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1 Introduction

Notions like ‘entropy’ and ‘(expected) value of observations’ are widely used in
science to determine which experiment to conduct to make a better informed
choice between a set of scientific theories that are all consistent with the data.
But these notions seem to be almost equally important for our use of language
in daily life as they are for scientific inquiries.

I will make use of these notions to measure how ‘good’ particular questions and
answers are in particular circumstances. In doing so, I will extend and/or refine
the qualitative approach towards such measurements proposed by Groenendijk &
Stokhof (1984). The refinements are due to the fact that I also take into account
(i) probabilities, (ii) utilities, and (iii) the idea that we ask questions to resolve
decision problems.

In this paper I will first explain Groenendijk & Stokhof’s partition based
analysis of questions, and then discuss their qualitative method of measurement.
Next, I will take also probabilities into account, and show how a natural quanti-
tative measure of informativity can be defined in terms of it. Following the lead
of Communication Theory and Inductive Logic, I will then show that we can
also describe a natural measure of the informative value of questions and an-
swers in terms of conditional entropy, when we take into account that questions
are asked to resolve decision problems. Finally, I will argue that to measure the
value of questions and answers we should in general also take utilities seriously,
and following standard practice in Statistical Decision Theory, I show how some
intuitively appealing utility values can be specified.

� I appreciate it a lot that Giovanni Sommaruga invited me to submit this paper to
the present volume, given that the bulk of it was written already in 2000. I would
like to thank the following people for discussion and comments: Alexandru Baltag,
Balder ten Cate, Paul Dekker, Roberto Festa, Jeroen Groenendijk, Emiel Krahmer,
Marie Nilsenova, and Yde Vennema. Since the time that I wrote this paper, I have
published two articles (van Rooij 2004a,b) that could be thought of as successors of
this paper.
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2 The Semantics of Declaratives and Interrogatives

The perhaps most ‘natural’ conception of ‘meaning’, at least in its point of de-
parture, identifies ‘meaning’ with naming. The meaning of an expression is that
what the expression refers to, or is about. What meaning does is to establish
a correspondence between expressions in a language and things in the (model
of the) world. For simple expressions like proper names and simple declarative
sentences, this view of meaning is natural and simple. The meaning of John is
the object it refers to, while the meaning of a simple declarative sentence like
John is sick could then be the fact that John is sick. Beyond this point of depar-
ture, things are perhaps less natural. What, for example, should be the things
out in the world that a negated sentence like John is not sick is about, and
what should John is sick be about if the sentence is false? Notice that to be a
competent speaker of English one has to know what it means for John is sick
to be true or false. So a minimal requirement for any theory of meaning would
be that one knows the meaning of a declarative sentence if one knows under
which circumstances it is, or would be, true. The proposal of formal semanticists
to solve our above conceptual problems is to stick to this minimal requirement:
identify the meaning of a declarative sentence with the conditions, or circum-
stances under which the sentence is true. These circumstances can, in turn, be
thought of as the ways the world might have been, or possible worlds. Thus, the
meaning of a sentence can be thought of as the set of circumstances, or possible
worlds, in which it is true. This latter set is known in possible worlds semantics
as the proposition expressed by the sentence. We will denote the meaning of any
declarative sentence A by [[A]], and identify it with the set of worlds in which A
is true (where W is the set of all possible worlds):1

[[A]] = {w ∈ W : A is true in w}.

Just as it is standard to assume that you know the meaning of a declarative
sentence when you know under which circumstances this sentence is true, Ham-
blin (1958) argues that you know the meaning of a question when you know
what counts as an appropriate answer to the question. Because we answer a
question by making a statement that expresses a proposition, this means that
the meaning of a question as linguistic object (interrogative sentence) can be
equated with the set of propositions that would be expressed by the appropriate
linguistic answers. This gives rise to the problem what an appropriate linguistic
answer is to a question.

For a yes/no-question like Is John sick? it is widely agreed that it has only one
appropriate true answer; Yes in case John is sick, and No when John is not sick.
This means that with respect to each world a yes/no-question simply expresses
a proposition; the proposition expressed by the true appropriate answer in that
world. If we represent a yes/no-question simply by a formula like ?A, where A

1 Here, and elsewhere in this paper, I will assume that we analyze sentences with
respect to a fixed intensional model.
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is a sentence, and assume that [[A]]w denotes the truth value of A in w, the
proposition expressed by question ?A in world w is:

[[?A]]w = {v ∈ W : [[A]]v = [[A]]w}.

Given this analysis of polar interrogative sentences, the question arises what the
meaning of a wh-question is; i.e. what counts in a world as an appropriate true
answer to questions like Who is sick? and Who kissed whom?

Groenendijk & Stokhof (1984) have argued on the basis of linguistic phenom-
ena that not only yes/no-questions, but also (multiple) wh-questions can in each
world only have one true (complete) answer. They argue that for John to know
the answer to the question Who is sick?, for instance, John must know of each
(relevant) individual whether he or she is sick.2

Representing questions abstractly by ?P , where P is an n-ary predicate, John
gives in w the true and complete answer to the above question just in case he
gives an answer that entails the following proposition, where [[P ]]v denotes the
extension of predicate P in world v:

[[?P ]]w = {v ∈ W | [[P ]]v = [[P ]]w }.

If P is a 1-ary predicate like is sick, [[P ]]w denotes the set of individuals that are
sick in w, and [[?P ]]w denotes the set of worlds where P has the same extension
as in world w. If P is a binary predicate like kissed, [[P ]]w denotes the set of
ordered pairs 〈d, d′〉 such that d kissed d′ in w, and [[?P ]]w denotes the set of
worlds where the same individuals kissed each other as in world w. An interesting
special case is when P is a zero-ary predicate, i.e., when P is a sentence and when
the question is thus a yes/no-question. In that case the proposition expressed by
the question in a world will be exactly the same as the proposition determined
via our second equation. Thus, according to Groenendijk & Stokhof’s (1982)
proposal, we should not only treat single and multiple wh-questions in the same
way, but we should analyze yes/no-questions in a similar way, too.

Suppose, contrary to Hamblin’s suggestion, that we equate the meaning of
a question with the meaning of its true answer. This would immediately allow
us to define an entailment relation between questions.3 We can just say that
one question entails another, just in case the proposition expressed by the true
answer to the first question entails the proposition expressed by the true answer
to the second question. And given an entailment relation between questions, it
seems only natural to say that one question is ‘better’, or ‘more informative’
than another exactly when the former question entails the latter.

However, the above suggested entailment-relation between questions, and the
thus induced ‘better than’-relation, doesn’t seem to be very natural. Suppose
2 This doesn’t mean that everybody agrees. For a discussion of some problems, and

alternative analyses of questions, see Groenendijk & Stokhof (1997).
3 In this paper I will use the term ‘question’ not only for interrogative sentences, but

also for the meanings they express. Something similar holds for the term ‘answer’. I
hope this will never lead to confusion.
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that in fact both John and Mary are sick. In that case it holds that the true
answer to the question Are John and Mary sick? entails the true answer to
the question Is John sick?, and thus it is predicted that the first question also
entails the second. But this prediction seems to be wrong; the first question
does intuitively not entail the second question because when Mary were in fact
not sick (although John still is), the true answer to the first question would
no longer entail the true answer to the second question. What this suggests is
that the entailment-relation between questions does not just depend on how the
world actually is, but also on how the world could have been.

Above, we have defined the proposition expressed by a question with respect
to the real world, w. The above discussion suggests that to define an entailment
relation between propositions, we should abstract away from how the actual
world looks like. We should say that one question entails another just in case
knowing the true answer to the former means that you also know the true answer
to the latter, however the world looks like. Thus, ?P1 entails ?P2, ?P1 |=?P2, just
in case it holds for every world w that [[?P1]]w is a subset of [[?P2]]w:

?P1 |=?P2 iff ∀w : [[?P1]]w ⊆ [[?P2]]w.

We might also define this entailment relation between questions more directly
in terms of their meanings. In order to do this, we should think of the meaning
of a question itself no longer simply as a proposition, but rather as a function
from worlds to propositions (answers):

[[?P ]] = λw.{v ∈ W | [[P ]]v = [[P ]]w }.

Notice that this function from worlds to propositions is simply equivalent to the
following set of propositions:

{{v ∈ W | [[P ]]v = [[P ]]w }| w ∈ W}.

and, due to the assumption that a question has in each world only one true
answer, this set of propositions partitions the set of worlds W . A partition of
W is a set of mutually exclusive non-empty subsets of W such that their union
equals W . In fact, the partition that is induced in this way by a question is exactly
what Groenendijk & Stokhof (1984) have proposed to call the semantic meaning,
or intension, of a question, and they distinguish it from the extension a question
has, [[?P ]]w = [[?P ]](w), in the particular world w. Notice that Groenendijk &
Stokhof’s account is in accordance with Hamblin’s proposal: the meaning of a
question is represented by its set of possible appropriate answers.

We have seen that the partition semantics of questions is based on the assump-
tion that every question can in each world have at most one semantic answer.
Thus, if you ask me Who of John and Mary are sick?, I can only resolve the
question according to this analysis by giving an exhaustive answer where I tell
for both John and Mary whether they are sick or not. It might, however, be the
case that I only know whether John is sick, and that I just respond by saying
(At least) John is sick. This response will obviously not resolve the whole issue,
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and thus will not count as a complete, or semantic, answer to the question. Still,
it does count as an answer to the question, although only a partial one. We
can say that an assertion counts as a partial answer to the question iff it is a
non-contradictory proposition that is incompatible with at least one cell of the
partition induced by the question. In our above example, for instance, the re-
sponse (At least) John is sick counts as a partial answer to the question, because
it is incompatible with 2 of the 4 cells of the partition induced by the question.
Observe that according to our characterization of partial answerhood, it holds
that a complete, semantic, answer to the question also is incompatible with at
least one cell of the partition, and thus also counts as a partial answer. So we
see that some partial answers are more informative, and better, than others.

Suppose that Q and Q′ are two partitions of the logical space that are induced by
two interrogative sentences. Let us also assume for simplicity that we can equate
the meaning of an interrogative sentence with the question itself. Making use of
the fact that every question has according to their semantics (at most) one answer
in each world, Groenendijk & Stokhof (1984) can define the entailment-relation
between questions directly in terms of their meanings making use of a generalized
subset-relation, ‘�’, between partitions. Remember that according to our above
requirement, for question Q to entail question Q′, Q |= Q′, it must be the case
that knowing the true answer to Q means that you also know the true answer to Q′,
however the world looks like. In terms of Groenendijk & Stokhof’s (1984) partition
semantics this comes down to the natural requirement that for every element of Q
there must be an element of Q′ such that the former entails the latter, i.e. Q � Q′:

Q |= Q′ iff Q � Q′ iff ∀q ∈ Q : ∃q′ ∈ Q′ : q ⊆ q′.

According to this definition it follows, for instance, that the wh-question Who
of John and Mary are sick? entails the yes/no-question Is John sick?, because
every (complete) answer to the first question entails an answer to the second
question. And indeed, when you know the answer to the first question, the second
question can no longer be an issue. Something similar is the case for the multiple
wh-question Who kissed whom? and the single wh-question Who kissed Mary?;
learning the answer to the first question is more informative than learning the
answer to the second question.

3 Comparing Questions and Answers Qualitatively

3.1 A Semantic Comparison

If somebody asks you who murdered Smith, he would not be satisfied with an
answer like The murderer of Smith. Although this answer will obviously be true,
it is unsatisfactory because the answer will not be informative. Indeed, it is
generally agreed that in normal circumstances the utterance of an interrogative
sentence is meant as a means to acquire information.

If the aim of the question is to get some information, it seems natural to say
that Q is a better question than Q′, if it holds that whatever the world is, knowing
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the true answer to question Q means that you also know the true answer to Q′,
i.e. Q � Q′. As we have seen above, this would mean that the question Who of
John and Mary are sick? is a ‘better’ question than Is John sick?, because the
former question entails the latter. Notice that by adopting this approach, the
value, or goodness, of a question is ultimately reduced to the pure informativity
of the expected answer.

Not only can we compare questions to each other with respect to their ‘good-
ness’, the same can be done for answers. We have seen in the previous section
that complete answers are special kinds of partial answers; the most informative
partial answers that are true in the worlds of just one cell of a partition. This
suggests, perhaps, the following proposal; say that one answer is ‘better’ than
another, just in case the former entails the latter. But this would be mistaken,
for it would wrongly predict that we prefer overinformative answers to answers
that are just complete. If I ask you, for instance, whether John is sick, I would
be very puzzled by your answer Yes, John is sick, and it is warm in Africa. The
second conjunct to the answer seems to be completely irrelevant to the issue,
and thus should not be mentioned.

So it seems that we should measure the ‘goodness’ of an answer mostly in
terms of the partition induced by the question. And indeed, this is exactly what
Groenendijk & Stokhof (1984) propose. Define AQ as the set of cells of partition
Q that are compatible with answer A:4

AQ = {q ∈ Q : q ∩ A 
= ∅}.

Notice now that one partial answer can be more informative than another one
because it is incompatible with more cells of the partition than the other one.
Remember that the answer A = (At least) John is sick counts as a partial answer
to the question Q = Who of John and Mary are sick?, and is incompatible with
2 of the 4 cells of the partition. The answer B = If Mary is not sick, then
neither is John also counts as a partial answer to the question, because it is
incompatible with 1 cell of the partition. But it is a weaker answer than (At
least) John is, because it is entailed by the latter and incompatible with less
cells of the partition than the former one, i.e. AQ ⊂ BQ. Groenendijk & Stokhof
propose that when answer A is incompatible with more cells of the partition
than answer B, i.e. AQ ⊂ BQ, the former should be counted as a better answer
to the question than the latter.

But what if two answers are incompatible with the same cells of the partition,
i.e. if AQ = BQ? It is possible that when two partial answers to a question
are incompatible with, for example, just one cell of the partition, one of them
can be more informative than the other because the former entails the latter.
In our above example, for instance, not only (At least) John is sick, but also
John is sick, and it is warm in Africa is an answer that is incompatible with
just two cells of the partition induced by the question. As we have suggested
above already, the former counts in that case as a better answer than the latter,
4 From now on I tend to use the same notation both for a declarative sentence and

the proposition it expresses. I hope this will never lead to confusion.
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because it doesn’t give extra irrelevant information. Thus, in case AQ = BQ, A
is a better answer than B iff A ⊃ B.

Combining both constraints, Groenendijk & Stokhof (1984) propose that A
is (quantitatively) a better semantic answer to question Q than B, A >Q B, by
defining the latter notion as follows:

A >Q B iff either (i) AQ ⊂ BQ, or
(ii) AQ = BQ, and A ⊃ B.

Lewis (1988) and Groenendijk (1999) defined a notion of aboutness in terms of
which answers can be compared in a more direct way.5 They say that answer A
is about question Q just in case the following condition is satisfied:

A is about Q iff ∀q ∈ Q : q ⊆ A or q ∩ A 
= ∅.

Thus, when A is true/false in a world w, it should be the case that A is also
true/false in any world v that is an element of the same cell of the partition Q
as w is. Notice that because Q is a partition, the above definition of aboutness
is equivalent to the following condition:

A is about Q iff
⋃

AQ = A.

This notion of aboutness intuitively corresponds with the second condition in
the definition of >Q that no extra irrelevant information should be given. Using
the standard Stalnakerian (1978) assertion conditions, we might say that with
respect to a certain question, an assertion is relevant if it is (i) consistent, (ii)
informative, and (iii) is about the question. In terms of such a notion of relevance,
we can re-define the above ‘better than’ relation, A >Q B, between relevant
answers A and B to question Q simply as follows:

A >Q B iff A ⊂ B.

Notice that according to the above analysis, any contingent proposition satisfies
the first two constraints of the above definition of relevance. But some contin-
gent propositions are, of course, intuitively irrelevant because they are already
entailed by, or inconsistent with, what is already believed by the participants of
the conversation. It is only natural to expect that what is believed also influ-
ences the comparative goodness relation of answers to questions. And indeed,
that turns out to be the case.

3.2 A Pragmatic Comparison

Although the above defined comparative notion of goodness of answers is quite
appealing, it still can be the case that certain answers to a question can be
better than others, although they are according to the above ordering relations
predicted to be worse. It can even be the case that some responses to questions
are predicted to be semantically irrelevant, because they do not even give a

5 In Groenendijk (1999) the notion is called ‘licencing’.
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partial semantic answer to the question, but still completely resolve the issue.
If I ask you, for instance, What are the official languages spoken in Belgium?,
you can intuitively resolve the issue by saying The official languages of its major
neighboring countries. The reason is, of course, that the relevance of an answer
should always be determined with respect to what is believed/known by the
questioner. The above answer would completely resolve my question, because I
know what the major neighboring countries of Belgium are (France, Germany,
and the Netherlands), and I know which official languages are spoken in those
countries (French, German, and Dutch, respectively).6

The relevance of a question, too, depends on the relevant information state.
Although the question What is the official language of the Netherlands? gives se-
mantically rise to a non-trivial partition, I wouldn’t learn much when you told me
the answer. We can conclude that we should relativize the definitions of relevance
and goodness of questions and answers to particular information states.

In comparing the ‘goodness’ of questions to one another, and in comparing
answers, we have until now neglected what is already known or believed by the
agent who asks the question. When we denote the relevant information state of
the questioner by K, which is represented by a set of possible worlds, we can
redefine the relevant notions. First, we can define the meaning of question ?P
with respect to information state K, [[?P ]]K :

[[?P ]]K = {{v ∈ K| [[P ]]v = [[P ]]w }| w ∈ K}.

Then we can say that question Q is relevant with respect to information state
K just in case QK is a non-singleton set. To determine whether A is a relevant
answer to Q with respect to information state K, we first define AQ,K , which
denotes the set of cells of QK compatible with proposition A:

AQ,K = {q ∈ QK : q ∩ A 
= ∅}.

Now we can say that A is about Q with respect to K, just in case
⋃

AQ,K =
(K ∩ A). Then we call A a relevant answer to Q w.r.t. K iff it is contingent
with respect to K and about Q with respect to K. Now we are ready to compare
questions and answers with respects to information states. First questions:

Question Q is at least as good w.r.t. K as Q′ iff QK � Q′
K .

Determining the ordering relation for answers A and B that are relevant with
respect to Q and K is equally straightforward:

A ≥Q,K B iff (K ∩ A) ⊆ (K ∩ B).

If we want, we might also follow Groenendijk & Stokhof (1984) by also comparing
answers that express the same proposition with respect to our state K.They pro-
pose that in that case one answer is better than another one, if it is semantically
better, i.e. if it is higher on the ‘>Q’-scale than the other one.
6 Neglecting the claim of some that Frisian is an official language of the Netherlands, too.
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3.3 Limitations of Qualitative Comparisons

When we would relate questions and answers with respect to the relations ‘�K ’
and ‘≥Q,K ’, respectively, both relations would give rise to partial orderings.
This is not very surprising giving our qualitative method used to define them.
These qualitative methods are rather coarse grained, and this also holds for the
criterium an answer should satisfy, according to the above method, to count as
a relevant answer. Remember that according to the proposal above, answer A
can only be relevant with respect to question Q and information state K if it is
inconsistent with at least one cell of the partition induced by question QK , i.e.
if AQ,K � QK and AQ,K 
= QK .

Although the definition of relevance given in the previous subsection is quite
appealing, it seems that we have more intuitions about ‘relevance’ than this
qualitative notion can capture. An answer can, intuitively, sometimes be rele-
vant, although it is consistent with all cells of the partition. When I would ask
you Will John come?, and you answer by saying Most probably not, this response
counts intuitively as a very relevant answer, although it does not rule out any of
the cells induced by the question. In this case the answer changes the probability
distribution of the cells of the partition, but our problem also shows up when
probability doesn’t play a (major) role. When I ask you the yes/no-question Are
John and Mary sick?, your answer At least John is is compatible with both an-
swers, but still felt to be very relevant. This suggests that the notion of relevance
of answers should be determined with respect to a more fine-grained ordering
relation than our above ‘≥Q,K ’.

There is also a more direct reason why the ordering relation between answers
should be defined in a more fine-grained way. It is possible that one answer that
is consistent with all elements of a partition can be more relevant than another
(relevant) answer that is consistent with all elements of a partition, even if the
one does not entail the other: The answer (At least) John and Mary are sick
is normally felt to be a more relevant, or informative, answer to the question
Who of John, Mary and Sue are sick? than the answer (At least) Sue is sick,
although less relevant than the complete answer to the question that Only Sue is
sick. These examples suggest that we want to determine a total ordering relation
between answers and that we should compare answers to one another in a more
quantitative way. When probability doesn’t play a role (or when all worlds have
equal probability), this can simply be done by counting the numbers of cells of the
partition the answers are compatible with, or the number of worlds compatible
with what is expressed by the answers. I won’t discuss such a proposal further
in this paper, and turn in the next section straightaway to probabilities.

Above I have argued that we should define a more fine-grained ordering re-
lation between answers. Something similar also holds for questions. If I want to
find out who of John, Mary and Sue are sick, the question Who of John and
Mary are sick? is felt to be more informative, or relevant, than the question Is
Sue sick?, although none of the complete answers to the first question will solve
the second issue. What this example suggests is that (i) also questions should be
compared to each other with respect to a quantitative ordering relation, but also
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that (ii) to compare the usefulness of two questions with each other, we should
relate the questions to (something like) a third question. Later in this paper, this
third question, or problem, will show up again as a decision problem.

We have suggested to extend our partial ordering relations between questions
and answer to total orderings by measuring the informativity and relevance of
propositions and questions in a more quantitative way. But how can we do that?

4 Information and Communication Theory

4.1 The Amount of Information of a Proposition

There turns out to be a standard way to determine the informativity of propo-
sitions that give rise to a total ordering, such that this total ordering is an
extension of the ordering induced by entailment. Notice that if one proposition
entails another, it is more informative to learn the former than to learn (only)
the latter. That is, it would be more surprising to find out that the former
proposition is true, than to find out that the latter is. But it doesn’t seem to be
a necessary condition for proposition A to be more surprising than proposition
B that A entails B. All what counts, intuitively, is that the probability that A
is true is smaller or equal than the probability that B is true. Assuming that
an information state should be modeled by a probability function, P , we might
say that for each proposition A, its measure of surprise can be defined as either
1 − P (A), or 1/P (A).7 Both measures will induce the same total ordering of
propositions with respect to their informativity. For reasons that will become
clear later, however, we will follow Bar-Hillel & Carnap (1953),8 and define the
informativity of proposition A, inf(A), as the logarithm with base 2 of 1/P (A),
which is the same as the negative logarithm of the probability of A:9

inf(A) = log2 (1/P (A)) = −log2 P (A).

Also in terms of this notion of informativity we can totally order the propositions
by means of their informativity, or measure of surprise, and it turns out that the
so induced ordering corresponds exactly with the ones suggested earlier.10

7 In this paper I will assume that probabilities are assigned to worlds, and not (pri-
marily) to propositions. Thus, a probability function, P , is a function in [W → [0, 1]],
such that

∑
w∈W P (w) = 1. Notice that this allows lots of worlds to have a proba-

bility of 0. A proposition, A, is represented by a set of worlds, and the probability
of such a proposition, P (A), is defined as

∑
w∈A P (w).

8 Who in turn take over Hartley’s (1928) proposal for what he calls the ‘surprisal
value’ of a proposition.

9 The ‘inf’-value of a proposition is a function of its probability; for different probabil-
ity functions, the ‘inf’-value of a proposition might be different. In the text I won’t
mention, however, the particular probability function used.

10 To determine this ordering it is also irrelevant what we take as the base of the loga-
rithm. But certainly in our use of the informational value of propositions for deter-
mining the informational value of questions, the chosen base 2 will be most appealing.
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To explain the ‘inf’-notion, let us consider again the state space where the
relevant issues are whether John, whether Mary, and whether Sue are sick or
not. The three issues together give rise to 23 = 8 relevantly different states of
the world, and assuming that it is considered to be equally likely for all of them
to be sick or not, and that the issues are independent of one another, it turns out
that all 8 states are equally likely to be true. In that case, the informativity of
proposition A equals the number of the above 3 binary issues solved by learning
A. Thus, in case I learn that John is sick, one of the above three binary issues, i.e.
yes/no-questions, is solved, and the informativity of the proposition expressed
by the sentence John is sick = J , inf(J), is 1. Notice that proposition J is
compatible with 4 of the 8 possible states of nature, and on our assumptions
this means that the probability of J , P (J), is 1

2 . To determine the informational
value of a proposition, we looked at the negative logarithm of its probability,
where this logarithmic function has a base of 2. Recalling from high-school that
the logarithm with base 2 of n is simply the power to which 2 must be raised to
get n, it indeed is the case that inf(J) = 1, because −log P (J) = −log 1

2 = 1,
due to the fact that 2−1 = 1

2 . Learning that both Mary and Sue are sick however,
i.e. learning proposition M ∧ S, has an informative value of 2, because it would
resolve 2 of our binary issues given above. More formally, only in 2 of the 8 cases
it holds that both women are sick, and thus we assume that the proposition
expressed, M ∧ S, has a probability of 1

4 . Because 2−2 = 1
4 , the amount of

information learned by M ∧ S, inf(M ∧ S), is 2.
What if a proposition does not resolve a single one of our binary issues, like

the proposition expressed by At least one of the women is sick, i.e. M ∨ S ?
Also such propositions can be given an informative value, and in accordance
with our above explanation the informative value of this proposition will be less
than 1, because it does not resolve a single of the relevant binary issues. Notice
that the proposition is true in 6 of the 8 states, and thus has a probability
of 3

4 . Looking in our logarithm-table from high-school again, we can find that
−log 3

4 = 0.415, which is thus also the amount of information expressed by the
proposition according to Bar-Hillel & Carnap’s proposed measure.

In our above examples we have only looked at the special case where each of
the 8 states were equally likely, and thus limited ourselves to a rather specific
probability function.11 But it should be clear that the informative value of a
proposition can also be determined in case the states are not equally probable.
Bar-Hillel & Carnap prove that their value function has a number of properties,
and here I want to mention only the most important ones.

11 The kind of probability function we used is closely related to Carnap’s (1950) ob-
jective probability function, and also used in Bar-Hillel & Carnap (1953), to define
an objective notion of amount of the semantic information of a proposition. But the
way they define the informativity of a proposition does obviously not demand the
use of such an objective probability function. The informative value of a proposition
is always calculated with respect to a particular probability function, and this prob-
ability function might well be subjective in the sense that it represents the beliefs of
a particular agent.
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They note that when proposition A is already believed by the agent, i.e. when
P (A) = 1, the amount of information gained by learning A is 0, inf(A) = 0,
which is a natural measure for the lower bound. The higher bound is reached
when proposition A is ‘learned’ of which the agent believes that it cannot be
true, P (A) = 0. In that case it holds that inf(A) = ∞. The ‘inf’-value of all
‘contingent’ propositions, i.e. of all propositions A such that 0 < P (A) < 1, will
be finite, and higher than 0.

Let us say that two propositions A and B are independent with respect to
probability function P when P (A∧B) = P (A)×P (B), that is, when P (B/A) =
P (B). In that case it holds that inf(B/A) = inf(B), where inf(B/A) measures
the amount of information of B given that A holds, and defined as the difference
between inf(A ∧ B) and inf(A):

inf(B/A) = inf(A ∧ B) − inf(A)
= −log2P (B/A).

When A and B are independent, conjunction behaves informationally additive,
i.e. inf(A ∧ B) = inf(A) + inf(B). And indeed, in our above example M and S
– the propositions that Mary and Sue are sick, respectively – are independent,
and both have the same ‘inf’-value as J , namely 1. Thus, inf(M) + inf(S) = 2,
which is exactly the ‘inf’-value of M ∧ S, as we have observed above.

An important property of the ‘inf’-function for our purposes is that it is
monotone increasing with respect to the entailment relation. That is, if A ⊆ B,
it holds that inf(A) ≥ inf(B). And indeed, in our above example we saw that
inf(M ∧ S) ≥ inf(M ∨ S). Exactly because the ‘inf’-function behaves monotone
increasing with respect to the entailment relation, the total ordering relation
induced by the ‘inf’-function has the nice property that it is an extension of
the partial ordering relation induced by the entailment relation. The entailment
relation and the ordering relation induced by the ‘inf’-function are even closer
related to each other: if with respect to every probability function it holds that
inf(A) ≥ inf(B), then it will be the case that A semantically entails B. What
this suggests is that the semantic entailment relation is an abstraction from the
more pragmatically oriented amount-of-information relation.12

12 Of course, the semantic entailment relation (a partial ordering) is defined in terms
of meaning, while the total ordering relation is defined in terms of a different kind
of concept. Some early proponents of communication theory, however, didn’t make
a great effort to keep the concepts separate. Norbert Wiener (1950), for instance,
takes amounts of information and amount of meaning to be equivalent. He says, “The
amount of meaning can be measured. It turns out that the less probable a message
is, the more meaning it carries, which is entirely reasonable from the standpoint
of common sense.” But, to quote Dretske (1999, p. 42) “It takes only a moment’s
reflection to realize that this is not ‘entirely reasonable’ from the standpoint of com-
mon sense. There is no simple equation between meaning (or amount of meaning)
and information (or amount of information) as the latter is understood in the math-
ematical theory of information. The utterance There is a gnu in my backyard does
not have more meaning than There is a dog in my backyard because the former is,
statistically, less probable.”
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4.2 The Entropy of a Question

Now that we have extended the ordering relation between propositions with
respect to their information values to a total relation, the question arises whether
something similar can be done for questions. As before, I will think of questions
as semantic objects, and in particular as partitions of the state space.

To determine the informative value of a question, we will again follow the lead
of Bar-Hillel & Carnap (1953). They discuss the problem how to determine the
estimated amount of information conveyed by the outcome of an experiment to
be made. They equate the value of an experiment with its estimated amount of
information, and they assume that the possible outcomes denote propositions
such that the set of outcomes are mutually exclusive and jointly exhaust the
whole state space. In other words, they assume that the set of possible outcomes
partitions the set of relevant states. This suggests, obviously, that we can also
equate the informative value of a question with the estimated amount of informa-
tion conveyed by its (complete) answers. The estimated amount of information
of the answers will simply be the average amount of information of the answers.
For reasons that will become clear soon, I will denote the informative value of
question Q by E(Q), which will be defined as follows:

E(Q) =
∑

q∈Q

P (q) × inf(q).

To strengthen our intuitions, let us look again at the case where we have 8
relevantly different states of the world, such that each of the states are equally
likely to be true. Consider now the question Who of John, Mary and Sue are sick?
Notice that any complete answer to this question will reduce our 8 possibilities
to 1. Thus, any complete answer, qi, will have an ‘inf’-value of 3, i.e. it will
resolve all three of the relevant binary issues. But if each answer to the question
has an informative value of 3, the average amount of information conveyed by
the answers, and thus the informative value of the question, E(Q), should also
be 3. And indeed, because each of the complete answers has a probability of 1

8 to
be true, the informative value of the question is according to the above formula
equated with (1

8 ×3)+ ...+(1
8 ×3) = 8× (1

8 ×3) = 3. In general it will hold that
when we have n mutually exclusive answers to a question, and all the answers
are considered to be equally likely true, the informative value of the question
can simply be equated with the informative value of each of its answers, which
is −log2

1
n = log2 n. The informative value of the question Will the outcome of

the flipping of an unbiased coin be heads?, for instance, will be 1, because the
question has 2 answers, which are by assumption equally likely to be true.

What if not all of the n answers are equally likely to be true? In that case some
answers have a higher informative value than log2 n, and others have a lower one.
It turns out, however, that the average amount of information conveyed by the
answers will in that case be lower than in case the answers are equally likely to be
true. Consider for instance the flipping of a biased coin, whose chance to come up
heads after flipping is 3

4 . Because the ‘inf’-value of outcome/answer Heads is in
that case −log2

3
4 = 0.415, and the ‘inf’-value of answer Tails is −log2

1
4 = 2, the

average amount of information of the answers is (3
4 ×0.415)+(1

4 ×2) = 0.811 < 1.
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Thus, although one of the answers has an informative value that is 2 times as
high as the informative values of the outcomes/answers in case of an unbiased
coin, the average amount of information of the answers turns out to be lower.

This is in general the case; the informative value of question Q defined as above
is maximal just in case the answers are all equally likely to be true. And this seems
to confirm our intuitions. If you want to be sure to find out after 3 yes/no-questions
which of the 8 states of our toy-example actually obtains, we should ask the three
yes/no-questions which have maximal E-value. That is, we should ask for each
individual separately whether he or she is sick, which all have an ‘inf’-value of 1,
and we should not ask risky questions that might, but need not, convey more in-
formation, like Are John and Mary the ones who are sick? In fact, we might even
define the risk of question Q which has n different possible answers, as (a func-
tion of) the difference between the E-value of the n-ary question with maximal
informative value, i.e. with an E-value of log2 n, and E(Q).

Having defined when a question has its maximal informative value, we now
would like to know under which circumstances it reaches its minimal value.
Intuitively, a question is (at least) valueless in case you already know the answer
to the question. And, unsurprisingly, this is what comes out; E(Q) = 0 just in
case only one answer has a positive probability (and thus has the probability 1),
and for all other cases the question has a value strictly higher than 0.

Our aim was to define a value of questions (partitions) that allows us to extend
the partial ordering on questions induced by the ‘�’ relation to a total ordering.
We have succeeded in doing that: it always will be the case that when Q � Q′,
it will also be the case that E(Q) ≥ E(Q′). Moreover, as a special case of a
theorem stated in section 5 it will be the case that if EP (Q) ≥ EP (Q′) with
respect to all probability functions P , it holds that Q � Q′.

We have defined the informative value of questions in the same way as Bar-
Hillel & Carnap (1953) defined the value of doing an experiment. As they have
noted themselves, the way this value is defined is formally exactly analogous to
the way the entropy of a source, i.e. coding system, is defined by Shannon (1948)
in his Communication Theory. This is why we denoted the informative value of
question Q by E(Q), and from now on I will call the informative value of a ques-
tion simply its entropy. In Communication Theory ‘entropy’ is the central notion,
because engineers are mostly interested in the issue how to device a coding system
such that it can transmit on average as much as possible information via a partic-
ular channel. Although we have defined the entropy of a question formally in the
same way as Shannon defined the entropy of a source, there is an important dif-
ference between Shannon’s original use of the formalism within Communication
Theory on the one hand, and Bar-Hillel & Carnap’s and our application of it on
the other: Shannon looked at things from a purely syntactic point of view while we
interpret notions like ‘informativity’ and ‘entropy’ in a semantic/pragmatic sense.

4.3 Conditional Entropy, and the Informative Value of Expressions

Although we have followed Bar-Hillel & Carnap in making a different use of the
formalism Shannon invented than originally intended, this doesn’t mean that
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we are not allowed to ‘borrow’ some mathematical results Shannon proved for
his theory of entropy. In particular, we can make use of what in Communica-
tion Theory is known as conditional entropy, and of what is sometimes called
Shannon’s inequality, to determine the estimated reduction of uncertainty due
to getting an answer to a question.

To use those notions, we first have to say what the joint entropy is of two
questions, Q and Q′, E(Q, Q′), is, where both Q and Q′ are as usual represented
by partitions:

E(Q, Q′) =
∑

q∈Q

∑

q′∈Q′

P (q ∩ q′) × Inf(q ∩ q′).

It should be clear that this joint entropy of Q and Q′ is equivalent to the entropy
of Q � Q′, E(Q � Q′), where Q � Q′ def

= {q ∩ q′ : q ∈ Q & q′ ∈ Q′ & q ∩ q′ 
= ∅}.
Until now we have defined the entropy of a question with respect to a set of

ways the world might be. Notice that the set of worlds consistent with what is
believed, {w ∈ W : P (w) > 0}, corresponds itself also to a partition, namely the
most fine-grained partition {{w} : P (w) > 0}. Calling this latter partition B,
also this partition can be thought of as a question that has a certain entropy,
E(B).

Let us now assume that the agent learns answer q to question Q. What is
then the entropy of B conditional on learning q, Eq(B)? The definition of this
conditional entropy can be easily given:

Eq(B) =
∑

b∈B

P (b/q) × inf (b/q),

and measures the entropy of, or uncertainty in, B when it is known that the
answer to Q is q. In terms of this notion we might now define the entropy of B
conditional on Q, EQ(B). This is defined as the average entropy of B conditional
on learning an answer to question Q:

EQ(B) =
∑

q∈Q P (q) × Eq(B)
=

∑
q∈Q P (q) ×

∑
b∈B P (b/q) × inf (b/q)

=
∑

q∈Q

∑
b∈B P (q ∧ b) × inf (b/q).

Now it can be shown that for any two partitions X and Y of the same set of
worlds, it holds that E(X, Y ) − E(X) = EX(Y ):

E(X, Y ) − E(X) = −
∑

x∈X

∑
y∈Y P (x ∧ y) × logP (x ∧ y) +∑

x∈X P (x) × logP (x)
=

∑
x∈X

∑
y∈Y P (x ∧ y) × logP (x) −∑
x∈X

∑
y∈Y P (x ∧ y) × logP (x ∧ y)

=
∑

x∈X

∑
y∈Y P (x ∧ y) × [logP (x) − logP (x ∧ y)]

=
∑

x∈X

∑
y∈Y P (x ∧ y) × log P (x)

P (x∧y)
=

∑
x∈X

∑
y∈Y P (x ∧ y) × inf(y/x)

= EX(Y ).
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A similar calculation shows that E(X, Y ) − E(Y ) = EY (X), and thus that
EX(Y )+E(X) = EY (X)+E(Y ). Notice that thus in particular it holds for our
two partitions Q and B that EQ(B) = E(Q, B) − E(Q). I will just state, and
not show, Shannon’s inequality, which says that for any two partitions X and Y
of the same state space, it holds that

EX(Y ) ≤ E(Y ),

where the two values are the same exactly when the two issues are completely
orthogonal to one another, i.e. when the issues are independent. Notice that this
means that the entropy of Q�Q′ only equals the entropy of Q plus the entropy of
Q′ in case the partitions are fully independent. That the entropy of the combined
question is only in these special cases equal to the sum of the entropies of the
questions separately, conforms to our intuition that on average we learn less by
getting an answer to the combined question Who of John and Mary will come
to the party?, than by getting two separate answers to both questions Will John
come to the party? and Will Mary come to the party?, when John only, but not
if and only, comes when Mary comes.

Shannon’s inequality will turn out to be a nice property of what I will call the
average information gained from the answer to a question. To define this notion,
let us first define what might be called the Informational Value of answer q, with
respect to partition B, IVB(q), as the reduction of entropy, or uncertainty, of B
when q is learned:13

IVB(q) = E(B) − Eq(B).

Because learning q might flatten the distribution of the probabilities of the el-
ements of B, it should be clear that IVB(q) might have a negative value. Still,
due to Shannon’s inequality, we might reasonably define the informational value
of question Q, the Expected Informational Value with respect to partition B,
EIVB(Q), as the average reduction of entropy of B when an answer to Q is
learned:

EIVB(Q) =
∑

q∈Q P (q) × IVB(q)
=

∑
q∈Q P (q) × [E(B) − Eq(B)]

= E(B) − [
∑

q∈Q P (q) × Eq(B)]14

= E(B) − EQ(B)

The difference between E(B) and EQ(B) is also known as the mutual information
between B and Q, I(B, Q). Shannon’s inequality tells us now that our average
uncertainty about B can never be increased by asking a question, and it remains
the same just in case Q and B are orthogonal to each other. In the latter case
we might call the question irrelevant.
13 A similar notion was used by Lindley (1956) to measure the informational value of

a particular result of an experiment.
14 This step is allowed because the unconditional entropy of B, E(B), does not depend

on any particular element of Q.
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To strengthen our intuitions, let us look at our toy-example again. Recall
that 8 worlds were at stake, and all the 8 worlds had the same probability. In
that case, learning which element of B obtains, i.e. learning what the actual
world is, gives us 3 bits of information, and thus E(B) = 3. Remember also that
learning the answer to the yes/no-question Is John sick? will give us 1 bit of
information, i.e. E(Sick(j)?) = E(Q) = 1, because each answer to the question is
equally likely true, and from both answers we would gain 1 bit of information. It’s
almost equally easy to see that for both answers to the question, the entropy of B
conditional on learning this answer q, Eq(B), is also 1, and thus that the average
reduction of uncertainty due to an answer to Q, EB(Q) is 1, too. It follows that
thus the expected information value, EIVB(Q), is E(B) − EQ(B) = 3 − 1 = 2.
The same result is achieved when we determine EIVB(Q) by taking the average
difference between E(B) and Eq(B) for both answers q, because both answers
are equally likely, and for both it holds that E(B) − Eq(B) = IVB(q) = 2.

We have defined the expected informational value of question Q with respect
to partition B, EIVB(Q), as the average reduction of entropy of B when an
answer to Q is given, i.e. as the difference between E(B) and the conditional
entropy EQ(B). And to make sure that this is always positive, we have made
use of Shannon’s inequality. But notice that the entropy of B conditional on Q,
EQ(B), is simply the same as the entropy of Q, E(Q), itself. But this means
that the expected informational value of Q with respect to B, EIVB(Q), can
also be defined as the difference between the entropy of B and the entropy of Q,
E(B)−E(Q). Notice also that we don’t have to make use of Shannon’s inequality
to see that for any question Q it holds that EIVB(Q) will never be negative.
The reason is that for any question Q it holds that B � Q, and we have noted
already that in that case it will hold that the entropy of B will be at least as high
as the entropy of Q: E(B) ≥ E(Q). But if we can assure that the informational
value of a question is non-negative without making use of Shannon’s inequality,
why did we define the value of a question in such a roundabout way via the
conditional entropy of B given Q?

4.4 Deciding between Hypotheses

The reason is that we don’t want to restrict ourselves to the special case where
in the end we want to have total information about the world, where we have
completely reduced all our uncertainty. Remember that partition B was the most
fine-grained partition possible; the elements of B were singleton sets of worlds.
Because the entropy of Q measures the average uncertainty about how the world
looks like when we’ve got an answer to Q, this measure, E(Q), is only the same
as the entropy of B conditional on Q, EQ(B), because the elements of our special
partition B correspond one-to-one to the worlds.15

But now suppose that we need not to know how exactly the world looks like,
but rather just want to find out which of the mutually exclusive and exhaustive
set of hypotheses in the set H = {h1, ..., hn} is true, where the hi’s denote
15 More in general, it holds that for two partitions Q and Q′, if Q � Q′, then EQ(Q′) =

E(Q′).
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arbitrary propositions. The problem now is to determine the value of question
Q with respect to this other partition H , EIVH(Q), and this is in general not
equal to E(H) − E(Q). To determine the value EIVH(Q), we need to make use
of the conditional entropy of H given (an answer to) Q.

Notice that Shannon’s inequality tells us now also something informative;
EIVH(Q) will never be negative, although it need not be the case that H �
Q. And not only for our special partition B, but also for any other issue H
we can determine when question Q is informationally relevant. Question Q is
informationally relevant with respect to a set of hypotheses H just in case the
true answer to Q is expected to reduce the uncertainty about what the true
hypothesis of H is, i.e. EIVH(Q) > 0.

This notion of ‘informational relevance’ is important when an agent is fronted
with the decision problem which of the mutually exclusive hypotheses {h1, ..., hn}
he should choose. In case the agent only cares about the issue which of the hy-
potheses is true, and that all ways of choosing falsely are equally bad, the risk of
choosing depends only on the uncertainty about what the right hypothesis is. It
seems natural to advice him in these circumstances always to choose that hypoth-
esis that has the highest prior probability. But this means that the risk of choosing
depends entirely on the entropy of H , E(H). And indeed, the flatter the distribu-
tion of the probabilities of the hypotheses is, the more risky the choice will be.

Notice that asking a question, and thereby expecting to get an answer (that
is true), might reduce the entropy of H , i.e. the uncertainty about which hy-
pothesis is true, and thus also the risk of the decision, even if all answers to
the question are compatible with all hypotheses. But this means that even if no
answer to the question will eliminate a single hypothesis, it might still be useful,
or relevant, to ask the question. Indeed, at this point it seems only natural to
equate the usefulness of question Q with respect to the decision problem which of
the hypotheses of H should be chosen, with the reduction of uncertainty about
H due to Q, i.e. EIVH(Q). Moreover, we can say that question Q is relevant
with respect to H just in case EIVH(Q) is strictly higher than 0.

Thus, instead of the partial order between questions induced by the relation
‘�’, we can now determine a total order. We say that if Q 
= Q′, question Q is
better than question Q′ with respect to hypotheses H , Q >H Q′, just in case the
expected information value of Q is higher than the value of Q′, or, if both are
the same, the former is less fine-grained than the latter:16

Q >H Q′ iff (i) EIVH(Q) > EIVH(Q′), or
(ii) EIVH(Q) = EIVH(Q′) and Q � Q′.

Just as the usefulness, and relevance, of question Q with respect to decision
problem H can be defined in terms of EIVH(Q), we can also define the usefulness,
16 As before, I assume always a particular probability function. If we don’t do that, the

following general fact can be proved: Denote the expected utility value of Q with
respect to H and probability function P : If Q � Q′, then for all P : EIV P

H (Q) ≥
EIV P

H (Q′). We will see in section 5 what is needed to strengthen this fact to the
stronger if and only if statement.
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and relevance, of assertion A with respect to decision problem H in terms of the
information values of answers. That is, we can propose to equate the usefulness of
assertion A with respect to issue H with IVH(A), and we can say that assertion
A is relevant just in case IVH(A) > 0. Notice that the thus defined notion of
relevance predicts that many assertions are relevant, although they are (falsely)
predicted to be irrelevant according to the qualitative notion of relevance used
above. Moreover, our newly defined notion of relevance still has the nice property
that it can explain why an assertion is felt to be irrelevant although it still is
informative. For instance, if the issue is who of John and Mary are sick, and we
look at our toy-example again where the sickness of John, Mary and Sue are
independent of each other, the assertion Sue is sick is rightly predicted to be
irrelevant, although it does eliminate some possible worlds.

Now we can also turn our partial order between answers induced by the rela-
tion ‘>Q’, to a total order (although it is not an extension of it). We say that
assertion A is better than assertion B with respect to hypotheses H , A >H B,
just in case the informational value of A, IVH(A), is higher than the correspond-
ing value of B, IVH(B), or, in case both are the same, the former should be less
surprising than the latter:

A >H B iff (i) IVH(A) > IVH(B), or
(ii) IVH(A) = IVH(B) and inf(A) < inf(B).

Thus, if A reduces the entropy of H more than B does, it is a better answer to
‘question’ H than B.

Notice that according to our definition of the relevance of an assertion, an
assertion is predicted to be irrelevant when it flattens the probability distribution
of the hypotheses. In such cases the assertion indeed has the effect that it doesn’t
make the decision any easier. Intuitively, however, this doesn’t mean that thus
the assertion is felt to be irrelevant. The assertion seems to be relevant exactly
because it makes the decision more risky. This wrong prediction can, fortunately,
be removed easily. Just say that A is relevant with respect to H exactly when
the acceptance of A changes the probability distribution of the hypotheses, i.e.
when IVH(A) 
= 0.

4.5 Limitations of the Analysis in Terms of Entropy

The measure of usefulness and relevance of questions and assertions with respect
to a decision problem that we have defined above is, I think, reasonable for
some, but also only reasonable for some kinds of decision problems. First, in our
description of decision problems, we only looked at problems where the choice
between a set of hypotheses is at stake. We would like to extend the analysis from
the choice between hypotheses, to choices between more general kinds of actions.
Extending our analysis from decisions between hypotheses to decisions between
actions need not yet worry us. It doesn’t seem to be completely unreasonable to
represent actions as propositions; an action is true in a world just in case the
result of the action is true in that world. Indeed, in the well respected decision
theory of Jeffrey (1965), actions are represented by propositions.
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What is more problematic for the way we have analyzed the usefulness of
questions and answers in this section is that once we think of a decision problem
as consisting of a set of actions, it seems only natural to assume that the decision
depends not only on the probabilities involved, but also on the desirabilities, or
utilities, of the states that result when the various actions would be chosen.
But once desirabilities enter the picture, it is obvious that our analysis of the
usefulness of questions and answers can no longer be defined simply in terms
of the dependencies between certain probability distributions, i.e. in terms of
conditional entropies.

Consider, for instance, the decision problem faced by airpilot Smith who won-
ders whether he should drop the bomb, with the reasonable chance to trigger a
world-war, or not dropping the bomb, and thereby missing an excellent chance
to strike a potential future enemy in war, and getting a scolding for this by
his commanding officer. It is clear that Smith’s desirabilities of the expected
outcomes of the relevant actions will heavily influence his decision.

Even if the relevant actions just involve a choice between a set of hypotheses,
the most probable hypothesis is not always the one that intuitively is preferable.
The reason is that choosing this hypothesis might give rise to very nasty con-
sequences. Consider, for instance, scientist Jones who is facing the dilemma be-
tween choosing the generally accepted theory h1 and working in this framework,
or choosing the alternative theory h2 that he thinks is somewhat more likely
to be true, but that has a very bad reputation among his fellow researchers.
Because Jones knows that choosing h2 will turn him into a black sheep of his
family whose papers will never be read, even the more purists among us could
understand Jones’ choice for theory h1.

Let me give a simple example showing that the reduction of entropy of the rel-
evant set of hypotheses/actions does not always measure the usefulness of ques-
tions and assertions in a satisfying way. Consider John, who wonders whether
he should go to the party tonight, or not. His decision depends almost entirely
on whether Mary will go, because he is secretly in love with Mary, and believes
that going to the party is his only chance to meet her. He prefers meeting her
tonight, to not meeting her, but if Mary won’t go, he prefers to stay home. But
going to the party when Mary comes too obviously involves a risk; perhaps Mary
will turn him down when he makes his advances. We might say that in this sit-
uation 4 different states (worlds) are involved: one world, w1, where Mary goes
to the party, John will go, too, he will try his luck, and is successful; a world,
w2, where Mary goes, John goes, he tries his luck, and is unsuccessful; world w3,
where Mary won’t go to the party, and thus neither does John, but where the
counterfactual statement holds that when John would try his luck, he would be
successful, and w4 which is similar to w3 except that in this world the counter-
factual would be false. On the additional assumption that John thinks all worlds
are equally likely to come out true, that he doesn’t care about what Mary would
do if they don’t go to the party, and that John has a negative attitude towards
taking risks, we might represent his decision problem by the following table:
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World Probability Desirability
w1 1/4 12
w2 1/4 2
w3 1/4 8
w4 1/4 8

In this case, it is relevant, intuitively, for John to learn that the above men-
tioned counterfactual statement is true. It is, however, easily seen that learning the
proposition expressed by this statement, {w1, w3} = A, does not change the en-
tropy of the decision problem that can be represented by {{w1, w2}, {w3, w4}} =
H . That is, IVH(A) = E(H) − EA(H) = 0, because learning A does not change
the probability distribution of the elements of H , i.e. both E(H) and EA(H) have
a value of 1.

In a similar way, it also seems relevant for John to know the answer to the
question whether he would be successful if he tried, that is, to learn which
element of the partition {{w1, w3}, {w2, w4}} is true. It is straightforward to
check, however, that not only the positive answer to the question, A, but also
the negative answer, ¬A, has no effect on the probability distribution of the
elements of H . Representing the question whether the counterfactual is true or
not by Q, it is thus predicted that also EIVH(Q) = E(H)−EQ(H) = 0. We can
conclude that the value EIVH(Q) is at least not always the proper measure to
determine the relevance of a question with respect to a decision problem.

What we need, or so it seems, is a measure that not only looks at the proba-
bilities, but also at the desirabilities involved. In the next section we will define
such a measure by looking seriously at statistical decision theory.

5 Utility Values of Questions and Answers

5.1 Utilies of Answers and Expected Utilities of Questions

In Savage’s (1954) decision theory, actions are taken to be primitives, and if we
assume that the utility of performing action a in world w is U(a, w), we can say
that the expected utility of action a, EU(a), with respect to probability function
P is

EU(a) =
∑

w

P (w) × U(a, w).

Let us now assume that our agent, John, faces a decision problem, i.e. he wonders
which of the alternative actions in A he should choose. A decision problem of
an agent can be modeled as a triple, 〈P, U, A〉, containing (i) the agent’s proba-
bility function, P , (ii) his utility function, U , and (iii) the alternative actions he
considers, A. You might wonder why we call this a decision problem; shouldn’t
the agent simply choose the action with the highest expected utility? Yes, he
should, if he chooses now. But now suppose that John doesn’t have to choose
now, but that he has the opportunity to first receive some useful information by
asking question Q.
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Before we can determine the utility of Q, we first have to say how to determine
the expected utility of an action conditional on learning some new information.
For each action a ∈ A, its conditional expected utility with respect to new
proposition C, EU(a, C) is

EU(a, C) =
∑

w

P (w/C) × U(a, w).

When John learns proposition C, he will of course choose that action in A which
maximizes the above value. Then we can say that the utility value of making an
informed decision conditional on learning C, UV (Learn C, choose later), is the
expected utility conditional on C of the action that has highest expected utility:

UV (Learn C, choose later) = maxa∈AEU(a, C).

In terms of this notion we can determine the value, or relevance, of the assertion
C. Referring to a∗ as the action that has the highest expected utility according
to the original decision problem, 〈P, U, A〉, i.e. maxa∈AEU(a) = EU(a∗), we
can determine the utility value of the assertion C, UV (C), as follows:

UV (C) = maxa∈AEU(a, C) − EU(a∗, C).

This value, which in statistical decision theory (cf. Raiffa & Schlaifer, 1961) is
known as the value of sample information C, V SI(C), can obviously never be
negative. In fact, it predicts that an assertion only has a positive utility value in
case it influences the action that John will perform. And indeed, it seems natu-
ral to say that a cooperative participant of the dialogue only makes a relevant
assertion in case it makes John change his mind with respect to which action he
should take. It also seems not unreasonable to claim that in a cooperative dia-
logue one assertion, A, is ‘better’ than another, B, just in case the utility value
of the former is higher than the utility value of the latter, UV (A) > UV (B).

In terms of the utility value of assertions/answers, we can now determine
the utility values of questions. Suppose that question Q is represented by the
partition {q1, ..., qn}. Just like in section 4 we defined the informative value,
or entropy, of a question as the expected, or average, informative value of its
answers, in this case we can determine the expected utility value of a question,
EUV (Q) as the average utility value of the possible answers:

EUV (Q) =
∑

q∈Q

P (q) × UV (q).

Notice that this value, which in statistical decision theory is known as the ex-
pected value of sample information, EV SI, will never be negative. In fact, the
value will only be 0 in case no answer to the question would have the result
that the agent will change his mind about which action to perform, i.e. for each
answer q ∈ Q it will be the case that maxa∈AEU(q, a) = EU(q, a∗). In these
circumstances the question really seems irrelevant, and it thus seems natural to
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say that question Q is relevant just in case EUV (Q) > 0. It should be obvious
that this measure function also totally orders all questions with respect to their
expected utility value.

It is of some interest to see that we can determine the expected utility value of
questions also in another way. According to this alternative way of determining
the value of questions, we first have to determine the utility value of choosing
now. The utility value of choosing now is defined as the expected utility of the
action which has the highest expected utility according to the original decision
problem, i.e. with respect to the original probability function:

UV (Choose now) = maxa∈AEU(a).

Now we can determine the expected utility value of choosing after you learn the an-
swer, EUV (Learn answer, choose later), in terms of UV (Learn q, choose later),
by averaging over the answers to the question:

EUV (Learn answer, ch. later) =
∑

q∈Q P (q) × UV (Learn q, ch. later)
=

∑
q∈Q P (q) × maxa∈AEU(a, q).

The expected utility value of question Q, EUV †(Q), is now defined as the dif-
ference between the expected utility value of choosing after you got the answer,
and the utility value of choosing now:

EUV †(Q) = EUV (Learn answer, choose later) − UV (Choose now).

It can be easily shown that the second way of determining the expected utility
value of a question gives rise to the same result as determining the expected
utility value of a question according to the first way, i.e. EUV †(Q) = EUV (Q):17

EUV †(Q) = EUV (Learn answer, choose later) − UV (Choose now)
= [

∑
q∈Q P (q) × UV (Learn q, choose later)] − UV (Choose now)

= [
∑

q∈Q P (q) × maxa∈AEU(a, q)] − EU(a∗)
= [

∑
q∈Q P (q) × maxa∈AEU(a, q)] − [

∑
q∈Q P (q) × EU(a∗, q)]

=
∑

q∈Q P (q) × [maxa∈AEU(a, q) − EU(a∗, q)]
=

∑
q∈Q P (q) × UV (q)

= EUV (Q).

According to the qualitative comparison method of section 3, one question, Q, is
better than another question, Q′, just in case the former entails the latter, that is,
in case the partition Q is finer than the partition Q′: ∀q ∈ Q : ∃q′ ∈ Q′ : q ⊆ q′.
We have seen in section 4 that measuring the expected informational value of
questions, EIVH(Q), in terms of reduction of entropy of the set of hypothe-
ses H , accords with the qualitative measurement, in the sense that when Q
is a finer partition than Q′, it also holds that Q will have a greater expected
17 Where a∗ is again the action which maximizes expected utility in the original decision

problem.
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informational value, EIVQ(H) ≥ EIVQ′(H), whatever the set of hypotheses
is. Now we can ask a similar question with respect to the question’s expected
utility value. Denoting by EUVDP (Q) the expected utility value of Q with re-
spect to decision problem DP , Marschak & Radner (1972) have proved as a
special case of Blackwell’s (1953) theorem the following strong, but also very
appealing theorem:

Theorem Q � Q′ iff ∀DP : EUVDP (Q) ≥ EUVDP (Q′).

The ‘only if’ part is natural, and shows that it is never irrational (if collecting
evidence is cost free) trying to get more information to solve one’s decision
problem. This part was already implicitly assumed by Savage (1954) and Raiffa
& Schlaifer (1961), and was explicitly proved by Good (1966) to follow from the
Bayesian principle of maximizing expected utility.18

The ‘if’ part is more surprising, and it suggests that the semantic entailment
relation between questions is an abstraction from the more pragmatic usefulness
relation of questions. The proof is based on the idea that when two partitions
are qualitatively incomparable, one can always find a pair of decision problems
such that the first partition has a higher expected utility value than the second
one according to one decision problem, and a lower expected utility value than
the second one according to the other decision problem.

Given this result for questions, one might expect that something similar holds
for assertions. We have seen in section 4.1 that whenever A ⊆ B, it also holds
that inf(A) ≥ inf(B). In section 4.3, however, we saw that in such circumstances
it still might be that IVH(B) > IVH(A), i.e. the informational value of a proposi-
tion does not behave monotone increasingly with respect to the (ordering induced
by the) classical entailment relation between propositions. Still, it might be the
case that stronger propositions always do have a higher utility value. But in
fact, they do not. The utility value of choosing now, UV (Choose now), might be
higher than the utility value of first learning proposition C, and then choosing
later, UV (Learn C, choose later), because from learning C I might learn that
my worst nightmare has come out true, and that I have to perform an action
that I otherwise never would have performed.

If neither the informative value of proposition A, IVH(A), nor its utility value,
UV (A), behaves monotone increasing with respect to the ‘⊆’-relation, perhaps
they do behave monotone increasing with respect to one another. But also that
is in general not the case, as it should be according to our argumentation in
section 4.5.

First, it might be the case that learning a proposition that doesn’t change
the entropy, still effects a change of mind. Look at the following matrix for the
example discussed in section 4.5, but now for a Savage-style decision theory:

18 But see Skyrms (1990), who traces this result back all the way to an unpublished
manuscript of Ramsey.
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World Prob John goes doesn’t go
Mary comes w1 1/4 12 0
Mary comes w2 1/4 2 0

Mary doesn’t come w3 1/4 0 8
Mary doesn’t come w4 1/4 0 8

Looking at the matrix, we can equate the action John goes with the worlds
where this action has a higher utility than the alternative action. Thus, the ac-
tion corresponds in this case with the proposition {w1, w2}. The decision prob-
lem which action John should perform can thus be represented by the partition
{{w1, w2}, {w3, w4}} = H . Note that due to the fact that all worlds have an equal
probability, the informational value of proposition {w1, w3} = A is 0, IVH(A) =
0. Still, learning the proposition has a positive utility value, i.e. UV (A) > 0,
because learning the proposition would have the result that John changes his
mind. Facing his original decision problem, John would decide not to go to the
party, because that action has the highest expected utility, UV (Choose now) =
maxiEU(ai) = EU(doesn’t go) = 4. When he would learn proposition A =
{w1, w3}, however, John would change his mind, because EU(John goes, A)
= 6 > EU(doesn’t go, A) = 4. Due to this latter inequality, together with the
fact that the action doesn’t go is the one that would originally have been chosen,
it follows that also UVH(A) = 2 > 0. This shows that information can be useful
with respect to a decision problem, although it doesn’t reduce the problem’s
entropy.

With the help of the same matrix we can also show that a proposition might
reduce the entropy of a decision problem, although it doesn’t have a positive
utility value. We just have to find a proposition that strengthens the choice
for the action/hypothesis that would have been chosen anyway, in our case for
action/hypothesis {w3, w4}. Of course, any subset of this action/hypothesis will
do this trick.

5.2 Decision between Hypotheses

In section 4 our problem was to choose an hypothesis from set H , and base this
decision only on the probabilities involved. A decision problem can in such cases
be modeled by a pair like 〈P, H〉. As for all kinds of decision problems, we are
interested in two kinds of questions: (i) What is the hypothesis the agent should
go for? and (ii) What kind of question should the agent ask to make a better
informed decision concerning the hypotheses? The answer to the first question
seems obvious; the hypothesis the agent should choose is the hypothesis which
is most likely to be true, i.e. the hypothesis with the greatest probability. The
second question is somewhat more difficult to answer. Let me now show, following
Marschak (1974a), that this is a special case where the decision problem should
be modeled by a triple like 〈P, U, A〉, as in the previous section.

We have assumed in the previous section that a decision problem partly con-
sists of a set of alternative actions, and that each action a ∈ A has a utility in
a world w, U(a, w). Let us now assume that the set of alternative actions, A, is
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such that for each world w there is always exactly one action a ∈ A such that
∀a′ ∈ (A − {a}) : U(a, w) > U(a′, w). This means that the set of alternative
actions partitions the set of worlds; to each action a ∈ A there corresponds a
cell of the partition, and in each world of this cell a is the unique best action
to do. This set corresponds of course exactly to a set of mutually exclusive and
jointly exhaustive hypotheses, H = A∗, that we used in section 4 to measure the
informational values of questions and answers when we define this partition as
follows:

H = A∗ = {{w ∈ W | ∀a′ ∈ (A − {a}) : U(a, w) > U(a′, w)}| a ∈ A}.

For each action a ∈ A we will denote the cell corresponding with a by a∗, and
this, again, is exactly a hypothesis in the original set H . This shows that choosing
a hypothesis can be thought of as a special kind of action.

But to show that a decision problem of the form 〈P, H〉 = 〈P, A∗〉 is a special
case of a problem of the form 〈P, U, A〉, we also have to eliminate the utility
function in a natural way. The most natural way in which this can be done is to
assume that for this case the utility function is the utility function of someone
who cares about the truth, and nothing but the truth.

Suppose that there are only two units of utilities, u1 and u2, such that u1
is strictly higher than u2. In combination with the foregoing assumption this
means that the actions taken in a world can be counted as being either wrong
or right, i.e. having a utility of either 1 or 0; action a has utility 1 in a world iff
hypothesis a∗ is true in that world, and has utility 0 otherwise. Thus, the utility
function is nothing else but a truth-value function. The utility value of choosing
now is in these special circumstances the same as the probability value of the
hypothesis with the highest utility:

UVH(Choose now) = maxa∈AEU(a)
= maxa∈A

∑
w P (w) × U(a, w)

= maxa∗∈A∗ [(
∑

w∈a∗ P (w) × 1) + (
∑

w �∈a∗ P (w) × 0)]
= maxa∗∈A∗

∑
w∈a∗ P (w)

= maxa∗∈A∗P (a∗).

Now we can determine for each action a ∈ A its conditional expected utility
with respect to new proposition C:

EU(a, C) =
∑

w P (w/C) × U(a, w)
= P (a∗/C).

Thus, in these special cases the expected utility of action a after learning C is
the same as the probability of a∗ conditional on C. As a result it also follows that
the action a which maximizes the expected utility conditional on learning new
proposition C, is the proposition a∗ which has the highest probability conditional
on C. Now we can also determine the utility value of choosing after learning C:

UVH(Learn C, choose later) = maxa∈AEU(a, C)
= maxa∗∈A∗P (a∗/C).
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In terms of this notion we can define a utility value of learning proposition
C, UV ∗

A∗(C), that slightly differs from the one defined in the previous section,
UV (C), in that according to the new function we immediately subtract the
utility value of choosing now.

UV ∗
A∗(C) = UVH(Learn C, choose later) − UVA∗(Choose now)

= maxa∈AEU(a, C) − maxa∈AEU(a)
= maxa∗∈A∗P (a∗/C) − maxa∗∈A∗P (a∗).

Thinking of A∗ again as the set of hypothesis H , one can see that UV ∗
H(C), in

distinction with UVH(C), can have a negative value, but also a positive one in
case C only strengthens the initially already preferred hypothesis.

Given our new definition of the utility value of assertions, UV ∗
H(C) it is, under

the special circumstances sketched in this subsection, true that

UV ∗
H(A) ≥ UV ∗

H(B) iff maxh∈HP (h/A) ≥ maxh∈HP (h/B).

Thus, we have shown the utility value of an assertion is the larger, according
to this measure function, the larger the probability of the hypothesis that has
maximal posterior probability derived from it.

Notice that when maxh∈HP (h/A) ≥ maxh∈HP (h/B), it also holds that learn-
ing A reduces the entropy of H more than B does, in case H consists of 2 hy-
potheses, because in these cases EA({h, ¬h}) ≤ EB({h, ¬h}). We can conclude
that at least in these very special cases, utility values of assertions behave similar
to their informational values: UV ∗

H(A) ≥ UV ∗
H(B) iff IVH(A) ≥ IVH(B). How-

ever, when H contains more than 2 hypotheses the result doesn’t go through
anymore. The reason is, intuitively, that to determine UV ∗

H(A) we only look at
the optimal hypothesis, while to determine IVH(A) we also look at the various
sub-optimal hypotheses.

Let us now, finally, look at proposition C that completely resolves the issue.
That is, let us look at the case where for each h ∈ H , it either holds that C = h,
or C ∩ h = ∅. Notice that in that case the value maxh∈HP (h/C) will always be
1, and the utility value of C, UV ∗

H(C), depends only on the prior probability of
h∗.19 Let us now look at the question that completely corresponds with decision
problem H , i.e. let us look at question H itself. We might evaluate the ex-
pected gain from this question, EUV ∗

H(H), by averaging over the corresponding
expected values of the answers:

EUV ∗
H(H) =

∑

h∈H

P (h) × UV ∗
H(h),

because for each h ∈ H it holds that UV ∗
H(h) = −P (h∗), we can conclude that

for these special cases the expected gain from question H , EUV ∗
H(H), decreases

as the prior probability of the least surprising message, i.e. h∗, increases.
19 Of course, this does not mean that the utility values of propositions are thus always

independent of the propositions themselves. This is only the case when we only
compare the utility values of different propositions that all fully resolve the issue.
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5.3 Questioning Procedures

We ended section 5.1 with a negative result: even if we can represent the actions
of a decision problem by a set of propositions, i.e. by a partition like H , there still
exists in general no connection between the informational value of a propositionA,
IVH(A), and its utility value, UVH(A). Something similar is the case for questions:
EIVQ(Q′) is in general no special case of EUV (Q). Let us assume that for every
action ai of our decision problem A there corresponds a set of worlds a∗

i in which
ai is the unique best action to perform. Assume A = {a1, ..., a5} and that the
corresponding A∗ = {a∗

1, ..., a
∗
5} partitions the set of worlds compatible with what

our agent believes. According to the prior probability function, all ‘worlds’ a∗
i are

equally likely. Suppose, moreover that the utility function is as follows:

U(ai, a
∗
j ) = 1, if i = j, 0 otherwise.

In this case one should pick the ai whose corresponding proposition has the
maximal probability. Suppose we have two questions, Q = {q1, q2} and Q′ =
{q′1, q

′
2}. The following table gives the probabilities of a∗

i given that we learn an
answer to one of these questions:

EIVA∗(Q) 
= EUVA(Q) :

q1 q2 q′1 q′2
a∗
1 0.4 0.3 0.5 0.2

a∗
2 0.3 0.4 0.2 0.5

a∗
3 0.1 0.1 0.1 0.1

a∗
4 0.1 0.1 0.1 0.1

a∗
5 0.1 0.1 0.1 0.1

Because maxa∈AEU(a, q′i) = 0.5 > 0.4 = maxa∈AEU(a, qi), it is obviously
the case that EUVA(Q) < EUVA(Q′). However, it turns out that EQ(A∗) <
EQ′(A∗) and thus that EIVA∗(Q) > EIVA∗(Q′). Thus, in general EUV (Q) and
EIV (Q) do not behave monotone increasing with respect to one another.

However, as shown by Sneed (1967), in the following special case they do.20

Suppose our agent wants to know which of the elements of X0 = {x1, ...xN} is
true. Our agent may partition X0 into n ≤ N disjoint, non-void subsets.

X1
1 , X1

2 , ..., X1
n.

Now he is given the choice to pay a fee r to be told which member of the partition
contains the true member of X . Say he is told X1

1 . If N(X1
1 ) ≥ n he may then

partition X1
1 and pay r to be reliably told which member of this new partition

contains the true member of X0. The agent can go on in this way until every
answer to a new question contains only elements of one of the elements of X0.

For any number n and N there is a finite number v of different questioning
procedures of this sort that the agent could employ in attempting to discover
which member of X is true. Call these n-ary questioning procedures for X at
constant rate r. Let
20 For other special cases, see van Rooij (2004a).
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QPX = {p1, p2, ..., pv}

be the mutually exclusive and jointly exhaustive propositions describing the
employment of these different n-ary questioning procedures to discover which
member of X0 is true. The decision problem is now which questioning procedure
to follow: A = QPX .

To determine the utility of new information with respect to a questioning
procedure, we have to determine the utility of a questioning procedure for the
remaining set of possibilities X ′. We will assume that this depends completely on
the costs of the questioning procedure, C(p), and that this is measured in terms of
the number of n-ary questions of procedure p that still has to be asked before the
member of X0 can be determined for certain. But this means that in the optimal
case maxa∈AEU(a) = −minp∈QPX C(p) = −En(X) and maxa∈AEU(a, q) =
−minp∈QPX C(p, q) = −En

q (X).21

To make life easier, we will make use of a decision rule that assigns a unique
action to every possible answer to Q. Because Q is a partition, Q(w) is simply
the element of Q that has to be answered if w is the case. Now we can determine
the utility value of the decision rule d with respect to question Q, EU(d, Q) =∑

w P (w)×U(d(Q(w)), w). In terms of the utility of a decision rule, we can now
show in a simple way that the expected utility value of a question with respect
to the decision problem which questioning procedure to adopt if you want to
know which member of X is true reduces to the expected informativity value of
this question with respect to ‘question’ X :

EUVQPX (Q) = maxdEU(d, Q) − maxp∈QPX EU(p)
= −mindC(d, Q) − −minp∈QPX C(p)
= −

∑
q∈Q P (q) × Eq(X) − −E(X)

= E(X) − EQ(X)
= EIVX(Q).

6 Conclusions and Outlook

In this paper I have shown how we can measure the usefulness, or relevance, of
questions and answers using Stochastic Communication Theory, Inductive Logic
and Statistical Decision Theory, and I have suggested that some of these mea-
sures are of greater value than others. In other papers I have used these notions
for linguistic purposes to account for (i) the meaning of questions and assertions
(van Rooij, 2003a,b); (ii) conversational implicatures (van Rooij, 2003c), and
(iii) the licensing of polarity items (van Rooij, 2003d). In Van Rooij (2003a), for
instance, I argue that measuring the relevance, or value, of questions and answers
is of importance for linguistic theory, because it helps the answerer to determine
what is actually expressed by an interrogative sentence, and the questioner to cal-
culate which proposition is expressed by a declarative answer. What is expressed
21 From Shannon’s noiseless coding theorem it follows that in general En(X) ≤

minp∈DPX C(p) < (En(X) + 1).
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by interrogative and declaratively used sentences is very context-dependent, and
depends heavily on the decision problem of the questioner. Assuming that both
participants know what the decision problem of the questioner is, I propose that
what is expressed by an interrogative sentence is that question that would be
most relevant with respect to the questioner’s decision problem.

In this paper I have implicitly assumed that the participants of a dialogue are
always cooperative. In particular, that it can never do any harm for the questioner
to make her decision problem public, and that the answerer will always help the
questioner as much as he can to solve her decision problem by giving complete
answers. Although cooperativity is standardly assumed in Gricean (1989) prag-
matics, the participants of a dialogue do not always behave accordingly. It has
been argued by Merin (1999), for instance, that for linguistic purposes we should
base our notion of relevance on the assumption that the two participants of a dia-
logue try to win an argument. Adopting Anscombre & Ducrot’s (1983) conjecture
that by making assertions we always want to argue for particular hypotheses, he
suggests to measure the relevance of an assertion in terms of its argumentative
function. Assuming that the two participants of a dialogue always argue for mu-
tually exclusive hypotheses, he proposes to determine the relevance of assertion
A with respect to hypothesis h in terms of Good’s (1950) measure of the weight of
evidence: rh(A) = log(P (h/A)/P (¬h/A)). It is, perhaps, reassuring that adopt-
ing such a radically non-cooperative view on language use doesn’t make our
whole investigation useless. It turns out that rh(A) can also be defined as the
difference between inf(A/¬h) and inf(A/h), i.e. rh(A) = inf(A/¬h) − inf(A/h),
and it is easily seen that rh(A) = 0 just in case the informative value of A with
respect to yes/no-question {h, ¬h}, IV{h,¬h}(A) = E({h, ¬h})−EA({h, ¬h}), is
0, too. Thus, Merin (1999) takes a proposition to be a relevant argument with
respect to an hypothesis, just in case we (in section 4) say it is relevant with
respect to the corresponding yes/no-question. This doesn’t mean that our no-
tions of relevance are, thus, the same. It might well be that rh(A) < 0 although
IV{h,¬h}(A) > 0, and the other way around, due to the fact that Merin measures
the relevance of assertions with respect single hypotheses, while we measure them
with respect to questions, or decision problems.

Only very recently it has become clear that an analysis of relevance in terms
of the hearer’s decision problem is not quite appropriate to account for conver-
sational implicatures: the speaker’s beliefs and preferences should be taken into
account as well. The proper way to do this would be to embed our information-
and decision theoretic analyses into a more general game theoretic one. It would
be beyond the scope of the present paper to discuss this embedding, though.
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