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Abstract This paper aims at studying steady laminar flows of incompressible new-
tonian fluids in channels at high Reynolds numbers when wall deformations can
lead to separation. Thanks to the use of generalized asymptotic expansions, cases
are examined for which linearized Euler equations are a good approximation in
the core flow. The extraction of the antisymmetric part of the problem leads to a
new and promising approach of the flow structure understanding. Comparisons with
Navier–Stokes solutions demonstrate the relevance of the proposed approach.

1 Introduction

We consider a steady, two-dimensional, incompressible, laminar flow in a channel
at high Reynolds numbers. When the walls are parallel the fully developed flow,
Poiseuille’s flow, constitutes the reference flow. The channel geometry is perturbed
by wall deformations, troughs or bumps, which can be sufficiently severe to induce
flow separation.

Here, the flow is analyzed by using the Successive Complementary Expansion
Method [1], SCEM, in which we seek a Uniformly Valid Approximation, UVA,
based on generalized asymptotic expansions.

In the study of high Reynolds number flows, the first idea is to consider Euler
equations formally obtained from Navier–Stokes equations when the Reynolds
number tends to infinity. Then, an asymptotic analysis can be applied and it is tempt-
ing to call for a hierarchical process. The first step is to solve the Euler equations.
In the vicinity of singular zones, near the walls or in the wakes, the second step
consists in trying to correct the first approximation by a boundary layer analysis.
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However, in many problems involving a strong coupling, this type of hierar-
chical approach is known not to be possible. Excluding a multi-layer approach of
triple deck type [4, 5], which introduces very restrictive hypotheses on the scales, a
possibility is to use generalized asymptotic expansions. According to this method,
the small parameters of the problem can be included in the functions which form
the expansions. This idea is very different because the small parameters are not
considered as tending towards zero but are only small. Thanks to the generalized
expansions, the effects of the eulerian region on the boundary layer region and
the reciprocal effects are considered simultaneously and not hierarchically. More-
over, the construction of a UVA does not require any matching principle, only the
boundary conditions of the problem are used.

After the formulation of the problem (Sect. 2), a direct analysis (Sect. 3) with
small wall deformations shows that the Navier–Stokes equations reduce to a coupled
system consisting of generalized boundary layer equations uniformly valid in the
whole flow – the so-called field equations – and linearized Euler equations – the
so-called core equations. A deeper study is performed by separating geometrically
the symmetric and antisymmetric parts (Sect. 4). The analysis of the flow enables us
to improve the usual asymptotic hypotheses and to consider original configurations.
Comparisons of the evolution of the skin-friction coefficient with Navier–Stokes
solutions show the relevance of the proposed approach (Sect. 5).

2 Formulation of the Problem

The Navier–Stokes equations are written in nondimensional form in an orthogonal
axis-system (x; y)
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with R denoting the Reynolds number based on the width of the non-perturbed
channel and a reference velocity such that the basic plane Poiseuille flow is

u0 D 1

4
� y2; v0 D 0; p0 D �2xR C pc : (2)

where pc is an arbitrary constant. The channel is perturbed by indentations of the
lower and upper walls
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2
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Fig. 1 Flow in a two-dimensional channel with deformed walls. In this figure, all quantities are
dimensionless

where " is a parameter (Fig. 1). At high Reynolds number, the reduced equations
obtained formally by taking their limit when the Reynolds number goes to infinity
are of first order. A singular perturbation problem arises.

3 Direct Analysis

To go further, it is usual [4, 5] to consider small wall perturbations leading to
assumption (H1)

.H1/ W F D "f; G D "g: (4)

A perturbation is said to be significant when flow separation is possible. To trans-
late this, it is required that, in boundary layers of thickness ", the perturbation of the
longitudinal velocity is of the same order as u0, i.e. of order O."/. Thus, according
to SCEM, we are seeking a UVA of the form

U D u0.y/C " Ou.x; y; "/C � � � D u.x; y; "/C � � � ; (5a)

V D " Ov.x; y; "/C � � � D v.x; y; "/C � � � ; (5b)

P D p0.x/C " Op.x; y; "/C � � � D p.x; y; "/C � � � : (5c)

It must be noted that Ou, Ov, Op are functions not only of x and y but also of ". Expan-
sions (5a–5c) are said to be generalized to underline the difference with regular
expansions in which Ou, Ov, Op would not depend on ". An asymptotic expansion is
not necessarily based on regular expansions and it has been shown that generalized
expansions are more powerful for certain boundary layer problems [1].

In the whole flow field, Navier–Stokes equations reduce to [1]
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where the index “1” denotes the characteristics of the flow perturbation in the core.

As shown in [1], it must be noted that in the streamwise momentum equation,
@ Op
@x

is

replaced by
@ Op1
@x

. Equations (6a–6b) have the same form as the standard boundary

layer equations but Op1.x; y/ is a solution of core flow equations given below. In the
core, (6a–6b) reduce to the core flow equations up to negligible terms and therefore
(6a–6b) are valid in the whole field.

The global interactive boundary layer model described by (6a–6b) and the core
flow equations is the best approximation of Navier–Stokes model we can propose
but it is not easy to solve. Fortunately, it can be shown that the core flow (Euler)
equations can be linearized and the solution of the resulting model is much eas-
ier [2]. Thus, the field equations are structurally non-linear whereas the core flow
equations are linear. With notations defined by (5a–5c), the field and core flow
equations can now be written
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In the above equations index “1” refers to quantities satisfying the core flow
equations. From (8a–8c), it is found that v1 is solution of Poisson’s equation
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and the x-component of the pressure gradient required to solve the generalized
boundary layer equations is given by (8b) in which the continuity equation (8a)
is taken into account
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It can be shown that (9) associated to (10) gives the y-momentum equation (8c)
if the perturbations vanish at upstream infinity. This establishes the equivalence
between (8a–8c) and (9–10).
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To sum up, the problem to solve comprises (7a–7b), (9) and (10). At the walls,
the boundary conditions are

y D y` and y D yu : u D 0; v D 0; (11)

and the coupling between the core flow equations and the generalized boundary
layer equations is expressed by identifying u; v and u1; v1 in the core

.u; v/ ! .u1; v1/: (12)

The model presented above belongs to a class of strong coupling method since
there is no hierarchy between the boundary layer equations and the core flow equa-
tions. The triple deck theory, or more precisely its equivalent for channel flows as
developed by Smith [4, 5], belongs also to this class of strong coupling models. In
fact, Smith’s model is included in the present model since the expansions are regular
whereas in the present model the expansions are generalized. It is interesting to note
that the first approximation of Smith’s model for v1 is symmetric with respect to
y and corresponds to a geometrically antisymmetric problem. In the core, Smith’s
model gives

v1 D �u0.y/dA.x/

dx
; (13)

where A is defined as the displacement function. It must be noted that (13) is an
eigensolution of (10) but not of (9). This remark leads us to try to separate as far
as possible the symmetric and antisymmetric problems which leads, as we will see,
to a new approach of the asymptotic problem. The issue of asymmetry has been
approached earlier by Lagrée et al. [3].

4 Influence of Asymmetry

The analysis starts from (1a–1c) in which we introduce the transformation

X D x; Y D y � �H.x; "/; U D U ; V D V � U� dH

dx
; P D P ; (14)

where � and  are order functions such that � � 1 and  � 1. We have

H D OS.1/ and
dnH

dxn
D O.n/: (15)

where OS means “is of strict order of” whereas O means “is at most of order of” [1].
With these hypotheses, Navier–Stokes equations become
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If we set

E D F CG

2
; H D F �G

2
; (17)

the problem is geometrically symmetrized. Note that the channel is deformed
symmetrically whenH D 0. The wall conditions then become

Y D Y` D �1
2

C E and Y D Yu D 1

2
�E : U D 0; V D 0: (18)

Moreover, for small , the basic flow corresponding to E D 0 is

U0 D 1

4
� Y 2; V0 D 0; P0 D �2XR C Pc ; (19)

where Pc is an arbitrary constant. We introduce assumption .H2/

.H2/ : E D "e; �2 � ": (20)

With (H2), the complete system to solve comprises the field equations
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where P is replaced by P1 and the core flow equations which can be linearized
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This system is solved with (18) and the coupling condition in the core

V ! V1: (23)
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Fig. 2 Flow produced by a trough in the lower wall and different upper wall deformations. R D
1;000. NS-Navier–Stokes results, IBL-Interactive Boundary Layer results

5 Results and Conclusions

To assess the validity of the Interactive Boundary Layer method, IBL, it is chosen
to examine the evolution of the skin-friction coefficient which is a very sensitive

flow feature, Cf D 2

R�w where �w is the reduced wall shear stress. Details on the



224 J. Mauss et al.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0,0

0,5

1,0

1,5

2,0

2,5

0,0

0,5

1,0

1,5

2,0

Lower Wall

x/L x/L

Upper Wall

2

Cf R
2

Cf R

IBL

IBL

NS

NS

hu = 0.5
hl = 0.5

Fig. 3 Flow produced by a channel bend. R D 1;000. NS-Navier–Stokes results; IBL D
Interactive Boundary Layer results

numerical procedure can be found elsewhere [2]. The Navier–Stokes equations are
solved with the commercial code FLUENT. Different cases are calculated in which
the walls are deformed in a domain x1 
 x 
 x2

F D hl

2

�
1C cos

2�x

L

�
IG D �hu

2

�
1C cos

2�x

L

�
IL D 4: (24)

For all cases, the Reynolds number is R D 1;000.
At first, comparisons between IBL and Navier–Stokes results are given in Fig. 2.

The lower wall is deformed by a trough located in the domain �2 
 x 
 2 with
hl D �0:3. The upper wall is deformed in the same domain �2 
 x 
 2 but
different upper wall shapes have been investigated between the symmetric case
(hu D 0:3) and the antisymmetric case (hu D �0:3). Even though the amplitude
of the wall deformation is not really small as required by the theory, an excellent
agreement with Navier–Stokes results is observed.

The IBL model enables us also to treat original problems. In the case of a bend,
when the channel does not recover its initial position at the downstream end, the
usual techniques of small perturbations do not work any longer. As an example, the
walls are deformed in the domain �2 
 x 
 0 with hl D 0:5 and hu D 0:5;
for x > 0, we have yl D 0, yu D 1 so that the channel axis is displaced from
y D 0 upstream to y D 0:5 downstream. In this case again, a good agreement with

Navier–Stokes results is observed (Fig. 3). This shows that
dH

dx
which characterizes

the influence of the antisymmetric part of the wall deformation plays an important
role in the definition of what could be the small parameter of the problem.

Other non usual cases can be treated by this method, for example dilated or
constricted channels, . . . The IBL calculations are much faster than Navier–Stokes
calculations and, in addition, the new asymptotic analysis helps us to understand the
flow structure. Moreover, this step is necessary to approach the important problem
of separation control.
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