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Abstract The article deals with the numerical simulation of 2D and 3D unsteady
incompressible flows with stratifications. The mathematical model is based on the
Boussinesq approximation of the Navier–Stokes equations. The flow field in the
towing tank with a moving sphere is modelled for a wide range of Richardson
numbers. The obstacle is modeled via appropriate source terms. The resulting set
of partial differential equations is then solved by the fifth-order finite difference
WENO scheme, or by the second-order finite volume AUSM MUSCL scheme. For
the time integration, the second-order BDF method was used. Both schemes are
combined with the artificial compressibility method in dual time.

1 Introduction

Modelling of Atmospheric Boundary Layer (ABL) flows plays a significant role
in many industrial applications. It is well known that the influence of the stratifi-
cation is significant in many processes in ABL flows (e.g., it affects the transport
of pollutants, plays a significant role in determining the environmental and human
consequences of accidents). Stratified flows in environmental applications are char-
acterized by a variation of fluid density in the vertical direction that can result in
qualitative and quantitative changes of the flow by buoyancy. Stable stratification
generally suppresses any vertical mixing of mass and momentum. The present work
was motivated by a desire to obtain a better understanding of these effects.
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2 Mathematical Model

The flow in ABL can be usually assumed to be incompressible. Nevertheless,
the density is not constant owing to temperature changes, gravity, etc. Thus an
equation for the density must be considered. This type of flow is described by
the Navier–Stokes equations for viscous incompressible flow with variable den-
sity; these equations are simplified by the Boussinesq approximation. Density and
pressure are divided into two parts: a background part (with subscript 0) plus a
perturbation (with superscript 0). The background component is chosen to fulfill
the hydrostatic balance equation @p0.z/=@z D � �0.z/g. The system of equa-
tions obtained is partly linearized around the average state ��. The resulting set
of equations can be written in the form

D�0

Dt
D �wd�0

dz
;

Du
Dt

C 1

��
rp0 D ��u C �0

��
g C 1

��
f; (1)

ru D 0;

where � is the density, u D .u; v; w/ is the velocity, p is the pressure, � is the
viscosity, g D .0; 0;�g/ is the gravity and f represents other forces (e.g., Coriolis
force, source terms). We assume that �� D 1 and we shall omit the primes above
the density and pressure disturbances.

Equations (1) are rewritten in the vector conservative form

PWt C F.W /x CG.W /y CH.W /z D S.W /:

HereW D Œ�; u; v; w; p	T , F D F in��F v ,G D Gin��Gv andH D H in��H v

contain the inviscid fluxes F in, Gin, H in and viscous fluxes F v, Gv, H v , while S
is the gravity and source term and P D diag.1; 1; 1; 1; 0/. These fluxes and source
term are

F in.W / D Œ�u; u2 C p; uv; uw; u	T ; Gin.W / D Œ�v; uv; v2 C p; vw; v	T ;

H in.W / D Œ�w; uw; vw;w2 C p;w	T ; S.W / D Œ�vd�0=dz; 0; 0;��g; 0	T
(2)

F v.W / D Œ0; ux; vx; wx ; 0	
T ; Gv.W / D Œ0; uy ; vy ; wy ; 0	

T ;

H v.W / D Œ0; uz ; vz ; wz ; 0	
T :
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3 Numerical Schemes

3.1 Spatial Discretization

Two different numerical schemes were used for the spatial discretization. We dis-
cretize only terms containing spatial derivatives. The system of ordinary differential
equations (with respect to the time derivative) that is generated is solved by an
appropriate ODE method; see [Bla01].

The first scheme is based on a flux-splitting method for incompressible flow
and WENO-interpolation. The second method is the finite volume AUSM MUSCL
scheme with the Hemker–Koren limiter.

3.1.1 Flux Splitting for Incompressible Flows

The discretization in space is achieved by standard fourth-order differences for vis-
cous terms and by the following high-order flux-splitting method [Issa85]. Divide
the inviscid flux F in.W / into two parts, the convective flux F c.W / D
Œ�u; u2; uv; uw; 0	T and the pressure flux F p.W / D Œ0; p; 0; 0; ˇ2u	T , then appro-
ximate the flux derivative by

F in.W /x
ˇ̌
i

� 1

�x

h
F ciC1=2 � F ci�1=2

i
C 1

�x

h
F
p

iC1=2 � F
p

i�1=2
i
: (3)

Here each subscript denotes the value at the corresponding point on the Cartesian
grid (or, in the AUSM case, the mean value over the corresponding finite volume).
For simplification of the next text, only the spatial index i in the x– direction is
preserved; the remaining two indexes are omitted. The high-order weighted ENO
scheme [Jiang96] is chosen as the interpolation method. The original WENO inter-
polation uses an upwind bias and it can be formally written in the following form
(function weno5 is described in [Jiang96]):

�iC1=2 D
(
�C
iC1=2 D weno5.�i�2; �i�1; �i ; �iC1; �iC2/ if uiC1=2 > 0;
��
iC1=2 D weno5.�iC3; �iC2; �iC1; �i ; �i�1/ if uiC1=2 
 0:

(4)

It is still necessary to determine the velocity uiC1=2.
This interpolation is applied to the incompressible case separately for the convec-

tive and pressure terms. In agreement with mathematical analysis the convective part
is discretized by simple upwinding, the third component of the pressure is approxi-
mated by backward differencing and the fourth component by a forward difference.
The final scheme takes the form
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uiC1=2 WD .uC
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iC1=2/=2; (5)
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where C or � is taken in the convective flux according to the sign of uiC1=2.
A similar algorithm is applied in other directions for the fluxes G, H . The

resulting scheme has high-order accuracy in space. It was validated for the case
of compressible inviscid flows by a computation of shock-vortex interaction; see
[Furst96].

3.1.2 AUSM Scheme

The finite volume AUSM scheme was used for spatial discretization of the inviscid
fluxes in our second scheme. Until now we have applied it only in the 2D case but
an extension to 3D is being prepared.
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where n is the normal vector, un the normal velocity vector, and .q/L=R are quan-
tities on the left/right hand side of the face. These quantities are computed using
MUSCL reconstruction with the Hemker–Koren limiter:

qR D qiC1 � 1

2
ıR; qL D qi C 1

2
ıL;

ıL=R D aL=R.b
2
L=R

C 2/C bL=R.2a
2
L=R

C 1/

2a2
L=R

C 2b2
L=R

� aL=RbL=R C 3
;

aR D qiC2 � qiC1; aL D qiC1 � qi ; bR D qiC1 � qi ; bL D qi � qi�1:
Since the pressure is discretized using central differences, the scheme is stabilized
following [Vier99] by a pressure diffusion of the form

FdiC1=2;j D
�
0; 0; 0; �

piC1;j � pi;j
ˇx

�T
; ˇx D wr C 2�

�x
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where T denotes transpose and wr is a reference velocity (in our case the maximum
velocity in the flow field). Viscous fluxes are discretized using central differences
on the dual mesh. This scheme is second-order accurate in space.

3.2 Time Integration

The spatial discretization yields a system of ODE in the physical time t variable,
which is solved by the second-order BDF formula

P
3W nC1 � 4W n CW n�1

2�t
C QFx.W nC1/C QGy.W nC1/C QHz.W nC1/ D QSnC1:

(8)
Here each tilde denotes a discrete approximation of Fx; Gy ;Hz ; S . Set

Res.W nC1;W n;W n�1/ D P.
3

2�t
W nC1 � 2

�t
W n C 1

2�t
W n�1/ C

C QFx.W nC1/C QGy.W nC1/C QHz.W nC1/� QSnC1:

The above formula (8) is Res.W;W n;W n�1/ D 0. It is solved by an artificial
compressibility method in the dual time � . The system of equations

QPW� CRes.W;W n;W n�1/ D 0

where QP D diag.1; 1; 1; 1; 1
ˇ2 /, is solved by an explicit 3-stage second-order

Runge–Kutta method.

4 Obstacle Modelling

We are interested in the solution of the stratified flows past a moving body. The
obstacle is modelled very simply as a source term emulating a porous media with
small permeability. This volume penalization technique was originally proposed by
Arquis and Caltagirone [Cal84]. The source term S.W / in this case is given by

�
�vd�0

dz
; 0; 0;��g; 0

�T
C �.x; y; z; t/

K

h
0; U ob � u; V ob � v;W ob � w; 0

iT
;

(9)
where K corresponds to small permeability and �.x; y; z; t/ is the characteristic
function of the obstacle, which moves with velocity .U ob; V ob;W ob/.

To estimate the influence of the permeability K , a very simple analytical model
was developed. We suppose a 1D case, with the obstacle at rest and U0 the velocity
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of the incoming flow. The flow at the obstacle is decelerated only by the resistance
of the body; other terms are omitted. This situation leads to

Pu D �u=K; u.0/ D U0:

Integrating the velocity as t ! 1, we obtain an estimate of the depth of penetration
of fluid into the body:

u.t/ D U0e
� t

K ) s D
1Z

0

u.t/dt D U0K:

If we prescribe the depth of penetration (this may be interpreted as the effective
diameter of the obstacle), we can estimate the permeability K . For instance, in the
case of a sphere of radius r D 0:1m, a velocity U0 D 1m s�1 and a penetration
depth of 10% of r lead to K D s=U0 D 1=100.

5 Numerical Results

Towing tank

The obstacle is a sphere of radius 0:1m, located 1 m from the left wall and at
the midpoints of height and width see [Benes08]. At time t D 0 the obsta-
cle starts moving to the right (in the positive x direction) with constant velocity
U ob D 1m s�1. The flow field is initially at rest with stable density gradient
d�0=dz D �0:1 kg m�4. The average density is �� D 1 kg m�3 and the kinematic
viscosity is � D 10�4 m2 s�1. Homogeneous Dirichlet boundary conditions for the
velocity and Neumann conditions for the density and pressure disturbances were
used in 2D. In 3D, these boundary conditions were extended by periodic boundary
conditions in the y-direction.

The problem was solved on Cartesian grids. In 3D, a mesh with 320 � 40 � 160
cells was used. In 2D, a mesh with 320 � 160 nodes and, for testing of the mesh
independence, a fine grid with 640 � 320 nodes were used.

Various stratification levels were modelled. To describe the stratification, the
following bulk Richardson number is used:

Ri D g d
0

dz

%�U ob
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For the numerical tests, the towing tank problem was used. The towing tank is a
channel with the obstacle inside. Motion of this obstacle generates disturbances in
the flow field. In the cases we solved, the towing tank has dimensions 8 m � 4 m in
2D or 8 m � 4 m � 1 m in 3D.

The degree of stratification is unaffected by changes in the density gradient, but
by modifying the gravity constant in the range g 2< 0; 1000 >. The corresponding
Richardson numbers satisfy Ri 2< 0; 100 >. The influence of permeability was
also tested for selected values in range K�1 2< 0; 1000 > s�1. The two numerical
methods were compared.

Figures 1 and 2 compare the schemes in 2D. In the first figure we can see the
comparison of density isolines at the time t D 5 s. The second figure displays
the distribution of selected quantities in the transversal direction. These figures
exhibit good agreement between both methods, especially further from the obstacle,
while small differences occur behind the sphere. The maximal values predicted by
WENO 5 scheme at the height midpoint are somewhat lower. Next, Fig. 3 examines
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Fig. 1 Comparison of isolines of the density disturbances for towing tank problem at the time
t D 5 s, g D 100, Ri D 10. AUSM MUSCL scheme (top) and WENO5 (bottom)
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Fig. 2 Comparison of both schemes, Ri D 10, time t D 5 s. Transversal distribution of the
u-velocity component (top) and density disturbances (bottom), y D 2:25

the dependence of the solution on the mesh and shows that the solution is relatively
mesh independent. Only the maxima of quantities at the height midpoint behind the
obstacle are lower and they are probably not resolved correctly on this coarse mesh.

Figure 4 shows the dependence of the solution on the permeabilityK for the three
different values 1=K D 10; 100; 1000. For the values 100 and 1,000 the solutions
are very similar and the dependence on K is low. The obstacle can be considered
as impermeable for 1=K 	 100. The results are also in good agreement with the
predictions given by our simple analytical model.
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Fig. 3 Dependence on the mesh, Ri D 10, time t D 5 s. Transversal distribution of the u-
velocity component (top) and density disturbances (bottom), x D 1

Figure 5 displays the dependence of the flow on the Richardson number. A
comparison of the isolines of density perturbation for four different Richardson
numbers (Ri D 0:1; 1; 10; 100) is presented at the time t D 6 s. At a lower
level of stratification behind the obstacle, a Karman vortex street forms. When the
level of stratification increases, the character of the flow changes; wake instabilities
are damped by stratification and internal gravity waves are clearly visible. Beyond
this level, the obstacle generates a strip with constant density. The changes in the
character of the flow are clearly visible in Fig. 6, where transversal distribution of
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Fig. 4 Dependence on the permeability parameter K , Ri D 10, time t D 5 s. Transversal
distribution of the u-velocity component (top) and density disturbances (bottom), x D 1

computed quantities for different Richardson numbers are shown. For comparison
see [Ber01].

The isosurfaces of the vorticity in 3D for the Richardson numbers Ri D 1 and
Ri D 10 are shown in Fig. 7. The marked influence of stratification can be seen at
the x–z cross-section. In the case Ri D 1, the influence of stratification is small
and the shape of vorticity in the cross-section is close to a circle. On the other hand,
for the higher level of stratification Ri D 10 the vortices are damped differently in
different directions, which leads to an asymmetry in the vorticity isosurface.
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(a) Ri D 0:1

(b) Ri D 1

(c) Ri D 10

(d) Ri D 100

Fig. 5 Isolines of density perturbations for different values ofRi . Time t D 6 s
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Fig. 6 Transversal distribution of density disturbances (top) and u-velocity component (bottom)
for different Richardson numbers, x D 1, time t D 6 s

The isosurfaces of the density perturbations in 3D for the same Richardson num-
bers are shown in Fig. 8. The internal gravity waves with Brunt–Väisälä frequency
are clearly visible.
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Fig. 7 Vorticity distribution for the Richardson numbers Ri D 1 (top) and Ri D 10 (bottom),
time t D 5 s

6 Conclusion

Two numerical methods for simulation of 2D and 3D stratified flows have been
developed. Such simulations are necessary for more complicated situations, where
experimental data or other information about solution is no longer available. Since
the solution can depend on the numerical scheme, a comparison of solutions
obtained using different methods eliminates this dependence. Both methods have
been used successfully for the towing tank problem. The numerical results obtained
are in good mutual agreement and also match physical expectations.

Numerical results were obtained for Richardson numbers Ri 2< 0; 100 > and
permeabilityK 2< 1; 1000 >. From this, according to our simple analytical model,
it follows that the minimal value of permeability is K 	 100. The dependence of
the solution on the mesh was also tested. The computations performed demonstrate
the applicability of our methods to the simulations of stratified flows.
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Fig. 8 Isosurfaces of the density perturbations at the time t D 5 s; Ri D 10 on top, Ri D 100
on bottom
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An open question is the choice of appropriate boundary conditions; those used in
the current approach are suitable for the simulation of flows in a domain bounded
with walls. Alternative conditions should be considered for free atmosphere flows.
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