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Abstract We introduce a numerical method for solving the coupled Navier–Stokes–
Fokker–Planck model (i.e. a micro–macro model) for dilute polymeric fluids where
polymer molecules are modelled as FENE dumbbells. The Fokker–Planck equa-
tion is posed on a high-dimensional domain and is therefore challenging from
a computational point of view. We summarise analytical results for a Galerkin
spectral method for the Fokker–Planck equation in configuration space, before
combining this method with a finite element scheme in physical space to obtain
an alternating-direction method for the high-dimensional Fokker–Planck equation.
Alternating-direction methods have been considered previously in the literature for
this problem (e.g. by Chauvière & Lozinski); we present an alternative frame-
work here that is underpinned by rigorous numerical analysis, and numerical results
demonstrating the effectiveness of our approach. The algorithm is well suited to
implementation on a parallel computer, and we exploit this fact to make large-scale
computations feasible.

1 Introduction

In this paper we introduce a computational framework for solving the Navier–
Stokes–Fokker–Planck system of partial differential equations (also known as the
micro–macro model) that governs the evolution of a dilute suspension of dumb-
bells in a Newtonian solvent, which is a well-studied model of dilute polymeric
fluids [3, 23]. We refer to the approach of directly solving the coupled Navier–
Stokes–Fokker–Planck system as the deterministic multiscale method; this approach
has recently been used successfully in a number of papers by Lozinski, Chauvière
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and collaborators (see [4, 5, 19]), although those authors did not consider rigorous
numerical analysis of their algorithm – such analysis is a major emphasis in the
present paper as well as in [14, 15]. It is worth highlighting at the outset that there
is an extensive literature on numerical methods for this problem, but most of the
previous work on the subject addresses either fully macroscopic models (such as
the Olroyd-B model) in order to circumvent the multiscale nature of the Navier–
Stokes–Fokker–Planck system (see the text [23] for an overview of this field)
or uses a stochastic approach in which the micro–macro system is treated using
Monte–Carlo-type methods (cf. [22]). Compared to a fully macroscopic approach,
the primary advantage of the deterministic multiscale method is that it does not
involve “closure approximations”; the shortcomings of such approximations are
well documented [11, 17, 26]. Also, a possible drawback of the stochastic approach
is the presence of slowly decaying stochastic error terms. Variance reduction tech-
niques have been developed to minimise the impact of this stochastic error in
Monte–Carlo-type methods; nevertheless, circumventing this error completely is an
important motivation for moving to fully deterministic micro–macro methods. The
drawback of the deterministic multiscale approach, however, is that (as we shall
see below) the Fokker–Planck equation is posed on a high-dimensional domain,
and therefore solving it using deterministic methods is an imposing challenge from
the computational point of view. Following Chauvière & Lozinski, our approach is
to use an alternating-direction scheme to ameliorate the “curse of dimensionality”,
and we also use parallel computation to make large-scale simulations feasible in
practice.

As indicated above, we are considering a dilute solution of microscopic dumb-
bells, i.e. two beads of small mass connected by a spring. The spring force law F

�

has a corresponding potential,U W R�0 ! R, such that F
�
.q

�
/ D U 0.1

2
jq
�

j2/q
�

, where
q
�

2 D is the configuration vector (or end-to-end vector) of a dumbbell. Here we
consider the FENE force law [25], which, in non-dimensional form is:
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where D D B.0;
p
b/ � R

d , d D 2 or 3. We assume that b 2 .2;1/ (cf. [10]
or Example 1.2 in [2]), and in practice b is typically chosen in the range Œ10; 100	.
The theoretical results presented in this paper can be generalised to a broader class
of FENE-like potentials that satisfy Hypotheses A and B from [15]. For simplicity
of exposition, we restrict our attention to the FENE potential here.

Suppose the fluid is confined to a macroscopic physical domain �, assumed to
be a bounded open set in R

d . Let u
�

W .x
�
; t/ 2 � � Œ0; T 	 7! u

�
.x

�
; t/ 2 R

d denote
the macroscopic velocity field, and let p W .x

�
; t/ 2 � � Œ0; T 	 7! p.x

�
; t/ 2 R

denote the pressure. It is typical in this problem to let �
�

denote the macroscopic
velocity gradient, i.e. �

�
WD r

� xu�. Also, suppose the function .x
�
; q

�
; t/ 7!  .x

�
; q

�
; t/

represents the probability, at time t , of finding a dumbbell with center of mass in the
volume element x

�
C dx

�
and orientation vector in the element q

�
C dq

�
. Then, for a
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suspension of FENE dumbbells, we have the following system (in non-dimensional
form):
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for .x
�
; t/ 2 � � .0; T 	, where  satisfies the Fokker–Planck equation:
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or .x
�
; q

�
; t/ 2 ��D� .0; T 	. The system (2)–(5) is subject to the initial conditions:
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In (2), Re is the Reynolds number, Wi is the Weissenberg number, which is the
ratio of microscopic to macroscopic time-scales, and � 2 .0; 1/ is the ratio of sol-
vent viscosity to total viscosity. In (5), M is the (normalised) FENE Maxwellian
defined by
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which, in the case of the FENE model, is M.q
�
/ WD 1

Z
.1 � jq

�
j2=b/b=2. In fact, the

form of the Fokker–Planck equation given in (5) uses a Kolmogorov symmetrisation
[16]; it is equivalent to the ‘standard’ form of the equation:
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but from our point of view the advantage of (5) is that the unbounded convection
coefficient (F

�
in (7)) is absorbed into a weighted diffusion term, which is conve-

nient from the point of view of analysis. It should be noted, however, that in [5]
Lozinski & Chauvière proposed a numerical method based on (7) in which the
substitution O WD  =M 2s=b was used1; it was shown in Sect. 3.2 of [15] that
with b 	 4s2=.2s � 1/ and s > 1=2, this also leads to a well-posed problem
and a stable semidiscretisation in any number of space dimensions, and hence all
of the analytical results developed in this paper could also be developed based
on the Lozinski–Chauvière substitution. Nevertheless, the symmetry of (5) sim-
plifies analysis of the numerical methods we consider, and therefore we focus on

1 Based on computational experience, Lozinski & Chauvière recommended s D 2 and s D 2:5
for d D 2 and d D 3, respectively.
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the Maxwellian-transformed form of the Fokker–Planck equation in (5) for the
remainder of this paper.

Since  is a probability density function (pdf) for each x
�

2 �, the initial datum
should be non-negative:

 .x
�
; q

�
; 0/ D  0.x�; q�

/ 	 0; for a.e. .x
�
; q

�
/ 2 � �D; (8)

and should also satisfy the following normalisation property:
Z

D

 0.x�; q�
/ dq

�
D 1; for a.e. x

�
2 �: (9)

It is crucial to note that (5) is posed in 2d spatial dimensions, plus time. Since
the computational complexity of standard numerical methods for PDEs grows expo-
nentially with the dimension of the spatial domain, the high-dimensionality of (5)
represents a significant computational challenge. Therefore, in a coupled algorithm
for (2)–(6), solving the Fokker–Planck equation is generally the bottleneck step and
as a result the focus of this paper is on the analysis and implementation of efficient
numerical methods for (5).

In the papers of Lozinski, Chauvière et al. [4, 5, 18–20] and Helzel & Otto [9],
the authors decomposed the differential operator L from (5) by defining Lx and Lq
acting in the x

�
- and q

�
-direction, respectively. They then used an alternating-direction

numerical method (also referred to as an operator-splitting or dimension-splitting
approach) based on these operators.2 We pursue the same approach in this paper
and we shall survey a number of stability and convergence results that we proved
for our computational framework in the papers [14, 15].

Note that the splitting introduced above leads to a sequence of d-dimensional
solves at each time step rather than a single 2d-dimensional solve. Also, this splitting
of L allows different numerical methods to be used in � and D (resulting in, what
we call, a heterogeneous alternating-direction scheme). In Sect. 3 we consider het-
erogeneous alternating-direction numerical methods for the FENE Fokker–Planck
equation on � � D based on a finite element method in � and a single-domain
Galerkin spectral method in D. These are appropriate choices because a finite ele-
ment method is flexible enough to deal with the general domain �, whereas D is
always a ball in R

d , and therefore the Lq operator is well suited to a spectral dis-
cretisation via a polar or spherical coordinate transformation to a cartesian product
domain.

The structure of this paper is as follows. We begin in Sect. 2 with an overview of
the analysis and implementation of a Galerkin spectral method for the Maxwellian-
transformed Fokker–Planck equation in configuration space. This spectral method is
then integrated into an alternating-direction scheme for the full Fokker–Planck equa-
tion on��D in Sect. 3. Finally, we demonstrate the use of this alternating-direction
scheme in an algorithm for the coupled Navier–Stokes–Fokker–Planck system for a
channel flow problem of physical interest. We make concluding remarks in Sect. 5.

2 These authors used (7), but the idea applies to (5) in the same way.



A Deterministic Multiscale Approach 27

2 The Fokker–Planck Equation in Configuration Space

This section is concerned with the numerical approximation of the d -dimensional
Fokker–Planck equation posed in configuration space:
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�
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�
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where the d �d tensor �
�

is assumed to belong to .CŒ0; T 	/d�d (i.e. it is independent
of x

�
) and is such that tr.�

�
/.t/ D 0 for all t 2 Œ0; T 	. It will be assumed throughout

that (10) is supplemented with the following initial and boundary conditions:
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�
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�
/; for all q

�
2 D; (11)
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�q
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; as dist.q

�
; @D/ ! 0C, for all t 2 .0; T 	: (12)

As in (8) and (9), the initial datum  0 is such that  0 	 0 and
R
D
 0.q

�
/ dq

�
D 1.

The motivation for studying this subproblem is that, as indicated in Sect. 1, an
efficient approach to the numerical solution of (5) in 2d C 1 variables is based
on operator-splitting with respect to .q

�
; t/ and .x

�
; t/. Thereby, the resulting time-

dependent transport equation with respect to .x
�
; t/ is completely standard,  t C

r
� x � .u

�
.x

�
; t/ / D 0, while the transport-diffusion equation with respect to .q

�
; t/

is (10).

2.1 Weak Formulation and Backward Euler Semidiscretisation

Following [15], let O' WD 'p
M

and r
� M O' WD p

M r
� q

� O'p
M

	
, and define the function

space H10.DIM/ to be the closure of C1
0 .D/ in the norm of H1.DIM/, and

H1.DIM/ WD
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ˇ
ˇ2
	

dq
�
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�
:

Then, (10) has the following weak formulation. Given O 0 WD  0=
p
M 2 L2.D/,

find O 2 L1.0; T I L2.D//\ L2.0; T I H10.DIM// such that

d

dt
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�
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� M

O � r
� M O' dq

�
D 0; (13)

for all O' 2 H10.DIM/ in the sense of distributions on .0; T /, and O .�; 0/ D O 0.�/.
Notice that we solve for O ;  is recovered by setting  WD p

M O . The Lozinski–
Chauvière substitution introduced in Sect. 1 is identical to the substitution  WDp
M O in the case that s D b=4.
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It is shown in Sect. 2 of [15] that H1.DIM/ D H10.DIM/ and H10.D/ �
H10.DIM/.3 The connection between H10.DIM/ and H10.D/ will prove helpful
in the development of Galerkin methods for (13), since the construction of finite-
dimensional subspaces of H10.D/ and the analysis of their approximation properties
are well understood.

In [15], the following backward-Euler semidiscretisation of (13) was studied
in detail: Let NT 	 1 be an integer, �t D T=NT , and tn D n�t , for n D
0; 1; : : : ; NT . Discretising (13) in time using the backward Euler method yields the
following semi-discrete numerical scheme.

Given O 0 WD O 0 D  0=
p
M 2 L2.D/, find O nC1 2 H10.DIM/, n D

0; : : : ; NT � 1, such that

Z

D

O nC1� O n
�t

O' dq
�

�
Z
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.�
�

nC1 q
�

O nC1/ � r
� M O' dq

�

C 1

2Wi

Z

D

r
� M

O nC1 � r
� M O' dq

�
D0;

for all O' 2 H10.DIM/.
The following stability lemma for (14) was proved in Sect. 3 of [15].

Lemma 1. Let �t D T=NT , NT 	 1, �
�

2 .CŒ0; T 	/d�d , O 0 2 L2.D/, and define
c0 WD 1C 4Wi bk�

�
k2L1.0;T /

. If �t is such that 0 < c0�t 
 1=2, then we have, for
all m such that 1 
 m 
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k O mk2 C
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nD0
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��
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C
m�1X

nD0

�t

2Wi
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� M
O nC1k2 
 e2c0m�tk O 0k2:

Also, the existence and uniqueness of a weak solution of (13) was established
in Theorem 3.2 of [15]. The proof makes use of the stability result in Lemma 1 in
order to use compactness results for the bounded sequence of solutions to (14) as
�t ! 0C.

2.2 Fully-Discrete Spectral Method

Let PN .D/ be a finite-dimensional subspace of H10.DIM/, to be chosen below,
and let O nN 2 PN .D/ be the solution at time level n of our fully-discrete Galerkin
method:

Z

D

O nC1
N � O nN
�t

O' dq
�

�
Z

D

.�
�

nC1 q
�

O nC1
N / � r

� M O' dq
�

C 1

2Wi

Z

D

r
� M

O nC1
N � r

� M O' dq
�

D 0 8 O' 2 PN .D/; n D 0; : : : ; NT � 1; (14)

O 0N .�/ WD the L2.D/ orthogonal projection of O 0.�/ D O .�; 0/ onto PN .D/. (15)

3 In fact, these results hold for all FENE-like potentials, cf. Sect. 1.
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The caseD � R
2 was considered in detail in [15]. Suppose we transformD into the

rectangle .r; �/ 2 R WD .0; 1/ � .0; 2�/ using the polar coordinate transformation
q
�

D .q1; q2/ D .
p
br cos �;

p
br sin �/. Also, suppose that O 2 H10.D/ and let

Q .r; �/ WD O .q1; q2/. It was proved in Lemma 5.2 of [15] that Q can be written in
polar coordinates as follows:

Q .r; �/ D Q 1.r/C r Q 2.r; �/; .r; �/ 2 R D .0; 1/� .0; 2�/: (16)

Using the structure in (16), we defined in [15] the spectral basis A as A WD
A1 [ A2 where:

A1 WD f.1� r/Pk.r/ W k D 0; : : : ; Nr � 1g;
A2 WD fr.1� r/Pk.r/ˆi l.�/ W k D 0; : : : ; Nr � 1I i D 0; 1I l D 1; : : : ; N�g:

Pk is a polynomial of degree k in r 2 Œ0; 1	 and ˆi l.�/ D .1 � i/ cos.2l�/ C
i sin.2l�/, � 2 Œ0; �	. Notice that the polynomials in both A1 and A2 contain the
factor .1 � r/ in order to impose the homogeneous Dirichlet boundary condition
on @D. Basis A is defined in order to mimic the decomposition (16) of the weak
solution Q in polar coordinates: the role of span.A1/ is to approximate Q 1 while
span.A2/ is meant to approximate r Q 2.

Now, let PN .D/ be span.A/ mapped from R to D. Approximation results were
derived for this discrete space in Sect. 5 of [15], which enabled the derivation of the
following optimal order spectral convergence estimate for the fully-discrete spectral
method (14)–(15): for O 2 HkC1;lC1.D/ with k; l 	 1 we have,

k O � O N k`1.0;T IL2.D// C kr
�
M . O � O N /k`2.0;T IL2.D//
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�k
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C k O k
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C
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�
�
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C C2N
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k O k`1.0;T IHl
�
.D// C k O k
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�
.D//

C
��
�
�
@ O 
@t

��
�
�

L2.0;T IHl
�
.D//

!

C C3�t

�
�
�
�
�
@2 O 
@t2

�
�
�
�
�

L2.0;T IL2.D//

; (17)

(see Sect. 5 of [15] for definitions of the non-standard Sobolev spacesHkC1;lC1.D/,
Hk
r .D/ and Hl

�
.D/).

Note that we also considered a second basis, B, in [15], proposed by Matsushima
& Marcus [21] and Verkley [24], which satisfies the full pole condition on D
(cf. [7]), and therefore the space defined by B is contained in C1.D/ \ C0.D/.
The numerical method based on B was found to be more efficient in practice than
the one based on A for the FENE Fokker–Planck equation onD since O is typically
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very smooth. Finally, we considered a basis in [14] in the case of d D 3, referred to
as basis C, which, following [4], was defined as follows:

C WD fY iklm W 0 
 k 
 Nr � 1; i 2 f0; 1g; l 2 f0; 2; 4; : : : ; Nsphg and i 
 m 
 lg;

where Y ik
lm
.r; �; �/ WD .1 � r/Qk.r/S

i
l;m
.�; �/, and the S i

l;m
are spherical harmon-

ics: S i
l;m
.�; �/ WD C.l;m/Pm

l
.cos�/..1 � i/ cos.m�/C i sin.m�//. Note that we

showed in [14] that a splitting of the form (16) is not required in the case of d D 3.
A range of numerical results for spectral methods based on A and B in the case

of d D 2 were presented in Sect. 7 of [15], and the convergence behaviour we
obtained in practice was consistent with (17). The numerical method based on C is
completely analogous, and it was shown in Sect. 2.6.3 of [13] that the convergence
behaviour of this method in three dimensions is essentially the same as for methods
A and B in two dimensions.

3 An Alternating-Direction Scheme for the Full Fokker–Planck
Equation

In this section, we describe numerical methods for the Maxwellian-transformed
Fokker–Planck equation posed on � � D � .0; T 	. Here we assume that u

�
is

an a priori defined velocity field. Once the numerical scheme for the Fokker–
Planck equation with a given u

�
is understood, it is straightforward to couple to

the Navier–Stokes equations. These methods build upon the q
�

-direction spectral
method introduced in Sect. 2. In this case, the weak formulation is as follows: Given
O 0 2 L2.� �D/, find O 2 L1.0; T I L2.� �D// \ L2.0; T IX / such that

O .x
�
; q

�
; 0/D O 0.x� ; q�

/; .x
�
; q

�
/ 2 � �D;
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dt
. O ; �/C

�
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� r
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O ; �
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�
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�

O ; r
� M �

	
C 1

2Wi

�
r
� M

O ; r
� M �

	
D 0 8 � 2 X ;

in the sense of distributions on .0; T /, and again is recovered by multiplying O byp
M . Following Sect. 2, we impose a zero Dirichlet boundary condition on�� @D

for t 2 .0; T 	. See [14] for the hypotheses on u
�

and for the definition of the space X .
The alternating-direction method under consideration here is nonstandard in the

sense that we consider d -dimensional cross-sections (rather than one-dimensional
cross-sections) of � � D. This leads to a formidable computational challenge
because we typically need to solve a large number of problems posed in d spa-
tial dimensions in each time-step. However, the method is extremely well suited
to implementation on a parallel architecture since the q

�
-direction solves are com-

pletely independent from one another, and similarly the x
�

-direction solves are
decoupled also. Our computational results in Sect. 4 were obtained using a parallel
implementation of the alternating-direction methods described here.
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3.1 The Alternating-Direction Methods

We now introduce the alternating-direction Galerkin methods for the weak formu-
lation given above. These algorithms combine a classical Douglas–Dupont-type
alternating-direction scheme [6] in the x

�
-direction, with a new quadrature-based

scheme in the q
�

-direction.
First of all, define the bases

fYk 2 PN .D/ W 1 
 k 
 NDg and fXi 2 Vh W 1 
 i 
 N�g; (18)

such that span.fYkg1	k	ND
/ D PN .D/ and span.fXig1	i	N�

/ D Vh, where Vh
is an H1.�/-conforming finite element space based on a mesh Th of �. Let O h;N
denote our discrete solution, such that O h;N 2 Vh ˝ PN .D/.

Also, we need to specify a quadrature rule on �. Let f.x
�m
; wm/; wm > 0; x�m 2

�;m D 1; : : : ;Q�g define an element-based quadrature rule on Th, where the x
�m

are the quadrature points and the wm are the corresponding weights. Therefore, for
functions f; g 2 C0.�/, the quadrature sum is evaluated element-wise as follows,

Q�X

mD1
wmf .x�m/g.x�m/ D

X

K2Th

QKX

lD1
wKl f .x�

K
l /g.x�

K
l /; (19)

whereQK is the number of quadrature points in element K . In [14], we introduced
hypotheses on this quadrature rule that are necessary for our numerical analysis;
we refer the reader to that paper for more details. The idea of using this quadra-
ture rule in the context of the alternating-direction scheme is that by performing
the q

�
-direction solves at quadrature points x

�m
we are able to recover a Galerkin

formulation for the numerical method on � �D.
Noting that O h;N can be written in terms of the coefficients f O ikg as O h;N WD

PN�

iD1
PND

kD1 O ikXiYk 2 Vh ˝ PN .D/, we define the line functions, O k , for

k D 1; : : : ; ND , by O k WD PN�

iD1 O ikXi 2 Vh. Then we have O h;N .x�; q�/ D
PND

kD1 O k.x�/Yk.q�/. These formulas shall be useful in the discussion of the
alternating-direction methods below.

We now define two alternating-direction methods, referred to as method I and
method II. The distinction between these schemes is that method I uses a semi-
implicit spectral method in the q

�
-direction (i.e. the term containing �

�
is treated

explicitly in time) whereas method II uses a fully-implicit temporal discretisation.

Method I: Semi-implicit scheme. Method I is initialised by computing the
L2.� �D/ projection of the initial datum O 0 2 L2.� �D/ onto Vh ˝ PN .D/, so
that O 0

h;N
2 Vh ˝ PN .D/ satisfies

� O 0; 

	

D
� O 0h;N ; 


	
for all 
 2 Vh ˝ PN .D/: (20)
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Then, the alternating-direction method consists of two stages at each time-step:
the q

�
-direction stage and the x

�
-direction stage. We begin with the q

�
-direction stage,

which essentially uses the Galerkin spectral method in D from Sect. 2.
Suppose O n

h;N
2 Vh ˝ PN .D/. Then, in the q

�
-direction stage we compute

O n�
h;N

.x
�m
; �/ 2 PN .D/ for each m D 1; : : : ;Q� satisfying

Z

D

O n�
h;N

.x
�m
; q

�
/� O n

h;N
.x

�m
; q

�
/

�t
Yl.q

�
/ dq

�

C 1

2Wi

Z

D

r
� M

O n�
h;N .x�m; q�

/ � r
� MYl.q

�
/ dq

�

D
Z

D

.�
�

n.x
�m
/ q

�

O nh;N .x�m; q�// � r
� MYl.q

�
/ dq

�
; (21)

for l D 1; : : : ; ND . In order to separate out the x
�

- and q
�

-direction dependencies
more clearly, we rewrite this equation in terms of line functions, i.e.:

NDX

kD1
O n�
k .x

�m
/

�Z

D

Yk.q
�
/ Yl.q

�
/ dq

�
C �t

2Wi

Z

D

r
� MYk.q

�
/ � r

� MYl.q
�
/ dq

�

�

D
NDX

kD1
O nk .x�m/

�Z

D

Yk.q
�
/ Yl.q

�
/ dq

�
C�t

Z

D

.�
�

n.x
�m
/ q

�
Yk.q

�
// � r

� MYl.q
�
/ dq

�

�
;

(22)

for l D 1; : : : ; ND . This system is solved at each quadrature point x
�m

, m D
1; : : : ;Q�, and the linear solves are completely independent from one another.
This independence enables parallel computation to be used very effectively in this
context.

The q
�

-direction stage is complete once the values  n�
k
.x

�m
/, k D 1; : : : ; ND ,

m D 1; : : : ;Q�, have been computed, and then we can begin solving in the
x
�

-direction. In the x
�

-direction stage, we use a finite element discretisation of
the transport equation, t Cr

� x � .u
�
.x

�
; t/ / D 0, to update the output data from the

q
�

-direction stage. That is, for a given k, we find O nC1
k

2 Vh, satisfying:

Z

�

O nC1
k

Xi dx
�

C�t

Z

�

�
u
�

nC1 � r
� x

O nC1
k

	
Xi dx

�
D

Q�X

mD1
wm O n�

k .x
�m
/Xi .x�m/;

(23)
for i D 1; : : : ; N�, and, just as in the q

�
-direction, these computations are decoupled

from one another.
Once the x

�
-direction computations are complete, we have the numerical solution

at time level n C 1: O nC1
h;N

D PND

kD1 O nC1
k

Yk 2 Vh ˝ PN .D/. Hence method I
is defined by the initialisation (20), the q

�
-direction spectral method (22) and the

x
�

-direction finite element method (23). In Lemma 3.2 of [14] we show that method I
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is equivalent to a one-step Galerkin formulation on��D. This equivalent one-step
formulation allows standard tools of numerical analysis to be applied to explore the
stability and convergence properties of this method.

Method II: Fully-implicit scheme. Method II is very similar to method I, the sole
difference being that the term containing �

�
is now treated implicitly in time.

Using the line function notation of (22), the q
�

-direction numerical method is

defined as follows: Given the line functions O n
k

2 Vh, k D 1; : : : ; ND , determine

the values O n�
k
.x

�m
/ satisfying

NDX

kD1
O n�
k .x

�m
/

�Z

D

Yk.q
�
/ Yl.q

�
/ dq

�
C �t

2Wi

Z

D

r
� MYk.q

�
/ � r

� MYl.q
�
/ dq

�

� �t

Z

D

.�
�

nC1.x
�m
/ q

�
Yk.q

�
// � r

� MYl.q
�
/ dq

�

�
D

NDX

kD1
O nk .x�m/

Z

D

Yk.q
�
/ Yl.q

�
/ dq

�
;

(24)

for all l D 1; : : : ; ND , and for each quadrature point x
�m
; m D 1; : : : ;Q�.

The initialisation and x
�

-direction stages for method II are identical to those given
for method I, hence we omit them here.

Clearly methods I and II are closely related to one another. Note, however,
that from a practical point of view there is a trade-off in computational efficiency
between the two methods because, on the one hand, method I requires less com-
putation per time-step, since the matrix for the q

�
-direction linear systems can be

pre-assembled and LU-factorised only once since it is independent of �
�

, whereas the
q
�

-direction matrix for method II must be reassembled at each quadrature point. On
the other hand, however, the fully implicit temporal discretisation used by method II
tends to be more tolerant of large time-step sizes and coarse spatial discretisations
than the semi-implicit scheme of method I, especially for larger flow rates and
Weissenberg numbers (e.g. see Sect. 2.6.2 of [13]).

An important difference between methods I and II from the analytical point of
view is that there is no equivalent one-step formulation available for method II.
In [14], we proved stability and convergence results for method I based on its
equivalent one-step formulation. That is, with some assumptions on the x

�
-direction

quadrature rule, we established stability results of the form of Lemma 1 for method I
and, supposing that the set of shape functions for each element in Th contains all
polynomials of degree less than s C 1, we then proved the following error estimate
for method I:

k O � O h;N k`1.0;T IL2.��D// C kr
� M . O � O h;N /k`2.0;T IL2.��D//


 C1h
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�
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�
�
�
�
@ O 
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�
�
�
�
�

L2.0;T IHs.�IL2.D///

C
��
� O 
��
�
`2.0;T IHs.�IH1

0
.DIM///

C
��
� O 
��
�
`2.0;T IHsC1.�IL2.D///
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CC2N
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: (25)

This error bound assumes that basis A is used for the q
�

-direction spectral method; it
would be straightforward (but laborious) to extend (25) to bases B or C introduced
in Sect. 2.

We could not apply the same convergence argument to method II due to the
absence of an equivalent one-step formulation; nevertheless, in Lemma 3.4 of [14],
we proved the unconditional stability of method II.

4 The Micro–Macro Model

We now present some numerical results for a channel flow problem using a cou-
pled algorithm for the Navier–Stokes–Fokker–Planck system (2)–(6) (see [14] for
other computational results using the same approach, including a computation in the
d D 3 case). We implemented the Navier–Stokes solver using a Taylor–Hood mixed
finite element method [8] in the free C++ finite element library libMesh [12].
We used a finite element space of continuous piecewise quadratic functions for Vh,
and Vh was also used as the velocity space in the Taylor–Hood method, hence u

�h
,

the finite element approximation to u
�

, belongs to .Vh/d . The alternating-direction
method was implemented for parallel computation; the q

�
-direction spectral method

was implemented in PETSc [1] and libMesh was used for the x
�

-direction finite
element method (see [14] for more details of the implementation).

We considered a planar flow around a cylindrical obstacle in a channel. This is
a standard benchmark problem in the polymer fluids literature (cf. Chap. 9 of [23])
and was also considered using deterministic multiscale methods by Chauvière &
Lozinski in [4, 5, 19]. In the computation presented here, Th contained 1505 trian-
gular finite elements and Q� D 9030. For the q

�
-direction spectral method we used

basis A. We imposed a parabolic inflow velocity profile for u
�

on the left boundary of
� with Umax D 1, a Neumann condition on the right boundary, a no-slip condition
(u

�
D 0

�
) for the obstacle and top boundary, and a symmetry condition on the bottom

boundary. We used the parameters b D 12, � D 0:59, Re D 1 and we considered
two choices of the Weissenberg number, (1) Wi D 1 and (2) Wi D 3.
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�xx

�xy

�yy

Fig. 1 The components of �
�

at T D 5 for the Wi D 1 case
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�xx
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Fig. 2 The components of �
�

at T D 5 for the Wi D 3 case
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Computational experimentation indicated that for both of these problems
method II is significantly more efficient than method I (to the point where the semi-
implicit method is computationally impractical), because, for the sake of stability,
method I requires tighter restrictions on �t and on the resolution of the discrete
space PN .D/ (cf. Sect. 2.6.2 of [13]). Thus, we only present numerical results for
the fully-implicit scheme here; for a detailed comparison of the two methods for a
model problem with a milder velocity field, see Sect. 5.1 of [14].

We solved case (1) using method II with .Nr ; N� / D .14; 14/, so thatND D 406

(recall that Q� q
�

-direction solves andND x�-direction solves are performed in each
time-step of the alternating-direction algorithm). More spectral modes were required
to resolve the solution in case (2) due to the larger Weissenberg number and hence
we used .Nr ; N� / D .30; 30/, i.e.ND D 1830, in that case. We took 500 time-steps
of size �t D 0:01 and Figs. 1 and 2 show the components of �

�
at T D 5 in cases

(1) and (2), respectively. These computations were performed on 80 processors of
the Lonestar supercomputer at the Texas Advanced Computing Center (TACC), and
took approximately 1.0 s per time-step in case (1) and 4.4 s per time-step in case (2)
to perform.

5 Conclusions

We have summarised a range of results obtained in [14] and [15] for the analysis and
implementation of numerical methods for solving the multiscale Navier–Stokes–
Fokker–Planck system, which models the flow of dilute polymeric fluids. Most of
our attention has been focused on the high-dimensional Fokker–Planck equation
posed on the domain��D in 2d spatial dimensions. We developed an alternating-
direction method for this equation that is efficient in practice and is also underpinned
by rigorous numerical analysis.

We coupled this alternating-direction method to a mixed finite element method
for the Navier–Stokes equations to obtain an algorithm for the coupled system
(2)–(6). This algorithm was used to obtain computational results for a channel
flow problem of physical interest. Parallel computation is particularly effective
in the context of this problem because our alternating-direction solver for the
high-dimensional Fokker–Planck equation is “embarrassingly parallel.”
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