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1 Introduction

According to Shannon’s classical information theory [19] information is measured
by the reduction of uncertainty and the latter is measured by entropy. This
theory is concerned with the transmission of symbols from a finite alphabet.
The uncertainty concerns the question which symbol is sent and the information
is given by a probabilistic model of the transmission channel and the symbol
observed at the output of the channel. This leads to a statistical communication
theory which is still the main subject of communication theory today.

There are some important elements in Shannon’s approach that will be picked
up and reconsidered here, although in another direction and with other goals
than in Shannon’s work. The first ingredient is that information relates to ques-
tions. In Shannon’s case the question is fixed: what symbol is sent? In information
processing in general several questions, whole systems of interrelated questions,
will be considered. A piece of information may relate to a determined domain
and must then be focussed on the question or questions of interest. Further,
several pieces of information on related domains or questions may be available
and must be aggregated to get the overall picture. These elements introduce an
algebraic flavor into an extended information theory.

The theory proposed here can be sketched as follows: Questions can be repre-
sented by the possible answers they allow. There may be finer or coarser answers,
which corresponds to a finer or coarser granularity of questions. This can be cap-
tured by a partial order between questions or the domains of possible answers.
It will even be supposed that the system of questions or domains forms a lat-
tice, such that two domains have a supremum or join representing the combined
question, i.e. the possible answers to both questions. Two domains have also
an infimum or meet representing the common part, the intersection, of both
questions. Associated with this lattice of domains is a system of information
consisting of pieces of information, each piece bearing on a determined domain
from the lattice. Within this system the operations of combination of informa-
tion, representing aggregation, and of projection to a given domain, representing
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information extraction, are defined. This leads to a certain two-sorted algebra
which is called an information algebra and which is the subject of this chapter.

First, in Section 2.1 the classical relational algebra associated with relational
databases will be presented as a prototype of an information algebra. This serves
as a motivation, since databases are surely depositories of information. In Sec-
tion 2.2 the abstract axiomatic definition of information algebra is given. It is
shown how information in this framework can be transported to arbitrary do-
mains and thus relate to any question of the system considered. Further two
equivalent variants of the algebraic structure are discussed: In Section 2.3 it is
shown how focussing of information may in some cases be replaced by variable
elimination. This positions information algebra in the context of logics and re-
lates information extraction with existential quantification. The latter relation
is elaborated in Section 3, especially in Subsections 3.2 and 3.3. The transport
operation of information shows that the same piece of information may be rep-
resented equivalently relative to different domains. This leads to an equivalent
domain-free version of the information algebra (Section 2.5). This variant may
be better suited for some discussions than the original labeled version.

In Section 3 several instances or examples of information algebras are
presented. They are mostly related to different systems of logic which provide
besides databases a second basic form of representation of information. In par-
ticular the classical systems of propositional and predicate logic are presented
as information algebras. This is clearly related to algebraic theories of logic as
proposed for instance by [6, 7, 8]. The concept of contexts is proposed as a more
general framework related to logic for obtaining information systems (Section
3.4). This concept is motivated by and related to classifications [1]. It is also
connected to concept analysis [3]. Outside logic, a further example in Section 3.5
is linked to fuzzy set theory and possibility theory. These few examples should
suffice to convince the reader about the justification and the interest of informa-
tion algebras.

The last Section 4 establishes a first link of the theory of information algebras
with Shannon’s information measure, although it must be stressed that the alge-
braic theory so far is not a statistical theory. First we show how a natural partial
order of information content arises from the algebra of information. It allows to
compare information content both in an absolute way as well as with respect to
a given question or domain. This order permits also to define particular algebras
built form basic, finest information elements, called atoms. In those cases it will
be possible to define a quantitative information measure using Hartley’s measure
(or entropy of uniform distributions) to quantify the reduction of uncertainty by
an information element out of an information algebra. This measure is shown
to respect the qualitative, partial order of information content. It is defined rel-
ative to any given domain, and there is also a relative information measure of
a piece of information given another one. Several interesting properties of this
measure are discussed. Again this is not a statistical theory of information, such
that entropy displays not yet its full power. Motivated by relational algebra,
dual information algebra and related measures in Boolean information algebra
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will also be considered in Section 4.2 and 4.4. Both measures have their proper
interpretation and application.

Where do information algebras originate from? For Bayesian networks [14]
proposed a so-called local propagation algorithm, which solved the dimensional-
ity and efficiency problem of the naive solution problems. Based on this work
[20] proposed a system of simple axioms which were sufficient for permitting
local propagation and which were also sufficient for several formalisms of artifi-
cial intelligence. In [9] the algebraic theory of these, so-called valuation algebras
was developed into some depth. And in particular, information algebras were
proposed as valuation algebras which satisfy in addition the idempotency prop-
erty. It is this property which allows the development of the information theory
proposed here. So, whereas Shannon’s theory is a theory of communication, re-
sulting in efficient coding schemes, the theory of information algebra is a theory
of computation, leading to efficient generic algorithms for important problems of
query processing.

2 The Algebra of Information

2.1 A Prototype: Relational Algebra

Relational databases surely contain information. Therefore they may serve as a
prototype example for the algebraic structure and theory we want to propose
and discuss here. So let’s summarize the basic elements of relational database
theory.

Let A be a set of symbols, called attributes. For each α ∈ A let Dα be a
non-empty set, the set of possible values for attribute α. For example, if A =
{name,age,income}, then Dname could be the set of strings, whereas Dage and
Dincome are both the set of nonnegative integers.

Let x ⊆ A. A x-tuple is a function f with domain x and values f(α) ∈ Dα

for each α ∈ x. The set of all x-tuples is denoted by Ex. For any x-tuple f
and a subset y ⊆ x the restriction f [y] is defined to be the y-tuple g such that
g(α) = f(α) for all α ∈ y.

A relation R over x is a set of x-tuples, i.e. a subset of Ex. The set of attributes
x is called the domain of R and denoted by d(R). For y ⊆ d(R) the projection
of R onto y is defined as follows:

πy(R) = {f [y] : f ∈ R}.
The join of a relation R over x and a relation S over y is defined by

R �� S = {f : f ∈ Ex∪y, f [x] ∈ R, f [y] ∈ S}.
It is easy to see that the relations satisfy the following properties:

1. The join is an associative and commutative operation, and Ex is a neutral
element for relations over x, i.e. R �� Ex = R if d(R) = x,

2. d(R �� S) = d(R) ∪ d(S),
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3. If x ⊆ d(R), then d(πx(R)) = x,
4. If x ⊆ y ⊆ d(R), then πx(πy(R)) = πx(R),
5. If d(R) = x and d(S) = y, then πx(R �� S) = R �� πx∩y(S),
6. If x ⊆ y, then πx(Ey) = Ex,
7. If x ⊆ d(R), then R �� πx(R) = R.

In fact, this algebraic system is part of relational algebra as defined in rela-
tional database theory [15]. Besides join and projection there are further opera-
tions like complement, union and difference. Relational algebra is used for query
processing in relational databases. The operations of join and projection, and
especially property (5) above, play a particularly important role [2]. There is
even a special term for the formula R �� πx∩y(S) occurring in (5). It is called a
semijoin.

We propose in the next section to abstract an algebraic system from this exam-
ple, which we claim covers important aspects of a general theory of information.

2.2 The Axioms

Relations R as defined in the previous section can be thought of as representing
pieces of information indicating which tuples f ∈ Ed(R) describe possible tuples
of values of the attributes α ∈ d(R). A relation R with domain d(R) = x answers
the question, which of the elements of the cartesian space

Dx = ×α∈d(R)Dα (1)

represent the true values of the variables. A relation is however only a partial
answer since it does not fix a unique, precise element as an answer. So, any piece
of information R refers to a determined domain d(R), which in turn represents a
question related to the attributes in x, asking what are the possible elements of
Dx. Further the join serves to combine or aggregate two pieces of information,
represented by two relations R and S. The combined information, represented
by the join R �� S refers to domain d(R) ∪ d(S), according to property (2) in
the previous section. Projection serves to extract the information relative to a
part y ⊆ d(R) of the domain of an information R. It results in an information
relative to domain y, see property (3) in the previous section.

Thus, in a general way, we assume a set D of elements which are called
domains and which are thought to represent in an abstract sense questions.
Domains may have different granularity, i.e. a domain x ∈ D may be coarser
than another domain y ∈ D, meaning that y represents a more precise question
than x. This is modelled by a partial order in D. Thus, x ≤ y means that x
is a coarser domain than y, or that domain y is finer than x. Moreover, given
two domains x and y, there should be a coarsest domain, finer than both x and
y, i.e. the join x ∨ y should exist within D. It represents the combined question
composed of questions x and y. In the same way a finest domain coarser than
both x and y should exist, i.e. the meet x∧ y should exist within D. This means
that D is assumed to be a lattice [3].
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In relational algebra the domains are represented by subsets x of the attribute
set A. The partial order is defined by set inclusion, x ≤ y if x ⊆ y. Join and
meet of domains correspond to set union and intersection, i.e. x∨ y = x∪ y and
x ∧ y = x ∩ y. This is a distributive lattice [3]. In many applications we will use
subsets of attributes or variables as domains. We call this multivariate domains.

Alternatively, but equivalently, we could consider the domains Dx defined
in equation (1). Then we have Dx ≤ Dy if x ⊆ y and Dx ∨ Dy = Dx∪y and
Dx ∧ Dy = Dx∩y. A cartesian product Dx induces a partition of the universe
DA. In fact, another, more general and interesting class of domain lattices are
given by lattices of partitions of a universe S [4]. We remark that such partition
lattices are in general no more distributive.

Further we consider a set Φ of elements, called pieces of information whose
generic elements we denote by φ, ψ, . . . etc. Each information φ concerns a certain
domain d(φ) ∈ D, which is attached to φ as a label or mark. The combination of
information is defined by a binary operation Φ× Φ→ Φ, which will be denoted
by (φ, ψ) 
→ φ⊗ψ. If x is a domain out of D and φ ∈ Φ an information such that
x ≤ d(φ), then φ↓x denotes the part of information φ which concerns domain x.
This operation of projection (sometimes also called marginalization) is defined
as a partial mapping Φ×D → Φ.

Formally, we have thus a two-sorted algebra (Φ,D) with the following
operations:

1. Meet, Join: D ×D → D, (x, y) 
→ x ∧ y, x ∨ y,
2. Combination: Φ× Φ→ Φ, (φ, ψ) 
→ φ⊗ ψ,
3. Projection: Φ×D → Φ, (φ, x) 
→ φ↓x, defined for x ≤ d(φ).

We impose the following axioms on this two-sorted algebra:

1. Lattice: D is a lattice with respect to the operations of meet and join.
2. Semigroup: Φ is associative and commutative under combination.
3. Labeling: d(φ⊗ ψ) = d(φ) ∨ d(ψ).
4. Neutrality: For all x ∈ D there is a neutral element ex such that d(ex) = x

and for all φ ∈ Φ with d(φ) = x, φ ⊗ ex = φ; and for all y ∈ D, x ≥ y, we
have e↓yx = ey.

5. Nullity: For all x ∈ D there is a null element zx such that d(zx) = x and for
all φ ∈ Φ with d(φ) = x, φ ⊗ zx = zx; and for all y ∈ D, y ≥ x, we have
zx ⊗ ey = zy.

6. Projection: If φ ∈ Φ, x ∈ D, x ≤ d(φ), then d(φ↓x) = x.
7. Transitivity: If x ≤ y ≤ d(φ), then (φ↓y)↓x = φ↓x.
8. Combination: If d(φ) = x, d(ψ) = y, then (φ⊗ ψ)↓x = φ⊗ ψ↓x∧y.
9. Idempotency: If x ≤ d(φ), then φ⊗ φ↓x = φ.

A two-sorted algebra (Φ,D) satisfying these axioms is called an information
algebra [9]. That D is a lattice means that the operations of meet and join are
both associative and commutative, idempotent (i.e. a ∧ a = a ∨ a = a) and
absorbing (i.e. a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a). Axiom (2) says that Φ
is a commutative semigroup under combination. The sequence of how pieces of
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information are combined does not matter. The labeling axiom (3) states that
the combination of pieces of information relative to domains x and y relates to
the combined question x ∨ y. Axiom (4) establishes the existence of a neutral
element, which represents vacuous information. It is stable, in the sense that
projection vacuous information yields vacuous information. Similarly, axiom (5)
establishes the existence of null elements, representing contradiction. Axiom (6)
means that if the part relative to domain x is extracted from an information,
then the resulting information relates to domain x. Transitivity (axiom (7)) says
that projection can be done in steps. The combination axiom (8) tells us, that, in
order to extract the part relative to domain x from a combined information on x
and y, we can as well first extract the part relative to x∧y from the information
on y and then combine the two pieces of information. Finally, idempotency
means that combining a piece of information with a part of it, gives nothing
new. These seem reasonable properties to assume for an algebra of information.
For relational algebra, these axioms correspond to the properties derived in the
previous section. Relational algebra is thus an information algebra.

The next three assertions are immediate consequences of the axioms:

Lemma 1. 1. If d(φ) = x, then φ↓x = φ.
2. φ⊗ φ = φ.
3. ex ⊗ ey = ex∨y.

Proof. (1) Let x = d(φ). Then, by the combination and stability axioms, we
have φ↓x = (φ⊗ ex)↓x = φ⊗ e↓xx = φ⊗ ex = φ.

(2) Using (1) and idempotency, we obtain φ⊗ φ = φ⊗ φ↓x = φ.
(3) By the labeling axiom, stability and idempotency we conclude that ex ⊗

ey = ex ⊗ ey ⊗ ex∨y = e↓xx∨y ⊗ e↓yx∨y ⊗ ex∨y = ex∨y. �
A central problem in applications can be formulated as follows: Given a number
of pieces of information φ1, . . . , φn with domains d(φi) = xi and a goal domain
x. The part relating to domain x of the total combined information is to be
computed. Formally stated, we want to compute

(φ1 ⊗ · · · ⊗ φn)↓x.

This is the projection problem. If this is computed as written here, then by the
labeling axiom, an information on the possibly very large domain x1 ∨ · · · ∨ xn
has to be computed and then projected. This may be computationally infea-
sible. Instead, based in particular on the combination axiom, methods can be
devised where ideally never information on larger domains than x1 to xn must
be computed. These are called local computation methods [9, 12]. They were first
proposed by [14] for probabilistic networks. Later [21] noted that these local com-
putation methods can be used, if the elements satisfy some abstract axioms. The
axioms of an information algebra are modelled after the Shenoy-Shafer system.
In particular the idempotency axiom is added, which is not essential for local
computation. But we shall see below that this axiom is essential for the theory
of information presented here.
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2.3 Variable Elimination

If we consider information algebras with multivariate domains, then an interest-
ing variant of information algebras can be formed. Let V be a finite or countable
set of variables, denoted by X,Y, . . . etc. Consider an information algebra (Φ,D),
whereD is the lattice of subsets of V . Using projection we define a new operation
called variable elimination for X ∈ d(φ):

φ−X = φ↓d(φ)−{X}.

The following properties hold for variable elimination:

1. If X ∈ d(φ), then d(φ−X) = d(φ) − {X}.
2. If X,Y ∈ d(φ), then (φ−X)−Y = (φ−Y )−X .
3. If X ∈ d(ψ), X �∈ d(φ), then (φ⊗ ψ)−X = φ⊗ ψ−X .
4. If X ∈ d(φ), then φ⊗ φ−X = φ.
5. If X ⊆ z ∈ D, then e−Xz = ez−{X}.

(1) follows immediately from the projection axiom, if the definition of variable
elimination is used. Similarly, (2) follows directly from the transitivity axiom,
(4) is the idempotency axiom and (5) follows from the neutrality axiom. Only
(3) is a little bit more involved. We have (φ ⊗ ψ)−X = (φ ⊗ ψ)↓(x∪y)−{X} if
d(φ) = x and d(ψ) = y. Note that x ⊆ z = (x∪ y)−{X} ⊆ x∪ y. We claim that

(φ⊗ ψ)↓z = φ⊗ ψ↓y∩z. (2)

Since y ∩ z = y ∩ ((x∪ y)−{X}) = y−{X} because X ∈ y and X �∈ x, we have
then φ⊗ ψ↓y∩z = φ ⊗ ψ−X which proves (3). In order to prove equation (2) we
note that z ∩ (x ∪ y) = z. The labeling and combination axioms permit then to
derive

(φ ⊗ ψ)↓z = (φ ⊗ ψ)↓z ⊗ ez
= (φ ⊗ ψ ⊗ ez)↓z
= (φ ⊗ ez)⊗ ψ↓y∩z

= (φ ⊗ ψ↓y∩z)⊗ ez.
The first term in this combination has domain x ∪ (y ∩ z) = z. This shows then
that equation (2) holds indeed.

We may take properties (1) to (5) above for variable elimination as new axioms
instead of axioms (4), (6), (7), (8) and (9) together with the remaining axioms
(1), (2), (3) and (5). This gives a variant of an information algebra. In this
system, property (2) above allows to define unambiguously the elimination of
several variables X1, . . . , Xn ∈ d(φ) by

φ−{X1,...,Xn} = (· · · ((φ−X1 )−X2) · · ·)−Xn .

According to property (2) the actual elimination sequences does not matter.
Variable elimination is only defined for finite sets of variables. Therefore, in

general, it is less powerful than projection. If D in an information algebra (Φ,D)
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is the lattice of finite subsets of a set of variables, then, for x ∈ D, projection
may be defined in terms of variable elimination as follows:

φ↓x = φ−(d(φ)−x).

It can easily be verified that, with this definition, the axioms of an information
algebra are satisfied, if variable elimination satisfies properties (1) to (4) above.
Thus, for multivariate systems with pieces of information always relating to
finite sets of variables, the algebras with projection and variable elimination are
equivalent.

2.4 Transport of Information

So far, information can only be projected to subdomains of its domain. However,
transport of information from one domain to another one can be defined more
generally. Let (Φ,D) be an information algebra. Then, for y ≥ d(φ), we define a
new operation

φ↑y = φ⊗ ey,
called the vacuous extension of φ to domain y. This term is justified, since, for
d(φ) = x,

(φ↑y)↓x = (φ⊗ ey)↓x = φ⊗ e↓xy = φ⊗ ex = φ

by the combination and stability axioms. So, vacuous extension indeed does not
add or change otherwise information. Now, more generally, for d(φ) = x and
y ∈ D arbitrary, we define the operation

φ→y = (φ↑x∨y)↓y.

This is called the transport operation; it permits to transport a piece of in-
formation from its original domain to any other domain. Note that projection
and vacuous extension are just special cases of this transport operation, namely
for y ≤ d(φ) or y ≥ d(φ) respectively. Note further that φ↑x∨y = φ ⊗ ex∨y =
φ⊗ ey ⊗ ex∨y = φ⊗ ey, hence

φ→y = (φ ⊗ ey)↓y = φ↓x∧y ⊗ ey = (φ↓x∧y)↑y.

In the following lemma we collect some properties of the transport operation.

Lemma 2. 1. (φ→y)→z = (φ→y∧z)→z.
2. If d(φ) = x, then (φ ⊗ ψ)→x = φ⊗ ψ→x.
3. If d(φ) = x, then φ→x = φ.
4. If d(φ) = x, then φ⊗ φ→y = φ↑x∨y.

Proof. (1) If y ≤ z, then we claim that φ→y = (φ→z)→y . In fact, assume d(φ) =
x, then

(φ→z)→y = ((φ↑x∨z)↓z)↓y = (φ↑x∨z)↓y

= (((φ↑x∨y)↑x∨z)↓x∨y)↓y = (φ↑x∨y)↓y = φ→y .
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In order to prove (1) we apply this result and obtain

(φ→y∧z)→z = ((φ→y)→y∧z)→z = ((φ→y)↓y∧z)↑z = (φ→y)→z .

(2) This follows from the combination axiom

(φ⊗ ψ)→x = (φ ⊗ ψ)↓x = φ⊗ ψ↓x∧y = φ⊗ ex ⊗ ψ↓x∧y

= φ⊗ (ψ↓x∧y)↑x = φ⊗ ψ→x.

(3) This follows since φ→x = φ↓x = φ.
(4) Here we have, using the idempotency axiom,

φ⊗ φ→y = φ⊗ (φ↓x∧y)↑y = φ⊗ φ↓x∧y ⊗ ey = φ⊗ ey = φ↑x∨y. �
These properties of transport are similar to the transitivity, combination, pro-
jection and idempotency axioms of the information algebra. In fact, they could
replace them.

2.5 Domain-Free Information Algebras

Assume that, in an information algebra (Φ,D), for two elements φ, ψ ∈ Φ with
domains d(φ) = x and d(ψ) = y it holds that

φ→y = ψ, ψ→x = φ. (3)

Then φ and ψ represent in some sense the same information, in particular
φ↓x∧y = ψ↓x∧y and φ↑x∨y = ψ↑x∨y. We write φ ≡ ψ if (3) holds. This is clearly
an equivalence relation. Moreover it is a congruence in the information algebra
(Φ,D) in the following sense [9]: First φ1 ≡ φ2 and ψ1 ≡ ψ2 imply

φ1 ⊗ ψ1 ≡ φ2 ⊗ ψ2,

and secondly, also for any z ∈ D,

φ→z
1 ≡ φ→z

2 .

In fact in the last relation equality holds.
Let then Φ/ ≡ denote the equivalence classes [φ] of this congruence in Φ.

Then, in this quotient algebra the following two operations are well defined:

1. Combination: [φ]⊗ [ψ] = [φ⊗ ψ].
2. Focussing: [φ]⇒x = [φ→x].

In the two-sorted algebra (Φ/ ≡, D) with the two operations just defined, the
following properties hold:

Theorem 1. Let Ψ = Φ/ ≡ and denote generic elements of Ψ by ψ, η, . . . etc.
Then

1. Semigroup: Ψ is associative and commutative under combination.
2. Support: If ψ ∈ Ψ , then there is a x ∈ D such that ψ = ψ⇒x.
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3. Neutrality: There is a neutral element e such that ψ ⊗ e = ψ for all ψ ∈ Ψ
and e⇒x = e.

4. Nullity: There is a null element z such that ψ ⊗ z = z for all ψ ∈ Ψ and
z⇒x = z.

5. Transitivity: If ψ ∈ Ψ and x, y ∈ D, then (ψ⇒x)⇒y = ψ⇒x∧y.
6. Combination: If ψ, η ∈ Ψ and x ∈ D, then (ψ⇒x ⊗ η)⇒x = ψ⇒x ⊗ η⇒x.
7. Idempotency: If ψ ∈ Ψ and x ∈ D, then ψ ⊗ ψ⇒x = ψ.

Proof. (1) Associativity and commutativity of combination in Ψ is inherited from
Φ.

(2) By Lemma 2 (3) we have [φ] = [φ→x] = [φ]⇒x if d(φ) = x.
(3) The equivalence class [ey] is the neutral element and [ey]⇒x = [e→x

y ] = [ex]
proves that the neutral element is stable under focussing.

(4) The equivalence class [zy] is the null element, and [zy]⇒x = [z→x
y ] = [zx]

proves the stability of the null element under focussing.
(5) By Lemma 2 (1) we have (φ→x)→y = (φ→x∧y)→y. Since (φ→x∧y)→y ≡

φ→x∧y we obtain ([φ]⇒x)⇒y = [(φ→x)→y] = [φ→x∧y] = [φ]⇒x∧y.
(6) Since d(φ→x) = x, we obtain, using Lemma 2 (2)

([φ]⇒x ⊗ [ψ])⇒x = [(φ→x ⊗ ψ)→x] = [φ→x ⊗ ψ→x]
= [φ]⇒x ⊗ [ψ]⇒x.

(7) This follows from Lemma 2 (4). In fact, if d(φ) = y, then [φ] ⊗ [φ]⇒x =
[φ⊗ φ→x] = [φ↑x∨y] = [φ]. �
A two-sorted algebra (Ψ,D) with the operations of combination and focussing,
satisfying the properties of Theorem 1, is called a domain-free information alge-
bra. Theorem 1 says that any information algebra induces a domain-free infor-
mation algebra. In order to distinguish the original algebra form the domain-free
one, we call it a labeled information algebra.

In a domain-free information algebra (Ψ,D) a domain x ∈ D is called a
support of ψ ∈ Ψ , if ψ = ψ⇒x. This means that no information is lost, when φ
is focussed on domain x or, in other words, the whole information in φ is carried
by domain x. According to the support property (2) in Theorem 1 any element
of Ψ has a support. Here are a few properties of supports:

Lemma 3. 1. x is a support of ψ⇒x.
2. If x and y are supports of ψ, then x ∧ y is a support of ψ.
3. If x is a support of ψ and x ≤ y, then y is a support of ψ.
4. If x is a support of ψ, y a support of η, then x ∨ y is a support of ψ ⊗ η.

Proof. (1) By transitivity (Theorem 1 (5)) we have (ψ⇒x)⇒x = ψ⇒x∧x = ψ⇒x.
(2) Again, by (5) of Theorem 1, we obtain ψ⇒x∧y = (ψ⇒x)⇒y = ψ⇒y = ψ.
(3) If x ≤ y, then x = x ∧ y. So, once more by Theorem 1 (5), we conclude

that ψ⇒y = (ψ⇒x)⇒y = ψ⇒x∧y = ψ⇒x = ψ.
(4) By (6) of Theorem 1, and (3) just proved, we see that (ψ ⊗ η)⇒x∨y =

ψ⇒x∨y ⊗ η⇒x∨y = ψ ⊗ η. �
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If (Ψ,D) is a domain-free information, then define Ψ∗ to be the set of all pairs
(ψ, x), where ψ ∈ Ψ and x is a support of ψ. We define then the following
operations:

1. Labeling: d(ψ, x) = x.
2. Combination: (ψ, x)⊗ (η, y) = (ψ ⊗ η, x ∨ y).
3. Projection: (ψ, x)↓y = (ψ⇒y, y) for y ≤ x.

It is easy to verify that the two-sorted algebra (Ψ∗, D) with these operations
forms a labeled information algebra. It has been shown elsewhere [9] that its
domain-free version (Ψ∗/ ≡, D) is then essentially identical to the original alge-
bra (Ψ,D). Conversely, if (Ψ,D) = (Φ/ ≡, D) for a labeled algebra (Φ,D), then
(Ψ∗, D) is essentially identical to (Φ,D) (in fact, isomorph, [9]). Thus labeled
and domain-free algebras are different versions of the same structure. We may
switch at our convenience between the two forms.

3 Some Examples

3.1 Propositional Logic

At the beginning we have shown that relational algebra is an example of a (la-
beled) information algebra. In this section we want to discuss further examples,
especially systems related to logic. In the view proposed here, logic offers a lan-
guage to describe information which refers to models or structures. We illustrate
this first with propositional logic as a prototype case.

The vocabulary of propositional logic is formed by a countable set of variables
P = {p1, p2, . . .}, the constants ⊥,� and the the connectors ¬,∧. Formulae of
the language are:

1. Each element of P , ⊥ and � are formulae (atomic formulae).
2. If f and g are formulae, then so are ¬f , f ∧ g.
3. All formulae are generated from atomic formulae by finitely often applying

rule 2.

A valuation is a mapping v : P → {f , t} which assigns each propositional
variable a truth value f (false) or t (true). A valuation assigns a truth value v̂(f)
to any formula f by the following inductively defined process:

1. If f is a propositional variable, then v̂(f) = v(f).
2. v̂(⊥) = f and v̂(�) = t.

3. v̂(¬f) =
{

f if v̂(f) = t,
t if v̂(f) = f .

4. v̂(f ∧ g) =
{

t if v̂(f) = v̂(g) = t,
f otherwise.

A valuation v, under which a formula f evaluates to true, i.e for which v̂(f) = t,
is said to satisfy the formula, or to be a model of the formula, which is denoted
as v |= f . Let M(f) be the set of all models of a propositional formula f . Since
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a valuation can also be seen as a sequence v1, v2, . . . of elements of {f , t}, the set
of models M(f) can be considered to be a subset of {f , t}∞.

In a given problem or context one may assume that there is some true but
unknown truth assignment in the real world. The elements of {f , t}∞ are then
possible worlds. A formula f of propositional logic can then be seen as an infor-
mation about the unknown real world in that it postulates that the real world
must be among its models M(f). We are now going to associate an information
algebra of models to propositional formulae.

Let D be the lattice of finite subsets of ω = {1, 2, . . .}. For any valuation
v ∈ {f , t}∞ and any finite subset x ∈ D, we define v↓x to be the x-tuple v(i), i ∈
x. We define an x-equivalence between two valuations v and w by v ≡x w if
v↓x = w↓x. The equivalence classes of this x-equivalence are denoted by [v]x. For
any subset A of {f , t}∞ let

A⇒x =
⋃
v∈A

[v]x.

A subset φ ⊆ {f , t}∞ is called cylindric over x, if φ = φ⇒x. Let then Φx be the
family of x-cylindric subsets of {f , t}∞ and

Φ =
⋃
x∈D

Φx.

We claim then that (Φ,D) with intersection as combination ⊗ and the focussing
operation ⇒ defined above is a (domain-free) information algebra.

Let f be a propositional formula and var(f) the set of propositional vari-
ables occurring in f . Then its set of models M(f) belongs to Φvar(f). So, any
propositional formula f determines an element φ = M(f) of the information
algebra Φ, its set of models M(f) is the information it describes. Note that
M(f ∧ g) = M(f) ∩M(g), conjunction corresponds to combination. Focussing
is more complicated. If g is a formula such that M(g) = M(f)⇒x, then g is ob-
tained form f by variable forgetting or existential quantification, we refer to [11]
for more details on this algebra. Two formulae f and g are logically equivalent,
if M(f) = M(g). Equivalent formulae describe the same information. Below, in
Subsection 3.4, it will also be shown to be an instance of a more general logic
system related to information algebras.

3.2 Quantifier Algebras

If Φ is a Boolean algebra with minimal element ⊥, then an existential quantifier
is a mapping ∃ : Φ→ Φ subject to the following conditions:

1. ∃⊥ = ⊥,
2. φ ∧ ∃φ = φ,
3. ∃(φ ∧ ∃ψ) = ∃φ ∧ ∃ψ.

More generally, let D be a lattice of subsets of some set I. Assume that there is
an existential quantifier ∃(J) for every subset J ∈ D on the Boolean algebra Φ,
and that
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1. ∃(∅)φ = φ,
2. if J,K ∈ D, then ∃(J ∪K)φ = ∃(J)(∃(K)φ).

Then (Φ,D) is termed a quantifier algebra over D. If we take the meet operation
of the Boolean algebra for combination and define φ⇒I−J = ∃(J)φ, then (Φ,Dc)
is a domain-free information algebra. Here Dc is the lattice of subsets I − J for
all J ∈ D.

If, for all i ∈ I, ∃(i) is a an existential quantifier, and ∃(i)∃(j) = ∃(j)∃(i), if
i �= j, one can define ∃(J) = ∃(i1) · · · ∃(im) if J = {1, . . . ,m} and ∃(∅)(φ) = φ.
Then (Φ,D) is a quantifier algebra.

For instance, let Φ be the powerset of some cartesian product of a family of
sets Ui for i ∈ I and D a lattice of subsets of I. The mapping ∃(J) is defined by

∃(J)A = {b ∈
∏
i∈I

Ui : ∃a ∈ A such that bi = ai, ∀i �∈ J}.

It can be shown that this is an existential quantifier and (Φ,D) forms a quantifier
algebra [17]. It is clear that the operation ∃({i}) is similar to variable elimination.
More generally, existential quantification is related to focussing, as we be seen
in the next example (Section 3.3). Note also that it is sufficient for Φ to be
a semilattice in order to define existential quantification and then a quantifier
algebra (Φ,D).

3.3 Predicate Logic

Another information algebra is associated with predicate logic. The vocabulary of
predicate logic consists of a countable set of variablesX1, X2, . . . and a countable
set of predicate symbols P1, P2, . . ., the logical constants ⊥,� and ∧,¬, ∃. Each
predicate symbol has a definite rank ρ = 0, 1, 2, . . .. We refer to a predicate with
rank ρ as a ρ-place predicate. Formulae of predicate logic are built using the
following rules:

1. PiXi1 . . .Xiρ , where ρ is the rank of Pi, ⊥ and � are (atomic) formulae.
2. If f is a formula, then ¬f and ∃Xif are formulae.
3. If f and g are formulae, then f ∧ g is a formula.

The predicate language L consists of all formulae which are obtained by applying
a finite number of times these rules.

In order to define an interpretation of formulae of predicate logic, we choose
a relational structure R = (U,R1, R2, . . .) where U is a non-empty set, the
universe, and Ri are relations among elements of U with the arity equal to the
rank ρ of Pi, i.e. subsets of Uρ. A valuation is a mapping v : ω → U , which assigns
each variable Xi a value v(i) ∈ U for i ∈ ω = {1, 2, . . .}. The set of valuations
is Uω, i.e. the set of sequences v(1), v(2), . . .. We define for a valuation v and an
index i ∈ ω

v⇒i = {u ∈ Uω : u(j) = v(j) for j �= i}.
Valuations are used to assign a truth value v̂(f) to each formula f ∈ L. This
truth assignment is defined inductively as follows:
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1. v̂(⊥) = f , v̂(�) = t
2. v̂(PiXi1 . . . Xiρ) = t, if (v(i1), . . . , v(iρ)) ∈ Ri, and v̂(PiXi1 . . .Xiρ) = f

otherwise.
3. v̂(¬f) = f , if v̂(f) = t, and v̂(¬f) = t, if v̂(f) = f .
4. v̂(∃Xif) = t, if there is a valuation u ∈ v⇒i such that û(f) = t, and
v̂(∃Xif) = f otherwise.

5. v̂(f ∧ g) = t, if v̂(f) = v̂(g) = t, and v̂(f ∧ g) = f otherwise.

A valuation v is called a model of a formula f in the structure R, if v̂(f) = t.
We write then v |=R f . Given a structure R, we assign finally to each formula
f ∈ L the set of its models,

r̂R(f) = {v ∈ Uω : v |=R f}.
We consider this set as the information relative to the unknown values of the
variables X1, X2, . . . expressed by the formula f . Let Φ be the family of all sets
r̂R(f) for all f ∈ L. If we define as usual f ∨ g = ¬(¬f ∧ ¬g), then it is easy to
see that

r̂R(f ∧ g) = r̂R(f) ∩ r̂R(g),
r̂R(f ∨ g) = r̂R(f) ∪ r̂R(g),
r̂R(¬f) = (r̂R(f))c.

The family Φ is thus a Boolean algebra. Further we see that

r̂R(∃Xif) =
⋃

v∈r̂R(f)

v⇒i.

We may denote the right hand side as ∃(i)r̂R(f). Clearly, for all i ∈ ω this
is a quantifier on the Boolean algebra Φ in the sense of the previous example.
Hence we may derive an existential quantifier ∃(J) for any finite subset of ω.
If D is the lattice of finite subsets of ω, then (Φ,D) is a quantifier algebra and
so a domain-free information algebra. Combination is intersection, focussing is
related to existential quantification, as explained in the previous example.

Two formulae f and g of predicate logic are said to be equivalent relative to the
structure R, written f ≡R g, if r̂R(f) = r̂R(g). So, equivalent formulae describe
the same information. This induces an equivalence relation on L. We may then
introduce combination and existential quantification in L/ ≡R as follows: if [f ]R
denotes the equivalence classes,

[f ]R ⊗ [g]R = [f ∧ g]R,
∃(J)[f ]R = [∃(J)f ]R,

where ∃(J)f = ∃Xi1(. . . ∃Xik) . . .) if J = {i1, . . . , ik}. Then (L/ ≡R, D) inherits
the properties of an information algebra from (Φ,D). So, the information algebra
of structures is reflected in a corresponding information algebra of formulae.
These algebras are reducts of cylindric algebras [8] or polyadic or also Halmos
algebras [6, 17] introduced for the algebraic study of predicate logic.
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3.4 Contexts

Here we consider a general system, which captures the two previous logic exam-
ples as well as many other logic and related systems. It is also closely related
to the work of [1] on information flow. A context is a triple (L,M, |=), where
L can be thought of as a set of sentences, a language, M a set of structures
or models and |=⊆ L ×M is a binary relation between sentences and models.
This corresponds to classifications in [1], where the terms types and tokens are
used instead of sentences and models. Finally, in formal concept analysis the
elements are considered as attributes and objects [3]. We write m |= s instead
of (s,m) ∈|=. The idea is of course that models m satisfy sentences s, and thus
give some semantics to the language L. An example is provided by propositional
logic, where L is a propositional language, the elements ofM are valuations, and
m |= s means that m satisfies s or m is a model of s. Similarly, predicate logic,
together with a structure to interpret the formulae, provides another example of
a context.

In a context a set of sentences X ⊆ L determines a set of possible models,
namely the set of models satisfying all sentences of X ,

r̂(X) = {m ∈M : ∀s ∈ X,m |= s}.
If we define also similarly for a subset A ofM,

ř(A) = {s ∈ L : ∀m ∈ A,m |= s},
then ř(A) is the set of all sentences whose models contain A.

The following dual pairs of properties of these operators are well known [3]:

X ⊆ ř(r̂(X)), A ⊆ r̂(ř(A)),
X ⊆ Y ⇒ r̂(X) ⊇ r̂(Y ), A ⊆ B ⇒ ř(A) ⊇ ř(B),

r̂(X) = r̂(ř(r̂(X))), ř(A) = ř(r̂(ř(A))),

r̂(
⋃
j∈J

Xj) =
⋂
j∈J

r̂(Xj), ř(
⋃
j∈J

Aj) =
⋂
j∈J

ř(Aj).

We define further for X ⊆ L and A ⊆M,

C|=(X) = ř(r̂(X)), C|=(A) = r̂(ř(A)).

It follows from the properties above that C|= and C|= are closure or consequence
operators, i.e.

1. X ⊆ C|=(X),
2. C|=(C|=(X)) = C|=(X),
3. If X ⊆ Y , then C|=(X) ⊆ C|=(Y ),

and similarly for C|=. Sets X ⊆ L and A ⊆M are called |=-closed if X = C|=(X)
or A = C|=(A) respectively. We obtain then

r̂(X) = C|=(r̂(X)), ř(A) = C|=(ř(A)).
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So, any set of sentences X determines a |=-closed set r̂(X) of models as infor-
mation. In the same way, any set of models A determines a |=-closed set ř(A) of
sentences, which could be called the theory of A. In particular, |=-closed sets of
models and theories are in a one-to-one relation, i.e. if A = r̂(X) and X = ř(A),
then both A and X must be |=-closed.

In the case of propositional logic, C|=(X) is the set of all logical consequences of
X or the theory of X . In this case, as in predicate logic and in many other cases,
all subsets of models are closed. This is not the case in the following example:
Let Xi, i ∈ ω = {1, 2, . . .}, be a countable family of variables, F a field and let
L be the family of linear equations of the form∑

i∈I
aiXi = a0, I a finite subset of ω and a0, ai ∈ F .

Further, let M = Fω. Define m |= s, for m ∈ M and s ∈ L, if m satisfies the
linear equations s, i.e. if ∑

i∈I
aimi = a0.

Then, for a subset X of L the closed set r̂(X) is the linear solution manifold of
the system of equations X in M. So here, |=-closed sets are linear manifolds,
and C|=(A) is the linear manifold spanned by A ⊆ M. If linear inequalities in
an ordered field, instead of linear equations are considered, then, in the same
way, the |=-closed sets are convex polyhedra.

Consider the set of all |=-closed subsets of M. For two elements φ = r̂(X)
and ψ = r̂(Y ) we define then a combination operation

φ⊗ ψ = r̂(X ∪ Y ) = r̂(X) ∩ r̂(Y ) = φ ∩ ψ. (4)

In fact, this operation could be defined for arbitrary families of sets Xi ∈ L. So,
information is combined either by the union of the sentences which define the
information or by intersection of their model sets.

If we want to extend this semigroup to an information algebra, we must add
a domain structure and a corresponding focussing operation. Let D be a lattice
and, for any x ∈ D, let ≡x be an equivalence relation in M such that

x ≤ y ⇒≡x⊇≡y . (5)

A triple (M, D,≡x∈D), where D is a lattice and ≡x are equivalence relations in
M satisfying the condition above, is called a similarity model structure in [23].
For any model m ∈ M and x ∈ D, define

m⇒x = {n ∈ M : n ≡x m}.
Further, for a subset A ofM let

A⇒x =
⋃
m∈A

m⇒x. (6)

A set of models A such that A = A⇒x is called cylindric over x or x-closed. We
require now two additional conditions:
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1. Closure: If A is |=-closed and x ∈ D, then A⇒x is |=-closed.
2. Independence: If for two models m,n it holds that m ≡x∧y n, then there is

a model l such that l ≡x m and l ≡y n.

The closure property implies that the family of |=-closed sets is closed under
the focussing operation ⇒. The independence property guarantees that indeed
a (domain-free) information algebra can be associated with contexts, as we shall
show below.

In propositional and predicate logic, as in many other cases, the language L
is defined over a set of variables X1, X2, . . . with domains U1, U2, . . .. Models are
valuations v(i) ∈ Ui. A similarity model structure is then defined for instance
for finite subsets x of variables by v ≡x u if v(i) = u(i) for all i ∈ x. It can
be verified that this structure satisfies the closure and independence properties
above. This corresponds essentially to a multivariate domain.

Let Φ be the set of all cylindric sets which are |=-closed. The following lemma
collects two important properties of cylindric, |=-closed sets.

Lemma 4. For x, y ∈ D and φ, ψ ∈ Φ, the following holds:

1. If φ is x-closed and ψ is y-closed, then φ⊗ ψ is x ∨ y-closed.
2. If φ is x-closed, then φ⇒y is x ∧ y-closed.

Proof. (1) We claim that if x ≤ y, then φ is x-closed implies φ is y-closed. In
fact, suppose φ = φ⇒x = ∪n∈φn⇒x. Then

φ⇒y =
⋃
m∈φ

m⇒y =
⋃
n∈φ

⋃
m∈n⇒x

m⇒y

=
⋃
n∈φ

n⇒x = φ⇒x = φ.

Therefore, if φ and ψ are x- and y-closed respectively, both are x∨ y-closed and
so is φ⊗ ψ = φ ∩ ψ.

(2) We claim that (m⇒x)⇒y = m⇒x∧y, which then implies property 2 imme-
diately. In fact, if n ≡x∧y m, then, by the independence property above, there
is an l such that l ∈ m⇒x and n ∈ l⇒y. But this means that n ∈ (m⇒x)⇒y .
Conversely, if n ∈ (m⇒x)⇒y , then there is a l such that n ≡y l ≡x m. By the
monotonicity property (5) it follows that n ≡x∧y l ≡x∧y m, hence n ∈ m⇒x∧y.

�
After this preparation it can be shown that (Φ,D) forms an information algebra.

Theorem 2. The two-sorted algebra (Φ,D) with combination ⊗ and focussing
⇒ defined above by (4) and (6) respectively, is a domain-free information algebra
if the closure and independence properties are satisfied.

Proof. We verify properties (1) to (7) of Theorem 1 above. The semigroup prop-
erties holds for intersection, hence for combination andM is the neutral element
of combination, whereas the empty set is the null element. Transitivity follows
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from property 2 of Lemma 4 above, because φ⇒x is x-closed. Combination is
verified as follows:

(φ⇒x ⊗ ψ)⇒x =
⋃

m∈(φ⇒x∩ψ)

m⇒x

=

⎛
⎝ ⋃
m∈φ⇒x

m⇒x

⎞
⎠ ∩

⎛
⎝ ⋃
m∈ψ

m⇒x

⎞
⎠

= φ⇒x ⊗ ψ⇒x.

The support axiom holds since the elements of Φ are cylindric, and the idempo-
tency axioms is evident. �
We have represented the information algebra associated with a context in terms
of models. But we could also represent it in terms of theories. If φ = r̂(X) and
ψ = r̂(Y ), then we could consider the associated theories C|=(X) and C|=(Y )
and define combination by

C|=(X)⊗ C|=(Y ) = ř(φ ⊗ ψ)
= C|=(X ∪ Y )
= C|=(C|=(X) ∪ C|=(Y )).

Further focussing could be defined as follows:

C|=(X)⇒x = ř(r̂(X)⇒x).

This gives then a domain-free information algebra of theories associated to the
algebra of models. Predicate logic provides an example with the algebra of struc-
tures and the algebra of formulae.

For any x ∈ D we define

Mx = {m⇒x : m ∈ M}, Lx = {s ∈ L : r̂({s}) = (r̂({s}))⇒x}.
Furthermore, we define a relation |=x between Mx and Lx by m⇒x |=x s if
m |= s for all m ∈ m⇒x. Then (Lx,Mx, |=x) is a context. Note that cylindric
sets A⇒x over x can, in a natural way, also be considered as a subset of Mx,
namely the set consisting of elements m⇒x for all m ∈ A. Further, by the closure
property, if A is |=-closed, then A⇒x is |=x-closed.

Consider two elements x, y ∈ D such that x ≤ y. Then it follows from (5) that
m⇒x ⊇ m⇒y and Lx ⊆ Ly. We define now a contravariant pair of mappings

g :My →Mx

Ly ← Lx : f

by g(m⇒y) = m⇒x, and f(s) = s. It can be verified, that this pair of mappings
satisfies the following condition

g(m⇒y) |=x s⇔ m⇒y |=y f(s).
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A contravariant pair of mappings between two contexts (Lx,Mx, |=x) and
(Ly,My, |=y) satisfying this condition is termed a context morphism. It corre-
sponds in essence to the infomorphism introduced in [1]. If we consider contexts
(Lx,Mx, |=x) and (Ly ,My, |=y) together with the context (Lx∨y,Mx∨y, |=x∨y),
and add the context morphisms between the first two contexts and the third
one, then we have what is called a channel in [1]. In fact, it allows to trans-
port information (in the sense discussed in Section 2.4) from (Lx,Mx, |=x) to
(Ly,My, |=y) and vice versa.

3.5 Lattice Induced Algebras

Let A be a distributive, complete lattice with supremum (join) and infimum
(meet) denoted as usual by ∨ and ∧. Let further r denote a finite set of variables
X1, X2, . . . and Ui the domain of variable Xi. To a set s ⊆ r of variables the
cartesian product

Us =
∏
i∈r

Ui

is assigned as domain. The elements of Us are tuples with domain s. We adopt
the convention that the domain of the empty set of variable U∅ consists of a
single tuple, denoted by �. We use lower case, bold-face letters such as x,y, . . .
to denote tuples. In order to emphasize the decomposition of a tuple x with
domain s into components belonging to two disjoint subsets t and s− t of s, we
write x = (x↓t,x↓s−t). A valuation φ with domain s is a mapping φ : Us → A.
The domain of a valuation φ is denoted by d(φ). The set of all valuations with
domain s is denoted by Φs. Let then

Φ =
⋃
s⊆r

Φs.

Further let D be the lattice of subsets of r. We now use the lattice operations
in A to define two operations in the pair (Φ,D):

1. Combination: ⊗ : Φ× Φ→ Φ defined for x ∈ Ud(φ)∪d(ψ) by

φ⊗ ψ(x) = φ(x↓d(φ)) ∧ ψ(x↓d(ψ)).

2. Projection: ↓: Φ×D → Φ defined for all φ ∈ Φ and t ⊆ d(φ) for x ∈ Ut by

φ↓t(x) =
∨

z∈Ud(φ):z↓t=x

φ(z).

It has been shown elsewhere that (Φ,D) with the two operations defined above
is a (labeled) information algebra [13]. Examples for the lattice A include the
Boolean lattice {0, 1} (in which case valuations describe constraints or subsets),
or the interval [0, 1] with max,min as lattice operations. This is used in fuzzy
set theory. More general distributive lattices can be used to express qualitative
membership of elements to fuzzy sets.
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4 Order and Measure of Information

4.1 Partial Orders of Information Content

In an information algebra, the elements may be ordered by information content.
The idea is that a piece of information is more informative than another one,
if their combination yields the first. More precisely, let (Φ,D) be a domain-free
information algebra. Then, for φ, ψ ∈ Φ we define φ ≥ ψ if φ ⊗ ψ = φ, i.e. φ is
more informative than ψ, if combining the latter with the first one gives nothing
new. It can easily be verified that this relation is a partial order in Φ. Here are
are a few elementary properties of this order which are proven in [9]:
1. e ≤ φ,
2. φ, ψ ≤ φ⊗ ψ,
3. φ⇒x ≤ φ,
4. φ ≤ ψ implies φ⇒x ≤ ψ⇒x,
5. φ ≤ ψ implies φ⊗ η ≤ ψ ⊗ η,
6. φ⇒x ⊗ ψ⇒x ≤ (φ⊗ ψ)⇒x,
7. x ≤ y implies φ⇒x ≤ ψ⇒y .

In particular, it can also be verified that φ ⊗ ψ = sup{φ, ψ}. Therefore, Φ is
also a semilattice and we write sometimes φ ⊗ ψ = φ ∨ ψ, if we want to stress
order-theoretic issues.

This order reflects the absolute information content of the elements of Φ. It is
also interesting to compare the information contents of the elements of Φ with
respect to a determined question, i.e. a given domain x ∈ D. For this purpose
we define φ ≤x ψ, if φ⇒x ≤ ψ⇒x. So, φ is less informative than ψ, relative
to a domain x, if its part relating to x is less informative than the part of ψ
relating to x. The relation ≤x is a preorder (reflexive and transitive, but not
antisymmetric) on Φ. This is equivalent to a similar order defined on labeled
information algebras, where again φ ≥ ψ if φ ⊗ ψ = φ. Then, for x ∈ D, we
define φ ≤x ψ, if φ→x ≤ ψ→x.

In the case of propositional logic, a propositional formula f is more informative
than a formula g, if M(f) ⊆M(g), since combination is intersection. This means
that f is more informative than g, if, and only if, the latter is a logical consequence
of the former, i.e. if f |= g. Similarly in predicate logic, a predicate formula f is
more informative than g, relative to a structure R, if r̂R(f) ⊆ r̂R(g), i.e. again
if g is a logical consequence of f , i.e. f |=R g. In a lattice-induced information
algebra, a valuation v with domain x is more informative than another valuation
u with the same domain, if v(x) ≤ u(x) for all x ∈ Ux. This is a kind of fuzzy
subset relation, generalizing the ordinary subset relation.

These partial orders describe qualitative comparisons of information content
between pieces of information. We may also try to measure quantitatively the
content of an information. This is discussed below in Section 4.4.

4.2 Boolean Information Algebras

In the case of a relational algebra, for two relations R and S with the same
domain x, R is more informative than S, if R ⊆ S. This makes sense in many
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cases: For instance if somebody is expected in Zurich on a flight from London,
and information on possible flights is given by a list of flights from London
to Zurich, then the smaller the list, the more information is obtained, the less
uncertainty remains. If however we look for a flight we could take from London
to Zurich, then obviously we feel to dispose of more information the longer the
list of possible flights we obtain. So, information content of a relation seems
to depend on the question we are interested in. This is related to the Boolean
nature of the relational algebra. In order to elucidate this issue we introduce
Boolean information algebra in this section.

Let (Φ,D) be a domain-free information algebra, such that in particular Φ
is a semilattice relative to the partial order on information content. We assume
now in addition that Φ is not only a semilattice but a Boolean algebra. This
means that Φ has a bottom and a top element e and z and is a distributive
lattice, where not only the supremum φ∨ψ exists relative to the order, but also
the infimum φ∧ ψ and the distributive laws hold between these two operations.
Further there is a complement φc for each element φ ∈ Φ such that φ ∧ φc = e
and φ∨φc = z. Then (Φ,D) is called a Boolean information algebra. For instance
the information algebras associated with propositional and predicate logic are
Boolean.

In a Boolean algebra there exists a well known duality which carries over to
Boolean information algebras. If (Φ,D) is a Boolean information algebra, then
we define the following dual operations of combination and focussing:

1. Dual Combination: φ⊗d ψ = (φc ⊗ ψc)c,
2. Dual Focussing: φ⇒dx = ((φc)⇒x)c.

Note that by de Morgan’s law φ ⊗d ψ = φ ∧ ψ. Similar relations hold also in
the labeled version of the Boolean information algebra. It can be verified that
(Φ,D) with these dual operations is still a Boolean information algebra and the
mapping φ→ φc is an isomorphism between dual Boolean information algebras.

Now, in the dual algebra, the partial order ≤d is defined as usual. Then,
clearly, φ ≤d ψ if, and only if, φ ≥ ψ.

From a domain-free Boolean algebra we may derive in the usual way (see
Section 2.5) the associated labeled information algebra. This algebra as a whole
is no more a Boolean algebra. Only the elements associated with a support x ∈ D
form still Boolean algebras. More precisely, a labeled information algebra (Φ,D)
is called Boolean, if the following two properties hold:

1. ∀x ∈ D, the semilattice Φx is Boolean.
2. ∀x, y ∈ D and φ, ψ ∈ Φx is holds that

(φ ∧ ψ)⊗ ey = ((φ ⊗ ey) ∧ (ψ ⊗ ey)).
The labeled algebra derived from a domain-free Boolean algebra certainly sat-
isfies these properties. So does for example relational algebra, seen as a labeled
information algebra.

Although Φ itself is not a Boolean algebra, it is still possible to define a dual
algebra, using duality within the Boolean algebras Φx. So dual combination is
defined for φ, ψ ∈ Φ as
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φ⊗d ψ = (φc ⊗ ψc)c.
Similarly, dual marginalization is defined for φ ∈ Φ and x ≤ d(φ) as

φ↓dx = ((φc)↓x)c.

Note that the dual neutral elements are the original null elements zx. So, dual
vacuous extension is defined as follows for x ≥ d(φ),

φ↑dx = φ⊗d zx = (φc ⊗ ex)c = ((φc)↑x)c.

This allows finally the introduction of a dual transport operation, for φ ∈ Φ,
with d(φ) = y,

φ→dx = (φ↑dx∨y)↓dx = ((φc)↑x∨y)↓x)c = ((φc)→x)c.

This results in a dual labeled information algebra, which is isomorph to the
original one by the mapping φ 
→ φc. We warn that the dual partial order ≤d
induced in this dual algebra is not the inverse of the order ≤ in the original alge-
bra. However, the dual order accounts for the issue addressed at the beginning
of the section: according to the question one is interested in, one should either
consider the one or the other of the dual algebras.

4.3 Atomic Algebras

In many cases there are for every domain x most informative information pieces
representing the finest possible answers to the question posed by the domain. In
relational algebra for example the one-tuple relations over a domain x represent
such atomic information. In this section we study more generally information
algebras with atomic information pieces.

For this purpose it is more convenient to work with a labeled information
algebra (Φ,D). Remember now that the algebra has null elements, i.e. for all
x ∈ D there is a (necessarily unique) element zx such that φ→x⊗ zx = zx for all
φ ∈ Φ. We further have z→y

x = zy. These null elements represent contradictory
information. In fact, if φ ⊗ ψ = zx, the combination of this pieces of infor-
mation with further pieces yields again the contradiction. In relational algebra
these null elements are represented by the empty relations, in propositional and
predicate logic the logical constant ⊥ (falsity), which has no models, represents
contradiction.

Now, an atom in a domain x is a maximal element different form zx among
the elements Φx with domain x:

Definition 1. An element α ∈ Φx is called an atom on x if

1. α �= zx,
2. for all φ ∈ Φx, α ≤ φ implies either α = φ or φ = zx.
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Here are a few elementary properties of atoms which are proven in [9]:

1. If α is an atom on x, and y ≤ x, then α↓y is an atom on y.
2. If α is an atom on x, and d(φ) = x, then either φ ≤ α or α⊗ φ = zx.
3. If α and β are atoms on x, then either α = β or α⊗ β = zx.

Denote the set of all atoms in Φx by Atx(Φ) and the set of all atoms in Φ by
At(Φ). Furthermore let for any φ ∈ Φ

At(φ) = {α ∈ At(Φ) : d(α) = d(φ), φ ≤ α}.

If α ∈ At(φ) we say also that α is an atom of φ or contained in φ. This termi-
nology will be justified below.

We are now especially interested in information algebras, where each element
is composed by all the atoms it contains. The following definition gives a more
precise meaning to this idea:

Definition 2. A labeled information algebra (Φ,D) is called atomic, if for all
φ ∈ Φ, φ �= zd(φ),

φ = ∧At(φ),

i.e. each information is the infimum of the atoms it contains.

The labeled versions of the information algebras associated with propositional
logic and predicate logic are atomic: In the case of propositional logic, the ele-
ments of Φx can be considered as subsets of the Boolean cube {t, f}|x| and the
atoms are tuples t : x → {t, f}. Therefore each element of Φx is simply the set
of the tuples it contains. Similarly, in the case of predicate logic, the elements of
Φx can be considered as subsets of the cartesian product U |x| and the atoms are
tuples t : x→ U . In the case of information algebras related to contexts, atoms
exist, if m⇒x is |=-closed for all m ∈M and x ∈ D. Then, if a cylindric set A is
|=-closed,

A = A⇒x =
⋃
m∈A

m⇒x.

Hence, again, each element of Φx is simply the set of the atoms it contains. The
example of linear manifolds shows however that not every set of atoms forms
necessarily an element of Φ.

These examples reflect in fact a more general situation: We claim that the
set At(Φ) of all atoms of an atomic information algebra (Φ,D) forms itself an
information algebra, very similar to a relational algebra. We note first, that atoms
behave with respect to projection like ordinary tuples in relational algebra. In
fact, the following lemma summarizes the basic properties of atoms:

Lemma 5. If a labeled information algebra (Φ,D) is atomic, then its atoms α, β
in At(Φ) satisfy the following properties:
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1. If x ≤ d(α), then α↓x ∈ At(Φ) and d(α↓x) = x.
2. If x ≤ y ≤ d(α), then (α↓y)↓x = α↓x.
3. If d(α) = x, then α↓x = α.
4. If d(α) = x, d(β) = y and α↓x∧y = β↓x∧y, then there exists a γ ∈ At(Φ)

with d(γ) = x ∨ y and γ↓x = α, γ↓y = β.
5. If d(α) = x and x ≤ y, then there exists a β ∈ At(Φ) such that d(β) = y and

β↓x = α.

Proof. Properties (1) to (3) follow from the axioms of an information algebra,
since atoms are elements of the algebra.

Let γ = α ⊗ β. Then γ↓x = α by the combination and idempotency axioms,
considering that α↓x∧y = β↓x∧y. Similarly, γ↓y = β. Assume that γ = zx∨y. But
then α = zx, which is excluded, since α is an atom. Hence we conclude that
γ �= zx∨y. Therefore, since (Φ,D) is atomic, At(γ) is not empty. Let η ∈ At(γ).
Then it follows from γ ≤ η, that α = γ↓x ≤ η↓x. But since α is an atom, either
α = η↓x or η↓x = zx. The latter case is excluded, since η is an atom. Similarly
β = η↓y. So property (4) is satisfied by η.

Further, At(α↑y) is not empty either. Thus, let β ∈ At(α↑y). Then d(β) = y
and α↑y ≤ β. This implies α = (α↑y)↓x ≤ β↓x. Since α is an atom, it holds that
either α = β↓x or β↓x = zx. But the latter case is excluded because β is an atom.
So property (5) is satisfied by β. �
Of course, ordinary tuples in relational algebra satisfy these properties too. That
is why we may consider atoms as generalized tuples. As with relational algebra,
we define generalized relations over x to be subsets R ofAt(Φ) such that d(α) = x
for all α ∈ R. The domain of α is supposed to be attached to R. It is denoted
by d(R). For a generalized relation R and x ≤ d(R), the projection of R onto x
is defined as

πx(R) = {α↓x : α ∈ R}.

The join of a generalized relation R over x and a generalized relation S over y
is defined as follows:

R �� S = {α ∈ At(Φ) : d(α) = x ∨ y, α↓x ∈ R,α↓y ∈ S}.

It is easily possible that the set on the right hand side is empty. We attach the
empty set with the domain x ∨ y and call it Zx∨y, the empty relation on x ∨ y.
We assign it the domain d(Zx∨y) = x ∨ y. Finally, for x ∈ D, the full relation
over x is

Ex = {α ∈ At(Φ) : d(φ) = x} = Atx(Φ).

This is the neutral element for the join operation between generalized relations
on x. Note that R �� S = R ∩ S if R and S are relations over the same domain.

Let RΦ be the set of all generalized relations of atoms of the information alge-
bra (Φ,D). Then these generalized relations form a labeled information algebra.
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Theorem 3. The two-sorted algebra (RΦ, D) with the operations of projection
and join defined above forms a labeled information algebra.

This can easily be verified. In fact, it satisfies the same properties as an ordinary
relational algebra summarized in Section 2.1. Furthermore, just as ordinary re-
lational algebra, it forms the labeled version of a Boolean information algebra.
It turns out that the atomic algebra (Φ,D) is part of its associated generalized
relational algebra.

Assume the labeled information algebra (Φ,D) to be atomic.

Theorem 4. The mapping At : Φ→RΦ defined by φ 
→ At(φ) is an embedding
of (Φ,D) into (RΦ, D).

Proof. We have first to show the following:

1. At(φ⊗ ψ) = At(φ) �� At(ψ),
2. At(φ↓x) = πx(At(φ)).
3. At(ex) = Ex.
4. At(zx) = Zx.

(1) Let d(φ) = x and d(ψ) = y. Consider an atom α ∈ At(φ ⊗ ψ). Then it
follows that φ ≤ φ⊗ ψ ≤ α, hence φ = φ↓x ≤ α↓x. Thus α↓x ∈ At(φ). Similarly
α↓y ∈ At(ψ), hence α ∈ At(φ) �� At(ψ). Conversely, assume α ∈ At(φ) �� At(ψ).
Then d(α) = x ∨ y and φ ≤ α↓x ≤ α and ψ ≤ α↓y ≤ α, hence φ⊗ ψ ≤ α, which
means that α ∈ At(φ⊗ ψ). This proves (1).

(2) Let α ∈ At(φ↓x), such that d(α) = x and φ↓x ≤ α. We have φ ≤ φ ⊗ α.
Suppose that φ⊗ α = zy, if d(φ) = y ≥ x. Then

α = φ↓x ⊗ α = (φ⊗ α)↓x = zx.

But this is excluded, because α is an atom. Therefore φ ⊗ α �= zy. Since Φ is
atomic there is a β ∈ At(φ ⊗ α) with d(β) = y and φ ≤ β, hence β ∈ At(φ).
But we have also α = (φ ⊗ α)↓x ≤ β↓x. Since β↓x is also an atom, we must
have α = β↓x and therefore α ∈ πx(At(φ)). Conversely, if β ∈ πx(At(φ)), then
β = γ↓x for some atom γ ∈ At(φ). But φ ≤ γ, hence φ↓x ≤ β and therefore
β ∈ At(φ↓x). So (2) holds.

(3), (4) follow directly from the definition of At.
It remains to show that the mapping At is one-to-one. Assume At(φ) = At(ψ).

Then φ = ∧At(φ) = ∧At(ψ) = ψ. �
The information algebras associated with propositional logic, for instance, co-
incide with their relational version. But this is not the case in general. The
information algebras associated with predicate logic are proper subalgebras of
the relational information algebra of relations over U .

In the case of an atomic Boolean information algebra (Φ,D) there is also a
dual notion of the concept of an atom. A dual atom on x is a maximal element
on x with respect to the dual order ≤d. Let Atd(Φ) denote the set of dual atoms.
If α ∈ Atd(Φ) and d(α) = x, then α �= zcx = ex, hence αc �= zx. Further, assume
αc ≤ φ for a φ ∈ Φx. Then α ≤d φc, hence either φc = α, i.e. φ = αc, or φc = zcx,
i.e. φ = zx. Thus if α is a dual atom, then αc is an atom.
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Lemma 6. Let (Φ,D) be an atomic Boolean information algebra. Then the fol-
lowing holds:
1. At(φ) ∩At(φc) = ∅.
2. If d(φ) = x, then At(φ) ∪At(φc) = Atx(Φ).

Proof. (1) Suppose there is an atom α on x such that φ ≤ α and φc ≤ α. Taking
the join of both sides we obtain zx ≤ α, which is impossible.

(2) If α ∈ Atx(Φ), and d(φ) = x, then either φ ≤ α and α ∈ At(φ) or
α ∨ φ = zx. But in the latter case φc ≤ α and α ∈ At(φc). �
Note further that α ∈ At(φ), i.e. φ ≤ α, implies φc ≤d αc, hence αc ∈ Atd(φc)
and vice versa. Hence the cardinality of the two sets At(φ) and Atd(φc) are the
same. This implies also that the sets of all atoms on x, Atx(Φ) = At(ex) and
Atd,x(Φ) = Atd(zx) have the same cardinality.

4.4 Measure of Information Content

Shannon, in his information theory, introduces a quantitative measure of informa-
tion. He measures the information about a transmitted symbol by the reduction
of uncertainty, when the transmitted symbol becomes known. So, in our con-
text, we may say that Shannon considers a fixed question, namely what symbol
out of a (finite) alphabet is selected for transmission. The uncertainty is mea-
sured by the entropy of the alphabet [19]. Once the symbol to be transmitted is
known, the uncertainty is reduced to zero. Therefore the entropy measures the
information gained by knowing the symbol.

This basic idea can be applied in our context too, if the labeled information
algebra (Φ,D) is atomic. The first point to stress is that the information content
of an element φ ∈ Φ is measured relative to its domain d(φ), i.e. relative to
the question it refers to. We assume further that for all domains x ∈ D the
total number At(ex) of atoms of the domain is finite. An atom of a domain x
is the finest, i.e. the maximal information one may obtain about the domain.
Assuming the number of atoms finite means that this information can be coded
by a number of bits bounded by �log2 |At(ex)|�, whereas an infinite number of
atoms would mean that the information in an atom cannot be coded into a finite
memory. Then the total uncertainty associated with a domain x can be measured
by log |At(ex)|, the Hartley measure. This corresponds to the entropy of At(ex)
under an assumed uniform probability distributions over the atoms. However, we
shall avoid here probabilistic considerations, since there is no random experiment
involved in our discussion. Usually the logarithm is taken to base 2, but any
other base serves our purpose too, since it involves only a shift of scale in the
measurement of uncertainty and information. Once information φ with d(φ) = x
is given, the uncertainty concerning the possible atoms is reduced to log |At(φ)| ≤
log |At(ex)|. So, the information content of φ relative to the domain (question)
x can be defined as the reduction of uncertainty obtained by φ with respect to
knowing nothing (i.e. knowing only the vacuous information ex),

i(φ) = log |At(ex)| − log |At(φ)| = − log
|At(φ)|
|At(ex)| . (7)
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We may consider

p(φ) =
|At(φ)|
|At(ex)|

as the probability of φ, or, more precisely, the probability that an atom in At(φ)
is selected out of the atoms of At(ex), when all atoms have the same chance
to be selected. Then we obtain i(φ) = − log p(φ), which corresponds to an of-
ten proposed definition of the information content of an “event” observed in
a random experiment. But, once more, we prefer at this place to not refer to
probabilistic considerations, since, in our view, information, in the first place at
least, has nothing to do with probability, although in applications probability
may play an important role (as for example in communication theory). We note
that i(ex) = 0, the vacuous information carries no information. Further we ob-
tain i(zx) = ∞ by (7) since At(zx) = ∅. Note that zx is in fact not really an
information about a possible atom, since it contains no atom at all. We could as
well convene that the information content of zx is not defined.

More generally, any element φ ∈ Φ contains possibly information about any
other domain y �= d(φ). In fact, it is natural to define the information content
of φ relative to domain y by

i(φ; y) = i(φ→y).

Clearly and consistently we see that i(φ;x) = i(φ), if d(φ) = x. Further, if
[φ] is the class of equivalent information elements (see Section 2.5), then all
elements of the class have the same information content i(φ; y) with respect to
any domain y. This means that we may assign a measure of information content
by defining i([φ]; y) = i(φ; y) also to the elements of the domain-free version of
an information algebra.

The next theorem shows that our quantitative measure of information respects
the qualitative orders of information introduced above (Section 4.1):

Theorem 5. Let (Φ,D) be an atomic information algebra, with finite sets of
atoms Atx(Φ). Then, for all x ∈ D and φ, ψ ∈ Φ, the inequalities φ ≤ ψ,
[φ] ≤ [ψ] and φ ≤x ψ imply i(φ;x) ≤ i(ψ;x).

Proof. Both φ ≤ ψ and [φ] ≤ [ψ] imply φ ≤x ψ. The latter implies At(φ→x) ⊇
At(ψ→x), hence |At(φ→x)| ≥ |At(ψ→x)|, and therefore i(φ;x) = i(φ→x) ≤
i(ψ→x) = i(ψ;x). �
From this theorem a number of simple results may be derived, which follow from
the properties of the partial order: For all x, y, z ∈ D and φ, ψ ∈ Φ:

1. i(φ;x), i(ψ;x) ≤ i(φ⊗ ψ;x),
2. i(φ→y;x) ≤ i(φ;x),
3. φ ≤ ψ implies i(φ→y;x) ≤ i(ψ→y ;x),
4. φ1 ≤ φ2 and ψ1 ≤ ψ2 imply i(φ1 ⊗ ψ1 : x) ≤ i(φ2 ⊗ ψ2 : x),
5. i(φ→y ⊗ ψ→y;x) ≤ i((φ⊗ ψ)→y;x),
6. x ≤ y implies i(φ→x; z) ≤ i(φ→y; z).
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When the partial order in the domain-free algebra is considered, similar re-
sults are obtained. So far we measure the information content of an element φ on
a domain x by the reduction of the uncertainty with respect to initial ignorance,
i.e. vacuous information. More generally, we may also measure the relative in-
formation content of a piece of information relative to another, previous piece
of information ψ. If information ψ is already given, the remaining uncertainty is
log |At(ψ)|. When a new information φ arrives, the total information is ψ ⊗ φ,
and the remaining uncertainty log |At(ψ⊗φ)|. If φ and ψ have the same domain
d(φ) = d(ψ) = x, then the relative information content of φ relative to ψ relating
to the domain x can then be measured by

i(φ|ψ) = log |At(ψ)| − log |At(ψ ⊗ φ)| = − log
|At(ψ ⊗ φ)|
|At(ψ)| .

Since by Theorem 4 in this case At(ψ⊗φ) = At(φ)∩At(ψ), we may also consider
i(φ|ψ) = − log p(φ|ψ), i.e. as the negative logarithm of the conditional probability
of φ given ψ, with the usual assumption of uniform probability distribution
over the atoms of At(ex). As before we may extend this definition of relative
information measure to any domain y and information elements ψ and φ on any
domains

i(φ|ψ;x) = log |At(ψ→x)| − log |At((ψ ⊗ φ)→x)| = − log
|At((ψ ⊗ φ)→x)|
|At(ψ→x)| .

Note however that in general i(φ|ψ;x) �= i(φ→x|ψ→x). Further, ψ ≤ ψ ⊗ φ
implies also ψ→x ≤ (ψ⊗ φ)→x; therefore we conclude that i(φ|ψ;x) ≥ 0. It may
be that ψ⊗φ = zy, which means that φ and ψ are incompatible or contradictory
pieces of information. Correspondingly we obtain in this case i(φ|ψ;x) = ∞
for all domains x. This is simply the mathematical expression for the fact that
such two pieces of information can not hold at the same time. Note further that
i(φ;x) = i(φ|ex;x).

The following result shows that the measure of a combined information can
be obtained as the sum of the measure of the first information and the relative
information of the second relative to the first one. This is called the chaining
theorem.

Theorem 6. For all x ∈ D and φ, ψ ∈ Φ it holds that

i(φ⊗ ψ;x) = i(φ;x) + i(ψ|φ;x).

Proof. We have

i(φ⊗ ψ;x) = log |At(ex)| − log |At(φ ⊗ ψ)→x|
= (log |At(ex)| − log |At(φ→x)|)

+(log |At(φ→x)| − log |At(φ ⊗ ψ)→x|)
= i(φ;x) + i(ψ|φ;x). �
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This result can easily be generalized to the combination of n ≥ 2 information
elements.

Corollary 1. For all x ∈ D and φ1, . . . , φn ∈ Φ,

i(φ1 ⊗ · · · ⊗ φn;x) = i(φ1;x) + i(φ2|φ1;x) + · · ·+ i(φn|φ1 ⊗ · · · ⊗ φn−1;x).

Here are a few simple results about relative information.

Lemma 7. For all x ∈ D and φ, ψ ∈ Φ
1. If φ ≥ ψ, then i(φ|ψ;x) ≤ i(φ;x).
2. φ1 ≤ φ2 implies i(φ1|ψ;x) ≤ i(φ2|ψ;x).
3. φ ≤ ψ implies i(φ|ψ;x) = 0.

Proof. (1) We note that At(ex) ⊇ At(ψ→x) and At((φ ⊗ ψ)→x) = At(φ→x).
Then

i(φ|ψ;x) = log |At(ψ→x)| − log |At((φ ⊗ ψ)→x)|
≤ log |At(ex)| − log |At(φ→x)|
= i(φ;x).

(2) follows since (φ1⊗ψ)→x ≤ (φ2⊗ψ)→x, hence At((φ1⊗ψ)→x) ⊇ At((φ2⊗
ψ)→x).

(3) follows because in this case φ⊗ ψ = ψ. �
Suppose i(φ|ψ;x) = i(φ;x) and i(ψ|φ;x) = i(ψ;x). In this case, knowing ψ
contributes nothing to the information represented by φ and, similarly, knowing
φ contributes nothing to the information represented by ψ. Therefore we say that
φ and ψ are independent pieces of information relative to x and we write φ||ψ;x.
In this case, by the Chaining Theorem 6, the following additivity property holds,

i(φ⊗ ψ;x) = i(φ;x) + i(ψ;x).

Independent information simply adds up.
An important special case are atomic Boolean information algebras. We may

define there a dual information measure for an element φ ∈ Φ with d(φ) = x,

id(φ) = log |Atd(zx)| − log |Atd(φ)|,
since zx is the dual neutral element, hence the dual vacuous information. This
dual measure makes sense: In relational databases for instance, if a relation
indicates all the flights by which a person can arrive, then the first measure
applies, the smaller the relation the more information is available. When however
the relations represents all the flights which a person may select for her trip, then
the dual measure applies, the larger the relation, the more information is given.
We have seen that |Atd(φ)| = |At(φc)| (Section 4.3), hence

id(φ) = log |At(ex)| − log |At(φc)| = i(φc).
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This duality relation between the dual information measures holds also for the
general information measure relative to a domain

id(φ;x) = id(φ→dx) = i((φ→dx)c) = i((φc)→x) = i(φc;x).

It holds also for relative information. By the dual chaining theorem,

id(φ|ψ;x) = id(φ ⊗d ψ;x)− id(ψ;x)
= i((φ⊗d ψ)c;x)− i(ψc;x)
= i(φc ⊗ ψc;x)− i(ψc;x)
= i(φc|ψc;x).

We illustrate these concepts in the important case of information algebras
with multivariate domains, where the results can be considerably sharpened.
Assume thus that (Φ,D) is an atomic information algebra, where D is a lattice
of subsets of some set r such that x, y ∈ D implies x − y ∈ D. This is the case
for instance for the lattice of finite subsets of an arbitrary set r. We introduce
two further assumptions:

– Every atom α ∈ Atx∪y(Φ) on the domain x ∪ y has a decomposition of the
form

α = α↓x ⊗ α↓y . (8)

– For every η ∈ Φt we have

η↓∅ =
{
e∅, if η �= zt,
z∅, else. (9)

Note that the combination of atoms is, in the general case, not necessarily
an atom. This condition is satisfied, whenever Φ contains subsets of cartesian
products, i.e. in the case of propositional and predicate logic, relational al-
gebra and linear manifolds. As before we assume that the atom sets Atx(Φ)
are finite for all x ∈ D. This is the case for propositional logic, predicate
logic and relational algebra with finite domains and linear manifolds over prod-
uct spaces of finite (or Galois) fields. In this case the following basic result
holds:

Lemma 8. Let (Φ,D) is an atomic information algebra, where D is a lattice of
subsets of some set r, and such that conditions (8) and (9) hold. Then, if for
x, y ∈ D with x ∩ y = ∅, and

φ = φ↓x ⊗ φ↓y, (10)

it holds that

i(φ) = i(φ↓x) + i(φ↓y).
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Proof. From (10) and Theorem 4 it follows that

At(φ) = At(φ↓x) �� At(φ↓y)
= {α ∈ Atx∪y(Φ) : α = α↓x ⊗ α↓y, α↓x ∈ At(φ↓x), α↓y ∈ At(φ↓y)}.

From this we conclude that |At(φ)| = |At(φ↓x)| · |At(φ↓y)|. Similarly, it follows
that |At(ex∪y)| = |At(ex)| · |At(ey)|. Therefore we obtain

i(φ) = log |At(ex∪y)| − log |At(φ)|
= (log |At(ex)|+ log |At(ey)|)− (log |At(φ↓x)|+ log |At(φ↓y)|)
= (log |At(ex)| − log |At(φ↓x)|) + (log |At(ey)| − log |At(φ↓y)|)
= i(φ↓x) + i(φ↓y). �

This result allows to introduce an absolute information measure into the domain-
free version of the information algebra. In fact, if φ ≡ ψ, then φ↑x∪y = ψ↑x∪y,
if d(φ) = x and d(ψ) = y. Let z = x ∪ y − x. Then, since φ↑x∪y = φ ⊗ ez =
(φ↑x∪y)↓x ⊗ (φ↑x∪y)↓z , by the previous Lemma 8 i(φ↑x∪y) = i(φ). Similarly we
obtain i(ψ↑x∪y) = i(ψ), hence i(φ) = i(ψ). Define then the absolute information
measure i([φ]) = i(φ). The absolute information measure respects the partial
information order in the domain-free information algebra Φ/ ≡. Indeed, if [φ] ≤
[ψ], then [φ]⊗ [ψ] = [φ⊗ ψ] = [ψ]. We have then i([φ]) = i(φ↑x∪y) ≤ i(φ⊗ ψ) =
i(ψ↑x∪y) = i([ψ]), if d(φ) = x and d(ψ) = y.

In a similar way we define the relative information measure

i([φ]|[ψ]) = log |At(ψ↑x∪y)| − log |At(φ ⊗ ψ)| = i([φ]⊗ [ψ])− i([ψ]) ≥ 0.

Thus the absolute chaining theorem holds too,

i([φ]⊗ [ψ]) = i([φ]) + i([ψ]|[φ]).

As before, we may call [φ] and [ψ] independent, if the addition property

i([φ]⊗ [ψ]) = i([φ]) + i([ψ])

or, equivalently, i([φ]) = i([φ]|[ψ]) and i([ψ]) = i([ψ]|[φ]) hold. This is the case if
there are supports x and y of [φ] and [ψ] respectively, such that x ∩ y = ∅.

5 Conclusion

Information algebras represent a structure which captures essential features of
any concept of “information”. The presentation here focuses on its basic theory.
There are many more aspects: One is computation: How are pieces of informa-
tion combined and focussed on the domains of interest? This is the problem of
query processing where local computation methods can be applied. A lot of work
has been done with respect to this problem. In particular domains like query
processing in relational algebra, solving linear equations, for instance in coding
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theory, consequence finding in logic, etc have been studied extensively. Whereas
each of these domains has its particularities which can and must be explored,
information algebra offers a common background on which generic methods can
be developed [9, 12] . In this respect we refer to [18] which describes a generic
software for local computation, permitting instantiations with any information
(or rather valuation) algebra.

Another issue is approximation of ‘infinite” information by “finite” informa-
tion. This is modeled by compact information algebras [9]. More precisely, the
question arises when an information algebra is effective, i.e. when the opera-
tions of combination and focussing can effectively be computed on a computer.
Similar questions arise in domain theory, a theory which has close links to com-
pact information algebras, see for instance [22]. In this same context, one can
ask how information and its algebra is related to deduction. One is used that
information may allow the inference of further information; in fact projection is
a deduction procedure. Particularly in logic, i.e. in contexts, this became clear.
In fact, it turns out that, similar to domain theory, information algebra may be
equivalently be replaced by a system based on entailment, similar to information
systems in the sense of Scott [22]. This means that logic in a wider sense is a
general way to express and treat information. In a similar way, it can also be
shown that any information algebra, in some precise sense, is part of generalized
relational algebra. Thus, there are two general and complementary ways to see
information in general, as (generalized) relations or as logic. These relations are
discussed in [9].

Finally comes up the idea of “uncertain information”, a term often used, but
rarely, if ever, precisely defined. In the framework of information algebras, un-
certain information can be represented by random variables taking values in an
information algebra [9, 10]. This is closely related to probabilistic argumentation
systems [5, 9]. Here, probability theory is combined with logic, in the way that the
latter serves to prove hypotheses under certain assumptions and the former per-
mits to compute the probability that those assumptions are valid. This brings the
theory more into the realm of Shannon’s entropy based information theory. Also
it generalizes the concept of random sets [16], which are usually considered as ran-
dom variables taking values in an algebra of closed sets of some topological space.
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