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Giovanni Sommaruga

Part I

This book’s topic are formal theories of information. It may be useful to start
explaining this topic a little further, and then to say what the structure of the
book is like and what motivates it, and finally how this book compares with
other works grappling with the same or a similar topic.

What is meant by the term ‘formal’ in ‘formal theories of information’? All
of the formal theories presented or discussed in the sequel either have a strongly
mathematical or logical flavor or are downright mathematical. And how should
the term ‘information’ be understood in the expression ‘formal theories of infor-
mation’? A first clarification of this term is provided by L. Floridi’s introductory
philosophical considerations in this book; a second attempt at a clarification is
made by G. Sommaruga’s concluding remarks.

What is the structure of this book? This book’s structure could be repre-
sented by some sort of a circular model: The innermost circle will be called the
syntactical one: it constitutes the basic skeleton or the set of essential compo-
nents of any formal theory of information. The second, larger circle is called
the semantical one: it adds the crucial feature of meaning to the information-
theoretical consideration of mere signs (or well-structured data) in the smallest,
innermost circle. The third, even larger, outermost circle might be called the
pragmatic one: it adds the crucial feature of real-life usage of meaningful signs
by humans to the information-theoretical consideration of mere meaningful signs
in the intermediate circle.

This structure is motivated by a doubly unificatory purpose: on the one hand
by the question of ‘unification’ of different approaches inside a given circle; on
the other hand by the question of ‘unification’ underlying the various circles: is
it possible to think of one unique concept of information which is gradually built
up, developed over several stages represented by the different circles?1

K. Kornwachs and K. Jacoby’s Information. New Questions to a Multidisci-
plinary Concept(1996) seems to pursue a similar unificatory purpose. The two
editors reason in the introduction to their book as follows: There appear to be
1 An alternative structure of this volume could have been the result of interchanging

its second (‘the syntactical approach’) and its third part (‘the semantical approach’)
for the following reasons: as argued for in sect. 3.3 of my contribution to this volume,
the center concept of information is the semantical one which can be phrased in terms
of questions and answers. A very sensible way of presenting the following articles
would have been to start with the contributions to this center concept and to carry
on with two extensions of it: the technical extensions of this center concept (i.e. the
syntactical approach) and a pragmatical extension of it (i.e. beyond the semantical
approach). I owe this interesting suggestion to Jürg Kohlas.

G. Sommaruga (Ed.): Formal Theories of Information, LNCS 5363, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 G. Sommaruga

only the following three kinds of concept of information: a) Shannon’s (syntac-
tical) concept modified in many different but not essential ways. It is so limited
as to be almost uninteresting (according to a comment by E.U. v. Weizsäcker).
b) a very vague concept in everyday language. It is so broad that it is just
about meaningless. c) an economical concept of information as a commodity
which, however, until now defied any attempt to define it. Thus, Kornwachs
and Jacoby reach the following conclusion: The search for a unified concept of
information is a hopeless endeavor; information is a multidisciplinary concept,
i.e. every scientific discipline has its own concept of information. (1996:1ff) They
carry on with the following observation: Scarce applications of Shannon’s, i.e.
statistical information theory could be made in cognitive science (psychology),
biology, system theory, philosophy of science, linguistics and the social sciences.
Therefore, all these sciences have started developing their own concept of in-
formation. That is why there is no unified concept of information available.
Kornwachs and Jacoby continue by making a claim which seems to contradict
their earlier conclusion. Claim: A unified concept of information can be reached
by a multidisciplinary approach only. What does that claim mean? Does it mean
that a unified concept of information has to account for the different concepts
of information used in the different scientific disciplines? Is this what is meant
by a multidisciplinary approach being a necessary condition for a unified con-
cept? And what does the expression ‘account for’ imply in this context? Their
explanations following their claim are by no means illuminating. Kornwachs and
Jacoby’s book amounts eventually to presenting various aspects of the concept
of information and discussing various uses of the term ‘information’ in physics,
biology, system theory, philosophy of science, philosophy and linguistics, all of
this in agreement with their original conclusion, namely that information is (and
cannot be but) a multidisciplinary concept.

Another weighty attempt at providing a unified theory of information is
provided by W. Hofkirchner’s The Quest for a Unified Theory of Information.
Proceedings of the Second International Conference on the Foundations of In-
formation Science(1999). In his introduction to this volume Hofkirchner raises
several questions. The first of these questions is: Which are ‘the philosophical
and/or formal scientific suppositions [that] seem best suited to serve as a ba-
sis for a unified theory of information (UTI)’? (1999:xxi) Hofkirchner answers
this question as follows: a UTI ought to be conceived of as a general theory of
information-generating systems. (1999:xxii) This answer appears unsatisfactory
for at least two reasons: First, in order to identify and construct theories about
information-generating systems one has to know what information is, i.e. one has
to know the concept of information. Hence Hofkirchner’s answer is somewhat vi-
ciously circular. Second, these information-generating systems are (according to
Hofkirchner) to be considered as particular kinds of systems, as physical, chem-
ical, biotical etc. systems, depending on the material context. This means that
UTI has to be conceived as a ‘material’ theory of information. And this con-
ception implies that the underlying concept of information will at best be an
analogous one and at worst equivocal. This consequence is hardly in the spirit of
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a UTI. Hofkirchner seems to point at a way out of these difficulties: A concept of
information should be flexible enough to perform two functions: ‘It must relate to
the most various manifestations of information, thus enabling all scientific disci-
plines to use a common concept; at the same time, it must be precise enough to fit
the unique requirement of each individual branch of science.’ (1999:xxii) No the-
ory can fulfil these two requirements other than a formal (mathematical) theory
of information. The term ‘formal’ should not be understood in a purely formal-
istic sense, but at most in a sense that S. Shapiro calls deductivist. (cf. (Shapiro
2000:ch.6.2)) It is a logical mathematical theory of information, expressing or
incorporating a formal concept of information and applicable to a wide range of
scientific disciplines. It thus comes as no surprise when Hofkirchner writes: ‘[ ] the
conference was unable to answer unambiguously the question of whether a UTI
is possible at all, and, if so, if a theory of evolutionary systems represents suitable
foundations for this; in which way different properties of information-generating
self-organizing systems can be subsumed;. . . ’ (1999:xxiii).2,3

2 D.F. Flückiger distinguishes in his ph.d. thesis Beiträge zur Entwicklung eines verein-
heitlichten Informations-Begriffs(1995) two types of information theory: the so-called
structural-attributive ones whose prototype is D. MacKay’s descriptive information
theory, and the so-called functional-cybernetic ones whose prototype is Shannon’s
statistical information theory. (1995:2,69; cf. also his (1999)) He makes an attempt
at combining two essential perspectives on information, namely the perspective of in-
formation transmission (Shannon) and the perspective of information accumulation
(Nauta). Flückiger’s goal is to find a (consistent) concept of information underlying
both these perspectives (1995:63). On the way to finding such a concept, he makes
extensive use of modern brain biology. Flückiger’s approach has a similar objective
as the Barwise-Seligman theory of information and information flow, but unlike the
latter one, it suffers from the same flaw as Hofkirchner’s approach, namely from not
being a really formal theory.

3 The objectives of P. Keller’s thesis Information Flow. Logics for the (r)age of infor-
mation(2002) are somewhat similar to those of this book: (i) ‘to give a conceptual
analysis of the notions of information, data and knowledge and their interrelations’
– where in this book the concept of knowledge plays no role whatsoever –, and (ii)
‘to apply this analysis to the theory of information flow’ (2002:I) – where in this
book, the analysis is partially applied, partially extracted from the theory of infor-
mation flow and other formal theories of information –. Keller carries out task (i) by
comparing different theories of information with each other, such as Dretske’s philo-
sophical theory of information, situation-theoretic information theory and epistemic
modal logic of information. He mentions three possible reasons for the apparent fact
that the different theories of information considered by him are incommensurable.
(2002:VII/VIII) One may be tempted to add a fourth reason, namely that Keller’s
choice of theories to be compared with each other wasn’t particularly fortunate, or
say, too heterogeneous. His conclusion at the end of his thesis is disappointed and
delusive: ‘the concept [of information, G.S.] is elusive and there is not much to be
hoped from a ‘philosophy’ of information’ (2002:240), and by no means shared by
the editor of this book. It is one among other objectives of this book that the reader
may come, after reading this book, to the opposite conclusion.
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Part II: The Individual Contributions

In his contribution Philosophical Conceptions of Semantic Information,
L. Floridi sets out to explore and clarify the wide and messy conceptual field
surrounding the concept of information. Even though he starts by declaring that
there is a considerable number of concepts of information depending on the level
of abstraction and the requirements of one’s perspective, he essentially zooms in
on three fundamental concepts: information as (well-structured) data, informa-
tion as meaningful well-structured data (meaningful content), and information
as truthful meaningful well-structured data. He then provides a philosophical
discussion of the nature of (well-structured) data. After a brief philosophical
presentation of statistical information theory (called MTC by Floridi), he ex-
amines the concept of information as semantic content and especially the one
he calls factual semantic content (factual information) and he presents a sketch
of the debate on whether factual information ought to be truthful or not in
order to correctly be called information. At the end, he considers the relation-
ship between MTC and a semantic theory of information, thereby continuing
the previous sketch on the level of theories: for the weakly semantic theories
of information, information as semantic content is alethically neutral, whereas
for the strongly semantic theories, information as semantic content has to be
truthful.

The canonical measure of probabilistic uncertainty is Shannon’s entropy (1948),
whose properties and applications constitute Information Theory. In Information
Theory, the entropy of a message limits its minimum coding length, in the same
way that, more generally, the complexity of the message determines its compress-
ibility in the Kolmogorov-Chaitin-Solomonov Algorithmic Information Theory.
In his contribution Information Theory, relative Entropy and Statistics,
F. Bavaud summarizes and revisits the classical Shannonian framework from a
statistical inferential perspective: besides coding and compressibility interpreta-
tions, the relative entropy K(f ||g) (or Kullback-Leibler divergence) possesses a
direct probabilistic meaning, and measures the badness-of-fit between an empiri-
cal distribution f and a model distribution g - a theme first explored by authors
such as Kullback, Sanov, Jaynes, Billingsley, Csiszár, and Cover among others.
Through about twenty examples, Bavaud illustrates a few formal properties of
the functional K(f ||g), rich enough to capture the various aspects of the con-
frontation between models (= what we believe) and data (=what we observe),
that is the art of classical statistical inference, including Popper’s falsificationism
as a special case. In particular, the asymmetry of K(f ||g) nicely matches the epis-
temological asymmetry between data and models, as illustrated by Fisher’s sin-
gle hypothesis testing, the Neyman-Pearson testing between two hypotheses, and
Bayesian model selection. Also, the exact additive decomposition of the relative
entropy holds in two dual contexts, namely for convex families of empirical dis-
tributions, or for exponential families of model distributions. Moreover, the prin-
ciples of Maximum Likelihood and Maximum Entropy clearly emerge as dual to
each other, which clarifies the (often misunderstood) epistemological meaning of
the former, namely as a method of reconstructing under incomplete observation
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the most likely data under some prior model - which is highlighted in the so-called
EM algorithm consisting of an alternating use of both principles. In the last sec-
tion, Bavaud demonstrates how the relative entropy formalism extends beyond
independence models, and can be used to test independence or to test the order
of a Markov chain. His conclusion, in the spirit of convex and exponential models,
illustrates the heating and cooling of texts by a few textual simulations, and the
mixing (in an additive or multiplicative way) of English and French texts.

C.S. Calude’s contribution Information: The Algorithmic Paradigm has
almost the form of a dialogue: questions are raised, answers are given which
in turn may raise new questions etc. Moreover, a central theme of Calude’s
with variations is incompleteness. After introducing bits, i.e. binary digits, and
bits-strings, Calude raises the question: How efficiently can all the non-negative
numbers be coded? In order to answer this question, he introduces a special
type of Turing machine, namely the self-delimiting universal Turing machine
U , and he also explains the following coding problem: If one considers all Tur-
ing machines of length at most n, i.e. 2n+1 − 1 Turing machines, some Turing
machines halt on a certain input x, others don’t. If all the Turing machines of
length n are ordered lexicographically and for each Turing machine, one asks
whether it stops or not, one gets a bit-string of length 2n+1 − 1 encoding the
whole information. Can the same amount of information be encoded with fewer
bits? The answer is yes, and expressed by the Omega number ΩU whose binary
expansion is 0.ω1ω2 . . . ωm . . .. The halting information for all Turing machines
p s.t. n ≥ |p| can then be compressed into a string of length n : ω1ω2 . . . ωn. It is
now possible to answer the original question: The most efficient coding of all the
non-negative numbers is provided by the domain of a self-delimiting universal
Turing machine. Calude continues showing that many problems in mathemat-
ics can be rephrased in terms of the halting/non-halting status of appropriately
constructed self-delimiting Turing machines. The next question to be discussed
is whether computers can produce new information? The amount of information
HU (x) contained in a bit-string x is the smallest length of a Turing machine
by means of which a self-delimiting universal Turing machine U produces x.
To produce new information then means to start with an input x and produce
an output y s.t. HU (x) < HU (y). The question just asked becomes: Is there
any computable process which can produce infinitely many outputs each hav-
ing more information than its corresponding input? Calude demonstrates that
the answer is essentially negative: a computer cannot create much new informa-
tion. The ensuing question is: But how much can one expect to be created? If
a Gödelian theory is roughly speaking a formal theory for which Gödel’s incom-
pleteness theorems hold, such a theory can be used to prove theorems having
a bit more information than the theory itself. The next point raised concerns a
link between algorithmic and statistical information theory: Calude presents an
algorithmic version of Shannon’s noiseless coding theorem. Next, he treats the
relationship between algorithmic randomness and incompleteness: An infinite
sequence x1x2 . . . xn . . . is algorithmically random if there exists a positive con-
stant c s.t. HU (x1x2 . . . xn) ≥ n− c. It has then been proved that (the sequence
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of bits of) ΩU is algorithmically random. Questions: i) Are there other natural
algorithmically random sequences? And ii) Are there any computably enumer-
able and algorithmically random numbers other than ΩU? The answer to the
first question is positive: If ζU is the so-called zeta number of a self-delimiting
universal Turing machine U , ζU can be shown to be algorithmically random.
The answer to the second question, however, is negative: for one can prove that
a real number α ∈ (0, 1) is computably enumerable and algorithmically random
iff there exists a self-delimiting universal Turing machine U s.t. α = ΩU . The
link to incompleteness is establised by the following result: A Gödelian theory
cannot determine more than finitely many digits of ΩU . Calude also comes back
to incompleteness in his last point: If one expresses the property of ΩU being
algorithmically random as the uncertainty relation Δs · Δ(ω1 . . . ωs) ≥ 1, one
can derive from it Gödel’s incompleteness theorem, that is, uncertainty implies
incompleteness.

J. Kohlas starts his article Information Algebra by explaining intuitively
the basic components and ideas of his algebraic theory of information. In the
second section, he gives an axiomatic presentation of the algebra of information
which he motivates by showing that the relational algebra associated with re-
lational databases is its prototype. In the following subsections, he reinterprets
the projection operation of an information algebra in two ways: by interpret-
ing it as variable elimination, he points to the connection between information
algebra and logic; by interpreting it as a transport operation, he prepares the
ground for the definition of an interesting equivalent version of the information
algebra, i.e. the so-called domain-free one. The third section is dedicated to a
variety of examples, non-logical and logical, of information algebras: fuzzy set
theory (or parts thereof) can be conceived of as an information algebra, and
as for the logical examples, propositional logic, first order logic, and so-called
contexts can equally be conceived of as information algebras. The contexts are
designed as a more general logical framework for obtaining information algebras.
The fourth and last section links information algebra to statistical information
theory. The first subsection explains how information algebra gives rise to a nat-
ural partial order of information content. In the second subsection, attention
is drawn to the fact that in a relational (information) algebra, the information
content of a relation depends on the question of one’s interest. Since this fact is
related to the Boolean character of a relational algebra, the so-called Boolean
information algebras are introduced.The next subsection shows how this par-
tial order of information content can be used to define particular information
algebras based on basic, finest information pieces, called atoms; these algebras
are subsequently called atomic information algebras. The fourth and last sub-
section deals with the measurement of information content in the case of atomic
information algebras, using Hartley’s measure. This quantitative information
measure measures the reduction of uncertainty by an information element of
an atomic information algebra and it also respects the qualitative, partial or-
der of information content. Despite these connections between information al-
gebra and statistical information theory, Kohlas keeps emphasizing that atomic
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information algebra is not a statistical information theory as entropy doesn’t
develop its full power in it.

In information algebra, information is represented by an algebraic structure
in which pieces of information refer to precise questions and can be combined
and focussed on other questions. Uncertain information arises when a piece of
information is known to be true under certain assumptions which themselves are
not necessarily known to be true. Varying these assumptions leads to different
information by means of assumption-based reasoning. If the likelihood of differ-
ent assumptions is varied and described by a probability measure, it is possible
to measure the degree of support of a piece of information in terms of the proba-
bility of those assumptions supporting this piece of information. This is the basic
tenet of J. Kohlas and Ch. Eichenbergers approach Uncertain Information.
Section two starts off with a presentation of functional models describing the
process whereby a data (an answer) is generated from a parameter (question)
and some random element (an assumption). The basic idea of assumption-based
reasoning is to suppose that a random element generated some data and then
to determine the consequences of this supposition on the parameter (and to de-
termine these consequences in terms of the probabilities of the resp. random
element(s)). The last technical term introduced in this section is the one of a
hint: A hint is essentially a mapping from a probability space into a certain set,
and, more precisely, a mapping of an assumption to the smallest set of possible
answers to a given question, containing for sure the right answer. Intuitively, a
hint represents a piece of information concerning the right answer to some ques-
tion, if this answer depends on certain assumptions. Section three introduces a
generalisation of the hints, namely random variables with values in an informa-
tion algebra: A (simple) random variable is a mapping from a (finite) probability
space whose elements represent uncertain assumptions into an information alge-
bra. Since it is shown that (simple) random variables form themselves an infor-
mation algebra, they are on the hand information, and, due to their relation to
a probability space, they are on the other hand uncertain information. Section
four associates random variables with probability distributions: These probabil-
ity distributions arise from the probabilities of the assumptions supporting the
answers to some question. A degree of support of an answer to some question,
as well as a degree of possibility (or plausibility) of some answer are defined
by means of the random variables. The support and the possibility function ac-
tually represent distribution functions of the random variables and can, in the
case of simple random variables, be defined in terms of basic probability assign-
ments. In the basically last section five, the fact is exploited that uncertain, i.e.
assumption-based, information is also information, i.e. constitutes an informa-
tion algebra of random variables. This fact allows for the definition of an order
between the elements of this information algebra. This order is induced by the
algebra and reflects a comparison of random variables w.r.t. information content
taking into account that this information content is also related to assumptions.
If the information algebra of random variables is Boolean, it can be generalised
in such a way as to admit also of varying probability spaces of assumptions. In
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this latter case, a measure of information content can be introduced in a way
analogous to the one presented in the article Information Algebra provided the
respective Boolean information algebra is atomic. This measure of information
content can be regarded as the reduction of uncertainty by the random variable
w.r.t. full ignorance (where uncertainty is measured by Shannon’s concept of
entropy adapted to the information algebra of random variables). Thereby, a
link to Shannon’s theory of information is established.

The general theme of R. van Rooij’s article Comparing Questions and
Answers: A bit of Logic, a bit of Language, and some bits of Infor-
mation is the informative value of questions and answers and its measurement.
Van Rooij’s contribution is set up in a dialectical way: He begins with a first
definition of this informational value and then points out its limitations. He goes
on giving a second definition which takes into account the crtiticism of the first,
but then he points out the limitations of this second attempt. And so he carries
on presenting a third definition etc. Van Rooij starts (in the second section) by
explaining the meaning of questions as well as the entailment relation between
questions within the framework of Groenendijk and Stokhof’s partition seman-
tics. In the third section, he first discusses Groenendijk and Stokhof’s semantic
comparison of (relevant) answers and questions and then observes that the state
of information of a questioner influences the relevance of questions and answers.
This observation leads to a pragmatic comparison of questions relevant w.r.t. an
information state K as well as a comparison of relevant answers to a question
w.r.t. K. Van Rooij ends this section by pointing out that the qualitative no-
tion of relevance in the pragmatic comparions is too rough, and that the partial
ordering relations between questions and answers should be extended to total
orderings by measuring the informativity and relevance of answers and questions
in a quantitative way. The next fourth section sets out to explain how this could
be achieved. Van Rooij follows the lead of Carnap and Bar-Hillel by defining the
informational value of an answer (a proposition) A, inf(A), as the negative loga-
rithm (base 2) of its probability. As the inf-function is monotone increasing w.r.t.
the entailment relation between propositions, the total ordering relation induced
by the inf-function is exactly an extension of the partial ordering induced by the
entailment relation. He then defines the informational value (or entropy) of a
question in a formally analogous way to Shannon’s definition of the entropy of a
coding system as the average informational value of its answers. This definition
allows likewise to extend the partial ordering on questions mentioned earlier to
a total ordering. Let B be the question (partition) an answer to which provides
total information about the world; B has a certain entropy. Van Rooij now de-
fines the informational value of an answer q to question B as the reduction of
entropy of B upon learning q, and the informational value of question Q w.r.t.
question B as the average reduction of entropy of B upon learning an answer to
Q. As soon as question B is replaced by a mutually exclusive and exhaustive set
of hypotheses H (a partition), the use of Shannon’s conditional entropy becomes
unavoidable. The informational value of question Q w.r.t. question H serves to
define the informational usefulness of Q w.r.t. H , which in turn is important
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when an agent is faced with the decision problem which of the hypotheses to
choose. Something analogous can be done for answers. But then van Rooij points
out the limitations of this approach: the measure of usefulness of questions and
answers w.r.t. a decision problem is reasonable only for those kinds of decision
problem where the decisions depend alone on the probabilities involved. As soon
as desirabilities or utilities influence the actions to be chosen, the approach fol-
lowed up to now is not appropriate any longer. To take into consideration not
only probabilities, but also desirabilities is the approach presented in the fifth
and last section. Suppose an agent has to deal with a decision problem. W.r.t.
assertions (answers), van Rooij distinguishes between the highest expected util-
ity according to the original decision problem and the utility value of making
an informed decision conditional on learning a certain assertion, and defines the
utility value of the assertion by the difference between these two values. The
expected utility value of a question can then be defined in terms of the utility
values of the possible answers. He carries on quoting a theorem according to
which measuring the expected utility value of a question w.r.t. a decision prob-
lem corresponds to the qualitative ‘measurement’ of the resp. question. It might
now be expected that something similar holds w.r.t. assertions. This, however,
is not the case: the utility value of an assertion or answer resp. does not only not
behave monotone increasing w.r.t. the entailment relation between propositions,
it also doesn’t behave monotone increasing w.r.t. the informational value of an
assertion w.r.t. a set of hypotheses. The last subsection’s starting point is the
observation that not only is there in general no connection between the utility
value of an assertion and the informational value of an assertion w.r.t. a set of
hypotheses, there is in general no connection between the expected utility value
of a question and the expected informational value of a question (w.r.t. the most
fine-grained partition) either.

J. Seligman starts in his article Channels: from Logic to Probability
from the assumption that information arises in conditions of uncertainty: uncer-
tainty is reduced by gaining information. Essential for any mathematical model
of information is the representation of a state of uncertainty and the change
of state induced by the acquisiton of a piece of information. Probability theory
provides one such model: Shannon showed how this theory can be used to give
a precise measure of uncertainty and to model the movement of information in
a system of communication channels. Dretske tried to extend Shannon’s model
to an information-based semantics and epistemology, which was developed by
Barwise, Perry and others as ‘situation semantics’ and ‘situation theory’. For-
mal logic provides another such model: Barwise and Seligman worked out an
account of information flow using a more abstract model of channels and based
on formal logic. This account is called the Barwise-Seligman theory. Seligmans
aim is to adapt the Barwise-Seligman theory in order to give a similarly abstract
account of Dretske’s conception of information. The Barwise-Seligman theory of
information and information flow makes use of various structures called ‘classi-
fications’, maps between classifications called ‘infomorphisms’ and combinations
of infomorphisms called ‘channels’. In sect. 1, Seligman presents all these basic
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structures as well as different types of channel related to different fields. If two
classifications combined by two infomorphisms satisfying certain conditions are
probability spaces, the resulting binary channel is called a ‘Shannon channel’;
if the two classifications similarly combined by two infomorphisms are formal
language classifications, the resulting channel is called a ‘Tarski channel’; and
if the tokens of classifications are actual concrete events rather than possible
configurations, the channel constructed from them is called a ‘concrete event
channel’. After a brief review in sect. 2 of Shannon’s definition of information
flow in Shannon channels and Dretske’s information-based account of knowledge
and belief, Seligman points out a structural similarity between information flow
in Shannon channels and information flow in Tarski channels, but he also demon-
strates i) that this similarity cannot be formulated within the Barwise-Seligman
theory in terms of strong information flow: the infinite Shannon channels elude
this attempt (the Strength Problem); and ii) that the model underlying this sim-
ilarity cannot simply be adapted to information flow in concrete event channels
(required for Dretske’s epistemological project)(the Modality and the Context
Problem). To solve the Modality and the Context Problem, Seligman needs on
the one hand a suitable ‘linking relation’ between sets of types in the core of
a concrete event channel to model the regularities on which information flow
depends, and on the other hand a suitable set of ‘normal tokens’ to characterise
the contextual connections between particular events: this linking relation and
this set of normal tokens are used to define the concept of link on that classifica-
tion, and ultimately to define information flow relative to a link. At the level of
types and tokens this means: There is information flow relative to a link if both
components are given: a receiver event type ‘indicates’ a source event type, and
a particular receiver event ‘signals’ a particular source event within a (core of a)
channel C. Sect. 3 serves to determine the value of the link, introduced in the
previous sect. The ultimate philosophical goal is to actually find a definition of
information flow relative to a link determined by any theory whatsoever, while
avoiding the 3 just mentioned problems. Now, a set of pairs of subsets of the
set of types of a formal language classification A satisfying certain conditions
is called a theory or Tarski theory of A. If the classification is of a probability
space P, the resp. theory is called a Dretske theory of P. Seligman then axiomat-
ically characterises the so-called ‘Gentzen theories’ and shows that all Tarski
and all Dretske theories are Gentzen theories, and he succeeds in characterising
the Tarski theories. He subsequently raises the question whether the relationship
between Gentzen, Tarski and Dretske theories is duplicated w.r.t. the links they
determine and he answers it in a negative way: the reason being that a link can
be determined by more than one theory. In sect.s 4 and 5, Seligman sets out to
find a characterisation of the Dretske theories, both axiomatically and situation
semantically. In sect. 4, he characterises the Dretske theories as the theories of
extensional Barwise structures satisfying the principle of No Countable Mystery.
In sect. 5, he discovers a few properties characterising the class of Dretske the-
ories of a probability space P. In the last sect. 6, Seligman calls his analysis of
information flow developed throughout the sections 2-5 the signalling/indicating
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model of information flow, and he compares it to a model presented in his joint
book with J. Barwise (1997), which he calls the logic-movement model of infor-
mation flow. He notes that in this book, information flow is not modelled as a
relation between individual types (or tokens) in the source and receiver, but as
a movement of local logics around a network of classifications, whereby a local
(Tarski) logic is roughly speaking a Tarski theory on a classification A restricted
to a subset (of normal tokens) of the set of tokens of A. Local logics on a classi-
fication represent information about the regularities within it. Seligman finally
observes that movement of local logics yields a more coherent model of informa-
tion flow in concrete event channels than the signalling/indicating model, which
can be seen as a special case.

In his contribution Modeling Real Reasoning K. Devlin sets out to de-
velop a mathematical model for real-life logical reasoning analogous to classical
formal logic as a mathematical model for formal reasoning in pure mathematics.
He starts off by presenting a couple of reasons why such a model cannot con-
sist of an application of classical formal logic or simple modifications thereof.
Next, Devlin treats the topic of information which is related to real-life logical
reasoning (and also to other forms of reasoning) in the following way: reasoning
is a specific and very important form of purposeful information gathering and
information processing. In virtue of the following general observations concern-
ing information, namely that information can arise by virtue of regularities in
the world, and that anything can be used to represent information, two tasks
have to be tackled with: first, provide a precise, representation-free definition
of information, and second, study the nature of the regularities whereby things
in the world represent information. These two tasks have been the main focus
of attention and the main subject of situation theory (or situation-theoretical
information theory). Next, Devlin provides a concise and elegant survey of parts
of situation-theory. In the following section, he uses situation theory to model
real-life logical reasoning. The basic evidential reasoning element in his model
is reminiscent of a proposition in the situation-theoretical sense, and the evi-
dential reasoning process of a proof in the formal logical sense. An evidential
reasoning process is constituted by a certain number of evidential reasoning el-
ements some of which are the result of basic reasoning steps. Devlin presents
and explains several of these basic reasoning steps. By making explicit in the
model the features of the context situation that provide direct support for the
items of information considered in the reasoning, and by accounting for various
aspects of the reasoning process, Devlin’s model clearly goes beyond situation
theory and makes it possible to obtain a finer-grained analysis of a specific rea-
soning process than could be obtained by situation theory. Next, Devlin applies
his situation-theoretic model of real-life logical reasoning to three special cases,
namely to mathematical reasoning, to reasoning from a common source, and to
Bayesian reasoning. In the last section, Devlin motivates on the one hand his
model against the background of situation theory, and on the other he briefly
discusses ways other than understanding and analysing real reasoning processes
that his model could be used for.
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In his article One or Many Concepts of Information? G. Sommaruga
carries on the conceptual work already carried out by L. Floridi, but at the same
time trying to take stock of the articles on the various formal theories of informa-
tion. In his first section, he introduces the distinction between ordinary language
concepts, informal theoretical concepts and formal theoretical concepts and he
applies this distinction to the concept of information and to the title question
in particular. The second section consists of applying the conceptual apparatus
developed in the first part to the formal theories of information. This application
leads up to an information-theoretical analogue (T) to Church’s Thesis (CT).
The remainder of section two is devoted to a philosophical reflection on (T) and
to an attempt to provide evidence for (T). The third and last section draws a
few conclusions from the previous conceptual analyses and considerations: The
most appropriate point of view w.r.t. the title question may very well be a cen-
tralized (but not a reductionist) one, and adopting such a point of view may
also provide some directions for future work on formal theories of information.
As I vaguely recall having read in one of Donald Davidson’s articles: It’s good
to know that we won’t run out of work.
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