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Abstract. The stability of periodic motions of a dual-disk rotor system, in which 
rub-impacts occur between a disk and a fixed limiter, is investigated. The dynami-
cal model of the system is proposed with ordinary differential equations with two 
dimensional freedoms of transverse vibrations of the two rigid disks along the 
shaft. With the first order approximation of the piece-wisely rub-impact force, the 
solutions of periodic motions are deduced with harmonic expansion technique. 
Then, the stability and bifurcations of the system are discussed via the Floquet 
theory analytically. In the same range of rotating frequency, the stability analysis 
of the analytical solution shows good agreement with the stability and bifurcation 
diagrams from direct numerical integration. 1 

Keywords: Dual-disk rotor system, rub-impact, periodic motion, stability.  

1   Introduction 

Unlike the traditional Jeffcott rotor model, a dual-disk rotor model is more suit-
able for multi-stage compressors and aero-engines when analyzing their transverse 
vibrations, especially when some faults exist along the shaft. Among well-known 
faults of a rotor system, the rub-impact between stator and rotor is a common and 
significant fault in many rotating machines.  

As a case of vibro-impact, a mechanical system with rub-impact will behave in 
strong nonlinearity, e.g. the responses of the system could jump at some frequen-
cies, and it often shows very complicated vibration phenomena, including periodic 
components, quasi-periodic and chaotic motions [1]. In recent decades, intensive 
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work has been conducted on rub-impacts related dynamical phenomena in the ro-
tor systems, partly as summarized in [2]. Based on the Jeffcott rotor system with 
rub-impact, Goldman and Muszynska found the supercritical subharmonic phe-
nomenon and chaotic behavior of rotor systems [3]. The complicated behaviors of 
periodic, quasi-periodic and chaotic motions of them are also discussed based on 
the chaos and bifurcation theories in [4].  

A rotor system with rub-impact can be regarded as a piecewise linear oscillator 
system in mathematics, where the trajectories are not smooth in its phase space 
due to the discontinuity of rub-impact. The typical mathematical model for rub-
impact forces was introduced in a form of piecewise-linear stiffness by Beatty [5]. 
Many important results focusing on the periodic motion and complex dynamical 
behaviors of the rotor systems with rub-impacts are also documented. For exam-
ple, Groll and Ewins used a numerical algorithm based on the harmonic balance 
method to calculate the periodic responses of a non-linear rotor/stator contact sys-
tem under periodic excitation [6]. Lu gave a criterion for periodicity condition in 
an eccentric rotor system with analytical and numerical techniques [7]. Chu com-
pleted some experiments of rotor-to-stator full rub with various forms of periodic 
and chaotic vibrations [8]. 

In the author’s previous research, periodic motions of a dual-disk rotor system 
with rub-impacts at fixed limiters are investigated using finite element simula-
tions. The obtained rotor transverse vibrations with different rotating speeds, rub-
impact clearances, rub-impact stiffness and rub frictions are compared with the 
experimental measurements [9]. It demonstrates that there are different motion 
patterns of the rotor system with rub-impacts, possessing periodic, dual-periodic 
and quasi-periodic characteristics.  

In the present work, the stability of periodic motions of a dual-disk rotor system 
with rub-impact at a fixed limiter is investigated both analytically and numeri-
cally. The paper consists of five sections. After introduction of the research back-
ground in Section 1, a dynamical model of the rotor system with rub-impact at a 
fixed limiter is established in Section 2. The periodic solutions of the system are 
deduced in this section. In Section 3, the stability analysis of periodic motions of 
the system is conducted via Floquet theory. In Section 4, an example is used to 
demonstrate the analytical results of the periodic motions of the system compared 
with results from numerical simulations. Finally, some conclusions are drawn in 
Section 5. 

2   Model Developments and Periodic Motions Analysis of the 
Rotor System with Rub-Impact at Fixed Limiter 

2.1   Dynamical Model of the Rotor System with Rub-Impact at a 
Fixed Limiter 

The schematic plot of the rotor system with rub-impacts is shown in Figure 1(a). 
The shaft rotates at an angular speed ω , and is supported by two journal bearings. 
There are two rigid disks mounted along the shaft. Two fixed elastic limiters are 
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(a) Schematic plot of the dual-disk rotor system with rub-impacts at fix limiters 

 

(b) Dynamical model of the rotor system 

  
(c) The section view at the rub-impact location 

Fig. 1 The dual-disk rotor system with rub-impacts at fixed limiters 
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mounted on the base of the test-rig. Rub-impacts can happen at one or two disks 
by setting the clearances between limiters and the disks. 

Only transverse vibrations of the rotor system are considered. The equivalent 
lumped masses of the two disks are 1 2,m m . The shaft is considered as massless 

elastic beam. There are two unbalances at the Disk 1 and Disk 2, 1 1m e  and 2 2m e , 

which have the same phase. Through Figure 1(b), the differential equations of mo-
tion are written into the two groups with the total degrees of freedom (DOF) of 
n=4 as follows, 
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where 1 2 1 2 1 2, , , , ,y y y y y y , 1 2 1 2 1 2, , , , ,x x x x x x  are displacements, velocities and 

accelerations of the transverse vibrations of the two disks in y and x directions, re-
spectively. 11k , 12k , 21k , 22k  are shaft segment stiffness, which can be obtained 

by flexible deformations at the two disks. 11 12 21 22, , ,c c c c  are effective damping 

coefficients calculated following the proportional damping assumption.  
The rub-impact forces at the two disks in y and x directions of 

1 2 1 2, , ,y y x xF F F F , as shown in Figure 1(c), are  

1 1 1 1 1( )x rF k x Hδ= − − , 2 2 2 2 2( )x rF k x Hδ= − −

1 1 1 1 1 1 1 1( )y x r r rF F f k x H fδ= = − − , 2 2 2 2 2 2 2 2( )y x r r rF F f k x H fδ= = − −       (2) 

where, 1 2,r rk k  are the axial stiffness coefficients of the two limiters; 1 2,r rf f  are 

the Coulomb friction coefficients at rub-impact points. 1 2,  δ δ  are the initial clear-

ances between the two limiters and disks. 1H  would be equal to 0 or 1 if 

1 1( )x δ−  is smaller or larger than 0, and 2H  would be equal to 0 or 1 if 

2 2( )x δ−  is smaller or larger than 0.  

2.2   Analytical Periodic Motion Solutions of the Rotor System 

Fourier expansion technique is used to derive the stable periodic solutions of the 
rotor system with rub-impacts. With the assumption tθ ω= , Eq (1) can be rewrit-
ten to the following differential equations as function ofθ , where the differentials 
with respect to θ  are denoted by “ '' ” and “ ' ”: 
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1 11 1 12 2 1 11 1 1 12 2 1 1 1sin yy y y k y k y e Fβ β α α θ α′′ ′ ′+ + + + = +

2 21 1 22 2 2 21 1 2 22 2 2 2 2sin yy y y k y k y e Fβ β α α θ α′′ ′ ′+ + + + = +                 

2
1 11 1 12 2 1 11 1 1 12 2 2 1 1cos xx x x k x k x e Fβ β α α ω θ α′′ ′ ′+ + + + = +                               

2
2 21 1 22 2 2 21 1 2 22 2 2 2 2cos xx x x k x k x e Fβ β α α ω θ α′′ ′ ′+ + + + = +                            (3)  

where, 2 2
1 1 2 2 11 11 11/( ), 1/( ), /( )m m c mα ω α ω β ω= = = , 21 21 2/( )c mβ ω= , 

22 22 2/( )c mβ ω= . 

Taking N  harmonics into account, the stable periodic solutions of Eq (3) are 
assumed to be 
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In order to solve the coefficients in Eq (4), i.e. 10 20,a a , 30 40,a a , 1 1,j ja b , 

2 2,j ja b , 3 3,j ja b , 4 4,j ja b , the following steps are important. Firstly, Eq (4) is sub-

stituted into Eq (3). And then all the coefficients of cos ,sinj jθ θ  should be 

checked separately in different j-th orders. The obtained coefficients of equations 
are derived as follows. For the 0-th order, they are 

2
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For the j-th order, they are 
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All these 4( 1)N +  equations are assembled into a nonlinear equation set. At 

last, the parameter vector of 10 20 30 40 11 4{ , , , , ,..., }T
Na a a a a b  can be solved by nu-

merical method such as the Inverse-Broyden Rank One Method. 

3   Stability Analyses of Periodic Solutions of the Rotor System 

3.1   Basic Theory of Floquet Stability 

The stability of the fixed points of solutions of the rotor system represents the sta-
bility of its periodic motions. The original differential equations of the system, as-
suming that it has n-DOF, can be transferred into the following boundary value 
problem with 2n-DOF for the periodical solution: 
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Assume the periodical solution of the above Eq (7) is *( )ty . With a perturba-

tion of ( ) ( ) *( )x t t t= −y y  and considering the Taylor's theorem, the lowest-
order term of the system retains 
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Equation (8) can be written as the following form with periodic coefficient  
matrix A(t) 
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The stability of periodical solution of * ( )ty  is determined by the stability of 

the zero solution of Eq (9). Let ( )0x  be equal to I , where I is the unit matrix 

with 2 2n n×  dimensions, the same as ( )tA . From Eq (9), the monodromy matrix 

of  ( )TxS =  can be obtained with numerical integration from 0 to T. The ei-

genvalues of S are the Floquet multipliers, i.e. iλ , which are solved from 

( ) 0=− ii αIS λ . Therefore, it is possible to use the Floquet theory to discuss 

the stability of the periodic solutions of the rotor system.  
The typical modes of Floquet multipliers leaving unit circle is plotted in Figure 

2. They can be described as follows. (1) When the dominating Floquet multiplier 
(the eigenvalue with the largest module) lies inside the unit circle, the stable peri-
odic solutions are asymptotically stable. (2) When the dominating Floquet multi-
plier lies outside of unit circle passing through (+1, 0) while the other multipliers 
are still inside unit circle, the stable periodic solution will lose its periodic stability 
and have the saddle-node bifurcation. (3) When the dominating Floquet multiplier 
lies outside of unit circle passing through (-1, 0) while the other multipliers are 
still inside unit circle, the stable periodic solution will have the period-doubling 
bifurcation. (4) When a pair of conjugate Floquet multipliers lies out of unit circle 
while other multipliers are still inside unit circle, the stable periodic solution will 
have the Hopf bifurcation or second Hopf bifurcation and the bifurcation will lead 
to an invariant torus. 

 

Fig. 2 Three modes of Floquet multipliers leaving unit circle 

3.2   The Analytical Floquet Stability Analysis for Periodic 
Solutions of the Rotor System with Rub-Impact  

The Floquet theory is used to discuss the stability of the obtained analytical peri-
odic motions of the above rotor system. The dynamical equations of Eq (3) are 
perturbed firstly. That is, let 1 10 1( ) ( ) ( )y t y t y t= + Δ , 2 20 2( ) ( ) ( )y t y t y t= + Δ ,  
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1 10 1( ) ( ) ( )x t x t x t= + Δ , 2 20 2( ) ( ) ( )x t x t x t= + Δ , where 10 ( )y t , 20 ( )y t , 10 ( )x t , 

20 ( )x t  are the periodic solutions obtained above. The non-linear terms of the sys-

tem are also expanded into the Taylor series at the neighborhoods of stable solu-
tions 10 20 10 20( ), ( ), ( ), ( )y t y t x t x t  and only remaining their first order terms. For 

Eq. (1), the obtained analytical matrix A(t) with periodic coefficients, as stated in 
Eq (9), is 
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      (10) 

3.3   Numerical Method for Floquet Stability Analysis for the 
Rotor System 

The traditional strategy of analyzing Floquet stability of a rotor system is to con-
duct numerical integrations based on the governing equations of the system. The 
commonly used method is the Runge-Kutta integration method. After the periodi-
cal responses of the rotor system are obtained with numerical integrations, i.e. the 
general displacement vector *y  at time T, the perturbed value of it can be ap-

proximately written as * ' (1 ) *= + Δy y , where Δ  is a small value. According to 

Eq. (7), the matrix of A(t) in Eq. (9) is then approximated to be 

( ) ( ), * , * '
( ) ( )

* * '

t T t T
t t T

+ − +
= + =

−
f y f y

A A
y y

                         (11) 

With A(t) of Eq (11) and the initial value of ( )0 =x I , Eq (9) can be solved eas-

ily with Runge-Kutta method. Then the Floquet multipliers of the rotor system of 
Eq (1) are calculated as stated in Section 3.1. 
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4   Examples 

4.1   The Model Parameters of the Rotor System 

The dual-disk rotor system, as shown in Figure 1, is used to illustrate the discus-
sions above on the stability of periodic motions. There is an unbalance on the out 
edge of Disk2. The rub-impact only happens at Disk 2 too. The fixed limiter is an 
elastic rod made of copper. The operating speeds of the shaft are between the first 
and the second critical speeds of the system. The parameters of the rotor system 
are listed in Table 1. 

Table 1 Parameters of the rotor system 

Parameters Values 
Shaft diameter 10mm 
Shaft length 480mm 
Disks’ diameter 80mm 
Disks’ width 20mm 
Density of shaft and disks 7860kg/m^3 
Youg’s modulus of shaft and disks 2.06e11Pa 
Disks’ mass 0.7902kg 
Rub-impact stiffness k_rub 1e5 N/m 
Rub-impact friction coefficient 0.1 

Initial clearance of rub-impact 0 2e-5δ = m 

First critical rotor speed 30.82Hz 
Second critical rotor speed 119.36Hz 

Shaft segement stiffness 11k =2.3704e5N/m 

 12 21k k= =-2.0741e5N/m 

 22k =2.3704e5 N/m 

Damping coefficients 11c =53.12N/(m/s) 

 12 21c c= =-37.33 N/(m/s) 

 22c =53.12 N/(m/s) 

Unbalance mass 1.5g  at Disk 2 
Unbalance radius 30mm at Disk 2 
Effective unbalance distance of e2 5.695e-2mm 

1 2,α α  1.2655 

11 22,β β  67.2235 

12 21,β β  -47.2412 

4.2   Analytical Solutions of the Rotor System 

For the periodical motions of the rotor system with rub-impact at a fixed limiter, 
their first order solutions in x directions are 

1 30 31 31cos sinx a a bθ θ= + + , 2 40 41 41cos sinx a a bθ θ= + +           (12) 

In order to make the integrations of Eq. (5) and (6) easier, the cubic polynomials 
are used to approximate the rub-impact forces at Disk 2 of 2yF  and 2xF . For 2xF , it 

becomes 
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3 2
2 1 2 2 2 3 2 4xF p x p x p x p= + + +                                  (13) 

For 2yF , it is easy to be obtained as 2 2 2y r xF f F= .  

After substituting the rub-impact parameter values in Table 1, the four coeffi-
cients of Eq (13) are: 1p  = -8.026e+012, 2p = -6.183e+008, 3p = -8605, 4p  = 

0.07482 with 95% confidence bounds.  
For the system of Eq (3), with the 1st harmonic approximation of stable periodic 

solutions, the Equations (5) and (6) give the explicit expressions of 

0,1 ,4,......, sNP P . Nonlinear components of rub-impact forces are integrated in the 

interval of [0, 2π ] with respect toθ , and the coefficient equations can be written 
as follows,  
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4 4
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sP b p b a p a b p a b p b p b
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α
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= − +

+ + + + =
               (14) 

Table 2 Coefficients and amplitudes of first order periodic solutions of x1 and x2 

Rotating frequency 57.5 Hz 69 Hz 82 Hz 

30a  -3.0451e-6 -9.6994e-7 1.4114e-6 

31a  -5.1258e-5 -5.0808e-5 -5.7900e-5 

31b  -2.0418e-6 4.8913e-8 3.6793e-6 

40a  -3.4801e-6 -1.1085e-6 1.6130e-6 

41a  -3.3155e-5 -2.1993e-5 -8.6888e-6 

41b  -3.9047e-6 -3.9041e-6 -6.3502e-6 

Amplitude of 1x  (m) 4.8239e-5 4.9838e-5 5.9428e-5 

Amplitude of 2x  (m) 2.9903e-5 2.1226e-5 1.2375e-5 
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With Eq (14) and the parameters in Table 1, the coefficients of 

30 31 31 40 41 41, , , , ,a a b a a b  can be solved. Then the harmonic solutions of Eq (12), 

i.e. the periodic motions of the rotor system are obtained. The coefficients and vi-
bration amplitudes of periodic motions under three different rotating frequencies 
are listed in Table 2.  

4.3   Stability Analysis of the Analytical Solutions with Floquet 
Theory 

Assuming that rub-impacts only occur at Disk 2, the partial differentials of rub-

impact forces
2 2

2 2

,y x
F F

x x

∂ ∂
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, can be calculated based on Eq (12) and Eq (13). With 

the parameters in Table 1 and Table 2, Eq (9) gives 
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3 2xF
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∂
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2 2
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2

(3 2 )y
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F
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x

∂
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∂
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The Floquet multipliers with analytical method are calculated based on Section 
3.1. On the other hand, the Floquet multipliers of the same rotor system based on 
the numerical integration method in Section 3.3 are also calculated. The two sets 
of Floquet multipliers are plotted against rotating frequency for comparison in 
Figure 3. It is obvious that periodic motion of the rotor system is unstable around 
64Hz and 70Hz.  

In addition, as shown in Figure 3, the analytical results of Floquet multipliers 
can not be achieved when the rotating frequency is over 72Hz. But the results with 
numerical integration method of A(t) can be carried on for the higher speeds. It is 
mainly due to the assumptions of the first order periodic solution in deducing A(t) 
of Eq (15). 
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Fig. 3 Floquet multipliers vs rotating frequencies 

The bifurcation charts are directly obtained with Runge-Kutta method for the 
rotor system of Eq (1) with parameters in Table 1. The bifurcation control parame-
ter is the rotating speed with a range of (50, 90) Hz. As shown in Figure 4(a) and 
(b), when the rotating speed is less than 63Hz, the motions of the rotor system 
with rub-impact are stable with period 1. When rotating speed is greater than 
63Hz, the system shows double periodic bifurcation. In the range from 63Hz to 
70Hz of rotating speeds, the motions are in period 2 and multi-periodic. When the 
rotating frequency is over 70Hz, the multi-periodic motions lose their stability and 
the period-1 motions appear again.  
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(a) Bifurcation of 1x  vs rotating frequency 
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(b) Bifurcation of 2x  vs rotating frequency 

Fig. 4 Bifurcations of the rotor system with rub-impact at fixed limiter 
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Compared with the curves in Figure 3 and 4, it can be seen that, there are many 
Floquet multipliers greater than 1 in the rotating frequency range of (63, 70) Hz. It 
means that the periodic motions tend to lose their stability in the frequency range, 
and meanwhile the rotor vibrations will bifurcate into double periodic motions at 
63Hz. The system returns to periodic 1 after 70 Hz. 

4.4   Comparisons with Numerical Integrations for Periodic 
  Responses 

The direct numerical simulations based on Runge-Kutta method are used to vali-
date the analytical results. The numerical integrated responses of the two disks are 
described with transverse vibration responses and the rotor center trajectory orbits. 
The numerical integrated responses of the two disks with three different rotating 
frequencies are shown in Figure 5~7.  

Figure 5 shows that rotor vibrations are periodic when rotating frequency is at 
57.5Hz. The rotating frequency locates in the left region in Figure 3 and corre-
sponds to period-1 motion. 
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 (a) The shaft center trajectory of Disk 1   (b) The shaft center trajectory of Disk 2 

Fig. 5 The simulated responses of rotor system at 57.5Hz 
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Fig. 6 The simulated responses of the rotor system at 69Hz 
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(a) The shaft center trajectory of Disk 1   (b) The shaft center trajectory of Disk 2 

Fig. 7 The simulated responses of the rotor system at 82Hz 

When the rotor frequency is at 69Hz, fundamental rotating frequency is dis-
turbed by some other frequency components, as shown in Figure 6. The behavior 
of the shaft at 69Hz may be due to double-periodic bifurcation. This case corre-
sponds to the middle region in Figure 3. 

In Figure 7 the period-1 motion is seen again when the rotating speed is 82Hz. 
This case locates at the right region in Figure 3. 

The simulated vibration amplitudes of the system in the above three typical 
cases of different rotating frequencies are listed in Table 3. 

Table 3 Vibration peak-to-peak amplitudes of two disks with numerical integrations of the 
rotor system 

Rotating 
freq.(Hz) 1y  (m) 2y  (m) 1x  (m) 2x  (m) 

57.5 
4.3929e-005  
-5.1920e-005 

2.9221e-005  
   -3.3639e-005 

4.9751e-005     
-5.1944e-005 

2.9959e-005 
 -3.7157e-05 

69 
7.9006e-005    
-1.1836e-004 

5.6342e-005      
-9.3414e-005 

6.8806e-005     
 -1.2397e-004 

5.0170e-005    
-9.9102e-005 

82 
5.7957e-005     
-5.7941e-005 

1.1036e-005   
-1.1037e-005 

5.7840e-005    
-5.7874e-005 

1.0883e-005   
-1.0912e-005 

5   Conclusions 

The dynamical responses and their periodic motion stability analysis are carried 
out for a dual-disk rotor system with rub-impacts at fixed limiters.  

The analytical periodic motion solutions of transverse vibrations of the rotor 
system due to rub-impacts at fixed limiters are deduced firstly. The motion stabil-
ity is then discussed by both analytical and numerical methods based on Floquet 
theory. Numerical integration simulations of the rotor system are also conducted 
under different rotating frequencies to validate the periodical stability results.  
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For the presented rotor system, the stability analysis for the dual-disk rotor with 
rub-impact at fixed limiter indicates that there exist stable periodic motions in a 
large range of rotating frequency; however, in a small range of rotating frequency 
from 63Hz to 70Hz, the rotor system shows period-doubling bifurcations. 

The analytical stability discussions for periodic motions are interesting and of 
great importance for understanding dual-disk rotor system with rub-impacts. 
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