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Abstract The paper studies finite element methods for the simulation of time-
dependent convection-diffusion-reaction equations with small diffusion: the SUPG
method, a SOLD method and two types of FEM–FCT methods. The methods are
assessed, in particular with respect to the size of the spurious oscillations in the
computed solutions, at a 3D example with nonhomogeneous Dirichlet boundary
conditions and homogeneous Neumann boundary conditions.

1 Introduction

The simulation of various applications requires the numerical solution of time-
dependent convection–diffusion–reaction equations. Processes which involve a
chemical reaction in a flow field are a typical example [5]. Such a reaction can be
modeled with a coupled system of time-dependent nonlinear convection–diffusion–
reaction equations for the concentrations of the reactants and the products.

Typically, the solution of these equations possesses layers. A numerical method
for the simulation of these equations, whose results can be considered to be useful,
should meet the following requirements:

 The layers should be correctly localized,
 Sharp layers (with respect to the used mesh size) should be computed,
 Spurious oscillations in the solution must not occur.

The third requirement means in particular that the computed solution should not
have negative values if, for instance, the behavior of concentrations is simulated.
A number of finite element methods have been developed for the simulation of
convection–diffusion–reaction equations with small diffusion. One of the most pop-
ular ones is the Streamline Upwind Petrov–Galerkin (SUPG) method from [1, 2].
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This method leads to solutions with correctly located and sharp layers, however also
with sometimes considerable spurious oscillations. To reduce these oscillations, a
number of so-called Spurious Oscillations at Layers Diminishing (SOLD) schemes
have been proposed, see the reviews [3,4]. SOLD schemes add additional, in general
nonlinear, stabilization terms to the SUPG method. A completely different finite ele-
ment approach for treating equations with small diffusion is used in Finite Element
Method Flux–Corrected–Transport (FEM–FCT) schemes [8,10]. These methods do
not modify the bilinear form but manipulate the matrix and the right-hand side of a
Galerkin finite element method.

A first comparison of finite element methods for time-dependent convection-
diffusion-reaction equations was presented in [6]. The numerical examples of [6]
studied problems in 2D with homogeneous Dirichlet boundary conditions. The
present paper extends the studies of [6] to 3D problems with inhomogeneous Dirich-
let and homogeneous Neumann boundary conditions. This is a realistic situation in
applications.

2 Finite Element Methods for Time-Dependent
Convection–Diffusion–Reaction Equations

We consider a linear time-dependent convection–diffusion–reaction equation

ut � "�uC b � ruC cu D f in .0; T 	 ��; (1)

where " > 0 is the diffusion coefficient, b 2 L1.0; T I .W 1;1.�//3/ is the
convection field, c 2 L1.0; T IL1.�// is the non-negative reaction coefficient,
f 2 L2.0; T IL2.�// describes sources, T > 0 is the final time and � � R

3

is a bounded domain. This equation has to be equipped with an initial condition
u0 D u.0; x/ and with appropriate boundary conditions. Since the isothermal reac-
tion considered in [5] leads to equations with non-negative reaction rates, we are
particularly interested in the case c.t; x/ 	 0 in Œ0; T 	 ��.

In the numerical studies, (1) is discretized in time with the Crank–Nicolson
scheme using equidistant time steps �t . This leads at the discrete time tk to the
equation

uk C 0:5�t .�"�uk C bk � ruk C ckuk/

D uk�1 � 0:5�t .�"�uk�1 C bk�1 � ruk�1 C ck�1uk�1/
C 0:5�tfk�1 C 0:5�tfk: (2)

Equation (2) can be considered as a steady-state convection–diffusion–reaction
equation, with the diffusion, convection and reaction, respectively, given by

D D 0:5�t"; Ck D 0:5�tbk; Rk D 1C 0:5�tck:
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The Galerkin finite element method for (2) reads as follows: Find uh
k

2 V hans such
that

.uhk ; v
h/C 0:5�t

�
."ruhk ;rvh/C .bk � ruhk C cku

h
k ; v

h/
	

D .uhk�1; v
h/ � 0:5�t

�
."ruhk�1;rvh/C .bk�1 � ruhk�1 C ck�1uhk�1; v

h/
	

C 0:5�t.fk�1; vh/C 0:5�t.fk; v
h/ (3)

for all vh 2 V htest, where V hans and V htest are appropriate finite element spaces. Here,
.�; �/ denotes the inner product in L2.�/.

The SUPG method adds a consistent diffusion term in streamline direction

X

K2T h

�K

�
Rh.uhk/;Ck � rvh

	

K

to the left-hand side of (3), where T h is the given triangulation of �, f�Kg is a set
of parameters depending on the mesh cells fKg and .�; �/K is the inner product in
L2.K/. The residual Rh.uh

k
/ is defined by the difference of the left-hand side and

the right-hand side of (2). Different proposals for the choice of the parameters f�Kg
can be found in the literature. In the numerical studies of [6], the choice from [7]

�K D min



hK

�tkbkk2 ;
1

1C 0:5�tck
;
2h2K
�t"

�
(4)

has been proven to be the best one. In (4), k � k2 denotes the Euclidean norm of a
vector and hK is an appropriate measure of the size of the mesh cell K . For time-
dependent problems which are discretized with small time steps, the second term in
(4) dominates and the actual choice hK is of minor importance. In the computations
presented below, the diameter of the mesh cell K was chosen. It is well known
that numerical solutions which are computed with the SUPG method often possess
non-negligible spurious oscillations at the layers.

SOLD methods try to reduce the spurious oscillations of the SUPG method by
adding another stabilization term to this method. This stabilization term is in general
nonlinear. There are several classes of SOLD methods, see [3, 4]. It was found in
the numerical studies of [6] that the best results among the SOLD methods were
obtained with a method that adds an anisotropic diffusion term

.Q"Cos;kruhk ;rvh/ with Cos;k D
8
<

:
I � Ck ˝ Ck

kCkk22
if Ck ¤ 0;

0 else,

and the parameter

Q"jK D max

(

0; C
diam.K/jRh.uh

k
/j

2kruh
k
k2

�D
)

; (5)
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where diam.K/ is the diameter of a mesh cell K . This type of parameter was pro-
posed in [7] and modified to the form (5) in [3]. The SOLD parameter (5) contains
a free parameter C which has to be chosen by the user. In analogy to [6], this SOLD
method will be called KLR02.

The last approaches which will be studied in our numerical tests are FEM–FCT
schemes. They start with the algebraic equation corresponding to the Galerkin finite
element method (3)

.MC C 0:5�tAk/uk D .MC � 0:5�tAk�1/uk�1 C 0:5�tf
k�1 C 0:5�tf

k
; (6)

where f'ig is the basis of the finite element space and .MC /ij D .mij / D .'j ; 'i /

is the consistent mass matrix. The matrix representation of the second term of the
left-hand side of (3) is denoted by .Ak/ij D .aij /. Vectors are indicated by an
underline. The first idea of FEM–FCT schemes is to manipulate (6) so that a stable
but low order scheme is represented. To this end, define Lk D Ak CDk with

Dk D .dij/; dij D � maxf0; aij; ajig for i ¤ j; dii D �
NX

jD1;j¤i
dij;

and ML D diag.mi / with mi D PN
jD1mij, where N is the number of degrees of

freedom.ML is called lumped mass matrix. The low order scheme reads

.ML C 0:5�tLk/uk D .ML � 0:5�tLk�1/uk�1 C 0:5�tf
k�1 C 0:5�tf

k
: (7)

The second idea of FEM–FCT schemes is to modify the right-hand side of (7) in
such a way that diffusion is removed where it is not needed but spurious oscillations
are still suppressed

.ML C 0:5�tLk/uk D .ML � 0:5�tLk�1/uk�1 C 0:5�tf
k�1 C 0:5�tf

k

C f �.uk ; uk�1/: (8)

The computation of the anti-diffusive flux vector f �.uk ; uk�1/ is somewhat
involved and we refer to [6, 8–10] for details. Its computation relies on a predictor
step which uses an explicit and stable low order scheme. Thus, a stability issue arises
in FEM–FCT schemes which leads to the CFL-like condition �t < 2mini mi=lii.
This condition was fulfilled in the numerical tests presented in Sect. 3. We will
consider a nonlinear approach for computing f �.uk ; uk�1/ [9, 10] and a linear
approach [8] (in the form which is presented in [6]).

3 Numerical Studies

We consider a situation which has some typical features of a chemical reaction in
applications. First, the domain is three dimensional, � D .0; 1/3. There is an inlet
at f0g � .5=8; 6=8/ � .5=8; 6=8/ and an outlet at f1g � .3=8; 4=8/ � .4=8; 5=8/.
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The convection is given by b D .1;�1=4;�1=8/T , which corresponds to the vector
pointing from the center of the inlet to the center of the outlet. Thus, the convec-
tion will not be aligned to the mesh. The diffusion is given by " D 10�6 and the
reaction by

c.x/ D


1 if kx � gk2 
 0:1;

0 else,

where g is the line through the center of the inlet and the center of the outlet. That
means, a reaction takes place only where the solution (concentration) is expected to
be transported. The inlet boundary condition is

uin.t/ D
8
<

:

sin.�t=2/ if t 2 Œ0; 1	;
1 if t 2 .1; 2	;
sin.�.t � 1/=2/ if t 2 .2; 3	:

At the outlet, homogeneous Neumann boundary conditions are prescribed. Apart
from inlet and outlet, the solution should obey homogeneous Dirichlet conditions on
the boundary. The right-hand side was set to be f D 0 in� for all times and the final
time in our numerical studies was T D 3. The initial condition was set to be u0 D
0. The orders of magnitude for diffusion, convection, reaction and concentration
correspond to the situation of [5].

Results will be presented for the P1 finite element on a tetrahedral mesh and
the Q1 finite element on a hexahedral mesh. The number of degrees of freedom
on both meshes is 35 937, including Dirichlet nodes. The diameter of the mesh
cells is about 0:054 for the hexahedral mesh and between 0:054 and 0:076 for the
tetrahedral mesh. The Crank–Nicolson scheme was applied with �t D 0:001.

From the construction of the problem, it is expected that the solution is trans-
ported from the inlet to the outlet with a little smearing due to the diffusion. It
should take values in Œ0; 1	. The size of the spurious oscillations in the numeri-
cal schemes will be illustrated with the size of the undershoots uhmin.t/, see Fig. 1.
The undershoots are particularly dangerous in applications since they represent non-
physical situations, like negative concentrations. Figure 2 shows the distribution of

Fig. 1 Minimal value of the finite element solutions uh
min.t/, leftQ1, right P1
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Fig. 2 Distribution of negative oscillations uh
min.t/ � 0:01 for the SUPG method at t D 2, left

Q1, right P1

Fig. 3 Cut of the solution, SUPG method at t D 2, leftQ1, right P1

Fig. 4 Cut of the solution, SOLD method (5), C D 0:2 at t D 2, leftQ1, right P1

the undershoots with uhmin.t/ � 0:01 for the SUPG method at t D 2. Cut planes of
the solutions at t D 2 are given in Figs. 3–7. These cut planes contain the centers
of the inlet and the outlet and they are parallel to the z-axis. Note, some wiggles
which can be seen in the contour lines might be due to the rather coarse meshes. For
illustrating the spurious oscillations, a color bar is given for each cut plane.
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Fig. 5 Cut of the solution, SOLD method (5), C D 0:4 at t D 2, leftQ1, right P1

Fig. 6 Cut of the solution linear FEM–FCT method at t D 2, leftQ1, right P1

Fig. 7 Cut of the solution, nonlinear FEM–FCT method at t D 2, leftQ1, right P1

The numerical results show the large amount of spurious oscillations in the solu-
tions computed with the SUPG method. Figure 2 demonstrates that the solutions
are globally polluted with spurious oscillations. The oscillations were considerably
reduced and localized (not shown here) with the SOLD method KLR02. Increasing
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Table 1 Computing times in seconds

Method Q1 P1

SUPG 5,989 9,473
SOLD (5), C D 0.2 24,832 25,050
SOLD (5), C D 0.4 33,688 30,932
FEM–FCT linear 5,920 6,509
FEM–FCT nonlinear 9,768 10,398

the constant in (5) leads to a decrease of the spurious oscillations, Fig. 1. From the
numerical studies of [3, 4] it is known that an increase of the constant in (5) results
to somewhat more smearing of the solutions. However, this is rather tolerable in
applications compared with spurious oscillations. The solutions obtained with the
FEM–FCT methods are almost free of spurious oscillations. The smoother solutions
of the linear FEM–FCT scheme, compared with the nonlinear FEM–FCT scheme,
reflect that the linear scheme introduces more diffusion. This leads generally to a
stronger smearing of the layers, see [6]. Altogether, the FEM–FCT schemes gave
the best results in the numerical studies.

Computing times for the methods are given in Table 1. For solving the algebraic
systems corresponding to the nonlinear schemes, the same fixed point iteration as
described in [4, 6] was used. The iterations were stopped when the Euclidean norm
of the residual was less than 10�8. The computations were performed on a com-
puter with Intel Xeon CPU with 2:66 GHz. It can be observed that the nonlinear
schemes are considerably more expensive than the linear methods. For KLR02, the
computing times increase with increasing size of the user-chosen parameter. All
observations correspond to the results obtained in [6] for 2D problems.

4 Summary and Conclusions

The paper studied several finite element methods for solving time-dependent
convection–diffusion–reaction equations in a 3D domain with inhomogeneous
Dirichlet and homogeneous Neumann boundary conditions. The SUPG method led
to solutions globally polluted with large spurious oscillations. These oscillations
were reduced considerably with a SOLD method, but at the expense of much larger
computing times. FEM–FCT methods led to almost oscillation-free solutions. From
the aspects of solution quality and computing time, the linear FEM–FCT scheme
seems to be, among the methods studied, the most appropriate method to be used in
applications.
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9. D. Kuzmin and M. Möller. Algebraic flux correction I. Scalar conservation laws. In R. Löhner
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