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Abstract We will first briefly summarize the previous efforts in constructing a
parameter design for local projection and grad-div stabilization based on a-priori
convergence analysis for the linearized problem given in [LRL08] and [MT07].
Especially for Taylor-Hood type elements this leads to a grad-div stabilization
parameter 
 � 1. While this design works well for some academic testproblems
it does not give satisfactory results for others. A review of the convergence esti-
mate suggests an a-posteriori parameter design including local norms of velocity
and pressure. Some first numerical results based on this parameter design will be
presented.

1 Introduction

Consider the non-dimensional, unsteady, incompressible Navier–Stokes equations:

@tu �Re�1�u C .u � r/u C rp D Qf in � � .0; T /
r � u D 0 in � � .0; T / (1)

in the primitive variables velocity u and pressure p in a bounded, polyhedral domain
� � R

d , d D 2; 3 and with given source term Qf. The dimensionless Reynolds num-
ber is given by Re D UL

�
with U and L being a characteristic velocity and length,

respectively, and � the kinematic viscosity.
A standard approach for solving (1) is to apply a semi-discretization in time with

an implicit A-stable scheme first and then to linearize the problem with a fixed point
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or Newton-type method. The fixed point iteration leads to a series of Oseen-type
problems:

�Re�1�u C .b � r/u C �u C rp D f in �

r � u D 0 in �:

We consider � to be constant and proportional to the inverse of the chosen timestep
size and b 2 Hdiv.�/\ L1.�/ with � � 1

2
r � b 	 �0 	 0 almost everywhere. For

simplicity we impose homogeneous Dirichlet boundary conditions u D 0 on @�.
The appropriate solution space for the continuous problem is

.u; p/ 2 V �Q WD �
H 1
0 .�/

�d � L20.�/:
The weak formulation for the Oseen problem then reads

Find U D .u; p/ 2 V �Q s.t.

A.U; V / D .f; v/ 8V D .v; q/ 2 V �Q
with the bilinear form

A.U; V / WD Re�1.ru;rv/C ..b � r/u C �u; v/ � .r � v; p/C .r � u; q/;

where . ; / denotes the inner product on L2.�/ or ŒL2.�/	d .
As a spatial discretization we consider quadrilateral (d D 2) and hexahedral ele-

ments (d D 3) and require a shape-regular triangulation T
h
. Let FK be the mapping

from the reference cell OK to real cell K and let Qr be the space of tensor polyno-
mials, i.e. polynomials of maximum degree r in each coordinate direction. Then we
can define the mapped finite element space

Yr;h D fv 2 C.�/ j vjK ı FK 2 Qr.
OK/ 8K 2 Thg :

We choose the discrete ansatz spaces V
h

D �
Y
s;h

�d \ V and Q
h

D Q
t;h

\ Q for
velocity and pressure with polynomial degrees s and t , respectively.

2 The Local Projection Stabilization Framework

The standard Galerkin approximation with finite elements suffers from two prob-
lems. On the one hand the case Re � 1 gives raise to spurious oscillations in
the velocity component of the solution due to dominating advection and poor mass
conservation; on the other hand, a pressure instability occurs for spaces that do not
satisfy the discrete inf-sup condition.
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A widespread framework to deal with all these problems is the residual based
stabilization. Especially the combination of Streamline-Upwind/Petrov-Galerkin
(SUPG) and Pressure-Stabilization/Petrov-Galerkin (PSPG) is often used, some-
times supplemented with Grad-Div stabilization, see [BBJL07] and references
therein.

The class of residual based methods has several drawbacks. For example the
SUPG and PSPG methods are non-symmetric and introduce additional coupling
terms between velocity and pressure. These create some difficulties in the analy-
sis and lead to upper bounds on the stabilization parameters in order to prove the
stability of the method.

As a remedy for the drawbacks of the class of residual based methods several
symmetric stabilization methods have been proposed. They all have in common that
they add a symmetric, positive semi-definite bilinear form S

h
to the original weak

formulation of the problem.
The stabilized variational formulation is then given by:

Find Uh D .uh; ph/ 2 Vh �Qh s.t.

.AC Sh/.Uh; Vh/ D .f; vh/ 8Vh D .vh; qh/ 2 Vh �Qh:

There are several ways to define the penalty term S
h
, see [BBJL07]. Here we will

focus on the local projection stabilization (LPS) following the framework introduced
in [MST07]. The idea of LPS is to penalize only the small scales of the quantities
of interest defined by some fluctuation operator.

Let VH=QH be a pair of scalar and discontinuous coarse spaces on a suit-
able macro triangulation M

h
and let �v=q W L2.�/ ! VH=QH be the local

L2-projections into the coarse spaces. Then we can define the fluctuation operators

�v=q WD id � �v=q W L2.�/ ! L2.�/:

We will use boldface notation �v if we apply the operator component-wise. The
stabilizing bilinear form Sh can then be defined as

Sh.U; V / WD
X

M2Mh

�M


�v..r � b/u/; .r � b/v

�
M

C
X

M2Mh


M


�q.r � u/;r � v

�
M

C
X

M2Mh

˛M


�v.rp/;rq�

M
:

It contains penalty terms for the fluctuations of the streamline derivative and diver-
gence of the velocity and the pressure gradients, weighted element-wise by user
chosen parameters �M , 
M and ˛M . Other variants that stabilize fluctuations of the
full gradient of the velocity are possible.
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3 Parameter Design

Two typically used conforming spatial discretizations are the family of Taylor-Hood
elements (TH, s D t C 1) and approximations with equal order for velocity and
pressure (EO, s D t). The coarse spaces are chosen in a so called two-level manner,
where T

h
is a suitable global refinement of M

h
WD T

2h
. The full a-priori analysis on

stability and error estimates for this method can be found in [LRL08] and [MT07].
Under the assumptions given there one can derive the following estimate for

the error between the continuous solution U D .u; p/ and the discrete solution
U
h

D .u
h
; p
h
/ in the stabilized energy norm:

jjjU � Uhjjj2LP 
 C
X

M2M
h

�
�Mh

2s
M j.b � r/uj2s;!

M

C C uMh
2s
M juj2sC1;!

M
C C

p
Mh

2t
M jpj2tC1;!

M

	
(2)

where !M denotes a certain neighborhood of the macro element and

C uM WD Re�1 C h2M .� C ��1
M C ˛�1

M /C 
M C �M kbk21;M ;

C
p
M WD ˛M C 
�1

M h2M :

The energy norm itself is given by:

jjj.v; q/jjj2LP D Re�1jvj21 C �0kvk20 C ıkqk20 C Sh.v; qI v; q/:

In order to get asymptotically optimal rates of convergence, the stabilization
parameters must satisfy a certain scaling with respect to hM given in Table 1. These
parameter designs are based on the assumption jujkC1;M � jpjk;M and obtained by
balancing the parameter dependent terms in the a-priori error estimate (2) in order
to minimize the upper bound on the error.

For the Taylor-Hood element the divergence parameter 
M is notably conspicu-
ous because it is of order 1 and might dominate the whole PDE. In [OR04], where
the grad-div stabilization for the Stokes problem is analyzed, it is remarked, that
the larger the norm of the pressure is compared to the norm of the velocity, the
more important the divergence stabilization is. We propose that balancing the 
M –
dependent terms should include the local norms of u and p because there may be
large differences in the scaling of both. Following this approach gives:

Table 1 Selected space combinations with parameter scaling (Re�1 < hM )

Vh Qh VH QH �M �M ˛M error

TH Y
k;h

Y
k�1;h

Y disc
k�1;2h

f0g 
hM 
1 0 O


hk

M

�

EO Y
k;h

Y
k;h

Y disc
k�1;2h

f0g 
hM 
hM 
hM O
�
h

kC1=2

M
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M juj2kC1;!M
� 
�1

M jpj2k;!M
H) 
M � jpjk;!M

jujkC1;!M

:

Since the solution .u; p/ is generally unknown, these norms must be replaced by
norms of the discrete solution .u

h
; p
h
/. This leads to a local and nonlinear parameter

design. We should further note, that it may be difficult to recover approximations
of the high order derivatives from the discrete solution to evaluate the norms for
large k.

4 Numerical Results

As test cases we considered two stationary Navier–Stokes problems with special
properties.

Problem 1. On the unit square � D .0; 1/2 we define

u.x; y/ D
�

cos.2x � 1/e2y�1
sin.2x � 1/e2y�1

�
; p.x; y/ D e2 � e�2

8
� e4y�2

2

and right hand side f D 0. Then the Laplacian vanishes, �u D 0. The sole contri-
bution from the velocity field to the PDE is the nonlinear term that cancels out with
the pressure gradient.

Problem 2. Again on the unit square � D .0; 1/2 we prescribe a fixed velocity
profile and a channel-like linear pressure

u.x; y/ D
�

sin.�y/
0

�
; p.x; y/ D Re�1�.x � 1

2
/

and get a non-vanishing right-hand side. This time the convective term .u � r/u is
zero and the pressure is scaled with the inverse of the Reynolds number. A vector
plot of the velocity field for both examples is given in Fig. 1.

Remark. We did not use the quadratic Poiseuille profile for the second example
because it is contained in the ansatz spaces for k 	 2.

The following numerical tests were carried out on an unstructured, quasi uniform
mesh with h � 1

32
and the Taylor-Hood element with k D 2. The nonlinearity was

resolved by a damped defect correction iteration and the norm of the residual was
reduced below 10�12.

Figure 2 shows how the various errors of the discrete solution depend on the
Reynolds number without stabilization. For the first problem we see almost a linear
increase of the errors in the velocity with the Reynolds number, while the pressure
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Fig. 1 Vector plot of velocity for problems 1 (top) and 2 (bottom)
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Fig. 2 Errors vs. Reynolds number Re for problems 1 (top) and 2 (bottom)

error remains constant. The error of the velocity in the H 1-seminorm is dominated
by the divergence error. For the second problem we can observe a linear decrease
of the pressure error that is caused by the scaling of the pressure with Re�1. The
velocity errors are not affected by the Reynolds number and the divergence error is
smaller than the H 1-seminorm error.
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Fig. 3 Stabilization with the old parameter design, problems 1 (top) and 2 (bottom)

The effect of divergence stabilization on the errors for the original parameter
design and both examples with Re D 104 is shown in Fig. 3. For the first prob-
lem the divergence stabilization improves the velocity errors by several orders of
magnitude and decouples the divergence error from the H 1-seminorm error. The
optimal parameter 
M � 1 reduces the divergence error to the level it had for
Re D 1. However, the behavior is different for the second problem. At some point
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Fig. 4 Stabilization with the new parameter design, Example 1

the pressure error starts to increase linearly with the stabilization parameter. The
previously optimal value now increases the pressure error by more than one order of
magnitude. Over the whole range of tested parameters only a marginal improvement
of the error can be observed. The errors without stabilization are almost optimal.

To get some first results for the new parameter design we used the reference
solution and inserted it into the new parameter design. Due to vanishing second
derivatives of the pressure for the second problem the parameter design reduces to

M D 0 and reproduces what we could see in the previous numerical result: for this
problem the divergence stabilization is superfluous. For the first problem the original
assumption on the norms is valid and the new parameter design gives results (shown
in Fig. 4) comparable to the old parameter design.

More realistic flows, like the flow around a cylinder used in benchmark com-
putations [TS96], show locally varying properties. Close to the cylinder nonlinear
effects are stronger, while far behind the cylinder channel like flow can be observed.
The proposed parameter is an indicator for the flow type and varies by two orders
of magnitude for the flow around the cylinder.

5 Conclusion

Parameter designs for the divergence stabilization did not take into account the local
norms of velocity and pressure so far. This leads to parameters far from being
optimal for some types of flow (e.g. channel type flow) that actually increase the
errors. By a careful look into existing a-priori analysis and error estimates we were
able to derive a new parameter design for the divergence stabilization that includes
local norms of velocity and pressure in order to minimize the upper bound of the



204 J. Löwe

error. The rate of convergence is not affected by the new choice. Unfortunately the
new parameter design has several drawbacks that are an obstacle to an efficient
implementation.

We should note, that similar observations can be made for the pressure stabi-
lization parameter, because it appears in front of velocity and pressure norms in
the error estimate. In practice the effect of badly chosen parameters is less visible
there, because the parameter typically is proportional to hM or h2M for pressure
stabilization.

We have not yet implemented the proposed nonlinear parameter design, because
we belive that balancing the parameter using the asymptotic a-priori error esti-
mate is still not optimal. What we finally want to do is to determine the load on
the divergence constraint, for example by using a Helmholtz-decomposition of the
convective and external forcing terms in the momentum equation.

The question whether it is possible to construct a reliable and robust parameter
design, that works over a broad range of problems without case by case parameter
tuning and can be efficiently implemented, is still open.
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