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Preface

Evolutionary algorithms (EAs), as well as other bio-inspired heuristics, are
widely used to solve numerical optimization problems. However, in their orig-
inal versions, they are limited to unconstrained search spaces i.e they do not
include a mechanism to incorporate feasibility information into the fitness
function. On the other hand, real-world problems usually have constraints
in their models. Therefore, a considerable amount of research has been ded-
icated to design and implement constraint-handling techniques. The use of
(exterior) penalty functions is one of the most popular methods to deal with
constrained search spaces when using EAs. However, other alternative meth-
ods have been proposed such as: special encodings and operators, decoders,
the use of multiobjective concepts, among others.

An efficient and adequate constraint-handling technique is a key element
in the design of competitive evolutionary algorithms to solve complex opti-
mization problems. In this way, this subject deserves special research efforts.

After a successful special session on constraint-handling techniques used in
evolutionary algorithms within the Congress on Evolutionary Computation
(CEC) in 2007, and motivated by the kind invitation made by Dr. Janusz
Kacprzyk, I decided to edit a book, with the aim of putting together recent
studies on constrained numerical optimization using evolutionary algorithms
and other bio-inspired approaches.

The intended audience for this book comprises graduate students, practi-
tioners and researchers interested on alternative techniques to solve numerical
optimization problems in presence of constraints.

The book covers six main topics: The first two chapters refer to swarm-
intelligence-based approaches. Differential evolution, a very competitive evo-
lutionary algorithm for constrained optimization, is studied in the next three
chapters. Two different constraint-handling techniques for evolutionary mul-
tiobjective optimization are presented in the two subsequent chapters. Two
hybrid approaches, one with a combination of two nature-inspired heuristics
and the other with the mix of a genetic algorithm and a local search operator,
are detailed in the next two chapters. Finally, a constraint-handling technique
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designed for a real-world problem and a survey on artificial immune system
in constrained optimization are the subjects of the final two chapters.

Angel E. Muñoz-Zavala, Arturo Hernández-Aguirre and Enrique R. Villa-
Diharce, present the adaptation of particle swarm optimization (PSO) to
solve constrained optimization problems. The search capabilities improve by
means of the following modifications: (1) a novel neighborhood structure to
slow-down convergence, (2) two perturbation operators applied to the mem-
ory of each particle to favor diversity in the swarm and (3) a dynamic toler-
ance to handle equality constraints.

Guillermo Leguizamón and Carlos A. Coello Coello show an alternative
approach to explore the boundary between the feasible and infeasible regions
of the search space by means of two perspectives: (1) the use of ad hoc oper-
ators and (2) a more general operator. The authors couple their approach to
two swarm intelligence search engines and a general evolutionary algorithm.
These examples show that significant changes to the original version of each
algorithm were not required.

Tetsuyuki Takahama and Setsuko Sakai propose an improved version of
their εDE algorithm to solve constrained optimization problems. A faster re-
duction of the relaxation for equality constraints in the ε constrained method
coupled with a more frequent use of gradient-based mutation lead εDE to
provide even more competitive results in highly constrained problems. Fur-
thermore, the authors present two mechanisms to keep variable values within
the valid search space.

Janez Brest presents some modifications to his jDE algorithm to deal with
constrained search spaces: (1) The use of the ε-constraint method, (2) a pop-
ulation size reduction, (3) the combination of three differential evolution
variants, (4) different mechanisms to keep valid variable values and (5) a
self-adaptive approach for two DE parameters (F and CR).

Efrén Mezura-Montes and Ana Gabriela Palomeque-Ortiz analyze the be-
havior of one deterministically-controlled and three self-adapted parameters
in differential evolution for constrained optimization. The approach consid-
ers two parameters related to the constraint-handling technique. The experi-
mental design analyzes (1) the online-behavior of the algorithm by using two
performance measures and (2) the behavior shown by the parameter values.

Gary G. Yen presents a parameterless adaptive penalty function coupled
with a distance measure for evolutionary multiobjective constrained opti-
mization. The non-dominated sorting process then uses this modified fitness
value. The number of feasible solutions in the population determines the be-
havior of the process, which may lead the search to either find more feasible
solutions or locate the optimal solution.

Tapabrata Ray, Hemant Kumar Singh, Amitay Isaacs and Warren Smith
emphasize the importance of maintaining infeasible solutions close to the
feasible space in evolutionary multiobjective constrained optimization. The
aim is to focus the search precisely on the boundaries of the feasible and
infeasible regions.
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Heder S. Bernardino, Helio J.C. Barbosa, Afonso C.C. Lemonge and
Leonardo G. Fonseca combine the use of an artificial immune system to bias
the search to the feasible region and a standard genetic algorithm. A clearing
procedure, based on a niching mechanism, helps the search by improving the
diversity in the population.

Marcella C. Araujo, Elizabeth F. Wanner, Frederico G. Guimarães and
Ricardo H.C. Takahashi, improve a genetic algorithm with a local search
operator based on quadratic and linear approximations for the objective
function and the constraints of the problem as well. This operator defines
a sub-problem with a quadratic objective function and quadratic and/or lin-
ear constraints, which is solved with a linear matrix inequality formulation.
The aim of the special operator is to improve the satisfaction of constraints.

Akira Oyama presents a constraint-handling technique for aerodynamic
and multidisciplinary design optimization. The approach is suitable for prob-
lems where the number of evaluations must be kept low due to the cost asso-
ciated with each one of them. A combination of dominance in the constraints
space and a niching mechanism helps the approach to reach the feasible region
by requiring a low number of evaluations.

Nareli Cruz-Cortes presents the main proposals for constrained optimiza-
tion based on an artificial immune system. The suggested taxonomy divides
the approaches in “hybrid” (artificial immune systems with genetic algo-
rithms) and “pure” schemes (i.e., those in which only artificial immune sys-
tem processes and theories are adopted for the search engine).

The themes tackled in this book give evidence of the current research
paths regarding constraint-handling in evolutionary optimization, such as the
following:

• The generation of special mechanisms to focus the search on the boundaries
of the feasible region and the importance of good infeasible solutions in
the process.

• Constraint-handling in evolutionary multiobjective optimization.
• Parameter control mechanisms to keep the user from the fine-tuning

process.
• Hybrid algorithms, such as global-local search, combination of heuristics-

based approaches and the use of mathematical programming methods, in
order to improve the search capabilities in constrained search spaces.

• The exploration of novel bio-inspired approaches such as particle swarm
optimization, ant colony optimization, artificial immune systems, differen-
tial evolution, among others.

• Constraint-handling techniques able to perform well with a low number of
objective function evaluations.

I want to thank all the authors for their high-quality contributions and also
for their interest in this book. I would also want to thank Professor Janusz
Kacprzyk for the opportunity to edit a book in the Studies in Computational
Intelligence Series. Many thanks to Dr. Thomas Ditzinger and Ms. Heather
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King from Springer for their valuable editorial support. I want to express my
gratitude to Dr. Cristina Loyo-Varela, Dr. Cora Beatriz Excelente-Toledo,
Dr. Edgard Ivan Benitez-Guerrero, MsC. Pedro Nolasco-Vázquez and all my
coworkers at LANIA for their continuous support to my research activities.
I appreciate the help of Luis Guillermo Osorio-Hernández and Jorge Isacc
Flores-Mendoza in the final edition of this book. The support provided by
CONACyT (the mexican council of science and technology) through project
No. 79809 is also greatly appreciated. Many thanks to Dr. Carlos A. Coello
Coello, my former thesis adviser, for his support and suggestions on the
preparation of this book. Finally, I want to thank Margarita and Diego for
their encouragement, understanding and patience.

Xalapa, Veracruz, MEXICO Efrén Mezura-Montes
January 2009
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Laboratório Nacional de
Computação Cient́ıfica,
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México D.F. 07300, México,
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Departamento de Engenharia
Elétrica, Universidade Federal de
Minas Gerais, Belo Horizonte,
MG, Brazil,
frederico.guimaraes@yahoo.com.br

Arturo Hernández Aguirre
Center for Research in Mathematics
(CIMAT), Department of
Computer Science A.P. 402,



XIV List of Contributors

Guanajuato, Gto. CP. 36240,
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apalomeque@lania.edu.mx

Tapabrata Ray
University of New South Wales,
Australian Defence Force Academy,
Northcott Drive, Canberra,
ACT 2600, Australia.
t.ray@adfa.edu.au

Setsuko Sakai
Faculty of Commercial Sciences,
Hiroshima Shudo University,
Asaminami-ku,
Hiroshima 731-3195 Japan,
setuko@shudo-u.ac.jp

Hemant Kumar Singh
University of New South Wales,
Australian Defence Force Academy,
Northcott Drive, Canberra,
ACT 2600, Australia.
hemant.singh@adfa.edu.au

Warren Smith
University of New South Wales,
Australian Defence Force Academy,
Northcott Drive, Canberra,
ACT 2600, Australia,
w.smith@adfa.edu.au

Tetsuyuki Takahama
Department of Intelligent Systems,
Hiroshima City University,
Asaminami-ku,
Hiroshima 731-3194
Japan,
takahama@its.hiroshima-cu.ac.jp



List of Contributors XV

Ricardo H. C. Takahashi
Departamento de Matemática,
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México, villadi@cimat.mx

Elizabeth F. Wanner
Departamento de Matemática,
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Continuous Constrained Optimization with
Dynamic Tolerance Using the COPSO
Algorithm

Angel E. Muñoz Zavala, Arturo Hernández Aguirre, and Enrique R. Villa Diharce

Abstract. This work introduces a hybrid PSO algorithm which includes perturba-
tion operators to keep population diversity. A new neighborhood structure for Parti-
cle Swarm Optimization called Singly-Linked Ring is implemented. The approach
proposes a neighborhood similar to the ring structure, but which has an innovative
neighbors selection. The objective is to avoid the premature convergence into local
optimum. A special technique to handle equality constraints with low side effects
on the diversity is the main feature of this contribution. Two perturbation operators
are used to improve the exploration, applying the modification only in the particle
best population. We show through a number of experiments how, by keeping the se-
lection pressure on a decreasing fraction of the population, COPSO can consistently
solve a benchmark of constrained optimization problems.

Keywords: PSO, Constrained Optimization, Neighborhood Structure, COPSO.

1 Introduction

Particle swarm optimization (PSO) algorithm is a population-based optimization
technique inspired by the motion of a bird flock. In the PSO model, every particle
flies over a real valued n-dimensional space of decision variables X. Each particle
keeps track of its position x, velocity v, and remembers the best position ever visited,
PBest . The particle with the best PBest value is called the leader, and its position
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A.P. 402, Guanajuato, Gto. CP. 36240, México
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2 A.E. Muñoz-Zavala et al.

is called global best, GBest . The next particle’s position is computed by adding a
velocity term to its current position, as follows:

xt+1 = xt + vt+1 (1)

The velocity term combines the local information of the particle with global in-
formation of the flock, in the following way.

vt+1 = w∗ vt + φ1 ∗ (PBest−xt)+ φ2 ∗ (GBest −xt) (2)

The equation above reflects the socially exchanged information. It resumes PSO
three main features: distributed control, collective behavior, and local interaction
with the environment [9, 21].The second term is called the cognitive component,
while the last term is called the social component. w is the inertia weight, and φ1

and φ2 are called acceleration coefficients. The inertia weight regulates the mixture
of previous velocity with the current one.

When the flock is split into several neighborhoods the particle’s velocity is com-
puted with respect to its neighbors. The best PBest value in the neighborhood is called
the local best, LBest .

vt+1 = w∗ vt + φ1 ∗ (PBest−xt)+ φ2 ∗ (LBest−xt) (3)

Neighborhoods can be interconnected in many different ways, some of the most
popular are shown in Figure 1. The star topology is in fact one big neighborhood
where every particle is connected to each other, thus enabling the computation of a
global best. The ring topology allows neighborhoods, thereby, it is commonly used
by the PSO with local best.

PSO is a fast algorithm whose natural behavior is to quickly converge to the
best explored local optima. However, attaining flock’s convergence to the global
optimum with high probability implies certain adaptations. The approaches range
from modifications to the main PSO equation, to the incorporation of reproduction
operators. This chapter introduces the Constrained Optimization via PSO algorithm
(COPSO), a hybrid PSO with the following new features:

• Two perturbation operators to keep diversity. Although perturbations are not in-
cluded in the original PSO model, they are quite common nowadays. The formal
analysis of van den Bergh shows that the PSO algorithm will only converge to the
best position visited, not the global optimum [40]. Therefore, the quest for high
diversity is a sound approach to locate the global optimum since more diversity
leads to increasing exploration.

• Singly-linked ring topology. COPSO creates several neighborhoods around a
new ring topology that we called the “singly linked ring topology” (SLR). Thus
COPSO promotes a flock with several local leaders to improve the exploration
capacity [9, 21].

• Constraint handling. PSO lacks an explicit mechanism to bias the search towards
the feasible region in constrained search spaces. For selecting a neighborhood



COPSO with Dynamic Tolerance 3

Fig. 1 Neighborhood structures for PSO. A representation of the social networks applied in
PSO

leader, COPSO picks the winner through a tournament of feasibility and sum of
constraint violations (“superiority of feasible solutions” [7]).

COPSO performs the main PSO algorithm but executes two additional steps
which implement the mentioned features: the C-perturbation which is oriented to
sustain global exploration by keeping diversity, and the M-perturbation oriented to
the local refinement of solutions. The constraint handling technique which selects
promising particles is embedded in the function ParticleBest (see Figure 2).

The organization of this chapter is the following. A review of diversity control
techniques for PSO is presented in Section 2. Next, a review of constraint handling
techniques used by PSO algorithms is presented in Section 3. The COPSO algo-
rithm is thoroughly explained in Section 4. The general class of problems of interest
is defined in Section 5. In Section 6, COPSO is used to solve a state of the art bench-
mark of 24 functions. Comparisons against four different approaches are provided
(two of them based on PSO). Conclusions are provided in Section 7.
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X0 = Rand(LL, UL)
V0 = 0
F0 = Fitness ( X0 )
C0 = SCV ( X0 )
PBest= X0 best position of particle
FBest= F0 best fitness value of particle
CBest = C0 SCV value of particle
For i = 1 To maxgenerations

LBest = LocalBest ( FBest , CBest )
GBest = TheBest ( FBest , CBest )
V = Velocity ( V , X , PBest , LBest , GBest )
X = X + V Stage 1
F = Fitness ( X )
C = SCV ( X )
[PBest ,FBest ,CBest ] = ParticleBest ( PBest , X , FBest , F , CBest , C )
If (U(0,1) < pC )

Temp = C-Perturbation (PBest )
FTemp = Fitness ( Temp )
CTemp = SCV ( Temp )
[PBest ,FBest ,CBest ] = ParticleBest ( PBest , Temp, FBest , FTemp, CBest , CTemp )
TempBest = TheBest ( FBest , CBest )
If (TempBest < GBest )

pC = pC*0.99
Else

pC = pC*1.01
End If Stage 2
GBest = TempBest

If (i % n
2 = 0 )

PBest = Temp
FBest = FTemp
CBest = CTemp

End If
End If
If (U(0,1) < pM )

Temp = M-Perturbation (PBest )
FTemp = Fitness ( Temp )
CTemp = SCV ( Temp )
[PBest ,FBest ,CBest ] = ParticleBest ( PBest , Temp, FBest , FTemp, CBest , CTemp )
TempBest = TheBest ( FBest , CBest )
If (TempBest < GBest )

pM = pM*0.99
Else

pM = pM*1.01
End If Stage 3
GBest = TempBest

If (i % n
2 = 0 )

PBest = Temp
FBest = FTemp
CBest = CTemp

End If
End If

End For

Fig. 2 Pseudo-code of COPSO algorithm
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2 Diversity Control for PSO Algorithm

A natural problem in evolutionary computation is the premature convergence. It
means that the evolutionary algorithm could stay trapped in a region containing a
local optimum. Premature convergence can be caused by the diversity loss, which
occurs when the population reaches a suboptimal state where evolutionary algorithm
can no longer produce offspring which outperforms their parents [10]. A way to keep
diversity is by sustaining the balance between exploration and exploitation [16].

In PSO the source of diversity, called variation, is the difference between the par-
ticle’s position x and PBest , or LBest . Although variation provides diversity, it can only
be sustained for a limited number of generations because convergence of the flock
is necessary to refine the solution. The need to keep diversity is well known and has
been addressed by several authors. Angeline [1], and also Eberhart [8], proposed
population breeding. Then, two randomly chosen particles (parents) may reproduce
and create offsprings. Lovbjerg [26], and more recently Settles [36] implemented
breeding with some success. More investigations on reproduction as source of di-
versity were recently conducted by S. Das [6]. He adapted the reproduction operator
of differential evolution [37,38] to PSO, and reported robust performance in a small
set of global optimization problems. W. Zhang [41] proposed to compute the veloc-
ity term by taking turns between PSO and differential evolution. At odd generations
the individuals are updated by the rules of motion of PSO; at even generations by
the differential evolution formalism.

Note how these approaches keep diversity by preventing premature convergence.
Other approaches let premature convergence happen but later in the process they try
to extinguish it. For instance, in Krink’s approach, the particles are clustered and
their density used as a measure of crowding [23]. Once such clusters are detected,
their density is reduced by bouncing away the particles. Blackwell also investigated
a mechanism that repels clustered particles [2].

3 Constraint Handling Techniques for the PSO Algorithm

Real-world optimization problems are subject to a number of equality and inequal-
ity constraints, which can be linear or nonlinear. These constraints determine which
areas of the search space are feasible and which are infeasible. In addition to these
constraints, boundary constraints are usually imposed to the search space [29]. Also,
there is the possibility that the feasible space is fragmented and separated by infea-
sible regions, requiring that both the feasible and infeasible regions be searched.

Several authors have noted how the adoption of a constraint handling technique
may cause diversity loss due to the additional selection pressure required to bias the
population towards the feasible region [11, 13, 14, 27].

PSO is an unconstrained search technique. Thus, adopting a constraint handling
technique into the main PSO algorithm is an open research area. There is a con-
siderable amount of research regarding mechanisms that allow the evolutionary al-
gorithms to deal with equality and inequality constraints. Early approaches did not
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combine a diversity maintenance strategy with a constraint handling technique. For
instance, Parsopoulos used a multi-stage assignment penalty function without diver-
sity control [31]. Hu and Eberhart proposed a feasibility preservation strategy that
determines the best particle [17,18]. Both penalty and feasibility preservation strate-
gies were analyzed by G. Coath [5] (whose experiments clearly detect the need of
some form of diversity control). He and Prempain used a “fly-back” mechanism that
returns an unfeasible particle to its previous feasible position [12]. A more important
drawback of this technique is the requirement of an all-feasible initial population.
Recent approaches include some form of diversity control. For instance Toscano and
Coello [39], use a turbulence operator (a kind of mutation) combined with a supe-
riority of feasible solutions [7]. They succeeded in most problems but faced weak
capacity to refine the solutions.

We contrast our method with the best results of the recent proposals reviewed in
this section.

4 COPSO: Constrained Optimization via PSO

A brief analysis of the state-of-the-art in PSO to solve constrained optimization
problems was presented. Now, we are going to introduce our approach called Cons-
trained Optimization via Particle Swarm Optimization algorithm (COPSO) [15].
COPSO is a local PSO with a singly-linked ring neighborhood. COPSO han-
dles constraints adopting a superiority of feasible solutions com-
plemented with a dynamic tolerance for handling equality constraints. The
main components of COPSO are the C-Perturbation and M-Perturbation
operators; these are applied to the variable PBest of the flock [30].

Along the present section, the essential components of COPSO are explained: in-
teraction model, neighborhood structure, diversity mechanism and constraint
handling.

4.1 Interaction Model

There are 4 interaction models proposed by Kennedy [19]; these models were de-
fined by omitting components of the velocity formula. The full model is com-
posed by the cognition component and the social component. Dropping the social
component results in the cognition-only model, whereas dropping the cogni-
tion component defines the social-only model. In a fourth model, selfless
model, the neighbourhood best is chosen only from the neighbors, without consid-
ering the current individual. Experimental results prove that the social-only model
consistently found solutions faster than the full model, but the reliability of the
social-only model is lower than the full model [4, 19].

Parsopoulos and Vrahatis [32] proposed a new scheme that combine the global
and the local PSO variants. The approach calculates two velocity directions, one
from a global full model and another from a local full model. Both directions, global
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and local, are linearly combined through an influence parameter. In the same
way, Cagnina et all [3] proposed an extended full model using a combination of both
the global and the local PSO variants with a constriction factor k (the k parameter
affects the whole velocity equation). In COPSO, the velocity equation combines a
new global term with the inertia, cognition and social terms.

vt+1 = w∗ vt + φ1 ∗ (PBest− xt)+ φ2 ∗ (LBest − xt)+ φ3 ∗ (GBest− xt) (4)

The inertia weight in COPSO is linearly decremented from 1.0 to 0.5 according
to the function evaluations. Thus, at the beginning of the search, the algorithm per-
forms more exploration, and along the process the algorithm is gradually focused to
exploitation. The experiments suggest that the best parameters for the model are the
following:

φ1 = 1.0 ∗U(0,1.0) = U(0,1.0)
φ2 = 1.0 ∗U(0,1.0) = U(0,1.0)
φ3 = 0.1 ∗U(0,1.0) = U(0,0.1)

where U(α,β ) is a uniform distribution with random numbers between α and β .
Note that the new global term in the velocity equation has a low influence (φ3) but
its contribution is important to keep the flock on promising regions. This concept
will be understood when we analyse the technique to handle equality constraints,
where the incorporation of the global influence is essential to improve the results of
some test functions.

4.2 Neighborhood Structure

In the PSO scheme each particle moves following a leader. Particles in the same
neighborhood communicate with one another by exchanging information for mov-
ing towards a better position. The flow of information through the flock depends on
the neighborhood structure. Figure 1 presents a few neighborhood structures devel-
oped for PSO.

In a highly connected neighborhood structure, the information about the best
particle in the swarm (GBest) is quickly transmitted through the whole flock. This
means faster convergence, but also implies a higher risk to converge to a local
minimum. Also, Kennedy and Mendes empirically show that the star neighbor-
hood attains faster convergence than the other topologies, but it meets the optimal
fewer times than any other approach they tested [22]. They suggest trying the Von
Neumann neighborhood structure, which performed more consistently in their ex-
periments than the topologies commonly found in current practice. The success of
the Von Neumann neighborhood in unconstrained optimization is due to the interac-
tion that each particle has with other particles, an average of 5 neighbors. This pro-
motes the exploitation, but unfortunately fails to provide the exploration required by
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the constrained optimization problems. It is important to note that the conclusions
reached by Kennedy and Mendes are valid for unconstrained optimization problems.
COPSO works with a new neighborhood structure, the singly-linked ring.

The singly-linked ring rises from discovering that the ring and the Von Neumann
neighborhoods are double-linked lists; as shown in Figure 3-a. Suppose that every
particle is assigned a permanent label which is used to construct the neighborhoods.
For each particle k, a neighborhood of size n is composed by the next n/2 linked
particles, and by n/2 previous particles; and the best particle in the neighborhood
is the local best of particle k (LBest). For example, in a neighborhood of size n = 2,
particle k has two neighbors, particles k− 1 and k + 1. In turn, particles k− 1 and
k + 1 have particle k as a neighbor. In this way, there is a mutual attraction between
consecutive particles, forming overlapped clusters.

b)
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Fig. 3 Ring neighborhood structures for PSO: a)Doubly-Linked Ring (original Ring struc-
ture) and b)Singly-Linked Ring

Now, analyse a PSO based on a singly-linked ring, see Figure 3-b, and assume
particle k is again the best of flock. This time, particle k has particles k− 2 and
k + 1 as neighbors (not k−1 and k + 1 as in the double link). Observe that particle
k +1 has particles k−1 and k +2 as neighbors, and particle k−1 has particles k−3
and k as neighbors. Then, k attracts k− 1 but k− 1 only attracts k through particle
k + 1. Therefore, the particle in between cancels the mutual attraction. Besides, the
information through the whole swarm is transmitted faster than in the original ring
topology. Therefore, the singly-linked ring keeps the exploration of the search space,
and increases the exploitation of the best solutions [15].

For each particle i, the members of a neighborhood of size k are selected by the
next algorithm.

COPSO uses a singly-linked ring with a neighborhood of size n = 4. For each
particle k, its neighbors are the particles: k + 1, k−2, k + 3 and k−4.
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Fig. 4 Procedure to find
the neighbors for i− th
particle in a singly-linked
ring structure

% Find k particles for neighborhood Ni
Ni = /0
Step = 1
Switch = 1
Repeat

Ni = Ni ∪ P(i+Switch∗Step)
Step = Step+1
Switch = −Switch

Until Size(Ni) = k

4.3 Diversity Mechanism

In his PhD thesis, van den Bergh gives a theorem that specifies under which condi-
tions an algorithm can be considered a global optimization method [40]. The the-
orem implies that a general algorithm, without a priori knowledge, must be able
to generate an infinite number of samples distributed throughout the whole search
space in order to guarantee that it will find the global optimum with asymptotic
probability 1.

This can be achieved by periodically adding randomized particles to the swarm.
Nevertheless, resetting the position of the particles is not a trivial task; a bad deci-
sion affects directly in the exploitation of the best solutions [40]. We propose, based
on the observation that the PBest particles drive the swarm, perturbing the PBest po-
pulation instead.

Before explaining the perturbation operators, it is necessary to introduce the main
algorithm of COPSO for better understanding. The complete pseudocode of COPSO
algorithm is shown in Figure 2.

Flying the particles is the main task of PSO, see Stage 1. Variables LL and UL
are the lower and upper limits of the search space. Function LocalBest returns the
best neighbor for each particle. Function ParticleBest updates the PBest population.
Function TheBest updates the GBest particle. The function SCV computes the Sum
of Constraint Violations, that is, total value of unfeasible constraints. The number
of particles is n, d is the dimension of the space, and i is the generation index. The
perturbations are applied to PBest in the next two stages.

The goal of the second stage is to add a perturbation generated from the lin-
ear combination of three random vectors. This perturbation is preferred over other
operators because it preserves the distribution of the population (also used for repro-
duction by the differential evolution algorithm [33]). In COPSO this perturbation is
called C-Perturbation. It is applied to the members of PBest to yield a set of temporal
particles Temp. Then each member of Temp is compared with its corresponding
father and PBest is updated with the child if it wins the tournament. Figure 5 shows
the pseudo-code of the C-Perturbation operator.

In the third stage every vector is perturbed again so a particle could be deviated
from its current direction as responding to external, maybe more promising, stimuli.
This perturbation is implemented by adding small random numbers (from a uniform
distribution) to every design variable. The perturbation, called M-Perturbation, is
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Fig. 5 Pseudo-code of C-
Perturbation

For k = 0 To n
For j = 0 To d

r = U(0, 1)
p1 = Random(n)
p2 = Random(n)
Temp[k, j] = PBest [k, j] + r (PBest [p1, j] - PBest [p2, j])

End For
End For

applied to every member of PBest to yield a set of temporal particles Temp. Then
each member of Temp is compared with its corresponding father and PBest is updated
with the child if it wins the tournament. Figure 6 shows the pseudo-code of the M-
Perturbation operator. The perturbation is added to every dimension of the decision
vector with probability 1/d (d is the dimension of the decision variable vector).

Fig. 6 Pseudo-code of M-
Perturbation

For k = 0 To n
For j = 0 To d

r = U(0, 1)
If r ≤ 1/d Then

Temp[k, j] = Rand(LL, UL)
Else

Temp[k, j] = PBest[k, j]
End For

End For

In Figure 7 the position PBest is relocated to a new “best” after the perturbation
operations. Notice this change is made to the particle’s memory of best visited lo-
cation. When PSO takes turn to perform its computations, it finds everything as left
in the previous generation, except that the memory PBest may store a better position.

The cooperation between PSO and the perturbation operators have been carefully
analyzed by the authors through out the many experiments conducted. The PSO

Fig. 7 C-perturbation and M-perturbation on PBest. (a) PBest in stage 1. (b) PBest after
stages 2 and 3
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stage performs very efficiently at refining solutions in a local space, but exploration
is performed by the perturbation operators. The perturbation operators adapt their
activity along generations as follows: the operator is invoked with probability pC =
pM = 1 when the flock is flown for the first time. This probability is decremented
by a factor of 1% whenever the perturbation stage fails to improve the GBest value,
otherwise, it is incremented by a factor of 1%.

In his work, van den Bergh proposed two algorithms which periodically add par-
ticles randomly to the flock for accomplishing his theorem that guarantees conver-
gence to the global optimum [40]. Following that line of thought in COPSO, a Temp
population is created after applying the perturbation operators, and then used (as if
they were random particles) to update the whole PBest population, saving the GBest

particle. This is performed every n/2 generations (n=flock size), subject to the cur-
rent probabilities pC and pM of the perturbation operators. Figure 2 shows clearly
this feature.

The perturbation of PBest is what makes COPSO different. Other approaches
perturb the position of the particle and later PBest is updated accordingly.
COPSO, however, applies the perturbations to the memory PBest and let the
motion of the particles to PSO.

4.4 Constraint Handling Approach

K. Deb introduced the superiority of feasible solutions selection
based on the idea that any individual in a constrained search space must first com-
ply with the constraints and then with the function value [7]. COPSO adopted
such popular tournament selection whose rules have been included in the functions
LocalBest, ParticleBest and T heBest:

1. Given two feasible particles, pick the one with better function value;
2. From a pair of feasible and infeasible particles, pick the feasible one;
3. If both particles are infeasible, pick the particle with the lowest sum of cons-

traint violation.

The sum of constraint violations is, of course, the total value by which unsatisfied
constraints are violated (computed by function SCV in Figure 2). The superiority of
feasible solutions does not require tuning parameters or applying special operators.
Just a simple comparison is used to choose the best individual. Our approach applies
this method, allowing feasible and infeasible solutions in the swarm. It enriches
the information about the search space, especially at boundaries. Nevertheless, for
handling equality constraints, it is not enough just converting them into inequality
constraints of the form |h j| ≤ ε , where ε is called the tolerance. COPSO uses a
Dynamic Tolerance for handling equality constraints.
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Dynamic Tolerance: An initial tolerance value of ε = 1.0 is decremented by
10% to a specified target value τ . The tolerance value is decreased whenever
a percentage of feasible particles (PFP) is attained. The initial value of PFP is
100%, and it is updated at every generation with the following equation:

PFP =
(

1− generation
maxgeneration

)
% (5)

In addition, when COPSO has performed 90% of the function evaluations and
the tolerance value has not reached the specified target value (ε > τ), the current
tolerance value is replaced with that target value (ε = τ). For the last 10% of the
function evaluations, the tolerance value is kept fixed (ε = τ); thus, the particles
have additional time to achieve convergence.

In brief, at the beginning of the process the particles are allowed to be feasible in a
large number. Whenever the tolerance is decremented some particles might become
infeasible, resulting in the lost of promising regions. The incorporation of the GBest

component to the velocity equation helps to keep up the flock into the promising
regions. The efficiency of the dynamic tolerance is shown in Section 6, where a set
of test problems with equality constraints is solved by COPSO.

5 Problem Statement

We are interested in the general nonlinear programming problem in which we
want to:

Find x which optimizes f (x)

subject to:
gi(x)≤ 0, i = 1, . . . , I

h j(x) = 0, j = 1, . . . ,E

where x is the vector of solutions x = [x1,x2, . . . ,xd ]T , I is the number of inequality
constraints and E is the number of equality constraints (in both cases, constraints
could be linear or non-linear). For an inequality constraint that satisfies gi(x) = 0,
then we will say that it is active at x. All equality constraints h j (regardless of the
value of x used) are considered active at all points of F (F = feasible region).

6 Experiments on Benchmark Functions

For all experiments, COPSO used the parameters mentioned in Section 4. These
parameters agree with van den Bergh as to guarantee convergent trajectories [40].
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1
2
(c1 + c2)−1 < w (6)

1
2
(1 + 1)−1 < 0.5

0 < 0.5

COPSO uses a flock size of 75 members. Total number of function evaluations is
350,000 (suggested by Runnarson and Yao [34]). When required, a specific number
of function evaluations is performed to develop a fair comparison against other al-
gorithms. In our experiements, the tolerance value (ε) decreased from 1.0 to a target
value of 1E-06 for all equality constraints. The other algorithms apply a fixed tol-
erance of ε =1E-04 for transforming equality constraints to inequality constraints.
A PC computer with Windows XP and C++ Builder Compiler, Pentium-4 processor
at 3.00GHz, 1.00 GB of RAM, was used to perform the experiments. A well-know
benchmark of 24 functions was used to compare COPSO against the state-of-the-art
algorithms.

The formal definition of all problems and their optimal values are available in the
following document:
http://www.cimat.mx/reportes/enlinea/I-07-04.pdf

6.1 The Benchmark Problems

Mezura extended to 24 functions the original 13 benchmark functions of Runnarson
and Yao [28]. The maximization problems were transformed to minimization pro-
blems to generalize the comparison (max f(x) = min -f(x)). The basic statistics for
30 runs are shown in Table 1.

COPSO solved 22 out of 24 benchmark problems. Also, the median of the 30
runs reaches the optimal solution in 20 out of 24 problems, and it is very near
in test problem g23. COPSO was unable to find feasible solutions for test pro-
blems g20 and g22. These problems were used in the Special Session on Cons-
trained Real-Parameter Optimization at the CEC 2006. The technical report [24]
coments that the best known solution of test problem g20 is a little infeasible and
no feasible solution has been found so far. About test problem g22, we believe that
COPSO was unable to find a feasible solution because this problem is subject to
19 equality constraints; it is the test problem with more equality constraints in the
benchmark. In test problem g17, COPSO finds a better optimum than the optimum
reported, due that an error value of ε =1E-06 allows to attain better solutions. Fi-
nally, COPSO always found the optimal solution in 17 out of 24 test problems, along
the 30 runs.

Several benchmark problems required less than 350,000 function evaluations to
find the optimal value. The Table 2 shows the COPSO’s number of objective func-
tion evaluations required to approximate the best-known optimum within a margin
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Table 1 The results of COPSO on the benchmark

TF Optimal Best Median Mean Worst S. D.

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 0
g02 -0.803619 -0.803619 -0.803619 -0.799859 -0.787296 5.0161E-03
g03 -1.000000 -1.000005 -1.000005 -1.000005 -1.000005 0
g04 -30665.539 -30665.538672 -30665.538672 -30665.538672 -30665.538672 0
g05 5126.4981 5126.498096 5126.498096 5126.498096 5126.498096 0
g06 -6961.8138 -6961.813876 -6961.813876 -6961.813876 -6961.813876 0
g07 24.306209 24.306209 24.306209 24.306209 24.306218 1.6111E-06
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0
g09 680.630057 680.630057 680.630057 680.630057 680.630057 0
g10 7049.248 7049.248020 7049.248020 7049.248074 7049.249209 2.2285E-04
g11 0.750000 0.749999 0.749999 0.749999 0.749999 0
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 0
g13 0.053950 0.053950 0.053950 0.053950 0.053950 0
g14 -47.761 -47.761128 -47.761128 -47.761128 -47.761128 0
g15 961.715 961.715171 961.715171 961.715171 961.715171 0
g16 -1.905 -1.905155 -1.905155 -1.905155 -1.905155 0
g17 8853.539 8853.539831 8927.597675 8908.678674 8952.490404 34.119
g18 -0.8660 -0.866025 -0.866025 -0.866025 -0.866025 0
g19 32.386 32.348678 32.348678 32.348680 32.348705 5.3077E-06
g20 0.204979 *0.204389 *0.224929 *0.224840 *0.238456 1.0289E-02
g21 193.785 193.785033 193.785033 193.785033 193.785033 0
g22 236.430975 *186.911502 *7970.676246 *8608.014343 *19226.181834 6.7078E+03
g23 -400.000551 -400.000551 -399.968046 -396.336901 -364.913882 9.1364
g24 -5.508 -5.508013 -5.508013 -5.508013 -5.508013 0
∗ Infeasible solution

of 1E-4. As mentioned, the top value is 350,000 function evaluations. In test pro-
blems g03, g05, g11, g13, g14, g15, g17, g20, g21, g22, and g23, the number of
function evaluations required is reported when a tolerance value of ε=1E-6 was
reached, since these bechmark problems are subject to equality constraints.

In the Table 2, we also show the number of feasible runs. A run that finds at
least one feasible solution in less than 350,000 fitness evaluations is called feasi-
ble. The Table 2 shows the number of successful runs (when the best value found
is within 1E-4 of the optimal the run is successful). The experiments show that just
3 of the 22 problems which found the optimal solution, require more than 200,000
evaluations to reach the optimal region. The convergence reported by COPSO sug-
gest that the algorithm would perform efficienly with just 150,000 function eval-
uations. In Table 3 we show the results of COPSO with just 150,000 function
evaluations.

COPSO showed a similar behavior with both 350,000 and 150,000 function eval-
uations. Just in test function g23, COPSO did not reach the optimal with 150,000
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Table 2 Fitness function evaluations to reach the optimum within 1E-04

TF Best Median Mean Worst S.D. Feasible Runs Successful Runs

g01 80776 90343 89506.30 96669 3567.79 30 30
g02 87419 93359 93958.82 99654 3932.39 30 17
g03 97892 106180 107512.90 122540 6503.81 30 30
g04 93147 103308 102903.10 110915 3868.52 30 30
g05 149493 165915 165510.33 188040 9201.72 30 30
g06 95944 109795 111170.83 130293 8250.71 30 30
g07 114709 138767 140822.77 208751 20003.28 30 30
g08 2270 4282 4131.53 5433 744.80 30 30
g09 94593 103857 104695.03 119718 6881.20 30 30
g10 109243 135735 139707.50 193426 17682.16 30 30
g11 89734 112467 111577.33 127650 8560.88 30 30
g12 482 6158 5884.50 9928 2281.72 30 30
g13 149727 160964 159213.40 168800 5582.01 30 30
g14 138471 149104 148658.67 165292 4830.97 30 30
g15 127670 135323 135892.67 147268 4407.20 30 30
g16 65872 75451 75250.20 83087 4696.44 30 30
g17 221036 232612 231250.50 236434 5346.64 30 8
g18 97157 107690 107851.40 124217 6664.79 30 30
g19 109150 122279 125989.53 167921 12745.50 30 30
g20 NR NR NR NR NR 0 0
g21 206559 221373 220885.73 233325 7495.97 30 30
g22 NR NR NR NR NR 0 0
g23 260154 274395 274390.67 291456 10256.16 30 6
g24 11081 18278 25991.47 63338 15855.57 30 30
NR: Optimal not reached

function evaluations. In some test problems the other basic statistics (median, mean
and worst values) show an insignificant reduction of performance.

6.2 COPSO and Dynamic Tolerance for Handling Equality
Constraints

For showing the efficiency of the dynamic tolerance to handle equality constraints,
COPSO solves the test problems g03, g05, g11, g13, g14, g15, g17, g20, g21, g22,
and g23, applying a constant tolerance value ε =1E-06 along the whole process. Ta-
ble 4 presents the results of COPSO without dynamic tolerance and 350,000 fitness
function evaluations.

The results presented in Table 4, shows that COPSO without dynamic tolerance
was able to find the optimal solution in only 4 out of 11 test problems (compare
versus Table 1). The median of the 30 runs is near to the optimal region only
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Table 3 The results of COPSO on the benchmark with 150,000 function evaluations

TF Optimal Best Median Mean Worst S. D.

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 0
g02 -0.803619 -0.803619 -0.794897 -0.796831 -0.778322 7.0699E-03
g03 -1.000000 -1.000005 -1.000005 -1.000005 -1.000005 0
g04 -30665.539 -30665.538672 -30665.538672 -30665.538672 -30665.538672 0
g05 5126.4981 5126.498096 5126.498096 5126.498096 5126.498096 0
g06 -6961.8138 -6961.813876 -6961.813876 -6961.813876 -6961.813876 0
g07 24.306209 24.306209 24.306216 24.306371 24.307563 3.7682E-04
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0
g09 680.630057 680.630057 680.630057 680.630057 680.630057 0
g10 7049.248 7049.248020 7049.256651 7049.329736 7049.956260 1.5754E-01
g11 0.750000 0.749999 0.749999 0.749999 0.749999 0
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 0
g13 0.053950 0.053950 0.053950 0.053950 0.053950 0
g14 -47.761 -47.761128 -47.761128 -47.761128 -47.761124 8.1367E-07
g15 961.715 961.715171 961.715171 961.715171 961.715171 0
g16 -1.905 -1.905155 -1.905155 -1.905155 -1.905155 0
g17 8853.539 8853.539831 8927.597682 8922.847388 8953.504502 24.38
g18 -0.8660 -0.866025 -0.866025 -0.866025 -0.866025 7.2927E-08
g19 32.386 32.348679 32.349428 32.351628 32.364675 4.3035E-03
g20 0.204979 *0.230695 *0.237481 *0.237140 *0.239278 1.6854E-03
g21 193.785 193.785033 193.785054 193.785111 193.785657 1.3518E-04
g22 236.430975 *202.731972 *3752.915089 *6624.040387 *19316.081466 6.3870E+03
g23 -400.000551 -399.135562 -389.925796 -384.098457 -336.566384 17.315
g24 -5.508 -5.508013 -5.508013 -5.508013 -5.508013 0
∗ Infeasible solution

Table 4 The results of COPSO without Dynamic Tolerance

TF Optimal Best Median Mean Worst S. D.

g03 -1.000000 -0.978109 -0.223987 -0.258190 -0.000886 2.0407E-01
g05 5126.4981 5126.498096 5149.681308 5180.149212 5557.763291 9.3208E+01
g11 0.750000 0.749999 0.779451 0.783479 0.859523 3.3474E-02
g13 0.053950 0.749138 0.961657 0.946136 0.998083 5.7773E-02
g14 -47.761 -47.758761 -47.219714 -46.970898 -45.085320 6.8130E-01
g15 961.715 961.715171 961.782214 962.058256 964.752897 6.3404E-01
g17 8853.539 8933.066289 8945.915638 8960.000781 9156.003831 5.2685E+01
g20 0.204979 *0.205469 *0.205484 *0.205483 *0.205485 2.6263E-06
g21 193.785 193.785034 193.785034 227.231279 327.462518 4.9553E+01
g22 236.430975 *382.880649 *5967.141521 *7665.320210 *18753.721473 6.2330E+03
g23 -400.000551 -393.740205 -256.575290 -246.415279 -35.961120 9.4751E+01
∗ Infeasible solution
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in 2 out of 11 test problems. The mean and worst values are far away of the optimal
region in all the test problems subject to equality constraints.

6.3 Comparison of COPSO vs CPSO

Firstly, we compare COPSO and the Constrained Particle Swarm Optimization al-
gorithm (CPSO) developed by Cagnina et all [3]. Since both approaches are based
on PSO with local-global model, this comparison is quite fair.

CPSO handles constraints through a superiority of feasible solutions, and keeps
diversity by adding mutations to the velocity vector. Also, CPSO uses a Gaussian
update equation proposed by Kennedy [20]. The comparison is shown in Table 5.
CPSO performed 340,000 fitness function evaluations, 10,000 less than COPSO,
but it is not significative for the comparison. COPSO’s performance is better than
CPSO on test problems g02, g05, g06, g07, g10 and g13. In 12 of 13 benchmark
problems, the worst solution of COPSO is better than the mean solution of CPSO,
along 30 runs. The comparison was just performed for the first 13 benchmark pro-
blems because is the available information of CPSO. Hu and Eberhart [17], and
Zhang [42] reported the first solutions to these 13 benchmark problems with very
limited success.

Table 5 Comparison of COPSO and CPSO in the benchmark problems

Best Result Mean Result Worst Result
TF Optimal COPSO CPSO COPSO CPSO COPSO CPSO

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 *-134.2191
g02 -0.803619 -0.803619 -0.801388 -0.799859 -0.7653 -0.787296 -0.0917
g03 -1.000000 -1.000005 -1.000 -1.000005 -1.0000 -1.000005 -1.0000
g04 -30665.539 -30665.538672 -30665.659 -30665.538672 -30665.6564 -30665.538672 -25555.6267
g05 5126.4981 5126.498096 5126.497 5126.498096 5327.9569 5126.498096 *2300.5443
g06 -6961.8138 -6961.813876 *-6961.825 -6961.813876 -6859.0759 -6961.813876 64827.5545
g07 24.306209 24.306209 24.400 24.306209 31.4854 24.306218 4063.5252
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.0958 -0.095825 0.0006
g09 680.630057 680.630057 680.636 680.630057 682.3973 680.630057 18484.7591
g10 7049.248 7049.248020 7052.8523 7049.248020 8533.6999 7049.249209 13123.4656
g11 0.750000 0.749999 0.749 0.749999 0.7505 0.749999 *0.4466
g12 -1.000000 -1.000000 -1.000 -1.000000 -1.000 -1.000000 *-9386
g13 0.053950 0.053950 0.054237 0.053950 1.4139 0.053950 0.9675

∗ Infeasible solution

6.4 Comparison of COPSO vs ISRES

Runarsson and Yao first proposed the Stochastic Ranking algorithm for constrained
optimization [34], and later they developed an improved version called “Improved
Stochastic Ranking Evolution Strategy”, (ISRES) [35] (still one major represen-
tant of the state of the art). Experiments for test problems g14 through g24 were
developed using the ISRES’s code available at Runarsson’s page. The parameters
used were the same suggested by the authors [35]. The comparison is shown in Ta-
ble 6. Both algorithms performed the same number of fitness function evaluations,
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Table 6 Comparison of COPSO and ISRES on the benchmark problems

Best Result Mean Result Worst Result
TF Optimal COPSO ISRES COPSO ISRES COPSO ISRES

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
g02 -0.803619 -0.803619 -0.803619 -0.799859 -0.782715 -0.787296 -0.723591
g03 -1.000000 -1.000005 -1.001 -1.000005 -1.001 -1.000005 -1.001
g04 -30665.539 -30665.53867 -30665.539 -30665.53867 -30665.539 -30665.53867 -30665.539
g05 5126.4981 5126.498096 5126.497 5126.498096 5126.497 5126.498096 5126.497
g06 -6961.8138 -6961.813876 -6961.814 -6961.813876 -6961.814 -6961.813876 -6961.814
g07 24.306209 24.306209 24.306 24.306209 24.306 24.306218 24.306
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.630057 680.630057 680.630 680.630057 680.630 680.630057 680.630
g10 7049.248 7049.248020 7049.248 7049.248020 7049.25 7049.249209 7049.27
g11 0.750000 0.749999 0.750 0.749999 0.750 0.749999 0.750
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
g13 0.053950 0.053950 0.053942 0.053950 0.066770 0.053950 0.438803
g14 -47.761 -47.761128 -47.761129 -47.761128 -47.759250 -47.761128 -47.735569
g15 961.715 961.715171 961.715171 961.715171 961.715171 961.715171 961.715171
g16 -1.905 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155
g17 8853.539 8853.539831 8889.9003 8908.678674 8889.9442 8952.490404 8890.9516
g18 -0.8660 -0.866025 -0.866025 -0.866025 -0.866025 -0.866025 -0.866025
g19 32.386 32.348678 32.348689 32.348680 32.374095 32.348705 32.644735
g20 0.204979 *0.204389 NA *0.224840 NA *0.238456 NA
g21 193.785033 193.785033 193.785034 193.785033 220.056989 193.785033 325.144812
g22 236.430975 *186.911502 NA *8608.014343 NA *19226.181834 NA
g23 -400.000551 -400.000551 -400.000551 -396.336901 -321.342939 -364.913882 -47.842844
g24 -5.508 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013

∗ Infeasible solution, NA Not available

350,000. Note that ISRES and COPSO find the best values in the same problems,
except in test problem g17 where ISRES was unable to find an optimal solution.
Also, COPSO average is closer to the optimum value and is better than ISRES in
problems g02, g13, g14, g19, g21 and g23. But ISRES is better in problem g17,
where it finds an average solution lower than COPSO. Both COPSO and ISRES
were unable to find feasible solutions for test problems g20 and g22.

6.5 Comparison of COPSO vs SMES

In his Ph.D. thesis, Mezura proposed the extended benchmark of 24 test problems,
and an approach to solve it, the “Simple Multimember Evolutionary Strategy”
(SMES), which worked reasonable well on the first 13 problems but had a weak
performance on the new problems (g14 through g23), mainly due to reduced explo-
ration [27]. In Table 7 we show the comparison of COPSO and SMES. In this case,
COPSO and SMES performed 240,000 fitness function evaluations.

It can be seen that COPSO is clearly better than SMES in problems g02, g05, g07,
g10, g13, g14, g15, g17, g19, g21 and g23. Although the best values reported for
the rest of the problems are comparable, COPSO outperforms SMES in the average
results for problems g02, g05, g06, g07, g09, g10, g13, g14, g15, g17, g18, g19, g21
and g23. COPSO and SMES were unable to find feasible solutions for test problems
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Table 7 Results of COPSO and SMES for benchmark problems

Best Result Mean Result Worst Result
TF Optimal COPSO SMES COPSO SMES COPSO SMES

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
g02 -0.803619 -0.803619 -0.803601 -0.801137 -0.785238 -0.792607 -0.751322
g03 -1.000000 -1.000005 -1.000000 -1.000005 -1.000000 -1.000005 -1.000000
g04 -30665.539 -30665.53867 -30665.539 -30665.53867 -30665.539 -30665.53867 -30665.539
g05 5126.4981 5126.498096 5126.599 5126.498096 5174.492 5126.498096 5304.167
g06 -6961.8138 -6961.813876 -6961.814 -6961.813876 -6961.284 -6961.813876 -6952.482
g07 24.306209 24.306209 24.327 24.306209 24.475 24.306212 24.843
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.630057 680.630057 680.632 680.630057 680.643 680.630057 680.719
g10 7049.248 7049.248020 7051.903 7049.252037 7253.047 7049.320549 7638.366
g11 0.750000 0.749999 0.750000 0.749999 0.750000 0.749999 0.750000
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
g13 0.053950 0.053950 0.053986 0.053950 0.166385 0.053950 0.468294
g14 -47.761 -47.761128 -47.535 -47.761128 -47.368 -47.761118 -47.053
g15 961.715 961.715171 *961.698 961.715171 963.922 961.715171 967.787
g16 -1.905 -1.905155 -1.905 -1.905155 -1.905 -1.905155 -1.905
g17 8853.539 8853.539831 *8890.1826 8900.046859 *8954.1364 8928.146735 *9163.6767
g18 -0.8660 -0.866025 -0.866 -0.866025 -0.716 -0.866025 -0.648
g19 32.386 32.348679 34.223 32.348776 37.208 32.349921 41.251
g20 0.204979 *0.233685 *0.211364 *0.237738 *0.251130 *0.240781 *0.304414
g21 193.785033 193.785033 *347.9809 193.785033 *678.3924 193.785107 *985.7821
g22 236.430975 *202.238522 *2340.6166 *8801.959136 *9438.2549 *19831.711035 *17671.5351
g23 -400.000551 -399.98688 *-1470.1525 -394.098457 *-363.5082 -333.566384 *177.2526
g24 -5.508 -5.508013 -5.508 -5.508013 -5.508 -5.508013 -5.507

∗ Infeasible solution

g20 and g22. But, COPSO finds feasible solutions for test problems g17, g21 and
g23, where SMES could not find feasible solutions in any single run.

6.6 Comparison of COPSO vs DOPSO Using 50,000 Fitness
Function Evaluations

Finally, we compare COPSO and the Dynamic-Objective Particle Swarm Opti-
mization algorithm (DOPSO) developed by Lu and Chen [25]. DOPSO handles
constraints through a bi-objective unconstrained optimization problem, where one
objective is to find the feasible region, and the other one is to optimize the orig-
inal objective function. Also, DOPSO uses a restricted velocity PSO (RVPSO)
[25], which modifies the velocity equation replacing the inertia term (w ∗ vt) by
w∗(GBest−PBest). DOPSO performed 50,000 fitness function evaluations. Thereby,
a new experiment with just 50,000 function evaluations is performed by COPSO for
a fair comparison. Table 8 presents the results of this comparison.

DOPSO finds better solutions than the optimal reported for test problems g03,
g05, g11, and g13 because it uses a tolerance value of ε =1E-03 (remember that
COPSO reaches a tolerance value of ε =1E-06). In general, COPSO’s performance
is better than DOPSO on test problems g01, g02, g05 and g13. But, DOPSO is better
than COPSO in test problem g10.
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Table 8 Comparison of COPSO and DOPSO in the benchmark problems

Best Result Mean Result Worst Result
TF Optimal COPSO DOPSO COPSO DOPSO COPSO DOPSO

g01 -15.000000 -14.999999 -15 -14.999999 -14.4187 -14.999999 -12.4531
g02 -0.803619 -0.803614 -0.664028 -0.792865 -0.413257 -0.778276 -0.259980
g03 -1.000000 -1.000005 -1.0050 -1.000004 -1.0025 -1.000003 -0.9334
g04 -30665.539 -30665.538672 -30665.539 -30665.538672 -30665.539 -30665.538672 -30665.539
g05 5126.4981 5126.498030 5126.4842 5126.520522 5241.0549 5126.634522 5708.2250
g06 -6961.8138 -6961.813876 -6961.81388 -6961.813876 -6961.81388 -6961.813876 -6961.8138
g07 24.306209 24.306802 24.306 24.316905 24.317 24.345260 24.385
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.630057 680.630057 680.630 680.630059 680.630 680.630080 680.630
g10 7049.248 7049.278315 7049.2480 7050.506423 7049.2701 7058.453341 7049.5969
g11 0.750000 0.749999 0.749 0.749999 0.749 0.749999 0.749
g12 -1.000000 -1.000000 -1 -1.000000 -1 -1.000000 -1
g13 0.053950 0.053949 0.0538666 0.053963 0.6811235 0.054012 2.0428924

7 Final Remarks and Future Research

This chapter reviews and compares a new algorithm called COPSO. It has shown
high performance in constrained optimization problems of linear or nonlinear na-
ture. The experimental results are highly competitive with respect to the state-of-
the-art algorithms. Three important contributions of COPSO are worth to mention:
A new neighborhood structure for PSO, the incorporation of perturbation opera-
tors without modifying the essence of the PSO, and a dynamic tolerance to handle
equality constraints.

The first contribution is the singly-linked neighborhood structure. It slows down
the convergence of the flock, breaking the double-link that exists between the par-
ticles in the ring neighborhood structure. COPSO implements a singly-linked ring
with a neighborhood of size n = 4, but a general algorithm to build neighborhoods
of size n is given.

Another relevant idea developed by COPSO is the perturbation of the PBest mem-
ory as a source of variation and therefore diversity. Two perturbation operators, C-
perturbation and M-perturbation are applied to the PBest. It is equivalent to perturb
the particle’s memory, but not its behavior (as it is performed by other approaches,
that tend to destroy the flock’s organization capacity).

The last property of COPSO is the adoption of a dynamic tolerance to handle
equality constraints. The effectiveness of the approach was demonstrated through a
specific set of experiments reported in Table 4.

The performance of COPSO is highly robust, reporting the best results on the
benchmark problems when limited to only 50,000 fitness function evaluations (see
Table 8).

Future research should address the advantage meant by the different neighbor-
hood topologies in constrained optimization (most researchers have approached
global optimization problems). Which topology is best to maintain the flock’s di-
versity? Or provides fast convergence to the constrained optimum ?
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Boundary Search for Constrained Numerical
Optimization Problems

Guillermo Leguizamón and Carlos Coello Coello

Abstract. The necessity of approaching the boundary between the feasible and in-
feasible search space for many constrained optimization problems is a paramount
challenge for every constraint-handling technique. It is true that many of the state-
of-the-art constraint-handling techniques performs well when facing constrained
problems. However, it is a common situation that reaching the boundary between
the feasible and infeasible search space could be a difficult task for some particular
problems. Firstly, this chapter shows a general overview of the constraint-handling
techniques based on a boundary approach and emphasizing a recent proposal ap-
plying a more general boundary operator. In addition, the chapter includes some
particular considerations related to the implementation aspects of the boundary ap-
proach when facing problems with one o more constraints. Another important issue
also considered here is about the implementation of this approach when taking into
account different search engines. On this direction, some basic examples are de-
picted as guidelines for possible implementations under well-known metaheuristics
as Evolutionary Algorithms (EAs), Particle Swarm Optimization (PSO), and Ant
Colony Optimization (ACO). To validate the boundary approach implemented under
the above metaheuristics, an experimental study is presented in which well-known
problems were considered. Finally, a brief summary of the chapter and some ideas
for future works are given which could help the researchers interested in developing
advanced constraint-handling techniques.
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1 Introduction

The boundary search can be considered as alternative approach when facing
problems with active constraints (see Sect. 2) at the optimal or high quality solu-
tions. This is mainly observed for that problems that include at least one equality
constraint. However, there exist many optimization problems without any equality
constraint for which many of their constraints are active for the best feasible solu-
tions. Clearly the more appropriate situation for the boundary approach is when the
problem has only one equality constraint. In addition, the boundary search could
be used as a complementary mechanism of another constraint-handling technique
to rapidly reach or force the exploration towards the regions around the boundary
between the feasible and infeasible search space.

Specific operators (or ad hoc boundary operators) could be the right candidates
to search only on the boundary region between the feasible and infeasible search
space. However, it is not always possible to design specific boundary operators for
each problem constraint. Furthermore, there exist only a few examples of this kind
of boundary operators in the literature. Michalewicz et al. [17] wrote one of the
first papers on boundary search through the use of evolutionary algorithms for cons-
trained numerical optimization problems. The efficiency of this approach was shown
by using two constrained optimization problems: Keane’s function (also known as
G02) [10] and another function with one equality constraint (also known as G03).
For solving these problems the authors proposed two genetic operators which gen-
erate offspring lying on the boundary between the feasible and infeasible search
space. Similarly, Schoenauer and Michalewicz [19] proposed several evolutionary
operators capable of exploring a general surface of dimension n− 1 (n is the num-
ber of variables). The design of these operators, tested on three problems, depends
on the surface representation: curves-based, plane-based, and parametric represen-
tation. Although not using an ad hoc boundary operator, Wu et al. [23] proposed
a GA for the optimization of a water distribution system, which is a highly cons-
trained optimization problem. The proposed approach co-evolves and self-adapts
two penalty factors in order to guide and preserve the search towards the boundary
of the feasible search space.

On the other hand, Gottlieb [9] introduces and remarks the use of the the bound-
ary approach for a combinatorial optimization problem, more precisely, the multi-
ple knapsack problem. By the same year Leguizamón and Michalewicz proposed
for the same problem, an Ant System which biases the search boundary region and
gives encouraging results [15]. The maximum independent set problem is also con-
sidered under the same approach and many instances of this problem were solved
optimally [7].

The reduction of the search space is one of the most relevant characteristics of
the boundary search approach since the exploration considers only the boundary of
the feasible search space. However, many of the test cases considered in the for-
mer works only include problems with one constraint for which it is possible to
define ad hoc genetic operators that fit perfectly the boundary of the feasible region.
However, this sort of approach is impractical in an arbitrary problem with many
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constraints, and it is therefore necessary to define a more general approach for
boundary search which can be as robust as possible to deal with different types
of constraints. More recently, Leguizamón and Coello [13,14] proposed a boundary
approach that focuses the search on the boundary region by considering a sort of
more general boundary operator applicable to any type of constraints. The exper-
imental reports show the applicability of the boundary approach using ant colony
based algorithms as a search engine.

The next section of this chapter shows a general overview of the constraint-
handling techniques. Sect. 3 describes the boundary search approach and two alterna-
tives for exploring the boundary between the feasible and infeasible search space: ad
hoc operators and a general operator. In the last case, emphasizing a more recent pro-
posal according to Leguizamón and Coello [13,14]. In order to visualize some con-
siderations about specific implementation aspects of the boundary approach, Sect. 4
displays the pseudocode by taking into account different search engines. On this di-
rection, some basic examples are depicted as guidelines for possible implementa-
tions under well-known metaheuristics (MHs) as Evolutionary Algorithms [1, 6, 8],
Particle Swarm Optimization [6,11,12], and Ant Colony Optimization [4–6] which
have been used as alternative search engines to successfully implement constraint-
handling techniques. Section 5 shows the results of the application of EAs, ACO, and
PSO to a well-known testbed of numerical optimization problems. Finally, a brief
summary and some ideas for future work are given which could help the researchers
interested in developing advanced constraint-handling techniques.

2 A General Overview of Constraint-Handling Techniques

The general nonlinear programming problem whose aim is to find x so as to
optimize:

f (x) x = (x1,x2, ...,xn) ∈ R
n

where x ∈ F ⊂ S . The set S ⊂ R
n defines the search space and sets F ⊂ S

and U = S −F define the feasible and infeasible search spaces, respectively. The
search space S is defined as an n-dimensional rectangle in R

n (domains of variables
defined by their lower and upper bounds):

l(i)≤ xi ≤ u(i) for 1≤ i≤ n

whereas the feasible set F is defined by the intersection of S and a set of additional
m≥ 0 constraints:

g j(x)≤ 0, for j = 1, . . . ,q and h j(x) = 0 for j = q + 1, . . . ,m.

At any point x ∈F , the constraints gk that satisfy gk(x) = 0 are called the active
constraints at x. Equality constraints h j are active at all points of F .

The most common way of extending MHs (e.g., EAs, PSO) to optimize cons-
trained problems has been through the use of penalty functions, which are the oldest
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and more widely used approaches. However, due to the well-known difficulties asso-
ciated with them, researchers in MHs (mainly in EAs) have proposed different ways
to automate the definition of good penalty factors, which remains as the main draw-
back of using penalty functions. Additionally, several researchers have developed a
considerable amount of alternative approaches to handle constraints, mainly to deal
with specific features of some complex optimization problems in which it is difficult
to estimate good penalty factors or to even generate a single feasible solution.

A comprehensive survey of constraint-handling techniques that have been
adopted over the years to handle all sorts of constraints (linear, non-linear, equality,
and inequality) in EAs can be found in Coello Coello [3]. This survey covers exten-
sively: a) penalty functions in several of their variations that have been used with
EAs (i.e., static, dynamic, annealing, adaptive, co-evolutionary, and death penal-
ties); b) the use of special representations and genetic operators (e.g., operators that
preserve feasibility at all times and decoders that transform the shape of the search
space); c) repair algorithms, which are normally used in combinatorial optimiza-
tion problems in which the traditional genetic operators tend to generate infeasible
solutions all (or at least most of) the time. Thus, ”repair” refers, in this context,
to make valid (or feasible) these individuals through the application of a certain
(normally heuristic) procedure; d) techniques that handle objectives and constraints
separately; and e) discusses approaches that use hybrids with other techniques such
as Lagrangian multipliers or fuzzy logic as well as other more novel approaches.

Although the Coello Coello’s survey is mainly concerned with constraint-
handling techniques from the perspective of EAs, the concepts depicted conform
a general framework to be applied with other search engines. Examples of the more
recent applications of using novels MHs (e.g., DE, PSO, ACO, etc.) for constraint
handling techniques can be found at the web site from EVOCINV [2] which includes
upto date references to the more representatives constraint-handling techniques im-
plemented under different search engines.

It is worth remarking that many problems formulated as at the beginning of this
section, include active constraints at the best known or optimal solutions. For ex-
ample, for problems with at least one equality constraint h j, the respective optimal
solution will lay on the region defined by h j(x) = 0. Furthermore, for many pro-
blems, the best solutions may lay on the boundary between the feasible and infeasi-
ble search space of some inequality constrains, i.e., the region defined by g j(x) = 0.
When those conditions are met for a particular problem, the design of ad hoc oper-
ators or approaches that explore the search space focusing on the boundary region
(according either to the equality and/or inequality constraints) can be a suitable al-
ternative for including in a specific search engine or metaheuristic.

3 The Boundary Search Approach

In the following we first explain how the boundary region can be approached given a
specific search space; more precisely, a subset of the n-dimensional space R

n. Then,
we also describe the manner in which this search space could be explored assuming
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a hypothetical search engine and exploration operators, as well as the properties that
they should satisfy. Afterwards, we present in detail the proposed technique that
takes advantage of the boundary approach to explore some specific regions of the
boundary of the feasible search space by considering ad hoc and a general boundary
operators.

Definition 1. Given a constrained numerical optimization problem, the respective
constraints determine a feasible search space F . In addition, these problem
constraints determine a set FB ⊆F which represent the points in F which make
active at least one of the problem constraints (FB = F when the problem includes
only one equality constraint).

To appropriately define boundary operators, we must take into account that set FB

must be closed under the application of a boundary operator. Let us suppose that
Ωr is a r-ary boundary operator, i.e., it takes r points in set FB; then the resulting
point must be in FB. In other words, an r-ary boundary operator can generally
be defined as Ωr : (FB)r → FB. For example, when considering a “boundary”
crossover operator that takes two parents to generate one child, it can be defined in
the boundary context as Ω2 : FB×FB→FB. Fig. 1 display a set of points laying
on the boundary region with respect to a problem constraint and the application of
boundary operators that take respectively 2, 3, and 4 points as argument. Clearly, Ωr

operator could be any operator (e.g., genetic operators as in EAs) or equation (e.g.,
velocity and position updating of the particles in PSO) used in different MHs used
for sampling new points in the search space.

Ω2(b2
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Ω4(b4
1,b
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Fig. 1 This figure shows a set of points laying on FB (white circles) and the respective
points sampled on FB (filled circles) after the application of the boundary operator Ωr , for
r = 2,3,4. Notice that FB is closed under the application of Ωr

It is worth noting that the definition of an Ωr operator which makes set FB

closed under its application could be a difficult or at least impossible task for most
of the usual problem constraints. The most paradigmatic case is the proposal of
Michalewicz et al. [17] where different boundary operators where defined which
perfectly fit in our definition of the Ωr operator: Geometrical Crossover, Spherical
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Crossover, and ad- hoc mutation operators. However, their application is limited
to couple of problems with specific characteristics. In order to mitigate this draw-
back, the design of more general operators to explore FB could be an interesting
approach when considering a wider set of problems to be tackled under the bound-
ary approach. It must be noted that the above classification, i.e., ad hoc and general
operators, is not intended to be a general rule, instead, it only represents the authors’
point of view in the way the boundary approach could be conceived.

In the following we present two possibles alternative to define an Ωr operator,
either by ad hoc operators or a general operator. The main difference among these
two types of operators is that ad hoc operators are defined to operate on the pheno-
type space where as the general operator does it on the genotype space (Sect. 3.2
describes these concepts in more detail).

3.1 Ad hoc Boundary Operators

As mentioned in a previous section, the work of Michalewicz et al. [17] represents
one of the first intents to define specific ad hoc operators to explore the boundary
between the feasible and infeasible search space. Although this approach to explore
the boundary region can be useful and efficient, it in not always possible to define a
specific one for any problem constraint. Indeed, for most of the problem constraints,
to find an adequate operator could be as difficult as solving the original problem. As
a manner of showing the way in which the boundary region can be explored, we
will describe in the following a classical example, the Keane’s problem [10]. The
reason for showing this alternative through an example is because an ad hoc operator
completely depends on the shape of the involved constraints.

3.1.1 Exploration of the Boundary Region under ad-hoc Operators

The exploration of the boundary search space under ad hoc operators can be vi-
sualized more clearly for a particular problem since its definition depends on the
particular constraint considered. For our example, we have chosen a very well-
known constraint optimization problem widely used as a benchmark to test differ-
ent constraint-handling techniques: the Keane’s problem. This problem, also known
as G02 (see [16]) includes a non-linear objective function and two inequality con-
straints. More precisely, an optimal solution for G02 aims at maximizing:

f (x) = |∑
n
i=1 cos4(xi)−2∏n

i=1 cos2(xi)√
∑n

i=1 ix2
i

|

subject to:
g1(x) = 0.75−∏n

i=1 xi ≤ 0
g2(x) = ∑n

i=1 xi−7.5n≤ 0
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where n = 20 and S = {x ∈R
20|0≤ xi ≤ 10, for i = 1 . . .20}. The best known so-

lution is at x∗ = (3.16237443645701,3.12819975856112,3.09481384891456,
3.06140284777302,3.02793443337239,2.99385691314995,2.95870651588255,
2.92182183591092,0.49455118612682,0.48849305858571,0.48250798063845,
0.47695629293225,0.47108462715587,0.46594074852233,0.46157984137635,
0.45721400967989,0.45237696886802,0.44805875597713,0.44435772435707,
0.44019839654132) where f (x∗) = 0.80619 and constraint g1 is close to being ac-
tive. Fig. 2 shows a plotting of the G02’s objective function for n = 2.

Fig. 2 Keane’s function with n = 2. Infeasible solutions were assigned value zero

Despite of problem G02 has two constraints, one of them is just dismissed when
solving this problem since: a) the second constraint is satisfied for all solutions
laying on the boundary of the first constraint and b) the first constraint is close to
being active at best known solution (see [17]). For this problem, the space FB =
{x ∈S |0.75−∏20

i=1 xi = 0}
The search engine used in Michalewicz et al. [17] is an EA where the main com-

ponents are described as follows:

i. Initialization: Randomly choose a positive variable for xi and use it inverse as
a variable for xi+1. The last variable is either 0.75 (when n is odd) or multiplied
by 0.75 (if n is even).

ii. Mutation: is a unary operator (r = 1) defined by

Ω1(x) = (x1, . . . ,q× xi, . . . ,
1
q
× x j, . . . ,xn),

where q is a random factor restricted to respect the bounds on the variables and
1≤ i, j ≤ 20 randomly chosen, with i �= j.

iii. Crossover: is a binary operator (r = 2) called geometrical crossover and de-
fined according to our notation by

Ω2(x,y) = (xα
1 y1−α

1 , . . . ,xα
n y1−α

n ), with 1≤ α ≤ 1,

where α is a random number.
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By using the above initialization procedure, all points in the initial population
will lay on FB . Similarly, FB is closed under the application of ad hoc operators
Ω1 and Ω2, therefore, all points generated will also lay on the boundary. It is worth
remarking that the application of boundary operators for problem G02 produced
at least two very important results in the area of constraint-handling techniques.
First of all, good quality solutions were formerly obtained by using a boundary
operator and second, showed the usefulness and potential of the boundary approach
for certain types of numerical optimization problems.

3.2 A General Boundary Operator

We describe here an alternative1 general boundary approach (proposed in [13, 14])
which is based on the notion that each point b of the boundary region can be repre-
sented by means of two different points x and y, where x is some feasible point and
y is some infeasible one, i.e., (x,y) can represent one point lying on the boundary
by applying a “binary search” on the straight line connecting the points x and y
(when considering an equality constraint, z ∈F iff h(z) ≤ 0; otherwise, z ∈ U ).
Fig. 3 shows a hypothetical search space including the feasible (shadowed area)
and infeasible regions. We can identify four points lying on the boundary b1, b2,
b3, and b4 which are respectively obtained from (x1,y1), (x2,y2), (x3,y3), and
(x4,y4).

The binary search applied to each pair of points (x,y) is achieved following the
steps described in function BS (see Algorithm 1). For example, a possible applica-
tion of this process can be seen in Fig. 3 where we adopt the pair of points (x3,y3)
from which we obtain the point b3, which lies on the boundary. The first step (la-
beled (1)) indicates that the first mid point found is feasible. Consequently, the left
side of the straight line (x3) is moved to point p1. In the next step (labeled (2)) we
consider the points p1 and y3 as extreme points for which the mid point is the infea-
sible point p2. Thus, the new feasible point or right extreme of the line is now the
point p2. Finally, the last point generated is b3 which can be either lying on or close
to the boundary. Condition ((dist to boundary(m) ≤ δ ) AND Feasible(m)) defines
a threshold to stop the process of approaching the boundary. However, the second
part of this condition (i.e., “Feasible(m)”) it is only applied when considering an
inequality constraint. In this way, function BS guarantees that m is in the feasi-
ble side regarding the corresponding inequality constraint under consideration. It is
worth noticing that parameters x and y are local to BS, i.e., function BS behaves as
a decoder of the pair of feasible and infeasible points passed as parameters. There-
fore, the number of “mid points between” x and y before approaching the boundary
within a distance less that δ is given by log2(d) where d = (dist(x,y)))/δ . Thus,
the closer to the boundary, the larger log2(d).

1 It is possible that other general operators can be visualized to implement under the bound-
ary search approach.
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Fig. 3 Given one feasible and one infeasible point, the respective point lying on the boundary
can be easily reached by using a simple binary search. In this way, the each point on the
boundary can be reached from at least a pair of points (x,y) with x ∈F and y ∈U

3.2.1 Exploring the Boundary Region under a General Operator

So far, we have shown how a point lying on the boundary b can be represented
through a pair of points (x,y) with x ∈F and y ∈U . Now we need to consider the
exploration of the search space which, according to our proposal, can be defined as
G = {(x,y)|x ∈F ⊂ R

n ∧ y ∈ U ⊂ R
n}, that is, the set of pair of points (x,y) as

described above. This space can be considered a genotype space as known in the
area of evolutionary computation. Since each point from G represents a point on the
boundary, it is necessary the application of the decoder represented by function BS
(see Algorithm 1) to obtain the respective phenotype, i.e., the “gene expression” of

Algorithm 1. BS(x,y: real vector): real vector

1: m: real vector;
2: repeat
3: m = mid point between(x,y);
4: if Is on Boundary(m) then
5: return m; { m is a point lying on the boundary }
6: end if
7: if Feasible(m) then
8: x = m;
9: else

10: y = m;
11: end if
12: until (dist to boundary(m)≤ δ ) AND (Feasible(m));
13: return m; {The closest point to the boundary according to δ }
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Fig. 4 The search or geno-
type space (G ), phenotype
space (B), and space E , and
the respective connection
through the decoder BS and
function evaluation φ

G B

BS φ

E

(x,y)∈ G . Thus, the set B = {b|b = BS(x,y)} is conformed by the set solutions on
the boundary. Each solution in this set is evaluated by function φ , which represents
a measure of solutions quality and gives as result an element of set E = {e ∈R|e =
φ(b)}. Fig. 4 displays the respective spaces and how they are related with each other
by the application of functions BS and φ , respectively.

From the above described, is clear that the search engine must deal with the
exploration of space G . Fig. 5 shows a set of three hypothetical points {(x1,y1),
(x2,y2), (x3,y3)} in G , a problem constraint, and the respective points {b1,b2,b3}
on the boundary. The application of the general Ω3 operator on (b1,b2,b3) gives as
result a point b on FB . To obtain this point on the boundary, an operator χ is applied
respectively on the points on F and U to obtain a new point on G , i.e., (x,y), from
which a new point on the boundary is obtained as displayed in the following:

Ω3(b1,b2,b3) = Ω3(BS(x1,y1),BS(x2,y2),BS(x3,y3))
= BS(χ3(x1,x2,x3),χ3(y1,y2,y3))
= BS(x,y)
= b

Indeed, operator χ could be any exploration operator which will depend on the
search engine used to explore space G . For example, from the perspective of evo-
lutionary algorithms, it can be created an initial population of individuals where
each one of them represents an element of set G . Therefore, suitable operators to
be chosen could be any qualified crossover and/or mutation operators for floating-
point representations. A similar approach can be adopted if using another search en-
gine suitable for exploring continuous spaces, e.g., particle swarm optimization, ant
colony optimization, differential evolution, immune systems, etc. Sect. 4 describes
through three MHs for which the boundary approach can be easily implemented
with just a few changes when considering different search engines.

3.3 Focusing on the Problem Constraints

It is important to remember that we are assuming active constraints at the global
optimum to proceed with this method which focuses the exploration on the boundary
region. However, either using an ad hoc or general operator (as the proposed here),
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y = χ3(y1,y2,y3)

x = χ3(x1,x2,x3)

b = BS(x,y)

x1

x2

x3

y1

y2

y3

b1

b2

b3

U

F

Fig. 5 A set of hypothetical points {(x1,y1),(x2,y2),(x3,y3)} in G , a problem constraint,
and the set respective points {b1,b2,b3} on the boundary. The application of the general
3-ary operator on (b1,b2,b3) gives as result a point b on FB . In fact, the operator Ωr is a
combination of operators (χ) that respectively works on space F and U , in addition to the
decoding function BS

the main difficulty of a boundary operator is concerned with problems with more
that one constraint.

Certainly, the simplest case to apply the boundary approach is when the problem
has only one constraint which could be either an equality or an inequality constraint.
Let us suppose that the problem includes only one constraint, let us say h. Then, the
search engine should proceed by sampling: a) when applying an ad hoc operator,
a set of solutions laying on the boundary and after that, applying the specific ad
hoc operators to explore FB directly or b) when applying the general operator, a
set of pair of points on the genotype space G which each one of them is mapped
via function BS in to the boundary region, after that, FB is indirectly explored
through the exploration of space G . In both cases, all solutions generated will be
feasible. Two examples of case (a) are certainly given in the Michalewicz et al.’s
proposal [17]. For the second case (b), Fig. 5 display a hypothetical problem with
one constraint, some points on space G , and the modification of this points which
gives, via function BS, a new point on the boundary.

On the other hand, when facing the typical situation in which we have more
than one constraint, it is necessary to define an appropriate policy to explore the
boundary as efficiently as possible since space FB will be now determined by a set
of constraints rather than one. In this case, it will be not possible to define any type
of boundary operators that make closed FB under their application.

In the following we focus in some alternatives to manage this situation con-
sidering only the use of the general operator. In fact, the same approach can be
applied when considering ad hoc operators, however, we believe that this is un-
likely due to the difficulty to define them for any type of constraint. Therefore, one
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Fig. 6 Feasible search space
defined by 3 inequality
constraints. The search
proceeds on the boundary
of constraint g1, however,
some points on the boundary
of g1 are infeasible when
considering the whole set of
the problem constrains
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U
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possibility is to explore in turn the boundary of each problem constraint. The se-
lection of the constraints to search for can be determined using different methods.
If the problem includes at least one equality constraint, such equality constraints
are the most appropriate candidates to be selected first. However, a possible search
engine could keep focused on a particular constraints over the whole run or may
be change from one problem constraint to another depending on a particular condi-
tion. In our previous work [13] we defined a simple condition based on a parameter
called tc which counts the number of iterations the algorithm focuses in a particu-
lar constraint. However, more complex condition could be considered, for example,
taking into account the population diversity or the degree in which some problem
constraints are being violated. For the last case, the scheme proposed by Schoenauer
and Xanthakis [20] could be adapted and applied when focusing on the boundary
region. The proposed scheme consists on a multi-steps evolutionary process based
on behavioral memory that considers each problem constraint in turn. The process
starts from the first constraint. When the current constraint j is processed, the so-
lutions that violate constraints j−1, . . . ,1 are given a zero fitness. Simultaneously,
when constraint j is satisfied (according to a particular threshold), constraint j + 1
is then processed. The process continues until all constraints have been considered.

As an illustrative example when facing a problem with more than one constraint,
Fig. 6 shows a hypothetical search space determined by three inequality constraints.
Let us suppose that the search proceeds starting on constraint g1. If the visited points
are on the boundary of F , these points will also satisfy the remaining problem
constraints (filled line in Fig. 6). However, the exploration of the boundary with
respect to constraint g1 will eventually produce points violating constraints g2 and
g3 (dotted line in 6). One of the simplest methods to deal with this situation could
be for example, the application of a penalty function for the infeasible solutions. In
addition, if g1 is active at the global optimum, the method will focus the search on
the boundary in order to restrict the explored regions of the whole search space. Note
however, that other (more sophisticated) constraint-handling techniques can also be
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adopted. For example, it could be considered the inclusion of the Stochastic Ranking
approach [18] to make the comparisons among the solutions generated [14] and thus
avoiding the inclusion and tuning of any penalty factor for solutions evaluation.
As a manner of showing some concrete examples of the possible application of
the boundary approach, in the next section, we focus on its implementation from
the perspective of three different search engines: Evolutionary Algorithms, Particle
Swarm Optimization, and Ant Colony Optimization.

4 Implementation Issues

This section is aimed to explain in some detail the implementation the boundary
approach under the general boundary operator by using three search engines: EAs,
PSO, and ACO. Since their implementation under ad hoc operators is straightfor-
ward, i.e., they do not produce any important change on the respective search engine,
we have decided not to include the respective implementation.

The selection of the three mentioned search engines does not follow any kind or
priority of one over the remaining ones. In first place, EAs can be considered the
more popular MHs used in optimization and particularly in numerical constrained
optimization problems. Second, PSO is a more recent MHs which lately have been
successfully applied to solve many of the state-of-the-art benchmarks for numerical
optimization. Finally, we consider ACO as a possible alternative which was chosen
for two main reasons: 1) it was the first search engine used to test the boundary
approach using a general operator with encouraging results and 2) more advanced
version of the ACO metaheuristic have been recently developed which can suc-
cessfully be applied to problems defined over continuous domains with or without
constraints.

Before giving any detail about the respective algorithms, is worth noticing that
all the algorithms were designed including the Stochastic Ranking as complemen-
tary handling technique, i.e., the solutions are ranked based on the sorting procedure
given in Alg. 2 which receives as argument an structure T containing a set of so-
lutions on FB and the respective objective value. Thus, T.xi and T.ei represent
respectively the solution i and its objective value. It should be noticed that I j and
I j+1 are indexes that point to the structure T . In addition, it is also important to
remark that the algorithms described in the following are designed for the general
case, i.e., when the problem includes more than one constraint. However, for the
simplest case (problems with only one constraint) the designed algorithms are still
applicable by modifying a few lines of code as will be explained for each particular
search engine considered. On the other hand, each algorithm includes references to
different structures called TF , TU , and TB which respectively represent a popula-
tion of solutions in spaces F , U , and FB (the same applies to the auxiliary struc-
tures called A and A′). Similarly, an structure TE is used to save the objective value
for the respective solutions in TB. Finally, variable ’ctr’ indicates the current cons-
traint under consideration, i.e., indicates that the algorithm is currently focusing the
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Algorithm 2. A general outline of the stochastic ranking algorithm using a bubble-
sort like algorithm as defined in [18]. Pf represents the probability of using only the
objective function for comparisons when ranking solutions in the infeasible regions
of the search space (a value of 0.4 < Pf < 0.5 was reported as the most appropriate).
Parameters N and λ represent respectively the maximum number of sweeps and
number of solutions that are ranked by comparing adjacent solutions in at least λ
sweeps, and rnd ∈U(0,1).
1: procedure Sort(var T)
2: I j = j,∀ j{1, . . . ,λ}
3: for i in 1 : N do
4: for j in 1 : λ −1 do
5: if (T.xI j == T.xI j+1)||(rnd < Pf )) then
6: if (T.xI j > T.xI j+1) then
7: swap(I j, I j+1)
8: end if
9: else

10: if (T.xI j > T.xI j+1) then
11: swap(I j, I j+1)
12: end if
13: end if
14: end for
15: if no swap done then
16: break
17: end if
18: end for

exploration on the boundary of constraint ’ctr’. Additional specific structures used
by each search engine will be explained when necessary.

Similarly, there exist a set of common functions used through the three algorithms
which are described in the following:

• init(): is in charge of obtaining the initial population of points in space G .
• evaluate(): assigns the respective objective value.
• Boundary(): applies function BS() to all the pair of points in (TF ,TU ) and returns

the respective decoding of those points (the returning structure is usually saved
in TB).

• change constraint(): returns a boolean value indicating the decision of focusing
the search on a different problem constraint.

• Re init(): when a change of constraint occurs, this function reinitialize the points
in structure TF and TU when necessary (e.g., it could be useful a simple pertur-
bation operator here).

• get next constraint(): implements the policy for the selection of the next cons-
traint to be considered for exploration. As indicated in the algorithms described
further in this section, a possible policy could be the Round-Robin policy, how-
ever, others (more informed) policies are also possible.

• Firstk(): returns the first k solutions found in the structure given as parameter.
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• Sort(): applies the Alg. 2 to further make the selection of the set first k solutions.
• Update(): selects the best current solutions in (TF ⊕AF ,TU ⊕AF )2.

4.1 Boundary by Means of EAs

The application of EAs to solve any optimization problems mainly includes a pro-
cedure to obtain the initial population, a selection operator, and a set of genetic
operators. Alg. 3 describes the more important components of an EA used to solve
constrained numerical optimization problems according to the boundary approach.
Lines 3 to 5 are aimed to obtain the initial population on space G , the respective
points on the boundary and their objective values. It can be observed that the selec-
tion process (function Select()) is applied considering TF and TU , and the respective
objective values in TE . This process produces two intermediate structures A′F and
A′U , i.e., selected points on G which undergo genetic operators (in two independent
steps) as can be observed in lines 14 and 15. The resulting structures are then used
as decoders to obtain the respective new points on the boundary (line 17) saved in
structure AB. The next step consists in operate on the ranking (see the SR based
function Sort()) of the union of AB and TB. From this ranking, only the respective
best k solutions from space G will survive for the next generation (’Update()’ is
used to keep the respective best points on space G ).

When the problem has only one constraint (or only one is considered as in prob-
lem G02) there is no need to change from one to another constraint, therefore a few
code lines can be dismissed, not necessarily dropped, from the general algorithm.
In line 2, the ’initial constraint’ is the only problem constraint. The set of lines 7
through 16 are dropped and replaced by lines 13 through 15.

4.2 Boundary by Means of PSO

Differently to EAB, a PSO algorithm includes some other additional structures in
addition to that used to keep the population or swarm. This particular structures
are those representing the respective particles’ velocities (called here VF for space
F and VU for space U ) which let the algorithm explore the respective feasible
and infeasible regions, i.e., the decoder space G . Alg. 4 gives a general outline of
a PSO implementing the boundary approach for solving constrained optimization
problems. This algorithm follows the principle of PSO design known as “Local
Best PSO”. For that reason, two proper functions of this PSO version are added,
’Set the best personal position()’ and ’Set the best local position()’. It can be no-
ticed that they are first applied on TF and then, on TU . In both cases, the selection on
the local and best positions take into account the objective values TE corresponding
to the points they represent on TB .

2 Operator ⊕ is defined as follows: A ⊕ B = (a1, . . . ,aN) ⊕ (b1, . . . ,bM) =
(a1, . . . ,aN ,bN+1, . . . ,bN+M) taking into account TB and the respective objective
values.
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Algorithm 3. A general outline of EAB

1: t = 0
2: ctr= initial constraint // ‘ctr’ represents the problem constraint under consideration
3: init(TF ,TU , ctr);
4: TB =Boundary(TF ,TU )
5: TE =evaluate(TB)
6: while (stop condition not met) do
7: if (change constraint()) then
8: ctr=get next ctr(ctr) // The search continues considering another problem constraint,
9: // e.g., following a Round-Robin policy.

10: AF =Reinit(TF , ctr);
11: AU =Reinit(TU , ctr);
12: else
13: (A′F ,A′U ) =Select(TF , TU , TE );
14: AF =Genetic ops(AF , ctr);
15: AU =Genetic ops(AU , ctr);
16: end if
17: AB =Boundary(AF ,AU )
18: TB =Firstk(Sort(TB⊕AB))
19: TE =evaluate(TB)
20: Update(TF ,TU ,TE ); { According to the new TB}
21: t = t +1
22: end while

The exploration stage for PSOB is accomplished from lines 21 to 28. It can be
noticed that the application of two specific PSO steps: ’Update velocity()’ and ’Up-
date position()’. These two functions are applied on structures VF and TF for the
feasible part of space G , and structures VU and TU for the infeasible one. In the case
of ’Update position()’, it returns the modified point position that can be assigned as
in lines 23 and 27. After the obtaining of the new solutions in AF and AU , the pro-
cess follows the same steps as for EAB. Finally, when the problem has only one
constraint (or only one is considered as in problem G02) there is no need to change
from one to another constraint, therefore a few code lines can be dismissed, not
necessarily dropped, from the general algorithm. In line 2, the ’initial constraint’
represents the only problem constraint. The set of lines 15 through 29 are replaced
by lines 21 through 28.

4.3 Boundary by Means of ACO

The last search engine is one based on the ACO metaheuristic. Particularly, we have
chosen a recent and advanced version of an ACO algorithm for continuous problems
proposed by Socha and Dorigo [22] which is called ACOR where the solutions are
built by using a probability density distribution (PDF). At step i each ant generates
a random number according to a mixture of normal kernels of PDFs Pi(xi) defined
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Algorithm 4. A general outline of lbest PSOB

1: t = 0
2: ctr= initial constraint // ‘ctr’ represents the problem constraint under consideration
3: init(TF ,TU , ctr); // Initializes feasible and infeasible swarms
4: TB =Boundary(TF ,TU )
5: TE =evaluate(TB)
6: while (stop condition not met) do
7: for each particle i in TF do
8: Set the best personal position(TF (i), TE (i))
9: Set the best local position(TF (i), TE (i))

10: end for
11: for each particle i in TU do
12: Set the best personal position(TU (i), TE (i))
13: Set the best local position(TU (i), TE (i))
14: end for
15: if (change constraint()) then
16: ctr= get next ctr(ctr) // The search continues considering another problem constraint,
17: // e.g., following a Round-Robin policy.
18: TF =Reinit(TF , ctr);
19: TU =Reinit(TU , ctr);
20: else
21: for each particle i in TF do
22: Update velocity(VF (i), ctr);
23: AF (i) = Update position(TF (i), VF (i), ctr);
24: end for
25: for each particle i in TU do
26: Update velocity(VU (i), ctr);
27: AU (i) = Update position(TU (i), VU (i), ctr);
28: end for
29: end if
30: AB =Boundary(AF ,AU )
31: TB =Firstk(Sort(TB⊕AB))
32: TE =evaluate(TB )
33: Update(TF ,TU ,TE ); { According to the new TB}
34: t = t +1
35:end while

on the interval ai ≤ xi ≤ bi, i.e., a multimodal PDF aimed at considering several
subregions of that interval at the same time. These ideas are extensively presented
and details concerning implementation issues are given in Socha and Dorigo [22]
through algorithm ACOR which represents the former ideas proposed by Socha [21]
regarding continuous domains. The authors presented an experimental study that
considers the application of ACOR to a test suite of several unconstrained contin-
uous optimization problems. Alg. 5 displays the main components of the ACOB,
an ACOR algorithm that includes the boundary approach for constrained optimiza-
tion problems. The initialization process includes, in addition, a structure ω which
represents a set of weights used as part of the mixture of normal kernels (or PDFs
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Algorithm 5. A general outline of ACOB algorithm

1: t = 0
2: ctr= initial constraint // ‘ctr’ represents the problem constraint under consideration
3: init(TF ,TU , ω , ctr);
4: TB =Boundary(TF ,TU )
5: TE =evaluate(TB)
6: while (stop condition not met) do
7: if (change constraint()) then
8: ctr= get next ctr(ctr) // The search continues considering another problem constraint,
9: // e.g., following a Round-Robin policy.

10: AF =Reinit(TF , ω , ctr);
11: AU =Reinit(TU , ω , ctr);
12: else
13: AF =BuildSols(TF , ω , ctr);
14: AU =BuildSols(TU , ω , ctr);
15: end if
16: AB =Boundary(AF ,AU )
17: TB =Firstk(Sort(TB⊕AB))
18: TE =evaluate(TB)
19: Update(TF ,TU ,TE ); { According to the new TB}
20: t = t +1
21: end while

Pi(xi)). Function ’Build sol()’ samples a new set of solutions according the to the
respective points in G and their ranking. Again, structure ω is involved on the
sampling process which uses the previous solutions to build an updated model of
the PDFs (more details can be found in the description of ACOR in Socha and
Dorigo [22] as well as in Leguizamón and Coello [13] where the adaptation of
ACOR for constrained optimization problems is presented). After the sampling of
the new solutions in AF and AU , the process follows the same steps as for EAB

and PSOB.
Similarly to the above the search engines, when the problem has only one cons-

traint (or only one is considered as in problem G02) there is no need to change from
one to another constraint, therefore a few code lines can be dismissed, not necessar-
ily dropped, from the general algorithm. In line 2, the ’initial constraint’ represents
the only problem constraint. The set of lines 6 through 15 are replaced by lines 13
through 14.

5 Experimental Study

This section presents a (brief) experimental study involving the applications of the
boundary approach under the three metaheuristics described in the previous section.
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Table 1 Set of well-known nonlinear problems

Problem Opt/BK
G01 -15.00
G02 1.0
G03 0.80619
G04 -30665.539
G05 5126.4981
G06 -6961.8138
G07 24.306209
G09 680.630
G10 7049.2083
G11 0.75
G13 0.053950
G14 -47.764
G15 961.715
G17 8853.539
G21 193.7783
G23 -400.0025
G24 -5.5079
G25 16.73889

The problems considered are conformed by a subset of a well-known testbed non-
linear problems used in literarure [16]. Table 1 displays the selected problems and
the respectives optimal or best known values (column Opt/Bk).

The study is divided in two parts. The first part (Section 5.2) shows the results
of the application of one of the three metaheuritics, namely the ACO approach, by
considering two different algorithms. One of them, the original ACOR enhanced
with the stochastic ranking technique to handle constraints (ACON B). The other
one, is the ACOR , but including the boundary approach and stochastich ranking
(ACOB). The objective of this study is to show the benefit of the boundary search
when included as an alternative constraint handling technique. To do that, we con-
sidered just a simple version of the original ACOR and standard parameter setting
for the stochastic ranking in order to better visualize the performance of the algo-
rithm when the search focuses on the boundary between the feasible and infeasible
search space. The second part ( 6) is aimed to compare the performance the bound-
ary approach when implemented under ACO, PSO, and EAs metaheuristics. The
respective algorithms are: ACOB , PSOB , and EAB .

5.1 Parameter Setting

tmax = 10000, tc = 200, only on active constraints, for all the algorithms
PSOB
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v j
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i )

x j
i = x j

i + v j
i

c1 = 0.5, c2 = 0.5, w = 0.85, NP = 50 (NP is k in Algorithm 3, line 18)
EAB

pc = 0.65, pm = 0.01, μ = 50 (μ is k in Algorithm 4, line 31), λ = 50, (μ + λ ),
real vector representation for the individuals, arithmetic crossover, and simple mu-
tation which produces a little change on the value of a partciular dimension vector.

ACOB

ξ = 0.85, q = 0.1, NK = 50 (NP is k in Algorithm 5, line 17), number of ants set
to 50.

5.2 Performance Comparison of ACOB and ACON B

In this section, we compare the performance of ACOB and ACON B. Table 2
shows the results obtained for all the problems studied. Each column shows re-
spectively for each algorithm, the best found value (BF), average and standard de-
viation (Avg±std), and number feasible solutions found out of 30 runs. Numbers
in boldface (column BF) indicate that the optimal solution was obtained for the
respective algorithm. Preliminary results from ACON B were obtained by setting
q∈ {0.0001,0.01,0.1} and fixing ξ = 85. ACON B showed a very similar behavior
(not results) to ACOB with respect to parameter q. Even more, the use of a vary-
ing q showed to be the more representative for ACON B considering the overall
performance (quality and number of feasible solutions found).

It can be seen that ACON B gives an important number of feasible solutions for
some of the problems, however was not able obtain feasible solutions for all the pro-
blems (e.g., for G21 and G23 no feasible solutions were found at all). Taking into
account the solved problems by ACON B (G01, G06, G07, G09, G11, G24, and
G25) its performance is inferior to the ACOB for some of the above problems when
considering the number of feasible solutions and/or average values (see problems
G01, G06, G11, G24, and G25). For some of the remaining problems, ACON B

performs fairly well giving results very close to the optimal ones, however, the main
difference with ACOB is on the average values which shows a less robust algo-
rithm. In addition, for problems G05, G13, and G17; ACON B showed the worst
performance regarding the solution quality. On the other hand, it can be seen that
for problems G10, G17, and G21, ACOB obtained values very close to the optimal
ones, whereas, for problem G23, ACOB showed a poor performance with respect
to the solution quality.

It is worth remarking that ACON B is a very simple adaptation of the original
ACOR to handling constraints. Despite of that, the results of ACON B shows the
potential of the ACO approach for continuous problems. Particularly this potential
is exploited here by incorporating a boundary approach.



Boundary Search for Constrained Numerical Optimization Problems 45

Table 2 BF in bold means that the optimal value was found for the respective problem. It
should be noticed that the results correspond to the setting q = 0.1 and ξ = 0.85. NA stands
for “Not Available”

ACO ACON B

Prob. BF Avg±σ #Fea BF Avg±σ #Fea
G01 -15.00 -15.00±0 30 -15.00 -14.10±1.198 24
G02 0.80619 0.776871±0.025 30 0.728079 0.431599±0.1145 30
G03 1.00 1.00±0 30 1.00 1.00±0.0 29
G04 -30665.539 -30665.539±0 30 -30665.58 -30665.57±0.005 30
G05 5126.49 5135.99±14.54 27 5231.96 5231.96±0 1
G06 -6961.814 -6961.814±0 30 -6961.814 -6961.814±0 2
G07 24.306 24.5370±0.240 30 24.320 25.041±0.62 29
G09 680.630 680.630±0 30 680.630 680.635±0.003 30
G10 7049.32 7155.99±94.92 30 7049.33 7659.54±596.20 29
G11 0.75 0.75±0 30 0.75 0.75±0 8
G13 0.053950 0.053960±0 26 0.097069 0.557918±0.2844 11
G14 -47.760 -47.686±0.08 30 -47.497 -46.315±0.8131 10
G15 961.7151 961.7157±0 30 961.7324 961.8092±0.125 3
G17 8863.67 8958±37.64 30 9011.91 9018.82±5.582 26
G21 193.7860 193.8794±0.09 20 NA NA NA
G23 -303.54 22.54±145.84 17 NA NA NA
G24 5.5080 5.5080±0 30 5.5080 5.5080±0 28
G25 16.73889 16.73889±0 30 16.73889 16.73889±0 7

Boundary ≡FB

6 Comparison of ACO, PSO, and EAs under the Boundary
Approach

This section shows the performance of ACOB, PSOB, and EAB. Table 3 displays
the Best Found (BF) value, and the respective average and deviation values (Avg±)
for each one of the algorithms implemented. Numbers in boldface means that the
optimal (or best known) value was found. The number of feasible solutions found
by the respective algorithms are not showed, however the three algorithms found
very similar values to those values displayed in Table 2 for ACOB.

Clearly, there are a subset of problems for which the three algorithms performs
identically (see G01, G03, G04, G06, G09, G11, G24, and G25). For the problem
G05, the performance is identical with respect to the best value found, however the
average values are different but not statistically significant. On the other hand, the
results for problems G02, G07, and G14 show that ACOB outperformed PSOB and
EAB when considering BF value, however, EAB is more robust for this problem
(see columns BF and Avg±σ ). In the case of G07 it should be noticed that the three
algorithms perform similarly (the average value were not statistically significant).

There exist other particular cases that are analyzed in the following. The results
for problem G10 show that ACOB and EAB outperformed PSOB considering both,
best found and average values. However, ACOB outperformed EAB in terms of the
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Table 3 Performance of ACOB , PSOB, and EAB on the benchmark problems. BF in bold-
face means that the optimal value was found for the respective problem. NA stands for “Not
Available”. The respective parameter setting is described in Section 5.1

ACOB PSOB EAB

Prob. BF Avg±σ BF Avg±σ BF Avg±σ
G01 -15.00 -15.00±0 -15.00 -14.10±1.198 -15.00 -15.00±0

G02 0.80619 0.776871±0.025 0.80512 0.5939±0.06661 0.803550 0.803352±0.0001

G03 1.00 1.00±0 1.00 1.00±0.0 1.00 1.00±0.0

G04 -30665.539 -30665.539±0 -30665.539 -30665.539±0 -30665.539 -30665.529±0.01

G05 5126.49 5135.99±14.54 5126.49 5130.74±5.44 5126.64 5130.12±3.84

G06 -6961.814 -6961.814±0 -6961.814 -6961.814±0 -6961.814 -6961.814±0

G07 24.306 24.5370±0.240 24.375 25.053±0.728 24.372 24.546±0.128

G09 680.630 680.630±0 680.630 680.635±0.003 680.630 680.633±0.0

G10 7049.3261 7155.9948±94.924 7093.0151 8040.5537±972.585 7049.333 7659.540±596.20
G11 0.75 0.75±0 0.75 0.75±0 0.75 0.75±0

G13 0.053950 0.053960±0 0.053961 0.063768±0.0103 0.053984 0.069971±0.048

G14 -47.760 -47.686±0.08 -47.129 -43.778±1.68 47.6724 47.6708±0.0022

G15 961.7151 961.7157±0 961.7151 962.1973±1.1407 961.7151 961.7149±0.0002

G17 8863.67 8958±37.64 8859.9541 9019.2519±125.776 8866.86 9004.288±91.11

G21 193.786 193.879±0.09 196.392 201.034±3.49 193.804 193.880±0.085
G23 -303.54 22.54±145.84 NA NA -177.16 2.67±160.70

G24 5.5080 5.5080±0 5.5080 5.5080±0 5.5080 5.5080±0

G25 16.73889 16.73889±0 16.73889 16.73889±0 16.73889 16.73889±0

average values (statistically significant). For problem G13 the above described sit-
uation it can also be observed, except that ACOB found the optima value for this
particular problem. A different situation is for problem G17 for which PSOB found
the best solution, however, ACOB and EAB showed not statistically significant av-
erage values, but better and statistically significant with respect to PSOB. Consider-
ing the average value, the three algorithms showed similar performance for problem
G21, except that ACOB achieved the best value. Finally, problem G23, no one of
the three algorithms perform well. PSOB was not capable of finding any feasible
solution, whereas, ACOB and PSOB found a few feasible solutions of bad quality.

7 Summary and Future Work

In this chapter we have presented the boundary approach as an alternative approach
to explore the boundary between the feasible and infeasible search space for cons-
trained optimization problems. The boundary approach was presented under two
perspective, either by using ad hoc operators as presented in [17], and a more gen-
eral operator as proposed in previous works [13, 14] as possible alternatives to be
applied when facing constrained problems. In addition, three different search ma-
chines (EAs, PSO, and ACO) were considered to show how the boundary approach
could be implemented without producing major modifications on the original algo-
rithms. Furthermore, it is worth noticing that the boundary approach is an interesting
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mechanism that could be applied to many constrained optimization problems, par-
ticularly this observation is true for the ’general boundary operator’ described in
detail here and proposed in earlier works.

As presented in this chapter, the boundary approach can be used alone (as
a constraint-handling techniques itself) or in combination with a complementary
constraint-handling technique like penalty functions or any other like Stochastic
Ranking which is used here to display three algorithms due to his simplicity and for
being an efficient and very well known technique. The three algorithms (i.e., EAB,
PSOB, and ACOB) presented here as a guidelines show that the boundary approach
is flexible enough to be implemented under different search machines.

Finally, is important to remark that the boundary approach (seen as having the
possibility of using boundary operators) can be considered when implementing a
more general constraint-handling technique under some search engine. Particularly
when facing problems with an several constraints. For example, the general operator
(as defined here) needs two points, one from the feasible region and the other one
form the infeasible one. Let us suppose that a metaheuristic implements a constraint-
handling technique to explore the whole space F . However, the boundary of a par-
ticular constraint could be approached by considering points from both, the feasible
and infeasible one with respect to that constraint. By this way, the generation of so-
lutions laying on the boundary could help to quickly reach (in a controlled manner)
the boundary region. Nevertheless, there are still place to consider alternative ways
of implementing a general boundary operator different form the proposed in this
work.
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Solving Difficult Constrained Optimization
Problems by the ε Constrained Differential
Evolution with Gradient-Based Mutation

Tetsuyuki Takahama and Setsuko Sakai

Abstract. While research on constrained optimization using evolutionary algo-
rithms has been actively pursued, it has had to face the problem that the ability
to solve multi-modal problems is insufficient, that the ability to solve problems with
equality constraints is inadequate, and that the stability and efficiency of searches is
low. We have proposed the εDE, defined by applying the ε constrained method to
differential evolution (DE). It is shown that the εDE is a fast and stable algorithm
that is robust to multi-modal problems and it can solve problems with many equal-
ity constraints by introducing a gradient-based mutation which finds a feasible point
using the gradient of constraints. In this chapter, an improved εDE is proposed, in
which faster reduction of the relaxation of equality constraints in the ε constrained
method and higher gradient-based mutation rate are adopted in order to solve pro-
blems with many equality constraints and to find feasible solutions faster and very
stably. Also, cutting off and reflecting back solutions outside of search space are
adopted to improve the efficiency in finding optimal solutions. The improved εDE
realizes stable and efficient searches, and can solve difficult constrained optimiza-
tion problems with equality constraints. The advantage of the improved εDE is
shown by applying it to twenty four constrained problems of various types.

Keywords: differential evolution, constrained optimization, ε constrained method,
ε-level comparison, gradient-based mutation, pseudoinverse.

1 Introduction

An evolutionary algorithm (EA) is the term commonly used for algorithms based
on principles of evolution, and includes genetic algorithms (GAs), evolution
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strategies (ESs), evolutionary and genetic programming, and so on. EAs are direct
search methods that use only the value of an objective function and essentially solve
unconstrained optimization problems. However, optimization problems in the real
world are often constrained optimization problems where objective functions are
optimized under given constraints.

There are many studies on solving constrained optimization problems using evo-
lutionary algorithms (EAs) [5,7,11,12]. However there are some difficulties in these
studies:

1. The ability to solve multi-modal problems is insufficient. EAs for constrained
optimization can locate a feasible region and find feasible solutions in uni-
modal problems. When multi-modal problems that have many local solutions
in a feasible region are solved, even if the EAs can locate the feasible region,
they are sometimes trapped to a local solution and cannot search for an optimal
solution. Thus a method that is robust to multi-modal problems is required.

2. Obtained solutions in problems with equality constraints are inadequate. Many
EAs for constrained optimization cannot directly solve problems with equality
constraints. To overcome such problems, the definition of the problems needs
to be changed by converting equality constraints into relaxed inequality con-
straints. As a result, the feasibility of the obtained solutions is inadequate. Also,
it is difficult for them to solve problems with many equality constraints.

3. The stability and efficiency of searches is low. Even when solving the same
problem, EAs sometimes find good solutions but sometimes find only very
bad solutions. The initial search points are usually generated randomly and the
search process includes many stochastic operations in EAs. Sometimes EAs
cannot overcome the effect of randomness in the search process of some pro-
blems. Thus, the stability of the search becomes low. Also, many EAs need
rank-based selection or replacement, stochastic selection and mutations based
on Gaussian or Cauchy distributions that incur high computational costs. Thus,
the efficiency of search also becomes low.

To overcome these problems, we have proposed the εDE [36], defined by apply-
ing the ε constrained method [31] to differential evolution (DE) [19, 20]. DE is an
evolutionary algorithm for global optimization that incorporates both crossover and
mutation into a simple operation, which is realized by selecting a parent and adding
scaled difference between two other parents to the parent. By incorporating DE,
problem 1. and 3. can be solved; DE is a simple, fast and stable search algorithm
that is robust to multi-modal problems. The εDE is stable because it uses a sim-
ple and stable selection and replacement mechanism excluding stochastic selection
and replacement [17]. The εDE is also efficient because it uses a simple arithmetic
operation and does not use any rank-based operations or mutations based on Gaus-
sian and Cauchy distributions. Problem 2. can be solved by using a simple way of
controlling the relaxation of equality constraints for the ε constrained method to di-
rectly solve problems with equality constraints. Also, problems with many equality
constraints can be solved by introducing a gradient-based mutation [32] that finds a
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feasible point from an infeasible point using the gradient of constraints at the infea-
sible point.

In this chapter, we propose the improved εDE, in which the following two ideas
are introduced:

• Treatment of points outside of search space
In DE, new points are sometimes generated outside of the search space. In the
εDE, boundary conditions, which specify the search space, were converted to
constraints. The points outside of space were treated in the same manner as points
inside of the space, and they are evaluated wastefully. To avoid this situation, we
introduce two ways of handling points outside of the space: cutting off the points
on the boundary of the space and reflecting the points back to the inside of the
space.

• Improvement of efficiency to find feasible solutions
It is difficult for the εDE to find feasible points in earlier generation, because it
searches for infeasible points having better objective values until the relaxation
of equality constraints is reduced completely or becomes zero. In [32], the elitism
where more feasible points are preserved as feasible elites was proposed to find
feasible solutions faster. However, the elitism sometimes leads premature con-
vergence of search points. In this study, we show that the combination of faster
reduction of the relaxation of equality constraints and higher gradient-based mu-
tation rate enables to solve problems with many equality constraints and to find
feasible solutions faster and more stable.

The advantage of the improved εDE is shown by applying it to twenty four cons-
trained problems of various types proposed in CEC2006 [10] and comparing the
results to those obtained by the εDE.

The rest of this chapter is organized as follows: Section 2 describes previous
works. Section 3 briefly describes the ε constrained method. Section 4 describes DE
and the improved εDE. Section 5 presents experimental results of various bench-
mark problems. Finally, Section 6 concludes with a brief summary of this study and
some remarks.

2 Previous Works

There exist many studies on solving constrained optimization problems using evo-
lutionary algorithms [11] and particle swarm optimization [4]. These studies can be
classified into several categories according to the way the constraints are treated as
follows:

1. Constraints are only used to judge whether a search point is feasible or not [8].
Death penalty method is in this category. The searching process begins with one
or more feasible points and continues to search for new points within the feasi-
ble region. When a new search point is generated and the point is not feasible,
the point is repaired or discarded. However, generating initial feasible points is
difficult and computationally demanding when the feasible region is very small.
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2. The constraint violation, which is the sum of the violation of all constraint func-
tions, is combined with the objective function. The penalty function method is
in this category [13]. An extended objective function is defined by adding the
constraint violation to the objective function as a penalty. The optimization of
the objective function and the constraint violation is realized by the optimization
of the extended objective function. The main difficulty of the penalty function
method is the difficulty of selecting an appropriate value of the penalty coeffi-
cient that adjusts the strength of the penalty.

3. The constraint violation and the objective function are used separately. In this
category, both the constraint violation and the objective function are optimized
by a lexicographic order in which the constraint violation precedes the objec-
tive function. Takahama and Sakai proposed the α constrained method [22, 24]
and the ε constrained method [31], which adopt a lexicographic ordering with
relaxation of the constraints. Deb [6] proposed a method in which the extended
objective function that realizes the lexicographic ordering is used. Runarsson
and Yao [16] proposed the stochastic ranking method in which the stochastic
lexicographic order, which ignores the constraint violation with some probabil-
ity, is used. These methods were successfully applied to various problems.

4. The constraints and the objective function are optimized by multiobjective op-
timization methods. In this category, the constrained optimization problems are
solved as the multiobjective optimization problems in which the objective func-
tion and the constraint functions are objectives to be optimized [1, 9, 15, 21].
However in many cases, solving multiobjective optimization problems is a more
difficult and expensive task than solving single objective optimization problems.

The ε constrained methods can convert algorithms for unconstrained problems
to algorithms for constrained problems using the ε-level comparison, which com-
pares the search points based on the constraint violation of them. The ε constrained
method is in the promising category 3. and is proposed based on the α cons-
trained method. The α constrained method was applied to Powell’s direct search
method in [22, 24], the nonlinear simplex method proposed by Nelder and Mead
in [23, 26, 29], a genetic algorithm (GA) using linear ranking selection in [25, 27]
and particle swarm optimization (PSO) in [28, 30]. The ε constrained method was
applied to PSO in [31,34,35], GA in [33] and differential evolution (DE) in [32,36].

3 The ε Constrained Method

In this section, constrained optimization problems are defined and the ε constrained
method is explained.

3.1 Constrained Optimization Problems

Constrained optimization problems, especially nonlinear optimization problems,
where objective functions are minimized under given constraints, are very
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important and frequently appear in the real world. In this study, the following opti-
mization problem (P) with inequality constraints, equality constraints, upper bound
constraints and lower bound constraints will be discussed.

(P) minimize f (x)
subject to g j(x)≤ 0, j = 1, . . . ,q

h j(x) = 0, j = q + 1, . . . ,m
li ≤ xi ≤ ui, i = 1, . . . ,n,

(1)

where x = (x1,x2, · · · ,xn)T is an n dimensional vector, f (x) is an objective function,
g j(x)≤ 0 and h j(x) = 0 are q inequality constraints and m−q equality constraints,
respectively. Functions f , g j and h j are linear or nonlinear real-valued functions.
Values ui and li are the upper bound and the lower bound of xi, respectively. Also,
let the feasible space in which every point satisfies all constraints be denoted by
F and the search space in which every point satisfies the upper and lower bound
constraints be denoted by S (⊃F ).

3.2 Constraint Violation and ε-Level Comparison

In the ε constrained method, constraint violation φ(x) is defined. The constraint vi-
olation can be given by the maximum of all constraints or the sum of all constraints.

φ(x) = max{max
j
{0,g j(x)},max

j
|h j(x)|} (2)

φ(x) = ∑
j

||max{0,g j(x)}||p +∑
j

||h j(x)||p (3)

where p is a positive number. Usually, Eq. (3) with p = 1 is used.
The ε-level comparison is defined as an order relation on the set of ( f (x),φ(x)).

If the constraint violation of a point is greater than 0, the point is not feasible and
its worth is low. The ε-level comparisons are defined by a lexicographic order in
which φ(x) precedes f (x), because the feasibility of x is more important than the
minimization of f (x).

Let fi and φi be the function value and the constraint violation at a point xi (i =
1,2), respectively. Then, for any ε satisfying ε ≥ 0, the ε-level comparisons <ε and
≤ε between ( f1,φ1) and ( f2,φ2) are defined as follows:

( f1,φ1) <ε ( f2,φ2)⇔
⎧⎨
⎩

f1 < f2, if φ1,φ2 ≤ ε
f1 < f2, if φ1 = φ2

φ1 < φ2, otherwise
(4)

( f1,φ1)≤ε ( f2,φ2)⇔
⎧⎨
⎩

f1 ≤ f2, if φ1,φ2 ≤ ε
f1 ≤ f2, if φ1 = φ2

φ1 < φ2, otherwise
(5)
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In case of ε=∞, the ε-level comparisons <∞ and ≤∞ are equivalent to the ordinal
comparisons < and ≤ between function values. Also, in case of ε = 0, <0 and
≤0 are equivalent to the lexicographic order in which the constraint violation φ(x)
precedes the function value f (x).

3.3 The Properties of the ε Constrained Method

The ε constrained method converts a constrained optimization problem into an
unconstrained problem by replacing the order relation in direct search methods
with the ε-level comparison. An optimization problem solved by the ε constrained
method, that is, a problem in which the ordinary comparison is replaced with the
ε-level comparison, (P≤ε ), is defined as follows:

(P≤ε ) minimize≤ε f (x), (6)

where minimize≤ε means the minimization based on the ε-level comparison ≤ε .
Also, a problem (Pε ) is defined that the constraints of (P), that is, φ(x)= 0, is relaxed
and replaced with φ(x)≤ ε:

(Pε ) minimize f (x)
subject to φ(x)≤ ε (7)

It is obvious that (P0) is equivalent to (P).
For the three types of problems, (Pε ), (P≤ε ) and (P), the following theorems are

given based on the α constrained method [22, 24, 31].

Theorem 1. If an optimal solution of (P0) exists, any optimal solution of (P≤ε ) is
an optimal solution of (Pε ).

Theorem 2. If an optimal solution of (P) exists, any optimal solution of (P≤0) is an
optimal solution of (P).

Theorem 3. Let {εn} be a strictly decreasing non-negative sequence which
converges to 0. Let f (x) and φ(x) be continuous functions of x. Assume that an
optimal solution x∗ of (P0) exists and an optimal solution x̂n of (P≤εn

) exists for any
εn. Then, any accumulation point to the sequence {x̂n} is an optimal solution of (P0).

Theorem 1 and 2 show that a constrained optimization problem can be transformed
into an equivalent unconstrained optimization problem by using the ε-level com-
parison. So, if the ε-level comparison is incorporated into an existing unconstrained
optimization method, constrained optimization problems can be solved. Thus, it
is thought that the ε constrained method is an algorithm transformation method
which can convert an algorithm for unconstrained optimization into an algorithm for
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constrained optimization. Theorem 3 shows that, in the ε constrained method, an
optimal solution of (P) can be given by converging ε to 0 as well as by increasing
the penalty coefficient to infinity in the penalty method.

4 The εDE

In this section, we first describe differential evolution. Then, we describe the εDE,
which is the integration of the ε constrained method and DE, with gradient-based
mutation and the improved εDE.

4.1 Differential Evolution

Differential evolution is a variant of ES proposed by Storn and Price [19,20]. DE is
a stochastic direct search method using population or multiple search points. DE has
been successfully applied to the optimization problems including non-linear, non-
differentiable, non-convex and multi-modal functions [2]. It has been shown that
DE is fast and robust to these functions.

The main feature of DE is that DE uses simple arithmetic operations to avoid the
control of Gaussian mutation in ES. In general, the mutation process must be adap-
tive to the step size of the Gaussian mutation, because the ideal step size depends on
the gene or element that is mutated and the state of the evolution process. DE adopts
the sum of a base vector and the scaled difference vectors as the mutation operation
instead of Gaussian mutation. The base vector is selected from the population. The
difference vectors are formed by the differences between a pair of vectors randomly
selected from the population. As search area formed by the population contracts
and expands over generations, the step size in each dimension, which is given by
the difference vectors, adapts automatically.

There are some variants of DE that have been proposed, such as DE/best
/1/bin and DE/rand/1/exp [14]. The variants are classified using the notation
DE/base/num/cross. “base” indicates the method of selecting a base vector. For ex-
ample, DE/rand/num/cross selects the base vector at random from the population.
DE/best/num/cross selects the best vector in the population. “num” indicates the
number of difference vectors used to perturb the base vector. “cross” indicates the
crossover mechanism used to create a trial vector. For example, DE/base/num/bin
shows that crossover is controlled by binomial crossover using constant
crossover rate. DE/base/num/exp shows that crossover is controlled by exponen-
tial crossover which is a one-point crossover using exponentially decreasing the
crossover rate.

In DE, initial vectors (individuals) are randomly generated within the search
space and form an initial population. Each individual contains n genes as decision
variables or a decision vector. At each generation or iteration, all individuals are
selected as target vectors (parents). Each target vector is processed as follows: The
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mutation process begins by choosing 1 + 2 num vectors from the population except
for the target vector in the processing. The first vector is a base vector. All subse-
quent vectors are paired to create num difference vectors. The difference vectors are
scaled by a scaling factor F and added to the base vector. The resulting vector is
then recombined with the target vector. The probability of recombination at an el-
ement is controlled by a crossover rate CR. This crossover process produces a trial
vector (child). Finally, for survivor selection, the trial vector is accepted for the next
generation if the trial vector is better than the parent.

4.2 The εDE with Gradient-Based Mutation

The εDE is an algorithm where the ε constrained method is applied into DE, or or-
dinary comparisons in DE are replaced with the ε-level comparisons. The gradient-
based mutation is explained here, and the algorithm of the εDE will be described
later.

The gradient-based mutation is an operation similar to the gradient-based repair
method proposed by Chootinan and Chen [3]. The vector of constraint functions
C(x), the vector of constraint violations ΔC(x) and the increment of a point x to
satisfy constraints Δx are defined as follows:

C(x) = (g1(x) · · · gq(x)hq+1(x) · · · hm(x))T (8)

ΔC(x) = (Δg1(x) · · · Δgq(x)hq+1(x) · · · hm(x))T (9)

∇C(x)Δx = −ΔC(x) (10)

Δx = −∇C(x)−1ΔC(x) (11)

where Δg j(x) = max{0,g j(x)}. And ∇C(x) is the gradient matrix of C(x).

∇C(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂g1(x)
∂x1

∂g1(x)
∂x2

· · · ∂g1(x)
∂xn

...
... · · · ...

∂gq(x)
∂x1

∂gq(x)
∂x2

· · · ∂gq(x)
∂xn

∂hq+1(x)
∂x1

∂hq+1(x)
∂x2

· · · ∂hq+1(x)
∂xn

...
... · · · ...

∂hm(x)
∂x1

∂hm(x)
∂x2

· · · ∂hm(x)
∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

The gradient matrix ∇C(x) can be obtained numerically by calculating C(x) repeat-
edly with changing the value of each decision variable xi to xi+η :

∇C(x) =
1
η

(C(x + η e1)−C(x), · · · ,C(x + η en)−C(x)) (13)
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where ei is a unit vector of which the i-th element is 1 and the other elements are 0
and η is a very small amount.

Although the ∇C(x) is not invertible in general, the Moore-Penrose inverse or
pseudoinverse ∇C(x)+ [18], which gives an approximate or best (least squares)
solution to a system of linear equations, can be used instead in Eq. (11). A com-
putationally simple and accurate way to get the pseudoinverse is by using singular
value decomposition. The singular value decomposition of a (m,n) matrix A can be
described as follows:

A = UΣV T (14)

where U is a unitary (m,m) matrix, V T is the conjugate transpose of a (n,n) unitary
matrix V , and Σ is a (m,n) matrix with nonnegative numbers on the diagonal and
zeros off the diagonal. The pseudoinverse A+ of A can be obtained as follows:

A+ = V Σ+UT (15)

where Σ+ is the pseudoinverse of a diagonal matrix Σ and can be obtained by in-
verting each non-zero element on the diagonal.

After Δx is obtained, a mutated vector can be obtained as follows:

xnew = x + Δx (16)

This mutation or repair operation is executed with gradient-based mutation prob-
ability Pg. In [3], only non-zero elements of ΔC(x) are repaired and the repair op-
eration is repeated with some probability while amount of repair is not small. In
the εDE, however, non-zero inequality constraints and all equality constraints are
considered to keep the feasibility of equality constraints. The mutation operation
is repeated fixed times Rg while the point is not ε-feasible; When φ(x) ≤ ε(t), the
point x is ε-feasible.

4.3 Controlling the ε-Level

Usually, the ε-level does not need to be controlled. Many constrained problems
can be solved based on the lexicographic order where the ε-level is constantly 0.
However for problems with equality constraints, the ε-level should be controlled
properly to obtain high quality solutions.

In this study, a simple way of controlling the ε-level is used according to Eq. (17).
The initial ε-level ε(0) is the constraint violation of the top θ -th individual in the
initial search points. The ε-level is updated until the number of iterations t becomes
the control generation Tc. After the number of iterations exceeds Tc, the ε-level is
set to 0 to obtain solutions with minimum constraint violation.
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ε(0) = φ(xθ ) (17)

ε(t) =
{

ε(0)(1− t
Tc

)cp, 0 < t < Tc,

0, t ≥ Tc

where xθ is the top θ -th individual and θ = 0.2N in usual, and cp is a parameter to
control the speed of reducing relaxation of constraints.

4.4 The Improved εDE

In order to improve the efficiency of the εDE to find optimal solutions, operations
to move a point outside of search space into the inside of the space are required.
There are some ways to realize the movement: generating solutions again, cutting
off the solutions on the boundary, and reflecting points back to the inside of the
boundary [9]. In this study, reflecting back and cutting off operations are used:

• Reflecting back

xi j =

⎧⎪⎪⎨
⎪⎪⎩

li +(li− xi j)−
⌊

li−xi j
ui−li

⌋
(ui− li) (xi j < li)

ui− (xi j−ui)+
⌊

xi j−ui
ui−li

⌋
(ui− li) (xi j > ui)

xi j (otherwise)

(18)

where �z� is the maximum integer smaller than or equal to z. This operation is
applied when a new point is generated by DE operations.

• Cutting off

xi j =

⎧⎨
⎩

li (xi j < li)
ui (xi j > ui)
xi j (otherwise)

(19)

This operation is applied when a new point is generated by gradient-based
mutation.

In order to find feasible solutions faster, faster reduction of the relaxation of
equality constraints in the ε constrained method is adopted by using a large value
for control parameter cp in Eq.(17). In order to find feasible solutions more stable,
higher gradient-based mutation rate is adopted by using a large value for gradient-
based mutation rate Pg. However, it should be noted that too fast reduction, or too
large cp and too high mutation rate, or too large Pg tend to lead too fast convergence
of search process and increase the probability that the search process is trapped in a
local minimum.

The algorithm of the improved εDE based on DE/rand/1/exp variant, which is
used in this study, is as follows:

The pseudo code of the improved εDE is shown in Fig. 1.
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� �
εDE/rand/1/exp()
{

P=Generate N individuals {xi} in the search space S randomly;

ε=ε(0);
for(t=1; t ≤ Tmax; t++) {

for(i=1; i ≤ N; i++) {

(p1, p2, p3)=select randomly from [1,N] s.t. p1 �= p2 �= p3 �= i;

xnew=xi ∈ P;

j=select randomly from [1,n];
k=1;

do {

xnew
j =xp1

j +F(xp2
j − xp3

j );
j=( j +1)%n;

k++;

} while(k ≤ n && u(0,1) < CR);

move xnew inside of S by reflecting back;

if(φ(xi) > ε(t) && u(0,1) < Pg)

for(s = 0; s < Rg; s++) {

xnew=xnew −∇C(xnew)+ΔC(xnew);
move xnew inside of S by cutting off;

if(φ(xnew) ≤ ε(t)) break;

}

if(( f (xnew),φ(xnew)) <ε ( f (xi),φ(xi)))
xi=xnew;

}

ε=ε(t);
}

}

� �
where ε(t) is the ε-level control function, F is a scaling factor, CR is a crossover rate, and
u(0,1) is a uniform random number generator in [0,1]. Underlined parts are modifications
from original DE.

Fig. 1 Pseudo code of the improved εDE

5 Experimental Results

In order to show the performance of the improved εDE, twenty four benchmark
problems defined in “Problem Definitions and Evaluation Criteria for the CEC
2006 Special Session on Constrained Real-Parameter Optimization” [10], which
can be obtained online, are solved. The improved εDE can solve problems with
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equality constraints directly. However, according to the definition of [10], problems
with equality constraints are relaxed, that is, all equality constraints h j(x) = 0, j =
q + 1, · · · ,m are replaced by inequalities:

|h j(x)| ≤ δ , δ > 0 (20)

where δ = 0.001.
The main features of the test problems are shown in Table 1. The table shows the

name of test problem in the column labeled “Prob.”, the number of decision variables
in “n” and the form of the objective function in “Form of f ”. The columns labeled
LI, NI, LE and NE show the number of linear inequality constraints, nonlinear in-
equality constraints, linear equality constraints and nonlinear equality constraints,
respectively. The number of active constraints at the optimal solution is shown in
“active”, where “-” means the number of active constraints is unknown. The esti-
mated ratio between the feasible region and the search space, or ρ = |F |/|S | is
shown in “ρ”. The value of ρ is calculated by generating 10,000,000 points ran-
domly in this study.

Table 1 Summary of test problems

Prob. n Form of f LI NI LE NE active ρ(%)
g01 13 quadratic 9 0 0 0 6 0.00022
g02 20 nonlinear 1 1 0 0 1 99.99639
g03 10 polynomial 0 0 0 1 1 0.00000
g04 5 quadratic 0 6 0 0 2 26.95954
g05 4 cubic 2 0 0 3 3 0.00000
g06 2 cubic 0 2 0 0 2 0.00655
g07 10 quadratic 3 5 0 0 6 0.00009
g08 2 nonlinear 0 2 0 0 0 0.86109
g09 7 polynomial 0 4 0 0 2 0.52759
g10 8 linear 3 3 0 0 6 0.00063
g11 2 quadratic 0 0 0 1 1 0.00000
g12 3 quadratic 0 93 0 0 0 4.76560
g13 5 nonlinear 0 0 1 2 3 0.00000
g14 10 nonlinear 0 0 3 0 3 0.00000
g15 3 quadratic 0 0 1 1 2 0.00000
g16 5 nonlinear 4 34 0 0 4 0.01942
g17 6 nonlinear 0 0 0 4 4 0.00000
g18 9 quadratic 0 13 0 0 4 0.00000
g19 15 nonlinear 0 5 0 0 - 33.47139
g20 24 linear 0 6 2 12 - 0.00000
g21 7 linear 0 1 0 5 6 0.00000
g22 22 linear 0 1 8 11 - 0.00000
g23 9 linear 0 2 3 1 - 0.00000
g24 2 linear 0 2 0 0 2 44.21041
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5.1 Parameters Setting

The setting of algorithm parameters in the improved εDE is as follows:

• All parameters that are adjustable
Parameters for DE are population size (N), scaling factor (F) and crossover rate
(CR). Parameters for the ε constrained method are control generations (Tc) and
control factor (cp). The others are gradient-based mutation rate (Pg) and the
number of repeating mutation (Rg).

• Corresponding dynamic ranges
Dynamic ranges are not studied enough, but we recommend the following
ranges based on our experience to solve various benchmark problems: N ∈
[2n,20n], F ∈ [0.6,0.8], CR ∈ [0.6,0.95], Tc ∈ [0.1Tmax,0.8Tmax], cp ∈ [2,100],
Pg ∈ [0.01,0.2], Rg ∈ [1,5].

• Guidelines on how to adjust the parameters
Higher N, higher F , higher CR, higher Tc, lower cp, higher Pg and higher Rg

make search process more robust, but less fast. To solve problems with many
equality constraints, Pg should be a large value such as Pg = 0.1. To solve
problems with equality constraints faster, cp should be a large value such as
cp = 100.

• Actual parameter values used
N = 40, F = 0.7, CR = 0.9, Tc = 0.2Tmax = 2500 (Tmax = 12500), cp = 100,
Pg = 0.1, Rg = 3.

Table 2 Error Values Achieved When FES= 5×103 , FES= 5×104, FES= 5×105 for Pro-
blems 1-6

FES g01 g02 g03 g04 g05 g06

Best 6.7406e-01(0) 2.1940e-01(0) 8.5332e-02(0) 1.2975e+00(0) 1.2028e-03(0) 1.2460e-04(0)
Median 1.0597e+00(0) 2.8279e-01(0) 1.4252e-01(0) 2.9936e+00(0) 2.0853e-03(0) 1.1971e-03(0)
Worst 1.7100e+00(0) 3.1206e-01(0) 2.9125e-01(0) 6.9507e+00(0) 2.6011e-02(0) 1.5896e-02(0)

5×103 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0

Mean 1.1072e+00 2.7979e-01 1.5990e-01 3.3517e+00 4.9968e-03 3.1239e-03
Std 2.3352e-01 2.2376e-02 5.1138e-02 1.5431e+00 5.6951e-03 3.8737e-03

Best 3.0198e-14(0) 1.8987e-03(0) 1.8231e-07(0) 0.0000e+00(0) 0.0000e+00(0) 1.1823e-11(0)
Median 2.5757e-13(0) 1.0350e-02(0) 1.0915e-06(0) 3.6380e-12(0) 0.0000e+00(0) 1.1823e-11(0)
Worst 6.4126e-13(0) 2.6937e-02(0) 9.8736e-06(0) 3.6380e-12(0) 0.0000e+00(0) 1.5461e-11(0)

5×104 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0

Mean 2.9978e-13 1.0975e-02 1.6736e-06 2.7649e-12 0.0000e+00 1.1969e-11
Std 1.8085e-13 6.0298e-03 1.9943e-06 1.5537e-12 0.0000e+00 7.1290e-13

Best 0.0000e+00(0) 1.0335e-09(0) -4.4409e-16(0) 0.0000e+00(0) 0.0000e+00(0) 1.1823e-11(0)
Median 0.0000e+00(0) 1.8181e-08(0) -4.4409e-16(0) 0.0000e+00(0) 0.0000e+00(0) 1.1823e-11(0)
Worst 0.0000e+00(0) 7.7944e-08(0) 8.0469e-13(0) 3.6380e-12(0) 0.0000e+00(0) 1.5461e-11(0)

5×105 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0

Mean 0.0000e+00 2.2816e-08 5.1639e-14 8.7311e-13 0.0000e+00 1.1969e-11
Std 0.0000e+00 1.8981e-08 1.7257e-13 1.5537e-12 0.0000e+00 7.1290e-13

5.2 Results Achieved

Tables 2, 3, 4 and 5 show best, worst, median, mean, and standard deviation of the
difference between the best value found f best and the optimal value f ∗, or f best− f ∗,
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after 5× 103 , 5× 104 and 5× 105 function evaluations (FES) for independent 25
runs. Numbers in parenthesis after objective function values show the corresponding
number of violated constraints. Number of constraints, which are infeasible at a
median solution by more than 1, 0.01, and 0.0001, are shown in c, respectively.
Mean violation for the median solution is shown in v̄.

The improved εDE succeeded to find feasible and optimal solutions for all pro-
blems in all runs except for g20. For g22, the improved εDE succeeded to find very
good objective values between 236.37028113 and 236.37031321, which are bet-
ter than the known objective value 236.430975504001 [10] that had been found
by the εDE. For g20, the improved εDE could not find any feasible solutions.

Table 3 Error Values Achieved When FES=5×103, FES=5×104, FES=5×105 for Problems
7-12

FES g07 g08 g09 g10 g11 g12

Best 1.1299e+01(0) 4.1633e-17(0) 1.0939e+00(0) 1.3994e+03(0) 4.3009e-06(0) 3.8174e-10(0)
Median 1.7196e+01(0) 5.5511e-17(0) 2.5933e+00(0) 2.6530e+03(0) 4.8662e-05(0) 8.0516e-07(0)
Worst 2.3544e+01(0) 5.5511e-17(0) 5.5203e+00(0) 4.4121e+03(0) 1.0740e-04(0) 2.0815e-04(0)

5×103 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0

Mean 1.7041e+01 5.4956e-17 3.0236e+00 2.6088e+03 5.5876e-05 2.8718e-05
Std 3.3444e+00 2.7195e-18 1.1468e+00 6.0973e+02 3.4898e-05 5.6363e-05

Best 9.1400e-04(0) 4.1633e-17(0) 3.4106e-13(0) 5.3731e-02(0) 0.0000e+00(0) 0.0000e+00(0)
Median 1.7440e-03(0) 4.1633e-17(0) 1.5916e-12(0) 2.7823e-01(0) 0.0000e+00(0) 0.0000e+00(0)
Worst 3.3469e-03(0) 5.5511e-17(0) 2.1828e-11(0) 7.4373e-01(0) 0.0000e+00(0) 0.0000e+00(0)

5×104 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0

Mean 1.8915e-03 4.3299e-17 3.0832e-12 3.0692e-01 0.0000e+00 0.0000e+00
Std 7.6199e-04 4.5097e-18 4.3673e-12 1.7405e-01 0.0000e+00 0.0000e+00

Best -1.8474e-13(0) 4.1633e-17(0) 0.0000e+00(0) -1.8190e-12(0) 0.0000e+00(0) 0.0000e+00(0)
Median -1.8119e-13(0) 4.1633e-17(0) 0.0000e+00(0) -9.0949e-13(0) 0.0000e+00(0) 0.0000e+00(0)
Worst 8.5212e-11(0) 4.1633e-17(0) 1.1369e-13(0) -9.0949e-13(0) 0.0000e+00(0) 0.0000e+00(0)

5×105 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0

Mean 3.3003e-12 4.1633e-17 4.0927e-14 -9.4587e-13 0.0000e+00 0.0000e+00
Std 1.6723e-11 1.2326e-32 5.4570e-14 1.7822e-13 0.0000e+00 0.0000e+00

Table 4 Error Values Achieved When FES=5×103, FES=5×104, FES=5×105 for Problems
13-18

FES g13 g14 g15 g16 g17 g18

Best 8.8295e-06(0) 1.0416e+00(0) 5.2736e-05(0) 4.3125e-03(0) 7.7665e-01(0) 4.1136e-01(0)
Median 8.8614e-05(0) 2.2340e+00(0) 1.5219e-04(0) 6.2111e-03(0) 2.4712e+00(0) 5.3794e-01(0)
Worst 1.1696e-03(0) 3.4674e+00(0) 3.8836e-04(0) 1.9258e-02(0) 6.2198e+00(0) 3.6596e-01(2)

5×103 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0

Mean 1.9987e-04 2.1947e+00 1.6343e-04 7.5447e-03 2.7685e+00 5.3969e-01
Std 2.8399e-04 5.7073e-01 6.5098e-05 3.5710e-03 1.4548e+00 8.9829e-02

Best -9.7145e-17(0) 3.1397e-07(0) 0.0000e+00(0) 4.8850e-15(0) 1.8190e-12(0) 8.2423e-05(0)
Median -7.6328e-17(0) 1.8238e-06(0) 0.0000e+00(0) 4.8850e-15(0) 1.8190e-12(0) 3.2159e-04(0)
Worst -6.9389e-18(0) 2.1913e-05(0) 1.1369e-13(0) 4.8850e-15(0) 3.6380e-12(0) 1.5091e-03(0)

5×104 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0

Mean -8.1601e-17 2.9338e-06 1.3642e-14 4.8850e-15 1.9645e-12 4.0924e-04
Std 2.1614e-17 4.1627e-06 3.6944e-14 7.8886e-31 4.9348e-13 3.2403e-04

Best -9.7145e-17(0) 2.1316e-14(0) 0.0000e+00(0) 4.8850e-15(0) 1.8190e-12(0) 3.3307e-16(0)
Median -9.7145e-17(0) 2.1316e-14(0) 0.0000e+00(0) 4.8850e-15(0) 1.8190e-12(0) 3.3307e-16(0)
Worst -9.7145e-17(0) 2.7384e-11(0) 1.1369e-13(0) 4.8850e-15(0) 1.8190e-12(0) 4.4409e-16(0)

5×105 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0

Mean -9.7145e-17 1.1596e-12 4.5475e-15 4.8850e-15 1.8190e-12 3.5971e-16
Std 0.0000e+00 5.3561e-12 2.2278e-14 7.8886e-31 1.2117e-27 4.7416e-17
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Table 5 Error Values Achieved When FES=5×103, FES=5×104, FES=5×105 for Problems
19-24

FES g19 g20 g21 g22 g23 g24

Best 6.1712e+01(0) -3.2125e-02(3) 7.6170e-02(0) 1.4021e+04(3) 7.8657e+01(0) 1.7618e-09(0)
Median 9.0711e+01(0) -4.9224e-02(3) 1.6307e+00(0) 1.3511e+04(8) 1.3045e+02(0) 6.3322e-09(0)
Worst 1.4288e+02(0) -7.8404e-02(20) 1.0099e+01(0) 1.6054e+04(8) 2.2753e+02(0) 6.5194e-08(0)

5×103 c 0,0,0 0,2,1 0,0,0 4,0,3 0,0,0 0,0,0
v 0 0.0227925 0 5246.23 0 0

Mean 9.4099e+01 -1.8307e-02 2.4895e+00 1.2599e+04 1.3146e+02 1.2123e-08
Std 2.0358e+01 8.5212e-02 2.7393e+00 5.4900e+03 3.4703e+01 1.3942e-08

Best 2.3584e-01(0) 5.7104e-02(6) 4.1885e-07(0) 4.3505e+03(3) 9.6017e-04(0) 5.7732e-14(0)
Median 4.0632e-01(0) 1.9165e-03(6) 1.2294e-06(0) 3.2286e+03(4) 4.5635e-03(0) 5.7732e-14(0)
Worst 9.1655e-01(0) 1.6405e-02(7) 4.0614e-06(0) 5.2416e+03(3) 1.5784e-02(0) 5.7732e-14(0)

5×104 c 0,0,0 0,0,0 0,0,0 0,3,1 0,0,0 0,0,0
v 0 1.62563e-08 0 0.0219335 0 0

Mean 4.5938e-01 9.8623e-03 1.3382e-06 3.9235e+03 6.2415e-03 5.7732e-14
Std 1.6285e-01 2.5305e-02 7.8608e-07 4.1432e+03 4.0184e-03 2.5244e-29

Best 3.5527e-14(0) 2.4799e-03(6) -1.7053e-13(0) -6.0694e-02(0) 0.0000e+00(0) 5.7732e-14(0)
Median 4.2633e-14(0) 2.2254e-02(6) -2.8422e-14(0) -6.0663e-02(0) 0.0000e+00(0) 5.7732e-14(0)
Worst 2.3874e-12(0) 2.2755e-02(6) 1.4211e-13(0) -6.0662e-02(0) 5.6843e-14(0) 5.7732e-14(0)

5×105 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 2.25546e-66 0 0 0 0

Mean 2.4130e-13 2.6661e-02 -3.2969e-14 -6.0666e-02 2.2737e-15 5.7732e-14
Std 5.6098e-13 2.7282e-02 5.2518e-14 7.2824e-06 1.1139e-14 2.5244e-29

Table 6 Number of FES to achieve the fixed accuracy level (( f (x)− f (x∗))≤ 0.0001), Suc-

cess Rate, Feasible Rate and Success Performance on Number of Constraints Evaluations,

Objective Function Evaluations and Gradient Matrix Evaluations

Prob. Best Median Worst Mean Std Feasible Rate Success Rate Success Performance

g01 18594 19502 19917 19322 760.1064 100% 100% 19322 (12755,0)

g02 108303 114347 129255 114163 8396.7284 100% 100% 114163 (61313,0)

g03 30733 35470 41716 35993 2704.9874 100% 100% 35993 (6392,6874)

g04 12771 13719 14466 13601 652.4922 100% 100% 13601 (7794,0)

g05 15402 16522 17238 16458 511.2713 100% 100% 16458 (6836,2431)

g06 5037 5733 6243 5669 355.3901 100% 100% 5669 (2915,0)

g07 60873 67946 75569 68447 3965.7744 100% 100% 68447 (19877,0)

g08 621 881 1173 876 147.7844 100% 100% 876 (396,0)

g09 19234 21080 21987 20878 851.7690 100% 100% 20878 (10046,0)

g10 87848 92807 107794 92911 6577.1924 100% 100% 92911 (16846,0)

g11 4569 4569 4569 4425 1033.8126 100% 100% 4425 (2896,378)

g12 2901 4269 5620 4048 810.8960 100% 100% 4048 (409,0)

g13 2707 4918 11759 5285 1655.9506 100% 100% 5285 (901,1293)

g14 30925 32172 32938 32090 2069.4215 100% 100% 32090 (9085,4853)

g15 4053 6805 10880 7851 2223.6332 100% 100% 7851 (3850,1089)

g16 8965 10159 11200 10106 606.1822 100% 100% 10106 (4173,0)

g17 15913 16511 16934 16354 624.8844 100% 100% 16354 (6365,2505)

g18 46856 57910 60108 57638 5335.9858 100% 100% 57638 (12382,0)

g19 147772 162947 178724 161687 10726.1824 100% 100% 161687 (31250,0)

g20 — — — — — 0% 0% — —

g21 31620 35293 35797 35369 1676.9561 100% 100% 35369 (9299,7075)

g22 241270 261355 288750 263655 20465.3694 100% 100% 263655 (8425,76349)

g23 70349 79059 88523 78090 5543.3487 100% 100% 78090 (12279,17649)

g24 1959 2451 2739 2402 216.5576 100% 100% 2402 (1641,0)

However, the improved εDE found solutions with smaller mean constraint viola-
tion (v̄) 2.9095095×10−66 than that of the best known solution (0.00718768) [32].
So, the improved εDE succeeded in finding more feasible solutions stably.

Table 6 shows the number of FES needed for satisfying the success condition of
f best− f ∗ ≤ 0.0001 and xbest being feasible. The ratio of runs where feasible solu-
tions or successful solutions can be found, and the estimated FES to find successful
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Fig. 2 Convergence Graph for Problems 1-6

solutions, or success performance which is defined by “mean FES/success rate”,
are shown, too. In the εDE, the objective function and the constraint violation are
treated separately, and the evaluation of the objective function can often be omit-
ted when the ε-level comparison can be calculated only by the constraint violation.
Numbers in parenthesis after the estimated FES show the substantial number of
evaluations for objective function and the number of evaluations for gradient matrix
to find successful solutions, respectively.

It is shown that the improved εDE can find near optimal solutions very stably and
efficiently; The success performance is less than 5,000 for 4 problems (g08, g11,
g12 and g24), is less than 50,000 for 12 problems (g01, g03, g04, g05, g06, g09,
g13, g14, g15, g16, g17 and g21), and is less than 100,000 for 4 problems (g07, g10,
g18 and g23). Especially, the substantial number of evaluations for objective func-
tion is less than 5,000 for 8 problems (g06, g08, g11, g12, g13, g15, g16 and g24), is
less than 50,000 for 14 problems (g01, g03, g04, g05, g07, g09, g10, g14, g17, g18,
g19, g21, g22 and g23). Also, although the improved εDE needs the calculation of



Constrained Optimization by the εDE with Gradient-Based Mutation 67

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  50000  100000  150000  200000  250000  300000

f(
x)

-f
(x

*)

FES

g07
g08
g09
g10
g11
g12

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  50000  100000  150000  200000  250000  300000

v

FES

g07
g08
g09
g10
g11
g12

Fig. 3 Convergence Graph for Problems 7-12

gradient matrix, the number of evaluations for the matrix is fairly small compared
with the number of evaluations for constraints.

Figures 2, 3, 4 and 5 show the graphs of f best− f ∗ and v̄ over FES at the median
run. In Figures 4 and 5, enough points are not plotted in some problems with equality
constraints; After a feasible solution was found by gradient-based mutation, the
violation v̄ is not plotted. Also, the εDE searches points by relaxing constraints, the
points often have better objective value (and worse constraint violation) than those
of optimal solution, and the value f (x)− f (x∗) becomes negative.

The figures show that the improved εDE could find near optimal solutions very
efficiently except for g20. The old known objective value and the violation in the
CEC2006 special session were 0.2049794002 and 0.096737, respectively. In this
experiment, the solution with violation 2.2554557184×10−66, which is far smaller
violation than the old one, was found. As the result, the objective value became large
and the value was 0.26530789.
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Fig. 4 Convergence Graph for Problems 13-18

5.3 Comparison

Table 7 shows the comparison between the improved εDE and the εDE [32], which
is the top-ranked algorithm in CEC2006 special session, for the success rate in the
column labeled “Success Rate”, success performance in “Performance”, the num-
ber of evaluations for objective function in “#Obj” and the number of evaluations
for gradient matrix in “#Grad”. The ratio of the success performance between the
improved εDE and the εDE is shown in the column labeled “Performance Ratio”,
too. The better results are highlighted in boldface.

It is clear that the improved εDE outperformed the εDE. As for the success rate,
the improved εDE can find near optimal solution stably in g22, although the εDE
cannot found any near optimal solutions. As for the success performance, the im-
proved εDE found near optimal solutions in half number of function evaluations
compared with the εDE for all problems with equality constraints (g03, g05, g11,
g13, g14, g15, g17, g21 and g23) except for g20. It is thought that the faster re-
duction of the relaxation of equality constraints, the higher gradient-based mutation
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Fig. 5 Convergence Graph for Problems 19-24

rate and the cutting off operation are very effective to solve problems with equality
constraints and improves the efficiency and stability of the εDE. Also, the success
performance by the improved εDE is under half of that by the εDE for problems
g01 and g19. The success performance by the improved εDE is better than that by
the εDE in all problems without equality constraints. It is thought that the reflect-
ing back operation is very effective to solve problems with inequality constraints
and improves the efficiency of the εDE. For the number of evaluations for objective
function, the improved εDE can find near optimal solutions with less number of
evaluations in all problems except for g02, g12 and g18.

6 Conclusions

Differential evolution is a recently proposed variant of an evolutionary algorithm.
DE is known as a simple, efficient and robust search algorithm that can solve uncon-
strained optimization problems. In this study, we proposed the improved εDE; The
ε constrained method is applied to DE, and in order to solve problems with many
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Table 7 Comparison of Success Rate, Performance, Objective Function Calls and Gradient

Calls between the improved εDE and the εDE

Prob. Improved εDE εDE [32] Performance
Success Rate Performance #Obj #Grad Success Rate Performance #Obj #Grad Ratio

g01 100% 19322 12755 0 100% 59308 16979 0 32.6%

g02 100% 114163 61313 0 100% 149825 59351 0 76.2%

g03 100% 35993 6392 6874 100% 89407 40217 188 40.3%

g04 100% 13601 7794 0 100% 26216 10125 0 51.9%

g05 100% 16458 6836 2431 100% 97431 43998 445 16.9%

g06 100% 5669 2915 0 100% 7381 3544 0 76.8%

g07 100% 68447 19877 0 100% 74303 20430 0 92.1%

g08 100% 876 396 0 100% 1139 490 0 76.9%

g09 100% 20878 10046 0 100% 23121 10791 0 90.3%

g10 100% 92911 16846 0 100% 105234 17743 0 88.3%

g11 100% 4425 2896 378 100% 16420 11064 67 26.9%

g12 100% 4048 409 0 100% 4124 366 0 98.2%

g13 100% 5285 901 1293 100% 34738 15152 113 15.2%

g14 100% 32090 9085 4853 100% 113439 37864 470 28.3%

g15 100% 7851 3850 1089 100% 84216 40857 423 9.3%

g16 100% 10106 4173 0 100% 12986 4770 0 77.8%

g17 100% 16354 6365 2505 100% 98861 36786 246 16.5%

g18 100% 57638 12382 0 100% 59153 11936 0 97.4%

g19 100% 161687 31250 0 100% 356350 40415 0 45.4%

g20 0% — — — 0% — — — —

g21 100% 35369 9299 7075 100% 135143 34633 483 26.2%

g22 100% 263655 8425 76349 0% — — — —

g23 100% 78090 12279 17649 100% 200765 34437 533 38.9%

g24 100% 2402 1641 0 100% 2952 1925 0 81.4%

equality constraints faster, which are very difficult problems for numerical optimiza-
tion, the gradient-based mutation with high mutation rate and faster reduction of the
relaxed constraints to the original constraints is adopted. Also, the cutting off and
the reflecting back solutions outside of search space are adopted. We showed that
the improved εDE could solve 23 problems out of 24 benchmark problems very
efficiently. Also, by comparing the improved εDE with the εDE, it was shown that
the improved εDE was a more efficient and stable algorithm than the εDE.

In the future, we will apply the improved εDE to various real world problems
that have large numbers of decision variables and constraints.
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Constrained Real-Parameter Optimization with
ε-Self-Adaptive Differential Evolution

Janez Brest

Abstract. Differential Evolution (DE) algorithms belong to Evolutionary Algo-
rithms (EAs). They are widely used for optimizing continuous functions. In this
chapter we present a self-adaptive differential evolution algorithm which uses (1) a
self-adaptive mechanism on control parameters F and CR, (2) more strategies du-
ring the mutation operation, (3) a population size (NP) reduction mechanism during
the evolutionary process, and (4) the ε constrained method. The performance of our
algorithm is reported over the set of twenty four CEC2006 constrained benchmark
functions.

Keywords: differential evolution, self-adaptation, optimization, constraints.

1 Introduction

Differential Evolution (DE) is a floating-point encoding evolutionary algorithm for
global optimization over continuous spaces [12, 27, 32]. Although the original DE
algorithm uses control parameters that are fixed during the optimization process,
many adaptive and self-adaptive approaches have been proposed recently [1, 2, 7, 9,
17, 26, 28, 35].

Although the DE algorithm has been shown to be a simple yet powerful algo-
rithm, many practical improvements were introduced to make the DE algorithm
more powerful, and robust, especially in the following directions:

• hand-tuning of control parameters is replaced with adaptive and/or self-adaptive
mechanisms,

• more mutation DE strategies are used during the optimization process, and
• hybrid combination of DE with other optimization techniques.
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The general nonlinear programming problem regarding optimization algorithm
concerns finding x so as to optimize f (x); x = [x1,x2, ...,xD]T . D is the dimension-
ality of the search space. Domains of the variables are defined by their lower and
upper bounds: x j,low, x j,upp; j ∈ {1, ...,D}. The feasible region F is defined by a
set of m additional constraints (m≥ 0):

gi(x) ≤ 0, i = 1, ...,q (1)

h j(x) = 0, j = q + 1, ...,m (2)

If we denote the whole search space with S , then it should be clear that F ⊆
S . Constraint-handling requires special attention in many real-world optimization
problems.

The main objective of this chapter is a performance evaluation of our self-
adaptive algorithm ε-jDE which uses a self-adaptive mechanism on the control pa-
rameters F and CR, more strategies during mutation operation, the ε-constrained
method, and population size reduction during the evolutionary process. The perfor-
mance of the algorithm is evaluated on a set of 24 benchmark functions provided
for the CEC2006 special session on real parameter optimization [16].

This chapter is structured as follows. Section 2 gives an overview of related work.
Section 3 briefly summarizes differential evolution. Section 4 describes those meth-
ods proposed for constraint-handling optimization. Section 5 revises our version of
self-adaptive mechanism. Section 6 describes a new differential evolution ε-jDE al-
gorithm. Section 7 presents the experimental results of our algorithm on CEC 2006
benchmark functions. Section 8 concludes the chapter with some final remarks.

2 Related Work

The DE algorithm was proposed by Storn and Price [31, 32], and since then it has
been used in many practical cases. The original DE was modified, and many new
versions proposed. Liu and Lampinen [18] reported that the effectiveness, efficiency,
and robustness of the DE algorithm are sensitive to the settings of control param-
eters. The best settings for control parameters depend on the function and require-
ments for consumption time and accuracy.

Modifications to the original DE, in order to improve its efficiency and robust-
ness, are introduced by using adaptation and/or self-adaptation mechanisms for DE
control parameters [1, 7, 17, 19, 26, 28, 35], incorporation of more mutation strate-
gies [6, 14, 28], or the use of other approaches [3–5, 20, 34].

Qin and Suganthan in [14, 28] proposed a Self-adaptive Differential Evolution
algorithm (SaDE), where it is unnecessary to predefine the choice of learning strat-
egy and the two control parameters F and CR. During evolution, a more suitable
learning strategy and parameter settings are gradually self-adapted according to the
learning experience.

J. Brest et al. [7] have proposed a jDE algorithm, which uses self-adaptive control
parameters F and CR. The comparison of jDE and jDE-2 [6] algorithms showed
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that the jDE-2 algorithm, which uses two DE strategies, performed better than jDE
algorithm, which uses only one strategy.

Differential evolution and its modified versions were widely used for constrained
optimization [5, 9, 14, 20, 23, 30,34].

An empirical comparison of some DE variants for solving global optimization
problems is presented by E. Mezura Montes et al. [22].

In work [21], the authors present comparisons between four bio-inspired algo-
rithms with similar constraint-handling technique (Deb’s feasibility rules) on a set
of 24 benchmark functions.

Recently, Wang et al. in [36] proposed an adaptive trade-off model (ATM) for
constrained evolutionary computation. This model considers:

• the evolution of infeasible solutions when the population contains only infeasi-
ble individuals,

• balancing feasible and infeasible solutions when the population consists of a
combination of feasible and infeasible individuals, and

• the selection of feasible solutions when the population is composed of feasible
solutions only.

The ATM model was incorporated with evolutionary strategy (ES).

3 The Differential Evolution Algorithm

The population of the original DE algorithm [29, 31, 32] contains NP individuals.
An individual is defined as a D-dimensional vector. If G denotes the generation, the
population at generation G consists of:

xi,G = {xi,1,G,xi,2,G, ...,xi,D,G}, i = 1,2, ...,NP. (3)

During one generation for each vector xi,G, DE employs mutation and crossover
operations to produce a trial vector:

ui,G = {ui,1,G,ui,2,G, ...,ui,D,G}, i = 1,2, ...,NP. (4)

Then a selection operation is used to choose vectors for the next generation (G+1).
The initial population is usually selected uniformly randomly between the lower

(x j,low) and upper (x j,upp) bounds defined for each variable x j. These bounds are
specified according to the nature of the problem.

3.1 Mutation Operation

Mutation for each population vector xi,G creates a mutant vector vi,G:

vi,G = {vi,1,G,vi,2,G, ...,vi,D,G}, i = 1,2, ...,NP. (5)
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A new mutant vector can be created using one of the mutation strategies. The most
useful strategies are [12, 27, 32]:

′DE/rand/1′ vi,G = xr1,G + F · (xr2,G−xr3,G) (6)
′DE/best/1′ vi,G = xbest,G + F · (xr1,G−xr2,G) (7)

′DE/current tobest/1′ vi,G = xi,G + F · (xbest,G−xi,G)+ F · (xr1,G−xr2,G) (8)
′DE/best/2′ vi,G = xbest,G + F · (xr1,G−xr2,G)+ F · (xr3,G−xr4,G) (9)
′DE/rand/2′ vi,G = xr1,G + F · (xr2,G−xr3,G)+ F · (xr4,G−xr5,G) (10)

where the indexes rd ,d = 1, ...,5 represent the random and mutually different in-
tegers generated within the range [1,NP] and also different from index i. F is a
mutation scale factor within the range [0,2], usually less than 1. Vector xbest,G is
the best vector in generation G. Some authors use the name ‘target to best’ for the
strategy in eq. (8).

3.2 Crossover Operation

After mutation, a ‘binary’ crossover operation forms the trial vector ui,G according
to the target vector xi,G and its corresponding mutant vector vi,G.

ui, j,G =

{
vi, j,G if rand(0,1)≤CR or j = jrand ,

xi, j,G otherwise
(11)

i = 1,2, ...,NP and j = 1,2, ...,D.

CR is a crossover control parameter or factor within the range [0,1) and presents the
probability of creating parameters for a trial vector from the mutant vector. Index
jrand is a randomly chosen integer within the range [1,NP]. It is responsible for the
trial vector containing at least one parameter from the mutant vector. Here we have
described the binary crossover operation (‘bin’). The other DE crossover operation
is exponential (‘exp’), but this is rarely used in practical optimization.

If some components of the trial vector are out of bounds, the proposed solutions
in literature [27, 29, 31, 32] are: they are reflected from bounds, set on bounds or
used as they are (out of bounds).

3.3 Selection Operation

The DE algorithm uses a greedy selection. The selection operation selects, accord-
ing to the fitness value of the target vector and its corresponding trial vector, which
vector will survive to be a member of the next generation. For example, if we have
a minimization problem, we will use the following selection rule:
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xi,G+1 =

{
ui,G if f (ui,G) < f (xi,G),
xi,G otherwise.

(12)

4 Constraint Handling

Over the last few years several methods have been proposed for handling constraints
by genetic algorithms for parameter optimization problems. These methods have
been grouped by Michalewicz et al. [15, 25] into four categories:

1. Methods based on preserving the feasibility of solutions. The idea behind the
method is based on specialized operators which transform feasible parents into
feasible offspring. The method assumes linear constraints only and a feasible
starting point or feasible initial population.

2. Methods based on penalty functions. Many evolutionary algorithms incorporate
a constraint-handling method based on the concept of exterior penalty functions
which penalize infeasible solutions. These methods differ in important details,
such as how the penalty function is designed and applied to infeasible solutions.

3. Methods which make a clear distinction between feasible and infeasible solu-
tions. There are a few methods which emphasize the distinction between feasi-
ble and infeasible solutions in the search space. One of those methods distin-
guishes between feasible and infeasible individuals: for any feasible individual
x and any infeasible individual y: f (x) < f (y), i.e. any feasible solution is better
than any infeasible one.

4. Other hybrid methods. These methods combine evolutionary computation tech-
niques with deterministic procedures for numerical optimization problems.

Most constrained problems can be handled by the penalty function method. A
measure of the constraint violation is often useful when handling constraints. A
solution x is regarded as feasible if

gi(x)≤ 0, i = 1, ...,q, (13)

|h j(x)|− ε ≤ 0, j = q + 1, ...,m, (14)

where equality constraints are transformed into inequalities. In CEC2006 [16] ε is
set to 0.0001. The mean value of all constraints’ violations v is defined as:

v =
(∑q

i=1 Gi(x)+ ∑m
j=q+1 Hj(x))

m
, (15)

where

Gi(x) =

{
gi(x), gi(x) > 0,

0, gi(x)≤ 0,
(16)

Hj(x) =

{
|h j(x)|, |h j(x)|− ε > 0,

0, |h j(x)|− ε ≤ 0.
(17)
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The sum of all constraint violations is zero for feasible solutions and positive
when at least one constraint is violated. An obvious application of the constraint
violation is to use it to guide the search towards feasible areas of the search space.
There has been quite a lot of work on such ideas and other constraint techniques
within the EA-community. A summary of these techniques can be found in [11,24],
which also contains information on many other stochastic techniques.

Recently the DE algorithm has become very popular over many research areas.
No special extensions of the DE algorithm are necessary to make it suitable for
handling constraints.

5 The Self-adaptive Differential Evolution Algorithm

This section revises our version of a self-adaptive mechanism. It was used in
algorithms [6–8] for unconstrained optimization, and in jDE-2 algorithm [9] for
constrained optimization. This self-adaptive mechanism is used on the control pa-
rameters F and CR.

The self-adaptive control parameter mechanism of ‘DE/rand/1/bin’ strategy was
used in [7]. This strategy is the most often used in practice [13, 18, 32, 33].

Let us describe this self-adaptive mechanism. Each individual in the population
is extended with the control parameters F and CR. Better values of these control
parameters lead to better individuals which, in turn, are more likely to survive and
produce offspring and, hence, propagate these better parameter values.

New control parameters Fi,G+1 and CRi,G+1 are calculated as follows:

Fi,G+1 =

{
Fl + rand(0,1) ·Fu if rand(0,1) < τ1,

Fi,G otherwise,
(18)

CRi,G+1 =

{
rand(0,1) if rand(0,1) < τ2,

CRi,G otherwise.
(19)

and they produce control parameters F and CR in a new trial vector. rand(0,1)
is uniform random value within the range [0,1]. Values τ1 and τ2 represent prob-
abilities of adjusting control parameters F and CR, respectively. τ1,τ2,Fl,Fu are
taken fixed values 0.1,0.1,0.1,0.9 [7], respectively. The new F takes a value from
[0.1,1.0] and the new CR from [0,1] in a random manner. Fi,G+1 and CRi,G+1 are
obtained before the mutation operation is performed and so influence the mutation,
crossover and selection operations of the new vector xi,G+1.

Some ideas, on how to improve the jDE algorithm, are reported in [6]. Here we
outline certain features, which can make our jDE algorithm more general and also
improve its performance. The rest of this section outlines them.

To keep the solution of bound-constrained problems feasible, those trial parame-
ters that violate boundary constraints are set to bound values by jDE algorithm [7].
Rönkönen, Kukkonen and Price [29] suggest that those solutions that violate bound-
ary constraints should be reflected back from the bound by the amount of violation:
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Table 1 Characteristics of the 24 benchmark problems. D is the number of decision variables,
ρ = |F |/|S | is the estimated ratio between the feasible region and the search space, LI is
the number of linear inequality constraints, NI the number of nonlinear inequality constraints,
LE is the number of linear equality constraints and NE is the number of nonlinear equality
constraints. a is the number of active constraints at x∗

Prob. D f(x∗) Type of function ρ LI NI LE NE a

g01 13 -15.00000 quadratic 0.0111% 9 0 0 0 6
g02 20 -0.80361910412 nonlinear 99.9971% 0 2 0 0 1
g03 10 -1.0005001000 polynomial 0.0000% 0 0 0 1 1
g04 5 -30665.5386717834 quadratic 52.1230% 0 6 0 0 2
g05 4 5126.4967140071 cubic 0.0000% 2 0 0 3 3
g06 2 -6961.8138755802 cubic 0.0066% 0 2 0 0 2
g07 10 24.3062090681 quadratic 0.0003% 3 5 0 0 6
g08 2 -0.0958250415 nonlinear 0.8560% 0 2 0 0 0
g09 7 680.6300573745 polynomial 0.5121% 0 4 0 0 2
g10 8 7049.2480205286 linear 0.0010% 3 3 0 0 6
g11 2 0.7499 quadratic 0.0000% 0 0 0 1 1
g12 3 -1.000000 quadratic 4.7713% 0 1 0 0 0
g13 5 0.0539415140 nonlinear 0.0000% 0 0 0 3 3
g14 10 -47.7648884595 nonlinear 0.0000% 0 0 3 0 3
g15 3 961.7150222899 quadratic 0.0000% 0 0 1 1 2
g16 5 -1.9051552586 nonlinear 0.0204% 4 34 0 0 4
g17 6 8853.5396748064 nonlinear 0.0000% 0 0 0 4 4
g18 9 -0.8660254038 quadratic 0.0000% 0 13 0 0 6
g19 15 32.6555929502 nonlinear 33.4761% 0 5 0 0 0
g20 24 0.2049794002 linear 0.0000% 0 6 2 12 16
g21 7 193.7245100700 linear 0.0000% 0 1 0 5 6
g22 22 236.4309755040 linear 0.0000% 0 1 8 11 19
g23 9 -400.0551 linear 0.0000% 0 2 3 1 6
g24 2 -5.5080132716 linear 79.6556% 0 2 0 0 2

ui, j,G =

{
2 . x j,low−ui, j,g if ui, j,g < x j,low,

2 . x j,upp−ui, j,g if ui, j,g > x j,upp.
(20)

The jDE-2 [6] algorithm uses both solutions for violated boundary constraints
with equal probability, in a random manner:

t = rand(0,1), p0 = 0.5,

ui, j,G =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x j,low if (t ≤ p0)∧ (ui, j,G < x j,low),
x j,upp if (t ≤ p0)∧ (ui, j,G > x j,upp),
2 . x j,low−u j,i,G if (t > p0)∧ (ui, j,G < x j,low),
2 . x j,upp−u j,i,G if (t > p0)∧ (ui, j,G > x j,upp).

(21)
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Table 2 Error Values Achieved When FES= 5× 103, FES= 5× 104, FES= 5× 105 for
Problems 1-5

FES g01 g02 g03 g04 g05

Best 5.2154 (0) 0.4499 (0) 1.0005 (1) 105.1884 (0) 484.9959 (3)
Median 7.6307 (0) 0.5163 (0) 0.9873 (1) 178.7184 (0) 774.5920 (3)
Worst 8.6992 (0) 0.5492 (0) 0.9999 (1) 325.4142 (0) 47.6715 (4)

5×103 c 0, 0, 0 0, 0, 0 0, 1, 1 0, 0, 0 3, 3, 3
v 0.0000 0.0000 0.0460 0.0000 3.3333

Mean 7.4536 5.1628e-01 9.8080e-01 1.9402e+02 3.7147e+02
Std 8.2241e-01 1.9928e-02 8.5944e-02 4.5863e+01 3.8700e+02
Best 0.0001 (0) 0.0416 (0) 1.0005 (1) 0.0005 (0) 9.8380e-05 (0)

Median 0.0003 (0) 0.0698 (0) 0.9992 (1) 0.0023 (0) 0.0002 (0)
Worst 0.0006 (0) 0.0868 (0) 0.9999 (1) 0.0047 (0) 0.0009 (0)

5×104 c 0, 0, 0 0, 0, 0 0, 1, 1 0, 0, 0 0, 0, 0
v 0.0000 0.0000 0.0201 0.0000 0.0000

Mean 3.3654e-04 6.7177e-02 6.5047e-01 2.2956e-03 3.2579e-04
Std 1.1245e-04 1.3401e-02 3.8150e-01 1.2289e-03 2.0220e-04
Best 0 (0) 2.0003e-08 (0) -1.0003e-11 (0) 7.2759e-11 (0) -1.8189e-12 (0)

Median 0 (0) 1.3415e-07 (0) -1.0002e-11 (0) 7.2759e-11 (0) -1.8189e-12 (0)
Worst 0 (0) 6.4191e-07 (0) -9.9813e-12 (0) 7.6397e-11 (0) -1.8189e-12 (0)

5×105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0000 1.7534e-07 -1.0002e-11 7.2905e-11 -1.8190e-12
Std 0.0000 1.5210e-07 4.2841e-15 7.2760e-13 1.2367e-27

Strategy ‘DE/rand/1/bin’ is used in jDE algorithm and control parameters F and
CR are encoded in each individual. In [28] the authors proposed the self-adaptive
SaDE algorithm which uses two of five original DE’s strategies to be applied to
individuals in the current population. In [6] more DE’s strategies are applied to this
algorithm. Each strategy uses its own control parameters.

6 The ε-jDE Algorithm

In this section we describe the new version of the DE algorithm, called ε-jDE. The
ε-jDE algorithm follows the jDE-2 algorithm and emphasizes constraints as fol-
lows. It compares two solutions, say i and j, during the selection operation (see
section 3.3):

xi,G+1 =

⎧⎪⎨
⎪⎩

x j,G if (vi,G > v j,G),
x j,G else if (v j,G = 0)∧ ( f (xi,G) > f (x j,G)),
xi,G otherwise.

(22)
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Table 3 Error Values Achieved When FES= 5× 103, FES= 5× 104, FES= 5× 105 for
Problems 6-10

FES g06 g07 g08 g09 g10

Best 43.6145 (0) 95.1110 (0) 2.0131e-07 (0) 54.0914 (0) 7744.8729 (0)
Median 400.4579 (0) 199.9499 (0) 1.5087e-05 (0) 156.0776 (0) 21269.6291 (0)
Worst 1201.7190 (0) 418.8726 (0) 6.3616e-05 (0) 323.5793 (0) 6480.4880 (2)

5×103 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 4.5631e+02 2.2266e+02 2.0956e-05 1.6388e+02 1.3974e+04
Std 2.7814e+02 9.2684e+01 1.7118e-05 5.6918e+01 4.0107e+03
Best 1.2605e-09 (0) 0.5034 (0) 8.1964e-11 (0) 0.0094 (0) 165.4944 (0)

Median 1.0360e-08 (0) 0.7904 (0) 8.1964e-11 (0) 0.0237 (0) 247.8820 (0)
Worst 7.9960e-08 (0) 1.3064 (0) 8.1964e-11 (0) 0.0546 (0) 395.6845 (0)

5×104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 1.6667e-08 8.2681e-01 8.1964e-11 2.6217e-02 2.6657e+02
Std 1.8548e-08 1.8677e-01 6.9389e-18 1.0998e-02 6.9506e+01
Best 4.4565e-11 (0) 7.9761e-11 (0) 8.1964e-11 (0) -9.8339e-11 (0) 6.1845e-11 (0)

Median 4.4565e-11 (0) 7.9786e-11 (0) 8.1964e-11 (0) -9.8225e-11 (0) 6.2755e-11 (0)
Worst 4.4565e-11 (0) 8.0714e-11 (0) 8.1964e-11 (0) -9.8111e-11 (0) 4.8826e-07 (0)

5×105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 4.4565e-11 7.9878e-11 8.1964e-11 -9.8221e-11 1.9591e-08
Std 1.3191e-26 2.3704e-13 2.6382e-26 3.9926e-14 9.7640e-08

The algorithm distinguishes between feasible (v = 0) and infeasible individuals: any
feasible solution being better than any infeasible one.

6.1 Controlling the ε Level

In our previous work [9], constraints have only been used to see whether an indivi-
dual solution is feasible or not. Therefore the jDE-2 algorithm had difficulties when
solving constrained optimization problems with equality constraints. Takahama and
Sakai in [34] pointed out that for problems with equality constraints, the ε level
should be controlled properly in order to obtain high quality solutions.

In this study we present ε level controlling in our ε-jDE algorithm. In the pro-
posed method ε level constraint violation precedes the objective function. A method
of controlling the ε level is defined according to equations (23)–(26). The ε level is
updated until the number of generations G reaches the control generation Gc. After
the number of generations exceeds Gc, the ε level is set to 0 to obtain solutions with
minimum constraint violation
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Table 4 Error Values Achieved When FES= 5× 103, FES= 5× 104, FES= 5× 105 for
Problems 11-15

FES g11 g12 g13 g14 g15

Best 0.0429 (0) 3.3932e-05 (0) 0.7096 (3) -209.8728 (3) 3.5725 (2)
Median 0.2501 (0) 0.0002 (0) 0.8416 (3) -310.3281 (3) 4.3295 (2)
Worst 0.0325 (1) 0.0085 (0) 0.6390 (3) -359.8290 (3) 2.1052 (2)

5×103 c 0, 0, 0 0, 0, 0 0, 3, 3 3, 3, 3 1, 2, 2
v 0.0000 0.0000 0.2269 8.7142 1.6489

Mean 2.1877e-01 1.3071e-03 7.0378e-01 -2.8378e+02 3.7171
Std 7.3091e-02 2.5604e-03 3.0042e-01 4.8007e+01 3.2798
Best 0.0001 (0) 0 (0) 0.0015 (3) 1.8430 (3) 2.4653 (2)

Median 0.0075 (0) 0 (0) 0.0124 (3) -42.4185 (3) -0.3272 (2)
Worst 0.2501 (0) 0 (0) 0.0072 (3) -46.2233 (3) 1.2531 (2)

5×104 c 0, 0, 0 0, 0, 0 0, 3, 3 2, 3, 3 0, 2, 2
v 0.0000 0.0000 0.0605 1.3057 0.2829

Mean 3.2902e-02 0.0000 1.0346e-01 -3.7731e+01 1.1544
Std 7.0567e-02 0.0000 1.8287e-01 1.3116e+01 1.6465
Best 0 (0) 0 (0) 4.1897e-11 (0) 8.5051e-12 (0) 6.0822e-11 (0)

Median 0 (0) 0 (0) 4.1897e-11 (0) 8.5123e-12 (0) 6.0822e-11 (0)
Worst 0 (0) 0 (0) 4.1897e-11 (0) 8.5833e-12 (0) 6.0822e-11 (0)

5×105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0000 0.0000 4.1898e-11 8.5200e-12 6.0822e-11
Std 0.0000 0.0000 1.2098e-17 1.6527e-14 1.3191e-26

ε0 = ε (23)

v0 = v(xθ ) (24)

vG =

{
α1vG−1, α2v(xβ ) < vG−1, εG−1 < ε, 0 < G < Gc

vG−1, otherwise
(25)

εG =

{
max{vG(1− G

Gc
)cp ,ε}, 0 < G < Gc

0, G≥ Gc
(26)

where xθ is the top θ -th individual and θ = 0.3NP. Note, that ε(0) = 0 when mean
violation v(xθ ) is calculated. Similarly, xβ is the top β -th individual and β = 0.7NP.
cp is a parameter to control the speed of constraints’ reducing relaxation, while pa-
rameters α1 < 1 and α2 > 1 adaptively control vG value, which also controls the
speed of the constraints’ reducing relaxation. Parameters α1 and α2 can only de-
crease the vG value by a small amount when top β individuals have mean violations
v(xβ ) multiplied by α1 less than vG. Using this adaptation, the ε level could reach 0
before G≥ Gc.

In this study we use cp = 5, α1 = 0.8, α2 = 2.0, and Gc=0.2Gmax.
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Table 5 Error Values Achieved When FES= 5× 103, FES= 5× 104, FES= 5× 105 for
Problems 16-20

FES g16 g17 g18 g19 g20

Best 0.1603 (0) 123.2327 (4) 0.8693 (6) 365.9424 (0) 3.9797 (20)
Median 0.2759 (0) 368.3257 (4) 0.7791 (7) 753.6668 (0) 7.6478 (15)
Worst 0.3678 (0) 15.2875 (4) 3.0180 (9) 1059.8608 (0) 6.9592 (20)

5×103 c 0, 0, 0 4, 4, 4 3, 7, 7 0, 0, 0 2, 14, 15
v 0.0000 18.6476 0.8755 0.0000 2.4169

Mean 2.7076e-01 1.1013e+02 8.2458e-01 7.3005e+02 5.3422
Std 4.9585e-02 1.2051e+02 1.1402 1.5942e+02 2.1635
Best 8.0238e-05 (0) 79.1620 (4) 0.0149 (0) 7.0835 (0) -0.0228 (20)

Median 0.0001 (0) 16.1098 (4) 0.0354 (0) 10.7022 (0) -0.0452 (20)
Worst 0.0002 (0) -72.5976 (4) 0.0782 (0) 15.2844 (0) -0.0655 (20)

5×104 c 0, 0, 0 3, 4, 4 0, 0, 0 0, 0, 0 0, 14, 20
v 0.0000 11.8344 0.0000 0.0000 0.0320

Mean 1.7416e-04 4.9222e+01 4.0341e-02 1.0709e+01 -2.8473e-02
Std 5.7431e-05 5.9751e+01 1.7146e-02 2.2420 2.1696e-02
Best 6.5213e-11 (0) 8.1854e-11 (0) 1.5561e-11 (0) 3.5858e-10 (0) -9.7851e-06 (1)

Median 6.5213e-11 (0) 8.1854e-11 (0) 1.5561e-11 (0) 9.9033e-08 (0) -8.9602e-05 (1)
Worst 6.5213e-11 (0) 8.1854e-11 (0) 1.5561e-11 (0) 1.6201e-05 (0) 0.0027 (3)

5×105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 1, 1
v 0.0000 0.0000 0.0000 0.0000 0.0072

Mean 6.5214e-11 8.1855e-11 1.5561e-11 1.8493e-06 5.2432e-05
Std 1.3191e-26 2.6382e-26 4.8393e-17 3.5810e-06 6.5814e-04

6.2 Population Size Reduction

Population size (NP) is the third control parameter of the DE algorithm. It plays
also an important role during the optimization process, but has maybe been studied
less in literature [10, 35].

The population size reduction mechanism [8] during the evolutionary process is
used by the ε-jDE algorithm. One individual from the first half (xi,G) of the current
population and a corresponding individual from the second half (x NP

2 +i,G) are com-
pared, based on their fitness values and the better one is placed (as a survivor) in
the first half at position i of the current population, e.g. the first part of the current
population is assumed to be the population which is to be the parent population in
the next generation. In the proposed reduction scheme the new population size is
equal to half the previous population size. Population size reduction is depicted in
Fig. 5.

NP1 = NPinit is the initial population size and NPp(p = 1,2, ..., pmax) is the po-
pulation size after p−1 reductions.

In this chapter we set pmax = 2 and NPinit = 200. This implies that our algorithm
performed one reduction after maxFES

2 = 250,000 function evaluations, and final
population size was 100.
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Table 6 Error Values Achieved When FES= 5× 103, FES= 5× 104, FES= 5× 105 for
Problems 21-24

FES g21 g22 g23 g24

Best 390.8314 (4) 13849.5269 (17) 400.0551 (0) 0.0005 (0)
Median 714.4626 (4) 19763.5690 (18) -55.6814 (3) 0.0174 (0)
Worst 789.8916 (5) 9121.8452 (16) 297.1619 (5) 0.0326 (0)

5×103 c 1, 4, 4 18, 18, 18 2, 3, 3 0, 0, 0
v 0.3697 2961574.2729 0.9883 0.0000

Mean 4.3066e+02 1.1942e+04 8.9730e+01 1.7879e-02
Std 2.1922e+02 6.5279e+03 3.4620e+02 8.9443e-03
Best 70.4046 (3) 12571.0945 (19) 400.0551 (0) 4.7233e-12 (0)

Median 39.5707 (4) 15339.1883 (19) 335.6886 (4) 4.8592e-12 (0)
Worst 23.0029 (5) 9407.0760 (19) 120.8729 (3) 5.2642e-12 (0)

5×104 c 0, 0, 4 18, 19, 19 0, 3, 4 0, 0, 0
v 0.0010 356971.5355 0.0096 0.0000

Mean 5.7134e+01 1.2194e+04 2.7195e+02 4.9032e-12
Std 6.0601e+01 4.8953e+03 1.1045e+02 1.6761e-13
Best -3.5765e-10 (0) 6047.3689 (4) -1.7053e-13 (0) 4.6735e-12 (0)

Median -3.2738e-10 (0) 19714.2478 (4) 1.7053e-13 (0) 4.6735e-12 (0)
Worst 130.9783 (0) 18683.4258 (4) 3.2498e-07 (0) 4.6735e-12 (0)

5×105 c 0, 0, 0 1, 4, 4 0, 0, 0 0, 0, 0
v 0.0000 2.0466 0.0000 0.0000

Mean 5.2391 1.2634e+04 1.3012e-08 4.6736e-12
Std 2.6196e+01 6.6438e+03 6.4994e-08 0.0000

6.3 Using More Strategies

In this chapter our ε-jDE algorithm uses the following mutation strategies:
‘DE/rand/1’, ‘DE/best/2’ and a strategy which is similar to ‘DE/current to best/1’
(eq. 8) and also similar to the strategy used in [20]:

vi,G = xr3,G + F · (xbest,G−xi,G)+ F · (xr1,G−xr2,G) (27)

All strategies used are self-adaptive and each one uses its own pair of control
parameters F and CR. The strategies are used according to the following rule:

s =

⎧⎪⎨
⎪⎩
′DE/best/2′, if (G+ i) mod 5 = 3 ∧ t > 0.8Tmax,

strategy in eq. (27), if (G+ i) mod 5 = 1 ∧ t > 0.4Tmax,
′DE/rand/1′, otherwise.

(28)
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Table 7 Number of FES to achieve the fixed accuracy level (( f (x)− f (x∗)) ≤ 0.0001),
Success Rate (SR), Feasible Rate (FR) and Success Performance (SP)

Prob. Best Median Worst Mean Std FR SR SP SR [9] SP [9]

g01 51685 55211 57151 5.4831e+04 1.4235e+03 100% 100% 54831 100% 50386
g02 175090 226789 253197 2.2506e+05 1.8990e+04 100% 100% 225059 92% 145899
g03 184568 215694 254105 2.1533e+05 1.8628e+04 100% 100% 215333 0%
g04 56730 62506 67383 6.2787e+04 2.8545e+03 100% 100% 62787 100% 40728
g05 49765 53773 57863 5.3576e+04 2.3524e+03 100% 100% 53576 68% 446839
g06 31410 34586 37033 3.4467e+04 1.6496e+03 100% 100% 34467 100% 29488
g07 184927 197901 221866 2.0075e+05 1.1398e+04 100% 100% 200753 100% 127744
g08 1905 4044 4777 3.9203e+03 6.2545e+02 100% 100% 3920 100% 3236
g09 79296 89372 98062 8.9262e+04 5.1839e+03 100% 100% 89262 100% 54919
g10 203851 220676 264575 2.2397e+05 1.3100e+04 100% 100% 223974 100% 146150
g11 52128 83442 105093 8.3713e+04 1.3924e+04 100% 100% 83713 96% 53928
g12 364 6899 10424 6.6678e+03 2.3895e+03 100% 100% 6668 100% 6356
g13 138630 147330 428869 1.6314e+05 6.2060e+04 100% 100% 163144 0%
g14 223822 242265 256523 2.4345e+05 7.8180e+03 100% 100% 243455 100% 97845
g15 153943 157822 160014 1.5745e+05 1.7881e+03 100% 100% 157446 96% 241383
g16 48883 54081 57678 5.3723e+04 2.3374e+03 100% 100% 53723 100% 31695
g17 185888 205132 255333 2.0948e+05 1.7221e+04 100% 100% 209475 4% 11232650
g18 139131 169638 191345 1.6753e+05 1.2702e+04 100% 100% 167529 100% 104462
g19 322120 363456 427042 3.6971e+05 3.2417e+04 100% 100% 369705 100% 199850
g20 0% 0% 0%
g21 131557 149672 158079 1.4264e+05 3.0443e+04 100% 96% 154770 92% 126507
g22 0% 0% 0%
g23 260180 321118 464740 3.3100e+05 5.5302e+04 100% 100% 331004 92% 357452
g24 9359 12844 14827 1.2934e+04 1.2760e+03 100% 100% 12934 100% 10196

where ‘mod’ denotes the modulo operation, t denotes the iteration of the evolutio-
nary process, and Tmax denotes maximal number of iterations (e.g. function eval-
uations). The first two strategies are not used at the beginning of the optimization
process, and they are used with the probability p < 0.2, respectively.

During the experiments in our previous work [9], the jDE-2 algorithm used three
strategies ‘DE/rand/1/bin’, ‘current to best/1/bin’ and ‘rand2/bin’ and the population
size NP was set to 200. The jDE-2 algorithm replaces k worst individuals at every
l-th generation with parameter values distributed uniform randomly between lower
and upper bounds without evaluating those k individuals. In [9] we set l = 1000 and
k = 70.

In this chapter our ε-jDE algorithm does not use a technique for replacing k worst
individuals at every l-th generation, but it uses the solution for violated boundary
constraint, as presented in eq. (21).
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Fig. 1 Convergence Graph for Problems 1-6

7 Experimental Results

The ε-jDE algorithm was tested on 24 CEC2006 special-session benchmark func-
tions [16]. The characteristics of benchmark problems are presented in Table 1. All
experimental runs were terminated after 5× 105 function evaluations (FES). The
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Fig. 2 Convergence Graph for Problems 7-12

obtained results are presented in Tables 2–6. 25 runs were carried-out for each test
problem and the best, median, and worst results are presented along with the mean
value and the standard deviation. In the tables, c represents the number of violated
constraints at the median solution run. The sequence of three numbers indicates the
number of constraint violations greater than 1.0, 0.01, and 0.0001, respectively. v is
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Fig. 3 Convergence Graph for Problems 13-18

the mean value of all constraints’ violations at the median solution. The number in
parenthesis after the error value of the best, median and worst solutions indicates the
number of constraints which were unsatisfied at the corresponding location. Func-
tion g20 has no feasible solution [16].
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Fig. 4 Convergence Graph for Problems 19-24

For 22 functions the ε-jDE algorithm was successful in finding a feasible solution
in all runs (FR=100%), except for functions g20 and g22. For the 22 functions with
FR=100%, the success rates (SRs) were also very good, the approach reached a SR
of 100% in all runs, except for function g21, which yielded a SR of 96%.
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// individuals’ fitness values are already stored in array named cost
// individuals’ constraint violation values are already stored in array named v
for (i=0; i < NP/2; i++) {

if (xi is worse than x NP
2 +i) { // comparison of two individuals using eq. (22)

swap(x[i], x[NP/2+i]); // swap individuals
swap(cost[i], cost[NP/2+i]) // and swap their fitness values,
swap(v[i], v[NP/2+i]) // and swap their violation values, etc.

}
}
NP = (NP+1)/2; // new population size

Fig. 5 The population size reduction scheme

Table 7 shows the number of FES required to achieve fixed accuracy level
(( f (x)− f (x∗)) ≤ 0.0001), success rate, feasible rate and success performance
performed by ε-jDE algorithm. The last two columns in Table 7 show the results
obtained by the jDE-2 algorithm [9]. If function g20 has no feasible solution, the
overall success rate for all remaining 23 benchmark functions was 95.48% for the ε-
jDE algorithm, and 80.0% for the jDE-2 algorithm. The jDE-2 algorithm performed
better than the ε-jDE algorithm when comparing those algorithms based on the suc-
cess performance, but the ε-jDE algorithm is better when comparing the success rate
and the overall success rate. Therefore, we can conclude that the ε-jDE algorithm is
more robust compared to the jDE-2 algorithm.

Convergence graphs are presented in Figures 1–4. Logarithmic scale is used for
y-axis. The figures show the development of objective function values, as well as
mean violations of constraints for the median solutions. We can observe from the
convergence graphs that no feasible solution was found for functions g20 and g22.

We implemented the ε-jDE algorithm on the GNU/Linux operating system using
C/C++ language.

The population reduction mechanism is simple. It was inspired by the selection
operation of the DE algorithm. However, someone could reduce population size e.g.
by 20%. We did not conduct experiments in this way. Here we used a mechanism
based on our previous experiences (see [8]). We can conclude based on the results
of additional experiments, however ommited here, that, in our algorithm, the con-
trolling ε level mechanism plays a more important role in obtaining better results
than the population size reduction mechanism.

8 Conclusions

The performance of the self-adaptive differential evolution ε-jDE algorithm was
evaluated on a set of 24 well-known benchmark functions.

The best settings for the control parameters depend highly on the benchmark
function. A self-adaptive control mechanism is used by ε-jDE algorithm to change
the (DE strategy) control parameters F and CR during the run.
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The results in this chapter provide evidence that the ε-jDE algorithm is competi-
tive for non-linear, non-separable, constrained, continuous global optimization.

Constrained optimization problems with mixed (continuous and discrete) deci-
sion variables are a challenge for future work.
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21. Mezura-Montes, E., López-Ramı́rez, B.C.: Comparing Bio-Inspired Algorithms in Cons-
trained Optimization Problems. In: Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2007), pp. 662–666. IEEE Press, Los Alamitos (2007)

22. Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Promising infeasibility and
multiple offspring incorporated to differential evolution for constrained optimization. In:
GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary compu-
tation, pp. 225–232. ACM, New York (2005),
http://doi.acm.org/10.1145/1068009.1068043

23. Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C., Muñoz Dávila, L.M.: Multiple
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Self-adaptive and Deterministic Parameter
Control in Differential Evolution for
Constrained Optimization

Efrén Mezura-Montes and Ana Gabriela Palomeque-Ortiz

Abstract. In this Chapter we present the modification of a Differential Evolution
algorithm to solve constrained optimization problems. The changes include a deter-
ministic and a self-adaptive parameter control in two of the Differential Evolution
parameters and also in two parameters related with the constraint-handling mech-
anism. The proposed approach is extensively tested by using a set of well-known
test problems and performance measures found in the specialized literature. Besides
analyzing the final results obtained by the algorithm with respect to its original ver-
sion, some interesting findings regarding the behavior found in the approach and in
the values observed on each of the parameters controlled are also discussed.

Keywords: Parameter Control, Constrained Optimization, Differential Evolution,
Self-Adaptation.

1 Introduction

Evolutionary computing (EC) comprises a set of algorithms based on simulating
the natural evolution and the survival of the fittest. These algorithms are known as
Evolutionary Algorithms (EAs).

Three original EAs were proposed in the 1960’s: (1) Genetic Algorithms (GAs)
[10], Evolution Strategies (ES) [28] and Evolutionary Programming (EP) [9]. Des-
pite the fact that they arose from different motivations, all of them have been used
to solve complex search tasks [12] providing competitive results [1, 7, 23].

In the 1990’s, Storn and Price proposed a novel EA called Differential Evolution
(DE) [27]. DE shares similarities with original EAs e.g. DE uses a population of
solutions called vectors to sample the search space; DE also uses a recombination
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and mutation operators to generate new vectors from the current population and,
finally, DE has a replacement process to discard the less fit vectors. Like ES, DE
uses real-value vectors to represent solutions (no decoding process is necessary as
in traditional GAs with binary encoding). Unlike Gaussian distribution used in ES,
DE does not use a pre-defined probability distribution for its mutation operator.
Instead, DE uses the current distribution of vectors in the population to define the
behavior of the mutation operator, and this seems to be one of its main advantages.
Furthermore DE, in its original version, does not perform a self-adaptive process to
its parameters as ES does with its mutation operator.

The optimization problem in discrete, continuous or even mixed search spaces
has been solved by using EAs. However, two shortcomings can be identified in
this process: (1) A set of parameter values must be defined by the user and the
behavior of the algorithm in the search depends on these values and (2) in presence
of constraints, a constraint-handling mechanism must be added to the EA in order to
incorporate feasibility information in the selection and replacement processes, and
this mechanism may involve additional parameters to be fine-tuned by the user.

Eiben and Schut [8] proposed a classification of parameter setting techniques: (1)
Parameter tuning and (2) parameter control. Besides, parameter control is divided
into deterministic, adaptive and self-adaptive. Parameter tuning consists on defining
good values for the parameters before the run of an algorithm and then running
it with these values. On the other hand, deterministic parameter control aims to
modify the parameter values by a deterministic rule e.g. a fixed schedule. Adaptive
parameter control aims to modify the parameter values based on some feedback
from the search behavior e.g. diversity measure to update the mutation rate. Finally,
self-adaptive parameter control encodes the parameter values into the chromosome
of solutions and they are modified by variation operators. The expected behavior is
that the search process will be able to evolve the solutions of the problems as well as
to find the optimal values for the parameters of the algorithm. Eiben and Schut [8]
mention that most of the work related to parameter setting is focused on variation
operators (mostly on mutation) and population size.

DE, as the remaining EAs, lacks a mechanism to incorporate feasibility informa-
tion into the fitness value of a given solution. Hence, the selection of an adequate
constraint-handling technique for a given EA (DE in this case) is an open problem.
Coello [4] proposed a taxonomy of mechanisms: (1) Penalty functions, (2) special
representations and operators, (3) repair algorithms, (4) separation of objectives and
constraints and (5) hybrid methods. Penalty functions [25] decrease the fitness of
infeasible solutions as to prefer feasible solution in the selection process. Special
representations and operators are designed to represent only feasible solutions and
the operators are able to preserve the feasibility of the offspring generated. Repair
algorithms aim to transform an infeasible solution into a feasible one. The separation
of objectives and constraints consists on using these values as separated criteria in
the selection process of an EA [19]; this is opposed to penalty functions, where the
values of the objective function and the constraints are mixed into one single value.
Finally, hybrid methods are a combination of different algorithms and/or mecha-
nisms e.g. fuzzy-logic with EAs, cultural algorithms [15] and immune systems [5].
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Research in parameter control for constrained optimization is scarce compared
to unconstrained optimization. Furthermore, the research efforts do not usually
consider, with the exception of penalty-function-based approaches, the parameters
added with the constraint-handling mechanism.

Based on the aforementioned, three main motivations originated this work: (1)
to propose parameter control mechanisms in a competitive EA for constrained op-
timization by considering parameters of the constraint-handling mechanism (2) to
analyze the behavior of these controlled parameter values when solving constrained
optimization problems and (3) to know the on-line behavior of the proposed a-
pproach by measuring the evaluations required to reach the feasible region and the
improvement within it.

We use a very competitive approach for constrained optimization known as Di-
versity Differential Evolution (DDE) [21] where some of the DE parameter values
and also those parameter values of its constraint-handling mechanism are controlled
by deterministic and self-adaptive mechanisms. Furthermore, we analyze the be-
havior of each parameter during the evolutionary process in order to provide some
insights about the values they use. A set of 24 test functions [16,22] and two perfor-
mance measures [18] found in the specialized literature are used in the experimental
design, where the aims are: (1) to compare the performance of the proposed DDE
algorithm with respect to its original version and with respect to state-of-the-art a-
pproaches (2) to analyze the behavior of each parameter during the process and (3)
to know the on-line behavior of the proposed approach compared with the original
DDE version.

The Chapter is organized as follows: In Section 2 we formally present the pro-
blem of our interest. Section 3 offers a brief introduction to DE. After that, Section
4 presents a review of DE and parameter control in constrained optimization. In
Section 5 we detail DDE, the approach which is the base of our study. Then, Section
6 introduces our parameter control proposal. The experimental design, the obtained
results and their corresponding discussions are given in Section 7. Finally, Section
8 provides some conclusions and the future work.

2 Statement of the Problem

We are interested in the general nonlinear programming problem in which, without
loss of generality, we want to:

Find x which minimizes f (x) (1)

subject to:

gi(x)≤ 0, i = 1, . . . ,m (2)

h j(x) = 0, j = 1, . . . , p (3)
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where x is the vector of solutions x = [x1,x2, . . . ,xn]T , and each xi ∈ IR, i = 1, . . . ,n
is bounded by lower and upper limits Li ≤ xi ≤Ui. These limits define the search
space of the problem; m is the number of inequality constraints and p is the number
of equality constraints (in both cases, constraints could be linear or nonlinear). If we
denote with F to the feasible region and with S to the whole search space, then
it should be clear that F ⊆S . For an inequality constraint that satisfies gi(x) = 0,
then we will say that it is active at x. All equality constraints h j (regardless of the
value of x used) are considered active at all points of F . Most constraint-handling
approaches used with EAs tend to deal only with inequality constraints. However,
in those cases, equality constraints are transformed into inequality constraints of the
form:

|h j(x)|− ε ≤ 0 (4)

where ε is the tolerance allowed (a very small value).

3 Differential Evolution

DE is a simple, but powerful search engine that simulates natural evolution
combined with a mechanism to generate multiple search directions based on the
distribution of solutions in the current population. Each vector i in the population
at generation G, (xi,G), called at the moment of reproduction as the target vector,
will be able to generate one offspring, called trial vector (ui,G). This trial vector is
generated as follows: First of all, a search direction is defined by calculating the
difference between a pair of vectors r1 and r2, called “differential vectors”, both of
them chosen at random from the population. This difference vector is also scaled
by using a user-defined parameter called F ≥ 0 [27]. This scaled difference vector
is then added to a third vector r3, called “base vector”. As a result, a new vector is
obtained, known as the mutation vector. After that, this mutation vector is recom-
bined with the target vector (also called parent vector) by using discrete recombina-
tion (usually binomial crossover) controlled by a crossover parameter 0 ≤CR ≤ 1
whose value determines how similar the trial vector will be with respect to the tar-
get vector. There are several DE variants [27]. However, the most known and used
is DE/rand/1/bin, where the base vector is chosen at random, there is only a pair of
differential vectors and a binomial crossover is used. The detailed pseudocode of
this variant is presented in Figure 1.

4 Related Work

There are previous works on DE for constrained optimization. Lampinen used
DE/rand/1/bin variant to tackle constrained problems [14] by using Pareto domi-
nance in the space of constraints, Mezura et al. [20] proposed to add Deb’s feasibil-
ity rules [6] into DE to deal with constraints. Kukkonen & Lampinen [13] improved
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Begin
G=0
Create a random initial population xi,G ∀i, i = 1, . . . ,NP
Evaluate f (xi,G) ∀i, i = 1, . . . ,NP
For G=1 to MAX GEN Do

For i=1 to NP Do
Select randomly r1 �= r2 �= r3 �= i
jrand = randint(1,D)
For j=1 to n Do

If (rand j[0,1) < CR or j = jrand ) Then
ui, j,G+1 = xr3, j,G +F(xr1, j,G−xr2, j,G)

Else
ui, j,G+1 = xi, j,G

End If
End For
If ( f (ui,G+1)≤ f (xi,G)) Then

xi,G+1 = ui,G+1
Else

xi,G+1 = xi,G
End If

End For
G = G+1

End For
End

Fig. 1 “DE/rand/1/bin” pseudocode. rand[0,1) is a function that returns a real number be-
tween 0 and 1. randint(min,max) is a function that returns an integer number between min
and max. NP, MAX GEN, CR and F are user-defined parameters. n is the dimensionality of
the problem

its DE-based approach now to solve constrained multiobjective optimization pro-
blems. Zielinsky & Laur also used Deb’s rules [6] in DE to solve some constrained
optimization problems.

Other search techniques have been combined with DE. A gradient-based muta-
tion with DE by Takahama & Sakai was recently proposed [32]. A combination
of Particle Swarm Optimization and DE (called PESO+), where the DE mutation
operator is considered as a turbulence operator, was proposed by Muñoz-Zavala et
al. [26]. Other authors have proposed novel DE variants for constrained optimiza-
tion [22] or multi-population DE approaches [33].

On the other hand, there are some studies regarding parameter control in DE for
constrained optimization. Brest et al. [2] proposed an adaptive parameter control to
two DE parameters (F and CR). Huang et al. [11] presented an adaptive approach
to choose the most suitable DE variant to generate new trail vectors in constrained
search spaces. In this proposal, DE parameters (F , K and CR) were also adapted.
Liu & Lampinen [17] proposed to adapt DE parameters by means of Fuzzy Logic.
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Besides controlling DE parameters, in this chapter two parameters related with
the constraint-handling mechanism are controlled and analyzed. Furthermore, two
performance measures help to understand the impact of the control process in the
performance and behavior of the approach.

5 Diversity Differential Evolution

Based on the very competitive performance shown by DE in global optimization
problems [3], an adapted version to solve numerical optimization problems in pre-
sence of constraints, called Diversity Differential Evolution (DDE) was proposed in
[21]. Three simple modifications were made to the original DE/rand/1/bin (detailed
in Figure 1):

1. The probability of a target vector to generate a better trial vector is increased by
allowing it to generate NO offspring in the same generation.

2. A simple constraint-handling mechanism based on Deb’s feasibility rules [6] is
added to bias the search to the feasible region of the search space.

a. Between 2 feasible vectors, the one with the highest fitness value is pre-
ferred.

b. If one vector is feasible and the other one is infeasible, the feasible vector
is preferred.

c. If both vectors are infeasible, the one with the lowest sum of constraint

violation
(

∑m+p
i=1 max(0,gi(x))

)
is preferred.

3. A selection ratio parameter 0 ≤ Sr ≤ 1 is added to control the way vectors will
be selected. Based on the Sr value the selection will be made based only in
the value of the objective function f (x) regardless of feasibility. Otherwise, the
selection will be made based on the feasibility rules described before.

The detailed pseudocode of DDE is presented in Figure 2

6 Self Adaptive Diversity Differential Evolution

As it can be noted in the pseudocode presented in Figure 2, DDE adds two param-
eters (NO and Sr) to the original four parameters used in DE (NP, MAX GEN, CR
and F). Therefore, in this work, two parameter control mechanisms are proposed as
to keep the user from defining the values of four (out of six) parameters. Three pa-
rameters are self-adapted and another one uses a deterministic control. Furthermore,
the behavior of these parameters and the online performance of the new approach
are analyzed.
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Fig. 2 DDE pseudocode.
randint(min,max) returns
an integer value between
min and max. rand[0,1) re-
turns a real number between
0 and 1. Both functions
adopt a uniform probability
distribution. flip(W ) returns
1 with probability W . NP,
MAX GEN, CR, F , NO and
Sr are user-defined parame-
ters. n is the dimensionality
of the problem

Begin
G=0
Create a random initial population xi,G ∀i, i = 1, . . . ,NP
Evaluate f (xi,G) ∀i, i = 1, . . . ,NP
For G=1 to MAX GENERATIONS Do

F=rand[0.3,0.9]
For i=1 to NP Do

For k=1 to NO Do
Select randomly r1 �= r2 �= r3 �= i
jrand = randint(1,D)
For j=1 to n Do

If (randj [0,1) < CR or j = jrand ) Then
child j = xr3 , j,G +F(xr1 , j,G− xr2 , j,G)

Else
child j = xi, j,G

End If
End For
If k > 1 Then

If (child is better than ui,G+1
based on the three selection criteria) Then

ui,G+1=child
End If

Else
ui,G+1=child

End For
If flip(Sr ) Then

If ( f (ui,G+1)≤ f (xi,G)) Then
xi,G+1 = ui,G+1

Else
xi,G+1 = xi,G

End If
Else

If (ui,G+1is better than xi,G
based on the three selection criteria) Then

xi,G+1 = ui,G+1
Else

xi,G+1 = xi,G
End If

End If
End For
G = G+1

End For
End

6.1 Self-adaptive Parameter Control

In order to get a self-adaptive parameter control, the parameters must be encoded
within the solution of the problem. Motivated on the way Evolution Strategies work
[30], three parameters are encoded in each solution: F , CR and NO as shown in
Figure 3.

Now, each solution has its own F , CR and NO values and these values are subject
to differential mutation and crossover. The process is explained in Figure 4, where
the trial vector in Diversity Differential Evolution will inherit the three parameter
values from the target vector if the last decision variable was taken from it . On the
other hand, the values for each parameter will be calculated by using the differential
mutation operator i.e. they will be inherited from the mutation vector. The decision
variables are handled as in traditional DE, however, the CR parameter value used in
the process is that of the target vector.
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Fig. 3 Encoded solutions
including three parameters
to be self-adapted

... NP,n,G
XX NP,G CR NP,G NO

NP,GNP,1,G

...X X CR NO
2,1,G 2,n,G 2,G 2,G 2,G

...X X CR NO
1,n,G 1,G 1,G 1,G1,1,G

If (the last decision variable was inherited from the target vector) Then
child jF = Fi,G
child jCR = CRi,G
child jNO = NOi,G

Else
child jF = Fr3,G +Fi,G(Fr1,G−Fr2,G)
child jCR = CRr3,G +Fi,G(CRr1,G−CRr2,G)
child jNO = NOr3,G +Fi,G(NOr1,G−NOr2,G)

End If

Fig. 4 Differential mutation applied to the self-adapted parameters. Note that the F value for
the target vector Fi,G is used in all cases where differential mutation is used

6.2 Deterministic Parameter Control

Recalling the Sr parameter explanation in Section 5, this parameter controls the per-
centage of comparisons made between pairs of vectors by only considering the ob-
jective function value, regardless of feasibility information. Therefore, it affects the
bias in the search [29]. Higher Sr values keep infeasible solutions located in promis-
ing areas of the search space, whereas lower Sr values help to reach the feasible
region by using Deb’s rules [6].

Based on this behavior, the Sr parameter is controlled by a fixed schedule. A sim-
ple function is used to decrease the value for this parameter in such a way that
initial higher values allow DDE to focus on searching promising regions of the
search space, regardless of feasibility, with the aim to approach the feasible region
from a more convenient area. Later in the process, the Sr values will be lower, a-
ssuming the feasible region has been reached and that it is more important to keep
good feasible solutions. The interval within Sr initial values are considered is the
following: [0.45,0.65]. At each generation, the Sr value will be decreased based on
the expression in Equation 5:

S(t+1)
r = St

r−ΔSr (5)

where S(t+1)
r is the new value for this parameter, St

r is the current Sr value, ΔSr is the
amount decreased from this value at each generation and calculated as indicated in
Equation 6:
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ΔSr =
(

S0
r −SGmax

r

Gmax

)
(6)

where S0
r represents the initial value for Sr, and SGmax

r its last value in a given run.
The detailed pseudocode of Diversity Differential Evolution with the parameter

control techniques, called Adaptive-DDE (A-DDE) is shown in Figure 5.

7 Experiments and Results

In order to extensively test the A-DDE algorithm, six experiments are conducted.
The first experiment compares the final results of A-DDE with respect to the original
DDE (called Static DDE). In order to verify that the self-adaptive mechanism is not
equivalent to just generating random values for them within suggested intervals, the
second experiment compares A-DDE with respect a special DDE version, called
Static2 DDE, where the values for the four controlled parameters in A-DDE are
just generated at random (by using a uniform distribution) within the same intervals
used in A-DDE. The third experiment analyzes the convergence graphs for Static
DDE, Static2 DDE and A-DDE. The fourth experiment includes the graphs for the
three self-adapted parameters (F , CR and NO) in order to know which values are
they taking to provide competitive results. The fifth experiment compares Static
DDE, Static2 DDE and A-DDE by using two performance measures for constrained
optimization in order to know (1) how fast the feasible region is reached and (2) the
ability of each DE algorithm to improve inside the feasible region (difficult for most
EAs as analyzed in [18]). The two measures utilized are the following:

1. Evals [14]: The number of evaluations of solutions (objective function and con-
straints) required to generate the first feasible solution are counted. A lower
value is preferred because it means a faster approach to the feasible region.

2. Progress Ratio [18]: Originally proposed by Bäck for unconstrained optimiza-
tion [1]. It is a measure of improvement inside the feasible region by using the
objective function values of the first and the best feasible solution reached so

far at the end of the process. The formula is as follows: Pr =

∣∣∣∣∣ln
√

fmin(Gf f )
fmin(T )

∣∣∣∣∣,
where fmin

(
G f f

)
is the objective function value of the first feasible solution

found and fmin (T ) is the objective function value of the best feasible solution
found in all the search so far. A higher value means a better improvement inside
the feasible region.

Finally, the sixth and last experiment compares the final results obtained by A-DDE
with those reported by some state-of-the-art algorithms. In the first five experiments
24 well-known minimization test problems were used. These problems are used to
test EAs in constrained search spaces. Details of the problems can be found in [16].
A summary of their features can be found in Table 1.

For all the experiments the results are based on 30 independent runs for each
DE algorithm for each test problem. The number of evaluations performed by each
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Begin
G=0

⇒ Create a random initial population Xi,G ∀i, i = 1, . . . ,NP
Evaluate f (Xi,G) ∀i, i = 1, . . . ,NP

⇒ Select randomly Sr ∈ [0.45,0.65]
⇒ Select randomly SGmax

r ∈ (0,0.45)
For G=1 to Gmax Do

For i=1 to NP Do
⇒ For k=1 to NOi,G Do

Select randomly r1 �= r2 �= r3 �= i
jrand = randint(1,D)
For j=1 to D Do

⇒ If (randj [0,1) < CRi,G or j = jrand) Then
child j,G = xr3 , j,G +Fi,G(xr1, j,G− xr2 , j,G)
ban=0

Else
child j,G = xri , j,G

ban=1
End If

End For
⇒ If (ban==1) Then

childF,G = Fi,G
childCR,G = CRi,G
childNO,G = NOi,G

Else
childF,G = Fr3 ,G +Fi,G(Fr1,G−Fr2 ,G)
childCR,G = CRr3,G +Fi,G(CRr1,G−CRr2,G)
childNO,G = NOr3 ,G +Fi,G(NOr1 ,G−NOr2 ,G)

End If
If k > 1 Then

If (child is better than ui,G+1

(Based on three selection criteria))Then
ui,G+1 = child

End If
Else

ui,G+1 = child
End If

End For
If flip(Sr )

If ( f (ui,G+1)≤ f (xi,G)) Then
xi,G+1 = ui,G+1

Else
xi,G+1 = xi,G

End If
Else

If (ui,G+1 ≤ xi,G(Based on three selection criteria)) Then
xi,G+1 = ui,G+1

Else
xi,G+1 = xi,G

End If
End If

End For
G = G+1

⇒ Sr = Sr−ΔSr
End For

End

Fig. 5 A-DDE pseudocode. Arrows indicate steps where the parameter control mechanisms
are involved

DDE version is 180,000 in order to promote a fair comparison (except experiment
6, where the results by the state-of-the-art algorithms were taken directly from the
specialized literature). A tolerance value for equality constraints ε = 1E-4 was used.
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Table 1 Details of the 24 test problems. “n” is the number of decision variables, ρ =
|F |/ |S | is the estimated ratio between the feasible region and the search space [24], LI
is the number of linear inequality constraints, NI the number of nonlinear inequality con-
straints, LE is the number of linear equality constraints and NE is the number of nonlinear
equality constraints. a is the number of active constraints at the optimum

Prob. n Type of function ρ LI NI LE NE a

g01 13 quadratic 0.0111% 9 0 0 0 6
g02 20 nonlinear 99.9971% 0 2 0 0 1
g03 10 polynomial 0.0000% 0 0 0 1 1
g04 5 quadratic 52.1230% 0 6 0 0 2
g05 4 cubic 0.0000% 2 0 0 3 3
g06 2 cubic 0.0066% 0 2 0 0 2
g07 10 quadratic 0.0003% 3 5 0 0 6
g08 2 nonlinear 0.8560% 0 2 0 0 0
g09 7 polynomial 0.5121% 0 4 0 0 2
g10 8 linear 0.0010% 3 3 0 0 6
g11 2 quadratic 0.0000% 0 0 0 1 1
g12 3 quadratic 4.7713% 0 1 0 0 0
g13 5 nonlinear 0.0000% 0 0 0 3 3
g14 10 nonlinear 0.0000% 0 0 3 0 3
g15 3 quadratic 0.0000% 0 0 1 1 2
g16 5 nonlinear 0.0204% 4 34 0 0 4
g17 6 nonlinear 0.0000% 0 0 0 4 4
g18 9 quadratic 0.0000% 0 12 0 0 6
g19 15 nonlinear 33.4761% 0 5 0 0 0
g20 24 linear 0.0000% 0 6 2 12 16
g21 7 linear 0.0000% 0 1 0 5 6
g22 22 linear 0.0000% 0 1 8 11 19
g23 9 linear 0.0000% 0 2 3 1 6
g24 2 linear 79.6556% 0 2 0 0 2

7.1 Experiment 1

In the first experiment Static DDE and A-DDE are compared. The parameters used
for each algorithm were the following:

1. Static DDE

• NP = 60 y GMAX = 600
• Sr = 0.45
• NO = 5, CR = 0.9 and F ∈ [0.3,0.9] generated at random.

2. A-DDE.

• NP = 60 y GMAX = 600
• Sr ∈ [0.45,0.65], SGmax

r ∈ (0,0.45), randomly generated on each independent
run and then handled by the deterministic control.
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• NO ∈ [3,7], CR ∈ [0.9,1.0] and F ∈ [0.3,0.9] initially generated at random
per each vector in the population and then handled with the self-adaptive
control.

The statistical results (best, mean and worst values from a set of 30 independent
runs) are summarized in Table 2.

From those results in Table 2, A-DDE was able to maintain the good perfor-
mance of the original DDE in fourteen test problems (g01, g03, g04, g05, g06, g07,
g08, g09, g11, g12, g15, g16, g18, g24). Furthermore, the statistical values were
improved in six problems (g10, g14, g17, g19, g21 and g23). Finally, in problems
g02 and g13 the results, mostly in the average and worst values, were not better
than those provided by Static DDE. Problems g20 and g22 remained unsolved by
A-DDE.

Table 2 Comparison of results obtained with the original DDE version with static parameter
values (named Static DDE) and the proposed Adaptive-DDE (deterministic and self-adaptive
parameter control). “-”, means no feasible solution found. Values in boldface mean that the
global optimum or best know solution was reached, values in italic mean that the obtained
result is better (but not the optimal or best known) with respect to the approach compared

Best Best Mean Worst
Test known Adaptive Static Adaptive Static Adaptive Static

problem solution DDE DDE DDE DDE DDE DDE

g01 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000
g02 -0.803619 -0.803605 -0.803618 -0.771090 -0.789132 -0.609853 -0.747876
g03 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.497 5126.497 5126.497 5126.497 5126.497 5126.497 5126.497
g06 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814
g07 24.306 24.306 24.306 24.306 24.306 24.306 24.306
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.63 680.63 680.63 680.63 680.63 680.63 680.63
g10 7049.248 7049.248 7049.248 7049.248 7049.262 7049.248 7049.503
g11 0.75 0.75 0.75 0.75 0.75 0.75 0.75
g12 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
g13 0.053942 0.053942 0.053942 0.079627 0.053942 0.438803 0.053961
g14 -47.765 -47.765 - -47.765 - -47.765 -
g15 961.715 961.715 961.715 961.715 961.715 961.715 961.715
g16 -1.905 -1.905 -1.905 -1.905 -1.905 -1.905 -1.905
g17 8853.540 8853.540 8853.540 8854.664 8854.655 8858.874 8859.413
g18 -0.866025 -0.866025 -0.866025 -0.866025 -0.866025 -0.866025 -0.866025
g19 32.656 32.656 32.656 32.658 32.666 32.665 32.802
g20 0.096700 - - - - - -
g21 193.725 193.725 193.725 193.725 193.733 193.726 193.782
g22 236.431 - - - - - -
g23 -400.055 -400.055 - -391.415 - -367.452 -
g24 -5.508 -5.508 -5.508 -5.508 -5.508 -5.508 -5.508
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7.2 Experiment 2

A-DDE is now compared with respect to Static2 DDE, where the four parameters to
be controlled in A-DDE are just generated at random between the same intervals in
Static2 DDE. The parameter values used in A-DDE were the same reported in ex-
periment 1 in Section 7.1. The parameters used in Static2 DDE were the following:

• Static2 DDE

– NP = 60 y GMAX = 600
– Sr ∈ [0.45,0.65] generated at random instead of using the deterministic pa-

rameter control.
– NO ∈ [3,7], CR ∈ [0.9,1.0] and F ∈ [0.3,0.9] also generated at random in-

stead of using the self-adaptive parameter control.

Table 3 Comparison of results obtained with the DDE version with randomly-generated
parameter values (named Static2 DDE) and the proposed Adaptive-DDE (deterministic and
self-adaptive parameter control). “-”, means no feasible solution found. Values in boldface
mean that the global optimum or best know solution was reached, values in italic mean that
the obtained result is better (but not the optimal or best known) with respect to the approach
compared

Best Best Mean Worst
Test known Adaptive Static2 Adaptive Static2 Adaptive Static2

problem solution DDE DDE DDE DDE DDE DDE

g01 -15.000 -15.000 -15.000 -15.000 -14.937 -15.000 -13.917
g02 -0.803619 -0.803605 -0.803610 -0.771090 -0.706674 -0.609853 -0.483550
g03 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30660.237 -30665.539 -30591.889
g05 5126.497 5126.497 5126.497 5126.497 5126.497 5126.497 5126.497
g06 -6961.814 -6961.814 -6961.814 -6961.814 -6959.015 -6961.814 -6877.840
g07 24.306 24.306 24.306 24.306 24.945 24.306 38.903
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.63 680.63 680.63 680.63 680.63 680.63 680.63
g10 7049.248 7049.248 7049.248 7049.248 7073.779 7049.248 7308.826
g11 0.75 0.75 0.75 0.75 0.75 0.75 0.75
g12 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
g13 0.053942 0.053942 0.053942 0.079627 0.131458 0.438803 0.438803
g14 -47.765 -47.765 - -47.765 - -47.765 -
g15 961.715 961.715 961.715 961.715 961.715 961.715 961.715
g16 -1.905 -1.905 -1.905 -1.905 -1.905 -1.905 -1.900
g17 8853.540 8853.540 8853.540 8854.664 8855.884 8858.874 8859.693
g18 -0.866025 -0.866025 -0.866025 -0.866025 -0.866025 -0.866025 -0.866025
g19 32.656 32.656 32.656 32.658 37.785 32.665 65.993
g20 - - - - - - -
g21 193.725 193.725 193.725 193.725 198.009 193.726 263.444
g22 - - - - - - -
g23 -400.055 -400.055 - -391.415 - -367.452 -
g24 -5.508 -5.508 -5.508 -5.508 -5.508 -5.508 -5.508
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Fig. 6 Convergence graphs
for problems g06, g15 and
g16 where the behavior
was similar in the three
compared DE algorithms.

The summary of statistical values from a set of 30 independent runs is shown in
Table 3.

The results in Table 3 suggest that the effect of the self-adaptive mechanism is
not equivalent to just generating random values within convenient limits. A-DDE
provided better statistical results (mostly in the mean and worst values from a set of
30 independent runs) in thirteen test problems (g01, g02, g04, g06, g07, g10, g13,
g14, g16, g17, g19, g21 and g23). In nine problems the performance was similar
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Fig. 7 Convergence graphs
for problems g07, g19 and
g21 where the behavior of
A-DDE was better

between A-DDE and Static2 DDE (g03, g05, g08, g09, g11, g12, g15, g18 and
g24). Finally, Static2 DDE was unable to provide better results in any problem.

7.3 Experiment 3

In order to analyze the convergence behavior of each DDE algorithm compared, the
convergence graph of the run located in the median value of the 30 independent runs
was plotted for each test problem. The graph starts when the first feasible solution is
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Fig. 8 Convergence graphs
for problems g02 and g17
where the behavior of A-
DDE was not better than
those provided by the com-
pared approaches

generated. The x-axis represents the generation number and the y-axis is calculated
as follows: log10( f (x)− f (x∗)), where f (x) is the best feasible solution found in
the current generation and f (x∗) is the optimal solution or best known solution for
the problem being solved (see Table 1).

For sake of clarity representative graphs were grouped based on the behavior
observed: (1) Test problems where the convergence was similar among Static DDE,
Static2 DDE and A-DDE in Figure 6, (2) problems where A-DDE converged to
better solutions faster than the other two approaches in Figure 7 and (3) problems
where A-DDE got trapped in a local optimum solution in Figure 8.

Regarding Figure 6, besides problems g06, g15 and g16, the convergence be-
havior was similar in other nine problems (g01, g03, g04, g05, g08, g09, g11, g12
and g24). A-DDE was able to present a better convergence behavior, besides pro-
blems g07, g19 and g21 in Figure 7, in other five problems (g10, g13, g14, g18
and g23). Finally, the two problems presented in Figure 8 (g02 and g17) are those
where A-DDE got trapped in local optima solutions compared to the other two DDE
algorithms.

There is not a clear pattern between convergence behavior and features of a
test problem. However, the results indeed show that A-DDE mostly maintained the
original DDE competitive convergence behavior and even was able to skip local
optimum solutions and providing better results in some problems, most of them in
presence of equality constraints (g13, g14, g21 and g23).
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Fig. 9 Average values for F , CR y NO parameters in each generation on the run located in
the median value out of 30 independent runs for problems g06, g15 and g16. The parameter
values converged to a single value

7.4 Experiment 4

The results of the experiment to analyze the values taken for the controlled pa-
rameters are reported as follows: Two graphs for representative test problems are
presented. One graph includes the average value for the F and CR parameters in
each generation of the run located in the median value out of 30 independent runs.
The other graph presents the average value of the NO parameter of the same run.
As in the previous experiment, the graphs are grouped based on the behavior found:
(1) Those where the parameter values converged to a specific value in Figure 9,
(2) problems where the parameter values oscillated and the final results were better
with respect to the compared approaches in Figure 10 and, finally, (3) test problems
where the parameter values oscillated and the final results where not better than
those obtained with the other two DDE versions in Figure 11.
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Fig. 10 Average values for F , CR y NO parameters in each generation on the run located in
the median value out of 30 independent runs for problems g07, g19 and g21. The parameter
values keep oscillating during all the run and the final results were better with respect to both
Static DDE versions

It is clear from Figures 9, 10 and 11 that an oscillating behavior was obtained in
all cases, This effect was more remarked in F and NO, whereas in CR it is barely
noted. Based on these results, the self-adaptive mechanism is able to find that CR≈
0.9, which means trial vectors more similar to the mutation vector and less similar to
the target vector, is a suitable value on this set of test functions. On the other hand,
F ∈ [0.5,0.7] and NO ∈ [3,5] are adequate boundaries for the set of constrained
problems used in the experiments.

Figure 9 includes representative graphs for test problems where the parameter
values reached a single value after converging to an optimum (See Figure 6). Other
test problems where the behavior was similar were g04, g08, g09, g11, g12 and g24.

Figure 10 contains graphs where A-DDE provided a better final result (See Figure
7), but required more time to converge. In the same way, the parameter values kept
oscillating, helping the search by varying the values, mostly for F and N0. Other
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Fig. 11 Average values for F , CR y NO parameters in each generation on the median value
out of 30 independent runs for problems g02 and g17. The parameter values keep oscillating
during all the run and the final results were not better with respect to both Static DDE versions

test functions with the same type of results were g01, g03, g05, g10, g14, g17, g18
and g23.

Finally, Figure 11 shows those graphs where the parameter values kept varying
while A-DDE got trapped in a local optimum solution (See Figure 8).

7.5 Experiment 5

The 95%-confidence intervals for the mean value, out of 30 independent runs are
presented for both performance measures: Evals in Table 4 and Progress Ratio in
Table 5. The aim is to analyze the average performance of the three DDE versions
as to establish the effect of the deterministic and self-adaptive control mechanisms.

Regarding the Evals results reported in Table 4, some test problems were not
considered in the discussion because the feasible region was reached in the initial
population or even in the first generation. These problems are g02, g04, g08, g09,
g12, g19 and g24. Problems g20 and g22 are also excluded because no feasible
solutions were found by any algorithm. The confidence intervals for Evals indicate
that Static2 DDE reached the feasible region faster in eight problems: g03, g05,
g06, g11, g13, g15, g17 and g21. Static DDE generated feasible solutions faster in
four problems: g01, g07, g16 and g18. A-DDE only found feasible solutions faster
in three problems: g10, g14 and g23. These results point out that the deterministic
and self-adaptive mechanisms, despite maintaining or improving the quality and
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Table 4 95%-Confidence intervals for the Evals performance measure in the three DE algo-
rithms compared. The best values are remarked in boldface

Problem Evals
Adaptive DDE Static Static2

g01 [5134,5158] [4349,4375] [4852,4875]
g02 [62,62] [61,61] [61,61]
g03 [5396,5440] [5038,5084] [4989,5023]
g04 [63,63] [62,63] [65,65]
g05 [18926,18948] [20825,20850] [18820,18858]
g06 [1237,1244] [1282,1291] [1221,1231]
g07 [2723,2734] [2432,2443] [2590,2605]
g08 [143,146] [152,154] [163,166]
g09 [163,165] [188,192] [165,167]
g10 [4137,4158] [4236,4259] [4486,4509]
g11 [2681,2715] [2393,2419] [2161,2190]
g12 [79,79] [78,78] [85,85]
g13 [30866,30973] [34440,34551] [29012,29164]
g14 [106738,106899] - -
g15 [11332,11354] [11528,11545] [10362,10386]
g16 [1312,1323] [1159,1168] [1199,1210]
g17 [33804,33865] [37488,37553] [30929,31013]
g18 [10785,10818] [10282,10310] [10434,10468]
g19 [64,64] [62,62] [64,64]
g20 - - -
g21 [38214,38289] [47745,47856] [34957,35127]
g22 - - -
g23 [59992,60107] - -
g24 [62,62] [62,63] [62,62]

consistency of the final results, delayed the arrival to the feasible region with respect
to the other two DDE variants.

The results for the Progress Ration in Table 5, where again problems g20 and g22
are excluded from discussion because no feasible solutions were found, show that
A-DDE obtained a better improvement inside the feasible region in ten problems:
g02, g04, g09, g10, g14, g15, g16, g17, g21 and g23. Static DDE obtained a better
Progress Ratio interval in eight problems g01, g06, g07, g08, g11, g12, g18 and g19,
while Static2 DDE was better in four problems: g03, g05, g13 and g24.

After taking more evaluations to reach the feasible region, A-DDE was able
to improve the fist feasible solution in more problems with respect to Static and
Static2 DDE. This behavior suggests that A-DDE enters the feasible region from a
more promising region, based on a better exploration of the search space due to the
suitable parameter values. However, this issue requires further and more detailed
research.
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Table 5 95%-Confidence intervals for the Progress Ratio performance measure in the three
DE algorithms compared. The best values are remarked in boldface

Problem Progress Ratio
Adaptive DDE Static Static2

g01 [1.004,1.013] [1.064,1.073] [0.900,0.906]
g02 [1.071,1.074] [1.060,1.062] [1.005,1.008]
g03 [1.199,1.216] [1.255,1.273] [1.411,1.427]
g04 [0.77E-01,0.78E-01] [0.63E-01,0.63E-01] [0.62E-01,0.63E-01]
g05 [0.83E-06,0.85E-06] [0.17E-05,0.18E-05] [0.20E-05,0.21E-05]
g06 [0.375,0.379] [0.446,0.450] [0.396,0.400]
g07 [1.689,1.699] [1.849,1.857] [1.750,1.761]
g08 [1.465,1.479] [1.691,1.701] [1.479,1.492]
g09 [2.622,2.647] [2.522,2.558] [2.492,2.528]
g10 [0.468,0.470] [0.481,0.483] [0.484,0.487]
g11 [0.52E-01,0.53E-01] [0.58E-01,0.59E-01] [0.30E-01,0.31E-01]
g12 [0.102,0.104] [0.123,0.124] [0.100,0.102]
g13 [0.11E-02,0.11E-02] [0.89E-03,0.97E-03] [0.34E-02,0.36E-02]
g14 [0.47E-01,0.47E-01] - -
g15 [0.11E-05,0.12E-05] [0.10E-05,0.11E-05] [0.92E-06,0.96E-06]
g16 [0.215,0.216] [0.205,0.207] [0.207,0.209]
g17 [0.12E-02,0.12E-02] [0.41E-03,0.44E-03] [0.61E-03,0.64E-03]
g18 [0.731,0.738] [0.763,0.771] [0.710,0.714]
g19 [3.124,3.129] [3.150,3.155] [2.990,2.997]
g20 - - -
g21 [0.54E-01,0.55E-01] [0.31E-01,0.31E-01] [0.35E-01,0.35E-01]
g22 - - -
g23 [0.290,0.294] - -
g24 [0.397,0.401] [0.310,0.313] [0.506,0.517]

7.6 Experiment 6

In order to compare the final results obtained with A-DDE with respect to state-
of-the-art approaches, a summary of statistical values on the first 13 test problems
(the most used for comparison in the specialized literature) are presented in Table
6. The approaches used for comparison are: (1) The Generic Framework for cons-
trained optimization by Venkatraman & Yen [35], where the search is divided in
two phases, one where only the feasibility of solutions is considered and another
one where the feasibility and the optimization of the objective function are taken
into account, (2) the self-adaptive penalty function by Tessema & Yen [34], where
a parameter-free penalty function is used to deal with the constraints of the problem
and (3) a mathematical programming approach combined with a mutation operator
by Takahama & Sakai [31]. The comparison shows that A-DDE is indeed very com-
petitive with other evolutionary approaches for constrained optimization based on
the quality (best result obtained so far) and consistency (better mean and standard
deviation values) of the final results.
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Table 6 Statistical results obtained by A-DDE with respect to those provided by state-of-the-
art approaches on 13 benchmark problems. Values in boldface mean that the global optimum
or best know solution was reached, values in italic mean that the obtained result is better (but
not the optimal or best known) with respect to the approaches compared. No results reported
for problems g12 and g13 were found in [35]

Problem/BKS Statistic Venkatraman & Yen [35] Tessema & Yen [34] Takahama & Sakai [31] A-DDE

g01 Best -15.000 -15.000 -15.000 -15.000
-15.000 Median -15.000 -14.966 -15.000 -15.000

Worst -12.000 -13.097 -15.000 -15.000
St. Dev. 8.51E-01 7.00E-01 6.40E-06 7.00E-06

g02 Best -0.803190 -0.803202 -0.803619 -0.803605
-0.803619 Median -0.755332 -0.789398 -0.785163 -0.777368

Worst -0.672169 -0.745712 -0.754259 -0.609853
St. Dev. 3.27E-02 1.33E-01 1.30E-02 3.66E-02

g03 Best -1.000 -1.000 -1.000 -1.000
-1.000 Median -0.949 -0.971 -1.000 -1.000

Worst -1.000 -0.887 -1.000 -1.000
St. Dev. 4.89E-02 3.01E-01 8.50E-14 9.30E-12

g04 Best -30665.531 -30665.401 -30665.539 -30665.539
-30665.539 Median -30663.364 -30663.921 -30665.539 -30665.539

Worst -30651.960 -30656.471 -30665.539 -30665.539
St. Dev. 3.31E+00 2.04E+00 4.20E-11 3.20E-13

g05 Best 5126.510 5126.907 5126.497 5126.497
5126.497 Median 5170.529 5208.897 5126.497 5126.497

Worst 6112.223 5564.642 5126.497 5126.497
St. Dev. 3.41E+02 2.47E+02 3.50E-11 2.10E-11

g06 Best -6961.179 -6961.046 -6961.814 -6961.814
-6961.814 Median -6959.568 -6953.823 -6961.814 -6961.814

Worst -6954.319 -6943.304 -6961.814 -6961.814
St. Dev. 1.27E+00 5.88E+00 1.30E-10 2.11E-12

g07 Best 24.411 24.838 24.306 24.306
24.306 Median 26.736 25.415 24.306 24.306

Worst 35.882 33.095 24.307 24.306
St. Dev. 2.61E+00 2.17E+00 1.30E-04 4.20E-05

g08 Best -0.095825 -0.095825 -0.095825 -0.095825
-0.095825 Median -0.095825 -0.095825 -0.095825 -0.095825

Worst -0.095825 -0.092697 -0.095825 -0.095825
St. Dev. 0 1.06E-03 3.80E-13 9.10E-10

g09 Best 680.76 680.77 680.63 680.63
680.63 Median 681.71 681.24 680.63 680.63

Worst 684.13 682.08 680.63 680.63
St. Dev. 7.44E-01 3.22E-01 2.90E-10 1.15E-10

g10 Best 7060.553 7069.981 7049.248 7049.248
7049.248 Median 7723.167 7201.017 7049.248 7049.248

Worst 12097.408 7489.406 7049.248 7049.248
St. Dev. 7.99E+02 1.38E+02 4.70E-06 3.23E-4

g11 Best 0.75 0.75 0.75 0.75
0.75 Median 0.75 0.75 0.75 0.75

Worst 0.81 0.76 0.75 0.75
St. Dev. 9.30E-03 2.00E-03 4.90E-16 5.35E-15

g12 Best NA -1.000 -1.000 -1.000
-1.000 Median NA -1.000 -1.000 -1.000

Worst NA -1.000 -1.000 -1.000
St. Dev. NA 1.41E-04 3.90E-10 4.10E-9

g13 Best NA 0.053941 0.053942 0.053942
0.053942 Median NA 0.054713 0.053942 0.053942

Worst NA 0.885276 0.438803 0.438803
St. Dev. NA 2.75E-01 6.90E-02 9.60E-02
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8 Conclusions and Future Work

In this chapter, a deterministic and self-adaptive parameter control mechanisms were
added to a competitive DE-based approach, called Diversity Differential Evolution
(DDE) to solve constrained optimization problems. The proposed approach, called
Adaptive-DDE (A-DDE) considered the encoding of three parameters per each vec-
tor in the population, two from the original DE (F and CR) and one related with the
constraint-handling mechanism (NO, number of trial vectors generated per target
vector). Traditional mutation and crossover DE operators were used to self-adapt
these three values per each vector. Furthermore, other parameter which controls
the bias in the search to keep infeasible solutions located in promising areas of
the search space (based on the objective function value, regardless of feasibility),
called Sr was deterministically controlled by a decreasing function, focusing first on
keeping good infeasible solutions and, after that, maintaining mostly good feasible
solutions and discarding those infeasible ones.

A-DDE was extensively compared with respect to the original DDE and also
with respect to other state-of-the-art approaches. Six experiments were conducted
and the following findings were obtained:

• A-DDE maintained the very competitive performance of the original DDE and
it also was able to improve the final results in some test problems.

• A-DDE’s performance was clearly superior with respect to a DDE version
where just random values were generated per each parameter within adequate
limits. The self-adaptive mechanism seems to be effective in most of the test
problems.

• A-DDE convergence behavior was similar in most cases with respect to the
original DDE. However, in some problems with equality constraints A-DDE
was able to avoid local optimum solutions.

• An oscillating behavior dominated the self-adaptive mechanism on the three
parameters encoded on each vector in the population. The effect was more re-
marked in F ∈ [0.5,0.7] and in NO ∈ [3,5], whereas CR ≈ 0.9 was almost a
constant in all the test problems. These results indicate that DDE requires (1)
different scale values for the search directions generated in the process, (2) to
allow each target vector to generate at least 3 trail vectors and (3) to let them be
more similar to the mutation vector instead of being similar to the trial vector.

• The results obtained in the two performance measures showed that A-DDE re-
quires more evaluations to reach the feasible region with respect to the orig-
inal DDE. However, A-DDE is capable of generating a better improvement
inside it.

• A-DDE provided very competitive results with respect to some state-of-the-art
approaches.

Part of the future work derived from the present research is to analyze more in
depth how A-DDE approaches the feasible region with respect to the original DDE
as to get more knowledge on the effects of the parameter control mechanisms added.
Moreover, we will use A-DDE to solve complex engineering design problems.
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Finally, we will test other type of special operators in order to self-adapt the pa-
rameters encoded in each vector of the population.
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An Adaptive Penalty Function for Handling
Constraint in Multi-objective Evolutionary
Optimization

Gary G. Yen

Abstract. This chapter proposes a constraint handling technique for multi-objective
evolutionary algorithms based on an adaptive penalty function and a distance mea-
sure. These two functions vary dependent upon the objective function value and
the sum of constraint violations of an individual. Through this design, the objective
space is modified to account for the performance and constraint violation of each
individual. The modified objective functions are used in the non-dominance sorting
to facilitate the search of optimal solutions not only in the feasible space but also in
the infeasible regions. The search in the infeasible space is designed to exploit those
individuals with better objective values and lower constraint violations. The number
of feasible individuals in the population is used to guide the search process either
toward finding more feasible solutions or favor in search for optimal solutions. The
proposed method is simple to implement and does not need any parameter tuning.
The constraint handling technique is tested on several constrained multi-objective
optimization problems and has shown superior results compared to some chosen
state-of-the-art designs.

Keywords: Multiobjective evolutionary algorithm, constraint handling, adaptive
penalty.

1 Introduction

Evolutionary algorithms (EAs) have been successfully applied to solve optimiza-
tion problems in the fields of science and engineering [15]. EAs were originally
designed for solving unconstrained optimization problems, but in recent years, re-
searchers have been able to tailor constraint handling techniques into these algo-
rithms. The great challenges in constrained optimization problems arise from the
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various limits on the decision variables, the types of constraints involved, the inter-
ference among constraints, and the interrelationship between the constraints and the
objective function [34]. In the mean time, researchers were also developing evolutio-
nary approaches for solving multi-objective optimization problems (MOPs). These
multi-objective evolutionary algorithms (MOEAs) are capable of simultaneously
optimizing a set of competing objectives [10]. Nevertheless, limited research was
conducted in the area of constrained multi-objective optimization. Such problems
involve multiple conflicting objectives that are subject to various equality and in-
equality constraints [24, 25].

A constrained multi-objective optimization problem (CMOP) can be mathema-
tically formulated as: Minimize / Maximize

fi(x) = fi(x1,x2, ...,xn), i = 1, ..., p (1)

subject to

g j(x) = g j(x1,x2, ...,xn)≤ 0, j = 1, ...,q

h j(x) = h j(x1,x2, ...,xn) = 0, j = q + 1, ...,m

xmin
k ≤ xk ≤ xmax

k ,k = 1, ...,n

There are p objective functions that are required to be simultaneously optimized.
Each objective function fi(x) is defined on the search space S ⊆ ℜn. Usually the
search space is an n-dimensional hyperbox in ℜn. Each dimension of the search
space is bounded by its upper (xmax

k ) and lower (xmin
k ) limits.g j(x) is the jth-

inequality constraint, while h j(x) is the jth-equality constraint. There are a total
of m constraints, q inequality and m−q equality, which are required to be satisfied
by the optimum solution. The presence of equality and inequality constraints will
restrict the search space to a feasible region F ⊆ S, where a usable solution can be
found.

This chapter extends the single-objective constrained optimization algorithm pro-
posed by Tessema and Yen [33] to CMOPs. The proposed algorithm basically mo-
difies the objective function value of an individual using its distance measure and
penalty value. These modified objective function values are ranked through the non-
dominance sorting of the multi-objective optimization. Distance measures are found
for each dimension of the objective space by incorporating the effect of an indivi-
dual’s constraint violation into its objective function. The penalty function , on the
other hand, introduces additional penalty for infeasible individuals based on their
objective values and constraint violations. The balance between two components,
one based on objective function and the other on constraint violation, is controlled
by the number of feasible individuals currently present in the population. If few fea-
sible individuals are present, then those infeasible individuals with higher constraint
violations are penalized more than those with lower constraint violations. On the
other hand, if a sufficient number of feasible individuals exists, then those infeasible
individuals with worse objective values are penalized more than those with better
objective values. However, if the number of feasible individuals is in the middle
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of the two extremes, then the individual with lower constraint violation and better
objective function is less penalized. The two components of the penalty function
allow the algorithm to switch between feasibility and optimality at anytime during
the evolutionary process. Furthermore, since priority is initially given to finding fea-
sible individuals before searching for optimal solutions, the algorithm is capable of
finding feasible solutions when the feasible space is very small compared to the
search space.

This chapter is structured as follows: Section 2 provides a brief overview of
the various evolutionary approaches developed for constrained multi-objective op-
timization problems. Then, in Section 3, the proposed CMOP is presented and ana-
lyzed in detail. Next, in Section 4, various CMOP test problems are adopted to
evaluate the proposed algorithm as opposed to two chosen state-of-the-art designs
in literature. Finally, the results of the experiments and conclusion with a summary
of this chapter and ideas for future work are discussed.

2 Literature Survey

This section presents a brief review of evolutionary approaches developed for cons-
trained multi-objective optimization problems. The review begins with a discussion
about the MOEA for unconstrained MOPs and then extends into limited work in the
MOEA designs for CMOPs.

Over the last decade, several MOEAs have been developed to solve multi-
objective optimization problems. The earlier MOEAs are non-elitism based methods
that assign fitness to population members based on non-dominated sorting. In addi-
tion, they exploited different techniques to preserve diversity among solutions of the
same non-dominated front. Of these types, the Multi-Objective Genetic Algorithm
(MOGA) [13] by Fonseca and Fleming and the Non-dominated Sorting Genetic
Algorithm (NSGA) [29] by Srinivas and Deb were very popular. MOGA uses the
niche-formation technique to preserve diversity over the Pareto optimal region, and
sharing is performed on the objective function values. On the other hand, sharing is
performed on the decision variable space for NSGA .

More recently, elitism based algorithms have been suggested to enhance the con-
vergence properties of MOEAs. The Pareto Archived Evolution Strategy (PAES)
[21] by Knowles and Corne uses a (1+1) evolution strategy with a historical archive
that records all the non-dominated solutions found until the current generation. It
also designs a novel approach to maintain diversity which consists of a crowding
procedure that divides objective space in a recursive manner into several grids.
This procedure is adaptive and has lower computational complexity than the tra-
ditional niching based approaches. Zitzler and Thiele introduce the Strength Pareto
Evolutionary Algorithm (SPEA) [36] that uses an external archive to preserve non-
dominated solutions. In each generation, the non-dominated solutions in the external
set are given a strength value that is proportional to the number of individuals they
dominate. Fitness of individuals in the main population are computed according to
the strengths of all external non-dominated solutions that dominate it. In addition,
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a clustering technique is used to preserve diversity. Today, many advanced versions
of MOEAs have been constantly made available in literature in continue pursuit of
the performance frontier [10].

On the other hand, constraint handling for single objective optimization problems
has also been actively researched over the past two decades. Penalty functions are
the simplest and most commonly used methods for handling constraints using EAs.
In death penalty function methods such as [2], individuals that violate any one of the
constraints are rejected and no information is extracted from infeasible individuals.
If the added penalties do not depend on the current generation number and remain
constant during the entire evolutionary process, then the penalty function is called
static penalty function. In static penalty function methods [17], the penalties are the
weighted sum of the constraint violations. If, alternatively, the current generation
number is considered in determining the penalties, then the method is called dy-
namic penalty function method [19]. In adaptive penalty function methods [3, 12],
information gathered from the search process will be used to control the amount of
penalty added to infeasible individuals.

In [9, 19], methods based on preference of feasible solutions over infeasible so-
lutions are employed. In these types of techniques, feasible solutions are always
considered better than infeasible ones. Therefore, when population fitness ranking
is performed, feasible individuals will come first followed by infeasible individuals
with low constraint violation. In [27,28], Runarsson and Yao introduce the stochas-
tic ranking method to achieve a balance between objective and penalty functions
stochastically. A probability factor is used to determine whether the objective func-
tion value or the constraint violation value determines the rank of each individual.
In [30,31], similar algorithms are proposed where constraint violation and objective
function are optimized separately. A satisfaction level for the constraints was intro-
duced to indicate how well a search point meets the constraints, which was then
used for dominance comparison.

More recently, multi-objective optimization techniques have been used to solve
constrained optimization problems [22, 24]. In [32], a multi-objective optimization
technique that uses population-based algorithm generator and infeasible solutions
archiving and replacement mechanism is introduced. In [33], a two-phase algo-
rithm that is based on multi-objective optimization technique is proposed. In the
first phase of the algorithm, the objective function is completely disregarded and the
constraint optimization problem is treated as a constraint satisfaction problem. In
the second phase, both constraint satisfaction and objective optimization are treated
as a bi-objective optimization problem. An algorithm that combines penalty func-
tion approach and multi-objective optimization technique is also suggested in [1].
The algorithm has a similar structure as the penalty-based approach but borrows the
ranking scheme from multi-objective optimization techniques.

Although multi-objective optimization and constraint handling have received a
lot of attention individually, very little effort has been devoted in solving constrained
multi-objective optimization problems [5]. Coello Coello and Christiansen [8] pro-
pose a naı̈¿ 1

2 ve approach to solve CMOPs by ignoring any solution that violates any
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of the assigned constraints. This method is easy to implement but it often experi-
ences difficulty in searching for even a single feasible solution.

In [4], Binh and Korn propose the Multi-objective Evolution Strategy (MOBES),
which takes into account the objective function vector as well as the degree of cons-
traint violation of infeasible solutions in order to evaluate their fitness. Infeasible
individuals are divided into different classes according to their “nearness” to the
feasible region, and ranking is performed based on the class. In addition, a mecha-
nism to maintain a feasible Pareto optimal set is employed.

In [11], Deb et al. propose a constrained multi-objective algorithm based on cons-
trained dominance of individuals. According to their algorithm, a solution i is said
to constrained-dominate a solution j if 1) i is feasible while j is infeasible; 2) both
are infeasible and i has less constraint violation; or 3) both are feasible and i domi-
nates j. Feasible solutions constrained-dominate all infeasible solutions. However,
when two feasible individuals are compared, the usual dominance relationship is
used. The level of constraint violation is used to compare two infeasible individuals.

In [18], Jimenez et al. propose the Evolutionary algorithm of Non-dominated
Sorting with Radial Slots (ENORA), which employs the min-max formulation for
constraint handling. Feasible individuals evolve toward optimality, while infeasible
individuals evolve toward feasibility. In addition, a diversity technique based on
partitioning of the search space in a set of radial slots along which the successive
populations generated by the algorithm are positioned is introduced.

In [26], Ray et al. suggest using three different non-dominated rankings of the
population. The first ranking is performed using the objective function values; the
second is performed using different constraints; and the last ranking is based on
the combination of all objective functions and constraints. Depending on these ran-
kings, the algorithm performs according to the predefined rules. In [6], Chafekar
et al. propose two novel approaches for solving constrained multi-objective opti-
mization problems. One method, called Objective Exchange Genetic Algorithm of
Design Optimization (OEGADO), runs several GAs concurrently with each GA op-
timizing one objective and exchanging information about its objective with others.
The other method, called Objective Switching Genetic Algorithm for Design Opti-
mization (OSGADO), runs each objective sequentially with a common population
for all objectives.

In [35], Young proposes a constrained multi-objective evolutionary algorithm
called Blended Space EA (BSEA). The algorithm checks dominance by using a
rank obtained by blending an individual’s rank in objective space with its rank in
constraint space. A similar approach is proposed by Angantyr et al. [1] that uses the
weighted average rank of the ranks in the constraint and objective space. Although
their algorithm was examined only for testing problems with one objective func-
tion and several constraints, a simple adjustment in their formulation will provide a
constrained multi-objective optimization tool.

Fonseca and Fleming [14] propose a unified approach for multi-objective opti-
mization and multiple constraint handling. Their algorithm handles constraints by
assigning high priority to constraints and low priority to objective functions, which
allows search of feasible solutions followed by search of optimal solutions.
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Harada et al. [16] propose Pareto Descent Repair (PDR) operator that searches
for feasible solutions out of infeasible individuals in the constraint function space.
This operator involves gradients that are usually unavailable in functions justified to
be optimized using EAs.

In light of superior performance achieved in [33] for the single objective cons-
traint optimization, a similar idea is extended in this study into the uses of multi-
objective constraint optimization. In the next section, we introduce the proposed
constrained multi-objective evolutionary algorithm (CMOEA).

3 Proposed Constrained MOEA

The proposed algorithm extends the single-objective constrained evolutionary al-
gorithm proposed by Tessema and Yen [33] into a multi-objective framework. The
major difference in various constraint handling techniques used in multi-objective
optimization arises from the variations in the involvement of infeasible individu-
als in the evolutionary process. The main purpose of involving infeasible individ-
uals in the search process is to exploit the information they carry. Since EAs are
stochastic search techniques, discarding infeasible individuals might lead to the
EA being stuck in local optima, especially in problems with discontinuous feasi-
ble regions. In addition, in some highly constrained optimization problems, fin-
ding a single feasible individual by itself might be a daunting challenge when
the algorithm must be able to extract information from the previous infeasible
individuals.

The proposed algorithm uses modified objective function values for checking
dominance in the population. The modification is based on the constraint violation
of the individual and its objective performance. The modified objective value has
two components: distance measure and adaptive penalty. The two components are
discussed below in detail.

3.1 Distance Values

Distance measure is found for each dimension of the objective space by including
the effect of an individual’s constraint violation into its objective function. The ma-
jor steps in calculating the distance measure starts with obtaining the minimum and
maximum values of each objective function in the current population, P(t), as:

f i
min = min

x∈P(t)
fi(x), and (2)

f i
max = max

x∈P(t)
fi(x). (3)

Using these values, normalize each objective function i for every individual x,



An Adaptive Penalty Function for Handling Constraint in Multi-objective EO 127

f̃i(x) =
fi(x)− f i

min

f i
max− f i

min

, (4)

where f̃i(x) is the normalized ith-objective value of individual x.
Constraint violation , v(x), of individual x is then calculated as the summation

of the normalized violations of each constraint divided by the total number of con-
straints,

v(x) =
1
m

m

∑
j=1

c j(x)

c j
max

, (5)

where

c j(x) =
{

max(0,g j(x)), j = 1, · · · ,q
max(0, |h j(x)|− δ ), j = q + 1, · · · ,m (6)

c j
max = max

x∈P(t)
c j(x), (7)

δ is the tolerance value for equality constraints (usually 0.001 or 0.0001). q is the
number of inequality constraints, and m – q is the number of equality constraints. If
the constraint violation c j(x) is greater than zero, then the individual x violates the
jth-constraint. On the other hand, if the constraint violation c j(x) is equal to zero,
then the individual x satisfies the jth-constraint and the constraint violation c j(x)
is set to zero. Then the “distance” value of individual x in each objective function
dimension i is formulated as follows:

di(x) =
{

v(x), if r f = 0√
f̃i(x)2 + v(x)2, otherwise

, (8)

where

r f =
number of feasible individuals in current population

population size
(9)

From Equation 8, we observe that if there is no feasible individual in the current
population, then the distance values are equal to the constraint violation of the indi-
vidual. In this case, according to the distance values, an infeasible individual with
smaller constraint violation will dominate another infeasible individual with higher
constraint violation regardless of their objective function values. This is the best
way to compare infeasible individuals in the absence of feasible individuals, and it
will help us approach the feasible regions quickly.

On the other hand, if there is more than one feasible solution in the population,
then the distance values will have the properties summarized below:

1. For a feasible individual x, the distance value in a given objective function di-
mension i is equal to f̃i(x). Hence, those feasible individuals with smaller objec-
tive function values will have smaller distance values in that given dimension.

2. For infeasible individuals, the distance value has two components: the objec-
tive function value and the constraint violation. Hence, individuals closer to the
origin in the f̃i(x)− v(x) two-dimensional space would have lower distance
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value in that objective function dimension than those farther away from the
origin.

3. If we compare the distance values of infeasible and feasible individuals, then
either one may have a smaller value. But if the two individuals have similar ob-
jective function values, then the feasible individual will have a smaller distance
value in the corresponding objective function dimension.

3.2 Two Penalties

In addition to the penalty imposed upon infeasible individuals by the distance mea-
sure, two other penalty functions are also added. These functions introduce addi-
tional penalty for infeasible individuals based on their corresponding objective value
and constraint violation . The first penalty function is based on the objective func-
tions, and the second is based on the constraint violation. The balance between the
two components is controlled by the number of feasible individuals currently present
in the population. These penalties have two major purposes:

1. To further reduce the fitness of infeasible individuals as the penalty imposed by
the distance formulation alone is small.

2. To identify the best infeasible individuals in the population by adding different
amount of penalty to each infeasible individual’s fitness.

The two penalties are formulated for individual x in the ith-objective function
dimension as follows:

pi(x) = (1− r f )Xi(x)+ r fYi(x), (10)

where

Xi(x) =
{

0, if r f = 0
v(x), otherwise

(11)

Yi(x) =
{

0 , if x is a feasible individual
f̃i(x) , if x is an infeasible individual

(12)

From the penalty function definition in Equations (10,11-12), we observe that if
the feasibility ratio of the population is small (but not zero), then the first penalty
(Xi(x)) will have more impact than the second penalty (Yi(x)). The first penalty
is formulated to have large value for individuals with large amount of constraint
violation. Hence, in the case when there are few feasible individuals present in the
population (r f is small), infeasible individuals with higher constraint violation will
be more penalized than those with lower constraint violation. On the other hand, if
there are many feasible solutions in the population (r f is large), the second penalty
will have more effect than the first one. In this case, infeasible individuals with larger
objective function value will be more penalized than infeasible individuals with
smaller objective function value. Additionally, if there are no feasible individuals in
the population (r f = 0), both penalties will be zero.
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The two components of the penalty function allow the algorithm to switch be-
tween finding more feasible solutions and finding better solutions at anytime du-
ring the evolutionary process. Furthermore, because priority is initially given to the
search for feasible individuals, the algorithm is capable of finding feasible solutions
in cases where the feasible space is small or discontinuous compared to the search
space.

3.3 Final Modified Objective Value Formulation

The final modified objective value of individual x, using which non-dominance sor-
ting is performed, is formulated as the sum of the distance measure and penalty
function in the ith-objective function dimension,

Fi(x) = di(x)+ pi(x). (13)

This modified objective value formulation is flexible and will allow us to utilize
infeasible individuals efficiently and effectively. Most constraint optimization algo-
rithms in literature are “rigid” in a sense that they always prefer certain types of
infeasible individuals throughout the entire evolutionary process. For example, they
might always give priority to those individuals with small constraint violation only
or those individuals with low objective value only. According to our new fitness
formulation, the infeasible individuals that are considered valuable are not always
similar. Here are some of the interesting properties of this modified objective value
formulation:

1. If there is no feasible individual in the current population, each di(x) will be
equal to the constraint violation (v(x)), and each pi(x) term will be zero. In this
case, the objective values of the individuals will be totally disregarded, and all
individuals will be compared based on their constraint violation only. This will
help us find feasible individuals before looking for optimal solutions.

2. If there are feasible individuals in the population, then individuals with both
low objective function values and low constraint violation values will dominate
individuals with high objective function values or high constraint violation or
both.

3. If two individuals have equal or very close distance values, then the penalty term
(pi(x)) determines the dominant individual. According to our penalty formula-
tion, if the feasibility ratio (r f ) in the population is small, then the individual
closer to the feasible space will be dominant. On the other hand, the individual
with smaller objective function values will be dominant. Otherwise, the two
individuals will be non-dominant solutions.

4. If there is no infeasible individual in the population (r f = 1), then individuals
will be compared based on their objective function values alone.

After the computation of the modified objective values, the standard features of
NSGA-II, such as non-dominant ranking and diversity through crowding distances,
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will be used based on these modified values. During the archiving process, the best
feasible individuals are given priority over infeasible individuals, as the goal of
constrained multi-objective optimization is eventually to find feasible optimal so-
lutions. The proposed constraint handling technique is very generic, involving only
the modification of fitness function through adaptive penalty measure. It can be eas-
ily extended to other MOEAs.

4 Experimental Results and Observations

4.1 Experimental Setup

The algorithm is tested on several constrained multi-objective benchmark problems
available from literature. The simulations are conducted with a population size of
100, crossover rate of 0.8, mutation rate of 0.2, and maximum generation number
of 100 for all implementations. In addition, we use SBX crossover and mutation.
Tournament selection is adopted in a recombination and replacement scheme. These
parameters are chosen to be consistent with what were used in other constrained
MOEAs for a fair comparison.

Fourteen benchmark problems have been used to test the performance of the pro-
posed algorithm. These problems are all minimization problems and are denoted as
BNH [4], SRN [7, 29], OSY [23], TNK [32], CTP1 [10], CTP2 [10], CTP3 [10],
CTP4 [10], CTP5 [10], CTP6 [10], CTP7 [10], CTP8 [10], CONSTR [10], and
Welded Beam Problem [6]. Each benchmark problem is run 50 times, and the per-
formance metrics are measured statistically. Both quantitative and qualitative com-
parisons are made to validate the proposed algorithm. For qualitative comparison,
the plots of final non-dominated fronts that were obtained from the same initial
population are presented. The quantitative comparison is performed using hyper-
volume indicator and additive epsilon indicator. These two Pareto compliant per-
formance metrics are able to measure the performance of algorithms with respect
to their dominance relations and diversity preservation. A detailed discussion about
these measures can be found in [20, 37]. The quantitative comparisons are illus-
trated by statistical box plots, and a Mann-Whitney rank-sum test is implemented to
evaluate whether the difference in performance between two independent samples
is significant [20].

4.2 Comparative Study

The performance metric for hypervolume indicator (IH value) is computed for each
CMOEA over 50 independent runs. Figures 1, 2 and 3 presents the box plots of IH

indicator found in all CMOEAs, in which 1 is denoted by the proposed algorithm,
2 as the NSGA-II and 3 as the Ray-Tai-Seow’s. Higher IH value indicates the
ability of the algorithm to dominate a larger region in the objective space. The
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Table 1 The distribution of IH values tested using Mann-Whitney rank-sum Test [20]. The
table presents the p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05)
for each pair of the proposed algorithm and a selected CMOEA. The distribution of the pro-
posed algorithm has significant differences than those selected CMOEA unless stated. (∗) No
diference. (∗∗) No feasible solution

IH IH
Test Functions (Proposed, NSGA-II) (Proposed, Ray-Tai-Seow)

BNH 0.0315 4.11E-05
SRN 0.0244 4.11E-05
OSY 0.1081>0.05 4.11E-05
TNK 0.0315 1.65E-04
CTP1 0.0078 0.0476
CTP2 0.04 0.3284>0.05 (*)
CTP3 0.2224>0.05 (*) 4.11E-05
CTP4 0.0051 4.11E-05
CTP5 0.0315 0.0027
CTP6 (**) 0.0228
CTP7 0.04 0.0175
CTP8 0.0625>0.05 (*) 0.7785>0.05 (**)

CONSTR 0.0056 4.11E-05
Welded Beam 0.0078 5.35E-04

figures show that the proposed algorithm has the highest IH values for the test func-
tions BNH, SRN, TNK, CTP1, CTP4, CTP5, CTP6, CTP7, CONSTR, and Welded
Beam. The proposed algorithm and NSGA-II showed comparable IH values for test
problems OSY and CTP3. Similarly, Ray-Tai-Seow’s algorithm showed comparable
IH values for CTP2 test problem. All algorithms performed well for CTP8 test prob-
lem. NSGA-II showed a higher IH value than Ray-Tai-Seow for test functions SRN,
CTP3, CTP5, CTP7, and welded Beam. On the contrary, Ray-Tai-Seow’s showed
better IH value than NSGA-II for test functions OSY, CTP1, CTP2, and CTP8.
NSGA-II was not able to find a feasible solution for CTP6 test problem due to the
extent of constraints imposed. In some of the problems shown in Figures 1, 2 and 3,
it is hard to determine whether the proposed algorithm is significantly better than the
other CMOEAs since they attain close IH values. Hence, the Mann-Whitney rank-
sum test is used to examine the distribution of the IH values. The tested results are
presented in Table 1, and they indicate that the proposed algorithm’s performance
has a significant advantage compared to the distribution in NSGA-II and Ray-Tai-
Seow’s in most test functions except OSY, CTP2, CTP3, and CTP8. In addition,
Figures 1, 2 and 3 shows that the standard deviations for the proposed algorithm are
consistently lower, which indicates that the proposed algorithm is more reliable in
producing better solutions than those selected CMOEAs.
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IH values for BNH IH values for SRN

IH values for OSY IH values for TNK

IH values for CTP1 IH values for CTP2

Fig. 1 Box plot of hypervolume indicator (IH values) for all test functions by algorithms 1-3
represented (in order): the Proposed algorithm, NSGA-II, and Ray-Tai-Seow’s (Part I)
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IH values for CTP3 IH values for CTP4

IH values for CTP5 IH values for CTP6

IH values for CTP7 IH values for CTP8

Fig. 2 Box plot of hypervolume indicator (IH values) for all test functions by algorithms 1-3
represented (in order): the Proposed algorithm, NSGA-II, and Ray-Tai-Seow’s (Part II)
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IH values for CONSTR IH values for Welded Beam

Fig. 3 Box plot of hypervolume indicator (IH values) for all test functions by algorithms 1-3
represented (in order): the Proposed algorithm, NSGA-II, and Ray-Tai-Seow’s (Part III)

Table 2 The distribution of Iε+ values tested using Mann-Whitney rank-sum Test [20]. The
table presents the p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05)
for each pair of the proposed and a selected CMOEA. The distribution of the proposed algo-
rithm has significant differences than those selected CMOEA unless stated. (∗) No diference.
(∗∗) No feasible solution

Ie+ Ie+
Test Functions (Proposed,NSGA-II) (Proposed,Ray-Tai-Seow)

BNH 4.11E-05 8.23E-05
SRN 4.11E-05 4.11E-05
OSY 4.11E-05 4.11E-05
TNK 2.00E-03 1.42E-02
CTP1 0.1359>0.05 (*) 0.3734>0.05 (*)
CTP2 4.11E-05 4.11E-05
CTP3 4.11E-05 1.65E-04
CTP4 0.4755>0.05 (*) 1.65E-04
CTP5 7.82E-04 0.0181
CTP6 (**) 8.23E-05
CTP7 1.65E-04 2.88E-04
CTP8 0.5457>0.05 (*) 0.1903>0.05 (*)

CONSTR 5.60E-03 2.60E-03
Welded Beam 8.23E-05 1.65E-04

Figures 4, 5, 6, 7 and 8 illustrate the results of additive epsilon indicator using
statistical box plots. There are two box plots for each test problem, i.e., Iε+ (A,X1,2)
and Iε+ (X1,2,A), in which algorithm A is referred to as the proposed design, while
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Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for BNH

Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for SRN

Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for OSY

Fig. 4 Box plots of additive epsilon indicator (Iε+ values) (‘A’ corresponds to the proposed
algorithm, while ‘X1, 2 ’ refers to NSGA-II and Ray-Tai-Seow’s, respectively). Part I
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Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for TNK

Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for CTP1

Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for CTP2

Fig. 5 Box plots of additive epsilon indicator (Iε+ values) (‘A’ corresponds to the proposed
algorithm, while ‘X1, 2 ’ refers to NSGA-II and Ray-Tai-Seow’s, respectively). Part II
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Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for CTP3

Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for CTP4

Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for CTP5

Fig. 6 Box plots of additive epsilon indicator (Iε+ values) (‘A’ corresponds to the proposed
algorithm, while ‘X1, 2 ’ refers to NSGA-II and Ray-Tai-Seow’s, respectively). Part III
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Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for CTP6

Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for CTP7

Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for CTP8

Fig. 7 Box plots of additive epsilon indicator (Iε+ values) (‘A’ corresponds to the proposed
algorithm, while ‘X1, 2 ’ refers to NSGA-II and Ray-Tai-Seow’s, respectively). Part IV
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Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for CONSTR

Iε+
(
A,X1,2

)
and Iε+

(
X1,2,A

)
for Welded Beam

Fig. 8 Box plots of additive epsilon indicator (Iε+ values) (‘A’ corresponds to the proposed
algorithm, while ‘X1, 2 ’ refers to NSGA-II and Ray-Tai-Seow’s, respectively). Part V

algorithms X1 and X2 represent NSGA-II and Ray-Tai-Seow’s, respectively. It seems
that the proposed algorithm performs relatively better with respect to dominance re-
lation than most of the CMOEAs for all functions except OSY, CTP2, CTP4, CTP5,
and CTP8. For example, Figures 4, 5, 6, 7 and 8 show that the proposed algorithm
strictly dominates NSGA-II on Welded Beam problem because Iε+ (A,X1)≤ 0 and
Iε+ (X1,A) > 0. On the other hand, the box plot on CTP8 in Figures 4, 5, 6, 7 and
8 may indicate that the proposed algorithm does not strictly dominate NSGA-II be-
cause Iε+ (A,X1) > 0 and Iε+ (X1,A) > 0.

In summary, NSGA-II and the proposed algorithm showed no difference for
CTP4 test function; Ray-Tai-Seow’s and the proposed algorithm showed compa-
rable results for CTP2 and CTP5 test functions; and finally the proposed algo-
rithm seems to perform as well as NSGA-II and Ray-Tai-Seow’s for functions OSY
and CTP8. For the rest of the test functions, the proposed algorithm showed better
performance compared to the other CMOEAs. Moreover, we can observe that the
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proposed algorithm has relatively lower standard deviations, which are consistent
with those shown in Figures 1, 2 and 3. For further analysis, the distributions of Iε+
values are analyzed via the Mann-Whitney rank-sum test, which are presented in
Table 2. In general, results in Table 2 and Figures 4, 5, 6, 7 and 8 confirm that the
proposed algorithm is significantly better than most or even all of the CMOEAs on
all benchmark test problems in terms of the chosen performance metrics.

The success of the proposed algorithm is mainly due to the exploitation of the
evolutionary information contained in infeasible individuals in addition to that con-
tained in feasible individuals. The constraint handling normally used in NSGA-
II [11] compares infeasible individuals solely based on their constraint violation.
This way of non-dominance ranking ignores how well each individual performed
in the objective space and may result in the inefficient use of some evolutionary
materials. The proposed algorithm, on the other hand, uses a combined measure of
constraint violation and objective performance to arrive at the fitness of individuals
that will govern the evolutionary process. The number of feasible individuals avail-
able in the current population is used to control the relative emphasis given to ei-
ther constraint violation or objective performance in the final fitness calculation. As
can be observed from the test results of the proposed algorithm, this way of fitness
formulation provides better solutions compared to other constrained multiobjective
evolutionary algorithms.

5 Conclusions

In this chapter, we propose an adaptive constraint handling technique for solving
constrained multi-objective optimization problems. Besides the search for optimal
solutions in the feasible region, the algorithm also exploits the information hidden
in infeasible individuals with better objective values and lower constraint violation.
This is achieved by using the modified objective values in the non-dominance rank-
ing of the multi-objective evolutionary algorithm. The modified objective values
incorporate the effects of the individuals’ constraint violation. They are composed
of distance measures and penalty functions. These values are associated with how
well an individual performs and how much it violates the constraints. They are ob-
tained for every objective function dimension. For feasible individuals, the distance
values are just the normalized objective function values. For infeasible individu-
als, the distance values are obtained from the normalized objective function values
and their constraint violation. The penalty function, on the other hand, will be ap-
plied to infeasible individuals in order to further decrease their fitness compared
to feasible individuals. The number of feasible individuals in the population adap-
tively controls the emphasis given to objective values or constraint violation in the
modified objective function formulation. If there is no feasible individual in the po-
pulation, the algorithm uses the constraint violations as the primary means to rank
the individuals. This adaptive formulation allows further exploitation of the evolu-
tionary information possessed by infeasible individuals with low objective values
and low constraint violation. Involving the infeasible individuals in the evolutionary
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process helps the algorithm to find additional feasible individuals, even in cases
where the feasible space is very small and discontinuous. Furthermore, since there
is no parameter tuning, this makes the algorithm easy to implement. Moreover, the
additional evaluations are simple arithmetic operations and do not impose any sig-
nificant increase in the computational cost.

The proposed constraint handling technique is implemented on NSGA-II sim-
ply due to its popularity as an MOEA. The proposed constraint handling technique
can be easily extended to other multi-objective evolutionary algorithms. The per-
formance of the algorithm was tested on fourteen constrained multi-objective test
problems. From the simulation results, it is observed that the algorithm is capable
of finding better-fit feasible solutions that are well spread over the Pareto front in all
the runs of all test problems. In addition, the results of the algorithm are compared
with some of the constrained multi-objective algorithms suggested so far. The com-
parison results indicate that the proposed algorithm performs better than the other
algorithms in that it is able to provide a well distributed Pareto front that has optimal
individuals. For future work, the authors recommend applying the proposed cons-
traint handling technique using modified objective function formulation to other
multi-objective evolutionary approaches, such as SPEA2.
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Infeasibility Driven Evolutionary Algorithm for
Constrained Optimization

Tapabrata Ray, Hemant Kumar Singh, Amitay Isaacs, and Warren Smith

Abstract. Real life optimization problems often involve one or more constraints
and in most cases, the optimal solutions to such problems lie on constraint bound-
aries. The performance of an optimization algorithm is known to be largely depen-
dent on the underlying mechanism of constraint handling. Most population based
stochastic optimization methods prefer a feasible solution over an infeasible solu-
tion during their course of search. Such a preference drives the population to fea-
sibility first before improving its objective function value which effectively means
that the solutions approach the constraint boundaries from the feasible side of the
search space. In this chapter, we introduce an evolutionary algorithm that explicitly
maintains a small percentage of infeasible solutions close to the constraint bound-
aries during its course of evolution. The presence of marginally infeasible solutions
in the population allows the algorithm to approach the constraint boundary from the
infeasible side of the search space in addition to its approach from the feasible side
of the search space via evolution of feasible solutions. Furthermore, “good” infea-
sible solutions are ranked higher than the feasible solutions, thereby focusing the
search for the optimal solutions near the constraint boundaries. The performance
of the proposed algorithm is compared with Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) on a set of single and multi-objective test problems. The results
clearly indicate that the rate of convergence of the proposed algorithm is better than
NSGA-II on the studied test problems. Additionally, the algorithm provides a set of
marginally infeasible solutions which are of great use in trade-off studies.

Keywords: Evolutionary Algorithm, Constrained Handling, Multi-objective Opti-
mization, NSGA-II.

1 Introduction

In real life, one often encounters problems where he/she has to optimize one or
more objectives simultaneously, subject to a set of constraints. In single objective
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optimization problems, the aim is to find one or more solutions which have the best
objective function value; whereas in a multi-objective optimization (MO) problem,
the aim is to arrive at a set of non-dominated solutions close enough to the Pareto
Optimal Set (POS). Population based stochastic optimization algorithms are a pre-
ferred choice for MO problems since they are able to generate the POS in a single
run. A number of population based stochastic algorithms such as Evolutionary Al-
gorithms (EAs), Differential Evolution (DE), Particle Swarm Optimization (PSO)
etc. have been proposed in literature to deal with single and multi-objective opti-
mization problems.

The performance of stochastic optimization methods for constrained optimiza-
tion problems is known to be largely dependent on the mechanism used for han-
dling constraints. A detailed review of various constraint handling techniques used
with evolutionary algorithms is presented in [4, 29]. Penalty function based meth-
ods are the most commonly adopted form where the fitness of an infeasible solu-
tion is degraded by a weighted sum of the constraint violations. Variants of penalty
function based approaches include static penalty models [20, 25], dynamic penalty
models [23], annealing penalty models [28, 31], adaptive penalty models [2, 13] or
death penalty models [19]. The implementation of any of the above schemes often
requires additional parameters and the result of optimization is known to be highly
sensitive to the choice of such parameters.

In an attempt to alleviate the problems associated with penalty factors, a number
of alternate approaches have been proposed. These include special representation
schemes to maintain feasibility [7, 30], use of repair algorithms [32, 34, 43, 44],
handling constraints and objective separately [38], incorporation of heuristic rules
such as linear ranking [35] and binary tournament [8] to compare individuals in the
population. Main drawbacks of the above approaches include the need to develop
problem specific repair mechanisms, unavailability of a feasible starting point, and
early loss of diversity.

Dominance based approaches have also been proposed to deal with constraints.
Ray et al. [36] developed an evolutionary algorithm based on non-dominance of
solutions in the objective and the constraint space. Ho and Shimizu [18] converted
the objective function value and the constraint violation into numerical values with
the same order of magnitude. Concepts of dominance have also been used in recent
simulated annealing based optimization algorithms:- Hedar and Fukushima [16],
and Singh et al. [37]. However, simulated annealing based models are known to
require a number of associated parameters that need to be identified through trials.
A comparison of various Multi-Objective Evolutionary Algorithms (MOEAs) on
constrained optimization (single-objective non-linear problems) using concepts of
Pareto-dominance can be found in [27].

Most of the evolutionary optimization algorithms focus on generating the best
feasible solution of the problem and hence a feasible solution is always considered
better than an infeasible solution during the course of the evolution. This funda-
mental assumption always drives the population towards feasibility. For many cons-
trained optimization problems, the optimal solutions are likely to lie on a constraint
boundary. In reality a designer is often interested to look at the solutions that might
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be marginally infeasible. Hence, a marginally infeasible solution near the constraint
boundary is more desirable than a poor feasible solution away from the constraint
boundary. The search can be focused around the constraint boundary by treating the
constraints as additional objectives and the constraint violation as its fitness. For
single objective optimization, Coello Coello proposed to split the population into
various sub-populations, each sub-population using either the objective or one of
the constraints as the fitness function [3]. For multi-objective problems Vieira et al.
have used constraints an additional objectives together with a modified Parks &
Miller elitist technique [40, 41]. In the above approach a significant amount of time
is spent on non-dominated sorting due to a large number of constraints. There is also
a risk of generating solutions with excellent objective function values but with poor
constraint satisfaction.

Few researchers have proposed maintaining a proportion of infeasible solutions
in the population during the evolution. Hamida and Schoenauer [14] developed an
adaptive segregational algorithm (ASCHEA), where the proportion of feasible so-
lutions in the population was controlled using an adaptive penalty. The approach
used single penalty coefficient for all constraints, and was later extended [15]
to incorporate a separate penalty coefficient for each constraint. Hinterding and
Michalewicz [17] proposed another approach (CONGA) for constraint handling
using effective parent matching, where mating was done between two infeasi-
ble solutions satisfying different constraints to create children which would sat-
isfy all constraints. Mezura-Montes and Coello Coello [26] suggested a simple
multimembered evolutionary strategy (SMES) where the “best” infeasible solution
determined by its objective and function value is allowed to be copied into next gen-
eration. Though these algorithms (ASCHEA, CONGA, and SMES) effectively illus-
trated the benefits of preserving infeasible solutions in the population, their scope
was demonstrated on single-objective optimization problems only. An extension to
multi-objective domain was not discussed.

In an attempt to simultaneously generate solutions to unconstrained and cons-
trained optimization formulations of a multi-objective problem, Isaacs, Ray and
Smith [21] introduced a Constraint Handling Evolutionary Algorithm (CHEA). The
evolutionary process used in CHEA is similar to that of NSGA-II [12], but a part of
the population is maintained infeasible during the search. The infeasible solutions
in the population are ranked using the original objectives along with an additional
objective, the number of constraint violations. The incorporation of search through
infeasible space improves the efficiency of the algorithm. However, the algorithm
does not have any provisions to quantify the amount of constraint violation and the
infeasible solutions obtained are not suitable for the trade-off studies.

In this chapter, an evolutionary algorithm is proposed to handle constrained opti-
mization problems along the lines of CHEA. The proposed algorithm is aimed to de-
liver (a) The set of Optimal Solutions (best function value in case of single-objective
and Pareto-Optimal set for multi-objective problems), (b) a few marginally infeasi-
ble solutions for trade-off studies and (c) an improvement in the rate of convergence.
Usually, there are no defining limits on the absolute values of the constraint viola-
tions, the term marginal is used to denote the solutions that have relatively small
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constraint violation among the members of the population, and lie close to the cons-
traint boundary. The proposed approach is a modified form of CHEA [21], and is
referred as Infeasibility Driven Evolutionary Algorithm (IDEA). The performance
of the algorithm is compared with NSGA-II on a number of single objective op-
timization problems (g-series problems [24, 33]) and multi-objective optimization
problems (CTP series problems [9]). The rest of the chapter is organized as follows.
The proposed algorithm (IDEA) is described in Section 2. The quantification of
constraint violation is discussed in Section 3. In Section 4, the details of the numer-
ical experiments performed are given, followed by the results in Section 5. Finally,
the findings of our studies are summarized in Section 6.

2 Infeasibility Driven Evolutionary Algorithm (IDEA)

A multi-objective optimization problem can be formulated as shown in Eq. 1.

Minimize f1(x), . . . , fk(x)
Subject to gi(x)≥ 0, i = 1, . . . ,m

(1)

where x = (x1, . . . ,xn) is the design variable vector bounded by lower and upper
bounds x ∈ S ⊂ Rn. A single objective optimization problem follows the same
formulation with k = 1.

The optimal solutions of the constrained optimization problems often lie along
the constraint boundary. To effectively search along the constraint boundary, the
original k objective constrained optimization problem is reformulated as k + 1 ob-
jective unconstrained optimization problem as given in Equation 2. The first k ob-
jectives are the same as in the original constrained problem. The additional objective
represents a measure of constraint violation, which is referred to as “violation mea-
sure” in our studies.

Minimize f ′1(x) = f1(x), . . . , f ′k(x) = fk(x)
f ′k+1(x) = Violation measure

(2)

The main steps of IDEA are outlined in Algorithm 1. As in NSGA-II, an offspring
population is evolved from parents selected by binary tournament using crossover
and mutation. IDEA uses simulated binary crossover (SBX) [10] as given in Eq. 3.

y1
i =0.5 [(1 + βqi)x1

i +(1−βqi)x2
i ]

y2
i =0.5 [(1−βqi)x1

i +(1 + βqi)x2
i ]

(3)

where βqi is calculated as,

βqi =

⎧⎨
⎩

(2ui)1/ηc+1, if ui ≤ 0.5,(
1

2(1−ui)

)1/ηc+1
if ui > 0.5.

(4)
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Algorithm 1. Infeasibility Driven Evolutionary Algorithm (IDEA)
Require: N {Population Size}
Require: NG > 1 {Number of Generations}
Require: 0 < α < 1 {Proportion of infeasible solutions}
1: Nin f = α ∗N
2: Nf = N−Nin f
3: pop1 = Initialize()
4: Evaluate(pop1)
5: for i = 2 to NG do
6: child popi−1 = Evolve(popi−1)
7: Evaluate(child popi−1)
8: (S f ,Sin f ) = Split(popi−1 +child popi−1)
9: Rank(S f )

10: Rank(Sin f )
11: popi = Sin f (1,Nin f )+S f (1,Nf )
12: end for

and where ui is the uniform random number in the range [0,1) and ηc is the user
defined parameter Distribution for Crossover. A polynomial mutation operator has
been used in this study [11] defined in Eq. 5.

yi = xi +(xi− xi) δ̄i (5)

where δ̄i is calculated as,

δ̄i =

{
(2ri)1/(ηm+1)−1, if ri < 0.5,

1− [2(1− ri)]1/(ηm+1), if ri ≥ 0.5.
(6)

and where ri is the uniform random number in the range [0,1) and ηm is the user
defined parameter Distribution Index for mutation.

For preserving diversity among the population members, crowding distance
sorting [12] has been used, which is calculated as shown in Algorithm 2. The main
difference between NSGA-II and the IDEA is the mechanism for elite preservation.
In IDEA, a few infeasible solutions are retained in the population at every genera-
tion. Individual solutions in the population are evaluated as per the original problem
definition (Eq. 1) and marked infeasible if any of the constraints are violated. The so-
lutions of the parent and the offspring population are divided into a feasible set (S f )
and an infeasible set (Sin f ). The solutions in the feasible and the infeasible sets are
both ranked using non-dominated sorting and crowding distance sorting of k+1 ob-
jectives. NSGA-II, on the other hand, uses non-dominated sorting and crowding dis-
tance for ranking feasible solutions and ranks infeasible solutions in the increasing
value of maximum constraint violation. For the feasible solutions, non-dominated
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Algorithm 2. Crowding distance mechanism
Require: F {Non-dominated set}
1: Ns = |F | {Number of solutions in the non-dominated set}
2: M = Number of objectives
3: F(i).dist = 0 ∀ i = 1,2, . . .Ns {Initialize distance}
4: for m = 1 to M do
5: F = sort(F,m) {Sort based on objective value}
6: F(1).dist = F(Ns).dist = ∞ {Assign infinity to the corner points}
7: for i = 2 to (Ns−1) do
8: F(i).dist = F(i).dist + (F(i + 1,m) − F(i − 1,m))/( f max

m − f min
m ) {calculate

F(i).dist based on neighboring points}
9: end for

10: end for
11: Higher dist ⇒ Higher rank

sorting using k + 1 objectives is equivalent to the non-dominated sorting the origi-
nal k objectives as the additional objective value (which is based on the constraint
violations) for feasible solutions is always 0.

The next step is to choose the solutions that form the population for the next
generation. In IDEA, a user-defined parameter α is used to identify the proportion
of the infeasible solutions to be retained in the population. The numbers Nf (= (1−
α)×N) and Nin f (= α×N) denote the number of feasible and infeasible solutions
in the population respectively, where N is the population size. If the infeasible set
Sin f has more than Nin f solutions, then first Nin f solutions are selected based on the
rank; otherwise all the solutions from Sin f are selected. The rest of the solutions are
selected from the feasible set S f , provided there are at least Nf number of feasible
solutions. If S f has fewer solutions, all the feasible solutions are selected and the
rest are filled with infeasible solutions from Sin f . The solutions are ranked from 1
to N in the order they are selected. Hence, the infeasible solutions that get selected
first (at most Nin f ), get higher rank than the feasible solutions.

As an example, assuming a population size of 100, during any given generation
100 child solutions will be created. In the pool of 200 (parent + child) solutions,
if there are 40 infeasible and 160 feasible solutions, then NSGA-II will select best
100 feasible solutions for the next generation, hence preferring all feasible solu-
tions over all infeasible solutions. On the other hand, assuming we use α = 0.2
for IDEA, it would select 20 best infeasible solutions (based on non-dominated +
crowding distance sorting of k+1 objectives), and 80 best feasible solutions. Hence,
good infeasible solutions are preferred over feasible solutions during the course of
evolution.

In NSGA-II, the elite preservation mechanism weeds out the infeasible solutions
from the population. To retain the infeasible solutions in the population, an alter-
nate mechanism is required. In IDEA, the infeasible solutions are ranked higher
than the feasible solutions, thus adding selection pressure to generate better infea-
sible solutions. Presence of infeasible solutions with higher ranks than the feasible
solutions translates into an active search through the infeasible space. This feature
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of IDEA accelerates the movement of solutions towards the constraint boundary.
With the modified problem definition and ranking of the infeasible solutions higher
than the feasible solutions, IDEA can find the solutions to the original problem more
efficiently.

3 Constraint Violation Measure

The additional objective in the modified problem formulation is based on the amount
of relative constraint violation among the population members. The constraint viola-
tion measure of a solution is based on the constraint violation levels for all constraint
values for that solution. Consider one of the constraints (gi). All the solutions in the
population are sorted ascending based on the value of the constraint violation for gi.
The solutions that do not violate the constraint gi are assigned constraint violation
value of 0 (and gi does not contribute to the Violation measure of those solutions).
Rest of the solutions are assigned a constraint violation level for constraint gi based
on the sorted list, starting with rank 1 for the solution with least constraint viola-
tion. Solutions with the same value of constraint violation get the same rank. This
ranking procedure is repeated for all the constraints. The constraint violation mea-
sure for each solution is then calculated as the sum of the ranks (based on constraint
violation level) obtained for all the constraints.

The process of determining constraint violation measure is illustrated using fol-
lowing example. Consider an optimization problem with three constraints (C1, C2,
C3). A sample population of 10 individuals is shown in Table 1. For each solu-
tion, the first three columns list the value of the constraint violation. The constraint
violation values are sorted for each constraint and each solution is assigned rela-
tive ranks for the constraints. The relative ranks are shown in next three columns.
Solutions 3, 7 and 9 do not violate constraint C1 and get a relative rank of 0.

Table 1 Calculation of constraint violation measure

Violations Relative ranks
Solution C1 C2 C3 C1 C2 C3 Violation Measure

1 3.50 90.60 8.09 3 8 7 18
2 5.76 7.80 6.70 4 6 5 15
3 0.00 3.40 7.10 0 4 6 10
4 1.25 0.00 0.69 1 0 1 2
5 13.75 90.10 5.87 6 7 4 17
6 100.70 2.34 3.20 7 3 2 12
7 0.00 5.09 4.76 0 5 3 8
8 1.90 0.00 0.00 2 0 0 2
9 0.00 0.56 0.00 0 1 0 1

10 8.90 2.30 9.80 5 2 8 15
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Solution 4 with the least constraint violation value (1.25) for C1 gets rank 1 and so-
lution 6 with the highest constraint violation value (100.70) gets rank 7. Last column
shows the constraint violation measure as the sum of the ranks with respect to each
constraint.

It can be seen that the violation measure favors solutions with good ranks for
most (or all) of the constraints. As a result, a solution with large violation in only
one of the constraints would roughly have a same preference as a solution with
marginal violations of multiple constraints. This in a sense incorporates the amount
of constraint violation and not just the number of constraints violated as in CHEA.
The violation measure is used as the additional objective in IDEA to rank the infeasi-
ble solutions using non-dominated sorting. As a result, the final population consists
of the solutions with marginal constraint violations.

4 Experimental Setup

4.1 Single Objective Optimization

The g-series problems g01, g02, g04, g06, g07, g08, g09, g10 and g12 (g-series
problems without equality constraints) are used as single objective optimization
test problems. The detailed formulations of g-series test problems can be found
in [24, 33]. All the problems are solved using IDEA and NSGA-II. Multiple runs
are performed varying parameters – crossover probability, mutation probability,
crossover distribution index and mutation distribution index. The values for the pa-
rameters are listed in Table 2, and for each parameter combination, both the algo-
rithms are run with two different random seeds, thus resulting in a total of 25 = 32
runs for each problem.

The population size of 200 is used and both algorithms are run for 1750 genera-
tions for all test runs, resulting in 350,000 function evaluations. For IDEA, twenty
percent (α = 0.2) of the population is maintained infeasible.

Table 2 Parameters used for IDEA and NSGA-II for studies on g-series test functions

Parameter Values

Crossover Probability 0.8,0.9
Mutation Probability 0.1,0.2
Crossover Distribution Index 15,20
Mutation Distribution Index 20,30

4.2 Multi-objective Optimization

The CTP series of benchmark problems are used as multi-objective optimization
test problems. CTP series is a set of seven constrained, bi-objective optimization
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problems. CTP problems pose various challenges to optimization algorithms – con-
stricted feasible space near the constraint boundaries, discontinuous Pareto optimal
fronts, discontinuity in the variable and function space etc. A detailed discussion on
CTP test functions can be found in [9].

For CTP problems, 30 independent runs are performed using IDEA and NSGA-
II by varying the random seed. The crossover and mutation parameters are fixed as
shown in Table 3. A population size of 200 was evolved over 200 generations. For
IDEA, twenty percent of the population is maintained infeasible (α = 0.2).

Table 3 Parameters used for IDEA and NSGA-II for studies on CTP test functions

Parameter Value

Crossover Probability 0.9
Mutation Probability 0.1
Crossover Distribution Index 15
Mutation Distribution Index 20

4.2.1 Performance Metrics

To compare the results of multi-objective optimization, various performance metrics
have been suggested in the literature. A discussion of some of these metrics can be
found in [5]. For our study, two performance metrics are used, Displacement and
Hypervolume.

• Displacement
Displacement [1,6,22] is a measure of how far the non-dominated solutions are
from the Pareto optimal front. The Displacement metric is defined in Eq. 7 as
suggested in [1],

Displacement =
1
|P| ×

|P|
∑
i=1

(
|Q|

min
j=1

d(i, j)

)
(7)

where P is the known set of Pareto optimal solutions, Q is the non-dominated
solution set and d(i, j) is the Euclidean distance between ith solution of set P
and jth solution of set Q. A lower value of Displacement corresponds to better
convergence with respect to the Pareto optimal front.

• Hypervolume
For bi-objective problems, Hypervolume for a set S is defined as the area dom-
inated by the set in function space with respect to a reference point. Mathema-
tically, it is defined as given in Eq. 8.

H =

{⋃
i

ai|vi ∈ S

}
(8)
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where ai is the area dominated by the solution vi with respect to a reference
point. A detailed discussion of the Hypervolume metric can be found in [5, 45,
46]. For test problems CTP6 and CTP8, the reference point used is (2,20) and
for the rest of the problems it is (2,2).

5 Results

5.1 Single-Objective Optimization

The results of the runs for g-series test problems have been compared using two
performance measures – convergence rate and best solution obtained.

5.1.1 Convergence Rate

An ‘average’ progress of both the algorithms for g-series test problems is shown
in Figure 1. The graphs show the best fitness averaged over all the runs for each
generation. The runs with no feasible solutions at any generation are omitted when
calculating average. Thus, the graphs indicate average convergence rates for IDEA
and NSGA-II.

It is seen from Figure 1 that convergence rate of IDEA is better than NSGA-II
for problems g01, g02, g04, g06, g07 and g10. For problems g08, g09 and g12,
the average convergence was found to be almost identical and the figures for those
problems are not presented.

5.1.2 Converged Values

The average, best and worst objective values across all runs are listed in Table 4. It
is seen that for a given number of function evaluations, IDEA consistently obtains
a better objective value than NSGA-II for all problems. For the problems g08 and
g12, the average objective values obtained by both algorithms are the same.

It is worth mentioning here that although reported values for the g-series func-
tions using IDEA are an improvement over NSGA-II, some recent studies have re-
ported better results for g-series functions [26, 39, 42]. However, the scope of most
of these studies is limited to single objective optimization only.

5.1.3 Trade-Off Solutions

Shown in Figure 2 are the best solutions obtained by IDEA and NSGA-II for prob-
lem g06 across all 32 runs. The constraint boundary for g06 is formed by two
intersecting circles. The feasible region is the narrow region between the two circles
where they intersect. The magnified view of the feasible region near the intersec-
tion is shown in Figure 2. The optimum objective value occurs at the intersection
(14.095, 0.84296). Along with the best solutions obtained by IDEA and NSGA-II, 5
“best” (based on the violation measure) of the infeasible solutions in the final IDEA
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Fig. 1 Average of best feasible function values over 32 runs at each generation, obtained
using NSGA-II and IDEA

population are also plotted. All the NSGA-II solutions lie in the feasible region (so-
lutions between the two lines above the intersection point), as expected. Most of the
IDEA solutions are concentrated near the intersection point. It is clear that NSGA-II
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Table 4 Results for g-series functions

Problem NSGA-II Results IDEA Results
Best Mean Worst Best Mean Worst

g01 -15.0000 -14.5979 -12.4457 -15.0000 -14.9997 -14.9988
g02 0.8033 0.7943 0.7640 0.8032 0.8019 0.7934
g04 -30665.300 -30661.209 -30618.700 -30665.500 -30665.472 -30665.300
g06 -6946.5500 -6921.6962 -6892.3900 -6961.7900 -6961.4731 -6960.6900
g07 24.4532 25.8522 31.9884 24.3811 25.0916 27.1796
g08 -0.09582 -0.09582 -0.09582 -0.09582 -0.09582 -0.09582
g09 680.6450 681.1611 682.2540 680.6670 680.9331 681.4170
g10 7355.190 8284.448 10030.100 7113.430 7434.930 7778.320
g12 1.000 1.000 1.000 1.000 1.000 1.000

Table 5 Marginally infeasible solutions obtained using IDEA for g06

Violations
x1 x2 f (x) C1 C2

14.095100 0.840314 -6964.723300 0 0.023632
14.058700 0.802804 -7007.928303 0.323500 0
14.095100 0.841393 -6963.535085 0 0.014656
14.062200 0.772189 -7041.657047 0.002145 0.063455
14.078800 0.830207 -6976.676602 0.188217 0
14.095200 0.842968 -6961.795875 0 0.003178
14.058900 0.700537 -7121.587900 0 0.621251
14.096500 0.792284 -7017.680063 0 0.448186
14.095100 0.803637 -7005.192343 0 0.330106
14.048200 0.838280 -6969.296140 0.810163 0

has difficulty in searching along the narrow region of the feasible space. The popu-
lation of IDEA, however, approaches the optimum solution from various directions
(as apparent from the distribution of the infeasible solutions around the intersection)
and quickly manages to reach the optimum.

Some of the infeasible solutions in the final population of IDEA are listed in
Table 5. The optimum objective value for g06 is -6961.81388. The objective can be
improved substantially by relaxing one or both the constraints marginally as seen
from the table.

5.2 Multi-objective Optimization

5.2.1 Evolution

The progress of NSGA-II and IDEA populations up to 200 generations for test prob-
lem CTP2 is shown in Figure 3 and Figure 4 respectively. For NSGA-II, the popu-
lation approaches the POS from the feasible space and has difficulty in searching
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Fig. 2 Final population for g06

close to the constraint boundary. On the other hand, IDEA maintains the population
in both the feasible and the infeasible space, thus capturing the entire POS much
faster (See Figure 4). IDEA is able to cover most of the disconnected segments of
POS for CTP2 by generation 50.

Test problem CTP2 has a disconnected POS. Any population based method that
search through the feasible space for disconnected POS, is likely to face difficulty
capturing the whole front unless a reasonably large population size is chosen to
maintain diversity. Once the entire population converges to fewer regions of the
POS, NSGA-II has to rely predominantly on mutation to spread the solutions to
other regions of the POS. On the other hand, IDEA population can move through
the infeasible regions avoiding ‘detours’ through feasible space. Hence, even with a
small population, IDEA is able to capture the entire POS.

To illustrate this effect, a single run was performed for CTP2 with both NSGA-II
and IDEA with a population size of 100 and 200 generations. The crossover and the
mutation parameters are kept fixed as in the earlier experiments. The results of the
run are shown in Figure 5. It can be seen that IDEA solutions are spread much more
evenly across the entire POS as compared to NSGA-II.

5.2.2 Performance Metrics

The performance metrics are calculated using the non-dominated solutions obtained
by NSGA-II and IDEA. In case of IDEA, only the feasible solutions in the final
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(a) 25 generations (b) 30 generations

(c) 50 generations (d) 200 generations

Fig. 3 Evolution of NSGA-II population over generations for CTP2 test run (Population size
is 200)

population are considered. The Displacement metric and Hypervolume metric re-
sults for NSGA-II and IDEA are listed in Tables 6 and 7 respectively for the pro-
blems CTP2-CTP8. The tables show the best, mean, and standard deviation (S.D.)
of the metric values across 30 runs. From Table 6 it is seen that IDEA has signi-
ficantly better mean Displacement metric values than NSGA-II for all CTP pro-
blems. The worse mean values of NSGA-II are due to its tendency to converge to
sub-optimal fronts for CTP problems. For the best runs, the values of Displacement
metrics obtained by both algorithms are fairly close. Also, it is observed that IDEA
results have lower S.D., indicating that IDEA obtains more consistent results than
NSGA-II over multiple runs. Only for CTP7, however the S.D. value obtained us-
ing IDEA is higher than that obtained NSGA-II. It is so because in one of the runs,
IDEA converged to a sub-optimal front which is far away from the Pareto-optimal
front. NSGA-II on the other hand, converged to a sub-optimal that was closer to the
Pareto-optimal front, but more number of times than IDEA. Hence, for CTP7, the
mean values using IDEA are still better than NSGA-II, where as the S.D. is worse
for IDEA.
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(a) 25 generations (b) 30 generations

(c) 50 generations (d) 200 generations

Fig. 4 Evolution of IDEA population over generations for CTP2 test run (Population size is
200)

(a) IDEA (b) NSGA-II

Fig. 5 Final front obtained for CTP2 using IDEA and NSGA-II with a population size of 100
evolved over 200 generations
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Table 6 Displacement metric for CTP problems

IDEA Results NSGA-II Results
Best Mean S.D. Best Mean S.D.

CTP2 0.000101 0.001254 0.004286 0.000085 0.006415 0.009226
CTP3 0.001696 0.006992 0.017147 0.001820 0.024493 0.035827
CTP4 0.017625 0.028247 0.015927 0.019386 0.061003 0.047692
CTP5 0.000266 0.001369 0.003965 0.000268 0.003856 0.004762
CTP6 0.000463 0.000689 0.000924 0.000395 0.012739 0.050726
CTP7 0.000049 0.004057 0.013118 0.000041 0.008308 0.013071
CTP8 0.000251 0.004592 0.010069 0.000225 0.104338 0.137467

The values of the best, mean and the standard deviation for the Hypervolume
metric (across all 30 runs) are shown in Table 7. It is seen that the average metric
values obtained by IDEA are higher than those obtained by NSGA-II for all CTP

(a) CTP2 (b) CTP3

(c) CTP4 (d) CTP5

Fig. 6 Solutions obtained in a typical run for problems CTP2, CTP3, CTP4 and CTP5 using
NSGA-II and IDEA
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(a) CTP6 (b) CTP7

(c) CTP8

Fig. 7 Solutions obtained in a typical run for problems CTP6, CTP7 and CTP8 using NSGA-
II and IDEA

problems. The small values of S.D. for IDEA suggest that the performance of the
algorithm is consistent. Also, it is seen that the for the case of CTP7 only, the IDEA
results have a higher S.D. than NSGA-II results, due the same reason as mentioned
in the case of Displacement metric.

The non-dominated fronts obtained using NSGA-II and IDEA during a typical
run are shown in Figures 6 and 7. It can be visibly seen that IDEA is able to obtain
more solutions close to the POS, especially for the problems where the optimum
solutions lie in constricted spaces formed by the constrained boundaries, such as
CTP3, CTP4 and CTP5. Also, for CTP8, it can be seen that in the given number of
evaluations, IDEA was able to obtain all three segments of the POS, whereas NSGA-
II was able to get only two of them, for the same reason as explained in 5.2.1. The
flexibility of moving through infeasible regions enables IDEA to obtain the front
faster.
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Table 7 Hypervolume metric for CTP problems

IDEA Results NSGA-II Results
Best Mean S.D. Best Mean S.D.

CTP2 3.059180 3.011390 0.177100 3.059344 2.870703 0.270056
CTP3 3.015969 2.960771 0.163811 3.010435 2.828100 0.254690
CTP4 2.919011 2.744736 0.139271 2.848500 2.438106 0.352716
CTP5 3.024724 2.952929 0.162089 3.020914 2.723520 0.292627
CTP6 36.819072 36.787826 0.075797 36.822693 36.182922 2.187300
CTP7 3.617663 3.435931 0.594506 3.617716 3.240162 0.594118
CTP8 36.180362 35.970564 0.434540 36.170783 32.085918 5.176305

5.2.3 Trade-Off Solutions

As shown in Figure 4(d), the final population for CTP2 evolved using IDEA contains
infeasible points close to the constraint boundary. One can evaluate the benefit in
the objective values by relaxing the constraints as illustrated in Section 5.1.3. For
multi-objective optimization problems significant benefit may be derived in multiple
objectives at the cost of relaxing the constraints marginally.

6 Conclusions

A novel algorithm, Infeasibility Driven Evolutionary Algorithm (IDEA), for cons-
trained optimization problems has been presented in this chapter. The algorithm
maintains infeasible solutions during the evolution thereby searching the space
through the feasible as well as the infeasible regions. The original constrained op-
timization problem is reformulated as an unconstrained optimization problem with
one additional objective. The additional objective is based on the constraint viola-
tion level of the solutions. In addition, the infeasible solutions are ranked higher than
the feasible solutions to focus the search near the constraint boundary. The search
through the infeasible space enhances the convergence rate of IDEA over NSGA-II,
which searches only through the feasible regions.

The proposed algorithm was tested on single objective g-series test problems and
multi-objective CTP series problems, and the results were compared with NSGA-
II. The results of IDEA show a greater rate of convergence for single objective
problems. The results demonstrate the capability of IDEA for handling constraints
efficiently for both single and multi-objective problems. Furthermore, IDEA has
additional advantage of providing marginally infeasible solutions, which may prove
beneficial trade-offs for design considerations.
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On GA-AIS Hybrids for Constrained
Optimization Problems in Engineering

Heder S. Bernardino, Helio J.C. Barbosa, Afonso C.C. Lemonge,
and Leonardo G. Fonseca

Abstract. A genetic algorithm (GA) is hybridized with an artificial immune system
(AIS) as an alternative to tackle constrained optimization problems in engineering.
The AIS is inspired by the clonal selection principle and is embedded into a standard
GA search engine in order to help move the population into the feasible region. The
resulting GA-AIS hybrid is tested in a suite of constrained optimization problems
with continuous variables, as well as structural and mixed integer reliability engi-
neering optimization problems. In order to improve the diversity of the population, a
variant of the algorithm is developed with the inclusion of a clearing procedure. The
performance of the GA-AIS hybrids is compared with that of alternative techniques,
such as the Adaptive Penalty Method, and the Stochastic Ranking technique, which
represent two different types of constraint handling techniques that have been shown
to provide good results in the literature.

Keywords: genetic algorithm, artificial immune system, hydrid algorithm.

1 Introduction

Nature-inspired population-based algorithms (NPAs) , which can be readily applied
to unconstrained optimization problems, must be usually equipped with an addi-
tional constraint handling procedure whenever the constraints cannot be automat-
ically satisfied by all candidate solutions in the population. The many available
techniques to handle constrained optimization problems within NPAs can be classi-
fied as direct (feasible or interior), when only feasible elements are considered, or
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indirect (exterior), when both feasible and infeasible elements are used during the
search process. Direct techniques comprise: a) special closed genetic operators [40],
b) special decoders [29], c) repair techniques [36], and d) ”death penalty”. Direct
techniques are problem dependent (with the exception of the ”death penalty”) and
actually of extremely reduced practical applicability. Indirect techniques include: a)
the use of Lagrange multipliers [1], which may lead to the introduction of a popu-
lation of multipliers and to the use of the concept of coevolution [2], b) combining
fitness and constraint violation in a multi-objective optimization setting [12, 44], c)
the use of special selection techniques [39], d) assigning to any infeasible offspring
a very low fitness value [26], and e) penalty techniques [3,4,25,31,32,38,42]. Other
strategies proposed in the NPA literature can be found in [23, 27, 28, 34, 40], and in
the repository [10].

However, of particular interest here is the application of ideas from artificial im-
mune systems (AIS) in constrained optimization problems. A hybrid GA-AIS is
proposed to solve constrained optimization problems involving continuous and/or
discrete variables. This chapter is organized as follows. The formulation of the cons-
trained optimization problem and some techniques are described in Section 2, the
AIS heuristic and previous work are summarized in Section 3. Section 4 presents
the GA-AIS hybrid technique, and numerical experiments are discussed in Section
5. The numerical experiments comprise a well known suite of continuous cons-
trained optimization problems, a mixed-integer non-linear programming (MINLP)
problem, two non-linear integer programming (NLIP) problems, a discrete structural
engineering optimization problem, and, finally, a mixed-integer reliability problem
(considering three objective functions). Finally, in Section 6, some conclusions are
drawn.

2 Constrained Optimization Problems

A standard constrained optimization problem in Rn can be thought of as the min-
imization of a given objective function f (x), where x ∈ Rn is the vector of de-
sign/decision variables, subject to inequality constraints gp(x) ≥ 0, p = 1,2, . . . , p̄
as well as equality constraints hq(x) = 0, q = 1,2, . . . , q̄. Additionally, the variables
are usually subject to bounds xL

i ≤ xi ≤ xU
i . Due to the standard encoding techniques

used by GAs and AISs, bound constraints do not require special treatement since
they will be trivially enforced here.

Very often the design variables are further constrained to belong to a given finite
set of pre-defined values, as in design optimization problems when parts must be se-
lected from commercially available types. A mixed discrete-continuous constrained
optimization problem arises. Often, in optimization problems arising from multidis-
ciplinary design tasks, the constraints are in fact a complex implicit function of the
design variables, and the check for feasibility may be computationally expensive.
Constraint handling techniques which do not require the explicit form of the con-
straints and do not require additional objective function evaluations are thus most
valuable.
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In this paper two techniques to handle constrained optimization problems are
selected in order to provide comparisons with the performance of the proposed GA-
AIS. The first one is the Adaptive Penalty Method (APM) [3,32] and the second one
is the Stochastic Ranking technique (SR) presented in [39]. Both techniques have
been shown to be capable of producing very good solutions in the literature.

3 Artificial Immune Systems

Computer science has, for some time now, searched for inspiration in nature in or-
der to improve the way of solving computational problems. The Artificial Immune
Systems (AISs) are composed by intelligent methodologies, inspired by biological
immune system, to solve real world problems [15].

In nature, when an animal is exposed to antigens, relatively specific antibodies
are produced to combat them. The immune response has to be efficient in order to
defend the organism from foreign agents (antigens). To do this, the best antibodies
are cloned, hypermutated, and selected. Sometimes, random antibodies are gener-
ated to improve diversity to the population (produced by the bone marrow). Also, if
the organism is again attacked by that antigen a quicker immune response is devel-
oped. This skill of adaptation is known as clonal selection and affinity maturation
by hypermutation, or more simply, clonal selection [18] .

The natural immunity comprises innate and adaptive immunities [47]. The innate
immune system is composed by cells and mechanisms that defend the host from
attacks by other organisms, in a non-specific manner. The adaptive immune sys-
tem comprises highly specialized cells and processes that defend the organism from
antigens. The main adaptive immunity feature is to distinguish between proteins
produced by cells of the body (self) and the ones produced by intruders or by cells
under virus control (non-self). The clonal selection belongs to the adaptive immune
system.

AISs are used in various applications [8]: pattern recognition, scheduling, con-
trol, machine-learning, information systems security, and optimization. For opti-
mization problems, different techniques based in AISs can be found in the literature
such as the immune network theory [45] or the clonal selection principle [7, 9].

The clonal selection algorithm, used by our hybrid method, is similar to other
stochastic search methods. The individuals of the population (or candidate solutions)
are the antibodies. The clonal selection evolution is based on the principle that each
individual is cloned, hypermutated, and those with higher affinity are selected. For
unconstrained problems, affinity is usually associated with a fitness value, but here
affinity will be given by the genotypic distance between antibodies and antigens.
The mutation rate is, normally, inversely proportional to the affinity of the antibody
with respect to the antigens. AISs usually do not use recombination operators (such
as crossover in GAs). The resulting AIS technique has a good balance between
global and local exploration and is simple to implement [46].
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3.1 Previous Work Using AIS

In 1995, Hajela and co-workers [20–22, 51], aiming at increasing the similarity (or
reducing the distance) between infeasible elements (playing the role of antibodies)
and feasible ones (antigens), proposed the idea of using another GA, embedded into
the original one. The inner GA uses as fitness function a genotypical distance in
order to evolve better (hopefully feasible) antibodies. In this way there is no need
for additional expensive evaluations of the original fitness function of the problem,
which only happen during the search performed by the external GA. The internal
GA uses a relatively inexpensive fitness based on Hamming distance calculations.

Coello and Cruz-Cortés [11] proposed an extension of Hajela’s algorithm, to-
gether with a parallel version, and tested them in a larger problem set. In this paper
some test functions of the well-known benchmark problems were used including op-
timization problems in the mechanical engineering field. Comparisons were made
using several penalty techiniques in order to check the performance of the proposed
aproach.

An adaptive clonal selection (ACS) was proposed by Garrett [18]. His work sug-
gests some new ways for defining the value of user defined paramenters, such as
mutation rate and number of clones, along the run.

A different approach was followed by Cruz-Cortés et al. [13] where CLONALG
(see [7, 9]), an existing AIS, is modified in order to deal with constrained optimiza-
tion problems. Binary as well as real representations were considered although re-
sults for the real-coded version of CLONALG were disappointing. So, an alternative
mutation operator was proposed by the authors in order to improve the performance
of the AIS with real representation. In that approach, the mutation operator de-
pends on the affinity of the antibodies, range of each decision variable, and antibody
population size.

Wu [47] combined two techniques in his approach: clonal selection and idio-
typic network theory, the later being used to control the number of good solutions.
The clonal selection operator explores the search space looking for good solutions
and maintaining the diversity of the antibodies population. The performance of
that algorithm is evaluated in constrained optimization problems with continuous
variables.

Based on the work by Hajela and Yoo [22], Rajasekaran and Lavanya [43] pro-
posed an immune network for constraint handling in GAs. The technique was ap-
plied to obtain optimal sectional areas for minimum weight of structures such as
space trusses in civil engineering subject to static loading and earthquake ground
motion. Also, test problems were conducted for the design of the optimal mix of
high-performance concrete (HPC), which is still based on trial mix and for which
no rigorous mathematical approach is available.

A survey discussing the major works in the immunity-based techniques is pre-
sented in [24], in particular, reviewing the existing works, methods, and new initia-
tives from 1999 to 2003 years. Similarly, Garrett [19] presented a survey of different
AIS techniques and their application to different types of computational problems.
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4 The Hybrid GA-AIS

Hybrid algorithms are designed by combining existing methods in such way that the
resulting performance is superior to that of each method acting alone. Yen et al. [49]
describe four forms of hybrid NPAs : (i) pipelining hybrids, (ii) asynchronous hy-
brids, (iii) hierarchical hybrids, and (iv) the use of additional operators. In pipelining
hybrids, a NPA and some other technique are applied sequentially: one generating
data to be used by the other. The NPA can be applied before (more frequently) or
after the local search procedure, and a third possibility is an interleaved or staged
form of application of such search procedures.

An asynchronous hybrid NPA maintains a population which is shared by the
NPA and the other search technique. Both procedures work cooperatively and asyn-
chronously, posting and retrieving improved solutions from the shared population.

A hierarchical hybrid uses an NPA and another search procedure at different
levels of the search problem. For example, an NPA can specify the topology of a
neural network, while back-propagation computes the weights.

Finally, a hybrid algorithm can also be constructed by introducing a given search
procedure as an additional move operator which improves one or more individuals
by operating on them.

Here, we integrate an AIS with a binary-coded GA in a staged pipeline fashion.
In previous work [5, 6], following the idea of Hajela and co-workers, a hybrid

GA was proposed where an AIS is called to help the GA in increasing the number
of feasible individuals in the population. However, instead of embedding another
GA into the main search cycle, a simple technique, inspired in the clonal selection
principle, is used inside the GA cycle.

The hybrid consists in an outer (GA) search loop where the current population
is checked for constraint violation and then divided into feasible (antigens) and in-
feasible individuals (antibodies). If there are no feasible individuals, the two (or
other user defined quantity) “least infeasible” ones (those with the lowest constraint
violation) are moved to the antigen population.

The AIS is introduced as an inner loop with the objective of bringing infeasible
individuals into the feasible search space. In an AIS iteration, antibodies are first
cloned and then hypermutated. Next, the distances (affinities) between antibodies
and antigens are computed. Those with higher affinity (smaller sum of distances) are
selected thus defining the new antibodies (closer to the feasible region). More pre-
cisely, each selected antibody is the best one (the one with highest affinity) among a
given parent and its offspring (generated by cloning and hypermutating the parent).
Also, the affinity is given by the sum of genotypical (Hamming) distances between
a given antibody and the antigens. The AIS iteration is repeated a number of times.

It is important to notice that each new antibody in the population inherits its
parent fitness, so that no fitness function evaluation is required at this point. As
a result, (new) infeasible individuals have their genotype and fitness temporarily
incompatible.

At the end of the AIS loop, the two populations (antibodies and antigens) are
combined to generate the GA population. The selection operation is then performed
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in order to apply recombination and mutation operators to the selected parents pro-
ducing a new population and finishing the external (GA) loop.

The selection procedure in the GA consists in binary tournaments where each
individual is selected once and its opponent is randomly draw, with replacement,
from the population, ensuring that all individuals will participate in at least one
tournament. The rules of the tournament are: (i) any feasible individual is preferred
to any infeasible one, (ii) between two feasible individuals, the one with the higher
fitness value is chosen, and (iii) between two infeasible individuals, the one with the
smaller constraint violation is chosen. After the selection procedure, an intermediary
population is ready to be subject to the crossover operator.

A pseudo-code for the proposed hybrid (GA-AIS) is given in Algorithms 1 and 2.

Algorithm 1. The Hybrid GA-AIS Algorithm

1: procedure HYBRIDGA(nGenerationsGA,nIterationsAIS)
2: COMPUTEFITNESSVIOLATION(population)
3: for i = 1 : nGenerationsGA do
4: DIVIDE(population,antibodies,antigens)
5: COMPUTEDISTANCE(antigens,antibodies)
6: for j = 1 : nIterationsAIS do
7: CLONE(antibodies,temp)
8: MUTATION(temp)
9: COMPUTEDISTANCE(antigens,temp)

10: SELECTBETTER(temp,antibodies)
11: end for
12: UNION(antibodies,antigens, population)
13: TOURNAMENTSELECTION(population,temp)
14: CROSSOVER(temp)
15: MUTATION(temp)
16: COMPUTEFITNESSVIOLATION(temp)
17: CHANGEPOPULATION(temp, population)
18: end for
19: end procedure

However, it has been observed that the inner loop tends to decrease the diver-
sity of the population, negatively affecting the solution quality. This motivated the
introduction of another technique in order to improve the diversity of the popula-
tion (improving the exploration of the search space) leading to a GA-AIS hybrid
variant. In the GA-AISC variant, a modified version of Petrowski’s clearing pro-
cedure [37] is introduced. The clearing procedure, originally used for multimodal
problems, is a niching method inspired by the principle of sharing limited resources
within subpopulations of individuals characterized by some similarities [41]. The
clearing procedure leaves those resources to the better individuals of each subpop-
ulation. According to [41], that procedure is normally applied after evaluating the
fitness of individuals and before applying the selection operator. The individuals are
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Algorithm 2. Auxiliary Functions
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Algorithm 3. Function changePopulation

1: function CHANGEPOPULATIONC(temp, population)
2: UNION(population,temp,tmp)
3: SORT(tmp)
4: for i = 1 : tmp.size do
5: for j = i+1 : tmp.size do
6: if not ISCLEARING(tmp[ j]) then
7: CALCDISTANCE(tmp[i],tmp[ j],d)
8: if d < criticalDistance then
9: SETCLEAR(tmp[ j])

10: end if
11: end if
12: end for
13: end for
14: CLEAR(population)
15: for i = 1 : tmp.size do
16: if not ISCLEARING(tmp[i]) then
17: if temp.size! = population.size then
18: INSERT(tmp[i], population)
19: end if
20: end if
21: end for
22: SORT(temp)
23: i← 1
24: while temp.size! = population.size do
25: if ISCLEARING(tmp[i]) then
26: INSERT(tmp[i], population)
27: i← i+1
28: end if
29: end while
30: end function

sorted from best to worst and all solutions having a distance from each pivot solution
in the population smaller than a given threshold (clearing radius) have their fitness
values set to zero. The pivot is the best individual not cleared in the sequence. This
procedure is continued until all solutions are considered, that is, either to be a pivot
or to be cleared.

Differently from [41], the clearing procedure is applied here when a new po-
pulation substitutes the previous one. A new set of individuals is composed from
the union of both populations (previous and offspring). The procedure of clearing is
then executed on that union. However, the fitness values are not set to zero as in [41].
Instead, the individuals that would have been cleared are actually tagged. The new
population is made up of non-cleared individuals and, if necessary, completed with
the best tagged individuals found in the offspring population (see Algorithm 3).

In [41], the clearing procedure when applied alone to unconstrained multimodal
optimization did not produce good results. Here, in order to favor the maintenance
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Fig. 1 Fluxogram of the GA-AIS hybrid algorithm

of the niches, the crossover operator is applied to similar individuals. The mate of
a given individual from the intermediary population is the closest one, according to
the genotypical distance, in that population. This mate-restriction process improved
the performance of the clearing procedure, although increasing the computational
complexity. The remaining steps of the GA-AISC hybrid are the same as those in
GA-AIS.

The Figure 1 shows a fluxogram of the GA-AIS hybrid algorithm. For the GA-
AIS with clearing procedure the fluxogram is the same. However, as described
above, the steps “selection, crossover, and mutation operators” and “replace GA
population” are not the same. On the first step, the crossover procedure is applied
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to similar individuals. On the second one, the elitism is replaced by the modified
clearing method detailed above in the Algorithm 3.

5 Numerical Experiments

In order to investigate the performance of the proposed hybrid, several optimization
problems, involving continuous and/or discrete variables, are considered.

The APM and the SR method used a population size of 100 individuals, a
crossover probability equal to 0.9, and a mutation rate equal to 0.004. Also, elitism is
implemented: the copies of the two best individuals remain in the next generation.
For the GA-AIS and the GA-AISC (GA-AIS hybrid with clearing procedure), the
population size was set equal to 20, the mutation rate was set equal to 0.04, uniform
crossover was applied with probability 1, the bits being swapped with probability
0.5. Elitism was implemented exactly as in the APM and SR procedures. Also, each
antibody generates three clones, and the number of inner (AIS) generations is set
equal to 20. For the GA-AISC hybrid the minimum distance (clearing radius) to
avoid clearing was set to 10% of the chromosome length. All techniques use a bi-
nary Gray code with 25 bits for each continuous variable. A total of 25 runs were
performed for each test-case in the 24-function suite, and 50 runs for the remaining
optimization problems.

In [5], the GA-AIS hybrid was tested in 13 functions from the G-Suite [29]. Also,
other experiments, not included here, can be found in [6], where six constrained op-
timization problems for engineering, with continuous, discrete, and mixed variables,
were used to evaluate the performance of GA-AIS and GA-AISC. The presented al-
gorithms also show good results for the problems in that reference.

5.1 Test 1 - The G-Suite

A suite of test-problems with continuous variables introduced in [29] and recently
enlarged in [33] has been often used as a test-bed for constraint handling techniques
in the evolutionary computation literature. Three levels for the maximum number of
function evaluations allowed are considered here. For each problem, the Tables 11 to
31, presented in Appendix, show the results obtained for the three techniques using
5000, 50000, and 500000 evaluations of the objective function. In each table the
first three lines correspond to the results obtained using 5000 function evaluations.
The second and the third blocks of three lines correspond to 50000 and 500000
function evaluations, respectively. The values of the objective functions for the best,
median, and worst run are presented together with the average, standard deviation
(St.Dev), the number of runs where feasible results were found (FR), and ne is
the maximum number of function evaluations. The best results in each case are
displayed in boldface.

Results for the functions g20, g21 and g22 are not presented since all techniques
were unable to produce feasible solutions.
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Table 1 Best performing technique in each problem with 5000 objective function evaluations

Best Median Average Worst FR
g1 GA-AISC GA-AISC GA-AISC GA-AISC GA-AIS/GA-AISC

g2 GA-AIS SR SR SR –
g3 APM APM APM APM APM
g4 GA-AIS GA-AIS GA-AISC GA-AISC –
g5 SR SR SR SR SR
g6 SR GA-AISC SR SR APM
g7 GA-AISC GA-AISC SR SR –
g8 – GA-AIS/GA-AISC GA-AISC GA-AISC GA-AIS/GA-AISC

SR APM
g9 GA-AISC GA-AISC GA-AISC GA-AISC –
g10 GA-AISC GA-AISC GA-AISC GA-AISC GA-AIS
g11 SR SR SR SR APM
g12 GA-AIS/GA-AISC GA-AIS/GA-AISC GA-AIS GA-AIS GA-AIS/GA-AISC

SR SR SR
g13 – – – – –
g14 – – – – –
g15 APM APM APM APM APM
g16 GA-AISC GA-AISC GA-AISC GA-AISC GA-AIS/GA-AISC

g17 – – – – –
g18 GA-AISC GA-AISC GA-AISC GA-AISC GA-AISC

g19 GA-AISC GA-AISC GA-AISC GA-AISC –
g23 – – – – –
g24 GA-AISC GA-AIS GA-AIS GA-AISC –

APM 33.33% 28.57% 28.57% 28.57% 71.43%
SR 42.86% 42.86% 42.86% 42.86% 57.14%

GA-AIS 33.34% 38.10% 28.57% 23.81% 71.43%
GA-AISC 66.67% 66.67% 57.14% 61.90% 71.43%

The Tables 1, 2, and 3 present the best performing technique in each problem
considering 5000, 50000, and 500000 objective function evaluations, respectively.
A “–” indicates that all techniques attained the same performance indicator in the
corresponding problem.

Using 5000 function evaluations one can observe from the Table 1 that the GA-
AIS technique with clearing produced the best overall performance. The APM and
the GA-AIS produced the same result with respect to FR.

Considering 50000 function evaluations, the APM produced the best perfor-
mance when the best value found, average and FR are considered (Table 2). The
Median is equal for the APM, SR , and GA-AISC techniques. When the worst value
found is considered the APM method has only a slightly better performance against
the value found by GA-AIS technique with clearing procedure.

Considering 500000 function evaluations (Table 3), the APM produced better
results for all indicators. The GA-AISC is the second one here.
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Table 2 Best performing technique in each problem with 50000 objective function
evaluations

Best Median Average Worst FR
g1 SR SR SR SR GA-AIS/GA-AISC

APM
g2 APM SR APM SR –
g3 APM APM APM APM GA-AIS/GA-AISC

APM
g4 APM GA-AISC GA-AISC GA-AISC –
g5 SR SR SR SR SR
g6 GA-AIS GA-AISC GA-AIS GA-AIS GA-AIS/GA-AISC

g7 APM GA-AISC GA-AISC GA-AISC GA-AIS/GA-AISC

APM
g8 – – GA-AIS/GA-AISC GA-AIS/GA-AISC –

APM APM
g9 APM GA-AISC GA-AISC GA-AISC –
g10 APM APM APM APM GA-AIS
g11 GA-AIS SR SR SR GA-AIS/GA-AISC

APM
g12 – – – – –
g13 APM APM APM APM APM
g14 APM APM APM GA-AIS APM
g15 APM SR SR SR APM
g16 GA-AISC GA-AISC GA-AISC GA-AISC GA-AIS/GA-AISC

APM
g17 APM APM APM APM APM
g18 SR SR APM APM GA-AIS
g19 APM GA-AISC GA-AISC GA-AISC GA-AIS/GA-AISC

APM
g23 APM APM APM APM APM
g24 GA-AIS/GA-AISC GA-AIS GA-AIS GA-AIS GA-AIS/GA-AISC

APM APM
APM 71.43% 38.10% 47.62% 38.10% 80.95%
SR 23.81% 38.10% 23.81% 28.57% 28.57%

GA-AIS 23.81% 14.29% 19.05% 23.81% 71.43%
GA-AISC 19.05% 38.10% 33.33% 33.33% 61.90%

In general, the GA-AISC hybrid produced better results when a reduced (5000)
number of function evaluations are used. This is due to the exploration effect gener-
ated by the clearing method.

It is also observed that in problems with equality constraints, such as g3, g5, g11,
and g15, the GA-AIS hybrids did not produce good results.

5.2 Test 2 - A MINLP Problem

This problem, from [3,14], corresponds to the maximization of a nonlinear function
with three continuous, two integer variables, and three nonlinear inequalities. This
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Table 3 Best performing technique in each problem with 500000 objective function
evaluations

Best Median Average Worst FR
g1 APM APM SR SR –
g2 APM APM APM APM –
g3 APM APM APM APM GA-AIS/GA-AISC

APM
g4 APM APM APM APM GA-AIS/GA-AISC

APM
g5 SR SR SR GA-AIS APM
g6 GA-AISC/SR SR SR SR GA-AIS/GA-AISC

APM
g7 SR GA-AISC GA-AISC GA-AISC GA-AIS/GA-AISC

APM
g8 GA-AIS GA-AIS GA-AIS GA-AIS –

GA-AISC/APM APM/GA-AISC APM/GA-AISC APM/GA-AISC

g9 APM APM APM GA-AISC GA-AIS/GA-AISC

APM
g10 GA-AISC GA-AISC GA-AISC SR GA-AIS/GA-AISC

g11 GA-AIS GA-AIS GA-AIS GA-AIS GA-AIS/GA-AISC

APM
g12 – – – – –
g13 APM SR SR APM APM
g14 APM APM APM APM APM
g15 GA-AIS SR SR SR APM
g16 APM APM GA-AISC GA-AISC GA-AIS/GA-AISC

APM
g17 APM APM APM APM APM
g18 GA-AISC APM APM APM GA-AIS
g19 GA-AISC GA-AISC GA-AISC GA-AISC –
g23 GA-AISC APM APM APM GA-AISC

g24 – – – – –
APM 61.90% 61.90% 52.38% 52.38% 80.95%
SR 23.81% 28.57% 33.33% 28.57% 28.57%

GA-AIS 23.81% 19.05% 19.05% 23.81% 71.43%
GA-AISC 38.01% 28.57% 33.33% 33.33% 71.43%

is the Problem 6 in [14] and Test-problem 14 in [3]. Fifty independent runs were
performed against ten in [14].

A comparison was done with the APM [3] and Stochastic Ranking. The statistical
results are presented in Table 4. The SR and GA-AIS techniques used 5000 function
evaluations against 30000 in the APM [3] case. The results are similar to those
obtained by the APM in [3]. However, the number of function evaluations used here
is one sixth of that used by the APM in [3].
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Table 4 Results for the Test 2. Optimal value is −32217.42778

Method Best Median Average St.Dev Worst FR ne
APM [3] 32217.43 – 32217.43 – 32217.43 – 30000

SR 32217.43 32217.35 32217.05 1.20 32209.27 50 5000
GA-AIS 32217.43 32217.43 32217.43 5.89E−3 32217.39 50 5000

GA-AISC 32217.43 32217.43 32217.42 7.80E−3 32217.37 50 5000

5.3 Test 3 - A NLIP Problem

This is a nonlinear programming problem (Problem 8 in [35]) with five integer
variables and eight inequality constraints. Fifty independent runs were performed
against thirty in [35]. A comparison between the GA-AIS hybrids and the SR tech-
nique is given in Table 5, when 20000 function evaluations are allowed. The GA-
AIS technique produced the best overall performance, except for the worst value
found, where the GA-AIS with clearing procedure found the best value.

Table 5 Results for the Test 3. Optimal value is 807

Method Best Median Average St.Dev Worst FR ne
SR 807 860 872.76 61.65 1036 50 20000

GA-AIS 807 807 808.96 5.80 842 50 20000
GA-AISC 807 807 812.12 7.84 833 50 20000

5.4 Test 4 - A NLIP Problem

This problem (Problem 16 in [35]) has thirteen integer variables and nine inequality
constraints. Fifty independent runs were performed against thirty in [35]. In Table 6
a comparison of the results found by the GA-AIS hybrids and the SR technique is
presented when 1500 evaluations are available. The GA-AIS techniques produced
the best overall results.

5.5 Test 5 - The 25-Bar Truss Design

This is a well known structural weight minimization problem for a truss structure.
The statistical results for GA-AIS and APM [32] can be seen in Table 7. The re-
sults from [30] were obtained using a binary-coded GA. Both GA-AIS hybrids and
the APM [32] found a final weight of 484.854 lb. Using only 800 function evalua-
tions the GA-AIS hybrids from [6] found very good results when compared to those
presented by the references [30] and [52].

It should be remarked that: (i) all solutions are feasible, (ii) correspond to distinct
designs, and (iii) the GA-AIS provides the smallest weight.
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Table 6 Results for the Test 4. Optimal value is −15

Method Best Median Average St.Dev Worst FR ne
SR −15 −15 −14.86 4.05E−1 −13 50 1500

GA-AIS −15 −15 −15 0.00 −15 50 1500
GA-AISC −15 −15 −15 0.00 −15 50 1500

Table 7 Values found for the final weight of the 25-bar Truss design using 20000 function
evaluations

Best Median Average St.Dev Worst FR nfe
Ref. [30] 546.01 − − − − − 800
Ref. [52] 562.93 − − − − − 800
GA-AIS 487.329 511.554 512.506 15.73 562.222 50 800
GA-AISC 487.718 514.850 515.520 11.31 548.501 50 800

Ref. [48] 486.29 − − − − − 40000
Ref. [17] 493.80 − − − − − 30000
APM [32] 484.854 − 485.967 − 490.742 − 20000
GA-AIS 484.854 486.023 486.196 1.49 492.554 50 20000
GA-AISC 484.854 486.023 486.485 2.10 496.783 50 20000

5.6 Test 6 - Reliability Problems

In this section a reliability problem is solved and compared with results from the lit-
erature. Various objectives can be considered, as one would like to optimize system
reliability (Rs), total system cost (C), and total system weight (W ). The formulation
can be found in [16, 50].

Dhingra [16] used a nonlinear mathematical programming (NMP) method and Li
et al [50] used a GA. We run 50 independent tests against 10 from [50].

We present in Tables 8, 9, and 10 the results found with 15000 function evalu-
ations for all three optimization problems. When the objective is to maximize the
reliability, the GA-AISC produced the best overall results. When the minimization

Table 8 Results found by the GA-AIS hybrids for the reliability problem with 15000 function
evaluations (300 generations). The objective is to maximize the reliability Rs

Best Median Average St.Dev Worst FR
NMP [16] 0.99961 - - - - -
GA (γ = 1) [50] 0.999955 - - - - -
GA (γ = 2) [50] 0.999954 - - - - -
GA (γ = 4) [50] 0.999954 - - - - -
GA-AIS 0.999954 0.999945 0.999939 1.98E−5 0.999880 50
GA-AISC 0.999955 0.999946 0.999946 6.60E−6 0.999917 50
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of cost is considered, the GA-AIS found best results. All algorithms produced the
same result when the objective was to minimize the weight.

The proposed GA-AIS found the best results for all optimization cases.

Table 9 Results found by the GA-AIS for the reliability problem with 15000 function eval-
uations (300 generations). The objective is to minimize the cost C

Best Median Average St.Dev Worst FR
NMP [16] 20.7252 - - - - -
GA-AIS 20.14028 20.37048 20.35425 1.82E−1 20.80367 50
GA-AISC 20.14380 20.40202 20.38474 1.87E−1 20.84020 50

Table 10 Results found by the GA-AIS for the reliability problem with 15000 function eval-
uations (300 generations). The objective is to minimize the weight W

Best Median Average St.Dev Worst FR
NMP [16] 34.6687 - - - - -
GA-AIS 34.668686 34.668686 34.668686 0.00 34.668686 50
GA-AISC 34.668686 34.668686 34.668686 0.00 34.668686 50

6 Conclusions

A genetic algorithm hybridized with an artificial immune system was tested in a
set of continuous, integer, and mixed integer-continuous constrained optimization
problems. The experiments included the G-Suite with 24 functions, a MINLP prob-
lem, two NLIP problems, a discrete structural engineering optimization problem,
and, three mixed-integer reliability problems. Two techniques to handle constraints
are used in order to provide comparisons for the G-Suite, i.e., the Adaptive Penalty
Method and the Stochastic Ranking technique. For the other problems, the results
were compared with the literature. The hybrid GA-AIS performed very well in
various problems presenting continuous, discrete, and mixed design variables. Its
efficacy and generality indicate its applicability to other constrained optimization
problems.
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Appendix

This appendix presents Tables 11 to 31 with the results found by the discussed
algorithms when applied to the G-Suite of test-problems, commented in Section 5.1.



On GA-AIS Hybrids for Constrained Optimization Problems in Engineering 183

Table 11 Results for the g1 test-problem. Optimal value is −15

Method Best Median Average St.Dev Worst FR ne
APM −12.54560 −9.66313 −9.63801 1.83 −3.54334 23 5000
SR −12.53710 −8.89068 −8.50374 2.15 −5.51379 9 5000

GA-AIS −12.42924 −9.97209 −9.70580 1.69 −3.11102 25 5000
GA-AISC −13.58816 −12.07793 −11.80723 1.31 −8.12925 25 5000

APM −14.99420 −14.98342 −14.97430 3.26E−2 −14.83784 25 50000
SR −14.99857 −14.99300 −14.99313 3.81E−3 −14.98008 24 50000

GA-AIS −14.78591 −14.65819 −14.60320 2.16E−1 −13.25278 25 50000
GA-AISC −14.86625 −14.76883 −14.76332 4.81E−2 −14.64413 25 50000

APM −14.99996 −14.99954 −14.96378 9.79E−2 −14.57225 25 500000
SR −14.99977 −14.99951 −14.99931 5.42E−4 −14.99757 25 500000

GA-AIS −14.98813 −14.98056 −14.97966 5.66E−3 −14.96613 25 500000
GA-AISC −14.98887 −14.97595 −14.97514 8.06E−3 −14.93905 25 500000

Table 12 Results for the g2 test-problem. Optimal value is −0.8036191

Method Best Median Average St.Dev Worst FR ne
APM −0.5944454 −0.4985342 −0.4854191 5.91E−2 −0.3512636 25 5000
SR −0.5864694 −0.5283935 −0.5312732 3.37E−2 −0.4541653 25 5000

GA-AIS −0.6110063 −0.5275892 −0.5284940 3.61E−2 −0.4487732 25 5000
GA-AISC −0.5732360 −0.5236345 −0.5213102 2.90E−2 −0.4498942 25 5000

APM −0.7745439 −0.6517182 −0.6663961 6.24E−2 −0.5706031 25 50000
SR −0.7486565 −0.6644478 −0.6653669 7.01E−2 −0.5154426 25 50000

GA-AIS −0.7332407 −0.6444320 −0.6526506 4.90E−2 −0.5351180 25 50000
GA-AISC −0.7482104 −0.6469565 −0.6455348 4.70E−2 −0.5435568 25 50000

APM −0.8015561 −0.7787246 −0.7724801 2.26E−2 −0.7261164 25 500000
SR −0.7854180 −0.7405743 −0.7256381 5.57E−2 −0.6079553 25 500000

GA-AIS −0.7934579 −0.7428760 −0.7383075 3.73E−2 −0.6111616 25 500000
GA-AISC −0.7834507 −0.7437401 −0.7351923 3.51E−2 −0.6567412 25 500000

Table 13 Results for the g3 test-problem. Optimal value is −1.0005001. It is important to
notice that the SR technique was unable to produce feasible solutions for this test-problem

Method Best Median Average St.Dev Worst FR ne
APM −0.4770853 −0.1529288 −0.2313726 9.65E−2 −0.1104597 24 5000

GA-AIS −0.2367439 −0.0035223 −0.0253767 5.03E−2 −0.0000028 20 5000
GA-AISC −0.1749013 −0.0029394 −0.0166668 3.39E−1 −0.0000003 22 5000

APM −0.9173612 −0.5289950 −0.5508323 1.44E−1 −0.3099690 25 50000
GA-AIS −0.2853399 −0.0199313 −0.0437244 6.24E−2 −0.0001201 25 50000

GA-AISC −0.4007668 −0.0172259 −0.0517864 8.53E−2 −0.0000029 25 50000
APM −1.0004896 −1.0004466 −1.0004036 1.11E−4 −0.9999571 25 500000

GA-AIS −0.7615700 −0.2659286 −0.2976153 1.93E−1 −0.0267321 25 500000
GA-AISC −0.8879961 −0.4592956 −0.4908986 2.12E−2 −0.0406379 25 500000
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Table 14 Results for the g4 test-problem. Optimal value is −30665.5386717

Method Best Median Average St.Dev Worst FR ne
APM −30566.3455 −30383.8927 −30375.9930 1.24E +2 −30103.4912 25 5000
SR −30574.5977 −30396.2109 −30374.8434 1.22E +3 −30170.9648 25 5000

GA-AIS −30642.9014 −30520.1760 −30491.8207 9.42E +1 −30225.0856 25 5000
GA-AISC −30641.3563 −30515.4392 −30495.9788 8.06E+1 −30281.1385 25 5000

APM −30664.6630 −30564.6626 −30541.6923 8.76E +1 −30367.2095 25 50000
SR −30660.2910 −30508.0762 −30491.9935 1.47E +3 −29985.3633 25 50000

GA-AIS −30661.1218 −30630.4060 −30622.2918 3.87E +1 −30416.7505 25 50000
GA-AISC −30664.4368 −30636.4277 −30632.8975 1.99E+1 −30581.5809 25 50000

APM −30665.5238 −30665.4709 −30665.0947 8.55E−1 −30661.7610 25 500000
SR −30664.7051 −30651.1426 −30633.9923 4.79E +1 −30453.1055 23 500000

GA-AIS −30665.4397 −30663.4553 −30662.6091 3.21 −30651.3820 25 500000
GA-AISC −30665.3889 −30663.7472 −30662.9301 2.28 −30655.5270 25 500000

Table 15 Results for the g5 test-problem. Optimal value is 5126.4967140. Only the tech-
niques presenting at least one feasible solution in at least one run are shown

Method Best Median Average St.Dev Worst FR ne
SR 5141.8721 5193.0991 5221.2872 8.76E+1 5421.4668 9 5000

APM 5137.3998 5262.4268 5420.4905 3.54E +2 5993.0124 9 50000
SR 5126.5215 5149.3882 5157.0944 3.507E+1 5258.4805 16 50000

APM 5127.3606 5244.5322 5312.6175 2.45E +2 5993.0113 24 500000
SR 5126.5195 5137.3833 5155.8345 3.87E +1 5258.4736 13 500000

GA-AIS 5166.0885 5189.4730 5204.1544 3.85E+1 5256.9017 3 500000

Table 16 Results for the g6 test-problem. Optimal value is −6961.8138755

Method Best Median Average St.Dev Worst FR ne
APM −6834.5344 −3836.6674 −5120.8467 1.58E +3 −1276.4607 24 5000
SR −6922.1831 −5787.4535 −5605.5055 1.09E+3 −2215.5444 18 5000

GA-AIS −6650.0106 −5626.4849 −5318.8276 1.22E +3 −1372.5897 23 5000
GA-AISC −6584.6677 −5847.3395 −5553.2601 1.22E +3 −1394.2647 20 5000

APM −6939.3001 −3984.0864 −6413.3729 1.11E +3 −1319.0707 24 50000
SR −6956.6471 −6682.5586 −6612.7806 2.96E +2 −5772.6938 15 50000

GA-AIS −6960.8910 −6904.2614 −6901.5555 2.97E+1 −6786.0714 25 50000
GA-AISC −6955.0718 −6907.1951 −6896.5274 6.85E +1 −6464.7069 25 50000

APM −6961.7961 −6961.7710 −6961.7742 1.42E−2 −6961.7592 24 500000
SR −6961.7961 −6961.7827 −6961.7863 5.19E−3 −6961.7827 13 500000

GA-AIS −6961.7894 −6961.7659 −6961.7682 7.87E−3 −6961.7491 25 500000
GA-AISC −6961.7961 −6961.7558 −6961.7574 1.23E−2 −6961.7424 25 500000
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Table 17 Results for the g7 test-problem. Optimal value is 24.3062090

Method Best Median Average St.Dev Worst FR ne
APM 43.2072211 86.2003283 93.1306621 3.28E +1 152.181957 25 5000
SR f 31.9050388 50.1892052 51.5728580 1.33E+1 74.3306732 25 5000

GA-AIS 34.7181969 72.7931753 110.996260 1.25E +2 776.563144 25 5000
GA-AISC 28.6809702 45.0236259 55.4336500 2.90E +1 211.927963 25 5000

APM 24.5673615 28.3454008 29.2488815 3.67 38.5389701 25 50000
SR 25.0301437 28.3579140 30.0073784 5.61 46.1200676 24 50000

GA-AIS 25.4217483 31.6841466 33.9099435 1.02E +1 95.1135317 25 50000
GA-AISC 24.9646997 26.0109090 26.1673499 9.77E−1 28.9968472 25 50000

APM 24.4860035 26.8199501 27.0714049 2.27 34.4138410 25 500000
SR 24.4150887 28.1761951 28.4540093 4.00 41.6882782 21 500000

GA-AIS 24.5600669 28.4441414 29.8455249 4.35 41.0650770 25 500000
GA-AISC 24.4482393 24.7079128 24.8274137 3.20E−1 25.9281175 25 500000

Table 18 Results for the g8 test-problem. Optimal value is −0.0958250

Method Best Median Average St.Dev Worst FR ne
APM −0.0958250 −0.0958248 −0.9582019 1.17E−5 −0.0957811 25 5000
SR −0.0958250 −0.0958250 −0.0874181 2.25E−2 −0.0291438 24 5000

GA-AIS −0.0958250 −0.0958250 −0.0944914 9.34E−3 −0.0291438 25 5000
GA-AISC −0.0958250 −0.0958250 −0.0958250 0.00 −0.0958250 25 5000

APM −0.0958250 −0.0958250 −0.0958250 0.00 −0.0958250 25 50000
SR −0.0958250 −0.0958250 −0.0851560 2.49E−2 −0.0291438 25 50000

GA-AIS −0.0958250 −0.0958250 −0.0958250 0.00 −0.0958250 25 50000
GA-AISC −0.0958250 −0.0958250 −0.0958250 0.00 −0.0958250 25 50000

APM −0.0958250 −0.0958250 −0.0958250 0.00 −0.0958250 25 500000
SR −0.0958251 −0.0958251 −0.0878233 2.21E−2 −0.0291438 25 500000

GA-AIS −0.0958250 −0.0958250 −0.0958250 0.00 −0.0958250 25 500000
GA-AISC −0.0958250 −0.0958250 −0.0958250 0.00 −0.0958250 25 500000

Table 19 Results for the g9 test-problem. Optimal value is 680.6300573

Method Best Median Average St.Dev Worst FR ne
APM 684.6761547 703.3695986 714.3836304 2.96E +1 825.0185225 25 5000
SR 684.8146362 696.2620239 702.4067383 1.38E +1 734.6710205 25 5000

GA-AIS 682.9336332 690.1082142 693.8352805 9.39 726.2259899 25 5000
GA-AISC 681.8268793 686.3363980 686.9471871 3.20 694.0967521 25 5000

APM 680.7658016 681.6898093 682.1195215 1.36 687.0250951 25 50000
SR 680.8317261 683.3109131 685.3920581 6.91 715.9301758 25 50000

GA-AIS 680.8432734 683.2076576 683.8952635 2.42 690.3016947 25 50000
GA-AISC 680.7949849 681.4916867 681.5876354 4.48E−1 682.6530750 25 50000

APM 680.6474288 680.7799403 680.7979077 1.72E−2 681.4545510 25 500000
SR 680.7388916 681.9906006 682.1157532 1.31 687.0321655 22 500000

GA-AIS 680.6545927 681.3924261 681.4811963 5.75E−1 683.0550587 25 500000
GA-AISC 680.6801414 680.8877626 680.9005951 1.30E−1 681.2122556 25 500000
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Table 20 Results for the g10 test-problem. Optimal value is 7049.2480205. Only the tech-
niques presenting at least one feasible solution in at least one run are shown

Method Best Median Average St.Dev Worst FR ne
GA-AIS 8821.3618 11666.3139 12543.9797 3.70E+3 24155.3658 18 5000

GA-AISC 7769.5966 10143.4935 11684.9899 3.95E +3 24097.0972 15 5000
APM 7080.4052 7581.6931 7683.2236 6.59E+2 8387.5723 3 50000

GA-AIS 7157.2501 8297.4039 8630.7599 1.42E +3 14944.8744 25 50000
GA-AISC 7142.5267 7675.6942 7873.9504 7.17E +2 10682.2014 23 50000

APM 7068.6338 8181.6974 8154.6199 7.75E +2 9769.1018 9 500000
SR 7538.5068 7538.5068 7538.5068 − 7538.5068 1 500000

GA-AIS 7054.8350 8123.7119 8417.9070 1.27E +3 13205.017 25 500000
GA-AISC 7053.5055 7314.0347 7361.5796 2.69E+2 8701.1528 25 500000

Table 21 Results for the g11 test-problem. Optimal value is 0.7499

Method Best Median Average St.Dev Worst FR ne
APM 0.7499568 0.8204312 0.8380892 7.94E−2 0.9972218 25 5000
SR 0.7499117 0.7596881 0.7707811 3.51E−2 0.8982297 18 5000

GA-AIS 0.7501970 0.8125605 0.8489786 8.62E−2 0.9968189 24 5000
GA-AISC 0.7500200 0.8214822 0.8463420 8.83E−2 0.9995183 22 5000

APM 0.7499568 0.8204122 0.8377019 7.92E−2 0.9970093 25 50000
SR 0.7499093 0.7531331 0.7697072 3.07E−2 0.8891737 24 50000

GA-AIS 0.7499000 0.7549079 0.7824960 5.07E−2 0.9782222 25 50000
GA-AISC 0.7499013 0.7659117 0.7999625 6.49E−2 0.9904011 25 50000

APM 0.7499540 0.8118332 0.8334051 7.65E−2 0.9936831 25 500000
SR 0.7499090 0.7583824 0.7708550 2.60E−2 0.8309575 23 500000

GA-AIS 0.7499000 0.7499317 0.7499695 1.62E−4 0.7510275 25 500000
GA-AISC 0.7499001 0.7499380 0.7508844 3.90E−3 0.7709872 25 500000

Table 22 Results for the g12 test-problem. Optimal value is−1. Only the techniques present-
ing at least one feasible solution in at least one run are shown

Method Best Median Average St.Dev Worst FR ne
SR −1 −1 −0.9985502 2.66E−3 −0.9924536 25 5000

GA-AIS −1 −1 −1 0.00 −1 25 5000
GA-AISC −1 −1 −0.9999999 2.04E−7 −0.999999 25 5000

APM −1 −1 −1 0.00 −1 25 50000
SR −1 −1 −1 0.00 −1 25 50000

GA-AIS −1 −1 −1 0.00 −1 25 50000
GA-AISC −1 −1 −1 0.00 −1 25 50000

APM −1 −1 −1 0.00 −1 25 500000
SR −1 −1 −1 0.00 −1 25 500000

GA-AIS −1 −1 −1 0.00 −1 25 500000
GA-AISC −1 −1 −1 0.00 −1 25 500000
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Table 23 Results for the g13 test-problem. Optimal value is 0.0539415. The results with 5000
function evaluations are not presented since all techniques were unable to produce feasible
solutions

Method Best Median Average St.Dev Worst FR ne
APM 0.0556113 0.0966101 0.8095851 2.93E−1 1.3202477 25 50000
SR 0.0670723 0.3804254 0.5788253 6.24E−1 2.4329371 13 50000

GA-AIS 0.2970864 0.9747390 1.0930967 8.92E−1 4.6175239 9 50000
GA-AISC 0.5150024 0.9535153 1.3761583 1.25 4.8781921 5 50000

APM 0.0556111 0.9288099 0.8829213 3.83E−1 1.8784189 25 500000
SR 0.1003231 0.5086704 0.7698459 7.59E−1 2.4842145 12 500000

GA-AIS 0.2970188 0.9754438 1.1859940 1.11 7.2200664 24 500000
GA-AISC 0.5148793 0.9138921 1.2220168 1.14 4.8769912 6 500000

Table 24 Results for the g14 test-problem. Optimal value is −47.7648885. It is important to
notice that the SR technique was unable to produce feasible solutions for this test-problem.
All techniques were unable to produce feasible solutions for 5000 function evaluations

Method Best Median Average St.Dev Worst FR ne
APM −46.890438 −43.194835 −43.027409 2.41 −38.807925 25 50000

GA-AIS −42.961579 −42.961579 −42.961579 − −42.961579 1 50000
GA-AISC −44.439144 −42.838209 −42.838209 1.60 −41.237273 2 50000

APM −46.890438 −43.203376 −43.044209 2.40 −38.807998 25 500000
GA-AIS −45.689376 −42.445971 −42.315373 1.77 −37.332921 22 500000

GA-AISC −46.373549 −42.848299 −42.496643 1.83 −38.419681 22 500000

Table 25 Results for the g15 test-problem. Optimal value is 961.7150222. Only the tech-
niques presenting at least one feasible solution in at least one run are shown

Method Best Median Average St.Dev Worst FR ne
APM 968.965583 969.924408 969.924408 1.35 970.883266 2 5000
APM 962.640839 965.298033 966.220198 3.06 971.286895 25 50000
SR 962.973328 963.785889 963.965942 1.02 965.377930 5 50000

GA-AIS 963.051821 966.700903 967.167665 3.39 972.217032 3 50000
APM 962.640483 965.297403 966.218809 3.06 971.285135 25 500000
SR 962.482971 962.698608 963.219477 8.15E−1 964.853943 21 500000

GA-AIS 961.767880 964.695332 965.472313 3.16 972.216474 12 500000
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Table 26 Results for the g16 test-problem. Optimal value is −1.9051553

Method Best Median Average St.Dev Worst FR ne
APM −1.8598855 −1.4981970 −1.4960260 2.60E−1 −1.0315077 17 5000
SR −1.7976446 −1.5929062 −1.5427779 1.81E−1 −1.1406803 22 5000

GA-AIS −1.8691629 −1.6957917 −1.6466281 1.66E−1 −1.1723105 25 5000
GA-AISC −1.8847265 −1.7729120 −1.7525989 8.77E−2 −1.5163932 25 5000

APM −1.8968595 −1.8343355 −1.8293013 4.45E−2 −1.7492531 25 50000
SR −1.8618839 −1.7203965 −1.6604525 1.89E−1 −0.9743471 24 50000

GA-AIS −1.9020257 −1.8343978 −1.8201434 6.43E−2 −1.5358576 25 50000
GA-AISC −1.9046090 −1.8963019 −1.8938212 8.09E−3 −1.8700456 25 50000

APM −1.9051516 −1.9050654 −1.9032724 5.45E−3 −1.8818044 25 500000
SR −1.8696414 −1.7357190 −1.7042652 1.78E−1 −1.0286503 24 500000

GA-AIS −1.9049337 −1.8935411 −1.8863406 1.93E−2 −1.8168770 25 500000
GA-AISC −1.9051032 −1.9044968 −1.9042373 6.93E−4 −1.9025437 25 500000

Table 27 Results for the g17 test-problem. Optimal value is 8853.5396748. Only the tech-
niques presenting at least one feasible solution in at least one run are shown. All techniques
were unable to produce feasible solutions for 5000 function evaluations

Method Best Median Average St.Dev Worst FR ne
APM 8940.168230 8940.168230 8940.168230 − 8940.168230 1 50000
APM 8875.515487 8948.681152 8980.116781 1.10E+2 9276.896157 24 500000

Table 28 Results for the g18 test-problem. Optimal value is −0.8660254. Only the tech-
niques presenting at least one feasible solution in at least one run are shown

Method Best Median Average St.Dev Worst FR ne
GA-AISC −0.5348792 −0.2637329 −0.3002225 1.22E−1 −0.1420471 4 5000

APM −0.7869344 −0.7869344 −0.7869344 − −0.7869344 1 50000
SR −0.8621180 −0.8423864 −0.7611128 1.35E−1 −0.4947852 15 50000

GA-AIS −0.8546679 −0.5379352 −0.5779785 1.26E−1 −0.3574985 18 50000
GA-AISC −0.8586420 −0.6608961 −0.7214536 1.09E−1 −0.5130703 9 50000

APM −0.8641388 −0.8640182 −0.8619589 2.34E−3 −0.8575919 8 500000
SR −0.8646700 −0.8491147 −0.7718814 1.46E−1 −0.4999466 19 500000

GA-AIS −0.8641044 −0.6547800 −0.6715419 1.29E−1 −0.4882556 23 500000
GA-AISC −0.8652776 −0.6698892 −0.7442860 1.04E−1 −0.5615551 9 500000
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Table 29 Results for the g19 test-problem. Optimal value is 32.6555929

Method Best Median Average St.Dev Worst FR ne
APM 255.724401 437.289256 490.432396 2.04E +2 1115.49838 25 5000
SR 184.100540 307.581970 341.076149 1.38E +2 780.532165 25 5000

GA-AIS 121.955285 212.209075 215.377929 5.96E +1 437.843290 25 5000
GA-AISC 108.631591 198.263474 200.606560 4.41E+1 301.788178 25 5000

APM 55.5094357 90.2558150 100.584946 2.83E +1 156.224591 25 50000
SR 64.2224197 97.0017242 110.557444 3.61E +1 210.558655 24 50000

GA-AIS 65.9034885 117.350395 118.912289 3.32E +1 208.347350 25 50000
GA-AISC 63.5711752 83.4115213 89.0866357 2.11E+1 155.190918 25 50000

APM 47.5302335 67.7416098 67.5369704 1.34E +1 101.205100 25 500000
SR 49.4397850 78.6502228 79.2372183 2.10E +1 126.887253 25 500000

GA-AIS 45.2934737 84.4632468 90.4197446 2.50E +1 152.756103 25 500000
GA-AISC 40.6118492 65.5883385 66.0103369 1.19E+1 94.8934192 25 500000

Table 30 Results for the g23 test-problem. Optimal value is −400.0551000. It is important
to notice that the SR technique was unable to produce feasible solutions for this test-problem.
All techniques were unable to produce feasible solutions for 5000 function evaluations

Method Best Median Average St.Dev Worst FR ne
APM 16.670943 41.018660 41.018660 3.44E+1 65.366380 2 50000
APM 9.7424748 37.553526 37.553526 3.93E+1 65.364580 2 500000

GA-AIS 286.83437 286.83437 286.83437 − 286.83437 1 500000
GA-AISC 4.2437108 89.368312 118.06984 1.11E +2 289.29904 4 500000

Table 31 Results for the g24 test-problem. Optimal value is −5.5080133

Method Best Median Average St.Dev Worst FR ne
APM −5.5076836 −5.4848828 −5.4474105 7.47E−2 −5.2005319 25 5000
SR −5.5050306 −5.3985375 −5.3958694 9.90E−2 −5.0622700 25 5000

GA-AIS −5.5079887 −5.5068253 −5.5055916 3.11E−3 −5.4901054 25 5000
GA-AISC −5.5079953 −5.5064843 −5.5052758 3.20E−3 −5.4943009 25 5000

APM −5.5080131 −5.5079922 −5.5051182 8.38E−3 −5.4703893 25 50000
SR −5.5080125 −5.4986755 −5.4598721 7.11E−2 −5.2227953 23 50000

GA-AIS −5.5080131 −5.5080119 −5.5080083 8.89E−6 −5.5079661 25 50000
GA-AISC −5.5080131 −5.5080106 −5.5080055 1.33E−5 −5.5079409 25 50000

APM −5.5080131 −5.5080131 −5.5080131 0.00 −5.5080131 25 500000
SR −5.5080131 −5.5080131 −5.5080131 0.00 −5.5080131 25 500000

GA-AIS −5.5080131 −5.5080131 −5.5080131 0.00 −5.5080131 25 500000
GA-AISC −5.5080131 −5.5080131 −5.5080131 0.00 −5.5080131 25 500000
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Abstract. An aspect that often causes difficulties when using Genetic Algorithms
for optimization is that these algorithms operate as unconstrained search procedures
and most of the real-world problems have constraints of different types. There is
a lack of efficient constraint handling technique to bias the search in constrained
search spaces toward the feasible regions. We propose a novel methodology to be
coupled with a Genetic Algorithm to solve optimization problems with inequal-
ity constraints. This methodology can be seen as a local search operator that uses
quadratic and linear approximations for both objective function and constraints. In
the local search phase, these approximations define an associated problem with a
quadratic objective function and quadratic and/or linear constraints that is solved
using an LMI (linear matrix inequality) formulation. The solution of this associated
problems is then re-introduced in the GA population. We test the proposed method-
ology with a set of analytical function and the results show that the hybrid algorithm
has a better performance when compared to the same Genetic Algorithm without the
proposed local search operator. The tests also suggest that the proposed methodol-
ogy is at least equivalent, and sometimes better than other methods that have been
reported recently in literature.
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Departamento de Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo
Horizonte, MG, Brazil
e-mail: frederico.guimaraes@yahoo.com.br

Ricardo H. C. Takahashi
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1 Introduction

The field of search and optimization has changed over the last decades by the in-
troduction of a number of non-classical and stochastic search and optimization al-
gorithms: the Evolutionary Algorithms. Inspired by the natural evolution principles,
the Evolutionary Algorithms (EAs) utilize a collective learning process of a popu-
lation of individuals. The EAs provide a framework of tools that includes Genetic
Algorithms, Evolutionary Strategies, Genetic Programming and Evolutionary Pro-
gramming, among others. Each evolutionary method is designed along a different
approach but despite their differences, all methods are heuristic population-based
search procedures that incorporate random variation and selection.

The three most significant differences between the EAs and the classical search
methods are:

• EAs search a population of solutions in each iteration, instead of a single point;
• EAs do not require extra knowledge or gradient information;
• EAs use probabilistic transition rules, not deterministic ones;

These characteristics permit the EAs to be applied to rather different kinds of func-
tions. Besides, the EAs, as a population-based search strategies, have a ability of
escaping from local optima, an ability very unlike to be observed in the classical
search methods.

EAs refine a population of initial solutions, using a combination of operators
to produce better approximations to a solution. This process leads to the evolution
of populations of individuals that are better suited to their environment than the
individuals that they were created from. If the problem has a single optimum, the
EA population members can be expected to converge to that optimal point. In cases
where a problem does not have one optimal point, as is the case in multiobjective
optimization and scheduling problems, then the EA can be used to capture multiple
optimal solutions.

An aspect that often causes difficulties when using them for optimization in the
case of continuous-variable problems is that these algorithms operate as uncon-
strained search procedures and most of the real-world problems have constraints
of different types. There is a lack of efficient constraint handling technique to bias
the search toward the feasible regions, in constrained search spaces. The most com-
mon approach of incorporating constraints into EAs has been the use of penalty
functions. Penalty functions have, in general, several drawbacks, for instance the
lack of well-defined rules for defining the penalty parameters. Due to the limitations
associated with the penalty functions, several researches have developed alterna-
tive approaches to handle constraints such as fitness approximations, incorporation
of knowledge with cultural techniques in constrained problems, and so on. For a
comprehensive survey of existing constraint handling methods, see [5].

The usage of quadratic approximations for dealing with constraints was initially
exposed in [29], where the authors developed a direct approach to tackle problems
with one non-linear equality constraint. In [30] the authors also use quadratic ap-
proximations, and develop a linear matrix inequality (LMI) methodology [4] for
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dealing with such approximations, in the local search phase of multiobjective opti-
mization problems.

The methodology proposed in this paper is a further development of an idea that
has been suggested in [30] but that has not been exploited there: the usage of an
LMI formulation for dealing with an arbitrary number of inequality constraints. The
arbitrary non-linear constraint functions are approximated by quadratic or linear
functions, depending on their convexity. This methodology can be seen as a local
search operator that uses approximations for both objective function and constraints.
In the local search phase, these approximations define an associated problem with
a quadratic objective function and quadratic and/or linear constraints. This asso-
ciated problem is solved using a formulation based in the linear matrix inequality
(LMI) formulation [4]. Such operator guides the EA toward the feasible region of
the search space and, in this way, helps the EA to find the optimal point with more
accuracy and convergence velocity. For testing our technique, the novel operator
was coupled with a real-coded Genetic Algorithm (GA). The main focus of this
work is not to compare the algorithms but to show how the new operator, coupled
with simple EA procedures, can produce better results once applied in non-linear
constrained problems.

This paper is organized as follow. In Section II, we define the general non-linear
optimization problem that we aim to solve. After that, in Section III we present a
detailed description of our approximation technique. Section IV shows the method
based on the LMI formulation to solve the associated problem. Section V hybridizes
a Genetic Algorithm with the local search operator. Then, in Section VI the perfor-
mance for the hybrid algorithm is tested in a set of problems. Finally, in Section VII
some conclusions are established.

2 Statement of the Problem

In this section the non-linear constrained problem is stated. The non-linear program-
ming problem with k inequality constraints is formulated as:

Minimize f (x)

subject to: gi(x)≤ 0, i = 1, · · · ,k
(1)

where x is the vector of decision variables x = [x1,x2,x3, · · · ,xn]T such that x∈S ⊆
R

n and k is the number of inequality constraints. The constraints can be linear or
non-linear and the objective function is non-linear.

The search region S is an n-dimensional rectangle formed by the upper and
lower bounds for the variables, xl

j ≤ x j ≤ xu
j , where j = 1,2, . . . ,n. If we denote the

feasible region (the region for which the constraints are satisfied) with F , then it is
clear that F ⊆S . The optimal solution is denoted by x∗ and a constraint is said to
be active at the point x∗ if gi(x∗) = 0.

Since the methodology that will be discussed in this work uses a local approxi-
mation, then all the involved functions must be smooth almost everywhere.
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3 Approximation Methodology

Motivated by the fact that Evolutionary Algorithms work with a population of solu-
tions and generate a number of samples of the objective and constraints evaluations
along the process, we attempt to explore all information available of the EAs to
create approximation models for all functions of the problem. Each approximation
model (or meta-model) is a quadratic or a linear function that will used inside the
optimization process.

With the goal of avoiding extra computational cost, we utilize the current and past
samples generated by the population of the algorithm to fit suitable models for each
function. If the function is linear, we can use the analytical expression of the function,
or if this expression is not known, we fit a linear approximation for it. If the func-
tion is non-linear, but locally convex, we construct a quadratic approximation for the
function. In the case of approximating locally non-convex regions of a function, the
linear function approximation is employed (the best convex approximation in such
cases). Any approximation models are determined in the least square sense. In the
next sub-section, we discuss the quadratic approximation model in a detailed way.

3.1 Quadratic Approximations

Let h be a real-valued function. Given distinct points z1,z2, · · · ,zn, we consider the
problem of finding a convex quadratic real-valued function

f (z) = zT .H.z+ rT z+ γ (2)

for some suitable symmetric n×n matrix H, n×1 vector r and some scalar γ , such
that

h(zi)∼= f (zi) (3)

for i = 1,2, · · · ,N where N is the number of available points.
Hence, the problem of finding f such that (3) holds can be restated as to find H,

r and γ such that
Ei = zi

T .H.zi + rT zi + γ−h(zi) (4)

for i = 1,2, · · · ,N.
This is a linear system of N equations in the unknown entries of H, r and γ . The

number of unknowns in H is equal to

n + n2−n
2 ,

hence the total number of unknowns is given by

n +
n2−n

2
+ n + 1 =

(n + 1)(n + 2)
2

(5)

If
zi

T.H.zi + rT zi + γ = 0⇒H = 0,r = 0,γ = 0 (6)
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for i = 1,2, · · · ,N, and N = (n+1)(n+2)
2 then there exists a unique quadratic function

f such that (3) holds. This is an interpolation case. When N > (n+1)(n+2)
2 , the linear

system (4) is over-determined and we can find a least norm solution:

min
H,r,γ
||∑

i

Ei|| (7)

If the norm is the Euclidean norm, then the function f is the quadratic least squares
approximation.

Convexity of f is equivalent to the matrix H in (2) being positive semidefinite ,
yielding the conditions Q� 0. It is impossible to guarantee convexity if we want f
to coincide with h [13]. We can minimize the Euclidean norm of f − h, and f can
be found by solving the objective

min

(
t :
√

∑
i

Ei
2 ≤ t,Q� 0

)
. (8)

Since the constraint of positive-definiteness of Q is a Lorentz (or second order)
cone ,

Lm =

{
x ∈ R

m : xm ≥
√

m−1

∑
i=1

x2
i

}
(9)

the problem (8) is a semidefinite programming, a special case of optimization over
symmetric cones, and can be efficiently solved using SeDuMi [26].

SeDuMi is an add-on for MATLAB, which lets you solve optimization problems
with linear, quadratic and semi-definiteness constraints. SeDuMi stands for Self-
Dual-Minimization and it implements the self-dual embedding technique for opti-
mization over self-dual homogeneous cone, or more concisely, optimization over
symmetric cones. SeDuMi takes full advantage of sparsity, leading to significant
speed benefits, and has a theoretically proved O

(√
n log 1

ε
)

worst-case iteration
bound.

Once we have obtained a quadratic approximation

f (z) = zT .H.z+ rT z+ γ (10)

we can find the point of minimum of f

zf =−1
2

H−1r (11)

and then, we can rewrite the analytical expression of the function

f (z) = (z− zf)T .H.(z− zf)−C (12)

where C = 0.25rT H−1r− γ .
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4 The LMI Formulation for Solving the Associated Problem

With the local approximation for each function, we can write an associated problem
for the problem (1):

min(x−xf)T .H.(x−xf)

subject to:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gi(x) = (x−xgi)T .Qi.(x−xgi)−
−Ci ≤ 0

i = 1, · · · , p
gl

j(x) = ax+ c≤ 0
j = 1, · · · ,q

(13)

where xf and H are, respectively, the unconstrained optimal point and the Hessian
matrix of the approximated objective function, xgi and Qi, for i = 1, · · · ,m are, re-
spectively, the center point of the level curves and the Hessian matrix of each non-
linear locally convex constraint function, and gl

j is the linear approximation for each
non-linear locally non-convex constraint in the original problem, and k = p + q.

Using the associated problem (13), we can estimate a solution for (1) through
LMI formulation. In this section we present the mathematical formulation that al-
lows the usage of the LMI to solve (13).

Linear Matrix Inequalities (LMIs) and LMI techniques have emerged as a pow-
erful tool in areas such as control engineering, systems identification and structural
design. A wide variety of problems can be formulated using LMI and, once stated in
terms of LMIs, a problem can be solved exactly by efficient convex optimization al-
gorithms (LMIs solvers). These solvers are significantly faster than classical convex
optimization algorithms.

A linear matrix inequality is any constraint of the form:

A(x) = x1A1 + x2A2 + · · ·+ xnAn < A0 (14)

where x = (x1, · · · ,xn) is a vector of unknown scalars, Ai ∈ S n ={
X ∈ R

n×n|X = XT
}

, i = 1,2, · · · ,n, are symmetric matrices and < 0 stands for def-
inite negative, i.e., the largest eigenvalue of A(x) is negative. Observe that A(x) > 0
and A(x) < B(x) can be rewritten, respectively, as −A(x) < 0 and A(x)−B(x) < 0.

In other words, the LMI (14) is a affine functional mapping a vectorial space
onto a cone of negative definite matrices. An important property of LMIs is that its
solution space, denoted by {x ∈ R

m : A(x) < A0}, is a convex set. In fact, defining
an affine function f : R

n→S n, where f (x) = A0−A(x), the set

{x| f (x) ∈ C ⊆S n≥}= {x ∈ R
n|A0−A(x) ∈S n≥}

represents the inverse image of the cone of semidefinite positive matrices and it is a
convex set. In this way, the task of finding a solution for (14) is a convex program-
ming problem.

We will employ the following lemma and some results to derive our
methodology:
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Theorem 1. (Schur’s complement) The statements (15) and (16) bellow are
equivalent: [

Q S
S′ R

]
> 0 (15)

{
R > 0
Q−SR−1S′ > 0

(16)

in which R and Q are symmetric matrices, S is a matrix with compatible dimensions,
and (·) > 0 denotes that the matrix argument is positive definite.
The proof of Lemma (4) can be found in [4].

The first result, based on the Schur’s Lemma, is stated as:

Theorem 2. Consider the following optimization problem with a quadratic objective
function and quadratic constraints:

x∗ = arg min (x−x0)′Q0(x−x0)

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x−x1)′Q1(x−x1)−C1 ≤ 0
(x−x2)′Q2(x−x2)−C2 ≤ 0
...
(x−xm)′Qm(x−xm)−Cm ≤ 0

(17)

The optimization problem (17) can be re-stated as:

x∗ = argx minx,ε ε

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ε (x−x0)′

x−x0 Q−0 1

]
> 0

[
C1 (x−x1)′

x−x1 Q−1 1

]
> 0

[
C2 (x−x2)′

x−x2 Q−2 1

]
> 0

...[
Cm (x−xm)′

x−xm Q−m1

]
> 0

(18)

Proof. Replace:
min (x−x0)′Q0(x−x0)

by:
min ε
s.t. (x−x0)′Q0(x−x0) < ε
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The remainder operations are direct applications of Schur’s complement to the
quadratic inequalities. ��
In the same way, another result can be derived for problems with quadratic and
linear constraints:

Theorem 3. Consider the following optimization problem with a quadratic objective
function and constraints that are quadratic and linear:

x∗ = arg min (x−x0)′Q0(x−x0)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x−x1)′Q1(x−x1)−C1 ≤ 0
(x−x2)′Q2(x−x2)−C2 ≤ 0

...
(x−xp)′Qp(x−xp)−Cp ≤ 0
a1x−b1 ≤ 0
a2x−b2 ≤ 0

...
aqx−bq ≤ 0

(19)

The optimization problem (19) can be re-stated as:

x∗ = argx minx,ε ε

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ε (x−x0)′

x−x0 Q−0 1

]
> 0

[
C1 (x−x1)′

x−x1 Q−1 1

]
> 0

[
C2 (x−x2)′

x−x2 Q−2 1

]
> 0

...[
Cp (x−xp)′

x−xp Q−p 1

]
> 0

2a1− c1x−x′c′1 > 0

2a2− c2x−x′c′2 > 0

...
2aq− cqx−x′c′q > 0

(20)
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The first LMI accounts for the quadratic objective function, the next p LMIs
account for the locally convex inequality constraints of the original problem and the
last q LMIs for the locally non-convex inequality constraints of the original problem.
Notice that Theorem (1) and Theorem (2) produce a point that is the exact solution
for the quadratic problem (13) which is associated to the original problem (1). The
optimization problem (20) can be efficiently solved with any LMI solver based on
interior point methods. In this work, we used, as in the construction of the quadratic
approximation, SeDuMi to solve this problem.

The solution of the associated problem (20), which was constructed using the
approximations, provides a locally improved individual. How we introduce this new
improved solution in the current population of the Genetic Algorithm is a particular
issue and will be addressed latter.

5 Hybridizing the Genetic Algorithm with the Local
Approximations Operator

Genetic Algorithms, like any other evolutionary technique, are especially well tuned
for solving a wide class of problems due to their ability to explore vast solutions
spaces and search from a family of candidate solutions rather than from just a sin-
gle point. However, these algorithms are less suited to fine-tuning structures that
are already close to optimal solutions. As stated by Davis [6] and re-illustrated by
Knowles [16], for improving optimization results achieved by Genetic Algorithms
one should: “Hybridize where possible”.

Hybrid Genetic Algorithms (HGAs) or Memetic Algorithms (MAs) denote the
association of local and global search operators inside GAs. The term Memetic Al-
gorithm was first used by Moscato [22], denoting algorithms that use some kind of
structured information, that is obtained and refined as the algorithm evolves, and is
transmitted from one generation to the other, for enhancing the search. In this work,
the author associated a simulated-annealing-based operator as a local search into a
genetic algorithm. Since then, this idea has gained wide acceptance and has been
applied in a large class of problems [15, 17, 18, 23].

It is argued that the success of MAs is due to the trade-off between exploration
abilities of the underlying GA and the exploitation abilities of the local searchers
used. The price to be paid is a greater number of extra fitness evaluations and often
a swift loss of diversity within the population. The required cost by local search is an
important issue in hybrid algorithms. This point often becomes more important in
real-valued optimization problems which involve expensive-to-evaluate black-box
function.

The local search operator presented in the previous section is coupled with a
simple real-coded Genetic Algorithm, inside a normal cycle of the algorithm. We
used a version of a simple real-coded Genetic Algorithm with the basic following
characteristics:

• Gaussian Mutation;
• Selection by roulette-wheel with ranking-based linear fitness;
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• Elitism mechanism;

The hybridization interface between the newly implemented local search and the
GA is located prior to the selection for recombination and the recombination steps.
This choice of location is designed to make any beneficial effects of the local search
operator available to the selection and recombination process. Then the local search
fine-tunes the parents of the population instead of the offspring with the goal of
producing fitter offspring. This concept has its analogy with the heredity mechanism
in human biology: healthy parents are more probable to produce healthy offspring.

The new local search operator improves the solution because it allows all the
constraints to be reached with more precision. Considering that the local search
phase does not require any extra function evaluation, this operator alleviates the
computational burden associated to local search in MAs. We show below the basic
sketch of the Hybrid GA:

Initialize parameters
Initialize population
WHILE no stop criterion

• each σ generations: local search
• selection
• crossover
• mutation

END-WHILE

An implementation of the proposed methodology could be performed in several
different ways. For coupling the local search operator with the GA, we have estab-
lished the following arbitrary definitions:

• The GA is executed for the optimization of a modified objective function with
a penalty term that takes into account the inequality constraint:

F(x) = f (x)+ 100.∑
i
|gi(x)| (21)

• The local search operator will be run every 5 generations. We have performed
experiments on executing the operator every 1, 2, 5 and 10 generations – these
tests have shown that the interval of 5 generations represents a good trade-off
between the effort spent in the local search and the effort spent in the usual GA
operations.

• As this operator is a local search one, only points in a neighborhood of the
current best point will be used to build the approximation model. This neigh-
bourhood is arbitrarily defined here as:

N (x0) = {x : (x−x0)T R(x−x0)≤ 1} (22)

and
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Ri j =
{

[0.1(ui− li)]−1 , i = j
0, i �= j

(23)

where li and ui are respectively the minimum and maximum value for the i-th
variable. Thus the neighbourhood N (x0) is an ellipsoidal region in which the
dimension of each axis is a function of the parameter range. As a mathematical
condition, the number of points inside this neighborhood must be greater than
or equal to

(n + 1)(n + 2)
2

(24)

where n is the problem dimension. The higher the number of points inside this
neighborhood, the more accurate the quadratic approximation becomes.

• Finally, the output point of the new operator will deterministically replace the
worst point of the current population.

Notice that the output point also can be used as an additional stop criterion for the
algorithm: the stabilization of such point can be interpreted as the algorithm finding
the solution.

6 Experiments and Results

6.1 Analytical Functions

For evaluating the performance of the proposed algorithm, we used a set of test
functions. Some functions of this set present characteristics that can be considered
difficult, while other ones define easy problems: the idea is to compare the different
algorithms in diverse situations. Their analytical expressions are provided below.

Test problem (T1): This is a simple 2-dimensional quadratic problem stated as:

min f (x) = (x1−4)2 +(x2−6)2

subject to:

⎧⎨
⎩

g1(x) = 2(x1−2)2 +(x2−2)2−1≤ 0
g2(x) = 2(x1−1)2 + 4(x2−2)2−1≤ 0
−4≤ xi ≤ 4, i = 1,2

(25)

The optimal solution to this problem is x∗= [ 1.4932 2.3583 ]T , which gives f ∗=
19.5440. At the solution the constraint g2 is active.

Test problem (T2): The problem stated below is a bi-dimensional quasi-quadratic
problem:

min f (x) = (x1−2)4 +(x1−2x2)2

subject to:

⎧⎨
⎩

g1(x) = (x1)2 + x2 ≤ 0
g2(x) = (x1−2)2 +(x2−1)2−1≤ 0
−4≤ xi ≤ 4 i = 1,2

(26)

The optimal solution to this problem is x∗ = [ 1 1 ]T which gives f ∗ = 2. At the
solution the constraint g2 is active.
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Test problem (T3): Despite of the fact of being a quadratic problem, this problem
has 15 variables and 12 constraints. The high dimension of the variable space is a
hard issue for optimization algorithms. The problem is stated below:

min f (x) = (x−v)T (x−v)

subject to:

{
gi(x) = (x− ci)T .Qi.(x− ci)−1≤ 0
−4≤ xi ≤ 4 i = 1, · · · ,12

(27)

where

a = [a j], a j = 1 j = 1,2, · · · ,15 v = 5.a, c1 =
(

1+
√

15
15

)
.a, c2 =

(
1+

√
30

30

)
.a,

c3 =
(

1+
√

15
30

)
.a, c4 =

(
1+

√
15

15

)
.a, c5 =

(
1+

√
29

29

)
.a, c6 = 6

5 .a,

c7 =
(

1+
√

6
12

)
.a, c8 =

(
1+

√
23

23

)
.a, c9 =

(
1+

√
10

20

)
.a, c10 =

(
1+

√
35

35

)
.a,

c11 =
(

1+
√

10
20

)
.a, c12 =

(
1+

√
3

15

)
.a

Considering i = j = 1,2, · · · ,15

Q1 = (ai j) =
{

ai j = 0, if i �= j
ai j = 1, otherwise

Q2 = 2.Q1, Q3 = 4.Q1, Q4 = 3.Q1

Q5 = (ai j) =

⎧⎨
⎩

ai j = 0, if i �= j
ai j = 1, if i = j and i = 1
ai j = 2, otherwise

Q6 = (ai j) =

⎧⎨
⎩

ai j = 0, if i �= j
ai j = 1, if i = j and i = 1, · · · ,5
ai j = 2, otherwise

Q7 = (ai j) =

⎧⎨
⎩

ai j = 0, if i �= j
ai j = 1, if i = j and i = 1, · · · ,6
ai j = 2, otherwise

Q8 = (ai j) =

⎧⎨
⎩

ai j = 0, if i �= j
ai j = 1, if i = j and i = 1, · · · ,8
ai j = 2, otherwise

Q9 = (ai j) =

⎧⎨
⎩

ai j = 0, if i �= j
ai j = 4, if i = j and i = 1, · · · ,5
ai j = 2, otherwise

Q10 = (ai j) =

⎧⎨
⎩

ai j = 0, if i �= j
ai j = 3, if i = j and i = 1, · · · ,5
ai j = 2, otherwise

Q11 = (ai j) =

⎧⎨
⎩

ai j = 0, if i �= j
ai j = 3, if i = j and i = 1, · · · ,10
ai j = 2, otherwise

Q12 = 5.Q1

(28)

The optimal solution, x∗, to this problem is [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]T ,
which gives f ∗ = 213.0872. At the solution the constraint g12 is active.
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Test problem (T4): The fourth problem is stated as:

min f (x) = (x1−10)3 +(x2−20)3

subject to:⎧⎪⎪⎨
⎪⎪⎩

g1(x) =−(x1−5)2− (x2−5)2 + 100≤ 0
g2(x) = (x1−6)2 +(x2−5)2−82.81≤ 0
13≤ x1 ≤ 100,
0≤ x2 ≤ 100

(29)

The optimal solution to this problem is x∗ = [ 14.095 0.84296 ]T , which gives
f ∗ =−6961.81388. At the solution all constraints are active.

Test problem (T5): This problem is stated as:

min f (x) = (x1−10)2 +5(x2−12)2 +x4
3+

+3(x4−11)2 +10x6
5 +7x2

6 +x4
7−

−4x6x7−10x6−8x7
subject to:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g1(x) =−127+2x2
1 +3x4

2 +x3 +4x2
4 +5x5 ≤ 0

g2(x) =−282+7x1 +3x2 +10x2
3 +x4−x5 ≤ 0

g3(x) =−196+23x1 +x2
2 +6x2

6−8x7 ≤ 0
g4(x) = 4x2

1 +x2
2−3x1x2 +2x2

3 +5x6−11x7 ≤ 0
−10 ≤ xi ≤ 10, i = 1,2, · · · ,7

(30)

This problem is found in [8, 20]. The best value reported so far [8] is
[2.330499 1.951372 −0.4775414 4.365723 −0.6244870 1.038131 1.594227]T

which gives f ∗ = 680.6300. At the solution the constraints g1 and g4 are active.

Test problem (T6): This problem was first presented in [14] and it has been used
in [5] and in [9] to evaluate the performance of various GAs for constrained opti-
mization.

min f (x) = 5.3578547x2
3 +0.8356891x1x5+

+37.293239x1−40792.141

subject to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(x) = −85.334407−0.0056858x2 x5−
−0.0006262x1x4 +0.0022053x3x5 ≤ 0

g2(x) = 85.334407+0.0056858x2 x5+
+0.0006262x1x4−0.0022053x3x5−91 ≤ 0

g3(x) = −80.51249−0.0071317x2 x5−
−0.0029955x1x2−0.0021813x2

3 ≤ 0
g4(x) = 80.51249+0.0071317x2 x5+

+0.0029955x1x2 +0.0021813x2
3 −110 ≤ 0

g5(x) = −9.300961−0.0047026x3 x5−
−0.0012547x1x3−0.0019085x3x4 ≤ 0

g6(x) = 9.300961+0.0047026x3 x5+
+0.0012547x1x3 +0.0019085x3x4−25 ≤ 0

78≤ x1 ≤ 102,
33≤ x2 ≤ 45,
27≤ xi ≤ 45, i = 3,4,5

(31)
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The best known solution to this problem is x∗ = [ 78 33 29.995 45 36.776 ]T ,
which gives f ∗ =−30665.5. At the solution the constraints g2 and g5 are active.

Test problem (T7): This problem is stated as:

min f (x) =− sin3(2πx1)sin(2πx2)
x3

1(x1 + x2)

subject to:

⎧⎨
⎩

g1(x) = x2
1− x2 + 1≤ 0

g2(x) = 1− x1 +(x2−4)2 ≤ 0
0≤ xi ≤ 10 i = 1,2

(32)

The best optimal solution to this problem is x∗ = [ 1.2279713 4.2453733 ]T which
gives f ∗ =−0.095821.

Test problem (T8): This problem is stated as:

min f (x) = ∑5
i=1 0.01((xi + 0.5)4−30x2

i −20xi)
5

subject to:

⎧⎪⎪⎨
⎪⎪⎩

g1(x) = (x−v)′.(x−v)≤ 0
g2(x) = (x− c)′.H.(x− c)≤ 0
−6≤ xi ≤ 6
i = 1, · · · ,5

(33)

where
v = [ 6 6 6 6 6 ]T

c = [ 5 6 6 6 6 ]T

H =

⎛
⎜⎜⎜⎜⎝

4 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

The objective function is a multimodal function with a global minimum at x∗ =
[−4.4538 · · · −4.4538 ] and other local minima located at the corner of the hyper-
square X = [±4.4538 · · · ±4.4538 ]. The feasible region is located near one of the
local minimum of the objective function.

Test problem (T9): This problem is stated as:

min f (x) = xT .AT .A.x−10[1 1]cos(2πAx)

subject to:

⎧⎨
⎩

g1(x) = (x1−2)2 +(x2−2)2−1≤ 0
−4≤ xi ≤ 4
i = 1,2

(34)

where A =
(

1 0
0 4

)
.

It is known that the optimal point lies in the boundary of the feasible region however,
we cannot find any related solution for this problem in the literature.
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The best obtained result to this problem is x∗ = [ 1.989999 1.0001 ]T which gives
f ∗ =−0.169.

It is possible to estimate the size of the feasible region of a general problem
through the metric ρ , as suggested in [21]. The ρ-metric, given by,

ρ =
|F |
|T | , (35)

where |T | is the number of random solutions generated and |F |, represents the num-
ber of feasible solutions found out of the total. This metric gives us an estimate of the
size of the feasible region and, consequently, indicates how difficult is to generate a
feasible solution through a random process.

The table 1 presents a summary of the chosen problems, where n is the number
of variables, LI is the number of linear inequalities, NLI is the number of non-
linear inequalities and ρ is the size of the feasible region. The maximum number
of generation used in each problem test and the respective population size are also
listed in the same table. For all experiments, we used the following parameters:

• Crossover Rate = 0.8
• Mutation Rate = 0.05
• Mutation Size = 0.01
• Dispersion Factor in Fitness Function = 1.8
• number of generations = 800
• population size = 300

Due to stochastic nature of the GA, a well-based judgment concerning the perfor-
mance of a specific algorithm cannot be stated unless the whole optimization process
is repeated a number of times. In the case of this work, we performed 30 indepen-
dent runs for both algorithm using each test function.

Table 1 Characteristics of each test problem

Problem Type of Function n LI NLI ρ
T1 quadratic 2 0 2 0.00045
T2 non-linear 2 0 2 0.00010
T3 quadratic 15 0 12 0
T4 non-linear 2 0 2 0.00001
T5 non-linear 7 0 4 0.00058
T6 quadratic 5 0 6 0.02765
T7 non-linear 10 3 5 0.00086
T8 non-linear 5 0 2 0
T9 non-linear 2 0 1 0.00510

The tables 2 and 3 show the performance of the simple and hybrid GAs in the
test problems. The symbol “–” means that the algorithm was not able to find any
feasible solution. All the other solutions used to evaluate the algorithm were feasible
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Table 2 Statistical results obtained by the GA Hybrid for the test functions

Problem Opt. Value Best Value Mean Worst
T1 19.5440 19.5440 19.5440 19.5440
T2 2 2 2.0073 2.0313
T3 213.0872 213.0872 213.0872 213.0872
T4 -6961.8139 -6811.8 -6533.99 -5987.64
T5 680.6300 681.4534 681.6135 682.0012
T6 -30665.5 -30665.530 -30654.998 -30654.297
T7 -0.095821 -0.0958 -0.0951 -0.0899
T8 3.0615 3.0615 3.0615 3.0615
T9 -0.0169 -0.0169 -0.0147 0.0223

Table 3 Statistical results obtained by the pure GA for the test functions

Problem Opt. Value Best Value Mean Worst
T1 19.5440 19.6010 19.7101 20.2102
T2 2 2.0053 2.2025 2.7126
T3 213.0872 243.9816 245.1588 251.6680
T4 -6961.8139 -6298.6 -6398.6 -5503.6
T5 680.632 691.4714 697.8759 699.2311
T6 -30665.5 – – –
T7 -0.095821 -0.09057 -0.0872 -0.0469
T8 3.0615 3.0862 4.0590 9.7844
T9 -0.0169 -0.0162 0.0088 0.1324

ones. We can see that the GA Hybrid was able to find the exact global minimum in
six problems, (T1), (T2), (T3), (T7), (T8) and (T9). In the other problems, the GA
Hybrid found solutions closer to the optimal value when compared with pure GA.

We compare these results with the approach described in [19]. In table 4, we
summarize the best results obtained in this paper and compare that with the best
reported results found in [19]. The symbol (#) indicates that there are not results
available for comparison, for the respective problem, in the literature. As we can see,
the methodology proposed in this work has shown a very competitive performance
with respect to the pure GA and to the results in [19].

At the end of 30 executions of the simple and hybrid algorithms, we obtained the
mean convergence line which corresponds to the mean value of the best individual
throughout the first 100 generations. Figures 1, 2, 3, 4, 5, 6, 7, 8 and 9 show the
convergence line for each problem. In the graphs, the x-axes represent the generation
and the y-axes represent the base 10 logarithm of the objective function value of the
best individual. The base 10 logarithm was used, except in the problem (T4), (T6),
(T7) and (T9), only to enforce the difference between the lines.

These figures reveal a pattern in which the GA Hybrid converges faster (in terms
of number of function evaluations) than the pure GA to the problem optimum: the
mean convergence line of GA Hybrid becomes systematically below the one of pure



Constrained Optimization Based on Quadratic Approximations in GAs 209

Table 4 Summary results of this work

Prob. x∗ Best-Known Results of this work
Best Mean Worst Best Mean Worst

T1 19.5440 # # # 19.5440 19.5440 19.5440
T2 2 # # # 2 2 2
T3 213.0872 # # # 213.0872 213.0872 213.0872
T4 -6961.8139 -6961.814 -6961.284 -6952.482 -6811.8 -6533.99 -5987.64
T5 680.632 680.632 680.634 680.719 681.4534 681.6135 682.0012
T6 -30665.5 -30655.539 -30655.539 -30655.539 -30665.530 -30654.998 -30654.297
T7 -0.095821 0.095825 0.095825 0.095825 -0.0958 -0.0951 -0.0899
T8 3.0615 # # # 3.0615 3.0615 3.0615
T9 -0.0169 # # # -0.0169 -0.0147 0.0223

GA in all tests, except (T5), in which an alternation occurs. Adding the data about
the final solution that is found by each algorithm, that has been analysed above, the
conclusion is that the GA Hybrid usually converges to better feasible solutions, for
the same number of function evaluations, when compared with the pure GA.

6.2 Case Study: TEAM Benchmark Problem 22

Since the number of function evaluations needed for finding the optimum of the
original problem is significantly reduced with the proposed procedure, we can say
that the methodology is suitable for dealing with costly black-box optimization pro-
blems. A case study is presented: the well-known TEAM 22 benchmark problem,
an expensive problem of electromagnetic design.

The TEAM benchmark problem 22 with three variables deals with the opti-
mization of the geometric parameters of a superconducting magnetic energy stor-
age (SMES) configuration. The objectives are to maintain a prescribed level for the
stored energy on the device and to minimize the strayed field evaluated along lines
a and b while not violating the quench condition that assures the superconductivity
state. For a description of this benchmark problem, see reference [1, 28].

For the purpose of defining the benchmark problem, these objectives are ex-
pressed as a single-objective problem:

min f (x) =

√
1

21

21

∑
i=1

Bstray,i(x)

subject to:

⎧⎪⎨
⎪⎩

g1(x) = Bmax−4.92≤ 0

g2(x) =
|E−180MJ|

180MJ
−0.05≤ 0

(36)
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Table 5 Parameters for the Problem 22

Var R2 h2 d2

Unit (m) (m) (m)
min 2.6 0.408 0.1
max 3.4 2.2 0.4

Table 6 Fixed variables for the Problem 22

Var R1 h1 d1 J1 J2

Unit (m) (m) (m) (M A/m2) (M A/m2)
Value 2.0 0.8 0.27 22.5 -22.5

where Bstray, j is the magnetic flux density evaluated in each of the 21 evaluation
points for the strayed field along lines a and b, the maximum value of the magnitude
of the flux density in the domain, and E is the stored energy in the device. Table 5
shows the upper and lower limits of the variables (R2, h2, d2) and table 6 shows the
values of the fixed ones.

In electromagnetic design problems, the evaluations of f and g involve the im-
plicit solution of a field problem, which is described by one (or a system of) partial
differential equation(s). The analysis step in the optimization process can be com-
putationally intensive (this situation can become even worse in the case of 3D pro-
blems). Therefore, the total number of function calls required by an optimization
algorithm is of primary concern.

We performed 10 independent runs for each algorithm (pure GA and hybrid GA),
using the parameters described in the tests of subsection 6.1. The maximum number
of generation (50 generations) was the only termination criteria and the population
size was set to 40 individuals. The hybrid GA has found feasible solutions in all
tests, while the pure GA has been able to find feasible solutions only in 80% of
the tests.

Table 7 shows the mean value and the standard deviation of the objective function
for each algorithm, considering only the runs in which feasible solutions were found.
We can observe that the hybrid GA was able to find a better solution, with a better
value of the standard deviation, when compared with the pure GA. The best solution
achieved by the hybrid algorithm is shown in Table 9. For this solution we have
g1 < 0 and g2 = 0. The value of the stored energy achieved is somewhat below the
target (180MJ). This is due to the formulation used in this work, which considered
the stored energy as a constraint and not as the main objective of problem 22.

With the goal of assessing the time required for the hybrid algorithm, we
measured the time (in seconds) spent by each algorithm in each test. Table 8 shows
the mean time and the standard deviation for all tests using the pure and the hybrid
algorithm. It should be noticed that the computation time spent by the hybrid algo-
rithm is about 1.0% greater than the computation time spent by the basic algorithm.
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Fig. 1 Convergence Line
for the Problem Test (T1)
using the GAs
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Fig. 2 Convergence Line
for the Problem Test (T2)
using the GAs
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Fig. 3 Convergence Line
for the Problem Test (T3)
using the GAs
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Fig. 4 Convergence Line
for the Problem Test (T4)
using the GAs
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Fig. 5 Convergence Line
for the Problem Test (T5)
using the GAs
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Fig. 6 Convergence Line
for the Problem Test (T6)
using the GAs
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Fig. 7 Convergence Line
for the Problem Test (T7)
using the GAs
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Fig. 8 Convergence Line
for the Problem Test (T8)
using the GAs
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Fig. 9 Convergence Line
for the Problem Test (T9)
using the GAs
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Fig. 10 Convergence line for the TEAM Benchmark Problem 22 using the pure and
hybrid GA

This difference is due to the execution of the local search operator (both algorithms
perform a similar number of objective function calls).

Figure 10 shows the mean convergence line which corresponds to the mean value
of the best individual throughout the generations. In the graph, the x-axis represents
the generation and the y-axis represents the base 10 logarithm of the objective func-
tion value of the best individual. The base 10 logarithm was used only to enforce
the difference between the lines. We can observe that the quadratic local search
operator can enhance the convergence speed (in terms of the number of function
evaluations). Moreover, the hybrid algorithm is able to find a more accurate solution
when compared to the pure algorithm.

Table 7 TEAM Benchmark Problem 22: Statistical Results for the value of f (x) in feasible
solutions

Algorithm mean stan. dev.
Pure GA 0.8580 0.1214

Hybrid GA 0.8125 0.0225

Table 8 TEAM Benchmark Problem 22: Time (in seconds) Required for running 50 genera-
tions with population of 40 individuals

Algorithm mean stan. dev.
Pure GA 6.1340×103 349.4566

Hybrid GA 6.2048×103 219.1207
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Table 9 Best Solution Achieved by the Hybrid GA

Var R2 h2 d2 f (x) E Bmax

Unit (m) (m) (m) (mT) (MJ) (T)
value 2.9709 0.6645 0.3026 0.7785 171.0 4.50

7 Conclusion

This paper has presented a new operator for dealing with inequality constraints
within evolutionary algorithms. This operator is based on approximations of two
types of the constraint functions: the locally convex constraints are approximated
by quadratic functions, and the locally non-convex constraints are approximated by
linear functions. The auxiliary problem defined by the approximated constraints and
the approximated objective function is solved using an LMI (linear matrix inequal-
ity) formulation, and the approximated solution is re-inserted in the evolutionary
algorithm population. It is noticeable that the proposed methodology does not need
any additional function evaluation for being performed, since the function evalua-
tions that are already performed by the evolutionary algorithm, in its normal opera-
tion, are re-used by the quadratic or linear approximation procedure for performing
the least-squares function approximation.

The results that have been obtained show that the proposed methodology is
competitive, leading to solutions that are equivalent or better than the solutions of
recently published algorithms. The application of the proposed operator in a de-
sign problem with costly black-box objective function suggests that the proposed
methodology can enhance the solutions in the case of problems of this class, with-
out incurring in more computational effort.
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Constraint-Handling in Evolutionary
Aerodynamic Design

Akira Oyama

Abstract. Constraint-handling techniques for evolutionary multiobjective aerody-
namic and multidisciplinary designs are focused. Because number of evaluations
is strictly limited in aerodynamic or multidisciplinary design optimization due to
expensive computational fluid dynamics (CFD) simulations for aerodynamic evalu-
ations, very efficient and robust constraint-handling technique is required for aero-
dynamic and multidisciplinary design optimizations. First, in Section 2, features
of aerodynamic design optimization problems are discussed. Then, in Section 3
constraint-handling techniques used for aerodynamic and multidisciplinary designs
are overviewed. Then, an efficient constraint-handling technique suitable to aerody-
namic and multidisciplinary designs is introduced with real-world aerodynamic and
multidisciplinary applications. Finally, an efficient geometry-constraint-handling
technique commonly used for aerodynamic design optimizations is presented.

Keywords: real-world design optimization, aerodynamic design optimization,
Pareto-based constraint handling.

1 Problem Statement

Without losing generality, constrained real-number optimization problems are writ-
ten as:

Find x that minimizes

f(x) = ( f1(x), . . . , fm(x), . . . , fmmax(x)) (1)

subject to
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g1(x)≤ 0, . . . ,gn(x)≤ 0, . . . ,gnmax(x)≤ 0 (2)

where x = (x1, . . . ,xl, . . . ,xlmax) is a vector of design parameters of the solution that
minimizes the objective function(s) while satisfying the inequalities (2). lmax , mmax

and nmax are numbers of design parameter(s), objective function(s) and constraint(s),
respectively.

2 Features of Aerodynamic Design Optimization Problems

Most of real world aerodynamic or multidisciplinary design optimization problems
are multiobjective and multi-constraint design optimization problems. For example,
a typical transonic aircraft wing design involves maximization of drag divergence
Mach number, minimization of mission block fuel, maximum take-off weight, and
wing box weight while constraints on flutter speed, structural strength, manufacturing
capability, fuel tank volume, etc. must be met. Another example is the supersonic
transportation design presented in [33], which has four objectives (drag coefficients
at transonic and supersonic cruise speeds, wing root bending moment and pitching
moment) and constraints on lift coefficients at transonic and supersonic cruise speeds
as well as wing thickness. Many other multiobjective and multi-constraint design
optimization problems can be easily found, such as low-boom supersonic business jet
design [5], expendable launcher design [10], and multistage compressor design [26].

A multiobjective optimization problem (MOP) simultaneously involves several
competing objectives. While a single objective optimization problem may have a
unique optimal solution, MOPs present a set of compromised solutions, largely
known as the tradeoff surface, Pareto-optimal solutions or non-dominated solutions.
The goal of MOPs is to find as many Pareto-optimal solutions as possible to provide
useful information of the problem to the designers.

Other features of real-world aerodynamic or multidisciplinary design optimiza-
tion problems are;

• Number of evaluations is severely limited because aerodynamic function eval-
uation using computational fluid dynamics (CFD) simulations are very expen-
sive.

• Objective and constraint functions are highly multimodal due to nonlinearity of
the flow governing equations.

• Design variables, objectives and constraints are typically real numbers.

For example, in the multidisciplinary design optimization of main wing of the re-
gional jet that is under development in Japan (aimed entry to service is in 2013) [4],
the objective and constraint function evaluations include; 1) aerodynamic evalua-
tions, 2) aeroelasticity evaluation, 3) wing weight evaluation, and 4) flight envelope
analysis (Fig.1), which required more than 100 hours of computational time for each
design candidate evaluation even on a vector supercomputer (when one processing
element is used). Therefore, in the example in [4], population size and number of
generations are limited to 8 and 19, respectively. It should be noted that, in real
world, evolutionary optimization with such small population size and number of
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Fig. 1 Flowchart in the objective/constraint function evaluation module for the regional jet
design [4]

Fig. 2 Comparison of shock wave visualizations colored by entropy under the transonic
cruising flight condition between the base design (left) and an optimized design (right) [4].
Weaker shock wave is observed for the optimized design

generations can give useful information to the designers. In fact, authors of [4] sig-
nificantly improved block fuel (3.6% improvement) from the base design which was
designed in conventional design manner (Fig.2).

3 Constraint-Handling Techniques Used for Aerodynamic
Design Optimization

Real-world aerodynamic or multidisciplinary design optimization problems involve
multiple objectives and multiple constraints. Among many design optimization
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approaches, therefore, evolutionary algorithms (EAs) are getting popular in aerody-
namic and multidisciplinary design optimizations [3, 4, 10, 14–16, 18, 22, 24, 26–28,
31,33,35]. EAs are particularly suited for MOPs because they can uniformly sample
various Pareto-optimal solutions in one optimization by maintaining a population of
design candidates and using a fitness assignment based on the Pareto-optimality
concept. In addition, EAs have other advantages such as robustness, efficiency, as
well as suitability for parallel computing.

EAs, however, do not have any explicit mechanism to handle design constraints.
A considerable amount of research on constraint handing techniques that incor-
porate objective function(s) and constraint(s) into the fitness function of design
candidates has been carried out (good summaries are given in Coello [7] and
Mezura-Montes [20]).

The simplest way to handle constraints is to remove infeasible design candidates
out of optimization by applying fitness function of zero (for maximization prob-
lem) [15, 26]. However, this approach is not efficient because it wastes information
that infeasible design candidates have, i.e., direction from infeasible region to the
feasible region. As described in the previous section, number of design candidate
evaluations is strictly limited in real-world aerodynamic or multidisciplinary design
optimizations. Therefore this approach is not suitable to such design optimization
problems.

Three constraint-handling approaches making use of information infeasible de-
signs have been used for aerodynamic and multidisciplinary design optimizations
as far as the author knows; penalty function approach (for example, see [9]), Deb’s
constraint-handling approach [8], and Oyama’s constraint-handling approach [30].

Traditional and the most popular approach for handling design constraints in
aerodynamic and multidisciplinary design optimizations is the penalty function
method [9], where the fitness of a design candidate is determined based on scale
function vector F(x) = (F1(x), . . . ,Fm(x), . . . ,Fmmax(x)) , which is a weighted sum
of the objective function value and the amount of design constraint violations. A
typical scale function for minimization problem is given by

Fm(x) = fm(x)+
nm2

∑
n=nm1

αn ·max(gn(x),0) (3)

where αn are the positive penalty function coefficients and constraints related to the
objective function fm is (gnm1, . . . ,gnm2). Though this approach is widely used in
aerodynamic and multidisciplinary designs [14, 16, 18, 22, 31], this method requires
careful tuning of the penalty function coefficients to obtain satisfactory designs. For
example, if the penalty function coefficients are too small, the optimized designs
would not satisfy the constraints. On the other hand, if the penalty function coef-
ficients are too large, the optimized designs would not have satisfactory objective
function values. In addition to the balance between the objective functions and the
constraints, the balance among the constraints must also be carefully tuned so that
the optimized designs satisfy all of the constraints.
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Another constraint-handling approach used for aerodynamic evolutionary opti-
mizations is Deb’s constraint handling method [8]. This approach ranks design
candidates using the following definition of domination between two design candi-
dates,

Definition 1. a solution i is said to constrained-dominate a solution j if any of the
following conditions is true,

1. Solutions i and j are feasible and solution i dominates solution j.
2. Solution i is feasible and solution j is not.
3. Solutions i and j are both infeasible, but solution i has a smaller constraint

violation.

where

Definition 2. a solution i is said to dominate a solution j if both of the following
conditions are true,

1. Solution i is no worse than solution j in all objectives, i.e.,

∀ fm(xi)≤ fm(x j) (4)

2. Solution i is strictly better than solution j in at least one objective, i.e.,

∃ fm(xi) < fm(x j) (5)

Flow chart of a procedure using this technique is presented in Fig.3. This approach
does not require any penalty function coefficients to be tuned as long as the number
of constraint is one. In this sense, this approach is very useful for EA-based design
optimizations. In fact, Oyama et al obtained rotor blade designs that significantly
outperform the baseline design using an EA coupled with Deb’s constraint-handling
technique [27, 28]. However, in [8], no approach for a problem with multiple con-
straints is not presented. Thus, this approach requires careful tuning of the weight

Sharing among feasible solutions 
based on their objective function

values

Rank of feasible solutions 

solutions based on total 
constraint violation

Separate current population to feasible and infeasible 
sub−populations according to their constraint function values

Feasible sub−population Infeasible sub−population

Ranking among infeasible 

solutions to the rank of infeasible
Addition of number of feasible 

solutions

Rank of infeasible solutions 

solutions based on their objective 
Pareto−ranking among feasible 

function values

Fig. 3 Flow chart of a ranking procedure using Deb’s constraint-handling technique
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coefficients if weighted sum of the constraints is used to determine the constraint
violation.

The last constraint-handling approach used in aerodynamic and multidisciplinary
design optimization problems is Oyama’s constraint handling method [30]. This
approach is superior to the previous two approaches in the sense that no parameter
tuning is required. This approach has been successfully applied to spaceplane con-
ceptual design [30], aerodynamic compressor blade design [29], and aerodynamic
airfoil shape optimization [35]. In the next section, this approach is described in
detail and then two real-world applications are presented.

4 Oyama’s Constraint-Handling Approach

4.1 Approach

Oyama’s constraint-handling approach simply apply the idea of non-dominance and
niching concepts in the objective function space to the constraint function space.
This method bases on the following non-dominance concept.

Definition 3. Solution i is said to constrained-dominate solution j if any of the
following conditions is true,

1. Solutions i and j are both feasible and solution i dominates solution j in the
objective function space.

2. Solution i is feasible and solution j is not.
3. Solutions i and j are both infeasible, but solution i dominates solution j in the

constraint space.

where dominance in the objective function space is defined as Definition 2 while
dominance in the constraint space is defined as follows.

Definition 4. Solution i is said to dominate solution j in the constraint space if both
of the following conditions are true,

1. Solutions i is no worse than solution j in all constraints, i.e.,

∀Gn(xi)≤ Gn(x j) (6)

2. Solution i is strictly better than solution j in at least one constraint, i.e.,

∃Gn(xi) < Gn(x j) (7)

where
Gn(x) = max(0,gn(x)) (8)

Oyama’s constraint-handling approach applies niching based on the amount of cons-
traint violations to infeasible solutions. Here, a standard fitness sharing [13] is ap-
plied to the infeasible designs based on their constraint violations as
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rank′(xi) = rank(xi)∗ penalty(xi) (9)

penalty(xi) = 1 +
npop

∑
j=1, j �=i

shi j (10)

shi j =
{

1− (di j/σshare)α di j < σshare

0 di j ≥ σshare
(11)

σshare =
nmax

∑
n=1

(gmaxn−gminn)/npop (12)

di j =

√
nmax

∑
n=1

(gn(xi)−gn(x j))2 (13)

gmaxn = max(gn(x1), . . . ,gn(xi), . . . ,gn(xnpop)) (14)

gminn = min(gn(x1), . . . ,gn(xi), . . . ,gn(xnpop)) (15)

where npop is population size and α is set to 0.3. If the present approach is applied
to a multiobjective optimization problem, a fitness sharing is used to the feasible
designs based on their objective function values. Flow chart of a ranking procedure
using this technique is presented in Fig. 4. Because this method simply uses the
idea of non-dominance and niching concepts in the constraint function space, this
idea can be coupled with most multiobjective EAs. For example, any ranking pro-
cedure can be used for ranking among feasible designs as well as infeasible designs.
In addition, the use of stochastic ranking [32] may further improve efficiency and
robustness.

The proposed method has a number of advantages.

• It does not require any coefficients to be tuned if a parameterless sharing method
such as [12] is used. Even if a sharing method that has coefficients to be tuned is
used, according to the author’s experience, the parameter values used for sharing
in the objective space can be used for sharing in the constraint function space.

• The number of objectives is not increased since non-dominance ranking is ap-
plied to feasible designs and infeasible designs separately. If the number of ob-
jectives is increased, it will be more difficult to obtain non-dominated solutions
due to lower selection pressure.

• It is efficient and robust even when all individuals in the initial population are
infeasible due to severe constraints because niching strategy is used in the cons-
traint space. When all individuals are infeasible, the population could lose di-
versity in the next generation, if diversity in constraint space is not considered.

• It is efficient and robust even when the degree of violation of each constraint is
very different because the total amount of constraint violation is not used. If total
amount of constraint violation is considered and the degree of violation of each
constraint is different, it is very difficult to obtain feasible solutions satisfying
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Fig. 4 Flow chart of ranking procedure using Oyama’s constraint-handling technique

constraints that has smaller violation in average. There are some approaches
that use total amount of constraint violation with dynamically tuned weights of
constraints. However, such methods may lose diversity in the population when
most of the population are infeasible because niching in the constraint space is
not applicable.

• Implementation is easy because Pareto-ranking and sharing method based on
the objective functions can be usually applicable to Pareto-ranking and sharing
based on the constraint function.

Though this method may increase the computational time required for an EA, the
increase is usually negligible in real-world aerodynamic design optimization pro-
blems where the computational time required for objective and constraint function
evaluations is very large. In the next two subsections, real-world design optimiza-
tions using an EA coupled with this constraint-handling approach are presented.

4.2 Conceptual Design Optimization of a Two-Stage-To-Orbit
Spaceplane

In this subsection, conceptual design optimization of a two-stage-to-orbit (TSTO)
spaceplane is presented. The TSTO spaceplane consists of a booster with air-
breathing engines and an orbiter with rocket engines. The orbiter is separated from
the booster at a certain altitude to reach low-earth-orbit (LEO) for delivering the
payload (Fig. 5).

4.2.1 Formulation of the Design Optimization Problem

The present TSTO mission is to put a payload of 10t into an equatorial orbit at the
altitude of 400km. For simplicity, the take-off and landing sites are assumed to be on



Constraint-Handling in Evolutionary Aerodynamic Design 227

the equator. The engine of the booster is an air-turbo-ramjet engine with expander
cycle (ATREX) [36], which is under development in Japan. The objective is to mini-
mize the gross take-off weight of the spaceplane. The separation time is constrained
to be smaller than 550 seconds. The maximum thrust of the booster is also cons-
trained to be smaller than 2.5 MN. The gross take-off weight, separation time and
maximum thrust of the booster are iteratively computed from the propulsion, aero-
dynamics, trajectory and structure modules [19, 34] as shown in Fig. 6. Propulsion,
trajectory and airframe configuration parameters (ten parameters in total) are con-
sidered as design variables.

4.2.2 Optimization Approach

The present EA uses floating-point representation [21] to represent design param-
eters of design candidates where an individual is characterized by a vector of real
numbers. Random parental selection and the best-N selection [37], where the best
N individuals are selected for the next generation among N parents and N children
based on Pareto-optimality, are used. The blended crossover (BLX-0.5) [11] is used
with crossover rate of 1 for reproduction. Since strong elitism is used, a high mu-
tation rate of 0.2 is applied and a random disturbance is added to the parameter in
the amount up to ±20% of the design space. The initial population is generated
randomly over the entire design space. The capability of the present EA to find
quasi-optimal solutions has been well validated [23, 25].

The rank of each design candidate is defined according to Definition 3. Fonseca
and Fleming’s Pareto-based ranking [12] is used to rank feasible designs as well as
infeasible designs. The population size and number of generations are set to 50.

Fig. 5 Image of the TSTO spaceplane (left) and its mission (right)
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4.2.3 Results

Optimization is repeated one hundred times with different initial populations. The
present EA coupled with Oyama’s constraint-handling approach found feasible de-
signs in each run. Average weight of the optimized designs, weight of the best opti-
mum and standard deviation of the optimum weight were 371.19 kt, 369.00 kt, and
1.5787 kt, respectively.

For comparison of constraint-handling techniques, the result is compared with
that obtained with the same EA with different constraint-handling techniques; Deb’s
approach [8], Coello’s approach [6], and dynamic penalty approach [17]. To handle
multiple constraints with the Deb’s approach, the constraints are combined into one
constraint violation function where all weights are 1. For the dynamic penalty ap-
proach, all weights in equation (3) are 1. The parameter values used in the dynamic
penalty approach are C=0.2, α=2, and β =2. The result is summarized in Table 1.
The dynamic penalty approach and Deb’s approach failed to find feasible designs in
100 optimizations for this design problem. The reason is probably that both meth-
ods adopt simple sum of the amounts of constraint violation of different order of
magnitude. On the other hand, Oyama’s approach and Coello’s approach got good

Fig. 6 Multidisciplinary TSTO evaluation
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Table 1 Comparison between the constraint-handling methods

Approach Number of suc-
cesses

Average weight
[kt]

Weight of the
best design [kt]

Standard Devi-
ation [kt]

Oyama’s approach 100 371.19 369.00 1.5787
Coello’s approach 99 371.29 369.04 1.6239
Deb’s approach No feasible design is found
Dynamic penalty No feasible design is found

scores, while the proposed method was slightly better than Coello’s approach in
every measure.

4.3 High-Fidelity Aerodynamic Design Optimization of an Axial
Compressor Blade

4.3.1 Formulation of the Design Optimization Problem

The next optimization problem is to seek a redesign of NASA rotor67 [38], which
is a low-aspect-ratio transonic axial-flow fan rotor and is the first-stage rotor of
a two-stage fan. The fan was designed and tested to help provide the technology
to develop efficient, lightweight engines for short-haul aircraft in 1970s. The rotor
67 was designed by using a streamline-analysis computational procedure, which
provides an axisymmetric, compressible-flow solution to the continuity, energy, and
radial equilibrium equations.

The rotor design pressure ratio is 1.63 at a mass flow of 33.25 kg/sec. The de-
sign rotational speed is 16043 rpm, which yields a tip speed of 429 m/sec and an
inlet tip relative Mach number of 1.38. The rotor has 22 blades and aspect ratio of
1.56 (based on average span/root axial chord). The rotor solidity varies from 3.11
at the hub to 1.29 at the tip. The inlet and exit hub/tip radius ratios are 0.375 and
0.478, respectively. Reynolds number is 1,797,000 based on the blade axial chord at
the hub.

The objective of the aerodynamic rotor shape design optimization problem is to
minimize the flow loss manifested via entropy generation. Here, mass-averaged en-
tropy production from inlet to exit at the design point of rotor67 is considered as the
objective function to be minimized. Because an optimized rotor design should meet
the required mass flow rate and pressure ratio, they are maintained by specifying
constraints on them:

|mass f lowratedesign−mass f lowraterotor67

mass f lowraterotor67
| ≤ 0.005 (16)

| pressureratiodesign− pressureratiorotor67

pressureratiorotor67
| ≤ 0.010 (17)
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In addition, thickness of the optimized design is constrained to be equal to or
larger than that of the rotor 67;

∑max(0,thicknessrotor67− thicknessdesign)≤ 0 (18)

where thickness of the designs and rotor 67 is measured at 10%, 20%, . . . , 90%
chord positions on 57 blade profiles from root to tip.

4.3.2 Blade Shape Parameterization

Here a rotor blade shape is represented by four blade profiles, respectively at 0%,
31%, 62%, and 100% spanwise stations (all spanwise locations discussed here are
measured from the hub), the spanwise twist angle distribution, and the stacking line.
Each of these sectional profiles can be uniquely defined by using a mean camber
line and a thickness distribution. Here, they are parameterized by the third-order B-
Spline curves and positions of control points of the B-Spline curves are considered
as the design parameters. As illustrated in Fig. 7, five control points are used for
the mean camber line. For the thickness distribution, two control points are added
at the leading edge and the trailing edge so that these points represent leading edge
and trailing edge radii, respectively. Chordwise locations of the control points at
leading edge and trailing edge are frozen to zero and one, respectively. The thickness
control points at the leading and trailing edges are defined so that the leading and
trailing radii of the designs are identical to those of the rotor 67. These profiles
are linearly interpolated from hub to tip. Stagger angles are defined at 0%, 33%,
67%, and 100% spanwise stations and linearly interpolated. Spanwise chord length
distribution remains identical to that of the rotor 67. Final blade shape is defined
by stacking the blade profiles around the center of gravity of each profile. Here,
streamwise and circumferential the stacking lines are defined by B-Spline curves as
shown in Fig. 7, respectively. As a result, each blade shape is represented with 49
design parameters.
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4.3.3 Optimization Approach

The same EA described in 4.2.2 is used. The parameter values used in the EA are
also same except for the population size. The population size is increased from 50
to 64 because number of the design parameters is increased. To handle constraints
on mass flow rate and pressure ratio, Oyama’s constraint-handling approach is used.
For blade thickness constraints, an approach for geometry constraints described in
section 5 is used.

4.3.4 Aerodynamic Evaluation

The three-dimensional Navier-Stokes (N-S) code used in the present research is
TRAF3D [1,2]. Capability of the present code has been validated by comparing the
computed results to some experiments such as the Goldman annular vane with and
without end wall contouring, the low speed Langston linear cascade [1] as well as
the NASA rotor67 [2]. Detail of this code is described in [27].

The three-dimensional grids are obtained by stacking two-dimensional grids gen-
erated on the blade-to-blade surface. These two-dimensional grids are of C-type and
are elliptically generated, with controlled grid spacing and orientation at the wall.
The number of the grid points is 201 chordwise × 53 tangential × 57 spanwise.
The computational grid for the NASA rotor 67 is shown in Fig. 8. All computations
were performed on the NEC SX-6 supercomputer consisting of 128 vector process-
ing elements (PEs) located at JAXA Institute of Space and Astronautics Science
in Japan. Aerodynamic evaluations of design candidates at each generation is par-
allelized using the simple master-slave concept; the grid generations and the flow
calculations associated to the design candidates of a generation are distributed into
32 PEs of the NEC SX-6 machine. Aerodynamic function evaluation of each design
candidate took about 40 minutes on one PE of the NEX SX-6 machine (For 50 gen-
erations, it took more than 66 hours of computational time on 32 vector PEs of the
supercomputer).

 

 

Fig. 8 Computational grid over NASA rotor67. Every other line is shown
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Fig. 9 Comparison of the
optimization histories

4.3.5 Result

Figure 9 presents optimization history in terms of the objective function (entropy
production) compared with the NASA rotor 67. In the same figure, optimization his-
tory of the same EA coupled with Deb’s constraint-handling approach is presented
for comparison purpose where constraint violation CV is defined as

CV = 2 ·CVmass f lowrate +CVpressureratio (19)

For both cases, the optimized designs obtained after the eighth generation satisfied
all the constraints. However, the final design obtained by Oyama’s approach has a
smaller entropy production than the NASA rotor 67 while the optimized design by
Deb’s approach could not improve this result in 50 generations. It may be because
diversity in the population is lost before a feasible solution is found at the ninth

Fig. 10 Comparison of the
spanwise entropy distribu-
tions
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generation when Deb’s approach is used. Spanwise entropy distributions of the op-
timized design and the NASA rotor 67 are compared in Fig. 10. The figure shows
that the entropy production can be reduced mainly between 60% to 90% span while
it is increased near the tip.

5 Geometry-Constraint-Handling Used for Aerodynamic
Design Optimization

In general, aerodynamic design optimization problem involves aerodynamic con-
straints and other constraints which don’t require CFD simulation for function eval-
uation. A typical example is geometry constraint. For example, aerodynamic drag
minimization of a transonic wing without any geometric constraints would result
in very thin wing shape. However, such wing shape does not have enough struc-
tural strength to withstand the bending moment due to the lift force on the wing.
In many cases, structural strength is guaranteed by constraint on minimum wing
thickness or minimum wing profile area. In such cases, the constraint function can
be evaluated without CFD evaluation of candidate wings. Therefore, in some aero-
dynamic design optimizations, geometry constraints are evaluated as soon as a new
design candidate is generated and if the design candidate does not satisfy the geom-
etry constraints, it is discarded and another design candidate is generated until the
new design candidate satisfies all geometry constraints. By doing this procedure,
all design candidates satisfy geometry constraints and thus, expensive aerodynamic
evaluations can be significantly saved [3, 4, 24, 29].

6 Conclusions

In this chapter, features of aerodynamic design optimization problems were
presented and constraint-handling techniques for evolutionary multiobjective aero-
dynamic and multidisciplinary designs were overviewed. Because number of evalu-
ations is limited in aerodynamic and multidisciplinary design optimizations, a very
efficient and robust constraint-handling technique is required for aerodynamic and
multidisciplinary design optimizations. Oyama’s constraint-handling approach is
suitable to aerodynamic and multidisciplinary design optimizations in this sense.
Conceptual design of TSTO spaceplane and high-fidelity aerodynamic rotor blade
design optimization demonstrated that Oyama’s approach is better than traditional
constraint-handling methods for real-world aerodynamic and multidisciplinary de-
sign optimization problems.
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Handling Constraints in Global Optimization
Using Artificial Immune Systems: A Survey

Nareli Cruz-Cortés

Abstract. Artificial Immune Systems (AIS) are computational intelligent systems
inspired by some processes or theories observed in the biological immune system.
They have been applied to solve a wide range of machine learning and optimiza-
tion problems. In this chapter the main AIS-based proposals for solving constrained
numerical optimization problems are shown. Although the first works were hybrid
solutions partially based on Genetic Algorithms, the most recent proposals are al-
gorithms completely based on immune features. We show that these algorithms rep-
resent viable alternatives to the penalty functions and other similar mechanisms to
handle constraints in numerical optimization problems.

Keywords: Artificial Immune Systems, Genetic Algorithms, Constrained Numeri-
cal Optimization.

1 Introduction

Artificial Immune Systems (AIS) are computational intelligent systems whose de-
sign is inspired by the biological immune system. This paradigm has been success-
fully used to solve complex problems in domains such as machine learning, global
optimization, and information security, among others.

It is worth to stress that when solving optimization problems, AIS utilize over-
simplifications of the natural immune system. This is because the main goal of this
paradigm is to obtain algorithms capable of solving specific well-determined pro-
blems. Hence, it is generally considered not crucial to mimic the immune principles
in a strict manner.
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As many bio-inspired algorithms (particularly Evolutionary Algorithms), AIS
have been very successful in the solution of a wide variety of optimization problems,
such as global and multimodal optimization [7, 14, 20, 24] and multiobjective opti-
mization [10, 15, 19, 21, 28].

Evolutionary Techniques are based on unconstrained search spaces. As conse-
quence, these techniques need additional mechanisms to be able of handling the
constraints which are typically presented in optimization problems. The most pop-
ular mechanism adopted by researchers is probably the so-called penalty functions
that allow to incorporate constraints into the fitness functions. The crucial idea of
a penalty function is to ”punish” an infeasible solution by decreasing its fitness
value (assuming a maximization problem). Despite their popularity, penalty func-
tions have several disadvantages, being the main one the relatively high difficulty to
define accurate penalty factors.

Until date, several AIS used for solving constraint optimization problems have
tried to overcome the main disadvantages of the penalty functions. In some cases,
this has been done by reducing the parameters defined by the user, thus obtaining
highly competitive results when compared against the state-of-the-art evolutionary
techniques.

Formally, the problem we are interested to solve is the general nonlinear pro-
gramming problem which is defined as follows.
Find

−→
X which optimizes f (

−→
X ) subject to:

gi(
−→
X )≤ 0, i = 1, . . . ,m (1)

h j(
−→
X ) = 0, j = 1, . . . , p (2)

where
−→
X ∈ ℜn is the vector of decision variables

−→
X = [x1,x2, . . . ,xn] where each

xi, i = 1, . . . ,n is bounded by a lower and upper limits Li ≤ xi ≤ Ui defining the
search space S, and F is the feasible region F ⊆ S; m is the number of inequality
constraints and p is the number of equality constraints, both kind of constraints
could be linear or nonlinear.

It is customary to transform the equality constraints into inequality constraints of
the form:

g j(
−→
X ) = |h j(

−→
X )|− ε ≤ 0, j = m+ 1,m+ 2, . . .,m+ p (3)

where ε is the tolerance allowed (which is a very small value).
In this chapter, we review the most relevant AIS proposals designed to handle

constraints published until the present. We classify them into two groups: (1) AIS
based on Evolutionary Algorithms (EA)1, and (2) AIS that are not based on any
Evolutionary Algorithms (EA).

This document is organized as follows: In Section 2 we will describe the
biological immune principles in which most of the AIS are based. Then, in Section
3 we will expose the AIS based on EA. After that, in Section 4, the AIS that are not

1 Specifically we refer to Genetic Algorithms.
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based on any EA will be presented. In Section 5 we will show the statistical results
from some selected algorithms applied to solve several test functions, and some final
remarks will be presented in Section 6.

For each AIS presented in this chapter, we will show the components of the sys-
tem, pseudo-code, its parameters, the manner that the algorithm was validated and
some remarks we consider important to point out.

2 Biological Immune System

In this section we will discuss some processes and theories observed in the biolog-
ical immune system that are useful to understand the algorithms to be presented in
the remaining of this chapter. The immune system is a very complex system whose
complexity is only comparable with that of the brain [12], this is why we stress
that the explanations given in this section are very rough and over simplifications
of what really happens in the biological immune system. We start our description
by mentioning that the antigens are cells or molecules capable of induce an im-
mune response. There are two levels of the immune response: the innate and the
adaptive.

The innate response is mainly represented by the cells called granulocytes and
macrophages, this response presents the same response to any type of antigen; i.e.,
it is unspecific.

On the other hand, the adaptive response is specific to the type of antigen pre-
sented to the system; it is mainly executed by the cells named lymphocytes. The
adaptive immune system is capable of learning and memorizing encounters with the
antigens.

Lymphocytes have associated molecules that have the ability to recognize special
types of antigens, i.e., lymphocytes’ detectors can recognize antigens with different
characteristics. There are two types of lymphocytes: the B lymphocytes (also called
B-cells ) and T lymphocytes (or T-cells ). B and T lymphocytes develop in the
bone marrow. B-cells mature into the bone marrow, whilst the T-cells travel to the
thymus to mature. The B-cell receptors interact with antigens free in solution, while
the T-cell receptors recognize antigens processed and bound to a surface molecule
called major histocompatibility complex. The B cells have expressed on their

Fig. 1 Main immune system
cells
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surfaces molecules called antibodies that are the main actors of the immune re-
sponse induced by B cells. The genetic information for an antibody is encoded into
gene segments which compose a so-called library of gene segments. The main im-
mune system cells are illustrated in Figure 1.

The antibody molecule contains a specialized region able to recognize other
molecules called paratope. The shape of the paratope is determined by the type
of aminoacids from which it is composed, and this shape is used to identify anti-
gens. If a match between an antibody and an antigen occurs, the antibody attaches
to the antigen and leads to its elimination.

2.1 Clonal Selection Principle

The Clonal Selection Principle is a theory that tries to explain the process by which
the immune system finds and neutralizes antigens. It was proposed by F. M. Burnet
[5]. Its main idea is that only those lymphocytes with the highest affinity with respect
to the antigen are stimulated to be cloned.

Clonal Selection operates on both T-cells and B-cells, however there are some
differences when operating on each of them. On the one hand, the B-cells suffer
somatic mutation2 during reproduction and are active antibody secreting cells. On
the other hand, T-cells do not suffer somatic mutation during reproduction and they
are active lymphokine secretors or T-killer cells [13]. Due to the fact that the B-cells
suffer mutation and adaptation capabilities, we will focus on the Clonal Selection of
the B-cells.

The B-cells receptors that match an antigen are stimulated to proliferate by
cloning. Then the new clones suffer mutation with high rates. In addition to that,
some B-cells can differentiate into long-lived memory cells. Memory cells circulate
through the blood, lymph and tissues and, if in future they are exposed to the same

Fig. 2 The Clonal Selection
Principle

2 Mutation with high rate or hypermutation.
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antigen (or a similar one) they rapidly start differentiating into plasma cells capable
of producing high affinity antibodies. This description is illustrated in Figure 2.

2.2 Affinity Maturation

When an antibody is stimulated by a specific antigen for the first time, its response is
called primary immune response. If the same antibody encounters the same antigen
(or a similar one) the immune system presents a quicker and more efficient response.
This is called second response. The antibodies present in a second response have on
average higher affinity to the antigen than those of the early primary response [13],
this phenomenon is referred to as the maturation of the immune response. This matu-
ration requires that the antibody’s receptor in the matured response should be struc-
turally different from those present in the primary response. The repertory of an
antibody’s receptor is mainly diversified by two mechanisms: hypermutation and re-
ceptor editing. Hypermutation refers to mutation with high rates. Due to the random
nature of the mutation process, some cells could result with low affinity receptors or
self-reactive cells, thus they must be eliminated through a process called apoptosis.
Occasionally antibodies with self-reactive detectors suffer receptor editing instead
of elimination, receptor editing deletes the self-reactive (or low affinity) receptor
and develops entirely new receptors.

2.3 Immune Network Theory

There exist some alternative theories to the Clonal Selection Principle, one of these
is the theory termed Immune Network Theory (or Idiotypic Network Theory) pro-
posed by N. K. Jerne [18], which contradicts the Clonal Selection Principle expla-
nation of the immune system. Until date the ideas exposed by Jerne are subject of
intense debates among the immunologist community.

The Immune Network Theory proposes that the immune system is composed of
a set of regulated molecules’ networks and cells that recognize one another even in
the absence of antigens. The segment of an antigen that can be recognized by an
antibody is named epitope. The portion of an antibody responsible for recognizing
an epitope is called paratope. An idiotype is defined as a set of epitopes displayed
by a set of antibodies. According to this theory the immune system is a huge and
complex network of paratopes that recognize sets of idiotopes and of idiotopes that
are recognized by sets of paratopes. These interactions lead to the establishment of
a network. After an antibody recognizes an epitope or an idiotope, it can respond
either positively or negatively to this recognition signal. A positive response would
result into cell activation, cell proliferation and antibody secretion, whereas a nega-
tive response would lead to tolerance and supression [13].

The most important AIS to handle constraints will be reviewed in the following
sections. They used as a source of inspiration one or several immune mechanisms
described before.
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3 Handling Constraints with AIS Based on Genetic Algorithms

In this section we describe hybridized mechanisms able to handle constraints in
optimization problems through AIS modeled with Genetic Algorithms (GA).

The first work that modeled an AIS to handle constraints was based on a GA
[16,17]. In this section we will talk about this seminal work and posterior extensions
and modifications to it.

The idea is to use a standard GA that optimizes the objective function without
considering the problem’s constraints (we will call it the outer GA), and an AIS
inserted into it to handle the constraints (we will call it the inner AIS). The premise
is that the inner AIS will reduce the amount of constraint violation of the infeasible
individuals.

A general model for the AIS based on a GA is shown in the Algorithm 1. All the
AIS presented in this section are based on this model, the main difference among
all the algorithms [3,4,8,9,17] is the manner of defining the inner AIS (Step 5 from
Algorithm 1). Then, for each algorithm presented, we will focus only on that inner
AIS assuming that the outer GA is the one presented in Algorithm 1.

Algorithm 1. General model for an AIS based on the GA

1: BEGIN outer GA
2: Generate the initial population randomly with binary representation.
3: repeat
4: For each individual determine if it is feasible or infeasible.
5: Execute the AIS.
6: The current AG’s population is composed by the antibodies and antigens received from the AIS executed in the

previous step.
7: For each individual compute the fitness function value (unconstrained).
8: Apply the conventional GA’s operators (parents selecion, crossover and mutation).
9: The offsprings replace the current population.
10: until a predetermined number of times or until a determined convergence condition is reached
11: OUTPUT: Best individual
12: END outer GA

3.1 Hajela’s Algorithm

P. Hajela et al. [16, 17] proposed an AIS that was able to handle constraints into a
GA. It is based on the process in which if an antigen is detected by the immune sys-
tem, the antibodies should learn which are the correct antibodies able to neutralize
that antigen.

The goal is that the antibodies (infeasible individuals) increase their similarity
(affinity) with respect to the antigens (feasible individuals), that is, the infeasible
solutions will evolve towards feasible solutions.

Then, we have two GAs. The outer GA (Algorithm 1) that optimizes the objective
function (unconstrained). The other GA is called AIS or inner GA which is inserted
into the outer GA. The AIS handle the problem’s constraints. This AIS represents
the Step 5 from Algorithm 1.
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This proposal will be explained in detail next.

Components of the system

The main components of the inner GA (that is the AIS) are:

• Antigens→ Feasible individuals.
• Antibodies→ Infeasible individuals.

Both antigens and antibodies are represented by binary strings with the same length
codifying the problem’s variables.

Algorithm

This algorithm consists of two GAs, the first is the conventional GA (Algorithm
1) which optimizes the objective function without constraints, the second one is
another GA inserted into the first one. This inner GA (Algorithm 2) is the AIS
composed by antigens and antibodies handling the constraints. The main idea is
that the population of antibodies will be evolved towards the antigens through the
GA. An antibody’s fitness value (called Z) is measured by means of how similar it
is with respect to an antigen. Due to the fact that the representation utilized in this
work is binary, authors proposed to compute the antibodies’ fitness by counting the
coincidences along both binary strings (antigen-antibody). Higher values of Z mean
higher degree of match between the two strings.

The pseudo-code for this AIS is illustrated in Algorithm 2, which is inserted into
the outer GA defined in Algorithm 1 Step 5.

Algorithm 2. Inner AIS proposed by Hajela et al. in [17]

1: BEGIN AIS-Hajela
2: INPUT: it receives feasible and infeasible individuals from the outer GA (Algorithm 1).
3: The feasible and infeasible individuals are separated and each group ranked in an order which places the best

objective function value at the top of the scale. A fraction of the feasible individuals are selected and denoted as the
antigen population. The infeasible individuals are called antibodies.

4: Initialize the fitness of all antibodies to zero.
5: Compute the fitness of the antibody pool based on similarity to the antigens; this requires the following specific

steps:
6: repeat
7: An antigen is selected at random.
8: A sample of antibodies of size μ is selected from the antibody pool without replacement.
9: The match score of each antibody is computed by comparing against the selected antigen, and the antibody with

the highest score has the match score added to its fitness value; the fitness of the other antibodies is unchanged.
10: the antibodies are then returned to the antibody population
11: until a determined number of times is reached (typically two to three times the antibody population size)
12: Based on the fitness computed in Steps 5-10, a GA simulation is conducted (parent selection, crossover, mutation,

population replacement)
13: The process is repeated from Step 4 a predetermined number of iterations.
14: OUTPUT: Both antigen and antibodies populations are returned to the outer GA.
15: END AIS-Hajela
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Parameters

The parameters introduced by this algorithm are:

• All the necessary parameters to define the inner and outer GAs, i.e., type of
parents selection, crossover type and rate, mutation rate, number of generations
and population size for both algorithms.

• The value of μ which determines the size of the antibodies’ sample in Step 7
from Algorithm 2.

Algorithm’s validation

This algorithm was originally validated on two engineering designs problems [16].
The first one optimizes the size of a truss structure and the second one is focused on
the minimal thickness design of simply-sported composite plate. They were com-
pared against a plain GA. For the first problem this algorithm obtained a very supe-
rior result than the plain GA, and very similar results with both approaches for the
second problem.

Rajasekaran and Lavanya [26] applied this algorithm on large dimensionality
design problems where the computational efficiently is a major concern. They used
one well-known optimization problem of 25-bar truss and two practical examples: a
braced barrel vault (static load) and a double-layer grid (earthquake loading). They
obtained better results than the ones achieved through the usage of other techniques
previously reported.

Remarks

This algorithm represents the first proposal using an AIS to handle constraints. One
of its main advantages is that it does not require the definition of any penalization
function and its conceptual simpleness. It is important to remark that, despite that
this scheme consists of a GA inside another GA, the fitness functions evaluations
are not increased because only the outer GA evaluates the objective function. The
inner GA, instead, assigns the antibodies’s fitness just by counting the coincidences
between two binary strings.

The authors assume that, in a randomly generated initial population, there are
feasible and infeasible individuals, however this assumption is not necessarily true,
especially when faced with constrained problems whose feasible’s region is small
compared with the complete search space.

3.2 Coello’s Algorithm

Coello et al., [8,9] published a work based on Hajela’s algorithm giving some ideas
on how to improve it. Furthermore they proposed a parallel version of the algorithm
obtaining promising results.
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Components of the system

The algorithm’s components are the same than the ones in Hajela’s work (Section
3.1), i.e., antigens are the feasible individuals and antibodies are the infeasible ones
representing potential solutions to the problem through binary strings with the same
length.

Algorithm

In [9] authors argue that Hajela’s algorithm needs to sort the population in the AIS
which is a task that increases the execution time, and it does not indicate how to pro-
ceed when no feasible individuals are present. Then this proposal tries to overcome
these inconveniences, see pseudo-code in Algorithm 3.

Algorithm 3. AIS proposed by Coello et al., [9]

1: BEGIN AIS
2: INPUT: it receives feasible and infeasible individuals from the outer GA (Algorithm 1).
3: if the population contains feasible and infeasible individuals then
4: the population is divided into antibodies (infeasible individuals) and the antigens (feasible individuals)
5: else
6: the best individual in the population is used as ”antigen”, this is the individual with the lowest amount of

constraint violation.
7: end if
8: repeat
9: Select randomly a sample of antibodies of size μ
10: The fitness of the antibodies is computed:
11: An antigen is randomly selected. Each antibody in the sample is compared against the antigen selected, and the

result of the comparison is computed (called Z): Z = ΣL
i=1ti where ti = 1 if there is a matching at position i = 1, . . . ,L

(L is the length of the chromosome)
12: Based in the fitness computed in the previous step, the population of antibodies is reproduced in a traditional

GA (using parent selection, crossover and mutation)
13: until a predetermined number of iterations is reached.
14: OUTPUT: All the individuals are returned to the outer GA.
15: END AIS.

Furthermore, authors suggested some changes into the Algorithm 1 as follows:
The parent selection from the outer GA (Step 8) is a binary tournament following
the next rules:
- If one individual is infeasible and the other is feasible, then the feasible individual
wins.
- If both individuals are feasible, then the one with the highest fitness value is the
winner.
- If both individuals are infeasible, then the winner is the one with lowest constraint
violation value.

Parallel version of Coello’s algorithm

A parallel version of this algorithm [8, 9] was proposed by using an island model
or multi-deme where there are a number of sub-populations or demes evolving
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separately but interchanging individuals at certain intervals (number of generations
called epoch). This model is called multi-population GA or coarse-grained GA [6].
In this work each deme has both, the inner and outer GAs.

Parameters

The parameters utilized in this algorithm are the following:

• All the necessary parameters to define both the inner and outer GAs, i.e., type
of selection, crossover type and rate, mutation rate, number of generations and
population size.

• The value of μ which determines the size of the antibodies’ sample in Step 8
from Algorithm 3.

Furthermore, the parallel version requires to define:

• The number of demes (sub-populations), the size of the epoch, the value of
r which represents the number of antibodies selected to migrate, the demes’
interconnection topology, and the migration’s policy.

Algorithm’s validation

This algorithm is tested on a well known benchmark [23, 27] and compared against
other AIS. Details can be found in Section 5.

Remarks

This algorithm is very similar to Hajela’s. Authors argue that their proposal has a
lower execution time by introducing only some small changes.

3.3 Bernardino’s Algorithm

Bernardino et al., [3,4] proposed a hybrid GA combined with an AIS. This approach
is based on the previous mentioned Hajela’s algorithm [16, 17] but the inner GA is
substituted by an AIS which is not based on a GA. This AIS is a simplification of
the Clonal Selection Algorithm (CLONALG) originally proposed by De Castro y
Von Zuben [14] for pattern recognition tasks and multimodal optimization.

The biological immune process in which this AIS is based is the Clonal Selection
Theory of the B-cells, whose main idea is that those B-cells with the highest affinity
with respect to the antigen are stimulated to be cloned. The stimulated B-cells suffer
a cloning process, then the new clones are mutated. Some cells would increase their
affinity after these processes, but others would decrease it. The best cells are allowed
to survive and the worst are eliminated from the system.
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Components of the system

The system’s components defined for this inner AIS are antigens and antibodies:

• Antigens→ feasible individuals.
• Antibodies 3 → infeasible individuals.

represented by fixed length binary strings with Gray codes codifying the problem’s
variables.

Algorithm

The AIS’s general idea is that the best antibodies are cloned. After that the new
clones are mutated. Next, the distances (affinities) between antibodies and antigens
are calculated. Then, the antibodies with the highest affinity values are selected to
survive to the next algorithm’s iteration. This algorithm utilizes binary representa-
tion, then authors suggest to compute the antibodies affinities through Hamming
distances with respect to antigens.

This algorithm is composed by the outer GA shown in Algorithm 1 and the inner
AIS which is illustrated in Algorithm 4.

Algorithm 4. Inner AIS proposed by Bernardino et al. [4]

1: BEGIN AIS
2: INPUT: it receives feasible and infeasible individuals from the outer GA (Algorithm 1).
3: if the population contains feasible and infeasible individuals then
4: the population is divided into antibodies (infeasible individuals) and the antigens (feasible individuals)
5: else
6: the two best individuals in the population are used as ”antigens”, these are the individuals with the lowest

amount of constraint violation.
7: end if
8: repeat
9: Clone the antibodies.
10: Mutate the new clones.
11: Compute the affinity between antigens and antibodies.
12: Based on their affinity values, select the best antibodies to survive .
13: until a predetermined number of iterations
14: OUTPUT: All the antigens and antibodies are returned to the outer GA.
15: END AIS

Furthermore, authors suggested some changes into the outer GA (Algorithm 1):

• To use a binary tournament to select the parents (Step 8) as follows: (1) between
a feasible and an infeasible individual, the feasible individual wins, (2) between
two feasible individuals, the one with the higher fitness wins, and (3) between
two infeasible individuals the one with the smaller constraint violation wins.

• To apply the crossover operator only to similar individuals (Step 8).
• In Step 9 the individuals that will form the population for the next generation are

selected. This is done by joining the current population and the new individuals,

3 Note that we do not make difference between B-cells and antibodies.
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then the clearing operator is applied to them. The clearing operator was pro-
posed by Petrowski [25] for multimodal problems as a niching mechanism. The
rationale of this operator is inspired in the principle of sharing limited resources
within sub-populations of individuals.

Parameters

The parameters introduced by this algorithm are the following:

• Parameters needed by the outer GA: Population size, number of generations,
mutation rate, crossover rate, and the Critical distance to compute the clearing
process.

• Parameters needed by the inner AIS:

– Number of clones.
– Number of antibodies to be cloned.
– Mutation rate and type.
– Number of iterations.

Algorithm’s validation

The algorithm was tested on six mechanical engineering optimization problems [4]
and compared against the EA presented in [22]. Authors obtained very competitive
results, concluding that their algorithm performed well in problems with continuous
design variables. At the same time, they observed a lower performance for problems
with discrete design variables.

Remarks

This algorithm combines a GA with a pure AIS. It seems to be that the cloning
process into the AIS accelerates the antibodies’s convergence towards the antigens,
i.e., the antibodies will be very similar to antigens very soon. This could be helpful
for certain type of problems, however for other cases, it could provoke premature
convergence. Perhaps authors tried to avoid premature convergence by using the
clearing operator.

There are two features that seem to be very important for this algorithm, the
mutation operator used into the AIS and the critical distance used into the clearing
operator. Authors do not give any clue about their effect to algorithm’s performance.

4 Handling Constraints with AIS

In this section we describe AIS that are exclusively based on processes and theories
directly extracted from the biological immune system, which we call pure schemes
because they do not use any EA.

The algorithms presented in this section [1, 2, 11, 29] are based on three differ-
ent immune processes: Firstly algorithms based on the Clonal Selection Algorithm
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(CLONALG). Secondly an algorithm based on a process suffered by the T-cells;
and thirdly an algorithm combining the Clonal Selection and the Immune Network
Theories.

4.1 Handling Constraints with AIS Based on the Clonal Selection
Principle

The Clonal Selection Principle explains how the adaptive immune system deals with
antigens. Briefly, when a B-cell recognizes an antigen with certain affinity, it is stim-
ulated to produce antibodies by cloning itself in large quantities. During this cloning
process, the new cells (clones) suffer mutation with high rates (hypermutation) [13].

The Clonal Selection Algorithm (named CLONALG) was proposed by De Castro
and Von Zuben [14]. It is a learning algorithm well-suited for solving pattern recog-
nition and multimodal optimization problems. This is a population based algorithm
whose only variation operator is mutation (or hypermutation).

The CLONALG to optimization problems has two main components: antibodies
represented by the problem’s variables and antigen which is the objective function.
The antibodies affinity is their evaluation into the objective function.

A general model for the Clonal Selection Algorithm (CLONALG) [14] to nu-
merical optimization is presented in Algorithm 5. The main features observed in
this algorithm are the following:

• The cloning rate of each antibody is proportional to its affinity with respect to
the antigen, i.e., the higher the affinity is, the higher becomes the number of
clones generated for each antibody and viceversa.

• The mutation suffered by each clone during reproduction is inversely propor-
tional to its affinity with the antigen, i.e., the higher the affinity, the smaller the
mutation rate and vice versa.

Algorithm 5. A general model for CLONALG to numerical optimization [14]

1: BEGIN CLONALG
2: INPUT: Parameters values
3: Generate j antibodies randomly.
4: repeat
5: Determine the affinity of each antibody (Ab). This affinity corresponds to the evaluation of the objective func-

tion.
6: Sort the antibodies by using their affinity values, from the highest to the lowest.
7: The antibodies are cloned. The number of clones for the antibody i (NCi) is calculated with:
8: NCi = Σ j

i=1(round)( β∗ j
i ) where β is a multiplier factor.

9: All the clones are subjected to a hypermutation process inversely proportional to their antigenic affinity.
10:
11: Determine the affinity of the mutated clones.
12: From this set of clones and antibodies (Ab) select the j highest affinity clones to compose the new antibodies’

population.
13: Replace the d lowest affinity antibodies by new individuals generated at random.
14: until a predetermined number of times is reached
15: OUTPUT: Best antibody.
16: END CLONALG
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The authors proposed to use self-adapting step size to mutate individuals as in Evo-
lution Strategies.

The next two algorithms (Constrained-CLONALG [11] and AISconst [1]) are
based on this schema, they are only variations on it.

4.1.1 Constrained-CLONALG [11]

Cruz-Cortés et al. [11] adapted the CLONALG shown in Algorithm 5 to handle
constraints in the following manner:

Components of the system

The system’s components are the following:

• Antigens are represented by the objective function we want to optimize and the
problem’s constraints.

• Antibodies are represented by the variables of the problem with real numbers.
Antibodies could be feasible or infeasible depending if they satisfy or not the
problem’s constraints.

Algorithm

This algorithm is based on the one presented in Algorithm 5. The changes suggested
by the authors are:

• The manner to determine the antibodies affinity values (Steps 4 and 8).
• The hypermutation operator (Step 7). Authors suggest to define a step size

which is in function of the range of each decision variable, the size of antibod-
ies’ population and their affinity value (instead of the self-adapting mechanism).

• The antibodies that are allowed to survive (Step 10).

These changes are presented in the pseudo-code in Algorithm 6.

Parameters

The parameters introduced by this algorithm are the following:

• Number of antibodies.
• Number of algorithm’s iterations.
• d that determines the number of the lowest affinity antibodies to be replaced.
• β which is used to compute the number of clones.
• q that determines the number of infeasible antibodies allowed to survive for the

next iteration.

Algorithm’s validation

This algorithm is compared against other AIS presented in this chapter. Details are
shown in Section 5.
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Algorithm 6. Constrained-CLONALG [11]

1: BEGIN Constrained-CLONALG
2: INPUT: Parameters values.
3: Generate j antibodies randomly.
4: repeat
5: Determine the affinity of each antibody (Ab). This affinity corresponds to the evaluation of the objective function

and feasibility. The feasible antibodies are in top of the list (the best), followed by the infeasible ones. Into the
feasible group the best are those with highest objective function values. Into the infeasible antibodies, those with
less constraint violation value are the best.

6: Sort the antibodies using their affinity values from the highest to the lowest.
7: The antibodies are cloned. The number of clones for the antibody i (NCi) is calculated with:
8: NCi = Σ j

i=1(int)( β∗ j
i ) where β is a multiplier factor.

9: The clones are subjected to a hypermutation as follows:
• For each decision variable xk , compute Rk = UB−LB, where UB and LB are the upper and lower bounds of

that variable, respectively, and R− k is the search space size of the k-th variable.
• Compute Δk = Rk/ j where j is the number of antibodies in the population.
• The clone population is sorted by affinity values in descending order.
• The mutation operator is applied to each size-g clone group coming from the same parent
• - For each variable k, compute δk = Δk/g
• - Apply mutation to each variable xk by using xnew

k = xk +U(0,) where U is a random number in the range from
0 to δk with uniform distribution.

10: Determine the affinity of the mutated clones. (Similar to Step 4).
11: From the union of clones and antibodies select the j higher affinity clones to compose the new antibodies’

population.
12: Replace the d lowest affinity antibodies by new individuals generated at random. Allow at least q infeasible

antibodies to survive to the next iteration.
13: until a predetermined number of times is reached
14: OUTPUT: Best antibody.
15: END CLONALG

Remarks

This proposal represents the first attempt to use a pure AIS which is not based on
any EA. The algorithm promotes the search into the boundary between feasible
and infeasible region. Authors conclude that the antibodies representation and type
of mutation is crucial. They obtained an algorithm’s improvement when using real
numbers representation and controlled and uniform mutation. One of the main ad-
vantages of this algorithm is that it avoids the use of any penalty function and it
requires only few parameters to be defined however, its authors did not give any
clue on how important are those parameters for the algorithm’s performance.

4.1.2 AISconst [1]

Aragón et al. [1] suggested an algorithm based on the CLONALG (Algorithm 5)
scheme called AIScont . The main difference between both works is the mutation op-
erator, which performs differently when applied to feasible or infeasible antibodies.
In fact, AISconst proposes two different mutation operators: one specially designed
to feasible antibodies, and the other one to infeasible antibodies.

Components of the system

The system’s components are the following:
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• Antigens are represented by the objective function we want to optimize and the
problem’s constraints.

• Antibodies are represented by the variables of the problem which are potential
solutions to the problem by using real numbers.

Algorithm

Aragón et al. scheme is based on the one shown in Algorithm 5. The following
changes are proposed by the authors:

• The way to determine the highest affinity antibodies (Steps 4 and 8).
• The hypermutation operator (Step 7) which depends on the antibodies feasi-

bility: If the antibodies are feasible then the mutation is small. However, for
infeasible antibodies, it randomly apply a small or a large mutation.

These changes are illustrated in pseudo-code presented in Algorithm 7.

Algorithm 7. AISconst [1]

1: BEGIN AISconst
2: INPUT: Parameters values.
3: Generate j antibodies randomly.
4: repeat
5: Determine the affinity of each antibody (Ab). This corresponds to the evaluation of the objective function and

feasibility. The feasible antibodies are in top of the list, followed by the infeasible ones. Into the feasible group
the best are those with highest objective function values. Into the infeasible antibodies, those with less constraint
violation value are the best.

6: Sort the antibodies using their affinity values from the highest to the lowest.
7: The antibodies are cloned. The number of clones for the antibody i (NCi) is calculated with:
8: NCi = Σ j

i=1(int)( β∗ j
i ) where β is a multiplier factor.

9: The clones are subjected to a hypermutation process depending on the clones feasibility:
• If a cell is a feasible solution then only a single position of the string is changed according to a randomly chosen

value.
• If the clone is an infeasible solution then for each decision variable xi

– Assign a binary random number to r:
– if r = 0 mutate using the equation:

– xi = xi± rand(0,1)∗ range(xi)
generation ∗NC

–
– else use the equation:

– xi = xi± rand(0,1)∗ range(xi)
generation∗NC

–

where rand(0,1) is a random number with uniform distribution between 0 and 1, range(xi) is a random number
in the allowable range of xi, generation is the current generation and NC is the number of clones.

10: Determine the affinity of the mutated clones (similar to Step 4).
11: From this set of clones and antibodies, select the j higher affinity clones to compose the new antibodies’

population.
12: Replace the d lowest affinity antibodies by new individuals generated at random.
13: until a predetermined number of times is reached
14: OUTPUT: Best antibody.
15: END AISconst

Parameters

The parameters utilized in this algorithm are the following:
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• Number of antibodies.
• Number of algorithm’s iterations.
• d that determines the number of the lowest affinity antibodies to be replaced.
• β which is used to compute the number of clones.

Algorithm’s validation

This algorithm is tested by using a benchmark [23, 27] and compared against other
AIS found in this chapter. The results are presented in Section 5.

Remarks

The main difference among this work and the previously reported approaches is
the mutation operator that makes one distinction between feasible and infeasible
antibodies. For the infeasible antibodies case, the mutation operator considers the
range of each decision variable, the current generation number and the number of
clones, trying to reduce the step size on infeasible antibodies. This algorithm does
not require any penalty function and has only few parameters to define.

4.2 AIS Based on a T-Cell Model [2]

A novel approach to handle constraints was proposed recently by Aragón et al. [2]
based on the manner that the T cells go through different phases.

The main idea behind this model is a three-population architecture which emu-
lates the T cells going from Virgin Cells (VC), to Effector Cells (EC). Finally some
of them are converted into Memory Cells (MC). Furthermore, the apoptosis pro-
cess is modeled. This process means that the useless cells are eliminated. The cells
go to another population when they ”react”, i.e., when they change by means of a
mutation operator.

The Virgin Cells (VC) provide the diversity, the Effector Cells (EC) explore
the region close to the bound between feasible and infeasible regions, whereas
the Memory Cells (MC) explore the neighborhood of the best solutions found
so far. The authors suggested the use of a Dynamic Tolerance Factor (DTF) into
the virgin and effector cells populations. The goal of adding this factor is to
avoid that the search falls into a local optimum. DTF is computed by adding the
constraint violation of each cell and dividing it by the number of VC cells or
three times the number of ECs for the virgin or effector cells, respectively. DTF
relaxes the tolerance factor making easy to generate solutions considered ”feasible”
although they may become infeasible if evaluated with the actual required precision.

Components of the System

The system’s components are the following:

• T-Cells→ potential solutions to the problem represented with real numbers.
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Algorithm

The pseudo-code is presented in Algorithm 8. Here, ”react” (Steps 8 and 14) means
to apply the mutation operator. The algorithm applies three different mutation oper-
ators, two for the Effector cells (feasible and infeasible ones) and one more for the
Memory cells. They are explained next.

• The mutation operator applied to the infeasible Effector Cells (ECin f ) is
defined in the following manner:
First it identifies the most violated constraint (c). If this constraint c value is
larger than the sum of the constraints violation divided by the total number of
constraints then: Each bit from each decision variable involved in c is changed
with probability 0.05 Otherwise, each bit from one decision variable involved
in c is changed with probability 0.05

• The mutation operator for the feasible Effector Cells (EF f ). This operator
generates two mutated cells and the best of them survive to the following itera-
tion:

1. It identifies the constraint with the most negative value and changes each
bit from each decision variable involved in that constraint with probability
0.05

2. It changes each bit from all the decision variables with probability 0.5

• The mutation operator for Memory Cells is defined by the following equa-
tion:

x′ = x± (
U(0,1)lu− ll

1000000gen|const||dev|)
U(0,2)

(4)

where x and x′ are the original mutated decision variables, respectively. U(0,1)
and U(0,2) are randomly generated numbers with uniform distribution between
(0,1) and (0,2), respectively. lu and ll are the upper and lower bounds of x,
|const| is the number of constraints in the problem, |dev| are the number of
decision variables of the problem and gen is the current number generation.

Parameters

The parameters in this algorithm are the following:

• Population size for EC, MC, and VC.
• Replacement policy for the cells in EC and MC
• Number of iterations for each of the three loops.

Algorithm’s validation

This algorithm is tested on a well known benchmark [23, 27] and compared against
other AIS presented in this survey. The details are shown in Section 5.
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Algorithm 8. T-Cell model to handle constraints [2]

1: BEGIN T-CELL
2: INPUT: Parameters values.
3: repeat
4: Randomly generate Virgin Cells
5: Calculate DTF’s VC
6: Evaluate VC with its own DTF
7: Insert a percentage of Virgin Cells into the Effector Cells population
8: repeat
9: Make the Effector Cells React
10: Calculate DTF’s ECs
11: Evaluate ECs with its own DTF
12: until a predetermined number of times is reached
13: Insert a Percentage of Effector Cells in Memory Cells population
14: repeat
15: Make the Memory Cells React
16: Evaluate MC
17: until a predetermined number of times is reached
18: until a predetermined number of times is reached
19: OUTPUT: Best antibody from Memory Cells (MC)
20: END T-CELL

Remarks

This proposal shows a novel algorithm which is not similar to the ones presented be-
fore. It proposes a new mutation operator that incorporates knowledge of the prob-
lem by modifying the decision variables involved in the most violated constrained.
This algorithm shows an efficient local search which allows the model to improve
the feasible solutions found. It requires to define only few parameters and does not
require any penalty function.

4.3 AIS Based on the Clonal Selection and Idiotypic Network
Theories

This algorithm was proposed by Wu [29]. Even though the Clonal Selection and
the Idiotypic Network theories are in conflict to each other (see Section 2) they are
combined in this paper to handle constraints in an optimization problem.

Components of the System

The system’s components are the following:

• Antigen (ag)→ represented by the objective and constraints.
• Antibodies (ab) are constructed by the combination of paratope and idiotope:

paratope→ problem’s decision variables represented with real numbers
idiotope→ is responsible for the antibody-antibody recognition.

Algorithm

This proposal is shown in Algorithm 9. In this algorithm (Step 4) the antibody-
antigen affinity (that is the antibody affinity value) is measured by using an adaptive
penalty function defined as follows,
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Maximize:

fpseudo =−1 ∗ { f (x)+ ρg{
M

∑
m=1
{max[0,gm(x)]}2}} (5)

where ρg is a penalty parameter in the current generation g. The parameter ρg can
be adaptively modified.

The Clonal Selection applied from Step 5 to 13, utilizes the so-called idiotypic
network selection to control the number of antibodies to be cloned by computing
their probability pr j as follows:

pr j =
1
N

N

∑
n=1

1

edn j
(6)

dn j = |x
∗
n− xn j

x∗n
|, j = 1,2, . . . ,rs,n = 1,2, . . . ,N (7)

where pr j is the probability of the antibody j to recognize the ab* (ab with the
highest affinity) defined by the decision variables x∗n j.

The Affinity Maturation (from Step 14 to 22) is composed by the next two mech-
anisms:

• The somatic hypermutation applies a multi-non-uniform mutation with pertur-
bations generated with normal distributed random numbers, which promotes
uniform search and local fine-tuning (used in Step 18).

• The receptor editing process is modeled by applying perturbations with random
numbers with a Cauchy distribution, which allows large jumps in the search
space (used in Step 20).

The bone marrow operator applied in Step 23, is used to introduce diversity
into the antibodies population by interchanging gene segments taken randomly from
pairs of antibodies. Furthermore, these segments are perturbed with random number
with normal distribution in the rank [0,1].

Parameters

The parameters for this algorithm are the following:

• rs: defines the repertory (population) size.
• prt : threshold degree of antibody-antibody recognition.
• gmax, maximum number of iterations.
• Number of clones.
• ρ : penalty factor.

Algorithm’s validation

The work published in [29] validates the algorithm by using four benchmark
functions from [23]. The results presented seem to be competitive, however, authors
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Algorithm 9. AIS based on the Clonal Selection and Idiotypic Network Theories
[29]
1: BEGIN AIS
2: INPUT: parameters values
3: The initial population of rs antibodies repertoire (ab) is created randomly
4: repeat
5: For each antibody in the population compute the antigen-antibody affinity using the Equation 5
6: Clonal Selection:
7: for Each antibody do
8: Computes its probability pr j to be cloned with Equations 6 and 7.
9: if pr j ≥ prt then
10: the antibody is cloned to create the intermediate antibody repertory,
11: else
12: it is suppressed.
13: end if
14: end for
15: Affinity Maturation:
16: for Each antibody in the intermediate repertory do
17: Generate a random number U with uniform distribution in the rank (0,1)
18: if U ≤ 0.5 then
19: Apply somatic hypermutation.
20: else
21: Apply receptor editing.
22: end if
23: end for
24: Select two antibodies randomly, then apply to them the bone marrow operator.
25: Update the antibody repertory.
26: until a predetermined number of iterations is reached
27: OUTPUT: Best antibody.
28: END AIS

do not specify how many objective function evaluations were performed to obtain
these results, which makes difficult to determine the algorithm’s robustness.

Remarks

This algorithm tries to emulate several mechanisms from the immune system, which
is clearly an interesting feature that the previous algorithms did not present, however
it increases the algorithm’s complexity.

Note that computing the antibodies affinity values require to define a penalty
factor, and it is difficult to assess its impact on algorithm’s performance.

5 Comparative Results

In this section we present the results given by four AIS applied to a well known
benchmark proposed by Michalewicz and Runarsson [23, 27]. This benchmark is
composed by thirteen functions. The selected algorithms are the following:

• Coello’s algorithm (Algorithm 3 presented in Section 3.2.)
• Constrained-CLONALG (Algorithm 6 presented in Section 4.1.1.)
• AISconst (Algorithm 7 presented in Section 4.1.2)
• T-Cell (Algorithm 8 presented in Section 4.2)
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The parameters used for each algorithm are the following:

• Coello’s algorithm: The following parameters were applied to both, the in-
ner and outer GAs: Population Size=30; Two Points Crossover; Crossover
Rate=0.8; Dynamic Mutation Rate: begin=0.4 end=1/L where L is the indi-
vidual’s length. Furthermore, the generations of the inner GA are 30 and the
parameter σ is equal to all the infeasible individuals into the population.

• Constrained-CLONALG: Number of antibodies=20, d = 20%, β = 1.
• AISconst : Replacement = 20%, β = 1.
• T-Cell: EC and MC Size= 20 cells each; VC Size=100 cells. Replacement policy

for cells in EC=100%, MC=50%.

All the presented algorithms evaluated 350,000 times the objective function.
The statistical results obtained from 30 independent runs are shown in Tables 1, 2,
3, and 4.

Table 1 Results obtained by the sequential version of Coello’s algorithm [9] (shown in Sec.
3.2, Algorithm 3). The asterisk (*) indicates cases in which only 75% of the runs converged
to a feasible solution

Test Funcion Optimal Best Mean Worst Std. Dev.
g01 -15 -15.0 -15.0 -15.0 0.0
g02 0.803619 0.770337 0.704021 0.59632 0.0449
g03 1.0005 1.0 0.997 0.981 0.006
g04 -30665.5386 -30665.0815 -30648.175046 -30613.442569 14.0335
g05* 5126.4967 5126.686105 5307.201594 5927.367117 249.6318
g06 -6961.81387 -6961.179206 -6959.550307 -6955.603388 1.2393
g07 24.3062 24.332397 31.514070 47.214202 4.3983
g08 0.095825 0.095825 0.095825 0.095825 0.00
g09 680.63 680.831650 682.193733 688.603687 1.4476
g10 70.49.33 7133.1280 8158.9658 9493.8894 677.29
g11 0.7499 0.75 0.7505 0.7516 0.0004
g12 1.0 1.0 1.0 1.0 0.0
g13 0.05394 0.06716 1.29267 14.71544 2.57983

Table 2 Results obtained by Constrained-CLONALG [11] (shown in Sec. 4.1.1 Algorithm
6). The asterisk (*) indicates a case in which only 90% of the runs converged to a feasible
solution

Test Funcion Optimal Best Mean Worst Std. Dev.
g01 -15 -14.9874 -14.7264 -12.9171 0.6070
g02 0.803619 0.8017 0.7434 0.6268 0.0414
g03 1.0005 1.0 1.0 1.0 0.0
g04 -30665.5386 -30665.5387 -30665.5386 -30665.5386 0.0
g05* 5126.4967 5126.999 5436.1278 6111.1714 300.8854
g06 -6961.81387 -6961.8105 -6961.8065 -6961.7981 0.0027
g07 24.3062 24.5059 25.4167 26.4223 0.4637
g08 0.095825 0.095825 0.095825 0.095825 0.0
g09 680.63 680.6309 680.6521 680.6965 0.0176
g10 70.49.33 7127.9502 8453.7902 12155.1358 1231.3762
g11 0.7499 0.75 0.75 0.75 0.0
g12 1.0 1.0 1.0 1.0 0.0
g13 0.05394 0.05466 0.45782 1.49449 0.37900
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Table 3 Results obtained by AISconst [1] (shown in Sec. 4.1.2 Algorithm 7). The asterisk (*)
indicates a case in wich only 75% of the runs converged to the feasible solution

Test Funcion Optimal Best Mean Worst Std. Dev.
g01 -15 -14.993 -14.989 -14.982 0.002982
g02 0.803619 0.7821 0.7573 0.7230 0.014765
g03 1.0005 1.0 0.9880 0.9108 0.025057
g04 -30665.5386 -30665.1117 -30645.9122 -30533.7827 31.929167
g05* 5126.4967 5126.660 5468.743 6112.072 339.183
g06 -6961.81387 -6961.7940 -6960.3768 -6956.7421 1.183813
g07 24.3062 24.531708 25.644893 27.056295 0.667470
g08 0.095825 0.095825 0.095825 0.095825 0.0
g09 680.63 680.6519 680.8343 681.1474 0.134034
g10 7049.33 7058.45 8344.69 15787.89 1793.850342
g11 0.7499 0.7499 0.7499 0.7499 0.000001
g12 1.0 1.0 1.0 1.0 0.0
g13 0.05394 0.05820 1.37142 16.43139 2.904695

Table 4 Results obtained by T-cell algorithm [2] (shown in Sec. 4.2 Algorithm 8). The aster-
isk (*) indicates cases in which only 68% of the runs converged to a feasible solution

Test Funcion Optimal Best Mean Worst Std. Dev.
g01 -15 -15.0 -15.0 -15.0 0.0
g02 0.803619 0.803102 0.783593 0.752690 0.013761
g03 1.0005 1.00041 0.998627 0.984513 0.004208
g04 -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.00
g05* 5126.4967 5126.4982 5231.7186 5572.0024 143.0598
g06 -6961.81387 -6961.81387 -6961.81387 -6961.81387 0.0
g07 24.3062 24.3503 25.3877 28.8553 1.2839
g08 0.095825 0.095825 0.095825 0.095825 0.0
g09 680.63 680.63701 680.74652 680.94299 0.078017
g10 7049.24 7086.7891 7955.0428 9592.7752 766.493969
g11 0.7499 0.7499 0.7553 0.7983 0.010717
g12 1.0 1.0 1.0 1.0 0.0
g13 0.05394 0.054448 0.2232 0.94019 0.25325

We can observe that, in general the four algorithms show very good approxi-
mations to the optimal values. Note that the results given by Coello, Constrained-
CLONALG and AISconst (Algorithms 3, 6, and 7) are very similar to each other.
However, the T-Cell (Algorithm 8) seems to be the best of all of them because it
obtained the optimal value (or a very close value) for more functions, and in general
shows the best mean values.

6 Closing Remarks

Artificial Immune Systems are computational tools to solve engineering and
machine-learning problems that use a process or theory observed in the biologi-
cal immune system. This is of course, a rough simplification of what really happens
into the biological immune system, however it seems to be enough for solving most
global optimization problems.

We have reviewed the Artificial Immune Systems that handle constraints in nu-
merical optimization problems. The works published in this domain are relatively
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few in spite that the results obtained for some of them are very competitive compared
with the state-of-the-art Evolutionary Computation schemes handling constraints.

We can observe that the early works were based on Genetic Algorithms, however
the most recent works are pure Artificial Immune Systems, that is, AIS without any
EA mechanism.

The reviewed proposals can be classified into two groups: (1) AIS based on GA,
(2) AIS not based on GAs. Into this second group we can find algorithms based
on: the Clonal Selection Theory, the T-cells, and on both the Clonal Selection and
Immune Network theories.

We consider that the immune system is a realistic option to advance on design-
ing efficient algorithms capable of handling constraints in numerical optimization
problems.
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