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Abstract The effect of the temperature factor (body temperature ratio to the stag-
nation temperature of external flow) on the separated flow features has been inves-
tigated in the supersonic gas flow near the concave angle. The strong effect of the
temperature factor on the separated zone length and on the corresponding aerody-
namic performances was revealed. It was shown that, if the angle is big enough,
such flow cannot be described by free interaction theory, i.e. by triple deck theory.

Nomenclature

U Velocity
p Pressure
� Density
T Temperature
H Total enthalpy
M Mach number
Re Reynolds number
Pr Prandtl number
ı Boundary layer thickness
` Boundary layer length
 Coefficient of viscosity
! Power in viscosity law
gw Temperature factor
� Specific heat ratio
x Longitudinal coordinate
y Normal coordinate
�x Separation zone length
� Flare angle
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1 Introduction

The investigation of separated flow in viscous supersonic flow near a flat plate
caused by the rear part of the flat plate deviating by an angle � is an important
task in the development of separated flow theory. It is also significant for the appli-
cations when temperature factor becomes small in the flight with high supersonic
speed. It is important that, when testing models in the wind tunnel, the temperature
factor may considerably differ from its flight value (Table 1). It can lead to the con-
siderable deviations of the aerodynamic performances and heat fluxes in the wind
tunnel from those in the actual flight. So far, the flow over the flat plate with deviated
rear part was investigated in many theoretical and experimental works. A review of
the results is given in [1–4].

During the first decades, theoretical investigations of these flows were divided
into two directions. For the developed separated flows included the pressure
“plateau” zone method with the criteria of Chapman–Korst [5, 6] was used. Later it
was shown [7] that the criteria method of Chapman (for laminar flows) corresponds
to the first approach of the strict asymptotic theory for Navier–Stokes equation. For
small separated zones and zones of incipient separation without developed pressure
“plateau” area, another approach based on the integral equations of the boundary
layer was more appropriate.

After the development of free interaction theory [8–11] (usually called “triple
deck” outside of Russia) the other multilayer solutions were obtained [7, 12].

Within asymptotic theory, the calculation of the flow near “compression corner”
with an angle of � � Re�1=4 was performed by many authors [11–14]. Recently
the author of [13] assumed that solution of this task within free interaction theory
only exists up to some critical value of �=Re�1=4. Later similar calculations were
performed in [14] more carefully and the authors showed that the conclusions of [13]
were caused by a wrong calculation method. But they referred to the asymptotic
reattachment theory developed in [7] which does not contain singularities. It should
be noted that the applicability of the free interaction theory is a complicated matter,
although the criticism of the numerical results of [13] by authors of [14] is, may be,
correct.

Table 1 Temperature factor in flight (Tw 
 1;000K) as compared with that in wind tunnel

H, km M D 10 15 20 25

40 0.193 0.0858 0.048 –
50 0.182 0.0807 0.046 –
60 0.196 0.0807 0.045 –
70 0.227 0.101 0.057 0.036

M T0 gw

3–5 750 0.4
6–10 1,075 0.279

10, 12, 14, 18 2,600 0.115
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The present article is based on two methods: qualitative analytical investiga-
tion of flow physical features and numerical investigation of the Navier–Stokes
equations. The investigations assume that the flow is laminar everywhere.

2 Analytical Investigation

Let us consider supersonic flow over a flat plate at zero angle of attack. The rear part
of the plate is deflected by an angle � (Fig. 1). The angle � , Mach number M and
Reynolds number Re are so that the separated zone appears upstream of the angle.

Let us first consider the small separated zones and zones of arising separation.
For this purposes it is convenient to use the method described in the monographs
[15,16]. This approach was used in [8,9] for the free interaction theory development
which later was proposed in [10] under the name of triple deck and using a slightly
different way.

Thus, let us consider flow in a small vicinity of the separation point of the bound-
ary layer (Fig. 1). Let a small pressure difference�p=p � 1 be applied to the flow.
In the major part of the boundary layer, where the longitudinal component of the
velocity U is of the same order as the outer flow velocity Ue, we can use equation
of the longitudinal momentum, state equation and relation �eu2e � p to obtain

�UUx � px; �eUe�U � �p;
��

�
� �p

p
:

Then, in this part of the boundary layer (area 2 in Fig. 1), because of the continuity
equation, the disturbed streamline thickness assessment has the following form

�ı

ı0
� �p

p
;

where ı0 is the typical value of boundary layer thickness upstream of the interaction
area.

Near the wall, because of the boundary condition, in the undisturbed boundary
layer there is always area 3 where the dynamic pressure will be of order �p. It is

Fig. 1 Flow scheme
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only true near the separation point, because far from it the � p can be balanced by
viscous forces and the task becomes linear.

Thus, for area 3 we obtain the assessment

�3U
2
3 � �p: (1)

In area 3, using the relationship for the velocity profile in the undisturbed boundary
layer, we can obtain assessment

U3

Ue
� ı3

ı0
: (2)

In area 3 the flow upstream of the separation point is performed against inadvertent
pressure difference�p > 0 by viscous forces, i.e.

� U 23
�x

� 3
U3

ı23
: (3)

Due to (1) the thickness of area 3 varies as the undisturbed value, then (1) and (2)
result in

ı3

ı0
� U3

Ue
�
s
�p

p
� �p

p
� �ı2

ı0
:

Thus, in the first approach, the total variation of the boundary layer momentum
thickness is produced by area 3.

This fact together with linear theory of supersonic flows (Ackeret formula) leads
to the last estimate

.M2
e � 1/1=2�p � �eU

2
e

ı3

�x
: (4)

To determine scales of the disturbed values �x, �p, U3, ı3 we get four equations
(1)–(4). They give us estimates of all the required values

�x � `Re�3=8;
�p

p
� Re�1=4;

U3

Ue
� ı3

ı0
� Re�1=8: (5)

The angle � which produces the separation of the boundary layer has the order of
the value Re�1=4 (` is the boundary layer length upstream of the separation point).

Using the estimates (5) we can develop asymptotic theory of Navier–Stokes
solution for the small separation zones at Re ! 1.

Let us consider this task for the flows with high supersonic speeds and small
temperature factor using limit

Re ! 1; M ! 1; gw D Hw

He
! 0;

where H is total enthalpy, indexes e and w correspond to the parameter values at
the outer boundary of the boundary layer and the wall respectively.



Temperature Factor Effect on Separated Flow Features 43

Let us assume, that the interaction of the non-viscous flow with the boundary
layer is small up to the separation point. Then

ı0=` �
�

0

�0Ue`

�1=2
; Meı0=` � 1:

In the major part of the boundary layer (area 2 in Fig. 1) the gas temperature will be
of the order of the total temperature T0 [17], �2 � �0 � �e=M

2
e , 2 � 0, where

�0,0 are the density and viscosity at T D T0.
Friction and heat flux to the wall maintain their orders of the value in the whole

boundary layer, i.e.
�

dU

dY

�

y!0

� 0
Ue

ı0
I

�

dg

dy

�

y!0

! 0
1

ı0
:

Then the velocity and enthalpy profiles near the body surface will be (neglecting the
inessential constants):

g �
�
g!C1
w C y

ı0

�1=.!C1/
;
U

Ue
�
�
g!C1
w C y

ı0

�1=.!C1/
� gw : (6)

Depending on the relationship of gw and the disturbed pressure amplitude �p=p,
using (6) we can get profiles in the area 3

g!C1
w � ı3

ı0
g3 � gw ;

U3

Ue
� 1

g!w

ı3

ıo
(7)

g!C1
w � ı3

ı0
g3 �

�
ı3

ı0

�1=.!C1/
;
U3

Ue
�
�
ı3

ı0

�1=.!C1/
: (8)

Let us consider regime (7). Near the separation point

�p � �3U
2
3 ;

ı3

ı0
� g.1C2!/=2

w �
�
�p

p

�1=2
;
U3

Ue
� g1=2w

�
�p

p

�1=2
: (9)

The thickness of the area with non-linear disturbances (area 3,�ı3 � ı3) will be of
a greater order than that of the area 2 �ı2 if the following condition is valid

g.1C2!/=2
w

s
�p

p
� �p

p
! �p

p
� g1C2!

w : (10)

Then, using Ackeret formula (4) for the area 1 (the disturbed part of the external
non-viscous flow) we get an estimate for the length of the disturbed flow�x

�x

`
� Meı0

`
�
s
g1C2!
w

�p=p
: (11)

It shows that as gwdecreases,�x=` decreases also.
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Let us obtain an assessment for the critical pressure differential assuming, as
usual, that the viscous and inertial members are of the same order in the Navier–
Stokes equations.

�3U
2
3

�x
� 3

U3

ı23
I �p

p
�
�

Me

ı0

`

�1=2
: (12)

Thus, when decreasing gw at fixed deflection angle of the plate rear part, the
separation zone length decreases (11).

Further decrease of gw violates conditions (7) and (10). Now, let us assume that

ı3

ı0
� �ı2

ı0
� �p

p
� g1C2!

w : (13)

Then, using Ackeret formula in the form of �p=p � Meı2=�x we get assessment
for the action�x

�x � Meı0: (14)

The relations (9) are true as long as area 3 remains almost isothermal (g!C1
w �

ı3=ı0).
Having assessment (13), let us estimate the critical pressure differential at this

regime, using the first estimate of (12)

�p

p
�
�

Me

ı0

`

�2=3
g�2.!C1/=3
w : (15)

The estimate shows that at fixed length of the disturbed area (14) decrease of gw
leads to the increase of the critical pressure difference (15). It means that at fixed
angle of deflection of plate rear part the separated area length will also decrease.

And finally, if the isothermal condition of area 3 (7) is violated, estimate (14) for
�x will remain because �ı2 � ı3. The estimate for g3, U3=Ue, and ı3=ı0 will
have the form of (8). Then for the critical value of the pressure difference which
produces separation initiation in the area 3 the following assessment is obtained,
using equations (1) and (3)

�p

p
� .Meı0=`/

1=.2!C1/:

This estimate is true for all small gw when equation (8) is valid.
Now, let us investigate the effect of gw on the separation zone length at a slightly

higher value of � when the zone appears with almost constant pressure but mix-
ing layer at the outer boundary of the separated zone is still much thinner than
the boundary layer separated from the body surface. To get the necessary assess-
ment let us assume that the Korst–Chapman condition [5] or asymptotic attachment
theory [7] is true.
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In this case the following relationship must be valid �inc � � � 1. The upper
limitation provides fulfilment of the condition ı4 � ı0, where �inc is the angle at
which mixing layer 4 leaves the body after separation.

At �inc � � we come back to the free interaction theory considered above (for
example, at � � Re�1=4 and gw � 1 the separation zone length �x is determined
by (5) according to free interaction theory (triple deck)).

At � � �inc friction forces acting on the gas along dividing streamline lead to
the dynamic pressure increase thus providing the possibility to counteract pressure
rise in the attachment area. The Korst–Chapman condition [5, 6] may be written as

�4U
2
4 � �p;

�p

p
� Me�: (16)

Here, index 4 designates parameters value at dividing streamline in the mixing layer.
As ı4 � ı0 i.e. the separated zone is short, �x=L � 1, so �4 � �w . Further, we
must estimate the rate of U4(�x) increase.

In the mixing layer 4 the acceleration occurs due to longitudinal momentum
transfer when friction forces act on streamlines of the separated boundary layer.
Thus, we can write down the following conditions

U4

ı4
� Ue

g!wı0
I �4U

2
4

�x
� 4

U4

ı24
: (17)

In (17) the first condition corresponds to the conservation of friction stress value in
area 4 to its value in the separated boundary layer, where U � Ue, thickness ı0, and
4=0 � g!w . The second condition in (17) is balance of orders of value of viscous
and inertial members in the longitudinal momentum equation.

Resolving (17) we obtain the estimates

ı4

ı0
� g.1C2!/=3

w

�
�x

`

�1=3
;

U4

Ue
� g.1C2!/=3

w

�
�x

`

�1=3
: (18)

Here, ` is boundary layer length up to the separation point, while �x is the mixing
zone length from the separation point to the attachment point. At gw � 1 (18) cor-
responds to the known selfsimilar solution of Prandtl equation for the mixing layer
between external flow with shear profile and stagnation zone. Now, using condition
in the attachment zone (16) we get dependence of the separation zone length on �
and gw

�x

`
� .Me�/

3=2 � g.1C2!/=2
w :

Thus, the separation zone length decreases with gw decreasing in this regime also.
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3 Numerical Investigation

Numerical investigation was performed with the use of computer codes packet
of numerical integration of Navier–Stokes equations by time-dependent method
developed in TSAGI [18–20].

The initial boundary-value problem was solved by the integro-interpolation
method (finite volume method). Implicit monotonic scheme of the type of Godunov
[21] scheme and the approximate method of Roe [22] of solving the Riemann prob-
lem on break-up of arbitrary discontinuity were used in the approximation of the
convection component of flow vectors in half-integer nodes. The principle of min-
imal derivates [23] was used for raising the order of approximation to second one
in the case of interpolation of dependent variables to the face of elementary cell. A
difference scheme of the type of central differences of the second order of accuracy
was used in the approximation of the diffusion component of flow vectors on the
face of elementary cell. The modified Newton–Raphson method was used for solv-
ing the nonlinear finite-difference equations. The set of linear algebraic equations
was solved using the GMRES(k) method of minimal residuals [24].

The flow field near the two-dimensional compression corner protruding into the
supersonic flow (Fig. 1) has been calculated at following parameters: Reynolds num-
ber based on a plate length up to the corner point Re D 106, Mach number M D 5,
Prandtl number Pr D 2=3, temperature factor gw D 10�3=1, specific heat ratio
� D 5=3, viscosity law  � T !(! D 0:5).

In the investigated area the coordinate origin coincides with the beginning of the
non-deflected part of the plate, deviation point is located at x D 1, the end of the
investigated area is located at x D 5.

At the left boundary the undisturbed flow was chosen. Upper boundary of the
computed area was chosen so that the boundary conditions were also undisturbed
external flow. Right boundary of the computed area was chosen so that error in soft
boundary conditions did not effect on the solution in the vicinity of the separation
zone. The condition of no-slip were chosen at the body surface. The special grid
thickening at the plate beginning was performed to correctly follow the abrupt pres-
sure gradient at the leading edge. It should be noted that errors at the leading edge
does not effect on the solution downstream and dissipate quickly with distance from
leading edge if the separation zone is not located near the leading edge.

Following the method of analytical grid development [20] the grid thickening
near the body surface was performed with line number about 20–40% of the total
number in the direction of the boundary layer thickness. It allowed one ensure high
resolution of boundary layer near the body surface. This method of analytical grid
is appropriate for small � < 10ı when the separation zone dimensions are small. It
allows one cover the separation zone with a grid of necessary density and to simulate
actual flow pattern.

The grid resolution in the area of abrupt pressure gradient in the attachment zone
also strongly effects the quantity of the obtained results. The additional grid thick-
ening in this area both in longitudinal and transversal coordinates is required. In the
rest of the computation area the grid is quasi-uniform. The grid resolution in the
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separation area does not strongly effect the flow pattern if separation does not start
from the leading edge.

For angles � D 10ı, 20ı the separation zone dimensions are much more than the
boundary layer and the mixing layer thickness. In this case the method of analytical
grid is not working. The issue may be in development of adaptive grids [25]. This
method allows not only to get correct flow pattern but also to considerably decrease
the required number of lines (for � D 10ı). Sometimes (� D 20ı) it is the only
possible method to get solution.

With the task features in mind, the grids were used having one-dimension adapta-
tion in the direction normal to the surface constructed by “equidistribution” method
[26]. It allows one to fine solve the mixing layer and to check the solution on grids
with different number of nodes. If the resolution and adaptation were correctly cho-
sen the mixing layer position practically does not change when the number of grid
nodes varies by 2–4 times. To get a final solution the adaptive iterations on the
grids with small number of nodes were repeated many times until convergence was
obtained. Then the solution was checked with number of grid nodes variation by
2–4 times. The solutions obtained with the use of analytical grids were unstable
when the number of nodes increased. The maximum dimensions of the grids were
1,600 � 200 for � D 10ı, 20ı and 800 � 200 for � < 10ı. At this, the solutions
were checked for convergence on different grids.

For big angles � D 10ı, 20ı the grid resolution does not effect the mixing layer
position but considerably changes flow pattern inside the separated zone.

4 Results

Figure 2 shows the pressure distribution along the x-axis on the corner surface.
Pressure is normalized to �1U 21 .p1=�1U 21 D 1=�M2 D 0:024/. On the plate
surface .� D 0/ at x � 1 the pressure becomes constant increasing as the tem-
perature factor increases. For � D 2:5ı full attached flow occurs. For larger angles
the separated flow occurs with the separated zone length increasing as both � and
temperature factor increase. When temperature factor increases the separation point
moves to the left while the attachment point moves to the right. Temperature fac-
tor increase causes small pressure rise in the separated zone and increases pressure
steps smoothness.

At � D 2:5ı separation starts near the leading edge, where the flow parame-
ters vary considerably along the x-axis. The pressure steps smoothness decreases.
Each value of the temperature factor corresponds to a certain value of pressure in
the separation zone and to a certain x-coordinate of reaching maximum pressure.
Inside the separation zone there were observed pressure oscillations caused by the
development of vortices.

Figure 3 gives x-coordinates of the separation and attachment points where fric-
tion becomes zero. For small angles variation of full separation length Lx is caused
(in equal proportions) by variation of its components Lx1 and Lx2 (upstream and
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Fig. 2 Pressure distribution along x-coordinate of the corner � o D 5, 10, 20 (a, b, c) at temperature
factor gw D 0.001, 0.1, 0.3, 1 (curves 1–4)

downstream of the corner correspondingly). For an angle � D 20ı Lx1 � 1 and
major variation of Lx is caused by Lx2 component, i.e. by considerable displace-
ment of the attachment point. For � values increase of temperature factor leads to
the separation zone length increase.

For angles � D 10, 15, 20ı the vortices were observed inside the separation zone
(Fig. 4b–d) similar as to “bubble” in the work [27]. For angles � D 5ı, 7:5ı (Fig. 4a)
vortices were not discovered.
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Fig. 3 Variation x-coordinates of separation (dash line) and attachment points (solid line)
depending on angle � and temperature factor gw D 10�3, 0.1, 0.3, 1

Fig. 4 Streamlines field for flow near the corner �ı D 7.5, 10, 15, 20 (a, b, c, d) and pressure (e)
field �ı D 20 with temperature factor gw D 0.1 (solid line corresponds to the zero streamline)

Investigation showed that, when the grid resolution was high enough, the large
vortices sizes did not change. We should remark, that for gw D 1 separation zone
is large, thus, the grid step in the x-direction is 1.5–2 times greater than that for
gw D 10�3–10�1. That is why for gw D 1 the vortices were only specified in
details at a grid of 1,600 � 200 nodes. The grid of 800 � 200 did not give vortices
details while at gw D 10�3 � � �10�1 vortices were seen quite clearly.
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Fig. 5 Heat flux distribution along corner coordinate S for � D 10, 20 (a, b) at temperature factor
gw D 0.001, 0.1, 0.3, 1 (curves 1–4)

It is possible, that vortices development is caused by the separation of a viscous
sublayer at the bottom of locally inviscid jet that flows out of the attachment zone of
the main separation zone. In this case pressure across the separation zone becomes
variable, i.e. @p=@y ¤ 0 (Fig. 4b).

It is very interesting to investigate the effect of the temperature factor on the heat
flux in the attachment zone (Fig. 5). The heat flux is normalized by �1U 31. For all
angles, when the temperature factor decreases maximum heat flux reaches its limit
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Fig. 6 Variation of maximum heat flux in the attachment zone depending on temperature factor
gw for angles �ı D 0, 2.5, 5, 7.5, 10, 20 (curves 1–6). Solid line corresponds to the adaptive grid,
dash line –to the analytical grid

value (Fig. 6). For angles � D 5ı, � D 7:5ı results are shown obtained both on
analytical and adaptive grids, while for angles � = 10, 20 - obtained on the adaptive
grids only. For angles � D 10; 20ı (Fig. 5) there are heat flux splashes inside the
separation zone (up to 40% of its maximum value at the attachment point) caused by
vortices. For � D 5ı at gw � 10�2 and for � D 7:5ı at gw � 3�10�3 there is weak
maximum. It may be caused by calculation accuracy at small temperature factor
when additional grid thickening is required because of the big density gradient near
the surface. Such thickening, being small, does not effect on the global flow pattern
in the separation zone, but is important for local heat flux modeling.

Big practical interest is the temperature factor effect on the effectiveness of flight
controls of “ramp” type. Figure 7 gives the difference �x between the pressure
center locations in two cases: with gw simulation and with pressure “step” obtained
from inviscid corner flow. If there is a separation, we can specify two regions that
effect the pressure center location: increased pressure zone inside the separation
zone and increased pressure zone at the attachment point. For � 
 7:5ı the input of
the increased pressure zone inside the separation zone is practically balanced by the
displacement to the right of the increased pressure zone at the attachment point.

So, there are two counteracting tendencies that determine the pressure center
location depending on the temperature factor: (1) displacement to the left on the
plate and (2) displacement of the attachment zone to the right. For small angles
(� < 7:5ı) displacement to the left on the plate overrides the displacement of the
attachment zone to the right. For big angles (� > 7:5ı) the input of high pressure
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Fig. 7 Pressure center displacement �X as compared with position for inviscid flow near angle
�ı D 0, 2.5, 5, 7.5, 10, 20 (curves 1–6) depending on temperature factor gw

in the attachment zone on the pressure center position becomes significant and the
pressure center moves to the right.

These results are given for the calculation area x D Œ0; 5	. For the ramp of actual
geometry with small sizes similar effects may be observed, but it is a quite different
task with different geometry.

5 Conclusion

The qualitative analytical investigation was carried out related to the temperature
factor effect on separation flow physical features caused by a compression corner in
the supersonic viscous flow. The numerical results of simulation the same flow based
on the Navier–Stokes equations are also presented. It is shown that the separation
zone length decreases as the temperature factor decreases. For high values of the
compression corner in numerical investigations there were discovered vortices in the
separation zone that were not observed before. These vortices effect considerably on
heat exchange in the separation zones. The temperature factor effect on the pressure
center position was investigated. It is shown that at small corner angles a temperature
factor increase may deteriorate static stability of the vehicle, while at big angles it
may improve static stability of the vehicle.
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