heterogeneity is a major cause of the mismatch of the data descrip-
tions between sources. Extensive research work has been done recently (see [8,9]
for surveys) to reconcile schemas and ontologies through mappings. In this work,
we assume that the schema heterogeneity problem has been solved. We focus on
the data heterogeneity problem when data conform to the same global schema.

The conformity to a same global schema does not indeed prevent variations
between data descriptions. For example, two descriptions of persons with the
same attributes Last Name, First Name, Address can vary on the values of
those attributes while referring to the same person, for instance, if the First
Name is given entirely in one tuple, while it is abbreviated in the second tuple.

Therefore, the reference reconciliation problem is a crucial issue for data in-
tegration and raises multiple difficulties. First, different conventions and vocab-
ularies can be used to represent and describe data. For example, in one source a
contact attribute can be represented by a set of phone numbers while in another
source it is represented by an e-mail address. Second, information can be incom-
plete, i.e. the values of some attributes can be missing. Third, data descriptions
can contain syntactic errors which are specially frequent when they are auto-
matically extracted from the Web. Fourth, as data descriptions can be created
and updated independently in different sources, their freshness over sources is a
real issue which can lead to have apparently different descriptions representing
the same real world entity.

Data cleaning which aims at detecting duplicates in databases is faced with the
same problems. Most of the existing works (e.g., [10,11,12]) perform comparisons
between strings for computing the similarity between the values of the same
attribute, and then combine them for computing the similarity between tuples.
In [5] the matching between data descriptions is generic but is still based on
local comparisons. Some recent works [13,1,14,6] follow a global approach that
exploits the dependencies possibly existing between reference reconciliations.
Those dependencies often result from the semantics of the domain of interest.
For example, the reconciliation between two courses described by their titles
and the name of the professors in charge of them can entail the reconciliation
between two descriptions of persons. This requires some knowledge of the domain
to be made explicit, like the fact that a professor is a person, that a course is
identified by its title and has only one professor in charge of it. In [1], such
knowledge is taken into account but must be encoded in the weights of the edges
of the dependency graph.

In this paper, we study the problem of reference reconciliation in the case
where the data are described relatively to a rich schema expressed in RDFS [15]
extended by some primitives of OWL-DL [16] and SWRL [17]. OWL-DL and
SWRL are used to enrich the semantics of the classes and properties declared
in RDFS. This enriched data model that we have called RDFS+ enables to

68 F. Säıs, N. Pernelle, and M.-C. Rousset

express that two classes are disjoint or that some properties (or their inverse)
are functional. Note that relational data and schema can be easily mapped into
RDFS [18,19] and their constraints translated in RDFS+.

For the reference reconciliation problem we propose a knowledge-based and
unsupervised approach, based on two methods, a logical one called L2R and a
numerical one called N2R. The logical method for reference reconciliation (L2R)
is based on the translation in first order logic Horn rules of some of the schema
semantics. These Horn rules enable to infer both exact reconciliations and non-
reconciliations among a subset of reference pairs. Rules inferring synonymies and
non synonymies between basic values are also generated from the schema con-
straints. Since L2R is based on logical inferences, it has a 100% precision, under
the assumption that the schema and data are error-free. Such an assumption
is not necessarily satisfied when the data is ”dirty“ or the global schema is an
integrated schema resulting from an automatic reconciliation process. In order
to complement the partial results of L2R, we have designed a Numerical method
for Reference Reconciliation (N2R). It exploits the L2R result and allows to
compute similarity scores for each pair of references. The distinguishing features
of N2R compared to existing numerical methods of reference reconciliation are
(i) it is unsupervised and (ii) the similarity computation takes into account some
of the schema semantics : the functional dependencies of the properties are cap-
tured by aggregating the similarities of the involved references and values using
the maximum function. Consequently, the mutual influences between similarity
scores are expressed in a non linear equation system. In order to solve it, we use
an iterative method inspired from Jacobi method [20] for which we have proved
the convergence.

In the two methods the (non) reconciliation decisions or the similarity scores
are propagated to other reference pairs. Therefore, L2R and N2R are two global
methods, which can be applied separately or in combination. They are based on
the most recent proposals for the Semantic Web (RDF, OWL-DL and SWRL).
They can be used for reconciling data in most of the applications based on the
Semantic Web technologies. The experimentations done on two different data
sets (scientific publication domain and tourism domain) show good results for
both precision and recall. Furthermore, the recall is significantly increased if the
schema is enriched by adding constraints.

The paper is organized as follows. In Section 2, we define the data model, and
in Section 3, the problem of reference reconciliation that we consider. Then, in
Section 4, we describe the logical method implemented in L2R, and in Section 5,
the numerical method implemented in N2R. In Section 6, we present the results
that we have obtained for the experimental evaluation of L2R an N2R on two
real data sets. We summarize the related work in Section 7. Finally, we conclude
and sketch some future work in Section 8.

2 The RDFS+ Data Model

We describe the data model, that we have called RDFS+ because it extends
RDFS with some OWL-DL primitives and SWRL rules. RDFS+ can be viewed

Combining a Logical and a Numerical Method for Data Reconciliation 69

as a fragment of the relational model (restricted to unary or binary relations)
enriched with typing constraints, inclusion and exclusion between relations and
functional dependencies.

2.1 Schema Representation and Its Constraints

A RDFS schema consists of a set of classes (unary relations) organized in a
taxonomy and a set of typed properties (binary relations). These properties can
also be organized in a taxonomy of properties. Two kinds of properties can be
distinguished in RDFS: the so-called relations, the domain and the range of which
are classes and the so-called attributes, the domain of which is a class and the
range of which is a set of basic values (e.g. Integer, date, String). This distinction
is also made in OWL which allows to declare Object and datatype properties.
For example, in the RDFS schema presented in figure 1 and corresponding to
a cultural application, we have as relation Located having as domain the class
Museum and as range the class City. We also have an attributeMuseumName
having as domain the class Museum and as range the data type Literal.

Note that, relations and attributes can be renamed in order to ensure that
every attribute and every relation has only one domain and one range.

Fig. 1. Example of a RDFS schema

This schema could be extracted from the following relational schema :

CulturalPlace(IDCulturalPlace), Museum(IDCulturalPlace#, MuseumName,
IDCity#, Category), Painting(IDPainting, PaintingName, IdArtist#, IDCul-
turalPlace#), Artist(IDArtist, ArtistName, YearOfBirth), City(IDCity, City-
Name).

We allow the declaration of constraints expressed in OWL-DL or in SWRL in
order to enrich the RDFS schema. The constraints that we consider are of the
following types.

70 F. Säıs, N. Pernelle, and M.-C. Rousset

– Constraints of disjunction between classes DISJOINT (C,D) is
used to declare that the two classes C and D are disjoint, for example:
DISJOINT (CulturalP lace, Artist).

– Constraints of functionality of properties PF (P) is used to declare
that the property P (relation or attribute) is a functional property. It is
similar to functional dependencies in relational databases [21]. For example,
PF (Located) and PF (MuseumName) express respectively that a museum
is located in one and only one city and that a museum has only one name.
These constraints can be generalized to a set {P1, . . . , Pn} of relations or
attributes to state a combined constraint of functionality that we will denote
PF (P1, . . . , Pn). It means that for a set of n references which instantiate the
domains of P1, . . . , Pn there is only one reference or one value of their ranges.
We note that in the RDFS schema (cf. Figure 1) all the attributes and all
the relations are functional, except, the relation Contains.

– Constraints of inverse functionality of properties PFI(P) is used
to declare that the property P (relation or attribute) is an inverse func-
tional property. For example, PFI(Contains) expresses that a painting
cannot belong to several cultural places. These constraints can be gener-
alized to a set {P1, . . . , Pn} of relations or attributes to state a combined
constraint of inverse functionality that we will denote PFI(P1, . . . , Pn).
For example, PFI(MuseumAddress,MuseumName) expresses that one
address and one museum name cannot be associated to several mu-
seums (i.e. both are needed to identify a museum). In summary, the
set of inverse functional properties of the RDFS schema (cf. Figure
1) are : {PFI(MuseumAddress,MuseumName), PFI(PaintingName),
PFI(Contains), PFI(ArtistName), PFI(CityName)}.

It is important to note that the constraints of disjunction and of simple func-
tionality (i.e., of the form PF (P) or PFI(P)) can be expressed in OWL-DL while
the constraints stating combined constraints of functionality (i.e., of the form
PF (P1, . . . , Pn) or PFI(P1, . . . , Pn)) require the expressive power of SWRL.

2.2 Data Description and Their Constraints

A datum has a reference which has the form of a URI (e.g. http://www.louvre.
fr, NS-S1/painting243), and a description which is a set of RDF facts involving
its reference. An RDF fact can be:

– either a class-fact C(i), where C is a class and i is a reference,
– or a relation-fact R(i1, i2), where R is a relation and i1 and i2 are references,
– or an attribute-fact A(i, v), where A is an attribute, i a reference and v a

basic value (e.g. integer, string, date).

The data description that we consider is composed of the RDF facts coming
from the data sources enriched by applying the RDFS entailment rules [22]. We
consider that the descriptions of data coming from different sources conform
to the same RDFS+ schema (possibly after schema reconciliation). In order to

Combining a Logical and a Numerical Method for Data Reconciliation 71

distinguish the data coming from different sources, we use the source identifier
as the prefix of the reference of the data coming from that source. For example,
Figure 2 provides examples of data coming from two RDF data sources S1 and
S2 which conform to a same RDFS+ schema describing the cultural application
previously mentioned.

Source S1 :
MuseumName(S1 m1,“LE LOUVRE”); Contains(S1 m1,S1 p1); Located(S1 m1,S1 c1);
CityName(S1 c1,”Paris”); PaintingName(S1 p1,“La Joconde”);

Source S2 :
MuseumName(S2 m1,“musee du LOUVRE”); Located(S2 m1,S2 c1); Contains(S2 m1,S2 p1);
Contains(S2 m1, S2 p2); CityName(S2 c1, “Ville de paris”);
PaintingName(S2 p1, “Abricotiers en fleurs”); PaintingName(S2 p2, “Joconde’);

Fig. 2. Example of RDF data of cultural places domain

We consider two kinds of constraints accounting for the Unique Name As-
sumption (UNA). The UNA states that two data of the same data source hav-
ing distinct references refer to two different real world entities (and thus cannot
be reconciled). Such an assumption is valid when a data source is clean. We
have defined another kind of constraint called the Local Unique Name Assump-
tion (denoted LUNA). The LUNA is weaker than the UNA, and states that all
the references related to a same reference by relation refer to real world enti-
ties that are pairwise distinct. For example, from the facts Authored(p, a1), ...,
Authored(p, an) coming from the same data source, we can infer that the ref-
erences a1, . . . , an correspond to distinct authors of the paper referred to by p.
In practice, it is often the case that all the values of a multi-valued property of
a given instance, are provided as a group coming from a single source, like for
instance the authors of a given paper, or the list of paintings in a given museum.
It is therefore realistic to suppose that this group of values does not contain any
duplicate. It is what LUNA means.

3 The Reference Reconciliation Problem

Let S1 and S2 be two data sources which conform to the same RDFS+ schema.
Let I1 and I2 be the two reference sets that correspond respectively to the data
of S1 and S2. The problem consists in deciding whether references are reconciled
or not reconciled.

A method of reference reconciliation is said complete if it provides a deci-
sion for each reference pair (i1, i2) ∈ I1 × I2. It is numerical if the decision is
based on similarity scores. It will be said symbolic if the yes/no answers for the
reconciliation between reference pairs is based on symbolic inferences.

L2R is symbolic but incomplete, while N2R is complete but numerical.

72 F. Säıs, N. Pernelle, and M.-C. Rousset

Let Reconcile1 be a binary predicate. Reconcile(X, Y) means that the two
references denoted by X and Y refer to the same world entity.

The reference reconciliation problem considered in L2R consists in extracting
from the set I1 × I2 of reference pairs two subsets REC and NREC such that:{

REC = {(i, i′)| Reconcile(i, i′)}
NREC = {(i, i′)| ¬Reconcile(i, i′)}

The reference reconciliation problem considered in N2R consists in, given a
similarity function Simr : I1× I2 −→ [0..1], and a threshold Trec (a real value in
[0..1] given by an un expert, fixed experimentally or learned on a labeled data
sample), computing the following set:

RECn2r = {(i, i′) ∈ (I1 × I2)\(REC ∪NREC)| Simr(i, i′) > Trec}

In order to evaluate the quality of the results of a reference reconciliation
method, well-known measures in the Information Retrieval (IR) domain can be
employed. It consists essentially in Precision, Recall and F-Measure defined as
follows:

– Precision of a reconciliation method is the ratio of correct reconciliations
and non-reconciliations among those found by the method.

– Recall of a reconciliation method is the ratio of correct reconciliations and
non-reconciliations found by the method among the whole expected set of
correct reconciliations and non-reconciliations.

– F-Measure of a reconciliation method is computed to balance the recall and
precision values : F − Measure = (2 ∗ Recall ∗ Precision) ÷ (Recall +
Precision).

4 L2R: A Logical Method for Reference Reconciliation

In this section we present an extended version of the L2R method pre-
sented in [23]. The method is based on the inference of facts of reconcilia-
tion (Reconcile(i, j)) and of non reconciliation (¬Reconcile(i′, j′)) from a set
of facts and a set of rules which transpose the semantics of the data sources
and of the schema into logical dependencies between reference reconciliations.
Facts of synonymy (SynV als(v1, v2)) and of no synonymy (¬SynV als(u1, u2))
between basic values (strings, dates) are also inferred. For instance, the syn-
onymy SynV als(“JoDS′′, “Journal of Data Semantics′′) may be inferred.
This binary predicate is analogous to the predicate Reconcile but applied on
basic values.

The L2R distinguishing features are that it is global and logic-based: every
constraint declared on the data and on the schema in RDFS+ is automatically
translated into first-order logic Horn rules (rules for short) that express depen-
dencies between reconciliations. The advantage of such a logical approach is that
1 Reconcile and not Reconcile can also be expressed in OWL by using sameAs and

differentFrom predicates.

Combining a Logical and a Numerical Method for Data Reconciliation 73

if the data are error-free and if the declared constraints are valid, then the recon-
ciliations and non reconciliations that are inferred are correct, thus guaranteeing
a 100 % precision of the results.

We first describe the generation of the reconciliation rules. Then we present
the generation of the facts and finally the reasoning which is performed on the
set of rules and facts to infer reconciliation decisions.

4.1 Generation of the Set of Reconciliation Rules

They are automatically generated from the constraints that are declared on the
data sources and on their common schema. We omit to write the quantifiers
applied to variables because all the variables are universally quantified in the
scope of each rule. According to standard first-order logic conventions, variables
will be denoted by lower case letters, and predicate names will start by a capital
letter.

Translation of the Constraints on the Data Sources. We introduce the
unary predicates Src1 and Src2 in order to label each reference according to its
original source (Srci(x) means that the reference x is coming from the source
Si).

The UNA assumption, if it is stated on the sources S1 and S2, is translated
automatically by the following four rules:

R1 : Src1(x) ∧ Src1(y) ∧ (x �= y)⇒ ¬Reconcile(x, y)

R2 : Src2(x) ∧ Src2(y) ∧ (x �= y)⇒ ¬Reconcile(x, y)
R3 : Src1(x) ∧Src1(z) ∧Src2(y) ∧Reconcile(x, y)∧(x �= y)⇒ ¬Reconcile(z, y)
R4 : Src1(x) ∧Src2(y) ∧Src2(z) ∧Reconcile(x, y)∧(x �= y)⇒ ¬Reconcile(x, z)

The first two rules express the fact that two distinct references coming from the
same source cannot be reconciled. The last ones mean that one reference coming
from a source S2 (resp. S1) can be reconciled with at most one reference coming
from a source S1(resp. S2).
For each relation R, the LUNA assumption is translated automatically by the
following rules denoted respectively R11(R) and R12(R):

R11(R) : R(z, x) ∧R(z, y) ∧ (x �= y)⇒ ¬Reconcile(x, y)

R12(R) : R(x, z) ∧R(y, z) ∧ (x �= y)⇒ ¬Reconcile(x, y)

For example, if the LUNA is declared, the two following two rules are generated
for the relation Authored relating references to papers to references to persons:
they express that there is no duplicates in the set of authors of a given paper
(respectively in the set of papers of a given author) and that there is no duplicates
in the set of papers of a given author.

R11(Authored) : Authored(z, x)∧Authored(z, y)∧ (x �= y)⇒ ¬Reconcile(x, y)

R12(Authored) : Authored(x, z)∧Authored(y, z)∧ (x �= y)⇒ ¬Reconcile(x, y)

74 F. Säıs, N. Pernelle, and M.-C. Rousset

Translation of the Schema Constraints. For each pair of classes C and D
involved in a DISJOINT (C,D) statement declared in the schema, or such that
their disjunction is inferred by inheritance, the following rule is generated:

R5(C,D) : C(x) ∧ D(y) ⇒ ¬Reconcile(x, y)

For example, the following rule is generated if the classes Painting and Artist
are declared disjoint:

R5(Painting,Artist) : Painting(x) ∧ Artist(y) ⇒ ¬Reconcile(x, y)

For each relation R declared as functional by the axiom PF (R), the following
rule R6.1(R) is generated :

R6.1(R) : Reconcile(x, y) ∧R(x, z) ∧R(y, w)⇒ Reconcile(z, w)

For example, the following rule is generated concerning the relation Located
which relates references of museums to references of cities and which is declared
functional:

R6.1(Located) :Reconcile(x, y)∧Located(x, z)∧Located(y, w)⇒Reconcile(z, w)

For each attribute A declared as functional by the axiom PF (A), the following
rule R6.2(A) is generated :

R6.2(A) : Reconcile(x, y) ∧A(x, z) ∧A(y, w)⇒ SynV als(z, w)

The binary predicate SynVals replaces the predicate Reconcile in the conclusion
of the rule. For example, the following rule is generated concerning the attribute
MuseumName which relates references of museums to their name and which is
declared functional:

R6.2(MuseumName) : Reconcile(x, y)∧MuseumName(x, z)∧MuseumName(y,w)

⇒ SynV als(z,w)

For each relation R declared as inverse functional by the constraint PFI(R),
the following rule R7.1(R) is generated:

R7.1(R) : Reconcile(x, y) ∧R(z, x) ∧R(w, y)⇒ Reconcile(z, w)

For each attribute A declared as inverse functional by the constraint PFI(A),
the following rule R7.2(A) is generated:

R7.2(A) : SynV als(x, y) ∧A(z, x) ∧A(w, y)⇒ Reconcile(z, w)

Likewise, analogous rules are generated for translating constraints PF (P1,
. . . , Pn) of combined constraints of functionality and PFI(P1, . . . , Pn) of com-
bined constraints of inverse functionality. PF (P1, . . . , Pn), where all the Pi’s are
relations, is translated by the following rule:

R7.1(P1, . . . , Pn) :
∧

i∈[1..n]

[Pi(z, xi)∧Pi(w, yi)∧Reconcile(xi, yi)]⇒ Reconcile(z, w)

Combining a Logical and a Numerical Method for Data Reconciliation 75

If some Pi’s are attributes, the corresponding Reconcile(xi, yi) must be replaced
by SynV als(xi, yi). For example, the declaration PF (PaintedBy,
PaintingName) states a composed functional dependency which expresses
that the artist who painted it jointly with its name functionally determines a
painting. It is translated in the following rule:

R7.1(PaintedBy, PaintingName):
PaintedBy(z, x1) ∧ PaintedBy(w, y1) ∧Reconcile(x1, y1)
∧PaintingName(z, x2) ∧ PaintingName(w, y2) ∧ SynV als(x2, y2) ⇒

Reconcile(z, w)

Similarly, PFI(P1, . . . , Pn), where all the Pi’s are relations, is translated into
the rule:

R7.2(P1, . . . , Pn) :
∧

i∈[1..n]

[Pi(xi, z)∧Pi(yi, w)∧Reconcile(xi, yi)]⇒ Reconcile(z, w)

Transitivity Rule. It allows inferring new reconciliation decisions by applying
transitivity on the set of already inferred reconciliations. Its logical semantics is:

R8 : Reconcile(x, y) ∧Reconcile(y, z)⇒ Reconcile(x, z)

We note that this rule is generated only if the UNA constraint is not stated on the
data sources. Indeed, when the UNA is stated, a reference can not be reconciled
with more than one reference. Therefore, the transitivity rule is not meaningful
in this setting. We do not generate a rule for expressing transitivity between
synonymies values, since, according to Fischer [24], the synonymy between basic
values is not transitive because of polysemy.

4.2 Reasoning Method for Reference Reconciliation

In order to infer sure reconciliation and non-reconciliation decisions, we apply an
automatic reasoning method based on the resolution principle [25]. This method
applies to the clausal form of the set of rules described in Section 4.1 and a set
of facts describing the data which is generated as follows.

Generation of the Set of Facts. The set of RDF facts corresponding to the
description of the data in the two sources S1 and S2 is augmented with the
generation of:

– new class-facts, relation-facts and attribute-facts derived from the domain
and range constraints that are declared in RDFS for properties, and from
the subsumption statements between classes and properties that are stated
in RDFS. For example if the fact ContemporaryMuseum(i) is present in one
of the sources, the class-facts Museum(i) and CulturalP lace(i) are added
to the description of that source;

– facts of the form Src1(i) and Src2(j) for each reference i ∈ I1 and each
reference j ∈ I2,

76 F. Säıs, N. Pernelle, and M.-C. Rousset

– synonymy facts of the form SynV als(v1, v2) for each pair (v1, v2) of basic
values that are identical (up to some punctuation or case variations): for
instance, the fact SynVals(”La Joconde”, ”la joconde”) is added because
these two values differ only by two capital letters,

– non synonymy facts of the form ¬SynV als(v1, v2) for each pair (v1, v2) of
distinct basic values of a functional attribute (PF) for which it is known
that each possible value of this attribute has a single form . For instance,
¬SynV als(′′2004′′,′′ 2001′′), ¬SynV als(′′France′′, ′′Algeria′′) are added.

Resolution-Based Algorithm for Reference Reconciliation. The reason-
ing is applied to R∪F : the set of rules (put in clausal form) and the set of facts
generated as explained before. It aims at inferring all unit facts in the form of
Reconcile(i, j), ¬Reconcile(i, j), SynV als(v1, v2) and ¬SynV als(v1, v2).

The resolution is a reasoning method for theorem proving by a successive
application of the resolution rule[26] on the set of clauses. Several resolution
strategies have been proposed so that the number of computed resolutions to
obtain the theorem proof are reduced (for more details about these strategies
see [26]). We have chosen to use the unit resolution[27], defined as follows:

Definition 1. Unit resolution: it is a resolution strategy where at least one of
the two clauses involved in the resolution is a unit clause, i.e. reduced to a single
literal.

The unit resolution is complete for refutation2 in the case of Horn clauses without
functions [27]. Furthermore, the unit resolution method is linear with respect to
the size of clause set [28].

The Conjunctive Normal Form (CNF) of the knowledge base R∪ F is made
of Horn clauses and contains a lot of unit clauses. It is important to notice that
the reconciliation and synonymy rules though having negative conclusions still
correspond to Horn clauses. For all these reasons, unit resolution is a method
which is appropriate for our problem.

The unit resolution algorithm that we have implemented consists in computing
the set SatUnit(R∪ F) of unit instantiated clauses contained in F or inferred
by unit resolution on R ∪ F . Its termination is guaranteed because there are
no function symbols in R ∪ F . Its completeness for deriving all the facts that
are logically entailed is stated in the following theorem. Because of the limited
form of inequalities appearing in the rules (and thus in the clauses) we avoid
to use paramodulation in combination with resolution by a preprocessing step
on R ∪ F . This consists in generating all the propositional rules that can be
obtained from R by matching their conditions to facts in F with substitutions
satisfying the inequality statements. This results into a set of clauses (a subset
of which being totally instantiated) without inequalities. A simple optimization
is also implemented that prunes all the unit clauses of the form Reconcile(i, i)
that may be generated: only unit clauses of the form Reconcile(i, j) such that
i �= j are then used as resolvents.
2 Proving by refutation that a literal L is logically entailed from a theory T is viewed

as the unsatisfiability of the theory T ∪ {¬L}, i.e. deduce the empty clause (�).

Combining a Logical and a Numerical Method for Data Reconciliation 77

Theorem 1. – Completeness of unit resolution for deriving facts from function-
free Horn clauses.

Let R be a set of Horn clauses without functions. Let F be a set of ground
unit clauses. If R∪ F is satisfiable then:

∀p(a), (R∪ F |= p(a))⇒ (p(a) ∈ SatUnit(R∪ F)),

where, p(a) is a ground unit clause.

The theorem relies on the assumption that R ∪ F is satisfiable. R ∪ F is the
logical transposition of the constraints that are declared on the schema and
the data. Therefore, if those constraints are correct and if the data are error-
free then R ∪ F is satisfiable. In any case, our resolution-based algorithm will
detect if R∪F is unsatisfiable. A by-product of our logical approach is to detect
whether the set of declared constraints on the schema and on the data sources is
contradictory. If that it the case, this set of constraints must be revised by the
database administrator in charge of the data integration.

Other reasoners, like for instance description logic reasoners, could be used
for the derivation of reconciliation facts. However, description logics are not
specially appropriate to express some of the reconciliation rules that we consider,
which require explicit variable bindings. In addition, up to our knowledge, the
existing description logic reasoners are not guaranteed to be complete for the
computation of prime implicates.

Illustrative Example. We now illustrate on the example of data and RDFS+

schema, given in Section 2, the resolution-based reasoning for the reference rec-
onciliation. We will also show how reconciliation and non-reconciliation decisions
are inferred and chained.

The successive application of the unit resolution on the knowledge baseR∪F ,
presented in the Figure 3, allows inferring the set of (non) reconciliation and
synonymy facts presented in Figure 3.

The clauses R1 and R2 allow inferring a set of non-reconciliations between
all the references coming from the same source, e.g. ¬Reconcile(S1 m1, S1 c2).
The clauses R5 translating the disjunction between classes, allow in-
ferring non-reconciliations between references which instantiate disjoint
classes, (e.g. ¬ Reconcile (S1 m1, S2 p1)) is obtained thanks to the
clause R5(Painting,Museum). Furthermore, the successive application of the
unit resolution between the unit clauses contained in F and the clause
R7.2(PaintingName) allows inferring Reconcile(S2 p1, S1 p1), which means
that the two paintings S2 p1 and S1 p1 refer to the same painting. Then, the
museums S1 m1 and S2 m2 which contain these paintings are reconciled as
well, thanks to the clause R7.1(Contains). The propagation of the new rec-
onciliation facts allows inferring the synonymie fact SynV als(′′Le LOUV RE′′,
′′musee du LOUV RE′′) thanks to the clause R6.2(MuseumName). Finally,
thank to the clause R6.1(Located) we entail the reconciliation Reconcile
(S1 c1, S2 c1) of the two cities. Therefore, this new reconciliation leads to the
entailment of the synonymy SynV als(′′ville de Paris′′, ′′Paris′′) thanks to the
clause R6.2(CityName).

78 F. Säıs, N. Pernelle, and M.-C. Rousset

Knowledge base
R= { R1 : ¬ Src1(x) ∨ ¬ Src1(y) ∨ ¬Reconcile(x, y)
R2 : ¬ Src2(x) ∨ ¬ Src2(y) ∨ ¬Reconcile(x, y) ...
R5(Painting, City) : ¬ Painting(x)∨ ¬ City(y) ∨ ¬Reconcile(x, y)
R5(Painting, Museum) : ¬ Painting(x) ∨ ¬ Museum(y) ∨ ¬Reconcile(x, y)
R5(City, Museum) : ¬ City(x) ∨ ¬ Museum(y) ∨ ¬Reconcile(x, y) ...
R6.1(Located) : ¬ Reconcile(x, y) ∨ ¬ Located(x, z) ∨ ¬ Located(y,w) ∨ Reconcile(z, w)
R6.2(MuseumName) : ¬ Reconcile(x, y) ∨¬ MuseumName(x, z)
∨¬ MuseumName(y,w) ∨SynV als(z,w)
R6.2(CityName) : ¬ Reconcile(x, y)∨ ¬ CityName(x, z)∨ ¬ CityName(y,w)∨ SynV als(z, w) ...

R7.2(PaintingName) : ¬SynV als(x, y) ∨ ¬ PaintingName(z, x)∨
¬ PaintingName(w, y) ∨Reconcile(z, w)
R7.1(Contains) : ¬Reconcile(x, y) ∨ ¬ Contains(z, x) ∨ ¬ Contains(w, y) ∨ Reconcile(z, w) ...}
F= { MuseumName(S1 m1, “LE LOUV RE′′); Contains(S1 m1, S1 p1);
Contains(S2 m1, S2 p2); CityName(S2 c1, “V ille de paris′′); ...
Src1(S1 m1); Src1(S1 p1); Src1(S1 c1); Src2(S2 m1); Src2(S2 p1); Src2(S2 c1)
SynV als(′′La Joconde′′,′′ Joconde′′)}

Reference reconciliation result
SatUnit(R ∪F) = {...;
¬Reconcile(S1 m1, S1 c2) ; ¬Reconcile(S1 m1, S1 p1); ¬Reconcile(S1 p1, S1 c1);
¬Reconcile(S2 m1, S2 p1); ¬Reconcile(S2 m1, S2 c1); ¬Reconcile(S2 c1, S2 p1);
¬Reconcile(S1 m1, S2 p1) ; ¬Reconcile(S1 m1, S2 c1); ¬Reconcile(S1 p1, S2 c1);
¬Reconcile(S1 c1, S2 p1);
Reconcile(S2 p1, S1 p1); Reconcile(S1 m1, S2 m1); Reconcile(S1 c1, S2 c1);
SynV als(“musee du LOUV RE′′, “LE LOUV RE′′) ; SynV als(′′ville de Paris′′,′′ Paris′′)}

Fig. 3. Illustrative exemple of unit resolution-based reference reconciliation

4.3 Dictionary of Synonyms and No Synonyms

The set of synonymies and no synonymies between basic values inferred by the
the reference reconciliation algorithm are saved in two dictionaries. The dictio-
naries can also be exploited by a numerical method for reference reconciliation
based on similarities between strings. We will see (see Section 5) how these (no)
synonymies can be used by N2R method.

We distinguish different kinds of synonyms: (i) Codes, like 1 for yes 75 for
Paris and (*) for star. (ii) Abbreviations, like apt for appartement, or acronyms
like ACM for Association for Computing Machinery. (iii) Real synonyms, like
good for comfortable. (iv) Translations, like Royaume-Uni for United Kingdom .

The (no) synonymies can be viewed as knowledge learnt in an automatic
and a unsupervised way. Indeed, this allows our method to capitalize its experi-
ence by learning more and more on the syntactic variations that characterize an
application domain.

5 N2R: A Numerical Method for Reference
Reconciliation

In this section we describe the numerical method for reference reconciliation
(N2R) that we have designed and implemented. Like existing numerical methods

Combining a Logical and a Numerical Method for Data Reconciliation 79

(e.g., [1,6]), it computes a similarity score for each pair of references. However,
N2R has two main distinguishing characteristics. First, it is fully unsupervised:
in contrast with the existing methods, it does not require any training phase from
manually labeled data to set up coefficients or parameters. Second, it is based
on equations that model the influence between similarities. In the equations,
each variable represents the (unknown) similarity between two references while
the similarities between values of attributes are constants that are computed by
using standard similarity measures on strings or on sets of strings. The functions
modeling the influence between similarities are a combination of maximum and
average functions in order to take into account the constraints of functionality
and inverse functionality declared in the RFDS+ schema in an appropriate way.

Solving this equation system is done by an iterative method inspired from the
Jacobi method [20], which is fast converging on linear equation systems. The
point is that the equation system that results for modeling the global influence
of similarities is not linear, due to the use of the max function for the numerical
translation of the functionality and inverse functionality axioms declared in the
RFDS+ schema. Therefore, we had to prove the convergence of the iterative
method for solving the resulting non linear equation system.

N2R can be applied alone or in combination with L2R. In this case, the results
of non-reconciliation inferred by L2R are exploited for reducing the reconciliation
space, i.e., the size of the equation system to be solved by N2R. In addition, the
results of reconciliations and of synonymies or non synonymies inferred by L2R
are used to set the values of the corresponding constants or variables in the
equations.

We first use a simple example to illustrate how the equation system is built
from the data descriptions related to the references to reconcile. We then in-
troduce the notations and the similarity measures that are used in order to
distinguish the different types of constants and functions involved in the equa-
tions. Finally, we describe in the general case how the equation system is built
from the data descriptions, and we provide the iterative method for solving it.

5.1 Illustrative Example

Let us consider the data descriptions of Figure 2. They conform to the RFDS+

schema given in the Figure 1, the constraints of which are described in Section
2.1. Let us assume that the UNA is stated in both the sources S1 and S2.

Let us suppose that L2R has been applied, resulting on the non-reconcilations
of all the pairs of references coming from the same source and those belonging to
two disjoint classes. The only remaining pairs of references to consider for N2R
are then:
< S1 m1, S2 m1 >, < S1 c1, S2 c1 >, < S1 p1, S2 p1 > and < S1 p1,

S2 p2 >.
The similarity score Simr(ref, ref ′) between the references ref and ref ′ of

each of those pairs is modeled by a variable:

– x1 models Simr(S1 m1, S2 m1),
– x2 models Simr(S1 p1, S2 p1),

80 F. Säıs, N. Pernelle, and M.-C. Rousset

– x3 models Simr(S1 p1, S2 p2),
– x4 models Simr(S1 c1, S2 c1).

We obtain the following equations that model the dependencies between those
variables from the relations relating the corresponding references and the con-
straints declared on them in the schema:
x1 = max(0.68, x2, x3, x4/4)
x2 = max(0.1, x1/2)
x3 = max(0.9, x1/2)
x4 = max(0.42, x1)

The first equation expresses that the variable x1:

– strongly and equally depends on the variables x2 and x3, and also on 0.68,
which is the similarity score between the two strings “LE LOUVRE” and
“musee du LOUVRE” computed by the Jaro-Winkler function [29],

– weakly depends on x4.

The reason of the strong dependencies is that Contains is an inverse functional
relation (a painting is contained in only one museum) relating S1 m1 and S2 m1
(the similarity of which is modeled by x1) to S1 p1 for S1 m1 and S2 p1 and
S2 p2 for S2 m1, and MuseumName is a functional attribute (a museum has
only one name) relating S1 m1 and S2 m1 respectively to the two strings “LE
LOUVRE” and “musee du LOUVRE”.

The weak dependency of x4 onto x1 is expressed by the term x4/4 in the
equation, where the ratio 1/4 comes from that there are 4 properties (relations
or attributes) involved in the data descriptions of S1 m1 and S2 m1. The de-
pendency of x4 onto x1 is weaker than the previous ones because x4 expresses
the similarity between the two cities in which the museums modeled by x1 are
located and Located is not an inverse functional relation.

Conversely, because Located is functional, x1 has a strong influence on the
variable x4, which translates into the second equation, where 0.42 is the Jaro-
Winkler score of similarity between the strings “Paris” and “Ville de Paris”
which are the respective values associated to the references S1 c1 and S2 c1 by
the inverse functional attribute CityName.

The weak influence of x1 on x2 and x3 is due to the fact that Contains is not
functional. It is expressed through the two last equations, where 0.1 is the Jaro-
Winkler score of similarity between the strings “La Joconde” and “Abricotiers
en fleurs”, and 0.9 is the Jaro-Winkler score of similarity between the strings
“La Joconde” and “Joconde”.

5.2 Notations and Similarity Measures on (Sets of) Basic Values

As illustrated in the previous example, the constants in the equations are similar-
ities between basic values (e.g., String, Date, Numbers) or between sets of basic
values, for which a lot of similarity measures have been extensively studied [29].

Combining a Logical and a Numerical Method for Data Reconciliation 81

Similarity Measures on Basic Values. We denote Simv the similarity mea-
sure used to compute the similarity score between two basic values.

For pairs of basic values < v1, v2 > such that SynV al(v1, v2) (respectively
¬SynV al(v1, v2)) has been inferred by L2R , we set: Simv(v1, v2) = 1 (respec-
tively Simv(v1, v2) = 0).

For computing the similarity scores between basic values that are not dealt
with by L2R, depending on the attributes and the characteristics of their values
(e.g short/long values, values containing abbreviations), we set Simv to the most
appropriate similarity measure according to [29].

SSimv: The Similarity Measure on Sets of Basic Values. Some attributes
are multi-valued (e.g. a person can have a set of phone numbers).
SSimv(S1, S2) denotes the similarity score between the two sets of basic

values S1 and S2.
In order to compute the similarity between two sets of values we need to take

into account their size and also the similarity scores of the pairs of values formed
from these two sets.

We propose a similarity measure that we have named SoftJaccard which is
inspired from SoftTFIDF measure defined by [29] and from the Jaccard mea-
sure. SoftJaccard allows relaxing the constraint of equality of the tokens used in
Jaccard. CLOSEv(S1, S2, θ) represents the values (v1, v2) ∈ S1× S2 that have
a similarity score Simv(v1, v2) > θ. SoftJaccard is defined by the expression:

SoftJaccard(S1, S2, θ) =
|CLOSEv(S1, S2, θ)|1

|S1| , with |S1| ≥ |S2|

Example 1. SoftJaccard({”Fatiha Sais”, ”Marie − Christine Rousset”,
”Helene Gagliardi”}, {”Nathalie Pernelle”, ”Fatiha Sais”}), 0.7) = 1/3.

Common Attributes and Relations: Definitions and Notations. Given
a pair of references < i, i′ >, we will denote:

– CAttr(< i, i′ >) the set of its common attributes: A is a common attribute
to < i, i′ > if there exists atleast a fact A(i, v) in the data description of i
and also atleast a fact A(i′, v′) in the data description of i′.

– CRel(< i, i′ >) the set of its common relations: R is a common relation to
< i, i′ > if there exists atleast a fact R(i, r) in the data description of i and
also atleast a fact R(i′, r′) in the data description of i′.

Example 2. In Figure 2, we have: CAttr(<S1 m1, S2 m1>)={MuseumName}
CRel(< S1 m1, S2 m1 >) = {Located, Contains}

Among CAttr(< i, i′ >) and CRel(< i, i′ >) we need to distinguish those which
are (inverse) functional from those which are not:

– FDA(< i, i′ >) denotes the set of common attributes of the reference pair
< i, i′ > that are inverse functional.

82 F. Säıs, N. Pernelle, and M.-C. Rousset

– FDR(< i, i′ >) denotes the set of common relations of the reference pair
< i, i′ > that are functional or inverse functional.

Example 3. FDA(< S1 p1, S2 p1 >) = {PaintingName}
FDR(< S1 c1, S2 c1 >) = {Located}

These sets are generalized by considering the generalized constraints of (inverse)
functionality which involve sets of attributes and relations. We note these sets
FDM

A (< i, i′ >) and FDM
R (< i, i′ >). Among those attributes and relations that

are not functional or inverse functional, we distinguish those for which i and i′

are mono-valued from those for which i or i′ are multi-valued:
– NFDA(< i, i′ >) denotes the set of common attributes of < i, i′ > that are

not inverse functional but that are mono-valued for i and for i′.
– NFD∗

A(< i, i′ >) denotes the set of common attributes of < i, i′ > that are
not inverse functional and that are multi-valued for i or for i′.

– NFDR(< i, i′ >) denotes the set of common relations of < i, i′ > that are
not (inverse) functional but that are mono-valued for i and for i′.

– NFD∗
R(< i, i′ >) denotes the set of common relations of < i, i′ > that are

not (inverse) functional and that are multi-valued for i or for i′.

5.3 The Equations Modeling the Dependencies between Similarities

The Variables in the Equation System. For each pair of references, its
similarity score is modeled by a variable xi and the way it depends on other
similarity scores is modeled by an equation: xi = fi(X), where n is the number
of reference pairs for which we apply N2R, and X = (x1, x2, . . . , xn).

When a reference pair < refh, ref
′
h >, represented by a similarity score xj ,

is involved in the similarity equation of another reference pair < ref, ref ′ >
corresponding to the variable xi, a contextual suffix i is added to the variable xj .
In addition, we denote by three secondary suffixes the three types of functional
dependencies that we distinguish : df for a functional dependency, dfm for a
multiple functional dependency, and ndf for non functional dependency. Thus,
for the i-th reference pair < ref, ref ′ > we distinguish the following variables
xij−df , xij−dfm and xij−ndf they depend on.

In addition, we define a variable XSij−ndf in order to express the similarity
score of the reference sets S1 and S2 of the j-th common relation of the i-th ref-
erence pair < ref, ref ′ >. This variable is defined only when the relation belongs
to NFD∗

R(< ref, ref ′ >). Its value is obtained by the function SSimr(S1, S2)3.

The Constants in the Equation System. They represent the similarity score
of basic values. For each pair of values (v, v′) of the j-th common attribute of
the i-th reference pair, a constant bij−df , bij−dfm or bij−ndf is assigned. These
constants represent the similarity score obtained by the function Simv(v, v′).

In addition, we define a constant BSij−ndf in order to express the similarity
score of value sets S1 and S2 of the j-th common attribute. This constant is
defined only when the attribute belongs to NFD∗

A(< ref, ref ′ >). Its value is
obtained by the function SSimv(S1, S2).
3 SoftJaccard applied on the sets of references.

Combining a Logical and a Numerical Method for Data Reconciliation 83

The Equations. Each equation xi = fi(X) is of the form:

fi(X) = max(fi−df (X), fi−ndf(X))

The function fi−df (X) is an aggregation function of the similarity scores of the
value pairs and the reference pairs of attributes and relations with which the
i-th reference pair is functionally dependent. The function fi−ndf (X) allows to
aggregate the similarity scores of the values pairs (and sets) and the reference
pairs (and sets) of attributes and relations with which the i-th reference pair is
not functionally dependent.

Modeling the Influence of Functional Attributes and Functional Re-
lations. fi−df(X) is defined by the maximum of similarity scores of the value
pairs and reference pairs of attributes and relations with which the two refer-
ences ref and ref ′ are functionally dependent. The maximum function allows
propagating the similarity scores of the values and the references having a strong
impact. fi−df (X) is defined as follows:

fi−df(X) = max(
j=|FDA(<ref,ref ′>)|⋃

j=0

(bij−df), avg(
j=|FDM

A (<ref,ref ′>)|⋃
j=0

(bij−dfm)),

j=|FDR(<ref,ref ′>)|⋃
j=0

(xij−df), avg(
j=|FDM

R (<ref,ref ′>)|⋃
j=0

(xij−dfm)))

Note that the similarity scores of the values and the references of attributes
and relations which belongs to a same multiple functional dependency are first
aggregated by an average function.

Modeling the Influence of Non Functional Attributes and Non Func-
tional Relations. fi−ndf (X) is defined by a weighted average of the similarity
scores of the values and the references of attributes and relations with which the
two references ref and ref ′ are not functionally dependent. fi−ndf (X) is defined
as follows:

fi−ndf (X) =
j=|NFDA(<ref,ref ′>)|∑

j=0

(λij∗ bij−ndf)+
j=|NFD∗

A
(<ref,ref ′>)|∑
j=0

(λij∗ BSij−ndf)+

j=|NFDR(<ref,ref ′>)|∑
j=0

(λij ∗ xij−ndf) +
j=|NFD∗

R
(<ref,ref ′>)|∑
j=0

(λij ∗ XSij−ndf)

Where λij represents the weight of the j-th attribute or relation in the similarity
computation of the i-th reference pair. Since we have neither expert knowledge
nor training data, λij is computed in function of the number of the common
attributes and relations.

84 F. Säıs, N. Pernelle, and M.-C. Rousset

5.4 Iterative Algorithm for Reference Pairs Similarity Computation

To compute the similarity scores, we have implemented an iterative resolution
method inspired from the Jacobi method [20] for the resolution of linear equation
systems. At each iteration, the method computes the variables values by using
those computed in the precedent iteration.

Iterative Similarity Scores Computation. Starting from an initial vector
X0 = (x0

1, x
0
2, . . . , x

0
n), the value of the vector X at the k-th iteration is obtained

by the expression : Xk = F (Xk−1). At each iteration k we compute the value
of each xk

i : xk
i = fi(xk−1

1 , xk−1
2 , , xk−1

n) until a fix-point with precision ε
is reached. The fix-point is reached when : ∀ i, |xk

i − xk−1
i | ≤ ε. The value

of ε is fixed at a very small positive real number. The more ε value is small the
more the set of reconciliations may be large.

The complexity of this method is in (n2) for each iteration, where n is the num-
ber of variables. The same kind of approach has been followed by [30] in the con-
text of schema matching. It is important to note that the convergence of the Jacobi
method is not always guaranteed. We have proved its convergence for the resolu-
tion of our equation system.

Illustration of the Iterative Similarity Computation. We illustrate the
similarity computation on the system of equations obtained from the data de-
scriptions of Figure 2. The constants, the variables and the weights are given in
the table 1. The constants correspond to the similarity scores of pairs of basic
values computed by using the Jaro-Winkler measure [29]. The weights are com-
puted in function of the number of common attributes and common relations of
the reference pairs. We assume that point-fix precision ε is equal to 0.005.

Table 1. The variables, the constants and the weights of the equation system

Variables Constants Weights

x1 = Simr(S1 m1, S2 m1) b11 = Simv(“LOUV RE′′, “Musee du LOUV RE′′′) = 0.68 λ11 = 1
4

x2 = Simr(S1 p1, S2 p1) b21 = Simv(“La Joconde′′, “Abricotiers en fleurs′′) = 0.1 λ21 = 1
2

x3 = Simr(S1 p1, S2 p2) b31 = Simv(“La Joconde′′, “Joconde′′) = 0.9 λ31 = 1
2

x4 = Simr(S1 c1, S2 c1) b41 = Simv(“Paris′′, “V ille de Paris′′) = 0.42 λ41 = 1
2

f

The equation system is the one given in Section 5.1. The different iterations
of the resulting similarity computation are provided in Table 2.

The solution of the equation system is X = (0.9, 0.45, 0.9, 0.9). This corre-
sponds to the similarity scores of the four reference pairs. The fix-point has been
reached after four iterations. The error vector is then equal to 0.

This example, shows how the similarity scores are propagated between the
reference pairs through the relations having a strong impact on reference pairs.
For instance, at the iteration (2), the similarity 0.9 of the painting pair <
S1 p1, S2 p2 > has been propagated to the museum pair < S1 m1, S2 m1 >
through the relation contains which belongs to FDR(< S1 m1, S2 m1 >).

Combining a Logical and a Numerical Method for Data Reconciliation 85

Table 2. Illustrative example – Iterative similarity computation

Iterations 0 1 2 3 4

x1 = max(0.68, x2, x3,
1
4
∗ x4) 0 0.68 0.9 0.9 0.9

x2 = max(0.1, 1
2
∗ x1) 0 0.1 0.34 0.45 0.45

x3 = max(0.9, 1
2
∗ x1) 0 0.9 0.9 0.9 0.9

x4 = max(0.42, x1) 0 0.42 0.68 0.9 0.9

At the following iteration (3) the same similarity score has been propagated
to city pair < S1 c1, S2 c1 > through the relation located which belongs to
FDR(< S1 c1, S2 c1 >). Furthermore, we have a weaker propagation of the
similarity scores. For example, at the iteration (3) the similarity score 0.90 of
the museums obtained at the iteration (2) has been propagated to the pair of
paintings < S1 p1, S2 p1 >. Its similarity score grows to 0.45.

If we fix the reconciliation threshold Trec at 0.80, then we obtain three recon-
ciliation decisions: two cities, two museums and two paintings.

We note that the reconciliation threshold is empirically fixed. In supervised
approaches [11,3], it is learnt on labeled data.

6 Experiments

The logical method (L2R) and the numerical one (N2R) have been implemented
and tested on data sets related to two different domains: the tourism domain
and the scientific publications.

6.1 Presentation of the Data Sets (HOTELS and Cora)

The first real data set HOTELS, provided by an industrial partner, corresponds
to a set of seven data sources which leads to a pairwise data integration problem
of 21 pairs of data sources. These data sources contain 28,934 references to hotels
located in Europe. The UNA is stated for each source.The hotel descriptions in
the different sources are very heterogeneous. First, the instantiated properties
are different from one to another. Second, the basic values are multilingual,
contain abbreviations, and so on.

The second data set Cora4 (used by [1] and [14]) is a collection of 1295 cita-
tions of 112 different research papers in computer science. In this data set, the
objective of the reference reconciliation is the cleaning of a given data source
(i.e. duplicates elimination). The reference reconciliation problem applies then
to I × I where I is the set of references of the data source S to be cleaned. For
this data set, the UNA is not stated and the RDF facts describe references which
belong to three different classes (Article, Conference, Person).

4 Another version of Cora is available at http://www.cs.umass.edu/~mccallum/data/
cora-refs.tar.gz

86 F. Säıs, N. Pernelle, and M.-C. Rousset

The RDFS+ Schemas: HOTELS conforms to a RDFS schema of tourism
domain, which is provided by the industrial partner. We have added a set of
disjunction constraints (e.g. DISJOINT(Hotel, Service)), a set of (inverse) func-
tional property constraints (e.g. PF(EstablishmentName), PF(Name),
PFI(EstablishmentName, AssociatedAddress)).

For the Cora data set, we have designed a simple RDFS schema on the sci-
entific publication domain, which we have enriched with disjunction constraints
(e.g. DISJOINT(Article, Conference)), a set of functional property constraints
(e.g. PF(Published), PF(ConfName)) and a set of inverse functional property
constraints (e.g. PFI(Title, Year, Type), PFI(ConfName, ConfYear)).

For the Cora data set, the expected results for reference reconciliation are
provided. Therefore, the recall and the precision can be easily obtained by com-
puting the ratio of the reconciliations or non-reconciliations obtained by L2R
and N2R among those that are provided.

For the HOTELS data set, we have manually detected the correct results of
reconciliations or non-reconciliations between the references of two data sources
containing respectively 404 and 1392 references to hotels.

6.2 L2R Results

Since the set of reconciliations and the set of non-reconciliations are obtained
by a logical resolution-based algorithm the precision is of 100% by construction.
Then, the measure that it is meaningful to evaluate in our experiments is the
recall.

In the following, we summarize the results obtained on the HOTELS data set
and then those obtained on the Cora data set. We emphasize the impact on the
recall of increasing the expressiveness of the schema by adding constraints.

L2R Results on HOTELS Data Set. In the figure 4, we show the recall that
we have obtained on the two sources on which we have manually detected the
reconciliation and no reconcilation pairs. We distinguish the recall computed only
on the set of reconciled references (REC) and only on not reconciled references
(NREC). To examine the 532368 reference pairs we have first automatically
extracted the name and address of the hotels belonging to the smaller source.
Then, we have used the standard string search commands of Unix to search in
the file of the second source the truncated corresponding strings (in order to be
robust with typographical errors). Then, we have set the correct no reconcilations
to be the remaining pairs.

As it is shown in the column named “RDFS+ (HOTELS)” of the figure 4,
we have obtained a recall of 8.3%. If we only consider the reconciliations subset
(REC) the recall is 54%. The REC subset corresponds to the reconciliations in-
ferred by exploiting the inverse functional constraint PFI(EstablishmentName,
AssociatedAddress). It is important to emphasize that those reconciliations are
inferred in spite of the irregularities in the data descriptions: not valued ad-
dresses and a lot of variability in the values, in particular in the addresses:

Combining a Logical and a Numerical Method for Data Reconciliation 87

RDFS+ RDFS+ & {DA or DP}
HOTELS Cora HOTELS Cora

Recall (REC) 54 % 52.7 % 54 % 52.7 %
Recall (NREC) 8.2 % 50.6 % 75.9 % 94.9 %

Recall 8.3 % 50.7 % 75.9 % 94.4 %
Precision 100 % 100 % 100 % 100 %

Fig. 4. L2R results on HOTELS and Cora data sets

“parc des fees” vs. “parc des fees, (nearby Royan)”. In addition, in one of the
data sources, several languages are used for the basic values.

If we only consider the non-reconciliations subset (NREC) the recall is 8.2%.
Actually, the only rules that are likely to infer no reconciliations are those trans-
lating the UNA assumption. Now, if we enrich the schema just by declaring
pairwise disjoint specializations of the Hotel class (by distinguishing hotels by
their countries), we obtain an impressive increasing of the recall on NREC, from
8.2% to 75.9%, as it is shown in the “RDFS+ (HOTELS) & DA” column.

L2R Results on Cora Data Set. We focus on the results obtained for the
Article and Conference classes, which contain respectively 1295 references and
1292 references.

As presented in the column named “RDFS+ (Cora)” of the figure 4, the re-
call obtained on the Cora data set is 50.7%. This can be refined in a recall of
52.7% computed on the REC subset and a recall of 50.6% computed on NREC
subset. The set of inferred reconciliations (REC subset) for references to articles
is obtained by exploiting the constraint PFI(Title, Year) of combined inverse
functionality on the properties T itle and Y ear. For the conferences, 35.8% of
the reconciliations are obtained by exploiting the constraint PFI(ConfName,
ConfYear) of combined inverse functionality on the attributes ConfName and
ConfY ear, and 64.1% are obtained by propagating the reconciliations of ref-
erences to articles, using the constraint PF(Published) of functionality of the
relation Published. The set of inferred no reconciliations (NREC subset) are
obtained by exploiting the constraint of disjunction between the Article and
Conference classes.

For this data set, the RDFS+ schema can be easily enriched by the declaration
that the property confYear is discriminant. When this discriminant property is
exploited, the recall on the REC subset remains unchanged (52.7%) but the
recall on NREC subset grows to 94.9%, as it is shown in the “RDFS+ (Cora) &
DP” column. This significant improvement is due to chaining of different rules
of reconciliations: the non-reconciliations on references to conferences for which
the values of the confYear are different entail in turn non-reconciliations of the
associated articles by exploiting the constraint PF(published).

This recall is comparable to (while a little bit lower than) the recall on the
same data set obtained by supervised methods like e.g., [1]. The point is that
L2R is not supervised and guarantees a 100% precision.

88 F. Säıs, N. Pernelle, and M.-C. Rousset

Fig. 5. N2R results obtained on HOTELS data set

Fig. 6. N2R results obtained on Cora data set

6.3 N2R Results

In the following we summarize the results obtained on the HOTELS data set
and on the Cora data set by N2R after the application of L2R.

N2R Results on HOTELS Data Set. The results obtained by N2R on the
HOTELS data set are given in Figure 5, where the values in the x-axis correspond
to values of the reconciliation threshold Trec.

When Trec = 1, N2R do not obtain more results than L2R. When Trec is
decreased to 0.70 the recall increases of 31 % while the precision remains at
100%. The best results have been obtained at Trec = 0.55. For this value, the F-
Measure reaches a maximum value of 94 %, with a recall of 98 % and a precision
of 91 %. Some mis-reconciliations are due to the fact that some hotel references
have the same name and a different addresses and vis versa.

The reconciliation space of N2R has been reduced of 75.9 % which corresponds
to 427 212 of reference pairs among 562 368 reference pairs in total.

When N2R is applied independently, the results are very close than those
obtained when N2R is combined with L2R.

N2R Results on Cora Data Set. The results obtained by N2R on the Cora
data set are given in the Figure 6.

Combining a Logical and a Numerical Method for Data Reconciliation 89

For Trec = 1, N2R do not obtain more results than L2R. We also emphasize
the interesting evolution of the recall and precision values in function of Trec.
Indeed, when the threshold is decreased to 0.85, the recall increases by 33%
while the precision only falls by 6%. The best results are obtained when Trec =
0.85. The F-measure is then at its maximum value of 88%. Besides, when the
recall value is almost of 100%, for Trec = 0.5, the precision value is still about
40%.

The exploitation of the non-reconciliation inferred by L2R allows an important
reduction of the reconciliation space handled in N2R. For the Cora data set the
size of the reconciliation space is about 37 millions of reference pairs. It has
been reduced of 32.8 % thanks to the correct no reconciliations inferred by
L2R. This reduction corresponds to 12 millions of reference pairs. Moreover, the
reconciliation inferred by L2R are not recomputed in N2R.

These experimentations show that good results can be obtained by an auto-
matic and unsupervised method if it exploits knowledge declared in the schema.
Furthermore, the method is able to obtain F-Measure which is better than some
supervised methods such that [14]. This collective record linkage method obtains
an F-Measure of 87% for the same data set. Nevertheless, the results obtained by
other supervised methods are slightly better than ours: [1] obtain a F-Measure
of 90 % by using a method based on a dependency graph where the dependencies
between reference pairs are learnt on labeled data ; and [31] obtain a F-Measure
of 95 % by using an adaptive approach where the used similarity measures are
learnt on labeled data and adapted to the specificities of the data sets. Since, in
our numerical method, the similarity computation takes into account the schema
semantics, it obtains results that are comparable to those obtained by supervised
methods, even without using any labeled data.

When N2R is applied separately, we obtain only a slight regression of N2R
results.

6.4 Efficiency Results

We have conducted efficiency experiments of the reconciliation methods L2R and
N2R on Cora data set. We aim by these experiments to show how the efficiency
of N2R is improved when the L2R results are exploited. We have applied the
reference reconciliation methods on reference sets selected from Cora data set
ranging from 632 to 6108 references. At each stage we have increased the data
set of 1

10 th of the whole set of references.
We note that the reference reconciliation code was implemented in Java, and

our experiments were run on 2,2GHz Intel Core 2 Duo with 2GB of RAM.
To analyze effenciency, we have measured the execution time of the methods

without considering the runtime of the data loading step, because it is common
for both methods. Figure 7 shows the execution time obtained for the methods
of reference reconciliation L2R and N2R, when they are applied independently
and when they are combined, i.e. N2R is preceeded by L2R. For N2R method
we have fixed the parameter ε at 0.0001.

90 F. Säıs, N. Pernelle, and M.-C. Rousset

Fig. 7. Execution time of L2R and N2R methods obtained on Cora data set

The first result concerns the case when L2R and N2R are applied indepen-
dently (curves labeled L2R and N2R-INDEP of the Figure 7. We notice that when
the dataset gets larger, L2R outperforms N2R up to 59 % for 3685 references.

The second result concerns the execution time of N2R when it uses the results
inferred by L2R. The curves labeled N2R-INDEP and N2R-COMB show a real
improvement of N2R runtime when it is preceeded by L2R. The runtime falls of
74% for the 6108 references. This improvement in the N2R runtime is due to the
large amount of non-reconciliations inferred by L2R, that are not considered by
N2R i.e. they are not added in the equation system. Even the inferred reconcil-
iations between references contribute in the speeding up of N2R. Actually, the
similarity scores of these references is fixed at the maximum value then there is
no need to compute their similarity scores be N2R. We have also noticed that the
convergence of N2R-COMB is achieved in less iterations (3 iterations in average)
than when is is applied independently (9 iterations in average). Finally, Figure
7 shows that N2R-COMB outperforms L2R up to 42% for the 6108 references.

7 Related Work

The problem of reference reconciliation was introduced by the geneticist New-
combe [32] and was first formalized by Fellegi and Sunter [2]. Since then, various
approaches have been proposed in different areas and under different names –
record linkage[2,3], object matching [7], or entity resolution [6,5]. We distinguish
the different approaches: (i) according to the exploitation of the reference de-
scriptions, i.e. if the relations between references are exploited in addition to the
attributes ; and (ii) according to how knowledge is acquired, i.e. if knowledge is
learnt on labelled data or is declared by domain expert.

The naive way to decide on the reconciliation or on the non-reconciliation of
references, is the comparison of their unstructured textual description [33,34].

Combining a Logical and a Numerical Method for Data Reconciliation 91

In these approaches, the similarity is computed by using only the textual val-
ues of the attributes in the form of a single long string without distinguishing
which value corresponds to which attribute. This kind of approaches is useful
in order to have a fast similarity computation [33], to obtain a set of reference
pairs that are candidates for the reconciliation [34] or when the attribute-value
associations may be incorrect. That is why this technique is used in CiteSeer
portal to reconcile data which is automatically extracted from Web pages.

The traditional approaches of reference reconciliation consider the reference
description as structured in several attributes. To decide on the reconciliation or
on the non-reconciliation of references, some of these approches use probabilistic
models [2,3,4], such as Bayesian network or SVM. However, these probabilistic
models need to be trained on labeled data. This training step can be very time-
consuming what is not desirable in online applications. Indeed, in such online
contexts, labeled data can not be acquired and runtime constraints are very
strong. Alternative approaches have been proposed like [35] where the similarity
measures (see [29] for a survey) are used to compute smilarity scores between
attribute values which are then gathered in a linear combination, like a weighted
average. Although these approaches do not need training step, they however
need to learn some parameters like weights associated to similarity scores of the
different attributes. In order to improve the result quality some methods [11]
use adaptive supervised algorithms that learn string similarity measures from
labeled data.

The idea of exploiting relations that link references together has been recently
explored in several works on reference reconciliation. The relations can be either
explicitly expressed in data [12,1,14], such as foreign-keys in relational databases,
or discovered [13] and then used during the reference reconciliation. To model
the dependencies between reference pairs induced by the relations, [1] build a
dependency graph and use it to iteratively propagate similarity scores and rec-
onciliation decisions. However, the weights associated to the dependencies are
learnt on labeled data. In [13] , the authors translate the Context Attraction
Principle in a linear equation system and then, by its resolution they compute
the connection strength between entities, through relations. In [14], a proba-
bilistic dependency model has been proposed. It allows propagating reconcilia-
tion decisions through shared relations. In our approach, the relations between
references are exploited by both logical and numerical reference reconciliation
methods. The relations are used in the logical method to iteratively propagate
reconciliation and non-reconciliation decisions through the logical rules. They
are exploited in the numerical method to iteratively propagate similarity scores
thanks to the iterative resolution of the non-linear equation system. Furthermore,
our logical method infer correct non-reconciliations between references which is
very usefull in applications where there are very few redundancies. These correct
non-reconciliations can be used by the numerical method to reduce its reconcil-
iation space and therefore speed-up its excecution time.

In order to improve the quality of their results, some recent methods exploit
knowledge like the importance of the different attributes and relations, similarity

92 F. Säıs, N. Pernelle, and M.-C. Rousset

measures or reconciliation and non-reconciliation rules. Knowledge can be either
learnt on labeled data or declaratively specified by a domain expert. For instance,
in [35,1], knowledge about the impacts of the different attributes or relations are
encoded in weights learnt on labeled data. In [7] the rules of value normalization
(i.e. date format, phone number) and of reconciliation are learnt on labeled
data by using a decision tree model. In the declarative approach proposed by
[36], profiles of the representative entities are expoited. These profiles that are
manually specified by a domain expert contain a set of constraints on correlations
between attributes which should be satisfied by the references.

In the system AJAX [10] a declarative language has been proposed to ex-
press different kinds of knowledge like knowledge on value normalization, on
mapping operations and on the extraction of groups of references. Although
these supervised and declarative methods ensure good results, they remain how-
ever vulnerable to changes of application domain and of data sources features.
The supervised method should re-learn the knowledge on new labeled data and
for the declarative methods the expert should be asked to re-specify the used
knowledge. In the spirit of knowledge-based approches, we propose two declar-
ative methods which exploit general knowledge declared on the schema and on
the data sources, such as functional dependencies and Unique Name Assump-
tion. In L2R, knowledge semantics is automatically translated into Horn rules
and used to infer (non) reconciliations between reference pairs and (non) syn-
onymies between values. Knowledge semantics is also automatically translated
into non-linear equations which allow to compute similarity scores of reference
pairs. Comparing to the viewed knowledge-based approches, our methods are not
sensitive to domain and data changes. The exploited knowledge are general and
domain-independent, indeed. Futhermore, the logical and numerical methods are
unsupervised since no labeled data is needed by neither L2R nor N2R.

8 Conclusion and Future Work

We have presented the combination of a logical and numerical approach for
the reference reconciliation problem. Both approaches exploit schema and data
knowledge given in a declarative way by a set of axioms. This guarantees their
genericity: if the domain or the sources change it is sufficient to update the set of
axioms. Secondly, the relations between references are exploited either by L2R
for propagating (non) reconciliation decisions through logical rules or by N2R
for propagating similarity scores thanks to the resolution of the equation system.
Third, the two methods are unsupervised because no labeled data set is used.
Fourth, the combined approach is able to capitalize its experience by saving the
correct (no) synonymies inferred by L2R in a dictionary. This allows to learn the
syntactic variations of an application domain.

Furthermore, by using the logical method we obtain reconciliations and non-
reconciliations that are sure. This distinguishes L2R from other existing works.
This is an important point since, as it has been emphasized in [3], unsupervised
approaches which deal with the reference reconciliation problem have a lot of dif-
ficulties to estimate in advance the precision of their system when it is applied to a

Combining a Logical and a Numerical Method for Data Reconciliation 93

new set of data. The numerical method complements the results of logical one. It
exploits the schema and data knowledge and expresses the similarity computation
in non linear equation system. This distinguishes N2R from other existing work.

The experiments show promising results for recall, and most importantly its
significant increasing when axioms are added. This shows the interest and the
power of the generic and flexible approach of L2R since it is quite easy to add
rules to express constraints on the domain of interest.

As a future work, we first plan to exploit the results of the logical step to learn
the weighting coefficients involved in the combination of the different similarity
scores. We also plan to adapt the method to be used in a peer-to-peer settings.
A system such SomeWhere [37] is a P2P infrastructure that exploits mappings
between peer’s ontologies to answer queries in a sound and complete way. This
could be completed by a reference reconciliation method based on L2R and
N2R to discover and exploit reconciliation decisions between references stored at
different peers. Finally, we plan to study how the reference reconciliation could
help the schema reconciliation and conversely how the schema reconciliation
could help the reference reconciliation.

References

1. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex informa-
tion spaces. In: ACM SIGMOD, pp. 85–96. ACM Press, New York (2005)

2. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American
Statistical Association 64(328), 1183–1210 (1969)

3. Winkler, W.E.: Overview of record linkage and current research directions. Tech-
nical report, Statistical Research Division U.S. Census Bureau Washington, DC
20233 (2006)

4. Verykios, V.S., Elmagarmid, A.K., Houstis, E.N.: Automating the approximate
record-matching process. Inf. Sci. Inf. Comput. Sci. 126(1-4), 83–98 (2000)

5. Benjelloun, O., Garcia-Molina, H., Kawai, H., Larson, T.E., Menestrina, D., Su,
Q., Thavisomboon, S., Widom, J.: Generic entity resolution in the serf project.
IEEE Data Eng. Bull. 29(2), 13–20 (2006)

6. Bhattacharya, I., Getoor, L.: Entity Resolution in Graphs. Wiley, Chichester (2006)
7. Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for

information integration. Information Systems 26(8), 607–633 (2001)
8. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.

VLDB Journal 10, 334–350 (2001)
9. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal

on Data semantics (2005)
10. Galhardas, H., Florescu, D., Shasha, D., Simon, E., Saita, C.: Declarative data

cleaning: Language, model and algorithms. In: VLDB 2001 (2001)
11. Bilenko, M., Mooney, R.: Adaptive duplicate detection using learnable string sim-

ilarity measures. In: SIGKDD 2003 (2003)
12. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in data

warehouses. In: ACM SIGMOD. ACM Press, New York (2002)
13. Kalashnikov, D., Mehrotra, S., Chen, Z.: Exploiting relationships for domain-

independent data cleaning. In: SIAM Data Mining 2005 (2005)
14. Parag, S., Pedro, D.: Multi-relational record linkage. In: MRDM Workshop (2004)

94 F. Säıs, N. Pernelle, and M.-C. Rousset

15. McBride, B.: The Resource Description Framework (RDF) and its Vocabulary
Description Language RDFS. In: Handbook on Ontologies, pp. 51–66 (2004)

16. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview
(February 2004)

17. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML (submis-
sion) (May 2004)

18. Rodriguez, J.B., Gómez-Pérez, A.: Upgrading relational legacy data to the semantic
web. In: WWW 2006: Proceedings of the 15th international conference on World
Wide Web, pp. 1069–1070. ACM, New York (2006)

19. Murray, C., Alexander, N., Das, S., Eadon, G., Ravada, S.: Oracle spatial resource
description framework (rdf). Technical report, Oracle (2005)

20. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn., Baltimore, MD,
USA (1989)

21. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

22. Hayes, P.: RDF Semantics, Technical report (2004),
http://www.w3.org/tr/rdf-mt/

23. Säıs, F., Pernelle, N., Rousset, M.-C.: L2R: A Logical Method for Reference Rec-
onciliation. In: AAAI, pp. 329–334 (2007)

24. Fischer, S.: Two processes of reduplication in the american sign language. Foun-
dations of Language 9, 460–480 (1973)

25. Robinson, A.: A machine-oriented logic based on the resolution principle. Journal
ACM 12(1), 23–41 (1965)

26. Chin-Liang, C., Char-Tung Lee, R.: Symbolic Logic and Mechanical Theorem Prov-
ing. Academic Press, Inc., London (1997)

27. Henschen, L.J., Wos, L.: Unit refutations and horn sets. J. ACM 21(4), 590–605
(1974)

28. Forbus, K.D., de Kleer, J.: Building problem solvers. MIT Press, Cambridge (1993)
29. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance

metrics for name-matching tasks. In: IIWeb, pp. 73–78 (2003)
30. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in owl-lite. In: ECAI,

pp. 333–337 (2004)
31. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional

data sets for data integration. In: KDD 2002, pp. 475–480. ACM, New York (2002)
32. Newcombe, H.B., Kennedy, J.M., Axford, S.J., James, A.P.: Automatic linkage of

vital records. Science 130, 954–959 (1959)
33. Cohen, W.W.: Data integration using similarity joins and a word-based information

representation language. ACM Transactions on Information Systems 18(3), 288–
321 (2000)

34. Bilke, A., Naumann, F.: Schema matching using duplicates. In: ICDE, pp. 69–80
(2005)

35. Dey, D., Sarkar, S., De, P.: A probabilistic decision model for entity matching in
heterogeneous databases. Manage. Sci. 44(10), 1379–1395 (1998)

36. Doan, A., Lu, Y., Lee, Y., Han, J.: Object matching for information integration:
A profiler-based approach. In: IIWeb, pp. 53–58 (2003)

37. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.-C., Simon, L.: Distributed
reasoning in a peer-to-peer setting: Application to the semantic web. J. Artif. Intell.
Res (JAIR) 25, 269–314 (2006)

Tightly Coupled Probabilistic Description Logic
Programs for the Semantic Web�

Andrea Calı̀1,2, Thomas Lukasiewicz1,��, Livia Predoiu3,
and Heiner Stuckenschmidt3

1 Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

{andrea.cali,thomas.lukasiewicz}@comlab.ox.ac.uk
2 Oxford-Man Institute of Quantitative Finance, University of Oxford

Blue Boar Court, 9 Alfred Street, Oxford OX1 4EH, UK
andrea.cali@oxford-man.ox.ac.uk

3 Institut für Informatik, Universität Mannheim
68159 Mannheim, Germany

{livia,heiner}@informatik.uni-mannheim.de

Abstract. We present a novel approach to probabilistic description logic
programs for the Semantic Web in which disjunctive logic programs under the
answer set semantics are tightly coupled with description logics and Bayesian
probabilities. The approach has several nice features. In particular, it is a logic-
based representation formalism that naturally fits into the landscape of Seman-
tic Web languages. Tightly coupled probabilistic description logic programs can
especially be used for representing mappings between ontologies, which are a
common way of approaching the semantic heterogeneity problem on the Seman-
tic Web. In this application, they allow in particular for resolving inconsisten-
cies and for merging mappings from different matchers based on the level of
confidence assigned to different rules. Furthermore, tightly coupled probabilis-
tic description logic programs also provide a natural integration of ontologies,
action languages, and Bayesian probabilities towards Web Services. We explore
the computational aspects of consistency checking and query processing in tightly
coupled probabilistic description logic programs. We show that these problems
are decidable and computable, respectively, and that they can be reduced to con-
sistency checking and cautious/brave reasoning, respectively, in tightly coupled
disjunctive description logic programs. Using these results, we also provide an
anytime algorithm for tight query processing. Furthermore, we analyze the com-
plexity of consistency checking and query processing in the new probabilistic
description logic programs, and we present a special case of these problems with
polynomial data complexity.

Keywords: Probabilistic description logic programs, Semantic Web, disjunctive
logic programs, answer set semantics, description logics, Bayesian probabilities,
ontology mapping, inconsistency handling, merging ontology mappings, Web
Services, algorithms, complexity, data tractability.

� Some preliminary results of this paper have appeared in: Proceedings ICLP-2007 [1], Pro-
ceedings URSW-2007 [2], and Proceedings FoIKS-2008 [3].

�� Alternative address: Institut für Informationssysteme, Technische Universität Wien, Favoriten-
straße 9-11, 1040 Wien, Austria, lukasiewicz@kr.tuwien.ac.at

S. Spaccapietra (Ed.): Journal on Data Semantics XII, LNCS 5480, pp. 95–130, 2009.
© Springer-Verlag Berlin Heidelberg 2009

96 A. Calı̀ et al.

1 Introduction

The Semantic Web [4,5] aims at an extension of the current World Wide Web by stan-
dards and technologies that help machines to understand the information on the Web so
that they can support richer discovery, data integration, navigation, and automation of
tasks. The main ideas behind it are to add a machine-readable meaning to Web pages, to
use ontologies for a precise definition of shared terms in Web resources, to use knowl-
edge representation technology for automated reasoning from Web resources, and to
apply cooperative agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer,
in form of the OWL Web Ontology Language [6] (recommended by the W3C), is cur-
rently the highest layer of sufficient maturity. OWL consists of three increasingly ex-
pressive sublanguages, namely OWL Lite, OWL DL, and OWL Full. OWL Lite and
OWL DL are essentially very expressive description logics with an RDF syntax. As
shown in [7], ontology entailment in OWL Lite (resp., OWL DL) reduces to knowledge
base (un)satisfiability in the description logic SHIF(D) (resp., SHOIN (D)). As a
next step in the development of the Semantic Web, one aims especially at sophisticated
representation and reasoning capabilities for the Rules, Logic, and Proof layers of the
Semantic Web. Several recent research efforts are going in this direction.

In particular, there is a large body of work on integrating ontologies and rules, which
is a key requirement of the layered architecture of the Semantic Web. One type of
integration is to build rules on top of ontologies, that is, rule-based systems that use
vocabulary from ontology knowledge bases. Another form of integration is to build
ontologies on top of rules, where ontological definitions are supplemented by rules
or imported from rules. Both types of integration are realized in recent hybrid integra-
tions of rules and ontologies, called description logic programs (or dl-programs), which
have the form KB = (L,P), where L is a description logic knowledge base and P is
a finite set of rules involving either queries to L in a loose coupling [8,9] or concepts
and roles from L as unary and binary predicates, respectively, in a tight coupling [10]
(for detailed overviews on the different types of description logic programs, see espe-
cially [9,11,10,12]).

Other works explore formalisms for uncertainty reasoning in the Semantic Web (an
important recent forum for approaches to uncertainty reasoning in the Semantic Web is
the annual Workshop on Uncertainty Reasoning for the Semantic Web (URSW); there
also exists a W3C Incubator Group on Uncertainty Reasoning for the World Wide Web).
There are especially probabilistic extensions of description logics [13,14], of Web on-
tology languages [15,16], and of description logic programs [17,18] (to encode am-
biguous information, such as “John is a student with the probability 0.7 and a teacher
with the probability 0.3”, which is very different from vague / fuzzy / imprecise infor-
mation, such as “John is tall with the degree of truth 0.7”). In particular, the two works
[17,18] extend the loosely coupled description logic programs of [8,9] by probabilistic
uncertainty as in the independent choice logic (ICL) [19]. The ICL is a powerful rep-
resentation and reasoning formalism for single- and also multi-agent systems, which
combines logic and probability, and which can represent a number of important uncer-
tainty formalisms, in particular, influence diagrams, Bayesian networks, Markov deci-
sion processes, normal form games, and Pearl’s structural causal models [20].

Tightly Coupled Probabilistic Description Logic Programs 97

In this paper, we continue this line of research. We propose tightly coupled prob-
abilistic (disjunctive) description logic programs under the answer set semantics (or
probabilistic dl-programs), which are a tight integration of disjunctive logic programs
under the answer set semantics, the description logics SHIF(D) and SHOIN (D)
(which stand behind OWL Lite and OWL DL, respectively), and Bayesian probabili-
ties. To our knowledge, this is the first such approach. As for important applications in
the Semantic Web, the new description logic programs can especially be used for rep-
resenting mappings between ontologies under inconsistencies and confidence values.
Furthermore, tightly coupled probabilistic description logic programs are also a natu-
ral integration of action languages, ontologies, and Bayesian probabilities, especially
towards Web Services.

The problem of aligning heterogeneous ontologies via semantic mappings has been
identified as one of the major challenges of Semantic Web technologies. To address this
problem, a number of languages for representing semantic relations between elements
in different ontologies as a basis for reasoning and query answering across multiple
ontologies have been proposed [21,22]. In the presence of real world ontologies, it is
unrealistic to assume that mappings between ontologies are created manually by do-
main experts, since existing ontologies, e.g., in the area of medicine contain thousands
of concepts and hundreds of relations. Recently, a number of heuristic methods for
matching elements from different ontologies have been proposed that support the cre-
ation of mappings between different languages by suggesting candidate mappings (e.g.,
[23]). These methods rely on linguistic and structural criteria. Evaluation studies have
shown that existing methods often trade off precision and recall. The resulting mapping
either contains a fair amount of errors or only covers a small part of the ontologies
involved [24,25]. To leverage the weaknesses of the individual methods, it is common
practice to combine the results of a number of matching components or even the results
of different matching systems to achieve a better coverage of the problem [23].

This means that automatically created mappings often contain uncertain hypotheses
and errors that need to be dealt with, briefly summarized as follows:

– mapping hypotheses are often oversimplifying, since most matchers only support
very simple semantic relations (mostly equivalence between simple elements, i.e.,
only between two concepts or two relations);

– there may be conflicts between different hypotheses for semantic relations from
different matching components and often even from the same matcher;

– semantic relations are only given with a degree of confidence in their correctness.

If we want to use the resulting mappings, we have to find a way to deal with these un-
certainties and errors in a suitable way. We argue that the most suitable way of dealing
with uncertainties in mappings is to provide means to explicitly represent uncertain-
ties in the target language that encodes the ontology mappings. In this way, integrated
reasoning with the ontologies, the mappings, and the uncertainties can be performed.

The main contributions of this paper can be summarized as follows:

– We present tightly coupled probabilistic (disjunctive) description logic programs
under the answer set semantics, which combine the tightly coupled disjunctive de-
scription logic programs under the answer set semantics from [10] with Bayesian

98 A. Calı̀ et al.

probabilities as in the ICL [19]. The approach assumes no structural separation be-
tween the vocabularies of the ontology and the rule component. This enables us to
have description logic concepts and roles in both rule bodies and rule heads.

– We show that tightly coupled probabilistic description logic programs are espe-
cially well-suited for representing mappings between ontologies. In particular, we
can have concepts and roles in both rule bodies and rule heads, which is necessary
if we want to use rules to combine ontologies. Furthermore, we can have disjunc-
tions in rule heads and nonmonotonic negations in rule bodies, which gives a rich
basis for refining and rewriting automatically created mappings for resolving in-
consistencies. Finally, the integration with probability theory provides us with a
sound formal framework for dealing with confidence values. In particular, we can
interpret the confidence values as error probabilities and use standard techniques
for combining them. We can also resolve inconsistencies via trust probabilities.

– Since the ICL is actually a formalism for probabilistic reasoning about actions in
dynamic single- and multi-agent systems, tightly coupled probabilistic description
logic programs are also a natural way of combining an action language with both
description logics and Bayesian probabilities, especially towards Web Services.

– We show that consistency checking (resp., query processing) in tightly coupled
probabilistic description logic programs are decidable (resp., computable), and can
be reduced to their classical counterparts in tightly coupled disjunctive description
logic programs. We also provide an anytime algorithm for query processing.

– We analyze the complexity of consistency checking and query processing in tightly
coupled probabilistic description logic programs, which turn out to be complete
for the complexity classes NEXPNP and co-NEXPNP, respectively. Furthermore,
we show that in the stratified normal case relative to the description logic DL-Lite,
these two problems can be solved in polynomial time in the data complexity.

The rest of this paper is organized as follows. Sections 2 and 3 recall the expressive
description logics SHIF(D) and SHOIN (D), and the tightly coupled disjunctive
description logic programs under the answer set semantics from [10], respectively. In
Section 4, we introduce our new approach to tightly coupled probabilistic description
logic programs. Sections 5 and 6 describe its application for representing ontology map-
pings and for probabilistic reasoning about actions involving ontologies, respectively.
In Section 7, we explore the computational aspects of consistency checking and query
processing in tightly coupled probabilistic description logic programs, and we provide
an anytime algorithm for query processing. Section 8 describes a special case where
consistency checking and query processing can be done in polynomial time in the data
complexity. Section 9 discusses some most closely related works. In Section 10, we
summarize our results and give an outlook on future research. Note that detailed proofs
of all results of this paper are given in Appendix A.

2 Description Logics

We now recall the expressive description logics SHIF(D) and SHOIN (D), which
stand behind the Web ontology languages OWL Lite and OWL DL [7], respectively.
Intuitively, description logics model a domain of interest in terms of concepts and roles,

Tightly Coupled Probabilistic Description Logic Programs 99

which represent classes of individuals and binary relations between classes of individ-
uals, respectively. A description logic knowledge base encodes especially subset re-
lationships between concepts, subset relationships between roles, the membership of
individuals to concepts, and the membership of pairs of individuals to roles.

2.1 Syntax

We first describe the syntax of SHOIN (D). We assume a set of elementary datatypes
and a set of data values. A datatype is either an elementary datatype or a set of data
values (datatype oneOf). A datatype theory D=(ΔD, ·D) consists of a datatype do-
main ΔD and a mapping ·D that assigns to each elementary datatype a subset of ΔD

and to each data value an element of ΔD. The mapping ·D is extended to all datatypes
by {v1, . . .}D = {vD1 , . . .}. Let A, RA, RD, and I be pairwise disjoint (denumerable)
sets of atomic concepts, abstract roles, datatype roles, and individuals, respectively.
We denote by R−

A the set of inverses R− of all R∈RA.
A role is any element of RA ∪R−

A ∪RD. Concepts are inductively defined as fol-
lows. Every φ∈A is a concept, and if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept
(oneOf). If φ, φ1, and φ2 are concepts and if R∈RA ∪R−

A, then also (φ1 � φ2),
(φ1�φ2), and¬φ are concepts (conjunction, disjunction, and negation, respectively), as
well as ∃R.φ, ∀R.φ, �nR, and �nR (existential, value, atleast, and atmost restriction,
respectively) for an integer n� 0. If D is a datatype and U ∈RD, then ∃U.D, ∀U.D,
�nU , and �nU are concepts (datatype existential, value, atleast, and atmost restric-
tion, respectively) for an integer n� 0. We write � and ⊥ to abbreviate the concepts
φ � ¬φ and φ � ¬φ, respectively, and we eliminate parentheses as usual.

An axiom has one of the following forms: (1) φ
ψ (concept inclusion axiom),
where φ and ψ are concepts; (2) R
S (role inclusion axiom), where either R,S ∈
RA ∪R−

A or R,S ∈RD; (3) Trans(R) (transitivity axiom), where R∈RA; (4) φ(a)
(concept membership axiom), where φ is a concept and a∈ I; (5) R(a, b) (resp., U(a,
v)) (role membership axiom), where R∈RA (resp., U ∈RD) and a, b∈ I (resp., a∈ I
and v is a data value); and (6) a= b (resp., a �= b) (equality (resp., inequality) axiom),
where a, b∈ I. A (description logic) knowledge base L is a finite set of axioms.

We next define simple abstract roles. For abstract roles R∈RA, we define Inv(R)
= R− and Inv(R−)=R. Let
�

L denote the reflexive and transitive closure of
 on⋃
{{R
S, Inv(R)
 Inv(S)} |R
S ∈L, R, S ∈RA ∪R−

A}. An abstract role S is
simple relative to L iff for each abstract role R with R
�

L S, it holds that (i) Trans(R)
�∈ L and (ii) Trans(Inv(R)) �∈L. Informally, an abstract role S is simple iff it is neither
transitive nor has transitive subroles. For decidability, number restrictions in description
logic knowledge bases L are restricted to simple abstract roles [26].

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

Example 2.1 (University Database). A university database may use a description logic
knowledge base L to characterize students and exams. For example, suppose that (1)
every bachelor student is a student; (2) every master student is a student; (3) every Ph.D.
student is a student; (4) professors are not students; (5) every student is either a bachelor
student or a master student or a Ph.D. student; (6) only students take exams and only

100 A. Calı̀ et al.

exams are taken; (7) every student takes between one and ten exams, and every exam
is taken by at most 25 students; (8) John is a student, Mary is a master student, java
is an exam, and John has taken it; and (9) John is the same person as John Miller, and
John and Mary are different persons. These relationships are expressed by the follow-
ing axioms in L (where A= {bachelor student ,master student , student, professor ,
exam}, RA = {taken}, RD = ∅, and I= {john , john miller ,mary, java}):

(1) bachelor student � student ; (2) master student � student ;
(3) phd student � student ; (4) professor � ¬student ;
(5) student � bachelor student �master student � phd student ;
(6) � 1 taken � student ; � 1 taken− � exam;
(7) student � ∃taken .exam ; student � � 10 taken ; exam � � 25 taken−;
(8) student(john); master student(mary); exam(java); taken(john, java);
(9) john = john miller ; john �= mary .

2.2 Semantics

An interpretation I =(ΔI , ·I) relative to a datatype theory D= (ΔD, ·D) consists of
a nonempty (abstract) domain ΔI disjoint from ΔD, and a mapping ·I that assigns to
each atomic concept φ∈A a subset of ΔI , to each individual o∈ I an element of ΔI ,
to each abstract role R∈RA a subset of ΔI ×ΔI , and to each datatype role U ∈RD

a subset of ΔI ×ΔD. We extend the mapping ·I to all concepts and roles as usual
(where #S denotes the cardinality of a set S):

– (R−)I = {(y, x) | (x, y)∈RI},
– {o1, . . . , on}I = {oI1 , . . . , oIn}, (¬φ)I = ΔI \ φI ,
– (φ1 � φ2)I = φI1 ∩ φI2 , (φ1 � φ2)I = φI1 ∪ φI2 ,
– (∃R.φ)I = {x∈ΔI | ∃y : (x, y)∈RI ∧ y∈φI},
– (∀R.φ)I = {x∈ΔI | ∀y : (x, y)∈RI → y∈φI},
– (�nR)I = {x∈ΔI | #({y | (x, y)∈RI}) � n},
– (�nR)I = {x∈ΔI | #({y | (x, y)∈RI}) � n},
– (∃U.D)I = {x∈ΔI | ∃y : (x, y)∈UI ∧ y ∈DD},
– (∀U.D)I = {x∈ΔI | ∀y : (x, y)∈UI → y ∈DD},
– (�nU)I = {x∈ΔI | #({y | (x, y)∈UI}) � n},
– (�nU)I = {x∈ΔI | #({y | (x, y)∈UI}) � n}.

The satisfaction of an axiom F in I =(ΔI , · I) relative to D=(ΔD, ·D), denoted
I |=F , is defined as follows: (1) I |=φ
ψ iff φI ⊆ ψI ; (2) I |=R
S iff RI ⊆SI ;
(3) I |=Trans(R) iff RI is transitive; (4) I |=φ(a) iff aI ∈φI ; (5) I |=R(a, b) iff
(aI , bI)∈RI ; (6) I |=U(a, v) iff (aI , vD)∈UI ; (7) I |= a= b iff aI = bI ; and (8)
I |= a �= b iff aI �= bI . We say I satisfies the axiom F , or I is a model of F , iff I |=F .
We say I satisfies a description logic knowledge base L, or I is a model of L, denoted
I |=L, iff I |=F for all F ∈L. We say L is satisfiable iff L has a model. An axiom F
is a logical consequence of L, denoted L |=F , iff every model of L satisfies F .

Example 2.2 (University Database cont’d). Consider again the description logic knowl-
edge base L of Example 2.1. It is not difficult to verify that L is satisfiable, and that

Tightly Coupled Probabilistic Description Logic Programs 101

professor
 ¬master student , student(mary), (bachelor student � master stud-
ent � phd student)(john), and taken(john , java) are logical consequences of L.

3 Tightly Coupled Disjunctive DL-Programs

In this section, we recall the tightly coupled approach to disjunctive description logic
programs (or simply disjunctive dl-programs) KB =(L,P) under the answer set se-
mantics from [10], where KB consists of a description logic knowledge base L and
a disjunctive logic program P . The semantics of KB is defined in a modular way as
in [8,9], but it allows for a much tighter coupling of L and P . Note that we do not
assume any structural separation between the vocabularies of L and P . The main idea
behind the semantics of KB is to interpret P relative to Herbrand interpretations that
are compatible with L, while L is interpreted relative to general interpretations over a
first-order domain. Thus, we modularly combine the standard semantics of logic pro-
grams and of description logics, which allows for building on the standard techniques
and results of both areas. As another advantage, the novel disjunctive dl-programs are
decidable, even when their components of logic programs and description logic knowl-
edge bases are both very expressive. See especially [10] for further details on the novel
approach to disjunctive dl-programs and for a detailed comparison to related works.

3.1 Syntax

We assume a first-order vocabulary Φ with finite nonempty sets of constant and pred-
icate symbols, but no function symbols. We use Φc to denote the set of all constant
symbols in Φ. We also assume a set of data values V (relative to a datatype the-
ory D=(ΔD, ·D)) and pairwise disjoint (denumerable) sets A, RA, RD, and I of
atomic concepts, abstract roles, datatype roles, and individuals, respectively, as in Sec-
tion 2. We assume that (i) Φc is a subset of I∪V, and that (ii) Φ and A (resp., RA∪RD)
may have unary (resp., binary) predicate symbols in common.

Let X be a set of variables. A term is either a variable from X or a constant symbol
from Φ. An atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity
n� 0 from Φ, and t1, . . . , tn are terms. A literal l is an atom p or a default-negated
atom not p. Note that the default-negated atom not p refers to the lack of evidence
about the truth of the atom p, and thus has a different meaning than the classically
negated atom ¬p, which refers to the presence of knowledge asserting the falsehood of
the atom p. A disjunctive rule (or simply rule) r is an expression of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βn+m , (1)

where α1, . . . , αk, β1, . . . , βn+m are atoms and k,m, n� 0. We call α1 ∨ · · · ∨ αk

the head of r, while the conjunction β1, . . . , βn,not βn+1, . . . ,not βn+m is its body.
We defineH(r)= {α1, . . . , αk} andB(r)=B+(r)∪B−(r), whereB+(r)= {β1, . . . ,
βn} and B−(r)= {βn+1, . . . , βn+m}. We say that r is a fact iff n=m=0. A disjunc-
tive (logic) program P is a finite set of disjunctive rules of the form (1). We say that P
is positive iff m=0 for all disjunctive rules (1) in P . We say that P is a normal (logic)
program iff k� 1 for all disjunctive rules (1) in P .

102 A. Calı̀ et al.

A ground instance of a rule r is obtained from r by replacing every variable that
occurs in r by a constant symbol from Φc. We denote by ground(P) the set of all
ground instances of rules in P . The Herbrand base relative to Φ, denoted HBΦ, is
the set of all ground atoms constructed with constant and predicate symbols from Φ.
A disjunctive program P is acyclic iff a mapping κ from HBΦ to the non-negative
integers exists such that κ(p)>κ(q) for all p, q ∈HBΦ where p (resp., q) occurs in
the head (resp., body) of some rule in ground(P). A (local) stratification of P is a
mappingλ : HBΦ → {0, 1, . . . , k} such that λ(α)�λ(β) (resp., λ(α)>λ(β)) for each
r∈ ground(P), α∈H(r), and β ∈B+(r) (resp., β ∈B−(r)), where k� 0 is the length
of λ. A disjunctive program P is (locally) stratified iff it has a stratification λ of some
length k� 0. Note that every acyclic disjunctive program is also stratified.

A tightly coupled disjunctive description logic program (or simply disjunctive dl-
program) KB = (L,P) consists of a description logic knowledge base L and a dis-
junctive program P . We say that KB =(L,P) is positive iff P is positive. We say that
KB =(L,P) is a normal dl-program iff P is a normal program.

Example 3.1 (University Database cont’d). Consider the disjunctive dl-program KB =
(L,P), where L is the description logic knowledge base from Example 2.1, and P is
the following set of rules, which express that (1) Bill is either a master student or a
Ph.D. student (which is encoded by a rule that has the form of a disjunction of ground
atoms), and Mary has taken an exam in unix; (2) every student who has taken an exam
in knowledge bases is either a master student or a Ph.D. student (which is encoded
by a rule with a disjunction in its head); (3) every student who is not known to be a
master student or a Ph.D. student is a bachelor student (which is encoded by a rule
with default negations in its body); (4) the relation of being a prerequisite enjoys the
transitive property; (5) if a student has taken an exam, then he/she has taken every
exam that is a prerequisite for it; and (6) unix is a prerequisite for java, and java is a
prerequisite for programming languages:

(1) master student (bill) ∨ phd student (bill); taken(mary , unix);
(2) master student (X) ∨ phd student(X) ← taken(X, knowledge bases);
(3) bachelor student (X) ←

student(X), not master student (X), not phd student (X);
(4) prerequisite(X, Z) ← prerequisite(X, Y), prerequisite(Y,Z);
(5) taken(X, Z) ← taken(X, Y), prerequisite(Z, Y);
(6) prerequisite(unix , java); prerequisite(java, programming languages).

The above disjunctive dl-program also shows the advantages and flexibility of the tight
coupling between rules and ontologies (compared to the loose coupling in [8,9]): Ob-
serve that the predicate symbol taken in P is also a role in L, and it freely occurs
in both rule bodies and rule heads in P (which is both not possible in [8,9]). More-
over, we can easily use L to express additional constraints on the predicate symbols
in P . For example, we may use the two axioms � 1 prerequisite
 exam and � 1
prerequisite−1
 exam in L to express that prerequisite in P relates only exams.

Tightly Coupled Probabilistic Description Logic Programs 103

3.2 Semantics

We now define the answer set semantics of (tightly coupled) disjunctive dl-programs
as a generalization of the answer set semantics of ordinary disjunctive logic programs.
In the sequel, let KB = (L,P) be a disjunctive dl-program.

We use DLΦ to denote the set of all ground atoms in HBΦ that are constructed from
atomic concepts in A, abstract roles in RA, and datatype roles in RD.

An interpretation I is any subset of HBΦ. Informally, every such I represents the
Herbrand interpretation in which all a∈ I (resp., a∈HBΦ− I) are true (resp., false).
We say an interpretation I is a model of a description logic knowledge base L, de-
noted I |=L, iff L∪ I ∪ {¬a |a∈HBΦ− I} is satisfiable. We say I is a model of a
ground atom a∈HBΦ, or I satisfies a, denoted I |= a, iff a∈ I . We say I is a model
of a ground rule r, denoted I |= r, iff I |=α for some α∈H(r) whenever I |=B(r),
that is, I |= β for all β ∈B+(r) and I �|=β for all β ∈B−(r). We say I is a model of a
set of rules P iff I |= r for every r∈ ground(P). We say I is a model of a disjunctive
dl-program KB =(L,P), denoted I |= KB , iff I is a model of both L and P .

We now define the answer set semantics of disjunctive dl-programs by generaliz-
ing the ordinary answer set semantics of disjunctive logic programs. We generalize the
definition via the FLP-reduct [27] (which is equivalent to the definition via the Gelfond-
Lifschitz reduct [28]). Given a disjunctive dl-program KB = (L,P), the FLP-reduct of
KB relative to an interpretation I ⊆HBΦ, denoted KBI , is the disjunctive dl-program
(L,P I), where P I is the set of all r∈ ground(P) such that I |=B(r). An interpreta-
tion I ⊆HBΦ is an answer set of KB iff I is a minimal model of KBI . A disjunctive
dl-program KB is consistent (resp., inconsistent) iff it has an (resp., no) answer set.

Example 3.2 (University Database cont’d). Consider again the disjunctive dl-program
KB =(L,P) of Example 3.1. It is not difficult to verify that KB is consistent and that
it has two answer sets, which contain both in particular the ground atoms

student(john), student(john miller), bachelor student(john),
bachelor student (john miller), master student (mary), student(mary),
student(bill), exam(java), taken(john, java), taken(john miller , java),
taken(mary , unix), prerequisite(java, programming languages),
prerequisite(unix , java), prerequisite(unix , programming languages),

as well as either master student(bill) or phd student(bill).

We finally define the notion of cautious (resp., brave) reasoning from disjunctive dl-
programs under the answer set semantics as follows. A ground atom a∈HBΦ is a
cautious (resp., brave) consequence of a disjunctive dl-program KB under the answer
set semantics iff every (resp., some) answer set of KB satisfies a.

Example 3.3 (University Database cont’d). Consider again the disjunctive dl-program
KB =(L,P) of Example 3.1. By Example 3.2, the ground atom student(bill) is a cau-
tious consequence of KB , while phd student(bill) is a brave consequence of KB .

104 A. Calı̀ et al.

3.3 Semantic Properties

We now summarize some important semantic properties of disjunctive dl-programs un-
der the above answer set semantics. In the ordinary case, every answer set of a dis-
junctive program P is also a minimal model of P , and the converse holds when P is
positive. This result holds also for disjunctive dl-programs.

As another important semantic property, the answer set semantics of disjunctive dl-
programs faithfully extends its ordinary counterpart. That is, the answer set semantics
of a disjunctive dl-program with empty description logic knowledge base coincides with
the ordinary answer set semantics of its disjunctive program. Furthermore, the answer
set semantics of disjunctive dl-programs also faithfully extends (from the perspective
of answer set programming) the first-order semantics of description logic knowledge
bases. That is, a ground atom α∈HBΦ is true in all answer sets of a positive disjunctive
dl-program KB = (L,P) iff α is true in all first-order models of L∪ ground(P). In
particular, a ground atom α∈HBΦ is true in all answer sets of KB = (L, ∅) iff α is
true in all first-order models of L. Note that this result holds also when α is a ground
formula constructed from HBΦ using the operators ∧ and ∨.

Another important feature of disjunctive dl-programs KB =(L,P) concerns the
unique name assumption, which says that any two distinct constant symbols in Φc rep-
resent two distinct domain objects (and which is quite usual in logic programming).
It turns out that we do not have to make the unique name assumption here, since the
description logic knowledge base of a disjunctive dl-program may very well contain
or imply equalities between individuals. Intuitively, since we have no unique name as-
sumption in L, we also do not have to make the unique name assumption in P .

Example 3.4. The unique answer set of the disjunctive dl-program KB = (L,P) =
({a= b}, {p(a)}), where a, b∈Φc ∩ I and p∈Φ∩A, contains both ground atoms p(a)
and p(b), since L contains the equality axiom a= b, and P contains the fact p(a).

The tight coupling of ontologies and rules semantically behaves very differently from
the loose coupling. This makes the former more (and the latter less) suitable for repre-
senting ontology mappings (see Section 5) and for combining sophisticated reasoning
formalisms from Artificial Intelligence (such as reasoning about actions) with ontolo-
gies (see Section 6). The following example illustrates this difference.

Example 3.5 (Client Database). The normal dl-program KB = (L,P), where

L = {person(a), person�male � female} and
P = {client(X)←male(X), client(X)← female(X)}

implies client(a), while the normal dl-program KB ′ = (L′, P ′) as in [8,9]

L′ = {person(a), person�male � female} and
P ′ = {client(X)←DL[male](X), client(X)←DL[female](X)}

does not imply client(a), since the two queries are evaluated independently from each
other, and neither male(a) nor female(a) follows from L′. To obtain the conclusion
client(a) in [8,9], one has to directly use the rule client(X)←DL[male � female](X).

Tightly Coupled Probabilistic Description Logic Programs 105

4 Tightly Coupled Probabilistic DL-Programs

In this section, we present a tightly coupled approach to probabilistic disjunctive de-
scription logic programs (or simply probabilistic dl-programs) under the answer set
semantics. Differently from [17] (in addition to being a tightly coupled approach), the
probabilistic dl-programs here also allow for disjunctions in rule heads. Similarly to
the probabilistic dl-programs in [17], they are defined as a combination of dl-programs
with the ICL [19], but using the tightly coupled disjunctive dl-programs of [10] (see
Section 3), rather than the loosely coupled dl-programs of [8,9]. The ICL is based on
ordinary acyclic logic programs P under different “choices”, where every choice along
with P produces a first-order model, and one then obtains a probability distribution
over the set of all first-order models by placing a probability distribution over the dif-
ferent choices. We use the tightly integrated disjunctive dl-programs under the answer
set semantics of [10], instead of ordinary acyclic logic programs under their canoni-
cal semantics (which coincides with their answer set semantics). We first introduce the
syntax of probabilistic dl-programs and then their answer set semantics.

Observe that tightly coupled probabilistic dl-programs generalize a simplified ver-
sion of Poole’s (multi-agent) ICL, where we have only “nature” as agent, and the Her-
brand base is finite. Since the latter can represent (discrete and finite) Bayesian networks
[29] and (binary and finite) structural causal models [20], it thus follows immediately
that tightly coupled probabilistic dl-programs can also represent (discrete and finite)
Bayesian networks and (binary and finite) structural causal models. Furthermore, since
Poole’s ICL can represent influence diagrams, Markov decision processes, and normal
form games [19], it follows that a multi-agent version of tightly coupled probabilis-
tic dl-programs (where we additionally have a finite set of agents (including “nature”),
which each control certain alternatives on the choice space, and the probability on the
choice space only concerns the alternatives controlled by nature), can also represent
influence diagrams, Markov decision processes, and normal form games.

4.1 Syntax

We now define the syntax of (tightly coupled) probabilistic dl-programs and probabilis-
tic queries to them. We first introduce choice spaces and probabilities on choice spaces.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ−DLΦ.
Any A∈C is an alternative of C and any element a∈A an atomic choice of C. Intu-
itively, every alternative A∈C represents a random variable and every atomic choice
a∈A one of its possible values. A total choice of C is a set B⊆HBΦ such that
|B ∩ A|= 1 for all A∈C (and thus |B|= |C|). Intuitively, every total choice B of C
represents an assignment of values to all the random variables. A probability μ on a
choice space C is a probability function on the set of all total choices of C. Intuitively,
every probability μ is a probability distribution over the set of all joint variable assign-
ments. Since C and all its alternatives are finite, μ can be defined by (i) a mapping
μ :

⋃
C→ [0, 1] such that

∑
a∈A μ(a)= 1 for all A∈C, and (ii) μ(B) = Πb∈Bμ(b)

for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

106 A. Calı̀ et al.

Example 4.1 (University Database cont’d). A choice space C for the University Da-
tabase may be defined by C= {{choiceu, not choiceu}, {choiceo, not choiceo}},
which represents two random variablesXu and Xo with the binary domains {choiceu,
not choiceu} and {choiceo, not choiceo}, respectively. A probability μ on C may be
given as follows. We first define μ for the atomic choices by μ : choiceu, not choiceu,
choiceo, not choiceo �→ 0.9, 0.1, 0.7, 0.3, and then we naturally extend μ to all to-
tal choices by assuming independence between the alternatives. For example, the total
choice B= {choiceu, not choiceo} (which represents the joint variable assignment
Xu = choiceu, Xo =not choiceo) has the probability μ(B)= 0.9 · 0.3 =0.27.

Observe that, as in Poole’s ICL [19], all atomic choices in the alternatives of choice
spaces are ground. But one may also use non-ground atomic choices in the alterna-
tives by assuming that every non-ground alternative abbreviates all its ground instances,
which allows for a more compact representation of choice spaces and their probabilities.

Example 4.2 (University Database cont’d). The non-ground choice space C= {{p(X),
not p(X)}} along with the probability μ : p(X), not p(X) �→ 0.9, 0.1 (assuming in-
dependence between the alternatives) abbreviates the ground choice space C′ = {{p(c),
not p(c)} | c∈Φc} along with the probability μ′ : p(c), not p(c) �→ 0.9, 0.1 for ev-
ery c∈Φc (assuming independence between the alternatives). Informally, for every con-
stant c∈Φc, we have one random variableXc with the binary domain {p(c), not p(c)}
and the probability μ′ : p(c), not p(c) �→ 0.9, 0.1 on it. Similarly, one may also
have one random variable Xc for every constant c∈Φs, where Φs is a certain subset
of Φc only, such as the set of all constants in Φc encoding exams.

A tightly coupled probabilistic disjunctive description logic program (or simply prob-
abilistic dl-program) KB = (L,P, C, μ) consists of a (tightly coupled) disjunctive dl-
program (L,P), a choice space C such that no atomic choice in C coincides with the
head of any rule in ground(P), and a probability μ on C. Intuitively, since the total
choices of C select subsets of P , and μ is a probability distribution on the total choices
of C, every probabilistic dl-program is the compact representation of a probability dis-
tribution on a finite set of disjunctive dl-programs. Observe here that P is fully general
(it may have disjunctions in rule heads and default negations in rule bodies, and it may
not necessarily be acyclic or stratified). We say KB is normal iff P is normal (see Sec-
tion 3.1). An event α is any Boolean combination of atoms (that is, constructed from
atoms via the Boolean operators “∧” and “¬”). A conditional event is of the form β|α,
where α and β are events. A probabilistic query to KB has the form ∃(β|α)[r, s], where
β|α is a conditional event, and r and s are either two variables or two reals from [0, 1].
Note that dealing with probabilities of conditional events in both knowledge bases and
queries is commonly regarded as being an indispensable feature of probabilistic rea-
soning formalisms in Artificial Intelligence [30,31,32]. In our approach, conditional
events are explicitly allowed in queries, and probabilities of conditional events in the
knowledge base can be modeled in the same way as in Poole’s ICL [19].

Example 4.3 (University Database cont’d). A probabilistic dl-program KB =(L,P, C,
μ) is given by the choice space C and the probability μ on C of Example 4.1, and the dis-
junctive dl-program (L,P), which is nearly the same as the one given in Example 3.1,
except that P now also contains the following two (probabilistic) rules:

Tightly Coupled Probabilistic Description Logic Programs 107

taken(X, operating systems)← master student(X), taken(X, unix), choiceu;
taken(X, databases)← master student(X), taken(X, operating systems), choiceo.

Here, the new (probabilistic) rules express that if a master student has taken an exam
in unix (resp., operating systems), then there is a probability of 0.9 (resp., 0.7) that
he/she has also taken an exam in operating systems (resp., databases). Note that prob-
abilistic facts can be encoded by rules with only atomic choices in their body.

Querying for the entailed tight interval for the probability that Bill is a student (resp.,
master student) can be expressed by the probabilistic query ∃(student(bill))[R,S]
(resp., ∃(master student(bill))[R,S]). Querying for the entailed tight interval for the
probability that Mary has taken an exam in databases (resp., Mary has taken an exam
in databases given that she has taken an exam in operating systems) can be expressed
by the probabilistic query ∃(taken(mary , databases))[R,S] (resp., ∃(taken(mary ,
databases)|taken(mary , operating systems))[R,S]). In the latter case, we model a
conditioning of all probability distributions that are compatible with KB on the obser-
vation that Mary has taken an exam in operating systems (which is not encoded in KB).
Querying for the exams that John has taken along with their tight probability intervals
can be expressed by the probabilistic query ∃(taken(john , E))[R,S].

4.2 Semantics

We now define an answer set semantics of (tightly coupled) probabilistic dl-programs,
and we introduce the notions of consistency, consequence, tight consequence, and cor-
rect and tight answers for probabilistic queries to probabilistic dl-programs.

Given a probabilistic dl-program KB = (L,P, C, μ), a probabilistic interpretation
Pr is a probability function on the set of all I ⊆HBΦ. We say Pr is an answer set of KB
iff (i) every interpretation I ⊆HBΦ with Pr (I)> 0 is an answer set of (L,P ∪ {p← |
p∈B}) for some total choice B of C, and (ii) Pr(

∧
p∈B p)=

∑
I⊆HBΦ, B⊆I Pr (I) =

μ(B) for every total choiceB of C. Informally,Pr is an answer set of KB = (L,P, C, μ)
iff (i) every interpretation I ⊆HBΦ of positive probability under Pr is an answer set of
the dl-program (L,P) under some total choice B of C, and (ii) Pr coincides with μ on
the total choices B of C. We say KB is consistent iff it has an answer set Pr .

Example 4.4 (University Database cont’d). Let the probabilistic dl-program KB = (L,
P, C, μ) be as in Example 4.3. Let S1,S2,S3, and S4 be answer sets of (L, P∪{choiceu,
choiceo}), (L, P ∪ {choiceu, not choiceo}), (L, P ∪ {not choiceu, choiceo}), and
(L, P ∪{not choiceu, not choiceo}), respectively. Then, Pr : S1, S2, S3, S4 �→ 0.63,
0.27, 0.07, 0.03 is an answer set of KB , which also shows that KB is consistent.

If additionally S′
1, S′

2, S′
3, and S′

4 are answer sets of (L, P ∪ {choiceu, choiceo}),
(L, P ∪ {choiceu, not choiceo}), (L, P ∪ {not choiceu, choiceo}), and (L, P ∪
{not choiceu, not choiceo}), respectively, different from S1, S2, S3, and S4, respec-
tively, then Pr : S1, S

′
1, S2, S

′
2, S3, S

′
3, S4, S

′
4 �→ 0.63, 0, 0.22, 0.05, 0.06, 0.01, 0.02,

0.01 is an answer set of KB .

Given a ground event α, the probability of α in a probabilistic interpretation Pr ,
denoted Pr(α), is the sum of all Pr(I) such that I ⊆HBΦ and I |=α. Given two
ground events α and β, and two reals l, u∈ [0, 1], we say (β|α)[l, u] is a consequence

108 A. Calı̀ et al.

of a consistent probabilistic dl-program KB under the answer set semantics, denoted
KB ‖∼ (β|α)[l, u], iff Pr(α ∧ β) /Pr(α)∈ [l, u] for all answer sets Pr of KB with
Pr(α)> 0. We say (β|α)[l, u] is a tight consequence of a consistent probabilistic dl-
program KB under the answer set semantics, denoted KB ‖∼tight (β|α)[l, u], iff l (resp.,
u) is the infimum (resp., supremum) of Pr(α∧β) /Pr (α) subject to all answer sets Pr
of KB with Pr(α)> 0. Note that this infimum (resp., supremum) is naturally defined
as 1 (resp., 0) iff no such Pr exists. The tight answer (resp., correct answer) for a proba-
bilistic queryQ=∃(β|α)[r, s] to KB under the answer set semantics, where r and s are
two variables (resp., two reals from [0, 1]), is the set of all ground substitutions θ (for
the variables in Q) such that (β|α)[r, s]θ is a tight consequence (resp., consequence)
of KB under the answer set semantics. For ease of presentation, since tight (and cor-
rect) answers for probabilistic queriesQ=∃(β|α)[r, s] with non-ground β|α are easily
reducible to tight answers for probabilistic queries Q=∃(β|α)[r, s] with ground β|α,1

we consider only the latter type of probabilistic queries in the following.

Example 4.5 (University Database cont’d). Consider again the probabilistic dl-pro-
gram KB = (L,P, C, μ) of Example 4.3. It is not difficult to verify that the tight answers
to the probabilistic queries ∃(student(bill))[R, S] and ∃(master student(bill))[R,
S] are given by θ = {R/1, S/1} and θ = {R/0, S/1}, respectively. Furthermore,
the tight answers to the two probabilistic queries ∃(taken(mary , databases))[R,S]
and ∃(taken(mary , databases)|taken(mary , operating systems))[R, S] are given by
θ = {R/0.63, S/0.63} and θ = {R/0.7, S/0.7}, respectively.

5 Representing Ontology Mappings

In this section, we show that tightly coupled probabilistic dl-programs are well-suited
for representing ontology mappings. We first describe the requirements of a formal lan-
guage for representing and combining correspondences produced by different matching
components or systems. We then show how tightly coupled disjunctive dl-programs can
be used for representing (possibly inconsistent) ontology mappings (without confidence
values). We finally show how tightly coupled probabilistic dl-programs can be used for
representing (possibly inconsistent) ontology mappings with confidence values.

5.1 Representation Requirements

The problem of ontology matching can be defined as follows [23]. Ontologies are the-
ories encoded in a certain language L. In this work, we assume that ontologies are en-
coded in OWL DL or OWL Lite. Further, as in [23], we assume that the use of mappings
between ontologies is restricted to certain constructs in each ontology that can be linked
to parts of other ontologies. We call these constructs within one ontology matchable ele-
ments and denote them byQ(O). In principle,Q(O) can be any valid expressions in the

1 Every probabilistic query Q =∃(β|α)[r, s] with non-ground β|α is reduced to all ground in-
stances Qθ of Q relative to Φc: The tight answer to Q =∃(β|α)[r, s], where r and s are two
variables, is given by the set of all θ ◦ θ′ such that (i) θ is a ground substitution for β|α and (ii)
θ′ is the tight answer to Qθ. As Φc is finite, also the set of all ground instances of Q is finite.

Tightly Coupled Probabilistic Description Logic Programs 109

languageL (e.g., predicate names or whole formulas). In practice,Q(O) depends on the
semantics of the concrete mapping language used. If we encode a mapping in standard
description logics, the matchable elements in the connected ontologies correspond to
class expressions over the signature of the respective ontology. If we use disjunctive
Datalog, the set of matchable elements in the source ontology consists of all possible
rule bodies (as defined in Section 3) over the terminology of the source ontology, while
the set of matchable elements in the target ontology consists of all possible rule heads
(as defined in Section 3) over the terminology of the target ontology.

Given two ontologies O1 and O2, the task of matching is now to determine corre-
spondences between the matchable elements in the two ontologies. Correspondences
are 5-tuples (id, e, e′, r, p) such that

– id is a unique identifier for referring to the correspondence;
– e ∈ Q(O1) and e′ ∈ Q(O2) are matchable elements from the two ontologies;
– r ∈ R is a semantic relation (in this work, we consider the case where the semantic

relation can be interpreted as an implication);
– p is a degree of confidence in the correctness of the correspondence.

From the above general description of automatically generated correspondences be-
tween ontologies, we can derive a number of requirements for a formal language for
representing the results of multiple matchers as well as the contained uncertainties:

– Tight integration of mapping and ontology language: The semantics of the language
used to represent the correspondences between elements in different ontologies has to
be tightly integrated with the semantics of the ontology language used (in this case
OWL). This is important if we want to use the correspondences to reason across differ-
ent ontologies in a semantically coherent way. In particular, this means that the inter-
pretation of the mapped elements depends on the definitions in the ontologies.

– Support for mappings refinement: The language should be expressive enough to allow
the user to refine oversimplifying correspondences suggested by the matching system.
This is important to be able to provide a more precise account of the true semantic rela-
tion between elements in the mapped ontologies. In particular, this requires the ability
to describe correspondences that include several elements from the two ontologies.

– Support for repairing inconsistencies: Inconsistent mappings are a major problem for
the combined use of ontologies because they can cause inconsistencies in the mapped
ontologies. These inconsistencies can make logical reasoning impossible, since every-
thing can be derived from an inconsistent ontology. The mapping language should be
able to represent and reason about inconsistent mappings in an approximate fashion.

– Representation and combination of confidence: The confidence values provided by
matching systems are an important indicator for the uncertainty that has to be taken into
account. The mapping representation language should be able to use these confidence
values when reasoning with mappings. In particular, it should be able to represent the
confidence in a mapping rule and to combine confidence values on a sound formal basis.

– Decidability and efficiency of instance reasoning: An important use of ontology map-
pings is the exchange of data across different ontologies. In particular, we normally
want to be able to ask queries using the vocabulary of one ontology and receive answers
that do not only consist of instances of this ontology but also of ontologies connected

110 A. Calı̀ et al.

through ontology mappings. To support this, query answering in the combined formal-
ism consisting of ontology language and mapping language has to be decidable and
there should be efficient algorithms for answering queries.

Throughout this section, we use real data form the Ontology Alignment Evaluation
Initiative2 to illustrate the different aspects of mapping representation. In particular,
we use examples from the benchmark and the conference data set. The benchmark
dataset consists of five OWL ontologies (tests 101 and 301–304) describing scientific
publications and related information. The conference dataset consists of about 10 OWL
ontologies describing concepts related to conference organization and management. In
both cases, we give examples of mappings that have been created by the participants of
the 2006 evaluation campaign. In particular, we use mappings created by state-of-the-art
ontology matching systems like falcon and hmatch.

5.2 Deterministic Ontology Mappings

We now show how tightly coupled disjunctive dl-programs KB =(L,P) can be used
for representing (possibly inconsistent) mappings (without confidence values) between
two ontologies. Intuitively,L encodes the union of the two ontologies, while P encodes
the mappings between the ontologies, where disjunctions in rule heads and nonmono-
tonic negations in rule bodies in P can be used to resolve inconsistencies.

Tightly coupled disjunctive dl-programs KB = (L,P) naturally represent two het-
erogeneous ontologies O1 and O2, and mappings between O1 and O2 as follows. The
description logic knowledge base L is the union of two independent description logic
knowledge bases L1 and L2, which encode the ontologies O1 and O2, respectively.
Here, we assume that L1 and L2 have signatures A1, RA,1, RD,1, I1 and A2, RA,2,
RD,2, I2, respectively, such that A1 ∩A2 = ∅, RA,1∩RA,2 = ∅, RD,1∩RD,2 = ∅, and
I1 ∩ I2 = ∅. Note that this can easily be achieved for any pair of ontologies by a suit-
able renaming. A mapping between elements e1 and e2 from L1 and L2, respectively, is
then represented by a simple rule e2(x)← e1(x) in P , where e1 ∈A1 ∪RA,1 ∪RD,1,
e2 ∈A2 ∪RA,2 ∪RD,2, and x is a suitable variable vector. Informally, such a rule en-
codes that every instance of (the concept or role) e1 in O1 is also an instance of (the
concept or role) e2 in O2. Note that this can be easily extended to con- and disjunctions
of atoms e1(x) and e2(x), respectively. Note also that demanding the signatures of L1
and L2 to be disjoint guarantees that the rule base that represents mappings between
different ontologies is stratified as long as there are no cyclic mappings. Note further-
more that the restriction to such simple mapping rules is not imposed by us but by the
limitations of the matchers used, which are shared by most matchers existing nowadays.

Example 5.1. Taking an example from the conference data set of the OAEI challenge
2006, we find e.g. the following mappings that have been created by the hmatch system
for mapping the CRS Ontology (O1) on the EKAW Ontology (O2):

O2 : EarlyRegisteredParticipant (X)← O1 : Participant(X);
O2 : LateRegisteredParticipant (X)← O1 : Participant(X).

2 http://oaei.ontologymatching.org/2006/

Tightly Coupled Probabilistic Description Logic Programs 111

Informally, these two mapping relationships express that every instance of the concept
Participant of the ontology O1 is also an instance of the concepts EarlyRegistered -
Participant and LateRegisteredParticipant , respectively, of the ontologyO2.

We now encode the two ontologies and the mappings by a tightly coupled disjunctive
dl-programKB = (L,P), whereL is the union of two description logic knowledge bases
L1 and L2, encoding the ontologies O1 and O2, respectively, and P encodes the map-
pings. However, we cannot directly use the two mapping relationships as two rules inP ,
since this would introduce an inconsistency in KB . More specifically, recall that a model
of KB has to satisfy both L and P . Here, the two mapping relationships interpreted as
rules inP would require that if there is a participant Alice (Participant(alice)) in the on-
tologyO1, an answer set of KB contains both EarlyRegisteredParticipant(alice) and
LateRegisteredParticipant(alice) at the same time. Such an answer set, however, is in-
validated by the ontologyO2, which requires the concepts EarlyRegisteredParticipant
and LateRegisteredParticipant to be disjoint. Therefore, these mappings are useless,
since they do not actively participate in the creation of any model of KB .

In [33], we present a method for detecting such inconsistent mappings. There are
different approaches for resolving this inconsistency. The most straightforward one is
to drop mappings until no inconsistency is present any more. Peng and Xu [34] have
proposed a more suitable method for dealing with inconsistencies in terms of a relax-
ation of the mappings. In particular, they propose to replace a number of conflicting
mappings by a single mapping that includes a disjunction of the conflicting concepts.
In the example above, we would replace the two mapping rules by the following one:

O2 : EarlyRegisteredParticipant (X) ∨
O2 : LateRegisteredParticipant (X)← O1 : Participant(X).

This new mapping rule can be represented in our framework and resolves the inconsis-
tency. More specifically, for a particular participant Alice (Participant(alice)) in the
ontologyO1, it imposes the existence of two answer sets

{O2 : EarlyRegisteredParticipant(alice),O1 : Participant(alice)};
{O2 : LateRegisteredParticipant(alice),O1 : Participant(alice)}.

None of these answer sets is invalidated by the disjointness constraints imposed by the
ontology O2. However, we can deduce only Participant(alice) cautiously, the other
atoms can be deduced bravely. More generally, with such rules, instances that are only
available in the ontologyO2 cannot be classified with certainty.

We can solve this issue by refining the rules again and making use of nonmono-
tonic negation. In particular, we can extend the body of the original mappings with the
following additional requirement:

O2 : EarlyRegisteredParticipant (X) ←
O1 : Participant(X) ∧ O1 : RegisteredBeforeDeadline(X);

O2 : LateRegisteredParticipant (X) ←
O1 : Participant(X) ∧ not O1 : RegisteredBeforeDeadline(X).

This refinement of the mapping rules resolves the inconsistency and also provides a
more correct mapping because background information has been added. A drawback of

112 A. Calı̀ et al.

this approach is the fact that it requires manual post-processing of mappings because
the additional background information is not obvious. In the next section, we present
a probabilistic extension of tightly integrated disjunctive dl-programs that allows us to
directly use confidence estimations of matching engines to resolve inconsistencies and
to combine the results of different matchers.

5.3 Ontology Mappings with Confidence Values

We next show how tightly coupled probabilistic dl-programs KB =(L,P, C, μ) can be
used for representing (possibly inconsistent) mappings with confidence values between
two ontologies. Intuitively, L encodes the union of the two ontologies, while P , C,
and μ encode the mappings between the ontologies, where confidence values can be
encoded as error probabilities, and inconsistencies can also be resolved via trust prob-
abilities (in addition to using disjunctions and nonmonotonic negations in P). Note,
however, that again we need to employ an additional method for detecting inconsistent
mappings as mentioned in Section 5.2. Here, we show how the previously detected in-
consistencies can be resolved by taking into account the uncertainty represented by the
confidence values that the matchers produce. Furthermore, we also show how we can
combine possibly inconsistent results of different matchers by adding the representa-
tion of trust to the matchers by means of Bayesian probabilities. The trust values can be
adjusted manually, but it is also conceivable to adjust them automatically by providing
the background knowledge of the domain and by using a statistical pre-evaluation on
some benchmarking ontologies of different domains.

The probabilistic extension of tightly coupled disjunctive dl-programs KB =(L,P)
to tightly coupled probabilistic dl-programs KB ′ = (L,P, C, μ) provides us with a
means to explicitly represent and use the confidence values provided by matching sys-
tems. In particular, we can interpret the confidence value as an error probability and
state that the probability that a mapping introduces an error is 1 − p. Conversely, the
probability that a mapping correctly describes the semantic relation between elements
of the different ontologies is 1 − (1 − p) = p. This means that we can use the con-
fidence value p as a probability for the correctness of a mapping. The indirect formu-
lation is chosen, because it allows us to combine the results of different matchers in a
meaningful way. In particular, if we assume that the error probabilities of two match-
ers are independent, we can calculate the joint error probability of two matchers that
have found the same mapping rule as (1 − p1) · (1 − p2). This means that we can
get a new probability for the correctness of the rule found by two matchers which is
1− (1− p1) · (1− p2). This way of calculating the joint probability meets the intuition
that a mapping is more likely to be correct if it has been discovered by more than one
matcher because 1− (1− p1) · (1− p2) � p1 and 1− (1− p1) · (1− p2) � p2.

In addition, when merging inconsistent results of different matching systems, we
weigh each matching system and its result with a (e.g., user-defined) trust probability,
which describes our confidence in its quality. All these trust probabilities sum up to 1.
For example, the trust probabilities of the matching systems m1, m2, and m3 may be
0.6, 0.3, and 0.1, respectively. That is, we trust most in m1, medium in m2, and less
in m3.

Tightly Coupled Probabilistic Description Logic Programs 113

Example 5.2. We illustrate this approach using an example from the benchmark data set
of the OAEI 2006 campaign. In particular, we consider the case where the publication
ontology in test 101 (O1) is mapped on the ontology of test 302 (O2). Below we show
some mappings that have been detected by the matching system hmatch that participated
in the challenge. The mappings are described as rules in P , which contain a conjunct
indicating the matching system that has created it and a subscript for identifying the
mapping. These additional conjuncts are atomic choices of the choice space C and link
probabilities (which are specified in the probabilityμ on the choice space C) to the rules:

O2 : Book(X)← O1 : Collection(X) ∧ hmatch1;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ hmatch2.

We define the choice space according to the interpretation of confidence described
above. The resulting choice space is C= {{hmatchi,not hmatchi} | i ∈ {1, 2}}. It
comes along with the probability μ on C, which assigns the corresponding confidence
value p to each atomic choice hmatchi and the complement 1− p to the atomic choice
not hmatch i. In our case, we have μ(hmatch1) = 0.62, μ(not hmatch1) = 0.38,
μ(hmatch2) = 0.73, and μ(not hmatch2) = 0.27.

The benefits of this explicit treatment of uncertainty becomes clear when we now
try to merge this mapping with the result of another matching system. Below are two
examples of rules that describe correspondences for the same ontologies that have been
found by the falcon system:

O2 : InCollection(X)← O1 : Collection(X) ∧ falcon1;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ falcon2.

Here, the confidence encoding yields the choice space C′ = {{falcon i,not falcon i} |
i∈{1, 2}} along with the probabilities μ′(falcon1) = 0.94, μ′(not falcon1) = 0.06,
μ′(falcon2)= 0.96, and μ′(not falcon2)= 0.04.

Note that directly merging these two mappings as they are would not be a good idea
for two reasons. The first one is that we might encounter an inconsistency problem
like shown in Section 5.2. For example, in this case, the ontology O2 imposes that
the concepts InCollection and Book are to be disjoint. Thus, for each publication pub
belonging to the concept Collection in the ontology O1, the merged mappings infer
Book (pub) and InCollection(pub). Therefore, the first rule of each of the mappings
cannot contribute to a model of the knowledge base. The second reason is that a simple
merge does not account for the fact that the mapping between the O1 : Proceedings
and O2 : Proceedings concepts has been found by both matchers and should therefore
be strengthened. Here, the mapping rule has the same status as any other rule in the
mapping and each instance of O1 : Proceedings has two probabilities at the same time.

Suppose we associate with hmatch and falcon the trust probabilities 0.55 and 0.45,
respectively. Based on the interpretation of confidence values as error probabilities, and
on the use of trust probabilities when resolving inconsistencies between rules, we can
now define a merged mapping set that consists of the following rules:

O2 : Book(X)← O1 : Collection(X) ∧ hmatch1 ∧ sel hmatch1;
O2 : InCollection(X)← O1 : Collection(X) ∧ falcon1 ∧ sel falcon1;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ hmatch2;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ falcon2.

114 A. Calı̀ et al.

The new choice space C′′ and the new probabilityμ′′ on C′′ are obtained from C ∪ C′ and
μ ·μ′ (which is the product of μ and μ′, that is, (μ ·μ′)(B ∪B′)=μ(B) ·μ′(B′) for all
total choicesB of C andB′ of C′), respectively, by adding the alternative {sel hmatch1,
sel falcon1} and the probabilities μ′′(sel hmatch1) = 0.55 and μ′′(sel falcon1) =
0.45 for resolving the inconsistency between the first two rules.

It is not difficult to verify that, due to the independent combination of alternatives,
the last two rules encode that the rule O2 : Proceedings(X)←O1 : Proceedings(X)
holds with the probability 1− (1−μ′′(hmatch2)) · (1−μ′′(falcon2))= 0.9892, as de-
sired. Informally, any randomly chosen instance of Proceedings of the ontology O1
is also an instance of Proceedings of the ontology O2 with the probability 0.9892. In
contrast, if the mapping rule would have been discovered only by falcon or hmatch,
respectively, such an instance of Proceedings of the ontologyO1 would be an instance
of Proceedings of the ontologyO2 with the probability 0.96 or 0.73, respectively.

A probabilistic query Q asking for the probability that a specific publication pub in
the ontology O1 is an instance of the concept Book of the ontology O2 is given by
Q=∃(Book (pub))[R,S]. The tight answer θ to Q is θ= {R/0, S/0}, if pub is not an
instance of the concept Collection in the ontology O1 (since there is no mapping rule
that maps another concept than Collection to the concept Book). If pub is an instance of
the concept Collection , however, then the tight answer toQ is θ= {R/0.341, S/0.341}
(as μ′′(hmatch1) ·μ′′(sel hmatch1) = 0.62 · 0.55 = 0.341). Informally, pub belongs
to the concept Book with the probabilities 0 and 0.341, respectively.

6 Probabilistic Reasoning about Actions Involving Ontologies

The ICL [19] is in fact a language for probabilistic reasoning about actions in single-
and multi-agent systems. It allows to describe the preconditions and effects of actions
in single- and multi-agent dynamic systems; for further details including a solution to
the frame problem, see especially [19]. Note that such action descriptions are closely
related to action descriptions in the situation calculus. Hence, our approach to (tightly
coupled) probabilistic dl-programs also constitutes a natural way of integrating reason-
ing about actions, description logics, and Bayesian probabilities.

Such an integration is especially useful in the context of Web Services, where action
descriptions in the situation calculus have been successfully used

(a) as background action theories for defining the preconditions and effects of primitive
actions, which are then composed to more complex programs using the program-
ming constructs of Golog, in order to formulate Web Services [36,35];

(b) to provide a formal semantics for a subset of service descriptions in DAML-S,
serving as an intermediate step towards a Petri net representation, which are then
used for Web Service simulation, verification, and composition [37,38].

We now describe how action descriptions in the situation calculus along with Golog
programs can be used for defining and composing Web Services. In addition to an ex-
ample from Web Services, we then also provide an example from mobile robotics.

The situation calculus [39,40] is a second-order language for representing dynami-
cally changing worlds. Its main ingredients are actions, situations, and fluents. Infor-
mally, actions have changes to the world as effects, and situations encode sequences of

Tightly Coupled Probabilistic Description Logic Programs 115

actions, while fluents represent a world or an agent property that may change when ex-
ecuting an action. In the situation calculus, a dynamic domain is represented by a basic
action theory, which encodes (i) foundational axioms for situations, (ii) unique name
axioms for actions, (iii) the initial state of the domain, (iv) action precondition axioms,
and (v) successor state axioms to describe how the fluents change by the actions.

Golog is an agent programming language that is based on the situation calculus
[41,40]. It allows for constructing complex actions from the primitive actions defined
in a basic action theory AT , where standard (and not so standard) Algol-like constructs
can be used, in particular, (i) program sequences: p1; p2; (ii) tests of conditions: φ?;
(iii) nondeterministic choices of two programs: p1|p2; (iv) nondeterministic choices of
program argument: πx (p(x)); and (v) conditionals, while-loops, and procedures.

The following example (adapted from [37]) illustrates the use of probabilistic dl-
programs along with Golog programs for defining and composing Web Services.

Example 6.1. We sketch how a (tightly coupled) probabilistic dl-program KB =(L,P,
C, μ) can be used to model a product database along with the (effects of the) elementary
operations of transactions on the product database. The product database itself may be
modeled by a description logic knowledge base L, such as:

textbook � book; pc � laptop � electronics; pc � ¬laptop;
book � electronics � product; book�¬electronics; offer � product;
product � � 1 related; � 1 related � � 1 related− � product;
related � related−; related − � related;
textbook(tb ai); textbook(tb lp); related(tb ai, tb lp);
pc(pc ibm); pc(pc hp); related(pc ibm, pc hp);
provides(ibm, pc ibm); provides(hp, pc hp).

Intuitively, the knowledge base L adds to P different kinds of products and relations
between them (namely, all its entailed atomic concept and role membership axioms).
Every answer set of KB contains in particular the following ground atoms:

textbook(tb ai); book(tb ai); product(tb ai);
textbook(tb lp); book(tb lp); product(tb lp);
pc(pc ibm); electronics(pc ibm); product(pc ibm);
pc(pc hp); electronics(pc hp); product(pc hp);
related(tb ai, tb lp); related(pc ibm, pc hp);
provides(ibm, pc ibm); provides(hp, pc hp).

The rule component P encodes the preconditions and the effects of the primitive ac-
tions. For example, the following rule in P encodes that a client C can buy a productO
from an online shop M if (i) C does not already own O, (ii) M has O in stock and
not reserved for someone else, and (iii) C’s account status is above M ’s price for O
(as usual, we use parameterized actions for a more compact representation, that is,
buy(cl i, obj j , shopk) represents the non-parameterized action buy cl i obj j shopk):

Poss(buy(C, O, M), S)← not own(C, O, S), in stock (M, O, S),
not reserved (M, O, S), account(C,B, S), price(M, O, B′, S), B > B′.

116 A. Calı̀ et al.

The following two rules in P encode that (i) if a client C buys a product O from an
online shopM , thenC’s account status reduces byM ’s price forO in the next situation,
and (ii) else C’s account status does not change in the next situation:

account(C, B, do(A, S))← A = buy(C, O, M), account(C, B′, S),
price(M, O, B′′, S), B = B′ −B′′;

account(C, B, do(A, S))← A �= buy(C, O, M), account(C, B, S).

The following two rules in P encode that (i) if a client C buys a product O from an
online shop M , then C owns O in the next situation, and (ii) if a client C does not sell
an owned productO to an online shop M , then C also ownsO in the next situation:

own(C,O, do(A, S))← A = buy(C, O, M);
own(C,O, do(A, S))← A �= sell(C,O, M), own(C, O, S).

The choice space C and the probabilityμmay then be used to define probabilistic effects
of actions. For example, a client’s buying may only succeed with the probability 0.9,
which can be expressed through the rule

own(C, O, do(A,S))← A = buy(C, O, M), succ,

the choice space C= {succ, fail}, and the probability μ : succ, fail �→ 0.9, 0.1.
The primitive actions, which we defined via a probabilistic action description, can

now be composed to more complex programs using Golog constructs. For example, the
following small Golog program encodes the Web Service for buying a birthday gift,
which divides into buying either a book or a CD (from a given list of books (resp., CDs)
at a given list of online shops) and eventually also a flower (from a given list of flowers
at a given list of online shops) if more than C 20 are left on the client’s account:

proc buy birthday gift(C,Shops , Books ,CDs,Flowers)
πM∈Shops(πO∈Books(buy(C, O, M))) |

πM∈Shops(πO∈CDs(buy(C, O, M)));
if account(C, B) ∧B � 20 then

πM∈Shops(πO∈Flowers(buy(C,O, M)))
end.

The next example describes another application in mobile robotics.

Example 6.2. Consider a mobile robot that should pick up some objects. We now sketch
how this scenario can be modeled using a (tightly coupled) probabilistic dl-program
KB =(L,P, C, μ). The ontology component L encodes background knowledge about
the domain. For example, concepts may encode different kinds of objects and different
kinds of positions, while roles may express different kinds of relations between posi-
tions (in a 3×3 grid), which is expressed by the following description logic axioms inL:

ball � light object ; light object � object ; heavy object � object ;
central position � position; central position �� 9neighbor−.position ;
central position � (� 1west of −.position)
 (� 1north of −.position);
∃west of .�� position ; ∃west of −.�� position ;
object(obj1); light object(obj2); heavy object(obj3); ball(obj4); obj2 = obj4 ;
position(pos1); . . . ; position(pos9); central position(pos5);
neighbor(pos1 , pos2); . . . ; west of (pos1 , pos2); . . . ; north of (pos1 , pos4);

Tightly Coupled Probabilistic Description Logic Programs 117

The rule component P encodes the dynamics (within a finite time frame). For exam-
ple, the following rule in P says that if (i) the robot performs a pickup of object O,
(ii) both the robot and the object O are at the same position, and (iii) the pickup
of O succeeds (which is an atomic choice associated with a certain probability), then
the robot is carrying O in the next situation:

carrying(O, do(A, S))← A = pickup(O), at(robot ,Pos , S), at(O, Pos , S),
pickup succeeds(O, S), object(O), position(Pos).

The next rule in P says that if (i) the robot is carrying a heavy objectO, (ii) performs no
pickup and no putdown operation, and (iii) keeps carryingO (which is an atomic choice
associated with a certain probability), then the robot also keeps carrying O in the next
situation (we can then use a similar rule for light object with a different probability):

carrying(O, do(A,S))← carrying(O, S), A �= pickup(O), A �= putdown(O),
keeps carrying(O, S), heavy object(O).

To encode the probabilities for the above rules, the choice space C contains ground
instances of {keeps carrying(O,S),not keeps carrying(O,S)} and {pickup succ-
eeds(O,S),not pickup succeeds(O,S)}. We then define a probabilityμ on each alter-
native A∈C (for example, μ(keeps carrying(obj1 , S0))= 0.9 and μ(not keeps car -
rying(obj1 , S0))= 0.1) and extend it to a probability μ on the set of all total choices
of C by assuming independence between the alternatives of C.

An example of a small Golog program for this domain is

while ¬carrying(obj) ∧ ∃Pos (at(robot ,Pos) ∧ at(obj ,Pos)) do pickup(obj),

which stands for “while the robot robot is not carrying the object obj , and they are both
at the same position, the robot robot tries to pick up the object obj ”.

7 Algorithms and Complexity

In this section, we characterize the consistency and the query processing problem in
probabilistic dl-programs under the answer set semantics in terms of the consistency
and the cautious/brave reasoning problem in disjunctive dl-programs under the answer
set semantics (which are all decidable [10]). These characterizations show that the con-
sistency and the query processing problem in probabilistic dl-programs under the an-
swer set semantics are decidable and computable, respectively, and they also directly
reveal algorithms for solving these problems. In particular, the second characterization
can be used for an anytime algorithm for tight query processing in probabilistic dl-
programs under the answer set semantics. We describe this anytime algorithm along
with soundness and error estimation results. We also give a precise picture of the com-
plexity of deciding consistency and correct answers for probabilistic dl-programs under
the answer set semantics.

7.1 Algorithms

The following theorem shows that a probabilistic dl-program KB =(L,P, C, μ) is con-
sistent iff the disjunctive dl-program (L,P ∪ {p ←| p∈B}) is consistent, for every

118 A. Calı̀ et al.

total choice B of C with μ(B)> 0. Thus, deciding whether a probabilistic dl-program
is consistent can be reduced to deciding whether a disjunctive dl-program is consistent.

Theorem 7.1. Let KB=(L,P, C, μ) be a probabilistic dl-program. Then, KB is consis-
tent iff (L,P∪{p←| p∈B}) is consistent for each total choice B of C with μ(B)>0.

The next theorem shows that computing tight answers for probabilistic queries
Q=∃(β|α)[r, s] with ground β|α to consistent probabilistic dl-programs KB under
the answer set semantics can be reduced to brave and cautious reasoning from disjunc-
tive dl-programs. Informally, the tight lower (resp., upper) bound is computed from
values a (resp., b) and c (resp., d), where (1) a (resp., b) is the sum of all μ(B) such
that (1.i) B is a total choice of C and (1.ii) α ∧ β a cautious (resp., brave) consequence
of the disjunctive dl-program (L,P ∪ {p←| p∈B}), and (2) c (resp., d) is the sum of
all μ(B) such that (2.i)B is a total choice of C and (2.ii) α∧¬β a brave (resp., cautious)
consequence of the disjunctive dl-program (L,P ∪ {p←| p∈B}).

Theorem 7.2. Let KB =(L,P, C, μ) be a consistent probabilistic dl-program, and let
Q=∃(β|α)[r, s] be a probabilistic query with ground conditional event β|α. Let a
(resp., b) be the sum of all μ(B) such that (i)B is a total choice of C and (ii) α∧β is true
in every (resp., some) answer set of the disjunctive dl-program (L,P ∪{p← | p∈B}).
Let c (resp., d) be the sum of all μ(B) such that (i) B is a total choice of C and
(ii) α ∧ ¬β is true in some (resp., every) answer set of the disjunctive dl-program
(L,P ∪ {p ← | p∈B}). Then, the tight answer θ for Q to KB under the answer
set semantics is given as follows:

θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{r/1, s/0} if b= 0 and c =0;

{r/0, s/0} if b= 0 and c �=0;

{r/1, s/1} if b �= 0 and c =0;

{r/ a
a+c

, s/ b
b+d
} otherwise.

(2)

By the above theorem, computing the tight answer for probabilistic queries Q =
∃(β|α)[r, s] with ground β|α to consistent probabilistic dl-programs KB = (L,P, C, μ)
under the answer set semantics can be reduced to (1) computing the set of all answer
sets of each disjunctive dl-program (L,P ∪{p←| p∈B}) such that B is a total choice
of C and (2) performing brave and cautious reasoning from these answer sets. The num-
ber of all total choices B is generally a non-neglectable source of complexity. We thus
propose (i) to compute the tight answer for Q to KB only up to an error within a given
threshold ε∈ [0, 1], (ii) to process the B’s along decreasing probabilities μ(B), and
(iii) to eventually stop the calculation after a given time interval.

Given a consistent probabilistic dl-program KB = (L,P, C, μ), a probabilistic query
Q = ∃(β|α)[r, s] with ground β|α, and an error threshold ε∈ [0, 1], Algorithm tight an-
swer (see Fig. 1) computes some θ= {r/l′, s/u′} such that |l − l′| + |u − u′|� ε,
where {r/l, s/u} is the tight answer for Q to KB under the answer set semantics.
More concretely, it computes the bounds l′ and u′ by first initializing the variables a,
b, c, and d (which play the same role as in Theorem 7.2). It then computes the answer
set semantics S of the disjunctive dl-program (L,P ∪{p← | p∈Bi}), for every total
choice Bi of C, checks whether α ∧ β and α ∧ ¬β are true or false in all s∈S, and

Tightly Coupled Probabilistic Description Logic Programs 119

Algorithm tight answer

Input: consistent probabilistic dl-program KB =(L, P, C, μ), probabilistic query
Q= ∃(β|α)[r, s] with ground β|α, and error threshold ε∈ [0, 1].

Output: θ = {r/l′, s/u′} such that |l − l′|+ |u− u′|� ε, where {r/l, s/u} is the tight
answer for Q to KB under the answer set semantics.

Notation: B1, . . . , Bk is a sequence of all total choices B of C with μ(B1) � · · · � μ(Bk).

1. a := 0; b := 1; c := 1; d := 0; v := 1; i := 1;
2. while i � k and v > 0 and v

a+c
+ v

b+d
> ε do begin

3. compute the set S of all answer sets of (L, P ∪{p← | p∈Bi});
4. if α ∧ β is true in every s∈S then a := a + μ(Bi)
5. else if α ∧ β is false in every s∈S then b := b− μ(Bi);
6. if α ∧ ¬β is false in every s∈S then c := c− μ(Bi)
7. else if α ∧ ¬β is true in every s∈S then d := d + μ(Bi);
8. v := v − μ(Bi);
9. i := i + 1

10. end;
11. if b = 0 and c = 0 then return θ = {r/1, s/0}
12. else if b = 0 and c �= 0 then return θ = {r/0, s/0}
13. else if b �= 0 and c = 0 then return θ = {r/1, s/1}
14. else return θ = {r/ a

a+c
, s/ b

b+d
}.

Fig. 1. Algorithm tight answer

updates a, b, c, and d accordingly. If the possible error in the bounds falls below ε, then
it stops and returns the bounds computed thus far. Hence, in the special case where
ε=0, the algorithm computes in particular the tight answer for Q to KB under the
answer set semantics. The following theorem shows that tight answer is sound.

Theorem 7.3. Let KB be a consistent probabilistic dl-program, let Q = ∃(β|α)[r, s]
be a probabilistic query with ground β|α, and let θ= {r/l, s/u} be the tight answer
for Q to KB under the answer set semantics. Let ε∈ [0, 1] be an error threshold. Then,
Algorithm tight answer always terminates on KB , Q, and ε. Let θ′ = {r/l′, s/u′} be
the output computed by tight answer for KB , Q, and ε, and let v′ be the value of the
variable v. Then, if v′ =0, then l= l′ and u=u′; otherwise, |l − l′|+ |u− u′|� ε.

The following example illustrates how Algorithm tight answer works.

Example 7.1 (University Database cont’d). Consider again the probabilistic dl-pro-
gram KB = (L,P, C, μ) and the probabilistic queryQ=∃(β|α)[r, s] = ∃(taken(mary ,
databases)|taken(mary , operating systems))[R,S] of Example 4.3, and suppose ε =
0. After the initialization in line 1, we observe that (i) α ∧ β is true in every answer set
of exactly (L, P ∪ {choiceu, choiceo}), (ii) α ∧ β is false in every answer set of
exactly (L, P ∪ {choiceu, not choiceo}), (L, P ∪ {not choiceu, choiceo}), and (L,
P∪{not choiceu, not choiceo}), (iii) α∧¬β is false in every answer set of exactly (L,
P∪{choiceu, choiceo}), (L, P∪{not choiceu, choiceo}), and (L, P∪{not choiceu,
not choiceo}), and (iv) α∧¬β is true in every answer set of exactly (L, P ∪{choiceu,
not choiceo}). We thus obtain (i) a=0 + 0.63 =0.63, (ii) b=1 − 0.27 − 0.07

120 A. Calı̀ et al.

−0.03 =0.63, (iii) c=1−0.63−0.07−0.03=0.27, and (iv) d=0+0.27 =0.27, respec-
tively, and return the tight answer θ= {r/ 0.63

0.63+0.27 , s/
0.63

0.63+0.27}= {r/0.7, s/0.7}.

Algorithm tight answer is actually an anytime algorithm, since we can always inter-
rupt it, and return the bounds computed thus far. The following theorem shows that
these bounds deviate from the tight bounds with an exactly measurable error (note
that it can also be shown that the computed lower and upper bounds are increasing and
that the possible error is decreasing along the iterations of the while-loop of the algo-
rithm). For this reason, Algorithm tight answer also iterates through the total choicesBi

of C in a way such that the probabilities μ(Bi) are decreasing, so that the error in the
computed bounds is very likely to be low already after few iteration steps.

Theorem 7.4. Let KB be a consistent probabilistic dl-program, let Q = ∃(β|α)[r, s]
be a probabilistic query with ground conditional event β|α, let ε∈ [0, 1] be an error
threshold, and let θ= {r/l, s/u} be the tight answer for Q to KB under the answer set
semantics. Assume we run Algorithm tight answer on KB , Q, and ε, and we interrupt
it after line (9). Let the returned θ′ = {r/l′, s/u′} be as specified in lines (11) to (14),
and let a′, b′, c′, d′, and v′ be the values of the variables a, b, c, d, and v, respectively.
Then, if v′ =0, then θ= θ′; otherwise, |l − l′|+ |u− u′|� v′

a′+c′ + v′
b′+d′ .

7.2 Complexity

The following theorem shows that deciding whether a probabilistic dl-program under
the answer set semantics is consistent is complete for NEXPNP (and thus has the same
complexity as deciding consistency of ordinary disjunctive logic programs under the
answer set semantics). Note that the lower bound follows from the NEXPNP-hardness
of deciding whether an ordinary disjunctive logic program has an answer set.

Theorem 7.5. Given a first-order vocabulary Φ and a probabilistic dl-program KB =
(L,P, C, μ), where L is defined in SHIF(D) or SHOIN (D), deciding whether KB
is consistent under the answer set semantics is complete for NEXPNP.

The next theorem shows that deciding correct answers for probabilistic queries
Q=∃(β|α)[l, u], where β|α is a ground conditional event, to a consistent probabilistic
dl-program KB under the answer set semantics is complete for co-NEXPNP.

Theorem 7.6. Given a first-order vocabulary Φ, a consistent probabilistic dl-program
KB =(L,P, C, μ), where L is defined in SHIF(D) or SHOIN (D), a ground con-
ditional event β|α, and reals l, u∈ [0, 1], deciding whether (β|α)[l, u] is a consequence
of KB under the answer set semantics is complete for co-NEXPNP.

8 Tractability Results

We now describe a special class of (tightly coupled) probabilistic dl-programs for which
deciding consistency and query processing can both be done in polynomial time in
the data complexity. These programs are normal, stratified, and defined relative to DL-
Lite [42] (which allows for deciding knowledge base satisfiability in polynomial time).

Tightly Coupled Probabilistic Description Logic Programs 121

We first recall DL-Lite. Let A, RA, and I be pairwise disjoint sets of atomic con-
cepts, abstract roles, and individuals, respectively. A basic concept in DL-Lite is either
an atomic concept from A or an existential restriction on roles ∃R.� (abbreviated as
∃R), where R∈RA ∪R−

A. A literal in DL-Lite is either a basic concept b or the nega-
tion of a basic concept ¬b. Concepts in DL-Lite are defined by induction as follows.
Every basic concept in DL-Lite is a concept in DL-Lite. If b is a basic concept in DL-
Lite, and φ1 and φ2 are concepts in DL-Lite, then also ¬b and φ1 � φ2. An axiom in
DL-Lite is either (1) a concept inclusion axiom b
φ, where b is a basic concept in
DL-Lite, and φ is a concept in DL-Lite, or (2) a functionality axiom (funct R), where
R∈RA ∪R−

A, or (3) a concept membership axiom b(a), where b is a basic concept in
DL-Lite and a∈ I, or (4) a role membership axiomR(a, c), whereR∈RA and a, c∈ I.
A knowledge base in DL-Lite L is a finite set of axioms in DL-Lite. Note that the seman-
tics of DL-Lite assumes standard names, which includes the unique name assumption.

The following two results from [42] show that deciding whether a knowledge base in
DL-Lite is satisfiable is possible in polynomial time, and that every knowledge base in
DL-Lite can be rewritten to have only literals in the heads of concept inclusion axioms.

Theorem 8.1 (see [42]). Given a knowledge base L in DL-Lite, deciding whether L is
satisfiable can be done in polynomial time.

Proposition 8.1 (see [42]). Every knowledge base L in DL-Lite can be transformed
into an equivalent knowledge base trans(L) in DL-Lite in which every concept in-
clusion axiom is of form b
 �, where b (resp., �) is a basic concept (resp., literal) in
DL-Lite.

Given a knowledge base L in DL-Lite, we define transL(P)=P ∪ {b′(X)← b(X) |
b
 b′ ∈ trans(L), b′ is a basic concept} ∪ {∃R(X)←R(X,Y) |R ∈ RA ∩Φ} ∪
{∃R−(Y)←R(X,Y) |R∈RA ∩Φ}. Intuitively, we make explicit all the relationships
between the predicates in P that are implicitly encoded in L.

We define stratified normal dl- and stratified normal probabilistic dl-programs in
DL-Lite as follows. A normal dl-program KB = (L,P) with L in DL-Lite is strati-
fied iff transL(P) is stratified (see Section 3.1). A normal probabilistic dl-program
KB =(L,P, C, μ) with L in DL-Lite is stratified iff every of KB ’s represented dl-
programs is stratified.

Example 8.1 (University Database cont’d). Consider the probabilistic dl-program KB
= (L,P, C, μ), where L is the description logic knowledge base of Example 2.1 without
the axioms in (5), (7), and (9), P is the set of rules of Example 4.3 without the disjunc-
tive rules in (1) and (2) of Example 3.1, and C and μ are as in Example 4.3. It is then
not difficult to verify that L is definable in DL-Lite, and KB is normal and stratified.

The following result shows that stratified normal probabilistic dl-programs in DL-Lite
allow for consistency checking and query processing with a polynomial data com-
plexity. It follows from Theorems 7.1 and 7.2 and that consistency checking and cau-
tious/brave reasoning in stratified normal dl-programs can be done in polynomial time
in the data complexity [10]. Here, the notion of data complexity is defined as usual,
that is, we keep all of KB =(L,P, C, μ) fixed except for Φc and the facts in P .

122 A. Calı̀ et al.

Theorem 8.2. Given a first-order vocabulary Φ and a stratified normal probabilistic
dl-program KB =(L,P, C, μ) with L in DL-Lite, (a) deciding whether KB has an an-
swer set, and (b) computing l, u∈ [0, 1] for a given ground conditional event β|α such
that KB ‖∼tight (β|α)[l, u] can both be done in polynomial time in the data complexity.

9 Related Work

In this section, we give a comparison to most closely related works on (i) tightly coupled
description logic programs, (ii) probabilistic description logic programs, (iii) represent-
ing ontology mappings, and (iv) reasoning about actions involving ontologies.

9.1 Tightly Coupled Description Logic Programs

Some other tight integrations of ontologies and rules are in particular due to Donini et
al. [43], Levy and Rousset [44], Grosof et al. [45], Motik et al. [46], Heymans et al. [47],
and Rosati [48,49]. SWRL [50] and WRL [51] also belong to this category. Among the
above works, closest in spirit to the tightly coupled disjunctive dl-programs used in this
paper are perhaps Rosati’s [48,49] and Heymans et al.’s [47]. Like here, Rosati’s hybrid
knowledge bases also consist of a description logic knowledge base L and a disjunctive
program (with default negations) P , where concepts and roles in L may act as predi-
cate symbols in P . However, differently from this paper, Rosati partitions the predicates
of L and P into description logic predicates and logic program predicates, where the
former are interpreted under the classical model-theoretic semantics, while the latter
are interpreted under the answer set semantics (and thus in particular default negations
of concepts and roles are not allowed in P). Furthermore, differently from this paper,
he also assumes a syntactic restriction on rules (called weak safeness) to gain decid-
ability, and he makes the standard names assumption, which includes the unique name
assumption. The approach of Heymans et al. [47] is very similar to Rosati’s. The main
differences are that on the one hand, the rules are interpreted under the open answer set
semantics [52], and on the other hand, different syntactic restrictions on rules are im-
posed, namely, instead of the ones in Rosati’s approach, solely the presence of a guard
in every non-free rule. A guard is an atom that contains all variables of a rule. The main
differences to Levy and Rousset’s integration of ontologies and rules in CARIN [44]
are that (i) we allow for disjunctions in rule heads and default negations in rule bodies,
while Levy and Rousset allow only for Horn clause rules, and that (ii) our integration
of ontologies and rules is developed from the perspective of logic programming, using
ontological knowledge as constraints on models of logics programs, while their inte-
gration of ontologies and rules is developed from the perspective of description logics,
adding rules to a description knowledge base. As a consequence, we easily gain decid-
ability in the general case, while their formalism is undecidable in general. In the case
without disjunctions in rule heads and default negations in rule bodies, our approach
corresponds to adding the grounding of all rules to a description logic knowledge base
(cf. Section 3.3), while Levy and Rousset’s one essentially corresponds to adding a first-
order rewriting of all rules to the description logic knowledge base. Another difference
is that Levy and Rousset make the unique name assumption, while we do not.

Tightly Coupled Probabilistic Description Logic Programs 123

9.2 Probabilistic Description Logic Programs

It is important to point out that the probabilistic description logic programs here are
very different from the ones in [17] (and their recent tractable variant in [18]). First,
they are based on the tight integration between the ontology component L and the rule
component P of [10], while the ones in [17,18] realize the loose query-based inte-
gration between the ontology component L and the rule component P of [8]. This
implies in particular that the vocabularies of L and P here may have common ele-
ments (see also Example 3.1), while the vocabularies of L and P in [17,18] are nec-
essarily disjoint. Furthermore, the probabilistic description logic programs here behave
semantically very differently from the ones in [17,18] (see Example 3.5). As a con-
sequence, the probabilistic description logic programs here are especially useful for
sophisticated probabilistic reasoning tasks involving ontologies (including representing
and reasoning with ontology mappings under probabilistic uncertainty and inconsis-
tency, as well as probabilistic reasoning about actions involving ontologies), while the
ones in [17,18] can especially be used as query interfaces to Web databases (includ-
ing RDF theories). Second, differently from the programs here, the ones in [17,18] do
not allow for disjunctions in rule heads. Third, differently from here, the works [17,18]
do not explore the use of probabilistic description logic programs for representing and
reasoning with ontology mappings under probabilistic uncertainty and inconsistency,
and their use for probabilistic reasoning about actions involving ontologies.

9.3 Representing Ontology Mappings

There are several languages for representing mappings between ontologies [21,22].
However, all of them, except for Bayesian description logic programs (BDLPs) [22]
represent mappings deterministically. Compared to tightly coupled probabilistic dl-
programs, BDLPs suffer from a rather low expressivity, since they are based on a
probabilistic extension of a subset of the description logic variants underlying OWL,
namely, the description logic programs (DLPs) by Grosof et al. [45]. It is important
to point out that the description logic programs of [45] are different from the descrip-
tion logic programs of [8], which have been extended with probabilities in [17,18].
The former correspond to definite clause logic with several further restrictions, which
is essentially the intersection of the description logic behind OWL and logic program-
ming, while the latter consists of a knowledge base L in the description logic behind
OWL and of a logic program P with negation under the answer set semantics (cf. also
Section 9.2).

Using BDLPs, only ontologies with a very restricted expressiveness can be mapped.
Note that for reasoning with ontologies in DLPs and mappings expressed in BDLPs,
the ontologies need to be translated into logic programming syntax. Concerning the re-
quirements that we impose on a mapping language as mentioned in Section 5.1, BDLPs
provide a tight integration of mapping and ontology language only for ontologies lying
in DLPs. The requirement support for mappings refinement can be partly fulfilled, since
it is possible to add further positive conjuncts in the body of a rule. Support for repairing
inconsistencies is also rather limited by BDLPs, because disjunctions are disallowed in
rule heads. However, by means of the probabilities attached to each rule, inconsisten-
cies may be resolved probabilistically. Representation and combination of confidence

124 A. Calı̀ et al.

is possible with BDLPs as shown in [22]. The requirement decidability and efficiency
of instance reasoning is also fulfilled by BDLPs due to the restricted expressiveness of
BDLPs and due to the fact that BDLPs are a probabilistic rule language. Rule languages
can deal with reasoning tasks like instance retrieval much more efficiently. This holds
especially if the TBoxes are small and the ABoxes big [53].

There are probabilistic extensions of different Web languages that are conceivable
to be used as mapping languages in the context of ontology mapping [54]. Examples
of such probabilistic extensions are probabilistic extensions of description logics like
P-CLASSIC, which is a probabilistic extension of CLASSIC [55], PR-OWL, which is
an ontology language that describes multi-entity Bayesian networks [16], BayesOWL,
which provides a probabilistic extension of a subset of OWL [56], and P-SHOQ(D),
which is a probabilistic extension of SHOQ(D) [13] (see also P-SHIF(D) and P-
SHOIN (D) in [14]). P-CLASSIC and BayesOWL have the disadvantage of a too low
expressivity. PR-OWL does not provide a tight formal integration between ontologies
and the probabilistic model that they describe. Although P-SHOQ is quite expres-
sive and provides a tight integration between the description logic and the probabilis-
tic model, it does not have a rule component and cannot solve the instance retrieval
reasoning task efficiently compared to rule languages. Probabilistic extensions of rule
languages for the Web besides the already mentioned BDLPS are also pOWLLite− and
pOWLLiteEQ [57]. These two languages differ only by equality, which is disallowed
in pOWLLite−. Both support also only the description logic programming fragment
(possibly enriched with equality) that is supported by BDLPs and thus have the same
expressivity drawback. Note that except for BDLPs, none of these languages have been
considered for an application in the area of ontology mappings.

9.4 Reasoning about Actions Involving Ontologies

One of the earliest works on combining reasoning about actions with ontologies is due
to De Giacomo et al. [58], who exploit the correspondence between propositional dy-
namic logics and description logics to develop a formalism for reasoning about actions
based on description logics, and who implement it on a robotic soccer team. Recent
work by Iocchi et al. [59] extends this action formalism by sensing under qualitative
and probabilistic uncertainty. Other recent works by Baader et al. [60], Milicic [61],
and Drescher and Thielscher [62] also use description logics for developing formalisms
for reasoning about actions. The main conceptual difference between our formalism
and all the above approaches is that we use ontologies as a background theory to fur-
ther constrain action descriptions, guided by the idea of exploiting existing ontologies
in reasoning about actions, while they perform a reduction of action formalisms to on-
tologies, guided by the idea of developing decidable formalisms for reasoning about
actions, related to existing ones like the situation calculus and the fluent calculus.

10 Conclusion

We have presented tightly coupled probabilistic (disjunctive) dl-programs under the
answer set semantics, which are a tight combination of disjunctive logic programs
under the answer set semantics, description logics, and Bayesian probabilities. We have

Tightly Coupled Probabilistic Description Logic Programs 125

described applications in representing and reasoning with ontology mappings and in
probabilistic reasoning about actions involving ontologies. We have shown that consis-
tency checking and query processing in tightly coupled probabilistic dl-programs are
decidable and computable, respectively, and that they can be reduced to their classical
counterparts in tightly coupled disjunctive dl-programs. We have also given an anytime
algorithm for query processing, and we have analyzed the complexity of consistency
checking and query processing. Furthermore, we have delineated a special case of these
problems that can be solved in polynomial time in the data complexity.

As for representing ontology mappings, the new formalism supports the resolution
of inconsistencies on a symbolic and a numeric level. While the use of disjunction and
nonmonotonic negation allows the rewriting of inconsistent rules, the probabilistic ex-
tension of the language allows us to explicitly represent numeric confidence values as
error probabilities, to resolve inconsistencies by using trust probabilities, and to reason
about these on a numeric level. While being expressive and well-integrated with de-
scription logic ontologies, the new formalism is still decidable and has data-tractable
subsets, which make it particularly interesting for practical applications.

We leave for future work the implementation of tightly coupled probabilistic
dl-programs. Another interesting topic for future work is to explore whether the tractabil-
ity results can be extended to an even larger class of tightly coupled probabilistic dl-
programs. One way to achieve this could be to approximate the answer set semantics
through the well-founded semantics (which may be defined similarly as in [18]). Fur-
thermore, it would be interesting to investigate whether one can develop an efficient top-
k query technique for the presented tightly coupled probabilistic dl-programs: Rather
than computing the tight probability interval for a given ground conditional event, such
a technique returns the k most probable ground instances of a given non-ground atom.

Acknowledgments. Andrea Calı̀ has been supported by the Engineering and Physical
Sciences Research Council (EPSRC) under the project “Schema Mappings and Auto-
mated Services for Data Integration and Exchange” (EP/E010865/1) and by the Euro-
pean Union under the STREP FET project TONES (FP6-7603). Thomas Lukasiewicz
has been supported by the German Research Foundation (DFG) under the Heisenberg
Programme and by the Austrian Science Fund (FWF) under the project P18146-N04.
Heiner Stuckenschmidt and Livia Predoiu have been supported by an Emmy-Noether
Grant of the German Research Foundation (DFG). We thank the reviewers of this paper
for their constructive and useful comments, which helped to improve this work.

References

1. Calı̀, A., Lukasiewicz, T.: Tightly integrated probabilistic description logic programs for the
semantic web. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 428–429.
Springer, Heidelberg (2007)

2. Calı̀, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: A framework for representing on-
tology mappings under probabilities and inconsistency. In: Proceedings URSW 2007. CEUR
Workshop Proceedings, vol. 327 (2008) CEUR-WS.org

3. Calı̀, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilis-
tic description logic programs for representing ontology mappings. In: Hartmann, S., Kern-
Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 178–198. Springer, Heidelberg (2008)

126 A. Calı̀ et al.

4. Berners-Lee, T.: Weaving the Web. Harper, San Francisco (1999)
5. Fensel, D., Wahlster, W., Lieberman, H., Hendler, J. (eds.): Spinning the Semantic Web:

Bringing the World Wide Web to Its Full Potential. MIT Press, Cambridge (2002)
6. W3C: OWL Web Ontology Language Overview (2004) W3C Recommendation (February

10, 2004), http://www.w3.org/TR/2004/REC-owl-features-20040210/
7. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfia-

bility. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
17–29. Springer, Heidelberg (2003)

8. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming
with description logics for the Semantic Web. In: Proceedings KR 2004, pp. 141–151. AAAI
Press, Menlo Park (2004)

9. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the Semantic Web. Artif. Intell. 172(12/13), 1495–
1539 (2008)

10. Lukasiewicz, T.: A novel combination of answer set programming with description logics for
the semantic web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 384–398. Springer, Heidelberg (2007)

11. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and logic programming live to-
gether happily ever after? In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 501–514.
Springer, Heidelberg (2006)

12. Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Van Nieuwenborgh, D.: Guarded hybrid
knowledge bases (2007)

13. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A probabilistic extension of SHOQ(D) for
probabilistic ontologies in the semantic web. In: Flesca, S., Greco, S., Leone, N., Ianni, G.
(eds.) JELIA 2002. LNCS, vol. 2424, pp. 86–97. Springer, Heidelberg (2002)

14. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6/7), 852–883
(2008)

15. da Costa, P.C.G.: Bayesian Semantics for the Semantic Web. PhD thesis, George Mason
University, Fairfax, VA, USA (2005)

16. da Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for probabilistic ontologies. In: Pro-
ceedings FOIS 2006, pp. 237–249. IOS Press, Amsterdam (2006)

17. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reasoning 45(2),
288–307 (2007)

18. Lukasiewicz, T.: Tractable probabilistic description logic programs. In: Prade, H., Subrah-
manian, V.S. (eds.) SUM 2007. LNCS, vol. 4772, pp. 143–156. Springer, Heidelberg (2007)

19. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty.
Artif. Intell. 94(1/2), 7–56 (1997)

20. Finzi, A., Lukasiewicz, T.: Structure-based causes and explanations in the independent
choice logic. In: Proceedings UAI 2003, pp. 225–232. Morgan Kaufmann, San Francisco
(2003)

21. Serafini, L., Stuckenschmidt, H., Wache, H.: A formal investigation of mapping language
for terminological knowledge. In: Proceedings IJCAI 2005, Professional Book Center, pp.
576–581 (2005)

22. Predoiu, L., Stuckenschmidt, H.: A probabilistic framework for information integration and
retrieval on the Semantic Web. In: Proceedings InterDB 2007 Workshop on Database Inter-
operability (2007)

23. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)

Tightly Coupled Probabilistic Description Logic Programs 127

24. Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Svab, O., Svatek, V., van Hage,
W.R., Yatskevich, M.: First results of the ontology alignment evaluation initiative 2006. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

25. Euzenat, J., Stuckenschmidt, H., Yatskevich, M.: Introduction to the ontology alignment eval-
uation, In: Proceedings K-CAP 2005 Workshop on Integrating Ontologies (2005)

26. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics.
In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp.
161–180. Springer, Heidelberg (1999)

27. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Se-
mantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp.
200–212. Springer, Heidelberg (2004)

28. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991)

29. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artif. Intell. 64(1), 81–129
(1993)

30. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Francisco (1988)

31. Frisch, A.M., Haddawy, P.: Anytime deduction for probabilistic logic. Artif. Intell. 69(1/2),
93–122 (1994)

32. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall,
San Francisco (2002)

33. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In: Proceed-
ings AAAI 2007, pp. 1408–1413. AAAI Press, Menlo Park (2007)

34. Wang, P., Xu, B.: Debugging ontology mapping: A static method. Computing and Informat-
ics 27(1), 21–36 (2008)

35. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent Sys-
tems 16(2), 46–53 (2001)

36. McIlraith, S.A., Son, T.C.: Adapting Golog for composition of Semantic Web Services. In:
Proceedings KR 2002, pp. 482–496. Morgan Kaufmann, San Francisco (2002)

37. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of Web
Services. In: Proceedings WWW 2002, pp. 77–88. ACM Press, New York (2002)

38. McIlraith, S.A., Martin, D.L.: Bringing semantics to Web Services. IEEE Intelligent Sys-
tems 18(1), 90–93 (2003)

39. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of Artificial In-
telligence. In: Machine Intelligence, vol. 4, pp. 463–502. Edinburgh University Press (1969)

40. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-
namical Systems. MIT Press, Cambridge (2001)

41. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic programming
language for dynamic domains. J. Logic Program. 31(1–3), 59–84 (1997)

42. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable
description logics for ontologies. In: Proceedings AAAI 2005, pp. 602–607. AAAI Press
MIT Press (2005)

43. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and de-
scription logics. J. Intell. Inf. Syst. 10(3), 227–252 (1998)

44. Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN. Artif.
Intell. 104(1/2), 165–209 (1998)

45. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining
logic programs with description logics. In: Proceedings WWW 2003, pp. 48–57. ACM Press,
New York (2003)

128 A. Calı̀ et al.

46. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. J. Web Sem. 3(1),
41–60 (2005)

47. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Nonmonotonic ontological and rule-based
reasoning with extended conceptual logic programs. In: Gómez-Pérez, A., Euzenat, J. (eds.)
ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer, Heidelberg (2005)

48. Rosati, R.: On the decidability and complexity of integrating ontologies and rules. J. Web
Sem. 3(1), 61–73 (2005)

49. Rosati, R.:DL+log: Tight integration of description logics and disjunctive Datalog. In: Pro-
ceedings KR 2006, pp. 68–78. AAAI Press, Menlo Park (2006)

50. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web rule language combining OWL and RuleML, W3C Member Submission (May
2004), http://www.w3.org/Submission/SWRL/

51. Angele, J., Boley, H., de Bruijn, J., Fensel, D., Hitzler, P., Kifer, M., Krummenacher, R.,
Lausen, H., Polleres, A., Studer, R.: Web Rule Language (WRL), W3C Member Submission
(September 2005), http://www.w3.org/Submission/WRL/

52. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Guarded open answer set programming.
In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp.
92–104. Springer, Heidelberg (2005)

53. Motik, B., Sattler, U.: A comparison of reasoning techniques for querying large description
logic aBoxes. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 227–
241. Springer, Heidelberg (2006)

54. Predoiu, L., Stuckenschmidt, H.: Probabilistic extensions of Semantic Web languages —
a survey. In: The Semantic Web for Knowledge and Data Management: Technologies and
Practices. Idea Group (to appear)

55. Koller, D., Levy, A.Y., Pfeffer, A.: P-CLASSIC: A tractable probabilistic description logic.
In: Proceedings AAAI 2007, pp. 390–397. AAAI Press, Menlo Park (1997)

56. Ding, Z., Peng, Y., Pan, R.: BayesOWL: Uncertainty modeling in Semantic Web ontologies.
In: Soft Computing in Ontologies and Semantic Web, pp. 3–28. Springer, Heidelberg (2006)

57. Nottelmann, H., Fuhr, N.: Adding probabilities and rules to OWL Lite subsets based on
probabilistic Datalog. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 14(1), 17–42 (2006)

58. De Giacomo, G., Iocchi, L., Nardi, D., Rosati, R.: Moving a robot: The KR&R approach at
work. In: Proceedings KR 1996, pp. 198–209. Morgan Kaufmann, San Francisco (1996)

59. Iocchi, L., Lukasiewicz, T., Nardi, D., Rosati, R.: Reasoning about actions with sensing under
qualitative and probabilistic uncertainty. ACM Trans. Computat. Logic (in press)

60. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description logics and
action formalisms: First results. In: Proceedings AAAI 2005, pp. 572–577. AAAI Press/
MIT Press (2005)

61. Milicic, M.: Planning in action formalisms based on DLs: First results. In: Proceedings DL
2007. CEUR Workshop Proceedings, vol. 250 (2007) CEUR-WS.org

62. Drescher, C., Thielscher, M.: Integrating action calculi and description logics. In: Hertzberg,
J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS, vol. 4667, pp. 68–83. Springer, Heidelberg
(2007)

Appendix A: Proofs

Proof of Theorem 7.1. Recall first that KB is consistent iff KB has an answer set Pr ,
which is a probabilistic interpretation Pr such that (i) every interpretation I ⊆HBΦ

Tightly Coupled Probabilistic Description Logic Programs 129

with Pr(I)> 0 is an answer set of the disjunctive dl-program (L,P ∪ {p← | p∈B})
for some total choiceB of C, and (ii) Pr(

∧
p∈B p)=μ(B) for each total choiceB of C.

(⇒) Suppose that KB is consistent. We now show that the disjunctive dl-program
(L,P ∪ {p ← | p∈B}) is consistent, for every total choice B of C with μ(B)> 0.
Towards a contradiction, suppose the contrary. That is, (L,P ∪ {p ←| p∈B}) is
not consistent for some total choice B of C with μ(B)> 0. It thus follows that
Pr(

∧
p∈B p)= 0. But this contradicts Pr(

∧
p∈B p)=μ(B)> 0. This shows that (L,P∪

{p←| p∈B}) is consistent, for every total choice B of C with μ(B)> 0.
(⇐) Suppose that the disjunctive dl-program (L,P ∪ {p← | p∈B}) is consistent,

for every total choice B of C with μ(B)> 0. That is, there exists some answer set IB
of (L,P ∪ {p← | p∈B}), for every total choice B of C with μ(B)> 0. Let the prob-
abilistic interpretation Pr be defined by Pr (IB)=μ(B) for every total choice B of C
with μ(B)> 0 and by Pr(I)= 0 for all other I ⊆HBΦ. Then, Pr is an interpretation
that satisfies (i) and (ii). That is, Pr is an answer set of KB . Thus, KB is consistent. �

Proof of Theorem 7.2. The statement of the theorem is immediate for the three cases
where b=0 or c=0, since b=0 (resp., c= 0) iff Pr (α∧β)= 0 (resp., Pr (α∧¬β)= 0)
for all models Pr of KB . Thus, in the following, suppose b �=0 and c �=0. Observe first
that the probabilityμ(B) of all total choicesB of C such that δ is true in all (resp., some)
answer sets of the disjunctive dl-program (L,P ∪ {p←| p∈B}) definitely contributes
(resp., “can be made to” contribute) to the probability Pr(δ). As for the lower bound,
every μ(B) of all total choices B of C such that α ∧ β is true in all answer sets of
(L,P ∪{p←| p∈B}) definitely contributes to both Pr (α∧β) and Pr (α). Hence, we
obtain the smallest value of Pr(α∧β) /Pr (α) = Pr(α∧β) / (Pr (α∧β)+Pr (α∧¬β)),
if we additionally take the probabilitiesμ(B) of all total choicesB of C such that α∧¬β
is true in some answer sets of (L,P ∪ {p ←| p∈B}) and make them contribute to
Pr(α). Similarly, as for the upper bound, every μ(B) of all total choices B of C such
that α ∧ ¬β is true in all answer sets of (L,P ∪ {p ←| p∈B}) definitely does not
contribute to Pr(α ∧ β) but contributes to Pr(α). Thus, we obtain the largest value
of Pr(α ∧ β) /Pr(α) = Pr(α ∧ β) / (Pr(α ∧ β) + Pr(α ∧ ¬β)) if we additionally
take the μ(B)’s of all total choices B of C such that α ∧ β is true in some answer sets
of (L,P ∪ {p←| p∈B}) and make them contribute to both Pr (α ∧ β) and Pr(α). �

Proof of Theorem 7.3. Since the number of all total choices B of C is finite, Algo-
rithm tight answer always terminates. Let a′, b′, c′, d′, i′, and v′ be the final values
of the variables a, b, c, d, i, and v, respectively. If v′ = 0, then the algorithm has
processed all the total choices B of C with μ(B)> 0. Hence, in this case, by Theo-
rem 7.2, the algorithm returns the exact tight answer for Q to KB . Suppose now v′> 0
(and thus i′ � k, b′ �=0, and c′ �= 0). Then, the returned lower and upper bounds are
given by l′ = a′

a′+c′ � a′+v′
a′+c′ and u′ = b′

b′+d′ � b′+v′
b′+d′ , respectively. Furthermore, the exact

tight lower and upper bounds l and u are of the form l′ � l= a′+va

a′+va+c′−vc
� a′+v′

a′+c′ and

u′ �u= b′+vb

b′+vb+d′−vd
� b′+v′

b′+d′ , respectively. So, |l− l′|+ |u−u′|� v′
a′+c′ + v′

b′+d′ � ε. �

Proof of Theorem 7.4. Immediate by the proof of Theorem 7.3. �

Proof of Theorem 7.5. We first show membership in NEXPNP. By Theorem 7.1, we
check whether the disjunctive dl-program (L,P ∪ {p ←| p∈B}) is consistent, for

130 A. Calı̀ et al.

every total choice B of C with μ(B)> 0. Observe then that the number of all total
choicesB of C with μ(B)> 0 is exponential in the size of C. As shown in [10], deciding
whether a disjunctive dl-program has an answer set is in NEXPNP. In summary, this
shows that deciding whether KB is consistent is in NEXPNP.

Hardness for NEXPNP follows from the NEXPNP-hardness of deciding whether a
disjunctive dl-program has an answer set [10], since by Theorem 7.1 a disjunctive dl-
program KB =(L,P) has an answer set iff the probabilistic dl-program KB =(L,P,
C, μ) has an answer set, for the choice space C= {{a}}, the probability function μ(a) =
1, and any ground atom a∈HBΦ that does not occur in ground(P). �

Proof of Theorem 7.6. We first show membership in co-NEXPNP. We show that
deciding whether (β|α)[l, u] is not a consequence of KB under the answer set se-
mantics is in NEXPNP. Observe that (β|α)[l, u] is not a consequence of KB un-
der the answer set semantics iff there are sets Bβ∧α and Bβ∧¬α of total choices
B of C with μ(B)> 0 such that either (a.1) β ∧ α is true in some answer set of
(L,P ∪ {p ←| p∈B}), for every B ∈Bβ∧α, (a.2) β ∧ ¬α is false in some answer
set of (L,P ∪ {p ←| p∈B}), for every B ∈Bβ∧¬α, and (a.3) b>u · (b + d), where
b=

∑
B∈Bβ∧α

μ(B) and d=1 −
∑

B∈Bβ∧¬α
μ(B), or (b.1) β ∧ α is false in some an-

swer set of (L,P ∪ {p←| p∈B}), for every B ∈Bβ∧α, (a.2) β ∧ ¬α is true in some
answer set of (L,P ∪ {p←| p∈B}), for every B ∈Bβ∧¬α, and (a.3) a> l · (a + c),
where a=1−

∑
B∈Bβ∧α

μ(B) and c=
∑

B∈Bβ∧¬α
μ(B). Since the number of all total

choicesB of C with μ(B)> 0 is exponential in the size of C, guessing Bβ∧α and Bβ∧¬α

can be done in nondeterministic exponential time. As shown in [10], deciding whether
β ∧α or β ∧¬α is true or false in some answer set of a disjunctive dl-program is in
NEXPNP. In summary, guessing the sets Bβ∧α and Bβ∧¬α, and verifying that either
(a.1)–(a.3) or (b.1)–(b.3) hold is in NEXPNP. Hence, deciding whether (β|α)[l, u] is
not a consequence of KB under the answer set semantics is in NEXPNP. It thus fol-
lows that deciding whether (β|α)[l, u] is a consequence of KB under the answer set
semantics is in co-NEXPNP.

Hardness for co-NEXPNP follows from the co-NEXPNP-hardness of deciding
whether a ground atom q is true in all answer sets of a disjunctive dl-program [10],
since by Theorem 7.2 a ground atom q is true in all answer sets of a disjunctive dl-
program KB = (L,P) iff (q)[1, 1] is a consequence of the probabilistic dl-program
KB = (L,P, C, μ) under the answer set semantics, for the choice space C= {{a}}, the
probability function μ(a)= 1, and any a∈HBΦ that does not occur in ground(P). �

Proof of Theorem 8.2. As shown in [10], deciding the existence of (and computing)
the answer set of a stratified normal dl-program (L,P) withL in DL-Lite can be done in
polynomial time in the data complexity. Notice then that in the case of data complexity,
the choice space C (and so the set of all its total choices) is fixed. By Theorems 7.1 and
7.2, it thus follows that the problems of (a) deciding whether KB has an answer set, and
(b) computing the reals l, u∈ [0, 1] for a given ground conditional event β|α such that
KB ‖∼ tight (β|α)[l, u] can both be done in polynomial time in the data complexity. �

Intensional First-Order Logic for P2P Database Systems

Zoran Majkić

ETF, Applied Mathematics Department
University of Belgrade, Serbia
majkic@etf.bg.ac.yu

http://www.geocities.com/zoran it/

Abstract. The meaning of concepts and views defined over a database ontology
can be considered as intensional objects which have a particular extension in a
given possible world: for instance in the actual world. Thus, non invasive map-
ping between completely independent peer databases in a P2P systems can be
naturally specified by the set of couples of views, which have the same meaning
(intension), over two different peers. Such a kind of mapping has very different
semantics from standard view-based mappings based on material implication,
commonly used for Data Integration Systems. The introduction of an intensional
equivalence generates the quotient intensional FOL fundamental for a query an-
swering in P2P systems. In this paper we introduce this formal intensional FOL
by fusing Bealer’s intensional algebraic FOL with a possible-world semantics of
the Montague’s FOL modal approach to natural language. We modify the Bealer’s
intensional algebra in order to deal with relational databases and views, by intro-
ducing the join operation of relational algebra. Then we adopt the S5 Kripke
frame in order to define an intensional equivalence relation between views for
peer databases. Finally, we define an embedding of P2P database system into this
quotient intensional FOL, and the computing of its extensionalization mapping
in the actual Montague’s world.

1 Introduction

Ontologies play a prominent role on the Semantic Web. An ontology specifies a concep-
tualization of a domain in terms of concepts, attributes and relations. A key challenge
in building the Semantic Web is finding semantic mappings among the ontologies (rela-
tional schemas of peer databases). Given the de-centralized nature of the development
of the Semantic Web, there will be an explosion in the number of ontologies. Many
of these ontologies will describe similar domains, but using different terminologies,
and others will have overlapping domains. To integrate data from disparate ontologies,
we must know the semantic correspondence between their elements [1]. Recently a
number of different architecture solutions have been introduced [2,3,4,5,6,7].

The first seminal work which introduces autoepistemic semantics for P2P databases,
based on known (i.e. certain) answers from peers is presented by Lenzerini and the au-
thor in [8], successively compared to Franconi’s approach in [9]. This modal logic
framework for P2P database systems guarantees also the decidability for query an-
swering, non supported by first-order semantics. This autoepistemic semantics for peer
databases can be used as an example for the foundation of a sound and complete imple-
mentation of a query answering mechanism for a single peer database. The intensional

S. Spaccapietra (Ed.): Journal on Data Semantics XII, LNCS 5480, pp. 131–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

132 Z. Majkić

logic for inter-peer mappings, instead, extends this peer database semantics into the
whole P2P system query-answering semantics. This is the principal issue of this work.

Contemporary use of the term ’intension’ derives from the traditional logical doc-
trine that an idea has both an extension and an intension. Although there is divergence
in its formulation, it is accepted that the extension of an idea (or concept) consists of the
subjects to which the idea applies, and the intension consists of the attributes implied
by the idea. The intension is the concept expressed by the expression, and the extension
is the set of items to which the expression applies. This usage resembles Frege’s use of
’Bedeutung’ and ’Sinn’. Intensional entities are such things as concepts, propositions
and properties. What make them ’intensional’ is that they violate the principle of ex-
tensionality; the principle that extensional equivalence implies identity. All (or most) of
these intensional entities have been classified at one time or another as kinds of Univer-
sals [10]. We adopt the non-reductionist approaches [11] and we will show how they
correspond to possible world semantics.

The fundamental entities are intensional abstracts or so called, ’that’-clauses. We
assume that they are singular terms; Intensional expressions like ’believe’, ’mean’, ’as-
sert’, ’know’, are standard two-place predicates that take ’that’-clauses as arguments.
Expressions like ’is necessary’, ’is true’, and ’is possible’ are one-place predicates that
take ’that’-clauses as arguments. For example, in the intensional sentence “it is neces-
sary that A”, where A is a proposition, the ’that A’ is denoted by the �A�, where � �

is the intensional abstraction operator which transforms a logic formula into a term.
So that the sentence ”it is necessary that A” is expressed by the logic atom N(�A�),
where N is the unary predicate ’is necessary’. In this way we are able to avoid having
higher-order syntax for our intensional logic language (predicates appear in variable
places of other predicates),as, for example HiLog [12] where the same symbol may
denote a predicate, a function, or an atomic formula.

In what follows we abbreviate A⇒ B ∧B ⇒ A by A ≡ B.

Comparative analysis. We are able to individuate at least two extreme scenarios for
inter-peer mappings presented in the literature developed from the initial article [8]
followed in Lenzerini’s approach for Data Integration Systems: strongly-coupled and
weakly-coupled P2P database systems. Let us consider two different peer databases,
Pi, Pk , named John and Peter, with Ki,Kk their “know” operators respectively.

We consider a view definition qk(x) as a conjunctive query, with a tuple of variables
in x, head(qk) ← body(qk) where body(qk) is a sequence b1, b2, ..., bm, where
each bj is an atom over a global relation name of a peer Pi. In what follows we will
consider a view as a virtual predicate with a tuple x of free variables in the head of
a query. Let qPi(x) and qPk

(x) be a two views (conjunctive queries) over Pi and Pj

respectively, which represent the same concept “Italian art in the 15’th century” for
their local knowledge. Then these two approaches may be paraphrased by:

1. The ’strong’ (extensional) Global or Local As View (GLAV) mapping which directly
extends the data-integration paradigm used for a single peer, for P2P systems [13] also.
It may be paraphrased, for example, by an imperative sentence ’John must know all the
facts about ”Italian art in the 15’th century” known by Peter’.

This extensional multi-modal mapping has been introduced in [6] by the formula
KiqPi(x) ⇒ KkqPk

(x), where ′ ⇒′ is the standard (material) logic implication. It

Intensional First-Order Logic for P2P Database Systems 133

uses a single S5 modality [9,7], and recently adopted, a K45 multi-modality [14]. With
such a mapping the local knowledge of Pk is not independent from the local knowledge
of other peers. The implication between concepts of these two peers will cause that the
facts known by Pi about this concept will be imposed as the local knowledge of Pk

(must be true for Pk also when such facts do not exist in its local knowledge), with the
consequence that such forcing can make the knowledge of Pk inconsistent.
2. The ’weak’ (intensional) mapping, may be paraphrased by a belief -sentence ’John
believes that Peter also knows something about ”Italian art in the 15’th century”’.
Such a mapping is weaker than internal extensional GLAV mappings of a peer, so that
it grantees the independence of peer individuality also in the presence of mappings
between peers. With such mappings we may distinguish the answers of a peer ’John’
from answers of ’Peter’, i.e., we may distinguish the local independent answer of each
peer. This intensional mapping is defined by the ”formula” KiqPi(x) ≈in KkqPk

(x),
where ′ ≈′

in is the informal symbol for the intensional equivalence [15,6,16,17,18],
and formally in Definition 6 by the logic modal formula ♦qPi(x) ≡ ♦qPk

(x) of the
intensional FOL introduced in this paper. This mapping tells only that these two peers
have the knowledge about the same concept, without any constraint for extensions of
this concept in these two peers respectively.

The motivation for the second approach, adopted in this paper, is the following: The
logic implications used in order to impose the strong semantic relationships between
peer ontologies, based on GLAV mappings, are much too constrictive. Internal peer
mapping and external mapping between peers have the same (extensional) expressive
(GLAV) power, so that peer individuality is completely destroyed.

Example 1. Let us consider strong mapping, used in [7], with KiqPi(x1, x2) ⇒
KkqPk

(x1, x2), KjqPj (x1, x2) ⇒ KkqPk
(x1, x2), with local knowledge

KiqPi(c1, c2) and KjqPj (c1, c3) of peers Pi, Pj respectively, with c2 �= c3, and with
the key-constraint for the attribute x1 in the data schema of the third peer Pk. Then
both ”imported” facts for Pk, KkqPk

(c1, c3) and KkqPk
(c1, c2) have to be true making

its logic inconsistent, independently of its local knowledge! Moreover, the query agent
must know instantly the knowledge of all peers in order to be able to know the exten-
sion of local knowledge of a single peer: it reassembles a kind of global and centrally
controlled knowledge (the centralized controlled knowledge for all peers in the network
must exist). If we consider thousands of dynamically modified peers, each of them with
millions of local facts, we can understand that this query-agent has to have a practically
impossible capacity of memory and elaboration. Consequently it is not possible to map
peers into a grid for parallel query computation of each independent peer answer.

All these problems are avoided in the second, weak, approach, where a query agent
will consider only one peer at time and will use inter-peer mappings only in order to
move to another peers which have some knowledge about the user query [19,20]. �
The detailed differences between these two approaches above can be found also in the
recent article in the Special issue on Emergent Semantics [15]. So, we will expose only
the comparative analysis with this last, and presumably most recent, article.

What we argue is the full epistemic independency of peer databases (where there is
not any imposition of local knowledge of one peer into the local knowledge of some

134 Z. Majkić

other peer). The peers can change their ontology and/or extension of their knowledge
independently and without any communication to other peers. In this way we intend
to obtain very robust P2P systems, able to answer to user queries also when intended
mappings between peers do not correspond the modified ontologies (relational database
schemas) of peers. We are able also to naturally map P2P database systems into the grid
computation. In fact, having fully independent peers it is enough now to associate each
pair (peer, query formulae) to a particular resource of grid computing, in order to obtain
a known answer from such a peer.

In the paper [15] such a framework has been defined for the P2P database systems
and semantics for intensional equivalence based on Montague’s modal semantics for
natural languages. But, this definition is not part of the logic framework for the query
answering in a P2P system. It is instead considered as a part of a sound algebraic query
rewriting algorithm only, and is used as a functional mean in order to define the global
semantics for the standard extensional FOL of a P2P semantics.

The full, complete logic integration of the intensional equivalence for a query an-
swering in P2P systems needed the definition of the new intensional FOL. The for-
malization of non omniscient intensional contextual reasoning for query-agents in P2P
systems within this logic framework can be found in [19].

The main motivation for this paper is to provide clear semantics for P2P database
systems with weak mapping between peers. We intend to provide a clear mathemati-
cal framework for its query answering computation which, successively, can be imple-
mented by a massive grid computing framework.

The main contributions in this paper are the following: We define a two-level modal
logic framework for P2P database systems. At the higher level we define the Intensional
S5 modal FOL with the intensional identity, extended by the new intensional equiva-
lence which can be used for inter-peer mappings. The extensionalization function of the
intensional FOL for a P2P system, in the actual world, is modeled by the lower, ”com-
putational” level. This level is represented as an extensional (standard) multi-modal
logic where the set of worlds is the union of preferred subsets of minimal Herbrand
models of each peer database. We extend the epistemic modal logic semantics of peers
into the whole (global) P2P system, and we provide a formal definition for the global
P2P epistemic modal operatorK (”know”).

The Plan. After a brief preliminary for P2P systems, in Section 2 we introduce a syntax
for an intensional FOL with intensional abstraction operator. We combine the work
developed by Bealer on intensional algebra and the framework of Montague modal
logic based on possible worlds, in order to define formally the intensional equivalence
between logic formulae.

In Section 3 we present an embedding of a P2P system into this intensional logic in
order to obtain the higher level modal framework for P2P systems. Finally, in Section
4 we define the lower level modal framework, which models the extensionalization
function of this Intensional logic in the actual world, which is represented by the formal
semantics for extensional (standard) epistemic multi-modal P2P logic based on the P2P
mappings. We define a global P2P modal operator for query answering, based on sound
query rewriting algorithms, used to obtain the answers from intensionally equivalent
rewritten queries over peers of a P2P network.

Intensional First-Order Logic for P2P Database Systems 135

1.1 Technical Preliminaries: Peer-to-Peer Systems

In what follows we will consider reach ontology of peer databases, formally expressed
as a global schema of a Data Integration System (DIS). A DIS [21] is a triple
Ii = (Gi,Si,Mi), where Gi = (Oi, ΣTi) is a global schema, expressed in a language
LO over an alphabet AGi , ΣTi are the integrity constraints, Si is a source schema
and Mi is a set of mappings between a global relational database schema (ontology)
Oi and a source relational schema Si of data extracted by wrappers. In what follows
we will consider the case of Global-As-View (GAV) mappings between source and
global schema, with existential quantifiers also included (for mapping an incomplete
information from source to global schema). A DIS with constraints (for example, key-
constraints) can become a locally inconsistent w.r.t. data sources extracted by wrappers.
Such local inconsistences can be avoided by inconsistency repairing technics [22].

We assume that logical theory for a peer database (see for example [23]) has one or
more minimal 2-valued Herbrand models, one for each possible completion of incom-
plete Web information, or possible local inconsistency repairing. In practice we will
use the preferred Herbrand models only, corresponding to the subset of minimal incon-
sistency repairing [22]. Consequently the logic theory of a peer database is generally
non monotonic (in fact it has a cumulative non monotonic inference [24]). It is known
also that a global schema of DIS with key and foreign-key constraints can have also an
infinite canonical database with the Skolem constants [25].

We conceive a peer Pi as a software module, which encapsulates a DIS Ii. The in-
ternal structure of a peer database is hidden to users. It is encapsulated in the way that
only its logical relational schema Oi can be seen by users. A peer database is able to
respond to the union of conjunctive queries by known answers (true in all models of a
peer-database). Consequently, we consider that each peer database Pi is an independent
epistemic logic theory with incomplete information where all local inconsistencies are
repaired. Such a peer, for a given conjunctive query q(x) over its ontology, responds by
known answers (true in a preferred subset of all minimal Herbrand models of such the-
ory) only. More interested readers can see in [24] the kind of plausible query answering
for such a peer (DIS) with incomplete and inconsistent information in the framework
of classic 2-valued logic; the alternative solution for databases, with incomplete and lo-
cally inconsistent information, based on Autoepistemic bilattice-based logic program-
ming can be found in [26]. Thus, we consider that each peer Pi is an epistemic normal
modal logic theory, where the possible worlds are the preferred Herbrand models of a
peer database, with epistemic operator ”peer Pi knows”, Ki.

Notice that such epistemic semantics of peers is presented in [6] based on the hybrid
mono-modal language with a unique universal modal operator � [27], where Ki =
@i� . The modal operator, @, for this hybrid logic enables the ”retrieving” of worlds: a
formula of the form @iϕ is an instruction to move to the world labeled by the variable
i and evaluate ϕ there.

P2P Network Definition: Syntax [6]
In order to be able to share the knowledge with other peers Pj in the network N , each
peer Pi has also an export-interface moduleMij composed by groups of ordered pairs

136 Z. Majkić

of intensionally equivalent logical views (conjunctive queries over peer’s ontologies),
denoted by (qi, qj). In what follows we will consider only the intensional version for
P2P mapping based on considerations presented in [18].

Definition 1. The P2P network system N is composed by 2 ≤ N independent peers,
where each peer module Pi is defined as follows: Pi := 〈Oi, Mi〉, where
Mi =< Mi1, ...,MiN > is an interface tuple with Mij , 1 ≤ j ≤ N a (possibly
empty) interface to other peer Pj in the network, defined as a group of intensionally
equivalent query connections, denoted by (qij

1k, q
ij
2k) where qij

1k(x) is a conjunctive query
defined over Oi, while qij

2k(x) is a conjunctive query defined over the ontology Oj of
the connected peer Pj : Mij = {(qij

1k, q
ij
2k) | 1 ≤ k ≤| ij |},

and | ij | is the total number of query connections of the peer Pi toward a peer Pj .

Intuitively, when an user defines a conjunctive query over the ontologyOi of a peer Pi,
the intensionally equivalent concepts between this peer and other peers will be used in
order to obtain the answers from a P2P system.

They will be a ”bridge” which a query agent can use in order to rewrite the original
user query over a peer Pi into an intensionally equivalent query over a peer Pj .

The answers of other peers will be epistemically considered as possible answers
because the are based on the belief which peer Pi has about the knowledge of peer Pj .
This belief is formally represented by the supposition of a peer Pi that a pair of queries
(qij

1k, q
ij
2k) ∈ Mij is intensionally equivalent.

Example 2. Let us consider the P2P system in a Fig.1:

qj(x)

vjk

vj1vi1

vik

(vj1,..,vjk)

id2

qi (x)

id1

Peer
Pi

Peer
Pj

Ontology
Oi

Ontology
Oj

(vi1,..,vik) (vj1,..,vjk)

User

Pk

Fig. 1. Intensional mappings between peers

Let us consider a peer Pi, with an ontology Oi and an interface Mij =
{(vim, vjm) | 1 ≤ m ≤ k} toward a peer Pj , and a peer Pj with an ontologyOj .

Intensional First-Order Logic for P2P Database Systems 137

The query answering for a given user query can be obtained by the following step of
query-rewriting between two semantically interconnected peers. The idea is the follow-
ing: given a user query qi(x) over a peer Pi, a query agent will rewrite it (if it is possible)
into the identical query Ψ(vi1, ..., vik) over the set of views {vi1, ..., vik} of a peer Pi.
Then it will use the set of intensional equivalences (vim, vjm) ∈ Mij , 1 ≤ m ≤ k, in
order to obtain the intensionally equivalent query Ψ(vj1, ..., vjk) over the set of views
{vj1, ..., vjk} of a peer Pj . After that it will rewrite this query into the identical query
qj(x) over the ontologyOj of the peer Pj .

The known answers of both peers Pi, Pj to the queries qi(x) and qj(x) will constitute
the subset of the global P2P answer to the original user query. Another possible answer
to the same user query can be obtained by the similar method from the intensionally
equivalent queries over a peer Pk obtained by using the intensional mappings from Pi

to Pk and from Pj to Pk respectively.

2 Intensional FOL Language and Intensional Equivalence

In the First-order logic (FOL) with intensional abstraction we have more fine distinction
between an atom A and its use as a term ”that A”, denoted by �A� and considered as
intensional ”name”, inside some other predicate. For example, we may have the first-
order formula¬A∧P (t,�A�) instead of the syntactically second-order HiLog formula
¬A ∧ P (t, A) .

Definition 2. The syntax of the First-order Logic language with intensional abstraction
��, called Lω in [28], is as follows:

Logic operators (∧,¬, ∃); Predicate letters in P (functional letters are considered as a
particular case of predicate letters); Variables x, y, z, .. in V ar; Abstraction � �, and
punctuation symbols (comma, parenthesis). With the following simultaneous inductive
definition of term and formula:

1. All variables and constants (0-ary functional letters in P) are terms.
2. If t1, ..., tk are terms, then A(t1, ..., tk) is a formula (A ∈ P is a k-ary predicate
letter).
3. If A and B are formulae, then (A ∧B), ¬A, and (∃x)A are formulae.
4. If A is a formula and α =< x1, ..., xn >, is a sequence (tuple) of distinct variables
(a subset of free variables in A), then �A�α is a term. The externally quantifiable
variables are the free variables not in α. When n = 0, � A� is a term which denotes
a proposition, for n ≥ 1 it denotes a n-ary relation-in-intension.

An occurrence of a variable xi in a formula (or a term) is bound (free) iff it lies (does
not lie) within a formula of the form (∃xi)A (or a term of the form �A�x1...xi...xm). A
variable is free (bound) in a formula iff it has (does not have) a free occurrence in that
formula.

A sentence is a formula having no free variables. The binary predicate letter F 2
1 is

singled out as a distinguished logical predicate and formulae of the form F 2
1 (t1, t2) are

to be rewritten in the form t1 = t2. The logic operators ∀,∨,⇒ are defined in terms of
(∧,¬, ∃) in the usual way.

For example, ”x believes that A” is given by formulaB(x,�A�) (B is binary ’believe’
predicate), ”Being a bachelor is the same thing as being an unmarried man” is given

138 Z. Majkić

by identity of terms �B(x)�x = �U(x) ∧M(x)�x (with B for ’bachelor’, U for
’unmarried’, and M for ’man’, unary predicates).

Let A be any well-formed formula in FOL, and let x1, ..., xm be distinct variables,
where m ≥ 0. (It is possible to have free variables in A that are not among these
variables x1, ..., xm. Such variables can be externally quantified). Then �A�x1,...,xm

is a singular term whose semantics correlate is an intensional entity of degree m. If
m = 0, the semantics correlate of this singular term is the proposition that A; if m = 1,
the semantical correlate is the property of bing something x1 such that A; if m > 1,
then the semantical correlate is the relation among x1, ..., xm such that A.

Certain complex nominative expressions - namely, gerundive and infinitive phrases
- are best represented as singular terms of the sort provided by our generalized bracket
notation �A�x1,...,xm, where m ≥ 1. Lω differs from standard First Order Logic
(FOL) only in having these singular terms �A�x1,...,xm.

We will extend the intensional FOL language of Bealer, given in the introduction, by
Definition 2, by other operators for intensional entities. Thus, analogously to Boolean
algebras which are extensional models of propositional logic, we introduce an in-
tensional algebra as follows. We consider a non empty domain D = D−1

⋃
DI ,

where a subdomain D−1 is made of particulars (extensional entities), and the rest
DI = D0

⋃
D1...

⋃
Dn... is made of universals (D0 for propositions (the 0-ary

relation-in- intensions), and Dn, n ≥ 1, for n-ary relations-in-intension.

Definition 3. (SYNTAX): Intensional algebra is a structure
Algint = < D, conj, disj, impl, neg, pred, τ, f, t >, with binary operations
conj : DI ×DI → DI , pred : Di ×D → Di−1, for i ≥ 1, and unary operation
neg : Di → Di, for each i ≥ 0; the disjunctions and implications are defined

in a standard way by disj(u, v) = neg(conj(neg(u), neg(v))), impl(u, v) =
disj(neg(u), v), for any u, v ∈ DI ;
τ is a set of auxiliary operations [29] intended to be semantic counterparts of the syn-
tactical operations of repeating the same variable one or more times within a given
formula and of changing around the order of the variables within a given formula;
f, t are empty set {} and set {<>} (with the empty tuple <>∈ D−1 i.e. the unique
tuple of 0-ary relation) which may be thought of as falsity and truth, as those used in
the relational algebra, respectively.

Remark. This definition differs from the original work in [29] where t is defined as D,
and conj : Di × Di → Di, i ≥ 0, here we are using the relational algebra seman-
tics for the conjunction. So that we are able to support also structural composition for
abstracted terms necessary for supporting relational conjunctive queries, as, for exam-
ple, �A(x, y) ∧B(y, z)�xyz, which is not possible in the reduced syntactic version of
Bealer’s algebra. In the original work [29] this ”algebraization” of the intensional FOL
is extended also to logic quantifiers, but for our purpose it is not necessary, because in
the embedding of a P2P system into the intensional FOL for query answering, we will
use only the predicates from the global schema of each peer databases both with the
queries (virtual predicates) used for intensional mapping between peers. �
The distinction between intensions and extensions is important especially because we
are now able to have and equational theory over intensional entities (as �A�), that is

Intensional First-Order Logic for P2P Database Systems 139

predicate and function ”names”, that is separate from the extensional equality of rela-
tions and functions. Thus, intensional FOL has the simple Tarski first-order semantics,
with a decidable unification problem, but we need also the actual world mapping which
maps any intensional entity to its actual world extension. In what follows we will iden-
tify a possible world by a particular mapping which assigns to intensional entities their
extensions in such possible world. It is the direct bridge between intensional FOL and
possible worlds representation [30,31,32,33,34], where intension of a proposition is a
function from a set of possible worlds W̃ to truth-values, and properties and functions
from W̃ to sets of possible (usually not-actual) objects.

In what follows we will use one simplified S5 modal logic framework (we will not
consider time as one independent parameter as in Montague’s original work) with a
model M = (W̃ ,R,D, V), where W̃ is a set of possible worlds, R is a reflexive,
symmetric and transitive accessibility relation between worlds (R = W̃ × W̃), D is a
non-empty domain of individuals given by Definition 3, while V is a function defined
for the following two cases:

1. V : W̃ × F →
⋃

n<ωDDn

, with F a set of functional symbols of the language,

such that for any world w ∈ W̃ and a functional symbol f ∈ F , we obtain a function
V (w, f) : Darity(f) → D.
2. V : W̃ × P →

⋃
n<ω 2Dn

, with P a set of predicate symbols of the language and
2 = {t, f} is the set of truth values (true and false, respectively), such that for any world
w ∈ W̃ and a predicate symbol p ∈ P , we obtain a function V (w, p) : Darity(p) → 2,
which defines the extension [p] = {a|a ∈ Darity(p) and V (w, p)(a) = t} of this
predicate p in the world w.

The extension of a formulaA, w.r.t. a modelM, a world w ∈ W̃ and an assignment
g : V ar→ D is denoted by [A]M,w,g or by [A/g]M,w whereA/g ia a ground formula
obtained from A by assigning values to all its free variables. Thus, if p ∈ F

⋃
P then

for a given world w ∈ W̃ and the assignment function for variables g, [p]M,w,g =
V (w, p) : Dn → 2, that is, for any set of terms t1, .., tn, where n is the arity of p, we
have [p(t1, .., tn)]M,w,g = V (w, p)([t1]M,w,g, .., [tn]M,w,g) ∈ 2.

For any formula A, M �w,g A is equivalent to [A]M,w,g = t, means ’A is true in
the world w of a modelM for assignment g’. The additional semantic rules relative to
the modal operators � and ♦ are as follows:

M �w, g �A iff M �w′, g A for every w′ in W̃ such that wRw′.
M �w, g ♦A iff there exists a w′ in W̃ such that wRw′ and M �w′, g A .
A formulaA is said to be true in a modelM if M �w, g A for each g and w ∈ W̃ .
A formula is said to be valid if it is true in each model.

Montague defined the intension of a formulaA as follows:
[A]M,g

in =def {w �→ [A]M,w,g | w ∈ W̃},
i.e., as graph of the function [A]M,g

in : W̃ →
⋃

w∈WN
[A]M,w,g.

One thing that should be immediately clear is that intensions are more general than
extensions: if the intension of an expression is given, one can determine its extension
with respect to a particular world but not viceversa, i.e., [A]M,w,g = [A]M,g

in (w).

140 Z. Majkić

In particular, if c is a non-logical constant (individual constant or predicate symbol),
the definition of the extension of c is, [c]M,w,g =def V (w, c). Hence, the intensions of
the non-logical constants are the following functions: [c]M,g

in : W̃ →
⋃

w∈W̃ V (w, c).
The extension of variable is supplied by the value assignment g only, and thus does not
differ from one world to the other; if x is a variable we have [x]M,g

in = g(x).
Thus the intension of a variable will be a constant function on worlds which corre-

sponds to its extension. Finally, the connection between Bealer’s non-reductionistic and
Montague’s possible world approach to intensional logic can be given by the isomor-
phism (its meaning is that basically we can use the extensionalization functions in the
place of Montague’s possible worlds):

F : W̃ � E ,

where E is a set of possible extensionalization functions: Each extensionalization func-
tion h ∈ E assigns to the intensional elements ofD an appropriate extension as follows:
for each proposition u ∈ D0, h(u) ∈ 2 = {f, t} is its extension (true or false value); for
each n-ary relation-in-intension u ∈ Dn, h(u) is a subset of Dn (n-th Cartesian prod-
uct of D); in the case of particulars u ∈ D−1, h(u) = u. We require that operations
conj, disj and neg in this intensional algebra behave in the expected way with respect
to each extensionalization function (for example, for all u ∈ D0, h(neg(u)) = t iff
h(u) = f , etc..), that is

h = h−1 + h0 +
∑

i≥1 hi :
∑

i≥−1Di −→ D−1 + 2 +
∑

i≥1 P(Di)

where h−1 = id : D−1 → D−1 is identity, h0 : D0 → 2 assigns truth values in
2 = {f, t}, to all propositions, and hi : Di → P(Di), i ≥ 1, assigns extension to all
relations-in-intension, where P is the powerset operator. Thus, intensions can be seen
as names of abstract or concrete entities, while extensions correspond to various rules
that these entities play in different worlds.

Among the possible functions in E there is a distinguished function k which is to
be thought as the actual extensionalization function: it tells us the extension of the
intensional elements in D in the actual (current) world.

In what follows we will use the join operator ��, such that for any two relations r1, r2
their join is defined by: r1 �� r2 = {(a, c, b) | (a, c) ∈ r1 and (c, b) ∈ r2},
where a, c, b are tuples (also empty) of constants, so that r1 �� {} = {} and r1 ��
{<>} = r1.

Definition 4. (SEMANTICS): The operations of the algebra Algint must satisfy the
following conditions, for any h ∈ E , with f = {}, t = {<>}, and u1, .., ui ∈ D:
1. h(conj(u, v)) = h(u) �� h(v), for u, v ∈ DI .
2.1 h(neg(u)) = t iff h(u) = f , for u ∈ D0.
2.2 < u1, .., ui >∈ h(neg(u)) iff < u1, .., ui >/∈ h(u), for u ∈ Di, i ≥ 1.
3.1 h(pred(u, u1)) = t iff u1 ∈ h(u), for u ∈ D1.
3.2 < u1, .., ui−1 >∈ h(pred(u, ui)) iff

< u1, .., ui−1, ui >∈ h(u), for u ∈ Di, i ≥ 2.

Notice that this definition for the conjunction operation is different from the original
work in [28] where

Intensional First-Order Logic for P2P Database Systems 141

1.1 < u1, .., ui >∈ h(conj(u, v)) iff
< u1, .., ui >∈ h(u)

⋂
h(v), for u, v ∈ Di, i ≥ 1.

1.2 h(conj(u, v)) = t iff h(u) = h(v) = t, for u, v ∈ D0.

Once one has found a method for specifying the denotations of singular terms of
Lω (taken into consideration the particularity of abstracted terms), the Tarski-style
definitions of truth and validity for Lω may be given in the customary way. An
intensional interpretation I [29] maps each i-ary predicate letter of Lω to i-ary
relations-in-intention in Di. It can be extended to all formulae in usual way. What is
being considered specifically is a method for characterizing the denotations of sin-
gular terms of Lω in such a way that a given singular term �A�x1...xm will denote
an appropriate property, relation, or proposition, depending on the value of m. Thus,
the mapping of intensional abstracts (terms obtained by abstraction operator � �) in
ABS ⊂ Lω into D, given in original version of Bealer [29], will be called denota-
tion den : ABS → D, such that the denotation of �A� is equal to the meaning
of a proposition A, that is, den(�A�) = I(A) ∈ D0. In the case when A is an
atom Fm(x1, .., xm) then den � Fm(x1, .., xm)�x1,..,xm = I(Fm) ∈ Dm. The de-
notation of a more complex abstract �A�α is defined in terms of the denotation(s)
of the relevant syntactically simpler abstract(s) [29]. For example I(A(x) ∧ B(x)) =
conj(I(A(x)), I(B(x))), I(¬p) = neg(I(p)). A sentence A is true relative to I and
the intensional algebra, iff its actual extention is equal to t, that is, Tr(�A�) iff
k(I(A)) = t, where Tr is a unary predicate for true sentences.

For predicate calculus with individual constants (variables with fixed assignment,
proper names, and intensional abstracts) we introduced an additional binary algebraic
operation pred (singular predication, or membership relation), such that for any two
u, v ∈ D, for any extensionalization function h holds h(pred(u, v)) = t iff v ∈ h(u).
So we are able to assign appropriate intensional value (propositional meaning) to a
ground atom A(c) ∈ Lω with individual constant c.

That is, I(A(c)) = pred(I(A(x)), I(c)) is an expression in this intensional algebra
with I(A(x)) ∈ D1 and I(c) ∈ D−1. So that h(I(A(c))) = h(pred(I(A(x)), I(c)) =
t iff I(c) ∈ h(I(A(x))). That is, in the ’world’ h, A(c) is true (that is, the ex-
tension of the propositional meaning of A(c) is equal to t) iff the interpretation
of c is in the extension of the interpretation of the predicate A(x). Or, for ex-
ample, for a given formula with intensional abstract, B(�A(x, y)�x,y) ∈ Lω,
we have that h(I(B(�A(x, y)�x,y))) = h(pred(I(B(z)), den(�A(x, y)�x,y))) =
t iff den(�A(x, y)�x,y) ∈ h(I(B(z))), where I(B(z)) ∈ D1 and
den(�A(x, y)�x,y) ∈ D2.

We can connect E with a possible-world semantics, where w0 = F−1(k) denotes
the actual world in which intensional elements have the extensions defined by k. Such a
correspondence, not present in original intensional theory [10], is a natural identification
of intensional logics with modal Kripke based logics.

Definition 5. (Model): A model for the intensional FOL is the S5 Kripke structure
Mint = (W̃ ,R,D, V), with intensional identity defined as follows:
�A�α = �B �α iff �(A ≡ B)
where W̃ = {F−1(h) | h ∈ E}, R = W̃ × W̃ . The symbol � is the universal
”necessity” S5 modal operator.

142 Z. Majkić

Remark: This semantics is equivalent to the algebraic semantics for Lω in [28] for
the case of the conception where intensional entities are considered to be identi-
cal if and only if they are necessarily equivalent. Intensional identity is stronger
than the standard extensional equality in the actual world, just because it requires
the extensional equality in all possible worlds, in fact, if �A�α = �B �α then
h(den(�A�α)) = h(den(�B�α)) for all extensionalization functions h ∈ E (that is
possible worldsF−1(h) ∈ W̃). But we can have the extensional equality in the possible
world w = F−1(h), while den(�A�α) �= den(�B�α) , that is, when A and B are
not intensionally equal, so that each intensional identity class of elements is the subset
of the extensional equivalence class.

Example 3. Let two predicate forms A(x) and B(x) be intensionally equal, that is
I(A(x)) = I(B(x)), then for any h ∈ E holds that h(I(A(x))) = h(I(B(x))), i.e.,
have the same extension, thus A(x) ≡ B(x) is true, (or (A(x) ⇒ B(x)) ∧ (B(x) ⇒
A(x)) is true), in each world F−1(h). Consequently �(A(x) ≡ B(x)) is true,
and from the definition holds the intensional identity for their intensional abstracts,
�A(x)�x = �B(x)�x, and finally, den(�A(x)�x) = den(�B(x)�x).
Vice versa, if �(A(x) ≡ B(x)) then �A(x)�x = �B(x)�x, and den(�A(x)�x) =
den(�B(x)�x), and from the fact that a denotation of �A(x)�x is equal to the mean-
ing of A(x), that is, equal to I(A(x)), we obtain that I(A(x)) = I(B(x)), and conse-
quentlyA(x) andB(x) are intensionally equal: so the modal formula �(A(x) ≡ B(x))
corresponds to the intensional equality of A(x) and B(x). �
Moreover, for this intensional FOL soundness and completeness hold true: For all for-
mulae A in Lω, A is valid if and only if A is a theorem of this First-order S5 modal
logic with intensional equality [28]. It is easy to verify that intensional equality means
that in every possible world w ∈ W̃ the intensional entities A and B have the same
extensions (as in Montague’s approach). Moreover:

Proposition 1. (Bealer-Montague connection): For any intensional en-
tity �A/g� its extension in a possible world w ∈ W̃ is equal to
F(w)(den(�A/g�)) = [A]M,g

in (w).

Proof. Directly from the definition of the identification of a possible world w of Mon-
tague’s approach with the extensional function h = F(w) ∈ E in the Bealer’s approach,
where [A]M,g

in is the ”functional” intension of Montague, and �A/g� is a intensional
term of Bealer’s logic for a ground formula A/g. �
Now we can introduce the new intensional equivalence relation:

Definition 6. (Intensional Equivalence ≈) : the two intensional entities
�A�α,�B �α without free variables (ground terms) are intensionally equivalent

�A�α ≈ �B �α iff ♦A ≡ ♦B, where ♦ = ¬�¬.
This equivalence defines the QUOTIENT algebra Algint/≈ for a quotient-intensional
FOL Lω/≈, as follows:

Given an intensional logic Lω with a basic, user defined, set of intensional equiv-
alences Seq , and its deductive inference relation !in of the S5 modal logic with in-
tensional equality theory, then, for any intensional entity �A(x)�x, where x =<
x1, .., xk > is a tuple of free variables inA, we obtain an intensional-equivalence class

Intensional First-Order Logic for P2P Database Systems 143

C = {�Ai(x) �x | Ai(x) ∈ Lω , such that Lω, Seq !in �Ai(x)�x ≈ �A(x)�x}.
If we denote by �A(x)�x ∈ Algint/≈ the quotient intensional entity for this equiva-
lence class, its extension in a world w is defined by
F(w)(den(�A(x)�x)) = {t ∈ Dk | Ai(t) is true in w, Ai(x) ∈ C}

=
⋃

1≤i≤m F(w)(den(�Ai(x)�x)).

This definition of equivalence relation is the flat-accumulation case presented in [6,18]:
if the first predicate is true in some world then the second must be true in some world
also, and vice versa. In what concerns this paper we will consider only the actual world
w0 = F−1(k). Moreover, the set of basic intensional equivalences are designed by
users/developers. Consequently, the definition above has a theoretical importance only,
but is useful to understand the meaning of the intensional equivalence. The (omniscient)
deductive inference relation !in of this logic, able to derive all other intensionally
equivalent formulae, is that of the S5 modal logic with intensional equality theory.

The following theorem considers the class of peers and queries where the substitu-
tivity of intensionally equivalent formulae holds.

Theorem 1. Let us consider the class of peers with integrity constraints which does not
contain negative clauses of the form ¬A1 ∨ ... ∨ ¬Am, m ≥ 2. Then, the intensional
equivalence is preserved by conjunction logic operation, that is,
if ϕ ≡ (b1∧ ...∧ bk), k ≥ 1, and � bi� ≈ �ci�, 1 ≤ i ≤ k, then �ϕ� ≈ �ψ�

where ψ ≡ (c1 ∧ ∧ ck).

Proof. By structural induction on the number of conjuncts in the expression: it is
enough to prove for expressions composed by two conjuncts. Let us define lub(φ(x)) =⋃

w∈W̃ F(w)(d(�φ(x)�x)), so that we have �φ(x)�x ≈ �φ1(x) �x iff ♦φ(x) ≡
♦φ1(x) iff lub(φ(x)) = lub(φ1(x)).

Let b1, b2 be any two (virtual) predicates over a peer Pi, qi1(x, y) and qi2(y, z) re-
spectively, and c1, c2 (equal to qj1(x, y) and qj2(y, z) respectively) any two (virtual)
predicates over a peer Pj , such that �bi� ≈ �ci�, i = 1, 2. We have to prove that
lub(ϕ(x, z)) = lub(ψ(x, z)), where
ϕ(x, z) ≡ (qi1(x, y) ∧ qi2(y, z)) and ψ(x, z) ≡ (qj1(x, y) ∧ qj2(y, z)).

From the fact that lub(qi1(x, y)) = lub(qj1(x, y)) and lub(qi2(y, z)) =
lub(qj2(y, z)), we define SL = {(a, c) | ∃b.((a, b) ∈ lub(qi1(x, y)) ∧ (b, c) ∈
lub(qi2(y, z)))} = = {(a, c) | ∃b.((a, b) ∈ lub(qj1(x, y)) ∧ (b, c) ∈ lub(qj2(y, z)))}.

Let us prove that lub(ϕ(x, z)) =
⋃

w∈W̃
{(a, c) | ∃b.((a, b) ∈

F(w)(d(�qi1(x, y)�x,y)) ∧ (b, c) ∈ F(w)(d(�qi2(x, y)�x,y)))} is equal to SL .
First, from F(w)(d(�qik(x, y)�x,y)) ⊆ lub(qik(x, y)), k = 1, 2 holds that

lub(ϕ(x, z)) ⊆ SL.
Let us prove, that also lub(ϕ(x, z)) ⊇ SL, i.e. that for any (a, b) ∈ SL also

(a, b) ∈ lub(ϕ(x, z)). Let us suppose that there is one (a, c) such that (a, c) ∈ SL but
(a, c) /∈ lub(ϕ(x, z)), i.e., that for all possible worlds for this P2P system, w ∈ W̃ ,
holds that π2(F(w)(d(� qi1(a, y)�y)))

⋂
π1(F(w)(d(� qi2(y, c)�y))) = {}

(is empty), where π1, π2 are the first and the second projections. That is, the following
logic formula must hold ¬qi1(a, y) ∨ ¬qi2(y′, c) ∨ ¬(y = y′).

144 Z. Majkić

But such constraint (negative clause) cannot exist in this class of peers, thus the
supposition is false, and we conclude that SL = lub(ϕ(x, z)). By the same way we
obtain that SL = lub(ψ(x, z)), thus � ϕ(x, z)�x,z ≈ �ψ(x, z)�x,z. �
The quotient intensional FOL Lω/≈ is fundamental for query answering in intensional
P2P database mapping systems: given a query q(x) over a peer Pi, the answer to this
query is defined as the extension of the quotient-intensional concept �q(x)�x, in the
intensional P2P logic Lω/≈.

3 An Embedding of P2P Database Systems into Intensional FOL

The formal semantic framework for P2P database systems, presented also in [6] as a
hybrid modal logic, in this paper will be defined as a quotient (by intensional equiva-
lence) intensional FOL.

We will consider only the actual world w0 = F−1(k), correspondent to the exten-
sionalization function k of the quotient intensional FOL Lω/≈ (the actual world for
Lω/≈ corresponds to the actual extension of peer databases). The answer to a con-
junctive query q(x), over an ontology Oi of a peer database Pi, is computed in this
actual world w0, that is in the actual extension of all peer databases in a P2P network
N = {Pi | 1 ≤ i ≤ N}.
Definition 7. Let N = {Pi | 1 ≤ i ≤ N} be a P2P database system. The intensional
FOL Lω for a query answering in a P2P networkN is composed by:

1. The set of basic intensional entities is a disjoint union of entities of peers SI =⊎
1≤i≤N{r(y) | r(y) ∈ Oi}. The intensional interpretation of the set of all intensional

entities define the domainsDn, n ≥ 1;
2. The extensional part of a domain,D−1, corresponds to the disjoint union of domains
of peer databases. The intension-in-proposition part,D0, is defined by disjoint union of
peer’s Herbrand bases.
3. The basic set of the equivalence relation ≈ is defined as a disjoint union for each
peer Pi as follows (x is a tuple of variables of queries):
if (qij

1k(x), qij
2k(x)) ∈Mij , then � qij

1k(x) �x ≈ � qij
2k(x)�x.

The COMPLETE P2P answer to a conjunctive query q(x) over a peer Pi is equal to
the extension of the quotient-intensional concept �q(x)�x, whose equivalence class is
determined by the deductive omniscient closure of !in, in the quotient intensional P2P
logic Lω/≈.

Notice that in this embedding of a P2P system into the intensional FOL Lω , we do
not use any existential quantifier, so that the intensional algebra in Definition 3 is suffi-
cient for a P2P query answering. We need to finish the modeling of the intensional logic
Lω/≈ by defining its extensionalization function k for the actual world w0.
For this aim we will consider as actual world w0, of the intensional logic, the actual
extensional FOL multi-modal P2P database system:

1 - What we will obtain is a two-level modal framework: the higher, or P2P query an-
swering, level is the Bealer’s intensional logic (without quantifiers) with S5 Montague’s
possible-worlds W̃ modal structure, where w0 ∈ W̃ is an actual world for a P2P sys-
tem. The lower, ”computational”, level is the extensional FOL multi-modal epistemic

Intensional First-Order Logic for P2P Database Systems 145

logic (with existential quantifiers also), where the set of worlds W is a disjoint union
of the set Wi of preferred Herbrand models of each peer database Pi: a modal ”know”
operator Ki of a peer Pi is based on the accessibility relation Ri = {Pi} × Wi. Con-
sequently, each Bealer/Montague’s possible world contains a particular set of low-level
worlds of the extensional FOL multi-modal epistemic P2P system. We can see this
”computational” level as a sophisticated wrapper (based on a Data Integration System
which is encapsulated into a peer as an Abstract Data Type (ADT) [15]). Each peer is
considered as an independent (from other peers) sophisticated wrapper, which extracts
the exact extension (of only known facts) for all predicates used in upper intensional
P2P query answering logic layer.
2 - Here we will use the standard extensional multi-modal logic framework, of this
lower ”computational” level of each independent peer. We will differentiate the acces-
sibility relation between peers (network’s (or global) conceptual level) from the acces-
sibility relations which model the epistemic query answering semantics of single local
peers. This multi-modal logic will define the extensionalization function k for the actual
world w0 in the Bealer-Montague’s framework.

Let us summarize the obtained P2P architecture. What we obtained is a relatively
simple intensional predicate (without quantifiers) logic, with only a subset of predicates
used in the global schema of peer databases with the set of views (virtual predicates)
defined for intensional mapping between peers. The extension of these predicates is
wrapped by the ADT of each peer independently. The logic specification for these so-
phisticated wrappers can be obtained by using the epistemic multi-modal extensional
logic [15] of each single peer database. Here a peer is considered as a Data Integra-
tion System with Global-As-View (GAV) mappings between its source and its global
database schemas [21], and with integrity constraints over global schema also, which
possibly can use the existential quantifiers.

This P2P database architecture uses strong (extensional) semantic mapping, based
on views, inside each peer database, as in standard Data Integration Systems [35,24],
with the possibility to use also logic negation [36]. The weak (intensional) semantic
mapping based on views, is used for mapping between the peers.

This architecture takes advantage of both semantic approaches:

1. Extensional, for a building of independent peer databases (a development of any
particular peer database can be done by a group of developers, dedicated to developing
and maintaining its functionalities).
2. Intensional, for robust and non invasive mapping between peers, based on beliefs of
developers of one peer about the intensionally equivalent knowledge contained in other
peers (which are not under their control).

Example 4. Let us consider the cyclic P2P system in a Fig.2, with a sound but generally
incomplete deduction [19], which can be easily implemented by non-omniscient query
agents: we have Pi, with the ontology Oi and the interface Mij = {(vim, vjm) | 1 ≤
m ≤ k1} toward the peer Pj , and the peer Pj , with the ontology Oj and the inter-
face Mji = {(wjm, wim) | 1 ≤ m ≤ n1} toward the peer Pi. First we traduce a
pair (vim, vjm) by intensional equivalence �vim� ≈ �vjm�. In what follows, the
subscript of a query identifies the peer relative to such a query.

146 Z. Majkić

qj(x)

win

wi1
wjn

wj1

vjk

vj1vi1

vik

q1i (x)

(vj1,..,vjk)

id3
id4

id2

qi (x)

id1

Peer
Pi

Peer
Pj

Ontology
Oi

Ontology

Oj

(vi1,..,vik) (vj1,..,vjk)

(wj1,..,wjn)(wi1,..,win)

User

Fig. 2. Derivation of intensionally equivalent queries

Let qi(x) be the original user’s conjunctive query over the ontology Oi of the peer
database Pi. If this query can be rewritten [37], by the query rewriting algorithm
id1,in the equal query over the set of views {vi1, ..., vik} ⊆ π1Mij , where π1 is the
first projection, we will obtain an identical (to original query qi(x)) conjunctive query
Ψ(vi1, ..., vik), that is, in the intensional logic language holds the identity
id1 : �qi(x)�x = �Ψ(vi1, ..., vik)�x, or, equivalently, �(qi(x) ≡ Ψ(vi1, ..., vik)).

From the set of intensional equivalences inMij , � vim� ≈ �vjm�, 1 ≤ m ≤ k,
we obtain that � Ψ(vi1, .., vik)�x ≈ �Ψ(vj1, .., vjk)�x, or ♦Ψ(vi1, .., vik) ≡
♦Ψ(vj1, .., vjk), in the top-horizontal arrow in Fig.2.

In the next step the conjunctive query formula Ψ(vj1, .., vjk) over the set of views
{vj1, ..., vjk} ⊆ π1Mji of the peer databasePj , will be rewritten (by simply unfolding)
to the conjunctive query qj(x) directly over the ontology Oj of the peer Pj , that is, in
the intensional logic language holds the identity
id2 : �Ψ(vj1, ..., vjk)� = �qj(x)�, or, equivalently, �(qj(x) ≡ Ψ(vj1, ..., vjk)).

If we compose algebraically these mappings we obtain the one-step P2P query
rewriting id2◦ ≈ ◦id1 : qi(x) �→ qj(x), that is, from id2◦ ≈ ◦id1 = ≈ we obtain
the intensional equivalence � qj(x)� ≈ �qi(x)�, that is, ♦qj(x) ≡ ♦qi(x).

In the same way (see the inverse bottom horizontal arrows of a diagram in Fig.2),
based on the interface specification of the peer Pj ,Mji = {(wjm, wim) | 1 ≤ m ≤ n},
toward the peer Pi, we obtain also � q1i (x)�x ≈ �qj(x)�x, that is, ♦q1i (x) ≡
♦qj(x). Thus we obtain the three intensionally equivalent queries qi(x), qj(x) and
q1i (x), where two of them, qi(x), q1i (x) are over the same peerPi: the first one is the orig-
inal user query, while the second is the intensionally equivalent derived query (based
on P2P interface intensional specification).

These three query formulae, {qi(x), qj(x), q1i (x)}, are the subset of the equivalent
class C for the given user query, which in the intensional FOL Lω/≈ is represented by
the quotient intensional entity Q(x), whose extension (from Definition 6) in the actual
world w0 is defined by F(wo)(den(�Q(x)�x)) = {t ∈ Dk | Q(t), Q(x) ∈ C} =
=

⋃
1≤i≤m F(w0)(den(�Q(x)�x)), that is, the union of known answers of these three

Intensional First-Order Logic for P2P Database Systems 147

queries is a subset of the extension of this quotient intensional entity Q(x). Only in
the case when this sound query rewriting algorithm deduces all intensionally equiv-
alent queries in a P2P network, that is when it is also complete, the union of known
answers for queries obtained from such algorithm will be equal to the extension of the
intensional entity Q(x).

4 Computing of the Extensionalization Function

The actual world w0, with correspondent extensionalization function k = F(w0), is
represented as an extensional FOL multi-modal logic theory for a P2P database system,
composed by a number of peers {Pi | 1 ≤ i ≤ N}, defined as follows:

Definition 8. We consider a modelM, for the extensional multi-modal logic translation
of a P2P database system composed by N peers, a four-tuple (W , {Ri},D,V) , where:

– The set of points is a disjoint union W =
∑

1≤i≤N (Wi

⋃
{Pi}), with Wi =

Mod(Pi), where:
1. Each point Pi is considered as a FOL theory with incomplete information, com-
posed by an extensional (ground atoms/facts) and, possibly, an intensional part
(logic formulae with variables).
2. For each peer database Pi, the set of points Wi = Mod(Pi), 1 ≤ i ≤ N is the
set of all preferred Herbrand models of such peer database. Each w ∈ Mod(Pi)
can be seen as a logical theory also, composed by only ground terms (only exten-
sional part).

– R0 is a binary accessibility relation between peers, such that (Pi, Pj) ∈ R0 iff a
mapping exists from peer Pi to peerPj . Then we close this relation for its reflexivity
and transitivity properties.

– Ri = {Pi} × Wi, 1 ≤ i ≤ N is a binary accessibility relation for a i-th peer
universal modal operator Ki, so that, for a given view q(x) over a peer Pi, and
assignment g, M |=Pi,g Kiq(x) iff ∀w((Pi, w) ∈ Ri implies M |=w,g q(x)).

– V is a function which assigns to each pair consisting of an n-place predicate con-
stant r and of an element w ∈ W a function V(r, w) from Dn to {1, 0}.

So, the extensionalization function k = F(w0) for basic intensional entities of the
intensional P2P logic Lω/≈, is defined as follows: for any � r(y)�, where r is an
n-ary (virtual) predicate of a peer Pi, and y, c are n-tuples of variables and constants
in D respectively, we define

– for any n-ary relation-in-intension den(�r(y)�y) ∈ Dn, n ≥ 1,
k(den(�r(y)�y)) = {g(y) | M |=Pi,g Kir(y), and assignment g : V ar → D}.

– for intensional propositions den(�r(c)�) in D0,
k(den(�r(c)�)) = t if M |=Pi Kir(c) ; f , otherwise.

In this way the binary relation of each partition (peer database),Ri, i ≥ 1, models the
local universal epistemic modal operatorKi for each peer database. In fact it holds that
M |=Pi,g Kiq(x) iff ∀w ∈ Mod(Pi)(M |=w,g q(x)), i.e., Kiq(g(x)) is true iff
q(g(x)) is true in all preferred models of a peer Pi.

148 Z. Majkić

The binary relationR0, instead, models the global epistemic P2P modal operator K
in this extensional multi-modal logic, whose semantics is defined as follows: for any
query formula q(x), with a tuple of variables in x, defined over the ontology of a peer
Pi, and a tuple of constants c of the P2P database domain, it holds that
M |=Pi Kq(c) iff ∃Pn((Pi, Pn) ∈ R0 and M |=Pn Kn qn(c)),
where Kn qn(c) is a modal formula with � qn(x)�x ≈ �q(x)�x.

In practice we can obtain that qn(x) = Rew(q(x), Pn) is the rewritten query over a
peer Pn. Here theRew algorithm, as for example those described in [6], tries to rewrite,
based on the basic set of intensional equivalences in a P2P system, a conjunctive query
over another peer Pn; it returns with an empty {} query in the case of a failure.

This definition corresponds to the fact that when we define a query q(x) over a peer
Pi, any known answer of any peer accessible from a peer Pi will constitute the global
P2P answer to this query. From the definition of the peer-accessibility relation R0 we
have that it is reflexive, thus also the answers of the same peer will be part of the whole
global P2P answer to this query. Another peer Pn, accessible from Pi (consider thatR0
is also transitive), such that Lω !in ♦q(x) ≡ ♦qn(x) is a valid omniscient deduction
in Lω , can contribute to the global P2P answer by his known local answer to qn(x).

Proposition 2. The P2P global operatorK is an existential normal modal operator.

Proof. From the definition above it holds that K is an existential modal operator, mod-
eled by the accessibility relationR0. Let us prove that it is a normal modal operator. In
fact, for any false ground query f over a peer Pi we have thatM �Pi Kf : suppose that
M |=Pi Kf , then from definition must exist a peer Pn such thatM |=Pi Knf , what is
a contradiction because all peers are modeled by normal modal logic. It is easy to verify
that K(A ∨ B) ≡ K(A) ∨ K(B): (left-to-right) suppose that M |=Pi K(A ∨ B) then
from the definition a peer Pn must exist such that M |=Pi Kn(A ∨ B), and from the
normal modal operator Kn we obtain thatM |=Pi Kn(A) or M |=Pi Kn(B), so that
M |=Pi K(A) orM |=Pi K(B) holds. Analog result holds for the right-to-left proof.�
From the implementation point of view, it will be the task of a query agent in a Web P2P
system to coordinate the query rewriting over different peers and to collect their local
answers. Such a global P2P query answering, for a P2P network with a finite number
of peers, will have the biggest fixpoint which is mathematically the final coalgebraic
semantics for this query answering, as is defined in the next Section.

Proposition 3. Let Rew be any conjunctive query rewriting algorithm which satisfies
the definition of a global P2P modal operator K. Then it is a SOUND algorithm w.r.t.
the quotient intensional FOLLω/≈ . Given a conjunctive query q(x) over a peer Pi, the
global query answer in a network N of a P2P database system, will be the following
set of tuples:

[q(c)]Pi = {c | M |=Pi Kq(c) } ⊆ k(den(�q(x)�x)).

Proof. Sketch: it is based on the fact that any query rewriting algorithm, used to define
the semantics of a global P2P modal operatorK, is based on the intensional equivalence
of peers based on views (for example the sound but incomplete algorithm in [6]). If this
algorithm is perfect, that is creates ALL possible equivalent queries over ontologies of
other peers, for a given P2P networkN and the set of intensional equivalences defined

Intensional First-Order Logic for P2P Database Systems 149

in P2P mappings, than it will be also complete. In this case it will give exactly, in
the actual world k, the extension of the quotiented intensional element �q(x)�) in
the logic theory Lω/≈ obtained by the omniscient entailment !in of this S5 modal
logic. �
Context-dependent query answering: notice, that the answer to any query depends on
the topology of the P2P network, that is, it depends on the peer’s accessibility relation
R0, so that for equivalent queries, but formalized over different peers we will generally
obtain different answers. Now we are able to synthesize the definition of intensionally
equivalent views used for mappings between peers, in this two-leveled Kripke model
framework:

Definition 9. (Intensional FOL for P2P systems): A two-level Kripke model for the
intensional FOL of a P2P database system N , given in Definition 7, is the S5 Kripke
structure Mint = (W̃ ,R,D, V), where each Montague’s possible world wn ∈ W̃ is
the multi-modal translation of a P2P database system in that world, given by Definition
8, that is wn = (W , {Ri},D,V)n ∈ W̃ , so that an intensional equivalence of views,
qi(x) and qj(x), defined as conjunctive queries over peers Pi and Pj respectively, is
formally given by the following modal formulae of the intensional FOL:

♦qi(x) ≡ ♦qj(x) i.e., (♦qi(x) ⇒ ♦qj(x)) ∧ (♦qj(x) ⇒ ♦qi(x))

This definition tells us, intuitively, that any possible world (for a given time-instance) of
the intensional logic for P2P database systemN , represents (that is models) a particular
state of this P2P database, that is, the structure and the extensions of all peer databases
in such a time instance. The set of possible worlds wn ∈ W̃ corresponds to the whole
evolution in time of the given P2P system. Such an evolution is result of all possible
modifications of an initially defined P2P database system: a simple modification of
extensions of peer databases, an inserting of a new peer, or a deleting of an existing
peer in this networkN .

Thus, the modal formulae used to specify the intensional equivalence of two views,
�qi(x)�x ≈ �qj(x)�x, means that if, for a given tuple of constants c, Kiqi(c) is true
in some world w ∈ W̃ , than also Kjqj(c) may be true in some world w′ ∈ W̃ .

The Coalgebraic specification of query-answering in this intensional predicate logic
for P2P database systems can be found in [38].

5 Conclusion

Integrating heterogeneous computational resources and databases, which are distributed
over highly dynamic computer networks, is the crucial challenge at the current evolu-
tionary stage of IT infrastructures. Peer-to-peer data integration aims at overcoming
these drawbacks by modeling autonomous information systems as peers, and establish-
ing mapping among peers without resorting to any hierarchical structure.

As this paper has shown, the problem of defining the semantics for intensional ontol-
ogy mappings between peer databases, can be expressed in a quotient intensional FOL

150 Z. Majkić

language, which for the actual P2P world can be computationally reduced to a multi-
modal logic. A P2P answer to conjunctive queries is based on the known answers to
intensionally equivalent queries on peers, and is strictly connected with the features of
the multi-modal epistemic logic.

This intensional FOL for P2P system is obtained by the particular fusion of Bealer’s
intensional algebra and Montague’s possible world modal logic for the semantics of the
natural language. In this paper we enriched such a logic framework by a kind of in-
tensional equivalence, which can be used in order to define the intensional view-based
mapping between peer’s local ontologies. We have shown how such intensional map-
ping can be used during a query answering process and we defined the global existential
modal operator for a query answering in a P2P database system. The semantics of this
global modal P2P system operator is modeled by a kind of the accessibility relation
between peers, based on the intensional view-based mappings between peers, and on
the particular sound query rewriting algorithm.

We concluded that the multi-modal logic is a good candidate language for the spec-
ification of such P2P database systems and its coalgebraic translation is an abstract
specification for a grid query answering computation. Each particular peer database Pi

can be seen as a local epistemic extensional modal logic with a proper epistemic modal
operator Ki, ”Peer Pi knows that ..”, independently from all other peers, and can be
translated as a module for a grid computation node during the query answering trans-
action. It is the responsibility of a query agent to rewrite the original user query over a
peer Pi to all other intensionally equivalent queries over other peers in a P2P network,
so that a sound non-omniscient query rewriting algorithm is a practical solution which
may be implemented into such an intelligent software object.

In a future work we will explore the behavioral equivalence in the framework of P2P
systems, to study also its other dynamic properties, and to define the logic inference
system for a sound and complete query answering.

References

1. Ushold, M.: Where is the semantics in the semantic web. In: Workshop on Ontologies in
Agent Systems (OAS) at the 5th International Conference on Autonomous Agents (2001)

2. Gribble, S., Halevy, A., Ives, Z., Rodrig, M., Suciu, D.: What can databases do for Peer-to-
Peer? In: WebDB Workshop on Databases and the Web (2001)

3. Serafini, L., Giunchiglia, F., Mylopoulos, J., Bernstein, P.A.: The local relational model:
Model and proof theory. Technical Report 0112-23, ITC-IRST (2001)

4. Ghidini, C., Giunchiglia, F.: Local models semantics or contextual reasoning = locality +
compatibility. Artificial Intelligence 127, 221–259 (2001)

5. Reiter, R.: Towards a logical reconstruction of relational database theory. In: Brodie, M.L.,
Mylopoulos, J., Schmidt, J.W. (eds.) On Conceptual Modeling: Perspectives from Artificial
Intelligence Databases and Programming Languages (1984)

6. Majkić, Z.: Weakly-coupled ontology integration of P2P database systems. In: 1st Int. Work-
shop on Peer-to-Peer Knowledge Management (P2PKM), Boston, USA, August 22 (2004)

7. Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Logical foundations of Peer-to-
Peer data integration. In: PODS 2004, Paris, France, June 14-16 (2004)

8. Lenzerini, M., Majkić, Z.: General framework for query reformulation. Semantic Webs and
Agents in Integrated Economies, D3.1, IST-2001-34825 (February 2003)

Intensional First-Order Logic for P2P Database Systems 151

9. Franconi, E., Kuper, G., Lopatenko, A., Serafini, L.: A robust logical and computational
characterization of Peer-to-Peer data systems. Technical Report DIT-03-051, University of
Trento, Italy (September 2003)

10. Bealer, G.: Universals. The Journal of Philosophy 90, 5–32 (1993)
11. Bealer, G.: A solution to Frege’s puzzle. In: Tomberlin, J. (ed.) Philosophical Perspectives,

vol. 7, pp. 17–61. Ridgeview Press, Atascadero (1993)
12. Chen, W., Kifer, M., Warren, D.S.: HiLog: A foundation for higher-order logic programming.

Journal of Logic Programming 15, 187–230 (1993)
13. Calvanese, D., Damaggio, E., De Giacomo, G., Lenzerini, M., Rosati, R.: Semantic data

integration in P2P systems. In: Proc. of the Int. Workshop On Databases, Inf. Systems and
P2P Computing, Berlin, Germany (September 2003)

14. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Inconsistency toller-
ance in P2P data integration: an epistemic approach. In: Proc. 10th Int. Workshop on
Database Programming Language (2005)

15. Majkić, Z.: Intensional semantics for P2P data integration. In: LNCS Journal on Data Se-
mantics VI, Special Issue on ‘Emergent Semantics’, April 15 (2006)

16. Majkić, Z.: Weakly-coupled P2P system with a network repository. In: 6th Workshop on
Distributed Data and Structures (WDAS 2004), Lausanne, Switzerland, July 5-7 (2004)

17. Majkić, Z.: Massive parallelism for query answering in weakly integrated P2P systems. In:
Workshop GLOBE 2004, Zaragoza, Spain, August 30-September 3 (2004)

18. Majkić, Z.: Intensional logic and epistemic independency of intelligent database agents. In:
2nd International Workshop on Philosophy and Informatics (WSPI 2005), Kaiserslautern,
Germany, April 10-13 (2005)

19. Majkić, Z.: Non omniscient intensional contextual reasoning for query-agents in P2P sys-
tems. In: 3rd Indian International Conference on Artificial Intelligence (IICAI 2007), Pune,
India, December 17-19 (2007)

20. Majkić, Z., Prasad, B.: Soft query-answering computing in P2P systems with epistemi-
cally independent peers. In: Book on Soft Computing Applications in Industry. STUDFUZZ,
vol. 226, pp. 331–356. Springer, Berlin (2008)

21. Lenzerini, M.: Data integration: A theoretical perspective, pp. 233–246 (2002)
22. Greco, G., Greco, S., Zumpano, E.: A logic programming approach to the integration, re-

pairing and querying of inconsistent databases. In: Codognet, P. (ed.) ICLP 2001. LNCS,
vol. 2237, pp. 348–364. Springer, Heidelberg (2001)

23. Gelfond, M., Lifshitz, V.: The stable model semantics for logic programming. In: Proc. of
the Fifth Logic Programming Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

24. Majkić, Z.: Plausible query-answering inference in data integration. In: 18th International
Florida Artificial Intelligence Conference (FLAIRS 2005), Clearwater Beach, USA, May
15-17 (2005)

25. Majkić, Z.: Fixpoint semantics for query answering in data integration systems. In: AGP
2003 - 8.th Joint Conference on Declarative Programming, Reggio Calabria, pp. 135–146
(2003)

26. Majkić, Z.: Autoepistemic logic programming for reasoning with inconsistency. In: Interna-
tional Symposium on Logic-based Program Synthesis and Transformation (LOPSTR), Im-
perial College, London, UK, September 7-9 (2005)

27. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto.
Methods for Modalities 1, Logic Journal of the IGPL 8, 339–365 (2000)

28. Bealer, G.: Theories of properties, relations, and propositions. The Journal of Philosophy 76,
634–648 (1979)

29. Bealer, G.: Quality and concept. Oxford University Press, USA (1982)
30. Lewis, D.K.: On the prularity of worlds. Blackwell, Oxford (1986)

152 Z. Majkić

31. Stalnaker, R.: Inquiry. MIT Press, Cambridge (1984)
32. Montague, R.: Universal grammar. Theoria 36, 373–398 (1970)
33. Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka, J., et

al. (eds.) Approaches to Natural Language, pp. 221–242. Reidel, Dordrecht (1973)
34. Montague, R.: Formal philosophy. In: Thomason, R. (ed.) selected papers of Richard

Montague, pp. 108–221. Yale University Press, New Haven (1974)
35. Lembo, D., Lenzerini, M., Rosati, R.: Source inconsistency and incomplete-

ness in data integration. CEUR Electronic Workshop Proceedings (2002),
http://ceur-ws.org/Vol-54/

36. Majkić, Z.: Querying with negation in data integration systems. In: 9th International
Database Engineering and Application Symposium (IDEAS), Montreal, Canada, July 25-27,
pp. 58–70. IEEE Computer Society, Los Alamitos (2005)

37. Levy, A., Mendelzon, A., Sagiv, Y.: Answering queries using views. In: Proc. 14th ACM
Symp. on Principles of Database Systems, pp. 95–104 (1995)

38. Majkić, Z.: Coalgebraic specification of query computation in intensional P2P database sys-
tems. In: Int. Conference on Theoretical and Mathematical Foundations of Computer Science
(TMFCS 2008), Orlando FL, USA, July 9-11 (2008)

Multi-faceted Visualisation of Worklists

Ross Brown1 and Hye-young Paik2

1 Faculty of Information Technology,
Queensland University of Technology, Brisbane, Australia

r.brown@qut.edu.au
2 School of Computer Science and Engineering,

University of New South Wales, Sydney, Australia
hpaik@cse.unsw.edu.au

Abstract. Although business process management has been a major
area of ICT research, no coherent approach has been developed to address
the problem of business process visualisation to aid workers in the process
of task prioritisation. In this paper we describe the development of a new,
coherent approach to worklist visualisation, via analysis and development
of a resource-centric view of the worklist information. We use instances
of generic resource types as workflow elements that may be considered by
workers when interacting with worklists. We then propose a generic 2D
framework for visualising the resources, creating an effective mapping
between a task and the capabilities of the resources. This aims to aid
the process of task selection and prioritisation by workers. A worklist
visualisation system has been implemented as an extension to an open-
source workflow system, YAWL (Yet Another Workflow Language).

1 Introduction

Visualisation techniques offer powerful tools for understanding data and processes
within complex systems. However, visualisation in the area of Business Process
Management (BPM), and in particular workflow management systems, lags be-
hind the state of the art in other areas such as medicine, engineering and mining
[1].

Workflow Management Systems (WfMS) play a vital role in BPM in that the
business process models are implemented and executed through a WfMS, which
routes and dispatches the tasks defined in a model to the individual workers1.
The result of routing tasks is presented to the workers as a worklist. A worklist
can be understood as a to-do list of tasks that the workers need to carry out in
order to complete the process defined by the model.

The success of business process models depends on communicating them to
the model consumers effectively. However, modern workflow systems have largely
overlooked the needs of the workers in understanding their given tasks in a
manner that would help manage them efficiently. For example, it is quite common
1 The workers are the consumers of the model who will carry out the tasks. In this

paper, we use the terms workers and model consumers interchangeably.

S. Spaccapietra (Ed.): Journal on Data Semantics XII, LNCS 5480, pp. 153–178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

154 R. Brown and H.-y. Paik

that workers would have questions such as “how urgent is this task?”, “who else
can do the task?”, “where do you have to go to carry out the task?” (eg., where
is this meeting room B809), “do I have enough resources?” (eg., are there enough
chairs for 20 people in the meeting room B809), etc.

A typical representation of a worklist includes a list of tasks with short textual
descriptions, and/or attachments (eg., email, document forms, etc). It, however,
does not include any support (context) information about the tasks that may
assist the worker in planning the tasks. At any point in time, a given worker may
be involved in many workflows and may thus be presented with a large to-do
list. The worker needs to have available tools to help them decide which would
be the best task to undertake next.

We believe that visualisation techniques can be applied to many areas of
BPM due to their previous use in application domains that support decision
making processes. In decision support systems, information is typically provided
to enable the user to be adequately informed as to the direction to be taken for
a particular scenario. This applies to all levels of business systems, and to BPM
as a whole. For the purpose of this paper, we limit the scope of the work to
the area of workflow management, in particular, managing worklists. We apply
a visualisation technique to provide workers with information about the context
of a task, in order to improve their understanding of the process models and the
communication of such models between the model designers and the consumers.
The visual information is designed to help workers make decisions in managing
worklists (eg., accepting, postponing, delegating, or rejecting tasks).

In this paper, we present a generic visualisation framework that is used to
provide support (context) information about the tasks in a worklist. Our contri-
butions are three fold:

– An analysis of the decision making process in managing workflow tasks,
especially in relation to the resources available to the worker;

– A novel and generic visualisation technique for worklists;
– The implementation of the framework as a proof of concept.

The rest of the paper is organised as follows. Section 2 investigates the state
of the art in worklist visualisation. Section 3 describes the general approach to
using these visualisations in workflow systems. Section 4 details the development
of a resource centric approach to the management of worklists. Sections 5 and 6
explain the mapping of important worklist resources to appropriate visualisation
techniques to aid the process of task selection by workers. Section 7 details the
implementation of a visualisation system incorporated into a workflow system.
The paper then concludes with a discussion of future work in Section 8.

2 Related Work

Computerised data visualisation is a broad field that has its beginning in pic-
torial representations used in pre computer technology times [2]. Today it has
developed to the point of being one of the main areas of application for com-
puter graphics, and is a powerful tool for the analysis and presentation of data.

Multi-faceted Visualisation of Worklists 155

Many areas in science and mathematics have benefited from the exploitation of
modern computing power in data exploration [1]. Business experts are now us-
ing advanced computerised visualisations to analyse multi-dimensional business
data and processes. The main purpose of the technique is to allow the users to
observe trends or patterns by exploring structured and domain-specific informa-
tion. (e.g., Figure 1 shows an example of a software solution for business data
visualisation).

Fig. 1. Spotfire by Tibco: Visualisation of Process Data for Analysis

The focus of our discussion in this paper, though, is in the area of visualising
business processes and individual tasks generated by them. Hence, we discuss the
related work in the context of business process visualisation and worklist/tasks
visualisation.

2.1 Business Process Visualisation

The present state of play for the visualisation of business processes uses various
graphical notations to abstract internal (complete) processes into public (basic)
processes in order to hide the complexity and implementation details in the
process specifications[3,4,5].

For instance, research has been performed into developing approaches to view-
ing complex business process via aggregating related activities[4]. [5] applies sim-
ilar principles to a YAWL (Yet Another Workflow Language) business process
models, in order to efficiently remove and add components, while maintaining

156 R. Brown and H.-y. Paik

the validity of the YAWL model representation during zoom operations. Some
have explored the use of 3D extensions to 2D representations using such tech-
niques as Cone Trees [6,7], to full virtual reality implementations for distributed
interaction with process models [8].

To provide more interactive way of analysing business processes, the idea of
graphically querying business processes is proposed in [9,10]. For example, Fig-
ure 2 shows a user querying ’Does this business process requires login before
searching’. In [10], an exploratory (or browsing) approach, rather than directly
querying, is used to visualise automated and repetitive scientific workflow speci-
fications. Currently, such querying is only made possible for static processes (i.e.,
specifications) and does not apply to ’running’ instances of the processes.

Fig. 2. Visually Querying a Business Process

2.2 Worklist/Tasks Visualisation

The visualisation techniques mentioned above can help the user better under-
stand the business process specification. However, they cannot assist him/her
with effectively managing the tasks allocated to them by the processes, as visu-
alisation does not provide take the concept of individual ’activities’ or ’tasks’ and
any background information about them into consideration (e.g., how important
is this task?, how is this related to my previous task?).

Figure 3 shows a typical worklist view of modern business process management
systems. From the user’s view point, tasks generated by a running business
process are only represented as a list of brief textual descriptions.

Most project management software will support creation, allocation and track-
ing of task completion in a business organisation environment. However, the

Multi-faceted Visualisation of Worklists 157

Fig. 3. JBPM by JBoss: A Worklist

process of generating and allocating tasks is highly ad-hoc and manual and
visualisation techniques used are rather crude.

More creative approaches to organising tasks can be found in a PC desktop en-
vironment. Many desktop calendar applications will let the users create events or
tasks which are visualised in a two dimensional space (time and dates). iChronos
(Figure 4) attempts to provide an integration between multiple PC desktop ap-
plications (calendar, address book, file folders, etc.). The idea of providing an
integrated environment for managing tasks and task related data is presented
in the newly emerging research area called “Personal Information Management
(PIM)”[11].

Fig. 4. iChronos

However, the approaches in PIM are heavily focused on capturing and mod-
elling information stored in a person’s computer. The applications have not yet
incorporated the business process concepts such as “process definition”, “process
execution” “tasks” or “tasks allocation”, etc. into account. As demonstrated by
the research prototypes such as Haystack[12] and iDM[13], a PIM system aims

158 R. Brown and H.-y. Paik

to provide a conceptual framework in which the relationship between personal
“information” is defined according to how the user perceived and retrieved in a
way that is meaningful to the user.

Although our project can benefit from the lessons learned in the PIM area, we
believe that there is much work to be done in appropriate visualisation of tasks
and business processes that produce the tasks. While there has been evidence of
research into user requirements for business process modelling [3,14], much work
still remains with regards to the following:

– Data gathering for requirements analysis, the current research is often tied
to software implementations which restrict creative solutions;

– No real evidence of systematic analysis of sophisticated 2D and 3D visuali-
sation techniques for use in complex business process models;

– Abstract and leading edge representational techniques, such as Self Organis-
ing Maps and Parallel Coordinates amongst others, are often ignored despite
their power in representing multi-dimensional data that occurs in business
systems;

– Application domain information is not factored into the representations;
– No assessment of visualisation effectiveness via real case studies.

What is needed is a thorough data gathering-based analysis of user require-
ments for the visualisation of business processes, and the analysis of 2D/3D
techniques and visualisation wisdom for such representations. In particular, the
area of concurrent process visualisation [15] is expected to provide many useful
visualisation techniques. Furthermore, there is a need to provide an approach
to visualisation of business processes that accounts for domain specific factors
in their representations. Such a visualisation approach needs to allow for both
the designers and the users of the business process model, as both these people
have different requirements for visualisations, with regards to design, analysis,
and usage tasks [16].

What these other workflow visualisation techniques lack is a focus on support-
ing information to assist the worker in managing the tasks in a worklist. Each of
the techniques provides a presentation of the worklist that is rudimentary in na-
ture, lacking any support information for the main task required by a workflow
system; deciding to accept, delegate or suspend a presented task. We believe this
should be the main reason for such workflow visualisations, and that an analysis
of this choice process and derivation of appropriate visualisation techniques is
required to support this process.

Analysis of such requirements is best taken from a resource oriented point
of view [17], as the available resources influence the acceptance, delegation, re-
prioritisation or rejection of the task2 in a worklist. We now proceed to analyse
this worklist management problem from a resource perspective, in order to derive
appropriate worklist visualisations.

2 By rejection of tasks, we mean choosing not to accept the task. Such tasks can be
delegated, suspended, or re-allocated by the workflow system.

Multi-faceted Visualisation of Worklists 159

3 Worklist Management

Before we introduce the concept of resources and their visualisations in work-
lists, we first discuss a theoretical background for generating a worklist from a
workflow. That is, how tasks are generated for the worker.

3.1 Worklist Generation

Russell [17] offers a meta model of a resource. A resource can be human or non-
human, although in the paper the discussion is focused on human resources. In
the meta model, a human resource has a set of capabilities (eg., a manager can
approve orders) and may occupy one or more positions. This means that s/he
can perform multiple roles in an organisation, or even in a particular workflow. A
human resource also can delegate activities to other resources (either human or
non-human). Also, it is reasonable to assume that a resource can be substituted
by another resource with similar capacity or characteristics. In the following, we
explain how tasks are allocated to human resources, which will create a worklist
for the worker.

For the sake of clarity, we use the term worker to mean a human resource.
The way in which worklists are generated is related to how a worker becomes
bound to a specific work item (task) for execution. A worklist for worker A can
be understood as a list of tasks bound to worker A by the workflow system.

For a better understanding of worklist generation, we look at Fig. 5 which
explains the life cycle of a task, from the time of creation to its final state. A
final state could be either completion or failure. Each box is the state of the task
in a running workflow case. The prefix S and R refer to actions enacted by the
Workflow System and the Resource (worker) respectively. Once created, a task
can be offered to a single worker, directly allocated to a single worker, or offered
to multiple workers.

Being “offered” means that the worker may have a choice in his/her worklist,
in that the task can be accepted or rejected. The “allocated” tasks are normally
expected to receive firm commitment from the worker. After this offering and
allocation process, tasks will appear in workers’ worklists and each worker may
start the task. Again, once the task is started, it is reasonable to assume that
the task may (i) be completed, (ii) suspended (eg., the worker may have to wait
for some events to occur or acquire extra resources), (iii) fail. In the following,
we look into some of the patterns in this life cycle [17] which, in turn, will help
us understand the patterns in worklist generation.

3.2 Patterns for Worklist Generation

Push Patterns. The name comes from the fact that the system will “push”
a task to a worker. As explained in the life cycle, pushing can be either by
allocation or offering (refer to Transitions S:offer s, S:offer m, S allocate s and
S allocate m in Fig. 5). Also, a task can be offered to a worker or multiple
workers. Note that when a task is pushed to more than one worker, the system
is looking for a volunteer to accept the task.

160 R. Brown and H.-y. Paik

Fig. 5. Illustration of task life cycle; modified from [17]

Visualisation and worklist interactions: It should be clear to the worker (eg.,
using colour coding) whether a task is allocated, or offered, as it implies a dif-
ferent level of responsibility from the worker. Also, when a task is offered to
multiple workers, the worklist should be able to present such tasks as a form of
advertisement (eg., a popup window, rolling text, etc.) so that the offer can be
noticed by workers immediately. The allocation process often targets the work-
lists with the smallest number of tasks (ie., shortest queue). Again, a predefined
colour-coding of worklists might be used to warn the owner of such candidate
worklists of possible future allocation of tasks.

Pull Patterns. This pattern considers the issue of allocation and offering
from the worker’s point of view (refer to Transitions R:allocate s, R allocate m,
R start s, R start m in Fig. 5. When a worker is “pulling” a task, s/he may
intend to start the task immediately. However, it is possible that s/he may only
intend to signal the intention to execute the task at some point, but not imme-
diately. In the second case, the task is pulled by the worker and allocated to (ie.,
bound to) the specific worker. It will not be allocated to another resource.

Visualisation and worklist interactions: The worklist should provide the
worker with a way of clearly marking/tagging tasks that s/he intend to do,
but not immediately. These tasks will remain allocated in the worklist and can-
not be offered to others. Hence, it will also be useful to indicate deadlines for
each “pulled-for-later” tasks.

Detour Patterns. In real world scenarios, work allocations may have to be
reconsidered due to interruptions by the workflow system, or to the changing
states of the workers. Detour patterns describe nine such cases; the following is
a direct quote from [17], describing each case:

– Delegation - where a worker allocates a work item previously allocated to it,
to another worker;

Multi-faceted Visualisation of Worklists 161

– Escalation - where the workflow system attempts to progress a work item
that has stalled by offering or allocating it to another worker;

– De-allocation - where the system makes a previously allocated or started
work item available for offer and subsequent allocation;

– Reallocation - where a worker allocates a work item that it has started to
another;

– Resource suspension/resumption - where a worker temporarily suspends ex-
ecution of a work item or recommences execution of a previously suspended
work item;

– Skipping - where a worker elects to skip the execution of a work item allocated
to it

– Redo - where a worker repeats execution of a work item completed earlier;
– Pre-do - where a worker executes a work item that is ahead of the current

execution point of a workflow case.

Visualisation and worklist interactions: It is quite obvious from the above that
understanding and implementing detour patterns is crucial to providing a work-
list with flexibility. For example, before going on leave, a worker must be able to
re-allocate his/her tasks to other resources so that the workflow can continue.
Appropriate visualisation techniques can assist workers to plan and organise
detour activities. For example, a task has been stalled for a certain period of
time, the visualisation can highlight such tasks for the worker. Once such a task
is brought to the attention of the worker, s/he may choose to escalate it or
complete it herself/himself. Another useful technique will be to highlight, for ex-
ample, tasks that can wait or those that have to be re-allocated for a given period
of time. This will help a potential holiday leaver to plan whether to re-allocate
tasks or simply to suspend them for a while.

3.3 A Generic Approach to Managing a Worklist

Based on what we discussed so far, we introduce a generalised algorithm that
workers may use to manage their tasks. Inherent in the work allocation process
by the workflow system is the choice by the system of whom to give the task,
via the offer actions.

This paper concentrates on the visual interface to evaluating resource capabil-
ities with regards to work tasks to be performed. Automatic resource allocation
is assumed to be performed behind the scenes mainly in push-based workflow
systems, where the worklist items are delivered in a final state to the worker
[17]. However, the worker may need to allow for local knowledge of resources
in order to make a decision about worklist items to choose, as the centralised
resource allocation system may be unaware of resource issues at the worksite in
question. For this paper, the assumption in the scenario is that the worker is
able to then select the work from the system, based upon their assessment of the
resources available using the visual presentation. As the focus here is the visual
presentation of resources allocated to work, the examination of the automatic
allocation of resources is beyond the scope of the paper.

162 R. Brown and H.-y. Paik

As mentioned before, the workflow system will have a resource view that
evaluates the capabilities of the intended recipient of the task. The worker upon
receiving the task, must make a decision about accepting or not accepting the
task. This process is out of the control of the workflow system, as it only can
push tasks to the worker to request acceptance. The workers’ responses have
thus been characterised by detour processes. A worker may delegate, de-allocate
(reject, in other words), re-allocate and suspend/resume.

The question for the worker is the choice of adding or rejecting (ie., detouring)
a task from his/her worklist and such a choice could be based on push or pull
pattern approaches. Assuming a more pull oriented model of worklist task selec-
tion, providing resource information relevant to a worklist will aid the worker in
this worklist management task, as they are able to decide which item to choose
based upon critical resource issues.

The workflow system may offer a number or only one instance of the task
to the worker, and at this point the worker may decide to perform the task
by checking them out and adding them to a list of active tasks, or the user
may decide to return the task to the unallocated pool via the detour process.
Furthermore, the worker upon completion of the task checks the task in, thus
removing it from the active checked out worklist. This task acceptance process
may be represented by the following formula for the acceptance process, them
being the check out processes respectively:

Wr = Wr ∪ {I} ⇐⇒ CWr ,T ≥ C{I},T (1)

where:

– Wr is the set of worklist items for worker(s) r;
– I is the new worklist item to be added;
– Cx,y is the capability for the task(s) x of type y;
– T is the type of resource being processed (eg. Computer Equipment).

So, at any stage a worker will make a decision about whether to add a worklist
item to their set of worklist items, by looking at the capabilities of the worker for
the present worklist as compared to the requirements of the new task. This can
be automated, but in order to promote healthy workforce relations, the worker
must be allowed to make such decisions as well. It must also be recognised that
people will simply decide not to do a task, if they do not want to or decide to
prioritise using undefined criteria. Furthermore, these visualisations may give
information to the worker regarding the reasoning behind the choice of been
allocated the task, and so the worker is left in an informed state about the
reasons for work allocation.

4 Resource Perspective in Workflow

In this section, we discuss a resource perspective on workflow. [18] argues that
an effective workflow model would consider all of the following perspectives:

Multi-faceted Visualisation of Worklists 163

– Functional perspective: the activities being performed
– Behavioural perspective: when, how and in what order activities are begin

performed
– Organisational perspective: the organisational context in which the activities

are being performed (ie., where and by whom in the organisation).
– Information perspective: the information and data associated with the

activities.

In general, a resource is referred to as the entity that actually performs an
activity/task. Such entity can be a human or non-human (eg., a computer pro-
gram). In our paper, we take a broader view of the term and we consider resources
to be the workers as well as any work environment element or context that may
be required/considered when workers make decisions in managing their tasks.
Therefore, in the context of our work, introducing a resource perspective into
workflow is an attempt to create an integrated view of organisational perspec-
tive which deals with human resources, and information perspective which deals
with non-human, work environment element or context that may be relevant to
the tasks.

It is important for a workflow system to be aware of the characteristics of
each resource (eg., availability, utilisation, cost, etc.) so that it can make smart
decisions when allocating tasks. Also, it can be argued that it is necessary to
highlight resource related information to the workers so that they can make
smart decisions when managing their worklists.

Most commercial workflow systems are quite mature in their support for other
perspectives (in the form of control-flow and data-flow), but hold a very simplistic
view of the resource perspective [19]. Presently, the only definitive representation
of resources and their relationship to workflow has been for human resources
[17]. Non-human resources, while being noted in their importance, have not
been extensively modelled in workflow systems. Russell [17] simply describes
non-human resources as a tuple; (ResourceType, Description, Capability).

An enterprise resource ontology has been developed which seeks to generically
model the resources in an organisation [20]. It was developed from a manufac-
turing viewpoint, but easily transfers to aspects of workflow management, as the
resources are generically defined to allow application to other domains.

However, the resources to be considered by the workers for managing worklists
may differ depending on the nature of the tasks, the skill level of the workers, or
the kind of roles the workers play in an organisation. Indeed, we believe that a
thorough study into the requirements of the workers in making decisions as well
as a survey of effective visualisation techniques have not been explored. This is
an important part of our current on-going investigations, in which we look at
identifying various types of resources that a worklist can provide to help the
workers carry out the tasks.

In the following, we discuss a few generic resource types that we identified as
relevant to our project goal. The list is by no means complete, but we believe it is
generic enough that their visualisations could be implemented in many workflow
systems.

164 R. Brown and H.-y. Paik

4.1 Generic Resource Types

We tabulate in Table 1 a list of general resources, with illustrative examples. Most
resources we described in Table 1 can be represented in the generic non-human
resource model described in [17], or the enterprise resource model proposed in
[20]. For example, equipment, services, location or materials can have their name,
description and capability (eg., print speed for printer) recorded against them
in the workflow database, which can be queried. Some resources can be derived
from information available within the workflow system. For example, data about
people come from staff/organisational information in the workflow administration
data. A active worklist can be obtained from querying the workflow engine to
list unfinished tasks. Also, deadlines (an instance of time) are available from the
workflow engine as they can be assigned to each task when a workflow process
is instantiated.

For these resources to be effectively visualised for a worklist, an association
between a resource (eg., locations of meeting rooms) and a task (eg., Staff meet-
ing at Room K17 401) needs to be made. In our implementation, this link is
manually created by the workflow process designer through the Worklist Visu-
alisation Editor (see Fig. 12). Currently, we do not store resource data in the
workflow system for visualisation purposes. Instead, the designer would provide
external resources (eg., an image of a floor plan, an XML data file of people
or GPS coordinates, etc.) which will then be imported into the visual worklist
handler to create mappings between the tasks and the resource.

4.2 Generic Resource Queries

The visualisations in the worklist can be seen as results of queries of the resources
associated with the tasks being examined, and thus being presented to the worker
in a visual manner. This is a complex requirement, that can be structured as a
series of competency queries on the resources within an enterprise3. These queries
form part of an enterprise resource ontology proposed by Fadel [20].

We formalised the comparison previously in Equation 1, to illustrate the fun-
damental process involved in making work task choices. In order to aid under-
standing of the resource factors assessed by the capability function C(x,y), we
list the generic resource queries enumerated in [20]:

– Quantity – how much of the resource exists at time t;
– Consumption – how much is to be consumed by the worklist item;
– Divisibility – can the resources be divided up to service the work list items;
– Structure – does the structure of the resource fit the worklist item;
– Capacity – can the resource be shared with other work list items;
– Location – where is the resource;
– Commitment – is the resource available at time t;
– Trend – capability trend of resource.

3 For the sake of congruence with other workflow resource research we replace the word
competency with capability to mean the ability of the resource to perform work.

Multi-faceted Visualisation of Worklists 165

Table 1. Generic types of resources

Resources Description and examples

Space

Size or dimensional information relevant to the tasks. It may be a
diagram showing available storage rooms and their sizes, or meet-
ing rooms and their capacities. This type of resource may be used
to determine, for example, where 20 computers should be stored.
It is separate from location, as sometimes the visualisation may
not relate space with actual location of the space – space to store
computers, but not interested in where.

Materials
Materials or consumable information relevant to the tasks. It may be
an inventory list of materials to be used in the task, and whether you
have enough of those things: number, volumes, weights, etc. Some
of these measures will be discrete and others will be continuous.

Equipment Equipment information relevant to the tasks. It may be, for ex-
ample, an inventory of barcode scanners required for the worklist
item.

Services
Internal or external services information. It may be a list of travel
booking agencies, printing services, or messaging services and their
contacts/availabilities.

Time

Any “time” information relevant to tasks. It could be deadlines (eg.,
the time each task should be completed by), opening hours (eg., the
time a particular service, for example a printing centre, is available)
or a calendar showing working days. This type of resource will be
useful in the planning of task execution sequences.

Location

Geographical “location” information relevant to tasks. It could be
a map of a campus showing locations of university facilities, a floor
plan of an office block, or a diagram showing relative distances be-
tween locations. This type of resource also can be used in scheduling
of tasks. We separate this resource from space as our model uses lo-
cation in both the sense of a resource (maps), and as a generic place
holder for the work item location in the visualisation (grid layout).

People

Information about people and their roles in an organisation. It could
be an organisational chart showing roles and responsibilities of peo-
ple. This type of resource may be used in finding the right person
to seek for specific help or to delegate a task.

Active Worklist

Current (active) tasks that are being carried out by the worker.
This type of resource will help the worker determine the desirable
workload, and effectively manage the current/future tasks. This re-
source is specific to workflow research, as the number of active work
items allowed is idiosyncratic to the worker involved, and may be
influenced by management or worker originating factors.

In the enterprise resource ontology previously referred to, the above capabili-
ties are defined with appropriate relationships to allow queries of the enterprise
model. These query results can be mapped to different worklist visualisations,
allowing the workers to assess the availability of resources to meet a task. The
above queries are applied to the generic resources in Table 1 to yield a capacity
value for those resources with regards to accepting the task.

166 R. Brown and H.-y. Paik

5 Mapping Resources to a Worklist Visualisation

Domain specific issues have a major role in determining the type of queries for
mapping the task to visualisation, but general mappings can also be inferred from
generalisations of the tasks to be performed by the user of the visualisation.

In this section, we describe our generic visualisation construction framework
for worklist visualisation based on the resources we presented earlier. To illus-
trate our concept, we use the following simple workflow as running examples
throughout the paper4.

5.1 Example Scenario

The workflow describes a stocktaking process given to an asset management of-
ficer who has to record all computer assets managed by a company. Figure 6
describes that, after stocktaking is announced, the officer has to plan and sched-
ule field trips to various sites to physically locate an asset and record the asset
number using a barcode scanner. This process will continue until all the sites
have been visited.

For the asset management officer to be able to carry out each task, some
context information may be required. For example, s/he may want to know how
far rooms are located from each other, how many assets are to be collected at
each location, etc. to schedule the field trips efficiently.

5.2 Backgrounds and Overlays

For illustration purposes, we choose the four resources; time, location, people
and active worklist. The visualisation framework is based on a layered approach,
in which background and overlay planes are used. A 2D representation of any
of the resources forms the background layer. Thus the background plane allows
the comparison of resource values for each of the active worklist items being
presented. For example:

– The location resource uses a coordinate representation that shows where-
abouts and distance between locations (eg., Street maps);

– The people resource uses a chart or social network form of representation
(eg., organisational charts);

– The time resource uses a constrained time line form of representation (eg.,
Gantt chart).

The overlay plane consists of the tasks in the worklist being viewed by the
worker. Each task is given (x, y) coordinates in relation to the background,
which is the resource information allocated to the task. We name the resource
that is allocated to the background layer, the Principal Resource (PR). The
final (x, y) coordinates for the work item are then a mapping of the input

4 The reader should note that the example is simplified for illustration purposes.

Multi-faceted Visualisation of Worklists 167

Stocktaking
announced

Schedule visits
to the locations

Schedule is
prepared

The scanner
is ready

Visit the location

Location
found

Scan the
room code

Room code
scanned

Check whether all
locations visited

Asset code
scanned

Scan the
asset code

All scheduled locations
visited

More locations
to be visited

XOR

Update/test
the barcode scanner

XOR

Upload scanner data
into FITSIS

Data
uploaded

Event Function Exclusive OR

Legend

XOR

Fig. 6. Event-Process-Chain diagram of the stocktaking process

components of the PR vector to two dimensions in normalised device coordinates,
formalised as a general mapping function here:

f : Rn → R2 : rp �→ wc (2)

where:

– wc is the 2D work item normalised window coordinate x = [0.0,1.0] and
y = [0.0,1.0];

– rp is a vector of information defining the PR for the visualisation.

We group these mappings into three functional types:

– Coordinate mappings are an arbitrary mapping of specified locations with
x,y coordinates mapped to the visualisation device, for example, GPS coor-
dinates, that have no constrains with respect to each other (refer to Fig. 7).
Each object may overlap other objects in the visualisation.

– Regional mappings use an ID to lookup the region they are constrained to
in the visualisation, for example, organisational unit name. However, the
regions themselves may or may not be constrained relative to each other
(refer to Fig. 8), and may overlap each other.

– Grid mappings generate visualisation coordinates from enforced discrete
rows and columns assigned to a worklist item, for example, the commence-
ment time of a task (refer to Fig. 9). This represents a coordinate system
separate to the final visualisation device coordinates. The grid is the default

168 R. Brown and H.-y. Paik

mapping of work item tasks, due to the fact that a simple list of work items
is a form of column-based grid visualisation. The objects do not overlap each
other, being constrained to grid cells.

It should be noted that each of these visualisations requires fine tuning for an
implementation, via computer graphics implementations. The graphics library
is responsible for mapping the normalised device coordinates wc to pixel coor-
dinates in the viewing window of the application [21]. Therefore, the mappings
presented in this document represent a general form of the visualisation work
item coordinate generation process.

All of the worklist items on a case appear on every view. If the system selec-
tively placed worklist items on a view, then the worker may miss items, or get
confused by the changes from view to view. In addition, the item may require
assessment from a number of resource viewpoints before being accepted or re-
jected by the worker. Therefore, we ensure that the entire worklist is shown on
each view. The workers can easily switch from one view to another via tabbed
windows. These tabs can be undocked to allow a free form window layout, if the
user wishes.

The framework is generic in that any types of resources can be presented
using the overlaying technique. The same worklist can be viewed from different
resource perspectives. Furthermore, the background and foreground can contain
iconic representations of an arbitrary nature, to represent the worklist items
using appropriate images that match domain specific metaphors, for example, a
PC icon can represent a computer to be collected [22].

Each is a representation that can be used within a workflow system to decide
about task choices, with regards to the relevant resources. They can be turned
on and off by the designer of the workflow visualisation to allow or deny access to
extra information regarding tasks. Each one can be modified to suit a particular
application area, thus leaving room for development of novel visualisations tailor-
made for different applications. Included are example mapping functions for the
PR, to show formally how it is transformed into (x,y) visualisation locations.

5.3 Resource Mapping Examples

Let us return now to consider the stock take example scenario. For illustrative
purposes, we have chosen a subset of the tasks in the case study. The example
worklist contains the following three tasks (ie., work items).

1. Collect scanner from S Block;
2. Scan items in O Block;
3. Scan items in A Block.

We present a visualisation example for three resources we have chosen in the
resource model: location, people and time, and apply them to the listed tasks in
the stocktake case study.

Multi-faceted Visualisation of Worklists 169

Fig. 7. Example Location Resource visualisation for the computer stock take example,
mapping longitude and latitude values via a scale and translate to normalised window
coordinates, overlaid onto a map of the QUT campus. A table of values is shown on
the left, with the mapped locations on the right hand side as an example visualisation.

Example 1. Location Resource (Figure 7)

Task: Compare the spatial locations of tasks to be performed for logistical
purposes.

Visualisation: Map detailing the arrangements of tasks in space, to aid the
worker in identifying efficient ordering of the work.

Mapping Function: A variation of the coordinate mapping, wdc = M × rp,
where rp consists of location resources information in specified units (eg. latitude
and longitude) mapped to xw, yw values in pixels on visualisation device window,
where M is the window transform (scale and translate) from world coordinates
to device coordinates.

Example 2. People Resource (Figure 8)

Task: Assess the capabilities of the people available for task.

Visualisation: Overlays of people available to meet task with encoding of match
between people and the tasks colours/textures, including hierarchical views, so-
cial network views. In this example, the work items are mapped to a hierarchy
list, to show which bureaucratic section the example is executed in, in order to
see who needs to be contacted for task execution purposes.

Mapping Function: A form of the region mapping, wdc = LUT (wsoc), where
LUT is a window coordinate lookup table function indexed by the id tag wsoc

for the social group in which the worklist item belongs.

Example 3. Time Resource (Figure 9)

Task: Compare the relative start and finish times for each task and insert it
into the worklist at appropriate moments if time resources are available, either

170 R. Brown and H.-y. Paik

Fig. 8. Example People resource visualisation as a QUT section hierarchy, showing the
region mapping from hierarchy ID to visualisation position via a lookup table. A table
of values is shown on the left, with the mapped locations on the right hand side as an
example visualisation.

Fig. 9. Example time resource visualisation for the stock take example. Each PR is a
tuple of work item ID and time in hours. A table of values is shown on the left, with
the mapped locations on the right hand side as an example visualisation. Depending on
the intended workflow application, the other resources: Space, Materials, Equipment,
Services and Active Worklist, can be visualised using a similar mapping process as the
principal resource on the overlay plane. We now define an interaction framework for
the previously mapped resource visualisations.

by leaving the task as whole, or dividing it into smaller components for insertion
into small time gaps.

Visualisation: Gantt Chart showing all available tasks on a time line in stacked
manner to identify insertion points for the worklist items.

Mapping Function: A fixed grid mapping, wdc = f(wid, t), where wid is the
work item identification number, t is the time and wdc the final visualisation
window device coordinates.

Multi-faceted Visualisation of Worklists 171

6 Interacting with the Visualised Worklist

In the visualised worklist, each task is represented by a coloured icon. An ag-
gregated icon represents multiple instances of the same task. Figure 10 shows
an example of a task with multiple instances. An aggregated icon is shown with
four icons with numeric information regarding the number of instances and their

Fig. 10. Illustration of an aggregated icon made up of single task icons. The example
shows a task titled ”Prepare Stock Check Report” with zero checked in, one checked
out, three available and one task unavailable. The colour of each segment is annotated
beside the icon for clarity.

status within the system. The state of any delivered task at one time may be
the following: inactive, available, checked out and suspended, and included is
the colour we have mapped to the state using the traffic light metaphor of red,
green and amber:

– Inactive: unavailable to the worker (grey);
– Available: available to the worker to check out (amber);
– Checked Out: has been checked out by the worker (green);
– Checked In: has been checked in and completed by the worker (red);
– Suspended: has been checked out by the worker, is still incomplete, but

checked in to the user (amber dashed).

After executing the visual worklist handler, and linking with a work flow
server, the user interacts with the work item icons, by clicking on the icons
to check out available tasks, and by clicking on checked out icons to check in

Table 2. List of worklist visualisation handler user interactions

User Interaction Description

Check Out
The user right clicks on an Amber icon component within a vi-
sualisation, and chooses an instance of the work item in order to
take responsibility for the task.

Check In
The user right clicks on the Green icon component and chooses
an instance of the work item to check in, to notify the workflow
system of the completion of the task.

Change View
To change visualisation type, the user clicks on the window tab
listing the desired visualisation.

172 R. Brown and H.-y. Paik

completed tasks. Whenever appropriate, a form will be presented by the work-
flow system, to obtain data from the worker. The visual worklist handler user
interactions are listed in Table 2.

7 Implementation

A major test of any workflow visualisation approach is its ability to be incor-
porated into a modern client server-based workflow system. We have built a
prototype of the proposed visualisation framework, and interfaced it with the
workflow system YAWL. This section discusses the system architecture and im-
plementation in detail.

7.1 The YAWL Environment

Our implementation is based on the open source workflow environment named
YAWL (Yet Another Workflow Language), which is a research initiative at
Queensland University of Technology [23]. YAWL is based on a set of work-
flow patterns developed via analysis and comparison of a number of commercial
workflow systems. It provides a powerful and formal workflow description lan-
guage, as well as an execution environment.

To understand the architecture of our visualisation framework, we first present
the overall architecture of YAWL. Workflow specifications are created in the
YAWL designer which is a graphical editor, and deployed to the YAWL engine.
The engine performs verification of the specifications and stores them in the
YAWL repository. The specification can be loaded and launched for execution
via the YAWL manager, and is hereafter referred to as a schema. The execution
itself is managed by the YAWL engine. The YAWL engine interacts with the
components labelled as YAWL services through Interface B. The YAWL ser-
vices (worklist handler, web services broker, interoperability broker and custom
YAWL services) are based on the web services paradigm and all are abstracted
as services in YAWL.

How the engine communicates with the YAWL worklist handler is of particular
interest in our work. The worklist handler is the component that is responsible
for dispatching tasks to the workers. Through the worklist handler, the workers
accept tasks and mark their completions. In conventional workflow systems, the
worklist handler is part of the workflow engine. However, in the YAWL environ-
ment it is a separate component that interacts with the engine through Interface
B. Through the interface, a custom service or application can be developed to
extract worklist information for display in whatever manner is required.

7.2 Worklist Visualisation Architecture

Based on the existing YAWL architecture, we have developed a new type of
YAWL worklist handler which interacts with the engine through Interface B. The
overview architecture is shown in Fig. 11. It has capabilities to (i) display the
visualised resources and (ii) dispatch tasks like a normal worklist handler. The

Multi-faceted Visualisation of Worklists 173

Fig. 11. YAWL Visualisation Framework: Overall architecture

architecture consists of two components which have been designed and partially
implemented: a visual worklist handler and a visualisation designer.

The visual worklist handler can view multiple cases of running workflows,
with multiple resource-centric views matched to the requirements devised by
the YAWL schema designer. The worker loads the cases and is presented with a
list of tasks, and a tabbed view list to switch between difference representations
of the worklists. In the following two sections we describe the two components,
and illustrate them with developed examples.

7.3 YAWL Visualisation Designer

The designer application is the most complete at this stage. It is designed around
the structure of the visualisation approach we have developed, and is imple-
mented in Java, as is the rest of the YAWL implementation. The visualisation
designer allows the user to load Scalable Vector Graphics (SVG) files as back-
grounds and icons for the overlay planes. This allows easy modification of images
via other drawing tools. The SVG component of the designer is managed by the
Batik Java package [24]. The designer application is an implementation of the
work item coordinate scheme we detailed earlier. This designer allows the easy
outlaying of tasks as icons across the background in the program. The process
of designing a visualisation view for a schema is as follows:

First decide on the background and overlay images, editing them in a separate
tool and saving them as SVG files. Decide on the spatial arrangement of the tasks
to be displayed according to the resources that need to be analysed, for example
a map for logistics on QUT campus that will help a worker to decide where
to perform their tasks. Until there is an adequate implementation of a resource
model in YAWL, the icons are located by hand for the purposes of proof of
concept. Load the workflow schema into the editor to obtain the tasks in the
system, which appear in a mouse menu on a right click at the chosen location on
the background (refer to Fig. 12). Load the background image. Set the current

174 R. Brown and H.-y. Paik

Fig. 12. Yawl Visualisation Designer: main components. The left window is the list
of active icons, the right window is the main editing window, with the collect scanner
work item being placed on the diagram.

icon to be used by choosing from the list in a dialog (refer to Fig. 12). Move
pointer to the location of the worklist item and right click to choose a task, and
icon, repeating for all worklist items.

Figure 12 illustrates the major components of the visualisation designer user
interface via the stocktaking example on the campus map. The large window is
the main window for visualisation design, and the smaller window shows a list
of potential icons to be placed at locations on the visualisation. Each view is
placed into a tabbed list, just as they are to be displayed in the visualisation
agent. The menu is displayed using a mouse right click, showing the tasks defined
in the schema. The icon can be placed at the location of the right click of the
mouse, or using actual coordinates in the text entry boxes at the bottom of
the screen. The icon at the bottom left of the image is the current task icon,
“CollectScanner” and is shown using a disk icon.

This visualisation design information is stored in an XML file (see Fig. 13) that
defines an arbitrary number of views per schema, and the task icons, gained from
the number of tasks within the YAWL schema. This file is then read by the Visual
Worklist Handler to form the visualisation structure for communication to the
YAWL engine. The following is a snippet from a visualisation specification. A
specification may have a number of views <view>, and each view may have a
number of tasks <task>. A view is associated with a background representing
a resource. Each task is assigned a color for the description, coordinates, and an
icon.

We have implemented the beginnings of a visualisation editor and visualisa-
tion viewer, which we show in this paper. In a final implementation, additional
resource information will be selected from the resource view of the YAWL schema

Multi-faceted Visualisation of Worklists 175

<specification id = "TSSstockTake.ywl"

uri = "file:/D:/Yawlstuff/batik/demo/TssStockTake.xml">

<view id = "file:/D:/Yawlstuff/batik/demo/map-1/newmap.svg">

<task id = "3_CollectScanner">

<color> -16777216 </color>

<coordX> 240 </coordX>

<coordY> 760 </coordY>

<icon width="75" height="75">

file:/D:/Yawlstuff/demo/floppy.svg

</icon>

</task>

</view>

</specification>

Fig. 13. Example of visualisation specification file

as it is running. For now we are able to design worklists arranged according to
grid, spatial and time arrangements.

7.4 YAWL Visual Worklist Handler

Worklists are disseminated in YAWL via the default worklist handler as sim-
ple dialogs containing lists of tasks, with no other resource information being
displayed. We have begun implementing a visual worklist handler that is an
extension of the default handler. The YAWL workflow implementation is struc-
tured around a component architecture that communicates via XML formatted
commands. Thus the worklist handler is able to utilise the B interface to the
running YAWL case in the same manner as the default worklist handler. The
visual worklist handler is able to execute the visualisation developed with the
designer that is stored in a file (see Fig. 11). The new worklist handler allows a
more intuitive mapping of task coordinates to the check in and check out process.
The user is able to check items in and out by simply clicking on the potential
worklist item in its location on a map or hierarchy diagram. A running version
of this design is shown in Fig. 14 and Fig. 15.

Fig. 14. The administration screen for the visualisation program, showing the stock
take work flow schema being loaded and executed

176 R. Brown and H.-y. Paik

Fig. 15. Screen dump of a running visualisation handler, showing a) default simple
work item list, b) campus map visualisation, and c) same worklist viewed from the
timeline perspective

With a varied spatial organisations to the tasks, the person doing this stock
take process can evaluate the task, using the map to make a decision about
the acceptance of the worklist item in consideration of the location, time and
potentially other resources.

8 Conclusion and Ongoing Work

We have described the beginnings of a thorough analysis of workflow visualisa-
tion; its theoretical basis, resource centric approach and appropriate visualisa-
tion techniques. Analysis of these sections revealed how to use these techniques
within a typical workflow system. The task coordinate approach was described,
showing how this can be generalised across a number of visualisations using a
background and overlay approach. We have also begun the development of a
visualisation development environment, with an editor and visualisation agent
that uses SVG files and is easily integrated into the YAWL workflow system cre-
ated by the BPM group at QUT. We have therefore shown supporting evidence
that this visualisation approach can be used within a fully featured workflow
environment.

Further analysis will continue to refine the visualisation mappings to produce
a knowledge base for development of visualisations within workflow applications.
Firstly, there is the need to investigate the dependencies and relationships be-
tween separate resources, so that these relationships can be represented properly

Multi-faceted Visualisation of Worklists 177

in the worklist visualisations, to enhance the decision making capabilities of the
worker regarding multiple resources. In addition, there will be refinement of the
broad categories of resources into more fine grained categories to derive a rule-
base for an intelligent design agent to be incorporated into the visualisation
designer. Evaluation experiments will be performed within a case study in order
to ascertain the effectiveness of the resource centric visualisation approach with
users of workflow tools.

In addition, we are currently working on generalising the idea of worklist,
which is produced from a workflow engine, to tasklist. Our tasklists can be (i)
automatically populated from the work coming from various resources including
a workflow engine, email correspondence, or calendar events, etc. and (ii) pre-
sented (i.e., visualised) in a coherent way that aids completion of a given task
as well as providing a significant control over all the facet of task visualisation.
The project is inspired by the fact that the data and knowledge we consume
for everyday tasks are more and more distributed (e.g., Internet, Intranet, email
clients, mobile devices, calendar clients), improving productivity in workplace
means improving the way people manage such knowledge. We plan to, first, ex-
ploit the latest resource view developments that are being implemented within
YAWL, to enable the run time specification of resources and data associated
with a task.

Acknowledgement

This project is partially supported by a QUT Faculty of Information Technol-
ogy collaborative grant. We acknowledge the programming assistance provided
by Tore Fjellheim and Guy Redding, who programmed the visualisation editor
and agent applets and integrated them into the YAWL workflow system. Their
dedication and hard work towards implementing this project have been greatly
appreciated.

References

1. Keller, P., Keller, M.: Visual Cues. IEEE Press, Piscataway (1993)
2. Tufte, E.: The Visual Display of Quantitative Information. Graphics Press,

Cheshire (1983)
3. Luttighuis, P., Lankhorst, M., van der Wetering, R., Bal, R., van Berg, H.: Visu-

alising Business Processes. Computer Languages, 39–59 (2001)
4. Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: Alonso,

G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

5. Streit, A., Pham, B., Brown, R.: Visualization support for managing large busi-
ness process specifications. In: van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 205–219. Springer, Heidelberg
(2005)

6. UNISYS: 3D Visible Enterprise (2004),
http://www.3dvisibleenterprise.com/3dv/

178 R. Brown and H.-y. Paik

7. Schonhage, B., van Ballegooij, A., Elliens, A.: 3D gadgets for business process
visualization:a case study. In: Symposium on Virtual Reality Modeling Language,
Monterey, California, pp. 131–138. ACM Press, New York (2000)

8. Systems, I.S.: Interactive Software (2004),
http://www.interactive-software.de/

9. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with
bp-ql. In: Proceedings of the 31st international conference on Very large data bases,
VLDB Endowment, pp. 1255–1258 (2005)

10. Freire, J., Silva, C.: Towards enabling social analysis of scientific data. In: Social
Data Analysis Workshop (in conjunction with CHI 2008 (2008)

11. Jones, W., Bruce, H.: A report on the nsf-sponsored workshop on personal infor-
mation management (2005), http://pim.ischool.washington.edu/

12. Karger, D., Bakshi, K., Huynh, D., Quan, D., Sinha, V.: Haystack: A general
purpose information management tool for end users of semistructured data, pp.
13–26 (2005)

13. Dittrich, J., Salles, M.V.: idm: A unified and versatile data model for personal
dataspace management. In: VLDB, pp. 367–378 (2006)

14. Latva-Koivisto, A.: User interface design for business process modelling and visu-
alisation. Technical report, Department of Computer Science, Helsinki University
of Technology, Helsinki, Masters Thesis (2001)

15. Leroux, H., Exton, C.: COOPE: a tool for representing concurrent object-oriented
program execution through visualisation. In: Proc. of 9th Euromicro Workshop
Parallel and Distributed Processing, pp. 71–76 (2001)

16. Jennings, N., Norman, T., Faratin, P.: ADEPT: An Agent-based Approach to
Business Process Management. ACM SIGMOD Record 27, 29–32 (1998)

17. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
Resource Patterns: Identification, Representation and Tool Support. In: Pastor,
Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005)

18. Curtis, B., Kelner, M., Over, J.: Process modelling. Communication of the ACM 35,
75–90 (1992)

19. Heijens, S.: Support for workflow administration and monitoring in the yawl envi-
ronment. Master’s thesis, Vrije Universiteit Amsterdam (August 2005),
http://www.yawl.fit.qut.edu.au/yawldocs/

20. Fadel, F.G.: A Resource Ontology for Enterprise Modelling. Technical report, En-
terprise Integration Laboratory, Toronto, M.A.Sc. (1994)

21. Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL(R), Programming Guide:
The Official Guide to Learning OpenGL(R), 5th edn. Addison-Wesley Professional,
New York (2005)

22. Schneiderman, B.: Designing the User Interface, 3rd edn. Addison-Wesley, Reading
(1997)

23. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet another workflow lan-
guage. Information Systems 30, 245–275 (2005)

24. Batik: Batik SVG Toolkit (2005), http://xml.apache.org/batik

Author Index

Brown, Ross 153

Cal̀ı, Andrea 95

Flouvat, F. 37

Jaudoin, H. 37

Lukasiewicz, Thomas 95

Majkić, Zoran 131

Paik, Hye-young 153
Pernelle, Nathalie 66
Petit, J.-M. 37
Pirrò, Giuseppe 1
Predoiu, Livia 95

Rousset, Marie-Christine 66
Ruffolo, Massimo 1

Säıs, Fatiha 66
Stuckenschmidt, Heiner 95

Talia, Domenico 1
Toumani, F. 37

	Title Page
	Preface
	Table of Contents
	$SECCO$: On Building $Semantic$ Links in Peer-to-Peer Networks
	Introduction
	The $SECCO$ Ontology Mapping Algorithm
	Preliminary Definitions
	The $SECCO$ Ontology Model Construction
	The $SECCO$ Ontology Mapping Algorithm

	Individual Matchers: The Building Blocks of $SECCO$
	The Syntactic Matcher
	The Lexical Matcher
	The Contextual Matcher
	Why Do We Need $SECCO?$

	$SECCO$: A Double Evaluation
	Experiment 1: Comparing $SECCO$ with H-Match
	Experiment 2: Comparing $SECCO$ with Other Ontology Mapping Algorithms Not Designed for Ontology Mapping in P2P Networks

	Related Work
	Concluding Remarks
	Future Work
	References

	Towards a Scalable Query Rewriting Algorithm in Presence of Value Constraints
	Introduction
	Preliminaries
	Query Rewriting Using Views in the {\mathcal ALN(O}_{v}) Setting
	A Formal Framework
	From Query Answering to Query Rewriting

	A {\tt Bucket}-Based Algorithm for {\mathcal ALN(O}_{v}) Mediation System
	Bucket Algorithm for {\mathcal ALN(O}_{v})
	Max-Rewritings Generation

	Query Rewriting Algorithm in {\mathcal ALN(O}_{v}) Using iZi
	A Theoretical Framework for Knowledge Discovery
	Three Scalable Components of the Query Rewriting Algorithm

	Experimental Evaluation
	Conclusion
	References
	A Subsumption Characterization
	B From Query Answering Using Views to Query Rewriting Using Views
	C A {\tt Bucket}-Based Algorithm for {\mathcal ALN(O}_{v}) Mediation System
	D Query Rewriting Algorithm in {\mathcal ALN(O}_{v}) Using iZi

	Combining a Logical and a Numerical Method for Data Reconciliation
	Introduction
	The RDFS$^{+}$ Data Model
	Schema Representation and Its Constraints
	Data Description and Their Constraints

	The Reference Reconciliation Problem
	L2R: A Logical Method for Reference Reconciliation
	Generation of the Set of Reconciliation Rules
	Reasoning Method for Reference Reconciliation
	Dictionary of Synonyms and No Synonyms

	N2R: A Numerical Method for Reference Reconciliation
	Illustrative Example
	Notations and Similarity Measures on (Sets of) Basic Values
	The Equations Modeling the Dependencies between Similarities
	Iterative Algorithm for Reference Pairs Similarity Computation

	Experiments
	Presentation of the Data Sets (HOTELS and Cora)
	L2R Results
	N2R Results
	Efficiency Results

	Related Work
	Conclusion and Future Work
	References

	Tightly Coupled Probabilistic Description Logic Programs for the Semantic Web
	Introduction
	Description Logics
	Syntax
	Semantics

	Tightly Coupled Disjunctive DL-Programs
	Syntax
	Semantics
	Semantic Properties

	Tightly Coupled Probabilistic DL-Programs
	Syntax
	Semantics

	Representing Ontology Mappings
	Representation Requirements
	Deterministic OntologyMappings
	Ontology Mappings with Confidence Values

	Probabilistic Reasoning about Actions Involving Ontologies
	Algorithms and Complexity
	Algorithms
	Complexity

	Tractability Results
	Related Work
	Tightly Coupled Description Logic Programs
	Probabilistic Description Logic Programs
	Representing Ontology Mappings
	Reasoning about Actions Involving Ontologies

	Conclusion
	References
	Appendix A: Proofs

	Intensional First-Order Logic for P2P Database Systems
	Introduction
	Technical Preliminaries: Peer-to-Peer Systems

	Intensional FOL Language and Intensional Equivalence
	An Embedding of P2P Database Systems into Intensional FOL
	Computing of the Extensionalization Function
	Conclusion
	References

	Multi-faceted Visualisation of Worklists
	Introduction
	Related Work
	Business Process Visualisation
	Worklist/Tasks Visualisation

	Worklist Management
	Worklist Generation
	Patterns for Worklist Generation
	A Generic Approach to Managing a Worklist

	Resource Perspective in Workflow
	Generic Resource Types
	Generic Resource Queries

	Mapping Resources to a Worklist Visualisation
	Example Scenario
	Backgrounds and Overlays
	Resource Mapping Examples

	Interacting with the Visualised Worklist
	Implementation
	The YAWL Environment
	Worklist Visualisation Architecture
	YAWL Visualisation Designer
	YAWL Visual Worklist Handler

	Conclusion and Ongoing Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

