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Abstract Parameter-robust numerical methods for a particular class of singularly
perturbed quasilinear boundary value problems were constructed and analysed in
Farrell et al. (Math Comp 78:103–127, 2009). Certain constraints were imposed
in Farrell et al. (Math Comp 78:103–127, 2009) on the data to establish the final
theoretical error bound. In this companion paper to Farrell et al. (Math Comp
78:103–127, 2009), the parameter-uniform performance of the numerical method
is examined (via numerical experiments) when one or more of these constraints are
violated. The numerical results in this paper suggest that the numerical approxi-
mations converge for a wider class of problems to that covered by the theoretical
convergence analysis in Farrell et al. (Math Comp 78:103–127, 2009).

1 Continuous Problem Class

Convection–diffusion equations of the form .�"ux/x C .g.u//x D f .x/, with a
nonlinearity of the type g.u/ D u2, arise in numerous applications involving fluid
dynamics. In this paper we examine the numerical performance of parameter-robust
numerical methods [1] for the following class of quasilinear singularly perturbed
boundary value problems: Let�� WD .0; d/; �C WD .d; 1/ and find u" 2 C 1. N�/\
C 2.�� [�C/ such that

"u00
" C b.x; u/u0

" D f; for all x 2 �� [�C; (1a)

u".0/ D A; u".1/ D B; (1b)
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b.x; u/ D
(
b1.u/ D �1C cu; x < d

b2.u/ D 1C cu; x > d
; f .x/ D

( �ı1; x < d
ı2; x > d

(1c)

�1 < u".0/ < 0; 0 < u".1/ < 1; < c 
 1; (1d)

where c is a positive constant and ı1; ı2 are non-negative constants. Note the strict
inequalities in (1d), which are imposed in order to ensure that the solution exhibits a
standard convex–concave (or S-type) shock layer, as opposed to a concave–convex
(or Z-type) layer (cf. [3, pp. 15–16]).

This paper is a companion paper to [2], where asymptotic error bounds for the
numerical method examined in this paper were established. In order to guarantee
existence and uniqueness of the solution of the continuous problem, additional con-
ditions on the magnitudes of kf k and the boundary values ju".0/j; ju".1/j were
imposed in [2]. Further restrictions are required in the theoretical analysis in [2] to
prove uniform in " convergence of the numerical method described below. These
conditions are stated in (4) and (10).

The reduced solution v0 W Œ0; 1	 ! .�1; 1/ is defined to be the solution of the
following nonlinear first order problem

b.v0; x/v
0
0 D f; x 2 �� [�C; v0.0/ D u".0/; v0.1/ D u".1/: (2)

A unique reduced solution v0 with the additional sign-pattern property of v0.x/
< 0; x 2 ��I v0.x/ > 0; x 2 �C exists if the conditions [2]

ı1d < �u".0/C 0:5cu2" .0/; ı2.1 � d/ < u".1/C 0:5cu2" .1/; (3)

are satisfied by the data. For a unique solution of the full continuous problem to
exist it suffices [2] that

ı1d < �u".0/; ı2.1 � d/ < u".1/; (4a)

u".1/� u".0/ < 1=c C minf ı1d

1� cu".0/
;
ı2.1 � d/
1C cu".1/

g: (4b)

Let C1 be the class of problems defined by (1), (3); C2 be the class of prob-
lems defined by (1), (4) and C3 be the class of problems defined by (1), (4)
and (10). Note that (4a) implies (3) and hence C3 � C2 � C1. The proof of
parameter uniform convergence of the numerical approximations given in [2, The-
orem 6.2] restricts the problem to the smallest of these three classes C3. Figure 1
displays some typical solutions for two problems in C3, with " D 0:000001; d D
0:25; ı2 D 0:13; u".0/ D �0:09 and u".1/ D 0:098. The left one is for a prob-
lem with ı1 D 0:1 and the right one for a problem with ı1 D 0:35. In this
paper, we examine (via numerical experiments) the parameter-uniform performance
of the numerical method when one or more of the conditions (3), (4) or (10) are
violated.
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Fig. 1 Solution of (1) for sample problems in C3

Furthermore, we deduce in [2] that for the solution to a problem in C2 we have
that

jb1.u"/j > �1 WD maxf�cu".0/; 1� cu".1/g; x 
 d I (5a)

b2.u"/ > �2 WD maxfcu".1/; 1C cu".0/g; x 	 d: (5b)

Lemma 1 ([2]). Assume the problem is in C2. The solution can be written as a linear
sum of the form u" D v"Cw", where for each integer k, satisfying 1 
 k 
 3, these
components satisfy the following bounds,

kv"k 
 C; kv.k/" k��[�C 
 C.1C "2�k/;

jŒv"	.d /j 
 C; jŒv0
"	.d /j 
 C; jŒv00

" 	.d /j 
 C;

jw.k/" .x/j 



C"�ke�.d�x/�1="; x 2 ��;
C "�ke�.x�d/�2="; x 2 �C;

where C is a constant independent of ".

2 Numerical Method

The domain� is subdivided into the four subintervals

Œ0; d � �1	 [ Œd � �1; d 	[ Œd; d C �2	 [ Œd C �2; 1	; (6a)

for some �1; �2 that satisfy 0 < �1 
 d
2

, 0 < �2 
 1�d
2

. On each of the four
subintervals a uniform mesh with N

4
mesh-intervals is placed. The interior mesh

points are denoted by

�N" WD fxi W 1 
 i 
 N � 1; i ¤ N=2g: (6b)
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Clearly xN
2

D d , �
N

" D fxi gN0 and �1; �2 are taken to be the following

�1 WD min



d

2
; 2

"

�1
lnN

�
; �2 WD min



1 � d

2
; 2

"

�2
lnN

�
; (6c)

whose choice can be motivated from (5) and the earlier bounds on w.k/" . Then the
fitted mesh method for problem .1/ is: Find a mesh function U" such that

"ı2U".xi /C b.xi ; U".xi //DU".xi / D f .xi / for all xi 2 �N" ; (7a)

U".0/ D u".0/; U".1/ D u".1/; (7b)

D�U".xN
2
/ D DCU".xN

2
/; (7c)

where

ı2Zi D DCZi �D�Zi
.xiC1 � xi�1/=2

; DZi D


D�Zi ; i < N=2;

DCZi ; i > N=2;

DC and D� are the standard forward and backward finite difference operators,
respectively. In order to solve this nonlinear finite difference scheme we use a variant
of the continuation method from [1, Sect. 10.3].

."ı2x C b.xi ; U".xi ; tj�1//D�D�
t /U".xi ; tj /Df .xi /; xi ¤ d; jD1; :::K; (8a)

D�
x U".d; tj / D DC

x U".d; tj /; j D 1; : : :K; (8b)

U".0; tj / D u".0/; U".1; tj / D u".1/ for all j; (8c)

U".x; 0/ D u.0/C .u.1/ � u.0//x; (8d)

and D�
t is the standard backward finite difference operator in time. The choices

of the uniform time-like step k D tj � tj�1 and the number of iterations K are
determined as follows. Defining

e.j / WD max
1	i	N

jU".xi ; tj /� U".xi ; tj�1/j=k; for j D 1; 2; � � � ; K (9a)

the time-like step k is chosen sufficiently small so that

e.j / 
 e.j � 1/; for all j satisfying 1 < j 
 K: (9b)

Then the number of iterationsK is chosen such that

e.K/ 
 TOL WD 10�7: (9c)

The numerical solution is computed using the following algorithm. Start from t0
with the initial timestep k D 1:0. If, at some value of j , (9b) is not satisfied, then
discard the timestep from tj�1 to tj and restart from tj�1 with half the time step, that
is knew D k=2, and continue halving the timestep until one finds a k for which (9b)
is satisfied. Assuming that (9b) is satisfied at each timestep, continue until either
(9c) is satisfied or tj D 1;000. If (9c) is not satisfied, we repeat the entire process
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again from t0, halving the initial timestep k to k D 0:5. If the process still stalls,
we restart from t0 again halving the initial timestep. If (9c) is satisfied the resulting
values of U".x;K/ are taken as the approximations to the solution of the continuous
problem.

The same conditions required for existence of the solution of the full continuous
problem are also sufficient for the existence (but not uniqueness) of the solution of
the discrete nonlinear problem.

In [2], it is established that, providingN is sufficiently large and " is sufficiently
small, independently of each other, under the further implicit restriction that

b2.xi ; U"/� 4"cu0
" > 0; xi ¤ d; (10)

we can prove a uniform in " error bound at all the mesh points of the form

kU" � u"k� 
 CN�1.lnN/2; (11)

where u" is the continuous solution, U" is a discrete solution of (7), and C is a
constant independent ofN and ". The condition (10) is implicit as the exact solution
u" is, in general, unknown.

3 Robustness of the Solution Method

Example 1. For the uniform convergence result (11) to be valid, [2] requires that (4)
and (10) must be satisfied. For example, if

c D 1; ı1d < �u".0/ < 0:1 and ı2.1 � d/ < u".1/ < 0:1
then the data constraints (4) and (10) in C3 are both satisfied. Thus a problem with

d D 0:25; ı2 D 0:13; ı1 < 0:4; 0:0975 < u".1/ < 0:1; � 0:1 < u".0/ < �ı1=4
satisfies these constraints. We consider a problem with u.0/D �0:09; u.1/D 0:098,
ı2 D 0:13 and ı1 varying from 0.1 to 0.35. This choice for the data satisfies all three
assumptions including the implicit one (10). We verify this assertion numerically by
computing

T N" .xi / D
8
<

:

b2.xi ; U
N
" /� 4"D�UN" ; xi < d

b2.xi ; U
N
" /� 4"DCUN" ; xi > d

(12)

and observing that T N" D mini T N" .xi / > 0 for all values of " and N used. The
computed uniform rates of convergence pN , using the double mesh principle and
the uniform fine mesh errors EN (see [1, pp. 104, 190] for details on how these
quantities are calculated) are computed over the range " D 2�j ; j D 1; 2; : : : 25

and are presented in Table 1. These results confirm uniform convergence in this
range of the data.
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Table 1 Maximum errors EN and computed rates of convergence pN for the numerical method
(6), (7) for problems within C3 in the case of Example 1

N 32 64 128 256 512 1,024

ı1 D 0.1

EN 0.004962 0.003227 0.002017 0.001175 0.000637 0.000313
pN 0.46 0.75 0.63 0.72 0.68 0.84

ı1 D 0.2

EN 0.003583 0.002245 0.001346 0.000771 0.000413 0.000201
pN 0.57 0.76 0.72 0.72 0.72 0.85

ı1 D 0.3

EN 0.002549 0.001403 0.000809 0.000457 0.000243 0.000117
pN 0.70 0.90 0.79 0.76 0.73 0.86

ı1 D 0.35

EN 0.002205 0.001151 0.000584 0.000295 0.000155 0.000075
pN 0.90 0.94 0.96 0.93 0.72 0.88

Table 2 Maximum errors EN and computed rates of convergence pN for a problem outside C1,
but satisfying (10), in the case of Example 1

ı1 D 0.39

N 32 64 128 256 512 1,024

EN 0.002282 0.001154 0.000578 0.000283 0.000133 0.000057
pN 0.98 0.96 0.98 0.99 0.99 1.00

Now consider the same problem with u.0/ D �0:09, u.1/ D 0:098, ı2 D 0:13

and ı1 D 0:39. This does not satisfy (3) and hence is not in C1. However, this
scheme does numerically satisfy the implicit condition (10).

The results presented in Table 2 imply that the scheme is still convergent
uniformly in ".
Example 2. For the existence of a continuous solution we have the sufficient
conditions (4). As an example, take

c D 1; u".1/ D 0:7; u".0/ D �0:5 d D 0:25:

Then (3) is satisfied when ı1 < 2:5 and ı2 < 1:26. Also (4a) is satisfied when

ı1 < 2 and ı2 <
2:8

3
� 0:933333

and (4b) is satisfied when

ı1 > 1:2 and ı2 >
1:36

3
� 0:453333:
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Fig. 2 Solution of (1) for problems which do not satisfy C3. In all these figures, ı2 D
0:7; u.0/ D �0:5; u.1/ D 0:7; N D 64 and " D 0.000001. From top left to bottom right: ı1

= 0.2, 2.4999, 2.5, 3.5, 3.55, 3.9

We fix ı2 D 0:7 and consider various values of ı1, in particular ones which violate
one or more of the conditions (3), (4a) or (4b). For the problems examined in this
example, it has been observed numerically, using condition (12), that the implicit
condition (10) is not satisfied for any of the values of ı1 considered. That is, these
problems lie outside the class C3. Problems are in the class C2nC3 if 1:2 < ı1 < 2,
in the class C1nC2 if 2 
 ı1 < 2:5 or if ı1 
 1:2 and finally the problem lies outside
C1 if ı1 	 2:5.

Illustrations of the corresponding solutions are given in Fig. 2, and the conver-
gence results are given in Tables 3–5. They show that provided the reduced solution
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Table 3 Maximum errors EN and computed rates of convergence pN for the numerical method
(6), (7) applied to problems in C2, where (10) is violated, that is within C2nC3 in the case of
Example 2 with ı2 D 0.7

N 32 64 128 256 512 1,024

ı1 D 1.3

EN 0.067928 0.053165 0.033076 0.020709 0.011692 0.005732
pN 0.09 0.65 0.71 0.57 0.74 0.71

ı1 D 1.8

EN 0.058642 0.047114 0.029970 0.018685 0.010404 0.005133
pN 0.13 0.66 0.73 0.56 0.70 0.71

Table 4 Maximum errors EN and computed rates of convergence pN for the numerical method
(6), (7) applied to problems in C1, where (4) and (10) are violated, that is within C1nC2 in the case
of Example 2 with ı2 D 0.7

N 32 64 128 256 512 1,024

ı1 D 0.2

EN 0.085977 0.070653 0.045129 0.028786 0.016281 0.008038
pN 0.01 0.62 0.70 0.55 0.70 0.70

ı1 D 0.5

EN 0.081286 0.063318 0.039899 0.025084 0.014299 0.007035
pN 0.00 0.62 0.70 0.56 0.74 0.70

ı1 D 1.1

EN 0.071339 0.055289 0.034691 0.021476 0.012067 0.005918
pN 0.08 0.65 0.71 0.57 0.76 0.71

ı1 D 2.1

EN 0.052495 0.042713 0.027518 0.016995 0.009474 0.004675
pN 0.16 0.68 0.73 0.57 0.69 0.71

ı1 D 2.4

EN 0.045858 0.037679 0.024406 0.014925 0.008380 0.004132
pN 0.21 0.68 0.74 0.59 0.67 0.72

ı1 D 2.4999

EN 0.043529 0.035851 0.023213 0.014147 0.007960 0.003927
pN 0.23 0.67 0.74 0.60 0.68 0.72

of the problem remains monotonic increasing, the method is robust in the sense that
the numerical method remains uniformly in " convergent. When the problem ceases
to be monotonic the layer type changes from a standard shock layer to a Z-layer. As
the Z-layer grows in amplitude the nonlinear solver does not converge and thus the
method ceases to be robust.
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Table 5 Maximum errors EN and computed rates of convergence pN for the numerical method
(6), (7) applied to problems outside C1, that is where (3), (4) and (10) are violated, in the case of
Example 2 with ı2 D 0.7

N 32 64 128 256 512 1,024

ı1 D 2.8

EN 0.041487 0.029870 0.019123 0.011529 0.006529 0.003246
pN 0.39 0.64 0.77 0.65 0.68 0.71

ı1 D 3.0

EN 0.043328 0.025441 0.015947 0.009703 0.005490 0.002714
pN 0.83 0.63 0.79 0.69 0.68 0.71

ı1 D 3.5

EN 0.075558 0.032340 0.015213 0.007286 0.003408 0.001470
pN 1.32 1.12 1.04 1.00 0.99 0.98

ı1 D 3.8

EN 0.168256 0.056174 0.024782 0.011446 0.005227 0.002217
pN 1.84 1.24 1.10 1.05 1.02 1.01

4 Sensitivity to the Position of the Transition Points

We examine the effect of varying the fine mesh width by incorporating a constant
C� in a revised formula for �1 and �2 given by

�1 D min



d

2
; C�

"

�1
lnN

�
; �2 D min



1 � d
2

; C�
"

�2
lnN

�
; (13)

where C� is a parameter and �1; �2 are specified in (5).
Table 6 give the results for Example 2 with ı1 = 1.20010. For the range of C�

tested, it was observed that the number of iterations varied by at most a factor of
two.

Thus the method is not particularly sensitive to the fine mesh width and, in fact,
a choice of a value of C� less than that of C� D 2 used in [2] seems to give better
performance. In the example considered here, the errors are smallest and the rate of
convergence best for C� D 0:5.

Remark 1. The theoretical rate of convergence given in (11) can be compared to the
observed rates of convergence given in Tables 1–6, by using Table 7. For example,
Table 1 exhibits rates close to N�1 lnN and Tables 3–6 mainly exhibit rates close
to N�1.lnN/2.
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Table 6 Maximum errors EN and computed rates of convergence pN for various choices of the
transition point in the case of Example 2 with ı1 D 1.20010; ı2 D 0.7

N 32 64 128 256 512 1,024

C� D 0.125

EN 0.077109 0.063909 0.052342 0.040499 0.028576 0.017859
pN 0.37 0.34 0.27 0.24 0.26 0.27

C� D 0.25

EN 0.055713 0.034658 0.020660 0.011906 0.006556 0.003274
pN 0.70 0.68 0.71 0.71 0.71 0.70

C� D 0.5

EN 0.039241 0.021406 0.012181 0.006681 0.003483 0.001645
pN 0.81 0.89 0.79 0.80 0.82 0.78

C� D 1.0

EN 0.052324 0.033291 0.020706 0.011990 0.006454 0.003099
pN 0.23 0.79 0.68 0.73 0.77 0.76

C� D 2.0

N 32 64 128 256 512 1,024
EN 0.069652 0.054194 0.033899 0.021033 0.011889 0.005824
pN 0.08 0.65 0.71 0.57 0.75 0.71

Table 7 Orders of local convergence pN corresponding to different theoretical error bounds for
various values ofN

N 32 64 128 256 512 1,024

N�1 lnN 0.68 0.74 0.78 0.81 0.83 0.85
N�1.lnN/2 0.28 0.44 0.53 0.60 0.65 0.69

5 Conclusions

The numerical results in this paper indicate a possible gap between the theory in [2]
and what is observed in practice. As was proven in [2] the scheme (6), (7) is a
parameter-uniform scheme under the conditions (4) and (10). However these suf-
ficient conditions appear to be overly restrictive, since, in practice, the numerical
approximations appear to converge for a wider range of data. In any attempt to
extend the theory in [2] to a wider class of problems, a reasonable constraint on the
data to aim for (in place of (4)) would be that the reduced solution is monotonic
increasing, which is a necessary condition to exclude Z-layers from appearing in
the solution of (1).

The implicit condition (10) is not satisfied for some of the examples presented
here, while the numerical approximations still converge uniformly in ". When the
constraint (10) is violated it appears that T N" .xi / < 0 in a particular neighbor-
hood of the point d and not at the transition points between the fine and coarse
mesh. Proving convergence without (10) being satisfied would require a method of
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proof other than the maximum principle arguments used in [2]. These numerical
results also suggest that a different finite difference equation (other than continuity
of the discrete first derivative) at the point of the discontinuity d may ensure that
T N" > 0, which in turn might improve the performance of the scheme and also assist
in extending the scope of the current theory.
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