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Abstract. Constraint-handling techniques for evolutionary multiobjective aerody-
namic and multidisciplinary designs are focused. Because number of evaluations
is strictly limited in aerodynamic or multidisciplinary design optimization due to
expensive computational fluid dynamics (CFD) simulations for aerodynamic evalu-
ations, very efficient and robust constraint-handling technique is required for aero-
dynamic and multidisciplinary design optimizations. First, in Section 2, features
of aerodynamic design optimization problems are discussed. Then, in Section 3
constraint-handling techniques used for aerodynamic and multidisciplinary designs
are overviewed. Then, an efficient constraint-handling technique suitable to aerody-
namic and multidisciplinary designs is introduced with real-world aerodynamic and
multidisciplinary applications. Finally, an efficient geometry-constraint-handling
technique commonly used for aerodynamic design optimizations is presented.

Keywords: real-world design optimization, aerodynamic design optimization,
Pareto-based constraint handling.

1 Problem Statement

Without losing generality, constrained real-number optimization problems are writ-
ten as:

Find x that minimizes

f(x) = ( f1(x), . . . , fm(x), . . . , fmmax(x)) (1)

subject to

Akira Oyama
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1
Yoshinodai, Sagamihara, Kanagawa, 229-8510, Japan
e-mail: oyama2@flab.isas.jaxa.jp

E. Mezura-Montes (Ed.): Constraint-Handling in Evolution. Optimi., SCI 198, pp. 219–236.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



220 A. Oyama

g1(x)≤ 0, . . . ,gn(x)≤ 0, . . . ,gnmax(x)≤ 0 (2)

where x = (x1, . . . ,xl, . . . ,xlmax) is a vector of design parameters of the solution that
minimizes the objective function(s) while satisfying the inequalities (2). lmax , mmax

and nmax are numbers of design parameter(s), objective function(s) and constraint(s),
respectively.

2 Features of Aerodynamic Design Optimization Problems

Most of real world aerodynamic or multidisciplinary design optimization problems
are multiobjective and multi-constraint design optimization problems. For example,
a typical transonic aircraft wing design involves maximization of drag divergence
Mach number, minimization of mission block fuel, maximum take-off weight, and
wing box weight while constraints on flutter speed, structural strength, manufacturing
capability, fuel tank volume, etc. must be met. Another example is the supersonic
transportation design presented in [33], which has four objectives (drag coefficients
at transonic and supersonic cruise speeds, wing root bending moment and pitching
moment) and constraints on lift coefficients at transonic and supersonic cruise speeds
as well as wing thickness. Many other multiobjective and multi-constraint design
optimization problems can be easily found, such as low-boom supersonic business jet
design [5], expendable launcher design [10], and multistage compressor design [26].

A multiobjective optimization problem (MOP) simultaneously involves several
competing objectives. While a single objective optimization problem may have a
unique optimal solution, MOPs present a set of compromised solutions, largely
known as the tradeoff surface, Pareto-optimal solutions or non-dominated solutions.
The goal of MOPs is to find as many Pareto-optimal solutions as possible to provide
useful information of the problem to the designers.

Other features of real-world aerodynamic or multidisciplinary design optimiza-
tion problems are;

• Number of evaluations is severely limited because aerodynamic function eval-
uation using computational fluid dynamics (CFD) simulations are very expen-
sive.

• Objective and constraint functions are highly multimodal due to nonlinearity of
the flow governing equations.

• Design variables, objectives and constraints are typically real numbers.

For example, in the multidisciplinary design optimization of main wing of the re-
gional jet that is under development in Japan (aimed entry to service is in 2013) [4],
the objective and constraint function evaluations include; 1) aerodynamic evalua-
tions, 2) aeroelasticity evaluation, 3) wing weight evaluation, and 4) flight envelope
analysis (Fig.1), which required more than 100 hours of computational time for each
design candidate evaluation even on a vector supercomputer (when one processing
element is used). Therefore, in the example in [4], population size and number of
generations are limited to 8 and 19, respectively. It should be noted that, in real
world, evolutionary optimization with such small population size and number of
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Fig. 1 Flowchart in the objective/constraint function evaluation module for the regional jet
design [4]

Fig. 2 Comparison of shock wave visualizations colored by entropy under the transonic
cruising flight condition between the base design (left) and an optimized design (right) [4].
Weaker shock wave is observed for the optimized design

generations can give useful information to the designers. In fact, authors of [4] sig-
nificantly improved block fuel (3.6% improvement) from the base design which was
designed in conventional design manner (Fig.2).

3 Constraint-Handling Techniques Used for Aerodynamic
Design Optimization

Real-world aerodynamic or multidisciplinary design optimization problems involve
multiple objectives and multiple constraints. Among many design optimization
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approaches, therefore, evolutionary algorithms (EAs) are getting popular in aerody-
namic and multidisciplinary design optimizations [3, 4, 10, 14–16, 18, 22, 24, 26–28,
31,33,35]. EAs are particularly suited for MOPs because they can uniformly sample
various Pareto-optimal solutions in one optimization by maintaining a population of
design candidates and using a fitness assignment based on the Pareto-optimality
concept. In addition, EAs have other advantages such as robustness, efficiency, as
well as suitability for parallel computing.

EAs, however, do not have any explicit mechanism to handle design constraints.
A considerable amount of research on constraint handing techniques that incor-
porate objective function(s) and constraint(s) into the fitness function of design
candidates has been carried out (good summaries are given in Coello [7] and
Mezura-Montes [20]).

The simplest way to handle constraints is to remove infeasible design candidates
out of optimization by applying fitness function of zero (for maximization prob-
lem) [15, 26]. However, this approach is not efficient because it wastes information
that infeasible design candidates have, i.e., direction from infeasible region to the
feasible region. As described in the previous section, number of design candidate
evaluations is strictly limited in real-world aerodynamic or multidisciplinary design
optimizations. Therefore this approach is not suitable to such design optimization
problems.

Three constraint-handling approaches making use of information infeasible de-
signs have been used for aerodynamic and multidisciplinary design optimizations
as far as the author knows; penalty function approach (for example, see [9]), Deb’s
constraint-handling approach [8], and Oyama’s constraint-handling approach [30].

Traditional and the most popular approach for handling design constraints in
aerodynamic and multidisciplinary design optimizations is the penalty function
method [9], where the fitness of a design candidate is determined based on scale
function vector F(x) = (F1(x), . . . ,Fm(x), . . . ,Fmmax(x)) , which is a weighted sum
of the objective function value and the amount of design constraint violations. A
typical scale function for minimization problem is given by

Fm(x) = fm(x)+
nm2

∑
n=nm1

αn ·max(gn(x),0) (3)

where αn are the positive penalty function coefficients and constraints related to the
objective function fm is (gnm1, . . . ,gnm2). Though this approach is widely used in
aerodynamic and multidisciplinary designs [14, 16, 18, 22, 31], this method requires
careful tuning of the penalty function coefficients to obtain satisfactory designs. For
example, if the penalty function coefficients are too small, the optimized designs
would not satisfy the constraints. On the other hand, if the penalty function coef-
ficients are too large, the optimized designs would not have satisfactory objective
function values. In addition to the balance between the objective functions and the
constraints, the balance among the constraints must also be carefully tuned so that
the optimized designs satisfy all of the constraints.
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Another constraint-handling approach used for aerodynamic evolutionary opti-
mizations is Deb’s constraint handling method [8]. This approach ranks design
candidates using the following definition of domination between two design candi-
dates,

Definition 1. a solution i is said to constrained-dominate a solution j if any of the
following conditions is true,

1. Solutions i and j are feasible and solution i dominates solution j.
2. Solution i is feasible and solution j is not.
3. Solutions i and j are both infeasible, but solution i has a smaller constraint

violation.

where

Definition 2. a solution i is said to dominate a solution j if both of the following
conditions are true,

1. Solution i is no worse than solution j in all objectives, i.e.,

∀ fm(xi)≤ fm(x j) (4)

2. Solution i is strictly better than solution j in at least one objective, i.e.,

∃ fm(xi) < fm(x j) (5)

Flow chart of a procedure using this technique is presented in Fig.3. This approach
does not require any penalty function coefficients to be tuned as long as the number
of constraint is one. In this sense, this approach is very useful for EA-based design
optimizations. In fact, Oyama et al obtained rotor blade designs that significantly
outperform the baseline design using an EA coupled with Deb’s constraint-handling
technique [27, 28]. However, in [8], no approach for a problem with multiple con-
straints is not presented. Thus, this approach requires careful tuning of the weight

Sharing among feasible solutions 
based on their objective function

values

Rank of feasible solutions 

solutions based on total 
constraint violation

Separate current population to feasible and infeasible 
sub−populations according to their constraint function values

Feasible sub−population Infeasible sub−population

Ranking among infeasible 

solutions to the rank of infeasible
Addition of number of feasible 

solutions

Rank of infeasible solutions 

solutions based on their objective 
Pareto−ranking among feasible 

function values

Fig. 3 Flow chart of a ranking procedure using Deb’s constraint-handling technique
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coefficients if weighted sum of the constraints is used to determine the constraint
violation.

The last constraint-handling approach used in aerodynamic and multidisciplinary
design optimization problems is Oyama’s constraint handling method [30]. This
approach is superior to the previous two approaches in the sense that no parameter
tuning is required. This approach has been successfully applied to spaceplane con-
ceptual design [30], aerodynamic compressor blade design [29], and aerodynamic
airfoil shape optimization [35]. In the next section, this approach is described in
detail and then two real-world applications are presented.

4 Oyama’s Constraint-Handling Approach

4.1 Approach

Oyama’s constraint-handling approach simply apply the idea of non-dominance and
niching concepts in the objective function space to the constraint function space.
This method bases on the following non-dominance concept.

Definition 3. Solution i is said to constrained-dominate solution j if any of the
following conditions is true,

1. Solutions i and j are both feasible and solution i dominates solution j in the
objective function space.

2. Solution i is feasible and solution j is not.
3. Solutions i and j are both infeasible, but solution i dominates solution j in the

constraint space.

where dominance in the objective function space is defined as Definition 2 while
dominance in the constraint space is defined as follows.

Definition 4. Solution i is said to dominate solution j in the constraint space if both
of the following conditions are true,

1. Solutions i is no worse than solution j in all constraints, i.e.,

∀Gn(xi)≤ Gn(x j) (6)

2. Solution i is strictly better than solution j in at least one constraint, i.e.,

∃Gn(xi) < Gn(x j) (7)

where
Gn(x) = max(0,gn(x)) (8)

Oyama’s constraint-handling approach applies niching based on the amount of cons-
traint violations to infeasible solutions. Here, a standard fitness sharing [13] is ap-
plied to the infeasible designs based on their constraint violations as
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rank′(xi) = rank(xi)∗ penalty(xi) (9)

penalty(xi) = 1 +
npop

∑
j=1, j �=i

shi j (10)

shi j =
{

1− (di j/σshare)α di j < σshare

0 di j ≥ σshare
(11)

σshare =
nmax

∑
n=1

(gmaxn−gminn)/npop (12)

di j =

√
nmax

∑
n=1

(gn(xi)−gn(x j))2 (13)

gmaxn = max(gn(x1), . . . ,gn(xi), . . . ,gn(xnpop)) (14)

gminn = min(gn(x1), . . . ,gn(xi), . . . ,gn(xnpop)) (15)

where npop is population size and α is set to 0.3. If the present approach is applied
to a multiobjective optimization problem, a fitness sharing is used to the feasible
designs based on their objective function values. Flow chart of a ranking procedure
using this technique is presented in Fig. 4. Because this method simply uses the
idea of non-dominance and niching concepts in the constraint function space, this
idea can be coupled with most multiobjective EAs. For example, any ranking pro-
cedure can be used for ranking among feasible designs as well as infeasible designs.
In addition, the use of stochastic ranking [32] may further improve efficiency and
robustness.

The proposed method has a number of advantages.

• It does not require any coefficients to be tuned if a parameterless sharing method
such as [12] is used. Even if a sharing method that has coefficients to be tuned is
used, according to the author’s experience, the parameter values used for sharing
in the objective space can be used for sharing in the constraint function space.

• The number of objectives is not increased since non-dominance ranking is ap-
plied to feasible designs and infeasible designs separately. If the number of ob-
jectives is increased, it will be more difficult to obtain non-dominated solutions
due to lower selection pressure.

• It is efficient and robust even when all individuals in the initial population are
infeasible due to severe constraints because niching strategy is used in the cons-
traint space. When all individuals are infeasible, the population could lose di-
versity in the next generation, if diversity in constraint space is not considered.

• It is efficient and robust even when the degree of violation of each constraint is
very different because the total amount of constraint violation is not used. If total
amount of constraint violation is considered and the degree of violation of each
constraint is different, it is very difficult to obtain feasible solutions satisfying
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Feasible sub−population Infeasible sub−population
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Rank of feasible solutions 

Fig. 4 Flow chart of ranking procedure using Oyama’s constraint-handling technique

constraints that has smaller violation in average. There are some approaches
that use total amount of constraint violation with dynamically tuned weights of
constraints. However, such methods may lose diversity in the population when
most of the population are infeasible because niching in the constraint space is
not applicable.

• Implementation is easy because Pareto-ranking and sharing method based on
the objective functions can be usually applicable to Pareto-ranking and sharing
based on the constraint function.

Though this method may increase the computational time required for an EA, the
increase is usually negligible in real-world aerodynamic design optimization pro-
blems where the computational time required for objective and constraint function
evaluations is very large. In the next two subsections, real-world design optimiza-
tions using an EA coupled with this constraint-handling approach are presented.

4.2 Conceptual Design Optimization of a Two-Stage-To-Orbit
Spaceplane

In this subsection, conceptual design optimization of a two-stage-to-orbit (TSTO)
spaceplane is presented. The TSTO spaceplane consists of a booster with air-
breathing engines and an orbiter with rocket engines. The orbiter is separated from
the booster at a certain altitude to reach low-earth-orbit (LEO) for delivering the
payload (Fig. 5).

4.2.1 Formulation of the Design Optimization Problem

The present TSTO mission is to put a payload of 10t into an equatorial orbit at the
altitude of 400km. For simplicity, the take-off and landing sites are assumed to be on
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the equator. The engine of the booster is an air-turbo-ramjet engine with expander
cycle (ATREX) [36], which is under development in Japan. The objective is to mini-
mize the gross take-off weight of the spaceplane. The separation time is constrained
to be smaller than 550 seconds. The maximum thrust of the booster is also cons-
trained to be smaller than 2.5 MN. The gross take-off weight, separation time and
maximum thrust of the booster are iteratively computed from the propulsion, aero-
dynamics, trajectory and structure modules [19, 34] as shown in Fig. 6. Propulsion,
trajectory and airframe configuration parameters (ten parameters in total) are con-
sidered as design variables.

4.2.2 Optimization Approach

The present EA uses floating-point representation [21] to represent design param-
eters of design candidates where an individual is characterized by a vector of real
numbers. Random parental selection and the best-N selection [37], where the best
N individuals are selected for the next generation among N parents and N children
based on Pareto-optimality, are used. The blended crossover (BLX-0.5) [11] is used
with crossover rate of 1 for reproduction. Since strong elitism is used, a high mu-
tation rate of 0.2 is applied and a random disturbance is added to the parameter in
the amount up to ±20% of the design space. The initial population is generated
randomly over the entire design space. The capability of the present EA to find
quasi-optimal solutions has been well validated [23, 25].

The rank of each design candidate is defined according to Definition 3. Fonseca
and Fleming’s Pareto-based ranking [12] is used to rank feasible designs as well as
infeasible designs. The population size and number of generations are set to 50.

Fig. 5 Image of the TSTO spaceplane (left) and its mission (right)
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4.2.3 Results

Optimization is repeated one hundred times with different initial populations. The
present EA coupled with Oyama’s constraint-handling approach found feasible de-
signs in each run. Average weight of the optimized designs, weight of the best opti-
mum and standard deviation of the optimum weight were 371.19 kt, 369.00 kt, and
1.5787 kt, respectively.

For comparison of constraint-handling techniques, the result is compared with
that obtained with the same EA with different constraint-handling techniques; Deb’s
approach [8], Coello’s approach [6], and dynamic penalty approach [17]. To handle
multiple constraints with the Deb’s approach, the constraints are combined into one
constraint violation function where all weights are 1. For the dynamic penalty ap-
proach, all weights in equation (3) are 1. The parameter values used in the dynamic
penalty approach are C=0.2, α=2, and β =2. The result is summarized in Table 1.
The dynamic penalty approach and Deb’s approach failed to find feasible designs in
100 optimizations for this design problem. The reason is probably that both meth-
ods adopt simple sum of the amounts of constraint violation of different order of
magnitude. On the other hand, Oyama’s approach and Coello’s approach got good

Fig. 6 Multidisciplinary TSTO evaluation
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Table 1 Comparison between the constraint-handling methods

Approach Number of suc-
cesses

Average weight
[kt]

Weight of the
best design [kt]

Standard Devi-
ation [kt]

Oyama’s approach 100 371.19 369.00 1.5787
Coello’s approach 99 371.29 369.04 1.6239
Deb’s approach No feasible design is found
Dynamic penalty No feasible design is found

scores, while the proposed method was slightly better than Coello’s approach in
every measure.

4.3 High-Fidelity Aerodynamic Design Optimization of an Axial
Compressor Blade

4.3.1 Formulation of the Design Optimization Problem

The next optimization problem is to seek a redesign of NASA rotor67 [38], which
is a low-aspect-ratio transonic axial-flow fan rotor and is the first-stage rotor of
a two-stage fan. The fan was designed and tested to help provide the technology
to develop efficient, lightweight engines for short-haul aircraft in 1970s. The rotor
67 was designed by using a streamline-analysis computational procedure, which
provides an axisymmetric, compressible-flow solution to the continuity, energy, and
radial equilibrium equations.

The rotor design pressure ratio is 1.63 at a mass flow of 33.25 kg/sec. The de-
sign rotational speed is 16043 rpm, which yields a tip speed of 429 m/sec and an
inlet tip relative Mach number of 1.38. The rotor has 22 blades and aspect ratio of
1.56 (based on average span/root axial chord). The rotor solidity varies from 3.11
at the hub to 1.29 at the tip. The inlet and exit hub/tip radius ratios are 0.375 and
0.478, respectively. Reynolds number is 1,797,000 based on the blade axial chord at
the hub.

The objective of the aerodynamic rotor shape design optimization problem is to
minimize the flow loss manifested via entropy generation. Here, mass-averaged en-
tropy production from inlet to exit at the design point of rotor67 is considered as the
objective function to be minimized. Because an optimized rotor design should meet
the required mass flow rate and pressure ratio, they are maintained by specifying
constraints on them:

|mass f lowratedesign−mass f lowraterotor67

mass f lowraterotor67
| ≤ 0.005 (16)

| pressureratiodesign− pressureratiorotor67

pressureratiorotor67
| ≤ 0.010 (17)
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In addition, thickness of the optimized design is constrained to be equal to or
larger than that of the rotor 67;

∑max(0,thicknessrotor67− thicknessdesign)≤ 0 (18)

where thickness of the designs and rotor 67 is measured at 10%, 20%, . . . , 90%
chord positions on 57 blade profiles from root to tip.

4.3.2 Blade Shape Parameterization

Here a rotor blade shape is represented by four blade profiles, respectively at 0%,
31%, 62%, and 100% spanwise stations (all spanwise locations discussed here are
measured from the hub), the spanwise twist angle distribution, and the stacking line.
Each of these sectional profiles can be uniquely defined by using a mean camber
line and a thickness distribution. Here, they are parameterized by the third-order B-
Spline curves and positions of control points of the B-Spline curves are considered
as the design parameters. As illustrated in Fig. 7, five control points are used for
the mean camber line. For the thickness distribution, two control points are added
at the leading edge and the trailing edge so that these points represent leading edge
and trailing edge radii, respectively. Chordwise locations of the control points at
leading edge and trailing edge are frozen to zero and one, respectively. The thickness
control points at the leading and trailing edges are defined so that the leading and
trailing radii of the designs are identical to those of the rotor 67. These profiles
are linearly interpolated from hub to tip. Stagger angles are defined at 0%, 33%,
67%, and 100% spanwise stations and linearly interpolated. Spanwise chord length
distribution remains identical to that of the rotor 67. Final blade shape is defined
by stacking the blade profiles around the center of gravity of each profile. Here,
streamwise and circumferential the stacking lines are defined by B-Spline curves as
shown in Fig. 7, respectively. As a result, each blade shape is represented with 49
design parameters.

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Control points
B-spline curves

L
on

gi
tu

di
na

l d
is

ta
nc

e-
to

-c
ho

rd
 r

at
io

Axial distance-to-chord ratio

0.00

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0

Control points
B-spline curves

T
hi

ck
ne

ss
-t

o-
ch

or
d 

ra
ti

o

Axial distance-to-chord ratio

TIP

0

r1

r4

1

α2

HUB

α1

α3

r3

r2

Fig. 7 B-Spline curves for mean camber line (left) and thickness (middle) distributions and
stacking line definition (right)



Constraint-Handling in Evolutionary Aerodynamic Design 231

4.3.3 Optimization Approach

The same EA described in 4.2.2 is used. The parameter values used in the EA are
also same except for the population size. The population size is increased from 50
to 64 because number of the design parameters is increased. To handle constraints
on mass flow rate and pressure ratio, Oyama’s constraint-handling approach is used.
For blade thickness constraints, an approach for geometry constraints described in
section 5 is used.

4.3.4 Aerodynamic Evaluation

The three-dimensional Navier-Stokes (N-S) code used in the present research is
TRAF3D [1,2]. Capability of the present code has been validated by comparing the
computed results to some experiments such as the Goldman annular vane with and
without end wall contouring, the low speed Langston linear cascade [1] as well as
the NASA rotor67 [2]. Detail of this code is described in [27].

The three-dimensional grids are obtained by stacking two-dimensional grids gen-
erated on the blade-to-blade surface. These two-dimensional grids are of C-type and
are elliptically generated, with controlled grid spacing and orientation at the wall.
The number of the grid points is 201 chordwise × 53 tangential × 57 spanwise.
The computational grid for the NASA rotor 67 is shown in Fig. 8. All computations
were performed on the NEC SX-6 supercomputer consisting of 128 vector process-
ing elements (PEs) located at JAXA Institute of Space and Astronautics Science
in Japan. Aerodynamic evaluations of design candidates at each generation is par-
allelized using the simple master-slave concept; the grid generations and the flow
calculations associated to the design candidates of a generation are distributed into
32 PEs of the NEC SX-6 machine. Aerodynamic function evaluation of each design
candidate took about 40 minutes on one PE of the NEX SX-6 machine (For 50 gen-
erations, it took more than 66 hours of computational time on 32 vector PEs of the
supercomputer).

 

 

Fig. 8 Computational grid over NASA rotor67. Every other line is shown
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Fig. 9 Comparison of the
optimization histories

4.3.5 Result

Figure 9 presents optimization history in terms of the objective function (entropy
production) compared with the NASA rotor 67. In the same figure, optimization his-
tory of the same EA coupled with Deb’s constraint-handling approach is presented
for comparison purpose where constraint violation CV is defined as

CV = 2 ·CVmass f lowrate +CVpressureratio (19)

For both cases, the optimized designs obtained after the eighth generation satisfied
all the constraints. However, the final design obtained by Oyama’s approach has a
smaller entropy production than the NASA rotor 67 while the optimized design by
Deb’s approach could not improve this result in 50 generations. It may be because
diversity in the population is lost before a feasible solution is found at the ninth

Fig. 10 Comparison of the
spanwise entropy distribu-
tions
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generation when Deb’s approach is used. Spanwise entropy distributions of the op-
timized design and the NASA rotor 67 are compared in Fig. 10. The figure shows
that the entropy production can be reduced mainly between 60% to 90% span while
it is increased near the tip.

5 Geometry-Constraint-Handling Used for Aerodynamic
Design Optimization

In general, aerodynamic design optimization problem involves aerodynamic con-
straints and other constraints which don’t require CFD simulation for function eval-
uation. A typical example is geometry constraint. For example, aerodynamic drag
minimization of a transonic wing without any geometric constraints would result
in very thin wing shape. However, such wing shape does not have enough struc-
tural strength to withstand the bending moment due to the lift force on the wing.
In many cases, structural strength is guaranteed by constraint on minimum wing
thickness or minimum wing profile area. In such cases, the constraint function can
be evaluated without CFD evaluation of candidate wings. Therefore, in some aero-
dynamic design optimizations, geometry constraints are evaluated as soon as a new
design candidate is generated and if the design candidate does not satisfy the geom-
etry constraints, it is discarded and another design candidate is generated until the
new design candidate satisfies all geometry constraints. By doing this procedure,
all design candidates satisfy geometry constraints and thus, expensive aerodynamic
evaluations can be significantly saved [3, 4, 24, 29].

6 Conclusions

In this chapter, features of aerodynamic design optimization problems were
presented and constraint-handling techniques for evolutionary multiobjective aero-
dynamic and multidisciplinary designs were overviewed. Because number of evalu-
ations is limited in aerodynamic and multidisciplinary design optimizations, a very
efficient and robust constraint-handling technique is required for aerodynamic and
multidisciplinary design optimizations. Oyama’s constraint-handling approach is
suitable to aerodynamic and multidisciplinary design optimizations in this sense.
Conceptual design of TSTO spaceplane and high-fidelity aerodynamic rotor blade
design optimization demonstrated that Oyama’s approach is better than traditional
constraint-handling methods for real-world aerodynamic and multidisciplinary de-
sign optimization problems.
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