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Abstract This paper reports on recent efforts with the ultimate goal to obtain a
fully self-consistent picture of turbulent boundary layer separation. To this end, it is
shown first how the classical theory of turbulent small-defect boundary layers can
be generalised rigorously to boundary layers with a slightly larger, i.e. moderately
large, velocity defect and, finally, to situations where the velocity defect is ofO.1/.
In the latter case, the formation of short recirculation zones describing marginally
separated flows is found possible, as described in a rational manner.

1 Introduction

Despite the rapid increase of computer power in the recent past, the calculation of
turbulent wall-bounded flows still represents an extremely challenging and some-
times insolvable task. Direct-Numerical-Simulation computations based on the full
Navier–Stokes equations are feasible for moderately large Reynolds numbers only.
Flows characterised by much higher Reynolds numbers can be investigated if one
resorts to turbulence models for the small scales, as accomplished by the method
of Large Eddy Simulation, or for all scales, as in computer codes designed to solve
the Reynolds-averaged Navier–Stokes equations. Even then, however, the numerical
efforts rapidly increase with increasing Reynolds number. This strongly contrasts
the use of asymptotic theories, the performance of which improves as the val-
ues of the Reynolds number become larger and, therefore, may be considered to
complement purely numerically based work.

With a few exceptions (e.g. [7, 21]), studies dealing with the high-
Reynolds-number properties of turbulent boundary layers start from the time- or,
equivalently, Reynolds-averaged equations. By defining non-dimensional variables
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in terms of a representative length QL and flow speed QU and assuming incompressible
nominally steady two-dimensional flow they take on the form
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Herein r2 D @2=@x2 C @2=@y2, and .x; y/, .u; v/, .u0v0/, �u02, �u0v0, �v02, and
p are Cartesian coordinates measuring the distance along and perpendicular to the
wall, the corresponding time mean velocity components, the corresponding velocity
fluctuations, the components of the Reynolds stress tensor, and the pressure, respec-
tively. The Reynolds number is defined by Re WD QU QL= Q�, where Q� is the (constant)
kinematic viscosity. Equation (1) describe flows past flat walls. Effects of wall cur-
vature can be incorporated without difficulty but are beyond the scope of the present
analysis.

When it comes down to the solution of the simplified version of these equa-
tions provided by asymptotic theory in the limit Re ! 1, one is, of course, again
faced with the closure problem. The point, however, is that these equations and the
underlying structure represent closure independent basic physical mechanisms char-
acterising various flow regions identified by asymptotic reasoning. This has been
shown first in the outstanding papers [5, 8, 10, 31], and more recently and in con-
siderable more depth and breath, in [24, 30] for the case of small-defect boundary
layers, which will be considered in Sect. 2. Boundary layers exhibiting a slightly
larger, i.e. a moderately large, velocity defect are treated in Sect. 3. Finally, Sect. 4
deals with situations where the velocity defect is of O.1/ rather than small.

2 Classical Theory of Turbulent Small-Defect Turbulent
Boundary Layers

We first outline the basic ideas underlying an asymptotic description of turbulent
boundary layers.

2.1 Preliminaries

Based on dimensional reasoning put forward by L. Prandtl and Th. von Kármán,
a self-consistent time-mean description of firmly attached fully developed turbulent
boundary layers holding in the limit of large Reynolds numbers Re, i.e. for Re ! 1,
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has been proposed first in the aforementioned studies [5, 8, 10, 31]. One of the main
goals of the present investigation is to show that this rational formulation can be
derived from a minimum of assumptions:

(a) All the velocity fluctuations are of the same order of magnitude in the limit
Re ! 1, so that all Reynolds stress components are equally scaled by a
single velocity scale uref, non-dimensional with a global reference velocity
(hypothesis of locally isotropic turbulence);

(b) The pressure gradient does not enter the flow description of the viscous wall
layer to leading order (assumption of firmly attached flow);

(c) The results for the outer predominantly inviscid flow region can be matched
directly with those obtained for the viscous wall layer (assumption of “simplest
possible” flow structure).

In the seminal studies [5,8,10,31],uref is taken to be of the same order of magnitude
in the fully turbulent main portion of the boundary layer and in the viscous wall layer
and, hence, equal to the skin-friction velocity

u� WD �
Re�1.@u=@y/yD0

�1=2
: (2)

This in turn leads to the classical picture, according to which (i) the stream-
wise velocity defect with respect to the external impressed flow is small and
of O.u� / across most of the boundary layer, while (ii) the streamwise veloc-
ity is itself small and of O.u� / inside the (exponentially thin) wall layer, and
(iii) u�=Ue D O.1= ln Re/. Furthermore, then (iv) the celebrated universal logarith-
mic velocity distribution

u=u� � ��1 lnyC C CC; yC WD y u�Re ! 1: (3)

is found to hold in the overlap of the outer (small-defect) and inner (viscous wall)
layer. Here � denotes the von Kármán constant; in this connection we note the cur-
rently accepted empirical values � � 0:384, CC � 4:1, which refer to the case of
a perfectly smooth surface, see [16] and have been obtained for a zero pressure
gradient.

This might be considered to yield a stringent derivation of the logarithmic law
of the wall (3), anticipating the existence of an asymptotic state and universality of
the wall layer flow as Re ! 1; a view which, however, has been increasingly chal-
lenged in more recent publications (e.g. [2–4]). It thus appears that – as expressed
by Walker, see [30] – “. . . although many arguments have been put forward over
the years to justify the logarithmic behaviour, non are entirely satisfactory as a
proof, . . . ”. As a result, one has to accept that matching (of inner and outer expan-
sions), while ensuring self-consistency, is not sufficient to uniquely determine (3).
In the following, from the viewpoint of the time-averaged flow description the
logarithmic behaviour (3), therefore, will be taken to represent an experimentally
rather than strictly theoretically based result holding in situations where the assump-
tion (b) applies. The description of the boundary layer in the limit Re ! 1 can
then readily be formalised. In passing, we mention that in the classical derivations,
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see [5, 8, 10, 31], the assumption (b) is not adopted and (3) results from matching,
rather than in the present study where it is imposed.

2.2 Leading-Order Approximation

Inside the wall layer where yC D y u�Re D O.1/ the streamwise velocity compo-
nent u, the Reynolds shear stress � WD �u0v0 and the pressure p are expanded in the
form

u � u� .xI Re/ uC.yC/C � � � ; (4a)

� � u2� .xI Re/ tC.yC/C � � � ; (4b)

p � p0.x/C � � � ; (4c)

where uC exhibits the limiting behaviour implied by (3):

uC.yC/ � ��1 lnyC C CC; yC ! 1: (5)

Assumption (c), quoted in Sect. 2.1, then uniquely determines the asymptotic expan-
sions of, respectively, u, � , and p further away from the wall where the Reynolds
stress � is predominant. Let ı0.xI Re/ characterise the thickness of this outer main
layer, i.e. of the overall boundary layer. In turn, one obtains

u � Ue.x/ � u� .xI Re/ F 0
1.x; �/C � � � ; (6a)

� � u2� .xI Re/ T1.x; �/C � � � ; (6b)

p � pe.x/C � � � ; (6c)

where � WD y=ı0. Here and in the following primes denote differentiation with
respect to �. Furthermore,Ue and pe stand for the velocity and the pressure, respec-
tively, at the outer edge � D 1 of the boundary layer (here taken as a sharp line with
sufficient asymptotic accuracy) imposed by the external irrotational flow.

Matching of the expansions (4) and (6) by taking into account (5) forces a
logarithmic behaviour of F 0

1,

F 0
1 � ���1 ln �C C0.x/; � ! 0; (7)

yields p0.x/ D pe.x/, and is achieved provided � WD u�=Ue satisfies the skin-
friction relationship

�=� � ln.Re�ı0Ue/C �.CC C C0/CO.�/: (8)

From substituting (4) into the x-component (1b) of the Reynolds equations (1) one
obtains the well-known result that the total stress inside the wall layer is constant to
leading order,
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duC=dyC C tC D 1: (9)

Moreover, the expansions (6) lead to a linearisation of the convective terms in the
outer layer, so that there Bernoulli’s law holds to leading order,

dpe=dx D �Ue dUe=dx: (10)

The necessary balance with the gradient of the Reynolds shear stress then deter-
mines the magnitude of the thickness of the outer layer, i.e. ı0 D O.u� /. As a
consequence, the expansions (6) are supplemented with

ı0 � � �1.x/C � � � ; (11)

which in turn gives rise to the leading-order outer-layer streamwise momentum
equation. After integration with respect to � and and employing the matching
condition T1.x; 0/ D 1, the latter is conveniently written as

.E C 2ˇ0/�F
0
1 � EF1 ��1F1;e F1x D F1;e.T1 � 1/; (12a)

F1;e WD F1.x; 1/; E WD 1 ��1
dF1;e

dx
; ˇ0 WD ��1F1;eUex

Ue
: (12b)

From here on, the subscript x means differentiation with respect to x. The bound-
ary layer equation (12a) is unclosed, and in order to complete the flow description,
turbulence models for tC and T1 have to be adopted. Integration of (12) then pro-
vides the velocity distribution in the outer layer and determines the yet unknown
function C0.x/ entering (7) and the skin-friction relationship (8), which completes
the leading-order analysis.

As a main result, inversion of (8) with the aid of (11) yields

� � ��Œ1 � 2� ln � CO.�/	; � WD 1= ln Re; @�=@x D O.�2/: (13)

The skin-friction law (13) implies the scaling law (iii), already mentioned in
Sect. 2.1, which is characteristic of classical small-defect flows.

2.3 Second-Order Outer Problem

Similar to the description of the leading-order boundary layer behaviour, the inves-
tigation of higher-order effects is started by considering the wall layer first. Substi-
tution of (4a), (4b), (8) into (1b) yields upon integration (cf. [30]),

1

Re

@u

@y
C � � �2U 2e � UeUex

�Re
yC C �UeUex

Re

Z yC

0

uC2 dyC C � � � : (14)

Here the second and third terms on the right-hand side account, respectively, for the
effects of the (imposed) pressure gradient, c.f. (10), and convective terms, which
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have been neglected so far. By using (5) and (12), the asymptotic behaviour of � as
yC ! 1 can easily be obtained (e.g. [30]). Rewritten in terms of the outer-layer
variable �, it is found to be described by

�

U 2e
� �2

�
1C 2

�0Uex

�Ue
� ln �C � � �

�
C �3

�
�0Uex

�2Ue
�.ln �/2 C � � �

�
C � � �; (15)

as � ! 0, which immediately suggests the appropriate generalisation of the small-
defect expansions (6a), (6b), (11):

u=Ue � 1 � �F 0
1 � �2F 0

2 C � � �; (16a)

�=U 2e � �2T1 C �3T2 C � � �; (16b)

ı0 � � �1.x/C �2�2.x/C � � �: (16c)

Here matching with the wall layer is achieved if

F 0
1 � ���1 ln �C C0.x/ ; F 0

2 � C1.x/; (17a)

T1 � 1C 2
�0Uex

�Ue
� ln � ; T2 � �0Uex

�2Ue
�.ln �/2; (17b)

as � ! 0, provided that the skin-friction relationship (8) is modified to explicitly
include an additional term of O.�/,

�=� � ln.Re�ı0Ue/C �.CC C C0 C �C1/C � � �: (18)

Similar to C0.x/, the function C1.x/ depends on the specific turbulence model
adopted, as well as the upstream history of the boundary layer.

2.4 Can Classical Small-Defect Theory Describe Boundary
Layer Separation?

An estimate of the thickness ıw of the viscous wall layer is readily obtained from
the definition of yC, see (3), and the (inverted) skin-friction relationship (13):
ıw D OŒ��1 exp.��=�/	. In the limit Re ! 1, therefore, the low-momentum
region close to the wall is exponentially thin as compared to the outer layer, where
Reynolds stresses cause a small O.�/-reduction of the fluid velocity with respect
to the mainstream velocity Ue.x/. This theoretical picture of a fully attached tur-
bulent small-defect boundary layer has been confirmed by numerous comparisons
with experimental data for flows of this type (e.g. [1, 14, 30]). However, it also
indicates that attempts based on this picture to describe the phenomenon of bound-
ary layer separation, frequently encountered in engineering applications, will face
serious difficulties. Since the momentum flux in the outer layer, which comprises
most of the boundary layer, differs only slightly from that in the external flow
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region, an O.1/-pressure rise almost large enough to cause flow reversal even there
appears to be required to generate negative wall shear, which hardly can be con-
sidered as flow separation. This crude estimate is confirmed by a more detailed
analysis dealing with the response of a turbulent small-defect boundary layer to a
surface-mounted obstacle, carried out, among others, in [28]. Moreover, to date no
self-consistent theory of flow separation compatible with the classical concept of a
turbulent small-defect boundary layer has been formulated.

The above considerations strikingly contrast the case of laminar boundary layer
separation, where the velocity defect is ofO.1/ across the whole boundary layer and
the associated pressure increase tends to zero as Re ! 1. It, however, also indicates
that a turbulent boundary layer may become more prone to separation by increasing
the velocity defect. That this is indeed a realistic scenario can be inferred by seeking
self-preserving solutions of (12), i.e. by investigating equilibrium boundary layers.
Such solutions, where the functions F1, T1, characterising the velocity deficit and
the Reynolds shear stress in the outer layer, respectively, solely depend on �, exist
if the parameter ˇ0 in the outer-layer momentum equation (12a) is constant, i.e.
independent of x. Equation (12a) then assumes the form

.1C 2ˇ0/�F
0
1 � F1 D F1;e.T1 � 1/; (19)

where

Ue / .x � xv/
m ; m D �ˇ0=.1C 3ˇ0/ ; �1F1;e D .1C 3ˇ0/.x � xv/: (20)

Herein x D xv denotes the virtual origin of the boundary layer flow. In the present
context flows associated with large values of ˇ0 are of most interest. By intro-
ducing suitably (re)scaled quantities in the form F1 D ˇ

1=2
0

OF . O�/, T1 D ˇ0 OT . O�/,
� D ˇ

1=2
0 O�, the momentum equation (19) reduces to

2 O� OF 0 D OFe OT ; OFe WD OF .1/ (21)

in the limit ˇ0 ! 1. Solutions of (21) describing turbulent boundary layers having
a velocity deficit measured by uref WD ˇ

1=2
0 u� � u� have been obtained first in [11].

Unfortunately, however, it was not realised that this increase of the velocity defect
no longer allows for a direct match of the flow quantities in the outer and inner layer,
which has significant consequences, to be elucidated below.

We note that in general ˇ0.x/ can be regarded as the leading-order contribution
to the so-called Rotta–Clauser pressure-gradient parameter (e.g. [24]),

ˇ WD �UeUexı�=u2� ; ı� WD ı0

Z 1

0

.1 � u=Ue/ d�: (22)

As already mentioned in [11], this quantity allows for the appealing physical
interpretation that uref is independent of the wall shear stress u2� for ˇ0 � 1.
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3 Moderately Large Velocity Defect

Following the considerations summarised in the preceding section, we now seek
solutions of (1) describing a relative velocity defect ofO."/, where the newly intro-
duced perturbation parameter " is large compared to � but still small compared
to one: � � " � 1. From assumption (a), see Sect. 2.1, we then have �u0v0 � "2,
and the linearised x-momentum equation immediately yields the estimate ı0 D "�,
where� D O.1/, for the boundary layer thickness. However, since �u0v0 � "2 with
"2 � u2� , the solution describing the flow behaviour in the outer velocity defect
region no longer matches with the solution for the universal wall layer as in the
classical case. As a consequence, the leading-order approximation to the Reynolds
shear stress must vanish in the limit � D y=ı0 ! 0. This indicates that the flow hav-
ing a velocity defect of O."/ in the outer main part of the boundary layer exhibits a
wake-type behaviour, leading to a finite wall slip velocity at its base and, therefore,
forces the emergence of a sublayer, termed intermediate layer, where the magnitude
of �u0v0 reduces to O.u2� /, being compatible with the wall layer scaling.

3.1 Intermediate Layer

Here the streamwise velocity component u is expanded about its value at the base
� D 0 of the outer defect region: u=Ue � 1 � "W � �Ui C � � � , so that the quanti-
ties W , Ui, assumed to be of O.1/, account, respectively, for the wall slip velocity,
given by u D Ue.1 � "W / with W > 0, and the dominant contribution to u that
varies with distance y from the wall. Integration of the x-momentum balance
then shows that the Reynolds shear stress increases linearly with distance y for
y=ı0 � 1:

� � �w � ".U 2e W /xy ; y=ıi D O.1/: (23)

Herein ıi denotes the thickness of the intermediate layer and � assumes its near-wall
value �w as y=ıi ! 0. Matching with the wall layer then requires that �w � u2� ,
which, by taking into account (22), yields the estimate ıi=ı0 D O.ˇ�1/. Also,
since �w � u2� , we infer that ıi D O.u2�="/ and, in turn, recover the relationship
" � u�ˇ

1=2, already suggested by the final considerations of Sect. 2.4. Formal
expansions of u and �u0v0 in the intermediate layer, therefore, are written as

u=Ue � 1 � "W.xI "; �/� �Ui.x; 
/; (24a)

� u0v0=.�Ue/2 � Ti.x; 
I "; �/ � 1C �
; (24b)

where 
 WD y=ıi D y"=.��2/ and � WD ��.U 2e W /x=U 2e .
To close the problem for Ui, we adopt the common mixing length concept,

�u0v0 WD `2
@u

@y

ˇ̌
ˇ
ˇ
@u

@y

ˇ̌
ˇ
ˇ ; (25)
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by assuming that the mixing length ` behaves as ` � �y for y D O.ıi/, which is the
simplest form allowing for a match with the adjacent layers. Integration of (24b),
supplemented with (25), then yields

�Ui D � ln 
 C 2 ln
�
.1C �
/1=2 C 1

�� 2.1C �
/1=2; (26)

from which the limiting forms

�Ui � �2.�
/1=2 C .�
/�1=2 CO.
�3=2/; 
 ! 1; (27a)

�Ui � � ln.�
=4/� 2 � �
=2CO.
2/; 
 ! 0; (27b)

can readily be inferred. The behaviour (27a) holding at the base of the outer
defect layer is recognised as the square-root law deduced first by Townsend in
his study [29] of turbulent boundary layers exhibiting vanishingly small wall shear
stress; the outermost layer so to speak “anticipates” the approach to separation as
the velocity defect increases to a level larger than u� . We remark that Townsend
in [29] identified the intermediate region as the so-called “equilibrium layer”, where
convective terms in (1b) are (erroneously within the framework of asymptotic
high-Reynolds-number theory) considered to be negligibly small. Equation (27b)
provides the logarithmic variation of Ui as 
 ! 0, required by the match with the
wall layer, which gives rise to the generalised skin-friction relationship

�

�
� ln

�
Re�2U 3e
ˇ
1=2
0

�
C ˇ0�W CO.�ˇ0/ � .1C "W / ln Re: (28)

Note that (28) reduces to (8) when ˇ0 D O.1/.
Having demonstrated that classical theory of turbulent boundary layers in the

limit of large Reynolds number can – in a self-consistent manner – be extended to
situations where the velocity defect is asymptotically large as compared to u� but
still o.1/, we now consider the flow behaviour in the outer wake-type region in more
detail.

3.2 Outer Defect Region

Following the arguments put forward at the beginning of Sect. 3, we write, by
making use of the stream function  , the flow quantities in the outer layer in the
form

p � pe.x/C "2P.x; �I "; �/; (29a)

 =Ue � y � "ıoF.x; �I "; �/; (29b)

�
h
u02; v02; u0v0

i
� U 2e "

2ŒR; S; T 	.x; �I "; �/: (29c)



12 A. Kluwick and B. Scheichl

As before, here � D y=ı0 and we accordingly expand

Q � Q1 C "Q2 C � � �; Q WD F;P;R; S; T;W; (30a)

ı � "�1 C "2�2 C � � �; (30b)

ˇ=ˇv � B0.x/C "B1.x/C � � �; ˇv ! 1; (30c)

where we require (without any loss of generality) that ˇv equals ˇ0 at x D xv, so
that ˇ0 D ˇvB0 and B0.xv/ D 1, Bi .xv/ D 0, i D 1; 2; : : :. In analogy to (12), the
first-order problem then reads

1

Ue

d.Ue�1/

dx
�F 0

1 � 1

U 3e

@.U 3e �1F1/

@x
D T1; (31a)

F1.x; 0/ D F 0
1.x; 1/ D F 00

1 .x; 1/ D T1.x; 1/ D 0; (31b)

� ! 0 W T � .��F 00
1 /
2; F 0

1 � W1.x/ � .2=�/.��/1=2: (31c)

In the following we concentrate on solutions which are self-similar up to second
order, i.e. @F1=@x � @T1=@x � 0 and @F2=@x � @T2=@x � 0. By again adopt-
ing the notations F1 D OF .�/, T1 D OT .�/, and setting �1 D O�.x/, Ue D OU .x/,
we recover the requirements (20), (21) for self-similarity at first order resulting
from classical small-defect theory in the limit of large values of ˇv, in agreement
with (30b) and the definition of ˇ provided by (22):

B0 � 1; O� OFe D 3.x � xv/; OU D .C=3/1=3.x � xv/
�1=3; (32)

with a constant C , and

2� OF 0 D OFe OT ; OF .0/ D OT .0/ D OF 0.1/ D OF 00.1/ D OT .1/ D 0: (33)

If, as in the discussion of the flow behaviour in the intermediate layer, a mixing
length model OT D Œ`.�/ OF 00.�/	2 in accordance with (25) is chosen to close the
problem, integration of (33) yields the analytical expressions

OF 0.�/ D 1

2 OFe

"Z 1

�

z1=2

`.z/
dz

#2
; OFe D

(
1

2

Z 1

0

"Z 1

�

z1=2

`.z/
dz

#2
d�

) 1=2
: (34)

Equations (34) have been evaluated numerically by using a slightly generalised
version of the mixing length closure originally suggested in [13],

` D c`I.�/
1=2 tanh.��=c`/; I D 1=.1C 5:5�6/; c` D 0:085: (35)

Herein I.�/ represents the well-known Klebanoff’s intermittency factor proposed
in [9]. One then obtains W1 D OF 0.0/ :D 13:868, OFe :D 5:682, and d O�=dx

:D 0:528,
cf. (32). As seen in Fig. 1a, both OF 0 and OT vanish quadratically as � ! 1 as a result
of the boundary conditions OT .1/ D OT 0.1/ D 0, cf. (33). Also, note that OF 0 exhibits
the square-root behaviour required from the match with the intermediate layer as
� ! 0.
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Fig. 1 Quasi-equilibrium flows: (a) OF 0.�/, OT .�/, dashed: asymptotes found from (31b), (31c);
(b) canonical representation (37), dashed: asymptotes (see last paragraph of Sect. 3) and parabola
approximating the curve in the apex to leading order

Turning now to the second-order problem, we consider the most general case
that the wall shear enters the description of the flow in the outer layer at this level of
approximation (principle of least degeneracy). Therefore, we require "3T2.0/ � �2,
which finally determines the yet unknown magnitude of " relative to � , namely
that " � �2=3. Since, as pointed out before, " � �ˇ

1=2
0 , this implies that "ˇ0 D

� D O.1/. Inspection of the resulting second-order problem indicates that self simi-
lar solutions exist only if the external velocity distribution (32) predicted by classical
theory is slightly modified in the form

OU .x/ D .C=3/1=3.x � xv/
�1=3C�;  � �2=31 C � � �; (36)

where theO.1/-parameter 1 satisfies a solvability condition that represents the in-
tegral momentum balance obtained from integrating the second-order x-momentum
equation from � D 0 to � D 1. It can be cast into the canonical form

9 OD2 O D 1C OD3: (37)

Herein OD D r1=3�1=3, O D r�2=31, and

r D OF �1
e

Z 1

0

. OF 02 � ORC OS/ d� : (38)

A graph of the relationship (37) which represents the key result of the analysis
dealing with quasi-equilibrium boundary layers having a moderately large velocity
defect is shown in Fig. 1b. Most interesting, it is found that solutions describ-
ing flows of this type exist for O 	 O� D 21=3=6 only and form two branches,
associated with non-uniqueness of the quantity OD, which serves as a measure of
velocity defect, for a specific value of the pressure gradient. Along the lower branch,
OD 
 OD� D 21=3 and decreases with increasing values of O, so that classical small-

defect theory is recovered in the limit O ! 1, where OD � .9 O/�1=2. In contrast,
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this limit leads to an unbounded growth of values OD 	 OD� associated with the upper
branch: OD � 9 O as O ! 1. This immediately raises the question if it is possible to
formulate a general necessarily nonlinear theory which describes turbulent bound-
ary layers having a finite velocity defect in the limit of infinite Reynolds number. We
also note that the early experimental observations made by Clauser, see [6], seem to
strongly point to this type of non-uniqueness.

4 Large Velocity Deficit

As in the cases of small and moderately small velocity defect we require the bound-
ary layer to be slender. However, in contrast to the considerations of Sects. 2 and 3,
the validity of this requirement can no longer be inferred from assumption (a) and
the balance between convective and Reynolds stress gradient terms in the outer pre-
dominately inviscid region of the boundary layer which now yields @�=@y D O.1/,
rather than @�=@y � 1 as earlier. A hint how this difficulty can be overcome is
provided by the observation that the transition from a small to a moderately large
velocity defect is accompanied with the emergence of a wake-type flow in this
outer layer. One expects that this effect will become more pronounced as the veloc-
ity defect increases further, suggesting in turn that the outer part of the boundary
layer, having a velocity defect of O.1/, essentially behaves as a turbulent free
shear layer. An attractive strategy then is to combine the asymptotic treatment of
such flows (e.g. [25]) in which the experimentally observed slenderness is enforced
through the introduction of a Reynolds-number-independent parameter ˛ � 1 with
the asymptotic theory of turbulent wall bounded flows.

4.1 Outer Wake Region

Let the parameter ˛ � 1 measure the lateral extent of the outer wake region, so that
Ny WD y=˛ D O.1/. Appropriate expansions of the various field quantities then are

p � pe.x/CO.˛/; (39a)

q � ˛ q0.x; Ny/C o.˛/; (39b)

where q stands for �,  , � WD �u0v0, �.x/ WD �u02, �.y/ WD �v02. From substitu-
tion into (1b–1c) the leading order outer wake problem is found to be

@ 0

@ Ny
@2 0

@ Ny@x � @ 0

@x

@2 0

@ Ny2 D �UeUex C @�0

@ Ny ; (40a)

Ny D 0 W  0 D �0 D 0; (40b)

Ny D �0.x/ W @ 0=@ Ny D Ue; �0 D 0: (40c)
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As in the case of a moderately large velocity defect, we expect a finite wall slip
Us.x/ WD @ 0=@ Ny at the base Ny D 0 of this outer layer, which yields the limiting
behaviour

@ 0=@ Ny � Us.x/CO. Ny3=2/ ; �0 � ƒ0 Ny CO. Ny3=2/; (41)

with ƒ0 WD UsUsx � UeUex > 0.
It is easily verified that the various layers introduced so far in the description

of turbulent boundary layers share the property that their lateral extent is of the
order of the mixing length ` characteristic for the respective layer. In contrast, the
scalings given by (39) imply that ` is much smaller than the thickness of the outer
wake region: ` � ˛3=2 � ˛. This is a characteristic feature of free shear layers, of
course, but also indicates that the outer wake region “starts to feel” the presence of
the confining wall at distances y � ˛3=2, which in turn causes the emergence of an
inner wake region.

4.2 Inner Wake Region

By introducing the stretched wall distance Y D y=˛3=2 D O.1/, inspection of (41)
suggests the expansions

 � ˛3=2Us.x/C ˛9=4 N .x; Y /C � � � ; (42a)

� � ˛3=2 NT .x; Y /C � � � ; ` � ˛3=2 NL.x; Y /C � � � ; (42b)

which leads to
NT D ƒ0Y: (43)

Furthermore, NT and N are subject to the boundary conditions

T .x; 0/ D N .x; 0/ D 0; (44a)

N Y � 2

3

ƒ
1=2
0

NL0
Y 3=2; Y ! 1; NL0 D limY!1 NL: (44b)

The solution of the inner wake problem posed by (43), (44) can be obtained in closed
form. It exhibits the expected square-root behaviour of N Y ,

N Y � NUs.x/C 2
.ƒ0Y /

1=2

�.x/
; NL � �.x/ NY ; Y ! 0: (45)

Here NUs.x/ denotes the correction of the slip velocity Us.x/ caused by the inner
wake region,

us � Us.x/C ˛3=4 NUs.x/C � � � ; (46a)
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NUs.x/ D �
Z 1

0

�
1

NL � 1

NL0

�
.ƒ0Y /

1=2 dY: (46b)

At this point it is important to recall the basic assumption made at the begin-
ning of this section, namely, that the slenderness parameter ˛ is independent of
Re, or more generally, asymptotes to a small but finite value as Re ! 1. As a
consequence, the outer and inner wake regions provide a complete description of
the boundary layer flow in the formal limit Re�1 D 0. If, however, 0 < 1=Re � 1

an additional sublayer forms at the base of the inner wake region. This sublayer
plays a similar role as the intermediate layer discussed in Sect. 3.1: there the mag-
nitude of the Reynolds shear stress, still varying linearly with distance from the
wall, is reduced to O.u2� /, which is necessary to provide the square-root behaviour
expressed in (45) and, finally, to allow for the match with the universal wall layer,
see [19].

4.3 Numerical Solution of the Leading-Order
Outer-Wake Problem

As earlier, a slightly modified version of the mixing length model proposed in [13]
will be adopted to close the outer wake problem posed by (40). Numerical calcu-
lations were carried out for a family of retarded external flows controlled by two
parametersms, k, with ms < 0, 0 
 k < 1:

Ue.xIms ; k/ D .1C x/m.xIms ;k/; (47a)

m

ms
D 1C k

1 � k
‚.2 � x/�1 � .1 � x/2�3: (47b)

Herein ‚ denotes the Heaviside step function. Self-similar solutions of the form
 0 D �0F.�/, � WD Y=�0, �0 D b.1C x/, where b D const and the position
x D �1 defines the virtual origin of the flow, exist for k D 0 if ms > �1=3 and are
used to provide initial conditions at x D 0 for the downstream integration of (40)
with Ue given by (47). As a specific example, we consider the case F 0.0/ D 0:95

of a relatively small velocity defect, imposed at x D 0, for which the require-
ment of self-similarity for �1 < x < 0 yields b

:D 0:3656 and ms
:D �0:3292. The

key results which are representative for the responding boundary layer and, most
important, indicate that the present theory is capable of describing the approach to
separation are displayed in Fig. 2. If k is sufficiently small, the distribution of the
wall slip velocity Us is smooth and Us > 0 throughout. However, when k reaches
a critical value kM

:D 0:84258, the slip velocity Us is found to vanish at a sin-
gle location x D xM , but is positive elsewhere. A further increase of k provokes
a breakdown of the calculations, accompanied with the formation of a weak sin-
gularity slightly upstream of xM at x D xG . A similar behaviour is observed for
the boundary layer thickness �0, which is smooth in the subcritical case k < kM ,
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Fig. 2 Solutions of (40) for jx � xM j � 1, jk � kM j � 1, dashed: asymptotes expressed
by (48b), (49)

exhibits a rather sharp peak �0;M for k D kM at x D xM, and approaches a finite
limit �0;G in an apparently singular manner in the supercritical case k > kM.

Following the qualitatively similar behaviour of the wall shear stress that replaces
Us in the case of laminar boundary layers, see [17,18,27], the critical solution with
k D kM is termed a marginally separating boundary layer solution. However, in
vivid contrast to its laminar counterpart, is is clearly seen to be locally asymmetric
with respect to x D xM where it is singular. This numerical finding is supported by
a local analysis of the flow behaviour near x D xM , carried out in [20]: it indicates
that Us decreases linearly with x upstream of x D xM but exhibits a square-root
singularity as x � xM ! 0C,

Us=P
1=2
00 � �B.x � xM /; x � xM ! 0�; (48a)

Us=P
1=2
00 � UC.x � xM /

1=2; x � xM ! 0C; (48b)

whereP00 D .dpe=dx/.xM /. It is found thatUC
:D 1:1835, whereas the constantB

remains arbitrary in the local investigation and has to be determined by comparison
with the numerical results for x 
 xM .

This local analysis also shows that a square-root singularity forms at a position
x D xG < xM for k > kM ,

Us=P
1=2
00 � U�.xG � x/1=2; x � xG ! 0�; (49)

with some U� to be determined numerically, and that the solution cannot be
extended further downstream. This behaviour, which has been described first in [12],
is reminiscent of the Goldstein singularity well-known from the theory of laminar
boundary layers and, therefore, will be termed the turbulent Goldstein singular-
ity. As shown in the next section, the bifurcating behaviour of the solutions for
k � kM ! 0 is associated with the occurrence of marginally separating flow.
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4.4 Marginal Separation

According to the original boundary layer concept, pressure disturbances caused by
the displacement of the external inviscid flow due to the momentum deficit, which
is associated with the reduced velocities close to the wall, represent a higher order
effect. Accordingly, higher-order corrections to the leading-oder approximation of
the flow quantities inside and outside the boundary layer can be calculated in sub-
sequent steps. However, as found first for laminar flows, this so-called hierarchical
structure of the perturbation scheme breaks down in regions where the displacement
thickness changes so rapidly that the resulting pressure response is large enough to
affect the lowest-order boundary layer approximation (e.g. [26]). A similar situation
is encountered for the type of turbulent flows discussed in the preceding section.
Indeed, the slope discontinuity of �0 and, in turn, of the displacement thickness
forces a singularity in the response pressure, indicating a breakdown of the hier-
archical approach to boundary layer theory. As for laminar flows, see [17, 18, 27],
this deficiency can be overcome by adopting a local interaction strategy, so that the
induced pressure disturbances enter the description of the flow in leading rather than
higher order.

Again, similar to laminar flows, three layers (decks) characterising regions of
different flow behaviour have to be distinguished inside the local interaction region,
see Fig. 3. Effects of Reynolds stresses are found to be confined to the lower deck
region (LD), having a streamwise and lateral extent of O.˛3=5/ and O.˛6=5/,
respectively. Here the flow is governed by equations of the form (40). The major-
ity of the boundary layer, i.e. the main deck (MD), behaves passively in the sense
that it transfers displacement effects caused by the lower deck region unchanged to
the external flow region taking part in the interaction process, the so-called upper
deck (UD), and transfers the resulting pressure response unchanged to the lower
deck. Solutions to the leading-order main and upper deck problems can be obtained
in closed form which finally leads to the fundamental lower deck problem. By using
suitably stretched variables, it can be written in terms of a stream function O . OX; OY /
as (see [20])

UD

IW

OW

y
y~aD0(x)

MD MD+

LD+LD

MD_

LD_

O(a3/5)

O(a6/5)

O(a3/5)

O(a3/2)

x

Fig. 3 Triple-deck structure, for captions see text, subscripts “�” and “C” refer to the continuation
of flow regions up- and downstream of the local interaction zone, dashed line indicates inner wake
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@ O 
@ OY

@2 O 
@ OY @ OX � @ O 

@ OX
@2 O 
@ OY 2 D �1 �ƒ.�/ OP 0. OX/C @ OT

@ OY ; (50a)

OT D @2 O 
@ OY 2

ˇ̌
ˇ
ˇ
ˇ
@2 O 
@ OY 2

ˇ̌
ˇ
ˇ
ˇ
; (50b)

OP. OX/ D 1

π

Z 1

�1
C

OA0. OS/
OX � OS d OS (50c)

OY D 0 W O D OT D 0; (50d)

OY ! 1 W OT � OY ! OA. OX/; (50e)

OX ! �1 W O ! .4=15/ OY 5=2 C � OY ; 0 
 � 
 1; (50f)

OX ! 1 W O ! OX5=6FC. O�/; O� WD OY = OX1=3: (50g)

The first and second term on the right-hand side of (50a) account for the imposed
and induced pressure, respectively. The latter is given by the Hilbert integral (50c),
where OA characterises the displacement effect exerted by the lower deck region. The
far-field condition (50e) expresses the passive character of the main deck mentioned
before, whereas the conditions (50f), (50g) follow from the match with regions LD�,
LDC immediately upstream and downstream of the local interaction zone. The
analysis of region LDC determines the function FC. O�/. Finally, the parameter �
measures the intensity of the interaction process as the monotonically increasing but
otherwise arbitrary functionƒ.�/ expresses the magnitude of the induced pressure
gradient.

As a representative example of flows encountering separation, the distributions
of OA, OP , and the wall slip OUs WD .@ O =@ OY /. OX; OY D 0/, obtained by numerical solu-
tion of the triple-deck problem (50) for � D 0:019, ƒ D 3, are depicted in Fig. 4a.
Here the dot-and-dash lines indicate the upstream and downstream asymptotes,
obtained from the analysis of the flow behaviour in the pre- and post-interaction
regions (subscripts “�” and “+” in Fig. 3), while OXD and OXR denote the positions
of, respectively, detachment and reattachment. It is interesting to note that the pas-
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Fig. 4 Specific solution of (50), separation in S , reattachment in R: (a) key quantities, dashed:
asymptotes found analytically; (b) streamlines
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sage of OUs into the reverse-flow region where OUs < 0 causes the interaction pressure
OP to drop initially before it rises sharply, overshoots and finally tends to zero in the

limit OX ! 1. This is in striking contrast to laminar flows, where flow separation
always is triggered by an initial pressure rise, and reflects the fact that – in the case
of turbulent flows considered here – the streamwise velocity component at the base
OY D 0 of the lower deck region is allowed to take on finite values, whereas the

no-slip condition is enforced in its laminar counterpart.
Streamlines inside the lower-deck region are displayed in Fig. 4b which clearly

shows the formation of a recirculating eddy. Also, we draw attention to the increas-
ing density of streamlines further away from the wall and downstream of reattach-
ment, associated with the strong acceleration of the fluid there as evident from the
rapid increase of OUs.

The interaction process outlined so far describes the behaviour or marginally
separated turbulent flows in the limit 1=Re D 0. As in the case of conventional,
i.e. hierarchical, boundary layers having a velocity of defect of O.1/, additional
sublayers form closer to the wall if 1=Re � 1 but finite. Their analysis, outlined
in [19], provides the skin-friction relationship in generalised form to include the
effects of vanishing and negative wall shear – treated first in a systematic way in
[24] – but also shows that these layers behave passively insofar as the lower deck
problem (50) remains intact.

5 Conclusions and Outlook

In this study an attempt has been made to derive the classical two-layer structure
of a turbulent small-defect boundary layer from a minimum of assumptions. As
in [30], but in contrast to earlier investigations (e.g. [10]), the (logarithmic) law of
the wall is taken basically as an empirical observation rather than a consequence
of matching inner and outer layers, as the latter is not felt rich enough to provide
a stringent foundation of this important relationship reflecting the dynamics of the
flow close to the wall, which is not understood in full at present. Probably the first
successful model that describes essential aspects of this dynamics is provided by
Prandtl’s mixing length concept, proposed more than 50 years before the advent of
asymptotic theories in fluid mechanics. Significant progress has been achieved in
more recent years and, in particular, by the pioneering work of Walker (e.g. [30]),
whose untimely death ended a line of thought which certainly ought to be taken up
again.

Following the brief outline of the classical small-defect theory, it is shown how
a description of turbulent boundary layers having a slightly larger (i.e. moderately
large) velocity defect, where the outer predominately inviscid layer starts to develop
a wake-type behaviour, can be formulated. Further increase of the velocity defect
to values of O.1/ causes the wake region to become even more pronounced and is
seen to allow for the occurrence of reverse-flow regions close to the wall, resulting
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in what we believe to be the first fully self-consistent theory of marginally separated
turbulent flows.

Unfortunately, however, this success seemingly does not shed light on the phe-
nomenon of global or gross separation associated with flows past (more-or-less)
blunt bodies or, to put it more precisely, flows which start at a stagnation point rather
than a sharp leading edge. Indeed, a recent careful numerical investigation for the
canonical case of a circular cylinder, presented, among others, in [22, 23], undoubt-
edly indicates that the boundary layer approaching separation exhibits a small rather
than a large velocity defect, leading in turn to the dilemma addressed in Sect. 2.4.
The accompanying asymptotic analysis based on the turbulence intensity gauge
model introduced in [15], however, strongly suggests that a boundary layer forming
on a body of finite extent and originating in a front stagnation point does not reach
a fully developed turbulent state, even in the limit Re ! 1. Specifically, it is found
that the boundary layer thickness and the Reynolds shear stress are slightly smaller
than predicted by classical small-defect theory, while the velocity defect in the outer
region, and, most important, the thickness of the wall layer are slightly larger. As
a consequence, the outer large-momentum region does not penetrate to distances
from the wall which are transcendentally small. In turn, this situation opens the pos-
sibility to formulate a local interaction mechanism that describes the detachment
of the boundary layer from the solid wall within the framework of free-streamline
theory at pressure levels which are compatible with experimental observation. This
is a topic of intense current investigations.
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