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Abstract A singularly perturbed elliptic problem of reaction–diffusion type is
examined. The solution is decomposed into a sum of a regular component, boundary
layer components and corner layer components. Numerical approximations are gen-
erated separately for each of these components. These approximations are patched
together to form a global approximation to the solution of the continuous problem.
An asymptotic error bound in the pointwise maximum norm is established; whose
dependence on the values of the singular perturbation parameter is explicitly identi-
fied. Numerical results are presented to illustrate the performance of the numerical
method.

1 Introduction

Consider the singularly perturbed diffusion reaction problem

�" 4u.x/C b.x/ u.x/ D f .x/; x 2 � � R
d ; uj@� D g.x/; (1)

with 0<"<<1 and b.x/	ˇ > 0 for x 2 �. The solution displays boundary lay-
ers whose width depends on the parameter ". For d D 1 a very simple yet effective
strategy to construct parameter uniform numerical methods is the use of piecewise
uniform Shishkin meshes [1], i.e. meshes with a refinement region near the bound-
ary whose width is selected a priori to match the length-scale of the layer. In the
case of d D 2 and when the domain� is a rectangle, it is well established [1,3] that
the natural extension of this approach to a tensor product of two one dimensional
piecewise uniform Shishkin meshes yields a parameter uniform [1] second order
(ignoring logarithmic factors) rate of convergence. The extension of this approach to
other geometries is non-trivial. Curvilinear tensor product meshes [8] can deal with
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a limited set of geometries, while creating a single globally conforming unstructured
triangulation with a uniform refinement in the layer region can produce inefficient
or pathologically deformed meshes when " is small. Although such inconveniences
might be overcome by discretisation methods allowing for non conforming meshes
(see, e.g. [9, Chap. 2, Sect. 2.5]) at the interface between the interior and bound-
ary layer region, this would still involve producing a different triangulation for the
whole domain � for each value of ". This may require a significant computational
effort which, for general domains, may outweigh that required for the solution of the
discrete problem itself. To cope with these issues we investigate a method inspired
by Chimera Overset Grid Methods [2] and by the method of Patches of Finite Ele-
ments of [6]. Note that one cannot expect this general approach to be parameter
uniform without some modification that would resolve all layers within the solu-
tion. In contrast to the methods in [2, 6], which can be viewed as variants of the
Schwartz iterative technique, our approach makes use of an a priori expansion to
decompose the solution u of (1) into a sum of a regular component v, a set of
boundary layer components wq; qD 1; : : : nw and a set of corner layer compo-
nents zp ; pD 1; : : : nz . Each component is implicitly defined as the solution of
a boundary value problem. In this paper, we consider the case of " 
 CN�1,
where N d is the dimension of the discrete problem. Hence, quantities of order "
are considered negligible compared to the discretisation errors. In Sect. 3, the point-
wise bounds established on the layer components allow us identify subdomains or
patches �q; �p � �; qD 1; : : : nw ; pDnw C 1; : : : nw C nz outside of which a
component is negligible. This decomposition also allows one to compute a discrete
approximation to u by solving nw Cnz C 1 problems once without any further iter-
ation. Furthermore, as the decomposition is performed at the continuous level, this
approach does not pose restrictions on the method used to discretise each boundary
value problem. For example, in the case of the regular component defined in (4), one
could use the results in [10] to analyze the error (in the case of a sufficiently smooth
regular component) if one employed a finite element method on an unstructured
quasi-uniform mesh instead of the numerical method analyzed in Sects. 4 and 5,
which is based on a standard finite difference operator on a tensor product mesh. We
finally point out that, although in the sections below we present theoretical results
for a problem posed on the simple geometry of the unit square, the encouraging
numerical results presented in [4] and Sect. 6.2 indicate the practical viability of the
same approach for singularly perturbed problems on more complicated geometries.
Throughout the paper k � k denotes the global pointwise maximum norm over the
domain� and C is a constant independent of " and N .

2 Continuous Problem

Consider the singularly perturbed elliptic problem

L"u WD �"4uC b.x; y/u D f .x; y/; .x; y/ 2 � D .0; 1/2; (2a)

u D g; .x; y/ 2 @�; (2b)

f; b 2 C 4;˛.�/; g 2 C.@�/; b.x; y/ 	 ˇ > 0; .x; y/ 2 N�; (2c)
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where 0 < " 
 1 is a singular perturbation parameter. We adopt the following
notation for the edges and the boundary conditions:

@�1 D f.x; 0/j0 
 x 
 1g; @�2 D f.1; y/j0 
 y 
 1g;
@�3 D f.x; 1/j0 
 x 
 1g; @�4 D f.0; y/j0 
 y 
 1g;

g.x; y/ D gi .x/; .x; y/ 2 @�i ; i D 1; 3I g.x; y/ D gi .y/; .x; y/ 2 @�i ; i D 2; 4:

Assume further that gs 2 C 4;˛.Œ0; 1	/; sD 1; 2; 3; 4. From Han and Kellogg [7] and
Andreev [1] we note the following levels of compatibility conditions: for the corner
.0; 0/,

g1.0/ D g4.0/; (3a)

�"g00
1.0/� "g00

4.0/C b.0; 0/g1.0/ D f .0; 0/; (3b)

and similarly for the other corners. If (3a) is assumed at all four corners then u 2
C 1;˛.�/ and if (3a) and (3b) are assumed at all four corners then u 2 C 3;˛.�/. The
reduced solution u0 is defined via the reduced problem

b.x; y/u0.x; y/ D f .x; y/; .x; y/ 2 �:
The regular component v of u is the solution of the elliptic problem

L"v D f .x; y/; .x; y/ 2 �; v D u0; .x; y/ 2 @�: (4)

Note that the regular component can be written as vDu0 C "R, where

L"R D 4u0; .x; y/ 2 �; R D 0; .x; y/ 2 @�:
Hence R 2 C 0;˛.�/ \ C 2;˛.�/ and by the maximum principle kRk 
 C:

Remark 1. Note that at the corner .0; 0/ the necessary compatibility condition for
u 2 C 3;˛.�/ is that b.0; 0/u.0; 0/ D f .0; 0/C ".g00

4.0/C g00
1.0// which is that

u.0; 0/ � u0.0; 0/ D O."/: (5)

3 Solution Decomposition

The solution is decomposed into a sum of a regular component v, boundary layer
components wi .x; y/; i D 1; 2; 3; 4 and corner layer components zi .x; y/; i D 1; 2,
3, 4

u D v C
4X

iD1
wi �

4X

iD1
zi :
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Similar but different decompositions are given in [1,3]. Note that v is defined in (4)
and the boundary layer functionw1 associated with the edge yD 0 is defined as the
solution of the problem

L"w1 D �".1� y/s00
1.x/; .x; y/ 2 �; (6a)

w1.0; y/ D q4.y/; w1.1; y/ D q2.y/; 0 
 y 
 1; (6b)

w1.x; 0/ D s1.x/ WD .u� v/.x; 0/; w1.x; 1/ D 0; 0 
 x 
 1; (6c)

�"q00
4 C b.0; y/q4 D 0; y 2 .0; 1/; q4.0/ D s1.0/; q4.1/ D 0 (6d)

�"q00
2 C b.1; y/q2 D 0; y 2 .0; 1/; q2.0/ D s1.1/; q2.1/ D 0: (6e)

Lemma 1. The solution of (6) satisfies the bounds

jw1.x; y/j 
 Ce�yp
ˇ=" C C".1� y/; (7a)

�
�@

iCjw1
@xi@yj

�
� 
 C"�.iCj /=2; 1 
 i C j 
 3;

�
�@

jw1

@xj

�
� 
 C; j D 1; 2: (7b)

Proof. Note that

jq4.y/j 
 C js1.0/je�yp
ˇ="; jq2.y/j 
 C js1.1/je�yp

ˇ=":

Consider the following interpolant of the boundary data

h.x; y/ D.s1.x/ � s1.0/.1 � x//.1 � y/C .q4.y/ � q4.1/y/.1 � x/
C .q2.y/ � q2.0/.1� y//x:

Then
L"hD � ".1 � y/s00

1.x/C T .x; y/;

where T .x; y/ W D bh�.1�x/b.0; y/q4.y/�xb.1; y/q2.y/. Note that T .x; y/D 0

at each of the four corners. Then since L".w1 � h/D T .x; y/, we have sufficiently
compatibility (3b) for w1 2 C 3;˛.�/ and

j.w1 � h/.x; y/j 
 Cx.1 � x/:
Using the maximum principle and classical bounds on the derivatives [3] we have
that

jw1.x; y/j 
 Ce�yp
ˇ=" C C".1� y/;

�
�@

iCjw1
@xi@yj

�
� 
 C"�.iCj /=2; i C j 
 3:

Also jT .x; y/j 
 Cx.1 � x/, which implies that

ˇ
ˇ@w1
@x

.0; y/
ˇ
ˇ 
 C;

ˇ
ˇ@w1
@x

.1; y/
ˇ
ˇ 
 C;
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and using the differential equation (6a), we conclude that

ˇ
ˇ@
2w1

@x2
.0; y/

ˇ
ˇ 
 C.1 � y/js00

1.0/j;
ˇ
ˇ@
2w1

@x2
.1; y/

ˇ
ˇ 
 C.1� y/js00

1.1/j:

Since; L"
@w1

@x
D �".1 � y/s.3/1 .x/ � bxw1;

and L"
@2w1

@x2
D �".1 � y/s.4/1 .x/ � bxxw1 � 2bx @w1

@x
;

we can use the maximum principle to establish the bounds
�
� @iw1

@xi

�
� 
 C; i D 1; 2

on the derivatives orthogonal to the layer. �

Define the corner layer function z1 associated with the corner .0; 0/ as follows:

L"z1 D 0; .x; y/ 2 �; (8a)

z1.0; y/ D w1.0; y/ D q4.y/; z1.1; y/ D 0; 0 
 y 
 1; (8b)

z1.x; 0/ D w4.x; 0/ D q1.x/; z1.x; 1/ D 0; 0 
 x 
 1; (8c)

�"q00
1 C b.x; 0/q1 D 0; x 2 .0; 1/; q1.0/ D s1.0/; q1.1/ D 0: (8d)

Then z1 2 C 1;˛.�/ and we have that

jz1.x; y/j 
 Ce�xp
ˇ="e�yp

ˇ=": (9a)

Analogous bounds hold for the other boundary (corner) layer functions associated
with the other three edges (corners).

4 Discrete Algorithm

We employ the standard central finite difference operator

LNUN WD �".ı2x C ı2y/U
N C bUN D f;

which can also be generated from a standard finite element formulation on a struc-
tured tensor product grid with lumping as a quadrature rule. Here ı2x denotes the
classical three-point finite difference approximation to uxx on a non-uniform mesh.
We initially solve for an approximation NV to the regular component v on a uniform
coarse grid N�Nu D f.xi ; yj /jxi D i=N; yj D j=N; 0 
 i; j 
 N g. That is, the mesh
function V N is the solution of

LNV N D f; .xi ; yj / 2 �Nu I V N D v; .xi ; yj / 2 @� \ N�Nu :
A global approximation to v is a simple interpolant of the form
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NV D
X

i;j

V N .xi ; yj /�i .x/ j .y/;

where �i .x/ and  j .y/ are the standard hat functions associated with xi and
yj respectively. Define the following subdomains: �1 D .0; 1/ � .0; �/; �2 D
.1 � �; 1/ � .0; 1/; �3 D .0; 1/ � .1 � �; 1/;�4 D .0; �/ � .0; 1/: On each
of these subdomains we define a tensor product of two uniform meshes. That is,
N�N1 WD f.xi ; yj /jxi D i=N; yj D j�=N; 0 
 i; j 
 N g; where the Shishkin
transition parameter � is taken to be

� WD min



1; 2

r
"

ˇ
lnN

�
: (10)

The nodal values of an approximation NW1 (defined solely on the layer region N�1) to
the boundary layer function w1 are computed by solving

LNW N
1 D 0; .xi ; yj / 2 �N1 ;

W N
1 .0; yj / D s1.0/e

�yj

p
b.0;0/="; W N

1 .1; yj / D s1.1/�
�1.� � yj /; 0
yj 
 �;

W N
1 .xi ; 0/ D s1.xi /; W

N
1 .xi ; �/ D W N

1 .0; �/.1 � xi /CW N
1 .1; �/xi ; 0<xi <1:

The nodal values of an approximation NZ1 (defined solely on the corner layer region
N�5 � N�1 \ N�4) to the corner layer function z1 are computed by solving

LNZN1 D 0; .xi ; yj / 2 �N1 \�N4 ;

ZN1 .0; yj / D W N
1 .0; yj /; Z

N
1 .�; yj / D ��1W N

4 .0; �/.� � yj /; 0 
 yj 
 �;

ZN1 .xi ; 0/ D W N
4 .xi ; 0/; Z

N
1 .xi ; �/ D ��1W N

1 .0; �/.� � xi /; 0 < xi < �:
The approximations to the other six layer functions are defined analogously. The
approximation NU to the solution is patched together using the sum

NU D NV C
4X

iD1
NWi �

4X

iD1
NZi :

5 Error Analysis

Theorem 1. For the solution of (2a) and the approximation defined in Sect. 4

ku � NU k 
 CN�1 lnN C C
p
":

Proof. Note that on the coarse uniform mesh �Nu
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ˇ
ˇLN .u0 � V N /.xi ; yj /

ˇ
ˇ D ˇ

ˇ.LN � L"/u0.xi ; yj /
ˇ
ˇC C"; .xi ; yj / 2 �Nu


 CN�2"C C" 
 CN�2"C C":

Then
kv � NV k 
 kv � u0k C ku0 � NV k 
 CN�2"C C"C CN�2: (11)

Within the boundary layer region�N1 , by (6) and the bounds in Lemma 1, we have
that
ˇ
ˇLN .w1 �W N

1 /.xi ; yj /
ˇ
ˇ D ˇ

ˇ.LN � L"/w1.xi ; yj /
ˇ
ˇC C" 
 CN�1 lnN C C":

Note that, if ‰.y/ WD s1.0/e
�yp

b.0;0/=" then .‰ � q4/.0/ D 0,

�".‰.y/� q4.y//
00 C b.0; y/.‰.y/� q4.y// D .b.0; y/ � b.0; 0//‰.y/;

and j.b.0; y/ � b.0; 0//j‰.y/ 
 C
p
". From this, on the boundary @�N1 we have

j.W N
1 �w1/.0; yj /j 
 C

p
"; j.W N

1 � w1/.1; yj /j 
 C
p
"; 0 
 yj 
 �;

.W N
1 � w1/.xi ; 0/ D 0; .W N

1 � w1/.xi ; �/j 
 CN�2 C C"; 0 < xi < 1:

Then we can conclude that over the entire domain�

kw1 � NW1k 
 C.N�1 lnN C p
"/: (12)

Within the corner region, we follow closely the approach of Andreev [1]. We first
further decompose the corner layer function z1. Let z1 D q1.x/q4.y/Cz00Cp

"R2,
where

jL"R2j D j.b.0; 0/�L"/q1.x/q4.y/j 
 C
p
q1.x/q4.y/; R2 D 0; .x; y/ 2 @�

L"z00 D b.0; 0/q1.x/q4.y/; .x; y/ 2 �; z00 D 0; .x; y/ 2 @�:
Note that jz00.x; y/j 
 Cq1.x/q4.y/. The discrete version of this secondary
decomposition is

ZN1 D q1.xi /q4.yj /CZN00 C p
"RN2

LNZN00 D b.0; 0/q1.xi /q4.yj /C .L" �LN /q1.xi /q4.yj /; .xi ; yj / 2 �N1 \�N4 ;
ZN00 D 0; .xi ; yj / 2 @.�N1 \�N4 /:

Hence jRN2 j 
 C and on the boundary of the corner patch we have that

jRN2 .xi ; yj /j 
 C.N�1 lnN C p
"/; .xi ; yj / 2 @.�N1 \�N4 /:

It remains to estimate the error in jz0;0�ZN0;0j. Set � W D P
.xi ;yj /2�N

1
\�N

4
j.LN �

L"/z0;0.xi ; jj /j: We decompose z00 as in [1, Theorem 2.1], (�1;1 D � b.0; 0/,
�1;2 D 0) and from [1, p. 962], we have that � 
 C lnN: In the corner layer
region, we then bound the nodal error using the discrete stability bound given in [1,
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Theorem 3.1], as follows

jz0;0 �ZN0;0j 
 CN�2.lnN/4 C CN�2 lnN
X

.xi ;yj /2�N
1

\�N
4

jLN .z0;0 �ZN0;0/.xi ; yj /j


 CN�2.lnN/4 C CN�2 lnN
X

.xi ;yj /2�N
1

\�N
4

j.L" �LN /q1.xi /q4.yj /j


 CN�2.lnN/4 C CN�2 lnN
X

.xi ;yj /2�N
1

\�N
4

h2

"
e�xi�1

p
ˇ="e�yj �1

p
ˇ="


 CN�2.lnN/4 C CN�2 lnN

 �

1 � e�

�2
; � D h

p
ˇ="; h D �=N


 CN�2.lnN/4:

By explicitly differentiating the leading term in the representation given in [1,
Theorem 2.1], we can deduce the following bound on the first derivatives:

��@
iCj z0;0
@xi@yj

�� 
 C"�1=2; i C j D 1:

Use of the interpolation bound in [11, Lemma 4.1] completes the proof. �

Remark 2. It is worth noting that if the additional compatibility conditions (3b) are
assumed to hold at all four corners, then js1.0/j 
 C" and js1.1/j 
 C". It follows
that is not necessary to patch in the corners (i.e. it is not required to compute Z) in
order to derive the following error bound

ku � NU k 
 CN�1 lnN C C":

6 Numerical Results

6.1 Test Example 1

We consider a particular example of problem (2a) with the following coefficients:

b.x; y/ D 1C x2y2; f .x; y/ D 1C 2xy (13)

and boundary data

g1.x/ � g4.y/ � 1; g3 D 1 � x2; g2 D 1 � y2: (14)
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Table 1 Parameter-uniform global two-mesh differencesDN and rates 
N on a patched mesh for
test example 1 over the range R" D Œ2�40; 2�7 


N 25 26 27 28 29

DN 1:16 � 10�2 2:92� 10�3 7:32 � 10�4 1:83 � 10�4 4:57� 10�5


N 1.99 2.00 2.00 2.00

Note that in this particular example the zero level compatibility conditions (3a) are
satisfied at all four corners, but the compatibility condition at the first level (corre-
sponding to (3b)) is not satisfied at the corner .1; 1/. Tensor product meshes with N
steps in each direction are used both for the boundary and corner patches, while a
triangular mesh withN 2 degrees of freedom is used in computing an approximation
to the regular component over the entire domain. The convergence behaviour of the
numerical method is reported in Table 1 where the global two mesh differencesDN

and the approximate uniform rates of convergence �N were computed over a certain
range R" of values for ", using

DN WD max
"2R"

k NUN � NU 2N k �10N
S

; �N WD log2
DN

D2N
:

Here�10NS is a tensor product piecewise-uniform Shishkin mesh [3] with 10N ele-
ments in each coordinate direction. We choose to measure the difference between
the two interpolants on this finer mesh �10NS , as the maximum difference between
the two interpolants may not occur over the set of mesh points �N [ �2N . The
computed uniform rate of convergence for this example is greater than what is
established theoretically in Theorem 1.

6.2 Test Example 2

To assess the applicability of the patched mesh method to a problem posed on a
non-rectangular domain, we consider a problem of the form (1) set in a domain
� � �1 [�2 with �1 � .�1; 1/ � .�1; 0/ and �2 � ˚

.x; y/jx2 C y2 < 1
�
. For

this test example, the coefficients b, f and g are given by
(
f .x; y/ D b.x; y/ D 1; .x; y/ 2 �
g.x; y/ D 2�tanh.12y/�tanh.12/

2
; .x; y/ 2 @�:

For this choice of data no boundary layer occurs near the side yD � 1. Let @�L W
D @� n f.x;�1/; 0 < x < 1g be the remainder of the boundary. The patch for this
problem is taken to be N�p W D fx 2 N�jdist.x; @�L/ 
 �g, where � is as given in
(10).

The solution to this second test example is shown in Fig. 1b, while Tables 2
and 3 show the performance of the patched mesh method and of a standard finite
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Fig. 1 Computed solutions to the two test examples using a patched mesh method withN D 64

Table 2 Parameter-uniform global two-mesh differencesDN and rates 
N on a patched mesh for
test example 2 over the range R" D 10�4Œ2�20; 1 


N 24 25 26 27 28

DN 1:47 � 10�2 5:61 � 10�3 1:99 � 10�3 6:77 � 10�4 2:22� 10�4


N 0.91 1.26 1.67 2.12

Table 3 Parameter-uniform global two-mesh differences DN and rates 
N of a standard finite
element method on a quasi-uniform mesh for test example 2 over the rangeR" D 10�4Œ2�20; 1 


N 24 25 26 27 28

DN 0:257 0:684 0:58 0:437 0.471


N 1:58 0:00 �0:04 0:44

element method on a quasi uniform mesh respectively. The rates in Table 2 suggest
that the patched method is parameter uniform for this problem, which contrasts with
the apparent lack of uniform convergence displayed in Table 3 for a standard finite
element method on a quasi-uniform mesh.
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