A System of Singularly Perturbed Semilinear
Equations
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Abstract In this paper systems of singularly perturbed semilinear reaction-diffusion
equations are examined. A numerical method is constructed for these systems which
involves an appropriate layer—adapted piecewise-uniform mesh. The numerical
approximations generated from this method are shown to be uniformly convergent
with respect to the singular perturbation parameters.

1 Introduction

In this paper we consider semilinear systems of the form

Tu:=—FEu’ +b(x,u) =0, x € Q=(0,1), u(0) =a, u(l) =b, (la)
b(x,u) = (b1(x,0),...,bp(x,u)T € CHQ xR™), (1b)

and V(x,y) € Q x R” we assume that the nonlinear terms satisfy

Ob; = Ob;
"(x.y)<0.Vi#j.and Y (xy)>p2>0.>0.Vi=1...m,
81/!/ = Buj
(Ic)
where £ = diag{e%, .. .,e,zn} is a diagonal matrix, 0 < &1 < ... < &, < 1 and

u= (up,...,.um)7.

In [1, 3], information about the layer structure for linear singularly perturbed
reaction—diffusion systems was obtained via linear decompositions of the solution
into regular and singular components. Here we show that these techniques are appli-
cable to a semilinear system. The preprint [2] is available to the reader to supplement
this paper with some additional details.
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For any v,w € R™, we write v < wif v; < w;, Vi and |v| := (Jv1], |v2l,. ..,
[vmDT 3 [|.f lloo = maxy | £(x)] and [[flo := max; || filloo; C := C(1,1,..., DT
is a constant vector and C denotes a generic positive constant independent of
(¢1,€2,..., &) and the discretization parameter.

2 Singularly Perturbed Semilinear Systems

Conditions (1b), (1c) and the implicit function theorem ensure that there exists a
unique solution u € (C*(2))™ to (1a), and that the corresponding reduced problem
b(x,r) = 0, x € Q, also has a unique solution in r € (C*(£2))”. Note that the
conditions (1¢) on the Jacobian matrix J where

s = () )
J

are the natural extension of the linear case [6] for the coupling matrix. These
conditions guarantee that J is an M—matrix for all (x,y) € Q x R™.

To deduce the asymptotic behaviour of the solution, we consider the following
decompositionu = v + w + wg, where the regular component v is the solution of
the problem

—Ev' +b(x,v) =0, x € 2, v(0) =r(0), v(1) = r(1), (2)
and the singular components w, wg are the solutions of

—Ew” + (b(x,v+w)—b(x,v)) =0, x € Q,

w(0) = (u—v)(0), w(l) =0, (3
—Ewj + (b(x,v+w+wg) —b(x,v+w) =0, x € Q,
wWr(0) =0, wg(l) = (u—v)(1). 4)

Note (1c) guarantees existence and uniqueness of v, w, wg and it will also be used
below to establish existence and uniqueness for several further decompositions of
these components. Below we state bounds on the derivatives of the left layer com-
ponent w. The corresponding bounds on the right layer component wg are obtained
by simply replacing x with 1 — x.

Lemma 1. The regular component v satisfies

d¥v
dxk

dkvl-

<C,k=0,1,2,
- dx*

oo oo
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m
Proof. Consider the secondary decomposition of v = Z q[i], where
i=1

dzq[m] (] ] -
—En dx2 +b(x,. 4" =0, (") (0) = rm(0), (@")m(D) = rm(l), (6)
dzq[/] m . m ) 5 m .
—E; dx2 —i—b(x,zq[z])_b(x’ Z q[z])zgj Z @M ep, x € @,
i=j i=j+1 i=j+1
@i (0) = @) (1) =0. j<i<m 1<j<m, o

with the matrix E; is the zero matrix except that on the main diagonal (E;);; =
e?, Jj > 1, (note that in this notation £1 = E) and e; is the i th vector of the canonical
basis. Conditions (1c) imply that q"1(0) = r(0), q!(1) = r(1), and qV/1(0) =
qV1(1) =0, for1 < j <m.

To obtain estimates for the component g, we introduce the functionz = q
r, which is the solution of the problem

m] _

1
—Enz’ + [ J(x,r +sz)dsz = Epx’, z(0) =2z(1) = 0.
s=0

The conditions (1c¢) ensure that a maximum principle holds for this system. Thus
|zllo < Ce2, and ||z}, ]|oc < C and follows that ||z}, [|cc < C. We conclude that

dk [m]
@5nl k=012, and ”q['”]” <c.
dxk [ee]
o0
In addition, from the nonlinear system b (x,q™) = -+ = b,y (x,ql™) = 0,
we have that
d*(ql™y;
@Dl ki 1<i<m
dxk .

Differentiating the mth equation of (6) twice and using the above bound we conclude

that ||d*(q")n/dx*||eo < Ce2. Hence [|d3(q")m/dx>||s0 < Ce,;! and, using
the first m — 1 equations of (6), we have that

d* (q™);

i <Ce2* k=34 1<i<m.
X

e o]

Now consider the component g1 with 1 < j < m. It is the solution of

d?ql/1

—E dx?

1 m m
[ o d s sadsal = 3 @ e x e 2.
0 i=j+1 i=j+1

@i = @i =0.j <i <m.
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The maximum principle yields ||ql/! [ < Cs?, and then ||d2(q1); /dx?| s <
C(ej/ei)®> <C, j <i < m. Then, lld(ql/1); /dx|leo < C, j <i < m, and hence
(if j > 1) we have |d(qV));/dx]|oo < C. [[d*(@V))i/dx]loc < C. 1 <i < j—1.

Differentiating the differential equation (7) twice, using the bounds for q'/! and
its derivatives, we deduce that [|d*(q!/)); /dx*||c < Ce72,i = 1,...,m. Hence
Ild3(@U)i/dx3|loe < Ceit i = 1,....m. O

To establish first order error bounds in the case of an arbitrary number of equa-
tions, we consider a further decomposition of the singular component w, which is
similar to that used in [1] for linear systems. For simplicity, we present the main
ideas for the particular case of two equations and these decompositions can be
extended to the general case of m semilinear equations using the arguments in [1,3].

In the case of m = 2, consider the following decomposition of the left singular
component w

w=wtl ¢ w[z], (8a)

where wi2(1) = wltl(1) = 0, and

d2w

—E° L, v+ wE) —brv) =0, xeQ (8b)
b1(0, V(0) +w2(0) = 51(0,v(0) = 0, wI(0) = w(0),  (8¢)
—Ed; , + b, v+w) —b(x.v+w) =0 xeq, (8d)
i (0) = w1 (0) — wi(0), wy(0) = 0. (8¢)

Below we see that the components w2l depend weakly on &; and the appearance of

wltl requires that w; (0) — wy ](0) # 0. Moreover, if €1 = &5, it is not necessary
to decompose w into these subcomponents to perform the numerical analysis. We
introduce the following notation

Be(x) := e /% where B is defined by (1c).
Lemma 2. For any x € §, the component w3, satisfies the bounds

dk [2]
dwk (x)] < Ce5¥Bo, (x), k =0,1,2,

d3wl2 T _
| , (O] =C(e7%637)" &' Bey(x).

Proof. Note that

d2wl2 1
—E —1—/ J xv+sw ds wl = 0,
dx? =0 ( )
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from which it follows that [w!?!(x)| < CBs, (x). Then, from the second equation in
(8b) we deduce that

dkwgz]

Ik < Ce;*Be,(x), k =0,1,2. )

(x)

To obtain bounds for the first component, consider the decomposition w2l = p[z] +
rl2l, r£2] = 0, where

by (x,v+p[2]> —bi(x,v) =0, (102)
dzr[2] dzp[2]
—" L A (xov+ 2 4 x) by (xv 4 pP) = 3 a (100)
As pg] = wg] this is simply a decomposition of the first component w?]. Note that

the condition on the coefficients (1¢) means that pgz] 0) = w£2] (0), and pgz](l) =
w?] (1). Therefore r{z] 0) = r{z] (0) = 0. Writing (10a) in the form

2 r1op
Z[ ! (x,v + sp[z]) pimds =0,
i=iJo

and using (1b) and (9), we deduce that |p£2] (x)| < CBg,(x) forany x € Q.
Differentiating (10a) and grouping terms, we have

d dv
L] _ L) _
o (bl(x,v—i—p ) bl(x,v)>+(Vub1(x,V+p ) Vubl(x,v)) o

dpl2
+ Vuby (x,v+p[2]> P _ 0, where V,b;:= (

db; db \T
dx ’

8u1 ’ 8142

Note if b1 (x,u 4+ v) — by (x,u) = Q(x), then

S ity —biow) = i/labl( v di
gy P1(eu Y ew] = 2], (x,u+1v); ,

ou;
0 ad 0
which implies that | 1| < € [9€ | + ¢ | 22| 4 Clvg| + C|val.
ax ax

dp[2]

From these expressions, (1b) and (9), we have that dl (x)| < Cey'Be, (x). Use
X
d2p£2]

the same argument to prove < Ce3%Be, (x).

dy2 D
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The remainder is the solution of the following problem

dzr[Z] 1 b, (] (]
_8% dxlz + (/{; Buuy (x,v +p[2] + 51y )ds) ry
d2p[2]
=ei 5 mO=r1=0

The maximum principle proves that |r£2] (x)| < Ce3e5%Bs, (x). Hence,

dkr[2]

J v (0| < Ce*Bey(x), k =1,2.
X

To obtain the bound on the third derivatives, differentiate (8b) and use the bounds
on the lower derivatives. (]

Lemma 3. Forany x € Q and fori = 1,2, the component w satisfies the bounds

82 82
wgl](x)‘ < C(Be, (x) + 8; Be, (%)), ‘wg](x)‘ < cg; Be, (x).
2 2
dw" 1 1
d; (¥)| = C(e7 Bey (x) + &5 Be, (%)),
d?w! &2
8;'2 dx; ()| = C(Bg, (x) + 8% B, (x)),
d3w[1] B B
7| 5 (] = Cler! Bey (x) + 5" Bay ().

Proof. Decompose wl!l further into the following sum witl = 2z + sl where
2Z110) = wil(0), 21 (1) = wltl(1) = st(0) = sl!(1) = 0, and for x € Q

dzz[l] 1 8b1 1 1
A (] gy v w sl onas) =0

dzz[ll 1 by .
—&5 dx22 - ( /0 by (x. v+ w4+ tz[l])dt) 2!

! 0by 2] . 0 (1]
= _ (x, v+ w4zt de |z,
0 uy

sl

1
-E + [ J(e,v 4+ w2 g g sl gy s
dx? 0

T
- (bl(x, v w4+ 0Ty — by ey + w2 20, 0) .
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k(1]
From the maximum principle, we have | J ]1€ | < Cel_kB‘El (x), k =0,1,2. 1If
X

2¢2, then the maximum principle proves |221](x)| < CBs,(x). For the case

281, to obtain appropriate bounds of Z£ ], we observe that

! b, [2] [1] (1]
(x,v+w +tz )dtzl
o Ouj

2
&5 =
2
& =

= Cl BE] ()C)

Consider the barrier function Z [1], which is the solution of the problem
—e37" + B*Z = C1 B¢, (x), Z(0) = Z(1) = 0.
This allows one to prove that |Z£1](x)| < Z(x) < Celey?B,,(x), if 267 < 3.

Thus, for all &1 < &5, we have |z£1](x)| < Cs%sz_zBaz (x). Hence,

2 d22£1] 2,2
& dx2 ()] = C(Bs, (x) + €765 Bg, (%))

dz [1]
=< CBEz(-x) | 2 (x)| = C82 Baz(x)

To obtain bounds for the remainder s{!], note that the first component of the right—
hand-side can be written as

bi(x,v+ w2l + (251], 0)7) — by (x, v + w2l 4 £11)
1 9b
—/ Ponv+ w4 (zgll,tz2 )" )dtz
o Ouz

Then, the maximum principle proves that [s{!l(x)| < Ce?e52 Be, (x). Hence,

dk [1]
ok @I=Cley k g5k)T* 1382( ). k=0,1,2.
€3
Differentiate (8d) and use above arguments to bound the third derivatives. ([l

3 Discrete Problem and Analysis of Uniform Convergence

The domain is divided into the subintervals [0, tg, ], [Te, , Tey)s - - - [Tepe 1= Tepls - - -
[1 — t¢,. 1]. Distribute half the mesh points uniformly within (zg,,, 1 — 7¢,,] and the
other half in the remaining intervals, distributing N /(4m)+ 1 mesh points uniformly
in each (g, , T¢; ., ]. The transition points are defined as

= min {0.25, 2¢,,/BIn N}, 1;; = min {0.5r€i+1,28,~//31nN}, 1 <i<m.
(1D

Tem

On the mesh QV = {x,-}lN= o» consider the following finite difference scheme
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(TyU)(x;) := —(ES?U)(x;) + b(x;,U(x;) =0, x; e Q¥ = Q¥ nQ, (12)

with U(0) = u(0), U(1) = u(1) and 82 is the classical three—point finite difference
approximation of the second derivative on a non—uniform mesh.

From (1c), the Frechet—derivative T/N is an M —matrix and then for any two mesh
functions Y and Z with Y(0) = Z(0) and Y(1) = Z(1), we have that

1
Y —Zlloo < I(Th) Moo ITNY = TNZ] 0o < TNY — TN Z| 0.
IV = Zlow < N0 ool TN Y =Ty Zloo = o ITNY = T Z
This implies the uniqueness of the solution to problem (12). In bounding the
truncation error, we must bound the same terms

ITyu(x)| = [Tyu(x) —Tu(x)| < E[(8?v —v")(x)| + E[(6*w — w") (x)],

as in the linear problem [1]. The derivatives of both the regular and singular compo-
nents have a similar behaviour to their linear counterparts, and thus we can deduce
that | Tyuljec < CN™L.

Theorem 1. Let u be the solution of the problem (1) and U the solution of problem
(12) on the Shishkin mesh QN . Then,

[U—-ufo < CNL.

Remark 1. In the particular case of equal diffusion parameters ¢; = ¢,i = 1,...m,
it is possible [2] to prove essentially second order uniform convergence. In the lin-
ear case of m = 2, Linss and Madden [4] have established second order (up to
logarithmic factors). To achieve this higher order, Linss and Madden [4] employ a
decomposition (based on the decomposition in Madden and Stynes [6]) of the solu-
tions, which is different to the decomposition presented in this paper. In the linear
case of m > 2 Linf} and Madden [5] have established second order convergence for
arbitrary &;, under the assumption that the elements in the coefficient matrix B(x)
of the zero order terms satisfy

m
bii(x) > 0, D bk (x) /b ()] <1, 1 <i <m.
k#i

For variable coefficients and m > 2, these conditions will only be satisfied by
a subset of problems from the class (1). Hence, the question of proving second
order convergence for the class of problems in (1) for m > 2 and arbitrary ¢;
remains open.

4 Numerical Experiments

Example 1. Consider a nonlinear problem of type (1) where m = 2, u(0) = u(l) =
0,0)T, and



A System of Singularly Perturbed Semilinear Equations 171
bi(x,u) = u;—1—(1—up)>+e*1 72, by(x,u) = ur —0.5—(0.5—un)> +e¥2741,

The corresponding nonlinear systems of equations associated with the discrete prob-
lem are solved using Newton’s method with zero as an initial guess. We iteratively
compute Uk(xj), fork =1,2,...,K,until

UK () = UK () [loo < N2

To estimate the pointwise errors |[UX (x j)—u(x ;)| we calculate a new approximation
{ﬁK (x;)} on the mesh {X;} that contains the mesh points of the original mesh
and its midpoints. At the coarse mesh points we calculate the uniform two-mesh
differences and the orders of convergence

N,K A N,K N.K ; ;2N.K\ .
d; " = max max |Ul-K(xj)—Ul-K(x2j)|, Pi i = l0g,(d; /dl.2 ), i =1,2,

Se 0<j<N
where the singular perturbation parameters take values in the set
Se ={(e1.82) |65 =20271,...,2730 e =£3,271e3,...,27%9,2790},

In Table 1 we display the uniform two-mesh differences and the approximate orders
of convergence for both components u; and . Finally, we report that K' < 4 for
all (e1,62) € Seandall N =277, j =5,...,12.

Example 2. Consider a linear problem of the type (1) where m = 3, u(0) = u(l) =
(1,1, )7, and

bi(x,u) = 2.1u; — (1 = x)uz — (1 + x)usz — x,

by(x,u) = —xu; + (1.1 + x)upy — xus + x,

bz(x,u) = -2+ x)u; — (1 —x)uz + 3.1 + x)uz — 1.
This linear problem is not covered by the theory in [5], but is covered by the theory in
this paper. In Table 2 the uniform two-mesh differences and the approximate orders

of uniform convergence are displayed, where the values of the singular perturbation
parameters vary over the range

0 ~—2 -30 -2 —40 -2 —60
8322,2 ,...,2 ,82283,2 83,...,2 ,81282,2 82,...,2 .

dN,K

Table 1 Uniform two-mesh differences and orders of convergence p;\;lK for Example 1

(e1,62) €S N=32 N=64 N=128 N=256 N=512 N=1,024 N=2,048 N =4,09

le’K 6.861E—3 6.222E—3 3.568E—3 1.313E—3 4.486E—4 1.423E—4 4.327E—5 1.291E—5

p{\";llzf 0.141 0.802 1.443 1.549 1.656 1.718 1.745

dzN’K 8.130E—3 3.915E—3 1.523E—3 5.343E—4 1.736E—4 5.375E—5 1.644E-5  4.943E—6
N.K

2 1.054 1.362 1.511 1.622 1.691 1.709 1.733
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Table 2 Uniform two-mesh differences d”V and approximate uniform orders of convergence pivm-
for Example 2

N=16 N=32 N=54 N=128 N=256 N=512 N=1,024 N=2,048

[dV]1 0.151E+00 0.135E+00 0.113E+00 0.747E—01 0.378E—01 0.145E—01 0.484E—02 0.154E—02
[pflvnih 0.159 0.256 0.599 0.982 1.381 1.586 1.655

[dV]>  0.159E+00 0.147E+00 0.119E+00 0.778E—01 0.381E—01 0.145E—01 0.472E—02 0.150E—02
[pflvni]z 0.115 0.303 0.613 1.030 1.391 1.620 1.656

[dV]s  0.158E+00 0.142E+00 0.119E+00 0.784E—01 0.397E—01 0.152E—01 0.508E—02 0.161E-02
[pflvni]3 0.157 0.256 0.598 0.982 1.381 1.586 1.655

For both examples, we observe uniform convergence of the finite difference approx-
imations, which is in agreement with Theorem 1. However, orders greater than one
are observed in both Tables.
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